Science.gov

Sample records for cardiomyopathy mutations affect

  1. Novel familial dilated cardiomyopathy mutation in MYL2 affects the structure and function of myosin regulatory light chain.

    PubMed

    Huang, Wenrui; Liang, Jingsheng; Yuan, Chen-Ching; Kazmierczak, Katarzyna; Zhou, Zhiqun; Morales, Ana; McBride, Kim L; Fitzgerald-Butt, Sara M; Hershberger, Ray E; Szczesna-Cordary, Danuta

    2015-06-01

    Dilated cardiomyopathy (DCM) is a disease of the myocardium characterized by left ventricular dilatation and diminished contractile function. Here we describe a novel DCM mutation in the myosin regulatory light chain (RLC), in which aspartic acid at position 94 is replaced by alanine (D94A). The mutation was identified by exome sequencing of three adult first-degree relatives who met formal criteria for idiopathic DCM. To obtain insight into the functional significance of this pathogenic MYL2 variant, we cloned and purified the human ventricular RLC wild-type (WT) and D94A mutant proteins, and performed in vitro experiments using RLC-mutant or WT-reconstituted porcine cardiac preparations. The mutation induced a reduction in the α-helical content of the RLC, and imposed intra-molecular rearrangements. The phosphorylation of RLC by Ca²⁺/calmodulin-activated myosin light chain kinase was not affected by D94A. The mutation was seen to impair binding of RLC to the myosin heavy chain, and its incorporation into RLC-depleted porcine myosin. The actin-activated ATPase activity of mutant-reconstituted porcine cardiac myosin was significantly higher compared with ATPase of wild-type. No changes in the myofibrillar ATPase-pCa relationship were observed in wild-type- or D94A-reconstituted preparations. Measurements of contractile force showed a slightly reduced maximal tension per cross-section of muscle, with no change in the calcium sensitivity of force in D94A-reconstituted skinned porcine papillary muscle strips compared with wild-type. Our data indicate that subtle structural rearrangements in the RLC molecule, followed by its impaired interaction with the myosin heavy chain, may trigger functional abnormalities contributing to the DCM phenotype. © 2015 FEBS.

  2. Novel Familial Dilated Cardiomyopathy Mutation in MYL2 Affects the Structure and Function of Myosin Regulatory Light Chain

    PubMed Central

    Huang, Wenrui; Liang, Jingsheng; Yuan, Chen-Ching; Kazmierczak, Katarzyna; Zhou, Zhiqun; Morales, Ana; McBride, Kim L.; Fitzgerald-Butt, Sara M.; Hershberger, Ray E.; Szczesna-Cordary, Danuta

    2015-01-01

    Dilated Cardiomyopathy (DCM) is a disease of the myocardium characterized by left ventricular dilatation and diminished contractile function. In this report we describe a novel DCM mutation identified for the first time in the myosin regulatory light chain (RLC), replacing Aspartic Acid at position 94 with Alanine (D94A). The mutation was identified by exome sequencing of three adult first-degree relatives who met formal criteria for idiopathic DCM. To gain insight into the functional significance of this pathogenic MYL2 variant, we have cloned and purified the human ventricular RLC wild-type (WT) and D94A-mutant proteins and performed in vitro experiments using RLC-exchanged porcine cardiac preparations. The mutation was observed to induce a reduction in the α-helical content of the RLC and imposed intra-molecular rearrangements. The Ca2+-calmodulin-activated myosin light chain kinase phosphorylation of RLC was not affected by D94A. The mutation was seen to impair the binding of RLC to the MHC (myosin heavy chain), and its incorporation into the RLC-depleted porcine myosin. The actin-activated ATPase activity of mutant-reconstituted porcine cardiac myosin was significantly higher compared to ATPase of WT. No changes in myofibrillar ATPase-pCa relationship were observed in WT- or D94A-reconstituted preparations. Measurements of contractile force showed a slightly reduced maximal tension per cross-section of muscle with no change in calcium sensitivity of force in D94A-reconstituted skinned porcine papillary muscle strips compared with WT. Our data indicate that subtle structural rearrangements in the RLC molecule followed by its impaired interaction with the MHC may trigger functional abnormalities contributing to the DCM phenotype. PMID:25825243

  3. Biallelic Truncating Mutations in ALPK3 Cause Severe Pediatric Cardiomyopathy.

    PubMed

    Almomani, Rowida; Verhagen, Judith M A; Herkert, Johanna C; Brosens, Erwin; van Spaendonck-Zwarts, Karin Y; Asimaki, Angeliki; van der Zwaag, Paul A; Frohn-Mulder, Ingrid M E; Bertoli-Avella, Aida M; Boven, Ludolf G; van Slegtenhorst, Marjon A; van der Smagt, Jasper J; van IJcken, Wilfred F J; Timmer, Bert; van Stuijvenberg, Margriet; Verdijk, Rob M; Saffitz, Jeffrey E; du Plessis, Frederik A; Michels, Michelle; Hofstra, Robert M W; Sinke, Richard J; van Tintelen, J Peter; Wessels, Marja W; Jongbloed, Jan D H; van de Laar, Ingrid M B H

    2016-02-09

    Cardiomyopathies are usually inherited and predominantly affect adults, but they can also present in childhood. Although our understanding of the molecular basis of pediatric cardiomyopathy has improved, the underlying mechanism remains elusive in a substantial proportion of cases. This study aimed to identify new genes involved in pediatric cardiomyopathy. The authors performed homozygosity mapping and whole-exome sequencing in 2 consanguineous families with idiopathic pediatric cardiomyopathy. Sixty unrelated patients with pediatric cardiomyopathy were subsequently screened for mutations in a candidate gene. First-degree relatives were submitted to cardiac screening and cascade genetic testing. Myocardial samples from 2 patients were processed for histological and immunohistochemical studies. We identified 5 patients from 3 unrelated families with pediatric cardiomyopathy caused by homozygous truncating mutations in ALPK3, a gene encoding a nuclear kinase that plays an essential role in early differentiation of cardiomyocytes. All patients with biallelic mutations presented with severe hypertrophic and/or dilated cardiomyopathy in utero, at birth, or in early childhood. Three patients died from heart failure within the first week of life. Moreover, 2 of 10 (20%) heterozygous family members showed hypertrophic cardiomyopathy with an atypical distribution of hypertrophy. Deficiency of alpha-kinase 3 has previously been associated with features of both hypertrophic and dilated cardiomyopathy in mice. Consistent with studies in knockout mice, we provide microscopic evidence for intercalated disc remodeling. Biallelic truncating mutations in the newly identified gene ALPK3 give rise to severe, early-onset cardiomyopathy in humans. Our findings highlight the importance of transcription factor pathways in the molecular mechanisms underlying human cardiomyopathies. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  4. Genetic mutations and mechanisms in dilated cardiomyopathy.

    PubMed

    McNally, Elizabeth M; Golbus, Jessica R; Puckelwartz, Megan J

    2013-01-01

    Genetic mutations account for a significant percentage of cardiomyopathies, which are a leading cause of congestive heart failure. In hypertrophic cardiomyopathy (HCM), cardiac output is limited by the thickened myocardium through impaired filling and outflow. Mutations in the genes encoding the thick filament components myosin heavy chain and myosin binding protein C (MYH7 and MYBPC3) together explain 75% of inherited HCMs, leading to the observation that HCM is a disease of the sarcomere. Many mutations are "private" or rare variants, often unique to families. In contrast, dilated cardiomyopathy (DCM) is far more genetically heterogeneous, with mutations in genes encoding cytoskeletal, nucleoskeletal, mitochondrial, and calcium-handling proteins. DCM is characterized by enlarged ventricular dimensions and impaired systolic and diastolic function. Private mutations account for most DCMs, with few hotspots or recurring mutations. More than 50 single genes are linked to inherited DCM, including many genes that also link to HCM. Relatively few clinical clues guide the diagnosis of inherited DCM, but emerging evidence supports the use of genetic testing to identify those patients at risk for faster disease progression, congestive heart failure, and arrhythmia.

  5. Dominant de novo DSP mutations cause erythrokeratodermia-cardiomyopathy syndrome

    PubMed Central

    Boyden, Lynn M.; Kam, Chen Y.; Hernández-Martín, Angela; Zhou, Jing; Craiglow, Brittany G.; Sidbury, Robert; Mathes, Erin F.; Maguiness, Sheilagh M.; Crumrine, Debra A.; Williams, Mary L.; Hu, Ronghua; Lifton, Richard P.; Elias, Peter M.; Green, Kathleen J.; Choate, Keith A.

    2016-01-01

    Disorders of keratinization (DOK) show marked genotypic and phenotypic heterogeneity. In most cases, disease is primarily cutaneous, and further clinical evaluation is therefore rarely pursued. We have identified subjects with a novel DOK featuring erythrokeratodermia and initially-asymptomatic, progressive, potentially fatal cardiomyopathy, a finding not previously associated with erythrokeratodermia. We show that de novo missense mutations clustered tightly within a single spectrin repeat of DSP cause this novel cardio-cutaneous disorder, which we term erythrokeratodermia-cardiomyopathy (EKC) syndrome. We demonstrate that DSP mutations in our EKC syndrome subjects affect localization of desmosomal proteins and connexin 43 in the skin, and result in desmosome aggregation, widening of intercellular spaces, and lipid secretory defects. DSP encodes desmoplakin, a primary component of desmosomes, intercellular adhesion junctions most abundant in the epidermis and heart. Though mutations in DSP are known to cause other disorders, our cohort features the unique clinical finding of severe whole-body erythrokeratodermia, with distinct effects on localization of desmosomal proteins and connexin 43. These findings add a severe, previously undescribed syndrome featuring erythrokeratodermia and cardiomyopathy to the spectrum of disease caused by mutation in DSP, and identify a specific region of the protein critical to the pathobiology of EKC syndrome and to DSP function in the heart and skin. PMID:26604139

  6. Dominant de novo DSP mutations cause erythrokeratodermia-cardiomyopathy syndrome.

    PubMed

    Boyden, Lynn M; Kam, Chen Y; Hernández-Martín, Angela; Zhou, Jing; Craiglow, Brittany G; Sidbury, Robert; Mathes, Erin F; Maguiness, Sheilagh M; Crumrine, Debra A; Williams, Mary L; Hu, Ronghua; Lifton, Richard P; Elias, Peter M; Green, Kathleen J; Choate, Keith A

    2016-01-15

    Disorders of keratinization (DOK) show marked genotypic and phenotypic heterogeneity. In most cases, disease is primarily cutaneous, and further clinical evaluation is therefore rarely pursued. We have identified subjects with a novel DOK featuring erythrokeratodermia and initially-asymptomatic, progressive, potentially fatal cardiomyopathy, a finding not previously associated with erythrokeratodermia. We show that de novo missense mutations clustered tightly within a single spectrin repeat of DSP cause this novel cardio-cutaneous disorder, which we term erythrokeratodermia-cardiomyopathy (EKC) syndrome. We demonstrate that DSP mutations in our EKC syndrome subjects affect localization of desmosomal proteins and connexin 43 in the skin, and result in desmosome aggregation, widening of intercellular spaces, and lipid secretory defects. DSP encodes desmoplakin, a primary component of desmosomes, intercellular adhesion junctions most abundant in the epidermis and heart. Though mutations in DSP are known to cause other disorders, our cohort features the unique clinical finding of severe whole-body erythrokeratodermia, with distinct effects on localization of desmosomal proteins and connexin 43. These findings add a severe, previously undescribed syndrome featuring erythrokeratodermia and cardiomyopathy to the spectrum of disease caused by mutation in DSP, and identify a specific region of the protein critical to the pathobiology of EKC syndrome and to DSP function in the heart and skin.

  7. [Hereditary cardiomyopathies: a review. Mutation of structural proteins a common cause of hereditary cardiomyopathy].

    PubMed

    Sjöberg, Gunnar; Kostareva, Anna; Sejersen, Thomas

    Cardiomyopathy is a disorder of the cardiac muscle and can be either primary or secondary. The primary disorders have been classified by WHO into 4 groups based on structure and function; hypertrophic, dilated and restricted cardiomyopathies and arrythmogenic right ventricle dysplasia. During the last decade the familial nature of many of these cardiomyopathies has been elucidated and different genes have been found to be mutated and causative of disease. Certain patterns can be distinguished in the mutated genes, e.g. in general the genes causing hypertrophic cardiomyopathies code for proteins involved in the contractile apparatus, the sarcomere, and the genes causing dilated cardiomyopathy code for proteins that anchor the sarcomere to the cell membrane and extracellular matrix. This article reviews these recent genetic findings and discusses their potential clinical applicability.

  8. Analysis of 8 sarcomeric candidate genes for feline hypertrophic cardiomyopathy mutations in cats with hypertrophic cardiomyopathy.

    PubMed

    Meurs, K M; Norgard, M M; Kuan, M; Haggstrom, J; Kittleson, M

    2009-01-01

    Hypertrophic cardiomyopathy (HCM) is the most common heart disease in cats. Causative mutations have been identified in the Maine Coon (MC) and Ragdoll breed in the cardiac myosin binding protein C gene (MYBPC3). HCM is thought to be inherited in other breeds. That a causative mutation for HCM in the British Shorthair (BSH), Norwegian Forest (NWF), Siberian, Sphynx, or MC cats would be identified in the exonic and splice site regions of 1 of 8 genes associated with human familial HCM. Three affected BSH, NWF, Siberians, Sphynx, 2 MC (without the known MC mutation), and 2 Domestic Shorthair cats (controls) were studied. Prospective, observational study. Exonic and splice site regions of the genes encoding the proteins cardiac troponin I, troponin T, MYBPC3, cardiac essential myosin light chain, cardiac regulatory myosin light chain, alpha tropomyosin, actin, and beta-myosin heavy chain were sequenced. Sequences were compared for nucleotide changes between affected cats, the published DNA sequences, and control cats. Changes were considered to be causative for HCM if they involved a conserved amino acid and changed the amino acid to a different polarity, acid-base status, or structure. A causative mutation for HCM was not identified, although several single nucleotide polymorphisms were detected. Mutations within these cardiac genes do not appear to be the only cause of HCM in these breeds. Evaluation of additional cardiac genes is warranted to identify additional molecular causes of this feline cardiac disease.

  9. A Case of Novel Lamin A/C Mutation Manifesting as Atypical Progeroid Syndrome and Cardiomyopathy.

    PubMed

    Guo, Xiaoxiao; Ling, Chao; Liu, Yongtai; Zhang, Xue; Zhang, Shuyang

    2016-09-01

    Mutations in the gene LMNA cause a wide spectrum of diseases that selectively affect different tissues and organ systems. The clinical features of these disorders can overlap but be generally categorized into 2 groups: cardiomyopathy and neuromuscular disorders; premature aging and lipodystrophy disorders. It is significant for a single patient who harbours the 2 sets of diseases simultaneously. We present a female patient with a unique phenotype including rare atypical progeroid syndrome and dilated cardiomyopathy. Genetic mutation detection in the gene LMNA revealed a novel heterozygous de novo mutation p.Leu59Val located in the first exon of gene LMNA c.175C>CG.

  10. Truncating FLNC Mutations Are Associated With High-Risk Dilated and Arrhythmogenic Cardiomyopathies.

    PubMed

    Ortiz-Genga, Martín F; Cuenca, Sofía; Dal Ferro, Matteo; Zorio, Esther; Salgado-Aranda, Ricardo; Climent, Vicente; Padrón-Barthe, Laura; Duro-Aguado, Iria; Jiménez-Jáimez, Juan; Hidalgo-Olivares, Víctor M; García-Campo, Enrique; Lanzillo, Chiara; Suárez-Mier, M Paz; Yonath, Hagith; Marcos-Alonso, Sonia; Ochoa, Juan P; Santomé, José L; García-Giustiniani, Diego; Rodríguez-Garrido, Jorge L; Domínguez, Fernando; Merlo, Marco; Palomino, Julián; Peña, María L; Trujillo, Juan P; Martín-Vila, Alicia; Stolfo, Davide; Molina, Pilar; Lara-Pezzi, Enrique; Calvo-Iglesias, Francisco E; Nof, Eyal; Calò, Leonardo; Barriales-Villa, Roberto; Gimeno-Blanes, Juan R; Arad, Michael; García-Pavía, Pablo; Monserrat, Lorenzo

    2016-12-06

    Filamin C (encoded by the FLNC gene) is essential for sarcomere attachment to the plasmatic membrane. FLNC mutations have been associated with myofibrillar myopathies, and cardiac involvement has been reported in some carriers. Accordingly, since 2012, the authors have included FLNC in the genetic screening of patients with inherited cardiomyopathies and sudden death. The aim of this study was to demonstrate the association between truncating mutations in FLNC and the development of high-risk dilated and arrhythmogenic cardiomyopathies. FLNC was studied using next-generation sequencing in 2,877 patients with inherited cardiovascular diseases. A characteristic phenotype was identified in probands with truncating mutations in FLNC. Clinical and genetic evaluation of 28 affected families was performed. Localization of filamin C in cardiac tissue was analyzed in patients with truncating FLNC mutations using immunohistochemistry. Twenty-three truncating mutations were identified in 28 probands previously diagnosed with dilated, arrhythmogenic, or restrictive cardiomyopathies. Truncating FLNC mutations were absent in patients with other phenotypes, including 1,078 patients with hypertrophic cardiomyopathy. Fifty-four mutation carriers were identified among 121 screened relatives. The phenotype consisted of left ventricular dilation (68%), systolic dysfunction (46%), and myocardial fibrosis (67%); inferolateral negative T waves and low QRS voltages on electrocardiography (33%); ventricular arrhythmias (82%); and frequent sudden cardiac death (40 cases in 21 of 28 families). Clinical skeletal myopathy was not observed. Penetrance was >97% in carriers older than 40 years. Truncating mutations in FLNC cosegregated with this phenotype with a dominant inheritance pattern (combined logarithm of the odds score: 9.5). Immunohistochemical staining of myocardial tissue showed no abnormal filamin C aggregates in patients with truncating FLNC mutations. Truncating mutations in FLNC

  11. A myomesin mutation associated with hypertrophic cardiomyopathy deteriorates dimerisation properties.

    PubMed

    Siegert, Romy; Perrot, Andreas; Keller, Sandro; Behlke, Joachim; Michalewska-Włudarczyk, Aleksandra; Wycisk, Anna; Tendera, Michal; Morano, Ingo; Ozcelik, Cemil

    2011-02-18

    Myomesin plays an important structural and functional role in the M-band of striated muscles. The C-terminal domain 13 of myomesin dimerises and forms antiparallel strands which cross-link neighboring Myosin filaments and titin in the M-line of the sarcomeres. These interactions stabilise the contractile apparatus during striated muscle contraction. Since myomesin is an important component of the M-band we screened the myomesin gene for genetic variants in patients with hypertrophic cardiomyopathy (HCM). We identified the missense mutation V1490I in domain 12 of myomesin in a family with inherited HCM. Analytical ultracentrifugation experiments, circular dichroism spectra, and surface plasmon resonance spectroscopy of myomesin fragments were carried out to investigate the effects of the mutation V1490I on structure and function of myomesin domains 11-13 and 12-13. Both the wild type and mutated myomesin domains My11-13 revealed similar secondary structures and formed stable dimers. Mutated myomesin domains My11-13 and My12-13 dimers revealed a reduced thermal stability and a significantly decreased dimerisation affinity, showing disturbed functional properties of V1490I mutated myomesin. However, monomeric myomesin domains My11-12, i.e. without dimerisation domain 13 showed no difference in thermal stability between wild type and V1490I mutated myomesin. In conclusion, the V1490I mutation associated with HCM lead to myomesin proteins with abnormal functional properties which affect dimerisation properties of myomesin domain 13. These effects may contribute to the pathogenesis of HCM. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Missense mutation of the {beta}-cardiac myosin heavy-chain gene in hypertrophic cardiomyopathy

    SciTech Connect

    Arai, Shoichi; Matsuoka, Rumiko; Hirayama, Kenji; Sakurai, Hisanao

    1995-09-11

    Hypertrophic cardiomyopathy occurs as an autosomal dominant familial disorder or as a sporadic disease without familial involvement. We describe a missense mutation of the {beta}-cardiac myosin heavy chain (MHC) gene, a G to T transversion (741 Gly{r_arrow}Trp) identified by direct sequencing of exon 20 in four individuals affected with familial hypertrophic cardiomyopathy. Three individuals with sporadic hypertrophic cardiomyopathy, whose parents are clinically and genetically unaffected, had sequence variations of exon 34 of the {alpha}-cardiac MHC gene (a C to T transversion, 1658 Asp{r_arrow}Asp, resulting in FokI site polymorphism), of intron 33 of the {alpha}-cardiac MHC gene (a G to A and an A to T transversion), and also of intron 14 of the {beta}-cardiac MHC gene (a C to T transversion in a patient with Noonan syndrome). Including our case, 30 missense mutations of the {beta}-cardiac MHC gene in 49 families have been reported thus far worldwide. Almost all are located in the region of the gene coding for the globular head of the molecule, and only one mutation was found in both Caucasian and Japanese families. Missense mutations of the {Beta}-cardiac MHC gene in hypertrophic cardiomyopathy may therefore differ according to race. 29 refs., 6 figs., 3 tabs.

  13. Types of Cardiomyopathy

    MedlinePlus

    ... page from the NHLBI on Twitter. Types of Cardiomyopathy The types of cardiomyopathy include: Hypertrophic cardiomyopathy Dilated ... cardiomyopathy Arrhythmogenic right ventricular cardiomyopathy Unclassified ... Cardiomyopathy Hypertrophic cardiomyopathy is very common and can affect ...

  14. Mutation in δ-Sg Gene in Familial Dilated Cardiomyopathy

    PubMed Central

    Asadi, Marzieh; Foo, Roger; Salehi, Ahmad Reza; Salehi, Rasoul; Samienasab, Mohammad Reza

    2017-01-01

    Background: Mutations in different genes including dystrophin-associated glycoprotein complex caused familial dilated cardiomyopathy which is a genetically heterogeneous disease. The δ-SG gene contains nine exons spanning a 433-kb region of genomic DNA. It encodes a 35-kDa, singlepass, and type II transmembrane glycoprotein. Materials and Methods: In this study for the first time in Iran we screened 6 patients of a large family that they had positive family history of MI or sudden death by next generation sequencing method. Results: By employing NGS method we found missense mutation (p.R97Q) of δ-SG gene in 2 of 6 patients. Conclusions: The missense mutation (p.R97Q) in familial DCM patients is reported for the first time in Iranian patients with cardiac disease. Although this mutation is already known in other populations in Iran, it is not reported before. PMID:28401079

  15. OBSCN Mutations Associated with Dilated Cardiomyopathy and Haploinsufficiency

    PubMed Central

    Marston, Steven; Montgiraud, Cecile; Munster, Alex B.; Copeland, O’Neal; Choi, Onjee; dos Remedios, Cristobal; Messer, Andrew E.; Ehler, Elisabeth; Knöll, Ralph

    2015-01-01

    Background Studies of the functional consequences of DCM-causing mutations have been limited to a few cases where patients with known mutations had heart transplants. To increase the number of potential tissue samples for direct investigation we performed whole exon sequencing of explanted heart muscle samples from 30 patients that had a diagnosis of familial dilated cardiomyopathy and screened for potentially disease-causing mutations in 58 HCM or DCM-related genes. Results We identified 5 potentially disease-causing OBSCN mutations in 4 samples; one sample had two OBSCN mutations and one mutation was judged to be not disease-related. Also identified were 6 truncating mutations in TTN, 3 mutations in MYH7, 2 in DSP and one each in TNNC1, TNNI3, MYOM1, VCL, GLA, PLB, TCAP, PKP2 and LAMA4. The mean level of obscurin mRNA was significantly greater and more variable in healthy donor samples than the DCM samples but did not correlate with OBSCN mutations. A single obscurin protein band was observed in human heart myofibrils with apparent mass 960 ± 60 kDa. The three samples with OBSCN mutations had significantly lower levels of obscurin immunoreactive material than DCM samples without OBSCN mutations (45±7, 48±3, and 72±6% of control level).Obscurin levels in DCM controls, donor heart and myectomy samples were the same. Conclusions OBSCN mutations may result in the development of a DCM phenotype via haploinsufficiency. Mutations in the obscurin gene should be considered as a significant causal factor of DCM, alone or in concert with other mutations. PMID:26406308

  16. OBSCN Mutations Associated with Dilated Cardiomyopathy and Haploinsufficiency.

    PubMed

    Marston, Steven; Montgiraud, Cecile; Munster, Alex B; Copeland, O'Neal; Choi, Onjee; Dos Remedios, Cristobal; Messer, Andrew E; Ehler, Elisabeth; Knöll, Ralph

    2015-01-01

    Studies of the functional consequences of DCM-causing mutations have been limited to a few cases where patients with known mutations had heart transplants. To increase the number of potential tissue samples for direct investigation we performed whole exon sequencing of explanted heart muscle samples from 30 patients that had a diagnosis of familial dilated cardiomyopathy and screened for potentially disease-causing mutations in 58 HCM or DCM-related genes. We identified 5 potentially disease-causing OBSCN mutations in 4 samples; one sample had two OBSCN mutations and one mutation was judged to be not disease-related. Also identified were 6 truncating mutations in TTN, 3 mutations in MYH7, 2 in DSP and one each in TNNC1, TNNI3, MYOM1, VCL, GLA, PLB, TCAP, PKP2 and LAMA4. The mean level of obscurin mRNA was significantly greater and more variable in healthy donor samples than the DCM samples but did not correlate with OBSCN mutations. A single obscurin protein band was observed in human heart myofibrils with apparent mass 960 ± 60 kDa. The three samples with OBSCN mutations had significantly lower levels of obscurin immunoreactive material than DCM samples without OBSCN mutations (45±7, 48±3, and 72±6% of control level).Obscurin levels in DCM controls, donor heart and myectomy samples were the same. OBSCN mutations may result in the development of a DCM phenotype via haploinsufficiency. Mutations in the obscurin gene should be considered as a significant causal factor of DCM, alone or in concert with other mutations.

  17. Recurrent major depression, ataxia, and cardiomyopathy: association with a novel POLG mutation?

    PubMed Central

    Verhoeven, Willem MA; Egger, Jos IM; Kremer, Berry PH; de Pont, Boudewijn JHB; Marcelis, Carlo LM

    2011-01-01

    At present, more than 100 disease mutations in mitochondrial DNA polymerase γ (POLG) have been indentified that are causally related to an array of neuropsychiatric diseases affecting multiple systems. Both autosomal recessive and autosomal dominant forms can be delineated, the latter being associated with Parkinsonism and depressive or psychotic syndromes. In this report, a middle-aged female patient with recurrent major depression with melancholic features, slowly progressive gait instability, and dilated cardiomyopathy is described. Detailed diagnostic evaluation was performed to elucidate the supposed relationship between ataxia, cardiomyopathy, and major depression with melancholia. After extensive genetic and metabolic investigation, a nucleotide substitution c.2207 A→G in the POLG gene resulting in amino acid change Asn 736Ser in exon 13 was demonstrated. This mutation was considered to be compatible with a mitochondrial disorder and implicated in the pathophysiology of the neuropsychiatric syndrome. It is concluded that this novel POLG mutation forms the most parsimonious etiological explanation for the here-described combination of ataxia, major depression, and cardiomyopathy. Therefore, in patients with a complex neuropsychiatric presentation, extensive diagnostic analysis is warranted, including the search for mitochondriopathies, in order to avoid unnecessary delay of adequate treatment. PMID:21654874

  18. Furthering the link between the sarcomere and primary cardiomyopathies: restrictive cardiomyopathy associated with multiple mutations in genes previously associated with hypertrophic or dilated cardiomyopathy.

    PubMed

    Caleshu, Colleen; Sakhuja, Rahul; Nussbaum, Robert L; Schiller, Nelson B; Ursell, Philip C; Eng, Celeste; De Marco, Teresa; McGlothlin, Dana; Burchard, Esteban González; Rame, J Eduardo

    2011-09-01

    Mutations in genes that encode components of the sarcomere are well established as the cause of hypertrophic and dilated cardiomyopathies. Sarcomere genes, however, are increasingly being associated with other cardiomyopathies. One phenotype more recently recognized as a disease of the sarcomere is restrictive cardiomyopathy (RCM). We report on two patients with RCM associated with multiple mutations in sarcomere genes not previously associated with RCM. Patient 1 presented with NYHA Class III/IV heart failure at 22 years of age. She was diagnosed with RCM and advanced heart failure requiring heart transplantation. Sequencing of sarcomere genes revealed previously reported homozygous p.Glu143Lys mutations in MYL3, and a novel heterozygous p.Gly57Glu mutation in MYL2. The patient's mother is a double heterozygote for these mutations, with no evidence of cardiomyopathy. Patient 2 presented at 35 years of age with volume overload while hospitalized for oophorectomy. She was diagnosed with RCM and is being evaluated for heart transplantation. Sarcomere gene sequencing identified homozygous p.Asn279His mutations in TPM1. The patient's parents are consanguineous and confirmed heterozygotes. Her father was diagnosed with HCM at 42 years of age. This is the first report of mutations in TPM1, MYL3, and MYL2 associated with primary, non-hypertrophied RCM. The association of more sarcomere genes with RCM provides further evidence that mutations in the various sarcomere genes can cause different cardiomyopathy phenotypes. These cases also contribute to the growing body of evidence that multiple mutations have an additive effect on the severity of cardiomyopathies. Copyright © 2011 Wiley-Liss, Inc.

  19. Fatal infantile mitochondrial encephalomyopathy, hypertrophic cardiomyopathy and optic atrophy associated with a homozygous OPA1 mutation

    PubMed Central

    Spiegel, Ronen; Saada, Ann; Flannery, Padraig J; Burté, Florence; Soiferman, Devorah; Khayat, Morad; Eisner, Verónica; Vladovski, Eugene; Taylor, Robert W; Bindoff, Laurence A; Shaag, Avraham; Mandel, Hanna; Schuler-Furman, Ora; Shalev, Stavit A; Elpeleg, Orly; Yu-Wai-Man, Patrick

    2016-01-01

    Background Infantile-onset encephalopathy and hypertrophic cardiomyopathy caused by mitochondrial oxidative phosphorylation defects are genetically heterogeneous with defects involving both the mitochondrial and nuclear genomes. Objective To identify the causative genetic defect in two sisters presenting with lethal infantile encephalopathy, hypertrophic cardiomyopathy and optic atrophy. Methods We describe a comprehensive clinical, biochemical and molecular genetic investigation of two affected siblings from a consanguineous family. Molecular genetic analysis was done by a combined approach involving genome-wide autozygosity mapping and next-generation exome sequencing. Biochemical analysis was done by enzymatic analysis and Western blot. Evidence for mitochondrial DNA (mtDNA) instability was investigated using long-range and real-time PCR assays. Mitochondrial cristae morphology was assessed with transmission electron microscopy. Results Both affected sisters presented with a similar cluster of neurodevelopmental deficits marked by failure to thrive, generalised neuromuscular weakness and optic atrophy. The disease progression was ultimately fatal with severe encephalopathy and hypertrophic cardiomyopathy. Mitochondrial respiratory chain complex activities were globally decreased in skeletal muscle biopsies. They were found to be homozygous for a novel c.1601T>G (p.Leu534Arg) mutation in the OPA1 gene, which resulted in a marked loss of steady-state levels of the native OPA1 protein. We observed severe mtDNA depletion in DNA extracted from the patients’ muscle biopsies. Mitochondrial morphology was consistent with abnormal mitochondrial membrane fusion. Conclusions We have established, for the first time, a causal link between a pathogenic homozygous OPA1 mutation and human disease. The fatal multisystemic manifestations observed further extend the complex phenotype associated with pathogenic OPA1 mutations, in particular the previously unreported association

  20. Mutations in NEBL encoding the cardiac Z-disk protein nebulette are associated with various cardiomyopathies.

    PubMed

    Perrot, Andreas; Tomasov, Pavol; Villard, Eric; Faludi, Reka; Melacini, Paola; Lossie, Janine; Lohmann, Nadine; Richard, Pascale; De Bortoli, Marzia; Angelini, Annalisa; Varga-Szemes, Akos; Sperling, Silke R; Simor, Tamás; Veselka, Josef; Özcelik, Cemil; Charron, Philippe

    2016-04-01

    Transgenic mice overexpressing mutated NEBL, encoding the cardiac-specific Z-disk protein nebulette, develop severe cardiac phenotypes. Since cardiomyopathies are commonly familial and because mutations in a single gene may result in variable phenotypes, we tested the hypothesis that NEBL mutations are associated with cardiomyopathy. We analyzed 389 patients, including cohorts of patients with dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), and left ventricular non-compaction cardiomyopathy (LVNC). The 28 coding exons of the NEBL gene were sequenced. Further bioinformatic analysis was used to distinguish variants. In total, we identified six very rare heterozygous missense mutations in NEBL in 7 different patients (frequency 1.8%) in highly conserved codons. The mutations were not detectable in 320 Caucasian sex-matched unrelated individuals without cardiomyopathy and 192 Caucasian sex-matched blood donors without heart disease. Known cardiomyopathy genes were excluded in these patients. The mutations p.H171R and p.I652L were found in 2 HCM patients. Further, p.Q581R and p.S747L were detected in 2 DCM patients, while the mutation p.A175T was identified independently in two unrelated patients with DCM. One LVNC patient carried the mutation p.P916L. All HCM and DCM related mutations were located in the nebulin-like repeats, domains responsible for actin binding. Interestingly, the mutation associated with LVNC was located in the C-terminal serine-rich linker region. Our data suggest that NEBL mutations may cause various cardiomyopathies. We herein describe the first NEBL mutations in HCM and LVNC. Our findings underline the notion that the cardiomyopathies are true allelic diseases.

  1. Distinguishing Hypertrophic Cardiomyopathy-Associated Mutations from Background Genetic Noise

    PubMed Central

    Kapplinger, Jamie D.; Landstrom, Andrew P.; Bos, J. Martijn; Salisbury, Benjamin A.; Callis, Thomas E.; Ackerman, Michael J.

    2014-01-01

    Despite the significant progress that has been made in identifying disease-associated mutations, the utility of the Hypertrophic Cardiomyopathy (HCM) genetic test is limited by a lack of understanding of the background genetic variation inherent to these sarcomeric genes in seemingly healthy subjects. This study represents the first comprehensive analysis of genetic variation in 427 ostensibly healthy individuals for the HCM genetic test using the “Gold Standard” Sanger sequencing method validating the background rate identified in the publically available exomes. While mutations are clearly over-represented in disease, a background rate as high as ~5% among healthy individuals prevents diagnostic certainty. To this end, we have identified a number of estimated predictive value-based associations including gene-specific, topology, and conservation methods generating an algorithm aiding in the probabilistic interpretation of an HCM genetic test. PMID:24510615

  2. Rare variant mutations identified in pediatric patients with dilated cardiomyopathy

    PubMed Central

    Rampersaud, Evadnie; Siegfried, Jill D; Norton, Nadine; Li, Duanxiang; Martin, Eden; Hershberger, Ray E

    2010-01-01

    Dilated cardiomyopathy (DCM) in infants and children can be partially explained by genetic cause but the catalogue of known genes is limited. We reviewed our database of 41 cases diagnosed with DCM before 18 years of age who underwent detailed clinical and genetic evaluation, and summarize here the evidence for mutations causing DCM in these cases from 15 genes (PSEN1, PSEN2, CSRP3, LBD3, MYH7, SCN5A, TCAP, TNNT2, LMNA, MYBPC3, MYH6, TNNC1, TNNI3, TPM1, and RBM20). Thirty-five of the 41 pediatric cases had relatives with adult-onset DCM. More males (66%) were found among children diagnosed after 1 year of age with DCM. Nineteen mutations in 9 genes were identified among 15 out of 41 patients; 3 patients (diagnosed at ages 2 weeks, 9 and 13 years) had multiple mutations. Of the 19 mutations identified in 12 families, mutations in TPM1 (32%) and TNNT2 (21%) were the most commonly found. Of the 6 patients diagnosed before 1 year of age, 3 had mutations in TPM1 (including a set of identical twins), 1 in TNNT2, 1 in MYH7, and 1 with multiple mutations (MYH7 and TNNC1). Most DCM was accompanied by advanced heart failure and need for cardiac transplantation. We conclude that in some cases pediatric DCM has a genetic basis, which is complicated by allelic and locus heterogeneity as seen in adult-onset DCM. We suggest that future prospective comprehensive family-based genetic studies of pediatric DCM are indicated to further define mutation frequencies in known genes and to discover novel genetic cause. PMID:21483645

  3. LMNA mutations in Polish patients with dilated cardiomyopathy: prevalence, clinical characteristics, and in vitro studies

    PubMed Central

    2013-01-01

    Background LMNA mutations are most frequently involved in the pathogenesis of dilated cardiomyopathy with conduction disease. The goal of this study was to identify LMNA mutations, estimate their frequency among Polish dilated cardiomyopathy patients and characterize their effect both in vivo and in vitro. Methods Between January, 2008 and June, 2012 two patient populations were screened for the presence of LMNA mutations by direct sequencing: 66 dilated cardiomyopathy patients including 27 heart transplant recipients and 39 dilated cardiomyopathy patients with heart failure referred for heart transplantation evaluation, and 44 consecutive dilated cardiomyopathy patients, referred for a family evaluation and mutation screening. Results We detected nine non-synonymous mutations including three novel mutations: p.Ser431*, p.Val256Gly and p.Gly400Argfs*11 deletion. There were 25 carriers altogether in nine families. The carriers were mostly characterized by dilated cardiomyopathy and heart failure with conduction system disease and/or complex ventricular arrhythmia, although five were asymptomatic. Among the LMNA mutation carriers, six underwent heart transplantation, fourteen ICD implantation and eight had pacemaker. In addition, we obtained ultrastructural images of cardiomyocytes from the patient carrying p.Thr510Tyrfs*42. Furthermore, because the novel p.Val256Gly mutation was found in a sporadic case, we verified its pathogenicity by expressing the mutation in a cellular model. Conclusions In conclusion, in the two referral centre populations, the screening revealed five mutations among 66 heart transplant recipients or patients referred for heart transplantation (7.6%) and four mutations among 44 consecutive dilated cardiomyopathy patients referred for familial evaluation (9.1%). Dilated cardiomyopathy patients with LMNA mutations have poor prognosis, however considerable clinical variability is present among family members. PMID:23702046

  4. Desmoplakin mutations with palmoplantar keratoderma, woolly hair and cardiomyopathy.

    PubMed

    Pigors, Manuela; Schwieger-Briel, Agnes; Cosgarea, Rodica; Diaconeasa, Adriana; Bruckner-Tuderman, Leena; Fleck, Thilo; Has, Cristina

    2015-03-01

    Mutations in genes encoding for desmosomal components are associated with a broad spectrum of phenotypes comprising skin and hair abnormalities and account for 45-50% of cases of arrhythmogenic right ventricular cardiomyopathy. Today, more than 120 dominant and recessive desmoplakin (DSP) gene mutations have been reported to be associated with skin, hair and/or heart defects. Here we report on 3 cases with yet unreported DSP mutations, c.7566_7567delAAinsC, p.R2522Sfs*39, c.7756C>T, p.R2586*, c.2131_2132delAG and c.1067C>A, p.T356K, that were associated with variable woolly hair or hypotrichosis, palmoplantar keratoderma, and cardiac manifestations. In addition, we review and summarise the clinical features and DSP mutations of the patients described in the literature, which illustrates the complexity of this group of disorders and of their genotype-phenotype correlations, which cannot be easily predicted. Early diagnosis is crucial and cardiac examinations have to be performed on a regular basis.

  5. Cardiomyopathy

    MedlinePlus

    Cardiomyopathy is the name for diseases of the heart muscle. These diseases enlarge your heart muscle or ... tissue. Some people live long, healthy lives with cardiomyopathy. Some people don't even realize they have ...

  6. Animal Models of Congenital Cardiomyopathies Associated With Mutations in Z-Line Proteins.

    PubMed

    Bang, Marie-Louise

    2017-01-01

    The cardiac Z-line at the boundary between sarcomeres is a multiprotein complex connecting the contractile apparatus with the cytoskeleton and the extracellular matrix. The Z-line is important for efficient force generation and transmission as well as the maintenance of structural stability and integrity. Furthermore, it is a nodal point for intracellular signaling, in particular mechanosensing and mechanotransduction. Mutations in various genes encoding Z-line proteins have been associated with different cardiomyopathies, including dilated cardiomyopathy, hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, restrictive cardiomyopathy, and left ventricular noncompaction, and mutations even within the same gene can cause widely different pathologies. Animal models have contributed to a great advancement in the understanding of the physiological function of Z-line proteins and the pathways leading from mutations in Z-line proteins to cardiomyopathy, although genotype-phenotype prediction remains a great challenge. This review presents an overview of the currently available animal models for Z-line and Z-line associated proteins involved in human cardiomyopathies with special emphasis on knock-in and transgenic mouse models recapitulating the clinical phenotypes of human cardiomyopathy patients carrying mutations in Z-line proteins. Pros and cons of mouse models will be discussed and a future outlook will be given. J. Cell. Physiol. 232: 38-52, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Mutations in TAX1BP3 cause dilated cardiomyopathy with septo-optic dysplasia.

    PubMed

    Reinstein, Eyal; Orvin, Katia; Tayeb-Fligelman, Einav; Stiebel-Kalish, Hadas; Tzur, Shay; Pimienta, Allen L; Bazak, Lily; Bengal, Tuvia; Cohen, Lior; Gaton, Dan D; Bormans, Concetta; Landau, Meytal; Kornowski, Ran; Shohat, Mordechai; Behar, Doron M

    2015-04-01

    We describe a Bedouin family with a novel autosomal recessive syndrome characterized by dilated cardiomyopathy and septo-optic dysplasia. Genetic analysis revealed a homozygous missense mutation in TAX1BP3, which encodes a small PDZ domain containing protein implicated in regulation of the Wnt/β-catenin signaling pathway, as the causative mutation. The mutation affects a conserved residue located at the core of TAX1BP3 binding pocket and is predicted to impair the nature of a crucial hydrophobic patch, thereby interrupting the structure and stability of the protein, and its ability to interact with other proteins. TAX1BP3 is highly expressed in heart and brain and consistent with the clinical findings observed in our patients; a knockdown of TAX1BP3 causes elongation defects, enlarged pericard, and enlarged head structures in zebrafish embryos. Thus, we describe a new genetic disorder that expands the monogenic cardiomyopathy disease spectrum and suggests that TAX1BP3 is essential for heart and brain development.

  8. Deception in simplicity: hereditary phospholamban mutations in dilated cardiomyopathy.

    PubMed

    Young, Howard S; Ceholski, Delaine K; Trieber, Catharine A

    2015-02-01

    The sarcoplasmic reticulum (SR) calcium pump (SERCA) and its regulator phospholamban are required for cardiovascular function. Phospholamban alters the apparent calcium affinity of SERCA in a process that is modulated by phosphorylation via the β-adrenergic pathway. This regulatory axis allows for the dynamic control of SR calcium stores and cardiac contractility. Herein we focus on hereditary mutants of phospholamban that are associated with heart failure, such as Arg(9)-Cys, Arg(9)-Leu, Arg(9)-His, and Arg(14)-deletion. Each mutant has a distinct effect on PLN function and SR calcium homeostasis. Arg(9)-Cys and Arg(9)-Leu do not inhibit SERCA, Arg(14)-deletion is a partial inhibitor, and Arg(9)-His is comparable to wild-type. While the mutants have distinct functional effects on SERCA, they have in common that they cannot be phosphorylated by protein kinase A (PKA). Arg(9) and Arg(14) are required for PKA recognition and phosphorylation of PLN. Thus, mutations at these positions eliminate β-adrenergic control and dynamic cardiac contractility. Hydrophobic mutations of Arg(9) cause more complex changes in function, including loss of PLN function and dominant negative interaction with SERCA in heterozygous individuals. In addition, aberrant interaction with PKA may prevent phosphorylation of wild-type PLN and sequester PKA from other local subcellular targets. Herein we consider what is known about each mutant and how the synergistic changes in SR calcium homeostasis lead to impaired cardiac contractility and dilated cardiomyopathy.

  9. Biophysical properties of human β-cardiac myosin with converter mutations that cause hypertrophic cardiomyopathy

    PubMed Central

    Kawana, Masataka; Sarkar, Saswata S.; Sutton, Shirley; Ruppel, Kathleen M.; Spudich, James A.

    2017-01-01

    Hypertrophic cardiomyopathy (HCM) affects 1 in 500 individuals and is an important cause of arrhythmias and heart failure. Clinically, HCM is characterized as causing hypercontractility, and therapies are aimed toward controlling the hyperactive physiology. Mutations in the β-cardiac myosin comprise ~40% of genetic mutations associated with HCM, and the converter domain of myosin is a hotspot for HCM-causing mutations; however, the underlying primary effects of these mutations on myosin’s biomechanical function remain elusive. We hypothesize that these mutations affect the biomechanical properties of myosin, such as increasing its intrinsic force and/or its duty ratio and therefore the ensemble force of the sarcomere. Using recombinant human β-cardiac myosin, we characterize the molecular effects of three severe HCM-causing converter domain mutations: R719W, R723G, and G741R. Contrary to our hypothesis, the intrinsic forces of R719W and R723G mutant myosins are decreased compared to wild type and unchanged for G741R. Actin and regulated thin filament gliding velocities are ~15% faster for R719W and R723G myosins, whereas there is no change in velocity for G741R. Adenosine triphosphatase activities and the load-dependent velocity change profiles of all three mutant proteins are very similar to those of wild type. These results indicate that the net biomechanical properties of human β-cardiac myosin carrying these converter domain mutations are very similar to those of wild type or are even slightly hypocontractile, leading us to consider an alternative mechanism for the clinically observed hypercontractility. Future work includes how these mutations affect protein interactions within the sarcomere that increase the availability of myosin heads participating in force production. PMID:28246639

  10. Biophysical properties of human β-cardiac myosin with converter mutations that cause hypertrophic cardiomyopathy.

    PubMed

    Kawana, Masataka; Sarkar, Saswata S; Sutton, Shirley; Ruppel, Kathleen M; Spudich, James A

    2017-02-01

    Hypertrophic cardiomyopathy (HCM) affects 1 in 500 individuals and is an important cause of arrhythmias and heart failure. Clinically, HCM is characterized as causing hypercontractility, and therapies are aimed toward controlling the hyperactive physiology. Mutations in the β-cardiac myosin comprise ~40% of genetic mutations associated with HCM, and the converter domain of myosin is a hotspot for HCM-causing mutations; however, the underlying primary effects of these mutations on myosin's biomechanical function remain elusive. We hypothesize that these mutations affect the biomechanical properties of myosin, such as increasing its intrinsic force and/or its duty ratio and therefore the ensemble force of the sarcomere. Using recombinant human β-cardiac myosin, we characterize the molecular effects of three severe HCM-causing converter domain mutations: R719W, R723G, and G741R. Contrary to our hypothesis, the intrinsic forces of R719W and R723G mutant myosins are decreased compared to wild type and unchanged for G741R. Actin and regulated thin filament gliding velocities are ~15% faster for R719W and R723G myosins, whereas there is no change in velocity for G741R. Adenosine triphosphatase activities and the load-dependent velocity change profiles of all three mutant proteins are very similar to those of wild type. These results indicate that the net biomechanical properties of human β-cardiac myosin carrying these converter domain mutations are very similar to those of wild type or are even slightly hypocontractile, leading us to consider an alternative mechanism for the clinically observed hypercontractility. Future work includes how these mutations affect protein interactions within the sarcomere that increase the availability of myosin heads participating in force production.

  11. Recessive MYL2 mutations cause infantile type I muscle fibre disease and cardiomyopathy.

    PubMed

    Weterman, Marian A J; Barth, Peter G; van Spaendonck-Zwarts, Karin Y; Aronica, Eleonora; Poll-The, Bwee-Tien; Brouwer, Oebele F; van Tintelen, J Peter; Qahar, Zohal; Bradley, Edward J; de Wissel, Marit; Salviati, Leonardo; Angelini, Corrado; van den Heuvel, Lambertus; Thomasse, Yolande E M; Backx, Ad P; Nürnberg, Gudrun; Nürnberg, Peter; Baas, Frank

    2013-01-01

    A cardioskeletal myopathy with onset and death in infancy, morphological features of muscle type I hypotrophy with myofibrillar disorganization and dilated cardiomyopathy was previously reported in three Dutch families. Here we report the genetic cause of this disorder. Multipoint parametric linkage analysis of six Dutch patients identified a homozygous region of 2.1 Mb on chromosome 12, which was shared between all Dutch patients, with a log of odds score of 10.82. Sequence analysis of the entire linkage region resulted in the identification of a homozygous mutation in the last acceptor splice site of the myosin regulatory light chain 2 gene (MYL2) as the genetic cause. MYL2 encodes a myosin regulatory light chain (MLC-2V). The myosin regulatory light chains bind, together with the essential light chains, to the flexible neck region of the myosin heavy chain in the hexameric myosin complex and have a structural and regulatory role in muscle contraction. The MYL2 mutation results in use of a cryptic splice site upstream of the last exon causing a frameshift and replacement of the last 32 codons by 20 different codons. Whole exome sequencing of an Italian patient with similar clinical features showed compound heterozygosity for two other mutations affecting the same exon of MYL2, also resulting in mutant proteins with altered C-terminal tails. As a consequence of these mutations, the second EF-hand domain is disrupted. EF-hands, assumed to function as calcium sensors, can undergo a conformational change upon binding of calcium that is critical for interactions with downstream targets. Immunohistochemical staining of skeletal muscle tissue of the Dutch patients showed a diffuse and weak expression of the mutant protein without clear fibre specificity, while normal protein was absent. Heterozygous missense mutations in MYL2 are known to cause dominant hypertrophic cardiomyopathy; however, none of the parents showed signs of cardiomyopathy. In conclusion, the mutations

  12. Targeted next-generation sequencing detects novel gene-phenotype associations and expands the mutational spectrum in cardiomyopathies.

    PubMed

    Forleo, Cinzia; D'Erchia, Anna Maria; Sorrentino, Sandro; Manzari, Caterina; Chiara, Matteo; Iacoviello, Massimo; Guaricci, Andrea Igoren; De Santis, Delia; Musci, Rita Leonarda; La Spada, Antonino; Marangelli, Vito; Pesole, Graziano; Favale, Stefano

    2017-01-01

    Cardiomyopathies are a heterogeneous group of primary diseases of the myocardium, including hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and arrhythmogenic right ventricular cardiomyopathy (ARVC), with higher morbidity and mortality. These diseases are genetically diverse and associated with rare mutations in a large number of genes, many of which overlap among the phenotypes. To better investigate the genetic overlap between these three phenotypes and to identify new genotype-phenotype correlations, we designed a custom gene panel consisting of 115 genes known to be associated with cardiomyopathic phenotypes and channelopathies. A cohort of 38 unrelated patients, 16 affected by DCM, 14 by HCM and 8 by ARVC, was recruited for the study on the basis of more severe phenotypes and family history of cardiomyopathy and/or sudden death. We detected a total of 142 rare variants in 40 genes, and all patients were found to be carriers of at least one rare variant. Twenty-eight of the 142 rare variants were also predicted as potentially pathogenic variants and found in 26 patients. In 23 out of 38 patients, we found at least one novel potential gene-phenotype association. In particular, we detected three variants in OBSCN gene in ARVC patients, four variants in ANK2 gene and two variants in DLG1, TRPM4, and AKAP9 genes in DCM patients, two variants in PSEN2 gene and four variants in AKAP9 gene in HCM patients. Overall, our results confirmed that cardiomyopathic patients could carry multiple rare gene variants; in addition, our investigation of the genetic overlap among cardiomyopathies revealed new gene-phenotype associations. Furthermore, as our study confirms, data obtained using targeted next-generation sequencing could provide a remarkable contribution to the molecular diagnosis of cardiomyopathies, early identification of patients at risk for arrhythmia development, and better clinical management of cardiomyopathic patients.

  13. Targeted next-generation sequencing detects novel gene–phenotype associations and expands the mutational spectrum in cardiomyopathies

    PubMed Central

    Manzari, Caterina; Chiara, Matteo; Iacoviello, Massimo; Guaricci, Andrea Igoren; De Santis, Delia; Musci, Rita Leonarda; La Spada, Antonino; Marangelli, Vito; Pesole, Graziano; Favale, Stefano

    2017-01-01

    Cardiomyopathies are a heterogeneous group of primary diseases of the myocardium, including hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and arrhythmogenic right ventricular cardiomyopathy (ARVC), with higher morbidity and mortality. These diseases are genetically diverse and associated with rare mutations in a large number of genes, many of which overlap among the phenotypes. To better investigate the genetic overlap between these three phenotypes and to identify new genotype–phenotype correlations, we designed a custom gene panel consisting of 115 genes known to be associated with cardiomyopathic phenotypes and channelopathies. A cohort of 38 unrelated patients, 16 affected by DCM, 14 by HCM and 8 by ARVC, was recruited for the study on the basis of more severe phenotypes and family history of cardiomyopathy and/or sudden death. We detected a total of 142 rare variants in 40 genes, and all patients were found to be carriers of at least one rare variant. Twenty-eight of the 142 rare variants were also predicted as potentially pathogenic variants and found in 26 patients. In 23 out of 38 patients, we found at least one novel potential gene–phenotype association. In particular, we detected three variants in OBSCN gene in ARVC patients, four variants in ANK2 gene and two variants in DLG1, TRPM4, and AKAP9 genes in DCM patients, two variants in PSEN2 gene and four variants in AKAP9 gene in HCM patients. Overall, our results confirmed that cardiomyopathic patients could carry multiple rare gene variants; in addition, our investigation of the genetic overlap among cardiomyopathies revealed new gene–phenotype associations. Furthermore, as our study confirms, data obtained using targeted next-generation sequencing could provide a remarkable contribution to the molecular diagnosis of cardiomyopathies, early identification of patients at risk for arrhythmia development, and better clinical management of cardiomyopathic patients. PMID:28750076

  14. Significance of sarcomere gene mutations analysis in the end-stage phase of hypertrophic cardiomyopathy.

    PubMed

    Biagini, Elena; Olivotto, Iacopo; Iascone, Maria; Parodi, Maria I; Girolami, Francesca; Frisso, Giulia; Autore, Camillo; Limongelli, Giuseppe; Cecconi, Massimiliano; Maron, Barry J; Maron, Martin S; Rosmini, Stefania; Formisano, Francesco; Musumeci, Beatrice; Cecchi, Franco; Iacovoni, Attilio; Haas, Tammy S; Bacchi Reggiani, Maria L; Ferrazzi, Paolo; Salvatore, Francesco; Spirito, Paolo; Rapezzi, Claudio

    2014-09-01

    End-stage hypertrophic cardiomyopathy (ES-HC) has an ominous prognosis. Whether genotype can influence ES-HC occurrence is unresolved. We assessed the spectrum and clinical correlates of HC-associated mutations in a large multicenter cohort with end-stage ES-HC. Sequencing analysis of 8 sarcomere genes (MYH7, MYBPC3, TNNI3, TNNT2, TPM1, MYL2, MYL3, and ACTC1) and 2 metabolic genes (PRKAG2 and LAMP2) was performed in 156 ES-HC patients with left ventricular (LV) ejection fraction (EF) <50%. A comparison among mutated and negative ES-HC patients and a reference cohort of 181 HC patients with preserved LVEF was performed. Overall, 131 mutations (36 novel) were identified in 104 ES-HC patients (67%) predominantly affecting MYH7 and MYBPC3 (80%). Complex genotypes with double or triple mutations were present in 13% compared with 5% of the reference cohort (p = 0.013). The distribution of mutations was otherwise indistinguishable in the 2 groups. Among ES-HC patients, those presenting at first evaluation before the age of 20 had a 30% prevalence of complex genotypes compared with 19% and 21% in the subgroups aged 20 to 59 and ≥60 years (p = 0.003). MYBPC3 mutation carriers with ES-HC were older than patients with MYH7, other single mutations, or multiple mutations (median 41 vs 16, 26, and 28 years, p ≤0.001). Outcome of ES-HC patients was severe irrespective of genotype. In conclusion, the ES phase of HC is associated with a variable genetic substrate, not distinguishable from that of patients with HC and preserved EF, except for a higher frequency of complex genotypes with double or triple mutations of sarcomere genes.

  15. Ile90Met, a novel mutation in the cardiac troponin T gene for familial hypertrophic cardiomyopathy in a Chinese pedigree.

    PubMed

    Xu, Chao; Wei, Meng; Su, Bin; Hua, Xue-Wei; Zhang, Guo-Wei; Xue, Xiao-Pei; Pan, Cun-Ming; Liu, Rong; Sheng, Yan; Lu, Zhi-Gang; Jin, Li-Ren; Song, Huai-Dong

    2008-10-01

    To identify the disease-causing gene for a large multi-generational Chinese family affected by familial hypertrophic cardiomyopathy (FHCM), genome-wide screening was carried out in a Chinese family with FHCM using micro-satellite markers, and linkage analysis was performed using the MLINK program. The disease locus was mapped to 1q32 in this family. Screening for a mutation in the cardiac troponin T (cTnT) gene was performed by a PCR and sequencing was done with an ABI Prism 3700 sequencer. A novel C-->G transition located in the ninth exon of the cTnT gene, leading to a predicted amino acid residue change from Ile to Met at codon 90, was identified in all individuals with hypertrophic cardiomyopathy (HCM). The results presented here strongly suggest that Ile90Met, a novel mutation in the cTnT gene, is causative agent of HCM in this family.

  16. Clinical and Prognostic Profiles of Cardiomyopathies Caused by Mutations in the Troponin T Gene.

    PubMed

    Ripoll-Vera, Tomás; Gámez, José María; Govea, Nancy; Gómez, Yolanda; Núñez, Juana; Socías, Lorenzo; Escandell, Ángela; Rosell, Jorge

    2016-02-01

    Mutations in the troponin T gene (TTNT2) have been associated in small studies with the development of hypertrophic cardiomyopathy characterized by a high risk of sudden death and mild hypertrophy. We describe the clinical course of patients carrying mutations in this gene. We analyzed the clinical characteristics and prognosis of patients with mutations in the TNNT2 gene who were seen in an inherited cardiac disease unit. Of 180 families with genetically studied cardiomyopathies, 21 families (11.7%) were identified as having mutations in TNNT2: 10 families had Arg92Gln, 5 had Arg286His, 3 had Arg278Cys, 1 had Arg92Trp, 1 had Arg94His, and 1 had Ile221Thr. Thirty-three additional genetic carriers were identified through family assessment. The study included 54 genetic carriers: 56% were male, and the mean average age was 41 ± 17 years. There were 33 cases of hypertrophic cardiomyopathy, 9 of dilated cardiomyopathy, and 1 of noncompaction cardiomyopathy, and maximal myocardial thickness was 18.5 ± 6mm. Ventricular dysfunction was present in 30% of individuals and a history of sudden death in 62%. During follow-up, 4 patients died and 14 (33%) received a defibrillator (8 probands, 6 relatives). Mean survival was 54 years. Carriers of Arg92Gln had early disease development, high penetrance, a high risk of sudden death, a high rate of defibrillator implantation, and a high frequency of mixed phenotype. Mutations in the TNNT2 gene were more common in this series than in previous studies. The clinical and prognostic profiles depended on the mutation present. Carriers of the Arg92Gln mutation developed hypertrophic or dilated cardiomyopathy and had a significantly worse prognosis than those with other mutations in TNNT2 or other sarcomeric genes. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  17. Molecular and Functional Characterization of Novel Hypertrophic Cardiomyopathy Susceptibility Mutations in TNNC1- Encoded Troponin C

    PubMed Central

    Landstrom, Andrew P.; Parvatiyar, Michelle S.; Pinto, Jose R.; Marquardt, Michelle L.; Bos, J. Martijn; Tester, David J.; Ommen, Steve R.; Potter, James D.; Ackerman, Michael J.

    2008-01-01

    Hypertrophic Cardiomyopathy (HCM) is a common primary cardiac disorder defined by a hypertrophied left ventricle, is one of the main causes of sudden death in young athletes and has been associated with mutations in most sarcomeric proteins (tropomyosin, Troponin T and I, and actin, etc.). Many of these mutations appear to affect the functional properties of cardiac troponin C (cTnC), i.e., by increasing the Ca2+-sensitivity of contraction, a hallmark of HCM, and surprisingly, prior to this report, cTnC had not been classified as a HCM susceptibility gene. In this study, we show that mutations occurring in the human cTnC (HcTnC) gene (TNNC1) have the same prevalence (~0.4%) as well established HCM-susceptibility genes that encode other sarcomeric proteins. Comprehensive open reading frame/splice site mutation analysis of TNNC1 performed on 1025 unrelated HCM patients over the last 10 years revealed novel missense mutations in TNNC1: A8V, C84Y, E134D, and D145E. Functional studies with these recombinant HcTnC HCM mutations showed increased Ca2+ sensitivity of force development (A8V, C84Y and D145E) and force recovery (A8V and D145E). These results are consistent with the HCM functional phenotypes seen with other sarcomeric HCM mutations (E134D showed no changes in these parameters). This is the largest cohort analysis of TNNC1 in HCM that details the discovery of at least three novel HCM-associated mutations and more strongly links TNNC1 to HCM along with functional evidence that supports a central role for its involvement in the disease. These types of studies may help to further define TNNC1 as an HCM-susceptibility gene that has already been established for the other members of the Troponin complex. PMID:18572189

  18. Mutations in the ANKRD1 gene encoding CARP are responsible for human dilated cardiomyopathy.

    PubMed

    Duboscq-Bidot, Laëtitia; Charron, Philippe; Ruppert, Volker; Fauchier, Laurent; Richter, Anette; Tavazzi, Luigi; Arbustini, Eloisa; Wichter, Thomas; Maisch, Bernard; Komajda, Michel; Isnard, Richard; Villard, Eric

    2009-09-01

    Dilated cardiomyopathy (DCM) is familial in approximately 30% of cases, and mutations have been identified in several genes. However, in a majority of familial cases, the responsible genes are still to be discovered. The ANKRD1 gene is over-expressed in heart failure in human and animal models. The encoded protein CARP interacts with partners such as myopalladin or titin, previously shown to be involved in DCM. We hypothesized that mutations in ANKRD1 could be responsible for DCM. We sequenced the coding region of ANKRD1 from 231 independent DCM cases. We identified five missense mutations (three sporadic and two familial) absent from 400 controls and affecting highly conserved residues. Expression of the mutant CARP proteins after transfection in rat neonate cardiomyocytes indicated that most of them led to both significantly less repressor activity measured in a reporter gene assay and greater phenylephrin-induced hypertrophy, suggesting altered function of CARP mutant proteins. On the basis of genetic and functional analysis of CARP mutations, we have identified ANKRD1 as a new gene associated with DCM, accounting for approximately 2% of cases.

  19. Mutation analysis of the phospholamban gene in 315 South Africans with dilated, hypertrophic, peripartum and arrhythmogenic right ventricular cardiomyopathies

    PubMed Central

    Fish, Maryam; Shaboodien, Gasnat; Kraus, Sarah; Sliwa, Karen; Seidman, Christine E.; Burke, Michael A.; Crotti, Lia; Schwartz, Peter J.; Mayosi, Bongani M.

    2016-01-01

    Cardiomyopathy is an important cause of heart failure in Sub-Saharan Africa, accounting for up to 30% of adult heart failure hospitalisations. This high prevalence poses a challenge in societies without access to resources and interventions essential for disease management. Over 80 genes have been implicated as a cause of cardiomyopathy. Mutations in the phospholamban (PLN) gene are associated with dilated cardiomyopathy (DCM) and severe heart failure. In Africa, the prevalence of PLN mutations in cardiomyopathy patients is unknown. Our aim was to screen 315 patients with arrhythmogenic right ventricular cardiomyopathy (n = 111), DCM (n = 95), hypertrophic cardiomyopathy (n = 40) and peripartum cardiomyopathy (n = 69) for disease-causing PLN mutations by high resolution melt analysis and DNA sequencing. We detected the previously reported PLN c.25C > T (p.R9C) mutation in a South African family with severe autosomal dominant DCM. Haplotype analysis revealed that this mutation occurred against a different haplotype background to that of the original North American family and was therefore unlikely to have been inherited from a common ancestor. No other mutations in PLN were detected (mutation prevalence = 0.2%). We conclude that PLN is a rare cause of cardiomyopathy in African patients. The PLN p.R9C mutation is not well-tolerated, emphasising the importance of this gene in cardiac function. PMID:26917049

  20. Mutation analysis of the phospholamban gene in 315 South Africans with dilated, hypertrophic, peripartum and arrhythmogenic right ventricular cardiomyopathies.

    PubMed

    Fish, Maryam; Shaboodien, Gasnat; Kraus, Sarah; Sliwa, Karen; Seidman, Christine E; Burke, Michael A; Crotti, Lia; Schwartz, Peter J; Mayosi, Bongani M

    2016-02-26

    Cardiomyopathy is an important cause of heart failure in Sub-Saharan Africa, accounting for up to 30% of adult heart failure hospitalisations. This high prevalence poses a challenge in societies without access to resources and interventions essential for disease management. Over 80 genes have been implicated as a cause of cardiomyopathy. Mutations in the phospholamban (PLN) gene are associated with dilated cardiomyopathy (DCM) and severe heart failure. In Africa, the prevalence of PLN mutations in cardiomyopathy patients is unknown. Our aim was to screen 315 patients with arrhythmogenic right ventricular cardiomyopathy (n = 111), DCM (n = 95), hypertrophic cardiomyopathy (n = 40) and peripartum cardiomyopathy (n = 69) for disease-causing PLN mutations by high resolution melt analysis and DNA sequencing. We detected the previously reported PLN c.25C > T (p.R9C) mutation in a South African family with severe autosomal dominant DCM. Haplotype analysis revealed that this mutation occurred against a different haplotype background to that of the original North American family and was therefore unlikely to have been inherited from a common ancestor. No other mutations in PLN were detected (mutation prevalence = 0.2%). We conclude that PLN is a rare cause of cardiomyopathy in African patients. The PLN p.R9C mutation is not well-tolerated, emphasising the importance of this gene in cardiac function.

  1. Combination of Whole Genome Sequencing, Linkage, and Functional Studies Implicates a Missense Mutation in Titin as a Cause of Autosomal Dominant Cardiomyopathy With Features of Left Ventricular Noncompaction

    PubMed Central

    Hastings, Robert; de Villiers, Carin P.; Hooper, Charlotte; Ormondroyd, Liz; Pagnamenta, Alistair; Lise, Stefano; Salatino, Silvia; Knight, Samantha J.L.; Taylor, Jenny C.; Thomson, Kate L.; Arnold, Linda; Chatziefthimiou, Spyros D.; Konarev, Petr V.; Wilmanns, Matthias; Ehler, Elisabeth; Ghisleni, Andrea; Gautel, Mathias; Blair, Edward; Watkins, Hugh

    2016-01-01

    Background— High throughput next-generation sequencing techniques have made whole genome sequencing accessible in clinical practice; however, the abundance of variation in the human genomes makes the identification of a disease-causing mutation on a background of benign rare variants challenging. Methods and Results— Here we combine whole genome sequencing with linkage analysis in a 3-generation family affected by cardiomyopathy with features of autosomal dominant left ventricular noncompaction cardiomyopathy. A missense mutation in the giant protein titin is the only plausible disease-causing variant that segregates with disease among the 7 surviving affected individuals, with interrogation of the entire genome excluding other potential causes. This A178D missense mutation, affecting a conserved residue in the second immunoglobulin-like domain of titin, was introduced in a bacterially expressed recombinant protein fragment and biophysically characterized in comparison to its wild-type counterpart. Multiple experiments, including size exclusion chromatography, small-angle x ray scattering, and circular dichroism spectroscopy suggest partial unfolding and domain destabilization in the presence of the mutation. Moreover, binding experiments in mammalian cells show that the mutation markedly impairs binding to the titin ligand telethonin. Conclusions— Here we present genetic and functional evidence implicating the novel A178D missense mutation in titin as the cause of a highly penetrant familial cardiomyopathy with features of left ventricular noncompaction. This expands the spectrum of titin’s roles in cardiomyopathies. It furthermore highlights that rare titin missense variants, currently often ignored or left uninterpreted, should be considered to be relevant for cardiomyopathies and can be identified by the approach presented here. PMID:27625337

  2. A Mutation in the Mitochondrial Fission Gene Dnm1l Leads to Cardiomyopathy

    PubMed Central

    Ashrafian, Houman; Docherty, Louise; Leo, Vincenzo; Towlson, Christopher; Neilan, Monica; Steeples, Violetta; Lygate, Craig A.; Hough, Tertius; Townsend, Stuart; Williams, Debbie; Wells, Sara; Norris, Dominic; Glyn-Jones, Sarah; Land, John; Barbaric, Ivana; Lalanne, Zuzanne; Denny, Paul; Szumska, Dorota; Bhattacharya, Shoumo; Griffin, Julian L.; Hargreaves, Iain; Fernandez-Fuentes, Narcis; Cheeseman, Michael; Watkins, Hugh; Dear, T. Neil

    2010-01-01

    Mutations in a number of genes have been linked to inherited dilated cardiomyopathy (DCM). However, such mutations account for only a small proportion of the clinical cases emphasising the need for alternative discovery approaches to uncovering novel pathogenic mutations in hitherto unidentified pathways. Accordingly, as part of a large-scale N-ethyl-N-nitrosourea mutagenesis screen, we identified a mouse mutant, Python, which develops DCM. We demonstrate that the Python phenotype is attributable to a dominant fully penetrant mutation in the dynamin-1-like (Dnm1l) gene, which has been shown to be critical for mitochondrial fission. The C452F mutation is in a highly conserved region of the M domain of Dnm1l that alters protein interactions in a yeast two-hybrid system, suggesting that the mutation might alter intramolecular interactions within the Dnm1l monomer. Heterozygous Python fibroblasts exhibit abnormal mitochondria and peroxisomes. Homozygosity for the mutation results in the death of embryos midway though gestation. Heterozygous Python hearts show reduced levels of mitochondria enzyme complexes and suffer from cardiac ATP depletion. The resulting energy deficiency may contribute to cardiomyopathy. This is the first demonstration that a defect in a gene involved in mitochondrial remodelling can result in cardiomyopathy, showing that the function of this gene is needed for the maintenance of normal cellular function in a relatively tissue-specific manner. This disease model attests to the importance of mitochondrial remodelling in the heart; similar defects might underlie human heart muscle disease. PMID:20585624

  3. A cardiac myosin binding protein C mutation in the Maine Coon cat with familial hypertrophic cardiomyopathy.

    PubMed

    Meurs, Kathryn M; Sanchez, Ximena; David, Ryan M; Bowles, Neil E; Towbin, Jeffrey A; Reiser, Peter J; Kittleson, Judith A; Munro, Marcia J; Dryburgh, Keith; Macdonald, Kristin A; Kittleson, Mark D

    2005-12-01

    Hypertrophic cardiomyopathy (HCM) is one of the most common causes of sudden cardiac death in young adults and is a familial disease in at least 60% of cases. Causative mutations have been identified in several sarcomeric genes, including the myosin binding protein C (MYBPC3) gene. Although numerous causative mutations have been identified, the pathogenetic process is still poorly understood. A large animal model of familial HCM in the cat has been identified and may be used for additional study. As the first spontaneous large animal model of this familial disease, feline familial HCM provides a valuable model for investigators to evaluate pathophysiologic processes and therapeutic (pharmacologic or genetic) manipulations. The MYBPC3 gene was chosen as a candidate gene in this model after identifying a reduction in the protein in myocardium from affected cats in comparison to control cats (P<0.001). DNA sequencing was performed and sequence alterations were evaluated for evidence that they changed the amino acid produced, that the amino acid was conserved and that the protein structure was altered. We identified a single base pair change (G to C) in the feline MYBPC3 gene in affected cats that computationally alters the protein conformation of this gene and results in sarcomeric disorganization. We have identified a causative mutation in the feline MYBPC3 gene that results in the development of familial HCM. This is the first report of a spontaneous mutation causing HCM in a non-human species. It should provide a valuable model for evaluating pathophysiologic processes and therapeutic manipulations.

  4. Whole exome sequencing identifies a troponin T mutation hot spot in familial dilated cardiomyopathy.

    PubMed

    Campbell, Nzali; Sinagra, Gianfranco; Jones, Kenneth L; Slavov, Dobromir; Gowan, Katherine; Merlo, Marco; Carniel, Elisa; Fain, Pamela R; Aragona, Pierluigi; Di Lenarda, Andrea; Mestroni, Luisa; Taylor, Matthew R G

    2013-01-01

    Dilated cardiomyopathy (DCM) commonly causes heart failure and shows extensive genetic heterogeneity that may be amenable to newly developed next-generation DNA sequencing of the exome. In this study we report the successful use of exome sequencing to identify a pathogenic variant in the TNNT2 gene using segregation analysis in a large DCM family. Exome sequencing was performed on three distant relatives from a large family with a clear DCM phenotype. Missense, nonsense, and splice variants were analyzed for segregation among the three affected family members and confirmed in other relatives by direct sequencing. A c.517T C>T, Arg173Trp TNNT2 variant segregated with all affected family members and was also detected in one additional DCM family in our registry. The inclusion of segregation analysis using distant family members markedly improved the bioinformatics filtering process by removing from consideration variants that were not shared by all affected subjects. Haplotype analysis confirmed that the variant found in both DCM families was located on two distinct haplotypes, supporting the notion of independent mutational events in each family. In conclusion, an exome sequencing strategy that includes segregation analysis using distant affected relatives within a family represents a viable diagnostic strategy in a genetically heterogeneous disease like DCM.

  5. Whole Exome Sequencing Identifies a Troponin T Mutation Hot Spot in Familial Dilated Cardiomyopathy

    PubMed Central

    Campbell, Nzali; Sinagra, Gianfranco; Jones, Kenneth L.; Slavov, Dobromir; Gowan, Katherine; Merlo, Marco; Carniel, Elisa; Fain, Pamela R.; Aragona, Pierluigi; Di Lenarda, Andrea; Mestroni, Luisa; Taylor, Matthew R. G.

    2013-01-01

    Dilated cardiomyopathy (DCM) commonly causes heart failure and shows extensive genetic heterogeneity that may be amenable to newly developed next-generation DNA sequencing of the exome. In this study we report the successful use of exome sequencing to identify a pathogenic variant in the TNNT2 gene using segregation analysis in a large DCM family. Exome sequencing was performed on three distant relatives from a large family with a clear DCM phenotype. Missense, nonsense, and splice variants were analyzed for segregation among the three affected family members and confirmed in other relatives by direct sequencing. A c.517T C>T, Arg173Trp TNNT2 variant segregated with all affected family members and was also detected in one additional DCM family in our registry. The inclusion of segregation analysis using distant family members markedly improved the bioinformatics filtering process by removing from consideration variants that were not shared by all affected subjects. Haplotype analysis confirmed that the variant found in both DCM families was located on two distinct haplotypes, supporting the notion of independent mutational events in each family. In conclusion, an exome sequencing strategy that includes segregation analysis using distant affected relatives within a family represents a viable diagnostic strategy in a genetically heterogeneous disease like DCM. PMID:24205113

  6. Restrictive Cardiomyopathy Caused by Troponin Mutations: Application of Disease Animal Models in Translational Studies

    PubMed Central

    Liu, Xiaoyan; Zhang, Lei; Pacciulli, Daniel; Zhao, Jianquan; Nan, Changlong; Shen, Wen; Quan, Junjun; Tian, Jie; Huang, Xupei

    2016-01-01

    Cardiac troponin I (cTnI) plays a critical role in regulation of cardiac function. Studies have shown that the deficiency of cTnI or mutations in cTnI (particularly in the C-terminus of cTnI) results in diastolic dysfunction (impaired relaxation) due to an increased myofibril sensitivity to calcium. The first clinical study revealing the association between restrictive cardiomyopathy (RCM) with cardiac troponin mutations was reported in 2003. In order to illustrate the mechanisms underlying the cTnI mutation caused cardiomyopathy, we have generated a cTnI gene knockout mouse model and transgenic mouse lines with the reported point mutations in cTnI C-terminus. In this paper, we summarize our studies using these animal models from our laboratory and the other in vitro studies using reconstituted filament and cultured cells. The potential mechanisms underlying diastolic dysfunction and heart failure caused by these cTnI C-terminal mutations are discussed as well. Furthermore, calcium desensitizing in correction of impaired relaxation in myocardial cells due to cTnI mutations is discussed. Finally, we describe a model of translational study, i.e., from bedside to bench and from bench to bedside. These studies may enrich our understanding of the mechanism underlying inherited cardiomyopathies and provide the clues to search for target-oriented medication aiming at the treatment of diastolic dysfunction and heart failure. PMID:28066262

  7. A substitution mutation in the myosin binding protein C gene in ragdoll hypertrophic cardiomyopathy.

    PubMed

    Meurs, Kathryn M; Norgard, Michelle M; Ederer, Martina M; Hendrix, Kristina P; Kittleson, Mark D

    2007-08-01

    Familial hypertrophic cardiomyopathy (HCM) is a primary myocardial disease with a prevalence of 1 in 500 in human beings. Causative mutations have been identified in several sarcomeric genes, including the cardiac myosin binding protein C (MYBPC3) gene. Heritable HCM also exists in a large-animal model, the cat, and we have previously reported a mutation in the MYBPC3 gene in the Maine coon breed. We now report a separate mutation in the MYBPC3 gene in ragdoll cats with HCM. The mutation changes a conserved arginine to tryptophan and appears to alter the protein structure. The ragdoll is not related to the Maine coon and the mutation identified is in a domain different from that of the previously identified feline mutation. The identification of two separate mutations within this gene in unrelated breeds suggests that these mutations occurred independently rather than being passed on from a common founder.

  8. TNNI3K mutation in familial syndrome of conduction system disease, atrial tachyarrhythmia and dilated cardiomyopathy.

    PubMed

    Theis, Jeanne L; Zimmermann, Michael T; Larsen, Brandon T; Rybakova, Inna N; Long, Pamela A; Evans, Jared M; Middha, Sumit; de Andrade, Mariza; Moss, Richard L; Wieben, Eric D; Michels, Virginia V; Olson, Timothy M

    2014-11-01

    Locus mapping has uncovered diverse etiologies for familial atrial fibrillation (AF), dilated cardiomyopathy (DCM), and mixed cardiac phenotype syndromes, yet the molecular basis for these disorders remains idiopathic in most cases. Whole-exome sequencing (WES) provides a powerful new tool for familial disease gene discovery. Here, synergistic application of these genomic strategies identified the pathogenic mutation in a familial syndrome of atrial tachyarrhythmia, conduction system disease (CSD), and DCM vulnerability. Seven members of a three-generation family exhibited the variably expressed phenotype, three of whom manifested CSD and clinically significant arrhythmia in childhood. Genome-wide linkage analysis mapped two equally plausible loci to chromosomes 1p3 and 13q12. Variants from WES of two affected cousins were filtered for rare, predicted-deleterious, positional variants, revealing an unreported heterozygous missense mutation disrupting the highly conserved kinase domain in TNNI3K. The G526D substitution in troponin I interacting kinase, with the most deleterious SIFT and Polyphen2 scores possible, resulted in abnormal peptide aggregation in vitro and in silico docking models predicted altered yet energetically favorable wild-type mutant dimerization. Ventricular tissue from a mutation carrier displayed histopathological hallmarks of DCM and reduced TNNI3K protein staining with unique amorphous nuclear and sarcoplasmic inclusions. In conclusion, mutation of TNNI3K, encoding a heart-specific kinase previously shown to modulate cardiac conduction and myocardial function in mice, underlies a familial syndrome of electrical and myopathic heart disease. The identified substitution causes a TNNI3K aggregation defect and protein deficiency, implicating a dominant-negative loss of function disease mechanism. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. MicroRNA transcriptome profiling in cardiac tissue of hypertrophic cardiomyopathy patients with MYBPC3 mutations.

    PubMed

    Kuster, Diederik W D; Mulders, Joyce; Ten Cate, Folkert J; Michels, Michelle; Dos Remedios, Cristobal G; da Costa Martins, Paula A; van der Velden, Jolanda; Oudejans, Cees B M

    2013-12-01

    Hypertrophic cardiomyopathy (HCM) is predominantly caused by mutations in genes encoding sarcomeric proteins. One of the most frequent affected genes is MYBPC3, which encodes the thick filament protein cardiac myosin binding protein C. Despite the prevalence of HCM, disease pathology and clinical outcome of sarcomeric mutations are largely unknown. We hypothesized that microRNAs (miRNAs) could play a role in the disease process. To determine which miRNAs were changed in expression, miRNA arrays were performed on heart tissue from HCM patients with a MYBPC3 mutation (n=6) and compared with hearts of non-failing donors (n=6). 532 out of 664 analyzed miRNAs were expressed in at least one heart sample. 13 miRNAs were differentially expressed in HCM compared with donors (at p<0.01, fold change ≥ 2). The genomic context of these differentially expressed miRNAs revealed that miR-204 (fold change 2.4 in HCM vs. donor) was located in an intron of the TRPM3 gene, encoding an aspecific cation channel involved in calcium entry. RT-PCR analysis revealed a trend towards TRPM3 upregulation in HCM compared with donor myocardium (fold change 2.3, p=0.078). In silico identification of mRNA targets of differentially expressed miRNAs showed a large proportion of genes involved in cardiac hypertrophy and cardiac beta-adrenergic receptor signaling and we showed reduced phosphorylation of cardiac troponin I in the HCM myocardium when compared with donor. HCM patients with MYBPC3 mutations have a specific miRNA expression profile. Downstream mRNA targets reveal possible involvement in cardiac signaling pathways.

  10. Molecular mechanisms in cardiomyopathy.

    PubMed

    Dadson, Keith; Hauck, Ludger; Billia, Filio

    2017-07-01

    Cardiomyopathies represent a heterogeneous group of diseases that negatively affect heart function. Primary cardiomyopathies specifically target the myocardium, and may arise from genetic [hypertrophic cardiomyopathy (HCM), arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D), mitochondrial cardiomyopathy] or genetic and acquired [dilated cardiomyopathy (DCM), restrictive cardiomyopathy (RCM)] etiology. Modern genomics has identified mutations that are common in these populations, while in vitro and in vivo experimentation with these mutations have provided invaluable insight into the molecular mechanisms native to these diseases. For example, increased myosin heavy chain (MHC) binding and ATP utilization lead to the hypercontractile sarcomere in HCM, while abnormal protein-protein interaction and impaired Ca(2+) flux underlie the relaxed sarcomere of DCM. Furthermore, expanded access to genetic testing has facilitated identification of potential risk factors that appear through inheritance and manifest sometimes only in the advanced stages of the disease. In this review, we discuss the genetic and molecular abnormalities unique to and shared between these primary cardiomyopathies and discuss some of the important advances made using more traditional basic science experimentation. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  11. Mutations in GTPBP3 cause a mitochondrial translation defect associated with hypertrophic cardiomyopathy, lactic acidosis, and encephalopathy.

    PubMed

    Kopajtich, Robert; Nicholls, Thomas J; Rorbach, Joanna; Metodiev, Metodi D; Freisinger, Peter; Mandel, Hanna; Vanlander, Arnaud; Ghezzi, Daniele; Carrozzo, Rosalba; Taylor, Robert W; Marquard, Klaus; Murayama, Kei; Wieland, Thomas; Schwarzmayr, Thomas; Mayr, Johannes A; Pearce, Sarah F; Powell, Christopher A; Saada, Ann; Ohtake, Akira; Invernizzi, Federica; Lamantea, Eleonora; Sommerville, Ewen W; Pyle, Angela; Chinnery, Patrick F; Crushell, Ellen; Okazaki, Yasushi; Kohda, Masakazu; Kishita, Yoshihito; Tokuzawa, Yoshimi; Assouline, Zahra; Rio, Marlène; Feillet, François; Mousson de Camaret, Bénédict; Chretien, Dominique; Munnich, Arnold; Menten, Björn; Sante, Tom; Smet, Joél; Régal, Luc; Lorber, Abraham; Khoury, Asaad; Zeviani, Massimo; Strom, Tim M; Meitinger, Thomas; Bertini, Enrico S; Van Coster, Rudy; Klopstock, Thomas; Rötig, Agnès; Haack, Tobias B; Minczuk, Michal; Prokisch, Holger

    2014-12-04

    Respiratory chain deficiencies exhibit a wide variety of clinical phenotypes resulting from defective mitochondrial energy production through oxidative phosphorylation. These defects can be caused by either mutations in the mtDNA or mutations in nuclear genes coding for mitochondrial proteins. The underlying pathomechanisms can affect numerous pathways involved in mitochondrial physiology. By whole-exome and candidate gene sequencing, we identified 11 individuals from 9 families carrying compound heterozygous or homozygous mutations in GTPBP3, encoding the mitochondrial GTP-binding protein 3. Affected individuals from eight out of nine families presented with combined respiratory chain complex deficiencies in skeletal muscle. Mutations in GTPBP3 are associated with a severe mitochondrial translation defect, consistent with the predicted function of the protein in catalyzing the formation of 5-taurinomethyluridine (τm(5)U) in the anticodon wobble position of five mitochondrial tRNAs. All case subjects presented with lactic acidosis and nine developed hypertrophic cardiomyopathy. In contrast to individuals with mutations in MTO1, the protein product of which is predicted to participate in the generation of the same modification, most individuals with GTPBP3 mutations developed neurological symptoms and MRI involvement of thalamus, putamen, and brainstem resembling Leigh syndrome. Our study of a mitochondrial translation disorder points toward the importance of posttranscriptional modification of mitochondrial tRNAs for proper mitochondrial function. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  12. The role of mutations in the SCN5A gene in cardiomyopathies.

    PubMed

    Zaklyazminskaya, Elena; Dzemeshkevich, Sergei

    2016-07-01

    The SCN5A gene encodes the alpha-subunit of the Nav1.5 ion channel protein, which is responsible for the sodium inward current (INa). Since 1995 several hundred mutations in this gene have been found to be causative for inherited arrhythmias including Long QT syndrome, Brugada syndrome, cardiac conduction disease, sudden infant death syndrome, etc. As expected these syndromes are primarily electrical heart diseases leading to life-threatening arrhythmias with an "apparently normal heart". In 2003 a new form of dilated cardiomyopathy was identified associated with mutations in the SCN5A gene. Recently mutations have been also found in patients with arrhythmogenic right ventricular cardiomyopathy and atrial standstill. The purpose of this review is to outline and analyze the following four topics: 1) SCN5A genetic variants linked to different cardiomyopathies; 2) clinical manifestations of the known mutations; 3) possible molecular mechanisms of myocardial remodeling; and 4) the potential implications of gene-specific treatment for those disorders. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Pathogenesis of hypertrophic cardiomyopathy caused by myozenin 2 mutations is independent of calcineurin activity

    PubMed Central

    Ruggiero, Alessandra; Chen, Suet Nee; Lombardi, Raffaella; Rodriguez, Gabriela; Marian, Ali J.

    2013-01-01

    Aims The role of calcineurin protein phosphatase 2B (PP2B) in the pathogenesis of human hypertrophic cardiomyopathy (HCM) remains unsettled. We determined potential involvement of calcineurin in the pathogenesis of HCM caused by mutations in myozenin 2 (MYOZ2), an inhibitor of calcineurin. Methods and results We generated multiple lines of transgenic mice expressing either Flag-tagged wild-type (WT) (MYOZ2WT) or mutant MYOZ2S48P and MYOZ2I246M, identified in families with HCM, in the heart. To mimic the human genotype, we generated bigenic mice expressing WT and mutant MYOZ2 in the background of hemizygous endogenous MYOZ2 (Myoz2+/−). Transgene proteins constituted 15–48% of the total MYOZ2 protein in the heart. Mutant MYOZ2 mice showed molecular, cellular, and gross cardiac hypertrophy, preserved systolic function, and interstitial fibrosis. Immunofluorescence staining showed co-localization of WT and mutant MYOZ2 proteins with α-actinin at the Z disks. Electron microscopy showed disrupted and mal-aligned Z disks in the mutant mice. Cardiac calcineurin activity, determined by quantifying Rcan1.4 mRNA and protein levels, luciferase activity in triple transgenic Myoz2+/−:NFATc-Luc:MYOZ2I246M and Myoz2+/−:NFATc-Luc:MYOZ2WT mice, and NFATc transcriptional activity assay, was unchanged in the mutant transgenic mice. However, levels of phospho-ERK1/2 and JNK54/46 were altered in the transgenic mice. Likewise, lentiviral-mediated expression of the MYOZ2I246M did not affect RCAN1.4 and calcineurin (PPP3CB) protein levels. Conclusions Thus, the cardiac phenotype in HCM caused by MYOZ2 mutations might be independent of calcineurin activity in the heart. Z disk abnormalities might provide the stimulus for the induction of cardiac hypertrophy caused by MYOZ2 mutations. PMID:22987565

  14. Structural and Functional Effects of Cardiomyopathy-Causing Mutations in the Troponin T-Binding Region of Cardiac Tropomyosin.

    PubMed

    Matyushenko, Alexander M; Shchepkin, Daniil V; Kopylova, Galina V; Popruga, Katerina E; Artemova, Natalya V; Pivovarova, Anastasia V; Bershitsky, Sergey Y; Levitsky, Dmitrii I

    2017-01-10

    Hypertrophic cardiomyopathy (HCM) is a severe heart disease caused by missense mutations in genes encoding sarcomeric proteins of cardiac muscle. Many of these mutations are identified in the gene encoding the cardiac isoform of tropomyosin (Tpm), an α-helical coiled-coil actin-binding protein that plays a key role in Ca(2+)-regulated contraction of cardiac muscle. We employed various methods to characterize structural and functional features of recombinant human Tpm species carrying HCM mutations that lie either within the troponin T-binding region in the C-terminal part of Tpm (E180G, E180V, and L185R) or near this region (I172T). The results of our structural studies show that all these mutations affect, although differently, the thermal stability of the C-terminal part of the Tpm molecule: mutations E180G and I172T destabilize this part of the molecule, whereas mutation E180V strongly stabilizes it. Moreover, various HCM-causing mutations have different and even opposite effects on the stability of the Tpm-actin complexes. Studies of reconstituted thin filaments in the in vitro motility assay have shown that those HCM-associated mutations that lie within the troponin T-binding region of Tpm similarly increase the Ca(2+) sensitivity of the sliding velocity of the filaments and impair their relaxation properties, causing a marked increase in the sliding velocity in the absence of Ca(2+), while mutation I172T decreases the Ca(2+) sensitivity and has no influence on the sliding velocity under relaxing conditions. Finally, our data demonstrate that various HCM mutations can differently affect the structural and functional properties of Tpm and cause HCM by different molecular mechanisms.

  15. Comprehensive analysis of desmosomal gene mutations in Han Chinese patients with arrhythmogenic right ventricular cardiomyopathy.

    PubMed

    Zhou, Xiujuan; Chen, Minglong; Song, Hualian; Wang, Benqi; Chen, Hongwu; Wang, Jing; Wang, Wei; Feng, Shangpeng; Zhang, Fengxiang; Ju, Weizhu; Li, Mingfang; Gu, Kai; Cao, Kejiang; Wang, Dao W; Yang, Bing

    2015-04-01

    Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a cardiomyopathy that primarily involves the right ventricle. Mutations in desmosomal genes have been associated with ARVC. But its prevalence and spectrum are much less defined in the Chinese population, especially Han Chinese, a majority ethnic group in China; also the genotype-phenotype correlation regarding left ventricular involvement is still poorly understood. The aim of this study was to elucidate the genotype in Han Chinese patients with ARVC and the phenotype regarding cardiac left ventricle involvement in mutation carriers of ARVC. 48 Han Chinese patients were recruited into the present study based on the Original International Task Force Criteria of ARVC. Clinical data were reassessed according to the modified criteria published in 2010. A total of 36 subjects were diagnosed with ARVC; 12 patients were diagnosed with suspected ARVC. Five desmosomal genes (PKP2, DSG2, DSP, DSC2 and JUP) were sequenced directly from genomic DNA. Among the 36 patients, 21 mutations, 12 of which novel, were discovered in 19 individuals (19 of 36, 53%). The distribution of the mutations was 25% in PKP2, 14% in DSP, 11% in DSG2, 6% in JUP, and 3% in DSC2. Multiple mutations were identified in 2 subjects (2 of 36, 6%); both had digenic heterozygosity. Eight mutations, of which six were novel, were located in highly conserved regions. Seven mutations introduced a stop codon prematurely, which would result in premature termination of the protein synthesis. Two-dimensional echocardiography showed that LDVd and LDVs parameters were significantly larger in nonsense mutation carriers than in carriers of other mutations. In this comprehensive desmosome genetic analysis, 21 mutations were identified in five desmosomal genes in a group of 48 local Han Chinese subjects with ARVC, 12 of which were novel. PKP2 mutations were the most common variants. Left ventricular involvement could be a sign that the patient is a carrier of a

  16. Sports in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy and desmosomal mutations.

    PubMed

    Sawant, A C; Calkins, H

    2015-05-01

    Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is a rare cardiomyopathy associated with life-threatening arrhythmias and an increased risk of sudden cardiac death. In addition to mutations in desmosomal genes, environmental factors such as exercise and sport have been implicated in the pathogenesis of the disease. Recent studies have shown that exercise may be associated with adverse outcomes in patients with ARVD/C. On the basis of current evidence, patients with ARVD/C are recommended to limit exercise irrespective of their mutation status. Some studies have suggested the presence of an entirely acquired form of the disease caused by exercise, which has been dubbed "exercise-induced ARVD/C."

  17. Burden of Recurrent and Ancestral Mutations in Families With Hypertrophic Cardiomyopathy.

    PubMed

    Ross, Samantha Barratt; Bagnall, Richard D; Ingles, Jodie; Van Tintelen, J Peter; Semsarian, Christopher

    2017-06-01

    Hypertrophic cardiomyopathy is a genetically heterogeneous myocardial disease with >1000 causal variants identified. Nonunique variants account for disease in many families. We sought to characterize nonunique variants in Australian families and determine whether they arise from common ancestral mutations or recurrent mutation events. Genetic test results of 467 index patients from apparently unrelated families with hypertrophic cardiomyopathy were evaluated. Causal variants were found in 185 of 467 (40%) families. Nonunique variants accounted for 122 of 185 (66%) families. The most common single genetic cause of hypertrophic cardiomyopathy is the recurrent MYBPC3 (myosin-binding protein-C) variant c.1504C>T, p.Arg502Trp, which was found in 13 of 185 (7%) families with a causal variant identified. Thirteen variants in MYBPC3 and MYH7 (myosin heavy chain 7) were each identified >3 times and accounted for 78 of 185 (42%) hypertrophic cardiomyopathy families with a causal variant. Haplotype analysis of these 13 variants was performed on 126 individuals from 70 Australian families, and 11 variants arose through recurrent mutation events. Two variants, MYBPC3 c.1928-2A>G and MYH7 c.2681A>G, p.Glu894Gly, were found on 1 haplotype in 6 families each, supportive of a single mutation event inherited from a common ancestor. The majority of families with a causal variant identified have a nonunique variant. Discovery of the genetic origins of human disease forms a fundamental basis for improved understanding of disease pathogenesis and phenotype development. © 2017 American Heart Association, Inc.

  18. A Heterozygous ZMPSTE24 Mutation Associated with Severe Metabolic Syndrome, Ectopic Fat Accumulation, and Dilated Cardiomyopathy

    PubMed Central

    Galant, Damien; Gaborit, Bénédicte; Desgrouas, Camille; Abdesselam, Ines; Bernard, Monique; Levy, Nicolas; Merono, Françoise; Coirault, Catherine; Roll, Patrice; Lagarde, Arnaud; Bonello-Palot, Nathalie; Bourgeois, Patrice; Dutour, Anne; Badens, Catherine

    2016-01-01

    ZMPSTE24 encodes the only metalloprotease, which transforms prelamin into mature lamin A. Up to now, mutations in ZMPSTE24 have been linked to Restrictive Dermopathy (RD), Progeria or Mandibulo-Acral Dysplasia (MAD). We report here the phenotype of a patient referred for severe metabolic syndrome and cardiomyopathy, carrying a mutation in ZMPSTE24. The patient presented with a partial lipodystrophic syndrome associating hypertriglyceridemia, early onset type 2 diabetes, and android obesity with truncal and abdominal fat accumulation but without subcutaneous lipoatrophy. Other clinical features included acanthosis nigricans, liver steatosis, dilated cardiomyopathy, and high myocardial and hepatic triglycerides content. Mutated fibroblasts from the patient showed increased nuclear shape abnormalities and premature senescence as demonstrated by a decreased Population Doubling Level, an increased beta-galactosidase activity and a decreased BrdU incorporation rate. Reduced prelamin A expression by siRNA targeted toward LMNA transcripts resulted in decreased nuclear anomalies. We show here that a central obesity without subcutaneous lipoatrophy is associated with a laminopathy due to a heterozygous missense mutation in ZMPSTE24. Given the high prevalence of metabolic syndrome and android obesity in the general population, and in the absence of familial study, the causative link between mutation and phenotype cannot be formally established. Nevertheless, altered lamina architecture observed in mutated fibroblasts are responsible for premature cellular senescence and could contribute to the phenotype observed in this patient. PMID:27120622

  19. A mutation in the {beta}-myosin rod associated with hypertrophic cardiomyopathy has an unexpected molecular phenotype

    SciTech Connect

    Armel, Thomas Z.; Leinwand, Leslie A.

    2010-01-01

    Hypertrophic cardiomyopathy (HCM) is a common, autosomal dominant disorder primarily characterized by left ventricular hypertrophy and is the leading cause of sudden cardiac death in youth. HCM is caused by mutations in several sarcomeric proteins, with mutations in MYH7, encoding {beta}-MyHC, being the most common. While many mutations in the globular head region of the protein have been reported and studied, analysis of HCM-causing mutations in the {beta}-MyHC rod domain has not yet been reported. To address this question, we performed an array of biochemical and biophysical assays to determine how the HCM-causing E1356K mutation affects the structure, stability, and function of the {beta}-MyHC rod. Surprisingly, the E1356K mutation appears to thermodynamically destabilize the protein, rather than alter the charge profile know to be essential for muscle filament assembly. This thermodynamic instability appears to be responsible for the decreased ability of the protein to form filaments and may be responsible for the HCM phenotype seen in patients.

  20. Delineation of Molecular Pathways Involved in Cardiomyopathies Caused by Troponin T Mutations*

    PubMed Central

    Gilda, Jennifer E.; Lai, Xianyin; Witzmann, Frank A.; Gomes, Aldrin V.

    2016-01-01

    Familial hypertrophic cardiomyopathy (FHC) is associated with mild to severe cardiac problems and is the leading cause of sudden death in young people and athletes. Although the genetic basis for FHC is well-established, the molecular mechanisms that ultimately lead to cardiac dysfunction are not well understood. To obtain important insights into the molecular mechanism(s) involved in FHC, hearts from two FHC troponin T models (Ile79Asn [I79N] and Arg278Cys [R278C]) were investigated using label-free proteomics and metabolomics. Mutations in troponin T are the third most common cause of FHC, and the I79N mutation is associated with a high risk of sudden cardiac death. Most FHC-causing mutations, including I79N, increase the Ca2+ sensitivity of the myofilament; however, the R278C mutation does not alter Ca2+ sensitivity and is associated with a better prognosis than most FHC mutations. Out of more than 1200 identified proteins, 53 and 76 proteins were differentially expressed in I79N and R278C hearts, respectively, when compared with wild-type hearts. Interestingly, more than 400 proteins were differentially expressed when the I79N and R278C hearts were directly compared. The three major pathways affected in I79N hearts relative to R278C and wild-type hearts were the ubiquitin-proteasome system, antioxidant systems, and energy production pathways. Further investigation of the proteasome system using Western blotting and activity assays showed that proteasome dysfunction occurs in I79N hearts. Metabolomic results corroborate the proteomic data and suggest the glycolytic, citric acid, and electron transport chain pathways are important pathways that are altered in I79N hearts relative to R278C or wild-type hearts. Our findings suggest that impaired energy production and protein degradation dysfunction are important mechanisms in FHCs associated with poor prognosis and that cardiac hypertrophy is not likely needed for a switch from fatty acid to glucose metabolism

  1. Homozygous mutation of MYBPC3 associated with severe infantile hypertrophic cardiomyopathy at high frequency among the Amish.

    PubMed

    Zahka, K; Kalidas, K; Simpson, M A; Cross, H; Keller, B B; Galambos, C; Gurtz, K; Patton, M A; Crosby, A H

    2008-10-01

    Familial hypertrophic cardiomyopathy (HCM) is a leading cause of sudden cardiac death among young and apparently healthy people. Autosomal dominant mutations within genes encoding sarcomeric proteins have been identified. An autosomal recessive form of HCM has been discovered in a group of Amish children that is associated with poor prognosis and death within the first year of life. Affected patients experienced progressive cardiac failure despite maximal medical treatment. Postmortem histology showed myofibre disarray and myocyte loss consistent with refractory clinical deterioration in affected infants. To conduct a genome-wide screen for linkage and try to identify an autozygous region which cosegregates with the infant cardiac phenotype An autozygous region of chromosome 11 which cosegregates with the infant cardiac phenotype was identified. This region contained the MYBPC3 gene, which has previously been associated with autosomal dominant adult-onset HCM. Sequence analysis of the MYBPC3 gene identified a splice site mutation in intron 30 which was homozygous in all affected infants. All surviving patients with the homozygous MYBPC3 gene mutations (3330+2T>G) underwent an orthotopic heart transplantation. Homozygous mutations in the MYBPC3 gene have been identified as the cause of severe infantile HCM among the Amish population.

  2. Independent origin of identical [beta] cardiac myosin heavy-chain mutations in hypertrophic cardiomyopathy

    SciTech Connect

    Watkins, H. Harvard Medical School, Boston, MA St. George's Hospital Medical School, London ); Thierfelder, L.; Anan, R.; Jarcho, J.; Seidman, C.E. Harvard Medical School, Boston, MA ); Matsumori, Akira ); McKenna, W. ); Seidman, J.G. Howard Hughes Medical Inst., Boston, MA )

    1993-12-01

    The origins of the [beta] cardiac myosin heavy-chain (MHC) gene missense mutations that cause familial hypertrophic cardiomyopathy (FHC) in 14 families have been evaluated. Of eight different mutations, four were present in single families, while four occurred in two or more families. To investigate the origins of the four shared mutations, the authors defined the [beta] cardiac MHC haplotypes of each of the mutation-bearing chromosomes by determining the alleles present at three intragenic polymorphic loci. Two of the mutations (Arg453Cys and Val606Met) have arisen independently in each of three families, being found on different chromosomal backgrounds. A third mutation (Gly584Arg) is associated with identical haplotypes in two families with Portuguese ancestors, suggesting a founder effect. Haplotype analysis was uninformative for the fourth mutation (Arg403Gln). Thus, FHC-causing mutations have arisen independently in at least 12 of the 14 families studied, suggesting that the majority have arisen relatively recently as new mutations. This finding predicts the prevalence of disease-causing [beta] cardiac MHC mutations to be comparable in all population groups. 21 refs., 4 figs., 1 tab.

  3. A study in Polish patients with cardiomyopathy emphasizes pathogenicity of phospholamban (PLN) mutations at amino acid position 9 and low penetrance of heterozygous null PLN mutations.

    PubMed

    Truszkowska, Grażyna T; Bilińska, Zofia T; Kosińska, Joanna; Śleszycka, Justyna; Rydzanicz, Małgorzata; Sobieszczańska-Małek, Małgorzata; Franaszczyk, Maria; Bilińska, Maria; Stawiński, Piotr; Michalak, Ewa; Małek, Łukasz A; Chmielewski, Przemysław; Foss-Nieradko, Bogna; Machnicki, Marcin M; Stokłosa, Tomasz; Ponińska, Joanna; Szumowski, Łukasz; Grzybowski, Jacek; Piwoński, Jerzy; Drygas, Wojciech; Zieliński, Tomasz; Płoski, Rafał

    2015-04-03

    In humans mutations in the PLN gene, encoding phospholamban - a regulator of sarcoplasmic reticulum calcium ATPase (SERCA), cause cardiomyopathy with prevalence depending on the population. Our purpose was to identify PLN mutations in Polish cardiomyopathy patients. We studied 161 unrelated subjects referred for genetic testing for cardiomyopathies: 135 with dilated cardiomyopathy, 22 with hypertrophic cardiomyopathy and 4 with other cardiomyopathies. In 23 subjects multiple genes were sequenced by next generation sequencing and in all subjects PLN exons were analyzed by Sanger sequencing. Control group included 200 healthy subjects matched with patients for ethnicity, sex and age. Large deletions/insertions were screened by real time polymerase chain reaction. We detected three different heterozygous mutations in the PLN gene: a novel null c.9_10insA:(p.Val4Serfs*15) variant and two missense variants: c.25C > T:(p.Arg9Cys) and c.26G > T:(p.Arg9Leu). The (p.Val4Serfs*15) variant occurred in the patient with Wolff-Parkinson-White syndrome in whom the diagnosis of cardiomyopathy was not confirmed and his mother who had concentric left ventricular remodeling but normal left ventricular mass and function. We did not detect large deletions/insertions in PLN in cohort studied. In Poland, similar to most populations, PLN mutations rarely cause cardiomyopathy. The 9(th) PLN residue is apparently a mutation hot spot whereas a single dose of c.9_10insA, and likely other null PLN mutations, cause the disease only with low penetrance or are not pathogenic.

  4. Early-Onset Hypertrophic Cardiomyopathy Mutations Significantly Increase the Velocity, Force, and Actin-Activated ATPase Activity of Human β-Cardiac Myosin.

    PubMed

    Adhikari, Arjun S; Kooiker, Kristina B; Sarkar, Saswata S; Liu, Chao; Bernstein, Daniel; Spudich, James A; Ruppel, Kathleen M

    2016-12-13

    Hypertrophic cardiomyopathy (HCM) is a heritable cardiovascular disorder that affects 1 in 500 people. A significant percentage of HCM is attributed to mutations in β-cardiac myosin, the motor protein that powers ventricular contraction. This study reports how two early-onset HCM mutations, D239N and H251N, affect the molecular biomechanics of human β-cardiac myosin. We observed significant increases (20%-90%) in actin gliding velocity, intrinsic force, and ATPase activity in comparison to wild-type myosin. Moreover, for H251N, we found significantly lower binding affinity between the S1 and S2 domains of myosin, suggesting that this mutation may further increase hyper-contractility by releasing active motors. Unlike previous HCM mutations studied at the molecular level using human β-cardiac myosin, early-onset HCM mutations lead to significantly larger changes in the fundamental biomechanical parameters and show clear hyper-contractility.

  5. Targeting Mitogen-Activated Protein Kinase Signaling in Mouse Models of Cardiomyopathy Caused by Lamin A/C Gene Mutations

    PubMed Central

    Muchir, Antoine; Worman, Howard J.

    2016-01-01

    The most frequently occurring mutations in the gene encoding nuclear lamin A and nuclear lamin C cause striated muscle diseases virtually always involving the heart. In this review, we describe the approaches and methods used to discover that cardiomyopathy-causing lamin A/C gene mutations increase MAP kinase signaling in the heart and that this plays a role in disease pathogenesis. We review different mouse models of cardiomyopathy caused by lamin A/C gene mutations and how transcriptomic analysis of one model identified increased cardiac activity of the ERK1/2, JNK, and p38α MAP kinases. We describe methods used to measure the activity of these MAP kinases in mouse hearts and then discuss preclinical treatment protocols using pharmacological inhibitors to demonstrate their role in pathogenesis. Several of these kinase inhibitors are in clinical development and could potentially be used to treat human subjects with cardiomyopathy caused by lamin A/C gene mutations. PMID:26795484

  6. Late gadolinium enhanced cardiovascular magnetic resonance of lamin A/C gene mutation related dilated cardiomyopathy

    PubMed Central

    2011-01-01

    Background The purpose of this study was to identify early features of lamin A/C gene mutation related dilated cardiomyopathy (DCM) with cardiovascular magnetic resonance (CMR). We characterise myocardial and functional findings in carriers of lamin A/C mutation to facilitate the recognition of these patients using this method. We also investigated the connection between myocardial fibrosis and conduction abnormalities. Methods Seventeen lamin A/C mutation carriers underwent CMR. Late gadolinium enhancement (LGE) and cine images were performed to evaluate myocardial fibrosis, regional wall motion, longitudinal myocardial function, global function and volumetry of both ventricles. The location, pattern and extent of enhancement in the left ventricle (LV) myocardium were visually estimated. Results Patients had LV myocardial fibrosis in 88% of cases. Segmental wall motion abnormalities correlated strongly with the degree of enhancement. Myocardial enhancement was associated with conduction abnormalities. Sixty-nine percent of our asymptomatic or mildly symptomatic patients showed mild ventricular dilatation, systolic failure or both in global ventricular analysis. Decreased longitudinal systolic LV function was observed in 53% of patients. Conclusions Cardiac conduction abnormalities, mildly dilated LV and depressed systolic dysfunction are common in DCM caused by a lamin A/C gene mutation. However, other cardiac diseases may produce similar symptoms. CMR is an accurate tool to determine the typical cardiac involvement in lamin A/C cardiomyopathy and may help to initiate early treatment in this malignant familiar form of DCM. PMID:21689390

  7. Fibrillin-1 Gene Mutations in Left Ventricular Non-compaction Cardiomyopathy.

    PubMed

    Parent, John J; Towbin, Jeffrey A; Jefferies, John L

    2016-08-01

    Left ventricular non-compaction cardiomyopathy (LVNC) is a unique cardiomyopathy with a current yield of about 30-40 % in identifying a causative gene mutation. A retrospective review of all patients with LVNC at our institution was performed and genetic testing was reviewed. Echocardiographic and cardiac magnetic resonance imaging was reviewed to corroborate the reported phenotype. We present a series of patients with LVNC dilated phenotype associated with fibrillin-1 gene mutations. Fifty-one patients were identified as having LVNC with reduced left ventricular function and/or left ventricular dilation. We retrospectively reviewed gene testing in this cohort when available and identified 5 patients (10 %) with an FBN1 gene mutation. Syndrome breakdown as follows: 3 with Marfan, 1 with Shprintzen-Goldberg, and 1 with no identifiable syndrome. Derangements in fibrillin-1 may impact the compaction process resulting in LVNC. Although causation has not been proven by our report, it certainly raises interest in a possible mechanistic relationship between fibrillin-1 and LVNC given the increased prevalence of Marfan syndrome and fibrillin-1 gene mutations in this cohort.

  8. Rippling muscle disease and cardiomyopathy associated with a mutation in the CAV3 gene.

    PubMed

    Catteruccia, Michela; Sanna, Tommaso; Santorelli, Filippo Maria; Tessa, Alessandra; Di Giacopo, Raffaella; Sauchelli, Donato; Verbo, Alessandro; Lo Monaco, Mauro; Servidei, Serenella

    2009-11-01

    Caveolin-3, the myocyte-specific isoform of caveolins, is preferentially expressed in skeletal, cardiac and smooth muscles. Mutations in the CAV3 gene cause clinically heterogeneous neuromuscular disorders, including rippling muscle disease, or cardiopathies. The same mutation may lead to different phenotypes, but cardiac and muscle involvement rarely coexists suggesting that the molecular network acting with caveolin-3 in skeletal muscle and heart may differ. Here we describe an Italian family (a father and his two sons) with clinical and neurophysiological features of rippling muscle disease and heart involvement characterized by atrio-ventricular conduction defects and dilated cardiomyopathy. Muscle biopsy showed loss of caveolin-3 immunosignal. Molecular studies identified the p.A46V mutation in CAV3 previously reported in a German family with autosomal dominant rippling muscle disease and sudden death in few individuals. We suggest that cardiac dysfunction in myopathic patients with CAV3 mutations may be underestimated and recommend a more thorough evaluation for the presence of cardiomyopathy and potentially lethal arrhythmias.

  9. The natural history of a genetic subtype of arrhythmogenic right ventricular cardiomyopathy caused by a p.S358L mutation in TMEM43.

    PubMed

    Hodgkinson, K A; Connors, S P; Merner, N; Haywood, A; Young, T-L; McKenna, W J; Gallagher, B; Curtis, F; Bassett, A S; Parfrey, P S

    2013-04-01

    To determine the phenotype and natural history of a founder genetic subtype of autosomal dominant arrhythmogenic right ventricular cardiomyopathy (ARVC) caused by a p.S358L mutation in TMEM43. The age of onset of cardiac symptoms, clinical events and test abnormalities were studied in 412 subjects (258 affected and 154 unaffected), all of which occurred in affected males significantly earlier and more often than unaffected males. Affected males were hospitalized four times more often than affected females (p ≤ 0.0001) and died younger (p ≤ 0.001). The temporal sequence from symptoms onset to death was prolonged in affected females by 1-2 decades. The most prevalent electrocardiogram (ECG) manifestation was poor R wave progression (PRWP), with affected males twice as likely to develop PRWP as affected females (p ≤ 0.05). Left ventricular enlargement (LVE) occurred in 43% of affected subjects, with 11% fulfilling criteria for dilated cardiomyopathy. Ventricular ectopy on Holter monitor was common and occurred early: the most diagnostically useful clinical test. No symptom or test could rule out diagnosis. This ARVC subtype is a sex-influenced lethal arrhythmogenic cardiomyopathy, with a unique ECG finding, LV dilatation, heart failure and early death, where molecular pre-symptomatic diagnosis has the greatest clinical utility. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  10. Diverse Phenotypic Expression of Cardiomyopathies in a Family with TNNI3 p.Arg145Trp Mutation

    PubMed Central

    Hwang, Ji-won; Jang, Mi-Ae; Jang, Shin Yi; Seo, Soo Hyun; Seong, Moon-Woo; Park, Sung Sup; Ki, Chang-Seok

    2017-01-01

    Genetic diagnosis of cardiomyopathies is challenging, due to the marked genetic and allelic heterogeneity and the lack of knowledge of the mutations that lead to clinical phenotypes. Here, we present the case of a large family, in which a single TNNI3 mutation caused variable phenotypic expression, ranging from restrictive cardiomyopathy (RCMP) to hypertrophic cardiomyopathy (HCMP) to near-normal phenotype. The proband was a 57-year-old female with HCMP. Examining the family history revealed that her elder sister had expired due to severe RCMP. Using a next-generation sequencing-based gene panel to analyze the proband, we identified a known TNNI3 gene mutation, c.433C>T, which is predicted to cause an amino acid substitution (p.Arg145Trp) in the highly conserved inhibitory region of the cardiac troponin I protein. Sanger sequencing confirmed that six relatives with RCMP or near-normal phenotypes also carried this mutation. To our knowledge, this is the first genetically confirmed family with diverse phenotypic expression of cardiomyopathies in Korea. Our findings demonstrate familial implications, where a single mutation in a sarcomere protein can cause diverse phenotypic expression of cardiomyopathies. PMID:28382084

  11. Co segregation of the m.1555A>G mutation in the MT-RNR1 gene and mutations in MT-ATP6 gene in a family with dilated mitochondrial cardiomyopathy and hearing loss: A whole mitochondrial genome screening.

    PubMed

    Alila-Fersi, Olfa; Chamkha, Imen; Majdoub, Imen; Gargouri, Lamia; Mkaouar-Rebai, Emna; Tabebi, Mouna; Tlili, Abdelaziz; Keskes, Leila; Mahfoudh, Abdelmajid; Fakhfakh, Faiza

    2017-02-26

    Mitochondrial disease refers to a heterogeneous group of disorders resulting in defective cellular energy production due to dysfunction of the mitochondrial respiratory chain, which is responsible for the generation of most cellular energy. Because cardiac muscles are one of the high energy demanding tissues, mitochondrial cardiomyopathies is one of the most frequent mitochondria disorders. Mitochondrial cardiomyopathy has been associated with several point mutations of mtDNA in both genes encoded mitochondrial proteins and mitochondrial tRNA and rRNA. We reported here the first description of mutations in MT-ATP6 gene in two patients with clinical features of dilated mitochondrial cardiomyopathy. The mutational analysis of the whole mitochondrial DNA revealed the presence of m.1555A>G mutation in MT-RNR1 gene associated to the m.8527A>G (p.M>V) and the m.8392C>T (p.136P>S) variations in the mitochondrial MT-ATP6 gene in patient1 and his family members with variable phenotype including hearing impairment. The second patient with isolated mitochondrial cardiomyopathy presented the m.8605C>T (p.27P>S) mutation in the MT-ATP6 gene. The three mutations p.M1V, p.P27S and p.P136S detected in MT-ATP6 affected well conserved residues of the mitochondrial protein ATPase 6. In addition, the substitution of proline residue at position 27 and 136 effect hydrophobicity and structure flexibility conformation of the protein.

  12. Familial hypertrophic obstructive cardiomyopathy with the GLA E66Q mutation and zebra body.

    PubMed

    Oikawa, Masayoshi; Sakamoto, Nobuo; Kobayashi, Atsushi; Suzuki, Satoshi; Yoshihisa, Akiomi; Yamaki, Takayoshi; Nakazato, Kazuhiko; Suzuki, Hitoshi; Saitoh, Shu-Ichi; Kiko, Yuichirou; Nakano, Hajime; Hayashi, Takeharu; Kimura, Akinori; Takeishi, Yasuchika

    2016-05-10

    Fabry disease is caused by mutations in the α-galactosidase A (GLA) gene, which is located in X-chromosome coding for the lysosomal enzyme of GLA. Among many gene mutations, E66Q mutation is under discussion for its pathogenicity because there is no clinical report showing pathological evidence of Fabry disease with E66Q mutation. A 65-year-old Japanese female was referred to our hospital for chest discomfort on effort. Transthoracic echocardiography showed severe left ventricular (LV) hypertrophy with LV outflow obstruction. Maximum LV outflow pressure gradient was 87 mmHg, and Valsalva maneuver increased the pressure gradient up to 98 mmHg. According to medical interview, one of her younger sister and a nephew died suddenly at age 42 and 36, respectively. Another younger sister also presented LV hypertrophy with outflow obstruction. Maximum LV outflow pressure gradient was 100 mmHg, and the E66Q mutation was detected similar to the case. Endomyocardial biopsy specimens presented vacuolation of cardiomyocytes, in which zebra bodies were detected by electron microscopic examination. Although the enzymatic activity of GLA was within normal range, the c. 196G>C nucleotide change, which lead to the E66Q mutation of GLA gene, was detected. We initially diagnosed her as cardiac Fabry disease based on the findings of zebra body. However, immunostaining showed few deposition of globotriaosylceramide in left ventricular myocardium, and gene mutations in the disease genes for hypertrophic cardiomyopathy (HCM), MYBPC3 and MYH6, were detected. Although the pathogenicity of the E66Q mutation cannot be ruled out, hypertrophic obstructive cardiomyopathy (HOCM) was more reasonable to explain the pathophysiology in the case. This is the confusable case of HOCM with Fabry disease with the GLA E66Q mutation. We have to take into consideration the possibility that some patients with the E66Q mutation may have similar histological findings of Fabry disease, and should be examed the

  13. Mutation Glu82Lys in lamin A/C gene is associated with cardiomyopathy and conduction defect

    SciTech Connect

    Wang Hu; Wang Jizheng; Zheng Weiyue; Wang Xiaojian; Wang Shuxia; Song Lei; Zou Yubao; Yao Yan; Hui Rutai . E-mail: huirutai@sglab.org

    2006-05-26

    Dilated cardiomyopathy is a form of heart muscle disease characterized by impaired systolic function and ventricular dilation. The mutations in lamin A/C gene have been linked to dilated cardiomyopathy. We screened genetic mutations in a large Chinese family of 50 members including members with dilated cardiomyopathy and found a Glu82Lys substitution mutation in the rod domain of the lamin A/C protein in eight family members, three of them have been diagnosed as dilated cardiomyopathy, one presented with heart dilation. The pathogenic mechanism of lamin A/C gene defect is poorly understood. Glu82Lys mutated lamin A/C and wild type protein was transfected into HEK293 cells. The mutated protein was not properly localized at the inner nuclear membrane and the emerin protein, which interacts with lamin A/C, was also aberrantly distributed. The nuclear membrane structure was disrupted and heterochromatin was aggregated aberrantly in the nucleus of the HEK293 cells stably transfected with mutated lamin A/C gene as determined by transmission electron microscopy.

  14. Evaluation of the flanking nucleotide sequences of sarcomeric hypertrophic cardiomyopathy substitution mutations.

    PubMed

    Meurs, Kathryn M; Mealey, Katrina L

    2008-07-03

    Hypertrophic cardiomyopathy (HCM) is a familial myocardial disease with a prevalence of 1 in 500. More than 400 causative mutations have been identified in 13 sarcomeric and myofilament related genes, 350 of these are substitution mutations within eight sarcomeric genes. Within a population, examples of recurring identical disease causing mutations that appear to have arisen independently have been noted as well as those that appear to have been inherited from a common ancestor. The large number of novel HCM mutations could suggest a mechanism of increased mutability within the sarcomeric genes. The objective of this study was to evaluate the most commonly reported HCM genes, beta myosin heavy chain (MYH7), myosin binding protein C, troponin I, troponin T, cardiac regulatory myosin light chain, cardiac essential myosin light chain, alpha tropomyosin and cardiac alpha-actin for sequence patterns surrounding the substitution mutations that may suggest a mechanism of increased mutability. The mutations as well as the 10 flanking nucleotides were evaluated for frequency of di-, tri- and tetranucleotides containing the mutation as well as for the presence of certain tri- and tetranculeotide motifs. The most common substitutions were guanine (G) to adenine (A) and cytosine (C) to thymidine (T). The CG dinucleotide had a significantly higher relative mutability than any other dinucleotide (p<0.05). The relative mutability of each possible trinucleotide and tetranucleotide sequence containing the mutation was calculated; none were at a statistically higher frequency than the others. The large number of G to A and C to T mutations as well as the relative mutability of CG may suggest that deamination of methylated CpG is an important mechanism for mutation development in at least some of these cardiac genes.

  15. Understanding cardiomyopathy phenotypes based on the functional impact of mutations in the myosin motor.

    PubMed

    Moore, Jeffrey R; Leinwand, Leslie; Warshaw, David M

    2012-07-20

    Hypertrophic (HCM) and dilated (DCM) cardiomyopathies are inherited diseases with a high incidence of death due to electric abnormalities or outflow tract obstruction. In many of the families afflicted with either disease, causative mutations have been identified in various sarcomeric proteins. In this review, we focus on mutations in the cardiac muscle molecular motor, myosin, and its associated light chains. Despite the >300 identified mutations, there is still no clear understanding of how these mutations within the same myosin molecule can lead to the dramatically different clinical phenotypes associated with HCM and DCM. Localizing mutations within myosin's molecular structure provides insight into the potential consequence of these perturbations to key functional domains of the motor. Review of biochemical and biophysical data that characterize the functional capacities of these mutant myosins suggests that mutant myosins with enhanced contractility lead to HCM, whereas those displaying reduced contractility lead to DCM. With gain and loss of function potentially being the primary consequence of a specific mutation, how these functional changes trigger the hypertrophic response and lead to the distinct HCM and DCM phenotypes will be the future investigative challenge.

  16. Autosomal Recessive Dilated Cardiomyopathy due to DOLK Mutations Results from Abnormal Dystroglycan O-Mannosylation

    PubMed Central

    Morava, Eva; Riemersma, Moniek; Schuurs-Hoeijmakers, Janneke H. M.; Absmanner, Birgit; Verrijp, Kiek; van den Akker, Willem M. R.; Huijben, Karin; Steenbergen, Gerry; van Reeuwijk, Jeroen; Jozwiak, Adam; Zucker, Nili; Lorber, Avraham; Lammens, Martin; Knopf, Carlos; van Bokhoven, Hans; Grünewald, Stephanie; Lehle, Ludwig; Kapusta, Livia; Mandel, Hanna; Wevers, Ron A.

    2011-01-01

    Genetic causes for autosomal recessive forms of dilated cardiomyopathy (DCM) are only rarely identified, although they are thought to contribute considerably to sudden cardiac death and heart failure, especially in young children. Here, we describe 11 young patients (5–13 years) with a predominant presentation of dilated cardiomyopathy (DCM). Metabolic investigations showed deficient protein N-glycosylation, leading to a diagnosis of Congenital Disorders of Glycosylation (CDG). Homozygosity mapping in the consanguineous families showed a locus with two known genes in the N-glycosylation pathway. In all individuals, pathogenic mutations were identified in DOLK, encoding the dolichol kinase responsible for formation of dolichol-phosphate. Enzyme analysis in patients' fibroblasts confirmed a dolichol kinase deficiency in all families. In comparison with the generally multisystem presentation in CDG, the nonsyndromic DCM in several individuals was remarkable. Investigation of other dolichol-phosphate dependent glycosylation pathways in biopsied heart tissue indicated reduced O-mannosylation of alpha-dystroglycan with concomitant functional loss of its laminin-binding capacity, which has been linked to DCM. We thus identified a combined deficiency of protein N-glycosylation and alpha-dystroglycan O-mannosylation in patients with nonsyndromic DCM due to autosomal recessive DOLK mutations. PMID:22242004

  17. Effects of hypertrophic and dilated cardiomyopathy mutations on power output by human β-cardiac myosin.

    PubMed

    Spudich, James A; Aksel, Tural; Bartholomew, Sadie R; Nag, Suman; Kawana, Masataka; Yu, Elizabeth Choe; Sarkar, Saswata S; Sung, Jongmin; Sommese, Ruth F; Sutton, Shirley; Cho, Carol; Adhikari, Arjun S; Taylor, Rebecca; Liu, Chao; Trivedi, Darshan; Ruppel, Kathleen M

    2016-01-01

    Hypertrophic cardiomyopathy is the most frequently occurring inherited cardiovascular disease, with a prevalence of more than one in 500 individuals worldwide. Genetically acquired dilated cardiomyopathy is a related disease that is less prevalent. Both are caused by mutations in the genes encoding the fundamental force-generating protein machinery of the cardiac muscle sarcomere, including human β-cardiac myosin, the motor protein that powers ventricular contraction. Despite numerous studies, most performed with non-human or non-cardiac myosin, there is no clear consensus about the mechanism of action of these mutations on the function of human β-cardiac myosin. We are using a recombinantly expressed human β-cardiac myosin motor domain along with conventional and new methodologies to characterize the forces and velocities of the mutant myosins compared with wild type. Our studies are extending beyond myosin interactions with pure actin filaments to include the interaction of myosin with regulated actin filaments containing tropomyosin and troponin, the roles of regulatory light chain phosphorylation on the functions of the system, and the possible roles of myosin binding protein-C and titin, important regulatory components of both cardiac and skeletal muscles.

  18. Pediatric Cardiomyopathies.

    PubMed

    Lee, Teresa M; Hsu, Daphne T; Kantor, Paul; Towbin, Jeffrey A; Ware, Stephanie M; Colan, Steven D; Chung, Wendy K; Jefferies, John L; Rossano, Joseph W; Castleberry, Chesney D; Addonizio, Linda J; Lal, Ashwin K; Lamour, Jacqueline M; Miller, Erin M; Thrush, Philip T; Czachor, Jason D; Razoky, Hiedy; Hill, Ashley; Lipshultz, Steven E

    2017-09-15

    Pediatric cardiomyopathies are rare diseases with an annual incidence of 1.1 to 1.5 per 100 000. Dilated and hypertrophic cardiomyopathies are the most common; restrictive, noncompaction, and mixed cardiomyopathies occur infrequently; and arrhythmogenic right ventricular cardiomyopathy is rare. Pediatric cardiomyopathies can result from coronary artery abnormalities, tachyarrhythmias, exposure to infection or toxins, or secondary to other underlying disorders. Increasingly, the importance of genetic mutations in the pathogenesis of isolated or syndromic pediatric cardiomyopathies is becoming apparent. Pediatric cardiomyopathies often occur in the absence of comorbidities, such as atherosclerosis, hypertension, renal dysfunction, and diabetes mellitus; as a result, they offer insights into the primary pathogenesis of myocardial dysfunction. Large international registries have characterized the epidemiology, cause, and outcomes of pediatric cardiomyopathies. Although adult and pediatric cardiomyopathies have similar morphological and clinical manifestations, their outcomes differ significantly. Within 2 years of presentation, normalization of function occurs in 20% of children with dilated cardiomyopathy, and 40% die or undergo transplantation. Infants with hypertrophic cardiomyopathy have a 2-year mortality of 30%, whereas death is rare in older children. Sudden death is rare. Molecular evidence indicates that gene expression differs between adult and pediatric cardiomyopathies, suggesting that treatment response may differ as well. Clinical trials to support evidence-based treatments and the development of disease-specific therapies for pediatric cardiomyopathies are in their infancy. This compendium summarizes current knowledge of the genetic and molecular origins, clinical course, and outcomes of the most common phenotypic presentations of pediatric cardiomyopathies and highlights key areas where additional research is required. URL: http

  19. A Scandinavian case of skin fragility, alopecia and cardiomyopathy caused by DSP mutations.

    PubMed

    Vahlquist, A; Virtanen, M; Hellström-Pigg, M; Dragomir, A; Ryberg, K; Wilson, N J; Östman--Smith, I; Lu, L; McGrath, J A; Smith, F J D

    2014-01-01

    Congenital skin fragility is a heterogeneous disorder with epidermolysis bullosa and various skin infections as the leading causes. However, even rare diseases must be considered in the differential diagnosis of neonatal skin blistering, including some genetic syndromes with extracutaneous involvement. One such syndrome is ectodermal dysplasia due to deficiency of desmoplakin, a desmosomal protein essential for cellular cohesion in both epithelia and cardiac tissues. Desmoplakin is encoded by the DSP gene, which is localized on chromosome 6p24. Both dominant and recessive mutations in this gene have been reported to cause skin fragility and keratinization defects. We report a child born with a fragile epidermis, alopecia, thick nails, and focal hyperkeratoses on the digits and knees. She was found to have a deficiency of desmoplakin caused by compound heterozygous DSP mutations. She has gradually developed signs of a left ventricular cardiomyopathy.

  20. A novel mitochondrial ATP8 gene mutation in a patient with apical hypertrophic cardiomyopathy and neuropathy

    PubMed Central

    Jonckheere, An I; Hogeveen, Marije; Nijtmans, Leo; van den Brand, Mariel; Janssen, Antoon; Diepstra, Heleen; van den Brandt, Frans; van den Heuvel, Bert; Hol, Frans; Hofste, Tom; Kapusta, Livia; Dillmann, U; Shamdeen, M; Smeitink, J; Smeitink, J; Rodenburg, Richard

    2009-01-01

    To identify the biochemical and molecular genetic defect in a 16-year-old patient presenting with apical hypertrophic cardiomyopathy and neuropathy suspected for a mitochondrial disorder. Measurement of the mitochondrial energy-generating system (MEGS) capacity in muscle and enzyme analysis in muscle and fibroblasts were performed. Relevant parts of the mitochondrial DNA were analysed by sequencing. A homoplasmic nonsense mutation m.8529G→A (p.Trp55X) was found in the mitochondrial ATP8 gene in the patient’s fibroblasts and muscle tissue. Reduced complex V activity was measured in the patient’s fibroblasts and muscle tissue, and was confirmed in cybrid clones containing patient-derived mitochondrial DNA We describe the first pathogenic mutation in the mitochondrial ATP8 gene, resulting in an improper assembly and reduced activity of the complex V holoenzyme. PMID:21686774

  1. Targeted next-generation sequencing of candidate genes reveals novel mutations in patients with dilated cardiomyopathy

    PubMed Central

    ZHAO, YUE; FENG, YUE; ZHANG, YUN-MEI; DING, XIAO-XUE; SONG, YU-ZHU; ZHANG, A-MEI; LIU, LI; ZHANG, HONG; DING, JIA-HUAN; XIA, XUE-SHAN

    2015-01-01

    Dilated cardiomyopathy (DCM) is a major cause of sudden cardiac death and heart failure, and it is characterized by genetic and clinical heterogeneity, even for some patients with a very poor clinical prognosis; in the majority of cases, DCM necessitates a heart transplant. Genetic mutations have long been considered to be associated with this disease. At present, mutations in over 50 genes related to DCM have been documented. This study was carried out to elucidate the characteristics of gene mutations in patients with DCM. The candidate genes that may cause DCM include MYBPC3, MYH6, MYH7, LMNA, TNNT2, TNNI3, MYPN, MYL3, TPM1, SCN5A, DES, ACTC1 and RBM20. Using next-generation sequencing (NGS) and subsequent mutation confirmation with traditional capillary Sanger sequencing analysis, possible causative non-synonymous mutations were identified in ~57% (12/21) of patients with DCM. As a result, 7 novel mutations (MYPN, p.E630K; TNNT2, p.G180A; MYH6, p.R1047C; TNNC1, p.D3V; DES, p.R386H; MYBPC3, p.C1124F; and MYL3, p.D126G), 3 variants of uncertain significance (RBM20, p.R1182H; MYH6, p.T1253M; and VCL, p.M209L), and 2 known mutations (MYH7, p.A26V and MYBPC3, p.R160W) were revealed to be associated with DCM. The mutations were most frequently found in the sarcomere (MYH6, MYBPC3, MYH7, TNNC1, TNNT2 and MYL3) and cytoskeletal (MYPN, DES and VCL) genes. As genetic testing is a useful tool in the clinical management of disease, testing for pathogenic mutations is beneficial to the treatment of patients with DCM and may assist in predicting disease risk for their family members before the onset of symptoms. PMID:26458567

  2. Identification of novel mutations including a double mutation in patients with inherited cardiomyopathy by a targeted sequencing approach using the Ion Torrent PGM system

    PubMed Central

    ZHAO, YUE; CAO, HONG; SONG, YINDI; FENG, YUE; DING, XIAOXUE; PANG, MINGJIE; ZHANG, YUNMEI; ZHANG, HONG; DING, JIAHUAN; XIA, XUESHAN

    2016-01-01

    Inherited cardiomyopathy is the major cause of sudden cardiac death (SCD) and heart failure (HF). The disease is associated with extensive genetic heterogeneity; pathogenic mutations in cardiac sarcomere protein genes, cytoskeletal protein genes and nuclear envelope protein genes have been linked to its etiology. Early diagnosis is conducive to clinical monitoring and allows for presymptomatic interventions as needed. In the present study, the entire coding sequences and flanking regions of 12 major disease (cardiomyopathy)-related genes [namely myosin, heavy chain 7, cardiac muscle, β (MYH7); myosin binding protein C, cardiac (MYBPC3); lamin A/C (LMNA); troponin I type 3 (cardiac) (TNNI3); troponin T type 2 (cardiac) (TNNT2); actin, α, cardiac muscle 1 (ACTC1); tropomyosin 1 (α) (TPM1); sodium channel, voltage gated, type V alpha subunit (SCN5A); myosin, light chain 2, regulatory, cardiac, slow (MYL2); myosin, heavy chain 6, cardiac muscle, α (MYH6); myosin, light chain 3, alkali, ventricular, skeletal, slow (MYL3); and protein kinase, AMP-activated, gamma 2 non-catalytic subunit (PRKAG2)] in 8 patients with dilated cardiomyopathy (DCM) and in 8 patients with hypertrophic cardiomyopathy (HCM) were amplified and then sequenced using the Ion Torrent Personal Genome Machine (PGM) system. As a result, a novel heterozygous mutation (MYH7, p.Asn885Thr) and a variant of uncertain significance (TNNT2, p.Arg296His) were identified in 2 patients with HCM. These 2 missense mutations, which were absent in the samples obtained from the 200 healthy control subjects, altered the amino acid that was evolutionarily conserved among a number of vertebrate species; this illustrates that these 2 non-synonymous mutations play a role in the pathogenesis of HCM. Moreover, a double heterozygous mutation (PRKAG2, p.Gly100Ser plus MYH7, p.Arg719Trp) was identified in a patient with severe familial HCM, for the first time to the best of our knowledge. This patient provided us with more

  3. Hypertrophic cardiomyopathy in young Maine Coon cats caused by the p.A31P cMyBP-C mutation - the clinical significance of having the mutation

    PubMed Central

    2011-01-01

    Background In Maine Coon (MC) cats the c.91G > C mutation in the gene MYBPC3, coding for cardiac myosin binding protein C (cMyBP-C), is associated with feline hypertrophic cardiomyopathy (fHCM). The mutation causes a substitution of an alanine for a proline at residue 31 (p.A31P) of cMyBP-C. The pattern of inheritance has been considered autosomal dominant based on a single pedigree. However, larger studies are needed to establish the significance of cats being heterozygous or homozygous for the mutation with respect to echocardiographic indices and the probability of developing fHCM. The objective of the present study was to establish the clinical significance of being homozygous or heterozygous for the p.A31P cMyBP-C mutation in young to middle-aged cats. Methods The cohort consisted of 332 MC cats, 282 cats < 4 years (85%). All cats were examined by 2-D and M-mode echocardiography. DNA was extracted from blood samples or buccal swabs and screened for the p.A31P cMyBP-C mutation in exon 3 of the gene, using polymerase chain reaction followed by DNA sequencing. Results The fHCM prevalence was 6.3% in the cohort. Eighteen cats were homozygous and 89 cats were heterozygous for the mutation. The odds ratio for having fHCM for homozygous cats was 21.6 (95% confidence interval 7.01-66.2) - when the group of equivocal cats was categorized as non-affected. Overall, 50% of the cats that were homozygous for the mutation had fHCM. p.A31P heterozygosity was not associated with a significant odds ratio for fHCM. In cats in the 4 to 6 years of age range a similar, non significant, odds ratio was seen in heterozygous cats. Only two cats over four years were homozygous and both were diagnosed with fHCM. Conclusion As there is no significant odds ratio associated with being heterozygous for the pA31P cMyBP-C mutation at this age, the mutation must have a very low penetrance in this group. From our data it would appear that most MC cats that develop fHCM due to the p.A31P mutation

  4. Function of a novel plakophilin-2 mutation in the abnormal expression of connexin43 in a patient with arrhythmogenic right ventricular cardiomyopathy.

    PubMed

    Wang, Pei-Ning; Wu, Shu-Lin; Zhang, Bin; Lin, Qiu-Xiong; Shan, Zhi-Xin

    2015-03-01

    Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a desmosomal disease. Desmosomes and gap junctions are important structural components of cardiac intercalated discs. The proteins plakophilin-2 (PKP-2) and connexin43 (Cx43) are components of desmosomes and gap junctions, respectively. This study was conducted to determine whether Cx43 expression is affected by the mutation of the PKP-2 gene in patients with ARVC. A novel mutation was detected in a typical patient with ARVC. The mutated gene was transfected into rat mesenchymal stem cells expressing Cx43 through a pReversied-M-29 plasmid. Cx43 expression was detected using quantitative polymerase chain reaction analysis. Cx43 expression was significantly decreased in the mutant PKP-2 group compared with that in the wild-type PKP-2 group. In conclusion, PKP-2 affected Cx43 expression at the gene transcription level in the patient with ARVC.

  5. Perturbed Length–Dependent Activation in Human Hypertrophic Cardiomyopathy With Missense Sarcomeric Gene Mutations

    PubMed Central

    Sequeira, Vasco; Wijnker, Paul J.M.; Nijenkamp, Louise L.A.M.; Kuster, Diederik W.D.; Najafi, Aref; Witjas-Paalberends, E. Rosalie; Regan, Jessica A.; Boontje, Nicky; ten Cate, Folkert J.; Germans, Tjeerd; Carrier, Lucie; Sadayappan, Sakthivel; van Slegtenhorst, Marjon A.; Zaremba, Ruud; Foster, D. Brian; Murphy, Anne M.; Poggesi, Corrado; dos Remedios, Cris; Stienen, Ger J.M.; Ho, Carolyn Y.; Michels, Michelle; van der Velden, Jolanda

    2013-01-01

    Rationale High-myofilament Ca2+-sensitivity has been proposed as trigger of disease pathogenesis in familial hypertrophic cardiomyopathy (HCM) based on in vitro and transgenic mice studies. However, myofilament Ca2+-sensitivity depends on protein phosphorylation and muscle length, and at present, data in human are scarce. Objective To investigate whether high-myofilament Ca2+-sensitivity and perturbed length-dependent activation are characteristics for human HCM with mutations in thick- and thin-filament proteins. Methods and Results Cardiac samples from patients with HCM harboring mutations in genes encoding thick (MYH7, MYBPC3) and thin (TNNT2, TNNI3, TPM1) filament proteins were compared with sarcomere mutation-negative HCM and nonfailing donors. Cardiomyocyte force measurements showed higher myofilament Ca2+-sensitivity in all HCM samples and low phosphorylation of protein kinase A (PKA)-targets compared with donors. After exogenous PKA treatment, myofilament Ca2+-sensitivity was either similar (MYBPC3mut, TPM1mut, sarcomere mutation-negative HCM), higher (MYH7mut, TNNT2mut), or even significantly lower (TNNI3mut) compared with donors. Length-dependent activation was significantly smaller in all HCM than in donor samples. PKA treatment increased phosphorylation of PKA-targets in HCM myocardium and normalized length-dependent activation to donor values in sarcomere mutation-negative HCM and HCM with truncating MYBPC3 mutations, but not in HCM with missense mutations. Replacement of mutant by wild-type troponin in TNNT2mut and TNNI3mut corrected length-dependent activation to donor values. Conclusions High-myofilament Ca2+-sensitivity is a common characteristic of human HCM and partly reflects hypophosphorylation of PKA-targets compared with donors. Length-dependent sarcomere activation is perturbed by missense mutations, possibly via post-translational modifications other than PKA-hypophosphorylation or altered protein–protein interactions, and represents a

  6. Ventricular tachycardia ablation in arrhythmogenic right ventricular cardiomyopathy patients with TMEM43 gene mutations.

    PubMed

    Abdelwahab, Amir; Gardner, Martin; Parkash, Ratika; Gray, Christopher; Sapp, John

    2017-09-27

    Catheter ablation of VT in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) is often challenging, frequently requiring multiple or epicardial ablation procedures; TMEM43 gene mutations typically cause aggressive disease. We sought to compare VT ablation outcomes for ARVC patients with and without TMEM43 mutations. Patients with prior ablation for ARVC-related VT were reviewed. Demographic, procedural and follow-up data were reviewed retrospectively. Patients with confirmed TMEM43 gene mutations were compared to those with other known mutations or who had no known mutations. Thirteen patients (10 male, mean age 49±14 yrs) underwent 29 ablation procedures (Median 2 procedures/patient, range 1-6) with a median of 4 targeted VTs/patient (range 1 -9). They were followed for a mean duration of 7.3±4.2 years. Gene mutations included TMEM43 (n = 5), PKP2 (n = 2), DSG2 (n = 2), unidentifiable (n = 4). TMEM patients showed more biventricular involvement compared to Non-TMEM patients (80% vs. 12.5%, p = 0.032), more inducible VTs during their ablation procedures (mean VTs/patient: 5.8±3 vs. 2.6±1, p = 0.021). Acute and long-term procedural outcomes did not show a significant difference between the two groups, however TMEM patients had worse composite endpoint of death or transplantation (60% vs. 0, p = 0.035; Log-Rank p = 0.013). TMEM43 mutation patients were more likely to have biventricular arrhythmogenic substrate and more inducible VTs at EP study. Despite comparable acute VT ablation outcomes, long-term prognosis is unfavorable. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Effects of troponin T cardiomyopathy mutations on the calcium sensitivity of the regulated thin filament and the actomyosin cross-bridge kinetics of human β-cardiac myosin.

    PubMed

    Sommese, Ruth F; Nag, Suman; Sutton, Shirley; Miller, Susan M; Spudich, James A; Ruppel, Kathleen M

    2013-01-01

    Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) lead to significant cardiovascular morbidity and mortality worldwide. Mutations in the genes encoding the sarcomere, the force-generating unit in the cardiomyocyte, cause familial forms of both HCM and DCM. This study examines two HCM-causing (I79N, E163K) and two DCM-causing (R141W, R173W) mutations in the troponin T subunit of the troponin complex using human β-cardiac myosin. Unlike earlier reports using various myosin constructs, we found that none of these mutations affect the maximal sliding velocities or maximal Ca(2+)-activated ADP release rates involving the thin filament human β-cardiac myosin complex. Changes in Ca(2+) sensitivity using the human myosin isoform do, however, mimic changes seen previously with non-human myosin isoforms. Transient kinetic measurements show that these mutations alter the kinetics of Ca(2+) induced conformational changes in the regulatory thin filament proteins. These changes in calcium sensitivity are independent of active, cycling human β-cardiac myosin.

  8. Effects of Troponin T Cardiomyopathy Mutations on the Calcium Sensitivity of the Regulated Thin Filament and the Actomyosin Cross-Bridge Kinetics of Human β-Cardiac Myosin

    PubMed Central

    Sutton, Shirley; Miller, Susan M.; Spudich, James A.; Ruppel, Kathleen M.

    2013-01-01

    Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) lead to significant cardiovascular morbidity and mortality worldwide. Mutations in the genes encoding the sarcomere, the force-generating unit in the cardiomyocyte, cause familial forms of both HCM and DCM. This study examines two HCM-causing (I79N, E163K) and two DCM-causing (R141W, R173W) mutations in the troponin T subunit of the troponin complex using human β-cardiac myosin. Unlike earlier reports using various myosin constructs, we found that none of these mutations affect the maximal sliding velocities or maximal Ca2+-activated ADP release rates involving the thin filament human β-cardiac myosin complex. Changes in Ca2+ sensitivity using the human myosin isoform do, however, mimic changes seen previously with non-human myosin isoforms. Transient kinetic measurements show that these mutations alter the kinetics of Ca2+ induced conformational changes in the regulatory thin filament proteins. These changes in calcium sensitivity are independent of active, cycling human β-cardiac myosin. PMID:24367593

  9. Diagnostic disparity and identification of two TNNI3 gene mutations, one novel and one arising de novo, in South African patients with restrictive cardiomyopathy and focal ventricular hypertrophy.

    PubMed

    Mouton, Jomien M; Pellizzon, Adriano S; Goosen, Althea; Kinnear, Craig J; Herbst, Philip G; Brink, Paul A; Moolman-Smook, Johanna C

    2015-01-01

    The minimum criterion for the diagnosis of hypertrophic cardiomyopathy (HCM) is thickening of the left ventricular wall, typically in an asymmetrical or focal fashion, and it requires no functional deficit. Using this criterion, we identified a family with four affected individuals and a single unrelated individual essentially with restrictive cardiomyopathy (RCM). Mutations in genes coding for the thin filaments of cardiac muscle have been described in RCM and HCM with 'restrictive features'. One such gene encodes for cardiac troponin I (TNNI3), a sub-unit of the troponin complex involved in the regulation of striated muscle contraction. We hypothesised that mutations in TNNI3 could underlie this particular phenotype, and we therefore screened TNNI3 for mutations in 115 HCM probands. Clinical investigation involved examination, echocardiography, chest X-ray and an electrocardiogram of both the index cases and close relatives. The study cohort consisted of 113 South African HCM probands, with and without known founder HCM mutations, and 100 ethnically matched control individuals. Mutation screening of TNNI3 for diseasecausing mutations were performed using high-resolution melt (HRM) analysis. HRM analyses identified three previously described HCM-causing mutations (p.Pro82Ser, p.Arg162Gln, p.Arg170Gln) and a novel exonic variant (p.Leu144His). A previous study involving the same amino acid identified a p.Leu144Gln mutation in a patient presenting with RCM, with clinical features of HCM. We observed the novel p.Leu144His mutation in three siblings with clinical RCM and varying degrees of ventricular hypertrophy. The isolated index case with the de novo p.Arg170Gln mutation presented with a similar phenotype. Both mutations were absent in a healthy control group. We have identified a novel disease-causing p.Leu144His mutation and a de novo p.Arg170Gln mutation associated with RCM and focal ventricular hypertrophy, often below the typical diagnostic threshold for HCM

  10. Diagnostic disparity and identification of two TNNI3 gene mutations, one novel and one arising de novo, in South African patients with restrictive cardiomyopathy and focal ventricular hypertrophy

    PubMed Central

    Mouton, Jomien M; Kinnear, Craig J; Moolman-Smook, Johanna C; Herbst, Philip G; Pellizzon, Adriano S; Goosen, Althea; Brink, Paul A

    2015-01-01

    Summary Introduction The minimum criterion for the diagnosis of hypertrophic cardiomyopathy (HCM) is thickening of the left ventricular wall, typically in an asymmetrical or focal fashion, and it requires no functional deficit. Using this criterion, we identified a family with four affected individuals and a single unrelated individual essentially with restrictive cardiomyopathy (RCM). Mutations in genes coding for the thin filaments of cardiac muscle have been described in RCM and HCM with ‘restrictive features’. One such gene encodes for cardiac troponin I (TNNI3), a sub-unit of the troponin complex involved in the regulation of striated muscle contraction. We hypothesised that mutations in TNNI3 could underlie this particular phenotype, and we therefore screened TNNI3 for mutations in 115 HCM probands. Methods Clinical investigation involved examination, echocardiography, chest X-ray and an electrocardiogram of both the index cases and close relatives. The study cohort consisted of 113 South African HCM probands, with and without known founder HCM mutations, and 100 ethnically matched control individuals. Mutation screening of TNNI3 for disease-causing mutations were performed using high-resolution melt (HRM) analysis. Results HRM analyses identified three previously described HCM-causing mutations (p.Pro82Ser, p.Arg162Gln, p.Arg170Gln) and a novel exonic variant (p.Leu144His). A previous study involving the same amino acid identified a p.Leu144Gln mutation in a patient presenting with RCM, with clinical features of HCM. We observed the novel p.Leu144His mutation in three siblings with clinical RCM and varying degrees of ventricular hypertrophy. The isolated index case with the de novo p.Arg170Gln mutation presented with a similar phenotype. Both mutations were absent in a healthy control group. Conclusion We have identified a novel disease-causing p.Leu144His mutation and a de novo p.Arg170Gln mutation associated with RCM and focal ventricular hypertrophy

  11. How mutation affects evolutionary games on graphs.

    PubMed

    Allen, Benjamin; Traulsen, Arne; Tarnita, Corina E; Nowak, Martin A

    2012-04-21

    Evolutionary dynamics are affected by population structure, mutation rates and update rules. Spatial or network structure facilitates the clustering of strategies, which represents a mechanism for the evolution of cooperation. Mutation dilutes this effect. Here we analyze how mutation influences evolutionary clustering on graphs. We introduce new mathematical methods to evolutionary game theory, specifically the analysis of coalescing random walks via generating functions. These techniques allow us to derive exact identity-by-descent (IBD) probabilities, which characterize spatial assortment on lattices and Cayley trees. From these IBD probabilities we obtain exact conditions for the evolution of cooperation and other game strategies, showing the dual effects of graph topology and mutation rate. High mutation rates diminish the clustering of cooperators, hindering their evolutionary success. Our model can represent either genetic evolution with mutation, or social imitation processes with random strategy exploration.

  12. A Cardiomyopathy Mutation in the Myosin Essential Light Chain Alters Actomyosin Structure.

    PubMed

    Guhathakurta, Piyali; Prochniewicz, Ewa; Roopnarine, Osha; Rohde, John A; Thomas, David D

    2017-07-11

    We have used site-directed time-resolved fluorescence resonance energy transfer to determine the effect of a pathological mutation in the human ventricular essential light chain (hVELC) of myosin, on the structural dynamics of the actin-myosin complex. The hVELC modulates the function of actomyosin, through the interaction of its N-terminal extension with actin and its C-terminal lobe with the myosin heavy chain. Several mutations in hVELC are associated with hypertrophic cardiomyopathy (HCM). Some biochemical effects of these mutations are known, but further insight is needed about their effects on the structural dynamics of functioning actomyosin. Therefore, we introduced the HCM mutation E56G into a single-cysteine (C16) hVELC construct and substituted it for the VELC of bovine cardiac myosin subfragment 1. Using a donor fluorescent probe on actin (at C374) and an acceptor probe on C16 of hVELC, we performed time-resolved fluorescence resonance energy transfer, directly detecting structural changes within the bound actomyosin complex during function. The E56G mutation has no significant effect on actin-activated ATPase activity or actomyosin affinity in the presence of ATP, or on the structure of the strong-binding S complex in the absence of ATP. However, in the presence of saturating ATP, where both W (prepowerstroke) and S (postpowerstroke) structural states are observed, the mutant increases the mole fraction of the S complex (increasing the duty ratio), while shifting the structure of the remaining W complex toward that of S, indicating a structural redistribution toward the strongly bound (force-generating) complex. We propose that this effect is responsible for the hypercontractile phenotype induced by this HCM mutation in myosin. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Sporadic myopathy, myoclonus, leukoencephalopathy, neurosensory deafness, hypertrophic cardiomyopathy and insulin resistance associated with the mitochondrial 8306 T>C MTTK mutation.

    PubMed

    Cardaioli, Elena; Malfatti, Edoardo; Battisti, Carla; Da Pozzo, Paola; Rubegni, Anna; Gallus, Gian Nicola; Malandrini, Alessandro; Federico, Antonio

    2012-10-15

    We report a new T8306C transition in the D-stem of the MTTK gene of a 67-year-old man who manifested severe adult onset myopathy, myoclonus, leukoencephalopathy, neurosensory hypoacusis, hypertrophic cardiomyopathy and insulin resistance. No other family member was affected, suggesting that our patient was a sporadic case. The T8306C mutation was heteroplasmic in several tissues of the proband, while it was absent from his asymptomatic siblings. Single fibre analysis confirmed the segregation of higher mutational load in cytochrome c oxidase-deficient fibres. The mutation T8306C is predicted to disrupt a highly conserved base pair and was not found in more than 120 controls. This finding broadens the phenotypic and molecular spectrum of mitochondrial tRNA(Lys) associated disorders.

  14. Atrial natriuretic peptide affects cardiac remodeling, function, heart failure, and survival in a mouse model of dilated cardiomyopathy.

    PubMed

    Wang, Dong; Gladysheva, Inna P; Fan, Tai-Hwang M; Sullivan, Ryan; Houng, Aiilyan K; Reed, Guy L

    2014-03-01

    Dilated cardiomyopathy is a frequent cause of heart failure and death. Atrial natriuretic peptide (ANP) is a biomarker of dilated cardiomyopathy, but there is controversy whether ANP modulates the development of heart failure. Therefore, we examined whether ANP affects heart failure, cardiac remodeling, function, and survival in a well-characterized, transgenic model of dilated cardiomyopathy. Mice with dilated cardiomyopathy with normal ANP levels survived longer than mice with partial ANP (P<0.01) or full ANP deficiency (P<0.001). In dilated cardiomyopathy mice, ANP protected against the development of heart failure as indicated by reduced lung water, alveolar congestion, pleural effusions, etc. ANP improved systolic function and reduced cardiomegaly. Pathological cardiac remodeling was diminished in mice with normal ANP as indicated by decreased ventricular interstitial and perivascular fibrosis. Mice with dilated cardiomyopathy and normal ANP levels had better systolic function (P<0.001) than mice with dilated cardiomyopathy and ANP deficiency. Dilated cardiomyopathy was associated with diminished cardiac transcripts for NP receptors A and B in mice with normal ANP and ANP deficiency, but transcripts for NP receptor C and C-type natriuretic peptide were selectively altered in mice with dilated cardiomyopathy and ANP deficiency. Taken together, these data indicate that ANP has potent effects in experimental dilated cardiomyopathy that reduce the development of heart failure, prevent pathological remodeling, preserve systolic function, and reduce mortality. Despite the apparent overlap in physiological function between the NPs, these data suggest that the role of ANP in dilated cardiomyopathy and heart failure is not compensated physiologically by other NPs.

  15. Fine mapping of the 1p36 deletion syndrome identifies mutation of PRDM16 as a cause of cardiomyopathy.

    PubMed

    Arndt, Anne-Karin; Schafer, Sebastian; Drenckhahn, Jorg-Detlef; Sabeh, M Khaled; Plovie, Eva R; Caliebe, Almuth; Klopocki, Eva; Musso, Gabriel; Werdich, Andreas A; Kalwa, Hermann; Heinig, Matthias; Padera, Robert F; Wassilew, Katharina; Bluhm, Julia; Harnack, Christine; Martitz, Janine; Barton, Paul J; Greutmann, Matthias; Berger, Felix; Hubner, Norbert; Siebert, Reiner; Kramer, Hans-Heiner; Cook, Stuart A; MacRae, Calum A; Klaassen, Sabine

    2013-07-11

    Deletion 1p36 syndrome is recognized as the most common terminal deletion syndrome. Here, we describe the loss of a gene within the deletion that is responsible for the cardiomyopathy associated with monosomy 1p36, and we confirm its role in nonsyndromic left ventricular noncompaction cardiomyopathy (LVNC) and dilated cardiomyopathy (DCM). With our own data and publically available data from array comparative genomic hybridization (aCGH), we identified a minimal deletion for the cardiomyopathy associated with 1p36del syndrome that included only the terminal 14 exons of the transcription factor PRDM16 (PR domain containing 16), a gene that had previously been shown to direct brown fat determination and differentiation. Resequencing of PRDM16 in a cohort of 75 nonsyndromic individuals with LVNC detected three mutations, including one truncation mutant, one frameshift null mutation, and a single missense mutant. In addition, in a series of cardiac biopsies from 131 individuals with DCM, we found 5 individuals with 4 previously unreported nonsynonymous variants in the coding region of PRDM16. None of the PRDM16 mutations identified were observed in more than 6,400 controls. PRDM16 has not previously been associated with cardiac disease but is localized in the nuclei of cardiomyocytes throughout murine and human development and in the adult heart. Modeling of PRDM16 haploinsufficiency and a human truncation mutant in zebrafish resulted in both contractile dysfunction and partial uncoupling of cardiomyocytes and also revealed evidence of impaired cardiomyocyte proliferative capacity. In conclusion, mutation of PRDM16 causes the cardiomyopathy in 1p36 deletion syndrome as well as a proportion of nonsyndromic LVNC and DCM.

  16. Nexilin mutations destabilize cardiac Z-disks and lead to dilated cardiomyopathy.

    PubMed

    Hassel, David; Dahme, Tillman; Erdmann, Jeanette; Meder, Benjamin; Huge, Andreas; Stoll, Monika; Just, Steffen; Hess, Alexander; Ehlermann, Philipp; Weichenhan, Dieter; Grimmler, Matthias; Liptau, Henrike; Hetzer, Roland; Regitz-Zagrosek, Vera; Fischer, Christine; Nürnberg, Peter; Schunkert, Heribert; Katus, Hugo A; Rottbauer, Wolfgang

    2009-11-01

    Z-disks, the mechanical integration sites of heart and skeletal muscle cells, link anchorage of myofilaments to force reception and processing. The key molecules that enable the Z-disk to persistently withstand the extreme mechanical forces during muscle contraction have not yet been identified. Here we isolated nexilin (encoded by NEXN) as a novel Z-disk protein. Loss of nexilin in zebrafish led to perturbed Z-disk stability and heart failure. To evaluate the role of nexilin in human heart failure, we performed a genetic association study on individuals with dilated cardiomyopathy and found several mutations in NEXN associated with the disease. Nexilin mutation carriers showed the same cardiac Z-disk pathology as observed in nexilin-deficient zebrafish. Expression in zebrafish of nexilin proteins encoded by NEXN mutant alleles induced Z-disk damage and heart failure, demonstrating a dominant-negative effect and confirming the disease-causing nature of these mutations. Increasing mechanical strain aggravated Z-disk damage in nexilin-deficient skeletal muscle, implying a unique role of nexilin in protecting Z-disks from mechanical trauma.

  17. Genetic counseling and cardiac care in predictively tested hypertrophic cardiomyopathy mutation carriers: the patients' perspective.

    PubMed

    Christiaans, Imke; van Langen, Irene M; Birnie, Erwin; Bonsel, Gouke J; Wilde, Arthur A M; Smets, Ellen M A

    2009-07-01

    Hypertrophic cardiomyopathy (HCM) is a common hereditary heart disease associated with sudden cardiac death. Predictive genetic counseling and testing are performed using adapted Huntington guidelines, that is, psychosocial care and time for reflection are not obligatory and the test result can be disclosed by telephone or mail. Proven mutation carriers detected by predictive DNA testing are advised to undergo regular cardiac follow-up according to international guidelines. We evaluated the opinion of 143 predictively tested HCM mutation carriers on received cardiogenetic care using questionnaires (response rate 86%). Predictive genetic counseling and DNA testing were evaluated on four domains: information provision, satisfaction with counseling, social pressure in DNA testing and regret of DNA testing. Opinions on cardiac follow-up were assessed pertaining to communication, nervous anticipation, reassurance, and general disadvantages. Genetic counseling was valued positively and only four carriers would rather not have known that they were a mutation carrier. A majority received their DNA test result by mail or telephone, and almost all were satisfied. Only 76% of carriers received regular cardiac follow-up. Those who did, had a positive attitude regarding the cardiac visits. General disadvantages of the visits were valued as low, especially by older carriers, men and carriers with manifest HCM. We conclude that our adapted Huntington guidelines are well accepted and that cardiogenetic care is generally appreciated by predictively tested HCM mutation carriers. To better understand the cause of the substantial portion of mutation carriers not receiving regular cardiac follow-up, although recommended in international guidelines, further research is needed.

  18. SUBCLINICAL ECHOCARDIOGRAPHIC ABNORMALITIES IN PHENOTYPE-NEGATIVE CARRIERS OF MYBPC3 GENE MUTATION FOR HYERTROPHIC CARDIOMYOPATHY

    PubMed Central

    De, Sabe; Borowski, Allen G.; Wang, Heng; Nye, Leah; Xin, Baozhong; Thomas, James D.; Tang, W.H. Wilson

    2011-01-01

    Background Early diastolic myocardial tissue Doppler (TD) velocities have reported to be reduced in mutation-positive patients with HCM in some studies even in the absence of left ventricular hypertrophy (LVH). Strain is a sensitive tool in detecting early systolic abnormalities in patients with hypertrophic cardiomyopathy (HCM). Our goal is to examine novel echocardiographic characteristics of phenotype-negative carriers for a known sarcomeric gene mutation for HCM. Methods We evaluated 41 consecutive subjects with a known myosin binding protein C3 (MYBPC3) mutation (c.3330+2T>G). Subjects who were mutation-positive without LVH (G+/LVH−, n=35) were compared to healthy controls (n=30) regarding tissue Doppler and segmental longitudinal strain measures. Results The G+/LVH− group was similar to the normal controls with respect to chamber size, LV mass index, and most diastolic filling parameters, including tissue Doppler derived Ea. Global longitudinal strain was similar for both groups (20.3 ± 2.1 vs. 19.8 ± 1.8; p=0.36) although regional segment analysis showed a notable reduction in the basal septum (16.8 ± 3.1 vs. 19.0 ± 4.0%, p=0.02) and increase in the basal posterior (22.5 ± 5.2 vs. 17.9 ± 5.2, p=0.001) as well as mid posterior (21.8 ± 4.7 vs. 18.2 ± 3.0, p=0.001) walls. Conclusions In our cohort of phenotype-negative carriers of a specific MYBPC3 mutation, there were minimal differences in conventional 2-dimensional, Doppler, and speckle-tracking derived parameters of systolic and diastolic function compared to that of normal subjects. The presence of regional alterations in strain indicative of the presence of underlying subclinical disease requires further validation. PMID:21835286

  19. Clinical features, spectrum of causal genetic mutations and outcome of hypertrophic cardiomyopathy in South Africans

    PubMed Central

    Ntusi, Ntobeko AB; Shaboodien, Gasnat; Badri, Motasim; Mayosi, Bongani M; Badri, Motasim; Gumedze, Freedom

    2016-01-01

    Summary Background Little is known about the clinical characteristics, spectrum of causal genetic mutations and outcome of hypertrophic cardiomyopathy (HCM) in Africans. The objective of this study was to delineate the clinical and genetic features and outcome of HCM in African patients. Methods Information on clinical presentation, electrocardiographic and echocardiographic findings, and outcome of cases with HCM was collected from the Cardiac Clinic at Groote Schuur Hospital over a mean duration of follow up of 9.1 ± 3.4 years. Genomic DNA was screened for mutations in 15 genes that cause HCM, i.e. cardiac myosinbinding protein C (MYBPC3), cardiac β-myosin heavy chain (MYH7), cardiac troponin T2 (TNNT2), cardiac troponin I (TNNI3), regulatory light chain of myosin (MYL2), essential light chain of myosin (MYL3), tropomyosin 1 (TPM1), phospholamban (PLN), α-actin (ACTC1), cysteine and glycine-rich protein 3 (CSRP3), AMP-activated protein kinase (PRKAG2), α-galactosidase (GLA), four-and-a-half LIM domains 1 (FHL1), lamin A/C (LMNA) and lysosomeassociated membrane protein 2 (LAMP2). Survival and its predictors were analysed using the Kaplan–Meier and Cox proportional hazards regression methods, respectively. Results Forty-three consecutive patients [mean age 38.5 ± 14.3 years; 25 (58.1%) male; and 13 (30.2%) black African] were prospectively enrolled in the study from January 1996 to December 2012. Clinical presentation was similar to that reported in other studies. The South African founder mutations that cause HCM were not found in the 42 probands. Ten of 35 index cases (28.6%) tested for mutations in 15 genes had disease-causing mutations in MYH7 (six cases or 60%) and MYBPC3 (four cases or 40%). No disease-causing mutation was found in the other 13 genes screened. The annual mortality rate was 2.9% per annum and overall survival was 74% at 10 years, which was similar to the general South African population. Cox’s proportional hazards regression showed

  20. Cardiomyopathy mutations reveal variable region of myosin converter as major element of cross-bridge compliance.

    PubMed

    Seebohm, B; Matinmehr, F; Köhler, J; Francino, A; Navarro-Lopéz, F; Perrot, A; Ozcelik, C; McKenna, W J; Brenner, B; Kraft, T

    2009-08-05

    The ability of myosin to generate motile forces is based on elastic distortion of a structural element of the actomyosin complex (cross-bridge) that allows strain to develop before filament sliding. Addressing the question, which part of the actomyosin complex experiences main elastic distortion, we suggested previously that the converter domain might be the most compliant region of the myosin head domain. Here we test this proposal by studying functional effects of naturally occurring missense mutations in the beta-myosin heavy chain, 723Arg --> Gly (R723G) and 736Ile --> Thr (I736T), in comparison to 719Arg --> Trp (R719W). All three mutations are associated with hypertrophic cardiomyopathy and are located in the converter region of the myosin head domain. We determined several mechanical parameters of single skinned slow fibers isolated from Musculus soleus biopsies of hypertrophic cardiomyopathy patients and healthy controls. Major findings of this study for mutation R723G were i), a >40% increase in fiber stiffness in rigor with a 2.9-fold increase in stiffness per myosin head (S( *)(rigor R723G) = 0.84 pN/nm S( *)(rigor WT) = 0.29 pN/nm); and ii), a significant increase in force per head (F( *)(10 degrees C), 1.99 pN vs. 1.49 pN = 1.3-fold increase; F( *)(20 degrees C), 2.56 pN vs. 1.92 pN = 1.3-fold increase) as well as stiffness per head during isometric steady-state contraction (S( *)(active10 degrees C), 0.52 pN/nm vs. 0.28 pN/nm = 1.9-fold increase). Similar changes were found for mutation R719W (2.6-fold increase in S( *)(rigor); 1.8-fold increase in F( *)(10 degrees C), 1.6-fold in F( *)(20 degrees C); twofold increase in S( *)(active10 degrees C)). Changes in active cross-bridge cycling kinetics could not account for the increase in force and active stiffness. For the above estimates the previously determined fraction of mutated myosin in the biopsies was taken into account. Data for wild-type myosin of slow soleus muscle fibers support previous

  1. Cell-Intrinsic Functional Effects of the α-Cardiac Myosin Arg-403-Gln Mutation in Familial Hypertrophic Cardiomyopathy

    PubMed Central

    Chuan, Peiying; Sivaramakrishnan, Sivaraj; Ashley, Euan A.; Spudich, James A.

    2012-01-01

    Human familial hypertrophic cardiomyopathy is the most common Mendelian cardiovascular disease worldwide. Among the most severe presentations of the disease are those in families heterozygous for the mutation R403Q in β-cardiac myosin. Mice heterozygous for this mutation in the α-cardiac myosin isoform display typical familial hypertrophic cardiomyopathy pathology. Here, we study cardiomyocytes from heterozygous 403/+ mice. The effects of the R403Q mutation on force-generating capabilities and dynamics of cardiomyocytes were investigated using a dual carbon nanofiber technique to measure single-cell parameters. We demonstrate the Frank-Starling effect at the single cardiomyocyte level by showing that cell stretch causes an increase in amplitude of contraction. Mutant 403/+ cardiomyocytes exhibit higher end-diastolic and end-systolic stiffness than +/+ cardiomyocytes, whereas active force generation capabilities remain unchanged. Additionally, 403/+ cardiomyocytes show slowed relaxation dynamics. These phenotypes are consistent with increased end-diastolic and end-systolic chamber elastance, as well as diastolic dysfunction seen at the level of the whole heart. Our results show that these functional effects of the R403Q mutation are cell-intrinsic, a property that may be a general phenomenon in familial hypertrophic cardiomyopathy. PMID:22735528

  2. Mitochondrial Cardiomyopathies.

    PubMed

    El-Hattab, Ayman W; Scaglia, Fernando

    2016-01-01

    Mitochondria are found in all nucleated human cells and perform various essential functions, including the generation of cellular energy. Mitochondria are under dual genome control. Only a small fraction of their proteins are encoded by mitochondrial DNA (mtDNA), whereas more than 99% of them are encoded by nuclear DNA (nDNA). Mutations in mtDNA or mitochondria-related nDNA genes result in mitochondrial dysfunction leading to insufficient energy production required to meet the needs for various organs, particularly those with high energy requirements, including the central nervous system, skeletal and cardiac muscles, kidneys, liver, and endocrine system. Because cardiac muscles are one of the high energy demanding tissues, cardiac involvement occurs in mitochondrial diseases with cardiomyopathies being one of the most frequent cardiac manifestations found in these disorders. Cardiomyopathy is estimated to occur in 20-40% of children with mitochondrial diseases. Mitochondrial cardiomyopathies can vary in severity from asymptomatic status to severe manifestations including heart failure, arrhythmias, and sudden cardiac death. Hypertrophic cardiomyopathy is the most common type; however, mitochondrial cardiomyopathies might also present as dilated, restrictive, left ventricular non-compaction, and histiocytoid cardiomyopathies. Cardiomyopathies are frequent manifestations of mitochondrial diseases associated with defects in electron transport chain complexes subunits and their assembly factors, mitochondrial transfer RNAs, ribosomal RNAs, ribosomal proteins, translation factors, mtDNA maintenance, and coenzyme Q10 synthesis. Other mitochondrial diseases with cardiomyopathies include Barth syndrome, Sengers syndrome, TMEM70-related mitochondrial complex V deficiency, and Friedreich ataxia.

  3. INHERITED CARDIOMYOPATHIES

    PubMed Central

    Towbin, Jeffrey A.

    2015-01-01

    Cardiomyopathies, diseases of the heart muscle, are major causes of morbidity and mortality. A significant percentage of patients with cardiomyopathies have genetic-based, inheritable disease and, over the past two decades the genetic causes of these disorders have been increasingly discovered. The genes causing these disorders when they are mutated appear to encode proteins that frame a “final common pathway” for that specific disorder but the specifics of the phenotype, including age of onset, severity, and outcome is variable for reasons not yet understood. The “final common pathways” for the classified forms of cardiomyopathy include the sarcomere in the primarily diastolic dysfunction disorders hypertrophic cardiomyopathy (HCM) and restrictive cardiomyopathy (RCM), the linkage of the sarcomere and sarcolemma in the systolic dysfunction disorder dilated cardiomyopathy (DCM), and the desmosome in arrhythmogenic cardiomyopathy (AVC). Left ventricular noncompaction cardiomyopathy (LVNC) is an overlap disorder and appears that any of these “final common pathways” can be involved depending on the specific form of LVNC. The genetics and mechanisms responsible for these clinical phenotypes will be described. PMID:25186923

  4. Mitochondrial Cardiomyopathies

    PubMed Central

    El-Hattab, Ayman W.; Scaglia, Fernando

    2016-01-01

    Mitochondria are found in all nucleated human cells and perform various essential functions, including the generation of cellular energy. Mitochondria are under dual genome control. Only a small fraction of their proteins are encoded by mitochondrial DNA (mtDNA), whereas more than 99% of them are encoded by nuclear DNA (nDNA). Mutations in mtDNA or mitochondria-related nDNA genes result in mitochondrial dysfunction leading to insufficient energy production required to meet the needs for various organs, particularly those with high energy requirements, including the central nervous system, skeletal and cardiac muscles, kidneys, liver, and endocrine system. Because cardiac muscles are one of the high energy demanding tissues, cardiac involvement occurs in mitochondrial diseases with cardiomyopathies being one of the most frequent cardiac manifestations found in these disorders. Cardiomyopathy is estimated to occur in 20–40% of children with mitochondrial diseases. Mitochondrial cardiomyopathies can vary in severity from asymptomatic status to severe manifestations including heart failure, arrhythmias, and sudden cardiac death. Hypertrophic cardiomyopathy is the most common type; however, mitochondrial cardiomyopathies might also present as dilated, restrictive, left ventricular non-compaction, and histiocytoid cardiomyopathies. Cardiomyopathies are frequent manifestations of mitochondrial diseases associated with defects in electron transport chain complexes subunits and their assembly factors, mitochondrial transfer RNAs, ribosomal RNAs, ribosomal proteins, translation factors, mtDNA maintenance, and coenzyme Q10 synthesis. Other mitochondrial diseases with cardiomyopathies include Barth syndrome, Sengers syndrome, TMEM70-related mitochondrial complex V deficiency, and Friedreich ataxia. PMID:27504452

  5. The mitochondrial ND1 m.3337G>A mutation associated to multiple mitochondrial DNA deletions in a patient with Wolfram syndrome and cardiomyopathy

    SciTech Connect

    Mezghani, Najla; Mnif, Mouna; Mkaouar-Rebai, Emna; Kallel, Nozha; Salem, Ikhlass Haj; Charfi, Nadia; Abid, Mohamed; Fakhfakh, Faiza

    2011-07-29

    Highlights: {yields} We reported a patient with Wolfram syndrome and dilated cardiomyopathy. {yields} We detected the ND1 mitochondrial m.3337G>A mutation in 3 tested tissues (blood leukocytes, buccal mucosa and skeletal muscle). {yields} Long-range PCR amplification revealed the presence of multiple mitochondrial deletions in the skeletal muscle. {yields} The deletions remove several tRNA and protein-coding genes. -- Abstract: Wolfram syndrome (WFS) is a rare hereditary disorder also known as DIDMOAD (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness). It is a heterogeneous disease and full characterization of all clinical and biological features of this disorder is difficult. The wide spectrum of clinical expression, affecting several organs and tissues, and the similarity in phenotype between patients with Wolfram syndrome and those with certain types of respiratory chain diseases suggests mitochondrial DNA (mtDNA) involvement in Wolfram syndrome patients. We report a Tunisian patient with clinical features of moderate Wolfram syndrome including diabetes, dilated cardiomyopathy and neurological complications. The results showed the presence of the mitochondrial ND1 m.3337G>A mutation in almost homoplasmic form in 3 tested tissues of the proband (blood leukocytes, buccal mucosa and skeletal muscle). In addition, the long-range PCR amplifications revealed the presence of multiple deletions of the mitochondrial DNA extracted from the patient's skeletal muscle removing several tRNA and protein-coding genes. Our study reported a Tunisian patient with clinical features of moderate Wolfram syndrome associated with cardiomyopathy, in whom we detected the ND1 m.3337G>A mutation with mitochondrial multiple deletions.

  6. Diltiazem Treatment for Preclinical Hypertrophic Cardiomyopathy Mutation Carriers: A Pilot Randomized Trial to Modify Disease Expression

    PubMed Central

    Ho, Carolyn Y.; Lakdawala, Neal K.; Cirino, Allison L.; Lipshultz, Steven E.; Sparks, Elizabeth; Abbasi, Siddique A.; Kwong, Raymond Y.; Antman, Elliott M.; Semsarian, Christopher; González, Arantxa; López, Begoña; Diez, Javier; Orav, E. John; Colan, Steven D.; Seidman, Christine E.

    2014-01-01

    Background Hypertrophic cardiomyopathy (HCM) is caused by sarcomere mutations and characterized by left ventricular hypertrophy (LVH) with increased risk of heart failure and sudden death. HCM typically cannot be diagnosed early in life, although subtle phenotypes are present. Animal studies indicate alterations in intracellular calcium handling before LVH develops. Furthermore, early treatment with diltiazem appeared to attenuate disease emergence. Objectives To assess the safety, feasibility, and effect of diltiazem as disease-modifying therapy for at-risk HCM mutation carriers. Methods In a pilot, double-blind trial, we randomly assigned 38 sarcomere mutation carriers without LVH (mean age 15.8 years) to therapy with diltiazem 360 mg/day (or 5 mg/kg/day) or placebo. Treatment duration ranged from 12 to 42 months (median 25 months). Study procedures included electrocardiography, echocardiography, cardiac magnetic resonance imaging, and serum biomarker measurement. Results Diltiazem was not associated with serious adverse events. Heart rate and blood pressure did not differ significantly between groups. However, mean left ventricular end diastolic diameter improved towards normal in the diltiazem group but decreased further in controls (change in z-scores, +0.6 vs. −0.5; P<0.001). Mean LV thickness-to-dimension ratio was stable in the diltiazem group, but increased in controls (−0.02 vs. +0.15; P=0.04). Among MYBPC3 mutation carriers, LV wall thickness and mass, diastolic filling, and cardiac troponin I levels improved in those taking diltiazem compared with controls. Four participants developed overt HCM, two in each treatment group. Conclusions Preclinical administration of diltiazem is safe and may improve early LV remodeling in HCM. This novel strategy merits further exploration. PMID:25543971

  7. Obtaining insurance after DNA diagnostics: a survey among hypertrophic cardiomyopathy mutation carriers.

    PubMed

    Christiaans, Imke; Kok, Tjitske M; van Langen, Irene M; Birnie, Erwin; Bonsel, Gouke J; Wilde, Arthur A M; Smets, Ellen M A

    2010-02-01

    Hypertrophic cardiomyopathy (HCM) is a common hereditary heart disease associated with increased mortality. Disclosure of DNA test results may have social implications such as low access to insurance. In The Netherlands, insurance companies are restricted in the use of genetic information of their clients by the Medical Examination Act. A cross-sectional survey was used to assess the frequency and type of problems encountered by HCM mutation carriers applying for insurance, and associations with carriers' characteristics. The response rate was 86% (228/264). A total of 66 carriers (29%) applied for insurance of whom 39 reported problems (59%) during an average follow-up of 3 years since the DNA test result. More problems were encountered by carriers with manifest disease (P<0.001) and carriers with symptoms of HCM (P=0.049). Carriers identified after predictive DNA testing less frequently experienced problems (P=0.002). Three carriers without manifest HCM reported problems (5% of applicants). Frequently reported problems were higher premium (72%), grant access to medical records (62%), and complete rejection (33%). In conclusion, HCM mutation carriers frequently encounter problems when applying for insurances, often in the case of manifest disease, but the risk assessment of insurance companies is largely justified. Still, 5% of carriers encounter potentially unjustified problems, indicating the necessity to monitor the application of the existing laws and regulations by insurance companies and to educate counselees on the implications of these laws and regulations.

  8. Mutation of Fnip1 is associated with B-cell deficiency, cardiomyopathy, and elevated AMPK activity

    PubMed Central

    Siggs, Owen M.; Stockenhuber, Alexander; Deobagkar-Lele, Mukta; Bull, Katherine R.; Crockford, Tanya L.; Kingston, Bethany L.; Crawford, Greg; Anzilotti, Consuelo; Steeples, Violetta; Ghaffari, Sahar; Czibik, Gabor; Bellahcene, Mohamed; Watkins, Hugh; Ashrafian, Houman; Davies, Benjamin; Woods, Angela; Carling, David; Yavari, Arash; Beutler, Bruce; Cornall, Richard J.

    2016-01-01

    Folliculin (FLCN) is a tumor-suppressor protein mutated in the Birt–Hogg–Dubé (BHD) syndrome, which associates with two paralogous proteins, folliculin-interacting protein (FNIP)1 and FNIP2, forming a complex that interacts with the AMP-activated protein kinase (AMPK). Although it is clear that this complex influences AMPK and other metabolic regulators, reports of its effects have been inconsistent. To address this issue, we created a recessive loss-of-function variant of Fnip1. Homozygous FNIP1 deficiency resulted in profound B-cell deficiency, partially restored by overexpression of the antiapoptotic protein BCL2, whereas heterozygous deficiency caused a loss of marginal zone B cells. FNIP1-deficient mice developed cardiomyopathy characterized by left ventricular hypertrophy and glycogen accumulation, with close parallels to mice and humans bearing gain-of-function mutations in the γ2 subunit of AMPK. Concordantly, γ2-specific AMPK activity was elevated in neonatal FNIP1-deficient myocardium, whereas AMPK-dependent unc-51–like autophagy activating kinase 1 (ULK1) phosphorylation and autophagy were increased in FNIP1-deficient B-cell progenitors. These data support a role for FNIP1 as a negative regulator of AMPK. PMID:27303042

  9. Abnormal termination of Ca2+ release is a common defect of RyR2 mutations associated with cardiomyopathies.

    PubMed

    Tang, Yijun; Tian, Xixi; Wang, Ruiwu; Fill, Michael; Chen, S R Wayne

    2012-03-30

    Naturally occurring mutations in the cardiac ryanodine receptor (RyR2) have been associated with both cardiac arrhythmias and cardiomyopathies. It is clear that delayed afterdepolarization resulting from abnormal activation of sarcoplasmic reticulum Ca2+ release is the primary cause of RyR2-associated cardiac arrhythmias. However, the mechanism underlying RyR2-associated cardiomyopathies is completely unknown. In the present study, we investigate the role of the NH2-terminal region of RyR2 in and the impact of a number of cardiomyopathy-associated RyR2 mutations on the termination of Ca2+ release. The 35-residue exon-3 region of RyR2 is associated with dilated cardiomyopathy. Single-cell luminal Ca2+ imaging revealed that the deletion of the first 305 NH2-terminal residues encompassing exon-3 or the deletion of exon-3 itself markedly reduced the luminal Ca2+ threshold at which Ca2+ release terminates and increased the fractional Ca2+ release. Single-cell cytosolic Ca2+ imaging also showed that both RyR2 deletions enhanced the amplitude of store overload-induced Ca2+ transients in HEK293 cells or HL-1 cardiac cells. Furthermore, the RyR2 NH2-terminal mutations, A77V, R176Q/T2504M, R420W, and L433P, which are associated with arrhythmogenic right ventricular displasia type 2, also reduced the threshold for Ca2+ release termination and increased fractional release. The RyR2 A1107M mutation associated with hypertrophic cardiomyopathy had the opposite action (i.e., increased the threshold for Ca2+ release termination and reduced fractional release). These results provide the first evidence that the NH2-terminal region of RyR2 is an important determinant of Ca2+ release termination, and that abnormal fractional Ca2+ release attributable to aberrant termination of Ca2+ release is a common defect in RyR2-associated cardiomyopathies.

  10. Identification of novel mutations including a double mutation in patients with inherited cardiomyopathy by a targeted sequencing approach using the Ion Torrent PGM system.

    PubMed

    Zhao, Yue; Cao, Hong; Song, Yindi; Feng, Yue; Ding, Xiaoxue; Pang, Mingjie; Zhang, Yunmei; Zhang, Hong; Ding, Jiahuan; Xia, Xueshan

    2016-06-01

    Inherited cardiomyopathy is the major cause of sudden cardiac death (SCD) and heart failure (HF). The disease is associated with extensive genetic heterogeneity; pathogenic mutations in cardiac sarcomere protein genes, cytoskeletal protein genes and nuclear envelope protein genes have been linked to its etiology. Early diagnosis is conducive to clinical monitoring and allows for presymptomatic interventions as needed. In the present study, the entire coding sequences and flanking regions of 12 major disease (cardiomyopathy)-related genes [namely myosin, heavy chain 7, cardiac muscle, β (MYH7); myosin binding protein C, cardiac (MYBPC3); lamin A/C (LMNA); troponin I type 3 (cardiac) (TNNI3); troponin T type 2 (cardiac) (TNNT2); actin, α, cardiac muscle 1 (ACTC1); tropomyosin 1 (α) (TPM1); sodium channel, voltage gated, type V alpha subunit (SCN5A); myosin, light chain 2, regulatory, cardiac, slow (MYL2); myosin, heavy chain 6, cardiac muscle, α (MYH6); myosin, light chain 3, alkali, ventricular, skeletal, slow (MYL3); and protein kinase, AMP-activated, gamma 2 non-catalytic subunit  (PRKAG2)] in 8 patients with dilated cardiomyopathy (DCM) and in 8 patients with hypertrophic cardiomyopathy (HCM) were amplified and then sequenced using the Ion Torrent Personal Genome Machine (PGM) system. As a result, a novel heterozygous mutation (MYH7, p.Asn885Thr) and a variant of uncertain significance (TNNT2, p.Arg296His) were identified in 2 patients with HCM. These 2 missense mutations, which were absent in the samples obtained from the 200 healthy control subjects, altered the amino acid that was evolutionarily conserved among a number of vertebrate species; this illustrates that these 2 non-synonymous mutations play a role in the pathogenesis of HCM. Moreover, a double heterozygous mutation (PRKAG2, p.Gly100Ser plus MYH7, p.Arg719Trp) was identified in a patient with severe familial HCM, for the first time to the best of our

  11. Resistance to Thyroid Hormone Complicated with Type 2 Diabetes and Cardiomyopathy in a Patient with a TRβ Mutation

    PubMed Central

    Wakasaki, Hisao; Matsumoto, Miyuki; Tamaki, Shinya; Miyata, Kaori; Yamamoto, Shohei; Minaga, Takamasa; Hayashi, Yoshitaka; Komukai, Kenichi; Imanishi, Toshio; Yamaoka, Hiroyuki; Matsuno, Shohei; Nishi, Masahiro; Akamizu, Takashi

    2016-01-01

    Resistance to thyroid hormone (RTH) is a genetic disorder characterized by reduced tissue responsiveness to thyroid hormone. We herein describe a 60-year old man who presented with the clinical features of cardiomyopathy, diabetes mellitus and elevated thyroid hormones with unsuppressed thyroid stimulating hormone. A genetic analysis of thyroid hormone receptor (TR) revealed a missense mutation (A268D) in the TRβ gene. Clinical manifestations of RTH may be variable due to different tissue distributions of TR subtypes and different actions of mutant receptors. The current case demonstrates that patients with a TRβ mutation may have impaired his glucose metabolism and a reduced cardiac function, although patients appear clinically euthyroid. PMID:27853072

  12. Early onset of cardiomyopathy and intellectual disability in a girl with Danon disease associated with a de novo novel mutation of the LAMP2 gene.

    PubMed

    Sugie, Kazuma; Yoshizawa, Hiroyuki; Onoue, Kenji; Nakanishi, Yoko; Eura, Nobuyuki; Ogawa, Megumu; Nakano, Tomoya; Sakaguchi, Yasuhiro; Hayashi, Yukiko K; Kishimoto, Toshifumi; Shima, Midori; Saito, Yoshihiko; Nishino, Ichizo; Ueno, Satoshi

    2016-12-01

    Danon disease, primary lysosome-associated membrane protein-2 (LAMP-2) deficiency, is characterized clinically by cardiomyopathy, myopathy and intellectual disability in boys. Because Danon disease is inherited in an X-linked dominant fashion, males are more severely affected than females, who usually have only cardiomyopathy without myopathy or intellectual disability; moreover, the onset of symptoms in females is usually in adulthood. We describe a girl with Danon disease who presented with hypertrophic cardiomyopathy and Wolff-Parkinson-White (WPW) syndrome at 12 years of age. Subsequently, she showed signs of mild learning disability and intellectual disability on psychological examinations. She had a de novo novel mutation in the LAMP-2 gene and harbored an identical c.749C > A (p.Ser250X) variant, resulting in a stop codon in exon 6. She showed decreased, but not completely absent LAMP-2 expression on immunohistochemical and Western blot analyses of a skeletal muscle biopsy specimen, which has been suggested to be caused by a 50% reduction in LAMP-2 expression (LAMP-2 haploinsufficiency) in female patients with Danon disease caused by a heterozygous null mutation. To our knowledge, our patient is one of the youngest female patients to have been given a diagnosis of Danon disease. In addition, this is the first documented case in a girl that was clearly associated with intellectual disability, which is very rare in females with Danon disease. Our findings suggest that studies of female patients with Danon disease can extend our understanding of the clinical features of this rare disease.

  13. [A frame shift mutation, Arg346fs mutation, is identified in cardiac myosin-binding protein C gene in a Chinese family with hypertrophic cardiomyopathy].

    PubMed

    Xie, Wen-li; Liu, Wen-ling; Hu, Da-yi; Cui, Wei; Zhu, Tian-gang; Li, Cui-lan; Sun, Yi-hong; Li, Lei; Bian, Hong

    2005-04-13

    To explore the disease-causing gene mutation in Chinese with hypertrophic cardiomyopathy (HCM). The peripheral venous blood samples were collected from 5 HCM families without consanguinity, including 5 probands, 2 males and 3 females, 28 sporadic HCM patients, 18 males and 10 females, and 80 healthy controls. The exons in the functional regions of cardiac myosin-binding protein C (MYBPC3) were amplified with PCR and the amplified products were sequenced. A frame shift mutation-Arg346fs mutation in exon 13, the first mutation identified in Chinese-was discovered in one family with HCM. However, the members of the same HCM family with the Arg346fs mutation showed differences in phenotype and prognosis. Cardiac myosin-binding protein C (MYBPC3) may be one of the main disease-causing genes. The heterogeneity of phenotype suggests that multiple factors may be involved in the pathogenesis.

  14. Gene expression patterns in transgenic mouse models of hypertrophic cardiomyopathy caused by mutations in myosin regulatory light chain☆

    PubMed Central

    Huang, Wenrui; Kazmierczak, Katarzyna; Zhou, Zhiqun; Aguiar-Pulido, Vanessa; Narasimhan, Giri; Szczesna-Cordary, Danuta

    2017-01-01

    Using microarray and bioinformatics, we examined the gene expression profiles in transgenic mouse hearts expressing mutations in the myosin regulatory light chain shown to cause hypertrophic cardiomyopathy (HCM). We focused on two malignant RLC-mutations, Arginine 58→Glutamine (R58Q) and Aspartic Acid 166 → Valine (D166V), and one benign, Lysine 104 → Glutamic Acid (K104E)-mutation. Datasets of differentially expressed genes for each of three mutants were compared to those observed in wild-type (WT) hearts. The changes in the mutant vs. WT samples were shown as fold-change (FC), with stringency FC ≥ 2. Based on the gene profiles, we have identified the major signaling pathways that underlie the R58Q-, D166V- and K104E-HCM phenotypes. The correlations between different genotypes were also studied using network-based algorithms. Genes with strong correlations were clustered into one group and the central gene networks were identified for each HCM mutant. The overall gene expression patterns in all mutants were distinct from the WT profiles. Both malignant mutations shared certain classes of genes that were up or downregulated, but most similarities were noted between D166V and K104E mice, with R58Q hearts showing a distinct gene expression pattern. Our data suggest that all three HCM mice lead to cardiomyopathy in a mutation-specific manner and thus develop HCM through diverse mechanisms. PMID:26906074

  15. [P1208fs mutation in the cardiac myosin binding protein C is associated with hypertrophic cardiomyopathy in a Chinese pedigree].

    PubMed

    Li, J; Liu, L W; Na, L S; Zuo, L; Qi, W; Liu, Y; Shao, H; Ma, Z L; Wang, L F

    2016-04-24

    To identify the potential mutations in a Chinese pedigree with hypertrophic cardiomyopathy (HCM), and to analyze the genotype-phenotype relationship in this pedigree. Clinical history and physical examinations, electrocardiography (ECG), echocardiography (UCG), cardiac magnetic resonance (CMR) data were obtained from 10 members of a three-generation Chinese family with HCM. A total of 96 genes related to hereditary cardiomyopathy were detected by exon and boarding intron analyses in the proband using second-generation sequencing. Mutations identified in the proband were confirmed by bi-directional Sanger sequencing in the rest 9 family members and 300 healthy controls. Three mutations, including MYBPC3-P1208fs, ANK2-H556R and ANK2-P1974H, were identified in this pedigree. MYBPC3-P1208fs gene mutation was detected in 3 family members (proband, his mother and son), while this mutation was not detected in the rest family members. HCM was diagnosed in the proband and his mother by ECG, UCG and CMR. Son of the proband demonstrated early phenotype of HCM: although UCG and CMR were normal, ECG showed sinus bradycardia and paroxysmal supraventricular arrhythmias as well as ST segment changes. The onset age of HCM diagnosis of the proband and his mother was 42 and 50 years old, presented with palpitation and chest pain, and myocardial fibrosis sign in CMR. Furthermore, we found that left ventricular myocardial fibrosis is related to ECG changes (increasing r wave, ST segment change) in the proband and his mother. No HCM phenotype was evidenced in the 7 family members carrying ANK2-H556R and ANK2-P1974H mutations. Our results show that MYBPC3-P1208fs gene mutation is associated HCM phenotype in this Chinses pedigree. This mutation is associated with myocardial fibrosis and ST changes in HCM phenotype in this pedigree while ANK2-H556R and ANK2-P1974H mutations are not related to HCM phenotype in this family.

  16. [Cardiomyopathies. I: classification of cardiomyopathies--dilated cardiomyopathy].

    PubMed

    Schultheiss, H P; Noutsias, M; Kühl, U; Lassner, D; Gross, U; Poller, W; Pauschinger, M

    2005-11-01

    Cardiomyopathies are common causes of heart failure and sudden cardiac death. According to the WHO classification, "specific" cardiomyopathies are differentiated from "idiopathic" cardiomyopathies. Thus, this classification is primarily based on pathophysiological characteristics. The diagnostic spectrum in cardiomyopathies comprises the entire spectrum of non-invasive and invasive cardiological examination techniques. The exact verification of certain cardiomyopathies necessitates additionally investigations. For example, immunohistological and molecular biological investigations of endomyocardial biopsies may confirm inflammatory cardiomyopathy, which is often induced by viruses. Several studies have shown that specific immunomodulatory treatment options can halt the progressive course of the disease. Several gene mutations have been identified in genetic/familial dilated cardiomyopathy. First-degree relatives should be screened for early stages. Primary prevention of sudden cardiac death shows increasing superiority of the implantable defibrillator compared with pharmacological approaches (i.e. amiodarone).

  17. Arrhythmogenic cardiomyopathy.

    PubMed

    Pilichou, Kalliopi; Thiene, Gaetano; Bauce, Barbara; Rigato, Ilaria; Lazzarini, Elisabetta; Migliore, Federico; Perazzolo Marra, Martina; Rizzo, Stefania; Zorzi, Alessandro; Daliento, Luciano; Corrado, Domenico; Basso, Cristina

    2016-04-02

    Arrhythmogenic cardiomyopathy (AC) is a heart muscle disease clinically characterized by life-threatening ventricular arrhythmias and pathologically by an acquired and progressive dystrophy of the ventricular myocardium with fibro-fatty replacement. Due to an estimated prevalence of 1:2000-1:5000, AC is listed among rare diseases. A familial background consistent with an autosomal-dominant trait of inheritance is present in most of AC patients; recessive variants have also been reported, either or not associated with palmoplantar keratoderma and woolly hair. AC-causing genes mostly encode major components of the cardiac desmosome and up to 50% of AC probands harbor mutations in one of them. Mutations in non-desmosomal genes have been also described in a minority of AC patients, predisposing to the same or an overlapping disease phenotype. Compound/digenic heterozygosity was identified in up to 25% of AC-causing desmosomal gene mutation carriers, in part explaining the phenotypic variability. Abnormal trafficking of intercellular proteins to the intercalated discs of cardiomyocytes and Wnt/beta catenin and Hippo signaling pathways have been implicated in disease pathogenesis.AC is a major cause of sudden death in the young and in athletes. The clinical picture may include a sub-clinical phase; an overt electrical disorder; and right ventricular or biventricular pump failure. Ventricular fibrillation can occur at any stage. Genotype-phenotype correlation studies led to identify biventricular and dominant left ventricular variants, thus supporting the use of the broader term AC.Since there is no "gold standard" to reach the diagnosis of AC, multiple categories of diagnostic information have been combined and the criteria recently updated, to improve diagnostic sensitivity while maintaining specificity. Among diagnostic tools, contrast enhanced cardiac magnetic resonance is playing a major role in detecting left dominant forms of AC, even preceding morpho

  18. Molecular-genetic characterization and rescue of a TSFM mutation causing childhood-onset ataxia and nonobstructive cardiomyopathy.

    PubMed

    Emperador, Sonia; Bayona-Bafaluy, M Pilar; Fernández-Marmiesse, Ana; Pineda, Mercedes; Felgueroso, Blanca; López-Gallardo, Ester; Artuch, Rafael; Roca, Iria; Ruiz-Pesini, Eduardo; Couce, María Luz; Montoya, Julio

    2016-01-01

    Oxidative phosphorylation dysfunction has been found in many different disorders. This biochemical pathway depends on mitochondrial protein synthesis. Thus, mutations in components of the mitochondrial translation system can be responsible for some of these pathologies. We identified a new homozygous missense mutation in the mitochondrial translation elongation factor Ts gene in a patient suffering from slowly progressive childhood ataxia and hypertrophic cardiomyopathy. Using cell, biochemical and molecular-genetic protocols, we confirm it as the etiologic factor of this phenotype. Moreover, as an important functional confirmation, we rescued the normal molecular phenotype by expression of the wild-type TSFM cDNA in patient's fibroblasts. Different TSFM mutations can produce the same or very different clinical phenotypes, going from abortions to moderately severe presentations. On the other hand, the same TSFM mutation can also produce same or different phenotypes within the same range of presentations, therefore suggesting the involvement of unknown factors.

  19. Screening Mutations of MYBPC3 in 114 Unrelated Patients with Hypertrophic Cardiomyopathy by Targeted Capture and Next-generation Sequencing.

    PubMed

    Liu, Xuxia; Jiang, Tengyong; Piao, Chunmei; Li, Xiaoyan; Guo, Jun; Zheng, Shuai; Zhang, Xiaoping; Cai, Tao; Du, Jie

    2015-06-19

    Hypertrophic cardiomyopathy (HCM) is a major cause of sudden cardiac death. Mutations in the MYBPC3 gene represent the cause of HCM in ~35% of patients with HCM. However, genetic testing in clinic setting has been limited due to the cost and relatively time-consuming by Sanger sequencing. Here, we developed a HCM Molecular Diagnostic Kit enabling ultra-low-cost targeted gene resequencing in a large cohort and investigated the mutation spectrum of MYBPC3. In a cohort of 114 patients with HCM, a total of 20 different mutations (8 novel and 12 known mutations) of MYBPC3 were identified from 25 patients (21.9%). We demonstrated that the power of targeted resequencing in a cohort of HCM patients, and found that MYBPC3 is a common HCM-causing gene in Chinese patients. Phenotype-genotype analyses showed that the patients with double mutations (n = 2) or premature termination codon mutations (n = 12) showed more severe manifestations, compared with patients with missense mutations (n = 11). Particularly, we identified a recurrent truncation mutation (p.Y842X) in four unrelated cases (4/25, 16%), who showed severe phenotypes, and suggest that the p.Y842X is a frequent mutation in Chinese HCM patients with severe phenotypes.

  20. Screening Mutations of MYBPC3 in 114 Unrelated Patients with Hypertrophic Cardiomyopathy by Targeted Capture and Next-generation Sequencing

    PubMed Central

    Liu, Xuxia; Jiang, Tengyong; Piao, Chunmei; Li, Xiaoyan; Guo, Jun; Zheng, Shuai; Zhang, Xiaoping; Cai, Tao; Du, Jie

    2015-01-01

    Hypertrophic cardiomyopathy (HCM) is a major cause of sudden cardiac death. Mutations in the MYBPC3 gene represent the cause of HCM in ~35% of patients with HCM. However, genetic testing in clinic setting has been limited due to the cost and relatively time-consuming by Sanger sequencing. Here, we developed a HCM Molecular Diagnostic Kit enabling ultra-low-cost targeted gene resequencing in a large cohort and investigated the mutation spectrum of MYBPC3. In a cohort of 114 patients with HCM, a total of 20 different mutations (8 novel and 12 known mutations) of MYBPC3 were identified from 25 patients (21.9%). We demonstrated that the power of targeted resequencing in a cohort of HCM patients, and found that MYBPC3 is a common HCM-causing gene in Chinese patients. Phenotype-genotype analyses showed that the patients with double mutations (n = 2) or premature termination codon mutations (n = 12) showed more severe manifestations, compared with patients with missense mutations (n = 11). Particularly, we identified a recurrent truncation mutation (p.Y842X) in four unrelated cases (4/25, 16%), who showed severe phenotypes, and suggest that the p.Y842X is a frequent mutation in Chinese HCM patients with severe phenotypes. PMID:26090888

  1. Circulating concentrations of a marker of type I collagen metabolism are associated with hypertrophic cardiomyopathy mutation status in ragdoll cats.

    PubMed

    Borgeat, K; Dudhia, J; Luis Fuentes, V; Connolly, D J

    2015-06-01

    Human carriers of hypertrophic cardiomyopathy associated sarcomeric mutations have abnormal collagen metabolism before overt left ventricular hypertrophy is detectable. This study investigated whether differences in collagen biomarkers were present in blood samples of ragdoll cats positive for the MYBPC3:R820W mutation compared with negative controls. Cats were recruited for hypertrophic cardiomyopathy screening using echocardiography and genotyping. Circulating markers of collagen turnover (C-terminal telopeptide of type I collagen [CITP; type I collagen degradation] and N-terminal propeptide of type III procollagen [type III collagen synthesis]) and cardiac biomarkers (N-terminal B-type natriuretic peptide and cardiac troponin I) were measured. Correlation between concentrations of collagen biomarkers and echocardiographic variables was analysed, and collagen biomarker concentrations were compared between MYBPC3 mutation positive and negative cats, without left ventricular hypertrophy. Linear regression analyses showed that genotype was independently associated with CITP concentration. CITP was higher in mutation carriers (25 · 4 µg/L, interquartile range 16 · 0-29 · 2 µg/L) than non-carriers (14 · 6 µg/L, interquartile range 9 · 38-19 · 2 µg/L; P = 0 · 024). Circulating CITP was higher in MYBPC3-positive ragdoll cats than negative controls and may indicate altered collagen metabolism. Further studies are necessary to determine whether alterations in circulating collagen biomarker concentration relate to an early stage of hypertrophic cardiomyopathy. © 2015 British Small Animal Veterinary Association.

  2. Screening mutations in myosin binding protein C3 gene in a cohort of patients with Hypertrophic Cardiomyopathy

    PubMed Central

    2010-01-01

    Background MyBPC3 mutations are amongst the most frequent causes of hypertrophic cardiomyopathy, however, its prevalence varies between populations. They have been associated with mild and late onset disease expression. Our objectives were to establish the prevalence of MyBPC3 mutations and determine their associated clinical characteristics in our patients. Methods Screening by Single Strand Conformation Polymorphisms (SSCP) and sequencing of the fragments with abnormal motility of the MyBPC3 gene in 130 unrelated consecutive HCM index cases. Genotype-Phenotype correlation studies were done in positive families. Results 16 mutations were found in 20 index cases (15%): 5 novel [D75N, V471E, Q327fs, IVS6+5G>A (homozygous), and IVS11-9G>A] and 11 previously described [A216T, R495W, R502Q (2 families), E542Q (3 families), T957S, R1022P (2 families), E1179K, K504del, K600fs, P955fs and IVS29+5G>A]. Maximum wall thickness and age at time of diagnosis were similar to patients with MYH7 mutations [25(7) vs. 27(8), p = 0.16], [46(16) vs. 44(19), p = 0.9]. Conclusions Mutations in MyBPC3 are present in 15% of our hypertrophic cardiomyopathy families. Severe hypertrophy and early expression are compatible with the presence of MyBPC3 mutations. The genetic diagnosis not only allows avoiding clinical follow up of non carriers but it opens new possibilities that includes: to take preventive clinical decisions in mutation carriers than have not developed the disease yet, the establishment of genotype-phenotype relationship, and to establish a genetic diagnosis routine in patients with familial HCM. PMID:20433692

  3. A novel mitochondrial DNA tRNAIle (m.4322dupC) mutation associated with idiopathic dilated cardiomyopathy.

    PubMed

    Mahjoub, Sinda; Sternberg, Damien; Boussaada, Rafik; Filaut, Sandrine; Gmira, Fathi; Mechmech, Rachid; Jardel, Claude; Arab, Saïda Ben

    2007-12-01

    We identified a novel heteroplasmic mitochondrial DNA (mtDNA) (m.4322dupC) mutation in tRNA gene associated with isolated dilated cardiomyopathy (DCM) as maternal trait. Mutation screening techniques and automated DNA sequencing were performed to identify mtDNA mutations and to assess heteroplasmy in family's proband and healthy control subjects. All family members tested had heteroplasmic mtDNA m.4322dupC mutation. We also screened 350 normal controls for this mutation and found no evidence of heteroplasmy. The m.4322dupC mutation was found in the skeletal tissue from the proband that exhibited slightly reduced deficiency of mitochondrial respiratory chain enzymes (complex III). The present study reports the novel m.4322dupC mutation in tRNA gene, which is possibly associated to the disease, to isolated DCM. It was localized in a hot-spot region for mutations and is possibly pathogenic because of a cosegregation with the matrilineal transmission of DCM.

  4. A dilated cardiomyopathy mutation blunts adrenergic response and induces contractile dysfunction under chronic angiotensin II stress

    PubMed Central

    Wilkinson, Ross; Song, Weihua; Smoktunowicz, Natalia

    2015-01-01

    We investigated cardiac contractility in the ACTC E361G transgenic mouse model of dilated cardiomyopathy (DCM). No differences in cardiac dimensions or systolic function were observed in young mice, whereas young adult mice exhibited only mild diastolic abnormalities. Dobutamine had an inotropic and lusitropic effect on the mouse heart. In papillary muscle at 37°C, dobutamine increased relaxation rates [∼50% increase of peak rate of force decline normalized to force (dF/dtmin/F), 25% reduction of time to 90% relaxation (t90) in nontransgenic (NTG) mice], but in the ACTC E361G mouse, dF/dtmin/F was increased 20–30%, and t90 was only reduced 10% at 10 Hz. Pressure-volume measurements showed increases in maximum rate of pressure decline and decreases in time constant of left ventricular pressure decay in the ACTC E361G mouse that were 25–30% of the changes in the NTG mouse, consistent with blunting of the lusitropic response. The inotropic effect of dobutamine was also blunted in ACTC E361G mice, and the dobutamine-stimulated increase in cardiac output (CO) was reduced from 2,100 to 900 μl/min. Mice were treated with high doses of ANG II for 4 wk. The chronic stress treatment evoked systolic dysfunction in ACTC E361G mice but not in NTG. There was a significant reduction in rates of pressure increase and decrease, as well as reduced end-systolic pressure and increased volume. Ejection fraction and CO were reduced in the ACTC E361G mouse, indicating DCM. In vitro DCM-causing mutations uncouple the relationship between Ca2+ sensitivity and troponin I phosphorylation. We conclude that this leads to the observed, reduced response to β1 agonists and reduced cardiac reserve that predisposes the heart to DCM under conditions of chronic stress. PMID:26432839

  5. A dilated cardiomyopathy mutation blunts adrenergic response and induces contractile dysfunction under chronic angiotensin II stress.

    PubMed

    Wilkinson, Ross; Song, Weihua; Smoktunowicz, Natalia; Marston, Steven

    2015-12-01

    We investigated cardiac contractility in the ACTC E361G transgenic mouse model of dilated cardiomyopathy (DCM). No differences in cardiac dimensions or systolic function were observed in young mice, whereas young adult mice exhibited only mild diastolic abnormalities. Dobutamine had an inotropic and lusitropic effect on the mouse heart. In papillary muscle at 37°C, dobutamine increased relaxation rates [∼50% increase of peak rate of force decline normalized to force (dF/dtmin/F), 25% reduction of time to 90% relaxation (t90) in nontransgenic (NTG) mice], but in the ACTC E361G mouse, dF/dtmin/F was increased 20-30%, and t90 was only reduced 10% at 10 Hz. Pressure-volume measurements showed increases in maximum rate of pressure decline and decreases in time constant of left ventricular pressure decay in the ACTC E361G mouse that were 25-30% of the changes in the NTG mouse, consistent with blunting of the lusitropic response. The inotropic effect of dobutamine was also blunted in ACTC E361G mice, and the dobutamine-stimulated increase in cardiac output (CO) was reduced from 2,100 to 900 μl/min. Mice were treated with high doses of ANG II for 4 wk. The chronic stress treatment evoked systolic dysfunction in ACTC E361G mice but not in NTG. There was a significant reduction in rates of pressure increase and decrease, as well as reduced end-systolic pressure and increased volume. Ejection fraction and CO were reduced in the ACTC E361G mouse, indicating DCM. In vitro DCM-causing mutations uncouple the relationship between Ca(2+) sensitivity and troponin I phosphorylation. We conclude that this leads to the observed, reduced response to β1 agonists and reduced cardiac reserve that predisposes the heart to DCM under conditions of chronic stress.

  6. Familial hypertrophic cardiomyopathy. Microsatellite haplotyping and identification of a hot spot for mutations in the beta-myosin heavy chain gene.

    PubMed

    Dausse, E; Komajda, M; Fetler, L; Dubourg, O; Dufour, C; Carrier, L; Wisnewsky, C; Bercovici, J; Hengstenberg, C; al-Mahdawi, S

    1993-12-01

    Familial hypertrophic cardiomyopathy (FHC) is a clinically and genetically heterogeneous disease. The first identified disease gene, located on chromosome 14q11-q12, encodes the beta-myosin heavy chain. We have performed linkage analysis of two French FHC pedigrees, 720 and 730, with two microsatellite markers located in the beta-myosin heavy chain gene (MYO I and MYO II) and with four highly informative markers, recently mapped to chromosome 14q11-q12. Significant linkage was found with MYO I and MYO II in pedigree 720, but results were not conclusive for pedigree 730. Haplotype analysis of the six markers allowed identification of affected individuals and of some unaffected subjects carrying the disease gene. Two novel missense mutations were identified in exon 13 by direct sequencing, 403Arg-->Leu and 403Arg-->Trp in families 720 and 730, respectively. The 403Arg-->Leu mutation was associated with incomplete penetrance, a high incidence of sudden deaths and severe cardiac events, whereas the consequences of the 403Arg-->Trp mutation appeared less severe. Haplotyping of polymorphic markers in close linkage to the beta-myosin heavy chain gene can, thus, provide rapid analysis of non informative pedigrees and rapid detection of carrier status. Our results also indicate that codon 403 of the beta-myosin heavy chain gene is a hot spot for mutations causing FHC.

  7. The Hypertrophic Cardiomyopathy Myosin Mutation R453C Alters ATP Binding and Hydrolysis of Human Cardiac β-Myosin*

    PubMed Central

    Bloemink, Marieke; Deacon, John; Langer, Stephen; Vera, Carlos; Combs, Ariana; Leinwand, Leslie; Geeves, Michael A.

    2014-01-01

    The human hypertrophic cardiomyopathy mutation R453C results in one of the more severe forms of the myopathy. Arg-453 is found in a conserved surface loop of the upper 50-kDa domain of the myosin motor domain and lies between the nucleotide binding pocket and the actin binding site. It connects to the cardiomyopathy loop via a long α-helix, helix O, and to Switch-2 via the fifth strand of the central β-sheet. The mutation is, therefore, in a position to perturb a wide range of myosin molecular activities. We report here the first detailed biochemical kinetic analysis of the motor domain of the human β-cardiac myosin carrying the R453C mutation. A recent report of the same mutation (Sommese, R. F., Sung, J., Nag, S., Sutton, S., Deacon, J. C., Choe, E., Leinwand, L. A., Ruppel, K., and Spudich, J. A. (2013) Proc. Natl. Acad. Sci. U.S.A. 110, 12607–12612) found reduced ATPase and in vitro motility but increased force production using an optical trap. Surprisingly, our results show that the mutation alters few biochemical kinetic parameters significantly. The exceptions are the rate constants for ATP binding to the motor domain (reduced by 35%) and the ATP hydrolysis step/recovery stroke (slowed 3-fold), which could be the rate-limiting step for the ATPase cycle. Effects of the mutation on the recovery stroke are consistent with a perturbation of Switch-2 closure, which is required for the recovery stroke and the subsequent ATP hydrolysis. PMID:24344137

  8. Myocardial Structural Alteration and Systolic Dysfunction in Preclinical Hypertrophic Cardiomyopathy Mutation Carriers

    PubMed Central

    Yiu, Kai Hang; Atsma, Douwe E.; Delgado, Victoria; Ng, Arnold C. T.; Witkowski, Tomasz G.; Ewe, See Hooi; Auger, Dominique; Holman, Eduard R.; van Mil, Anneke M.; Breuning, Martijn H.; Tse, Hung Fat; Bax, Jeroen J.; Schalij, Martin J.; Marsan, Nina Ajmone

    2012-01-01

    Background To evaluate the presence of myocardial structural alterations and subtle myocardial dysfunction during familial screening in asymptomatic mutation carriers without hypertrophic cardiomyopathy (HCM) phenotype. Methods and Findings Sixteen HCM families with pathogenic mutation were studied and 46 patients with phenotype expression (Mut+/Phen+) and 47 patients without phenotype expression (Mut+/Phen−) were observed. Twenty-five control subjects, matched with the Mut+/Phen− group, were recruited for comparison. Echocardiography was performed to evaluate conventional parameters, myocardial structural alteration by calibrated integrated backscatter (cIBS) and global and segmental longitudinal strain by speckle tracking analysis. All 3 groups had similar left ventricular dimensions and ejection fraction. Basal anteroseptal cIBS was the highest in Mut+/Phen+ patients (−14.0±4.6 dB, p<0.01) and was higher in Mut+/Phen− patients as compared to controls (−17.0±2.3 vs. −22.6±2.9 dB, p<0.01) suggesting significant myocardial structural alterations. Global and basal anteroseptal longitudinal strains (−8.4±4.0%, p<0.01) were the most impaired in Mut+/Phen+ patients as compared to the other 2 groups. Although global longitudinal strain was similar between Mut+/Phen− group and controls, basal anteroseptal strain was lower in Mut+/Phen− patients (−14.1±3.8%, p<0.01) as compared to controls (−19.9±2.9%, p<0.01), suggesting a subclinical segmental systolic dysfunction. A combination of >−19.0 dB basal anteroseptal cIBS or >−18.0% basal anteroseptal longitudinal strain had a sensitivity of 98% and a specificity of 72% in differentiating Mut+/Phen− group from controls. Conclusion The use of cIBS and segmental longitudinal strain can differentiate HCM Mut+/Phen− patients from controls with important clinical implications for the family screening and follow-up of these patients. PMID:22574137

  9. High resolution systematic digital histological quantification of cardiac fibrosis and adipose tissue in phospholamban p.Arg14del mutation associated cardiomyopathy.

    PubMed

    Gho, Johannes M I H; van Es, René; Stathonikos, Nikolas; Harakalova, Magdalena; te Rijdt, Wouter P; Suurmeijer, Albert J H; van der Heijden, Jeroen F; de Jonge, Nicolaas; Chamuleau, Steven A J; de Weger, Roel A; Asselbergs, Folkert W; Vink, Aryan

    2014-01-01

    Myocardial fibrosis can lead to heart failure and act as a substrate for cardiac arrhythmias. In dilated cardiomyopathy diffuse interstitial reactive fibrosis can be observed, whereas arrhythmogenic cardiomyopathy is characterized by fibrofatty replacement in predominantly the right ventricle. The p.Arg14del mutation in the phospholamban (PLN) gene has been associated with dilated cardiomyopathy and recently also with arrhythmogenic cardiomyopathy. Aim of the present study is to determine the exact pattern of fibrosis and fatty replacement in PLN p.Arg14del mutation positive patients, with a novel method for high resolution systematic digital histological quantification of fibrosis and fatty tissue in cardiac tissue. Transversal mid-ventricular slices (n = 8) from whole hearts were collected from patients with the PLN p.Arg14del mutation (age 48±16 years; 4 (50%) male). An in-house developed open source MATLAB script was used for digital analysis of Masson's trichrome stained slides (http://sourceforge.net/projects/fibroquant/). Slides were divided into trabecular, inner and outer compact myocardium. Per region the percentage of connective tissue, cardiomyocytes and fatty tissue was quantified. In PLN p.Arg14del mutation associated cardiomyopathy, myocardial fibrosis is predominantly present in the left posterolateral wall and to a lesser extent in the right ventricular wall, whereas fatty changes are more pronounced in the right ventricular wall. No difference in distribution pattern of fibrosis and adipocytes was observed between patients with a clinical predominantly dilated and arrhythmogenic cardiomyopathy phenotype. In the future, this novel method for quantifying fibrosis and fatty tissue can be used to assess cardiac fibrosis and fatty tissue in animal models and a broad range of human cardiomyopathies.

  10. Complex phenotype linked to a mutation in exon 11 of the lamin A/C gene: Hypertrophic cardiomyopathy, atrioventricular block, severe dyslipidemia and diabetes.

    PubMed

    Francisco, Ana Rita G; Santos Gonçalves, Inês; Veiga, Fátima; Mendes Pedro, Mónica; Pinto, Fausto J; Brito, Dulce

    2017-09-01

    The lamin A/C (LMNA) gene encodes lamins A and C, which have an important role in nuclear cohesion and chromatin organization. Mutations in this gene usually lead to the so-called laminopathies, the primary cardiac manifestations of which are dilated cardiomyopathy and intracardiac conduction defects. Some mutations, associated with lipodystrophy but not cardiomyopathy, have been linked to metabolic abnormalities such as diabetes and severe dyslipidemia. Herein we describe a new phenotype associated with a mutation in exon 11 of the LMNA gene: hypertrophic cardiomyopathy, atrioventricular block, severe dyslipidemia and diabetes. A 64-year-old woman with hypertrophic cardiomyopathy and a point mutation in exon 11 of the LMNA gene (c.1718C>T, Ser573Leu) presented with severe symptomatic ventricular hypertrophy and left ventricular outflow tract obstruction. She underwent septal alcohol ablation, followed by Morrow myectomy. The patient was also diagnosed with severe dyslipidemia, diabetes and obesity, and fulfilled diagnostic criteria for metabolic syndrome. No other characteristics of LMNA mutation-related phenotypes were identified. The development of type III atrioventricular block with no apparent cause, and mildly depressed systolic function, prompted referral for cardiac resynchronization therapy. In conclusion, the association between LMNA mutations and different phenotypes is complex and not fully understood, and can present with a broad spectrum of severity. Copyright © 2017 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Pregnancy, cardiomyopathies, and genetics.

    PubMed

    Van Tintelen, J Peter; Pieper, Petronella G; Van Spaendonck-Zwarts, Karin Y; Van Den Berg, Maarten P

    2014-03-15

    Although familial forms of cardiomyopathy such as hypertrophic or dilated cardiomyopathy have been recognized for decades, it is only recently that much of the genetic basis of these inherited cardiomyopathies has been elucidated. This has provided important insights into the pathophysiological mechanisms underlying the disease phenotype. This increased knowledge and the availability of genetic testing has resulted in increasing numbers of mutation carriers who are being monitored, including many who are now of child-bearing age. Pregnancy is generally well tolerated in asymptomatic patients or mutation carriers with inherited cardiomyopathies. However, since pregnancy leads to major physiological changes in the cardiovascular system, in women with genetic cardiomyopathies or who carry a mutation pre-disposing to a genetic cardiomyopathy, pregnancy entails a risk of developing heart failure and/or arrhythmias. This deterioration of cardiac function may occur despite optimal medical treatment. Advanced left ventricular dysfunction, poor functional class (NYHA class III or IV), or prior cardiac events appear to increase the risk of maternal cardiac complications. However, there are no large series of cardiomyopathy patients who are regularly evaluated for cardiac complications during pregnancy and for certain types of inherited cardiomyopathy, only case reports on individual pregnancies are available. Pre-conception cardiologic evaluation and genetic counselling are important for every woman with a cardiomyopathy or a cardiomyopathy-related mutation who is considering having a family. In this article, we give an overview of the basic clinical aspects, genetics, and pregnancy outcome in women with different types of inherited cardiomyopathies. We also discuss the genetic aspects of pregnancy-associated cardiomyopathy, including peripartum cardiomyopathy.

  12. A family with a dystrophin gene mutation specifically affecting dystrophin expression in the heart

    SciTech Connect

    Muntoni, F.; Davies, K.; Dubowitz, V.

    1994-09-01

    We recently described a family with X-linked dilated cardiomyopathy where a large deletion in the muscle promoter region of the dystrophin gene was associated with a severe dilated cardiomyopathy in absence of clinical skeletal muscle involvement. The deletion removed the entire muscle promoter region, the first muscle exon and part of intron 1. The brain and Purkinje cell promoters were not affected by the deletion. Despite the lack of both the muscle promoter and the first muscle exon, dystrophin was detected immunocytochemically in relative high levels in the skeletal muscle of the affected males. We have now found that both the brain and Purkinje cell promoters were transcribed at high levels in the skeletal muscle of these individuals. This phenomenon, that does not occur in normal skeletal muscle, indicates that these two isoforms, physiologically expressed mainly in the central nervous system, can be transcribed and be functionally active in skeletal muscle under specific circumstances. Contrary to what is observed in skeletal muscle, dystrophin was not detected in the heart of one affected male using immunocytochemistry and an entire panel of anti-dystrophin antibodies. This was most likely the cause for the pronounced cardiac fibrosis observed and eventually responsible for the severe cardiac involvement invariably seen in seven affected males. In conclusion, the mutation of the muscle promoter, first muscle exon and part of intron 1 specifically affected expression of dystrophin in the heart. We believe that this deletion removes sequences involved in regulation of dystrophin expression in the heart and are at the moment characterizing other families with X-linked cardiomyopathy secondary to a dystrophinopathy.

  13. Age-associated cardiomyopathy in heterozygous carrier mice of a pathological mutation of carnitine transporter gene, OCTN2.

    PubMed

    Xiaofei, E; Wada, Yasuhiko; Dakeishi, Miwako; Hirasawa, Fujiko; Murata, Katsuyuki; Masuda, Hirotake; Sugiyama, Toshihiro; Nikaido, Hiroko; Koizumi, Akio

    2002-07-01

    The purpose of this study was to test whether heterozygotes of juvenile visceral steatosis mice, a model for systemic carnitine deficiency, may develop age-associated cardiomyopathy. Tissue morphological observations were carried out by light and electron microscopy to compare the heterozygous and age-matched control mice at periods of 1 and 2 years. Possible effects of the pathological mutation on lipid and glucose levels was also evaluated in humans and mice. Except mild increases in serum cholesterol levels in male heterozygous mice and humans, no changes were found in other factors, indicating that none of the confounding factors seems to be profound. Results demonstrated that heterozygous mice had larger left ventriclular myocyte diameters than the control mice. Morphological changes in cardiac muscles by electron microscopy revealed age-associated changes of lipid deposition and abnormal mitochondria in heterozygous mice. Two out of 60 heterozygous cohort and one out of nine heterozygous trim-kill mice had cardiac hypertrophy at ages older than 2 years. The present study and our previous work suggest that the carrier state of OCTN2 pathological mutations might be a risk factor for age-associated cardiomyopathy.

  14. Gene-specific increase in the energetic cost of contraction in hypertrophic cardiomyopathy caused by thick filament mutations.

    PubMed

    Witjas-Paalberends, E Rosalie; Güçlü, Ahmet; Germans, Tjeerd; Knaapen, Paul; Harms, Hendrik J; Vermeer, Alexa M C; Christiaans, Imke; Wilde, Arthur A M; Dos Remedios, Cris; Lammertsma, Adriaan A; van Rossum, Albert C; Stienen, Ger J M; van Slegtenhorst, Marjon; Schinkel, Arend F; Michels, Michelle; Ho, Carolyn Y; Poggesi, Corrado; van der Velden, Jolanda

    2014-07-15

    Disease mechanisms regarding hypertrophic cardiomyopathy (HCM) are largely unknown and disease onset varies. Sarcomere mutations might induce energy depletion for which until now there is no direct evidence at sarcomere level in human HCM. This study investigated if mutations in genes encoding myosin-binding protein C (MYBPC3) and myosin heavy chain (MYH7) underlie changes in the energetic cost of contraction in the development of human HCM disease. Energetic cost of contraction was studied in vitro by measurements of force development and ATPase activity in cardiac muscle strips from 26 manifest HCM patients (11 MYBPC3mut, 9 MYH7mut, and 6 sarcomere mutation-negative, HCMsmn). In addition, in vivo, the ratio between external work (EW) and myocardial oxygen consumption (MVO2) to obtain myocardial external efficiency (MEE) was determined in 28 pre-hypertrophic mutation carriers (14 MYBPC3mut and 14 MYH7mut) and 14 healthy controls using [(11)C]-acetate positron emission tomography and cardiovascular magnetic resonance imaging. Tension cost (TC), i.e. ATPase activity during force development, was higher in MYBPC3mut and MYH7mut compared with HCMsmn at saturating [Ca(2+)]. TC was also significantly higher in MYH7mut at submaximal, more physiological [Ca(2+)]. EW was significantly lower in both mutation carrier groups, while MVO2 did not differ. MEE was significantly lower in both mutation carrier groups compared with controls, showing the lowest efficiency in MYH7 mutation carriers. We provide direct evidence that sarcomere mutations perturb the energetic cost of cardiac contraction. Gene-specific severity of cardiac abnormalities may underlie differences in disease onset and suggests that early initiation of metabolic treatment may be beneficial, in particular, in MYH7 mutation carriers. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  15. Mitochondrial complex IV deficiency, caused by mutated COX6B1, is associated with encephalomyopathy, hydrocephalus and cardiomyopathy

    PubMed Central

    Abdulhag, Ulla Najwa; Soiferman, Devorah; Schueler-Furman, Ora; Miller, Chaya; Shaag, Avraham; Elpeleg, Orly; Edvardson, Simon; Saada, Ann

    2015-01-01

    Isolated cytochrome c oxidase (COX) deficiency is a prevalent cause of mitochondrial disease and is mostly caused by nuclear-encoded mutations in assembly factors while rarely by mutations in structural subunits. We hereby report a case of isolated COX deficiency manifesting with encephalomyopathy, hydrocephalus and hypertropic cardiomyopathy due to a missense p.R20C mutation in the COX6B1 gene, which encodes an integral, nuclear-encoded COX subunit. This novel mutation was predicted to be severe in silico. In accord, enzymatic activity was undetectable in muscle and fibroblasts, was severely decreased in lymphocytes and the COX6B1 protein was barely detectable in patient's muscle mitochondria. Complementation with the wild-type cDNA by a lentiviral construct restored COX activity, and mitochondrial function was improved by 5-aminoimidazole-4-carboxamide ribonucleotide, resveratrol and ascorbate in the patient's fibroblasts. We suggest that genetic analysis of COX6B1should be included in the investigation of isolated COX deficiency, including patients with cardiac defects. Initial measurement of COX activity in lymphocytes may be useful as it might circumvent the need for invasive muscle biopsy. The evaluation of ascorbate supplementation to patients with mutated COX6B1 is warranted. PMID:24781756

  16. A mutation in the Z-line Cypher/ZASP protein is associated with arrhythmogenic right ventricular cardiomyopathy.

    PubMed

    Lopez-Ayala, J M; Ortiz-Genga, M; Gomez-Milanes, I; Lopez-Cuenca, D; Ruiz-Espejo, F; Sanchez-Munoz, J J; Oliva-Sandoval, M J; Monserrat, L; Gimeno, J R

    2015-08-01

    Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an important cause of malignant arrhythmia and sudden death particularly in young people. Although it is considered a desmosomal disease, mutations in non-desmosomal genes have also been identified. We report on a family where a mutation in LDB3 is associated with this condition. The index case and first and second degree relatives underwent a complete clinical evaluation: physical examination, electrocardiography (ECG), signal-averaged ECG, 2D echocardiogram, cardiac magnetic resonance and 24-h monitoring. After ruling out mutations in the five desmosomal genes, genetic testing by means of Next Generation Sequencing was carried out on the proband. A heterozygous missense mutation in LDB3 c.1051A>G was identified. This result was confirmed by subsequent Sanger DNA sequencing. Another six carriers were identified amongst her relatives. Three subjects fulfilled the criteria for a definitive diagnosis of ARVC and one reached a borderline diagnosis. In conclusion, this is the first family with ARVC where a mutation in LDB3 is associated with ARVC. Next generation sequencing arises as a particular useful tool to point to new causative genes in ARVC.

  17. [Clinical and gene mutation analysis of three children with late-onset glycogen storage disease type Ⅱ with hypertrophic cardiomyopathy].

    PubMed

    Luo, J H; Qiu, W J; Fang, D; Ye, J; Han, L S; Zhang, H W; Yu, Y G; Liang, L L; Gu, X F

    2017-06-02

    Objective: To investigate the clinical and laboratory features of three children with late-onset type Ⅱ glycogen storage disease(GSD) who presented with hypertrophic cardiomyopathy and to analyze the effect of five mutations identified on the acid-α-glucosidase (GAA) activity and stability. Method: Three cases of children with muscle weakness were included in this study.GAA activity was analyzed in Dried Blood Spot of the patients.DNA was extracted from peripheral blood in all the patients and their parents and subjected to polymerase chain reaction and directly sequencing of GAA gene.Five mutant pcDNA3.1-myc-his-GAA expression plasmids(p.G478R, p.P361L, p.P266S, p.Q323X, p.R672Q) were constructed and transient instantaneously transfected into 293T cells to analyze the enzyme activity and stability of GAA. Result: All the three children had the onset of disease at 3 years or 1.5 years of age.They presented with developmental delay, muscle weakness and hypertrophic cardiomyopathy.GAA activity of 3 patients was 2.65, 3.55 and 1.51 pmol(punch·h)(8.00-98.02)respectively. Genetic analysis found 5 mutations (p.G478R, p. P361L, p. P266S, p. Q323X, p. R672Q), and all of these 3 cases had clinical manifestations and were diagnosed as late-onset type Ⅱ glycogen storage disease.Five mutant pcDNA3.1-myc-his-GAA expression plasmids were transfected into 293T cells.Five mutant enzyme activities were found to be only 9.9%-22.5% of the wild-type enzyme activity and the protein expression of the five mutants was 32.0%-63.9% compared with the wild type. Conclusion: This study reports 3 children with late-onset GSD Ⅱ accompanied by hypertrophic cardiomyopathy and compensatory stage of cardiac function in addition to limb muscle weakness.Five pathogenic mutations were identified, and these 5 mutations result in decreased GAA activity and GAA expression by in vitro functional analysis.

  18. Deficiency of the mitochondrial phosphate carrier presenting as myopathy and cardiomyopathy in a family with three affected children.

    PubMed

    Mayr, Johannes A; Zimmermann, Franz A; Horváth, Rita; Schneider, Hans-Christian; Schoser, Benedikt; Holinski-Feder, Elke; Czermin, Birgit; Freisinger, Peter; Sperl, Wolfgang

    2011-11-01

    In a family three children presented with severe neonatal lactic acidosis, hypertrophic cardiomyopathy and generalised muscular hypotonia. One child died in infancy, two survived a clinically severe neonatal period. At an age of 9 and 17years, respectively, they present with exercise intolerance, proximal muscle weakness, non-progressive hypertrophic cardiomyopathy and normal mental development. In a muscle biopsy normal activity of respiratory chain enzymes was found; however the amount of the mitochondrial phosphate carrier was decreased. This protein is expressed in two tissue-specific isoforms generated by mutually exclusive alternative splicing of the SLC25A3 gene transcript. We identified a homozygous mutation c.158-9A>G located in the 5'-intron next to exon 3A specific for heart and skeletal muscle. This creates a novel splice site resulting in a more than 95% decrease of the wild type allele.

  19. Molecular consequences of the R453C hypertrophic cardiomyopathy mutation on human β-cardiac myosin motor function

    PubMed Central

    Sommese, Ruth F.; Sung, Jongmin; Nag, Suman; Sutton, Shirley; Deacon, John C.; Choe, Elizabeth; Leinwand, Leslie A.; Ruppel, Kathleen; Spudich, James A.

    2013-01-01

    Cardiovascular disorders are the leading cause of morbidity and mortality in the developed world, and hypertrophic cardiomyopathy (HCM) is among the most frequently occurring inherited cardiac disorders. HCM is caused by mutations in the genes encoding the fundamental force-generating machinery of the cardiac muscle, including β-cardiac myosin. Here, we present a biomechanical analysis of the HCM-causing mutation, R453C, in the context of human β-cardiac myosin. We found that this mutation causes a ∼30% decrease in the maximum ATPase of the human β-cardiac subfragment 1, the motor domain of myosin, and a similar percent decrease in the in vitro velocity. The major change in the R453C human β-cardiac subfragment 1 is a 50% increase in the intrinsic force of the motor compared with wild type, with no appreciable change in the stroke size, as observed with a dual-beam optical trap. These results predict that the overall force of the ensemble of myosin molecules in the muscle should be higher in the R453C mutant compared with wild type. Loaded in vitro motility assay confirms that the net force in the ensemble is indeed increased. Overall, this study suggests that the R453C mutation should result in a hypercontractile state in the heart muscle. PMID:23798412

  20. Mutations affecting enzymatic activity in liver arginase

    SciTech Connect

    Vockley, J.G.; Tabor, D.E.; Goodman, B.K.

    1994-09-01

    The hydrolysis of arginine to ornithine and urea is catalyzed by arginase in the last step of the urea cycle. We examined a group of arginase deficient patients by PCR-SSCP analysis to characterize the molecular basis of this disorder. A heterogeneous population of nonsense mutations, microdeletions, and missense mutations has been identified in our cohort. Microdeletions which introduce premature stop codons downstream of the deletion and nonsense mutations result in no arginase activity. These mutations occur randomly along the gene. The majority of missense mutations identified appear to occur in regions of high cross-species homology. To test the effect of these missense mutations on arginase activity, site-directed mutagenesis was used to re-create the patient mutations for in vivo expression studies in a prokaryotic fusion-protein expression system. Of 4 different missense mutations identified in 6 individuals, only one was located outside of a conserved region. The three substitution mutations within the conserved regions had a significant effect on enzymatic activity (0-3.1 nmole/30min, normal is 1300-1400 nmoles/30min, as determined by in vitro arginase assay), while the fourth mutation, a T to S substitution, did not. In addition, site-directed mutagenesis was utilized to create mutations not in residues postulated to play a significant role in the enzymatic function or active site formation in manganese-binding proteins such as arginase. We have determined that the substitution of glycine for a histidine residue, located in a very highly conserved region of exon 3, and the substitution of a histidine and an aspartic acid residue within a similarly conserved region in exon 4, totally abolishes enzymatic activity. Mutations substituting glycine for an additional histidine and aspartic acid residue in exon 4 and two aspartic acid residues in exon 7 have also been created. We are currently in the process of characterizing these mutations.

  1. [Case of Leber's hereditary optic neuropathy with mitochondrial DNA 11778 mutation exhibiting cerebellar ataxia, dilated cardiomyopathy and peripheral neuropathy].

    PubMed

    Watanabe, Yuka; Odaka, Masaaki; Hirata, Koichi

    2009-03-01

    We report the case of a 28-year-old woman with Leber's hereditary optic neuropathy (LHON) associated with cerebellar ataxia, dilated cardiomyopathy and peripheral neuropathy. She had a mitochondrial DNA point mutation from guanine to adenine at nucleotide position 11778 and developed ataxic gait within 2 years after the onset of bilateral visual loss. A neurological examination detected horizontal nystagmus, bradylalia, and truncal and bilateral limb ataxia of the cerebellar type. She could walk, albeit unsteadily. There was no weakness in her arms and legs. Tendon jerks were diminished in both the upper arms. Bilateral knee and ankle jerks were absent, and the plantar responses were neutral. Paresthesia of the stocking type was present but no reduction of pinprick, position or vibration senses was detected in the paresthetic regions. Romberg's sign was negative. Brain MRI showed atrophic changes in both the cerebellar vermis and the hemispheres. Nerve conduction studies detected mildly decreased motor nerve conduction velocities in the median, ulnar and posterior tibial nerves. Ultrasound cardiography showed a dilated left ventricle. It was not possible to clarify the relationship between LHON and cerebellar atrophy, cardiomyopathy, and peripheral neuropathy. However, physicians, need to be aware that the patients may develop various neurological complications after the onset of optic neuropathy in LHON.

  2. Genetic Analysis of 63 Mutations Affecting Maize Kernel Development Isolated from Mutator Stocks

    PubMed Central

    Scanlon, M. J.; Stinard, P. S.; James, M. G.; Myers, A. M.; Robertson, D. S.

    1994-01-01

    Sixty-three mutations affecting development of the maize kernel were isolated from active Robertson's Mutator (Mu) stocks. At least 14 previously undescribed maize gene loci were defined by mutations in this collection. Genetic mapping located 53 of these defective kernel (dek) mutations to particular chromosome arms, and more precise map determinations were made for 21 of the mutations. Genetic analyses identified 20 instances of allelism between one of the novel mutations and a previously described dek mutation, or between new dek mutations identified in this study; phenotypic variability was observed in three of the allelic series. Viability testing of homozygous mutant kernels identified numerous dek mutations with various pleiotropic effects on seedling and plant development. The mutations described here presumably arose by insertion of a Mu transposon within a dek gene; thus, many of the affected loci are expected to be accessible to molecular cloning via transposon-tagging. PMID:8138165

  3. Factors affecting the nature of induced mutations

    SciTech Connect

    Russell, L.B.; Russell, W.L.; Rinchik, E.M.; Hunsicker, P.R.

    1989-01-01

    The recent considerable expansion of specific-locus-mutation data has made possible an examination of the effects of germ-cell stage on both quantity of mutation yield and nature of mutations. For chemicals mutagenic in poststem-cell stages, three patterns have been identified according to the stages in which they elicit maximum response: (1) early spermatozoa and late spermatids; (2) early spermatids; and (3) differentiating spermatogonia. The majority of chemicals tested fall into Pattern 1. Chemicals that are also mutagenic in stem-cell spermatogonia do not preferentially belong to any one of these three categories. For only one chemical (CHL) has an entire set of mutations been analyzed molecularly. However, the results of genetic and molecular analyses of genomic regions surrounding six of the specific-locus markers allow us to conclude that any mutation that causes lethality of homozygotes (in the case of d, prenatal lethality, specifically) must involve one or more loci in addition to the marked one. Such mutations have been classified as large lesions'' (LL), the remainder as other lesions'' (OL). Analysis of the data shows that, regardless of the nature of the chemical (Pattern-1, -2, or -3), (1) LLs constitute a very low proportion of the mutations induced in either stem-cell or differentiating spermatogonia, and (b) LLs constitute a high proportion of mutations induced in postmeiotic stages. Chemicals that are active in both pre- and postmeiotic stages produce LL or OL mutations depending on cell stage.

  4. Peripartum cardiomyopathy presenting with syncope due to Torsades de pointes: a case of long QT syndrome with a novel KCNH2 mutation.

    PubMed

    Nishimoto, Orie; Matsuda, Morihiro; Nakamoto, Kei; Nishiyama, Hirohiko; Kuraoka, Kazuya; Taniyama, Kiyomi; Tamura, Ritsu; Shimizu, Wataru; Kawamoto, Toshiharu

    2012-01-01

    Peripartum cardiomyopathy (PPCM) is a cardiomyopathy of unknown cause that occurs in the peripartum period. We report a case of PPCM presenting with syncope 1 month after an uncomplicated delivery. Electrocardiography showed Torsades de pointes (TdP) and QT interval prolongation. Echocardiography showed left ventricular systolic dysfunction and endomyocardial biopsy showed myocyte degeneration and fibrosis. Administration of magnesium sulfate and temporary pacing eliminated recurrent TdP. Genetic analyses revealed that recurrent TdP occurred via electrolyte disturbance and cardiac failure due to PPCM on the basis of a novel mutation in KCNH2, a gene responsible for inherited type 2 long QT syndrome.

  5. Myosin transducer mutations differentially affect motor function, myofibril structure, and the performance of skeletal and cardiac muscles.

    PubMed

    Cammarato, Anthony; Dambacher, Corey M; Knowles, Aileen F; Kronert, William A; Bodmer, Rolf; Ocorr, Karen; Bernstein, Sanford I

    2008-02-01

    Striated muscle myosin is a multidomain ATP-dependent molecular motor. Alterations to various domains affect the chemomechanical properties of the motor, and they are associated with skeletal and cardiac myopathies. The myosin transducer domain is located near the nucleotide-binding site. Here, we helped define the role of the transducer by using an integrative approach to study how Drosophila melanogaster transducer mutations D45 and Mhc(5) affect myosin function and skeletal and cardiac muscle structure and performance. We found D45 (A261T) myosin has depressed ATPase activity and in vitro actin motility, whereas Mhc(5) (G200D) myosin has these properties enhanced. Depressed D45 myosin activity protects against age-associated dysfunction in metabolically demanding skeletal muscles. In contrast, enhanced Mhc(5) myosin function allows normal skeletal myofibril assembly, but it induces degradation of the myofibrillar apparatus, probably as a result of contractile disinhibition. Analysis of beating hearts demonstrates depressed motor function evokes a dilatory response, similar to that seen with vertebrate dilated cardiomyopathy myosin mutations, and it disrupts contractile rhythmicity. Enhanced myosin performance generates a phenotype apparently analogous to that of human restrictive cardiomyopathy, possibly indicating myosin-based origins for the disease. The D45 and Mhc(5) mutations illustrate the transducer's role in influencing the chemomechanical properties of myosin and produce unique pathologies in distinct muscles. Our data suggest Drosophila is a valuable system for identifying and modeling mutations analogous to those associated with specific human muscle disorders.

  6. PLEKHM2 mutation leads to abnormal localization of lysosomes, impaired autophagy flux and associates with recessive dilated cardiomyopathy and left ventricular noncompaction

    PubMed Central

    Muhammad, Emad; Levitas, Aviva; Singh, Sonia R.; Braiman, Alex; Ofir, Rivka; Etzion, Sharon; Sheffield, Val C.; Etzion, Yoram; Carrier, Lucie; Parvari, Ruti

    2015-01-01

    Gene mutations, mostly segregating with a dominant mode of inheritance, are important causes of dilated cardiomyopathy (DCM), a disease characterized by enlarged ventricular dimensions, impaired cardiac function, heart failure and high risk of death. Another myocardial abnormality often linked to gene mutations is left ventricular noncompaction (LVNC) characterized by a typical diffuse spongy appearance of the left ventricle. Here, we describe a large Bedouin family presenting with a severe recessive DCM and LVNC. Homozygosity mapping and exome sequencing identified a single gene variant that segregated as expected and was neither reported in databases nor in Bedouin population controls. The PLEKHM2 cDNA2156_2157delAG variant causes the frameshift p.Lys645AlafsTer12 and/or the skipping of exon 11 that results in deletion of 30 highly conserved amino acids. PLEKHM2 is known to interact with several Rabs and with kinesin-1, affecting endosomal trafficking. Accordingly, patients' primary fibroblasts exhibited abnormal subcellular distribution of endosomes marked by Rab5, Rab7 and Rab9, as well as the Golgi apparatus. In addition, lysosomes appeared to be concentrated in the perinuclear region, and autophagy flux was impaired. Transfection of wild-type PLEKHM2 cDNA into patient's fibroblasts corrected the subcellular distribution of the lysosomes, supporting the causal effect of PLEKHM2 mutation. PLEKHM2 joins LAMP-2 and BAG3 as a disease gene altering autophagy resulting in an isolated cardiac phenotype. The association of PLEKHM2 mutation with DCM and LVNC supports the importance of autophagy for normal cardiac function. PMID:26464484

  7. HEART DISEASE. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy.

    PubMed

    Hinson, John T; Chopra, Anant; Nafissi, Navid; Polacheck, William J; Benson, Craig C; Swist, Sandra; Gorham, Joshua; Yang, Luhan; Schafer, Sebastian; Sheng, Calvin C; Haghighi, Alireza; Homsy, Jason; Hubner, Norbert; Church, George; Cook, Stuart A; Linke, Wolfgang A; Chen, Christopher S; Seidman, J G; Seidman, Christine E

    2015-08-28

    Human mutations that truncate the massive sarcomere protein titin [TTN-truncating variants (TTNtvs)] are the most common genetic cause for dilated cardiomyopathy (DCM), a major cause of heart failure and premature death. Here we show that cardiac microtissues engineered from human induced pluripotent stem (iPS) cells are a powerful system for evaluating the pathogenicity of titin gene variants. We found that certain missense mutations, like TTNtvs, diminish contractile performance and are pathogenic. By combining functional analyses with RNA sequencing, we explain why truncations in the A-band domain of TTN cause DCM, whereas truncations in the I band are better tolerated. Finally, we demonstrate that mutant titin protein in iPS cell-derived cardiomyocytes results in sarcomere insufficiency, impaired responses to mechanical and β-adrenergic stress, and attenuated growth factor and cell signaling activation. Our findings indicate that titin mutations cause DCM by disrupting critical linkages between sarcomerogenesis and adaptive remodeling. Copyright © 2015, American Association for the Advancement of Science.

  8. Myocardial contractile and metabolic properties of familial hypertrophic cardiomyopathy caused by cardiac troponin I gene mutations: a simulation study.

    PubMed

    Wu, Bo; Wang, Longhui; Liu, Qian; Luo, Qingming

    2012-01-01

    Familial hypertrophic cardiomyopathy (FHC) is an inherited disease that is caused by sarcomeric protein gene mutations. The mechanism by which these mutant proteins cause disease is uncertain. Experimentally, cardiac troponin I (CTnI) gene mutations mainly alter myocardial performance via increases in the Ca(2+) sensitivity of cardiac contractility. In this study, we used an integrated simulation that links electrophysiology, contractile activity and energy metabolism of the myocardium to investigate alterations in myocardial contractile function and energy metabolism regulation as a result of increased Ca(2+) sensitivity in CTnI mutations. Simulation results reproduced the following typical features of FHC: (1) slower relaxation (diastolic dysfunction) caused by prolonged [Ca(2+)](i) and force transients; (2) higher energy consumption with the increase in Ca(2+) sensitivity; and (3) reduced fatty acid oxidation and enhanced glucose utilization in hypertrophied heart metabolism. Furthermore, the simulation indicated that in conditions of high energy consumption (that is, more than an 18.3% increase in total energy consumption), the myocardial energetic metabolic network switched from a net consumer to a net producer of lactate, resulting in a low coupling of glucose oxidation to glycolysis, which is a common feature of hypertrophied hearts. This study provides a novel systematic myocardial contractile and metabolic analysis to help elucidate the pathogenesis of FHC and suggests that the alterations in resting heart energy supply and demand could contribute to disease progression.

  9. Dilated cardiomyopathy mutations in δ-sarcoglycan exert a dominant-negative effect on cardiac myocyte mechanical stability.

    PubMed

    Campbell, Matthew D; Witcher, Marc; Gopal, Anoop; Michele, Daniel E

    2016-05-01

    Delta-sarcoglycan is a component of the sarcoglycan subcomplex within the dystrophin-glycoprotein complex located at the plasma membrane of muscle cells. While recessive mutations in δ-sarcoglycan cause limb girdle muscular dystrophy 2F, dominant mutations in δ-sarcoglycan have been linked to inherited dilated cardiomyopathy (DCM). The purpose of this study was to investigate functional cellular defects present in adult cardiac myocytes expressing mutant δ-sarcoglycans harboring the dominant inherited DCM mutations R71T or R97Q. This study demonstrates that DCM mutant δ-sarcoglycans can be stably expressed in adult rat cardiac myocytes and traffic similarly to wild-type δ-sarcoglycan to the plasma membrane, without perturbing assembly of the dystrophin-glycoprotein complex. However, expression of DCM mutant δ-sarcoglycan in adult rat cardiac myocytes is sufficient to alter cardiac myocyte plasma membrane stability in the presence of mechanical strain. Upon cyclical cell stretching, cardiac myocytes expressing mutant δ-sarcoglycan R97Q or R71T have increased cell-impermeant dye uptake and undergo contractures at greater frequencies than myocytes expressing normal δ-sarcoglycan. Additionally, the R71T mutation creates an ectopic N-linked glycosylation site that results in aberrant glycosylation of the extracellular domain of δ-sarcoglycan. Therefore, appropriate glycosylation of δ-sarcoglycan may also be necessary for proper δ-sarcoglycan function and overall dystrophin-glycoprotein complex function. These studies demonstrate that DCM mutations in δ-sarcoglycan can exert a dominant negative effect on dystrophin-glycoprotein complex function leading to myocardial mechanical instability that may underlie the pathogenesis of δ-sarcoglycan-associated DCM.

  10. D117N in Cypher/ZASP may not be a causative mutation for dilated cardiomyopathy and ventricular arrhythmias

    PubMed Central

    Levitas, Aviva; Konstantino, Yuval; Muhammad, Emad; Afawi, Zaid; Marc Weinstein, Jean; Amit, Guy; Etzion, Yoram; Parvari, Ruti

    2016-01-01

    Dilated cardiomyopathy (DCM) and malignant ventricular arrhythmias are important causes of congestive heart failure, heart transplantation, and sudden cardiac death in young patients. Cypher/ZASP is a cytoskeletal protein localized in the sarcomeric Z-line that has a pivotal role in maintaining adult cardiac structure and function. The putative mutation p.(D117N) in Cypher/ZASP has been suggested to cause systolic dysfunction, dilated left ventricle with hypertrabeculated myocardium, and intraventricular conduction disturbance, based on two reported sporadic cases. In two unrelated Bedouin families, one with pediatric DCM and the other with DCM and ventricular arrhythmias at young adulthood searching for the causative mutation by exome sequencing we identified the p.(D117N) variant in Cypher/ZASP. However, p.(D117N) did not segregate as the causative mutation in these families, i.e. it was not present in some patients and was found in several individuals who had no clinical manifestations. Furthermore, the carrier frequency in the Bedouin population of origin is estimated to be 5.2%, which is much higher than the incidence of idiopathic DCM in this population. Thus, our data support the notion that the p.(D117N) variant in Cypher/ZASP is not a causative mutation in the families tested by us. The results also indicates that at least in some cases, the p.(D117N) in Cypher/ZASP is not a causative mutation and the role of D117N in Cypher/ZASP in cardiac pathologies should be further clarified and re-evaluated. PMID:26419279

  11. Homozygous EEF1A2 mutation causes dilated cardiomyopathy, failure to thrive, global developmental delay, epilepsy and early death.

    PubMed

    Cao, Siqi; Smith, Laura L; Padilla-Lopez, Sergio R; Guida, Brandon S; Blume, Elizabeth; Shi, Jiahai; Morton, Sarah U; Brownstein, Catherine A; Beggs, Alan H; Kruer, Michael C; Agrawal, Pankaj B

    2017-09-15

    Eukaryotic elongation factor 1A (EEF1A), is encoded by two distinct isoforms, EEF1A1 and EEF1A2; whereas EEF1A1 is expressed almost ubiquitously, EEF1A2 expression is limited such that it is only detectable in skeletal muscle, heart, brain and spinal cord. Currently, the role of EEF1A2 in normal cardiac development and function is unclear. There have been several reports linking de novo dominant EEF1A2 mutations to neurological issues in humans. We report a pair of siblings carrying a homozygous missense mutation p.P333L in EEF1A2 who exhibited global developmental delay, failure to thrive, dilated cardiomyopathy and epilepsy, ultimately leading to death in early childhood. A third sibling also died of a similar presentation, but DNA was unavailable to confirm the mutation. Functional genomic analysis was performed in S. cerevisiae and zebrafish. In S. cerevisiae, there was no evidence for a dominant-negative effect. Previously identified putative de novo mutations failed to complement yeast strains lacking the EEF1A ortholog showing a major growth defect. In contrast, the introduction of the mutation seen in our family led to a milder growth defect. To evaluate its function in zebrafish, we knocked down eef1a2 expression using translation blocking and splice-site interfering morpholinos. EEF1A2-deficient zebrafish had skeletal muscle weakness, cardiac failure and small heads. Human EEF1A2 wild-type mRNA successfully rescued the morphant phenotype, but mutant RNA did not. Overall, EEF1A2 appears to be critical for normal heart function in humans, and its deficiency results in clinical abnormalities in neurologic function as well as in skeletal and cardiac muscle defects. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. T1 Measurements Identify Extracellular Volume Expansion in Hypertrophic Cardiomyopathy Sarcomere Mutation Carriers With and Without Left Ventricular Hypertrophy

    PubMed Central

    Ho, Carolyn Y.; Abbasi, Siddique A.; Neilan, Tomas G.; Shah, Ravi V.; Chen, Yucheng; Heydari, Bobak; Cirino, Allison L.; Lakdawala, Neal K.; Orav, E. John; González, Arantxa; López, Begoña; Díez, Javier; Jerosch-Herold, Michael; Kwong, Raymond Y.

    2013-01-01

    Background Myocardial fibrosis is a hallmark of hypertrophic cardiomyopathy (HCM) and a potential substrate for arrhythmias and heart failure. Sarcomere mutations appear to induce profibrotic changes before left ventricular hypertrophy (LVH) develops. To further evaluate these processes, we used cardiac magnetic resonance (CMR) with T1 measurements on a genotyped HCM population to quantify myocardial extracellular volume (ECV). Methods and Results Sarcomere mutation carriers with LVH (G+/LVH+, n = 37) and without LVH (G+/LVH−, n = 29); HCM patients without mutations (sarcomere-negative HCM, n = 11); and healthy controls (n = 11) underwent contrast CMR, measuring T1 times pre- and post-gadolinium infusion. Concurrent echocardiography and serum biomarkers of collagen synthesis, hemodynamic stress, and myocardial injury were also available in a subset. Compared to controls, ECV was increased in patients with overt HCM, as well as G+/LVH− mutation carriers (ECV= 0.36±0.01, 0.33±0.01, 0.27±0.01 in G+/LVH+, G+/LVH−, controls, respectively, P≤0.001 for all comparisons). ECV correlated with NT-proBNP levels (r = 0.58, P<0.001) and global E’ velocity (r = −0.48, P<0.001). Late gadolinium enhancement (LGE) was present in >60% of overt HCM patients but absent from G+/LVH− subjects. Both ECV and LGE were more extensive in sarcomeric HCM than sarcomere-negative HCM. Conclusions Myocardial ECV is increased in HCM sarcomere mutation carriers even in the absence of LVH. These data provide additional support that fibrotic remodeling is triggered early in disease pathogenesis. Quantifying ECV may help characterize the development myocardial fibrosis in HCM and ultimately assist in developing novel disease-modifying therapy, targeting interstitial fibrosis. PMID:23549607

  13. [Analysis of cardiac troponin C gene TNNC1 c. G175C mutation in a Chinese pedigree with familial hypertrophic cardiomyopathy and the correlation between genotype and phenotype].

    PubMed

    Xing, X B; Liu, F S; Wang, F; Song, L; Zhao, W N; Liu, J; Zhang, K C; Zhu, Y Z; Shang, X F; Li, R; Liang, Y

    2016-12-24

    Objective: To investigate the genotype-phenotype correlation in Chinese familial hypertrophic cardiomyopathy (HCM )focusing on the cardiac troponin C gene TNNC1 c. G175C mutation. Methods: All family members of a Chinese pedigree with hypertrophic cardiomyopathy admitted in Third People's Hospital of Qingdao in February 2005 and 200 healthy volunteers were included in this study. The coding exons of 30 hypertrophic cardiomyopathy associated genes were identified by whole exons amplification and high-throughput sequencing in the proband, and the identified mutation were further detected through bi-directional Sanger sequencing in all family members and 200 healthy volunteers. Pedigree analysis included clinical manifestation, physical examination, ECG and echocardiogram. Results: A missense mutation c. G175C was identified in the TNNC1 gene in 2 family members, which resulted in a glutamic acid (E) to glutamine (Q) exchange at amino acid residue 59. A mutation c. A1319G was identified in the MYLK2 gene in 1 family member, which resulted in a lysine (K) to arginine (R) exchange at amino acid residue 440. These mutations were absent in 200 healthy controls. The proband carried the two kinds of mutations and expressed various clinical manifestations of heart failure and had history of ventricular tachycardia, paraxial atrial fibrillation, pacemaker implantation, electrocardiogram showed right bundle branch block and echocardiography examination evidenced thickened interventricular septum (23.3 mm) and apex and reduced wall motion of these segments. The daughter of the proband carried the TNNC1 c. G175C mutation and was also diagnosed with asymptomatic HCM by echocardiography with thickened interventricular septum (19 mm) and apex (15 mm). Conclusion: The novel missense mutation of TNNC1 c. G175C might be the disease-causing gene mutation in this Chinese pedigree with familiar HCM.

  14. Dystrophin-Deficient Cardiomyopathy.

    PubMed

    Kamdar, Forum; Garry, Daniel J

    2016-05-31

    Dystrophinopathies are a group of distinct neuromuscular diseases that result from mutations in the structural cytoskeletal Dystrophin gene. Dystrophinopathies include Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD), X-linked dilated cardiomyopathy, as well as DMD and BMD female carriers. The primary presenting symptom in most dystrophinopathies is skeletal muscle weakness. However, cardiac muscle is also a subtype of striated muscle and is similarly affected in many of the muscular dystrophies. Cardiomyopathies associated with dystrophinopathies are an increasingly recognized manifestation of these neuromuscular disorders and contribute significantly to their morbidity and mortality. Recent studies suggest that these patient populations would benefit from cardiovascular therapies, annual cardiovascular imaging studies, and close follow-up with cardiovascular specialists. Moreover, patients with DMD and BMD who develop end-stage heart failure may benefit from the use of advanced therapies. This review focuses on the pathophysiology, cardiac involvement, and treatment of cardiomyopathy in the dystrophic patient. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  15. Hypertrophic cardiomyopathy in the Sphynx cat: a retrospective evaluation of clinical presentation and heritable etiology.

    PubMed

    Silverman, Sarah J; Stern, Joshua A; Meurs, Kathryn M

    2012-04-01

    Hypertrophic cardiomyopathy is an inherited disease in some feline breeds including the Maine Coon and Ragdoll. In these breeds, distinct causative genetic mutations have been identified. The two breeds appear to have slightly different clinical presentations, including age of diagnosis. The observation that these two breeds may have different clinical presentations, as well as different genetic mutations, suggests that hypertrophic cardiomyopathy is a diverse disease in the cat. Hypertrophic cardiomyopathy is poorly described in the Sphynx. The objective of this study was to phenotypically characterize Sphynx hypertrophic cardiomyopathy and to evaluate for a familial etiology. Records of 18 affected cats (11 female, seven male) were evaluated. Age of affected cats ranged from 0.5 to 7 years (median, 2 years). Four affected cats were from a single family and included an affected cat in each of four generations (three females, one male). Further studies are warranted to evaluate for a causative mutation and better classify the phenotypic expression.

  16. [Genetic diagnostics for cardiomyopathies].

    PubMed

    Czepluch, Frauke; Wollnik, Bernd; Hasenfuß, Gerd

    2017-05-01

    Cardiomyopathies often have a genetic etiology. New genetic diagnostic strategies based on next generation sequencing (NGS)-approaches will continuously increase our knowledge about the genetic basis of cardiomyopathies within the following years. Diagnostics and therapy of rare, genetically-induced cardiac diseases increasingly require special cardiac and genetic knowledge. Interestingly, mutations in the same gene or even identical gene mutations can be associated with different cardiomyopathy phenotypes and can exhibit incomplete penetrance or variable expressivity. In the future, the correct interpretation and classification of novel gene variants identified in patients with inherited cardiomyopathy forms will represent a great challenge. Genetic counselling and - if appropriate - subsequent genetic testing for cardiomyopathy patients and their asymptomatic relatives is essential for an early diagnosis of the disease, a prognostic evaluation and possibly for the start of preventive or therapeutic measures. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Exploration of pathomechanisms triggered by a single-nucleotide polymorphism in titin's I-band: the cardiomyopathy-linked mutation T2580I

    PubMed Central

    Fleming, Jennifer R.; Anderson, Brian R.; Williams, Rhys; Franke, Barbara; Bullard, Belinda; Granzier, Henk

    2016-01-01

    Missense single-nucleotide polymorphisms (mSNPs) in titin are emerging as a main causative factor of heart failure. However, distinguishing between benign and disease-causing mSNPs is a substantial challenge. Here, we research the question of whether a single mSNP in a generic domain of titin can affect heart function as a whole and, if so, how. For this, we studied the mSNP T2850I, seemingly linked to arrhythmogenic right ventricular cardiomyopathy (ARVC). We used structural biology, computational simulations and transgenic muscle in vivo methods to track the effect of the mutation from the molecular to the organismal level. The data show that the T2850I exchange is compatible with the domain three-dimensional fold, but that it strongly destabilizes it. Further, it induces a change in the conformational dynamics of the titin chain that alters its reactivity, causing the formation of aberrant interactions in the sarcomere. Echocardiography of knock-in mice indicated a mild diastolic dysfunction arising from increased myocardial stiffness. In conclusion, our data provide evidence that single mSNPs in titin's I-band can alter overall muscle behaviour. Our suggested mechanisms of disease are the development of non-native sarcomeric interactions and titin instability leading to a reduced I-band compliance. However, understanding the T2850I-induced ARVC pathology mechanistically remains a complex problem and will require a deeper understanding of the sarcomeric context of the titin region affected. PMID:27683155

  18. Targeted 46-gene and clinical exome sequencing for mutations causing cardiomyopathies.

    PubMed

    Waldmüller, Stephan; Schroeder, Christopher; Sturm, Marc; Scheffold, Thomas; Imbrich, Kerstin; Junker, Sandra; Frische, Christian; Hofbeck, Michael; Bauer, Peter; Bonin, Michael; Gawaz, Meinrad; Gramlich, Michael

    2015-10-01

    With the implementation of high-throughput sequencing protocols, the exhaustive scanning of known and candidate disease genes has become a feasible approach to genetic testing of patients with cardiomyopathy. A primary objective of the present study was to assess the performance characteristics of a 46-gene next-generation sequencing (NGS) assay that targets well-established cardiomyopathy genes. A total of 25 samples were analyzed. Twelve of those had previously been sequenced using resequencing arrays and served as reference samples for the assessment of the assay's performance characteristics. The remaining 13 samples were derived from consecutive patients. Both the analytical sensitivity and the specificity of the assay were 100% and the percentage of low-coverage bases was 0.4%, at an average read depth of 210×. In order to assess the diagnostic yield of the test, 13 consecutive samples representing cases of Dilated (n = 7), Hypertrophic (n = 4) and Left Ventricular Non-Compaction Cardiomyopathy (n = 2), were subjected to the 46-gene NGS assay. Including predicted pathogenic variants in the gene TTN, a total of 22 variants (11 novel) were detected in 10 patients, with a clear preponderance of variants of unknown pathogenicity (class 3 variants, 21/22, 95%). Of the seven DCM cases, two were digenic, involving variants in the genes MYH7 and RBM20 in one case and in DSP and TTN in the other case. Three other patients carried single TTN variants predicted to be pathogenic. Of the four HCM patients, one was trigenic (LAMA4, PKP2 and TTN) and three were digenic (DSP and TTN, MYH7 and NEXN, NEXN and TTN, respectively). As to LVNC, one of the two patients had one variant in the gene ABCC9 and two predicted pathogenic variants in the gene TTN. Strikingly, out of the thirteen investigated cases, only a single case exhibited a likely pathogenic or pathogenic variant justifying a positive test report. The percentage of inconclusive cases thus amounted to 69%. Three cases

  19. Tissue Doppler imaging and plasma N-terminal probrain natriuretic peptide for the identification of hypertrophic cardiomyopathy mutation carriers.

    PubMed

    Silva, Doroteia; Madeira, Hugo; Almeida, Augusto; Brito, Dulce

    2013-10-01

    Previous studies have shown that tissue Doppler imaging (TDI) is able to identify mutation carriers of hypertrophic cardiomyopathy (HC) before the development of the clinical phenotype. However, data are scarce and have sometimes been controversial. We performed a systematic study that included conventional echocardiography, TDI, and plasma NT-probrain natriuretic peptide (NT-proBNP) measurement to evaluate the parameters that could identify HC mutation carriers. A total of 138 genotyped subjects were included and divided into 3 groups: group 1, those with HC (n = 62); group 2, mutation carriers (first-degree relatives with a positive genotype but negative phenotype; n = 34); and group 3, controls (first-degree relatives with a negative genotype and phenotype; n = 42). An echocardiographic study, including TDI, was performed on all subjects, and a TDI-derived index (global function index) was also determined. The age-adjusted mean differences in the echocardiographic and TDI parameters and NT-proBNP levels were compared among the 3 groups. Compared with the HC group, the carriers had significantly higher mean E' velocities, lower mean E/E' ratio, higher mean S' velocities, and lower mean global function index and NT-proBNP values. The carriers and controls did not differ significantly either in the echocardiographic parameters studied or in the NT-proBNP levels. In conclusion, the echocardiographic and TDI parameters and NT-proBNP levels cannot be used to identify the HC mutation carrier state and therefore do not appear to be reliable for the purpose of making a preclinical diagnosis of the disease.

  20. The structural and functional effects of the familial hypertrophic cardiomyopathy-linked cardiac troponin C mutation, L29Q.

    PubMed

    Robertson, Ian M; Sevrieva, Ivanka; Li, Monica X; Irving, Malcolm; Sun, Yin-Biao; Sykes, Brian D

    2015-10-01

    Familial hypertrophic cardiomyopathy (FHC) is characterized by severe abnormal cardiac muscle growth. The traditional view of disease progression in FHC is that an increase in the Ca(2+)-sensitivity of cardiac muscle contraction ultimately leads to pathogenic myocardial remodeling, though recent studies suggest this may be an oversimplification. For example, FHC may be developed through altered signaling that prevents downstream regulation of contraction. The mutation L29Q, found in the Ca(2+)-binding regulatory protein in heart muscle, cardiac troponin C (cTnC), has been linked to cardiac hypertrophy. However, reports on the functional effects of this mutation are conflicting, and our goal was to combine in vitro and in situ structural and functional data to elucidate its mechanism of action. We used nuclear magnetic resonance and circular dichroism to solve the structure and characterize the backbone dynamics and stability of the regulatory domain of cTnC with the L29Q mutation. The overall structure and dynamics of cTnC were unperturbed, although a slight rearrangement of site 1, an increase in backbone flexibility, and a small decrease in protein stability were observed. The structure and function of cTnC was also assessed in demembranated ventricular trabeculae using fluorescence for in situ structure. L29Q reduced the cooperativity of the Ca(2+)-dependent structural change in cTnC in trabeculae under basal conditions and abolished the effect of force-generating myosin cross-bridges on this structural change. These effects could contribute to the pathogenesis of this mutation.

  1. Point mutations in human beta cardiac myosin heavy chain have differential effects on sarcomeric structure and assembly: an ATP binding site change disrupts both thick and thin filaments, whereas hypertrophic cardiomyopathy mutations display normal assembly.

    PubMed

    Becker, K D; Gottshall, K R; Hickey, R; Perriard, J C; Chien, K R

    1997-04-07

    Hypertrophic cardiomyopathy is a human heart disease characterized by increased ventricular mass, focal areas of fibrosis, myocyte, and myofibrillar disorganization. This genetically dominant disease can be caused by mutations in any one of several contractile proteins, including beta cardiac myosin heavy chain (beta MHC). To determine whether point mutations in human beta MHC have direct effects on interfering with filament assembly and sarcomeric structure, full-length wild-type and mutant human beta MHC cDNAs were cloned and expressed in primary cultures of neonatal rat ventricular cardiomyocytes (NRC) under conditions that promote myofibrillogenesis. A lysine to arginine change at amino acid 184 in the consensus ATP binding sequence of human beta MHC resulted in abnormal subcellular localization and disrupted both thick and thin filament structure in transfected NRC. Diffuse beta MHC K184R protein appeared to colocalize with actin throughout the myocyte, suggesting a tight interaction of these two proteins. Human beta MHC with S472V mutation assembled normally into thick filaments and did not affect sarcomeric structure. Two mutant myosins previously described as causing human hypertrophic cardiomyopathy, R249Q and R403Q, were competent to assemble into thick filaments producing myofibrils with well defined I bands, A bands, and H zones. Coexpression and detection of wild-type beta MHC and either R249Q or R403Q proteins in the same myocyte showed these proteins are equally able to assemble into the sarcomere and provided no discernible differences in subcellular localization. Thus, human beta MHC R249Q and R403Q mutant proteins were readily incorporated into NRC sarcomeres and did not disrupt myofilament formation. This study indicates that the phenotype of myofibrillar disarray seen in HCM patients which harbor either of these two mutations may not be directly due to the failure of the mutant myosin heavy chain protein to assemble and form normal sarcomeres

  2. TMEM43 mutation p.S358L alters intercalated disc protein expression and reduces conduction velocity in arrhythmogenic right ventricular cardiomyopathy.

    PubMed

    Siragam, Vinayakumar; Cui, Xuezhi; Masse, Stephane; Ackerley, Cameron; Aafaqi, Shabana; Strandberg, Linn; Tropak, Michael; Fridman, Michael D; Nanthakumar, Kumaraswamy; Liu, Jun; Sun, Yu; Su, Bin; Wang, Caroline; Liu, Xiaoru; Yan, Yuqing; Mendlowitz, Ariel; Hamilton, Robert M

    2014-01-01

    Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a myocardial disease characterized by fibro-fatty replacement of myocardium in the right ventricular free wall and frequently results in life-threatening ventricular arrhythmias and sudden cardiac death. A heterozygous missense mutation in the transmembrane protein 43 (TMEM43) gene, p.S358L, has been genetically identified to cause autosomal dominant ARVC type 5 in a founder population from the island of Newfoundland, Canada. Little is known about the function of the TMEM43 protein or how it leads to the pathogenesis of ARVC. We sought to determine the distribution of TMEM43 and the effect of the p.S358L mutation on the expression and distribution of various intercalated (IC) disc proteins as well as functional effects on IC disc gap junction dye transfer and conduction velocity in cell culture. Through Western blot analysis, transmission electron microscopy (TEM), immunofluorescence (IF), and electrophysiological analysis, our results showed that the stable expression of p.S358L mutation in the HL-1 cardiac cell line resulted in decreased Zonula Occludens (ZO-1) expression and the loss of ZO-1 localization to cell-cell junctions. Junctional Plakoglobin (JUP) and α-catenin proteins were redistributed to the cytoplasm with decreased localization to cell-cell junctions. Connexin-43 (Cx43) phosphorylation was altered, and there was reduced gap junction dye transfer and conduction velocity in mutant TMEM43-transfected cells. These observations suggest that expression of the p.S358L mutant of TMEM43 found in ARVC type 5 may affect localization of proteins involved in conduction, alter gap junction function and reduce conduction velocity in cardiac tissue.

  3. A mutation in NFkB interacting protein 1 results in cardiomyopathy and abnormal skin development in wa3 mice.

    PubMed

    Herron, Bruce J; Rao, Cherie; Liu, Shanming; Laprade, Lisa; Richardson, James A; Olivieri, Emily; Semsarian, Chris; Millar, Sarah E; Stubbs, Lisa; Beier, David R

    2005-03-01

    We have identified waved 3 (wa3), a novel recessive mutation that causes abnormalities of the heart and skin. The cardiac defect results in a severe and rapidly progressive dilated cardiomyopathy. We identified the gene mutated in these mice, which we call NFkB interacting protein1 (Nkip1), using positional cloning. Nkip1 is expressed in skin, heart and vascular endothelium and shares homology with a small family of proteins that play a role in the regulation of transcription factors. A C-terminal fragment of this protein was previously identified as the RelA associated inhibitor (RAI). We show that the full-length protein is larger than previously described, and we confirm that it interacts with NFkB in vivo. Expression analysis of genes known to be regulated by NFkB revealed that Intercellular adhesion molecule 1 (Icam1) expression is consistently elevated in mutant mice. This result suggests that wa3 mutant mice represent a potentially important model for the analysis of the role of inflammatory processes in heart disease.

  4. MYBPC3 mutations are associated with a reduced super-relaxed state in patients with hypertrophic cardiomyopathy.

    PubMed

    McNamara, James W; Li, Amy; Lal, Sean; Bos, J Martijn; Harris, Samantha P; van der Velden, Jolanda; Ackerman, Michael J; Cooke, Roger; Dos Remedios, Cristobal G

    2017-01-01

    The "super-relaxed state" (SRX) of myosin represents a 'reserve' of motors in the heart. Myosin heads in the SRX are bound to the thick filament and have a very low ATPase rate. Changes in the SRX are likely to modulate cardiac contractility. We previously demonstrated that the SRX is significantly reduced in mouse cardiomyocytes lacking cardiac myosin binding protein-C (cMyBP-C). Here, we report the effect of mutations in the cMyBP-C gene (MYBPC3) using samples from human patients with hypertrophic cardiomyopathy (HCM). Left ventricular (LV) samples from 11 HCM patients were obtained following myectomy surgery to relieve LV outflow tract obstruction. HCM samples were genotyped as either MYBPC3 mutation positive (MYBPC3mut) or negative (HCMsmn) and were compared to eight non-failing donor hearts. Compared to donors, only MYBPC3mut samples display a significantly diminished SRX, characterised by a decrease in both the number of myosin heads in the SRX and the lifetime of ATP turnover. These changes were not observed in HCMsmn samples. There was a positive correlation (p < 0.01) between the expression of cMyBP-C and the proportion of myosin heads in the SRX state, suggesting cMyBP-C modulates and maintains the SRX. Phosphorylation of the myosin regulatory light chain in MYBPC3mut samples was significantly decreased compared to the other groups, suggesting a potential mechanism to compensate for the diminished SRX. We conclude that by altering both contractility and sarcomeric energy requirements, a reduced SRX may be an important disease mechanism in patients with MYBPC3 mutations.

  5. Gene-Targeted Mice with the Human Troponin T R141W Mutation Develop Dilated Cardiomyopathy with Calcium Desensitization

    PubMed Central

    Sharma, Ravi K.; Wang, David Wen Rui; Smith, Stephen H.; Banerjee, Sanjay K.; Huang, Xueyin N.; Gifford, Lindsey M.; Pruce, Michele L.; Gabris, Bethann E.; Saba, Samir; Shroff, Sanjeev G.; Ahmad, Ferhaan

    2016-01-01

    Most studies of the mechanisms leading to hereditary dilated cardiomyopathy (DCM) have been performed in reconstituted in vitro systems. Genetically engineered murine models offer the opportunity to dissect these mechanisms in vivo. We generated a gene-targeted knock-in murine model of the autosomal dominant Arg141Trp (R141W) mutation in Tnnt2, which was first described in a human family with DCM. Mice heterozygous for the mutation (Tnnt2R141W/+) recapitulated the human phenotype, developing left ventricular dilation and reduced contractility. There was a gene dosage effect, so that the phenotype in Tnnt2R141W/+mice was attenuated by transgenic overexpression of wildtype Tnnt2 mRNA transcript. Male mice exhibited poorer survival than females. Biomechanical studies on skinned fibers from Tnnt2R141W/+ hearts showed a significant decrease in pCa50 (-log[Ca2+] required for generation of 50% of maximal force) relative to wildtype hearts, indicating Ca2+ desensitization. Optical mapping studies of Langendorff-perfused Tnnt2R141W/+ hearts showed marked increases in diastolic and peak systolic intracellular Ca2+ ([Ca2+]i), and prolonged systolic rise and diastolic fall of [Ca2+]i. Perfused Tnnt2R141W/+ hearts had slower intrinsic rates in sinus rhythm and reduced peak heart rates in response to isoproterenol. Tnnt2R141W/+ hearts exhibited a reduction in phosphorylated phospholamban relative to wildtype mice. However, crossing Tnnt2R141W/+ mice with phospholamban knockout (Pln-/-) mice, which exhibit increased Ca2+ transients and contractility, had no effect on the DCM phenotype. We conclude that the Tnnt2 R141W mutation causes a Ca2+ desensitization and mice adapt by increasing Ca2+-transient amplitudes, which impairs Ca2+ handling dynamics, metabolism and responses to β-adrenergic activation. PMID:27936050

  6. Functional Effects of a Restrictive Cardiomyopathy linked Cardiac Troponin I mutation (R145W) in Transgenic Mice

    PubMed Central

    Wen, Yuhui; Xu, Yuanyuan; Wang, Yingcai; Pinto, Jose Renato; Potter, James D.; Kerrick, W. Glenn L.

    2009-01-01

    The human cardiac troponin I (hcTnI) mutation, R145W, has been associated with restrictive cardiomyopathy. In this study, simultaneous measurements of ATPase activity and force in transgenic skinned papillary fibers from hcTnI R145W transgenic mice (Tg-R145W) were explored. The Tg-R145W fibers showed a ~13 to ~16% increase in the maximal Ca2+ activated force and ATPase activity compared to hcTnI wild type transgenic mice (Tg-WT). The force generating cross-bridge turnover rate (g) and energy cost (ATPase/force) was the same in all groups of fibers. Also, the Tg-R145W fibers showed a large increase in the Ca2+ sensitivity of both force development and ATPase. In intact fibers, the mutation caused prolonged force and intracellular [Ca2+] transients and increased time to peak force. Analysis of force and Ca2+ transients showed that there was a 40% increase in peak force in Tg- R145W muscles which was likely due to the increased Ca2+ transient duration. The above cited results suggest that: 1) there would be an increase in resistance to ventricular filling during diastole resulting from the prolonged force and Ca2+ transients that would result in a decrease in ventricular filling (diastolic dysfunction); and 2) a large (approximately 53%) increase in force during systole which may help to compensate, in part, for the diastolic dysfunction. These functional results help to explain the mechanisms by which these mutations give rise to the restrictive phenotype. PMID:19651143

  7. Mitochondrial cardiomyopathy and related arrhythmias.

    PubMed

    Montaigne, David; Pentiah, Anju Duva

    2015-06-01

    Mitochondrial dysfunction has been shown to be involved in the pathophysiology of arrhythmia, not only in inherited cardiomyopathy due to specific mutations in the mitochondrial DNA but also in acquired cardiomyopathy such as ischemic or diabetic cardiomyopathy. This article briefly discusses the basics of mitochondrial physiology and details the mechanisms generating arrhythmias due to mitochondrial dysfunction. The clinical spectrum of inherited and acquired cardiomyopathies associated with mitochondrial dysfunction is discussed followed by general aspects of the management of mitochondrial cardiomyopathy and related arrhythmia. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Intellectual disability and non-compaction cardiomyopathy with a de novo NONO mutation identified by exome sequencing.

    PubMed

    Reinstein, Eyal; Tzur, Shay; Cohen, Rony; Bormans, Concetta; Behar, Doron M

    2016-11-01

    Pathogenic variants in the NONO gene have been most recently implicated in X-linked intellectual disability syndrome. This observation has been supported by studies of NONO-deficient mice showing that NONO has an important role in regulating inhibitory synaptic activity. Thus far, the phenotypic spectrum of affected patients remains limited. We applied whole exome sequencing to members of a family in which the proband was presented with a complex phenotype consisting of developmental delay, dysmorphism, and non-compaction cardiomyopathy. Exome analysis identified a novel de novo splice-site variant c.1171+1G>T in exon 11 of NONO gene that is suspected to abolish the donor splicing site. Thus, we propose that the phenotypic spectrum of NONO-related disorder is much broader than described and that pathogenic variants in NONO cause a recognizable phenotype.

  9. Prevalence and Phenotypic Expression of Mutations in the MYH7, MYBPC3 and TNNT2 Genes in Families with Hypertrophic Cardiomyopathy in the South of Brazil: A Cross-Sectional Study

    PubMed Central

    Mattos, Beatriz Piva e; Scolari, Fernando Luís; Torres, Marco Antonio Rodrigues; Simon, Laura; de Freitas, Valéria Centeno; Giugliani, Roberto; Matte, Úrsula

    2016-01-01

    Background: Mutations in sarcomeric genes are found in 60-70% of individuals with familial forms of hypertrophic cardiomyopathy (HCM). However, this estimate refers to northern hemisphere populations. The molecular-genetic profile of HCM has been subject of few investigations in Brazil, particularly in the south of the country. Objective: To investigate mutations in the sarcomeric genes MYH7, MYBPC3 and TNNT2 in a cohort of HCM patients living in the extreme south of Brazil, and to evaluate genotype-phenotype associations. Methods: Direct DNA sequencing of all encoding regions of three sarcomeric genes was conducted in 43 consecutive individuals of ten unrelated families. Results: Mutations for CMH have been found in 25 (58%) patients of seven (70%) of the ten study families. Fourteen (56%) individuals were phenotype-positive. All mutations were missense, four (66%) in MYH7 and two (33%) in MYBPC3. We have not found mutations in the TNNT2 gene. Mutations in MYH7 were identified in 20 (47%) patients of six (60%) families. Two of them had not been previously described. Mutations in MYBPC3 were found in seven (16%) members of two (20%) families. Two (5%) patients showed double heterozygosis for both genes. The mutations affected different domains of encoded proteins and led to variable phenotypic expression. A family history of HCM was identified in all genotype-positive individuals. Conclusions: In this first genetic-molecular analysis carried out in the south of Brazil, we found mutations in the sarcomeric genes MYH7 and MYBPC3 in 58% of individuals. MYH7-related disease was identified in the majority of cases with mutation. PMID:27737317

  10. Restrictive cardiomyopathy

    MedlinePlus

    Cardiomyopathy - restrictive; Infiltrative cardiomyopathy; Idiopathic myocardial fibrosis ... In a case of restrictive cardiomyopathy, the heart muscle is of normal size or slightly enlarged. Most of the time, it also pumps normally. However, it does ...

  11. Identification of mutations in Colombian patients affected with Fabry disease.

    PubMed

    Uribe, Alfredo; Mateus, Heidi Eliana; Prieto, Juan Carlos; Palacios, Maria Fernanda; Ospina, Sandra Yaneth; Pasqualim, Gabriela; da Silveira Matte, Ursula; Giugliani, Roberto

    2015-12-15

    Fabry Disease (FD) is an X-linked inborn error of glycosphingolipid catabolism, caused by a deficiency of the lisosomal α-galactosidase A (AGAL). The disorder leads to a vascular disease secondary to the involvement of kidney, heart and the central nervous system. The mutation analysis is a valuable tool for diagnosis and genetic counseling. Although more than 600 mutations have been identified, most mutations are private. Our objective was to describe the analysis of nine Colombian patients with Fabry disease by automated sequencing of the seven exons of the GLA gene. Two novel mutations were identified in two patients affected with the classical subtype of FD, in addition to other 6 mutations previously reported. The present study confirms the heterogeneity of mutations in Fabry disease and the importance of molecular analysis for genetic counseling, female heterozygotes detection as well as therapeutic decisions. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Mutations in COA6 cause cytochrome c oxidase deficiency and neonatal hypertrophic cardiomyopathy.

    PubMed

    Baertling, Fabian; A M van den Brand, Mariel; Hertecant, Jozef L; Al-Shamsi, Aisha; P van den Heuvel, Lambert; Distelmaier, Felix; Mayatepek, Ertan; Smeitink, Jan A; Nijtmans, Leo G J; Rodenburg, Richard J T

    2015-01-01

    COA6/C1ORF31 is involved in cytochrome c oxidase (complex IV) biogenesis. We present a new pathogenic COA6 variant detected in a patient with neonatal hypertrophic cardiomyopathy and isolated complex IV deficiency. For the first time, clinical details about a COA6-deficient patient are given and patient fibroblasts are functionally characterized: COA6 protein is undetectable and steady-state levels of complex IV and several of its subunits are reduced. The monomeric COX1 assembly intermediate accumulates. Using pulse-chase experiments, we demonstrate an increased turnover of mitochondrial encoded complex IV subunits. Although monomeric complex IV is decreased in patient fibroblasts, the CI/CIII2 /CIVn -supercomplexes remain unaffected. Copper supplementation shows a partial rescue of complex IV deficiency in patient fibroblasts. We conclude that COA6 is required for complex IV subunit stability. Furthermore, the proposed role in the copper delivery pathway to complex IV subunits is substantiated and a therapeutic lead for COA6-deficient patients is provided.

  13. A Restrictive Cardiomyopathy Mutation in an Invariant Proline at the Myosin Head/Rod Junction Enhances Head Flexibility and Function, Yielding Muscle Defects in Drosophila.

    PubMed

    Achal, Madhulika; Trujillo, Adriana S; Melkani, Girish C; Farman, Gerrie P; Ocorr, Karen; Viswanathan, Meera C; Kaushik, Gaurav; Newhard, Christopher S; Glasheen, Bernadette M; Melkani, Anju; Suggs, Jennifer A; Moore, Jeffrey R; Swank, Douglas M; Bodmer, Rolf; Cammarato, Anthony; Bernstein, Sanford I

    2016-06-05

    An "invariant proline" separates the myosin S1 head from its S2 tail and is proposed to be critical for orienting S1 during its interaction with actin, a process that leads to muscle contraction. Mutation of the invariant proline to leucine (P838L) caused dominant restrictive cardiomyopathy in a pediatric patient (Karam et al., Congenit. Heart Dis. 3:138-43, 2008). Here, we use Drosophila melanogaster to model this mutation and dissect its effects on the biochemical and biophysical properties of myosin, as well as on the structure and physiology of skeletal and cardiac muscles. P838L mutant myosin isolated from indirect flight muscles of transgenic Drosophila showed elevated ATPase and actin sliding velocity in vitro. Furthermore, the mutant heads exhibited increased rotational flexibility, and there was an increase in the average angle between the two heads. Indirect flight muscle myofibril assembly was minimally affected in mutant homozygotes, and isolated fibers displayed normal mechanical properties. However, myofibrils degraded during aging, correlating with reduced flight abilities. In contrast, hearts from homozygotes and heterozygotes showed normal morphology, myofibrillar arrays, and contractile parameters. When P838L was placed in trans to Mhc(5), an allele known to cause cardiac restriction in flies, it did not yield the constricted phenotype. Overall, our studies suggest that increased rotational flexibility of myosin S1 enhances myosin ATPase and actin sliding. Moreover, instability of P838L myofibrils leads to decreased function during aging of Drosophila skeletal muscle, but not cardiac muscle, despite the strong evolutionary conservation of the P838 residue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Facilitated Cross-Bridge Interactions with Thin Filaments by Familial Hypertrophic Cardiomyopathy Mutations in α-Tropomyosin

    PubMed Central

    Wang, Fang; Brunet, Nicolas M.; Grubich, Justin R.; Bienkiewicz, Ewa A.; Asbury, Thomas M.; Compton, Lisa A.; Mihajlović, Goran; Miller, Victor F.; Chase, P. Bryant

    2011-01-01

    Familial hypertrophic cardiomyopathy (FHC) is a disease of cardiac sarcomeres. To identify molecular mechanisms underlying FHC pathology, functional and structural differences in three FHC-related mutations in recombinant α-Tm (V95A, D175N, and E180G) were characterized using both conventional and modified in vitro motility assays and circular dichroism spectroscopy. Mutant Tm's exhibited reduced α-helical structure and increased unordered structure. When thin filaments were fully occupied by regulatory proteins, little or no motion was detected at pCa 9, and maximum speed (pCa 5) was similar for all tropomyosins. Ca2+-responsiveness of filament sliding speed was increased either by increased pCa50 (V95A), reduced cooperativity n (D175N), or both (E180G). When temperature was increased, thin filaments with E180G exhibited dysregulation at temperatures ~10°C lower, and much closer to body temperature, than WT. When HMM density was reduced, thin filaments with D175N required fewer motors to initiate sliding or achieve maximum sliding speed. PMID:22187526

  15. Cardiomyopathy-related mutation (A30V) in mouse cardiac troponin T divergently alters the magnitude of stretch activation in α- and β-myosin heavy chain fibers.

    PubMed

    Mickelson, Alexis V; Gollapudi, Sampath K; Chandra, Murali

    2017-01-01

    The present study investigated the functional consequences of the human hypertrophic cardiomyopathy (HCM) mutation A28V in cardiac troponin T (TnT). The A28V mutation is located within the NH2 terminus of TnT, a region known to be important for full activation of cardiac thin filaments. The functional consequences of the A28V mutation in TnT remain unknown. Given how α- and β-myosin heavy chain (MHC) isoforms differently alter the functional effect of the NH2 terminus of TnT, we hypothesized that the A28V-induced effects would be differently modulated by α- and β-MHC isoforms. Recombinant wild-type mouse TnT (TnTWT) and the mouse equivalent of the human A28V mutation (TnTA30V) were reconstituted into detergent-skinned cardiac muscle fibers extracted from normal (α-MHC) and transgenic (β-MHC) mice. Dynamic and steady-state contractile parameters were measured in reconstituted muscle fibers. Step-like length perturbation experiments demonstrated that TnTA30V decreased the magnitude of the muscle length-mediated recruitment of new force-bearing cross bridges (ER) by 30% in α-MHC fibers. In sharp contrast, TnTA30V increased ER by 55% in β-MHC fibers. Inferences drawn from other dynamic contractile parameters suggest that directional changes in ER in TnTA30V + α-MHC and TnTA30V + β-MHC fibers result from a divergent impact on cross bridge-regulatory unit (troponin-tropomyosin complex) cooperativity. TnTA30V-mediated effects on Ca(2+)-activated maximal tension and instantaneous muscle fiber stiffness (ED) were also divergently affected by α- and β-MHC. Our study demonstrates that TnTA30V + α-MHC and TnTA30V + β-MHC fibers show contrasting contractile phenotypes; however, only the observations from β-MHC fibers are consistent with the clinical data for A28V in humans.

  16. A lethal course of hypertrophic cardiomyopathy in Noonan syndrome due to a novel germline mutation in the KRAS gene: case study

    PubMed Central

    Nosan, Gregor; Bertok, Sara; Vesel, Samo; Yntema, Helger G.; Paro-Panjan, Darja

    2013-01-01

    Noonan syndrome is a relatively common and heterogeneous genetic disorder, including congenital heart defect in more than half of the cases. If the defect is not large, life expectancy is normal. Here we report on a case of an infant with Noonan syndrome and rapidly progressive hypertrophic cardiomyopathy with lethal outcome, in whom we identified a novel mutation in the KRAS gene. This heterozygous unclassified missense variant in exon 3: c.179G>T (p.Gly60Val) might be associated with a lethal form of Noonan syndrome. The malignant clinical course of the disease and the lethal outcome in an infant only a few months old might be connected to RAS-mitogen-activated protein kinase pathway hyperactivation, consequently promoting cell growth and proliferation, leading to rapidly progressive hypertrophic cardiomyopathy. Further biochemical and functional studies are needed to confirm this hypothesis. PMID:24382853

  17. Sarcomeric hypertrophic cardiomyopathy: genetic profile in a Portuguese population.

    PubMed

    Brito, Dulce; Miltenberger-Miltenyi, Gabriel; Vale Pereira, Sónia; Silva, Doroteia; Diogo, António Nunes; Madeira, Hugo

    2012-09-01

    Sarcomeric hypertrophic cardiomyopathy has heterogeneous phenotypic expressions, of which sudden cardiac death is the most feared. A genetic diagnosis is essential to identify subjects at risk in each family. The spectrum of disease-causing mutations in the Portuguese population is unknown. Seventy-seven unrelated probands with hypertrophic cardiomyopathy were systematically screened for mutations by PCR and sequencing of five sarcomeric genes: MYBPC3, MYH7, TNNT2, TNNI3 and MYL2. Familial cosegregation analysis was performed in most patients. Thirty-four different mutations were identified in 41 (53%) index patients, 71% with familial hypertrophic cardiomyopathy. The most frequently involved gene was MYBPC3 (66%) with 22 different mutations (8 novel) in 27 patients, followed by MYH7 (22%), TNNT2 (12%) and TNNI3 (2.6%). In three patients (7%), two mutations were found in MYBPC3 and/or MYH7. Additionally, 276 relatives were screened, leading to the identification of a mean of three other affected relatives for each pedigree with the familial form of the disease. Disease-associated mutations were identified mostly in familial hypertrophic cardiomyopathy, corroborating the idea that rarely studied genes may be implicated in sporadic forms. Private mutations are the rule, MYBPC3 being the most commonly involved gene. Mutations in MYBPC3 and MYH7 accounted for most cases of sarcomere-related disease. Multiple mutations in these genes may occur, which highlights the importance of screening both. The detection of novel mutations strongly suggests that all coding regions should be systematically screened. Genotyping in hypertrophic cardiomyopathy enables a more precise diagnosis of the disease, with implications for risk stratification and genetic counseling. Copyright © 2011 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  18. Troponin Mutation Caused Diastolic Dysfunction and Experimental Treatment in Transgenic Mice with Cardiomyopathy.

    PubMed

    Xu, Yang; Tian, Jie; Huang, Xupei

    2014-01-01

    Troponin, a contractile protein of the thin filament of striated muscle, consists of three subunits: troponin C (TnC), troponin T (TnT), and troponin I (TnI). Cardiac troponin I (cTnI) plays a critical role in regulation of cardiac function. The physiological effect of cTnI, as an inhibitory subunit of troponin complex, is to prevent the interaction between myosin heavy chain heads and actins, i.e. the cross-bridge formation, and to ensure a proper relaxation of cardiac myofilaments. In pathological conditions, the deficiency of cTnI or mutations in cTnI especially in the C-terminus of cTnI is associated with diastolic dysfunction caused by myofibril hypersensitivity to Ca(2+). Our laboratory has generated cTnI knockout mouse model to investigate the cellular and molecular function of cTnI and created cTnI mutant disease mouse models to explore the pathophysiology caused by cTnI mutations in the heart. Here, we present our recent studies on physiological function of cTnI in the heart and the pathological consequences caused by the cTnI mutations in the diseased heart using the transgenic mouse models. The mechanisms underlying diastolic dysfunction and heart failure caused by cTnI mutations are explored in cell-based assays and in transgenic animal models. These studies provide us with useful information in searching for therapeutic strategies and target-oriented medication for the treatment of diastolic dysfunction and heart failure.

  19. Autosomal Mutations Affecting Adhesion between Wing Surfaces in Drosophila Melanogaster

    PubMed Central

    Prout, M.; Damania, Z.; Soong, J.; Fristrom, D.; Fristrom, J. W.

    1997-01-01

    Integrins are evolutionarily conserved transmembrane α,β heterodimeric receptors involved in cell-to-matrix and cell-to-cell adhesions. In Drosophila the position-specific (PS) integrins mediate the formation and maintenance of junctions between muscle and epidermis and between the two epidermal wing surfaces. Besides integrins, other proteins are implicated in integrin-dependent adhesion. In Drosophila, somatic clones of mutations in PS integrin genes disrupt adhesion between wing surfaces to produce wing blisters. To identify other genes whose products function in adhesion between wing surfaces, we conducted a screen for autosomal mutations that produce blisters in somatic wing clones. We isolated 76 independent mutations in 25 complementation groups, 15 of which contain more than one allele. Chromosomal sites were determined by deficiency mapping, and genetic interactions with mutations in the β(PS) integrin gene myospheroid were investigated. Mutations in four known genes (blistered, Delta, dumpy and mastermind) were isolated. Mutations were isolated in three new genes (piopio, rhea and steamer duck) that affect myo-epidermal junctions or muscle function in embryos. Mutations in three other genes (kakapo, kiwi and moa) may also affect cell adhesion or muscle function at hatching. These new mutants provide valuable material for the study of integrin-dependent cell-to-cell adhesion. PMID:9136017

  20. Autosomal mutations affecting adhesion between wing surfaces in Drosophila melanogaster.

    PubMed

    Prout, M; Damania, Z; Soong, J; Fristrom, D; Fristrom, J W

    1997-05-01

    Integrins are evolutionarily conserved transmembrane alpha,beta heterodimeric receptors involved in cell-to-matrix and cell-to-cell adhesions. In Drosophila the position-specific (PS) integrins mediate the formation and maintenance of junctions between muscle and epidermis and between the two epidermal wing surfaces. Besides integrins, other proteins are implicated in integrin-dependent adhesion. In Drosophila, somatic clones of mutations in PS integrin genes disrupt adhesion between wing surfaces to produce wing blisters. To identify other genes whose products function in adhesion between wing surfaces, we conducted a screen for autosomal mutations that produce blisters in somatic wing clones. We isolated 76 independent mutations in 25 complementation groups, 15 of which contain more than one allele. Chromosomal sites were determined by deficiency mapping, and genetic interactions with mutations in the beta PS integrin gene myospheroid were investigated. Mutations in four known genes (blistered, Delta, dumpy and mastermind) were isolated. Mutations were isolated in three new genes (piopio, rhea and steamer duck) that affect myo-epidermal junctions or muscle function in embryos. Mutations in three other genes (kakapo, kiwi and moa) may also affect cell adhesion or muscle function at hatching. These new mutants provide valuable material for the study of integrin-dependent cell-to-cell adhesion.

  1. Maternally inherited cardiomyopathy and hearing loss associated with a novel mutation in the mitochondrial tRNA{sup Lys} gene (G8363A)

    SciTech Connect

    Santorelli, F.M.; Mak, Suk-Chun; El-Schahawi, M.

    1996-05-01

    A novel G8363A mutation in the mtDNA tRNA{sup Lys} gene was associated, in two unrelated families, with a syndrome consisting of encephalomyopathy, sensorineural hearing loss, and hypertrophic cardiomyopathy. Muscle biopsies from the probands showed mitochondrial proliferation and partial defects of complexes I, III, and IV of the electron-transport chain. The G8363A mutation was very abundant (>95%) in muscle samples from the probands and was less copious in blood from 18 maternal relatives (mean 81.3% {plus_minus} 8.5%). Single-muscle-fiber analysis showed significantly higher levels of mutant genomes in cytochrome c oxidase-negative fibers than in cytochrome c oxidase-positive fibers. The mutation was not found in >200 individuals, including normal controls and patients with other mitochondrial encephalomyopathies, thus fulfilling accepted criteria for pathogenicity. 23 refs., 3 figs., 1 tab.

  2. Genetics of inherited cardiomyopathy.

    PubMed

    Jacoby, Daniel; McKenna, William J

    2012-02-01

    During the past two decades, numerous disease-causing genes for different cardiomyopathies have been identified. These discoveries have led to better understanding of disease pathogenesis and initial steps in the application of mutation analysis in the evaluation of affected individuals and their family members. As knowledge of the genetic abnormalities, and insight into cellular and organ biology has grown, so has appreciation of the level of complexity of interaction between genotype and phenotype across disease states. What were initially thought to be one-to-one gene-disease correlates have turned out to display important relational plasticity dependent in large part on the genetic and environmental backgrounds into which the genes of interest express. The current state of knowledge with regard to genetics of cardiomyopathy represents a starting point to address the biology of disease, but is not yet developed sufficiently to supplant clinically based classification systems or, in most cases, to guide therapy to any significant extent. Future work will of necessity be directed towards elucidation of the biological mechanisms of both rare and common gene variants and environmental determinants of plasticity in the genotype-phenotype relationship with the ultimate goal of furthering our ability to identify, diagnose, risk stratify, and treat this group of disorders which cause heart failure and sudden death in the young.

  3. Genetics of inherited cardiomyopathy

    PubMed Central

    Jacoby, Daniel; McKenna, William J.

    2012-01-01

    During the past two decades, numerous disease-causing genes for different cardiomyopathies have been identified. These discoveries have led to better understanding of disease pathogenesis and initial steps in the application of mutation analysis in the evaluation of affected individuals and their family members. As knowledge of the genetic abnormalities, and insight into cellular and organ biology has grown, so has appreciation of the level of complexity of interaction between genotype and phenotype across disease states. What were initially thought to be one-to-one gene-disease correlates have turned out to display important relational plasticity dependent in large part on the genetic and environmental backgrounds into which the genes of interest express. The current state of knowledge with regard to genetics of cardiomyopathy represents a starting point to address the biology of disease, but is not yet developed sufficiently to supplant clinically based classification systems or, in most cases, to guide therapy to any significant extent. Future work will of necessity be directed towards elucidation of the biological mechanisms of both rare and common gene variants and environmental determinants of plasticity in the genotype–phenotype relationship with the ultimate goal of furthering our ability to identify, diagnose, risk stratify, and treat this group of disorders which cause heart failure and sudden death in the young. PMID:21810862

  4. Mutations in the Voltage Sensors of Domains I and II of Nav1.5 that are Associated with Arrhythmias and Dilated Cardiomyopathy Generate Gating Pore Currents.

    PubMed

    Moreau, Adrien; Gosselin-Badaroudine, Pascal; Boutjdir, Mohamed; Chahine, Mohamed

    2015-01-01

    Voltage gated sodium channels (Nav) are transmembrane proteins responsible for action potential initiation. Mutations mainly located in the voltage sensor domain (VSD) of Nav1.5, the cardiac sodium channel, have been associated with the development of arrhythmias combined with dilated cardiomyopathy. Gating pore currents have been observed with three unrelated mutations associated with similar clinical phenotypes. However, gating pores have never been associated with mutations outside the first domain of Nav1.5. The aim of this study was to explore the possibility that gating pore currents might be caused by the Nav1.5 R225P and R814W mutations (R3, S4 in DI and DII, respectively), which are associated with rhythm disturbances and dilated cardiomyopathy. Nav1.5 WT and mutant channels were transiently expressed in tsA201 cells. The biophysical properties of the alpha pore currents and the presence of gating pore currents were investigated using the patch-clamp technique. We confirmed the previously reported gain of function of the alpha pores of the mutant channels, which mainly consisted of increased window currents mostly caused by shifts in the voltage dependence of activation. We also observed gating pore currents associated with the R225P and R814W mutations. This novel permeation pathway was open under depolarized conditions and remained temporarily open at hyperpolarized potentials after depolarization periods. Gating pore currents could represent a molecular basis for the development of uncommon electrical abnormalities and changes in cardiac morphology. We propose that this biophysical defect be routinely evaluated in the case of Nav1.5 mutations on the VSD.

  5. Vigorous physical activity impairs myocardial function in patients with arrhythmogenic right ventricular cardiomyopathy and in mutation positive family members.

    PubMed

    Saberniak, Jørg; Hasselberg, Nina E; Borgquist, Rasmus; Platonov, Pyotr G; Sarvari, Sebastian I; Smith, Hans-Jørgen; Ribe, Margareth; Holst, Anders G; Edvardsen, Thor; Haugaa, Kristina H

    2014-12-01

    Exercise increases risk of ventricular arrhythmia in subjects with arrhythmogenic right ventricular cardiomyopathy (ARVC). We aimed to investigate the impact of exercise on myocardial function in ARVC subjects. We included 110 subjects (age 42 ± 17 years), 65 ARVC patients and 45 mutation-positive family members. Athletes were defined as subjects with ≥4 h vigorous exercise/week [≥1440 metabolic equivalents (METs × minutes/week)] during a minimum of 6 years. Athlete definition was fulfilled in 37/110 (34%) subjects. We assessed right ventricular (RV) and left ventricular (LV) myocardial function by echocardiography, and by magnetic resonance imaging (MRI). The RV function by RV fractional area change (FAC), RV global longitudinal strain (GLS) by echocardiography, and RV ejection fraction (EF) by MRI was reduced in athletes compared with non-athletes (FAC 34 ± 9% vs. 40 ± 11%, RVGLS -18.3 ± 6.1% vs. -22.0 ± 4.8%, RVEF 32 ± 8% vs. 43 ± 10%, all P < 0.01). LV function by LVEF and LVGLS was reduced in athletes compared with non-athletes (LVEF by echocardiography 50 ± 10% vs. 57 ± 5%, LVEF by MRI 46 ± 6% vs. 53 ± 8%, and LVGLS -16.7 ± 4.2% vs. -19.4 ± 2.9%, all P < 0.01). The METs × minutes/week correlated with reduced RV and LV function by echocardiography and MRI (all P < 0.01). The LVEF by MRI was also reduced in subgroups of athlete index patients (46 ± 7% vs. 54 ± 10%, P = 0.02) and in athlete family members (47 ± 3% vs. 52 ± 6%, P < 0.05). Athletes showed reduced biventricular function compared with non-athletes in ARVC patients and in mutation-positive family members. The amount and intensity of exercise activity was associated with impaired LV and RV function. Exercise may aggravate and accelerate myocardial dysfunction in ARVC. © 2014 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European

  6. Detection of a large duplication mutation in the myosin-binding protein C3 gene in a case of hypertrophic cardiomyopathy.

    PubMed

    Meyer, Thomas; Pankuweit, Sabine; Richter, Anette; Maisch, Bernhard; Ruppert, Volker

    2013-09-15

    Hypertrophic cardiomyopathy (HCM) is a cardiovascular disease with autosomal dominant inheritance caused by mutations in genes coding for sarcomeric and/or regulatory proteins expressed in cardiomyocytes. In a small cohort of HCM patients (n=8), we searched for mutations in the two most common genes responsible for HCM and found four missense mutations in the MYH7 gene encoding cardiac β-myosin heavy chain (R204H, M493V, R719W, and R870H) and three mutations in the myosin-binding protein C3 gene (MYBPC3) including one missense (A848V) and two frameshift mutations (c.3713delTG and c.702ins26bp). The c.702ins26bp insertion resulted from the duplication of a 26-bp fragment in a 54-year-old female HCM patient presenting with clinical signs of heart failure due to diastolic dysfunction. Although such large duplications (>10 bp) in the MYBPC3 gene are very rare and have been identified only in 4 families reported so far, the identical duplication mutation was found earlier in a Dutch patient, demonstrating that it may constitute a hitherto unknown founder mutation in central European populations. This observation underscores the significance of insertions into the coding sequence of the MYBPC3 gene for the development and pathogenesis of HCM.

  7. Mitogen-activated protein kinase kinase 1/2 inhibition and angiotensin II converting inhibition in mice with cardiomyopathy caused by lamin A/C gene mutation

    SciTech Connect

    Muchir, Antoine; Wu, Wei; Sera, Fusako; Homma, Shunichi; Worman, Howard J.

    2014-10-03

    Highlights: • Both ACE and MEK1/2 inhibition are beneficial on cardiac function in Lmna cardiomyopathy. • MEK1/2 inhibitor has beneficial effects beyond ACE inhibition for Lmna cardiomyopathy. • These results provide further preclinical rationale for a clinical trial of a MEK1/2 inhibitor. - Abstract: Background: Mutations in the LMNA gene encoding A-type nuclear lamins can cause dilated cardiomyopathy with or without skeletal muscular dystrophy. Previous studies have shown abnormally increased extracellular signal-regulated kinase 1/2 activity in hearts of Lmna{sup H222P/H222P} mice, a small animal model. Inhibition of this abnormal signaling activity with a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor has beneficial effects on heart function and survival in these mice. However, such treatment has not been examined relative to any standard of care intervention for dilated cardiomyopathy or heart failure. We therefore examined the effects of an angiotensin II converting enzyme (ACE) inhibitor on left ventricular function in Lmna{sup H222P/H222P} mice and assessed if adding a MEK1/2 inhibitor would provide added benefit. Methods: Male Lmna{sup H222P/H222P} mice were treated with the ACE inhibitor benazepril, the MEK1/2 inhibitor selumetinib or both. Transthoracic echocardiography was used to measure left ventricular diameters and fractional shortening was calculated. Results: Treatment of Lmna{sup H222P/H222P} mice with either benazepril or selumetinib started at 8 weeks of age, before the onset of detectable left ventricular dysfunction, lead to statistically significantly increased fractional shortening compared to placebo at 16 weeks of age. There was a trend towards a great value for fractional shortening in the selumetinib-treated mice. When treatment was started at 16 weeks of age, after the onset of left ventricular dysfunction, the addition of selumetinib treatment to benazepril lead to a statistically significant increase in left

  8. [Gender effect on cardiomyopathy].

    PubMed

    Biagini, Elena; Berardini, Alessandra; Graziosi, Maddalena; Rosmini, Stefania; Pazzi, Chiara; Rapezzi, Claudio

    2012-06-01

    The role of a gender effect (that means differences in clinical manifestations, access to therapies and response to treatments according to gender) in cardiomyopathies remains a matter of debate. Although recent studies have evaluated the differences in the clinical features and prognosis between the two sexes, many issues remain to be elucidated. At present, the only sex-specific condition that affects females is peripartum cardiomyopathy. Recent evidence suggests a pathogenetic role of a prolactin derivative, and ongoing clinical trials are investigating the possibility of targeted therapies using prolactin secretion inhibitors, such as bromocriptine and carbegoline. Although women were considered so far only carriers of X-linked diseases (Anderson-Fabry disease, Danon disease, Hunter syndrome and dystrophinopathies), clinical experience showed a wide spectrum of clinical manifestations in females due to random X chromosome inactivation. Conversely, in mitochondrial diseases (with matrilineal inheritance), cardiomyopathies may occur in the context of clinical multisystemic involvement without significant gender-related differences. Autosomal inherited cardiomyopathies also show different phenotypes and prognostic impact according to gender. The hypothesis of a premenopausal protective role of female hormones towards myocardial involvement has been raised by recent data on transtiretin-related amyloidosis and hypertrophic cardiomyopathy. Preexisting cardiomyopathies may affect pregnancy, labor and delivery in women, since all these conditions are associated with important hemodynamic changes. Women with low-risk hypertrophic cardiomyopathy (asymptomatic and without left ventricular outflow tract gradient) usually can tolerate pregnancy. Conversely, women who are symptomatic before pregnancy or have severe hypertrophy with important outflow tract gradient are at higher risk and should be referred to a tertiary center to be evaluated on a case by case basis

  9. Targets for therapy in sarcomeric cardiomyopathies

    PubMed Central

    Tardiff, Jil C.; Carrier, Lucie; Bers, Donald M.; Poggesi, Corrado; Ferrantini, Cecilia; Coppini, Raffaele; Maier, Lars S.; Ashrafian, Houman; Huke, Sabine; van der Velden, Jolanda

    2015-01-01

    To date, no compounds or interventions exist that treat or prevent sarcomeric cardiomyopathies. Established therapies currently improve the outcome, but novel therapies may be able to more fundamentally affect the disease process and course. Investigations of the pathomechanisms are generating molecular insights that can be useful for the design of novel specific drugs suitable for clinical use. As perturbations in the heart are stage-specific, proper timing of drug treatment is essential to prevent initiation and progression of cardiac disease in mutation carrier individuals. In this review, we emphasize potential novel therapies which may prevent, delay, or even reverse hypertrophic cardiomyopathy caused by sarcomeric gene mutations. These include corrections of genetic defects, altered sarcomere function, perturbations in intracellular ion homeostasis, and impaired myocardial energetics. PMID:25634554

  10. Targets for therapy in sarcomeric cardiomyopathies.

    PubMed

    Tardiff, Jil C; Carrier, Lucie; Bers, Donald M; Poggesi, Corrado; Ferrantini, Cecilia; Coppini, Raffaele; Maier, Lars S; Ashrafian, Houman; Huke, Sabine; van der Velden, Jolanda

    2015-04-01

    To date, no compounds or interventions exist that treat or prevent sarcomeric cardiomyopathies. Established therapies currently improve the outcome, but novel therapies may be able to more fundamentally affect the disease process and course. Investigations of the pathomechanisms are generating molecular insights that can be useful for the design of novel specific drugs suitable for clinical use. As perturbations in the heart are stage-specific, proper timing of drug treatment is essential to prevent initiation and progression of cardiac disease in mutation carrier individuals. In this review, we emphasize potential novel therapies which may prevent, delay, or even reverse hypertrophic cardiomyopathy caused by sarcomeric gene mutations. These include corrections of genetic defects, altered sarcomere function, perturbations in intracellular ion homeostasis, and impaired myocardial energetics. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  11. Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy.

    PubMed

    Kirk, Edwin P; Sunde, Margaret; Costa, Mauro W; Rankin, Scott A; Wolstein, Orit; Castro, M Leticia; Butler, Tanya L; Hyun, Changbaig; Guo, Guanglan; Otway, Robyn; Mackay, Joel P; Waddell, Leigh B; Cole, Andrew D; Hayward, Christopher; Keogh, Anne; Macdonald, Peter; Griffiths, Lyn; Fatkin, Diane; Sholler, Gary F; Zorn, Aaron M; Feneley, Michael P; Winlaw, David S; Harvey, Richard P

    2007-08-01

    The T-box family transcription factor gene TBX20 acts in a conserved regulatory network, guiding heart formation and patterning in diverse species. Mouse Tbx20 is expressed in cardiac progenitor cells, differentiating cardiomyocytes, and developing valvular tissue, and its deletion or RNA interference-mediated knockdown is catastrophic for heart development. TBX20 interacts physically, functionally, and genetically with other cardiac transcription factors, including NKX2-5, GATA4, and TBX5, mutations of which cause congenital heart disease (CHD). Here, we report nonsense (Q195X) and missense (I152M) germline mutations within the T-box DNA-binding domain of human TBX20 that were associated with a family history of CHD and a complex spectrum of developmental anomalies, including defects in septation, chamber growth, and valvulogenesis. Biophysical characterization of wild-type and mutant proteins indicated how the missense mutation disrupts the structure and function of the TBX20 T-box. Dilated cardiomyopathy was a feature of the TBX20 mutant phenotype in humans and mice, suggesting that mutations in developmental transcription factors can provide a sensitized template for adult-onset heart disease. Our findings are the first to link TBX20 mutations to human pathology. They provide insights into how mutation of different genes in an interactive regulatory circuit lead to diverse clinical phenotypes, with implications for diagnosis, genetic screening, and patient follow-up.

  12. Mutations in Cardiac T-Box Factor Gene TBX20 Are Associated with Diverse Cardiac Pathologies, Including Defects of Septation and Valvulogenesis and Cardiomyopathy

    PubMed Central

    Kirk, Edwin P. ; Sunde, Margaret ; Costa, Mauro W. ; Rankin, Scott A. ; Wolstein, Orit ; Castro, M. Leticia ; Butler, Tanya L. ; Hyun, Changbaig ; Guo, Guanglan ; Otway, Robyn ; Mackay, Joel P. ; Waddell, Leigh B. ; Cole, Andrew D. ; Hayward, Christopher ; Keogh, Anne ; Macdonald, Peter ; Griffiths, Lyn ; Fatkin, Diane ; Sholler, Gary F. ; Zorn, Aaron M. ; Feneley, Michael P. ; Winlaw, David S. ; Harvey, Richard P. 

    2007-01-01

    The T-box family transcription factor gene TBX20 acts in a conserved regulatory network, guiding heart formation and patterning in diverse species. Mouse Tbx20 is expressed in cardiac progenitor cells, differentiating cardiomyocytes, and developing valvular tissue, and its deletion or RNA interference–mediated knockdown is catastrophic for heart development. TBX20 interacts physically, functionally, and genetically with other cardiac transcription factors, including NKX2-5, GATA4, and TBX5, mutations of which cause congenital heart disease (CHD). Here, we report nonsense (Q195X) and missense (I152M) germline mutations within the T-box DNA-binding domain of human TBX20 that were associated with a family history of CHD and a complex spectrum of developmental anomalies, including defects in septation, chamber growth, and valvulogenesis. Biophysical characterization of wild-type and mutant proteins indicated how the missense mutation disrupts the structure and function of the TBX20 T-box. Dilated cardiomyopathy was a feature of the TBX20 mutant phenotype in humans and mice, suggesting that mutations in developmental transcription factors can provide a sensitized template for adult-onset heart disease. Our findings are the first to link TBX20 mutations to human pathology. They provide insights into how mutation of different genes in an interactive regulatory circuit lead to diverse clinical phenotypes, with implications for diagnosis, genetic screening, and patient follow-up. PMID:17668378

  13. Functional Characterization of a Novel Mutation in NKX2-5 Associated with Congenital Heart Disease and Adult-Onset Cardiomyopathy

    PubMed Central

    Costa, Mauro W.; Guo, Guanglan; Wolstein, Orit; Vale, Molly; Castro, M. Leticia; Wang, Libin; Otway, Robyn; Riek, Peter; Cochrane, Natalie; Furtado, Milena; Semsarian, Christopher; Weintraub, Robert G.; Yeoh, Thomas; Hayward, Christopher; Keogh, Anne; Macdonald, Peter; Feneley, Michael; Graham, Robert M.; Seidman, Jonathan G.; Seidman, Christine E.; Rosenthal, Nadia; Fatkin, Diane; Harvey, Richard P.

    2013-01-01

    Background The transcription factor NKX2-5 is crucial for heart development and mutations in this gene have been implicated in diverse congenital heart diseases (CHD) and conduction defects (CD) in mouse models and humans. Whether NKX2-5 mutations have a role in adult-onset heart disease is unknown. Methods and Results Mutation screening was performed in 220 probands with adult-onset dilated cardiomypathy (DCM). Six NKX2-5 coding sequence variants were identified, including 3 non-synonymous variants. A novel heterozygous mutation, I184M, located within the NKX2-5 homeodomain (HD), was identified in one family. A subset of family members had CHD, but there was an unexpectedly high prevalence of DCM. Functional analysis of I184M in vitro demonstrated a striking increase in protein expression when transfected into COS-7 cells or HL-1 cardiomyocytes, due to reduced degradation by the ubiquitin-proteasome system (UPS). In functional assays, DNA binding activity of I184M was reduced, resulting in impaired activation of target genes, despite increased expression levels of mutant protein. Conclusions Certain NKX2-5 HD mutations show abnormal protein degradation via the UPS and partially impaired transcriptional activity. We propose that this class of mutation can impair heart development and mature heart function, and contribute to NKX2-5-related cardiomyopathies with graded severity. PMID:23661673

  14. What's Cardiomyopathy

    MedlinePlus

    ... people in the U.S. with children under 12 accounting for less than 10% of all cases. According ... RCM) is the least common type of cardiomyopathy accounting for only 5% of patients with cardiomyopathy. It ...

  15. Peripartum cardiomyopathy.

    PubMed

    Grixti, Sarah; Magri, Caroline J; Xuereb, Robert; Fava, Stephen

    2015-02-01

    Peripartum cardiomyopathy is a form of dilated cardiomyopathy of indeterminate aetiology occurring in late pregnancy or the months following delivery. This article reviews current knowledge of its pathophysiology, therapeutic strategies and prognosis, as well as new treatments and future directions.

  16. Previously Unreported Biallelic Mutation in DNAJC19: Are Sensorineural Hearing Loss and Basal Ganglia Lesions Additional Features of Dilated Cardiomyopathy and Ataxia (DCMA) Syndrome?

    PubMed

    Ucar, Sema Kalkan; Mayr, Johannes A; Feichtinger, René G; Canda, Ebru; Çoker, Mahmut; Wortmann, Saskia B

    2017-01-01

    Dilated cardiomyopathy (DCM), non-progressive cerebellar ataxia (A), testicular dysgenesis, growth failure, and 3-methylglutaconic aciduria are the hallmarks of DNAJC19 defect (or DCMA syndrome) due to biallelic mutations in DNAJC19. To date DCMA syndrome has been reported in 19 patients from Canada and in two Finnish siblings. The underlying pathomechanism is unknown; however, DNAJC19 is presumed to be involved in mitochondrial membrane related processes (e.g., protein import and cardiolipin remodeling). Here, we report an additional patient with progressive cerebellar atrophy and white matter changes. A Turkish boy presented at age 2 months with dilated cardiomyopathy (initially worsening then stabilizing in the second year of life), growth failure, bilateral cryptorchidism, and facial dysmorphism. Mental and motor developmental were, respectively, moderately and severely delayed. Profound intentional tremor and dyskinesia, spasticity (particularly at the lower extremities), and dystonia were observed. Sensorineural hearing loss was also diagnosed. MRI showed bilateral basal ganglia signal alterations. Plasma lactate levels were increased, as was urinary excretion of 3-methylglutaconic acid. He deceased aged 3 years. Sanger Sequencing of DNAJC19 confirmed the clinical diagnosis of DNAJC19 defect by revealing the previously unreported homozygous stop mutation c.63delC (p.Tyr21*). Investigation of enzymes of mitochondrial energy metabolism revealed decreased activity of cytochrome c oxidase in muscle tissue. Sensorineural hearing loss and bilateral basal ganglia lesions are common symptoms of mitochondrial disorders. This is the first report of an association with DNAJC19 defect.

  17. Beta-myosin heavy-chain mutations R403QLW, V606M, K615N and R663H in patients with hypertrophic cardiomyopathy.

    PubMed

    Atay, Sevcan; Tetik, Aslı; Bozok Çetintaş, Vildan; Yakar Tülüce, Selcen; Tülüce, Kamil; Kayıkçıoğlu, Meral; Eroğlu, Zuhal

    2014-05-01

    Hypertrophic cardiomyopathy (HCM) is a disease of the myocardium with an autosomal-dominant pattern of inheritance mainly caused by single heterozygous mutations in sarcomere genes. In this study we aimed to detect the presence of R403QLW, V606M, K615N, and R663H mutations in beta-myosin heavy-chain gene (MYH7) and figure out the genotype-phenotype correlations in Turkish patients with HCM. This case-control study based on genotype-phenotype correlation included 69 patients (mean age, years: 50±13.16) diagnosed with HCM constituting the study group and 50 healthy individuals (mean age, years: 52±1.4) constituting the control group. DNA was extracted from peripheral blood and the genotyping of mutations was performed by real-time PCR technique and high resolution melting analysis. Associations between categoric variables were determined using chi-square tests. Differences between two groups were compared with unpaired Student's t-test for continuous variables. None of the patients in the HCM group were carrying the index mutations. One healthy individual was found to be heterozygous for the R663H mutation with mildly abnormal IVS and LVPW thickness. The allele frequency for R663H (G>A) mutation was found to be 0.01% in control group. We performed a mutational screening of 6 HCM-associated mutations in 69 Turkish HCM patients (not previously studied except R403Q). There was no significant difference in the prevalence of the mutations between the patients with HCM and the healthy controls (p>0.05).

  18. Metagenomic DNA fragments that affect Escherichia coli mutational pathways.

    PubMed

    Yang, Hanjing; To, Kam H; Aguila, Sharon J; Miller, Jeffrey H

    2006-08-01

    A multicopy cloning approach was used to search for metagenomic DNA fragments that affect Escherichia coli mutational pathways. Soil metagenomic expression libraries were constructed with DNA samples prepared directly from soil samples collected from the UCLA Botanical Garden. Using frameshift mutator screening, we obtained a total of 26 unique metagenomic fragments that stimulate frameshift rates in an E. coli wild-type host. Mutational enhancer strains such as an ndk-deficient strain and a temperature sensitive mutS strain (mutS60) were used to further verify the mutator phenotype. We found that the presence of multiple copies of certain types of metagenomic DNA sequence repeats cause general genome instability in the wild-type E. coli host and the effect can be suppressed by overproducing a DNA mismatch component MutL. In addition, we identified nine metagenomic mutator genes (designated as smu genes) that encode proteins that have not been linked to mutator phenotypes prior to this study including a putative RNA methyltransferase Smu10A. The strain overproducing Smu10A displays one prominent base substitution hotspot in the rpoB gene, which coincides with the base substitution hotspot we have observed in cells that are partially deficient in the proofreading function carried out by the DNA polymerase III epsilon subunit. Based on the structural conservation of DNA replication/recombination/repair machineries among microorganisms, this approach would allow us to both identify new mutational pathways in E. coli and to find genes involved in DNA replication, recombination or DNA repair from vast unculturable microbes.

  19. Genetics of restrictive cardiomyopathy.

    PubMed

    Sen-Chowdhry, Srijita; Syrris, Petros; McKenna, William J

    2010-04-01

    Restrictive physiology, a severe form of diastolic dysfunction, is characteristically observed in the setting of constrictive pericarditis and myocardial restriction. The latter is commonly due to systemic diseases, some of which are inherited as mendelian traits (eg, hereditary amyloidosis), while others are multifactorial (eg, sarcoidosis). When restrictive physiology occurs as an early and dominant feature of a primary myocardial disorder, it may be termed restrictive cardiomyopathy. In the past decade, clinical and genetic studies have demonstrated that restrictive cardiomyopathy as such is part of the spectrum of sarcomeric disease and frequently coexists with hypertrophic cardiomyopathy in affected families.

  20. Interleukin-18 deteriorates Fabry cardiomyopathy and contributes to the development of left ventricular hypertrophy in Fabry patients with GLA IVS4+919 G>A mutation.

    PubMed

    Chien, Yueh; Chien, Chian-Shiu; Chiang, Huai-Chih; Huang, Wei-Lin; Chou, Shih-Jie; Chang, Wei-Chao; Chang, Yuh-Lih; Leu, Hsin-Bang; Chen, Kuan-Hsuan; Wang, Kang-Ling; Lai, Ying-Hsiu; Liu, Yung-Yang; Lu, Kai-Hsi; Li, Hsin-Yang; Sung, Yen-Jen; Jong, Yuh-Jyh; Chen, Yann-Jang; Chen, Chung-Hsuan; Yu, Wen-Chung

    2016-12-27

    A high incidence of GLA IVS4+919 G>A mutation in patients with Fabry disease of the later-onset cardiac phenotype, has been reported in Taiwan. However, suitable biomarkers or potential therapeutic surrogates for Fabry cardiomyopathy (FC) in such patients under enzyme replacement treatment (ERT) remain unknown. Using FC patients carrying IVS4+919 G>A mutation, we constructed an induced pluripotent stem cell (iPSC)-based disease model to investigate the pathogenetic biomarkers and potential therapeutic targets in ERT-treated FC. The iPSC-differentiated cardiomyocytes derived from FC-patients (FC-iPSC-CMs) carried IVS4+919 G>A mutation recapitulating FC characteristics, including low α-galactosidase A enzyme activity, cellular hypertrophy, and massive globotriaosylceramide accumulation. Microarray analysis revealed that interleukin-18 (IL-18), a pleiotropic cytokine involved in various myocardial diseases, was the most highly upregulated marker in FC-iPSC-CMs. Meanwhile, IL-18 levels were found to be significantly elevated in the culture media of FC-iPSC-CMs and patients' sera. Notably, the serum IL-18 levels were highly paralleled with the progression of left ventricular hypertrophy in Fabry patients receiving ERT. Finally, using FC-iPSC-CMs as in vitro FC model, neutralization of IL-18 with specific antibodies combined with ERT synergistically reduced the secretion of IL-18 and the progression of cardiomyocyte hypertrophy in FC-iPSC-CMs. Our data demonstrated that cardiac IL-18 and circulating IL-18 are involved in the pathogenesis of FC and LVH. IL-18 may be a novel marker for evaluating ERT efficacy, and targeting IL-18 might be a potential adjunctive therapy combined with ERT for the treatment of advanced cardiomyopathy in FC patients with IVS4+919 G>A mutation.

  1. Interleukin-18 deteriorates Fabry cardiomyopathy and contributes to the development of left ventricular hypertrophy in Fabry patients with GLA IVS4+919 G>A mutation

    PubMed Central

    Huang, Wei-Lin; Chou, Shih-Jie; Chang, Wei-Chao; Chang, Yuh-Lih; Leu, Hsin-Bang; Chen, Kuan-Hsuan; Wang, Kang-Ling; Lai, Ying-Hsiu; Liu, Yung-Yang; Lu, Kai-Hsi; Li, Hsin-Yang; Sung, Yen-Jen; Jong, Yuh-Jyh; Chen, Yann-Jang; Chen, Chung-Hsuan; Yu, Wen-Chung

    2016-01-01

    Rationale A high incidence of GLA IVS4+919 G>A mutation in patients with Fabry disease of the later-onset cardiac phenotype, has been reported in Taiwan. However, suitable biomarkers or potential therapeutic surrogates for Fabry cardiomyopathy (FC) in such patients under enzyme replacement treatment (ERT) remain unknown. Objective Using FC patients carrying IVS4+919 G>A mutation, we constructed an induced pluripotent stem cell (iPSC)-based disease model to investigate the pathogenetic biomarkers and potential therapeutic targets in ERT-treated FC. Results and methods The iPSC-differentiated cardiomyocytes derived from FC-patients (FC-iPSC-CMs) carried IVS4+919 G>A mutation recapitulating FC characteristics, including low α-galactosidase A enzyme activity, cellular hypertrophy, and massive globotriaosylceramide accumulation. Microarray analysis revealed that interleukin-18 (IL-18), a pleiotropic cytokine involved in various myocardial diseases, was the most highly upregulated marker in FC-iPSC-CMs. Meanwhile, IL-18 levels were found to be significantly elevated in the culture media of FC-iPSC-CMs and patients’ sera. Notably, the serum IL-18 levels were highly paralleled with the progression of left ventricular hypertrophy in Fabry patients receiving ERT. Finally, using FC-iPSC-CMs as in vitro FC model, neutralization of IL-18 with specific antibodies combined with ERT synergistically reduced the secretion of IL-18 and the progression of cardiomyocyte hypertrophy in FC-iPSC-CMs. Conclusion Our data demonstrated that cardiac IL-18 and circulating IL-18 are involved in the pathogenesis of FC and LVH. IL-18 may be a novel marker for evaluating ERT efficacy, and targeting IL-18 might be a potential adjunctive therapy combined with ERT for the treatment of advanced cardiomyopathy in FC patients with IVS4+919 G>A mutation. PMID:27888626

  2. Mutations in troponin T associated with Hypertrophic Cardiomyopathy increase Ca(2+)-sensitivity and suppress the modulation of Ca(2+)-sensitivity by troponin I phosphorylation.

    PubMed

    Messer, Andrew E; Bayliss, Christopher R; El-Mezgueldi, Mohammed; Redwood, Charles S; Ward, Douglas G; Leung, Man-Ching; Papadaki, Maria; Dos Remedios, Cristobal; Marston, Steven B

    2016-07-01

    We investigated the effect of 7 Hypertrophic Cardiomyopathy (HCM)-causing mutations in troponin T (TnT) on troponin function in thin filaments reconstituted with actin and human cardiac tropomyosin. We used the quantitative in vitro motility assay to study Ca(2+)-regulation of unloaded movement and its modulation by troponin I phosphorylation. Troponin from a patient with the K280N TnT mutation showed no difference in Ca(2+)-sensitivity when compared with donor heart troponin and the Ca(2+)-sensitivity was also independent of the troponin I phosphorylation level (uncoupled). The recombinant K280N TnT mutation increased Ca(2+)-sensitivity 1.7-fold and was also uncoupled. The R92Q TnT mutation in troponin from transgenic mouse increased Ca(2+)-sensitivity and was also completely uncoupled. Five TnT mutations (Δ14, Δ28 + 7, ΔE160, S179F and K273E) studied in recombinant troponin increased Ca(2+)-sensitivity and were all fully uncoupled. Thus, for HCM-causing mutations in TnT, Ca(2+)-sensitisation together with uncoupling in vitro is the usual response and both factors may contribute to the HCM phenotype. We also found that Epigallocatechin-3-gallate (EGCG) can restore coupling to all uncoupled HCM-causing TnT mutations. In fact the combination of Ca(2+)-desensitisation and re-coupling due to EGCG completely reverses both the abnormalities found in troponin with a TnT HCM mutation suggesting it may have therapeutic potential. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Nav 1.5 mutations linked to dilated cardiomyopathy phenotypes: Is the gating pore current the missing link?

    PubMed

    Gosselin-Badaroudine, Pascal; Moreau, Adrien; Chahine, Mohamed

    2014-01-01

    Nav 1.5 dysfunctions are commonly linked to rhythms disturbances that include type 3 long QT syndrome (LQT3), Brugada syndrome (BrS), sick sinus syndrome (SSS) and conduction defects. Recently, this channel protein has been also linked to structural heart diseases such as dilated cardiomyopathy (DCM).

  4. Mutations affecting xanthophore pigmentation in the zebrafish, Danio rerio.

    PubMed

    Odenthal, J; Rossnagel, K; Haffter, P; Kelsh, R N; Vogelsang, E; Brand, M; van Eeden, F J; Furutani-Seiki, M; Granato, M; Hammerschmidt, M; Heisenberg, C P; Jiang, Y J; Kane, D A; Mullins, M C; Nüsslein-Volhard, C

    1996-12-01

    In a large-scale screen for mutants with defects in embryonic development we identified 17 genes (65 mutants) specifically required for the development of xanthophores. We provide evidence that these genes are required for three different aspects of xanthophore development. (1) Pigment cell formation and migration (pfeffer and salz); (2) pigment synthesis (edison, yobo, yocca and brie) and (3) pigment translocation (esrom, tilsit and tofu). The number of xanthophore cells that appear in the body is reduced in embryos with mutations in the two genes, salz and pfeffer. In heterozygous and homozygous salz and pfeffer adults, the melanophore stripes are interrupted, indicating that xanthophore cells have an important function in adult melanophore pattern formation. Most other genes affect only larval pigmentation. In embryos mutant for edison, yobo, yocca and brie, differences in pteridine synthesis can be observed under UV light and by thin-layer chromatography. Homozygous mutant females of yobo show a recessive maternal effect. Embryonic development is slowed down and embryos display head and tail truncations. Xanthophores in larvae mutant in the three genes esrom, tilsit and tofu appear less spread out. In addition, these mutants display a defect in retinotectal axon pathfinding. These mutations may affect xanthophore pigment distribution within the cells or xanthophore cell shape. Mutations in seven genes affecting xanthophore pigmentation remain unclassified.

  5. Peripartum cardiomyopathy: a review.

    PubMed

    Bhattacharyya, Anirban; Basra, Sukhdeep Singh; Sen, Priyanka; Kar, Biswajit

    2012-01-01

    Peripartum cardiomyopathy is idiopathic heart failure occurring in the absence of any determinable heart disease during the last month of pregnancy or the first 5 months postpartum. The incidence varies worldwide but is high in developing nations; the cause of the disease might be a combination of environmental and genetic factors. Diagnostic echocardiographic criteria include left ventricular ejection fraction <0.45 or M-mode fractional shortening <30% (or both) and end-diastolic dimension >2.7 cm/m(2). Electrocardiography, magnetic resonance imaging, endomyocardial biopsy, and cardiac catheterization aid in the diagnosis and management of peripartum cardiomyopathy. Cardiac protein assays can also be useful, as suggested by reports of high levels of NT-proBNP, cardiac troponin, tumor necrosis factor-α, interleukin-6, interferon-γ, and C-reactive protein in peripartum cardiomyopathy. The prevalence of mutations associated with familial dilated-cardiomyopathy genes in patients with peripartum cardiomyopathy suggests an overlap in the clinical spectrum of these 2 diseases.Treatment for peripartum cardiomyopathy includes conventional pharmacologic heart-failure therapies-principally diuretics, angiotensin-converting enzyme inhibitors, vasodilators, digoxin, β-blockers, anticoagulants, and peripartum cardiomyopathy-targeted therapies. Therapeutic decisions are influenced by drug-safety profiles during pregnancy and lactation. Mechanical support and transplantation might be necessary in severe cases. Targeted therapies (such as intravenous immunoglobulin, pentoxifylline, and bromocriptine) have shown promise in small trials but require further evaluation. Fortunately, despite a mortality rate of up to 10% and a high risk of relapse in subsequent pregnancies, many patients with peripartum cardiomyopathy recover within 3 to 6 months of disease onset.

  6. Connecting Sarcomere Protein Mutations to Pathogenesis in Cardiomyopathies: The Development of “Disease in a Dish” Models

    PubMed Central

    Zaunbrecher, Rebecca; Regnier, Michael

    2016-01-01

    Recent technological and protocol developments have greatly increased the ability to utilize stem cells transformed into cardiomyocytes as models to study human heart muscle development and how this is affected by disease associated mutations in a variety of sarcomere proteins. In this perspective we provide an overview of these emerging technologies and how they are being used to create better models of “disease in a dish” for both research and screening assays. We also consider the value of these assays as models to explore the seminal processes in initiation of the disease development and the possibility of early interventions. PMID:27920728

  7. Calcium Ions in Inherited Cardiomyopathies.

    PubMed

    Deftereos, Spyridon; Papoutsidakis, Nikolaos; Giannopoulos, Georgios; Angelidis, Christos; Raisakis, Konstantinos; Bouras, Georgios; Davlouros, Periklis; Panagopoulou, Vasiliki; Goudevenos, John; Cleman, Michael W; Lekakis, John

    2016-01-01

    Inherited cardiomyopathies are a known cause of heart failure, although the pathways and mechanisms leading from mutation to the heart failure phenotype have not been elucidated. There is strong evidence that this transition is mediated, at least in part, by abnormal intracellular Ca(2+) handling, a key ion in ventricular excitation, contraction and relaxation. Studies in human myocytes, animal models and in vitro reconstituted contractile protein complexes have shown consistent correlations between Ca(2+) sensitivity and cardiomyopathy phenotype, irrespective of the causal mutation. In this review we present the available data about the connection between mutations linked to familial hypertrophic (HCM), dilated (DCM) and restrictive (RCM) cardiomyopathy, right ventricular arrhythmogenic cardiomyopathy/dysplasia (ARVC/D) as well as left ventricular non-compaction and the increase or decrease in Ca(2+) sensitivity, together with the results of attempts to reverse the manifestation of heart failure by manipulating Ca(2+) homeostasis.

  8. Metabolic cardiomyopathies

    PubMed Central

    Guertl, Barbara; Noehammer, Christa; Hoefler, Gerald

    2000-01-01

    The energy needed by cardiac muscle to maintain proper function is supplied by adenosine Ariphosphate primarily (ATP) production through breakdown of fatty acids. Metabolic cardiomyopathies can be caused by disturbances in metabolism, for example diabetes mellitus, hypertrophy and heart failure or alcoholic cardiomyopathy. Deficiency in enzymes of the mitochondrial β-oxidation show a varying degree of cardiac manifestation. Aberrations of mitochondrial DNA lead to a wide variety of cardiac disorders, without any obvious correlation between genotype and phenotype. A completely different pathogenetic model comprises cardiac manifestation of systemic metabolic diseases caused by deficiencies of various enzymes in a variety of metabolic pathways. Examples of these disorders are glycogen storage diseases (e.g. glycogenosis type II and III), lysosomal storage diseases (e.g. Niemann-Pick disease, Gaucher disease, I-cell disease, various types of mucopolysaccharidoses, GM1 gangliosidosis, galactosialidosis, carbohydrate–deficient glycoprotein syndromes and Sandhoff's disease). There are some systemic diseases which can also affect the heart, for example triosephosphate isomerase deficiency, hereditary haemochromatosis, CD 36 defect or propionic acidaemia. PMID:11298185

  9. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor.

    PubMed

    Glocker, Erik-Oliver; Kotlarz, Daniel; Boztug, Kaan; Gertz, E Michael; Schäffer, Alejandro A; Noyan, Fatih; Perro, Mario; Diestelhorst, Jana; Allroth, Anna; Murugan, Dhaarini; Hätscher, Nadine; Pfeifer, Dietmar; Sykora, Karl-Walter; Sauer, Martin; Kreipe, Hans; Lacher, Martin; Nustede, Rainer; Woellner, Cristina; Baumann, Ulrich; Salzer, Ulrich; Koletzko, Sibylle; Shah, Neil; Segal, Anthony W; Sauerbrey, Axel; Buderus, Stephan; Snapper, Scott B; Grimbacher, Bodo; Klein, Christoph

    2009-11-19

    The molecular cause of inflammatory bowel disease is largely unknown. We performed genetic-linkage analysis and candidate-gene sequencing on samples from two unrelated consanguineous families with children who were affected by early-onset inflammatory bowel disease. We screened six additional patients with early-onset colitis for mutations in two candidate genes and carried out functional assays in patients' peripheral-blood mononuclear cells. We performed an allogeneic hematopoietic stem-cell transplantation in one patient. In four of nine patients with early-onset colitis, we identified three distinct homozygous mutations in genes IL10RA and IL10RB, encoding the IL10R1 and IL10R2 proteins, respectively, which form a heterotetramer to make up the interleukin-10 receptor. The mutations abrogate interleukin-10-induced signaling, as shown by deficient STAT3 (signal transducer and activator of transcription 3) phosphorylation on stimulation with interleukin-10. Consistent with this observation was the increased secretion of tumor necrosis factor alpha and other proinflammatory cytokines from peripheral-blood mononuclear cells from patients who were deficient in IL10R subunit proteins, suggesting that interleukin-10-dependent "negative feedback" regulation is disrupted in these cells. The allogeneic stem-cell transplantation performed in one patient was successful. Mutations in genes encoding the IL10R subunit proteins were found in patients with early-onset enterocolitis, involving hyperinflammatory immune responses in the intestine. Allogeneic stem-cell transplantation resulted in disease remission in one patient. 2009 Massachusetts Medical Society

  10. Faster cross-bridge detachment and increased tension cost in human hypertrophic cardiomyopathy with the R403Q MYH7 mutation

    PubMed Central

    Witjas-Paalberends, E Rosalie; Ferrara, Claudia; Scellini, Beatrice; Piroddi, Nicoletta; Montag, Judith; Tesi, Chiara; Stienen, Ger J M; Michels, Michelle; Ho, Carolyn Y; Kraft, Theresia; Poggesi, Corrado; van der Velden, Jolanda

    2014-01-01

    The first mutation associated with hypertrophic cardiomyopathy (HCM) is the R403Q mutation in the gene encoding β-myosin heavy chain (β-MyHC). R403Q locates in the globular head of myosin (S1), responsible for interaction with actin, and thus motor function of myosin. Increased cross-bridge relaxation kinetics caused by the R403Q mutation might underlie increased energetic cost of tension generation; however, direct evidence is absent. Here we studied to what extent cross-bridge kinetics and energetics are related in single cardiac myofibrils and multicellular cardiac muscle strips of three HCM patients with the R403Q mutation and nine sarcomere mutation-negative HCM patients (HCMsmn). Expression of R403Q was on average 41 ± 4% of total MYH7 mRNA. Cross-bridge slow relaxation kinetics in single R403Q myofibrils was significantly higher (P < 0.0001) than in HCMsmn myofibrils (0.47 ± 0.02 and 0.30 ± 0.02 s−1, respectively). Moreover, compared to HCMsmn, tension cost was significantly higher in the muscle strips of the three R403Q patients (2.93 ± 0.25 and 1.78 ± 0.10 μmol l–1 s−1 kN−1 m−2, respectively) which showed a positive linear correlation with relaxation kinetics in the corresponding myofibril preparations. This correlation suggests that faster cross-bridge relaxation kinetics results in an increase in energetic cost of tension generation in human HCM with the R403Q mutation compared to HCMsmn. Therefore, increased tension cost might contribute to HCM disease in patients carrying the R403Q mutation. PMID:24928957

  11. Mutations Affecting Expression of the rosy Locus in Drosophila melanogaster

    PubMed Central

    Lee, Chong Sung; Curtis, Daniel; McCarron, Margaret; Love, Carol; Gray, Mark; Bender, Welcome; Chovnick, Arthur

    1987-01-01

    The rosy locus in Drosophila melanogaster codes for the enzyme xanthine dehydrogenase (XDH). Previous studies defined a "control element" near the 5' end of the gene, where variant sites affected the amount of rosy mRNA and protein produced. We have determined the DNA sequence of this region from both genomic and cDNA clones, and from the ry+10 underproducer strain. This variant strain had many sequence differences, so that the site of the regulatory change could not be fixed. A mutagenesis was also undertaken to isolate new regulatory mutations. We induced 376 new mutations with 1-ethyl-1-nitrosourea (ENU) and screened them to isolate those that reduced the amount of XDH protein produced, but did not change the properties of the enzyme. Genetic mapping was used to find mutations located near the 5' end of the gene. DNA from each of seven mutants was cloned and sequenced through the 5' region. Mutant base changes were identified in all seven; they appear to affect splicing and translation of the rosy mRNA. In a related study (T. P. Keith et al. 1987), the genomic and cDNA sequences are extended through the 3' end of the gene; the combined sequences define the processing pattern of the rosy transcript and predict the amino acid sequence of XDH. PMID:3036645

  12. Neuropathologic Characterization of Pontocerebellar Hypoplasia Type 6 Associated With Cardiomyopathy and Hydrops Fetalis and Severe Multisystem Respiratory Chain Deficiency due to Novel RARS2 Mutations

    PubMed Central

    Lax, Nichola Z.; Alston, Charlotte L.; Schon, Katherine; Park, Soo-Mi; Krishnakumar, Deepa; He, Langping; Falkous, Gavin; Ogilvy-Stuart, Amanda; Lees, Christoph; King, Rosalind H.; Hargreaves, Iain P.; Brown, Garry K.; McFarland, Robert; Dean, Andrew F.; Taylor, Robert W.

    2015-01-01

    Abstract Autosomal recessive mutations in the RARS2 gene encoding the mitochondrial arginyl-transfer RNA synthetase cause infantile-onset myoencephalopathy pontocerebellar hypoplasia type 6 (PCH6). We describe 2 sisters with novel compound heterozygous RARS2 mutations who presented perinatally with neurologic features typical of PCH6 but with additional features including cardiomyopathy, hydrops, and pulmonary hypoplasia and who died at 1 day and 14 days of age. Magnetic resonance imaging findings included marked cerebellar hypoplasia, gyral immaturity, punctate lesions in cerebral white matter, and unfused deep cerebral grey matter. Enzyme histochemistry of postmortem tissues revealed a near-global cytochrome c oxidase-deficiency; assessment of respiratory chain enzyme activities confirmed severe deficiencies involving complexes I, III, and IV. Molecular genetic studies revealed 2 RARS2 gene mutations: a c.1A>G, p.? variant predicted to abolish the initiator methionine, and a deep intronic c.613-3927C>T variant causing skipping of exons 6–8 in the mature RARS2 transcript. Neuropathologic investigation included low brain weights, small brainstem and cerebellum, deep cerebral white matter pathology, pontine nucleus neuron loss (in 1 sibling), and peripheral nerve pathology. Mitochondrial respiratory chain immunohistochemistry in brain tissues confirmed an absence of complexes I and IV immunoreactivity with sparing of mitochondrial numbers. These cases expand the clinical spectrum of RARS2 mutations, including antenatal features and widespread mitochondrial respiratory chain deficiencies in postmortem brain tissues. PMID:26083569

  13. Leigh Syndrome Caused by the MT-ND5 m.13513G>A Mutation: A Case Presenting with WPW-Like Conduction Defect, Cardiomyopathy, Hypertension and Hyponatraemia.

    PubMed

    Brecht, Marcus; Richardson, Malcolm; Taranath, Ajay; Grist, Scott; Thorburn, David; Bratkovic, Drago

    2015-01-01

    Mitochondrial disease can present with a wide range of clinical phenotypes, and knowledge of the clinical spectrum of mitochondrial DNA mutation is constantly expanding. Leigh syndrome (LS) has been reported to be caused by the m.13513G>A mutation in the ND5 subunit of complex I (MT-ND5 m.13513G>A). We present a case of a 12-month-old infant initially diagnosed with tachyarrhythmia requiring defibrillation, subsequent presentation with hypertension and hyponatraemia secondary to renal salt loss and presumed inappropriate ADH secretion. Complex I activity in the muscle tissue was 54%, and mutation load in the muscle and lymphocytes was 50%. This case of Leigh syndrome caused by the m.13513G>A mutation in the ND5 gene illustrates that hyponatraemia due to renal sodium loss and inappropriate ADH secretion and hypertension can be features of this entity in addition to the previously reported cardiomyopathy and WPW-like conduction pattern and that they present additional challenges in diagnosis and management.

  14. Gating pore currents are defects in common with two Nav1.5 mutations in patients with mixed arrhythmias and dilated cardiomyopathy

    PubMed Central

    Moreau, Adrien; Gosselin-Badaroudine, Pascal; Delemotte, Lucie; Klein, Michael L.

    2015-01-01

    The gating pore current, also called omega current, consists of a cation leak through the typically nonconductive voltage-sensor domain (VSD) of voltage-gated ion channels. Although the study of gating pore currents has refined our knowledge of the structure and the function of voltage-gated ion channels, their implication in cardiac disorders has not been established. Two Nav1.5 mutations (R222Q and R225W) located in the VSD are associated with atypical clinical phenotypes involving complex arrhythmias and dilated cardiomyopathy. Using the patch-clamp technique, in silico mutagenesis, and molecular dynamic simulations, we tested the hypothesis that these two mutations may generate gating pore currents, potentially accounting for their clinical phenotypes. Our findings suggest that the gating pore current generated by the R222Q and R225W mutations could constitute the underlying pathological mechanism that links Nav1.5 VSD mutations with human cardiac arrhythmias and dilatation of cardiac chambers. PMID:25624448

  15. Optic neuropathy, cardiomyopathy, cognitive disability in patients with a homozygous mutation in the nuclear MTO1 and a mitochondrial MT-TF variant.

    PubMed

    Charif, Majida; Titah, Salah Mohamed Cherif; Roubertie, Agathe; Desquiret-Dumas, Valérie; Gueguen, Naig; Meunier, Isabelle; Leid, Jean; Massal, Frédéric; Zanlonghi, Xavier; Mercier, Jacques; Raynaud de Mauverger, Eric; Procaccio, Vincent; Mousson de Camaret, Bénédicte; Lenaers, Guy; Hamel, Christian P

    2015-10-01

    We report on clinical, genetic and metabolic investigations in a family with optic neuropathy, non-progressive cardiomyopathy and cognitive disability. Ophthalmic investigations (slit lamp examination, funduscopy, OCT scan of the optic nerve, ERG and VEP) disclosed mild or no decreased visual acuity, but pale optic disc, loss of temporal optic fibers and decreased VEPs. Mitochondrial DNA and exome sequencing revealed a novel homozygous mutation in the nuclear MTO1 gene and the homoplasmic m.593T>G mutation in the mitochondrial MT-TF gene. Muscle biopsy analyses revealed decreased oxygraphic Vmax values for complexes I+III+IV, and severely decreased activities of the respiratory chain complexes (RCC) I, III and IV, while muscle histopathology was normal. Fibroblast analysis revealed decreased complex I and IV activity and assembly, while cybrid analysis revealed a partial complex I deficiency with normal assembly of the RCC. Thus, in patients with a moderate clinical presentation due to MTO1 mutations, the presence of an optic atrophy should be considered. The association with the mitochondrial mutation m.593T>G could act synergistically to worsen the complex I deficiency and modulate the MTO1-related disease.

  16. Gating pore currents are defects in common with two Nav1.5 mutations in patients with mixed arrhythmias and dilated cardiomyopathy.

    PubMed

    Moreau, Adrien; Gosselin-Badaroudine, Pascal; Delemotte, Lucie; Klein, Michael L; Chahine, Mohamed

    2015-02-01

    The gating pore current, also called omega current, consists of a cation leak through the typically nonconductive voltage-sensor domain (VSD) of voltage-gated ion channels. Although the study of gating pore currents has refined our knowledge of the structure and the function of voltage-gated ion channels, their implication in cardiac disorders has not been established. Two Na(v)1.5 mutations (R222Q and R225W) located in the VSD are associated with atypical clinical phenotypes involving complex arrhythmias and dilated cardiomyopathy. Using the patch-clamp technique, in silico mutagenesis, and molecular dynamic simulations, we tested the hypothesis that these two mutations may generate gating pore currents, potentially accounting for their clinical phenotypes. Our findings suggest that the gating pore current generated by the R222Q and R225W mutations could constitute the underlying pathological mechanism that links Na(v)1.5 VSD mutations with human cardiac arrhythmias and dilatation of cardiac chambers.

  17. The LMNA mutation p.Arg321Ter associated with dilated cardiomyopathy leads to reduced expression and a skewed ratio of lamin A and lamin C proteins

    SciTech Connect

    Al-Saaidi, Rasha; Rasmussen, Torsten B.; Palmfeldt, Johan; Nissen, Peter H.; Beqqali, Abdelaziz; Hansen, Jakob; Pinto, Yigal M.; Boesen, Thomas; Mogensen, Jens; Bross, Peter

    2013-11-15

    Dilated cardiomyopathy (DCM) is a disease of the heart muscle characterized by cardiac chamber enlargement and reduced systolic function of the left ventricle. Mutations in the LMNA gene represent the most frequent known genetic cause of DCM associated with disease of the conduction systems. The LMNA gene generates two major transcripts encoding the nuclear lamina major components lamin A and lamin C by alternative splicing. Both haploinsuffiency and dominant negative effects have been proposed as disease mechanism for premature termination codon (PTC) mutations in LMNA. These mechanisms however are still not clearly established. In this study, we used a representative LMNA nonsense mutation, p.Arg321Ter, to shed light on the molecular disease mechanisms. Cultured fibroblasts from three DCM patients carrying this mutation were analyzed. Quantitative reverse transcriptase PCR and sequencing of these PCR products indicated that transcripts from the mutant allele were degraded by the nonsense-mediated mRNA decay (NMD) mechanism. The fact that no truncated mutant protein was detectable in western blot (WB) analysis strengthens the notion that the mutant transcript is efficiently degraded. Furthermore, WB analysis showed that the expression of lamin C protein was reduced by the expected approximately 50%. Clearly decreased lamin A and lamin C levels were also observed by immunofluorescence microscopy analysis. However, results from both WB and nano-liquid chromatography/mass spectrometry demonstrated that the levels of lamin A protein were more reduced suggesting an effect on expression of lamin A from the wild type allele. PCR analysis of the ratio of lamin A to lamin C transcripts showed unchanged relative amounts of lamin A transcript suggesting that the effect on the wild type allele was operative at the protein level. Immunofluorescence microscopy analysis showed no abnormal nuclear morphology of patient fibroblast cells. Based on these data, we propose that

  18. The classical pink-eyed dilution mutation affects angiogenic responsiveness.

    PubMed

    Rogers, Michael S; Boyartchuk, Victor; Rohan, Richard M; Birsner, Amy E; Dietrich, William F; D'Amato, Robert J

    2012-01-01

    Angiogenesis is the process by which new blood vessels are formed from existing vessels. Mammalian populations, including humans and mice, harbor genetic variations that alter angiogenesis. Angiogenesis-regulating gene variants can result in increased susceptibility to multiple angiogenesis-dependent diseases in humans. Our efforts to dissect the complexity of the genetic diversity that regulates angiogenesis have used laboratory animals due to the availability of genome sequence for many species and the ability to perform high volume controlled breeding. Using the murine corneal micropocket assay, we have observed more than ten-fold difference in angiogenic responsiveness among various mouse strains. This degree of difference is observed with either bFGF or VEGF induced corneal neovascularization. Ongoing mapping studies have identified multiple loci that affect angiogenic responsiveness in several mouse models. In this study, we used F2 intercrosses between C57BL/6J and the 129 substrains 129P1/ReJ and 129P3/J, as well as the SJL/J strain, where we have identified new QTLs that affect angiogenic responsiveness. In the case of AngFq5, on chromosome 7, congenic animals were used to confirm the existence of this locus and subcongenic animals, combined with a haplotype-based mapping approach that identified the pink-eyed dilution mutation as a candidate polymorphism to explain AngFq5. The ability of mutations in the pink-eyed dilution gene to affect angiogenic response was demonstrated using the p-J allele at the same locus. Using this allele, we demonstrate that pink-eyed dilution mutations in Oca2 can affect both bFGF and VEGF-induced corneal angiogenesis.

  19. Peripartum Cardiomyopathy.

    PubMed

    Arany, Zolt; Elkayam, Uri

    2016-04-05

    Peripartum cardiomyopathy is a potentially life-threatening pregnancy-associated disease that typically arises in the peripartum period and is marked by left ventricular dysfunction and heart failure. The disease is relatively uncommon, but its incidence is rising. Women often recover cardiac function, but long-lasting morbidity and mortality are not infrequent. Management of peripartum cardiomyopathy is largely limited to the same neurohormonal antagonists used in other forms of cardiomyopathy, and no proven disease-specific therapies exist yet. Research in the past decade has suggested that peripartum cardiomyopathy is caused by vascular dysfunction, triggered by late-gestational maternal hormones. Most recently, information has also indicated that many cases of peripartum cardiomyopathy have genetic underpinnings. We review here the known epidemiology, clinical presentation, and management of peripartum cardiomyopathy, as well as the current knowledge of the pathophysiology of the disease. © 2016 American Heart Association, Inc.

  20. Doxorubicin Cardiomyopathy

    PubMed Central

    Chatterjee, Kanu; Zhang, Jianqing; Honbo, Norman; Karliner, Joel S.

    2010-01-01

    Established doxorubicin cardiomyopathy is a lethal disease. When congestive heart failure develops, mortality is approximately 50%. Extensive research has been done to understand the mechanism and pathophysiology of doxorubicin cardiomyopathy, and considerable knowledge and experience has been gained. Unfortunately, no effective treatment for established doxorubicin cardiomyopathy is presently available. Extensive research has been done and is being done to discover preventive treatments. However an effective and clinically applicable preventive treatment is yet to be discovered. PMID:20016174

  1. Inflammatory Bowel Disease and Mutations Affecting the Interleukin-10 Receptor

    PubMed Central

    Glocker, Erik-Oliver; Kotlarz, Daniel; Boztug, Kaan; Gertz, E. Michael; Schäffer, Alejandro A.; Noyan, Fatih; Perro, Mario; Diestelhorst, Jana; Allroth, Anna; Murugan, Dhaarini; Hätscher, Nadine; Pfeifer, Dietmar; Sykora, Karl-Walter; Sauer, Martin; Kreipe, Hans; Lacher, Martin; Nustede, Rainer; Woellner, Cristina; Baumann, Ulrich; Salzer, Ulrich; Koletzko, Sibylle; Shah, Neil; Segal, Anthony W.; Sauerbrey, Axel; Buderus, Stephan; Snapper, Scott B.; Grimbacher, Bodo; Klein, Christoph

    2009-01-01

    BACKGROUND The molecular cause of inflammatory bowel disease is largely unknown. METHODS We performed genetic-linkage analysis and candidate-gene sequencing on samples from two unrelated consanguineous families with children who were affected by early-onset inflammatory bowel disease. We screened six additional patients with early-onset colitis for mutations in two candidate genes and carried out functional assays in patients’ peripheral-blood mononuclear cells. We performed an allogeneic hematopoietic stem-cell transplantation in one patient. RESULTS In four of nine patients with early-onset colitis, we identified three distinct homozygous mutations in genes IL10RA and IL10RB, encoding the IL10R1 and IL10R2 proteins, respectively, which form a heterotetramer to make up the interleukin-10 receptor. The mutations abrogate interleukin-10–induced signaling, as shown by deficient STAT3 (signal transducer and activator of transcription 3) phosphorylation on stimulation with interleukin-10. Consistent with this observation was the increased secretion of tumor necrosis factor α and other proinflammatory cytokines from peripheral-blood mononuclear cells from patients who were deficient in IL10R subunit proteins, suggesting that interleukin-10–dependent “negative feedback” regulation is disrupted in these cells. The allogeneic stem-cell transplantation performed in one patient was successful. CONCLUSIONS Mutations in genes encoding the IL10R subunit proteins were found in patients with early-onset enterocolitis, involving hyperinflammatory immune responses in the intestine. Allogeneic stem-cell transplantation resulted in disease remission in one patient. PMID:19890111

  2. Specific DNA replication mutations affect telomere length in Saccharomyces cerevisiae.

    PubMed Central

    Adams, A K; Holm, C

    1996-01-01

    To investigate the relationship between the DNA replication apparatus and the control of telomere length, we examined the effects of several DNA replication mutations on telomere length in Saccharomyces cerevisiae. We report that a mutation in the structural gene for the large subunit of DNA replication factor C (cdc44/rfc1) causes striking increases in telomere length. A similar effect is seen with mutations in only one other DNA replication gene: the structural gene for DNA polymerase alpha (cdc17/pol1) (M.J. Carson and L. Hartwell, Cell 42:249-257, 1985). For both genes, the telomere elongation phenotype is allele specific and appears to correlate with the penetrance of the mutations. Furthermore, fluorescence-activated cell sorter analysis reveals that those alleles that cause elongation also exhibit a slowing of DNA replication. To determine whether elongation is mediated by telomerase or by slippage of the DNA polymerase, we created cdc17-1 mutants carrying deletions of the gene encoding the RNA component of telomerase (TLC1). cdc17-1 strains that would normally undergo telomere elongation failed to do so in the absence of telomerase activity. This result implies that telomere elongation in cdc17-1 mutants is mediated by the action of telomerase. Since DNA replication involves transfer of the nascent strand from polymerase alpha to replication factor C (T. Tsurimoto and B. Stillman, J. Biol. Chem. 266:1950-1960, 1991; T. Tsurimoto and B. Stillman, J. Biol. Chem. 266:1961-1968, 1991; S. Waga and B. Stillman, Nature [London] 369:207-212, 1994), one possibility is that this step affects the regulation of telomere length. PMID:8756617

  3. Early Progressive Dilated Cardiomyopathy in a Family with Becker Muscular Dystrophy Related to a Novel Frameshift Mutation in the Dystrophin Gene Exon 27

    PubMed Central

    Tsuda, Takeshi; Fitzgerald, Kristi; Scavena, Mena; Gidding, Samuel; Cox, Mary O.; Marks, Harold; Flanigan, Kevin M.; Moore, Steven A.

    2014-01-01

    We report a family in which two male siblings with Becker muscular dystrophy (BMD) developed severe dilated cardiomyopathy (DCM) and progressive heart failure (HF) at age 11; one died at age 14 years while awaiting heart transplant and the other underwent left ventricular assist device (LVAD) implantation at the same age. Genetic analysis of one sibling showed a novel frameshift mutation in exon 27 of Duchenne muscular dystrophy (DMD) gene (c.3779_3785delCTTTGGAins GG), in which 7 base pairs are deleted and two are inserted. While this predicts an amino acid substitution and premature termination (p.Thr1260Argfs*8), muscle biopsy dystrophin immunostaining instead indicates that the mutation is more likely to alter splicing. Despite relatively preserved skeletal muscular performance, both siblings developed progressive heart failure secondary to early onset DCM. In addition, their 7 year old nephew with delayed gross motor development, mild proximal muscle weakness, and markedly elevated serum creatine kinase (CK) level (> 13,000 IU/L) at 16 months was recently demonstrated to have the familial DMD mutation. Here we report a novel genotype of BMD with early onset DCM and progressive lethal heart failure during early adolescence. PMID:25537791

  4. Early-progressive dilated cardiomyopathy in a family with Becker muscular dystrophy related to a novel frameshift mutation in the dystrophin gene exon 27.

    PubMed

    Tsuda, Takeshi; Fitzgerald, Kristi; Scavena, Mena; Gidding, Samuel; Cox, Mary O; Marks, Harold; Flanigan, Kevin M; Moore, Steven A

    2015-03-01

    We report a family in which two male siblings with Becker muscular dystrophy (BMD) developed severe dilated cardiomyopathy (DCM) and progressive heart failure (HF) at age 11 years; one died at age 14 years while awaiting heart transplant and the other underwent left ventricular assist device implantation at the same age. Genetic analysis of one sibling showed a novel frameshift mutation in exon 27 of Duchenne muscular dystrophy (DMD) gene (c.3779_3785delCTTTGGAinsGG), in which seven base pairs are deleted and two are inserted. Although this predicts an amino-acid substitution and premature termination (p.Thr1260Argfs*8), muscle biopsy dystrophin immunostaining instead indicates that the mutation is more likely to alter splicing. Despite relatively preserved skeletal muscular performance, both the siblings developed progressive HF secondary to early-onset DCM. In addition, their 7-year-old nephew with delayed gross motor development, mild proximal muscle weakness and markedly elevated serum creatine kinase level (>13 000 IU l(-1)) at 16 months was recently demonstrated to have the familial DMD mutation. Here, we report a novel genotype of BMD with early-onset DCM and progressive lethal HF during early adolescence.

  5. Molecular etiology of idiopathic cardiomyopathy

    PubMed Central

    Arimura, T; Hayashi, T; Kimura, A

    2007-01-01

    Summary Idiopathic cardiomyopathy (ICM) is a primary cardiac disorder associated with abnormalities of ventricular wall thickness, size of ventricular cavity, contraction, relaxation, conduction and rhythm. Over the past two decades, molecular genetic analyses have revealed that mutations in the various genes cause ICM and such information concerning the genetic basis of ICM enables us to speculate the pathogenesis of this heterogeous cardiac disease. This review focuses on the molecular pathogenesis, i.e., genetic abnormalities and functional alterations due to the mutations especially in sarcomere/cytoskeletal components, in three characteristic features of ICM, hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM) and restrictive cardiomyopathy (RCM). Understanding the functional abnormalities of the sarcomere/cytoskeletal components, in ICM, has unraveled the function of these components not only as a contractile unit but also as a pivot for transduction of biochemical signals. PMID:18646564

  6. Dilated cardiomyopathy.

    PubMed

    Weintraub, Robert G; Semsarian, Christopher; Macdonald, Peter

    2017-02-09

    Dilated cardiomyopathy is defined by the presence of left ventricular dilatation and contractile dysfunction. Genetic mutations involving genes that encode cytoskeletal, sarcomere, and nuclear envelope proteins, among others, account for up to 35% of cases. Acquired causes include myocarditis and exposure to alcohol, drugs and toxins, and metabolic and endocrine disturbances. The most common presenting symptoms relate to congestive heart failure, but can also include circulatory collapse, arrhythmias, and thromboembolic events. Secondary neurohormonal changes contribute to reverse remodelling and ongoing myocyte damage. The prognosis is worst for individuals with the lowest ejection fractions or severe diastolic dysfunction. Treatment of chronic heart failure comprises medications that improve survival and reduce hospital admission-namely, angiotensin converting enzyme inhibitors and β blockers. Other interventions include enrolment in a multidisciplinary heart failure service, and device therapy for arrhythmia management and sudden death prevention. Patients who are refractory to medical therapy might benefit from mechanical circulatory support and heart transplantation. Treatment of preclinical disease and the potential role of stem-cell therapy are being investigated.

  7. Arrhythmogenic Right Ventricular Cardiomyopathy in the Boxer Dog: An Update.

    PubMed

    Meurs, Kathryn M

    2017-09-01

    Arrhythmogenic right ventricular cardiomyopathy is an inheritable form of myocardial disease characterized most commonly by ventricular tachycardias, syncope, and sometimes systolic dysfunction and heart failure. A genetic mutation in the striatin gene has been identified in many affected dogs. Dogs with only one copy of the mutation (heterozygous) have a variable prognosis, with many dogs remaining asymptomatic or being successfully managed on antiarrhythmic drugs for years. Dogs that are homozygous for the mutation seem to have a worse prognosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Takotsubo Cardiomyopathy Associated with Severe Hypothyroidism in an Elderly Female

    PubMed Central

    Brenes-Salazar, Jorge A.

    2016-01-01

    Takotsubo cardiomyopathy, also known as stress cardiomyopathy, is a syndrome that affects predominantly postmenopausal women. Despite multiple described mechanisms, intense, neuroadrenergic myocardial stimulation appears to be the main trigger. Hyperthyroidism, but rarely hypothyroidism, has been described in association with Takotsubo cardiomyopathy. Herein, we present a case of stress cardiomyopathy in the setting of symptomatic hypothyroidism. PMID:27512537

  9. Peripartum cardiomyopathy.

    PubMed

    Sundin, Courtney Stanley

    2014-01-01

    Peripartum cardiomyopathy is a very rare, but serious life-threatening emergency. Early recognition of signs and symptoms, along with radiologic imaging and blood work, can facilitate timely diagnosis. Once peripartum cardiomyopathy is diagnosed, a multidisciplinary team can facilitate the delivery of quality care to promote optimal outcomes.

  10. [Hypertrophic cardiomyopathy. Arrhythmia in hypertrophic cardiomyopathy].

    PubMed

    Colín Lizalde, Luis de Jesús

    2003-01-01

    Hypertrophic cardiomyopathy is a relatively common genetic disorder with heterogeneity in mutations, forms of presentation, prognosis and treatment strategies. Hypertrophic cardiomyopathy is recognized as the most common cause of sudden cardiac death that occurs in young people, including athletes. The clinical diagnosis is complemented with the ecocardiographic study, in which an abnormal myocardial hypertrophy of the septum can be observed in the absence of a cardiac or systemic disease (arterial systemic hypertension, aortic stenosis). The annual sudden mortality rate is 1% and, in selected populations, it ranges between 3 and 6%. The therapeutic strategies depend on the different subsets of patients according to the morbidity and mortality, sudden cardiac death, obstructive symptoms, heart failure or atrial fibrillation and stroke. High risk patients for sudden death may effectively be treated with the automatic implantable cardioverter-defibrillator.

  11. Hypertrophic Cardiomyopathy Registry: The rationale and design of an international, observational study of hypertrophic cardiomyopathy.

    PubMed

    Kramer, Christopher M; Appelbaum, Evan; Desai, Milind Y; Desvigne-Nickens, Patrice; DiMarco, John P; Friedrich, Matthias G; Geller, Nancy; Heckler, Sarahfaye; Ho, Carolyn Y; Jerosch-Herold, Michael; Ivey, Elizabeth A; Keleti, Julianna; Kim, Dong-Yun; Kolm, Paul; Kwong, Raymond Y; Maron, Martin S; Schulz-Menger, Jeanette; Piechnik, Stefan; Watkins, Hugh; Weintraub, William S; Wu, Pan; Neubauer, Stefan

    2015-08-01

    Hypertrophic cardiomyopathy (HCM) is the most common monogenic heart disease with a frequency as high as 1 in 200. In many cases, HCM is caused by mutations in genes encoding the different components of the sarcomere apparatus. Hypertrophic cardiomyopathy is characterized by unexplained left ventricular hypertrophy, myofibrillar disarray, and myocardial fibrosis. The phenotypic expression is quite variable. Although most patients with HCM are asymptomatic, serious consequences are experienced in a subset of affected individuals who present initially with sudden cardiac death or progress to refractory heart failure. The Hypertrophic Cardiomyopathy Registry study is a National Heart, Lung, and Blood Institute-sponsored 2,750-patient, 44-site, international registry and natural history study designed to address limitations in extant evidence to improve prognostication in HCM (NCT01915615). In addition to the collection of standard demographic, clinical, and echocardiographic variables, patients will undergo state-of-the-art cardiac magnetic resonance for assessment of left ventricular mass and volumes as well as replacement scarring and interstitial fibrosis. In addition, genetic and biomarker analyses will be performed. The Hypertrophic Cardiomyopathy Registry has the potential to change the paradigm of risk stratification in HCM, using novel markers to identify those at higher risk. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Spinal cord stimulation affects T-wave alternans in patients with ischaemic cardiomyopathy: a pilot study.

    PubMed

    Ferrero, Paolo; Castagno, Davide; Massa, Riccardo; De Luca, Anna; Castellano, Maddalena; Chirio, Claudio; Grimaldi, Roberto

    2008-04-01

    An antiarrhythmic effect of spinal cord stimulation (SCS) has been recognized in an animal model. The actual mechanism is still mainly unknown. An adrenergic output reduction has been advocated as the main mechanism, although a modulation effect on the arrhythmic substrate has not yet been investigated. We studied T-wave alternans (TWA) modifications to test the hypothesis that SCS affects the arrhythmic substrate. We performed TWA assessment in three high-risk patients who previously had undergone implantation of both implantable cardioverter defibrillator and SCS to treat refractory angina. The test was performed after switching off the SCS and after 2 and 24 h stimulation at the default amplitude. The protocol was executed 2 months apart in order to assess the reproducibility of the results, collecting a total of 18 TWA reports. In all the three patients, we observed a significant reduction of TWA amplitude after 2 h stimulation. All the tests were classified as negative after 24 h stimulation with the nominal parameters. Spinal cord stimulation results in a decrease in the TWA magnitude, and thus it seems to positively affect the arrhythmic substrate in a time-dependent manner.

  13. Dilated Cardiomyopathy Mutation (R134W) in Mouse Cardiac Troponin T Induces Greater Contractile Deficits against α-Myosin Heavy Chain than against β-Myosin Heavy Chain

    PubMed Central

    Gollapudi, Sampath K.; Chandra, Murali

    2016-01-01

    Many studies have demonstrated that depressed myofilament Ca2+ sensitivity is common to dilated cardiomyopathy (DCM) in humans. However, it remains unclear whether a single determinant—such as myofilament Ca2+ sensitivity—is sufficient to characterize all cases of DCM because the severity of disease varies widely with a given mutation. Because dynamic features dominate in the heart muscle, alterations in dynamic contractile parameters may offer better insight on the molecular mechanisms that underlie disparate effects of DCM mutations on cardiac phenotypes. Dynamic features are dominated by myofilament cooperativity that stem from different sources. One such source is the strong tropomyosin binding region in troponin T (TnT), which is known to modulate crossbridge (XB) recruitment dynamics in a myosin heavy chain (MHC)-dependent manner. Therefore, we hypothesized that the effects of DCM-linked mutations in TnT on contractile dynamics would be differently modulated by α- and β-MHC. After reconstitution with the mouse TnT equivalent (TnTR134W) of the human DCM mutation (R131W), we measured dynamic contractile parameters in detergent-skinned cardiac muscle fiber bundles from normal (α-MHC) and transgenic mice (β-MHC). TnTR134W significantly attenuated the rate constants of tension redevelopment, XB recruitment dynamics, XB distortion dynamics, and the magnitude of length-mediated XB recruitment only in α-MHC fiber bundles. TnTR134W decreased myofilament Ca2+ sensitivity to a greater extent in α-MHC (0.14 pCa units) than in β-MHC fiber bundles (0.08 pCa units). Thus, our data demonstrate that TnTR134W induces a more severe DCM-like contractile phenotype against α-MHC than against β-MHC background. PMID:27757084

  14. Dilated Cardiomyopathy Mutation (R134W) in Mouse Cardiac Troponin T Induces Greater Contractile Deficits against α-Myosin Heavy Chain than against β-Myosin Heavy Chain.

    PubMed

    Gollapudi, Sampath K; Chandra, Murali

    2016-01-01

    Many studies have demonstrated that depressed myofilament Ca(2+) sensitivity is common to dilated cardiomyopathy (DCM) in humans. However, it remains unclear whether a single determinant-such as myofilament Ca(2+) sensitivity-is sufficient to characterize all cases of DCM because the severity of disease varies widely with a given mutation. Because dynamic features dominate in the heart muscle, alterations in dynamic contractile parameters may offer better insight on the molecular mechanisms that underlie disparate effects of DCM mutations on cardiac phenotypes. Dynamic features are dominated by myofilament cooperativity that stem from different sources. One such source is the strong tropomyosin binding region in troponin T (TnT), which is known to modulate crossbridge (XB) recruitment dynamics in a myosin heavy chain (MHC)-dependent manner. Therefore, we hypothesized that the effects of DCM-linked mutations in TnT on contractile dynamics would be differently modulated by α- and β-MHC. After reconstitution with the mouse TnT equivalent (TnTR134W) of the human DCM mutation (R131W), we measured dynamic contractile parameters in detergent-skinned cardiac muscle fiber bundles from normal (α-MHC) and transgenic mice (β-MHC). TnTR134W significantly attenuated the rate constants of tension redevelopment, XB recruitment dynamics, XB distortion dynamics, and the magnitude of length-mediated XB recruitment only in α-MHC fiber bundles. TnTR134W decreased myofilament Ca(2+) sensitivity to a greater extent in α-MHC (0.14 pCa units) than in β-MHC fiber bundles (0.08 pCa units). Thus, our data demonstrate that TnTR134W induces a more severe DCM-like contractile phenotype against α-MHC than against β-MHC background.

  15. Contractility parameters of human β-cardiac myosin with the hypertrophic cardiomyopathy mutation R403Q show loss of motor function

    PubMed Central

    Nag, Suman; Sommese, Ruth F.; Ujfalusi, Zoltan; Combs, Ariana; Langer, Stephen; Sutton, Shirley; Leinwand, Leslie A.; Geeves, Michael A.; Ruppel, Kathleen M.; Spudich, James A.

    2015-01-01

    Hypertrophic cardiomyopathy (HCM) is the most frequently occurring inherited cardiovascular disease. It is caused by mutations in genes encoding the force-generating machinery of the cardiac sarcomere, including human β-cardiac myosin. We present a detailed characterization of the most debated HCM-causing mutation in human β-cardiac myosin, R403Q. Despite numerous studies, most performed with nonhuman or noncardiac myosin, there is no consensus about the mechanism of action of this mutation on the function of the enzyme. We use recombinant human β-cardiac myosin and new methodologies to characterize in vitro contractility parameters of the R403Q myosin compared to wild type. We extend our studies beyond pure actin filaments to include the interaction of myosin with regulated actin filaments containing tropomyosin and troponin. We find that, with pure actin, the intrinsic force generated by R403Q is ~15% lower than that generated by wild type. The unloaded velocity is, however, ~10% higher for R403Q myosin, resulting in a load-dependent velocity curve that has the characteristics of lower contractility at higher external loads compared to wild type. With regulated actin filaments, there is no increase in the unloaded velocity and the contractility of the R403Q myosin is lower than that of wild type at all loads. Unlike that with pure actin, the actin-activated adenosine triphosphatase activity for R403Q myosin with Ca2+-regulated actin filaments is ~30% lower than that for wild type, predicting a lower unloaded duty ratio of the motor. Overall, the contractility parameters studied fit with a loss of human β-cardiac myosin contractility as a result of the R403Q mutation. PMID:26601291

  16. Functional effects of the hypertrophic cardiomyopathy R403Q mutation are different in an alpha- or beta-myosin heavy chain backbone.

    PubMed

    Lowey, Susan; Lesko, Leanne M; Rovner, Arthur S; Hodges, Alex R; White, Sheryl L; Low, Robert B; Rincon, Mercedes; Gulick, James; Robbins, Jeffrey

    2008-07-18

    The R403Q mutation in the beta-myosin heavy chain (MHC) was the first mutation to be linked to familial hypertrophic cardiomyopathy (FHC), a primary disease of heart muscle. The initial studies with R403Q myosin, isolated from biopsies of patients, showed a large decrease in myosin motor function, leading to the hypothesis that hypertrophy was a compensatory response. The introduction of the mouse model for FHC (the mouse expresses predominantly alpha-MHC as opposed to the beta-isoform in larger mammals) created a new paradigm for FHC based on finding enhanced motor function for R403Q alpha-MHC. To help resolve these conflicting mechanisms, we used a transgenic mouse model in which the endogenous alpha-MHC was largely replaced with transgenically encoded beta-MHC. A His(6) tag was cloned at the N terminus of the alpha-and beta-MHC to facilitate protein isolation by Ni(2+)-chelating chromatography. Characterization of the R403Q alpha-MHC by the in vitro motility assay showed a 30-40% increase in actin filament velocity compared with wild type, consistent with published studies. In contrast, the R403Q mutation in a beta-MHC backbone showed no enhancement in velocity. Cleavage of the His-tagged myosin by chymotrypsin made it possible to isolate homogeneous myosin subfragment 1 (S1), uncontaminated by endogenous myosin. We find that the actin-activated MgATPase activity for R403Q alpha-S1 is approximately 30% higher than for wild type, whereas the enzymatic activity for R403Q beta-S1 is reduced by approximately 10%. Thus, the functional consequences of the mutation are fundamentally changed depending upon the context of the cardiac MHC isoform.

  17. Genotype-phenotype relationship in patients with arrhythmogenic right ventricular cardiomyopathy caused by desmosomal gene mutations: A systematic review and meta-analysis

    PubMed Central

    Xu, Zhenyan; Zhu, Wengen; Wang, Cen; Huang, Lin; Zhou, Qiongqiong; Hu, Jinzhu; Cheng, Xiaoshu; Hong, Kui

    2017-01-01

    The relationship between clinical phenotypes and desmosomal gene mutations in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) is poorly characterized. Therefore, we performed a meta-analysis to explore the genotype-phenotype relationship in patients with ARVC. Any studies reporting this genotype-phenotype relationship were included. In total, 11 studies involving 1,113 patients were included. The presence of desmosomal gene mutations was associated with a younger onset age of ARVC (32.7 ± 15.2 versus 43.2 ± 13.3 years; P = 0.001), a higher incidence of T wave inversion in V1–3 leads (78.5% versus 51.6%; P = 0.0002) or a family history of ARVC (39.5% versus 27.1%; P = 0.03). There was no difference in the proportion of males between desmosomal-positive and desmosomal-negative patients (68.3% versus 68.9%; P = 0.60). The presence of desmosomal gene mutations was not associated with global or regional structural and functional alterations (63.5% versus 60.5%; P = 0.37), epsilon wave (29.4% versus 26.2%; P = 0.51) or ventricular tachycardia of left bundle-branch morphology (62.6% versus 57.2%; P = 0.30). Overall, patients with desmosomal gene mutations are characterized by an earlier onset age, a higher incidence of T wave inversion in V1–3 leads and a strong family history of ARVC. PMID:28120905

  18. Contractility parameters of human β-cardiac myosin with the hypertrophic cardiomyopathy mutation R403Q show loss of motor function.

    PubMed

    Nag, Suman; Sommese, Ruth F; Ujfalusi, Zoltan; Combs, Ariana; Langer, Stephen; Sutton, Shirley; Leinwand, Leslie A; Geeves, Michael A; Ruppel, Kathleen M; Spudich, James A

    2015-10-01

    Hypertrophic cardiomyopathy (HCM) is the most frequently occurring inherited cardiovascular disease. It is caused by mutations in genes encoding the force-generating machinery of the cardiac sarcomere, including human β-cardiac myosin. We present a detailed characterization of the most debated HCM-causing mutation in human β-cardiac myosin, R403Q. Despite numerous studies, most performed with nonhuman or noncardiac myosin, there is no consensus about the mechanism of action of this mutation on the function of the enzyme. We use recombinant human β-cardiac myosin and new methodologies to characterize in vitro contractility parameters of the R403Q myosin compared to wild type. We extend our studies beyond pure actin filaments to include the interaction of myosin with regulated actin filaments containing tropomyosin and troponin. We find that, with pure actin, the intrinsic force generated by R403Q is ~15% lower than that generated by wild type. The unloaded velocity is, however, ~10% higher for R403Q myosin, resulting in a load-dependent velocity curve that has the characteristics of lower contractility at higher external loads compared to wild type. With regulated actin filaments, there is no increase in the unloaded velocity and the contractility of the R403Q myosin is lower than that of wild type at all loads. Unlike that with pure actin, the actin-activated adenosine triphosphatase activity for R403Q myosin with Ca(2+)-regulated actin filaments is ~30% lower than that for wild type, predicting a lower unloaded duty ratio of the motor. Overall, the contractility parameters studied fit with a loss of human β-cardiac myosin contractility as a result of the R403Q mutation.

  19. Clinical and Mechanistic Insights Into the Genetics of Cardiomyopathy.

    PubMed

    Burke, Michael A; Cook, Stuart A; Seidman, Jonathan G; Seidman, Christine E

    2016-12-27

    Over the last quarter-century, there has been tremendous progress in genetics research that has defined molecular causes for cardiomyopathies. More than a thousand mutations have been identified in many genes with varying ontologies, therein indicating the diverse molecules and pathways that cause hypertrophic, dilated, restrictive, and arrhythmogenic cardiomyopathies. Translation of this research to the clinic via genetic testing can precisely group affected patients according to molecular etiology, and identify individuals without evidence of disease who are at high risk for developing cardiomyopathy. These advances provide insights into the earliest manifestations of cardiomyopathy and help to define the molecular pathophysiological basis for cardiac remodeling. Although these efforts remain incomplete, new genomic technologies and analytic strategies provide unparalleled opportunities to fully explore the genetic architecture of cardiomyopathies. Such data hold the promise that mutation-specific pathophysiology will uncover novel therapeutic targets, and herald the beginning of precision therapy for cardiomyopathy patients. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Importance of genetic evaluation and testing in pediatric cardiomyopathy

    PubMed Central

    Tariq, Muhammad; Ware, Stephanie M

    2014-01-01

    Pediatric cardiomyopathies are clinically heterogeneous heart muscle disorders that are responsible for significant morbidity and mortality. Phenotypes include hypertrophic cardiomyopathy, dilated cardiomyopathy, restrictive cardiomyopathy, left ventricular noncompaction and arrhythmogenic right ventricular cardiomyopathy. There is substantial evidence for a genetic contribution to pediatric cardiomyopathy. To date, more than 100 genes have been implicated in cardiomyopathy, but comprehensive genetic diagnosis has been problematic because of the large number of genes, the private nature of mutations, and difficulties in interpreting novel rare variants. This review will focus on current knowledge on the genetic etiologies of pediatric cardiomyopathy and their diagnostic relevance in clinical settings. Recent developments in sequencing technologies are greatly impacting the pace of gene discovery and clinical diagnosis. Understanding the genetic basis for pediatric cardiomyopathy and establishing genotype-phenotype correlations may help delineate the molecular and cellular events necessary to identify potential novel therapeutic targets for heart muscle dysfunction in children. PMID:25429328

  1. Importance of genetic evaluation and testing in pediatric cardiomyopathy.

    PubMed

    Tariq, Muhammad; Ware, Stephanie M

    2014-11-26

    Pediatric cardiomyopathies are clinically heterogeneous heart muscle disorders that are responsible for significant morbidity and mortality. Phenotypes include hypertrophic cardiomyopathy, dilated cardiomyopathy, restrictive cardiomyopathy, left ventricular noncompaction and arrhythmogenic right ventricular cardiomyopathy. There is substantial evidence for a genetic contribution to pediatric cardiomyopathy. To date, more than 100 genes have been implicated in cardiomyopathy, but comprehensive genetic diagnosis has been problematic because of the large number of genes, the private nature of mutations, and difficulties in interpreting novel rare variants. This review will focus on current knowledge on the genetic etiologies of pediatric cardiomyopathy and their diagnostic relevance in clinical settings. Recent developments in sequencing technologies are greatly impacting the pace of gene discovery and clinical diagnosis. Understanding the genetic basis for pediatric cardiomyopathy and establishing genotype-phenotype correlations may help delineate the molecular and cellular events necessary to identify potential novel therapeutic targets for heart muscle dysfunction in children.

  2. Elevated rates of force development and MgATP binding in F764L and S532P myosin mutations causing dilated cardiomyopathy.

    PubMed

    Palmer, Bradley M; Schmitt, Joachim P; Seidman, Christine E; Seidman, J G; Wang, Yuan; Bell, Stephen P; Lewinter, Martin M; Maughan, David W

    2013-04-01

    Dilated cardiomyopathy (DCM) is a disease characterized by dilation of the ventricular chambers and reduced contractile function. We examined the contractile performance of chemically-skinned ventricular strips from two heterozygous murine models of DCM-causing missense mutations of myosin, F764L/+ and S532P/+, in an α-myosin heavy chain (MyHC) background. In Ca(2+)-activated skinned myocardial strips, the maximum developed tension in F764L/+ was only ~50% that of litter-mate controls (+/+). The F764L/+ also exhibited significantly reduced rigor stiffness, loaded shortening velocity and power output. Corresponding indices for S532P/+ strips were not different from controls. Manipulation of MgATP concentration in conjunction with measures of viscoelasticity, which provides estimates of myosin detachment rate 2πc, allowed us to probe the molecular basis of changes in crossbridge kinetics that occur with the myosin mutations. By examining the response of detachment rate to varying MgATP we found the rate of MgADP release was unaffected by the myosin mutations. However, MgATP binding rate was higher in the DCM groups compared to controls (422±109mM(-1)·s(-1) in F764L/+, 483±74mM(-1)·s(-1) in S532P/+ and 303±18mM(-1)·s(-1) in +/+). In addition, the rate constant of force development, 2πb, was significantly higher in DCM groups compared to controls (at 5mM MgATP: 36.9±4.9s(-1) in F764L/+, 32.9±4.5s(-1) in S532P/+ and 18.2±1.7s(-1) in +/+). These results suggest that elevated rates of force development and MgATP binding are features of cardiac myofilament function that underlie the development of DCM.

  3. A Green Tea Catechin Normalizes the Enhanced Ca2+ Sensitivity of Myofilaments Regulated by a Hypertrophic Cardiomyopathy Associated Mutation in Human Cardiac Troponin I (K206I)

    PubMed Central

    Warren, Chad M.; Karam, Chehade N.; Wolska, Beata M.; Kobayashi, Tomoyoshi; de Tombe, Pieter P.; Arteaga, Grace M.; Bos, J. Martijn; Ackerman, Michael J.; Solaro, R. John

    2015-01-01

    Background Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disease characterized by thickening of ventricular walls and decreased left ventricular chamber volume. The majority of HCM-associated mutations are found in genes encoding sarcomere proteins. Herein, we set out to functionally characterize a novel HCM-associated mutation (K206I-TNNI3), and elucidate the mechanism of dysfunction at the level of myofilament proteins. Methods and Results The male index case was diagnosed with HCM after an out-of-hospital cardiac arrest which was followed by comprehensive clinical evaluation, transthoracic echocardiography, and clinical genetic testing. To determine molecular mechanism(s) of the mutant human cardiac troponin I (K206I), we tested the Ca2+ dependence of thin filament-activated myosin-S1-ATPase activity in a reconstituted, regulated, actomyosin system comparing wildtype human troponin complex, 50% mix of K206I/wildtype, or 100% K206I. We also exchanged native troponin detergent extracted fibers with reconstituted troponin containing either wildtype or a 65% mix of K206I/wildtype, and measured force generation. The Ca2+ sensitivity of the myofilaments containing the K206I variant was significantly increased, and when treated with 20 μM EGCG (green tea) was restored back to wildtype levels in ATPase and force measurements. The K206I mutation impairs the ability of the troponin I to inhibit ATPase activity in the absence of Ca-hcTnC (calcium-bound-human cardiac troponin C). The ability of Ca-hcTnC to neutralize the inhibition of K206I was greater than with wildtype TnI. Conclusions Compromised interactions of K206I with actin and hcTnC may lead to impaired relaxation and HCM. PMID:26553696

  4. Anthracycline cardiomyopathy.

    PubMed

    Kobrinsky, N L; Ramsay, N K; Krivit, W

    1982-01-01

    Life-threatening irreversible cardiomyopathy is a major complication of anthracycline therapy, particularly in the pediatric population. The pediatric cardiologist, in concert with the primary oncologist, should therefore play a major role in the care of patients receiving these agents and in clinical trials involving their use. Many risk factors and their relationships to drug pharmacokinetics, mechanisms of action, and toxicity have been identified. These data provide a rational basis for present-day recommendations regarding anthracycline administration and dosage scheduling. They furthermore provide potential avenues for clinical investigation aimed at improving the therapeutic index of these agents: alpha-tocopherol, cytochrome Q10, and other free radical scavengers may decrease the deleterious effects of free radical generation on the myocardium without apparent interference with tumoricidal effect. The cardiac glycosides may decrease cardiac toxicity by specific myocardial exclusion. Anthracycline analogs have been designed to specifically inhibit myocardial binding and/or free radical generation. Clinical trials involving these agents are difficult to interpret because of variability in front end risk factors and dosage schedules in the study population. Furthermore, the relatively low (5 to 10%) incidence of affected patients implies the need for large numbers to demonstrate a statistically significant benefit. Pediatric protocols addressing these issues are urgently needed. Guidelines for present-day management and future studies are outlined.

  5. Mutations Affecting the Chemosensory Neurons of Caenorhabditis Elegans

    PubMed Central

    Starich, T. A.; Herman, R. K.; Kari, C. K.; Yeh, W. H.; Schackwitz, W. S.; Schuyler, M. W.; Collet, J.; Thomas, J. H.; Riddle, D. L.

    1995-01-01

    We have identified and characterized 95 mutations that reduce or abolish dye filling of amphid and phasmid neurons and that have little effect on viability, fertility or movement. Twenty-seven mutations occurred spontaneously in strains with a high frequency of transposon insertion. Sixty-eight were isolated after treatment with EMS. All of the mutations result in defects in one or more chemosensory responses, such as chemotaxis to ammonium chloride or formation of dauer larvae under conditions of starvation and overcrowding. Seventy-five of the mutations are alleles of 12 previously defined genes, mutations which were previously shown to lead to defects in amphid ultrastructure. We have assigned 20 mutations to 13 new genes, called dyf-1 through dyf-13. We expect that the genes represented by dye-filling defective mutants are important for the differentiation of amphid and phasmid chemosensilla. PMID:7705621

  6. Mutations affecting the chemosensory neurons of Caenorhabditis elegans

    SciTech Connect

    Starich, T.A.; Herman, R.K.; Kari, C.K.

    1995-01-01

    We have identified and characterized 95 mutations that reduce or abolish dye filling of amphid and phasmid neurons and that have little effect on viability, fertility or movement. Twenty-seven mutations occurred spontaneously in strains with a high frequency of transposon insertion. Sixty-eight were isolated after treatment with EMS. All of the mutations result in defects in one or more chemosensory responses, such as chemotaxis to ammonium chloride or formation of dauer larvae under conditions of starvation and overcrowding. Seventy-five of the mutations are alleles of 12 previously defined genes, mutations which were previously shown to lead to defects in amphid ultrastructure. We have assigned 20 mutations to 13 new genes, called dyf-1 through dyf-13. We expect that the genes represented by dye-filling defective mutants are important for the differentiation of amphid and phasmid chemosensilla. 58 refs., 3 figs., 6 tabs.

  7. An explicitly solvated full atomistic model of the cardiac thin filament and application on the calcium binding affinity effects from familial hypertrophic cardiomyopathy linked mutations

    NASA Astrophysics Data System (ADS)

    Williams, Michael; Schwartz, Steven

    2015-03-01

    The previous version of our cardiac thin filament (CTF) model consisted of the troponin complex (cTn), two coiled-coil dimers of tropomyosin (Tm), and 29 actin units. We now present the newest revision of the model to include explicit solvation. The model was developed to continue our study of genetic mutations in the CTF proteins which are linked to familial hypertrophic cardiomyopathies. Binding of calcium to the cTnC subunit causes subtle conformational changes to propagate through the cTnC to the cTnI subunit which then detaches from actin. Conformational changes propagate through to the cTnT subunit, which allows Tm to move into the open position along actin, leading to muscle contraction. Calcium disassociation allows for the reverse to occur, which results in muscle relaxation. The inclusion of explicit TIP3 water solvation allows for the model to get better individual local solvent to protein interactions; which are important when observing the N-lobe calcium binding pocket of the cTnC. We are able to compare in silica and in vitro experimental results to better understand the physiological effects from mutants, such as the R92L/W and F110V/I of the cTnT, on the calcium binding affinity compared to the wild type.

  8. A splice site mutation in a gene encoding for PDK4, a mitochondrial protein, is associated with the development of dilated cardiomyopathy in the Doberman pinscher

    USDA-ARS?s Scientific Manuscript database

    Familial dilated cardiomyopathy is a primary myocardial disease that can result in the development of congestive heart failure and sudden cardiac death. Spontaneous animal models of familial dilated cardiomyopathy exist and the Doberman pinscher dog is one of the most commonly reported canine breeds...

  9. Dominance of mutations affecting viability in Drosophila melanogaster.

    PubMed Central

    Fry, James D; Nuzhdin, Sergey V

    2003-01-01

    There have been several attempts to estimate the average dominance (ratio of heterozygous to homozygous effects) of spontaneous deleterious mutations in Drosophila melanogaster, but these have given inconsistent results. We investigated whether transposable element (TE) insertions have higher average dominance for egg-to-adult viability than do point mutations, a possibility suggested by the types of fitness-depressing effects that TEs are believed to have. If so, then variation in dominance estimates among strains and crosses would be expected as a consequence of variation in TE activity. As a first test, we estimated the average dominance of all mutations and of copia insertions in a set of lines that had accumulated spontaneous mutations for 33 generations. A traditional regression method gave a dominance estimate for all mutations of 0.17, whereas average dominance of copia insertions was 0.51; the difference between these two estimates approached significance (P = 0.08). As a second test, we reanalyzed Ohnishi 1974 data on dominance of spontaneous and EMS-induced mutations. Because a considerable fraction of spontaneous mutations are caused by TE insertions, whereas EMS induces mainly point mutations, we predicted that average dominance would decline with increasing EMS concentration. This pattern was observed, but again fell short of formal significance (P = 0.07). Taken together, however, the two results give modest support for the hypothesis that TE insertions have greater average dominance in their viability effects than do point mutations, possibly as a result of deleterious effects of expression of TE-encoded genes. PMID:12702680

  10. [Peripartum cardiomyopathy].

    PubMed

    Mouquet, Frédéric; Bouabdallaoui, Nadia

    2015-01-01

    The peripartum cardiomyopathy is a rare form of dilated cardiomyopathy resulting from alteration of angiogenesis toward the end of pregnancy. The diagnosis is based on the association of clinical heart failure and systolic dysfunction assessed by echocardiography or magnetic resonance imaging. Diagnoses to rule out are myocardial infarction, amniotic liquid embolism, myocarditis, inherited cardiomyopathy, and history of treatment by anthracycline. Risk factors are advance maternal age (>30), multiparity, twin pregnancy, African origin, obesity, preeclampsia, gestational hypertension, and prolonged tocolytic therapy. Treatment of acute phase is identical to usual treatment of acute systolic heart failure. After delivery, VKA treatment should be discussed in case of systolic function <25% because of higher risk of thrombus. A specific treatment by bromocriptine can be initiated on a case-by-case basis. Complete recovery of systolic function is observed in 50% of cases. The mortality risk is low. Subsequent pregnancy should be discouraged, especially if systolic function did not recover.

  11. Evolving molecular diagnostics for familial cardiomyopathies: at the heart of it all.

    PubMed

    Callis, Thomas E; Jensen, Brian C; Weck, Karen E; Willis, Monte S

    2010-04-01

    Cardiomyopathies are an important and heterogeneous group of common cardiac diseases. An increasing number of cardiomyopathies are now recognized to have familial forms, which result from single-gene mutations that render a Mendelian inheritance pattern, including hypertrophic cardiomyopathy, dilated cardiomyopathy, restrictive cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and left ventricular noncompaction cardiomyopathy. Recently, clinical genetic tests for familial cardiomyopathies have become available for clinicians evaluating and treating patients with these diseases, making it necessary to understand the current progress and challenges in cardiomyopathy genetics and diagnostics. In this review, we summarize the genetic basis of selected cardiomyopathies, describe the clinical utility of genetic testing for cardiomyopathies and outline the current challenges and emerging developments.

  12. Evolving molecular diagnostics for familial cardiomyopathies: at the heart of it all

    PubMed Central

    Callis, Thomas E; Jensen, Brian C; Weck, Karen E; Willis, Monte S

    2016-01-01

    Cardiomyopathies are an important and heterogeneous group of common cardiac diseases. An increasing number of cardiomyopathies are now recognized to have familial forms, which result from single-gene mutations that render a Mendelian inheritance pattern, including hypertrophic cardiomyopathy, dilated cardiomyopathy, restrictive cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and left ventricular noncompaction cardiomyopathy. Recently, clinical genetic tests for familial cardiomyopathies have become available for clinicians evaluating and treating patients with these diseases, making it necessary to understand the current progress and challenges in cardiomyopathy genetics and diagnostics. In this review, we summarize the genetic basis of selected cardiomyopathies, describe the clinical utility of genetic testing for cardiomyopathies and outline the current challenges and emerging developments. PMID:20370590

  13. Regulatory Mutations Affecting the Gluconate System in Escherichia coli

    PubMed Central

    Zwaig, Noé; Zwaig, Rosa Nagel de; Istúriz, Tomás; Wecksler, Magda

    1973-01-01

    A spontaneously arising regulatory mutant of the gluconate system in Escherichia coli was isolated. This mutant became constitutive, probably in one step, for gluconate high-affinity transport, gluconokinase, and gluconate-6-P dehydrase. The mutation involved (gntR18) is cotransducible with asd. Pseudorevertants, derived from a mutant (M2) that shows a long lag for growth on gluconate mineral medium, were also isolated and characterized. They give constitutive levels of gluconokinase and gluconate-6-P dehydrase but lack high-affinity transport function. Genetic experiments performed with one of these pseudorevertants (M4) indicate that it carries a secondary mutation in the gntR gene. The M4 phenotype is thus the result of the interaction of expression of a constitutive mutation (gntR4) with the mutation of strain M2 (gntM2). PMID:4574690

  14. Hypertrophic cardiomyopathy in Friedreich's ataxia.

    PubMed

    Fayssoil, A; Nardi, O; Orlikowski, D; Annane, D

    2008-07-21

    Friedreich's ataxia is an autosomal recessive disorder characterized by spinocerebellar degeneration. It is caused by a mutation that consists of an unstable expansion of GAA repeats in the first intron of the gene encoding frataxin on chromosome 9 (9q13). We reported a case of hypertrophic cardiomyopathy associated with Friedreich's ataxia in a twenty year old patient.

  15. Mutations affecting GABAergic signaling in seizures and epilepsy

    PubMed Central

    Galanopoulou, Aristea S.

    2010-01-01

    The causes of epilepsies and epileptic seizures are multifactorial. Genetic predisposition may contribute in certain types of epilepsies and seizures, whether idiopathic or symptomatic of genetic origin. Although these are not very common, they have offered a unique opportunity to investigate the molecular mechanisms underlying epileptogenesis and ictogenesis. Among the implicated gene mutations, a number of GABAA receptor subunit mutations have been recently identified that contribute to several idiopathic epilepsies, febrile seizures, and rarely to certain types of symptomatic epilepsies, like the severe myoclonic epilepsy of infancy. Deletion of GABAA receptor genes has also been linked to Angelman syndrome. Furthermore, mutations of proteins controlling chloride homeostasis, which indirectly defines the functional consequences of GABAA signaling, have been identified. These include the chloride channel 2 (CLCN2) and the potassium chloride cotransporter KCC3. The pathogenic role of CLCN2 mutations has not been clearly demonstrated and may represent either susceptibility genes or, in certain cases, innocuous polymorphisms. KCC3 mutations have been associated with hereditary motor and sensory polyneuropathy with corpus callosum agenesis (Andermann syndrome) that often manifests with epileptic seizures. This review summarizes the recent progress in the genetic linkages of epilepsies and seizures to the above genes and discusses potential pathogenic mechanisms that contribute to the age, sex, and conditional expression of these seizures in carriers of these mutations. PMID:20352446

  16. Somatic mutations affect key pathways in lung adenocarcinoma

    PubMed Central

    Ding, Li; Getz, Gad; Wheeler, David A.; Mardis, Elaine R.; McLellan, Michael D.; Cibulskis, Kristian; Sougnez, Carrie; Greulich, Heidi; Muzny, Donna M.; Morgan, Margaret B.; Fulton, Lucinda; Fulton, Robert S.; Zhang, Qunyuan; Wendl, Michael C.; Lawrence, Michael S.; Larson, David E.; Chen, Ken; Dooling, David J.; Sabo, Aniko; Hawes, Alicia C.; Shen, Hua; Jhangiani, Shalini N.; Lewis, Lora R.; Hall, Otis; Zhu, Yiming; Mathew, Tittu; Ren, Yanru; Yao, Jiqiang; Scherer, Steven E.; Clerc, Kerstin; Metcalf, Ginger A.; Ng, Brian; Milosavljevic, Aleksandar; Gonzalez-Garay, Manuel L.; Osborne, John R.; Meyer, Rick; Shi, Xiaoqi; Tang, Yuzhu; Koboldt, Daniel C.; Lin, Ling; Abbott, Rachel; Miner, Tracie L.; Pohl, Craig; Fewell, Ginger; Haipek, Carrie; Schmidt, Heather; Dunford-Shore, Brian H.; Kraja, Aldi; Crosby, Seth D.; Sawyer, Christopher S.; Vickery, Tammi; Sander, Sacha; Robinson, Jody; Winckler, Wendy; Baldwin, Jennifer; Chirieac, Lucian R.; Dutt, Amit; Fennell, Tim; Hanna, Megan; Johnson, Bruce E.; Onofrio, Robert C.; Thomas, Roman K.; Tonon, Giovanni; Weir, Barbara A.; Zhao, Xiaojun; Ziaugra, Liuda; Zody, Michael C.; Giordano, Thomas; Orringer, Mark B.; Roth, Jack A.; Spitz, Margaret R.; Wistuba, Ignacio I.; Ozenberger, Bradley; Good, Peter J.; Chang, Andrew C.; Beer, David G.; Watson, Mark A.; Ladanyi, Marc; Broderick, Stephen; Yoshizawa, Akihiko; Travis, William D.; Pao, William; Province, Michael A.; Weinstock, George M.; Varmus, Harold E.; Gabriel, Stacey B.; Lander, Eric S.; Gibbs, Richard A.; Meyerson, Matthew; Wilson, Richard K.

    2009-01-01

    Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well-classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers—including NF1, APC, RB1 and ATM—and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways involved in lung adenocarcinoma, and suggest new molecular targets for treatment. PMID:18948947

  17. Exome Sequencing Identifies a Novel LMNA Splice-Site Mutation and Multigenic Heterozygosity of Potential Modifiers in a Family with Sick Sinus Syndrome, Dilated Cardiomyopathy, and Sudden Cardiac Death.

    PubMed

    Zaragoza, Michael V; Fung, Lianna; Jensen, Ember; Oh, Frances; Cung, Katherine; McCarthy, Linda A; Tran, Christine K; Hoang, Van; Hakim, Simin A; Grosberg, Anna

    2016-01-01

    The goals are to understand the primary genetic mechanisms that cause Sick Sinus Syndrome and to identify potential modifiers that may result in intrafamilial variability within a multigenerational family. The proband is a 63-year-old male with a family history of individuals (>10) with sinus node dysfunction, ventricular arrhythmia, cardiomyopathy, heart failure, and sudden death. We used exome sequencing of a single individual to identify a novel LMNA mutation and demonstrated the importance of Sanger validation and family studies when evaluating candidates. After initial single-gene studies were negative, we conducted exome sequencing for the proband which produced 9 gigabases of sequencing data. Bioinformatics analysis showed 94% of the reads mapped to the reference and identified 128,563 unique variants with 108,795 (85%) located in 16,319 genes of 19,056 target genes. We discovered multiple variants in known arrhythmia, cardiomyopathy, or ion channel associated genes that may serve as potential modifiers in disease expression. To identify candidate mutations, we focused on ~2,000 variants located in 237 genes of 283 known arrhythmia, cardiomyopathy, or ion channel associated genes. We filtered the candidates to 41 variants in 33 genes using zygosity, protein impact, database searches, and clinical association. Only 21 of 41 (51%) variants were validated by Sanger sequencing. We selected nine confirmed variants with minor allele frequencies <1% for family studies. The results identified LMNA c.357-2A>G, a novel heterozygous splice-site mutation as the primary mutation with rare or novel variants in HCN4, MYBPC3, PKP4, TMPO, TTN, DMPK and KCNJ10 as potential modifiers and a mechanism consistent with haploinsufficiency.

  18. Exome Sequencing Identifies a Novel LMNA Splice-Site Mutation and Multigenic Heterozygosity of Potential Modifiers in a Family with Sick Sinus Syndrome, Dilated Cardiomyopathy, and Sudden Cardiac Death

    PubMed Central

    Zaragoza, Michael V.; Fung, Lianna; Jensen, Ember; Oh, Frances; Cung, Katherine; McCarthy, Linda A.; Tran, Christine K.; Hoang, Van; Hakim, Simin A.; Grosberg, Anna

    2016-01-01

    The goals are to understand the primary genetic mechanisms that cause Sick Sinus Syndrome and to identify potential modifiers that may result in intrafamilial variability within a multigenerational family. The proband is a 63-year-old male with a family history of individuals (>10) with sinus node dysfunction, ventricular arrhythmia, cardiomyopathy, heart failure, and sudden death. We used exome sequencing of a single individual to identify a novel LMNA mutation and demonstrated the importance of Sanger validation and family studies when evaluating candidates. After initial single-gene studies were negative, we conducted exome sequencing for the proband which produced 9 gigabases of sequencing data. Bioinformatics analysis showed 94% of the reads mapped to the reference and identified 128,563 unique variants with 108,795 (85%) located in 16,319 genes of 19,056 target genes. We discovered multiple variants in known arrhythmia, cardiomyopathy, or ion channel associated genes that may serve as potential modifiers in disease expression. To identify candidate mutations, we focused on ~2,000 variants located in 237 genes of 283 known arrhythmia, cardiomyopathy, or ion channel associated genes. We filtered the candidates to 41 variants in 33 genes using zygosity, protein impact, database searches, and clinical association. Only 21 of 41 (51%) variants were validated by Sanger sequencing. We selected nine confirmed variants with minor allele frequencies <1% for family studies. The results identified LMNA c.357-2A>G, a novel heterozygous splice-site mutation as the primary mutation with rare or novel variants in HCN4, MYBPC3, PKP4, TMPO, TTN, DMPK and KCNJ10 as potential modifiers and a mechanism consistent with haploinsufficiency. PMID:27182706

  19. Fast diastolic swinging motion of the mitral valve as a clinical marker of familial hypertrophic cardiomyopathy in genetically affected young children without left ventricular hypertrophy: a new role for noninvasive imaging?

    PubMed

    Udink ten Cate, Floris E A; Junghaenel, Shino; Brockmeier, Konrad; Sreeram, Narayanswami

    2013-08-01

    Structural mitral valve (MV) abnormalities are common in patients with hypertrophic cardiomyopathy (HCM). This is the first report demonstrating MV abnormalities in very young children as the sole overt clinical feature of a known HCM-causing sarcomere protein gene mutation. Due to MV leaflet elongation, we also noticed a typical fast diastolic swinging motion of the MV in our patients. This novel echocardiographic feature may be used as a clinical marker of HCM disease in the absence of left ventricular hypertrophy.

  20. Restrictive cardiomyopathies.

    PubMed

    Nihoyannopoulos, Petros; Dawson, David

    2009-12-01

    Restrictive cardiomyopathies constitute a heterogenous group of heart muscle conditions that all have, in common, the symptoms of heart failure. Diastolic dysfunction with preserved systolic function is often the only echocardiographic abnormality that may be noted, although systolic dysfunction may also be an integral part of some specific pathologies, particularly in the most advanced cases such as amyloid infiltration of the heart. By far, the majority of restrictive cardiomyopathies are secondary to a systemic disorder such as amyloidosis, sarcoidosis, scleroderma, haemochromatosis, eosinophilic heart disease, or as a result of radiation treatment. The much more rare diagnosis of idiopathic restrictive cardiomyopathy is supported only by the absence of specific pathology on either endomyocardial biopsies or at post-mortem. Restrictive cardiomyopathy is diagnosed based on medical history, physical examination, and tests: such as blood tests, electrocardiogram, chest X-ray, echocardiography, and magnetic resonance imaging. With its wide availability, echocardiography is probably the most important investigation to identify the left ventricular dysfunction and should be performed early and by groups that are familiar with the wide variety of aetiologies. Finally, on rare occasions, the differential diagnosis from constrictive pericarditis may be necessary.

  1. Cirrhotic cardiomyopathy.

    PubMed

    Ruiz-del-Árbol, Luis; Serradilla, Regina

    2015-11-07

    During the course of cirrhosis, there is a progressive deterioration of cardiac function manifested by the disappearance of the hyperdynamic circulation due to a failure in heart function with decreased cardiac output. This is due to a deterioration in inotropic and chronotropic function which takes place in parallel with a diastolic dysfunction and cardiac hypertrophy in the absence of other known cardiac disease. Other findings of this specific cardiomyopathy include impaired contractile responsiveness to stress stimuli and electrophysiological abnormalities with prolonged QT interval. The pathogenic mechanisms of cirrhotic cardiomyopathy include impairment of the b-adrenergic receptor signalling, abnormal cardiomyocyte membrane lipid composition and biophysical properties, ion channel defects and overactivity of humoral cardiodepressant factors. Cirrhotic cardiomyopathy may be difficult to determine due to the lack of a specific diagnosis test. However, an echocardiogram allows the detection of the diastolic dysfunction and the E/e' ratio may be used in the follow-up progression of the illness. Cirrhotic cardiomyopathy plays an important role in the pathogenesis of the impairment of effective arterial blood volume and correlates with the degree of liver failure. A clinical consequence of cardiac dysfunction is an inadequate cardiac response in the setting of vascular stress that may result in renal hypoperfusion leading to renal failure. The prognosis is difficult to establish but the severity of diastolic dysfunction may be a marker of mortality risk. Treatment is non-specific and liver transplantation may normalize the cardiac function.

  2. Research priorities in sarcomeric cardiomyopathies

    PubMed Central

    van der Velden, Jolanda; Ho, Carolyn Y.; Tardiff, Jil C.; Olivotto, Iacopo; Knollmann, Bjorn C.; Carrier, Lucie

    2015-01-01

    The clinical variability in patients with sarcomeric cardiomyopathies is striking: a mutation causes cardiomyopathy in one individual, while the identical mutation is harmless in a family member. Moreover, the clinical phenotype varies ranging from asymmetric hypertrophy to severe dilatation of the heart. Identification of a single phenotype-associated disease mechanism would facilitate the design of targeted treatments for patient groups with different clinical phenotypes. However, evidence from both the clinic and basic knowledge of functional and structural properties of the sarcomere argues against a ‘one size fits all’ therapy for treatment of one clinical phenotype. Meticulous clinical and basic studies are needed to unravel the initial and progressive changes initiated by sarcomere mutations to better understand why mutations in the same gene can lead to such opposing phenotypes. Ultimately, we need to design an ‘integrative physiology’ approach to fully realize patient/gene-tailored therapy. Expertise within different research fields (cardiology, genetics, cellular biology, physiology, and pharmacology) must be joined to link longitudinal clinical studies with mechanistic insights obtained from molecular and functional studies in novel cardiac muscle systems. New animal models, which reflect both initial and more advanced stages of sarcomeric cardiomyopathy, will also aid in achieving these goals. Here, we discuss current priorities in clinical and preclinical investigation aimed at increasing our understanding of pathophysiological mechanisms leading from mutation to disease. Such information will provide the basis to improve risk stratification and to develop therapies to prevent/rescue cardiac dysfunction and remodelling caused by sarcomere mutations. PMID:25631582

  3. Left ventricular non-compaction cardiomyopathy associated with epidermolysis bullosa simplex with muscular dystrophy and PLEC1 mutation.

    PubMed

    Villa, Chet R; Ryan, Thomas D; Collins, James J; Taylor, Michael D; Lucky, Anne W; Jefferies, John L

    2015-02-01

    Plectin mutations have been reported in epidermolysis bullosa simplex with muscular dystrophy. We report the first case of left ventricular non-compaction in an 18-year-old male with epidermolysis bullosa simplex with muscular dystrophy. The patient was diagnosed with epidermolysis bullosa simplex after blistering was noted at birth. Motor function difficulties were first recognized at age 11, however the patient was lost to follow up. He was re-evaluated at age 17 and demonstrated significant ptosis, ophthalmoparesis, and pharyngeal muscle weakness. He had predominant proximal muscle weakness with the inability to raise arms against gravity. He was ambulatory for short distances but lost the ability to rise from the floor at 14 years. He was subsequently diagnosed with epidermyolysis bullosa simplex with muscular dystrophy and a PLEC1 mutation. Screening cardiovascular imaging revealed a diagnosis of isolated left ventricular non-compaction. This case highlights the potential for delayed onset muscular dystrophy in patients with epidermolysis bullosa simplex. Furthermore, this case also underscores the importance of long term, routine cardiac evaluation, including imaging and electrophysiologic evaluation, in patients with epidermolysis bullosa simplex with muscular dystrophy as the cardiac phenotype appears to parallel the variable severity and age of onset that characterize the neuromuscular phenotype. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Cardiomyopathy in neurological disorders.

    PubMed

    Finsterer, Josef; Stöllberger, Claudia; Wahbi, Karim

    2013-01-01

    According to the American Heart Association, cardiomyopathies are classified as primary (solely or predominantly confined to heart muscle), secondary (those showing pathological myocardial involvement as part of a neuromuscular disorder) and those in which cardiomyopathy is the first/predominant manifestation of a neuromuscular disorder. Cardiomyopathies may be further classified as hypertrophic cardiomyopathy, dilated cardiomyopathy, restrictive cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, or unclassified cardiomyopathy (noncompaction, Takotsubo-cardiomyopathy). This review focuses on secondary cardiomyopathies and those in which cardiomyopathy is the predominant manifestation of a myopathy. Any of them may cause neurological disease, and any of them may be a manifestation of a neurological disorder. Neurological disease most frequently caused by cardiomyopathies is ischemic stroke, followed by transitory ischemic attack, syncope, or vertigo. Neurological disease, which most frequently manifests with cardiomyopathies are the neuromuscular disorders. Most commonly associated with cardiomyopathies are muscular dystrophies, myofibrillar myopathies, congenital myopathies and metabolic myopathies. Management of neurological disease caused by cardiomyopathies is not at variance from the same neurological disorders due to other causes. Management of secondary cardiomyopathies is not different from that of cardiomyopathies due to other causes either. Patients with neuromuscular disorders require early cardiologic investigations and close follow-ups, patients with cardiomyopathies require neurological investigation and avoidance of muscle toxic medication if a neuromuscular disorder is diagnosed. Which patients with cardiomyopathy profit most from primary stroke prevention is unsolved and requires further investigations. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Classification, Epidemiology, and Global Burden of Cardiomyopathies.

    PubMed

    McKenna, William J; Maron, Barry J; Thiene, Gaetano

    2017-09-15

    In the past 25 years, major advances were achieved in the nosography of cardiomyopathies, influencing the definition and taxonomy of this important chapter of cardiovascular disease. Nearly, 50% of patients dying suddenly in childhood or adolescence or undergoing cardiac transplantation are affected by cardiomyopathies. Novel cardiomyopathies have been discovered (arrhythmogenic, restrictive, and noncompacted) and added to update the World Health Organization classification. Myocarditis has also been named inflammatory cardiomyopathy. Extraordinary progress accomplished in molecular genetics of inherited cardiomyopathies allowed establishment of dilated cardiomyopathy as mostly cytoskeleton, force transmission disease; hypertrophic-restrictive cardiomyopathies as sarcomeric, force generation disease; and arrhythmogenic cardiomyopathy as desmosome, cell junction disease. Channelopathies (short and long QT, Brugada, and catecholaminergic polymorphic ventricular tachycardia syndromes) should also be considered cardiomyopathies because of electric myocyte dysfunction. Cardiomyopathies are easily diagnosed but treated only with palliative pharmacological or invasive therapy. Curative therapy, thanks to insights into the molecular pathogenesis, has to target the fundamental mechanisms involved in the onset and progression of these conditions. © 2017 American Heart Association, Inc.

  6. LMNA cardiomyopathy: cell biology and genetics meet clinical medicine.

    PubMed

    Lu, Jonathan T; Muchir, Antoine; Nagy, Peter L; Worman, Howard J

    2011-09-01

    Mutations in the LMNA gene, which encodes A-type nuclear lamins (intermediate filament proteins expressed in most differentiated somatic cells), cause a diverse range of diseases, called laminopathies, that selectively affect different tissues and organ systems. The most prevalent laminopathy is cardiomyopathy with or without different types of skeletal muscular dystrophy. LMNA cardiomyopathy has an aggressive clinical course with higher rates of deadly arrhythmias and heart failure than most other heart diseases. As awareness among physicians increases, and advances in DNA sequencing methods make the genetic diagnosis of LMNA cardiomyopathy more common, cardiologists are being faced with difficult questions regarding patient management. These questions concern the optimal use of intracardiac cardioverter defibrillators to prevent sudden death from arrhythmias, and medical interventions to prevent heart damage and ameliorate heart failure symptoms. Data from a mouse model of LMNA cardiomyopathy suggest that inhibitors of mitogen-activated protein kinase (MAPK) signaling pathways are beneficial in preventing and treating cardiac dysfunction; this basic research discovery needs to be translated to human patients.

  7. Arrhythmogenic Cardiomyopathy: Electrical and Structural Phenotypes

    PubMed Central

    Akdis, Deniz; Brunckhorst, Corinna; Duru, Firat

    2016-01-01

    This overview gives an update on the molecular mechanisms, clinical manifestations, diagnosis and therapy of arrhythmogenic cardiomyopathy (ACM). ACM is mostly hereditary and associated with mutations in genes encoding proteins of the intercalated disc. Three subtypes have been proposed: the classical right-dominant subtype generally referred to as ARVC/D, biventricular forms with early biventricular involvement and left-dominant subtypes with predominant LV involvement. Typical symptoms include palpitations, arrhythmic (pre)syncope and sudden cardiac arrest due to ventricular arrhythmias, which typically occur in athletes. At later stages, heart failure may occur. Diagnosis is established with the 2010 Task Force Criteria (TFC). Modern imaging tools are crucial for ACM diagnosis, including both echocardiography and cardiac magnetic resonance imaging for detecting functional and structural alternations. Of note, structural findings often become visible after electrical alterations, such as premature ventricular beats, ventricular fibrillation (VF) and ventricular tachycardia (VT). 12-lead ECG is important to assess for depolarisation and repolarisation abnormalities, including T-wave inversions as the most common ECG abnormality. Family history and the detection of causative mutations, mostly affecting the desmosome, have been incorporated in the TFC, and stress the importance of cascade family screening. Differential diagnoses include idiopathic right ventricular outflow tract (RVOT) VT, sarcoidosis, congenital heart disease, myocarditis, dilated cardiomyopathy, athlete’s heart, Brugada syndrome and RV infarction. Therapeutic strategies include restriction from endurance and competitive sports, β-blockers, antiarrhythmic drugs, heart failure medication, implantable cardioverter-defibrillators and endocardial/epicardial catheter ablation. PMID:27617087

  8. What Is Cardiomyopathy?

    MedlinePlus

    ... page from the NHLBI on Twitter. What Is Cardiomyopathy? Cardiomyopathy refers to diseases of the heart muscle. These ... many causes, signs and symptoms, and treatments. In cardiomyopathy, the heart muscle becomes enlarged, thick, or rigid. ...

  9. Nemaline myopathy with dilated cardiomyopathy in childhood.

    PubMed

    Gatayama, Ryohei; Ueno, Kentaro; Nakamura, Hideaki; Yanagi, Sadamitsu; Ueda, Hideaki; Yamagishi, Hiroyuki; Yasui, Seiyo

    2013-06-01

    We present a case of a 9-year-old boy with nemaline myopathy and dilated cardiomyopathy. The combination of nemaline myopathy and cardiomyopathy is rare, and this is the first reported case of dilated cardiomyopathy associated with childhood-onset nemaline myopathy. A novel mutation, p.W358C, in ACTA1 was detected in this patient. An unusual feature of this case was that the patient's cardiac failure developed during early childhood with no delay of gross motor milestones. The use of a β-blocker did not improve his clinical course, and the patient died 6 months after diagnosis of dilated cardiomyopathy. Congenital nonprogressive nemaline myopathy is not necessarily a benign disorder: deterioration can occur early in the course of dilated cardiomyopathy with neuromuscular disease, and careful clinical evaluation is therefore necessary.

  10. Heart failure and tachycardia-induced cardiomyopathy.

    PubMed

    Ellis, Ethan R; Josephson, Mark E

    2013-12-01

    Congestive heart failure is a major health care concern affecting almost six million Americans and an estimated 23 million people worldwide, and its prevalence is increasing with time. Long-standing tachycardia is a well-recognized cause of heart failure and left ventricular dysfunction and has led to the nomenclature, tachycardia-induced cardiomyopathy. Tachycardia-induced cardiomyopathy is generally a reversible cardiomyopathy with effective treatment of the causative arrhythmia, either with medications, surgery, or catheter ablation. Tachycardia-induced cardiomyopathy remains poorly understood and is likely under-diagnosed. A better understanding of tachycardia-induced cardiomyopathy and improved recognition of its presence in clinical practice is vital to the health of patients with this disorder. The goal of this review is to discuss the pathogenesis and clinical manifestations of tachycardia-induced cardiomyopathy, as well as approaches to its diagnosis and treatment.

  11. Two new mutations in children affected by partial biotinidase deficiency ascertained by newborn screening.

    PubMed

    Funghini, S; Donati, M A; Pasquini, E; Gasperini, S; Ciani, F; Morrone, A; Zammarchi, E

    2002-08-01

    Mutation analysis performed on DNA from 6 Italian patients with partial biotinidase deficiency ascertained by newborn screening allowed the identification of two new mutations, c1211C > T (T404I) and a single base deletion c594delC. All patients were compound heterozygous for the D444H amino acid substitution showing that this mutation is also common in Italian patients affected by partial biotinidase deficiency.

  12. Kem Mutations Affect Nuclear Fusion in Saccharomyces Cerevisiae

    PubMed Central

    Kim, J.; Ljungdahl, P. O.; Fink, G. R.

    1990-01-01

    We have identified mutations in three genes of Saccharomyces cerevisiae, KEM1, KEM2 and KEM3, that enhance the nuclear fusion defect of kar1-1 yeast during conjugation. The KEM1 and KEM3 genes are located on the left arm of chromosome VII. Kem mutations reduce nuclear fusion whether the kem and the kar1-1 mutations are in the same or in different parents (i.e., in both kem kar1-1 X wild-type and kem X kar1-1 crosses). kem1 X kem1 crosses show a defect in nuclear fusion, but kem1 X wild-type crosses do not. Mutant kem1 strains are hypersensitive to benomyl, lose chromosomes at a rate 10-20-fold higher than KEM(+) strains, and lose viability upon nitrogen starvation. In addition, kem1/kem1 diploids are unable to sporulate. Cells containing a kem1 null allele grow very poorly, have an elongated rod-shape and are defective in spindle pole body duplication and/or separation. The KEM1 gene, which is expressed as a 5.5-kb mRNA transcript, contains a 4.6-kb open reading frame encoding a 175-kD protein. PMID:2076815

  13. Deep mutational scanning identifies sites in influenza nucleoprotein that affect viral inhibition by MxA

    PubMed Central

    Ashenberg, Orr; Padmakumar, Jai

    2017-01-01

    The innate-immune restriction factor MxA inhibits influenza replication by targeting the viral nucleoprotein (NP). Human influenza virus is more resistant than avian influenza virus to inhibition by human MxA, and prior work has compared human and avian viral strains to identify amino-acid differences in NP that affect sensitivity to MxA. However, this strategy is limited to identifying sites in NP where mutations that affect MxA sensitivity have fixed during the small number of documented zoonotic transmissions of influenza to humans. Here we use an unbiased deep mutational scanning approach to quantify how all single amino-acid mutations to NP affect MxA sensitivity in the context of replication-competent virus. We both identify new sites in NP where mutations affect MxA resistance and re-identify mutations known to have increased MxA resistance during historical adaptations of influenza to humans. Most of the sites where mutations have the greatest effect are almost completely conserved across all influenza A viruses, and the amino acids at these sites confer relatively high resistance to MxA. These sites cluster in regions of NP that appear to be important for its recognition by MxA. Overall, our work systematically identifies the sites in influenza nucleoprotein where mutations affect sensitivity to MxA. We also demonstrate a powerful new strategy for identifying regions of viral proteins that affect inhibition by host factors. PMID:28346537

  14. Cardiomyopathy as presenting sign of glycogenin-1 deficiency-report of three cases and review of the literature.

    PubMed

    Hedberg-Oldfors, Carola; Glamuzina, Emma; Ruygrok, Peter; Anderson, Lisa J; Elliott, Perry; Watkinson, Oliver; Occleshaw, Chris; Abernathy, Malcolm; Turner, Clinton; Kingston, Nicola; Murphy, Elaine; Oldfors, Anders

    2017-01-01

    We describe a new type of cardiomyopathy caused by a mutation in the glycogenin-1 gene (GYG1). Three unrelated male patients aged 34 to 52 years with cardiomyopathy and abnormal glycogen storage on endomyocardial biopsy were homozygous for the missense mutation p.Asp102His in GYG1. The mutated glycogenin-1 protein was expressed in cardiac tissue but had lost its ability to autoglucosylate as demonstrated by an in vitro assay and western blot analysis. It was therefore unable to form the primer for normal glycogen synthesis. Two of the patients showed similar patterns of heart dilatation, reduced ejection fraction and extensive late gadolinium enhancement on cardiac magnetic resonance imaging. These two patients were severely affected, necessitating cardiac transplantation. The cardiomyocyte storage material was characterized by large inclusions of periodic acid and Schiff positive material that was partly resistant to alpha-amylase treatment consistent with polyglucosan. The storage material had, unlike normal glycogen, a partly fibrillar structure by electron microscopy. None of the patients showed signs or symptoms of muscle weakness but a skeletal muscle biopsy in one case revealed muscle fibres with abnormal glycogen storage. Glycogenin-1 deficiency is known as a rare cause of skeletal muscle glycogen storage disease, usually without cardiomyopathy. We demonstrate that it may also be the cause of severe cardiomyopathy and cardiac failure without skeletal muscle weakness. GYG1 should be included in cardiomyopathy gene panels.

  15. Reversible Cardiomyopathies

    PubMed Central

    Patel, Harsh; Madanieh, Raef; Kosmas, Constantine E; Vatti, Satya K; Vittorio, Timothy J

    2015-01-01

    Cardiomyopathies (CMs) have many etiological factors that can result in severe structural and functional dysregulation. Fortunately, there are several potentially reversible CMs that are known to improve when the root etiological factor is addressed. In this article, we discuss several of these reversible CMs, including tachycardia-induced, peripartum, inflammatory, hyperthyroidism, Takotsubo, and chronic illness–induced CMs. Our discussion also includes a review on their respective pathophysiology, as well as possible management solutions. PMID:26052233

  16. Arrhythmogenic Cardiomyopathy.

    PubMed

    Corrado, Domenico; Basso, Cristina; Judge, Daniel P

    2017-09-15

    Arrhythmogenic cardiomyopathy is an inherited heart muscle disorder, predisposing to sudden cardiac death, particularly in young patients and athletes. Pathological features include loss of myocytes and fibrofatty replacement of right ventricular myocardium; biventricular involvement is often observed. It is a cell-to-cell junction cardiomyopathy, typically caused by genetically determined abnormalities of cardiac desmosomes, which leads to detachment of myocytes and alteration of intracellular signal transduction. The diagnosis of arrhythmogenic cardiomyopathy does not rely on a single gold standard test but is achieved using a scoring system, which encompasses familial and genetic factors, ECG abnormalities, arrhythmias, and structural/functional ventricular alterations. The main goal of treatment is the prevention of sudden cardiac death. Implantable cardioverter defibrillator is the only proven lifesaving therapy; however, it is associated with significant morbidity because of device-related complications and inappropriate implantable cardioverter defibrillator interventions. Selection of patients who are the best candidates for implantable cardioverter defibrillator implantation is one of the most challenging issues in the clinical management. © 2017 American Heart Association, Inc.

  17. Genetic Variations Leading to Familial Dilated Cardiomyopathy

    PubMed Central

    Cho, Kae Won; Lee, Jongsung; Kim, Youngjo

    2016-01-01

    Cardiomyopathy is a major cause of death worldwide. Based on pathohistological abnormalities and clinical manifestation, cardiomyopathies are categorized into several groups: hypertrophic, dilated, restricted, arrhythmogenic right ventricular, and unclassified. Dilated cardiomyopathy, which is characterized by dilation of the left ventricle and systolic dysfunction, is the most severe and prevalent form of cardiomyopathy and usually requires heart transplantation. Its etiology remains unclear. Recent genetic studies of single gene mutations have provided significant insights into the complex processes of cardiac dysfunction. To date, over 40 genes have been demonstrated to contribute to dilated cardiomyopathy. With advances in genetic screening techniques, novel genes associated with this disease are continuously being identified. The respective gene products can be classified into several functional groups such as sarcomere proteins, structural proteins, ion channels, and nuclear envelope proteins. Nuclear envelope proteins are emerging as potential molecular targets in dilated cardiomyopathy. Because they are not directly associated with contractile force generation and transmission, the molecular pathways through which these proteins cause cardiac muscle disorder remain unclear. However, nuclear envelope proteins are involved in many essential cellular processes. Therefore, integrating apparently distinct cellular processes is of great interest in elucidating the etiology of dilated cardiomyopathy. In this mini review, we summarize the genetic factors associated with dilated cardiomyopathy and discuss their cellular functions. PMID:27802374

  18. Genetic Variations Leading to Familial Dilated Cardiomyopathy.

    PubMed

    Cho, Kae Won; Lee, Jongsung; Kim, Youngjo

    2016-10-01

    Cardiomyopathy is a major cause of death worldwide. Based on pathohistological abnormalities and clinical manifestation, cardiomyopathies are categorized into several groups: hypertrophic, dilated, restricted, arrhythmogenic right ventricular, and unclassified. Dilated cardiomyopathy, which is characterized by dilation of the left ventricle and systolic dysfunction, is the most severe and prevalent form of cardiomyopathy and usually requires heart transplantation. Its etiology remains unclear. Recent genetic studies of single gene mutations have provided significant insights into the complex processes of cardiac dysfunction. To date, over 40 genes have been demonstrated to contribute to dilated cardiomyopathy. With advances in genetic screening techniques, novel genes associated with this disease are continuously being identified. The respective gene products can be classified into several functional groups such as sarcomere proteins, structural proteins, ion channels, and nuclear envelope proteins. Nuclear envelope proteins are emerging as potential molecular targets in dilated cardiomyopathy. Because they are not directly associated with contractile force generation and transmission, the molecular pathways through which these proteins cause cardiac muscle disorder remain unclear. However, nuclear envelope proteins are involved in many essential cellular processes. Therefore, integrating apparently distinct cellular processes is of great interest in elucidating the etiology of dilated cardiomyopathy. In this mini review, we summarize the genetic factors associated with dilated cardiomyopathy and discuss their cellular functions.

  19. Cardiomyopathy in Coffin-Lowry syndrome.

    PubMed

    Facher, Jennifer J; Regier, Elizabeth J; Jacobs, Gretta H; Siwik, Ernest; Delaunoy, Jean-Pierre; Robin, Nathaniel H

    2004-07-15

    Coffin-Lowry syndrome (CLS) is a rare but well-documented X-linked disorder characterized by small size, developmental delay/mental retardation, and characteristic facial and skeletal findings in affected males. The phenotype in affected females is far more variable and can include developmental differences, obesity, and characteristic facial and skeletal differences. Cardiac anomalies are reported in less than 20% of affected males, with cardiomyopathy being one of the rare but reported complications of this disorder. However, cardiomyopathy is not well characterized in CLS. Here, we report on a 14-year-old boy with physical and developmental findings consistent with CLS who presented with a relatively sudden onset of signs of congestive heart failure due to a restrictive cardiomyopathy; an endomyocardial biopsy demonstrated non-specific hypertrophic myocyte alterations consistent with cardiomyopathy. This is the first description of the histology and electron microscopy of cardiomyopathy in CLS. Copyright 2004 Wiley-Liss, Inc.

  20. Arrhythmogenic right ventricular cardiomyopathy in a weimaraner

    PubMed Central

    Eason, Bryan D.; Leach, Stacey B.; Kuroki, Keiichi

    2015-01-01

    Arrhythmogenic right ventricular cardiomyopathy (ARVC) was diagnosed postmortem in a weimaraner dog. Syncope, ventricular arrhythmias, and sudden death in this patient combined with the histopathological fatty tissue infiltration affecting the right ventricular myocardium are consistent with previous reports of ARVC in non-boxer dogs. Arrhythmogenic right ventricular cardiomyopathy has not been previously reported in weimaraners. PMID:26483577

  1. Arrhythmogenic ventricular cardiomyopathy: A paradigm shift from right to biventricular disease

    PubMed Central

    Saguner, Ardan M; Brunckhorst, Corinna; Duru, Firat

    2014-01-01

    Arrhythmogenic ventricular cardiomyopathy (AVC) is generally referred to as arrhythmogenic right ventricular (RV) cardiomyopathy/dysplasia and constitutes an inherited cardiomyopathy. Affected patients may succumb to sudden cardiac death (SCD), ventricular tachyarrhythmias (VTA) and heart failure. Genetic studies have identified causative mutations in genes encoding proteins of the intercalated disk that lead to reduced myocardial electro-mechanical stability. The term arrhythmogenic RV cardiomyopathy is somewhat misleading as biventricular involvement or isolated left ventricular (LV) involvement may be present and thus a broader term such as AVC should be preferred. The diagnosis is established on a point score basis according to the revised 2010 task force criteria utilizing imaging modalities, demonstrating fibrous replacement through biopsy, electrocardiographic abnormalities, ventricular arrhythmias and a positive family history including identification of genetic mutations. Although several risk factors for SCD such as previous cardiac arrest, syncope, documented VTA, severe RV/LV dysfunction and young age at manifestation have been identified, risk stratification still needs improvement, especially in asymptomatic family members. Particularly, the role of genetic testing and environmental factors has to be further elucidated. Therapeutic interventions include restriction from physical exercise, beta-blockers, sotalol, amiodarone, implantable cardioverter-defibrillators and catheter ablation. Life-long follow-up is warranted in symptomatic patients, but also asymptomatic carriers of pathogenic mutations. PMID:24772256

  2. New ZMPSTE24 (FACE1) mutations in patients affected with restrictive dermopathy or related progeroid syndromes and mutation update

    PubMed Central

    Navarro, Claire Laure; Esteves-Vieira, Vera; Courrier, Sébastien; Boyer, Amandine; Duong Nguyen, Thuy; Huong, Le Thi Thanh; Meinke, Peter; Schröder, Winnie; Cormier-Daire, Valérie; Sznajer, Yves; Amor, David J; Lagerstedt, Kristina; Biervliet, Martine; van den Akker, Peter C; Cau, Pierre; Roll, Patrice; Lévy, Nicolas; Badens, Catherine; Wehnert, Manfred; De Sandre-Giovannoli, Annachiara

    2014-01-01

    Restrictive dermopathy (RD) is a rare and extremely severe congenital genodermatosis, characterized by a tight rigid skin with erosions at flexure sites, multiple joint contractures, low bone density and pulmonary insufficiency generally leading to death in the perinatal period. RD is caused in most patients by compound heterozygous or homozygous ZMPSTE24 null mutations. This gene encodes a metalloprotease specifically involved in lamin A post-translational processing. Here, we report a total of 16 families for whom diagnosis and molecular defects were clearly established. Among them, we report seven new ZMPSTE24 mutations, identified in classical RD or Mandibulo-acral dysplasia (MAD) affected patients. We also report nine families with one or two affected children carrying the common, homozygous thymine insertion in exon 9 and demonstrate the lack of a founder effect. In addition, we describe several new ZMPSTE24 variants identified in unaffected controls or in patients affected with non-classical progeroid syndromes. In addition, this mutation update includes a comprehensive search of the literature on previously described ZMPSTE24 mutations and associated phenotypes. Our comprehensive analysis of the molecular pathology supported the general rule: complete loss-of-function of ZMPSTE24 leads to RD, whereas other less severe phenotypes are associated with at least one haploinsufficient allele. PMID:24169522

  3. Peripartum cardiomyopathy: a review

    PubMed Central

    Capriola, Michael

    2013-01-01

    Peripartum cardiomyopathy (PPCM) is a form of dilated cardiomyopathy of unclear etiology affecting women without preexisting heart disease during the last month of pregnancy or during the first 5 months postpartum. Its incidence shows marked geographic and ethnic variation, being most common in Africa and among women of African descent. Most women present in the first month postpartum with typical heart failure symptoms such as dyspnea, lower extremity edema, and fatigue. These symptoms are often initially erroneously diagnosed as part of the normal puerperal process. Diagnosis can be aided by the finding of a significantly elevated serum brain natriuretic peptide. The etiology of PPCM is unclear; however, recent research suggests abnormal prolactin metabolism is seminal in its development, and prolactin antagonism with bromocriptine shows promise as a novel treatment for PPCM. PMID:23300351

  4. Factors affecting mutational specificity induced by ionizing radiation and oxidizing radicals

    SciTech Connect

    Strauss, B.S.

    1992-01-01

    We propose to analyze the factors affecting the specificity of mutational change as induced by ionizing radiation and oxidizing radicals. We want to understand not only the rules that affect base substitution, but also the mechanism(s) by which additions and deletions are produced, since detections are a common consequence of radiation. We wish to carry out this analysis in an in vitro mutation system that permits us to analyze the role of base sequence, of polymerase and of mutagenic agent. Our system is designed to screen out most direct breaks as a cause of mutation and should indicate the changes resulting from base damage to the DNA.

  5. The genetics of dilated cardiomyopathy

    PubMed Central

    Dellefave, Lisa; McNally, Elizabeth M.

    2010-01-01

    Purpose of review More than forty different individual genes have been implicated in the inheritance of dilated cardiomyopathy. For a subset of these genes, mutations can lead to a spectrum of cardiomyopathy that extends to hypertrophic cardiomyopathy and left ventricular noncompaction. In nearly all cases, there is an increased risk of arrhythmias. With some genetic mutations, extracardiac manifestations are likely to be present. The precise genetic etiology can usually not be discerned from the cardiac and/or extracardiac manifestations and requires molecular genetic diagnosis for prognostic determination and cardiac care. Recent findings Newer technologies are influencing genetic testing, especially cardiomyopathy genetic testing, where an increased number of genes are now routinely being tested simultaneously. While this approach to testing multiple genes is increasing the diagnostic yield, the analysis of multiple genes in one test is also resulting in a large amount of genetic information of unclear significance. Summary Genetic testing is highly useful in the care of patients and families, since it guides diagnosis, influences care and aids in prognosis. However, the large amount of benign human genetic variation may complicate genetic results, and often requires a skilled team to accurately interpret the findings. PMID:20186049

  6. Mutations in Ran system affected telomere silencing in Saccharomyces cerevisiae

    SciTech Connect

    Hayashi, Naoyuki Kobayashi, Masahiko; Shimizu, Hiroko; Yamamoto, Ken-ichi; Murakami, Seishi; Nishimoto, Takeharu

    2007-11-23

    The Ran GTPase system regulates the direction and timing of several cellular events, such as nuclear-cytosolic transport, centrosome formation, and nuclear envelope assembly in telophase. To gain insight into the Ran system's involvement in chromatin formation, we investigated gene silencing at the telomere in several mutants of the budding yeast Saccharomyces cerevisiae, which had defects in genes involved in the Ran system. A mutation of the RanGAP gene, rna1-1, caused reduced silencing at the telomere, and partial disruption of the nuclear Ran binding factor, yrb2-{delta}2, increased this silencing. The reduced telomere silencing in rna1-1 cells was suppressed by a high dosage of the SIR3 gene or the SIT4 gene. Furthermore, hyperphosphorylated Sir3 protein accumulated in the rna1-1 mutant. These results suggest that RanGAP is required for the heterochromatin structure at the telomere in budding yeast.

  7. Myocardial Fibrosis as an Early Manifestation of Hypertrophic Cardiomyopathy

    PubMed Central

    Ho, Carolyn Y.; López, Begoña; Coelho-Filho, Otavio R.; Lakdawala, Neal K.; Cirino, Allison L.; Jarolim, Petr; Kwong, Raymond; González, Arantxa; Colan, Steven D.; Seidman, J.G.; Díez, Javier; Seidman, Christine E.

    2011-01-01

    BACKGROUND Myocardial fibrosis is a hallmark of hypertrophic cardiomyopathy and a proposed substrate for arrhythmias and heart failure. In animal models, profibrotic genetic pathways are activated early, before hypertrophic remodeling. Data showing early profibrotic responses to sarcomere-gene mutations in patients with hypertrophic cardiomyopathy are lacking. METHODS We used echocardiography, cardiac magnetic resonance imaging (MRI), and serum biomarkers of collagen metabolism, hemodynamic stress, and myocardial injury to evaluate subjects with hypertrophic cardiomyopathy and a confirmed genotype. RESULTS The study involved 38 subjects with pathogenic sarcomere mutations and overt hypertrophic cardiomyopathy, 39 subjects with mutations but no left ventricular hypertrophy, and 30 controls who did not have mutations. Levels of serum C-terminal propeptide of type I procollagen (PICP) were significantly higher in mutation carriers without left ventricular hypertrophy and in subjects with overt hypertrophic cardiomyopathy than in controls (31% and 69% higher, respectively; P<0.001). The ratio of PICP to C-terminal telopeptide of type I collagen was increased only in subjects with overt hypertrophic cardiomyopathy, suggesting that collagen synthesis exceeds degradation. Cardiac MRI studies showed late gadolinium enhancement, indicating myocardial fibrosis, in 71% of subjects with overt hypertrophic cardiomyopathy but in none of the mutation carriers without left ventricular hypertrophy. CONCLUSIONS Elevated levels of serum PICP indicated increased myocardial collagen synthesis in sarcomere-mutation carriers without overt disease. This profibrotic state preceded the development of left ventricular hypertrophy or fibrosis visible on MRI. (Funded by the National Institutes of Health and others.) PMID:20818890

  8. Parental Age Affects Somatic Mutation Rates in the Progeny of Flowering Plants1

    PubMed Central

    Singh, Amit Kumar; Bashir, Tufail; Sailer, Christian; Gurumoorthy, Viswanathan; Ramakrishnan, Anantha Maharasi; Dhanapal, Shanmuhapreya; Grossniklaus, Ueli; Baskar, Ramamurthy

    2015-01-01

    In humans, it is well known that the parental reproductive age has a strong influence on mutations transmitted to their progeny. Meiotic nondisjunction is known to increase in older mothers, and base substitutions tend to go up with paternal reproductive age. Hence, it is clear that the germinal mutation rates are a function of both maternal and paternal ages in humans. In contrast, it is unknown whether the parental reproductive age has an effect on somatic mutation rates in the progeny, because these are rare and difficult to detect. To address this question, we took advantage of the plant model system Arabidopsis (Arabidopsis thaliana), where mutation detector lines allow for an easy quantitation of somatic mutations, to test the effect of parental age on somatic mutation rates in the progeny. Although we found no significant effect of parental age on base substitutions, we found that frameshift mutations and transposition events increased in the progeny of older parents, an effect that is stronger through the maternal line. In contrast, intrachromosomal recombination events in the progeny decrease with the age of the parents in a parent-of-origin-dependent manner. Our results clearly show that parental reproductive age affects somatic mutation rates in the progeny and, thus, that some form of age-dependent information, which affects the frequency of double-strand breaks and possibly other processes involved in maintaining genome integrity, is transmitted through the gametes. PMID:25810093

  9. Factors affecting mutational specificity induced by ionizing radiation and oxidizing radicals. Progress report

    SciTech Connect

    Strauss, B.

    1992-07-01

    We propose to analyze the factors affecting the specificity of mutational change as induced by ionizing radiation and oxidizing radicals. We want to understand not only the rules the affect base substitution but also the mechanisms(s) by which additions and deletions are produced, since deletions are a common consequence of radiation. We wish to carry out this analysis in an in vitro mutation system that permits us to analyze the role of base sequence, of polymerase and of mutagenic agent. Our system is designed to screen out most direct breaks as a cause of mutation and should indicate the changes resulting from base damage to the DNA. Questions addressed include: 1. What types of base substitution mutations are induced by ionizing radiation and oxidizing radicals? 2. Are deletions and/or additions produced? 3. Is there a difference in type of mutation produced dependent on the polymerase used? Do mammalian polymerase plus their accessory factors result in different patterns of mutation. 4. What is the mechanism by which base damage is converted to mutation. Our proposal was based on utilization of an in vitro system in which mutations generated by the in vitro copying of a reporter gene sequence could be readily scored.

  10. Factors affecting mutational specificity induced by ionizing radiation and oxidizing radicals

    SciTech Connect

    Strauss, B.

    1992-01-01

    We propose to analyze the factors affecting the specificity of mutational change as induced by ionizing radiation and oxidizing radicals. We want to understand not only the rules the affect base substitution but also the mechanisms(s) by which additions and deletions are produced, since deletions are a common consequence of radiation. We wish to carry out this analysis in an in vitro mutation system that permits us to analyze the role of base sequence, of polymerase and of mutagenic agent. Our system is designed to screen out most direct breaks as a cause of mutation and should indicate the changes resulting from base damage to the DNA. Questions addressed include: 1. What types of base substitution mutations are induced by ionizing radiation and oxidizing radicals 2. Are deletions and/or additions produced 3. Is there a difference in type of mutation produced dependent on the polymerase used Do mammalian polymerase plus their accessory factors result in different patterns of mutation. 4. What is the mechanism by which base damage is converted to mutation. Our proposal was based on utilization of an in vitro system in which mutations generated by the in vitro copying of a reporter gene sequence could be readily scored.

  11. Tumor-specific mutations in low-frequency genes affect their functional properties.

    PubMed

    Erdem-Eraslan, Lale; Heijsman, Daphne; de Wit, Maurice; Kremer, Andreas; Sacchetti, Andrea; van der Spek, Peter J; Sillevis Smitt, Peter A E; French, Pim J

    2015-05-01

    Causal genetic changes in oligodendrogliomas (OD) with 1p/19q co-deletion include mutations in IDH1, IDH2, CIC, FUBP1, TERT promoter and NOTCH1. However, it is generally assumed that more somatic mutations are required for tumorigenesis. This study aimed to establish whether genes mutated at low frequency can be involved in OD initiation and/or progression. We performed whole-genome sequencing on three anaplastic ODs with 1p/19q co-deletion. To estimate mutation frequency, we performed targeted resequencing on an additional 39 ODs. Whole-genome sequencing identified a total of 55 coding mutations (range 8-32 mutations per tumor), including known abnormalities in IDH1, IDH2, CIC and FUBP1. We also identified mutations in genes, most of which were previously not implicated in ODs. Targeted resequencing on 39 additional ODs confirmed that these genes are mutated at low frequency. Most of the mutations identified were predicted to have a deleterious functional effect. Functional analysis on a subset of these genes (e.g. NTN4 and MAGEH1) showed that the mutation affects the subcellular localization of the protein (n = 2/12). In addition, HOG cells stably expressing mutant GDI1 or XPO7 showed altered cell proliferation compared to those expressing wildtype constructs. Similarly, HOG cells expressing mutant SASH3 or GDI1 showed altered migration. The significantly higher rate of predicted deleterious mutations, the changes in subcellular localization and the effects on proliferation and/or migration indicate that many of these genes functionally may contribute to gliomagenesis and/or progression. These low-frequency genes and their affected pathways may provide new treatment targets for this tumor type.

  12. Dual effect on the RET receptor of MEN 2 mutations affecting specific extracytoplasmic cysteines.

    PubMed

    Chappuis-Flament, S; Pasini, A; De Vita, G; Ségouffin-Cariou, C; Fusco, A; Attié, T; Lenoir, G M; Santoro, M; Billaud, M

    1998-12-03

    The RET gene encodes a receptor tyrosine kinase whose function is essential during the development of kidney and the intestinal nervous system. Germline mutations affecting one of five cysteines (Cys609, 611, 618, 620 and 634) located in the juxtamembrane domain of the RET receptor are responsible for the vast majority of two cancer-prone disorders, multiple endocrine neoplasia type 2A (MEN 2A) and familial medullary thyroid carcinoma (FMTC). These mutations lead to the replacement of a cysteine by an alternate amino acid. Mutations of the RET gene are also the underlying genetic cause of Hirschsprung disease (HSCR), a congenital aganglionosis of the hindgut. In a fraction of kindreds, MEN 2A cosegregate with HSCR and affected individuals carry a single mutation at codons 609, 618 or 620. To examine the consequences of cysteine substitution on RET function, we have introduced a Cys to Arg mutation into the wild-type RET at either codons 609, 618, 620, 630 or 634. We now report that each mutation induces a constitutive catalytic activity due to the aberrant disulfide homodimerization of RET. However, mutations 630 and 634 activate RET more strongly than mutations 609, 618 or 620 as demonstrated by quantitative assays in rodent fibroblasts and pheochromocytoma PC12 cells. Biochemical analysis revealed that mutations 618 and 620, and to a lesser extent mutation 609, result in a marked reduction of the level of RET at the cell surface and as a consequence decrease the amount of RET covalent dimer. These findings provide a molecular basis explaining the range of phenotype engendered by alterations of RET cysteines and suggest a novel mechanism whereby mutations of cysteines 609, 618 and 620 exert both activating and inactivating effects.

  13. Diaphanous gene mutation affects spiral cleavage and chirality in snails

    PubMed Central

    Kuroda, Reiko; Fujikura, Kohei; Abe, Masanori; Hosoiri, Yuji; Asakawa, Shuichi; Shimizu, Miho; Umeda, Shin; Ichikawa, Futaba; Takahashi, Hiromi

    2016-01-01

    L-R (left and right) symmetry breaking during embryogenesis and the establishment of asymmetric body plan are key issues in developmental biology, but the onset including the handedness-determining gene locus still remains unknown. Using pure dextral (DD) and sinistral (dd) strains of the pond snail Lymnaea stagnalis as well as its F2 through to F10 backcrossed lines, the single handedness-determining-gene locus was mapped by genetic linkage analysis, BAC cloning and chromosome walking. We have identified the actin-related diaphanous gene Lsdia1 as the strongest candidate. Although the cDNA and derived amino acid sequences of the tandemly duplicated Lsdia1 and Lsdia2 genes are very similar, we could discriminate the two genes/proteins in our molecular biology experiments. The Lsdia1 gene of the sinistral strain carries a frameshift mutation that abrogates full-length LsDia1 protein expression. In the dextral strain, it is already translated prior to oviposition. Expression of Lsdia1 (only in the dextral strain) and Lsdia2 (in both chirality) decreases after the 1-cell stage, with no asymmetric localization throughout. The evolutionary relationships among body handedness, SD/SI (spiral deformation/spindle inclination) at the third cleavage, and expression of diaphanous proteins are discussed in comparison with three other pond snails (L. peregra, Physa acuta and Indoplanorbis exustus). PMID:27708420

  14. Tn10 tet operator mutations affecting Tet repressor recognition.

    PubMed Central

    Wissmann, A; Meier, I; Wray, L V; Geissendörfer, M; Hillen, W

    1986-01-01

    The effect of single base pair alterations of the Tn10 encoded tet operator on recognition of Tet repressor was studied in vivo using a repressor titration system and in vitro by dissociation rate determinations of the respective complexes. Both methods reveal that the two operators, O1 and O2, which are in a tandem arrangement in the wild type, are recognized with a two-fold different affinity when separated. Studies on synthetic operator sequences indicate that the Tet repressor binds with higher affinity to the non-palindromic O2 wildtype than to the respective palindromic sequences. The in vivo repressor titration system links the expression of lacZ to the affinity of tet operator to Tet repressor. It was used to isolate tet operator mutations with reduced affinity to the repressor. The in vivo and in vitro obtained results with these mutants agree quantitatively and indicate, that the GC base pairs at positions 2, 6, and 8 are involved in interaction with the Tet repressor. Their importance for recognition decreases in that order. Transitions at position 7 of the tet operator show smaller effects on recognition than transversions. PMID:3086838

  15. The callipyge mutation and other genes that affect muscle hypertrophy in sheep

    PubMed Central

    2005-01-01

    Genetic strategies to improve the profitability of sheep operations have generally focused on traits for reproduction. However, natural mutations exist in sheep that affect muscle growth and development, and the exploitation of these mutations in breeding strategies has the potential to significantly improve lamb-meat quality. The best-documented mutation for muscle development in sheep is callipyge (CLPG), which causes a postnatal muscle hypertrophy that is localized to the pelvic limbs and loin. Enhanced skeletal muscle growth is also observed in animals with the Carwell (or rib-eye muscling) mutation, and a double-muscling phenotype has been documented for animals of the Texel sheep breed. However, the actual mutations responsible for these muscular hypertrophy phenotypes in sheep have yet to be identified, and further characterization of the genetic basis for these phenotypes will provide insight into the biological control of muscle growth and body composition. PMID:15601596

  16. Prevalence and Phenotypic Expression of Mutations in the MYH7, MYBPC3 and TNNT2 Genes in Families with Hypertrophic Cardiomyopathy in the South of Brazil: A Cross-Sectional Study.

    PubMed

    Mattos, Beatriz Piva E; Scolari, Fernando Luís; Torres, Marco Antonio Rodrigues; Simon, Laura; Freitas, Valéria Centeno de; Giugliani, Roberto; Matte, Úrsula

    2016-09-01

    Mutations in sarcomeric genes are found in 60-70% of individuals with familial forms of hypertrophic cardiomyopathy (HCM). However, this estimate refers to northern hemisphere populations. The molecular-genetic profile of HCM has been subject of few investigations in Brazil, particularly in the south of the country. To investigate mutations in the sarcomeric genes MYH7, MYBPC3 and TNNT2 in a cohort of HCM patients living in the extreme south of Brazil, and to evaluate genotype-phenotype associations. Direct DNA sequencing of all encoding regions of three sarcomeric genes was conducted in 43 consecutive individuals of ten unrelated families. Mutations for CMH have been found in 25 (58%) patients of seven (70%) of the ten study families. Fourteen (56%) individuals were phenotype-positive. All mutations were missense, four (66%) in MYH7 and two (33%) in MYBPC3. We have not found mutations in the TNNT2 gene. Mutations in MYH7 were identified in 20 (47%) patients of six (60%) families. Two of them had not been previously described. Mutations in MYBPC3 were found in seven (16%) members of two (20%) families. Two (5%) patients showed double heterozygosis for both genes. The mutations affected different domains of encoded proteins and led to variable phenotypic expression. A family history of HCM was identified in all genotype-positive individuals. In this first genetic-molecular analysis carried out in the south of Brazil, we found mutations in the sarcomeric genes MYH7 and MYBPC3 in 58% of individuals. MYH7-related disease was identified in the majority of cases with mutation. Mutações em genes do sarcômero são encontradas em 60-70% dos indivíduos com formas familiares de cardiomiopatia hipertrófica. (CMH). Entretanto, essa estimativa refere-se a populações de países do hemisfério norte. O perfil genético-molecular da CMH foi tema de poucos estudos no Brasil, particularmente na região sul do país. Realizar a pesquisa de mutações dos genes sarcoméricos MYH

  17. Clinical predictors of genetic testing outcomes in hypertrophic cardiomyopathy.

    PubMed

    Ingles, Jodie; Sarina, Tanya; Yeates, Laura; Hunt, Lauren; Macciocca, Ivan; McCormack, Louise; Winship, Ingrid; McGaughran, Julie; Atherton, John; Semsarian, Christopher

    2013-12-01

    Genetic testing for hypertrophic cardiomyopathy has been commercially available for almost a decade; however, low mutation detection rate and cost have hindered uptake. This study sought to identify clinical variables that can predict probands with hypertrophic cardiomyopathy in whom a pathogenic mutation will be identified. Probands attending specialized cardiac genetic clinics across Australia over a 10-year period (2002-2011), who met clinical diagnostic criteria for hypertrophic cardiomyopathy and who underwent genetic testing for hypertrophic cardiomyopathy were included. Clinical, family history, and genotype information were collected. A total of 265 unrelated individuals with hypertrophic cardiomyopathy were included, with 138 (52%) having at least one mutation identified. The mutation detection rate was significantly higher in the probands with hypertrophic cardiomyopathy with an established family history of disease (72 vs. 29%, P < 0.0001), and a positive family history of sudden cardiac death further increased the detection rate (89 vs. 59%, P < 0.0001). Multivariate analysis identified female gender, increased left-ventricular wall thickness, family history of hypertrophic cardiomyopathy, and family history of sudden cardiac death as being associated with greatest chance of identifying a gene mutation. Multiple mutation carriers (n = 16, 6%) were more likely to have suffered an out-of-hospital cardiac arrest or sudden cardiac death (31 vs. 7%, P = 0.012). Family history is a key clinical predictor of a positive genetic diagnosis and has direct clinical relevance, particularly in the pretest genetic counseling setting.

  18. [Analysis of AVPR2 gene mutation in a pedigree affected with congenital nephrogenic diabetes insipidus].

    PubMed

    Dai, Zhijuan; Ruan, Luya; Jin, Jian; Qian, Yanying; Wang, Liang; Shi, Zhen; Wu, Chaoming

    2016-10-01

    To detect potential mutation in a pedigree affected with congenital nephrogenic diabetes insipidus (NDI). Clinical data of a male patient affected with NDI was collected. Genomic DNA was extracted from peripheral blood samples from the patient and five family members. The whole coding region of the arginine vasopressin receptor 2 (AVPR2) gene was amplified by PCR and directly sequenced. The patient presented polyuria and polydipsia postnatally. Computerized tomography revealed bilateral hydronephrosis and hydroureter. The patient was responsive to hydrochlorothiazide but not to desmopressin. DNA analysis identified a hemizygous missence mutation c.295 T>C in exon 2 of the AVPR2 gene in the proband. His mother and grandmother were both heterozygous for the same mutation. The congenital NDI in the patient was probably due to mutation of the AVPR2 gene.

  19. The biology of desmin filaments: how do mutations affect their structure, assembly, and organisation?

    PubMed

    Bär, Harald; Strelkov, Sergei V; Sjöberg, Gunnar; Aebi, Ueli; Herrmann, Harald

    2004-11-01

    Desmin, the major intermediate filament (IF) protein of muscle, is evolutionarily highly conserved from shark to man. Recently, an increasing number of mutations of the desmin gene has been described to be associated with human diseases such as certain skeletal and cardiac myopathies. These diseases are histologically characterised by intracellular aggregates containing desmin and various associated proteins. Although there is progress regarding our knowledge on the cellular function of desmin within the cytoskeleton, the impact of each distinct mutation is currently not understood at all. In order to get insight into how such mutations affect filament assembly and their integration into the cytoskeleton we need to establish IF structure at atomic detail. Recent progress in determining the dimer structure of the desmin-related IF-protein vimentin allows us to assess how such mutations may affect desmin filament architecture.

  20. Characterization of mitochondrial DNA in primary cardiomyopathies.

    PubMed

    Bobba, A; Giannattasio, S; Pucci, A; Lippolis, R; Camaschella, C; Marra, E

    1995-12-29

    With the aim of studying the involvement of the mitochondrial genome in the impairment of heart function, mitochondrial DNA was analyzed by modified primer shift-polymerase chain reaction in a panel of young patients affected by primary cardiomyopathies. Mitochondrial DNA molecules harboring the 7436 bp deletion were specifically found in cardiomyopathic patients as compared with a panel of control subjects. The 4977 bp deletion was commonly detected among the subjects analyzed whereas none of the specific tRNA gene point mutations generally associated with the cardiomyopathic trait were detected. The presence of the 7436 bp deletion as a consequence of a premature aging of the heart muscle, secondary to heart dysfunction, is discussed.

  1. Hypertrophic cardiomyopathy: a heart in need of an energy bar?

    PubMed Central

    Vakrou, Styliani; Abraham, M. Roselle

    2014-01-01

    Hypertrophic cardiomyopathy (HCM) has been recently recognized as the most common inherited cardiovascular disorder, affecting 1 in 500 adults worldwide. HCM is characterized by myocyte hypertrophy resulting in thickening of the ventricular wall, myocyte disarray, interstitial and/or replacement fibrosis, decreased ventricular cavity volume and diastolic dysfunction. HCM is also the most common cause of sudden death in the young. A large proportion of patients diagnosed with HCM have mutations in sarcomeric proteins. However, it is unclear how these mutations lead to the cardiac phenotype, which is variable even in patients carrying the same causal mutation. Abnormalities in calcium cycling, oxidative stress, mitochondrial dysfunction and energetic deficiency have been described constituting the basis of therapies in experimental models of HCM and HCM patients. This review focuses on evidence supporting the role of cellular metabolism and mitochondria in HCM. PMID:25191275

  2. Activating mutations affecting the Dbl homology domain of SOS2 cause Noonan syndrome

    PubMed Central

    Cordeddu, Viviana; Yin, Jiani C.; Gunnarsson, Cecilia; Virtanen, Carl; Drunat, Séverine; Lepri, Francesca; De Luca, Alessandro; Rossi, Cesare; Ciolfi, Andrea; Pugh, Trevor J.; Bruselles, Alessandro; Priest, James R.; Pennacchio, Len A.; Lu, Zhibin; Danesh, Arnavaz; Quevedo, Rene; Hamid, Alaa; Martinelli, Simone; Pantaleoni, Francesca; Gnazzo, Maria; Daniele, Paola; Lissewski, Christina; Bocchinfuso, Gianfranco; Stella, Lorenzo; Odent, Sylvie; Philip, Nicole; Faivre, Laurence; Vlckova, Marketa; Seemanova, Eva; Digilio, Cristina; Zenker, Martin; Zampino, Giuseppe; Verloes, Alain; Dallapiccola, Bruno; Roberts, Amy E.; Cavé, Hélène; Gelb, Bruce D.; Neel, Benjamin G.; Tartaglia, Marco

    2015-01-01

    The RASopathies constitute a family of autosomal dominant disorders whose major features include facial dysmorphism, cardiac defects, reduced postnatal growth, variable cognitive deficits, ectodermal and skeletal anomalies, and susceptibility to certain malignancies. Noonan syndrome (NS), the commonest RASopathy, is genetically heterogeneous and caused by functional dysregulation of signal transducers and regulatory proteins with roles in the RAS/extracellular signal-regulated kinase (ERK) signal transduction pathway. Mutations in known disease genes account for approximately 80% of affected individuals. Here, we report that missense mutations altering son of sevenless, Drosophila, homolog 2 (SOS2), which encodes a RAS guanine nucleotide exchange factor, occur in a small percentage of subjects with NS. Four missense mutations were identified in five unrelated sporadic cases and families transmitting NS. Disease-causing mutations affected three conserved residues located in the Dbl homology domain, of which two are directly involved in the intramolecular binding network maintaining SOS2 in its auto-inhibited conformation. All mutations were found to promote enhanced signaling from RAS to ERK. Similar to NS-causing SOS1 mutations, the phenotype associated with SOS2 defects is characterized by normal development and growth, as well as marked ectodermal involvement. Unlike SOS1 mutations, however, those in SOS2 are restricted to the Dbl homology domain. PMID:26173643

  3. Activating Mutations Affecting the Dbl Homology Domain of SOS2 Cause Noonan Syndrome.

    PubMed

    Cordeddu, Viviana; Yin, Jiani C; Gunnarsson, Cecilia; Virtanen, Carl; Drunat, Séverine; Lepri, Francesca; De Luca, Alessandro; Rossi, Cesare; Ciolfi, Andrea; Pugh, Trevor J; Bruselles, Alessandro; Priest, James R; Pennacchio, Len A; Lu, Zhibin; Danesh, Arnavaz; Quevedo, Rene; Hamid, Alaa; Martinelli, Simone; Pantaleoni, Francesca; Gnazzo, Maria; Daniele, Paola; Lissewski, Christina; Bocchinfuso, Gianfranco; Stella, Lorenzo; Odent, Sylvie; Philip, Nicole; Faivre, Laurence; Vlckova, Marketa; Seemanova, Eva; Digilio, Cristina; Zenker, Martin; Zampino, Giuseppe; Verloes, Alain; Dallapiccola, Bruno; Roberts, Amy E; Cavé, Hélène; Gelb, Bruce D; Neel, Benjamin G; Tartaglia, Marco

    2015-11-01

    The RASopathies constitute a family of autosomal-dominant disorders whose major features include facial dysmorphism, cardiac defects, reduced postnatal growth, variable cognitive deficits, ectodermal and skeletal anomalies, and susceptibility to certain malignancies. Noonan syndrome (NS), the commonest RASopathy, is genetically heterogeneous and caused by functional dysregulation of signal transducers and regulatory proteins with roles in the RAS/extracellular signal-regulated kinase (ERK) signal transduction pathway. Mutations in known disease genes account for approximately 80% of affected individuals. Here, we report that missense mutations altering Son of Sevenless, Drosophila, homolog 2 (SOS2), which encodes a RAS guanine nucleotide exchange factor, occur in a small percentage of subjects with NS. Four missense mutations were identified in five unrelated sporadic cases and families transmitting NS. Disease-causing mutations affected three conserved residues located in the Dbl homology (DH) domain, of which two are directly involved in the intramolecular binding network maintaining SOS2 in its autoinhibited conformation. All mutations were found to promote enhanced signaling from RAS to ERK. Similar to NS-causing SOS1 mutations, the phenotype associated with SOS2 defects is characterized by normal development and growth, as well as marked ectodermal involvement. Unlike SOS1 mutations, however, those in SOS2 are restricted to the DH domain.

  4. Five gametophytic mutations affecting pollen development and pollen tube growth in Arabidopsis thaliana.

    PubMed Central

    Procissi, A; de Laissardière, S; Férault, M; Vezon, D; Pelletier, G; Bonhomme, S

    2001-01-01

    Mutant analysis represents one of the most reliable approaches to identifying genes involved in plant development. The screening of the Versailles collection of Arabidopsis thaliana T-DNA insertion transformants has allowed us to isolate different mutations affecting male gametophytic functions and viability. Among several mutated lines, five have been extensively studied at the genetic, molecular, and cytological levels. For each mutant, several generations of selfing and outcrossing have been carried out, leading to the conclusion that all these mutations are tagged and affect only the male gametophyte. However, only one out of the five mutations is completely penetrant. A variable number of T-DNA copies has integrated in the mutant lines, although all segregate at one mutated locus. Two mutants could be defined as "early mutants": the mutated genes are presumably expressed during pollen grain maturation and their alteration leads to the production of nonfunctional pollen grains. Two other mutants could be defined as "late mutant" since their pollen is able to germinate but pollen tube growth is highly disturbed. Screening for segregation ratio distortions followed by thorough genetic analysis proved to be a powerful tool for identifying gametophytic mutations of all phases of pollen development. PMID:11514461

  5. PARP inhibitors may affect normal cells in patients with a BRCA mutation | Center for Cancer Research

    Cancer.gov

    PARP inhibition has been approved for treatment of advanced ovarian cancer with BRAC1 and BRAC2 mutations and is being studied in the treatment advanced breast, colorectal, and prostate cancer.  A new study by Center for Cancer Research scientists in the Mouse Cancer Genetics Program and the Laboratory of Genome Integrity, raises concerns that when cancer patients with a BRCA mutation are treated with PARP inhibitors their normal cells may also be affected.  

  6. [IDUA gene mutation analysis and prenatal diagnosis of two families affected with mucopolysaccharidosis type I].

    PubMed

    Yang, Xinyu; Mei, Shiyue; Kong, Xiangdong; Zhao, Zhenhua; Cai, Aojie; Yao, Jiameng; Li, Yiying; Qin, Zhi

    2017-06-10

    To analyze mutations of IDUA gene in two pedigrees affected with mucopolysaccharidosis type I and provide prenatal diagnosis for them. The 14 exons of the IDUA gene were subjected to PCR amplification and Sanger sequencing. For pedigree 1, the proband was found to harbor compound heterozygous mutations c.46-57delTCGCTCCTGGCC (p.Ser16_Ala19del) of exon 1 and c.1147delC (p.Arg383Alafs*57) of exon 8 of the IDUA gene, which were inherited from his father and mother, respectively. The latter was unreported previously. Prenatal diagnosis suggested that the fetus has carried a heterozygous c.46-57delTCGCTCCTGGCC mutation. For family 2, the proband was also found to carry compound mutations of the IDUA gene, namely c.721T to C (p.Cys241Arg) of exon 6 and c.1491delG (p.Thr497fs27) of exon 8, which were inherited from her mother and father, respectively. Neither mutation was reported previously. Prenatal diagnosis suggested that the fetus has carried a heterozygous c.721T to C mutation. Mutations of the IDUA gene probably underlie the MPS-I in both pedigrees. Above results have enriched the spectrum of IDUA gene mutations and facilitated prenatal diagnosis for both families.

  7. [Analysis of PKD1 gene mutation in a family affected with autosomal dominant polycystic kidney disease].

    PubMed

    Mei, Jin; Wang, Min; Wang, Hao; Zhang, Lidan; Zhang, Pan

    2017-06-10

    To determine the molecular etiology for a family affected with autosomal dominant polycystic kidney disease and provide prenatal diagnosis for the family. Clinical data of the family was collected. Target region sequencing with monogenetic disorders capture array combined with Sanger sequencing and bioinformatics analysis were performed in turn. SIFT and NCB1 were used to evaluate the conservation of the gene and pathogenicity of the identified mutation. Target region sequencing has identified a novel c.11333C to A (p.T3778N) mutation of the PKD1 gene in the proband and the fetus, which was confirmed by Sanger sequencing in three affected individuals from the family. The same mutation was not detected in healthy members of the pedigree. Bioinformatics analysis suggested that the mutation has caused a likely pathogenic amino acid substitution of Threonine by Aspartic acid, and Clustal analysis indicated that the altered amino acid is highly conserved in mammals. A novel mutation of the PKD1 gene has been identified in an affected Chinese family. The mutation is probably responsible for a range of clinical manifestations, for which reliable prenatal diagnosis and genetic counseling may be provided.

  8. Research priorities in sarcomeric cardiomyopathies.

    PubMed

    van der Velden, Jolanda; Ho, Carolyn Y; Tardiff, Jil C; Olivotto, Iacopo; Knollmann, Bjorn C; Carrier, Lucie

    2015-04-01

    The clinical variability in patients with sarcomeric cardiomyopathies is striking: a mutation causes cardiomyopathy in one individual, while the identical mutation is harmless in a family member. Moreover, the clinical phenotype varies ranging from asymmetric hypertrophy to severe dilatation of the heart. Identification of a single phenotype-associated disease mechanism would facilitate the design of targeted treatments for patient groups with different clinical phenotypes. However, evidence from both the clinic and basic knowledge of functional and structural properties of the sarcomere argues against a 'one size fits all' therapy for treatment of one clinical phenotype. Meticulous clinical and basic studies are needed to unravel the initial and progressive changes initiated by sarcomere mutations to better understand why mutations in the same gene can lead to such opposing phenotypes. Ultimately, we need to design an 'integrative physiology' approach to fully realize patient/gene-tailored therapy. Expertise within different research fields (cardiology, genetics, cellular biology, physiology, and pharmacology) must be joined to link longitudinal clinical studies with mechanistic insights obtained from molecular and functional studies in novel cardiac muscle systems. New animal models, which reflect both initial and more advanced stages of sarcomeric cardiomyopathy, will also aid in achieving these goals. Here, we discuss current priorities in clinical and preclinical investigation aimed at increasing our understanding of pathophysiological mechanisms leading from mutation to disease. Such information will provide the basis to improve risk stratification and to develop therapies to prevent/rescue cardiac dysfunction and remodelling caused by sarcomere mutations. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  9. The myosin mesa and a possible unifying hypothesis for the molecular basis of human hypertrophic cardiomyopathy

    PubMed Central

    Spudich, James A.

    2015-01-01

    No matter how many times one explores the structure of the myosin molecule, there is always something new to discover. Here, I describe the myosin mesa, a structural feature of the motor domain that has the characteristics of a binding domain for another protein, possibly myosin-binding protein C (MyBP-C). Interestingly, many well-known hypertrophic cardiomyopathy (HCM) mutations lie along this surface and may affect the putative interactions proposed here. A potential unifying hypothesis for the molecular basis of human hypertrophic cardiomyopathy is discussed here. It involves increased power output of the cardiac muscle as a result of HCM mutations causing the release of inhibition by myosin binding protein C. PMID:25619247

  10. The myosin mesa and a possible unifying hypothesis for the molecular basis of human hypertrophic cardiomyopathy.

    PubMed

    Spudich, James A

    2015-02-01

    No matter how many times one explores the structure of the myosin molecule, there is always something new to discover. Here, I describe the myosin mesa, a structural feature of the motor domain that has the characteristics of a binding domain for another protein, possibly myosin-binding protein C (MyBP-C). Interestingly, many well-known hypertrophic cardiomyopathy (HCM) mutations lie along this surface and may affect the putative interactions proposed here. A potential unifying hypothesis for the molecular basis of human hypertrophic cardiomyopathy is discussed here. It involves increased power output of the cardiac muscle as a result of HCM mutations causing the release of inhibition by myosin binding protein C.

  11. Mutations in arrestin-3 differentially affect binding to neuropeptide Y receptor subtypes.

    PubMed

    Gimenez, Luis E; Babilon, Stefanie; Wanka, Lizzy; Beck-Sickinger, Annette G; Gurevich, Vsevolod V

    2014-07-01

    Based on the identification of residues that determine receptor selectivity in arrestins and the phylogenetic analysis of the arrestin (arr) family, we introduced fifteen mutations of receptor-discriminator residues in arr-3, which were identified previously using mutagenesis, in vitro binding, and BRET-based recruitment assay in intact cells. The effects of these mutations were tested using neuropeptide Y receptors Y1R and Y2R. NPY-elicited arr-3 recruitment to Y1R was not affected by these mutations, or even alanine substitution of all ten residues (arr-3-NCA), which prevented arr-3 binding to other receptors tested so far. However, NCA and two other mutations prevented agonist-independent arr-3 pre-docking to Y1R. In contrast, eight out of 15 mutations significantly reduced agonist-dependent arr-3 recruitment to Y2R. NCA eliminated arr-3 binding to active Y2R, whereas Tyr239Thr reduced it ~7-fold. Thus, manipulation of key residues on the receptor-binding surface generates arr-3 with high preference for Y1R over Y2R. Several mutations differentially affect arr-3 pre-docking and agonist-induced recruitment. Thus, arr-3 recruitment to the receptor involves several mechanistically distinct steps. Targeted mutagenesis can fine-tune arrestins directing them to specific receptors and particular activation states of the same receptor.

  12. Mutations in arrestin-3 differentially affect binding to neuropeptide Y receptor subtypes

    PubMed Central

    Gimenez, Luis E.; Babilon, Stefanie; Wanka, Lizzy; Beck-Sickinger, Annette G.; Gurevich, Vsevolod V.

    2014-01-01

    Based on the identification of residues that determine receptor selectivity in arrestins and the phylogenetic analysis of the arrestin (arr) family, we introduced fifteen mutations of receptor-discriminator residues in arr-3, which were identified previously using mutagenesis, in vitro binding, and BRET-based recruitment assay in intact cells. The effects of these mutations were tested using neuropeptide Y receptors Y1R and Y2R. NPY-elicited arr-3 recruitment to Y1R was not affected by these mutations, or even alanine substitution of all ten residues (arr-3-NCA), which prevented arr-3 binding to other receptors tested so far. However, NCA and two other mutations prevented agonist-independent arr-3 pre-docking to Y1R. In contrast, eight out of 15 mutations significantly reduced agonist-dependent arr-3 recruitment to Y2R. NCA eliminated arr-3 binding to active Y2R, whereas Tyr239Thr reduced it ~7-fold. Thus, manipulation of key residues on the receptor-binding surface generates arr-3 with high preference for Y1R over Y2R. Several mutations differentially affect arr-3 pre-docking and agonist-induced recruitment. Thus, arr-3 recruitment to the receptor involves several mechanistically distinct steps. Targeted mutagenesis can fine-tune arrestins directing them to specific receptors and particular activation states of the same receptor. PMID:24686081

  13. Uner Tan syndrome caused by a homozygous TUBB2B mutation affecting microtubule stability.

    PubMed

    Breuss, Martin W; Nguyen, Thai; Srivatsan, Anjana; Leca, Ines; Tian, Guoling; Fritz, Tanja; Hansen, Andi H; Musaev, Damir; McEvoy-Venneri, Jennifer; James, Kiely N; Rosti, Rasim O; Scott, Eric; Tan, Uner; Kolodner, Richard D; Cowan, Nicholas J; Keays, David A; Gleeson, Joseph G

    2016-12-23

    The integrity and dynamic properties of the microtubule cytoskeleton are indispensable for the development of the mammalian brain. Consequently, mutations in the genes that encode the structural component (the α/β-tubulin heterodimer) can give rise to severe, sporadic neurodevelopmental disorders. These are commonly referred to as the tubulinopathies. Here we report the addition of recessive quadrupedalism, also known as Uner Tan syndrome (UTS), to the growing list of diseases caused by tubulin variants. Analysis of a consanguineous UTS family identified a biallelic TUBB2B mutation, resulting in a p.R390Q amino acid substitution. In addition to the identifying quadrupedal locomotion, all three patients showed severe cerebellar hypoplasia. None, however, displayed the basal ganglia malformations typically associated with TUBB2B mutations. Functional analysis of the R390Q substitution revealed that it did not affect the ability of β-tubulin to fold or become assembled into the α/β-heterodimer, nor did it influence the incorporation of mutant-containing heterodimers into microtubule polymers. The 390Q mutation in S. cerevisiae TUB2 did not affect growth under basal conditions, but did result in increased sensitivity to microtubule-depolymerizing drugs, indicative of a mild impact of this mutation on microtubule function. The TUBB2B mutation described here represents an unusual recessive mode of inheritance for missense-mediated tubulinopathies and reinforces the sensitivity of the developing cerebellum to microtubule defects.

  14. Mutations affecting a putative MutLα endonuclease motif impact multiple mismatch repair functions

    PubMed Central

    Erdeniz, Naz; Nguyen, Megan; Deschênes, Suzanne M.; Liskay, R. Michael

    2008-01-01

    Mutations in DNA mismatch repair (MMR) lead to increased mutation rates and higher recombination between similar, but not identical sequences, as well as resistance to certain DNA methylating agents. Recently, a component of human MMR machinery, MutLα, has been shown to display a latent endonuclease activity. The endonuclease active site appears to include a conserved motif, DQHA(X)2E(X)4E, within the COOH-terminus of human PMS2. Substitution of the glutamic acid residue (E705) abolished the endonuclease activity and mismatch-dependent excision in vitro. Previously, we showed that the PMS2-E705K mutation and the corresponding mutation in Saccharomyces cerevisiae were both recessive loss of function alleles for mutation avoidance in vivo. Here, we show that mutations impacting this endonuclease motif also significantly affect MMR-dependent suppression of homeologous recombination in yeast and responses to Sn1-type methylating agents in both yeast and mammalian cells. Thus, our in vivo results suggest that the endonuclease activity of MutLα is important not only in MMR-dependent mutation avoidance but also for recombination and damage response functions. PMID:17567544

  15. CVID-associated TACI mutations affect autoreactive B cell selection and activation.

    PubMed

    Romberg, Neil; Chamberlain, Nicolas; Saadoun, David; Gentile, Maurizio; Kinnunen, Tuure; Ng, Yen Shing; Virdee, Manmeet; Menard, Laurence; Cantaert, Tineke; Morbach, Henner; Rachid, Rima; Martinez-Pomar, Natalia; Matamoros, Nuria; Geha, Raif; Grimbacher, Bodo; Cerutti, Andrea; Cunningham-Rundles, Charlotte; Meffre, Eric

    2013-10-01

    Common variable immune deficiency (CVID) is an assorted group of primary diseases that clinically manifest with antibody deficiency, infection susceptibility, and autoimmunity. Heterozygous mutations in the gene encoding the tumor necrosis factor receptor superfamily member TACI are associated with CVID and autoimmune manifestations, whereas two mutated alleles prevent autoimmunity. To assess how the number of TACI mutations affects B cell activation and tolerance checkpoints, we analyzed healthy individuals and CVID patients carrying one or two TACI mutations. We found that TACI interacts with the cleaved, mature forms of TLR7 and TLR9 and plays an important role during B cell activation and the central removal of autoreactive B cells in healthy donors and CVID patients. However, only subjects with a single TACI mutation displayed a breached immune tolerance and secreted antinuclear antibodies (ANAs). These antibodies were associated with the presence of circulating B cell lymphoma 6-expressing T follicular helper (Tfh) cells, likely stimulating autoreactive B cells. Thus, TACI mutations may favor CVID by altering B cell activation with coincident impairment of central B cell tolerance, whereas residual B cell responsiveness in patients with one, but not two, TACI mutations enables autoimmune complications.

  16. CVID-associated TACI mutations affect autoreactive B cell selection and activation

    PubMed Central

    Romberg, Neil; Chamberlain, Nicolas; Saadoun, David; Gentile, Maurizio; Kinnunen, Tuure; Ng, Yen Shing; Virdee, Manmeet; Menard, Laurence; Cantaert, Tineke; Morbach, Henner; Rachid, Rima; Martinez-Pomar, Natalia; Matamoros, Nuria; Geha, Raif; Grimbacher, Bodo; Cerutti, Andrea; Cunningham-Rundles, Charlotte; Meffre, Eric

    2013-01-01

    Common variable immune deficiency (CVID) is an assorted group of primary diseases that clinically manifest with antibody deficiency, infection susceptibility, and autoimmunity. Heterozygous mutations in the gene encoding the tumor necrosis factor receptor superfamily member TACI are associated with CVID and autoimmune manifestations, whereas two mutated alleles prevent autoimmunity. To assess how the number of TACI mutations affects B cell activation and tolerance checkpoints, we analyzed healthy individuals and CVID patients carrying one or two TACI mutations. We found that TACI interacts with the cleaved, mature forms of TLR7 and TLR9 and plays an important role during B cell activation and the central removal of autoreactive B cells in healthy donors and CVID patients. However, only subjects with a single TACI mutation displayed a breached immune tolerance and secreted antinuclear antibodies (ANAs). These antibodies were associated with the presence of circulating B cell lymphoma 6–expressing T follicular helper (Tfh) cells, likely stimulating autoreactive B cells. Thus, TACI mutations may favor CVID by altering B cell activation with coincident impairment of central B cell tolerance, whereas residual B cell responsiveness in patients with one, but not two, TACI mutations enables autoimmune complications. PMID:24051380

  17. Mutations of the Wiskott-Aldrich Syndrome Protein affect protein expression and dictate the clinical phenotypes.

    PubMed

    Ochs, Hans D

    2009-01-01

    Mutations of the Wiskott-Aldrich Syndrome Protein (WASP) are responsible for classic Wiskott-Aldrich Syndrome (WAS), X-linked thrombocytopenia (XLT), and in rare instances congenital X-linked neutropenia (XLN). WASP is a regulator of actin polymerization in hematopoietic cells with well-defined functional domains that are involved in cell signaling and cell locomotion, immune synapse formation, and apoptosis. Mutations of WASP are located throughout the gene and either inhibit or disregulate normal WASP function. Analysis of a large patient population demonstrates a strong phenotype-genotype correlation. Classic WAS occurs when WASP is absent, XLT when mutated WASP is expressed and XLN when missense mutations occur in the Cdc42-binding site. However, because there are exceptions to this rule it is difficult to predict the long-term prognosis of a given affected boy solely based on the analysis of WASP expression.

  18. First missense mutation outside of SERAC1 lipase domain affecting intracellular cholesterol trafficking.

    PubMed

    Rodríguez-García, María Elena; Martín-Hernández, Elena; de Aragón, Ana Martínez; García-Silva, María Teresa; Quijada-Fraile, Pilar; Arenas, Joaquín; Martín, Miguel A; Martínez-Azorín, Francisco

    2016-01-01

    We report the clinical and genetic findings in a Spanish boy who presented MEGDEL syndrome, a very rare inborn error of metabolism. Whole-exome sequencing uncovered a new homozygous mutation in the serine active site containing 1 (SERAC1) gene, which is essential for both mitochondrial function and intracellular cholesterol trafficking. Functional studies in patient fibroblasts showed that p.D224G mutation affects the intracellular cholesterol trafficking. Only three missense mutations in this gene have been described before, being p.D224G the first missense mutation outside of the SERAC1 serine-lipase domain. Therefore, we conclude that the defect in cholesterol trafficking is not limited to alterations in this specific part of the protein.

  19. Two affected siblings with nuclear cataract associated with a novel missense mutation in the CRYGD gene.

    PubMed

    Messina-Baas, Olga Maud; Gonzalez-Huerta, Luz Maria; Cuevas-Covarrubias, Sergio Alberto

    2006-08-24

    To identify the disease locus for nuclear congenital cataract in a nonconsanguineous family with two affected members. One family with two affected members with congenital cataract and 170 normal controls were examined. DNA from leukocytes and bucal swabs was isolated to analyze the CRYGA-D cluster genes and microsatellite markers D2S325, D2S2382, and D2S126, and to discard paternity through gene scan with several highly polymorphic markers. DNA sequencing analysis of the CRYGA-D cluster genes of the two affected members showed a novel heterozygous missense mutation c.320A > C within exon 3 of the CRYGD gene. This transversion mutation resulted in the substitution of glutamic acid 107 by an alanine (E107A). Analysis of the two unaffected members of the family and the normal parents showed a normal sequence of the CRYGA-D cluster genes. This mutation was not found in a group of 170 unrelated controls. We consider that it is unlikely that this abnormal allele represents a rare polymorphism. DNA analysis showed no evidence for non-paternity while genotyping indicated that the haplotype of the mother co-segregated with the disease. In this study we describe the mutation c.320A > C (E107A) in the CRYGD gene associated with nuclear congenital cataract. Haplotype analysis strongly suggests that the origin of the mutation was transmitted through the mother.

  20. Suppressors of Mutations in the rII Gene of Bacteriophage T4 Affect Promoter Utilization

    PubMed Central

    Hall, Dwight H.; Snyder, Ronald D.

    1981-01-01

    Homyk, Rodriguez and Weil (1976) have described T4 mutants, called sip, that partially suppress the inability of T4rII mutants to grow in λ lysogens. We have found that mutants sip1 and sip2 are resistant to folate analogs and overproduce FH2 reductase. The results of recombination and complementation studies indicate that sip mutations are in the mot gene. Like other mot mutations (Mattson, Richardson and Goodin 1974; Chace and Hall 1975; Sauerbier, Hercules and Hall 1976), the sip2 mutation affects the expression of many genes and appears to affect promoter utilization. The mot gene function is not required for T4 growth on most hosts, but we have found that it is required for good growth on E. coli CTr5X. Homyk, Rodriguez and Weil (1976) also described L mutations that reverse the effects of sip mutations. L2 decreases the folate analog resistance and the inability of sip2 to grow on CTr5X. L2 itself is partially resistant to a folate analog, and appears to reverse the effects of sip2 on gene expression. These results suggest that L2 affects another regulatory gene related to the mot gene. PMID:7262547

  1. Progress with genetic cardiomyopathies: screening, counseling, and testing in dilated, hypertrophic, and arrhythmogenic right ventricular dysplasia/cardiomyopathy.

    PubMed

    Hershberger, Ray E; Cowan, Jason; Morales, Ana; Siegfried, Jill D

    2009-05-01

    This review focuses on the genetic cardiomyopathies: principally dilated cardiomyopathy, with salient features of hypertrophic cardiomyopathy and arrhythmogenic right ventricular dysplasia/cardiomyopathy, regarding genetic etiology, genetic testing, and genetic counseling. Enormous progress has recently been made in identifying genetic causes for each cardiomyopathy, and key phenotype and genotype information is reviewed. Clinical genetic testing is rapidly emerging with a principal rationale of identifying at-risk asymptomatic or disease-free relatives. Knowledge of a disease-causing mutation can guide clinical surveillance for disease onset, thereby enhancing preventive and treatment interventions. Genetic counseling is also indicated for patients and their family members regarding the symptoms of their cardiomyopathy, its inheritance pattern, family screening recommendations, and genetic testing options and possible results.

  2. Children's Cardiomyopathy Foundation

    MedlinePlus

    ... in Washington, D.C. and help cardiomyopathy related bills get passed into law and protect at-risk children from sudden cardiac death. TAKE ACTION TODAY Disclaimer & Privacy Policy © 2017 Children's Cardiomyopathy Foundation. All rights reserved.

  3. Hypertrophic Cardiomyopathy Association

    MedlinePlus

    ... purchased, 10% will be donated to Hypertrophic Cardiomyopathy Association. iGive.com - Online Shopping Joing iGive.com to ... 5% of the purchase price to Hypertrophic Cardiomyopathy Association. Bookmark the link http://smile.amazon.com/ch/ ...

  4. Mutations Affecting RNA Polymerase I-Stimulated Exchange and Rdna Recombination in Yeast

    PubMed Central

    Lin, Y. H.; Keil, R. L.

    1991-01-01

    HOT1 is a cis-acting recombination-stimulatory sequence isolated from the rDNA repeat unit of yeast. The ability of HOT1 to stimulate mitotic exchange appears to depend on its ability to promote high levels of RNA polymerase I transcription. A qualitative colony color sectoring assay was developed to screen for trans-acting mutations that alter the activity of HOT1. Both hypo-recombination and hyper-recombination mutants were isolated. Genetic analysis of seven HOT1 recombination mutants (hrm) that decrease HOT1 activity shows that they behave as recessive nuclear mutations and belong to five linkage groups. Three of these mutations, hrm1, hrm2, and hrm3, also decrease rDNA exchange but do not alter recombination in the absence of HOT1. Another mutation, hrm4, decreases HOT1-stimulated recombination but does not affect rDNA recombination or exchange in the absence of HOT1. Two new alleles of RAD52 were also isolated using this screen. With regard to HOT1 activity, rad52 is epistatic to all four hrm mutations indicating that the products of the HRM genes and of RAD52 mediate steps in the same recombination pathway. Finding mutations that decrease both the activity of HOT1 and exchange in the rDNA supports the hypothesis that HOT1 plays a role in rDNA recombination. PMID:2016045

  5. Different inactivating mutations of the mineralocorticoid receptor in fourteen families affected by type I pseudohypoaldosteronism.

    PubMed

    Sartorato, Paola; Lapeyraque, Anne-Laure; Armanini, Decio; Kuhnle, Ursula; Khaldi, Yasmina; Salomon, Rémi; Abadie, Véronique; Di Battista, Eliana; Naselli, Arturo; Racine, Alain; Bosio, Maurizio; Caprio, Massimiliano; Poulet-Young, Véronique; Chabrolle, Jean-Pierre; Niaudet, Patrick; De Gennes, Christiane; Lecornec, Marie-Hélène; Poisson, Elodie; Fusco, Anna Maria; Loli, Paola; Lombès, Marc; Zennaro, Maria-Christina

    2003-06-01

    We have analyzed the human mineralocorticoid receptor (hMR) gene in 14 families with autosomal dominant or sporadic pseudohypoaldosteronism (PHA1), a rare form of mineralocorticoid resistance characterized by neonatal renal salt wasting and failure to thrive. Six heterozygous mutations were detected. Two frameshift mutations in exon 2 (insT1354, del8bp537) and one nonsense mutation in exon 4 (C2157A, Cys645stop) generate truncated proteins due to premature stop codons. Three missense mutations (G633R, Q776R, L979P) differently affect hMR function. The DNA binding domain mutant R633 exhibits reduced maximal transactivation, although its binding characteristics and ED(50) of transactivation are comparable with wild-type hMR. Ligand binding domain mutants R776 and P979 present reduced or absent aldosterone binding, respectively, which is associated with reduced or absent ligand-dependent transactivation capacity. Finally, P979 possesses a transdominant negative effect on wild-type hMR activity, whereas mutations G633R and Q776R probably result in haploinsufficiency in PHA1 patients. We conclude that hMR mutations are a common feature of autosomal dominant PHA1, being found in 70% of our familial cases. Their absence in some families underscores the importance of an extensive investigation of the hMR gene and the role of precise diagnostic procedures to allow for identification of other genes potentially involved in the disease.

  6. A novel mutation in TFL1 homolog affecting determinacy in cowpea (Vigna unguiculata).

    PubMed

    Dhanasekar, P; Reddy, K S

    2015-02-01

    Mutations in the widely conserved Arabidopsis Terminal Flower 1 (TFL1) gene and its homologs have been demonstrated to result in determinacy across genera, the knowledge of which is lacking in cowpea. Understanding the molecular events leading to determinacy of apical meristems could hasten development of cowpea varieties with suitable ideotypes. Isolation and characterization of a novel mutation in cowpea TFL1 homolog (VuTFL1) affecting determinacy is reported here for the first time. Cowpea TFL1 homolog was amplified using primers designed based on conserved sequences in related genera and sequence variation was analysed in three gamma ray-induced determinate mutants, their indeterminate parent "EC394763" and two indeterminate varieties. The analyses of sequence variation exposed a novel SNP distinguishing the determinate mutants from the indeterminate types. The non-synonymous point mutation in exon 4 at position 1,176 resulted from transversion of cytosine (C) to adenine (A) leading to an amino acid change (Pro-136 to His) in determinate mutants. The effect of the mutation on protein function and stability was predicted to be detrimental using different bioinformatics/computational tools. The functionally significant novel substitution mutation is hypothesized to affect determinacy in the cowpea mutants. Development of suitable regeneration protocols in this hitherto recalcitrant crop and subsequent complementation assay in mutants or over-expressing assay in parents could decisively conclude the role of the SNP in regulating determinacy in these cowpea mutants.

  7. Novel mutations affecting LRP5 splicing in patients with osteoporosis-pseudoglioma syndrome (OPPG)

    PubMed Central

    Laine, C M; Chung, B D; Susic, M; Prescott, T; Semler, O; Fiskerstrand, T; D'Eufemia, P; Castori, M; Pekkinen, M; Sochett, E; Cole, W G; Netzer, C; Mäkitie, O

    2011-01-01

    Osteoporosis-pseudoglioma sydrome (OPPG) is an autosomal recessive disorder with early-onset severe osteoporosis and blindness, caused by biallelic loss-of-function mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) gene. Heterozygous carriers exhibit a milder bone phenotype. Only a few splice mutations in LRP5 have been published. We present clinical and genetic data for four patients with novel LRP5 mutations, three of which affect splicing. Patients were evaluated clinically and by radiography and bone densitometry. Genetic screening of LRP5 was performed on the basis of the clinical diagnosis of OPPG. Splice aberrances were confirmed by cDNA sequencing or exon trapping. The effect of one splice mutation on LRP5 protein function was studied. A novel splice-site mutation c.1584+4A>T abolished the donor splice site of exon 7 and activated a cryptic splice site, which led to an in-frame insertion of 21 amino acids (p.E528_V529ins21). Functional studies revealed severely impaired signal transduction presumably caused by defective intracellular transport of the mutated receptor. Exon trapping was used on two samples to confirm that splice-site mutations c.4112-2A>G and c.1015+1G>T caused splicing-out of exons 20 and 5, respectively. One patient carried a homozygous deletion of exon 4 causing the loss of exons 4 and 5, as demonstrated by cDNA analysis. Our results broaden the spectrum of mutations in LRP5 and provide the first functional data on splice aberrations. PMID:21407258

  8. Inherited cardiomyopathies mimicking arrhythmogenic right ventricular cardiomyopathy.

    PubMed

    Roberts, Jason D; Veinot, John P; Rutberg, Julie; Gollob, Michael H

    2010-01-01

    Arrhythmogenic right ventricular cardiomyopathy (ARVC) represents an inherited cardiomyopathy that manifests clinically with malignant ventricular arrhythmias, sudden cardiac death, and less commonly heart failure. The condition is characterized by replacement of the myocardium, primarily of the right ventricle, with fibrofatty tissue. Extensive fibrofatty replacement of the myocardium has been previously thought to be pathognomonic of ARVC; however, this report details two other forms of inherited cardiomyopathy, namely hypertrophic cardiomyopathy (HCM) and the PRKAG2 cardiac syndrome, that were found to have significant fibrofatty myocardial replacement at pathologic examination. This report represents the first documentation of inherited cardiomyopathies mimicking ARVC and highlights the concept that other cardiac conditions can be associated with fibrofatty replacement of the myocardium. Copyright 2010 Elsevier Inc. All rights reserved.

  9. [Classification of cardiomyopathy].

    PubMed

    Asakura, Masanori; Kitakaze, Masafumi

    2014-01-01

    Cardiomyopathy is a group of cardiovascular diseases with poor prognosis. Some patients with dilated cardiomyopathy need heart transplantations due to severe heart failure. Some patients with hypertrophic cardiomyopathy die unexpectedly due to malignant ventricular arrhythmias. Various phenotypes of cardiomyopathies are due to the heterogeneous group of diseases. The classification of cardiomyopathies is important and indispensable in the clinical situation. However, their classification has not been established, because the causes of cardiomyopathies have not been fully elucidated. We usually use definition and classification offered by WHO/ISFC task force in 1995. Recently, several new definitions and classifications of the cardiomyopathies have been published by American Heart Association, European Society of Cardiology and Japanese Circulation Society.

  10. Neonatal dilated cardiomyopathy.

    PubMed

    Soares, Paulo; Rocha, Gustavo; Pissarra, Susana; Soares, Henrique; Flôr-de-Lima, Filipa; Costa, Sandra; Moura, Cláudia; Dória, Sofia; Guimarães, Hercília

    2017-03-01

    Cardiomyopathies are rare diseases of the heart muscle, of multiple causes, that manifest with various structural and functional phenotypes but are invariably associated with cardiac dysfunction. Dilated cardiomyopathy is the commonest cardiomyopathy in children, and the majority present before one year of age. Its etiology may be acquired or genetic. Myocarditis is an important cause and is responsible for the majority of acquired cases. Inherited (familial) forms of dilated cardiomyopathy may occur in 25-50% of patients. Echocardiographic and tissue Doppler studies are the basis for diagnosis of dilated cardiomyopathy in most patients. Marked dilatation of the left ventricle with global hypokinesis is the hallmark of the disease. This review will cover the classification, epidemiology and management of newborns with dilated cardiomyopathy. In particular, a comprehensive and up-to-date review of the genetic study of dilated cardiomyopathy and of detailed echocardiographic assessment of these patients will be presented.

  11. A Tension-Based Model Distinguishes Hypertrophic versus Dilated Cardiomyopathy.

    PubMed

    Davis, Jennifer; Davis, L Craig; Correll, Robert N; Makarewich, Catherine A; Schwanekamp, Jennifer A; Moussavi-Harami, Farid; Wang, Dan; York, Allen J; Wu, Haodi; Houser, Steven R; Seidman, Christine E; Seidman, Jonathan G; Regnier, Michael; Metzger, Joseph M; Wu, Joseph C; Molkentin, Jeffery D

    2016-05-19

    The heart either hypertrophies or dilates in response to familial mutations in genes encoding sarcomeric proteins, which are responsible for contraction and pumping. These mutations typically alter calcium-dependent tension generation within the sarcomeres, but how this translates into the spectrum of hypertrophic versus dilated cardiomyopathy is unknown. By generating a series of cardiac-specific mouse models that permit the systematic tuning of sarcomeric tension generation and calcium fluxing, we identify a significant relationship between the magnitude of tension developed over time and heart growth. When formulated into a computational model, the integral of myofilament tension development predicts hypertrophic and dilated cardiomyopathies in mice associated with essentially any sarcomeric gene mutations, but also accurately predicts human cardiac phenotypes from data generated in induced-pluripotent-stem-cell-derived myocytes from familial cardiomyopathy patients. This tension-based model also has the potential to inform pharmacologic treatment options in cardiomyopathy patients.

  12. Mutation affecting the proximal promoter of Endoglin as the origin of hereditary hemorrhagic telangiectasia type 1.

    PubMed

    Albiñana, Virginia; Zafra, Ma Paz; Colau, Jorge; Zarrabeitia, Roberto; Recio-Poveda, Lucia; Olavarrieta, Leticia; Pérez-Pérez, Julián; Botella, Luisa M

    2017-02-23

    Hereditary hemorrhagic telangiectasia (HHT) is a vascular multi-organ system disorder. Its diagnostic criteria include epistaxis, telangiectases in mucocutaneous sites, arteriovenous malformations (AVMs), and familial inheritance. HHT is transmitted as an autosomal dominant condition, caused in 85% of cases by mutations in either Endoglin (ENG) or Activin receptor-like kinase (ACVRL1/ACVRL1/ALK1) genes. Pathogenic mutations have been described in exons, splice junctions and, in a few cases with ENG mutations, in the proximal promoter, which creates a new ATG start site. However, no mutations affecting transcription regulation have been described to date in HHT, and this type of mutation is rarely identified in the literature on rare diseases. Sequencing data from a family with HHT lead to single nucleotide change, c.-58G > A. The functionality and pathogenicity of this change was analyzed by in vitro mutagenesis, quantitative PCR and Gel shift assay. Student t test was used for statistical significance. A single nucleotide change, c.-58G > A, in the proximal ENG promoter co-segregated with HHT clinical features in an HHT family. This mutation was present in the proband and in 2 other symptomatic members, whereas 2 asymptomatic relatives did not harbor the mutation. Analysis of RNA from activated monocytes from the probands and the healthy brother revealed reduced ENG mRNA expression in the HHT patient (p = 0.005). Site-directed mutagenesis of the ENG promoter resulted in a three-fold decrease in luciferase activity of the mutant c.-58A allele compared to wild type (p = 0.005). Finally, gel shift assay identified a DNA-protein specific complex. The novel ENG c.-58G > A substitution in the ENG promoter co-segregates with HHT symptoms in a family and appears to affect the transcriptional regulation of the gene, resulting in reduced ENG expression. ENG c.-58G > A may therefore be a pathogenic HHT mutation leading to haploinsufficiency of

  13. Two different cardiomyopathies in a single patient : hypertrophic cardiomyopathy and left ventricular noncompaction.

    PubMed

    Sunbul, M; Ozben, B; Mutlu, B

    2013-05-01

    Hypertrophic cardiomyopathy is a complex and relatively common genetic disorder characterized by left ventricular (LV) hypertrophy, usually associated with a nondilated and hyperdynamic chamber with heterogeneous phenotypic expression and clinical course. On the other hand, LV noncompaction is an uncommon cardiomyopathy characterized by the persistence of fetal myocardium with a pattern of prominent trabecular meshwork and deep intertrabecular recesses, systolic dysfunction, and LV dilatation. We report a 29-year-old man with these two different inherent conditions. Our case raises the possibility of a genetic mutation common to these two clinical entities or different gene mutations existing in the same individual.

  14. [Etiopathogenesis of dilated cardiomyopathies].

    PubMed

    Petronio, A S; Manes, M T; Di Meco, F; Nardini, V; Pecori, F; Ceccherini-Nellis, L; Barsotti, A; Mariani, M

    1993-12-01

    This study was carried out on 43 patients affected by dilated cardiomyopathy to investigate some of the etiopathological hypotheses on this illness. The Authors investigated: the persistence of virus genoma (coxsackie, HBV) on endomyocardial biopsies; the pattern of the II class major histocompatibility complex (MHC) were in the blood lymphocytes; the microvascular aspect of coronary circulation in the endomyocardial biopsies. Finally, in a separated group of 19 patients, the microvascular circulation was studied on skin biopsies and correlated with diabetic, valvular and normal subject. The results showed a 14% positivity for the presence of the virus genoma and a significant predominate of DR5 in the II class MHC of patients with a worse ventricular function. Capillary vessels of the coronary microcirculation were dilated in the 48% of the patients, especially in more compromised subjects. Viral myocarditis seem to play a role in the etiopathogenesis of dilated cardiomyopathies (DCM) and the pattern of MHC could influence the progression of the illness. The microcirculation is probably a pathophysiological aspect. No etiological hypothesis seems to predominate.

  15. Mitochondrial ND5 12338T>C variant is associated with maternally inherited hypertrophic cardiomyopathy in a Chinese pedigree.

    PubMed

    Liu, Zhong; Song, Yanrui; Gu, Shulian; He, Xiangyu; Zhu, Xiaoyu; Shen, Yaoyao; Wu, Bifeng; Wang, Wei; Li, Shishi; Jiang, Pingping; Lu, Jianhua; Huang, Wendong; Yan, Qingfeng

    2012-09-15

    Hypertrophic cardiomyopathy is a primary disorder characterized by asymmetric thickening of the septum and left ventricular wall, which affects 1 in 500 individuals in the general population. Mutations in mitochondrial DNA have been found to be one of the most important causes of hypertrophic cardiomyopathy. Here we report the clinical, genetic and molecular characterization of a Han Chinese family with a likely maternally transmitted hypertrophic cardiomyopathy. Four (2 men/2 women) of 5 matrilineal relatives in this 3-generation family exhibited the variable severity and age at onset of 44 to 79 years old. Sequence analysis of the entire mitochondrial DNA in this pedigree identified the known homoplasmic ND5 12338T>C variant. This mitochondrial DNA haplogroup belongs to the Eastern Asian F2a. The 12338T>C variant, highly evolutionarily conserved, resulted in the replacement of the translation initiating methionine with a threonine, shortening the ND5 polypeptide by 2 amino acids. The occurrence of ND5 12338T>C variant exclusively in maternal members of this Chinese family suggested that the 12338T>C variant is associated with maternally inherited hypertrophic cardiomyopathy. Our findings will provide theoretical basis for genetic counseling of maternally inherited hypertrophic cardiomyopathy.

  16. Compound heterozygous mutations affect protein folding and function in patients with congenital sucrase-isomaltase deficiency.

    PubMed

    Alfalah, Marwan; Keiser, Markus; Leeb, Tosso; Zimmer, Klaus-Peter; Naim, Hassan Y

    2009-03-01

    Congenital sucrase-isomaltase (SI) deficiency is an autosomal-recessive intestinal disorder characterized by a drastic reduction or absence of sucrase and isomaltase activities. Previous studies have indicated that single mutations underlie individual phenotypes of the disease. We investigated whether compound heterozygous mutations, observed in some patients, have a role in disease pathogenesis. We introduced mutations into the SI complementary DNA that resulted in the amino acid substitutions V577G and G1073D (heterozygous mutations found in one group of patients) or C1229Y and F1745C (heterozygous mutations found in another group). The mutant genes were expressed transiently, alone or in combination, in COS cells and the effects were assessed at the protein, structural, and subcellular levels. The mutants SI-V577G, SI-G1073D, and SI-F1745C were misfolded and could not exit the endoplasmic reticulum, whereas SI-C1229Y was transported only to the Golgi apparatus. Co-expression of mutants found on each SI allele in patients did not alter the protein's biosynthetic features or improve its enzymatic activity. Importantly, the mutations C1229Y and F1745C, which lie in the sucrase domains of SI, prevented its targeting to the cell's apical membrane but did not affect protein folding or isomaltase activity. Compound heterozygosity is a novel pathogenic mechanism of congenital SI deficiency. The effects of mutations in the sucrase domain of SIC1229Y and SIF1745C indicate the importance of a direct interaction between isomaltase and sucrose and the role of sucrose as an intermolecular chaperone in the intracellular transport of SI.

  17. Management of asymptomatic (occult) feline cardiomyopathy: Challenges and realities.

    PubMed

    Fox, Philip R; Schober, Karsten A

    2015-12-01

    Cardiomyopathy distinguishes a heterogeneous group of myocardial disorders that represent the most prevalent cause of feline heart disease. Etiology is uncertain and the natural history is presently unresolved. Hypertrophic cardiomyopathy is the most common of these conditions, and while the majority of affected cats are asymptomatic, a proportion is at risk to develop serious morbidities--the most devastating of which include congestive heart failure, arterial thromboembolism, and cardiac death. Predicting when or whether an asymptomatic cat might develop morbidity is hindered by lack of evidence-based clinical trials. Superimposed, these issues create an irresolvable predicament that presently confounds medical decision-making. Review of current perspectives for managing asymptomatic (occult) feline cardiomyopathy. Complex pathophysiology and (likely) sarcomeric mutations give rise to heterogeneous cardiac phenotypes and variable clinical findings. Echocardiography remains the gold standard to clarify cardiac morphology. Frequently, however, detection of echocardiographic alterations--though often of unproven clinical significance--extrapolates by inference or implication a specter of disease, and with this, leads to a path of long-term treatment and testing. Presently, there is no proof that any particular therapy reduces morbidity or prolongs survival of cats affected with occult cardiomyopathy. Recently, however, evidence has accumulated to support the belief that certain prognostic indicators suggest risk for poor outcome. Accordingly, and in absence of evidence-based clinical trials, current practice has shifted to view therapy with the intent to target pathophysiology underlying documented or perceived clinical markers, whose presence portends high risk in certain patients. Affected animals and potentially siblings should be monitored using clinical testing that also takes into account age-related comorbidities. Asymptomatic (occult) feline cardiomyopathy

  18. Mutations affecting mitotic recombination frequency in haploids and diploids of the filamentous fungus Aspergillus nidulans.

    PubMed

    Parag, Y; Parag, G

    1975-01-01

    A haploid strain of Asp. nidulans with a chromosome segment in duplicate (one in normal position on chromosome I, one translocated to chromosome II) shows mitotic recombination, mostly by conversion, in adE in a frequency slightly higher than in the equivalent diploid. A method has been devised, using this duplication, for the selection of rec and uvs mutations. Six rec mutations have been found which decrease recombination frequency in the haploid. One mutation selected as UV sensitive showed a hundred fold increase in recombination frequency in the haploid (pop mutation) and probably the same in diploids. The increased frequency is both in gene conversion and in crossing over, and the exchanges appear in clusters of two or more. pop is allelic to uvsB (Jansen, 1970) which had been found to affect mitotic but not meiotic recombination. It is suggested that mutations of this type interfere with the control mechanism which determines that high recombination is confirmed to the meiotic nuclei and avoided in somatic nuclei.

  19. An MCM4 mutation detected in cancer cells affects MCM4/6/7 complex formation.

    PubMed

    Tatsumi, Ruriko; Ishimi, Yukio

    2017-03-01

    An MCM4 mutation detected in human cancer cells from endometrium was characterized. The mutation of G486D is located within MCM-box and the glycine at 486 in human MCM4 is conserved in Saccharomyces cerevisiae MCM4 and Sulfolobus solfataricus MCM. This MCM4 mutation affected human MCM4/6/7 complex formation, since the complex containing the mutant MCM4 protein is unstable and the mutant MCM4 protein is tend to be degraded. It is likely that the MCM4 mutation affects the interaction with MCM7 to destabilize the MCM4/6/7 complex. Cells with abnormal nuclear morphology were detected when the mutant MCM4 was expressed in HeLa cells, suggesting that DNA replication was perturbed in the presence of the mutant MCM4. Role of the conserved amino acid in MCM4 function is discussed. © The Authors 2016. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  20. Disease-associated mutations affect intracellular traffic and paracellular Mg2+ transport function of Claudin-16

    PubMed Central

    Kausalya, P. Jaya; Amasheh, Salah; Günzel, Dorothee; Wurps, Henrik; Müller, Dominik; Fromm, Michael; Hunziker, Walter

    2006-01-01

    Claudin-16 (Cldn16) is selectively expressed at tight junctions (TJs) of renal epithelial cells of the thick ascending limb of Henle’s loop, where it plays a central role in the reabsorption of divalent cations. Over 20 different mutations in the CLDN16 gene have been identified in patients with familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC), a disease of excessive renal Mg2+ and Ca2+ excretion. Here we show that disease-causing mutations can lead to the intracellular retention of Cldn16 or affect its capacity to facilitate paracellular Mg2+ transport. Nine of the 21 Cldn16 mutants we characterized were retained in the endoplasmic reticulum, where they underwent proteasomal degradation. Three mutants accumulated in the Golgi complex. Two mutants were efficiently delivered to lysosomes, one via clathrin-mediated endocytosis following transport to the cell surface and the other without appearing on the plasma membrane. The remaining 7 mutants localized to TJs, and 4 were found to be defective in paracellular Mg2+ transport. We demonstrate that pharmacological chaperones rescued surface expression of several retained Cldn16 mutants. We conclude that FHHNC can result from mutations in Cldn16 that affect intracellular trafficking or paracellular Mg2+ permeability. Knowledge of the molecular defects associated with disease-causing Cldn16 mutations may open new venues for therapeutic intervention. PMID:16528408

  1. Progranulin Mutations Affects Brain Oscillatory Activity in Fronto-Temporal Dementia

    PubMed Central

    Moretti, Davide V.; Benussi, Luisa; Fostinelli, Silvia; Ciani, Miriam; Binetti, Giuliano; Ghidoni, Roberta

    2016-01-01

    Background: Mild cognitive impairment (MCI) is a clinical stage indicating a prodromal phase of dementia. This practical concept could be used also for fronto-temporal dementia (FTD). Progranulin (PGRN) has been recently recognized as a useful diagnostic biomarker for fronto-temporal lobe degeneration (FTLD) due to GRN null mutations. Electroencephalography (EEG) is a reliable tool in detecting brain networks changes. The working hypothesis of the present study is that EEG oscillations could detect different modifications among FTLD stages (FTD-MCI versus overt FTD) as well as differences between GRN mutation carriers versus non-carriers in patients with overt FTD. Materials and Methods: EEG in all patients and PGRN dosage in patients with a clear FTD were detected. The cognitive state has been investigated through mini mental state examination (MMSE). Results: MCI-FTD showed a significant lower spectral power in both alpha and theta oscillations as compared to overt FTD. GRN mutations carriers affected by FTLD show an increase in high alpha and decrease in theta oscillations as compared to non-carriers. Conclusion: EEG frequency rhythms are sensible to different stage of FTD and could detect changes in brain oscillatory activity affected by GRN mutations. PMID:26973510

  2. Human junctophilin-2 undergoes a structural rearrangement upon binding PtdIns(3,4,5)P3 and the S101R mutation identified in hypertrophic cardiomyopathy obviates this response.

    PubMed

    Bennett, Hayley J; Davenport, John Bernard; Collins, Richard F; Trafford, Andrew W; Pinali, Christian; Kitmitto, Ashraf

    2013-12-01

    JP2 (junctophilin-2) is believed to hold the transverse tubular and jSR (junctional sarcoplasmic reticulum) membranes in a precise geometry that facilitates excitation-contraction coupling in cardiomyocytes. We have expressed and purified human JP2 and shown using electron microscopy that the protein forms elongated structures ~15 nm long and 2 nm wide. Employing lipid-binding assays and quartz crystal microbalance with dissipation we have determined that JP2 is selective for PS (phosphatidylserine), with a Kd value of ~0.5 μM, with the N-terminal domain mediating this interaction. JP2 also binds PtdIns(3,4,5)P3 at a different site than PS, resulting in the protein adopting a more flexible conformation; this interaction is modulated by both Ca(2+) and Mg(2+) ions. We show that the S101R mutation identified in patients with hypertrophic cardiomyopathy leads to modification of the protein secondary structure, forming a more flexible molecule with an increased affinity for PS, but does not undergo a structural transition in response to binding PtdIns(3,4,5)P3. In conclusion, the present study provides new insights into the structural and lipid-binding properties of JP2 and how the S101R mutation may have an effect upon the stability of the dyad organization with the potential to alter JP2-protein interactions regulating Ca(2+) cycling.

  3. [Identification of a novel GPR143 mutation in a Chinese family affected with X-linked ocular albinism].

    PubMed

    Zhao, Qi; Guan, Menglong; Wang, Ling; Liao, Yong; Li-Ling, Jesse; Wan, Huajing

    2017-04-10

    To detect mutation of GPR143 gene in a Chinese patient affected with ocular albinism. Peripheral blood samples were collected from the proband and his parents. The coding regions of the GPR143 gene were subjected to PCR amplification and Sanger sequencing. A previously unreported mutation (c.758T>A) was found in exon 6 of the GPR143 gene in the proband and his mother. The same mutation was not found in his father. As predicted, the mutation has resulted in a stop codon, causing premature termination of protein translation. A novel mutation of the GPR143 gene related to X-linked ocular albinism has been identified.

  4. Novel genes and mutations in patients affected by recurrent pregnancy loss.

    PubMed

    Quintero-Ronderos, Paula; Mercier, Eric; Fukuda, Michiko; González, Ronald; Suárez, Carlos Fernando; Patarroyo, Manuel Alfonso; Vaiman, Daniel; Gris, Jean-Christophe; Laissue, Paul

    2017-01-01

    Recurrent pregnancy loss is a frequently occurring human infertility-related disease affecting ~1% of women. It has been estimated that the cause remains unexplained in >50% cases which strongly suggests that genetic factors may contribute towards the phenotype. Concerning its molecular aetiology numerous studies have had limited success in identifying the disease's genetic causes. This might have been due to the fact that hundreds of genes are involved in each physiological step necessary for guaranteeing reproductive success in mammals. In such scenario, next generation sequencing provides a potentially interesting tool for research into recurrent pregnancy loss causative mutations. The present study involved whole-exome sequencing and an innovative bioinformatics analysis, for the first time, in 49 unrelated women affected by recurrent pregnancy loss. We identified 27 coding variants (22 genes) potentially related to the phenotype (41% of patients). The affected genes, which were enriched by potentially deleterious sequence variants, belonged to distinct molecular cascades playing key roles in implantation/pregnancy biology. Using a quantum chemical approach method we established that mutations in MMP-10 and FGA proteins led to substantial energetic modifications suggesting an impact on their functions and/or stability. The next generation sequencing and bioinformatics approaches presented here represent an efficient way to find mutations, having potentially moderate/strong functional effects, associated with recurrent pregnancy loss aetiology. We consider that some of these variants (and genes) represent probable future biomarkers for recurrent pregnancy loss.

  5. Combining mutations in HIV-1 reverse transcriptase with mutations in the HIV-1 polypurine tract affects RNase H cleavages involved in PPT utilization.

    PubMed

    McWilliams, Mary Jane; Julias, John G; Sarafianos, Stefan G; Alvord, W Gregory; Arnold, Eddy; Hughes, Stephen H

    2006-05-10

    The RNase H cleavages that generate and remove the polypurine tract (PPT) primer during retroviral reverse transcription must be specific to generate linear viral DNAs that are suitable substrates for the viral integrase. To determine if specific contacts between reverse transcriptase (RT) and the PPT are a critical factor in determining the cleavage specificity of RNase H, we made HIV-1 viruses containing mutations in RT and the PPT at the locations of critical contacts between the protein and the nucleic acid. The effects on titer and RNase H cleavage suggest that combining mutations in RT with mutations in the PPT affect the structure of the protein of the RT/nucleic acid complex in ways that affect the specificity and the rate of PPT cleavage. In contrast, the mutations in the PPT (alone) and RT (alone) affect the specificity of PPT cleavage but have much less effect on the overall rate of cleavage.

  6. Mutations in the putative calcium-binding domain of polyomavirus VP1 affect capsid assembly

    NASA Technical Reports Server (NTRS)

    Haynes, J. I. 2nd; Chang, D.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Calcium ions appear to play a major role in maintaining the structural integrity of the polyomavirus and are likely involved in the processes of viral uncoating and assembly. Previous studies demonstrated that a VP1 fragment extending from Pro-232 to Asp-364 has calcium-binding capabilities. This fragment contains an amino acid stretch from Asp-266 to Glu-277 which is quite similar in sequence to the amino acids that make up the calcium-binding EF hand structures found in many proteins. To assess the contribution of this domain to polyomavirus structural integrity, the effects of mutations in this region were examined by transfecting mutated viral DNA into susceptible cells. Immunofluorescence studies indicated that although viral protein synthesis occurred normally, infective viral progeny were not produced in cells transfected with polyomavirus genomes encoding either a VP1 molecule lacking amino acids Thr-262 through Gly-276 or a VP1 molecule containing a mutation of Asp-266 to Ala. VP1 molecules containing the deletion mutation were unable to bind 45Ca in an in vitro assay. Upon expression in Escherichia coli and purification by immunoaffinity chromatography, wild-type VP1 was isolated as pentameric, capsomere-like structures which could be induced to form capsid-like structures upon addition of CaCl2, consistent with previous studies. However, although VP1 containing the point mutation was isolated as pentamers which were indistinguishable from wild-type VP1 pentamers, addition of CaCl2 did not result in their assembly into capsid-like structures. Immunogold labeling and electron microscopy studies of transfected mammalian cells provided in vivo evidence that a mutation in this region affects the process of viral assembly.

  7. Mutations in the human adenosine deaminase gene that affect protein structure and RNA splicing

    SciTech Connect

    Akeson, A.L.; Wiginton, D.A.; States, C.J.; Perme, C.M.; Dusing, M.R.; Hutton, J.J.

    1987-08-01

    Adenosine deaminase deficiency is one cause of the genetic disease severe combined immunodeficiency. To identify mutations responsible for ADA deficiency, the authors synthesized cDNAs to ADA mRNAs from two cell lines, GM2756 and GM2825A, derived from ADA-deficient immunodeficient patients. Sequence analysis of GM2756 cDNA clones revealed a different point mutation in each allele that causes amino acid changes of alanine to valine and arginine to histidine. One allele of GM2825A also has a point mutation that causes an alanine to valine substitution. The other allele of GM2825A was found to produce an mRNA in which exon 4 had been spliced out but had no other detrimental mutations. S1 nuclease mapping of GM2825A mRNA showed equal abundance of the full-length ADA mRNA and the ADA mRNA that was missing exon 4. Several of the ADA cDNA clones extended 5' of the major initiation start site, indicating multiple start sites for ADA transcription. The point mutations in GM2756 and GM2825A and the absence of exon 4 in GM2825A appear to be directly responsible for the ADA deficiency. Comparison of a number of normal and mutant ADA cDNA sequences showed a number of changes in the third base of codons. These change do not affect the amino acid sequence. Analyses of ADA cDNAs from different cell lines detected aberrant RNA species that either included intron 7 or excluded exon 7. Their presence is a result of aberrant splicing of pre-mRNAs and is not related to mutations that cause ADA deficiency.

  8. Mutations in the putative calcium-binding domain of polyomavirus VP1 affect capsid assembly

    NASA Technical Reports Server (NTRS)

    Haynes, J. I. 2nd; Chang, D.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Calcium ions appear to play a major role in maintaining the structural integrity of the polyomavirus and are likely involved in the processes of viral uncoating and assembly. Previous studies demonstrated that a VP1 fragment extending from Pro-232 to Asp-364 has calcium-binding capabilities. This fragment contains an amino acid stretch from Asp-266 to Glu-277 which is quite similar in sequence to the amino acids that make up the calcium-binding EF hand structures found in many proteins. To assess the contribution of this domain to polyomavirus structural integrity, the effects of mutations in this region were examined by transfecting mutated viral DNA into susceptible cells. Immunofluorescence studies indicated that although viral protein synthesis occurred normally, infective viral progeny were not produced in cells transfected with polyomavirus genomes encoding either a VP1 molecule lacking amino acids Thr-262 through Gly-276 or a VP1 molecule containing a mutation of Asp-266 to Ala. VP1 molecules containing the deletion mutation were unable to bind 45Ca in an in vitro assay. Upon expression in Escherichia coli and purification by immunoaffinity chromatography, wild-type VP1 was isolated as pentameric, capsomere-like structures which could be induced to form capsid-like structures upon addition of CaCl2, consistent with previous studies. However, although VP1 containing the point mutation was isolated as pentamers which were indistinguishable from wild-type VP1 pentamers, addition of CaCl2 did not result in their assembly into capsid-like structures. Immunogold labeling and electron microscopy studies of transfected mammalian cells provided in vivo evidence that a mutation in this region affects the process of viral assembly.

  9. GENETIC MUTATIONS AFFECTING THE FIRST LINE ERADICATION THERAPY OF Helicobacter pylori-INFECTED EGYPTIAN PATIENTS

    PubMed Central

    RAMZY, Iman; ELGAREM, Hassan; HAMZA, Iman; GHAITH, Doaa; ELBAZ, Tamer; ELHOSARY, Waleed; MOSTAFA, Gehan; ELZAHRY, Mohammad A. Mohey Eldin

    2016-01-01

    SUMMARY Introduction: Several genetic mutations affect the first-line triple therapy for Helicobacter pylori. We aimed to study the most common genetic mutations affecting the metronidazole and clarithromycin therapy for H. pylori-infected Egyptian patients. Patients and Methods: In our study, we included 100 successive dyspeptic patients scheduled for diagnosis through upper gastroscopy at Cairo's University Hospital, Egypt. Gastric biopsies were tested for the presence of H. pylori by detection of the 16S rRNA gene. Positive biopsies were further studied for the presence of the rdxA gene deletion by Polymerase Chain Reaction (PCR), while clarithromycin resistance was investigated by the presence of nucleotide substitutions within H. pylori 23S rRNA V domain using MboII and BsaI to carry out a Restricted Fragment Length Polymorphism (RFLP) assay. Results: Among 70 H. pylori positive biopsies, the rdxA gene deletion was detected in 44/70 (62.9%) samples, while predominance of the A2142G mutations within the H. pylori 23S rRNA V domain was evidenced in 39/70 (55.7%) of the positive H. pylori cases. No statistically significant difference was found between the presence of gene mutations and different factors such as patients 'age, gender, geographic distribution, symptoms and endoscopic findings. Conclusion: Infection with mutated H. pylori strains is considerably high, a finding that imposes care in the use of the triple therapy to treat H. pylori in Egypt, since the guidelines recommend to abandon the standard triple therapy when the primary clarithromycin resistance rate is over 20%1. PMID:27982354

  10. Distant and new mutations in CTX-M-1 beta-lactamase affect cefotaxime hydrolysis.

    PubMed

    Pérez-Llarena, Francisco José; Kerff, Frédéric; Abián, Olga; Mallo, Susana; Fernández, María Carmen; Galleni, Moreno; Sancho, Javier; Bou, Germán

    2011-09-01

    The CTX-M β-lactamases are an increasingly prevalent group of extended-spectrum β-lactamases (ESBL). Point mutations in CTX-M β-lactamases are considered critical for enhanced hydrolysis of cefotaxime. In order to clarify the structural determinants of the activity against cefotaxime in CTX-M β-lactamases, screening for random mutations was carried out to search for decreased activity against cefotaxime, with the CTX-M-1 gene as a model. Thirteen single mutants with a considerable reduction in cefotaxime MICs were selected for biochemical and stability studies. The 13 mutated genes of the CTX-M-1 β-lactamase were expressed, and the proteins were purified for kinetic studies against cephalothin and cefotaxime (as the main antibiotics). Some of the positions, such as Val103Asp, Asn104Asp, Asn106Lys, and Pro107Ser, are located in the (103)VNYN(106) loop, which had been described as important in cefotaxime hydrolysis, although this has not been experimentally confirmed. There are four mutations located close to catalytic residues-Thr71Ile, Met135Ile, Arg164His, and Asn244Asp-that may affect the positioning of these residues. We show here that some distant mutations, such as Ala219Val, are critical for cefotaxime hydrolysis and highlight the role of this loop at the top of the active site. Other distant substitutions, such as Val80Ala, Arg191, Ala247Ser, and Val260Leu, are in hydrophobic cores and may affect the dynamics and flexibility of the enzyme. We describe here, in conclusion, new residues involved in cefotaxime hydrolysis in CTX-M β-lactamases, five of which are in positions distant from the catalytic center.

  11. Distant and New Mutations in CTX-M-1 β-Lactamase Affect Cefotaxime Hydrolysis▿

    PubMed Central

    Pérez-Llarena, Francisco José; Kerff, Frédéric; Abián, Olga; Mallo, Susana; Fernández, María Carmen; Galleni, Moreno; Sancho, Javier; Bou, Germán

    2011-01-01

    The CTX-M β-lactamases are an increasingly prevalent group of extended-spectrum β-lactamases (ESBL). Point mutations in CTX-M β-lactamases are considered critical for enhanced hydrolysis of cefotaxime. In order to clarify the structural determinants of the activity against cefotaxime in CTX-M β-lactamases, screening for random mutations was carried out to search for decreased activity against cefotaxime, with the CTX-M-1 gene as a model. Thirteen single mutants with a considerable reduction in cefotaxime MICs were selected for biochemical and stability studies. The 13 mutated genes of the CTX-M-1 β-lactamase were expressed, and the proteins were purified for kinetic studies against cephalothin and cefotaxime (as the main antibiotics). Some of the positions, such as Val103Asp, Asn104Asp, Asn106Lys, and Pro107Ser, are located in the 103VNYN106 loop, which had been described as important in cefotaxime hydrolysis, although this has not been experimentally confirmed. There are four mutations located close to catalytic residues—Thr71Ile, Met135Ile, Arg164His, and Asn244Asp—that may affect the positioning of these residues. We show here that some distant mutations, such as Ala219Val, are critical for cefotaxime hydrolysis and highlight the role of this loop at the top of the active site. Other distant substitutions, such as Val80Ala, Arg191, Ala247Ser, and Val260Leu, are in hydrophobic cores and may affect the dynamics and flexibility of the enzyme. We describe here, in conclusion, new residues involved in cefotaxime hydrolysis in CTX-M β-lactamases, five of which are in positions distant from the catalytic center. PMID:21730121

  12. Ventricular hypertrophy in cardiomyopathy.

    PubMed

    Oakley, C

    1971-01-01

    Semantic difficulties arise when hypertrophic obstructive cardiomyopathy is seen without obstruction and with congestive failure, and also when congestive cardiomyopathy is seen with gross hypertrophy but without heart failure. Retention of a small left ventricular cavity and a normal ejection fraction characterizes hypertrophic cardiomyopathy at all stages of the disorder. Congestive cardiomyopathy is recognized by the presence of a dilated left ventricular cavity and reduced ejection fraction regardless of the amount of hypertrophy and the presence or not of heart failure. Longevity in congestive cardiomyopathy seems to be promoted when hypertrophy is great relative to the amount of pump failure as measured by increase in cavity size. Conversely, death in hypertrophic cardiomyopathy is most likely when hypertrophy is greatest at a time when outflow tract obstruction has been replaced by inflow restriction caused by diminishing ventricular distensibility. Hypertrophy is thus beneficial and compensatory in congestive cardiomyopathy, whereas it may be the primary disorder and eventual cause of death in hypertrophic cardiomyopathy. Reasons are given for believing that hypertension may have been the original cause of left ventricular dilatation in some case of congestive cardiomyopathy in which loss of stroke output thenceforward is followed by normotension. Development of severe hypertension in these patients after recovery from a prolonged period of left ventricular failure with normotension lends weight to this hypothesis. No fault has been found in the large or small coronary arteries in either hypertrophic cardiomyopathy or congestive cardiomyopathy when they have been examined in life by selective coronary angiography, or by histological methods in biopsy or post-mortem material. Coronary blood supply may be a limiting factor in the compensatory hypertrophy of congestive cardiomyopathy, and the ability to hypertrophy may explain the better prognosis of some

  13. Human viral cardiomyopathy.

    PubMed

    Maisch, Bernhard; Ristic, Arsen D; Portig, Irene; Pankuweit, Sabine

    2003-01-01

    Viral infection of the heart is relatively common, usually asymptomatic and has a spontaneous and complete resolution. It can, however, in rare cases, lead to substantial cardiac damage, development of viral cardiomyopathy and congestive heart failure. Viral cardiomyopathy is defined as viral persistence in a dilated heart. It may be accompanied by myocardial inflammation and then termed inflammatory viral cardiomyopathy (or viral myocarditis with cardiomegaly). If no inflammation is observed in the biopsy of a dilated heart (<14 lymphocytes and macrophages/mm ) the term viral cardiomyopathy or viral persistence in dilated cardiomyopathy should be applied. The diagnosis of myocarditis and viral cardiomyopathy can be made only by endomyocardial biopsy, implementing the WHO/WHF criteria, and PCR techniques for identification of viral genome. The most frequent cardiotropic viruses detected by endomyocardial biopsy are Parvo B19, enteroviruses, adenoviruses, cytomegalovirus, and less frequently Epstein-Barr virus, and influenza virus.

  14. Peripartum Cardiomyopathy Presenting as Bradycardia

    PubMed Central

    Rose, Carl H.; Tweet, Marysia S.; Hayes, Sharonne N.; Best, Patricia J. M.; Blauwet, Lori A.

    2017-01-01

    Peripartum cardiomyopathy (PPCM) is a disease that typically affects young otherwise healthy women. As PPCM is associated with significant mortality, timely diagnosis is necessary to ensure appropriate care. To our knowledge, this represents the first reported case of PPCM presenting as symptomatic bradycardia. We describe the patient's clinical presentation and relevant findings and review the potential etiology and ramifications of bradycardia in patients with PPCM. PMID:28255481

  15. Mendelian and non-mendelian mutations affecting surface antigen expression in Paramecium tetraurelia

    SciTech Connect

    Epstein, L.M.; Forney, J.D.

    1984-08-01

    A screening procedure was devised for the isolation of X-ray-induced mutations affecting the expression of the A immobilization antigen (i-antigen) in Paramecium tetraurelia. Two of the mutations isolated by this procedure proved to be in modifier genes. The two genes are unlinked to each other and unlinked to the structural A i-antigen gene. These are the first modifier genes identified in a Paramecium sp. that affect surface antigen expression. Another mutation was found to be a deletion of sequences just downstream from the A i-antigen gene. In cells carrying this mutation, the A i-antigen gene lies in close proximity to the end of a macronuclear chromosome. The expression of the A i-antigen is not affected in these cells, demonstrating that downstream sequences are not important for the regulation and expression of the A i-antigen gene. A stable cell line was also recovered which shows non-Mendelian inheritance of a macronuclear deletion of the A i-antigen gene. This mutant does not contain the gene in its macronucleus, but contains a complete copy of the gene in its micronucleus. In the cytoplasm of wild-type animals, the micronuclear gene is included in the developing macronucleus; in the cytoplasm of the mutant, the incorporation of the A i-antigen gene into the macronucleus is inhibited. This is the first evidence that a mechanism is available in ciliates to control the expression of a gene by regulating its incorporation into developing macronuclei.

  16. Excess positional mutual information predicts both local and allosteric mutations affecting beta lactamase drug resistance.

    PubMed

    Cortina, George A; Kasson, Peter M

    2016-11-15

    Bacterial resistance to antibiotics, particularly plasmid-encoded resistance to beta lactam drugs, poses an increasing threat to human health. Point mutations to beta-lactamase enzymes can greatly alter the level of resistance conferred, but predicting the effects of such mutations has been challenging due to the large combinatorial space involved and the subtle relationships of distant residues to catalytic function. Therefore we desire an information-theoretic metric to sensitively and robustly detect both local and distant residues that affect substrate conformation and catalytic activity. Here, we report the use of positional mutual information in multiple microsecond-length molecular dynamics (MD) simulations to predict residues linked to catalytic activity of the CTX-M9 beta lactamase. We find that motions of the bound drug are relatively isolated from motions of the protein as a whole, which we interpret in the context of prior theories of catalysis. In order to robustly identify residues that are weakly coupled to drug motions but nonetheless affect catalysis, we utilize an excess mutual information metric. We predict 31 such residues for the cephalosporin antibiotic cefotaxime. Nine of these have previously been tested experimentally, and all decrease both enzyme rate constants and empirical drug resistance. We prospectively validate our method by testing eight high-scoring mutations and eight low-scoring controls in bacteria. Six of eight predicted mutations decrease cefotaxime resistance greater than 2-fold, while only one control shows such an effect. The ability to prospectively predict new variants affecting bacterial drug resistance is of great interest to clinical and epidemiological surveillance. Excess mutual information code is available at https://github.com/kassonlab/positionalmi CONTACT: kasson@virginia.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Adenosine A2(A) receptor gene polymorphism (1976C>T) affects coronary flow reserve response during vasodilator stress testing in patients with non ischemic-dilated cardiomyopathy.

    PubMed

    Andreassi, Maria Grazia; Laghi Pasini, Franco; Picano, Eugenio; Capecchi, Pier Leopoldo; Pompella, Gerarda; Foffa, Ilenia; Borghini, Andrea; Sicari, Rosa

    2011-08-01

    Patients with non ischemic-dilated cardiomyopathy (DCM) are characterized by an activation of the adenosinergic system and reduced coronary flow reserve (CFR) evaluated by transthoracic Doppler echocardiography during vasodilator adenosinergic stress (dipyridamole administration). The aim of this study was to assess whether genetic polymorphisms (263C>T and 1976C>T) of the A2(A) receptor gene affect CFR response in patients with DCM. We enrolled a group of 80 patients with DCM (55 male; age, 62±10.3 years) and 162 healthy volunteers (55 male; age, 45.1±9.5 years). Doppler-derived CFR (high-dose dipyridamole coronary diastolic peak flow velocity to resting coronary peak flow velocity ratio) of distal left anterior descending artery was determined in DCM. A2(A) receptor genotyping was determined in all patients by polymerase chain reaction-restriction fragment length polymorphism analysis. The expression of A2(A) protein and mRNA was also assessed in healthy controls. The genotype distribution of the 263C>T (P=0.5) and 1976C>T (P=0.8) polymorphisms was not significantly different between patients and controls. Patients with 1976TT genotype had significantly lower CFR value than 1976CC patients (2.3±0.7, 2.0±0.5 and 1.9±0.4, P<0.05 for CC, CT and TT genotypes, respectively). Controls who were heterozygous (P=0.02) or homozygous (P=0.001) for the T1976 allele showed a significant increase in A2(A) receptor protein. These data demonstrate that A2(A) 1976C>T polymorphism is associated with a blunted coronary vasodilatory response in patients with DCM, and support a direct consequences of this single nucleotide polymorphism for protein expression. Additional studies are needed to better define the functional role of this genetic variant as well as to clarify the potential clinical impact of genetics during pharmacological stress cardiac imaging.

  18. Mutations in the West Nile prM protein affect VLP and virion secretion in vitro.

    PubMed

    Calvert, Amanda E; Huang, Claire Y-H; Blair, Carol D; Roehrig, John T

    2012-11-10

    Mutation of the West Nile virus-like particle (WN VLP) prM protein (T20D, K31A, K31V, or K31T) results in undetectable VLP secretion from transformed COS-1 cells. K31 mutants formed intracellular prM-E heterodimers; however these proteins remained in the ER and ER-Golgi intermediary compartments of transfected cells. The T20D mutation affected glycosylation, heterodimer formation, and WN VLP secretion. When infectious viruses bearing the same mutations were used to infect COS-1 cells, K31 mutant viruses exhibited delayed growth and reduced infectivity compared to WT virus. Epitope maps of WN VLP and WNV prM were also different. These results suggest that while mutations in the prM protein can reduce or eliminate secretion of WN VLPs, they have less effect on virus. This difference may be due to the quantity of prM in WN VLPs compared to WNV or to differences in maturation, structure, and symmetry of these particles.

  19. Dynamics of a recurrent Buchnera mutation that affects thermal tolerance of pea aphid hosts.

    PubMed

    Burke, Gaelen R; McLaughlin, Heather J; Simon, Jean-Christophe; Moran, Nancy A

    2010-09-01

    Mutations in maternally transmitted symbionts can affect host fitness. In this study we investigate a mutation in an obligate bacterial symbiont (Buchnera), which has dramatic effects on the heat tolerance of pea aphid hosts (Acyrthosiphon pisum). The heat-sensitive allele arises through a single base deletion in a homopolymer within the promoter of ibpA, which encodes a universal small heat-shock protein. In laboratory cultures reared under cool conditions (20°), the rate of fixation (1.4 × 10(-3) substitutions per Buchnera replication) is much higher than the previously estimated mutation rate for single base deletions in homopolymers in the Buchnera genome, implying a strong selective benefit. This mutation recurs in natural populations, but seldom reaches high frequencies, implying that it is only rarely favored by selection. Another potential source of physiological stress in pea aphids is infection by other microorganisms, including facultative bacterial symbionts, which occur in a majority of pea aphids in field populations. Frequency of the heat-sensitive Buchnera allele is negatively correlated with presence of facultative symbionts in both laboratory colonies and field populations, suggesting that these infections impose stress that is ameliorated by ibpA expression. This single base polymorphism in Buchnera has the potential to allow aphid populations to adapt quickly to prevailing conditions.

  20. Dynamics of a Recurrent Buchnera Mutation That Affects Thermal Tolerance of Pea Aphid Hosts

    PubMed Central

    Burke, Gaelen R.; McLaughlin, Heather J.; Simon, Jean-Christophe; Moran, Nancy A.

    2010-01-01

    Mutations in maternally transmitted symbionts can affect host fitness. In this study we investigate a mutation in an obligate bacterial symbiont (Buchnera), which has dramatic effects on the heat tolerance of pea aphid hosts (Acyrthosiphon pisum). The heat-sensitive allele arises through a single base deletion in a homopolymer within the promoter of ibpA, which encodes a universal small heat-shock protein. In laboratory cultures reared under cool conditions (20°), the rate of fixation (1.4 × 10−3 substitutions per Buchnera replication) is much higher than the previously estimated mutation rate for single base deletions in homopolymers in the Buchnera genome, implying a strong selective benefit. This mutation recurs in natural populations, but seldom reaches high frequencies, implying that it is only rarely favored by selection. Another potential source of physiological stress in pea aphids is infection by other microorganisms, including facultative bacterial symbionts, which occur in a majority of pea aphids in field populations. Frequency of the heat-sensitive Buchnera allele is negatively correlated with presence of facultative symbionts in both laboratory colonies and field populations, suggesting that these infections impose stress that is ameliorated by ibpA expression. This single base polymorphism in Buchnera has the potential to allow aphid populations to adapt quickly to prevailing conditions. PMID:20610410

  1. [Desmin-related cardiomyopathy].

    PubMed

    Rybakova, M G; Kuznetsova, I A; Gudkova, A Ia; Kostareva, A A; Semernin, E N

    2011-01-01

    The observation of 26 years old patient with desminopathy declared itself by hypertrophied cardiomyopathy with its transformation into restrictive phenotype is presented. The features of pathologic course at the patient were a dominance and diversity of cardiac manifestations. Endomyocardiac biopsy allowed suspecting the desminopathy confirmed by genetic analysis. Morphological features of desmin-related cardiomyopathy were irregular desmin conglomerates mainly located under sarcolemma and an indirect histological signs of idiopathic cardiomyopathy as well nuclear polymorphism, perinuclear "nimbus", chaotic located myofibrils.

  2. A Premature Stop Codon in MYO18B is Associated with Severe Nemaline Myopathy with Cardiomyopathy.

    PubMed

    Malfatti, Edoardo; Böhm, Johann; Lacène, Emmanuelle; Beuvin, Maud; Romero, Norma B; Laporte, Jocelyn

    2015-09-02

    Nemaline myopathies (NM) are rare and severe muscle diseases characterized by the presence of nemaline bodies (rods) in muscle fibers. Although ten genes have been implicated in the etiology of NM, an important number of patients remain without a molecular diagnosis. Here we describe the clinical and histopathological features of a sporadic case presenting with severe NM and cardiomyopathy. Using exome sequencing, we aimed to identify the causative gene. We identified a homozygous nonsense mutation in the last exon of MYO18B, leading to a truncated protein lacking the most C-terminal part. MYO18B codes for an unconventional myosin protein and it is mainly expressed in skeletal and cardiac muscles, two tissues severely affected in the patient. We showed that the mutation does not impact on mRNA stability. Immunostaining and Western blot confirmed the absence of the full-length protein. We propose MYO18B as a novel gene associated with nemaline myopathy and cardiomyopathy.

  3. Mutations in the clk-1 gene of Caenorhabditis elegans affect developmental and behavioral timing

    SciTech Connect

    Wong, A.; Boutis, P.; Hekimi, S.

    1995-03-01

    We have identified three allelic, maternal-effect mutations that affect developmental and behavioral timing in Caenorhabditis elegans. They result in a mean lengthening of embryonic and postembryonic development, the cell cycle period and life span, as well as the periods of the defecation, swimming and pumping cycles. These mutants also display a number of additional phenotypes related to timing. For example, the variability in the length of embryonic development is several times larger in the mutants than in the wild type, resulting in the occasional production of mutant embryos developing more rapidly than the most rapidly developing wild-type embryos. In addition, the duration of embryonic development of the mutants, but not of the wild type, depends on the temperature at which their parents were raised. Finally, individual variations in the severity of distinct mutant phenotypes are correlated in a counterintuitive way. For example, the animals with the shortest embryonic development have the longest defecation cycle and those with the longest embryonic development have the shortest defecation cycle. Most of the features affected by these mutations are believed to be controlled by biological clocks, and we therefore call the gene defined by these mutations clk-1, for {open_quotes}abnormal function of biological clocks.{close_quotes} 52 refs., 5 figs., 4 tabs.

  4. The genetic basis of hypertrophic cardiomyopathy in cats and humans.

    PubMed

    Kittleson, Mark D; Meurs, Kathryn M; Harris, Samantha P

    2015-12-01

    Mutations in genes that encode for muscle sarcomeric proteins have been identified in humans and two breeds of domestic cats with hypertrophic cardiomyopathy (HCM). This article reviews the history, genetics, and pathogenesis of HCM in the two species in order to give veterinarians a perspective on the genetics of HCM. Hypertrophic cardiomyopathy in people is a genetic disease that has been called a disease of the sarcomere because the preponderance of mutations identified that cause HCM are in genes that encode for sarcomeric proteins (Maron and Maron, 2013). Sarcomeres are the basic contractile units of muscle and thus sarcomeric proteins are responsible for the strength, speed, and extent of muscle contraction. In people with HCM, the two most common genes affected by HCM mutations are the myosin heavy chain gene (MYH7), the gene that encodes for the motor protein β-myosin heavy chain (the sarcomeric protein that splits ATP to generate force), and the cardiac myosin binding protein-C gene (MYBPC3), a gene that encodes for the closely related structural and regulatory protein, cardiac myosin binding protein-C (cMyBP-C). To date, the two mutations linked to HCM in domestic cats (one each in Maine Coon and Ragdoll breeds) also occur in MYBPC3 (Meurs et al., 2005, 2007). This is a review of the genetics of HCM in both humans and domestic cats that focuses on the aspects of human genetics that are germane to veterinarians and on all aspects of feline HCM genetics. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Shared Genetic Predisposition in Peripartum and Dilated Cardiomyopathies.

    PubMed

    Ware, James S; Li, Jian; Mazaika, Erica; Yasso, Christopher M; DeSouza, Tiffany; Cappola, Thomas P; Tsai, Emily J; Hilfiker-Kleiner, Denise; Kamiya, Chizuko A; Mazzarotto, Francesco; Cook, Stuart A; Halder, Indrani; Prasad, Sanjay K; Pisarcik, Jessica; Hanley-Yanez, Karen; Alharethi, Rami; Damp, Julie; Hsich, Eileen; Elkayam, Uri; Sheppard, Richard; Kealey, Angela; Alexis, Jeffrey; Ramani, Gautam; Safirstein, Jordan; Boehmer, John; Pauly, Daniel F; Wittstein, Ilan S; Thohan, Vinay; Zucker, Mark J; Liu, Peter; Gorcsan, John; McNamara, Dennis M; Seidman, Christine E; Seidman, Jonathan G; Arany, Zoltan

    2016-01-21

    Background Peripartum cardiomyopathy shares some clinical features with idiopathic dilated cardiomyopathy, a disorder caused by mutations in more than 40 genes, including TTN, which encodes the sarcomere protein titin. Methods In 172 women with peripartum cardiomyopathy, we sequenced 43 genes with variants that have been associated with dilated cardiomyopathy. We compared the prevalence of different variant types (nonsense, frameshift, and splicing) in these women with the prevalence of such variants in persons with dilated cardiomyopathy and with population controls. Results We identified 26 distinct, rare truncating variants in eight genes among women with peripartum cardiomyopathy. The prevalence of truncating variants (26 in 172 [15%]) was significantly higher than that in a reference population of 60,706 persons (4.7%, P=1.3×10(-7)) but was similar to that in a cohort of patients with dilated cardiomyopathy (55 of 332 patients [17%], P=0.81). Two thirds of identified truncating variants were in TTN, as seen in 10% of the patients and in 1.4% of the reference population (P=2.7×10(-10)); almost all TTN variants were located in the titin A-band. Seven of the TTN truncating variants were previously reported in patients with idiopathic dilated cardiomyopathy. In a clinically well-characterized cohort of 83 women with peripartum cardiomyopathy, the presence of TTN truncating variants was significantly correlated with a lower ejection fraction at 1-year follow-up (P=0.005). Conclusions The distribution of truncating variants in a large series of women with peripartum cardiomyopathy was remarkably similar to that found in patients with idiopathic dilated cardiomyopathy. TTN truncating variants were the most prevalent genetic predisposition in each disorder.

  6. Shared Genetic Predisposition in Peripartum and Dilated Cardiomyopathies

    PubMed Central

    Ware, James S.; Li, Jian; Mazaika, Erica; Yasso, Christopher M.; DeSouza, Tiffany; Cappola, Thomas P.; Tsai, Emily J.; Hilfiker-Kleiner, Denise; Kamiya, Chizuko A.; Mazzarotto, Francesco; Cook, Stuart A.; Halder, Indrani; Prasad, Sanjay K.; Pisarcik, Jessica; Hanley-Yanez, Karen; Alharethi, Rami; Damp, Julie; Hsich, Eileen; Elkayam, Uri; Sheppard, Richard; Kealey, Angela; Alexis, Jeffrey; Ramani, Gautam; Safirstein, Jordan; Boehmer, John; Pauly, Daniel F.; Wittstein, Ilan S.; Thohan, Vinay; Zucker, Mark J.; Liu, Peter; Gorcsan, John; McNamara, Dennis M.; Seidman, Christine E.; Seidman, Jonathan G.; Arany, Zoltan

    2016-01-01

    BACKGROUND Peripartum cardiomyopathy shares some clinical features with idiopathic dilated cardiomyopathy, a disorder caused by mutations in more than 40 genes, including TTN, which encodes the sarcomere protein titin. METHODS In 172 women with peripartum cardiomyopathy, we sequenced 43 genes with variants that have been associated with dilated cardiomyopathy. We compared the prevalence of different variant types (nonsense, frameshift, and splicing) in these women with the prevalence of such variants in persons with dilated cardiomyopathy and with population controls. RESULTS We identified 26 distinct, rare truncating variants in eight genes among women with peripartum cardiomyopathy. The prevalence of truncating variants (26 in 172 [15%]) was significantly higher than that in a reference population of 60,706 persons (4.7%, P = 1.3×10−7) but was similar to that in a cohort of patients with dilated cardiomyopathy (55 of 332 patients [17%], P = 0.81). Two thirds of identified truncating variants were in TTN, as seen in 10% of the patients and in 1.4% of the reference population (P = 2.7×10−10); almost all TTN variants were located in the titin A-band. Seven of the TTN truncating variants were previously reported in patients with idiopathic dilated cardiomyopathy. In a clinically well-characterized cohort of 83 women with peripartum cardiomyopathy, the presence of TTN truncating variants was significantly correlated with a lower ejection fraction at 1-year follow-up (P = 0.005). CONCLUSIONS The distribution of truncating variants in a large series of women with peripartum cardiomyopathy was remarkably similar to that found in patients with idiopathic dilated cardiomyopathy. TTN truncating variants were the most prevalent genetic predisposition in each disorder. PMID:26735901

  7. Restrictive Cardiomyopathy

    MedlinePlus

    ... in a buildup of iron in the body. Sarcoidosis is the name of an inflammatory disease that ... and form larger lumps that attack other organs. Sarcoidosis often affects your skin, eyes, or liver, but ...

  8. Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation

    PubMed Central

    Svensson, Lena; Howarth, Kimberley; McDowall, Alison; Patzak, Irene; Evans, Rachel; Ussar, Siegfried; Moser, Markus; Metin, Ayse; Fried, Mike; Tomlinson, Ian; Hogg, Nancy

    2009-01-01

    Integrins are the major adhesion receptors of leukocytes and platelets. β1 and β2 integrin function on leukocytes is crucial for a successful immune response and the platelet integrin αIIbβ3 initiates the process of blood clotting through binding fibrinogen1-3. Integrins on circulating cells bind poorly to their ligands but become active after ‘inside-out’ signaling through other membrane receptors4,5. Subjects with leukocyte adhesion deficiency-1 (LAD-I) do not express β2 integrins because of mutations in the gene specifying the β2 subunit, and they suffer recurrent bacterial infections6,7. Mutations affecting αIIbβ3 integrin cause the bleeding disorder termed Glanzmann’s thrombasthenia3. Subjects with LAD-III show symptoms of both LAD-I and Glanzmann’s thrombasthenia. Their hematopoietically-derived cells express β1, β2 and β3 integrins, but defective inside-out signaling causes immune deficiency and bleeding problems8. The LAD-III lesion has been attributed to a C→A mutation in the gene encoding calcium and diacylglycerol guanine nucleotide exchange factor (CALDAGGEF1; official symbol RASGRP2) specifying the CALDAG-GEF1 protein9, but we show that this change is not responsible for the LAD-III disorder. Instead, we identify mutations in the KINDLIN3 (official symbol FERMT3) gene specifying the KINDLIN-3 protein as the cause of LAD-III in Maltese and Turkish subjects. Two independent mutations result in decreased KINDLIN3 messenger RNA levels and loss of protein expression. Notably, transfection of the subjects’ lymphocytes with KINDLIN3 complementary DNA but not CALDAGGEF1 cDNA reverses the LAD-III defect, restoring integrin-mediated adhesion and migration. PMID:19234463

  9. Familial cardiomyopathy in Norwegian Forest cats.

    PubMed

    März, Imke; Wilkie, Lois J; Harrington, Norelene; Payne, Jessie R; Muzzi, Ruthnea A L; Häggström, Jens; Smith, Ken; Luis Fuentes, Virginia

    2015-08-01

    Norwegian Forest cats (NFCs) are often listed as a breed predisposed to cardiomyopathy, but the characteristics of cardiomyopathy in this breed have not been described. The aim of this preliminary study was to report the features of NFC cardiomyopathy based on prospective echocardiographic screening of affected family groups; necropsy findings; and open-source breed screening databases. Prospective examination of 53 NFCs revealed no murmur or left ventricular (LV) outflow tract obstruction in any screened cat, though mild LV hypertrophy (defined as diastolic LV wall thickness ≥5.5mm) was present in 13/53 cats (25%). Gross pathology results and histopathological sections were analysed in eight NFCs, six of which had died of a cardiac cause. Myocyte hypertrophy, myofibre disarray and interstitial fibrosis typical of hypertrophic cardiomyopathy were present in 7/8 cats, but endomyocardial fibrosis suggestive of restrictive cardiomyopathy was also present in the same cats. Pedigree data analysis from 871 NFCs was supportive of a familial cardiomyopathy in this breed.

  10. Novel compound heterozygous mutations in CNGA1in a Chinese family affected with autosomal recessive retinitis pigmentosa by targeted sequencing.

    PubMed

    Wang, Min; Gan, Dekang; Huang, Xin; Xu, Gezhi

    2016-07-08

    About 37 genes have been reported to be involved in autosomal recessive retinitis pigmentosa, a hereditary retinal disease. However, causative genes remain unclear in a lot of cases. Two sibs of a Chinese family with ocular disease were diagnosed in Eye and ENT Hospital of Fudan University. Targeted sequencing performed on proband to screen pathogenic mutations. PCR combined Sanger sequencing then performed on eight family members including two affected and six unaffected individuals to determine whether mutations cosegregate with disease. Two affected members exhibited clinical features that fit the criteria of autosomal recessive retinitis pigmentosa. Two heterozygous mutations (NM000087, p.Y82X and p.L89fs) in CNGA1 were revealed on proband. Affected members were compound heterozygotes for the two mutations whereas unaffected members either had no mutation or were heterozygote carriers for only one of the two mutations. That is, these mutations cosegregate with autosomal recessive retinitis pigmentosa. Compound heterozygous mutations (NM000087, p.Y82X and p.L89fs) in exon 6 of CNGA1are pathogenic mutations in this Chinese family. Of which, p.Y82X is firstly reported in patient with autosomal recessive retinitis pigmentosa.

  11. Epilepsy due to PNPO mutations: genotype, environment and treatment affect presentation and outcome

    PubMed Central

    Mills, Philippa B.; Camuzeaux, Stephane S.M.; Footitt, Emma J.; Mills, Kevin A.; Gissen, Paul; Fisher, Laura; Das, Krishna B.; Varadkar, Sophia M.; Zuberi, Sameer; McWilliam, Robert; Stödberg, Tommy; Plecko, Barbara; Baumgartner, Matthias R.; Maier, Oliver; Calvert, Sophie; Riney, Kate; Wolf, Nicole I.; Livingston, John H.; Bala, Pronab; Morel, Chantal F.; Feillet, François; Raimondi, Francesco; Del Giudice, Ennio; Chong, W. Kling; Pitt, Matthew

    2014-01-01

    The first described patients with pyridox(am)ine 5’-phosphate oxidase deficiency all had neonatal onset seizures that did not respond to treatment with pyridoxine but responded to treatment with pyridoxal 5’-phosphate. Our data suggest, however, that the clinical spectrum of pyridox(am)ine 5’-phosphate oxidase deficiency is much broader than has been reported in the literature. Sequencing of the PNPO gene was undertaken for a cohort of 82 individuals who had shown a reduction in frequency and severity of seizures in response to pyridoxine or pyridoxal 5’-phosphate. Novel sequence changes were studied using a new cell-free expression system and a mass spectrometry-based assay for pyridoxamine phosphate oxidase. Three groups of patients with PNPO mutations that had reduced enzyme activity were identified: (i) patients with neonatal onset seizures responding to pyridoxal 5’-phosphate (n = 6); (ii) a patient with infantile spasms (onset 5 months) responsive to pyridoxal 5’-phosphate (n = 1); and (iii) patients with seizures starting under 3 months of age responding to pyridoxine (n = 8). Data suggest that certain genotypes (R225H/C and D33V) are more likely to result in seizures that to respond to treatment with pyridoxine. Other mutations seem to be associated with infertility, miscarriage and prematurity. However, the situation is clearly complex with the same combination of mutations being seen in patients who responded and did not respond to pyridoxine. It is possible that pyridoxine responsiveness in PNPO deficiency is affected by prematurity and age at the time of the therapeutic trial. Other additional factors that are likely to influence treatment response and outcome include riboflavin status and how well the foetus has been supplied with vitamin B6 by the mother. For some patients there was a worsening of symptoms on changing from pyridoxine to pyridoxal 5’-phosphate. Many of the mutations in PNPO affected residues involved in binding flavin

  12. Epilepsy due to PNPO mutations: genotype, environment and treatment affect presentation and outcome.

    PubMed

    Mills, Philippa B; Camuzeaux, Stephane S M; Footitt, Emma J; Mills, Kevin A; Gissen, Paul; Fisher, Laura; Das, Krishna B; Varadkar, Sophia M; Zuberi, Sameer; McWilliam, Robert; Stödberg, Tommy; Plecko, Barbara; Baumgartner, Matthias R; Maier, Oliver; Calvert, Sophie; Riney, Kate; Wolf, Nicole I; Livingston, John H; Bala, Pronab; Morel, Chantal F; Feillet, François; Raimondi, Francesco; Del Giudice, Ennio; Chong, W Kling; Pitt, Matthew; Clayton, Peter T

    2014-05-01

    The first described patients with pyridox(am)ine 5'-phosphate oxidase deficiency all had neonatal onset seizures that did not respond to treatment with pyridoxine but responded to treatment with pyridoxal 5'-phosphate. Our data suggest, however, that the clinical spectrum of pyridox(am)ine 5'-phosphate oxidase deficiency is much broader than has been reported in the literature. Sequencing of the PNPO gene was undertaken for a cohort of 82 individuals who had shown a reduction in frequency and severity of seizures in response to pyridoxine or pyridoxal 5'-phosphate. Novel sequence changes were studied using a new cell-free expression system and a mass spectrometry-based assay for pyridoxamine phosphate oxidase. Three groups of patients with PNPO mutations that had reduced enzyme activity were identified: (i) patients with neonatal onset seizures responding to pyridoxal 5'-phosphate (n = 6); (ii) a patient with infantile spasms (onset 5 months) responsive to pyridoxal 5'-phosphate (n = 1); and (iii) patients with seizures starting under 3 months of age responding to pyridoxine (n = 8). Data suggest that certain genotypes (R225H/C and D33V) are more likely to result in seizures that to respond to treatment with pyridoxine. Other mutations seem to be associated with infertility, miscarriage and prematurity. However, the situation is clearly complex with the same combination of mutations being seen in patients who responded and did not respond to pyridoxine. It is possible that pyridoxine responsiveness in PNPO deficiency is affected by prematurity and age at the time of the therapeutic trial. Other additional factors that are likely to influence treatment response and outcome include riboflavin status and how well the foetus has been supplied with vitamin B6 by the mother. For some patients there was a worsening of symptoms on changing from pyridoxine to pyridoxal 5'-phosphate. Many of the mutations in PNPO affected residues involved in binding flavin mononucleotide or

  13. Primary Carnitine Deficiency and Cardiomyopathy

    PubMed Central

    Fu, Lijun; Huang, Meirong

    2013-01-01

    Carnitine is essential for the transfer of long-chain fatty acids from the cytosol into mitochondria for subsequent β-oxidation. A lack of carnitine results in impaired energy production from long-chain fatty acids, especially during periods of fasting or stress. Primary carnitine deficiency (PCD) is an autosomal recessive disorder of mitochondrial β-oxidation resulting from defective carnitine transport and is one of the rare treatable etiologies of metabolic cardiomyopathies. Patients affected with the disease may present with acute metabolic decompensation during infancy or with severe cardiomyopathy in childhood. Early recognition of the disease and treatment with L-carnitine may be life-saving. In this review article, the pathophysiology, clinical presentation, diagnosis, treatment and prognosis of PCD are discussed, with a focus on cardiac involvements. PMID:24385988

  14. Arrhythmogenic right ventricular cardiomyopathy (ARVC): cardiovascular magnetic resonance update

    PubMed Central

    2014-01-01

    Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC) is one of the most arrhythmogenic forms of inherited cardiomyopathy and a frequent cause of sudden death in the young. Affected individuals typically present between the second and fourth decade of life with arrhythmias coming from the right ventricle. Pathogenic mutations in genes encoding the cardiac desmosome can be found in approximately 60% of index patients, leading to our current perception of ARVC as a desmosomal disease. Although ARVC is known to preferentially affect the right ventricle, early and/or predominant left ventricular involvement is increasingly recognized. Diagnosis is made by combining multiple sources of diagnostic information as prescribed by the “Task Force” criteria. Recent research suggests that electrical abnormalities precede structural changes in ARVC. Cardiovascular Magnetic Resonance (CMR) is an ideal technique in ARVC workup, as it provides comprehensive information on cardiac morphology, function, and tissue characterization in a single investigation. Prevention of sudden cardiac death using implantable cardioverter-defibrillators is the most important management consideration. This purpose of this paper is to provide an updated review of our understanding of the genetics, diagnosis, current state-of-the-art CMR acquisition and analysis, and management of patients with ARVC. PMID:25191878

  15. Risk of Cardiomyopathy in Younger Persons With a Family History of Death from Cardiomyopathy: A Nationwide Family Study in a Cohort of 3.9 Million Persons.

    PubMed

    Ranthe, Mattis F; Carstensen, Lisbeth; Øyen, Nina; Jensen, Morten K; Axelsson, Anna; Wohlfahrt, Jan; Melbye, Mads; Bundgaard, Henning; Boyd, Heather A

    2015-09-15

    Recommendations for presymptomatic screening of relatives of cardiomyopathy patients are based on findings from tertiary centers. Cardiomyopathy inheritance patterns are fairly well understood, but how cardiomyopathy in younger persons (<50 years) aggregates in families at the population level is unclear. In a nationwide cohort, we examined the risk of cardiomyopathy by family history of premature death (<60 years) from cardiomyopathy. By linking Danish national register data, we constructed a cohort of 3.9 million persons born from 1950 to 2008. We ascertained family history of premature (<60 years) death from cardiomyopathy or other conditions, and cohort members were followed from 1977 to 2008 for cardiomyopathy diagnosed at <50 years. We identified 3890 cardiomyopathies in 89 million person-years of follow-up. Using Poisson regression, we estimated incidence rate ratios for cardiomyopathy by family history of premature death. Premature cardiomyopathy deaths in first- and second-degree relatives were associated with 29- and 6-fold increases in the rate of cardiomyopathy, respectively. If the first-degree relative died aged <35 years, the rate of cardiomyopathy increased 100-fold; given ≥2 premature deaths in first-degree relatives, the rate increased more than 400-fold. In contrast, a family history of premature death from other cardiac or noncardiac conditions increased the rate of cardiomyopathy 3-fold at most. A family history of premature cardiomyopathy death was associated with an increase in risk of cardiomyopathy ranging from 6- to 400-fold, depending on age, kinship, gender and number of affected family members. Our general population-based results support recommendations for presymptomatic screening of relatives of cardiomyopathy patients. © 2015 American Heart Association, Inc.

  16. ramR mutations affecting fluoroquinolone susceptibility in epidemic multidrug-resistant Salmonella enterica serovar Kentucky ST198.

    PubMed

    Baucheron, Sylvie; Le Hello, Simon; Doublet, Benoît; Giraud, Etienne; Weill, François-Xavier; Cloeckaert, Axel

    2013-01-01

    A screening for non-target mutations affecting fluoroquinolone susceptibility was conducted in epidemic multidrug-resistant Salmonella enterica serovar Kentucky ST198. Among a panel of representative isolates (n = 27), covering the epidemic, only three showed distinct mutations in ramR resulting in enhanced expression of genes encoding the AcrAB-TolC efflux system and low increase in ciprofloxacin MIC. No mutations were detected in other regulatory regions of this efflux system. Ciprofloxacin resistance in serovar Kentucky ST198 is thus currently mainly due to multiple target gene mutations.

  17. ramR mutations affecting fluoroquinolone susceptibility in epidemic multidrug-resistant Salmonella enterica serovar Kentucky ST198

    PubMed Central

    Baucheron, Sylvie; Le Hello, Simon; Doublet, Benoît; Giraud, Etienne; Weill, François-Xavier; Cloeckaert, Axel

    2013-01-01

    A screening for non-target mutations affecting fluoroquinolone susceptibility was conducted in epidemic multidrug-resistant Salmonella enterica serovar Kentucky ST198. Among a panel of representative isolates (n = 27), covering the epidemic, only three showed distinct mutations in ramR resulting in enhanced expression of genes encoding the AcrAB-TolC efflux system and low increase in ciprofloxacin MIC. No mutations were detected in other regulatory regions of this efflux system. Ciprofloxacin resistance in serovar Kentucky ST198 is thus currently mainly due to multiple target gene mutations. PMID:23914184

  18. Drastic Ca{sup 2+} sensitization of myofilament associated with a small structural change in troponin I in inherited restrictive cardiomyopathy

    SciTech Connect

    Yumoto, Fumiaki; Lu, Q.-W.; Morimoto, Sachio . E-mail: morimoto@med.kyushu-u.ac.jp; Tanaka, Hiroyuki; Kono, Naoko; Nagata, Koji; Ojima, Takao; Takahashi-Yanaga, Fumi; Miwa, Yoshikazu; Sasaguri, Toshiyuki; Nishita, Kiyoyoshi; Tanokura, Masaru; Ohtsuki, Iwao

    2005-12-23

    Six missense mutations in human cardiac troponin I (cTnI) were recently found to cause restrictive cardiomyopathy (RCM). We have bacterially expressed and purified these human cTnI mutants and examined their functional and structural consequences. Inserting the human cTnI into skinned cardiac muscle fibers showed that these mutations had much greater Ca{sup 2+}-sensitizing effects on force generation than the cTnI mutations in hypertrophic cardiomyopathy (HCM). The mutation K178E in the second actin-tropomyosin (Tm) binding region showed a particularly potent Ca{sup 2+}-sensitizing effect among the six RCM-causing mutations. Circular dichroism and nuclear magnetic resonance spectroscopy revealed that this mutation does not extensively affect the structure of the whole cTnI molecule, but induces an unexpectedly subtle change in the structure of a region around the mutated residue. The results indicate that the K178E mutation has a localized effect on a structure that is critical to the regulatory function of the second actin-Tm binding region of cTnI. The present study also suggests that both HCM and RCM involving cTnI mutations share a common feature of increased Ca{sup 2+} sensitivity of cardiac myofilament, but more severe change in Ca{sup 2+} sensitivity is associated with the clinical phenotype of RCM.

  19. Mutations with pathogenic potential in proteins located in or at the composite junctions of the intercalated disk connecting mammalian cardiomyocytes: a reference thesaurus for arrhythmogenic cardiomyopathies and for Naxos and Carvajal diseases.

    PubMed

    Rickelt, Steffen; Pieperhoff, Sebastian

    2012-05-01

    In the past decade, an avalanche of findings and reports has correlated arrhythmogenic ventricular cardiomyopathies (ARVC) and Naxos and Carvajal diseases with certain mutations in protein constituents of the special junctions connecting the polar regions (intercalated disks) of mature mammalian cardiomyocytes. These molecules, apparently together with some specific cytoskeletal proteins, are components of (or interact with) composite junctions. Composite junctions contain the amalgamated fusion products of the molecules that, in other cell types and tissues, occur in distinct separate junctions, i.e. desmosomes and adherens junctions. As the pertinent literature is still in an expanding phase and is obviously becoming important for various groups of researchers in basic cell and molecular biology, developmental biology, histology, physiology, cardiology, pathology and genetics, the relevant references so far recognized have been collected and are presented here in the following order: desmocollin-2 (Dsc2, DSC2), desmoglein-2 (Dsg2, DSG2), desmoplakin (DP, DSP), plakoglobin (PG, JUP), plakophilin-2 (Pkp2, PKP2) and some non-desmosomal proteins such as transmembrane protein 43 (TMEM43), ryanodine receptor 2 (RYR2), desmin, lamins A and C, striatin, titin and transforming growth factor-β3 (TGFβ3), followed by a collection of animal models and of reviews, commentaries, collections and comparative studies.

  20. Recombination affects accumulation of damaging and disease-associated mutations in human populations.

    PubMed

    Hussin, Julie G; Hodgkinson, Alan; Idaghdour, Youssef; Grenier, Jean-Christophe; Goulet, Jean-Philippe; Gbeha, Elias; Hip-Ki, Elodie; Awadalla, Philip

    2015-04-01

    Many decades of theory have demonstrated that, in non-recombining systems, slightly deleterious mutations accumulate non-reversibly, potentially driving the extinction of many asexual species. Non-recombining chromosomes in sexual organisms are thought to have degenerated in a similar fashion; however, it is not clear the extent to which damaging mutations accumulate along chromosomes with highly variable rates of crossing over. Using high-coverage sequencing data from over 1,400 individuals in the 1000 Genomes and CARTaGENE projects, we show that recombination rate modulates the distribution of putatively deleterious variants across the entire human genome. Exons in regions of low recombination are significantly enriched for deleterious and disease-associated variants, a signature varying in strength across worldwide human populations with different demographic histories. Regions with low recombination rates are enriched for highly conserved genes with essential cellular functions and show an excess of mutations with demonstrated effects on health, a phenomenon likely affecting disease susceptibility in humans.

  1. Mutations that affect vacuole biogenesis inhibit proliferation of the endoplasmic reticulum in Saccharomyces cerevisiae.

    PubMed Central

    Koning, Ann J; Larson, Lynnelle L; Cadera, Emily J; Parrish, Mark L; Wright, Robin L

    2002-01-01

    In yeast, increased levels of the sterol biosynthetic enzyme, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase isozyme, Hmg1p, induce assembly of nuclear-associated ER membranes called karmellae. To identify additional genes involved in karmellae assembly, we screened temperature-sensitive mutants for karmellae assembly defects. Two independently isolated, temperature-sensitive strains that were also defective for karmellae biogenesis carried mutations in VPS16, a gene involved in vacuolar protein sorting. Karmellae biogenesis was defective in all 13 other vacuole biogenesis mutants tested, although the severity of the karmellae assembly defect varied depending on the particular mutation. The hypersensitivity of 14 vacuole biogenesis mutants to tunicamycin was well correlated with pronounced defects in karmellae assembly, suggesting that the karmellae assembly defect reflected alteration of ER structure or function. Consistent with this hypothesis, seven of eight mutations causing defects in secretion also affected karmellae assembly. However, the vacuole biogenesis mutants were able to proliferate their ER in response to Hmg2p, indicating that the mutants did not have a global defect in the process of ER biogenesis. PMID:11973291

  2. Mutations in the three largest subunits of yeast RNA polymerase II that affect enzyme assembly.

    PubMed Central

    Kolodziej, P A; Young, R A

    1991-01-01

    Mutations in the three largest subunits of yeast RNA polymerase II (RPB1, RPB2, and RPB3) were investigated for their effects on RNA polymerase II structure and assembly. Among 23 temperature-sensitive mutations, 6 mutations affected enzyme assembly, as assayed by immunoprecipitation of epitope-tagged subunits. In all six assembly mutants, RNA polymerase II subunits synthesized at the permissive temperature were incorporated into stably assembled, immunoprecipitable enzyme and remained stably associated when cells were shifted to the nonpermissive temperature, whereas subunits synthesized at the nonpermissive temperature were not incorporated into a completely assembled enzyme. The observation that subunit subcomplexes accumulated in assembly-mutant cells at the nonpermissive temperature led us to investigate whether these subcomplexes were assembly intermediates or merely byproducts of mutant enzyme instability. The time course of assembly of RPB1, RPB2, and RPB3 was investigated in wild-type cells and subsequently in mutant cells. Glycerol gradient fractionation of extracts of cells pulse-labeled for various times revealed that a subcomplex of RPB2 and RPB3 appears soon after subunit synthesis and can be chased into fully assembled enzyme. The RPB2-plus-RPB3 subcomplexes accumulated in all RPB1 assembly mutants at the nonpermissive temperature but not in an RPB2 or RPB3 assembly mutant. These data indicate that RPB2 and RPB3 form a complex that subsequently interacts with RPB1 during the assembly of RNA polymerase II. Images PMID:1715023

  3. Age-dependent heterogeneity of familiar hypertrophic cardiomyopathy phenotype: a role of cardiovascular magnetic resonance.

    PubMed

    Glaveckaitė, Sigita; Rudys, Alfredas; Mikštienė, Violeta; Valevičienė, Nomeda; Palionis, Darius; Laucevičius, Aleksandras

    2013-01-01

    In this case report, we present familiar hypertrophic cardiomyopathy with age-dependent heterogeneity of the disease phenotype among the members of one family who carry the same mutation of the myosin-binding protein C gene. Phenotypic heterogeneity is common in patients with familial forms of hypertrophic cardiomyopathy, both in clinical expression and outcome. Compared with other noninvasive cardiac imaging modalities, cardiovascular magnetic resonance provides an opportunity to more accurately characterize the varying phenotypic presentations of hypertrophic cardiomyopathy.

  4. Factors affecting mutational specificity induced by ionizing radiation and oxidizing radicals. Technical progress report, February 1, 1992--October 15, 1992

    SciTech Connect

    Strauss, B.S.

    1992-01-01

    We propose to analyze the factors affecting the specificity of mutational change as induced by ionizing radiation and oxidizing radicals. We want to understand not only the rules that affect base substitution, but also the mechanism(s) by which additions and deletions are produced, since detections are a common consequence of radiation. We wish to carry out this analysis in an in vitro mutation system that permits us to analyze the role of base sequence, of polymerase and of mutagenic agent. Our system is designed to screen out most direct breaks as a cause of mutation and should indicate the changes resulting from base damage to the DNA.

  5. Novel frameshifting mutations of the ZMPSTE24 gene in two siblings affected with restrictive dermopathy and review of the mutations described in the literature.

    PubMed

    Smigiel, Robert; Jakubiak, Aleksandra; Esteves-Vieira, Vera; Szela, Katarzyna; Halon, Agnieszka; Jurek, Tomasz; Lévy, Nicolas; De Sandre-Giovannoli, Annachiara

    2010-02-01

    Restrictive dermopathy (RD) is a rare, severe, lethal genodermatosis in which tautness of the skin causes fetal akinesia or hypokinesia deformation sequence. To date, about 60 cases of RD were described. The signs of the disease are very characteristic and include intrauterine growth retardation, thin, tightly adherent translucent skin, superficial vessels, typical facial dysmorphism as well as generalized joint contractures. The syndrome is caused in most cases by ZMPSTE24 autosomal recessive mutations, or, less frequently, by LMNA autosomal dominant mutations. We report on two brothers affected with RD, who died in the neonatal period. Molecular analyses were performed in the second child, for whom biological material was available, and both parents. Compound heterozygous frameshifting mutations were identified in exon 1 (c.50delA) and exon 5 (c.584_585delAT) of the ZMPSTE24 gene. The autosomal recessive inheritance was confirmed by the parents' genomic analysis. Besides, a review of the mutations causing RD is made.

  6. Mutations in SGOL1 cause a novel cohesinopathy affecting heart and gut rhythm.

    PubMed

    Chetaille, Philippe; Preuss, Christoph; Burkhard, Silja; Côté, Jean-Marc; Houde, Christine; Castilloux, Julie; Piché, Jessica; Gosset, Natacha; Leclerc, Séverine; Wünnemann, Florian; Thibeault, Maryse; Gagnon, Carmen; Galli, Antonella; Tuck, Elizabeth; Hickson, Gilles R; El Amine, Nour; Boufaied, Ines; Lemyre, Emmanuelle; de Santa Barbara, Pascal; Faure, Sandrine; Jonzon, Anders; Cameron, Michel; Dietz, Harry C; Gallo-McFarlane, Elena; Benson, D Woodrow; Moreau, Claudia; Labuda, Damian; Zhan, Shing H; Shen, Yaoqing; Jomphe, Michèle; Jones, Steven J M; Bakkers, Jeroen; Andelfinger, Gregor

    2014-11-01

    The pacemaking activity of specialized tissues in the heart and gut results in lifelong rhythmic contractions. Here we describe a new syndrome characterized by Chronic Atrial and Intestinal Dysrhythmia, termed CAID syndrome, in 16 French Canadians and 1 Swede. We show that a single shared homozygous founder mutation in SGOL1, a component of the cohesin complex, causes CAID syndrome. Cultured dermal fibroblasts from affected individuals showed accelerated cell cycle progression, a higher rate of senescence and enhanced activation of TGF-β signaling. Karyotypes showed the typical railroad appearance of a centromeric cohesion defect. Tissues derived from affected individuals displayed pathological changes in both the enteric nervous system and smooth muscle. Morpholino-induced knockdown of sgol1 in zebrafish recapitulated the abnormalities seen in humans with CAID syndrome. Our findings identify CAID syndrome as a novel generalized dysrhythmia, suggesting a new role for SGOL1 and the cohesin complex in mediating the integrity of human cardiac and gut rhythm.

  7. A Novel Forward Genetic Screen for Identifying Mutations Affecting Larval Neuronal Dendrite Development in Drosophila melanogaster

    PubMed Central

    Medina, Paul Mark B.; Swick, Lance L.; Andersen, Ryan; Blalock, Zachary; Brenman, Jay E.

    2006-01-01

    Vertebrate and invertebrate dendrites are information-processing compartments that can be found on both central and peripheral neurons. Elucidating the molecular underpinnings of information processing in the nervous system ultimately requires an understanding of the genetic pathways that regulate dendrite formation and maintenance. Despite the importance of dendrite development, few forward genetic approaches have been used to analyze the latest stages of dendrite development, including the formation of F-actin-rich dendritic filopodia or dendritic spines. We developed a forward genetic screen utilizing transgenic Drosophila second instar larvae expressing an actin, green fluorescent protein (GFP) fusion protein (actin∷GFP) in subsets of sensory neurons. Utilizing this fluorescent transgenic reporter, we conducted a forward genetic screen of >4000 mutagenized chromosomes bearing lethal mutations that affected multiple aspects of larval dendrite development. We isolated 13 mutations on the X and second chromosomes composing 11 complementation groups affecting dendrite outgrowth/branching, dendritic filopodia formation, or actin∷GFP localization within dendrites in vivo. In a fortuitous observation, we observed that the structure of dendritic arborization (da) neuron dendritic filopodia changes in response to a changing environment. PMID:16415365

  8. Mutations in HIV-1 reverse transcriptase affect the errors made in a single cycle of viral replication.

    PubMed

    Abram, Michael E; Ferris, Andrea L; Das, Kalyan; Quinoñes, Octavio; Shao, Wei; Tuske, Steven; Alvord, W Gregory; Arnold, Eddy; Hughes, Stephen H

    2014-07-01

    The genetic variation in HIV-1 in patients is due to the high rate of viral replication, the high viral load, and the errors made during viral replication. Some of the mutations in reverse transcriptase (RT) that alter the deoxynucleoside triphosphate (dNTP)-binding pocket, including those that confer resistance to nucleoside/nucleotide analogs, affect dNTP selection during replication. The effects of mutations in RT on the spectrum (nature, position, and frequency) of errors made in vivo are poorly understood. We previously determined the mutation rate and the frequency of different types of mutations and identified hot spots for mutations in a lacZα (the α complementing region of lacZ) reporter gene carried by an HIV-1 vector that replicates using wild-type RT. We show here that four mutations (Y115F, M184V, M184I, and Q151M) in the dNTP-binding pocket of RT that had relatively small effects on the overall HIV-1 mutation rate (less than 3-fold compared to the wild type) significantly increased mutations at some specific positions in the lacZα reporter gene. We also show that changes in a sequence that flanks the reporter gene can affect the mutations that arise in the reporter. These data show that changes either in HIV-1 RT or in the sequence of the nucleic acid template can affect the spectrum of mutations made during viral replication. This could, by implication, affect the generation of drug-resistant mutants and immunological-escape mutants in patients. RT is the viral enzyme that converts the RNA genome of HIV into DNA. Errors made during replication allow the virus to escape from the host's immune system and to develop resistance to the available anti-HIV drugs. We show that four different mutations in RT which are known to be associated with resistance to anti-RT drugs modestly increased the overall frequency of errors made during viral replication. However, the increased errors were not uniformly distributed; the additional errors occurred at a small

  9. Cardiac beta-myosin heavy chain defects in two families with non-compaction cardiomyopathy: linking non-compaction to hypertrophic, restrictive, and dilated cardiomyopathies.

    PubMed

    Hoedemaekers, Yvonne M; Caliskan, Kadir; Majoor-Krakauer, Danielle; van de Laar, Ingrid; Michels, Michelle; Witsenburg, Maarten; ten Cate, Folkert J; Simoons, Maarten L; Dooijes, Dennis

    2007-11-01

    Cardiomyopathies are classified according to distinct morphological characteristics. They occur relatively frequent and are an important cause of mortality and morbidity. Isolated ventricular non-compaction or non-compaction cardiomyopathy (NCCM) is characterized by an excessively thickened endocardial layer with deep intertrabecular recesses, reminiscent of the myocardium during early embryogenesis. Aims Autosomal-dominant as well as X-linked inheritance for NCCM has been described and several loci have been associated with the disease. Nevertheless, a major genetic cause for familial NCCM remains to be identified. Methods and Results We describe, in two separate autosomal-dominant NCCM families, the identification of mutations in the sarcomeric cardiac beta-myosin heavy chain gene (MYH7), known to be associated with hypertrophic cardiomyopathy (HCM), restricted cardiomyopathy (RCM), and dilated cardiomyopathy (DCM). Conclusion These results confirm the genetic heterogeneity of NCCM and suggest that the molecular classification of cardiomyopathies includes an MYH7-associated spectrum of NCCM with HCM, RCM, and DCM.

  10. A fatal case of peripartum cardiomyopathy.

    PubMed

    Cohen, Ronny; Mallet, Thierry; Mirrer, Brooks; Loarte, Pablo; Gale, Michael; Kastell, Paul

    2014-06-01

    Peripartum cardiomyopathy is a life-threatening cardiac condition affecting pregnant women either late in pregnancy or early in the post-partum period. The latest studies show a dramatic improvement in the mortality rates of women affected with this disorder, which has been correlated with advances in medical therapy for heart failure. However, patients continue to die of this condition. The following case report describes a typical patient with peripartum cardiomyopathy diagnosed on clinical grounds, along with echocardiogram findings of severe systolic dysfunction and global hypokinesis consistent with dilated cardiomyopathy. Emergency cesarean delivery had to be performed for fetal distress. There was significant improvement of the patient's condition with standard pharmacological management for heart failure at the time of discharge. However, five weeks after discharge, fatal cardiac arrest occurred. It is hoped that this article will raise awareness about this rare but potentially fatal condition and promote understanding of its main clinical features, diagnostic criteria, and conventional pharmacological management.

  11. Factors affecting germline mutations in a hypervariable microsatellite: a comparative analysis of six species of swallows (Aves: Hirundinidae).

    PubMed

    Anmarkrud, Jarl A; Kleven, Oddmund; Augustin, Jakob; Bentz, Kristofer H; Blomqvist, Donald; Fernie, Kim J; Magrath, Michael J L; Pärn, Henrik; Quinn, James S; Robertson, Raleigh J; Szép, Tibor; Tarof, Scott; Wagner, Richard H; Lifjeld, Jan T

    2011-03-15

    Microsatellites mutate frequently by replication slippage. Empirical evidence shows that the probability of such slippage mutations may increase with the length of the repeat region as well as exposure to environmental mutagens, but the mutation rate can also differ between the male and female germline. It has been hypothesized that more intense sexual selection or sperm competition can also lead to elevated mutation rates, but the empirical evidence is inconclusive. Here, we analyzed the occurrence of germline slippage mutations in the hypervariable pentanucleotide microsatellite locus HrU10 across six species of swallow (Aves: Hirundinidae). These species exhibit marked differences in the length range of the microsatellite, as well as differences in the intensity of sperm competition. We found a strong effect of microsatellite length on the probability of mutation, but no residual effect of species or their level of sperm competition when the length effect was accounted for. Neither could we detect any difference in mutation rate between tree swallows (Tachycineta bicolor) breeding in Hamilton Harbour, Ontario, an industrial site with previous documentation of elevated mutation rates for minisatellite DNA, and a rural reference population. However, our cross-species analysis revealed two significant patterns of sex differences in HrU10 germline mutations: (1) mutations in longer alleles occurred typically in the male germline, those in shorter alleles in the female germline, and (2) male germline mutations were more often expansions than contractions, whereas no directional bias was evident in the female germline. These results indicate some fundamental differences in male and female gametogenesis affecting the probability of slippage mutations. Our study also reflects the value of a comparative, multi-species approach for locus-specific mutation analyses, through which a wider range of influential factors can be assessed than in single-species studies.

  12. Cardiomyopathy in Marfan syndrome.

    PubMed

    Hetzer, Roland; Siegel, Günter; Delmo Walter, Eva Maria

    2016-02-01

    This report aims to evaluate the existence of primary and secondary cardiomyopathy in patients with Marfan syndrome (MFS) who underwent surgical management for primary cardiovascular sequelae of this genetic disorder. Likewise, we aim to determine whether the myocardium in MFS is susceptible to ischaemia independent of myocardial protection used during surgery. Between April 1986 and May 2012, 421 patients with MFS were surgically treated for cardiovascular manifestations. Among them, 47 (mean age: 39.45 ± 12.64, median: 36, range: 19-66, years) eventually were surgically treated for cardiomyopathy. They were grouped into A: patients who subsequently developed ischaemic cardiomyopathy and eventually underwent coronary revascularization for coronary artery disease (n = 11); B: patients who subsequently developed end-stage cardiomyopathy for which a mechanical circulatory support device was implanted to support the failing heart (n = 13) and C: patients who subsequently developed end-stage cardiomyopathy (n = 23), among whom 21 underwent primary heart transplantation, while 2 patients are still waiting for donor hearts. Retrospective analysis of the medical records of 47 patients revealed the following: In Group A, 3 (27.2%) patients had already existing ischaemic cardiomyopathy before the first various cardiovascular surgeries, while ischaemic cardiomyopathy in the other 8 (72.7%) developed postoperatively. The interval between previous surgery and development of cardiomyopathy was a mean of 8.0 ± 07 years. In Group B, 5 (38.4%) had existing primary cardiomyopathy prior to surgery, while 8 (61.5%) developed end-stage cardiomyopathy postoperatively. The interval between previous surgery and development of cardiomyopathy was a mean of 9.0 ± 4 months. In Group C, 5 (21.7%) had been diagnosed with cardiomyopathy prior to the cardiovascular surgery, while 18 (78.2%) developed end-stage cardiomyopathy postoperatively. The mean interval between previous surgery and

  13. Nutrition in Pediatric Cardiomyopathy

    PubMed Central

    Miller, Tracie L.; Neri, Daniela; Extein, Jason; Somarriba, Gabriel; Strickman-Stein, Nancy

    2007-01-01

    Pediatric cardiomyopathies are heterogeneous groups of serious disorders of the heart muscle and are responsible for significant morbidity and mortality among children who have the disease. While enormous improvements have been made in the treatment and survival of children with congenital heart disease, parallel strides have not been made in the outcomes for cardiomyopathies. Thus, ancillary therapies, such as nutrition and nutritional interventions, that may not cure but may potentially improve cardiac function and quality of life, are imperative to consider in children with all types of cardiomyopathy. Growth failure is one of the most significant clinical problems of children with cardiomyopathy with nearly one-third of children with this disorder manifesting some degree of growth failure during the course of their illness. Optimal intake of macronutrients can help improve cardiac function. In addition, several specific nutrients have been shown to correct myocardial abnormalities that often occur with cardiomyopathy and heart failure. In particular, antioxidants that can protect against free radical damage that often occurs in heart failure and nutrients that augment myocardial energy production are important therapies that have been explored more in adults with cardiomyopathy than in the pediatric population. Future research directions should pay particular attention to the effect of overall nutrition and specific nutritional therapies on clinical outcomes and quality of life in children with pediatric cardiomyopathy. PMID:18159216

  14. SLC30A9 mutation affecting intracellular zinc homeostasis causes a novel cerebro-renal syndrome.

    PubMed

    Perez, Yonatan; Shorer, Zamir; Liani-Leibson, Keren; Chabosseau, Pauline; Kadir, Rotem; Volodarsky, Michael; Halperin, Daniel; Barber-Zucker, Shiran; Shalev, Hanna; Schreiber, Ruth; Gradstein, Libe; Gurevich, Evgenia; Zarivach, Raz; Rutter, Guy A; Landau, Daniel; Birk, Ohad S

    2017-04-01

    A novel autosomal recessive cerebro-renal syndrome was identified in consanguineous Bedouin kindred: neurological deterioration was evident as of early age, progressing into severe intellectual disability, profound ataxia, camptocormia and oculomotor apraxia. Brain MRI was normal. Four of the six affected individuals also had early-onset nephropathy with features of tubulo-interstitial nephritis, hypertension and tendency for hyperkalemia, though none had rapid deterioration of renal function. Genome wide linkage analysis identified an ∼18 Mb disease-associated locus on chromosome 4 (maximal logarithm of odds score 4.4 at D4S2971; θ = 0). Whole exome sequencing identified a single mutation in SLC30A9 within this locus, segregating as expected within the kindred and not found in a homozygous state in 300 Bedouin controls. We showed that SLC30A9 (solute carrier family 30 member 9; also known as ZnT-9) is ubiquitously expressed with high levels in cerebellum, skeletal muscle, thymus and kidney. Confocal analysis of SH-SY5Y cells overexpressing SLC30A9 fused to enhanced green fluorescent protein demonstrated vesicular cytosolic localization associated with the endoplasmic reticulum, not co-localizing with endosomal or Golgi markers. SLC30A9 encodes a putative zinc transporter (by similarity) previously associated with Wnt signalling. However, using dual-luciferase reporter assay in SH-SY5Y cells we showed that Wnt signalling was not affected by the mutation. Based on protein modelling, the identified mutation is expected to affect SLC30A9's highly conserved cation efflux domain, putatively disrupting its transmembrane helix structure. Cytosolic Zn2+ measurements in HEK293 cells overexpressing wild-type and mutant SLC30A9 showed lower zinc concentration within mutant rather than wild-type SLC30A9 cells. This suggests that SLC30A9 has zinc transport properties affecting intracellular zinc homeostasis, and that the molecular mechanism of the disease is through

  15. Deletion of interleukin-6 alleviated interstitial fibrosis in streptozotocin-induced diabetic cardiomyopathy of mice through affecting TGFβ1 and miR-29 pathways

    PubMed Central

    Zhang, Yang; Wang, Jing-Hao; Zhang, Yi-Yuan; Wang, Ying-Zhe; Wang, Jin; Zhao, Yue; Jin, Xue-Xin; Xue, Gen-Long; Li, Peng-Hui; Sun, Yi-Lin; Huang, Qi-He; Song, Xiao-Tong; Zhang, Zhi-Ren; Gao, Xu; Yang, Bao-Feng; Du, Zhi-Min; Pan, Zhen-Wei

    2016-01-01

    Interleukin 6 (IL-6) has been shown to be an important regulator of cardiac interstitial fibrosis. In this study, we explored the role of interleukin-6 in the development of diabetic cardiomyopathy and the underlying mechanisms. Cardiac function of IL-6 knockout mice was significantly improved and interstitial fibrosis was apparently alleviated in comparison with wildtype (WT) diabetic mice induced by streptozotocin (STZ). Treatment with IL-6 significantly promoted the proliferation and collagen production of cultured cardiac fibroblasts (CFs). High glucose treatment increased collagen production, which were mitigated in CFs from IL-6 KO mice. Moreover, IL-6 knockout alleviated the up-regulation of TGFβ1 in diabetic hearts of mice and cultured CFs treated with high glucose or IL-6. Furthermore, the expression of miR-29 reduced upon IL-6 treatment, while increased in IL-6 KO hearts. Overexpression of miR-29 blocked the pro-fibrotic effects of IL-6 on cultured CFs. In summary, deletion of IL-6 is able to mitigate myocardial fibrosis and improve cardiac function of diabetic mice. The mechanism involves the regulation of IL-6 on TGFβ1 and miR-29 pathway. This study indicates the therapeutic potential of IL-6 suppression on diabetic cardiomyopathy disease associated with fibrosis. PMID:26972749

  16. Rare Mutations of CACNB2 Found in Autism Spectrum Disease-Affected Families Alter Calcium Channel Function

    PubMed Central

    Breitenkamp, Alexandra F. S.; Matthes, Jan; Nass, Robert Daniel; Sinzig, Judith; Lehmkuhl, Gerd; Nürnberg, Peter; Herzig, Stefan

    2014-01-01

    Autism Spectrum Disorders (ASD) are complex neurodevelopmental diseases clinically defined by dysfunction of social interaction. Dysregulation of cellular calcium homeostasis might be involved in ASD pathogenesis, and genes coding for the L-type calcium channel subunits CaV1.2 (CACNA1C) and CaVβ2 (CACNB2) were recently identified as risk loci for psychiatric diseases. Here, we present three rare missense mutations of CACNB2 (G167S, S197F, and F240L) found in ASD-affected families, two of them described here for the first time (G167S and F240L). All these mutations affect highly conserved regions while being absent in a sample of ethnically matched controls. We suggest the mutations to be of physiological relevance since they modulate whole-cell Ba2+ currents through calcium channels when expressed in a recombinant system (HEK-293 cells). Two mutations displayed significantly decelerated time-dependent inactivation as well as increased sensitivity of voltage-dependent inactivation. In contrast, the third mutation (F240L) showed significantly accelerated time-dependent inactivation. By altering the kinetic parameters, the mutations are reminiscent of the CACNA1C mutation causing Timothy Syndrome, a Mendelian disease presenting with ASD. In conclusion, the results of our first-time biophysical characterization of these three rare CACNB2 missense mutations identified in ASD patients support the hypothesis that calcium channel dysfunction may contribute to autism. PMID:24752249

  17. [Mutation analysis and prenatal diagnosis for 12 families affected with hereditary hearing loss and enlarged vestibular aqueduct].

    PubMed

    Xiang, Yanbao; Li, Huanzheng; Xu, Xueqin; Xu, Chenyang; Chen, Chong; Lin, Xiaoling; Tang, Shaohua

    2017-06-10

    To carry out mutation analysis and prenatal diagnosis for 12 families affected with hearing loss and enlarged vestibular aqueduct from southern Zhejiang province. Clinical data and peripheral venous blood samples of 38 members from the 12 families were obtained. Mutations of 4 genes, namely SLC26A4, GJB2, c.538C to T and c.547G to A of GJB3, m.1555A to G and m.1494C to T of 12S rRNA, were detected by PCR and Sanger sequencing. Maternal contamination was excluded by application of STR detection during prenatal diagnosis. Among the probands from the 12 families, 11 were found to be compound heterozygotes or homozygotes and 25 were heterozygotes. All of the families were detected with IVS7-2A to G mutations, and 4 had a second heterozygous mutation (c.2168A to G of the SLC26A4 gene). Four rare pathogenic mutations, namely IVS5-1G to A, c.946G to T, c.1607A to G and c.2167C to G, were detected in another four families. In addition, the partner of proband from pedigree 3 was identified with compound heterozygous mutations of c.235delC and c.299-300delAT, and proband of pedigree 5 has carried a mutation of c.109G to A in GJB2. For SLC26A4 gene, prenatal diagnostic testing has revealed heterozygous mutations in 6 fetuses and compound heterozygous mutations in 2 fetuses. IVS7-2A to G and c.2168A to G of the SLC26A4 gene were the most common mutations in southern Zhejiang. Such mutations can be found in most families affected with hearing loss and enlarged vestibular aqueduct, which may facilitate genetic counseling and prenatal diagnosis for such families.

  18. Familial Dilated Cardiomyopathy Caused by a Novel Frameshift in the BAG3 Gene

    PubMed Central

    Moncayo-Arlandi, Javier; Allegue, Catarina; Iglesias, Anna; Mangas, Alipio; Brugada, Ramon

    2016-01-01

    Background Dilated cardiomyopathy, a major cause of chronic heart failure and cardiac transplantation, is characterized by left ventricular or biventricular heart dilatation. In nearly 50% of cases the pathology is inherited, and more than 60 genes have been reported as disease-causing. However, in 30% of familial cases the mutation remains unidentified even after comprehensive genetic analysis. This study clinically and genetically assessed a large Spanish family affected by dilated cardiomyopathy to search for novel variations. Methods and Results Our study included a total of 100 family members. Clinical assessment was performed in alive, and genetic analysis was also performed in alive and 1 deceased relative. Genetic screening included resequencing of 55 genes associated with sudden cardiac death, and Sanger sequencing of main disease-associated genes. Genetic analysis identified a frame-shift variation in BAG3 (p.H243Tfr*64) in 32 patients. Genotype-phenotype correlation identified substantial heterogeneity in disease expression. Of 32 genetic carriers (one deceased), 21 relatives were clinically affected, and 10 were asymptomatic. Seventeen of the symptomatic genetic carriers exhibited proto-diastolic septal knock by echocardiographic assessment. Conclusions We report p.H243Tfr*64_BAG3 as a novel pathogenic variation responsible for familial dilated cardiomyopathy. This variation correlates with a more severe phenotype of the disease, mainly in younger individuals. Genetic analysis in families, even asymptomatic individuals, enables early identification of individuals at risk and allows implementation of preventive measures. PMID:27391596

  19. Identification of Fabry Disease in a Tertiary Referral Cohort of Patients with Hypertrophic Cardiomyopathy.

    PubMed

    Maron, Martin S; Xin, Winnie; Sims, Katherine B; Butler, Rita; Haas, Tammy S; Rowin, Ethan J; Desnick, Robert J; Maron, Barry J

    2017-09-21

    Fabry Disease is a X-linked lysosomal storage disorder caused by the deficient activity of α-galactosidase A due to mutations in the GLA gene, which may be associated with increased left ventricular wall thickness, and mimic the morphologic features of hypertrophic cardiomyopathy. Management strategies for these two diseases diverge, with Fabry disease-specific treatment utilizing recombinant α-galactosidase A enzyme replacement therapy. We studied a prospectively assembled consecutive cohort of 585 patients (71% male) from two hypertrophic cardiomyopathy tertiary referral centers by screening for low α-galactosidase A activity in dried blood spots. Male patients with low α -Gal A activity levels and all females were tested for mutations in the GLA gene. In 585 patients previously diagnosed with hypertrophic cardiomyopathy, we identified two unrelated patients (0.34%), both with the GLA mutation encoding P.N215S the most common mutation causing later-onset Fabry disease phenotype. These patients were both asymptomatic, a male age 53 years and a female aged 69 yearsand demonstrated a mild cardiac phenotype with symmetric distribution of left ventricular hypertrophy..Following family screening, a total of 27 new Fabry disease patients ages 2-81 years were identified in the two families, including 12individuals who are now receiving enzyme replacement therapy. These observations support consideration for routine prospective screening for Fabry disease in all patients without a definitive etiology for left ventriclar hypertrophy. This strategy would likely result, through cascade family testing, in the earlier identification of new Fabry disease-affected males and female heterozygotes who may benefit from monitoring and/or enzyme replacement therapy. Copyright © 2017. Published by Elsevier Inc.

  20. Multiple Genetic Associations with Irish Wolfhound Dilated Cardiomyopathy

    PubMed Central

    Dunning, Mark D.; Brownlie, Serena

    2016-01-01

    Cardiac disease is a leading cause of morbidity and mortality in dogs and humans, with dilated cardiomyopathy being a large contributor to this. The Irish Wolfhound (IWH) is one of the most commonly affected breeds and one of the few breeds with genetic loci associated with the disease. Mutations in more than 50 genes are associated with human dilated cardiomyopathy (DCM), yet very few are also associated with canine DCM. Furthermore, none of the identified canine loci explain many cases of the disease and previous work has indicated that genotypes at multiple loci may act together to influence disease development. In this study, loci previously associated with DCM in IWH were tested for associations in a new cohort both individually and in combination. We have identified loci significantly associated with the disease individually, but no genotypes individually or in pairs conferred a significantly greater risk of developing DCM than the population risk. However combining three loci together did result in the identification of a genotype which conferred a greater risk of disease than the overall population risk. This study suggests multiple rather than individual genetic factors, cooperating to influence DCM risk in IWH. PMID:28070514

  1. Telomere shortening and metabolic compromise underlie dystrophic cardiomyopathy

    PubMed Central

    Chang, Alex Chia Yu; Ong, Sang-Ging; LaGory, Edward L.; Kraft, Peggy E.; Giaccia, Amato J.; Wu, Joseph C.; Blau, Helen M.

    2016-01-01

    Duchenne muscular dystrophy (DMD) is an incurable X-linked genetic disease that is caused by a mutation in the dystrophin gene and affects one in every 3,600 boys. We previously showed that long telomeres protect mice from the lethal cardiac disease seen in humans with the same genetic defect, dystrophin deficiency. By generating the mdx4cv/mTRG2 mouse model with “humanized” telomere lengths, the devastating dilated cardiomyopathy phenotype seen in patients with DMD was recapitulated. Here, we analyze the degenerative sequelae that culminate in heart failure and death in this mouse model. We report progressive telomere shortening in developing mouse cardiomyocytes after postnatal week 1, a time when the cells are no longer dividing. This proliferation-independent telomere shortening is accompanied by an induction of a DNA damage response, evident by p53 activation and increased expression of its target gene p21 in isolated cardiomyocytes. The consequent repression of Pgc1α/β leads to impaired mitochondrial biogenesis, which, in conjunction with the high demands of contraction, leads to increased oxidative stress and decreased mitochondrial membrane potential. As a result, cardiomyocyte respiration and ATP output are severely compromised. Importantly, treatment with a mitochondrial-specific antioxidant before the onset of cardiac dysfunction rescues the metabolic defects. These findings provide evidence for a link between short telomere length and metabolic compromise in the etiology of dilated cardiomyopathy in DMD and identify a window of opportunity for preventive interventions. PMID:27799523

  2. Narrative review: harnessing molecular genetics for the diagnosis and management of hypertrophic cardiomyopathy.

    PubMed

    Wang, Libin; Seidman, Jonathan G; Seidman, Christine E

    2010-04-20

    Unexplained cardiac hypertrophy, the diagnostic criterion for hypertrophic cardiomyopathy (HCM), occurs in 1 in 500 adults. Insights into the genetic cause and molecular pathophysiology of HCM are reshaping clinical paradigms for diagnosis and treatment of this common myocardial disorder. Human genetic studies have established that dominant mutations in the proteins that make up the contractile apparatus (the sarcomere) cause HCM. With the current availability of clinical gene-based diagnostics, pathogenic mutations in affected patients can be defined, which can suggest a clinical course and allow definitive preclinical identification of family members at risk for HCM. Genetic discoveries have also fostered mechanistic investigations in model organisms that are engineered to carry human HCM mutations. Novel therapeutic targets have emerged from these fundamental studies and are currently under clinical assessment in humans. The combination of contemporary gene-based diagnosis with new strategies to attenuate disease development and progression is changing the natural history of lifelong cardiac symptoms, arrhythmias, and heart failure from HCM.

  3. Suppression of lex Mutations Affecting Deoxyribonucleic Acid Repair in Escherichia coli K-12 by Closely Linked Thermosensitive Mutations

    PubMed Central

    Mount, David W.; Walker, Anita C.; Kosel, C.

    1973-01-01

    A major class of ultraviolet (UV)-resistant derivatives of lex− strains of Escherichia coli K-12 grows normally at 30 C but at 42.5 C fails to produce colonies on complete or minimal agar. At 42.5 C these thermosensitive strains form filaments without septa, due to an apparent defect in cell division. Deoxyribonucleic acid degradation in UV-irradiated cultures of the thermosensitive strains is slow, in contrast to the rapid degradation in UV-irradiated cultures of the parental lex− strains. The thermosensitive mutations (tsl) are tightly linked (less than 0.04 min on the E. coli K-12 linkage map) to the site of the lex mutation in the parental strain and could lie within the same gene. The tsl+/tsl− heterozygotes grow at 42.5 C and are UV resistant when grown at 30 or 42.5 C. The tsl mutations are, therefore, recessive in contrast to lex mutations, which are dominant. It appears likely that the tsl mutations alter the diffusible product that gives rise to the Lex− mutant phenotype. This product appears to be necessary for deoxyribonucleic acid repair and cell division. PMID:4583257

  4. Prospect of gene therapy for cardiomyopathy in hereditary muscular dystrophy

    PubMed Central

    Yue, Yongping; Binalsheikh, Ibrahim M.; Leach, Stacey B.; Domeier, Timothy L.; Duan, Dongsheng

    2016-01-01

    Introduction Cardiac involvement is a common feature in muscular dystrophies. It presents as heart failure and/or arrhythmia. Traditionally, dystrophic cardiomyopathy is treated with symptom-relieving medications. Identification of disease-causing genes and investigation on pathogenic mechanisms have opened new opportunities to treat dystrophic cardiomyopathy with gene therapy. Replacing/repairing the mutated gene and/or targeting the pathogenic process/mechanisms using alternative genes may attenuate heart disease in muscular dystrophies. Areas covered Duchenne muscular dystrophy is the most common muscular dystrophy. Duchenne cardiomyopathy has been the primary focus of ongoing dystrophic cardiomyopathy gene therapy studies. Here, we use Duchenne cardiomyopathy gene therapy to showcase recent developments and to outline the path forward. We also discuss gene therapy status for cardiomyopathy associated with limb-girdle and congenital muscular dystrophies, and myotonic dystrophy. Expert opinion Gene therapy for dystrophic cardiomyopathy has taken a slow but steady path forward. Preclinical studies over the last decades have addressed many fundamental questions. Adeno-associated virus-mediated gene therapy has significantly improved the outcomes in rodent models of Duchenne and limb girdle muscular dystrophies. Validation of these encouraging results in large animal models will pave the way to future human trials. PMID:27340611

  5. Mutations in cadherin 23 affect tip links in zebrafish sensory hair cells.

    PubMed

    Söllner, Christian; Rauch, Gerd-Jörg; Siemens, Jan; Geisler, Robert; Schuster, Stephan C; Müller, Ulrich; Nicolson, Teresa

    2004-04-29

    Hair cells have highly organized bundles of apical projections, or stereocilia, that are deflected by sound and movement. Displacement of stereocilia stretches linkages at the tips of stereocilia that are thought to gate mechanosensory channels. To identify the molecular machinery that mediates mechanotransduction in hair cells, zebrafish mutants were identified with defects in balance and hearing. In sputnik mutants, stereociliary bundles are splayed to various degrees, with individuals displaying reduced or absent mechanotransduction. Here we show that the defects in sputnik mutants are caused by mutations in cadherin 23 (cdh23). Mutations in Cdh23 also cause deafness and vestibular defects in mice and humans, and the protein is present in hair bundles. We show that zebrafish Cdh23 protein is concentrated near the tips of hair bundles, and that tip links are absent in homozygous sputnik(tc317e) larvae. Moreover, tip links are absent in larvae carrying weak alleles of cdh23 that affect mechanotransduction but not hair bundle integrity. We conclude that Cdh23 is an essential tip link component required for hair-cell mechanotransduction.

  6. Pore mutations of the Escherichia coli MscS channel affect desensitization but not ionic preference.

    PubMed

    Edwards, Michelle D; Bartlett, Wendy; Booth, Ian R

    2008-04-15

    Mechanosensitive channels rescue bacterial cells from a fate of lysis when they transfer from a high- to low-osmolarity environment. Of three Escherichia coli mechanosensitive proteins studied to date, only MscS-Ec demonstrates a small anionic preference and a desensitized, nonconducting state under sustained pressure. Little is known about the mechanisms generating these distinctive properties. Eliminating the sole positive charge in the MscS-Ec pore region (Arg(88)) did not alter anionic preference. Adding positive charges at either end of the pore did not augment anionic preference, and placing negative charges within the pore did not diminish it. Thus, pore charges do not control this characteristic. However, from this analysis we identified mutations in the hinge region of the MscS-Ec pore helix (at Gly(113)) that profoundly affected ability of the channel to desensitize. Substitution with nonpolar (Ala, Pro) or polar (Asp, Arg, Ser) residues inhibited transition to the desensitized state. Interestingly, Gly(113) replaced with Met did not impede desensitization. Thus, although Gly is not specifically required at position 113, MscS desensitization is strongly influenced by the residue situated here. Mutations at residues further into the pore also regulated desensitization. Transition to this unique mechanosensitive channel state is discussed in terms of existing data.

  7. Glutamine synthetase-constitutive mutation affecting the glnALG upstream promoter of Escherichia coli.

    PubMed

    León, P; Romero, D; Garciarrubio, A; Bastarrachea, F; Covarrubias, A A

    1985-12-01

    The spontaneous gln-76 mutation of Escherichia coli (Osorio et al., Mol. Gen. Genet. 194:114-123, 1984) was previously shown to be responsible for the cis-dominant constitutive expression of the glnA gene in the absence of a glnG-glnF activator system. Nucleotide sequence analysis has now revealed that gln-76 is a single transversion T.A to A.T, an up-promoter mutation affecting the -10 region of glnAp1, the upstream promoter of the glnALG control region. Both, wild-type and gln-76 DNA control regions were cloned into the promoter-probe plasmid pKO1. Galactokinase activity determinations of cells carrying the fused plasmids showed 10-fold more effective expression mediated by gln-76 than by the glnA wild-type control region. Primer extension experiments with RNA from strains carrying the gln-76 control region indicated that the transcription initiation sites were the same in both the gln-76 mutant and the wild type.

  8. Glutamine synthetase-constitutive mutation affecting the glnALG upstream promoter of Escherichia coli.

    PubMed Central

    León, P; Romero, D; Garciarrubio, A; Bastarrachea, F; Covarrubias, A A

    1985-01-01

    The spontaneous gln-76 mutation of Escherichia coli (Osorio et al., Mol. Gen. Genet. 194:114-123, 1984) was previously shown to be responsible for the cis-dominant constitutive expression of the glnA gene in the absence of a glnG-glnF activator system. Nucleotide sequence analysis has now revealed that gln-76 is a single transversion T.A to A.T, an up-promoter mutation affecting the -10 region of glnAp1, the upstream promoter of the glnALG control region. Both, wild-type and gln-76 DNA control regions were cloned into the promoter-probe plasmid pKO1. Galactokinase activity determinations of cells carrying the fused plasmids showed 10-fold more effective expression mediated by gln-76 than by the glnA wild-type control region. Primer extension experiments with RNA from strains carrying the gln-76 control region indicated that the transcription initiation sites were the same in both the gln-76 mutant and the wild type. Images PMID:2866175

  9. P-Element Mutations Affecting Embryonic Peripheral Nervous System Development in Drosophila Melanogaster

    PubMed Central

    Kania, A.; Salzberg, A.; Bhat, M.; D'Evelyn, D.; He, Y.; Kiss, I.; Bellen, H. J.

    1995-01-01

    The Drosophila embryonic peripheral nervous system (PNS) is an excellent model system to study the molecular mechanisms governing neural development. To identify genes controlling PNS development, we screened 2000 lethal P-element insertion strains. The PNS of mutant embryos was examined using the neural specific marker MAb 22C10, and 92 mutant strains were retained for further analysis. Genetic and cytological analysis of these strains shows that 42 mutations affect previously isolated genes that are known to be required for PNS development: longitudinals lacking (19), mastermind (15), numb (4), big brain (2), and spitz (2). The remaining 50 mutations were classified into 29 complementation groups and the P-element insertions were cytologically mapped. The mutants were classified in five major classes on the basis of their phenotype: gain of neurons, loss of neurons, organizational defects, pathfinding defects and morphological defects. Herein we report the preliminary phenotypic characterization of each of these complementation groups as well as the embryonic lacZ expression pattern of each P-element strain. Our analysis indicates that in most of the P-element insertion strains, the lacZ reporter gene is not expressed in the developing PNS. PMID:7789767

  10. P-element mutations affecting embryonic peripheral nervous system development in Drosophila melanogaster

    SciTech Connect

    Kania, A.; Salzberg, A.; Bhat, M.

    1995-04-01

    The Drosophila embryonic peripheral nervous system (PNS) is an excellent model system to study the molecular mechanisms governing neural development. To identify genes controlling PNS development, we screened 2000 lethal P-element insertion strains. The PNS of mutant embryos was examined using the neural specific marker MAb 22C10, and 92 mutant strains were retained for further analysis. Genetic and cytological analysis of these strains shows that 42 mutations affect previously isolated genes that are known to be required for PNS development: longitudinals lacking (19), mastermind (15), numb (4), big brain (2), and spitz (2). The remaining 50 mutations were classified into 29 complementation groups and the P-element insertions were cytologically mapped. The mutants were classified in five major classes on the basis of their phenotype: gain of neurons, loss of neurons, organizational defects, pathfinding defects and morphological defects. Herein we report the preliminary phenotypic characterization of each of these complementation groups as well as the embryonic lacZ expression pattern of each P-element strain. Our analysis indicates that in most of the P-element insertion strains, the lacZ reporter gene is not expressed in the developing PNS. 52 refs., 5 figs., 5 tabs.

  11. Social defeat interacts with Disc1 mutations in the mouse to affect behavior.

    PubMed

    Haque, F Nipa; Lipina, Tatiana V; Roder, John C; Wong, Albert H C

    2012-08-01

    DISC1 (Disrupted-in-schizophrenia 1) is a strong candidate susceptibility gene for psychiatric disease that was originally discovered in a family with a chromosomal translocation severing this gene. Although the family members with the translocation had an identical genetic mutation, their clinical diagnosis and presentation varied significantly. Gene-environment interactions have been proposed as a mechanism underlying the complex heritability and variable phenotype of psychiatric disorders such as major depressive disorder and schizophrenia. We hypothesized that gene-environment interactions would affect behavior in a mutant Disc1 mouse model. We examined the effect of chronic social defeat (CSD) as an environmental stressor in two lines of mice carrying different Disc1 point mutations, on behaviors relevant to psychiatric illness: locomotion in a novel open field (OF), pre-pulse inhibition (PPI) of the acoustic startle response, latent inhibition (LI), elevated plus maze (EPM), forced swim test (FST), sucrose consumption (SC), and the social interaction task for sociability and social novelty (SSN). We found that Disc1-L100P +/- and wild-type mice have similar anxiety responses to CSD, while Q31L +/- mice had a very different response. We also found evidence of significant gene-environment interactions in the OF, EPM and SSN.

  12. Mutation in fucose synthesis gene of Klebsiella pneumoniae affects capsule composition and virulence in mice.

    PubMed

    Pan, Po-Chang; Chen, Hui-Wen; Wu, Po-Kuan; Wu, Yu-Yang; Lin, Chun-Hung; Wu, June H

    2011-02-01

    The emerging pathogenicity of Klebsiella pneumoniae (KP) is evident by the increasing number of clinical cases of liver abscess (LA) due to KP infection. A unique property of KP is its thick mucoid capsule. The bacterial capsule has been found to contain fucose in KP strains causing LA but not in those causing urinary tract infections. The products of the gmd and wcaG genes are responsible for converting mannose to fucose in KP. A KP strain, KpL1, which is known to have a high death rate in infected mice, was mutated by inserting an apramycin-resistance gene into the gmd. The mutant expressed genes upstream and downstream of gmd, but not gmd itself, as determined by reverse transcriptase polymerase chain reaction. The DNA mapping confirmed the disruption of the gmd gene. This mutant decreased its ability to kill infected mice and showed decreased virulence in infected HepG2 cells. Compared with wild-type KpL1, the gmd mutant lost fucose in capsular polysaccharides, increased biofilm formation and interacted more readily with macrophages. The mutant displayed morphological changes with long filament forms and less uniform sizes. The mutation also converted the serotype from K1 of wild-type to K2 and weak K3. The results indicate that disruption of the fucose synthesis gene affected the pathophysiology of this bacterium and may be related to the virulence of this KpL1 strain.

  13. TRNA mutations that affect decoding fidelity deregulate development and the proteostasis network in zebrafish.

    PubMed

    Reverendo, Marisa; Soares, Ana R; Pereira, Patrícia M; Carreto, Laura; Ferreira, Violeta; Gatti, Evelina; Pierre, Philippe; Moura, Gabriela R; Santos, Manuel A

    2014-01-01

    Mutations in genes that encode tRNAs, aminoacyl-tRNA syntheases, tRNA modifying enzymes and other tRNA interacting partners are associated with neuropathies, cancer, type-II diabetes and hearing loss, but how these mutations cause disease is unclear. We have hypothesized that levels of tRNA decoding error (mistranslation) that do not fully impair embryonic development can accelerate cell degeneration through proteome instability and saturation of the proteostasis network. To test this hypothesis we have induced mistranslation in zebrafish embryos using mutant tRNAs that misincorporate Serine (Ser) at various non-cognate codon sites. Embryo viability was affected and malformations were observed, but a significant proportion of embryos survived by activating the unfolded protein response (UPR), the ubiquitin proteasome pathway (UPP) and downregulating protein biosynthesis. Accumulation of reactive oxygen species (ROS), mitochondrial and nuclear DNA damage and disruption of the mitochondrial network, were also observed, suggesting that mistranslation had a strong negative impact on protein synthesis rate, ER and mitochondrial homeostasis. We postulate that mistranslation promotes gradual cellular degeneration and disease through protein aggregation, mitochondrial dysfunction and genome instability.

  14. Mitochondrial Diseases and Cardiomyopathies.

    PubMed

    Brunel-Guitton, Catherine; Levtova, Alina; Sasarman, Florin

    2015-11-01

    Mitochondrial cardiomyopathies are clinically and genetically heterogeneous. An integrative approach encompassing clinical, biochemical, and molecular investigations is required to reach a specific diagnosis. In this review we summarize the clinical and genetic aspects of mitochondrial disorders associated with cardiomyopathy, including disorders of oxidative phosphorylation. It also describes groups of disorders that, although not usually classified as mitochondrial disorders, stem from defects in mitochondrial function (eg, disorders of β-oxidation and the carnitine cycle), are associated with secondary mitochondrial impairment (eg, organic acidurias), and are important diagnostically because they are treatable. Current biochemical and molecular techniques for the diagnosis of mitochondrial cardiomyopathies are described, and a diagnostic algorithm is proposed, to help clinicians in their approach to cardiomyopathies in the context of mitochondrial diseases.

  15. Takotsubo (Stress) Cardiomyopathy

    MedlinePlus

    ... the American Heart Association Cardiology Patient Page Takotsubo (Stress) Cardiomyopathy Scott W. Sharkey , John R. Lesser , Barry ... heart contraction has returned to normal. Importance of Stress In 85% of cases, takotsubo is triggered by ...

  16. Familial Hypertrophic Cardiomyopathy Related Cardiac Troponin C L29Q Mutation Alters Length-Dependent Activation and Functional Effects of Phosphomimetic Troponin I*

    PubMed Central

    Li, Alison Y.; Stevens, Charles M.; Liang, Bo; Rayani, Kaveh; Little, Sean; Davis, Jonathan; Tibbits, Glen F.

    2013-01-01

    The Ca2+ binding properties of the FHC-associated cardiac troponin C (cTnC) mutation L29Q were examined in isolated cTnC, troponin complexes, reconstituted thin filament preparations, and skinned cardiomyocytes. While higher Ca2+ binding affinity was apparent for the L29Q mutant in isolated cTnC, this phenomenon was not observed in the cTn complex. At the level of the thin filament in the presence of phosphomimetic TnI, L29Q cTnC further reduced the Ca2+ affinity by 27% in the steady-state measurement and increased the Ca2+ dissociation rate by 20% in the kinetic studies. Molecular dynamics simulations suggest that L29Q destabilizes the conformation of cNTnC in the presence of phosphomimetic cTnI and potentially modulates the Ca2+ sensitivity due to the changes of the opening/closing equilibrium of cNTnC. In the skinned cardiomyocyte preparation, L29Q cTnC increased Ca2+ sensitivity in a highly sarcomere length (SL)-dependent manner. The well-established reduction of Ca2+ sensitivity by phosphomimetic cTnI was diminished by 68% in the presence of the mutation and it also depressed the SL-dependent increase in myofilament Ca2+ sensitivity. This might result from its modified interaction with cTnI which altered the feedback effects of cross-bridges on the L29Q cTnC-cTnI-Tm complex. This study demonstrates that the L29Q mutation alters the contractility and the functional effects of the phosphomimetic cTnI in both thin filament and single skinned cardiomyocytes and importantly that this effect is highly sarcomere length dependent. PMID:24260207

  17. Functional and splicing defect analysis of 23 ACVRL1 mutations in a cohort of patients affected by Hereditary Hemorrhagic Telangiectasia

    PubMed Central

    Alaa el Din, Ferdos; Patri, Sylvie; Thoreau, Vincent; Rodriguez-Ballesteros, Montserrat; Hamade, Eva; Bailly, Sabine; Gilbert-Dussardier, Brigitte; Abou Merhi, Raghida; Kitzis, Alain

    2015-01-01

    Hereditary Hemorrhagic Telangiectasia syndrome (HHT) or Rendu-Osler-Weber (ROW) syndrome is an autosomal dominant vascular disorder. Two most common forms of HHT, HHT1 and HHT2, have been linked to mutations in the endoglin (ENG) and activin receptor-like kinase 1 (ACVRL1or ALK1) genes respectively. This work was designed to examine the pathogenicity of 23 nucleotide variations in ACVRL1 gene detected in more than 400 patients. Among them, 14 missense mutations and one intronic variant were novels, and 8 missense mutations were previously identified with questionable implication in HHT2. The functionality of missense mutations was analyzed in response to BMP9 (specific ligand of ALK1), the maturation of the protein products and their localization were analyzed by western blot and fluorescence microscopy. The splicing impairment of the intronic and of two missense mutations was examined by minigene assay. Functional analysis showed that 18 out of 22 missense mutations were defective. Splicing analysis revealed that one missense mutation (c.733A>G, p.Ile245Val) affects the splicing of the harboring exon 6. Similarly, the intronic mutation outside the consensus splicing sites (c.1048+5G>A in intron 7) was seen pathogenic by splicing study. Both mutations induce a frame shift creating a premature stop codon likely resulting in mRNA degradation by NMD surveillance mechanism. Our results confirm the haploinsufficiency model proposed for HHT2. The affected allele of ACVRL1 induces mRNA degradation or the synthesis of a protein lacking the receptor activity. Furthermore, our data demonstrate that functional and splicing analyses together, represent two robust diagnostic tools to be used by geneticists confronted with novel or conflicted ACVRL1 mutations. PMID:26176610

  18. Contrasting Frequencies and Effects of cis- and trans-Regulatory Mutations Affecting Gene Expression

    PubMed Central

    Metzger, Brian P. H.; Duveau, Fabien; Yuan, David C.; Tryban, Stephen; Yang, Bing; Wittkopp, Patricia J.

    2016-01-01

    Heritable differences in gene expression are caused by mutations in DNA sequences encoding cis-regulatory elements and trans-regulatory factors. These two classes of regulatory change differ in their relative contributions to expression differences in natural populations because of the combined effects of mutation and natural selection. Here, we investigate how new mutations create the regulatory variation upon which natural selection acts by quantifying the frequencies and effects of hundreds of new cis- and trans-acting mutations altering activity of the TDH3 promoter in the yeast Saccharomyces cerevisiae in the absence of natural selection. We find that cis-regulatory mutations have larger effects on expression than trans-regulatory mutations and that while trans-regulatory mutations are more common overall, cis- and trans-regulatory changes in expression are equally abundant when only the largest changes in expression are considered. In addition, we find that cis-regulatory mutations are skewed toward decreased expression while trans-regulatory mutations are skewed toward increased expression. We also measure the effects of cis- and trans-regulatory mutations on the variability in gene expression among genetically identical cells, a property of gene expression known as expression noise, finding that trans-regulatory mutations are much more likely to decrease expression noise than cis-regulatory mutations. Because new mutations are the raw material upon which natural selection acts, these differences in the frequencies and effects of cis- and trans-regulatory mutations should be considered in models of regulatory evolution. PMID:26782996

  19. Effector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat-Induced Point mutations.

    PubMed

    Rouxel, Thierry; Grandaubert, Jonathan; Hane, James K; Hoede, Claire; van de Wouw, Angela P; Couloux, Arnaud; Dominguez, Victoria; Anthouard, Véronique; Bally, Pascal; Bourras, Salim; Cozijnsen, Anton J; Ciuffetti, Lynda M; Degrave, Alexandre; Dilmaghani, Azita; Duret, Laurent; Fudal, Isabelle; Goodwin, Stephen B; Gout, Lilian; Glaser, Nicolas; Linglin, Juliette; Kema, Gert H J; Lapalu, Nicolas; Lawrence, Christopher B; May, Kim; Meyer, Michel; Ollivier, Bénédicte; Poulain, Julie; Schoch, Conrad L; Simon, Adeline; Spatafora, Joseph W; Stachowiak, Anna; Turgeon, B Gillian; Tyler, Brett M; Vincent, Delphine; Weissenbach, Jean; Amselem, Joëlle; Quesneville, Hadi; Oliver, Richard P; Wincker, Patrick; Balesdent, Marie-Hélène; Howlett, Barbara J

    2011-02-15

    Fungi are of primary ecological, biotechnological and economic importance. Many fundamental biological processes that are shared by animals and fungi are studied in fungi due to their experimental tractability. Many fungi are pathogens or mutualists and are model systems to analyse effector genes and their mechanisms of diversification. In this study, we report the genome sequence of the phytopathogenic ascomycete Leptosphaeria maculans and characterize its repertoire of protein effectors. The L. maculans genome has an unusual bipartite structure with alternating distinct guanine and cytosine-equilibrated and adenine and thymine (AT)-rich blocks of homogenous nucleotide composition. The AT-rich blocks comprise one-third of the genome and contain effector genes and families of transposable elements, both of which are affected by repeat-induced point mutation, a fungal-specific genome defence mechanism. This genomic environment for effectors promotes rapid sequence diversification and underpins the evolutionary potential of the fungus to adapt rapidly to novel host-derived constraints.

  20. Four novel cystic fibrosis mutations in splice junction sequences affecting the CFTR nucleotide binding folds

    SciTech Connect

    Doerk, T.; Wulbrand, U.; Tuemmler, B. )

    1993-03-01

    Single cases of the four novel splice site mutations 1525[minus]1 G [r arrow] A (intron 9), 3601[minus]2 A [r arrow] G (intron 18), 3850[minus]3 T [r arrow] G (intron 19), and 4374+1 G [r arrow] T (intron 23) were detected in the CFTR gene of cystic fibrosis patients of Indo-Iranian, Turkish, Polish, and Germany descent. The nucleotide substitutions at the +1, [minus]1, and [minus]2 positions all destroy splice sites and lead to severe disease alleles associated with features typical of gastrointestinal and pulmonary cystic fibrosis disease. The 3850[minus]3 T-to-G change was discovered in a very mildly affected 33-year-old [Delta]F508 compound heterozygote, suggesting that the T-to-G transversion at the less conserved [minus]3 position of the acceptor splice site may retain some wildtype function. 13 refs., 1 fig., 2 tabs.

  1. Cardiomyopathies in Noonan syndrome and the other RASopathies

    PubMed Central

    Gelb, Bruce D.; Roberts, Amy E.; Tartaglia, Marco

    2015-01-01

    Noonan syndrome and related disorders (Noonan syndrome with multiple lentigines, Costello syndrome, cardiofaciocutaneous syndrome, Noonan syndrome with loose anagen hair, and other related traits) are autosomal dominant traits. Mutations causing these disorders alter proteins relevant for signaling through RAS. Thus, these traits are now collectively called the RASopathies. While the RASopathies have pleiomorphic features, this review will focus on the hypertrophic cardiomyopathy observed in varying percentages of all of these traits. In addition, inherited abnormalities in one pathway gene, RAF1, cause pediatric-onset dilated cardiomyopathy. The pathogeneses for the RASopathy-associated cardiomyopathies are being elucidated, principally using animal models, leading to genotype-specific insights into how signal transduction is perturbed. Based on those findings, small molecule therapies seem possible for RASopathy-associated cardiomyopathies. PMID:26380542

  2. Lessons learned from the Pediatric Cardiomyopathy Registry (PCMR) Study Group.

    PubMed

    Wilkinson, James D; Westphal, Joslyn A; Bansal, Neha; Czachor, Jason D; Razoky, Hiedy; Lipshultz, Steven E

    2015-08-01

    Cardiomyopathy is a rare disorder of the heart muscle, affecting 1.13 cases per 100,000 children, from birth to 18 years of age. Cardiomyopathy is the leading cause of heart transplantation in children over the age of 1. The Pediatric Cardiomyopathy Registry funded in 1994 by the National Heart, Lung, and Blood Institute was established to examine the epidemiology of the disease in children below 18 years of age. More than 3500 children across the United States and Canada have been enrolled in the Pediatric Cardiomyopathy Registry, which has followed-up these patients until death, heart transplantation, or loss to follow-up. The Pediatric Cardiomyopathy Registry has provided the most in-depth illustration of this disease regarding its aetiology, clinical course, associated risk factors, and patient outcomes. Data from the registry have helped in guiding the clinical management of cardiomyopathy in children under 18 years of age; however, questions still remain regarding the most clinically effective diagnostic and treatment approaches for these patients. Future directions of the registry include the use of next-generation whole-exome sequencing and cardiac biomarkers to identify aetiology-specific treatments and improve diagnostic strategies. This article provides a brief synopsis of the work carried out by the Pediatric Cardiomyopathy Registry since its inception, including the current knowledge on the aetiologies, outcomes, and treatments of cardiomyopathy in children.

  3. Error-prone and error-restrictive mutations affecting ribosomal protein S12.

    PubMed

    Agarwal, Deepali; Gregory, Steven T; O'Connor, Michael

    2011-07-01

    Ribosomal protein S12 plays a pivotal role in decoding functions on the ribosome. X-ray crystallographic analyses of ribosomal complexes have revealed that S12 is involved in the inspection of codon-anticodon pairings in the ribosomal A site, as well as in the succeeding domain rearrangements of the 30S subunit that are essential for accommodation of aminoacyl-tRNA. A role for S12 in tRNA selection is also well supported by classical genetic analyses; mutations affecting S12 are readily isolated in bacteria and organelles, since specific alterations in S12 confer resistance to the error-inducing antibiotic streptomycin, and the ribosomes from many such streptomycin-resistant S12 mutants display decreased levels of miscoding. However, substitutions that confer resistance to streptomycin likely represent a very distinct class of all possible S12 mutants. Until recently, the technical difficulties in generating random, unselectable mutations in essential genes in complex operons have generally precluded the analysis of other classes of S12 alterations. Using a recombineering approach, we have targeted the Escherichia coli rpsL gene, encoding S12, for random mutagenesis and screened the resulting mutants for effects on decoding fidelity. We have recovered over 40 different substitutions located throughout the S12 protein that alter the accuracy of translation without substantially affecting the sensitivity to streptomycin. Moreover, this collection includes mutants that promote miscoding, as well as those that restrict decoding errors. These results affirm the importance of S12 in decoding processes and indicate that alterations in this essential protein can have diverse effects on the accuracy of decoding.

  4. Ubiquitin-proteasome system and hereditary cardiomyopathies.

    PubMed

    Schlossarek, Saskia; Frey, Norbert; Carrier, Lucie

    2014-06-01

    Adequate protein turnover is essential for cardiac homeostasis. Different protein quality controls are involved in the maintenance of protein homeostasis, including molecular chaperones and co-chaperones, the autophagy-lysosomal pathway, and the ubiquitin-proteasome system (UPS). In the last decade, a series of evidence has underlined a major function of the UPS in cardiac physiology and disease. Particularly, recent studies have shown that dysfunctional proteasomal function leads to cardiac disorders. Hypertrophic and dilated cardiomyopathies are the two most prevalent inherited cardiomyopathies. Both are primarily transmitted as an autosomal-dominant trait and mainly caused by mutations in genes encoding components of the cardiac sarcomere, including a relevant striated muscle-specific E3 ubiquitin ligase. A growing body of evidence indicates impairment of the UPS in inherited cardiomyopathies as determined by measurement of the level of ubiquitinated proteins, the activities of the proteasome and/or the use of fluorescent UPS reporter substrates. The present review will propose mechanisms of UPS impairment in inherited cardiomyopathies, summarize the potential consequences of UPS impairment, including activation of the unfolded protein response, and underline some therapeutic options available to restore proteasome function and therefore cardiac homeostasis and function. This article is part of a Special Issue entitled "Protein Quality Control, the Ubiquitin Proteasome System, and Autophagy". Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. An initiator protein for plasmid R6K DNA replication. Mutations affecting the copy-number control.

    PubMed

    Inuzuka, M; Wada, Y

    1988-02-08

    Two kinds of mutations affecting the copy-number control of plasmid R6K were isolated and identified in an initiator pi protein by DNA sequencing. Firstly, a temperature-sensitive replication mutation, ts22, with decreased copy number results in a substitution of threonine to isoleucine at position 138 of the 305-amino-acid pi protein. Secondly, a high-copy-number (cop21) mutant was isolated from this ts mutant and was identified by an alteration of alanine to serine at position 162. This cop21 mutation suppressed the Ts character and was recessive to the wild-type allele in the copy control.

  6. Subcortical band heterotopia in rare affected males can be caused by missense mutations in DCX (XLIS) or LIS1.

    PubMed

    Pilz, D T; Kuc, J; Matsumoto, N; Bodurtha, J; Bernadi, B; Tassinari, C A; Dobyns, W B; Ledbetter, D H

    1999-09-01

    Subcortical band heterotopia (SBH) are bilateral and symmetric ribbons of gray matter found in the central white matter between the cortex and the ventricular surface, which comprises the less severe end of the lissencephaly (agyria-pachygyria-band) spectrum of malformations. Mutations in DCX (also known as XLIS ) have previously been described in females with SBH. We have now identified mutations in either the DCX or LIS1 gene in three of 11 boys studied, demonstrating for the first time that mutations of either DCX or LIS1 can cause SBH or mixed pachygyria-SBH (PCH-SBH) in males. All three changes detected are missense mutations, predicted to be of germline origin. They include a missense mutation in exon 4 of DCX in a boy with PCH-SBH (R78H), a different missense mutation in exon 4 of DCX in a boy with mild SBH and in his mildly affected mother (R89G) and a missense mutation in exon 6 of LIS1 in a boy with SBH (S169P). The missense mutations probably account for the less severe brain malformations, although other patients with missense mutations in the same exons have had diffuse lissencephaly. Therefore, it appears likely that the effect of the specific amino acid change on the protein determines the severity of the phenotype, with some mutations enabling residual protein function and allowing normal migration in a larger proportion of neurons. However, we expect that somatic mosaic mutations of both LIS1 and DCX will also prove to be an important mechanism in causing SBH in males.

  7. Mouse dyskerin mutations affect accumulation of telomerase RNA and small nucleolar RNA, telomerase activity, and ribosomal RNA processing.

    PubMed

    Mochizuki, Yuko; He, Jun; Kulkarni, Shashikant; Bessler, Monica; Mason, Philip J

    2004-07-20

    Dyskerin is a nucleolar protein present in small nucleolar ribonucleoprotein particles that modify specific uridine residues of rRNA by converting them to pseudouridine. Dyskerin is also a component of the telomerase complex. Point mutations in the human gene encoding dyskerin cause the skin and bone marrow failure syndrome dyskeratosis congenita (DC). To test the extent to which disruption of pseudouridylation or telomerase activity may contribute to the pathogenesis of DC, we introduced two dyskerin mutations into murine embryonic stem cells. The A353V mutation is the most frequent mutation in patients with X-linked DC, whereas the G402E mutation was identified in a single family. The A353V, but not the G402E, mutation led to severe destabilization of telomerase RNA, a reduction in telomerase activity, and a significant continuous loss of telomere length with increasing numbers of cell divisions during in vitro culture. Both mutations caused a defect in overall pseudouridylation and a small but detectable decrease in the rate of pre-rRNA processing. In addition, both mutant embryonic stem cell lines showed a decrease in the accumulation of a subset of H/ACA small nucleolar RNAs, correlating with a significant decrease in site-specific pseudouridylation efficiency. Interestingly, the H/ACA snoRNAs decreased in the G402E mutant cell line differed from those affected in A353V mutant cells. Hence, our findings show that point mutations in dyskerin may affect both the telomerase and pseudouridylation pathways and the extent to which these functions are altered can vary for different mutations.

  8. Balancing protein stability and activity in cancer: a new approach for identifying driver mutations affecting CBL ubiquitin ligase activation

    PubMed Central

    Li, Minghui; Kales, Stephen C.; Ma, Ke; Shoemaker, Benjamin A.; Crespo-Barreto, Juan; Cangelosi, Andrew L.; Lipkowitz, Stanley; Panchenko, Anna R.

    2015-01-01

    Oncogenic mutations in the monomeric Casitas B-lineage lymphoma (Cbl) gene have been found in many tumors, but their significance remains largely unknown. Several human c-Cbl (CBL) structures have recently been solved depicting the protein at different stages of its activation cycle and thus provide mechanistic insight underlying how stability-activity tradeoffs in cancer-related proteins may influence disease onset and progression. In this study, we computationally modeled the effects of missense cancer mutations on structures representing four stages of the CBL activation cycle to identify driver mutations that affect CBL stability, binding, and activity. We found that recurrent, homozygous, and leukemia-specific mutations had greater destabilizing effects on CBL states than did random non-cancer mutations. We further tested the ability of these computational models assessing the changes in CBL stability and its binding to ubiquitin conjugating enzyme E2, by performing blind CBL-mediated EGFR ubiquitination assays in cells. Experimental CBL ubiquitin ligase activity was in agreement with the predicted changes in CBL stability and, to a lesser extent, with CBL-E2 binding affinity. Two-thirds of all experimentally tested mutations affected the ubiquitin ligase activity by either destabilizing CBL or disrupting CBL-E2 binding, whereas about one-third of tested mutations were found to be neutral. Collectively, our findings demonstrate that computational methods incorporating multiple protein conformations and stability and binding affinity evaluations can successfully predict the functional consequences of cancer mutations on protein activity, and provide a proof of concept for mutations in CBL. PMID:26676746

  9. Dominant Mutations (lex) in Escherichia coli K-12 Which Affect Radiation Sensitivity and Frequency of Ultraviolet Light-Induced Mutations

    PubMed Central

    Mount, David W.; Low, K. Brooks; Edmiston, Susan J.

    1972-01-01

    Three mutations, denoted lex-1, -2 and -3, which increase the sensitivity of Escherichia coli K-12 to ultraviolet light (UV) and ionizing radiation, have been found by three-factor transduction crosses to be closely linked to uvrA on the E. coli K-12 linkage map. Strains bearing these mutations do not appear to be defective in genetic recombination although in some conjugational crosses they may fail to produce a normal yield of genetic recombinants depending upon the time of mating and the marker selected. The mutagenic activity of UV is decreased in the mutant strains. After irradiation with UV, cultures of the strains degrade their deoxyribonucleic acid at a high rate, similar to recA− mutant strains. Stable lex+/lec− heterozygotes are found to have the mutant radiation-sensitive phenotype of haploid lex− strains. PMID:4343824

  10. [Genetic analysis of a pedigree affected with inherited thrombocytopenia caused by a novel mutation of MYH9 gene].

    PubMed

    Liao, Wenjun; Luo, Xiaocheng; Zhang, Xue; Chen, Ping; Wu, Huayu; Shu, Wei; Yuan, Zhigang

    2017-06-10

    To study genetic mutations and clinical features of a pedigree affected with MYH9-related disorders from Guangxi. Blood platelets were counted with a hemocytometer. Blood smear was carried out to detect the inclusion body in peripheral blood neutrophils. DNA and mRNA samples were extracted from blood samples from the members of the pedigree. Fragments of the MYH9 gene were amplified with PCR and directly sequenced. The affected individuals presented with a triad of giant platelets, decreased platelet count and inclusion bodies in the neutrophils with variable expressivity. A heterozygous deletional mutation (c.5803delG) in exon 41 of the MYH9 gene was found in all of the 8 affected individuals, which led to a frame-shift and change of 26 amino acids at the C-end of the tail domain of nonmuscle myosin heavy chain IIA (NMMHC-IIA) (p.Ala1935Profs*12). The same mutation was not found among healthy members of the pedigree. The c.5803delG mutation probably underlies the MYH9-related disorders in this pedigree. The mutation has altered the C-end of the tail domain of the NMMHC-IIA protein, resulting in mild clinical symptoms in the affected individuals.

  11. Stress-related cardiomyopathies

    PubMed Central

    2011-01-01

    Stress-related cardiomyopathies can be observed in the four following situations: Takotsubo cardiomyopathy or apical ballooning syndrome; acute left ventricular dysfunction associated with subarachnoid hemorrhage; acute left ventricular dysfunction associated with pheochromocytoma and exogenous catecholamine administration; acute left ventricular dysfunction in the critically ill. Cardiac toxicity was mediated more by catecholamines released directly into the heart via neural connection than by those reaching the heart via the bloodstream. The mechanisms underlying the association between this generalized autonomic storm secondary to a life-threatening stress and myocardial toxicity are widely discussed. Takotsubo cardiomyopathy has been reported all over the world and has been acknowledged by the American Heart Association as a form of reversible cardiomyopathy. Four "Mayo Clinic" diagnostic criteria are required for the diagnosis of Takotsubo cardiomyopathy: 1) transient left ventricular wall motion abnormalities involving the apical and/or midventricular myocardial segments with wall motion abnormalities extending beyond a single epicardial coronary artery distribution; 2) absence of obstructive epicardial coronary artery disease that could be responsible for the observed wall motion abnormality; 3) ECG abnormalities, such as transient ST-segment elevation and/or diffuse T wave inversion associated with a slight troponin elevation; and 4) the lack of proven pheochromocytoma and myocarditis. ECG changes and LV dysfunction occur frequently following subarachnoid hemorrhage and ischemic stroke. This entity, referred as neurocardiogenic stunning, was called neurogenic stress-related cardiomyopathy. Stress-related cardiomyopathy has been reported in patients with pheochromocytoma and in patients