Science.gov

Sample records for cardiovascular adverse remodeling

  1. [Remodeling of Cardiovascular System: Causes and Consequences].

    PubMed

    Lopatina, E V; Kipenko, A V; Penniyaynen, V A; Pasatetckaia, N A; Tsyrline, V A

    2016-01-01

    Literature and our data suggest the regulatory action of a number of biologically active substances (catecholamines, cardiac glycosides, β-blockers, angiotensin-converting-enzyme inhibitor) on the growth and proliferation of heart cells. By using of organotypic tissue culture has proved that the basis of this regulation is the ability of test substances, receptor- or transducer-mediated signaling to modulate the function of Na⁺, K⁺-ATPase. There is a delay in the development of vascular smooth muscle in the late postnatal period in rats with the blockade of the sympathetic nervous system in the prenatal period. The relationship between vascular remodeling and contractile activity is described. It seems that one of the causes of high blood pressure is a remodeling of the cardiovascular system, which precedes the development of hypertension.

  2. Air pollution and adverse cardiac remodeling: clinical effects and basic mechanisms

    PubMed Central

    Liu, Yonggang; Goodson, Jamie M.; Zhang, Bo; Chin, Michael T.

    2015-01-01

    Exposure to air pollution has long been known to trigger cardiovascular events, primarily through activation of local and systemic inflammatory pathways that affect the vasculature. Detrimental effects of air pollution exposure on heart failure and cardiac remodeling have also been described in human populations. Recent studies in both human subjects and animal models have provided insights into the basic physiological, cellular and molecular mechanisms that play a role in adverse cardiac remodeling. This review will give a brief overview of the relationship between air pollution and cardiovascular disease, describe the clinical effects of air pollution exposure on cardiac remodeling, describe the basic mechanisms that affect remodeling as described in human and animal systems and will discuss future areas of investigation. PMID:26042051

  3. Cardiovascular remodeling and the peripheral serotonergic system.

    PubMed

    Ayme-Dietrich, Estelle; Aubertin-Kirch, Gaëlle; Maroteaux, Luc; Monassier, Laurent

    2017-01-01

    Plasma 5-hydroxytryptamine (5-HT; serotonin), released from blood platelets, plays a major role in the human cardiovascular system. Besides the effect of endogenous serotonin, many drugs targeting serotonergic receptors are widely used in the general population (antiobesity agents, antidepressants, antipsychotics, antimigraine agents), and may enhance the cardiovascular risk. Depending on the type of serotonin receptor activated and its location, the use of these compounds triggers acute and chronic effects. The acute cardiovascular response to 5-HT, named the Bezold-Jarish reflex, leads to intense bradycardia associated with atrioventricular block, and involves 5-HT3, 5-HT1B/1D, 5-HT7 and 5-HT2A/2B receptors. The chronic contribution of 5-HT and its receptors (5-HT4 and 5-HT2A/2B) in cardiovascular tissue remodeling, with a particular emphasis on cardiac hypertrophy, fibrosis and valve degeneration, will be explored in this review. Finally, through the analysis of the effects of sarpogrelate, some new aspects of 5-HT2A receptor pharmacology in vasomotor tone regulation and the interaction between endothelial and smooth muscle cells will also be discussed. The aim of this review is to emphasize the cardiac side effects caused by serotonin receptor activation, and to highlight their possible prevention by the development of new drugs targeting this system.

  4. [Cardiovascular pharmacotherapy. Risks and adverse effects].

    PubMed

    Voigt, N; Heijman, J; Dobrev, D

    2014-03-01

    Adverse side effects of drugs are a significantly underestimated problem in modern medicine. In this review article, we summarize common adverse side effects of cardiovascular drugs. In particular, we highlight the factors promoting these adverse side effects in patients, including reduced hepatic or renal clearance in elderly patients that often requires dosage adjustment. Pharmacodynamic and pharmacokinetic interactions between drugs (e.g. through the cytochrome P450 system or P-glycoproteins) can modify the plasma concentration of many compounds, thereby also increasing the likelihood of unwanted side effects. The most prominent cardiac side effects include arrhythmias, e.g. atrioventricular (AV) block, drug-induced long-QT syndrome and torsade de pointes and altered inotropy. Non-cardiac side effects are subsequently discussed grouped by drug class. A better understanding of the risks and side effects of cardiovascular drugs is expected to reduce the mortality and morbidity associated with adverse side effects.

  5. Molecular Imaging of Angiogenesis and Vascular Remodeling in Cardiovascular Pathology

    PubMed Central

    Golestani, Reza; Jung, Jae-Joon; Sadeghi, Mehran M.

    2016-01-01

    Angiogenesis and vascular remodeling are involved in a wide array of cardiovascular diseases, from myocardial ischemia and peripheral arterial disease, to atherosclerosis and aortic aneurysm. Molecular imaging techniques to detect and quantify key molecular and cellular players in angiogenesis and vascular remodeling (e.g., vascular endothelial growth factor and its receptors, αvβ3 integrin, and matrix metalloproteinases) can advance vascular biology research and serve as clinical tools for early diagnosis, risk stratification, and selection of patients who would benefit most from therapeutic interventions. To target these key mediators, a number of molecular imaging techniques have been developed and evaluated in animal models of angiogenesis and vascular remodeling. This review of the state of the art molecular imaging of angiogenesis and vascular (and valvular) remodeling, will focus mostly on nuclear imaging techniques (positron emission tomography and single photon emission tomography) that offer high potential for clinical translation. PMID:27275836

  6. Galectin-3 Participates in Cardiovascular Remodeling Associated With Obesity.

    PubMed

    Martínez-Martínez, Ernesto; López-Ándres, Natalia; Jurado-López, Raquel; Rousseau, Elodie; Bartolomé, Mará Visitación; Fernández-Celis, Amaya; Rossignol, Patrick; Islas, Fabian; Antequera, Alfonso; Prieto, Santiago; Luaces, María; Cachofeiro, Victoria

    2015-11-01

    Remodeling, diastolic dysfunction, and arterial stiffness are some of the alterations through which obesity affects the cardiovascular system. Fibrosis and inflammation are important mechanisms underlying cardiovascular remodeling, although the precise promoters involved in these processes are still unclear. Galectin-3 (Gal-3) induces inflammation and fibrosis in the cardiovascular system. We have investigated the potential role of Gal-3 in cardiac damage in morbidly obese patients, and we have evaluated the protective effect of the Gal-3 inhibition in the occurrence of cardiovascular fibrosis and inflammation in an experimental model of obesity. Morbid obesity is associated with alterations in cardiac remodeling, mainly left ventricular hypertrophy and diastolic dysfunction. Obesity and hypertension are the main determinants of left ventricular hypertrophy. Insulin resistance, left ventricular hypertrophy, and circulating levels of C-reactive protein and Gal-3 are associated with a worsening of diastolic function in morbidly obese patients. Obesity upregulates Gal-3 production in the cardiovascular system in a normotensive animal model of diet-induced obesity by feeding for 6 weeks a high-fat diet (33.5% fat). Gal-3 inhibition with modified citrus pectin (100 mg/kg per day) reduced cardiovascular levels of Gal-3, total collagen, collagen I, transforming and connective growth factors, osteopontin, and monocyte chemoattractant protein-1 in the heart and aorta of obese animals without changes in body weight or blood pressure. In morbidly obese patients, Gal-3 levels are associated with diastolic dysfunction. In obese animals, Gal-3 blockade decreases cardiovascular fibrosis and inflammation. These data suggest that Gal-3 could be a novel therapeutic target in cardiac fibrosis and inflammation associated with obesity.

  7. Functional brown adipose tissue limits cardiomyocyte injury and adverse remodeling in catecholamine-induced cardiomyopathy

    PubMed Central

    Thoonen, Robrecht; Ernande, Laura; Cheng, Juan; Nagasaka, Yasuko; Yao, Vincent; Miranda-Bezerra, Alexandre; Chen, Chan; Chao, Wei; Panagia, Marcello; Sosnovik, David E.; Puppala, Dheeraj; Armoundas, Antonis A.; Hindle, Allyson; Bloch, Kenneth D.; Buys, Emmanuel S.; Scherrer-Crosbie, Marielle

    2015-01-01

    Brown adipose tissue (BAT) has well recognized thermogenic properties mediated by uncoupling protein 1 (UCP1); more recently, BAT has been demonstrated to modulate cardiovascular risk factors. To investigate whether BAT also affects myocardial injury and remodeling, UCP1-deficient (UCP1−/−) mice, which have dysfunctional BAT, were subjected to catecholamine-induced cardiomyopathy. At baseline, there were no differences in echocardiographic parameters, plasma cardiac troponin I (cTnI) or myocardial fibrosis between wild-type (WT) and UCP1−/− mice. Isoproterenol infusion increased cTnI and myocardial fibrosis and induced left ventricular (LV) hypertrophy in both WT and UCP1−/− mice. UCP1−/− mice also demonstrated exaggerated myocardial injury, fibrosis, and adverse remodeling, as well as decreased survival. Transplantation of WT BAT to UCP1−/− mice prevented the isoproterenol-induced cTnI increase and improved survival, whereas UCP1−/− BAT transplanted to either UCP1−/− or WT mice had no effect on cTnI release. After 3 days of isoproterenol treatment, phosphorylated AKT and ERK were lower in the LV's of UCP1−/− mice than in those of WT mice. Activation of BAT was also noted in a model of chronic ischemic cardiomyopathy, and was correlated to LV dysfunction. Deficiency in UCP1, and accompanying BAT dysfunction, increases cardiomyocyte injury and adverse LV remodeling, and decreases survival in a mouse model of catecholamine-induced cardiomyopathy. Myocardial injury and decreased survival are rescued by transplantation of functional BAT to UCP1−/− mice, suggesting a systemic cardioprotective role of functional BAT. BAT is also activated in chronic ischemic cardiomyopathy. PMID:25968336

  8. Failure of fertility therapy and subsequent adverse cardiovascular events

    PubMed Central

    Udell, Jacob A.; Lu, Hong; Redelmeier, Donald A.

    2017-01-01

    BACKGROUND: Infertility may indicate an underlying predisposition toward premature cardiovascular disease, yet little is known about potential long-term cardiovascular events following fertility therapy. We investigated whether failure of fertility therapy is associated with subsequent adverse cardiovascular events. METHODS: We performed a population-based cohort analysis of women who received gonadotropin-based fertility therapy between Apr. 1, 1993, and Mar. 31, 2011, distinguishing those who subsequently gave birth and those who did not. Using multivariable Poisson regression models, we estimated the relative rate ratio of adverse cardiovascular events associated with fertility therapy failure, accounting for age, year, baseline risk factors, health care history and number of fertility cycles. The primary outcome was subsequent treatment for nonfatal coronary ischemia, stroke, transient ischemic attack, heart failure or thromboembolism. RESULTS: Of 28 442 women who received fertility therapy, 9349 (32.9%) subsequently gave birth and 19 093 (67.1%) did not. The median number of fertility treatments was 3 (interquartile range 1–5). We identified 2686 cardiovascular events over a median 8.4 years of follow-up. The annual rate of cardiovascular events was 19% higher among women who did not give birth after fertility therapy than among those who did (1.08 v. 0.91 per 100 patient-years, p < 0.001), equivalent to a 21% relative increase in the annual rate (95% confidence interval 13%–30%). We observed no association between event rates and number of treatment cycles. INTERPRETATION: Fertility therapy failure was associated with an increased risk of long-term adverse cardiovascular events. These women merit surveillance for subsequent cardiovascular events. PMID:28385819

  9. Macro- and micronutrient dyshomeostasis in the adverse structural remodelling of myocardium

    PubMed Central

    Weber, Karl T.; Weglicki, William B.; Simpson, Robert U.

    2009-01-01

    Hypertension and heart failure are worldwide health problems of ever-increasing proportions. A failure of the heart, during either systolic and/or diastolic phases of the cardiac cycle, has its origins rooted in an adverse structural, biochemical, and molecular remodelling of myocardium that involves its cellular constituents, extracellular matrix, and intramural coronary vasculature. Herein we focus on the pathogenic role of a dyshomeostasis of several macro- (i.e. Ca2+ and Mg2+) and micronutrients (i.e. Zn2+, Se2+, and vitamin D) in contributing to adverse remodelling of the myocardium and its failure as a pulsatile muscular pump. An improved understanding of how these macro- and micronutrients account for the causes and consequences of adverse myocardial remodelling carries with it the potential of identifying new biomarkers predictive of risk, onset and progression, and response to intervention(s), which could be monitored non-invasively and serially over time. Moreover, such incremental knowledge will serve as the underpinning to the development of novel strategies aimed at preventing and/or regressing the ongoing adverse remodelling of myocardium. The time is at hand to recognize the importance of macro- and micronutrient dyshomeostasis in the evaluation and management of hypertension and heart failure. PMID:18835843

  10. Protective effects of grape seed proanthocyanidins on cardiovascular remodeling in DOCA-salt hypertension rats.

    PubMed

    Huang, Ling-ling; Pan, Chen; Wang, Li; Ding, Ling; Guo, Kun; Wang, Hong-zhi; Xu, A-Man; Gao, Shan

    2015-08-01

    Cardiovascular remodeling, as a hallmark of hypertension-induced pathophysiology, causes substantial cardiovascular morbidity and mortality. There is increasing evidence that has demonstrated a broad spectrum of pharmacological and therapeutic benefits of grape seed proanthocyanidins (GSP) against oxidative stress and cardiovascular diseases. In this study, 180- to 200-g SD rats treated with DOCA (120 mg/week sc with 1% NaCl and 0.2% KCl in drinking water) and GSP (150, 240, 384 mg/kg) or amlodipine (ALM) (5 mg/kg) for 4 weeks were recruited. The protective effects of GSP on blood pressure and cardiovascular remodeling in rats with DOCA-salt-induced hypertension were investigated. Our results indicated that DOCA-salt could induce hypertension, cardiovascular remodeling and dysfunction, oxidative stress and the release of endothelin-1 (ET-1) and could increase JNK1/2 and p38MAPK phosphorylation. GSP or ALM treatments significantly improved hypertension, cardiovascular remodeling and dysfunction and oxidative stress, restrained the release of ET-1 and down-regulated the JNK1/2 and p38MAPK phosphorylation. These findings demonstrate that GSP has protective effects against increase of blood pressure induced by DOCA-salt hypertension and cardiovascular remodeling by inhibiting the reactive oxygen species/mitogen-activated protein kinase pathway via restraining the release of ET-1.

  11. UM206, a selective Frizzled antagonist, attenuates adverse remodeling after myocardial infarction in swine.

    PubMed

    Uitterdijk, André; Hermans, Kevin C M; de Wijs-Meijler, Daphne P M; Daskalopoulos, Evangelos P; Reiss, Irwin K; Duncker, Dirk J; Matthijs Blankesteijn, W; Merkus, Daphne

    2016-02-01

    Modulation of Wnt/Frizzled signaling with UM206 reduced infarct expansion and prevented heart failure development in mice, an effect that was accompanied by increased myofibroblast presence in the infarct, suggesting that Wnt/Frizzled signaling has a key role in cardiac remodeling following myocardial infarction (MI). This study investigated the effects of modulation of Wnt/Frizzled signaling with UM206 in a swine model of reperfused MI. For this purpose, seven swine with MI were treated with continuous infusion of UM206 for 5 weeks. Six control swine were treated with vehicle. Another eight swine were sham-operated. Cardiac function was determined by echo in awake swine. Infarct mass was estimated at baseline by heart-specific fatty acid-binding protein ELISA and at follow-up using planimetry. Components of Wnt/Frizzled signaling, myofibroblast presence, and extracellular matrix were measured at follow-up with qPCR and/or histology. Results show that UM206 treatment resulted in a significant decrease in infarct mass compared with baseline (-41±10%), whereas infarct mass remained stable in the Control-MI group (+3±17%). Progressive dilation of the left ventricle occurred in the Control-MI group between 3 and 5 weeks after MI, while adverse remodeling was halted in the UM206-treated group. mRNA expression for Frizzled-4 and the Frizzled co-receptor LRP5 was increased in UM206-treated swine as compared with Control-MI swine. Myofibroblast presence was significantly lower in infarcted tissue of the UM206-treated animals (1.53±0.43% vs 3.38±0.61%) at 5 weeks follow-up. This study demonstrates that UM206 treatment attenuates adverse remodeling in a swine model of reperfused MI, indicating that Wnt/Frizzled signaling is a promising target to improve infarct healing and limit post-MI remodeling.

  12. Residual Myocardial Iron Following Intramyocardial Hemorrhage During the Convalescent Phase of Reperfused ST-Segment–Elevation Myocardial Infarction and Adverse Left Ventricular Remodeling

    PubMed Central

    Bulluck, Heerajnarain; Rosmini, Stefania; Abdel-Gadir, Amna; White, Steven K.; Bhuva, Anish N.; Treibel, Thomas A.; Fontana, Marianna; Ramlall, Manish; Hamarneh, Ashraf; Sirker, Alex; Herrey, Anna S.; Manisty, Charlotte; Yellon, Derek M.; Kellman, Peter; Moon, James C.

    2016-01-01

    Background— The presence of intramyocardial hemorrhage (IMH) in ST-segment–elevation myocardial infarction patients reperfused by primary percutaneous coronary intervention has been associated with residual myocardial iron at follow-up, and its impact on adverse left ventricular (LV) remodeling is incompletely understood and is investigated here. Methods and Results— Forty-eight ST-segment–elevation myocardial infarction patients underwent cardiovascular magnetic resonance at 4±2 days post primary percutaneous coronary intervention, of whom 40 had a follow-up scan at 5±2 months. Native T1, T2, and T2* maps were acquired. Eight out of 40 (20%) patients developed adverse LV remodeling. A subset of 28 patients had matching T2* maps, of which 15/28 patients (54%) had IMH. Eighteen of 28 (64%) patients had microvascular obstruction on the acute scan, of whom 15/18 (83%) patients had microvascular obstruction with IMH. On the follow-up scan, 13/15 patients (87%) had evidence of residual iron within the infarct zone. Patients with residual iron had higher T2 in the infarct zone surrounding the residual iron when compared with those without. In patients with adverse LV remodeling, T2 in the infarct zone surrounding the residual iron was also higher than in those without (60 [54–64] ms versus 53 [51–56] ms; P=0.025). Acute myocardial infarct size, extent of microvascular obstruction, and IMH correlated with the change in LV end-diastolic volume (Pearson’s rho of 0.64, 0.59, and 0.66, respectively; P=0.18 and 0.62, respectively, for correlation coefficient comparison) and performed equally well on receiver operating characteristic curve for predicting adverse LV remodeling (area under the curve: 0.99, 0.94, and 0.95, respectively; P=0.19 for receiver operating characteristic curve comparison). Conclusions— The majority of ST-segment–elevation myocardial infarction patients with IMH had residual myocardial iron at follow-up. This was associated with

  13. Persistent Microvascular Obstruction After Myocardial Infarction Culminates in the Confluence of Ferric Iron Oxide Crystals, Proinflammatory Burden, and Adverse RemodelingCLINICAL PERSPECTIVE

    SciTech Connect

    Kali, Avinash; Cokic, Ivan; Tang, Richard; Dohnalkova, Alice; Kovarik, Libor; Yang, Hsin-Jung; Kumar, Andreas; Prato, Frank S.; Wood, John C.; Underhill, David; Marbán, Eduardo; Dharmakumar, Rohan

    2016-11-01

    Emerging evidence now supports the notion that persistent microvascular obstruction (PMO) may be more predictive of major adverse cardiovascular events than MI size itself. But, how PMO, a phenomenon limited to the acute/sub-acute period of MI, imparts adverse remodeling throughout the post MI period, particularly after its resolution, is incompletely understood. We hypothesized that PMOs resolve into chronic iron crystals within MI territories and actively impart a proinflammatory burden and adverse remodeling of infarction and LV in the chronic phase of MI. Canine models reperfused (n=20) and non-reperfused (n=20) with and without PMO were studied with serial cardiac MRI to characterize the spatiotemporal relationships between PMO, iron deposition, and infarct and LV remodeling indices between acute (day 7, post MI) and chronic (week 8, post MI). Histopathology and immunohistochemistry were used to validate the iron deposition, microscopically map and quantify the relationship between iron-rich chronic MI regions against pro-inflammatory macrophages, proinflammatory cytokines and matrix metalloproteinase. Atomic resolution transmission electron microscopy (TEM) was used to determine the crystallinity of iron and assess the physical effects of iron on lysosomes within macrophages, and energy-dispersive X-ray spectroscopy (EDS) to identify the chemical composition of the iron composite. Results showed that PMOs lead to iron deposition within chronic MI and that the extent of chronic iron deposition is strongly related to PMO Volume (r>0.6, p<0.001). TEM and EDS analysis showed that iron within chronic MI is found within macrophages as aggregates of nanocrystals of ~2.5 nm diameter in ferric state. Correlative histological studies showed that iron content, proinflammatory burden and collagen degrading enzyme were highly correlated (r >0.7, p<0.001). Iron within chronic MI was significantly associated with infarct resorption (r>0.5, p<0.001) and adverse structural (r

  14. Basic mechanisms for adverse cardiovascular events associated with air pollution

    PubMed Central

    Chin, Michael T.

    2015-01-01

    Air pollution is a significant cause of cardiovascular morbidity and mortality worldwide. Although the epidemiologic association between air pollution exposures and exacerbation of cardiovascular disease is well established, the mechanisms by which these exposures promote cardiovascular disease are incompletely understood. In this review I will give an overview of the components of air pollution, an overview of the cardiovascular effects of air pollution exposure and a review of the basic mechanisms that are activated by exposure to promote cardiovascular disease. PMID:25552258

  15. Estrogen inhibits mast cell chymase release to prevent pressure overload-induced adverse cardiac remodeling.

    PubMed

    Li, Jianping; Jubair, Shaiban; Janicki, Joseph S

    2015-02-01

    Estrogen regulation of myocardial chymase and chymase effects on cardiac remodeling are unknown. To test the hypothesis that estrogen prevents pressure overload-induced adverse cardiac remodeling by inhibiting mast cell (MC) chymase release, transverse aortic constriction or sham surgery was performed in 7-week-old intact and ovariectomized (OVX) rats. Three days before creating the constriction, additional groups of OVX rats began receiving 17β-estradiol, a chymase inhibitor, or a MC stabilizer. Left ventricular function, cardiomyocyte size, collagen volume fraction, MC density and degranulation, and myocardial and plasma chymase levels were assessed 18 days postsurgery. Aortic constriction resulted in ventricular hypertrophy in intact and OVX groups, whereas collagen volume fraction was increased only in OVX rats. Chymase protein content was increased by aortic constriction in the intact and OVX groups, with the magnitude of the increase being greater in OVX rats. MC density and degranulation, plasma chymase levels, and myocardial active transforming growth factor-β1 levels were increased by aortic constriction only in OVX rats. Estrogen replacement markedly attenuated the constriction-increased myocardial chymase, MC density and degranulation, plasma chymase, and myocardial active transforming growth factor-β1, as well as prevented ventricular hypertrophy and increased collagen volume fraction. Chymostatin attenuated the aortic constriction-induced ventricular hypertrophy and collagen volume fraction in the OVX rats similar to that achieved by estrogen replacement. Nedocromil yielded similar effects, except for the reduction of chymase content. We conclude that the estrogen-inhibited release of MC chymase is responsible for the cardioprotection against transverse aortic constriction-induced adverse cardiac remodeling.

  16. Mast Cell Inhibition Attenuates Myocardial Damage, Adverse Remodeling and Dysfunction during Fulminant Myocarditis in Rat

    PubMed Central

    Mina, Yair; Rinkevich-Shop, Shunit; Konen, Eli; Goitein, Orly; Kushnir, Tammar; Epstein, Frederick H.; Feinberg, Micha S.; Leor, Jonathan; Landa-Rouben, Natalie

    2013-01-01

    Background Myocarditis is a life-threatening heart disease characterized by myocardial inflammation, necrosis and chronic fibrosis. While mast cell inhibition has been suggested to prevents fibrosis in rat myocarditis, little is known about its effectiveness in attenuating cardiac remodeling and dysfunction in myocarditis. Thus, we sought to test the hypothesis that mast cell inhibition will attenuate the inflammatory reaction and associated left ventricular (LV) remodeling and dysfunction after fulminant autoimmune myocarditis. Methods and Results To induce experimental autoimmune myocarditis, we immunized 30 rats with porcine cardiac myosin twice at a 7-day interval. On day 8 animals were randomized into treatment either with an intraperitoneal (IP) injection of 25mg/kg of cromolyn sodium (n=13), or an equivalent volume (~0.5ml IP) of normal saline (n=11). All animals were scanned by serial echocardiography studies before treatment (baseline echocardiogram) and after 20 days of cromolyn sodium (28 days after immunization). Furthermore, serial cardiac magnetic resonance was performed in a subgroup of 12 animals. After 20 days of treatment (28 days from first immunization), hearts were harvested for histopathological analysis. By echocardiography, cromolyn sodium prevented LV dilatation and attenuated LV dysfunction, compared with controls. Postmortem analysis of hearts showed that cromolyn sodium reduced myocardial fibrosis, as well as the number and size of cardiac mast cells in the inflamed myocardium, compared with controls. Conclusions Our study suggests that mast cell inhibition with cromolyn sodium attenuates adverse LV remodeling and dysfunction in myocarditis. This mechanism-based therapy is clinically relevant and could improve the outcome of patients at risk for inflammatory cardiomyopathy and heart failure. PMID:23172937

  17. ACE2 and vasoactive peptides: novel players in cardiovascular/renal remodeling and hypertension.

    PubMed

    Mendoza-Torres, Evelyn; Oyarzún, Alejandra; Mondaca-Ruff, David; Azocar, Andrés; Castro, Pablo F; Jalil, Jorge E; Chiong, Mario; Lavandero, Sergio; Ocaranza, María Paz

    2015-08-01

    The renin-angiotensin system (RAS) is a key component of cardiovascular physiology and homeostasis due to its influence on the regulation of electrolyte balance, blood pressure, vascular tone and cardiovascular remodeling. Deregulation of this system contributes significantly to the pathophysiology of cardiovascular and renal diseases. Numerous studies have generated new perspectives about a noncanonical and protective RAS pathway that counteracts the proliferative and hypertensive effects of the classical angiotensin-converting enzyme (ACE)/angiotensin (Ang) II/angiotensin type 1 receptor (AT1R) axis. The key components of this pathway are ACE2 and its products, Ang-(1-7) and Ang-(1-9). These two vasoactive peptides act through the Mas receptor (MasR) and AT2R, respectively. The ACE2/Ang-(1-7)/MasR and ACE2/Ang-(1-9)/AT2R axes have opposite effects to those of the ACE/Ang II/AT1R axis, such as decreased proliferation and cardiovascular remodeling, increased production of nitric oxide and vasodilation. A novel peptide from the noncanonical pathway, alamandine, was recently identified in rats, mice and humans. This heptapeptide is generated by catalytic action of ACE2 on Ang A or through a decarboxylation reaction on Ang-(1-7). Alamandine produces the same effects as Ang-(1-7), such as vasodilation and prevention of fibrosis, by interacting with Mas-related GPCR, member D (MrgD). In this article, we review the key roles of ACE2 and the vasoactive peptides Ang-(1-7), Ang-(1-9) and alamandine as counter-regulators of the ACE-Ang II axis as well as the biological properties that allow them to regulate blood pressure and cardiovascular and renal remodeling.

  18. Overexpression of TIMP-1 in embryonic stem cells attenuates adverse cardiac remodeling following myocardial infarction.

    PubMed

    Glass, Carley; Singla, Dinender K

    2012-01-01

    Transplanted embryonic stem (ES) cells, following myocardial infarction (MI), contribute to limited cardiac repair and regeneration with improved function. Therefore, novel strategies are still needed to understand the effects of genetically modified transplanted stem cells on cardiac remodeling. The present study evaluates whether transplanted mouse ES cells overexpressing TIMP-1, an antiapoptotic and antifibrotic protein, can enhance cardiac myocyte differentiation, inhibit native cardiac myocyte apoptosis, reduce fibrosis, and improve cardiac function in the infarcted myocardium. MI was produced in C57BL/6 mice by coronary artery ligation. TIMP-1-ES cells, ES cells, or culture medium (control) were transplanted into the peri-infarct region of the heart. Immunofluorescence, TUNEL staining, caspase-3 activity, ELISAs, histology, and echocardiography were used to identify newly differentiated cardiac myocytes and assess apoptosis, fibrosis, and heart function. Two weeks post-MI, significantly (p < 0.05) enhanced engraftment and cardiac myocyte differentiation was observed in TIMP-1-ES cell-transplanted hearts compared with hearts transplanted with ES cells and control. Hearts transplanted with TIMP-1-ES cells demonstrated a reduction in apoptosis as well as an increase (p< 0.05) in p-Akt activity compared with ES cells or culture media controls. Infarct size and interstitial and vascular fibrosis were significantly (p< 0.05) decreased in the TIMP-1-ES cell group compared to controls. Furthermore, MMP-9, a key profibrotic protein, was significantly (p < 0.01) reduced following TIMP-1-ES cell transplantation. Echocardiography data showed fractional shortening and ejection fraction were significantly (p< 0.05) improved in the TIMP-1-ES cell group compared with respective controls. Our data suggest that transplanted ES cells overexpressing TIMP-1 attenuate adverse myocardial remodeling and improve cardiac function compared with ES cells that may have therapeutic

  19. Berberine attenuates adverse left ventricular remodeling and cardiac dysfunction after acute myocardial infarction in rats: role of autophagy.

    PubMed

    Zhang, Yao-Jun; Yang, Shao-Hua; Li, Ming-Hui; Iqbal, Javaid; Bourantas, Christos V; Mi, Qiong-Yu; Yu, Yi-Hui; Li, Jing-Jing; Zhao, Shu-Li; Tian, Nai-Liang; Chen, Shao-Liang

    2014-12-01

    The present study aimed to test the hypothesis that berberine, a plant-derived anti-oxidant, attenuates adverse left ventricular remodelling and improves cardiac function in a rat model of myocardial infarction (MI). Furthermore, the potential mechanisms that mediated the cardioprotective actions of berberine, in particular the effect on autophagy, were also investigated. Acute MI was induced by ligating the left anterior descending coronary artery of Sprague-Dawley rats. Cardiac function was assessed by transthoracic echocardiography. The protein activity/levels of autophagy related to signalling pathways (e.g. LC-3B, Beclin-1) were measured in myocardial tissue by immunohistochemical staining and western blot. Four weeks after MI, berberine significantly prevented cardiac dysfunction and adverse cardiac remodelling. MI rats treated with low dose berberine (10 mg/kg per day) showed higher left ventricular ejection fraction and fractional shortening than those treated with high-dose berberine (50 mg/kg per day). Both doses reduced interstitial fibrosis and post-MI adverse cardiac remodelling. The cardioprotective action of berberine was associated with increased LC-3B II and Beclin-1 expressions. Furthermore, cardioprotection with berberine was potentially related to p38 MAPK inhibition and phospho-Akt activation. The present in vivo study showed that berberine is effective in promoting autophagy, and subsequently attenuating left ventricular remodelling and cardiac dysfunction after MI. The potential underlying mechanism is augmentation of autophagy through inhibition of p38 MAPK and activation of phospho-Akt signalling pathways.

  20. Pathological Role of Serum- and Glucocorticoid-Regulated Kinase 1 in Adverse Ventricular Remodeling

    PubMed Central

    Das, Saumya; Aiba, Takeshi; Rosenberg, Michael; Hessler, Katherine; Xiao, Chunyang; Quintero, Pablo A.; Ottaviano, Filomena G.; Knight, Ashley C.; Graham, Evan L.; Boström, Pontus; Morissette, Michael R.; del Monte, Federica; Begley, Michael J.; Cantley, Lewis C.; Ellinor, Patrick T.; Tomaselli, Gordon F.; Rosenzweig, Anthony

    2012-01-01

    Background Heart failure is a growing cause of morbidity and mortality. Cardiac PI3-kinase signaling promotes cardiomyocyte survival and function but is paradoxically activated in heart failure, suggesting chronic activation of this pathway may become maladaptive. Here we investigated the downstream PI3-kinase effector, SGK1 (serum- and glucocorticoid-regulated kinase-1), in heart failure and its complications. Methods and Results We found that cardiac SGK1 is activated in human and murine heart failure. We investigated the role of SGK1 in the heart using cardiac-specific expression of constitutively-active or dominant-negative SGK1. Cardiac-specific activation of SGK1 in mice increased mortality, cardiac dysfunction, and ventricular arrhythmias. The pro-arrhythmic effects of SGK1 were linked to biochemical and functional changes in the cardiac sodium channel and could be reversed by treatment with ranolazine, a blocker of the late sodium current. Conversely, cardiac-specific inhibition of SGK1 protected mice after hemodynamic stress from fibrosis, heart failure, and sodium channel alterations. Conclusions SGK1 appears both necessary and sufficient for key features of adverse ventricular remodeling and may provide a novel therapeutic target in cardiac disease. PMID:23019294

  1. Silencing salusin-β attenuates cardiovascular remodeling and hypertension in spontaneously hypertensive rats

    PubMed Central

    Ren, Xing-Sheng; Ling, Li; Zhou, Bing; Han, Ying; Zhou, Ye-Bo; Chen, Qi; Li, Yue-Hua; Kang, Yu-Ming; Zhu, Guo-Qing

    2017-01-01

    Salusin-β is a bioactive peptide involved in vascular smooth muscle cell proliferation, vascular fibrosis and hypertension. The present study was designed to determine the effects of silencing salusin-β on hypertension and cardiovascular remodeling in spontaneously hypertensive rats (SHR). Thirteen-week-old male SHR and normotensive Wistar-Kyoto rats (WKY) were subjected to intravenous injection of PBS, adenoviral vectors encoding salusin-β shRNA (Ad-Sal-shRNA) or a scramble shRNA. Salusin-β levels in plasma, myocardium and mesenteric artery were increased in SHR. Silencing salusin-β had no significant effect on blood pressure in WKY, but reduced blood pressure in SHR. It reduced the ratio of left ventricle weight to body weight, cross-sectional areas of cardiocytes and perivascular fibrosis, and decreased the media thickness and the media/lumen ratio of arteries in SHR. Silencing salusin-β almost normalized plasma norepinephrine and angiotensin II levels in SHR. It prevented the upregulation of angiotensin II and AT1 receptors, and reduced the NAD(P)H oxidase activity and superoxide anion levels in myocardium and mesenteric artery of SHR. Knockdown of salusin-β attenuated cell proliferation and fibrosis in vascular smooth muscle cells from SHR. These results indicate that silencing salusin-β attenuates hypertension and cardiovascular remodeling in SHR. PMID:28230187

  2. Endothelial progenitor cell transplantation decreases lymphangiogenesis and adverse myocardial remodeling in a mouse model of acute myocardial infarction.

    PubMed

    Park, Jae-Hyeong; Yoon, Jung Yeon; Ko, Seon Mi; Jin, Seon Ah; Kim, Jun Hyung; Cho, Chung-Hyun; Kim, Jin-Man; Lee, Jae-Hwan; Choi, Si Wan; Seong, In-Whan; Jeong, Jin Ok

    2011-08-31

    Cardiac lymphatic system in the remodeling after acute myocardial infarction (AMI) has been overlooked. We wanted to investigate the role of bone marrow-derived endothelial progenitor cells (EPCs) and their contribution to lymphatic distribution in myocardial remodeling after AMI. Mouse (C57bl/6J) MI models were created by ligation of the left anterior descending coronary artery and were treated with phosphate buffered saline (PBS) or EPCs. Real-time RT-PCR with 2- to 4-week myocardial tissue samples revealed that lymphangiogenetic factors such as vascular endothelial growth factor (VEGF)-C (8.5 fold, P < 0.05), VEGF-D (6.1 fold, P < 0.05), Lyve-1 (15 fold, P < 0.05), and Prox-1 (11 fold, P < 0.05) were expressed at significantly higher levels in the PBS group than the EPC group. The PBS group also showed a significantly higher density of lymphatic vessels in the peri-infarction area. Echocardiography showed that from 2 weeks after the treatment, left ventricle (LV) dimensions at both systole and diastole were significantly smaller in the EPC group than in the PBS group (P < 0.01) and LV fractional shortening was higher in the EPC group accordingly (P < 0.01). Lymphangiogenic markers increased in a mouse MI model. EPC transplantation decreased lymphangiogenesis and adverse ventricular remodeling after AMI. These novel findings suggest that new lymphatic vessels may be formed in severely damaged myocardium, and may be involved in adverse myocardial remodeling after AMI.

  3. Safe Oral Triiodo-L-Thyronine Therapy Protects from Post-Infarct Cardiac Dysfunction and Arrhythmias without Cardiovascular Adverse Effects

    PubMed Central

    Rajagopalan, Viswanathan; Zhang, Youhua; Ojamaa, Kaie; Chen, Yue-feng; Pingitore, Alessandro; Pol, Christine J.; Saunders, Debra; Balasubramanian, Krithika; Towner, Rheal A.; Gerdes, A. Martin

    2016-01-01

    Background A large body of evidence suggests that thyroid hormones (THs) are beneficial for the treatment of cardiovascular disorders. We have shown that 3 days of triiodo-L-thyronine (T3) treatment in myocardial infarction (MI) rats increased left ventricular (LV) contractility and decreased myocyte apoptosis. However, no clinically translatable protocol is established for T3 treatment of ischemic heart disease. We hypothesized that low-dose oral T3 will offer safe therapeutic benefits in MI. Methods and Results Adult female rats underwent left coronary artery ligation or sham surgeries. T3 (~6 μg/kg/day) was available in drinking water ad libitum immediately following MI and continuing for 2 month(s) (mo). Compared to vehicle-treated MI, the oral T3-treated MI group at 2 mo had markedly improved anesthetized Magnetic Resonance Imaging-based LV ejection fraction and volumes without significant negative changes in heart rate, serum TH levels or heart weight, indicating safe therapy. Remarkably, T3 decreased the incidence of inducible atrial tachyarrhythmias by 88% and improved remodeling. These were accompanied by restoration of gene expression involving several key pathways including thyroid, ion channels, fibrosis, sympathetic, mitochondria and autophagy. Conclusions Low-dose oral T3 dramatically improved post-MI cardiac performance, decreased atrial arrhythmias and cardiac remodeling, and reversed many adverse changes in gene expression with no observable negative effects. This study also provides a safe and effective treatment/monitoring protocol that should readily translate to humans. PMID:26981865

  4. Pattern of Adverse Drug Reactions Reported with Cardiovascular Drugs in a Tertiary Care Teaching Hospital

    PubMed Central

    Palaniappan, Muthiah; George, Melvin; Subramaniyan, Ganesan; Dkhar, Steven Aibor; Pillai, Ajith Ananthakrishna; Jayaraman, Balachander; Chandrasekaran, Adithan

    2015-01-01

    Background Cardiovascular diseases (CVD) are one of the leading causes of non-communicable disease related deaths globally. Patients with cardiovascular diseases are often prescribed multiple drugs and have higher risk for developing more adverse drug reactions due to polypharmacy. Aim To evaluate the pattern of adverse drug reactions reported with cardiovascular drugs in an adverse drug reaction monitoring centre (AMC) of a tertiary care hospital. Settings and Design Adverse drug reactions related to cardiovascular drugs reported to an AMC of a tertiary care hospital were included in this prospective observational study. Materials and Methods All cardiovascular drugs related adverse drug reactions (ADRs) received in AMC through spontaneous reporting system and active surveillance method from January 2011 to March 2013 were analysed for demographic profile, ADR pattern, severity and causality assessment. Statistical Analysis used The study used descriptive statistics and the values were expressed in numbers and percentages. Results During the study period, a total of 463 ADRs were reported from 397 patients which included 319 males (80.4%) and 78 females (19.6%). The cardiovascular drug related reports constituted 18.1% of the total 2188 ADR reports. In this study, the most common ADRs observed were cough (17.3%), gastritis (7.5%) and fatigue (6.5%). Assessment of ADRs using WHO-causality scale revealed that 62% of ADRs were possible, 28.2% certain and 6.8% probable. As per Naranjo’s scale most of the reports were possible (68.8%) followed by probable (29.7%). According to Hartwig severity scale majority of the reports were mild (95%) followed by moderate (4.5%). A system wise classification of ADRs showed that gastrointestinal system (20.7%) related reactions were the most frequently observed adverse reactions followed by respiratory system (18.4%) related adverse effects. From the reported ADRs, the drugs most commonly associated with ADRs were found to be

  5. An update on predictive biomarkers for major adverse cardiovascular events in patients undergoing vascular surgery.

    PubMed

    Patelis, Nikolaos; Kouvelos, George N; Koutsoumpelis, Andreas; Moris, Demetrios; Matsagkas, Miltiadis I; Arnaoutoglou, Eleni

    2016-09-01

    Cardiovascular complications signify a major cause of morbidity and mortality in patients undergoing vascular surgery adversely affecting both short- and long-term prognosis. During the last decade, unmet needs for a distinct cardiovascular risk assessment have led to an intensive research for establishment of biomarkers with sufficient predictive value. This literature review aims in examining the value of several biomarkers in predicting the incidence of major adverse cardiac events in vascular surgery patients. We reviewed the English language literature and analyzed the biomarkers as independent predictors or in correlation with other factors. We found several biomarkers showing a significant predictive value for a major adverse cardiovascular event in patients undergoing vascular surgery. These biomarkers can be used in clinical practice as outcome predictors, although sensitivity and specificity varies. Detection of subclinical cardiovascular damage may improve total risk estimation and facilitate clinical assessment of patients at risk for future cardiovascular events. The wide variety of sensitivity and specificity in predicting a MACE of these biomarkers exert the need for future trials in which these markers will be tested as adjunctive tools of cardiovascular risk estimation scoring systems.

  6. Soy protein hydrolysate ameliorates cardiovascular remodeling in rats with L-NAME-induced hypertension.

    PubMed

    Yang, Hsin-Yi; Yang, Suh-Ching; Chen, Shu-Tzu; Chen, Jiun-Rong

    2008-12-01

    Pepsin-digested soy protein hydrolysate has been reported to be responsible for many of the physiological benefits associated with soy protein consumption. In the present study, we investigated the effects of soy protein hydrolysate with angiotensin-converting enzyme (ACE) inhibitory potential on the blood pressure and cardiovascular remodeling in rats with N(omega)-nitro-L-arginine methyl ester hydrochloride (L-NAME)-induced hypertension. Rats were fed a diet containing L-NAME (50 mg/kg body weight) with or without soy protein hydrolysate (1%, 3% or 5%) for 6 weeks. We found that ingestion of soy protein hydrolysate retarded the development of hypertension during the 6-week experimental period without affecting the amount of food intake. Although there was no difference in plasma ACE activity or tissue nitric oxide levels, ACE activity in the heart of rats consuming soy protein hydrolysate was significantly lower than that of the control group. Moreover, cardiac malonaldehyde and tumor necrosis factor-alpha concentrations were also lower in the soy protein hydrolysate group. No difference in plasminogen activator inhibitor-1 level was found in plasma or cardiovascular tissue. In the histopathological analysis, we also found that soy protein hydrolysate ameliorated inflammation and left ventricle hypertrophy in the heart. These findings suggest that soy protein hydrolysate might not only improve the balance between circulating nitric oxide and renin-angiotensin system but also show beneficial effects on cardiovascular tissue through its ACE inhibitory activity.

  7. Elastin-insufficient mice show normal cardiovascular remodeling in 2K1C hypertension despite higher baseline pressure and unique cardiovascular architecture.

    PubMed

    Wagenseil, Jessica E; Knutsen, Russell H; Li, Dean Y; Mecham, Robert P

    2007-07-01

    Mice heterozygous for the elastin gene (ELN(+/-)) show unique cardiovascular properties, including increased blood pressure and smaller, thinner arteries with an increased number of lamellar units. Some of these properties are also observed in humans with supravalvular aortic stenosis, a disease caused by functional heterozygosity of the elastin gene. The arterial geometry in ELN(+/-) mice is contrary to the increased thickness that would be expected in an animal demonstrating hypertensive remodeling. To determine whether this is due to a decreased capability for cardiovascular remodeling or to a novel adaptation of the ELN(+/-) cardiovascular system, we increased blood pressure in adult ELN(+/+) and ELN(+/-) mice using the two-kidney, one-clip Goldblatt model of hypertension. Successfully clipped mice have a systolic pressure increase of at least 15 mmHg over sham-operated animals. ELN(+/+) and ELN(+/-)-clipped mice show significant increases over sham-operated mice in cardiac weight, arterial thickness, and arterial cross-sectional area with no changes in lamellar number. There are no significant differences in most mechanical properties with clipping in either genotype. These results indicate that ELN(+/+) and ELN(+/-) hearts and arteries remodel similarly in response to adult induced hypertension. Therefore, the cardiovascular properties of ELN(+/-) mice are likely due to developmental remodeling in response to altered hemodynamics and reduced elastin levels.

  8. Role of MicroRNAs in Renin-Angiotensin-Aldosterone System-Mediated Cardiovascular Inflammation and Remodeling

    PubMed Central

    Tchounwou, Paul B.

    2015-01-01

    MicroRNAs are endogenous regulators of gene expression either by inhibiting translation or protein degradation. Recent studies indicate that microRNAs play a role in cardiovascular disease and renin-angiotensin-aldosterone system- (RAAS-) mediated cardiovascular inflammation, either as mediators or being targeted by RAAS pharmacological inhibitors. The exact role(s) of microRNAs in RAAS-mediated cardiovascular inflammation and remodeling is/are still in early stage of investigation. However, few microRNAs have been shown to play a role in RAAS signaling, particularly miR-155, miR-146a/b, miR-132/122, and miR-483-3p. Identification of specific microRNAs and their targets and elucidating microRNA-regulated mechanisms associated RAS-mediated cardiovascular inflammation and remodeling might lead to the development of novel pharmacological strategies to target RAAS-mediated vascular pathologies. This paper reviews microRNAs role in inflammatory factors mediating cardiovascular inflammation and RAAS genes and the effect of RAAS pharmacological inhibition on microRNAs and the resolution of RAAS-mediated cardiovascular inflammation and remodeling. Also, this paper discusses the advances on microRNAs-based therapeutic approaches that may be important in targeting RAAS signaling. PMID:26064773

  9. Cardiovascular function, compliance, and connective tissue remodeling in the turtle, Trachemys scripta, following thermal acclimation

    PubMed Central

    Keen, Adam N.; Crossley, Dane A.

    2016-01-01

    Low temperature directly alters cardiovascular physiology in freshwater turtles, causing bradycardia, arterial hypotension, and a reduction in systemic blood pressure. At the same time, blood viscosity and systemic resistance increase, as does sensitivity to cardiac preload (e.g., via the Frank-Starling response). However, the long-term effects of these seasonal responses on the cardiovascular system are unclear. We acclimated red-eared slider turtles to a control temperature (25°C) or to chronic cold (5°C). To differentiate the direct effects of temperature from a cold-induced remodeling response, all measurements were conducted at the control temperature (25°C). In anesthetized turtles, cold acclimation reduced systemic resistance by 1.8-fold and increased systemic blood flow by 1.4-fold, resulting in a 2.3-fold higher right to left (R-L; net systemic) cardiac shunt flow and a 1.8-fold greater shunt fraction. Following a volume load by bolus injection of saline (calculated to increase stroke volume by 5-fold, ∼2.2% of total blood volume), systemic resistance was reduced while pulmonary blood flow and systemic pressure increased. An increased systemic blood flow meant the R-L cardiac shunt was further pronounced. In the isolated ventricle, passive stiffness was increased following cold acclimation with 4.2-fold greater collagen deposition in the myocardium. Histological sections of the major outflow arteries revealed a 1.4-fold higher elastin content in cold-acclimated animals. These results suggest that cold acclimation alters cardiac shunting patterns with an increased R-L shunt flow, achieved through reducing systemic resistance and increasing systemic blood flow. Furthermore, our data suggests that cold-induced cardiac remodeling may reduce the stress of high cardiac preload by increasing compliance of the vasculature and decreasing compliance of the ventricle. Together, these responses could compensate for reduced systolic function at low temperatures in

  10. Circulating Endothelial Cells and Endothelial Function predict Major Adverse Cardiac Events and Early Adverse Left Ventricular Remodeling in Patients with ST-Segment Elevation Myocardial Infarction

    PubMed Central

    Magdy, Abdel Hamid; Bakhoum, Sameh; Sharaf, Yasser; Sabry, Dina; El-Gengehe, Ahmed T; Abdel-Latif, Ahmed

    2016-01-01

    Endothelial progenitor cells (EPCs) and circulating endothelial cells (CECs) are mobilized from the bone marrow and increase in the early phase after ST-elevation myocardial infarction (STEMI). The aim of this study was to assess the prognostic significance of CECs and indices of endothelial dysfunction in patients with STEMI. In 78 patients with acute STEMI, characterization of CD34+/VEGFR2+ CECs, and indices of endothelial damage/dysfunction such as brachial artery flow mediated dilatation (FMD) were determined. Blood samples for CECs assessment and quantification were obtained within 24 hours of admission and FMD was assessed during the index hospitalization. At 30 days follow up, the primary composite end point of major cardiac adverse events (MACE) consisting of all-cause mortality, recurrent non-fatal MI, or heart failure and the secondary endpoint of early adverse left ventricular (LV) remodeling were analyzed. The 17 patients (22%) who developed MACE had significantly higher CEC level (P = 0.004), vWF level (P =0.028), and significantly lower FMD (P = 0.006) compared to the remaining patients. Logistic regression analysis showed that CECs level and LV ejection fraction were independent predictors of MACE. The areas under the receiver operating characteristic curves (ROC) for CEC level, FMD, and the logistic model with both markers were 0.73, 0.75, and 0.82 respectively for prediction of the MACE. The 16 patients who developed the secondary endpoint had significantly higher CEC level compared to remaining patients (p =0.038). In conclusion, increased circulating endothelial cells and endothelial dysfunction predicted the occurrence of major adverse cardiac events and adverse cardiac remodeling in patients with STEMI. PMID:26864952

  11. Adverse Pregnancy Conditions, Infertility, and Future Cardiovascular Risk: Implications for Mother and Child

    PubMed Central

    Park, Ki; Wei, Janet; Minissian, Margo; Merz, C. Noel Bairey

    2016-01-01

    Adverse pregnancy conditions in women are common and have been associated with adverse cardiovascular and metabolic outcomes such as myocardial infarction and stroke. As risk stratification in women is often suboptimal, recognition of non-traditional risk factors such as hypertensive disorders of pregnancy and premature delivery has become increasingly important. Additionally, such conditions may also increase the risk of cardiovascular disease in the children of afflicted women. In this review, we aim to highlight these conditions, along with infertility, and the association between such conditions and various cardiovascular outcomes and related maternal risk along with potential translation of risk to offspring. We will also discuss proposed mechanisms driving these associations as well as potential opportunities for screening and risk modification. PMID:26037616

  12. Effect of Intensive Blood Pressure Control on Cardiovascular Remodeling in Hypertensive Patients with Nephrosclerosis

    PubMed Central

    Kwagyan, John; Pogue, Velvie; Xu, Shichen; Greene, Tom; Wang, Xuelei; Agodoa, Lawrence

    2013-01-01

    Pulse pressure (PP), a marker of arterial system properties, has been linked to cardiovascular (CV) complications. We examined (a) association between unit changes of PP and (i) composite CV outcomes and (ii) development of left-ventricular hypertrophy (LVH) and (b) effect of mean arterial pressure (MAP) control on rate of change in PP. We studied 1094 nondiabetics with nephrosclerosis in the African American Study of Kidney Disease and Hypertension. Subjects were randomly assigned to usual MAP goal (102–107 mmHg) or a lower MAP goal (≤92 mmHg) and randomized to beta-blocker, angiotensin converting enzyme inhibitor, or calcium channel blocker. After covariate adjustment, a higher PP was associated with increased risk of CV outcome (RR = 1.28, CI = 1.11–1.47, P < 0.01) and new LVH (RR = 1.26, CI = 1.04–1.54, P = 0.02). PP increased at a greater rate in the usual than in lower MAP groups (slope ± SE: 1.08 ± 0.15 versus 0.42 ± 0.15 mmHg/year, P = 0.002), but not by the antihypertensive treatment assignment. Observations indicate that control to a lower MAP slows the progression of PP, a correlate of cardiovascular remodeling and complications, and may be beneficial to CV health. PMID:24102027

  13. Oral administration of veratric acid, a constituent of vegetables and fruits, prevents cardiovascular remodelling in hypertensive rats: a functional evaluation.

    PubMed

    Saravanakumar, Murugesan; Raja, Boobalan; Manivannan, Jeganathan; Silambarasan, Thangarasu; Prahalathan, Pichavaram; Kumar, Subramanian; Mishra, Santosh Kumar

    2015-11-14

    In our previous studies, veratric acid (VA) shows beneficial effect on hypertension and its associated dyslipidaemia. In continuation, this study was designed to investigate the effect of VA, one of the major benzoic acid derivatives from vegetables and fruits, on cardiovascular remodelling in hypertensive rats, primarily assessed by functional studies using Langendorff isolated heart system and organ bath system. Hypertension was induced in male albino Wistar rats by oral administration of N ω -nitro-l-arginine methyl ester hydrochloride (l-NAME) (40 mg/kg body weight (b.w.)) in drinking water for 4 weeks. VA was orally administered at a dose of 40 mg/kg b.w. l-NAME-treated rats showed impaired cardiac ventricular and vascular function, evaluated by Langendorff isolated heart system and organ bath studies, respectively; a significant increase in the lipid peroxidation products such as thiobarbituric acid-reactive substances and lipid hydroperoxides in aorta; and a significant decrease in the activities of superoxide dismutase, catalase, glutathione peroxidase and levels of GSH, vitamin C and vitamin E in aorta. Fibrotic remodelling of the aorta and heart were assessed by Masson's Trichrome staining and Van Gieson's staining, respectively. In addition, l-NAME rats showed increased heart fibronectin expression assessed by immunohistochemical analysis. VA supplementation throughout the experimental period significantly normalised cardiovascular function, oxidative stress, antioxidant status and fibrotic remodelling of tissues. These results of the present study conclude that VA acts as a protective agent against hypertension-associated cardiovascular remodelling.

  14. Sinapic Acid Prevents Hypertension and Cardiovascular Remodeling in Pharmacological Model of Nitric Oxide Inhibited Rats

    PubMed Central

    Silambarasan, Thangarasu; Manivannan, Jeganathan; Krishna Priya, Mani; Suganya, Natarajan; Chatterjee, Suvro; Raja, Boobalan

    2014-01-01

    Objectives Hypertensive heart disease is a constellation of abnormalities that includes cardiac fibrosis in response to elevated blood pressure, systolic and diastolic dysfunction. The present study was undertaken to examine the effect of sinapic acid on high blood pressure and cardiovascular remodeling. Methods An experimental hypertensive animal model was induced by L-NAME intake on rats. Sinapic acid (SA) was orally administered at a dose of 10, 20 and 40 mg/kg body weight (b.w.). Blood pressure was measured by tail cuff plethysmography system. Cardiac and vascular function was evaluated by Langendorff isolated heart system and organ bath studies, respectively. Fibrotic remodeling of heart and aorta was assessed by histopathologic analyses. Oxidative stress was measured by biochemical assays. mRNA and protein expressions were assessed by RT-qPCR and western blot, respectively. In order to confirm the protective role of SA on endothelial cells through its antioxidant property, we have utilized the in vitro model of H2O2-induced oxidative stress in EA.hy926 endothelial cells. Results Rats with hypertension showed elevated blood pressure, declined myocardial performance associated with myocardial hypertrophy and fibrosis, diminished vascular response, nitric oxide (NO) metabolites level, elevated markers of oxidative stress (TBARS, LOOH), ACE activity, depleted antioxidant system (SOD, CAT, GPx, reduced GSH), aberrant expression of TGF-β, β-MHC, eNOS mRNAs and eNOS protein. Remarkably, SA attenuated high blood pressure, myocardial, vascular dysfunction, cardiac fibrosis, oxidative stress and ACE activity. Level of NO metabolites, antioxidant system, and altered gene expression were also repaired by SA treatment. Results of in vitro study showed that, SA protects endothelial cells from oxidative stress and enhance the production of NO in a concentration dependent manner. Conclusions Taken together, these results suggest that SA may have beneficial role in the

  15. The dynamic interaction between matrix metalloproteinase activity and adverse myocardial remodeling.

    PubMed

    Janicki, Joseph S; Brower, Gregory L; Gardner, Jason D; Chancey, Amanda L; Stewart, James A

    2004-01-01

    The process of cardiac remodeling in response to cardiac injury and/or persistent elevations in wall stress generally relates to the progressive changes that occur in ventricular chamber dimensions and the various components of the myocardium, in particular the cardiomyocytes and the extracellular matrix. Volume overload, pressure overload or myocardial injury produces a sustained abnormal elevation in myocardial wall stress which initiates cardiac remodeling that frequently results in ventricular decompensation and heart failure. Regardless of the inciting cause, there appear to be three distinct phases to this process. In the initial phase, fibrillar collagen is partially degraded secondary to increased matrix metalloproteinase (MMP) activity. Following this, there is a chronic compensatory phase during which MMP activity and collagen concentration return to normal while cardiomyocyte size continues to progressively increase. The final phase is attained once the compensatory hypertrophic mechanisms are exhausted and is characterized by elevated MMP activity, marked ventricular dilatation and prominent fibrosis. Details of this progressive, dynamic remodeling process and its effect on ventricular function during chronic volume overload, chronic pressure overload and following myocardial infarction will be the focus of this article.

  16. Tumor Necrosis Factor Receptor Associated Factor 2 Signaling Provokes Adverse Cardiac Remodeling in the Adult Mammalian Heart

    PubMed Central

    Divakaran, Vijay G.; Evans, Sarah; Topkara, Veli K.; Diwan, Abhinav; Burchfield, Jana; Gao, Feng; Dong, Jianwen; Tzeng, Huei-Ping; Sivasubramanian, Natarajan; Barger, Philip M.; Mann, Douglas L.

    2013-01-01

    Background Tumor necrosis factor (TNF) superfamily ligands that provoke a dilated cardiac phenotype signal through a common scaffolding protein termed TNF receptor associated factor 2 (TRAF2); however, virtually nothing is known with regard to TRAF2 signaling in the adult mammalian heart. Methods and Results We generated multiple founder lines of mice with cardiac restricted overexpression of TRAF2 and characterized the phenotype of mice with higher expression levels of TRAF2 (MHC-TRAF2HC). MHC-TRAF2HC transgenic mice developed a time-dependent increase in cardiac hypertrophy, LV dilation and adverse LV remodeling, and a significant decrease in LV +dP/dt and −dP/dt when compared to littermate (LM) controls (p < 0.05 compared to LM). During the early phases of LV remodeling there was a significant increase in total matrix metalloproteinase (MMP) activity that corresponded with a decrease in total myocardial fibrillar collagen content. As the MHC-TRAF2HC mice aged, there was a significant decrease in total MMP activity accompanied by an increase in total fibrillar collagen content and an increase in myocardial tissue inhibitor of metalloproteinase-1 levels. There was a significant increase in NF-κB activation at 4 – 12 weeks and JNK activation at 4 weeks in the MHCs TRAF2HC mice. Transciptional profiling revealed that > 95% of the hypertrophic/dilated cardiomyopathy-related genes that were significantly upregulated genes in the MHC-TRAF2HC hearts contained κB elements in their promoters. Conclusions These results show for the first time that targeted overexpression of TRAF2 is sufficient to mediate adverse cardiac remodeling in the heart. PMID:23493088

  17. Endothelial SIRT1 prevents adverse arterial remodeling by facilitating HERC2-mediated degradation of acetylated LKB1

    PubMed Central

    Bai, Bo; Man, Andy W.C.; Yang, Kangmin; Guo, Yumeng; Xu, Cheng; Tse, Hung-Fat; Han, Weiping; Bloksgaard, Maria; De Mey, Jo G.R.; Vanhoutte, Paul M.; Xu, Aimin; Wang, Yu

    2016-01-01

    Aims-SIRT1 exerts potent activity against cellular senescence and vascular ageing. By decreasing LKB1 protein levels, it promotes the survival and regeneration of endothelial cells. The present study aims to investigate the molecular mechanisms underlying SIRT1-mediated LKB1 degradation for the prevention of vascular ageing. Methods and Results-Co-immunoprecipitation assay demonstrated that SIRT1, via its amino-terminus, binds to the DOC domain of HERC2 [HECT and RLD domain containing E3 ubiquitin protein ligase 2], which then ubiquitinates LKB1 in the nuclear compartment of endothelial cells. Site-directed mutagenesis revealed that acetylation at lysine (K) 64 of LKB1 triggers the formation of SIRT1/HERC2/LKB1 protein complex and subsequent proteasomal degradation. In vitro cellular studies suggested that accumulation of acetylated LKB1 in the nucleus leads to endothelial activation, in turn stimulating the proliferation of vascular smooth muscle cells and the production of extracellular matrix proteins. Chromatin immunoprecipitation quantitative PCR confirmed that acetylated LKB1 interacts with and activates TGFβ1 promoter, which is inhibited by SIRT1. Knocking down either SIRT1 or HERC2 results in an increased association of LKB1 with the positive regulatory elements of TGFβ1 promoter. In mice without endothelial nitric oxide synthase, selective overexpression of human SIRT1 in endothelium prevents hypertension and age-related adverse arterial remodeling. Lentiviral-mediated knockdown of HERC2 abolishes the beneficial effects of endothelial SIRT1 on both arterial remodeling and arterial blood pressure control. Conclusion-By downregulating acetylated LKB1 protein via HERC2, SIRT1 fine-tunes the crosstalk between endothelial and vascular smooth muscle cells to prevent adverse arterial remodeling and maintain vascular homeostasis. PMID:27259994

  18. Endothelial SIRT1 prevents adverse arterial remodeling by facilitating HERC2-mediated degradation of acetylated LKB1.

    PubMed

    Bai, Bo; Man, Andy W C; Yang, Kangmin; Guo, Yumeng; Xu, Cheng; Tse, Hung-Fat; Han, Weiping; Bloksgaard, Maria; De Mey, Jo G R; Vanhoutte, Paul M; Xu, Aimin; Wang, Yu

    2016-06-28

    Aims-SIRT1 exerts potent activity against cellular senescence and vascular ageing. By decreasing LKB1 protein levels, it promotes the survival and regeneration of endothelial cells. The present study aims to investigate the molecular mechanisms underlying SIRT1-mediated LKB1 degradation for the prevention of vascular ageing.Methods and Results-Co-immunoprecipitation assay demonstrated that SIRT1, via its amino-terminus, binds to the DOC domain of HERC2 [HECT and RLD domain containing E3 ubiquitin protein ligase 2], which then ubiquitinates LKB1 in the nuclear compartment of endothelial cells. Site-directed mutagenesis revealed that acetylation at lysine (K) 64 of LKB1 triggers the formation of SIRT1/HERC2/LKB1 protein complex and subsequent proteasomal degradation. In vitro cellular studies suggested that accumulation of acetylated LKB1 in the nucleus leads to endothelial activation, in turn stimulating the proliferation of vascular smooth muscle cells and the production of extracellular matrix proteins. Chromatin immunoprecipitation quantitative PCR confirmed that acetylated LKB1 interacts with and activates TGFβ1 promoter, which is inhibited by SIRT1. Knocking down either SIRT1 or HERC2 results in an increased association of LKB1 with the positive regulatory elements of TGFβ1 promoter. In mice without endothelial nitric oxide synthase, selective overexpression of human SIRT1 in endothelium prevents hypertension and age-related adverse arterial remodeling. Lentiviral-mediated knockdown of HERC2 abolishes the beneficial effects of endothelial SIRT1 on both arterial remodeling and arterial blood pressure control.Conclusion-By downregulating acetylated LKB1 protein via HERC2, SIRT1 fine-tunes the crosstalk between endothelial and vascular smooth muscle cells to prevent adverse arterial remodeling and maintain vascular homeostasis.

  19. Systemic glucocorticoid therapy: a review of its metabolic and cardiovascular adverse events.

    PubMed

    Fardet, Laurence; Fève, Bruno

    2014-10-01

    The prevalence of use of long-term systemic glucocorticoid therapy in the general adult population is 1 %. This figure increases to up to 3 % in elderly women. Metabolic (i.e. diabetes mellitus, dyslipidemia, weight gain, lipodystrophy) and cardiovascular (i.e. hypertension, cardiovascular events) adverse events are commonly observed in these patients and can be life threatening. Paradoxically, there is very few data on some of these adverse events and many of the available studies remain inconclusive. Incidence of and risk factors for dyslipidemia, weight gain and lipodystrophy are poorly defined. The optimal treatment plan for patients diagnosed with glucocorticoid-induced diabetes or hypertension is undetermined. Finally, there is no medical consensus on the best strategies for the prevention and detection of these complications. However, certain of these questions can be answered by looking at available data on patients with endogenous hypercortisolism (i.e. Cushing's syndrome). This article reviews the pathophysiology, incidence, risk factors, screening, and treatment of glucocorticoid-induced weight gain, lipodystrophy, diabetes, dyslipidemia, hypertension, and cardiovascular events. It also focuses on the possible prevention of these adverse events by targeting the glucocorticoid receptor using selective glucocorticoid receptor modulators.

  20. Targeted inhibition of Focal Adhesion Kinase Attenuates Cardiac Fibrosis and Preserves Heart Function in Adverse Cardiac Remodeling

    PubMed Central

    Zhang, Jie; Fan, Guangpu; Zhao, Hui; Wang, Zhiwei; Li, Fei; Zhang, Peide; Zhang, Jing; Wang, Xu; Wang, Wei

    2017-01-01

    Cardiac fibrosis in post-myocardial infarction (MI), seen in both infarcted and non-infarcted myocardium, is beneficial to the recovery of heart function. But progressively pathological fibrosis impairs ventricular function and leads to poor prognosis. FAK has recently received attention as a potential mediator of fibrosis, our previous study reported that pharmacological inhibition of FAK can attenuate cardiac fibrosis in post MI models. However, the long-term effects on cardiac function and adverse cardiac remodelling were not clearly investigated. In this study, we tried to determine the preliminary mechanisms in regulating CF transformation to myofibroblasts and ECM synthesis relevant to the development of adverse cardiac remolding in vivo and in vitro. Our study provides even more evidence that FAK is directly related to the activation of CF in hypoxia condition in a dose-dependent and time-dependent manner. Pharmacological inhibition of FAK significantly reduces myofibroblast differentiation; our in vivo data demonstrated that a FAK inhibitor significantly decreases fibrotic score, and preserves partial left ventricular function. Both PI3K/AKT signalling and ERK1/2 are necessary for hypoxia-induced CF differentiation and ECM synthesis; this process also involves lysyl oxidase (LOX). These findings suggest that pharmacological inhibition of FAK may become an effective therapeutic strategy against adverse fibrosis. PMID:28225063

  1. Vagus nerve stimulation mitigates intrinsic cardiac neuronal and adverse myocyte remodeling postmyocardial infarction.

    PubMed

    Beaumont, Eric; Southerland, Elizabeth M; Hardwick, Jean C; Wright, Gary L; Ryan, Shannon; Li, Ying; KenKnight, Bruce H; Armour, J Andrew; Ardell, Jeffrey L

    2015-10-01

    This paper aims to determine whether chronic vagus nerve stimulation (VNS) mitigates myocardial infarction (MI)-induced remodeling of the intrinsic cardiac nervous system (ICNS), along with the cardiac tissue it regulates. Guinea pigs underwent VNS implantation on the right cervical vagus. Two weeks later, MI was produced by ligating the ventral descending coronary artery. VNS stimulation started 7 days post-MI (20 Hz, 0.9 ± 0.2 mA, 14 s on, 48 s off; VNS-MI, n = 7) and was compared with time-matched MI animals with sham VNS (MI n = 7) vs. untreated controls (n = 8). Echocardiograms were performed before and at 90 days post-MI. At termination, IC neuronal intracellular voltage recordings were obtained from whole-mount neuronal plexuses. MI increased left ventricular end systolic volume (LVESV) 30% (P = 0.027) and reduced LV ejection fraction (LVEF) 6.5% (P < 0.001) at 90 days post-MI compared with baseline. In the VNS-MI group, LVESV and LVEF did not differ from baseline. IC neurons showed depolarization of resting membrane potentials and increased input resistance in MI compared with VNS-MI and sham controls (P < 0.05). Neuronal excitability and sensitivity to norepinephrine increased in MI and VNS-MI groups compared with controls (P < 0.05). Synaptic efficacy, as determined by evoked responses to stimulating input axons, was reduced in VNS-MI compared with MI or controls (P < 0.05). VNS induced changes in myocytes, consistent with enhanced glycogenolysis, and blunted the MI-induced increase in the proapoptotic Bcl-2-associated X protein (P < 0.05). VNS mitigates MI-induced remodeling of the ICNS, correspondingly preserving ventricular function via both neural and cardiomyocyte-dependent actions.

  2. Injected nanoparticles: the combination of experimental systems to assess cardiovascular adverse effects.

    PubMed

    Vlasova, Maria A; Tarasova, Olga S; Riikonen, Joakim; Raula, Janne; Lobach, Anatoly S; Borzykh, Anna A; Smirin, Boris V; Kauppinen, Esko I; Eletskii, Alexander V; Herzig, Karl-Heinz; Salonen, Jarno; Tavi, Pasi; Lehto, Vesa-Pekka; Järvinen, Kristiina

    2014-05-01

    When nanocarriers are used for drug delivery they can often achieve superior therapeutic outcomes over standard drug formulations. However, concerns about their adverse effects are growing due to the association between exposure to certain nanosized particles and cardiovascular events. Here we examine the impact of intravenously injected drug-free nanocarriers on the cardiovasculature at both the systemic and organ levels. We combine in vivo and in vitro methods to enable monitoring of hemodynamic parameters in conscious rats, assessments of the function of the vessels after sub-chronic systemic exposure to nanocarriers and evaluation of the direct effect of nanocarriers on vascular tone. We demonstrate that nanocarriers can decrease blood pressure and increase heart rate in vivo via various mechanisms. Depending on the type, nanocarriers induce the dilation of the resistance arteries and/or change the responses induced by vasoconstrictor or vasodilator drugs. No direct correlation between physicochemical properties and cardiovascular effects of nanoparticles was observed. The proposed combination of methods empowers the studies of cardiovascular adverse effects of the nanocarriers.

  3. Targeting TRAF3IP2 by Genetic and Interventional Approaches Inhibits Ischemia/Reperfusion-induced Myocardial Injury and Adverse Remodeling.

    PubMed

    Erikson, John M; Valente, Anthony J; Mummidi, Srinivas; Kandikattu, Hemanth Kumar; DeMarco, Vincent G; Bender, Shawn B; Fay, William P; Siebenlist, Ulrich; Chandrasekar, Bysani

    2017-02-10

    Re-establishing blood supply is the primary goal for reducing myocardial injury in subjects with ischemic heart disease. Paradoxically, reperfusion results in nitroxidative stress and a marked inflammatory response in the heart. TRAF3IP2 (TRAF3 Interacting Protein 2; previously known as CIKS or Act1) is an oxidative stress-responsive cytoplasmic adapter molecule that is an upstream regulator of both IκB kinase (IKK) and c-Jun N-terminal kinase (JNK), and an important mediator of autoimmune and inflammatory responses. Here we investigated the role of TRAF3IP2 in ischemia/reperfusion (I/R)-induced nitroxidative stress, inflammation, myocardial dysfunction, injury, and adverse remodeling. Our data show that I/R up-regulates TRAF3IP2 expression in the heart, and its gene deletion, in a conditional cardiomyocyte-specific manner, significantly attenuates I/R-induced nitroxidative stress, IKK/NF-κB and JNK/AP-1 activation, inflammatory cytokine, chemokine, and adhesion molecule expression, immune cell infiltration, myocardial injury, and contractile dysfunction. Furthermore, Traf3ip2 gene deletion blunts adverse remodeling 12 weeks post-I/R, as evidenced by reduced hypertrophy, fibrosis, and contractile dysfunction. Supporting the genetic approach, an interventional approach using ultrasound-targeted microbubble destruction-mediated delivery of phosphorothioated TRAF3IP2 antisense oligonucleotides into the LV in a clinically relevant time frame significantly inhibits TRAF3IP2 expression and myocardial injury in wild type mice post-I/R. Furthermore, ameliorating myocardial damage by targeting TRAF3IP2 appears to be more effective to inhibiting its downstream signaling intermediates NF-κB and JNK. Therefore, TRAF3IP2 could be a potential therapeutic target in ischemic heart disease.

  4. The association between B vitamins supplementation and adverse cardiovascular events: a meta-analysis

    PubMed Central

    Li, Wen-Feng; Zhang, Dan-Dan; Xia, Ji-Tian; Wen, Shan-Fan; Guo, Jun; Li, Zi-Cheng

    2014-01-01

    This study is to explore the association of adverse cardiovascular events with B vitamins supplementation. Rev.Man 5.1 and Stata 11.0 software were applied for the meta-analysis. The number of cardiovascular events was collected and calculated using indicates of odds ratio and 95% confidence intervals in a fixed-effects or a random-effects model when appropriate. The study includes 15 studies which consists of 37,358 study objects (experimental group: 19,601; control group: 17,757). This study showed that the pooled ORs was 1.01 (95% CI = 0.96~1.06, P > 0.05) for objects with Experimental group (B vitamins supplementation) vs. Control group (placebo or regular treatment), which suggests no significant differences were found in the overall effect of the number of cardiovascular events between the two groups. Further stratification of subgroup analysis indicates no significant differences were found between the two groups as well. There were also no publication bias existing by the Egger’s linear regression test (P > 0.05). Our result indicates that the number of cardiovascular events in experimental group using B vitamins supplementation during the treatment is equal to placebo or regular treatment group thus further studies is necessary. PMID:25232372

  5. Aspirin Resistance Predicts Adverse Cardiovascular Events in Patients with Symptomatic Peripheral Artery Disease

    PubMed Central

    Pasala, Tilak; Hoo, Jennifer Soo; Lockhart, Mary Kate; Waheed, Rehan; Sengodan, Prasanna; Alexander, Jeffrey

    2016-01-01

    Antiplatelet therapy reduces the risk of myocardial infarction, stroke, and vascular death in patients who have symptomatic peripheral artery disease. However, a subset of patients who take aspirin continues to have recurrent cardiovascular events. There are few data on cardiovascular outcomes in patients with peripheral artery disease who manifest aspirin resistance. Patients with peripheral artery disease on long-term aspirin therapy (≥4 wk) were tested for aspirin responsiveness by means of the VerifyNow Aspirin Assay. The mean follow-up duration was 22.6 ± 8.3 months. The primary endpoint was a composite of death, myocardial infarction, or ischemic stroke. Secondary endpoints were the incidence of vascular interventions (surgical or percutaneous), or of amputation or gangrene caused by vascular disease. Of the 120 patients enrolled in the study, 31 (25.8%) were aspirin-resistant and 89 (74.2%) were aspirin-responsive. The primary endpoint occurred in 10 (32.3%) patients in the aspirin-resistant group and in 13 (14.6%) patients in the aspirin-responsive group (hazard ratio=2.48; 95% confidence interval, 1.08–5.66; P=0.03). There was no significant difference in the secondary outcome of revascularization or tissue loss. By multivariate analysis, aspirin resistance and history of chronic kidney disease were the only independent predictors of long-term adverse cardiovascular events. Aspirin resistance is highly prevalent in patients with symptomatic peripheral artery disease and is an independent predictor of adverse cardiovascular risk. Whether intervening in these patients with additional antiplatelet therapies would improve outcomes needs to be explored. PMID:28100965

  6. Fibroblast Growth Factor-9 Enhances M2 Macrophage Differentiation and Attenuates Adverse Cardiac Remodeling in the Infarcted Diabetic Heart

    PubMed Central

    Singla, Dinender K.; Singla, Reetu D.; Abdelli, Latifa S.; Glass, Carley

    2015-01-01

    Inflammation has been implicated as a perpetrator of diabetes and its associated complications. Monocytes, key mediators of inflammation, differentiate into pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages upon infiltration of damaged tissue. However, the inflammatory cell types, which propagate diabetes progression and consequential adverse disorders, remain unclear. The current study was undertaken to assess monocyte infiltration and the role of fibroblast growth factor-9 (FGF-9) on monocyte to macrophage differentiation and cardioprotection in the diabetic infarcted heart. Db/db diabetic mice were assigned to sham, myocardial infarction (MI), and MI+FGF-9 groups. MI was induced by permanent coronary artery ligation and animals were subjected to 2D transthoracic echocardiography two weeks post-surgery. Immunohistochemical and immunoassay results from heart samples collected suggest significantly increased infiltration of monocytes (Mean ± SEM; MI: 2.02% ± 0.23% vs. Sham 0.75% ± 0.07%; p<0.05) and associated pro-inflammatory cytokines (TNF-α, MCP-1, and IL-6), adverse cardiac remodeling (Mean ± SEM; MI: 33% ± 3.04% vs. Sham 2.2% ± 0.33%; p<0.05), and left ventricular dysfunction (Mean ± SEM; MI: 35.4% ± 1.25% vs. Sham 49.19% ± 1.07%; p<0.05) in the MI group. Importantly, treatment of diabetic infarcted myocardium with FGF-9 resulted in significantly decreased monocyte infiltration (Mean ± SEM; MI+FGF-9: 1.39% ± 0.1% vs. MI: 2.02% ± 0.23%; p<0.05), increased M2 macrophage differentiation (Mean ± SEM; MI+FGF-9: 4.82% ± 0.86% vs. MI: 0.85% ± 0.3%; p<0.05) and associated anti-inflammatory cytokines (IL-10 and IL-1RA), reduced adverse remodeling (Mean ± SEM; MI+FGF-9: 11.59% ± 1.2% vs. MI: 33% ± 3.04%; p<0.05), and improved cardiac function (Fractional shortening, Mean ± SEM; MI+FGF-9: 41.51% ± 1.68% vs. MI: 35.4% ± 1.25%; p<0.05). In conclusion, our data suggest FGF-9 possesses novel therapeutic potential in its ability to

  7. Increased systolic load causes adverse remodeling of fetal aortic and mitral valves

    PubMed Central

    Louey, Samantha; Espinoza, Herbert; Chattergoon, Natasha; You, Fanglei; Thornburg, Kent L.; Giraud, George

    2015-01-01

    While abnormal hemodynamic forces alter fetal myocardial growth, little is known about whether such insults affect fetal cardiac valve development. We hypothesized that chronically elevated systolic load would detrimentally alter fetal valve growth. Chronically instrumented fetal sheep received either a continuous infusion of adult sheep plasma to increase fetal blood pressure, or a lactated Ringer's infusion as a volume control beginning on day 126 ± 4 of gestation. After 8 days, mean arterial pressure was higher in the plasma infusion group (63.0 mmHg vs. 41.8 mmHg, P < 0.05). Mitral annular septal-lateral diameter (11.9 mm vs. 9.1 mm, P < 0.05), anterior leaflet length (7.7 mm vs. 6.4 mm, P < 0.05), and posterior leaflet length (P2; 4.0 mm vs. 3.0 mm, P < 0.05) were greater in the elevated load group. mRNA levels of Notch-1, TGF-β2, Wnt-2b, BMP-1, and versican were suppressed in aortic and mitral valve leaflets; elastin and α1 type I collagen mRNA levels were suppressed in the aortic valves only. We conclude that sustained elevated arterial pressure load on the fetal heart valve leads to anatomic remodeling and, surprisingly, suppression of signaling and extracellular matrix genes that are important to valve development. These novel findings have important implications on the developmental origins of valve disease and may have long-term consequences on valve function and durability. PMID:26354842

  8. Biomass fuel smoke exposure was associated with adverse cardiac remodeling and left ventricular dysfunction in Peru.

    PubMed

    Burroughs Peña, M S; Velazquez, E J; Rivera, J D; Alenezi, F; Wong, C; Grigsby, M; Davila-Roman, V G; Gilman, R H; Miranda, J J; Checkley, W

    2016-12-19

    While household air pollution from biomass fuel combustion has been linked to cardiovascular disease, the effects on cardiac structure and function have not been well described. We sought to determine the association between biomass fuel smoke exposure and cardiac structure and function by transthoracic echocardiography. We identified a random sample of urban and rural residents living in the high-altitude region of Puno, Peru. Daily biomass fuel use was self-reported. Participants underwent transthoracic echocardiography. Multivariable linear regression was used to examine the relationship of biomass fuel use with echocardiographic measures of cardiac structure and function, adjusting for age, sex, height, body mass index, diabetes, physical activity, and tobacco use. One hundred and eighty-seven participants (80 biomass fuel users and 107 non-users) were included in this analysis (mean age 59 years, 58% women). After adjustment, daily exposure to biomass fuel smoke was associated with increased left ventricular internal diastolic diameter (P=.004), left atrial diameter (P=.03), left atrial area (four-chamber) (P=.004) and (two-chamber) (P=.03), septal E' (P=.006), and lateral E' (P=.04). Exposure to biomass fuel smoke was also associated with worse global longitudinal strain in the two-chamber view (P=.01). Daily biomass fuel use was associated with increased left ventricular size and decreased left ventricular systolic function by global longitudinal strain.

  9. Onset of hypertension during pregnancy is associated with long-term worse blood pressure control and adverse cardiac remodeling.

    PubMed

    Mesquita, Roberto F; Reis, Muriel; Beppler, Ana Paula; Bellinazzi, Vera Regina; Mattos, Sandra S; Lima-Filho, José L; Cipolli, José A; Coelho-Filho, Otavio R; Pio-Magalhães, José A; Sposito, Andrei C; Matos-Souza, José R; Nadruz, Wilson

    2014-11-01

    Up to 20% of women with hypertensive pregnancy disorders might persist with chronic hypertension. This study compared clinical and echocardiographic features between women whose hypertension began as hypertensive pregnancy disorders (PH group) and women whose diagnosis of hypertension did not occur during pregnancy (NPH group). Fifty PH and 100 NPH women were cross-sectionally evaluated by clinical, laboratory, and echocardiography analysis, and the groups were matched by duration of hypertension. PH exhibited lower age (46.6 ± 1.4 vs. 65.3 ± 1.1 years; P < .001), but higher systolic (159.8 ± 3.9 vs. 148.0 ± 2.5 mm Hg; P = .009) and diastolic (97.1 ± 2.4 vs. 80.9 ± 1.3 mm Hg; P < .001) blood pressure than NPH, although used more antihypertensive classes (3.4 ± 0.2 vs. 2.6 ± 0.1; P < .001). Furthermore, PH showed higher left ventricular wall thickness and increased prevalence of concentric hypertrophy than NPH after adjusting for age and blood pressure. In conclusion, this study showed that PH may exhibit worse blood pressure control and adverse left ventricular remodeling compared with NPH.

  10. Involvement of Inflammation and Adverse Vascular Remodelling in the Blood Pressure Raising Effect of Repeatedly Heated Palm Oil in Rats

    PubMed Central

    Ng, Chun-Yi; Kamisah, Yusof; Faizah, Othman; Jubri, Zakiah; Qodriyah, Hj Mohd Saad; Jaarin, Kamsiah

    2012-01-01

    Oil thermoxidation during deep frying generates harmful oxidative free radicals that induce inflammation and increase the risk of hypertension. This study aimed to investigate the effect of repeatedly heated palm oil on blood pressure, aortic morphometry, and vascular cell adhesion molecule-1 (VCAM-1) expression in rats. Male Sprague-Dawley rats were divided into five groups: control, fresh palm oil (FPO), one-time-heated palm oil (1HPO), five-time-heated palm oil (5HPO), or ten-time-heated palm oil (10HPO). Feeding duration was six months. Blood pressure was measured at baseline and monthly using tail-cuff method. After six months, the rats were sacrificed and the aortic arches were dissected for morphometric and immunohistochemical analyses. FPO group showed significantly lower blood pressure than all other groups. Blood pressure was increased significantly in 5HPO and 10HPO groups. The aortae of 5HPO and 10HPO groups showed significantly increased thickness and area of intima-media, circumferential wall tension, and VCAM-1 than other groups. Elastic lamellae were disorganised and fragmented in 5HPO- and 10HPO-treated rats. VCAM-1 expression showed a significant positive correlation with blood pressure. In conclusion, prolonged consumption of repeatedly heated palm oil causes blood pressure elevation, adverse remodelling, and increased VCAM-1, which suggests a possible involvement of inflammation. PMID:22778962

  11. Charge is an important determinant of hemodynamic and adverse cardiovascular effects of cationic drugs.

    PubMed

    Pugsley, Michael K; Authier, Simon; Curtis, Michael J

    2015-12-01

    Cationic compounds are diverse and atypical therapeutic substances. In the present study we examined whether a prototypical class effect of cationic drugs in the cardiovascular system exists and whether this might be predictable on the basis of chemistry. The dose-dependent effects of cationic compounds of varying molecular weights and charge were examined on the blood pressure (BP), heart rate (HR) and the ECG in anesthetized rats. The compounds examined were protamine, hexadimethrine, tetraethylammonium (TEA), low molecular weight poly-L-lysine (LMW-PLL) and high molecular weight PLL (HMW-PLL). All of the compounds examined except TEA produced a dose-dependent reduction in BP. No changes occurred in HR even when high doses were administered. The ECG effects of these cationic compounds included a dose-dependent prolongation of the QT interval, especially at higher doses. All compounds transiently decreased the size of the P-wave after i.v. bolus administration whereas only protamine and hexadimethrine prolonged the PR and QRS intervals and only at the highest dose (32 mg/kg) administered. All cationic compounds, except TEA and saline, evoked ventricular premature beats (VPB), and protamine and HMW-PLL also evoked brief episodes of ventricular tachycardia (VT). The incidence and frequency of arrhythmias was not dose-dependent and no animals experienced protracted episodes of arrhythmia incidence. These dose dependent effects of the polycationic compounds tested suggest a collective mechanism of action that relates the effect of charge of the compound to the onset and persistence of observed cardiovascular toxicity, and adverse cardiovascular effect risk appears to be predictable on this basis.

  12. Milan PM1 Induces Adverse Effects on Mice Lungs and Cardiovascular System

    PubMed Central

    Farina, Francesca; Sancini, Giulio; Longhin, Eleonora; Mantecca, Paride; Camatini, Marina; Palestini, Paola

    2013-01-01

    Recent studies have suggested a link between inhaled particulate matter (PM) exposure and increased mortality and morbidity associated with cardiorespiratory diseases. Since the response to PM1 has not yet been deeply investigated, its impact on mice lungs and cardiovascular system is here examined. A repeated exposure to Milan PM1 was performed on BALB/c mice. The bronchoalveolar lavage fluid (BALf) and the lung parenchyma were screened for markers of inflammation (cell counts, tumor necrosis factor-α (TNF-α); macrophage inflammatory protein-2 (MIP-2); heme oxygenase-1 (HO-1); nuclear factor kappa-light-chain-enhancer of activated B cells p50 subunit (NFκB-p50); inducible nitric oxide synthetase (iNOS); endothelial-selectin (E-selectin)), cytotoxicity (lactate dehydrogenase (LDH); alkaline phosphatase (ALP); heat shock protein 70 (Hsp70); caspase-8-p18), and a putative pro-carcinogenic marker (cytochrome 1B1 (Cyp1B1)). Heart tissue was tested for HO-1, caspase-8-p18, NFκB-p50, iNOS, E-selectin, and myeloperoxidase (MPO); plasma was screened for markers of platelet activation and clot formation (soluble platelet-selectin (sP-selectin); fibrinogen; plasminogen activator inhibitor 1 (PAI-1)). PM1 triggers inflammation and cytotoxicity in lungs. A similar cytotoxic effect was observed on heart tissues, while plasma analyses suggest blood-endothelium interface activation. These data highlight the importance of lung inflammation in mediating adverse cardiovascular events following increase in ambient PM1 levels, providing evidences of a positive correlation between PM1 exposure and cardiovascular morbidity. PMID:23509745

  13. Fish oil and olive oil supplements attenuate the adverse cardiovascular effects of concentrated ambient air pollution particles exposure in healthy middle-aged adult human volunteers

    EPA Science Inventory

    Exposure to ambient levels of air pollution increases cardiovascular morbidity and mortality. Advanced age is among the factors associated with susceptibility to the adverse effects of air pollution. Dietary fatty acid supplementation has been shown to decrease cardiovascular ris...

  14. Evidence behind FDA alerts for drugs with adverse cardiovascular effects: implications for clinical practice.

    PubMed

    Rackham, Daniel M; C Herink, Megan; Stevens, Ian G; Cardoza, Natalie M; Singh, Harleen

    2014-01-01

    The U.S. Food and Drug Administration (FDA) periodically publishes Drug Safety Communications and Drug Alerts notifying health care practitioners and the general public of important information regarding drug therapies following FDA approval. These alerts can result in both positive and negative effects on patient care. Most clinical trials are not designed to detect long-term safety end points, and postmarketing surveillance along with patient reported events are often instrumental in signaling the potential harmful effect of a drug. Recently, many cardiovascular (CV) safety announcements have been released for FDA-approved drugs. Because a premature warning could discourage a much needed treatment or prompt a sudden discontinuation, it is essential to evaluate the evidence supporting these FDA alerts to provide effective patient care and to avoid unwarranted changes in therapy. Conversely, paying attention to these warnings in cases involving high-risk patients can prevent adverse effects and litigation. This article reviews the evidence behind recent FDA alerts for drugs with adverse CV effects and discusses the clinical practice implications.

  15. Cardiovascular magnetic resonance in pregnancy: Insights from the cardiac hemodynamic imaging and remodeling in pregnancy (CHIRP) study

    PubMed Central

    2014-01-01

    Background Cardiovascular disease in pregnancy is the leading cause of maternal mortality in North America. Although transthoracic echocardiography (TTE) is the most widely used imaging modality for the assessment of cardiovascular function during pregnancy, little is known on the role of cardiovascular magnetic resonance (CMR). The objective of the Cardiac Hemodynamic Imaging and Remodeling in Pregnancy (CHIRP) study was to compare TTE and CMR in the non-invasive assessment of maternal cardiac remodeling during the peripartum period. Methods Between 2010–2012, healthy pregnant women aged 18 to 35 years were prospectively enrolled. All women underwent TTE and CMR during the third trimester and at least 3 months postpartum (surrogate for non-pregnant state). Results The study population included a total of 34 women (mean age 29 ± 3 years). During the third trimester, TTE and CMR demonstrated an increase in left ventricular end-diastolic volume from 95 ± 11 mL to 115 ± 14 mL and 98 ± 6 mL to 125 ± 5 mL, respectively (p < 0.05). By TTE and CMR, there was also an increase in left ventricular (LV) mass during pregnancy from 111 ± 10 g to 163 ± 11 g and 121 ± 5 g to 179 ± 5 g, respectively (p < 0.05). Although there was good correlation between both imaging modalities for LV mass, stroke volume, and cardiac output, the values were consistently underestimated by TTE. Conclusion This CMR study provides reference values for cardiac indices during normal pregnancy and the postpartum state. PMID:24387349

  16. Assessment of CardiOvascular Remodelling following Endovascular aortic repair through imaging and computation: the CORE prospective observational cohort study protocol

    PubMed Central

    Nauta, Foeke J H; Kamman, Arnoud V; Ibrahim, El-Sayed H; Agarwal, Prachi P; Yang, Bo; Kim, Karen; Williams, David M; van Herwaarden, Joost A; Moll, Frans L; Eagle, Kim A; Trimarchi, Santi; Patel, Himanshu J; Figueroa, C Alberto

    2016-01-01

    Introduction Thoracic aortic stent grafts are orders of magnitude stiffer than the native aorta. These devices have been associated with acute hypertension, elevated pulse pressure, cardiac remodelling and reduced coronary perfusion. However, a systematic assessment of such cardiovascular effects of thoracic endovascular aortic repair (TEVAR) is missing. The CardiOvascular Remodelling following Endovascular aortic repair (CORE) study aims to (1) quantify cardiovascular remodelling following TEVAR and compare echocardiography against MRI, the reference method; (2) validate computational modelling of cardiovascular haemodynamics following TEVAR using clinical measurements, and virtually assess the impact of more compliant stent grafts on cardiovascular haemodynamics; and (3) investigate diagnostic accuracy of ECG and serum biomarkers for cardiac remodelling compared to MRI. Methods and analysis This is a prospective, nonrandomised, observational cohort study. We will use MRI, CT, echocardiography, intraluminal pressures, ECG, computational modelling and serum biomarkers to assess cardiovascular remodelling in two groups of patients with degenerative thoracic aneurysms or penetrating aortic ulcers: (1) patients managed with TEVAR and (2) control patients managed with medical therapy alone. Power analysis revealed a minimum total sample size of 20 patients (α=0.05, power=0.97) to observe significant left ventricular mass increase following TEVAR after 1 year. Consequently, we will include 12 patients in both groups. Advanced MRI sequences will be used to assess myocardial and aortic strain and distensibility, myocardial perfusion and aortic flow. ECG, echocardiography and serum biomarkers will be collected and compared against the imaging data. Computational models will be constructed from each patient imaging data, analysed and validated. All measurements will be collected at baseline (prior to TEVAR) and 1-year follow-up. The expected study period is 3

  17. Ozone exposure and systemic biomarkers: Evaluation of evidence for adverse cardiovascular health impacts.

    PubMed

    Goodman, Julie E; Prueitt, Robyn L; Sax, Sonja N; Pizzurro, Daniella M; Lynch, Heather N; Zu, Ke; Venditti, Ferdinand J

    2015-05-01

    The US Environmental Protection Agency (EPA) recently concluded that there is likely to be a causal relationship between short-term (< 30 days) ozone exposure and cardiovascular (CV) effects; however, biological mechanisms to link transient effects with chronic cardiovascular disease (CVD) have not been established. Some studies assessed changes in circulating levels of biomarkers associated with inflammation, oxidative stress, coagulation, vasoreactivity, lipidology, and glucose metabolism after ozone exposure to elucidate a biological mechanism. We conducted a weight-of-evidence (WoE) analysis to determine if there is evidence supporting an association between changes in these biomarkers and short-term ozone exposure that would indicate a biological mechanism for CVD below the ozone National Ambient Air Quality Standard (NAAQS) of 75 parts per billion (ppb). Epidemiology findings were mixed for all biomarker categories, with only a few studies reporting statistically significant changes and with no consistency in the direction of the reported effects. Controlled human exposure studies of 2 to 5 hours conducted at ozone concentrations above 75 ppb reported small elevations in biomarkers for inflammation and oxidative stress that were of uncertain clinical relevance. Experimental animal studies reported more consistent results among certain biomarkers, although these were also conducted at ozone exposures well above 75 ppb and provided limited information on ozone exposure-response relationships. Overall, the current WoE does not provide a convincing case for a causal relationship between short-term ozone exposure below the NAAQS and adverse changes in levels of biomarkers within and across categories, but, because of study limitations, they cannot not provide definitive evidence of a lack of causation.

  18. Cardiac CaM Kinase II Genes δ and γ Contribute to Adverse Remodeling but Redundantly Inhibit Calcineurin-Induced Myocardial Hypertrophy

    PubMed Central

    Kreusser, Michael M.; Lehmann, Lorenz H.; Keranov, Stanislav; Hoting, Marc-Oscar; Oehl, Ulrike; Kohlhaas, Michael; Reil, Jan-Christian; Neumann, Kay; Schneider, Michael D.; Hill, Joseph A.; Dobrev, Dobromir; Maack, Christoph; Maier, Lars S.; Gröne, Hermann-Josef; Katus, Hugo A.; Olson, Eric N.; Backs, Johannes

    2014-01-01

    Background Ca2+-dependent signaling through CaM Kinase II (CaMKII) and calcineurin was suggested to contribute to adverse cardiac remodeling. However, the relative importance of CaMKII versus calcineurin for adverse cardiac remodeling remained unclear. Methods and Results We generated double-knockout mice (DKO) lacking the 2 cardiac CaMKII genes δ and γ specifically in cardiomyocytes. We show that both CaMKII isoforms contribute redundantly to phosphorylation not only of phospholamban, ryanodine receptor 2, and histone deacetylase 4, but also calcineurin. Under baseline conditions, DKO mice are viable and display neither abnormal Ca2+ handling nor functional and structural changes. On pathological pressure overload and β-adrenergic stimulation, DKO mice are protected against cardiac dysfunction and interstitial fibrosis. But surprisingly and paradoxically, DKO mice develop cardiac hypertrophy driven by excessive activation of endogenous calcineurin, which is associated with a lack of phosphorylation at the auto-inhibitory calcineurin A site Ser411. Likewise, calcineurin inhibition prevents cardiac hypertrophy in DKO. On exercise performance, DKO mice show an exaggeration of cardiac hypertrophy with increased expression of the calcineurin target gene RCAN1-4 but no signs of adverse cardiac remodeling. Conclusions We established a mouse model in which CaMKII’s activity is specifically and completely abolished. By the use of this model we show that CaMKII induces maladaptive cardiac remodeling while it inhibits calcineurin-dependent hypertrophy. These data suggest inhibition of CaMKII but not calcineurin as a promising approach to attenuate the progression of heart failure. PMID:25124496

  19. Molecular Signals Elicited by GPCR Agonists in Hypertension, Cardiovascular Remodeling: Are MMPs and ADAMs Elusive Therapeutic Targets?

    PubMed Central

    Wang, Xiang; Bosonea, Ana-Maria; Odenbach, Jeffrey; Fernandez-Patron, Carlos

    2014-01-01

    Hypertension, the condition characterized by sustained elevated blood pressure, affects over 25% of adults in developed countries and is accompanied by pathological cardiac remodeling (i.e., hypertrophy and fibrosis), thus being a major risk factor for cardiac failure. Life style, the environment, genetic factors, diabetes or obesity can all promote development and progression of hypertension associated cardiovascular disease in part because these conditions induce an excess production of pro-hypertensive, pro-hypertrophic and pro-fibrotic agonists. Here we review signaling pathways shared by major agonists including angiotensin II, catecholamines and endothelins. At the cellular level, these agonists initiate disease signaling by activating cognate G protein-coupled receptors (GPCRs). Early events in agonist-signaling include Ca2+ release from intracellular stores, Ca2+ uptake from extracellular millieu into cells and reactive oxygen species (ROS) generation by NADPH oxidase. ROS production in turn contributes to activation of matrix metalloproteinases (MMPs) and ‘a disintegrin and metalloproteinases’ (ADAMs). Activated MMPs and ADAMs cleave growth factors, cytokines as well as cell surface receptors, including GPCRs. Excessive activation of MMPs and ADAMs links agonist receptors with transcription and translation of disease-associated genes, including those of MMPs and ADAMs. Recent research indicates a complex and dynamic regulation of MMPs and ADAMs activity and expression by agonists, which poses a significant challenge to strategies aiming at targeting specific MMPs or ADAMs in cardiovascular disease. PMID:24976815

  20. Clinical Risk Factors for In-Hospital Adverse Cardiovascular Events After Acute Drug Overdose

    PubMed Central

    Manini, Alex F.; Hoffman, Robert S.; Stimmel, Barry; Vlahov, David

    2015-01-01

    Objectives It was recently demonstrated that adverse cardiovascular events (ACVE) complicate a high proportion of hospitalizations for patients with acute drug overdoses. The aim of this study was to derive independent clinical risk factors for ACVE in patients with acute drug overdoses. Methods This prospective cohort study was conducted over 3 years at two urban university hospitals. Patients were adults with acute drug overdoses enrolled from the ED. In-hospital ACVE was defined as any of myocardial injury, shock, ventricular dysrhythmia, or cardiac arrest. Results There were 1,562 patients meeting inclusion/exclusion criteria (mean age, 41.8 years; female, 46%; suicidal, 38%). ACVE occurred in 82 (5.7%) patients (myocardial injury, 61; shock, 37; dysrhythmia, 23; cardiac arrests, 22) and there were 18 (1.2%) deaths. On univariate analysis, ACVE risk increased with age, lower serum bicarbonate, prolonged QTc interval, prior cardiac disease, and altered mental status. In a multivariable model adjusting for these factors as well as patient sex and hospital site, independent predictors were: QTc > 500 msec (3.8% prevalence, odds ratio [OR] 27.6), bicarbonate < 20 mEql/L (5.4% prevalence, OR 4.4), and prior cardiac disease (7.1% prevalence, OR 9.5). The derived prediction rule had 51.6% sensitivity, 93.7% specificity, and 97.1% negative predictive value; while presence of two or more risk factors had 90.9% positive predictive value. Conclusions The authors derived independent clinical risk factors for ACVE in patients with acute drug overdose, which should be validated in future studies as a prediction rule in distinct patient populations and clinical settings. PMID:25903997

  1. Interleukin-1 Blockade With Anakinra to Prevent Adverse Cardiac Remodeling After Acute Myocardial Infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] Pilot Study)

    PubMed Central

    Abbate, Antonio; Kontos, Michael C.; Grizzard, John D.; Biondi-Zoccai, Giuseppe G. L.; Van Tassell, Benjamin W.; Robati, Roshanak; Roach, Lenore M.; Arena, Ross A.; Roberts, Charlotte S.; Varma, Amit; Gelwix, Christopher C.; Salloum, Fadi N.; Hastillo, Andrea; Dinarello, Charles A.; Vetrovec, George W.

    2013-01-01

    Acute myocardial infarction (AMI) initiates an intense inflammatory response in which interleukin-1 (IL-1) plays a central role. The IL-1 receptor antagonist is a naturally occurring antagonist, and anakinra is the recombinant form used to treat inflammatory diseases. The aim of the present pilot study was to test the safety and effects of IL-1 blockade with anakinra on left ventricular (LV) remodeling after AMI. Ten patients with ST-segment elevation AMI were randomized to either anakinra 100 mg/day subcutaneously for 14 days or placebo in a double-blind fashion. Two cardiac magnetic resonance (CMR) imaging and echocardiographic studies were performed during a 10- to 14-week period. The primary end point was the difference in the interval change in the LV end-systolic volume index (LVESVi) between the 2 groups on CMR imaging. The secondary end points included differences in the interval changes in the LV end-diastolic volume index, and C-reactive protein levels. A +2.0 ml/m2 median increase (interquartile range +1.0, +11.5) in the LVESVi on CMR imaging was seen in the placebo group and a –3.2 ml/m2 median decrease (interquartile range –4.5, –1.6) was seen in the anakinra group (p = 0.033). The median difference was 5.2 ml/m2. On echocardiography, the median difference in the LVESVi change was 13.4 ml/m2 (p = 0.006). Similar differences were observed in the LV end-diastolic volume index on CMR imaging (7.6 ml/m2, p = 0.033) and echocardiography (9.4 ml/m2, p = 0.008). The change in C-reactive protein levels between admission and 72 hours after admission correlated with the change in the LVESVi (R =+0.71, p = 0.022). In conclusion, in the present pilot study of patients with ST-segment elevation AMI, IL-1 blockade with anakinra was safe and favorably affected by LV remodeling. If confirmed in larger trials, IL-1 blockade might represent a novel therapeutic strategy to prevent heart failure after AMI. PMID:23453459

  2. Interleukin-1 blockade with anakinra to prevent adverse cardiac remodeling after acute myocardial infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] Pilot study).

    PubMed

    Abbate, Antonio; Kontos, Michael C; Grizzard, John D; Biondi-Zoccai, Giuseppe G L; Van Tassell, Benjamin W; Robati, Roshanak; Roach, Lenore M; Arena, Ross A; Roberts, Charlotte S; Varma, Amit; Gelwix, Christopher C; Salloum, Fadi N; Hastillo, Andrea; Dinarello, Charles A; Vetrovec, George W

    2010-05-15

    Acute myocardial infarction (AMI) initiates an intense inflammatory response in which interleukin-1 (IL-1) plays a central role. The IL-1 receptor antagonist is a naturally occurring antagonist, and anakinra is the recombinant form used to treat inflammatory diseases. The aim of the present pilot study was to test the safety and effects of IL-1 blockade with anakinra on left ventricular (LV) remodeling after AMI. Ten patients with ST-segment elevation AMI were randomized to either anakinra 100 mg/day subcutaneously for 14 days or placebo in a double-blind fashion. Two cardiac magnetic resonance (CMR) imaging and echocardiographic studies were performed during a 10- to 14-week period. The primary end point was the difference in the interval change in the LV end-systolic volume index (LVESVi) between the 2 groups on CMR imaging. The secondary end points included differences in the interval changes in the LV end-diastolic volume index, and C-reactive protein levels. A +2.0 ml/m(2) median increase (interquartile range +1.0, +11.5) in the LVESVi on CMR imaging was seen in the placebo group and a -3.2 ml/m(2) median decrease (interquartile range -4.5, -1.6) was seen in the anakinra group (p = 0.033). The median difference was 5.2 ml/m(2). On echocardiography, the median difference in the LVESVi change was 13.4 ml/m(2) (p = 0.006). Similar differences were observed in the LV end-diastolic volume index on CMR imaging (7.6 ml/m(2), p = 0.033) and echocardiography (9.4 ml/m(2), p = 0.008). The change in C-reactive protein levels between admission and 72 hours after admission correlated with the change in the LVESVi (R = +0.71, p = 0.022). In conclusion, in the present pilot study of patients with ST-segment elevation AMI, IL-1 blockade with anakinra was safe and favorably affected by LV remodeling. If confirmed in larger trials, IL-1 blockade might represent a novel therapeutic strategy to prevent heart failure after AMI.

  3. Anti-CCP antibody in patients with established rheumatoid arthritis: Does it predict adverse cardiovascular profile?

    PubMed Central

    Arnab, Banerjee; Biswadip, Ghosh; Arindam, Pande; Shyamash, Mandal; Anirban, Ghosh; Rajan, Palui

    2013-01-01

    Background Rheumatoid arthritis (RA) is an independent risk factor for adverse cardiovascular (CV) events that accounts for a significant proportion of mortality among these patients. Anti-CCP antibodies are associated with higher frequency of extra-articular manifestations and poorer outcomes in RA. Aims To determine the role of anti-cyclic citrullinated peptide (CCP) antibody as an independent risk factor for developing CV complications as documented by carotid intima medial thickness and abnormal echocardiography in established RA patients. Materials and methods Eighty patients of RA having disease duration of at least 3 years participated in this hospital-based, cross-sectional, and observational study. Forty patients were anti-CCP antibody positive. Patients of established RA having known CV risk factors, known heart disease, or family history of premature ischemic heart disease were excluded. Results Anti-CCP positive group had early morning stiffness, tender and swollen joint count, and c-reactive protein (CRP) level significantly higher than those in anti-CCP negative group. Average intima-medial thicknesses of common carotid arteries were also significantly higher among anti-CCP positive group (P = 0.029) and were positively correlated with patients' age and disease duration. Lower left ventricular ejection fraction and left ventricular diastolic dysfunction were more commonly dispersed among the anti-CCP positive patients with P values of 0.01 and 0.034, respectively. Mild pericardial thickening was documented among 12.5% patients of anti-CCP positive group, while none of the anti-CCP negative patients had similar findings in echocardiography. Conclusion This study stressed on the important role of anti-CCP antibody in myocardial dysfunction due to inflammation in RA patients. Both atherosclerotic vascular involvement and cardiac abnormalities including pericardial, myocardial, and endocardial involvements were higher among anti-CCP positive RA patients

  4. [Adverse effects of ultrafine particles on the cardiovascular system and its mechanisms].

    PubMed

    Yi, Tie-ci; Li, Jian-ping

    2014-12-18

    Cardiovascular disease is one of the major threats to human. Air pollution, which , as it become a problem too serious to be ignored in China, is known to be an important risk factor for cardiovascular disease. Among all pollutants, ultrafine particles ( UFPs) , defined as particles with their diameter less than 0. 1 f.Lm, are a specific composition. They are very small in size, large in quantity and surface area, and most important, capable of passing through the air-blood barrier. These unique features of UFPs make them special in their impact on cardiovascular system. Nowadays, the influence of UFPs on the cardiovascular system has become a hot topic. On the one side, studies have shown that UFPs can cause inflammation and oxidative stress in the lung, and then induce systemic inflammation by releasing cytokine and reactive oxygen species into the circulation. On the other side, UFPs themselves can "spillout"into the circulation and interact with their targets. By this way, UFPs directly affect endothelial cells, myocardial cells and the autonomic nervous system, which ultimately result in increased cardiovascular events. We intend to make an overview about the recent progress about the influence of UFPs on human cardiovascular disease and the related mechanisms, and argue for more attention to this issue.

  5. Better Adherence to the Mediterranean Diet Could Mitigate the Adverse Consequences of Obesity on Cardiovascular Disease: The SUN Prospective Cohort

    PubMed Central

    Eguaras, Sonia; Toledo, Estefanía; Hernández-Hernández, Aitor; Cervantes, Sebastián; Martínez-González, Miguel A.

    2015-01-01

    Strong observational evidence supports the association between obesity and cardiovascular events. In elderly high-risk subjects, the Mediterranean diet (MedDiet) was reported to counteract the adverse cardiovascular effects of adiposity. Whether this same attenuation is also present in younger subjects is not known. We prospectively examined the association between obesity and cardiovascular clinical events (myocardial infarction, stroke or cardiovascular death) after 10.9 years follow-up in 19,065 middle-aged men and women (average age 38 year) according to their adherence to the MedDiet (<6 points or ≥6 points in the Trichopoulou’s Mediterranean Diet Score). We observed 152 incident cases of cardiovascular disease (CVD). An increased risk of CVD across categories of body mass index (BMI) was apparent if adherence to the MedDiet was low, with multivariable-adjusted hazard ratios (HRs): 1.44 (95% confidence interval: 0.93–2.25) for ≥25 – <30 kg/m2 of BMI and 2.00 (1.04–3.83) for ≥30 kg/m2 of BMI, compared to a BMI < 25 kg/m2. In contrast, these estimates were 0.77 (0.35–1.67) and 1.15 (0.39–3.43) with good adherence to MedDiet. Better adherence to the MedDiet was associated with reduced CVD events (p for trend = 0.029). Our results suggest that the MedDiet could mitigate the harmful cardiovascular effect of overweight/obesity. PMID:26556370

  6. Prognostic value of depression, anxiety, and anger in hospitalized cardiovascular disease patients for predicting adverse cardiac outcomes.

    PubMed

    Nakamura, Shunichi; Kato, Koji; Yoshida, Asuka; Fukuma, Nagaharu; Okumura, Yasuyuki; Ito, Hiroto; Mizuno, Kyoichi

    2013-05-15

    Although attention has recently been focused on the role of psychosocial factors in patients with cardiovascular disease (CVD), the factors that have the greatest influence on prognosis have not yet been elucidated. The aim of this study was to evaluate the effects of depression, anxiety, and anger on the prognosis of patients with CVD. Four hundred fourteen consecutive patients hospitalized with CVD were prospectively enrolled. Depression was evaluated using the Patient Health Questionnaire, anxiety using the Generalized Anxiety Disorder Questionnaire, and anger using the Spielberger Trait Anger Scale. Cox proportional-hazards regression was used to examine the individual effects of depression, anxiety, and anger on a combined primary end point of cardiac death or cardiac hospitalization and on a combined secondary end point of all-cause death or hospitalization during follow-up (median 14.2 months). Multivariate analysis showed that depression was a significant risk factor for cardiovascular hospitalization or death after adjusting for cardiac risk factors and other psychosocial factors (hazard ratio 2.62, p = 0.02), whereas anxiety was not significantly associated with cardiovascular hospitalization or death after adjustment (hazard ratio 2.35, p = 0.10). Anger was associated with a low rate of cardiovascular hospitalization or death (hazard ratio 0.34, p <0.01). In conclusion, depression in hospitalized patients with CVD is a stronger independent risk factor for adverse cardiac events than either anxiety or anger. Anger may help prevent adverse outcomes. Routine screening for depression should therefore be performed in patients with CVD, and the potential effects of anger in clinical practice should be reconsidered.

  7. The Role of Adverse Childhood Experiences in Cardiovascular Disease Risk: a Review with Emphasis on Plausible Mechanisms

    PubMed Central

    Su, Shaoyong; Jimenez, Marcia P.; Roberts, Cole T. F.; Loucks, Eric B.

    2016-01-01

    Childhood adversity, characterized by abuse, neglect, and household dysfunction, is a problem that exerts a significant impact on individuals, families, and society. Growing evidence suggests that adverse childhood experiences (ACEs) are associated with health decline in adulthood, including cardiovascular disease (CVD). In the current review, we first provide an overview of the association between ACEs and CVD risk, with updates on the latest epidemiological evidence. Second, we briefly review plausible pathways by which ACEs could influence CVD risk, including traditional risk factors and novel mechanisms. Finally, we highlight the potential implications of ACEs in clinical and public health. Information gleaned from this review should help physicians and researchers in better understanding potential long-term consequences of ACEs and considering adapting current strategies in treatment or intervention for patients with ACEs. PMID:26289252

  8. The influence of a triclosan toothpaste on adverse events in patients with cardiovascular disease over 5-years.

    PubMed

    Cullinan, Mary P; Palmer, Janet E; Carle, Anne D; West, Malcolm J; Westerman, Bill; Seymour, Gregory J

    2015-03-01

    Adverse effects of long-term usage of triclosan-containing toothpaste in humans are currently unknown. We assessed the effect of long-term use of 0.3% triclosan-toothpaste on serious adverse events (SAEs) in patients with cardiovascular disease (CVD). 438 patients with a history of stable CVD were entered into the 5-year longitudinal Cardiovascular and Periodontal Study at Prince Charles Hospital, Brisbane, Australia and randomised into test (triclosan) or placebo groups. There were no significant differences in demographics or clinical features between the groups. Patients were examined at baseline, and annually for 5-years. SAEs were classified according to the System Organ Classes defined by MedDRA (Medical Dictionary for Regulatory Activities). Results were analysed using chi square and Kaplan Meier analysis. Overall, 232 patients (123 in the triclosan group; 109 in the placebo group) experienced 569 SAEs (288 in the triclosan group and 281 in the placebo group). There was no significant difference between the groups in numbers of patients experiencing SAEs (p=0.35) or specific cardiovascular SAEs (p=0.82), nor in time to the first SAE or first cardiovascular SAE, irrespective of gender, age or BMI after adjusting for multiple comparisons (p>0.05). The adjusted odds of experiencing an SAE were estimated to increase by 2.7% for each year of age (p=0.02) and the adjusted odds of experiencing a cardiovascular SAE were estimated to increase by 5.1% for each unit increase in BMI (p=0.02). Most cardiovascular events were related to unstable angina or myocardial infarcts, 21 were associated with arrhythmia and 41 were vascular events such as aortic aneurysm and cerebrovascular accident. Within the limitations of the present study the data suggest that the use of triclosan-toothpaste may not be associated with any increase in SAEs in this CVD population. The long-term impact of triclosan on hormone-related disease, such as cancer, in humans remains to be determined.

  9. Elevated depressive affect is associated with adverse cardiovascular outcomes among African Americans with chronic kidney disease.

    PubMed

    Fischer, Michael J; Kimmel, Paul L; Greene, Tom; Gassman, Jennifer J; Wang, Xuelei; Brooks, Deborah H; Charleston, Jeanne; Dowie, Donna; Thornley-Brown, Denyse; Cooper, Lisa A; Bruce, Marino A; Kusek, John W; Norris, Keith C; Lash, James P

    2011-09-01

    This study was designed to examine the impact of elevated depressive affect on health outcomes among participants with hypertensive chronic kidney disease in the African-American Study of Kidney Disease and Hypertension (AASK) Cohort Study. Elevated depressive affect was defined by Beck Depression Inventory II (BDI-II) thresholds of 11 or more, above 14, and by 5-Unit increments in the score. Cox regression analyses were used to relate cardiovascular death/hospitalization, doubling of serum creatinine/end-stage renal disease, overall hospitalization, and all-cause death to depressive affect evaluated at baseline, the most recent annual visit (time-varying), or average from baseline to the most recent visit (cumulative). Among 628 participants at baseline, 42% had BDI-II scores of 11 or more and 26% had a score above 14. During a 5-year follow-up, the cumulative incidence of cardiovascular death/hospitalization was significantly greater for participants with baseline BDI-II scores of 11 or more compared with those with scores <11. The baseline, time-varying, and cumulative elevated depressive affect were each associated with a significant higher risk of cardiovascular death/hospitalization, especially with a time-varying BDI-II score over 14 (adjusted HR 1.63) but not with the other outcomes. Thus, elevated depressive affect is associated with unfavorable cardiovascular outcomes in African Americans with hypertensive chronic kidney disease.

  10. Soluble TWEAK and Major Adverse Cardiovascular Events in Patients with CKD

    PubMed Central

    Fernández-Laso, Valvanera; Sastre, Cristina; Valdivielso, Jose M.; Betriu, Angels; Fernández, Elvira; Egido, Jesús; Martín-Ventura, Jose L.

    2016-01-01

    Background and objectives Soluble TNF–like weak inducer of apoptosis (sTWEAK) is a proinflammatory cytokine belonging to the TNF superfamily. sTWEAK concentrations have been associated with the presence of CKD and cardiovascular disease (CVD). We hypothesized that sTWEAK levels may relate to a higher prevalence of atherosclerotic plaques, vascular calcification, and cardiovascular outcomes observed in patients with CKD. Design, setting, participants, & measurements A 4-year prospective, multicenter, longitudinal study was conducted in 1058 patients with CKD stages 3–5D (mean age =58±13 years old; 665 men) but without any history of CVD from the NEFRONA Study (a study design on the prevalence of surrogate markers of CVD). Ankle-brachial index and B-mode ultrasound were performed to detect the presence of carotid and/or femoral atherosclerotic plaques together with biochemical measurements and sTWEAK assessment. Patients were followed for cardiovascular outcomes (follow-up of 3.13±1.15 years). Results Patients with more advanced CKD had lower sTWEAK levels. sTWEAK concentrations were independently and negatively associated with carotid intima-media thickness. sTWEAK levels were lower in patients with carotid atherosclerotic plaques but not in those with femoral plaques. After adjustment by confounders, the odds ratio (OR) for presenting carotid atherosclerotic plaques in patients in the lowest versus highest tertile of sTWEAK was 4.18 (95% confidence interval [95% CI], 2.89 to 6.08; P<0.001). Furthermore, sTWEAK levels were lower in patients with calcified carotid atherosclerotic plaques. The OR for presenting calcified carotid plaques was 1.77 (95% CI, 1.06 to 2.93; P=0.02) after multivariable adjustment. After the follow-up, 41 fatal and 68 nonfatal cardiovascular events occurred. In a Cox model, after controlling for potential confounding factors, patients in the lowest tertile of sTWEAK concentrations had a higher risk of fatal and nonfatal cardiovascular

  11. IGF-1 degradation by mouse mast cell protease 4 promotes cell death and adverse cardiac remodeling days after a myocardial infarction

    PubMed Central

    Tejada, Thor; Tan, Lin; Torres, Rebecca A.; Calvert, John W.; Lambert, Jonathan P.; Zaidi, Madiha; Husain, Murtaza; Berce, Maria D.; Naib, Hussain; Pejler, Gunnar; Abrink, Magnus; Graham, Robert M.; Lefer, David J.; Naqvi, Nawazish; Husain, Ahsan

    2016-01-01

    Heart disease is a leading cause of death in adults. Here, we show that a few days after coronary artery ligation and reperfusion, the ischemia-injured heart elaborates the cardioprotective polypeptide, insulin-like growth factor-1 (IGF-1), which activates IGF-1 receptor prosurvival signaling and improves cardiac left ventricular systolic function. However, this signaling is antagonized by the chymase, mouse mast cell protease 4 (MMCP-4), which degrades IGF-1. We found that deletion of the gene encoding MMCP-4 (Mcpt4), markedly reduced late, but not early, infarct size by suppressing IGF-1 degradation and, consequently, diminished cardiac dysfunction and adverse structural remodeling. Our findings represent the first demonstration to our knowledge of tissue IGF-1 regulation through proteolytic degradation and suggest that chymase inhibition may be a viable therapeutic approach to enhance late cardioprotection in postischemic heart disease. PMID:27274047

  12. Adverse events in cardiovascular-related training programs in people with spinal cord injury: A systematic review

    PubMed Central

    Warms, Catherine A.; Backus, Deborah; Rajan, Suparna; Bombardier, Charles H.; Schomer, Katherine G.; Burns, Stephen P.

    2014-01-01

    Context There are anecdotal reports of adverse events (AEs) associated with exercise in people with spinal cord injury (SCI) and consequent concern by people with SCI and their providers about potential risks of exercise. Enumeration of specific events has never been performed and the extent of risk of exercise to people with SCI is not understood. Objective To systematically review published evidence to identify and enumerate reports of adverse events or AEs associated with training in persons with SCI. Methods Review was limited to peer-reviewed studies published in English from 1970 to 2011: (1) in adults with SCI, (2) evaluating training protocols consisting of repeated sessions over at least 4 weeks to maintain or improve cardiovascular health, (3) including volitional exercise modalities and functional electrical stimulation (FES)-enhanced exercise modalities, and (4) including a specific statement about AEs. Trained reviewers initially identified a total of 145 studies. After further screening, 38 studies were included in the review. Quality of evidence was evaluated using established procedures. Results There were no serious AEs reported. There were no common AEs reported across most types of interventions, except for musculoskeletal AEs related to FES walking. There were few AEs in volitional exercise studies. Conclusion There is no evidence to suggest that cardiovascular exercise done according to guidelines and established safety precautions is harmful. To improve the strength of these conclusions, future publications should include definition of AEs, information about pre-intervention screening, and statements of the nature and extent of AEs. PMID:24090603

  13. The predictive value of arterial stiffness on major adverse cardiovascular events in individuals with mildly impaired renal function

    PubMed Central

    Han, Jie; Wang, Xiaona; Ye, Ping; Cao, Ruihua; Yang, Xu; Xiao, Wenkai; Zhang, Yun; Bai, Yongyi; Wu, Hongmei

    2016-01-01

    Objectives Despite growing evidence that arterial stiffness has important predictive value for cardiovascular disease in patients with advanced stages of chronic kidney disease, the predictive significance of arterial stiffness in individuals with mildly impaired renal function has not been established. The aim of this study was to evaluate the predictive value of arterial stiffness on cardiovascular disease in this specific population. Materials and methods We analyzed measurements of arterial stiffness (carotid–femoral pulse-wave velocity [cf-PWV]) and the incidence of major adverse cardiovascular events (MACEs) in 1,499 subjects from a 4.8-year longitudinal study. Results A multivariate Cox proportional-hazard regression analysis showed that in individuals with normal renal function (estimated glomerular filtration rate [eGFR] ≥90 mL/min/1.73 m2), the baseline cf-PWV was not associated with occurrence of MACEs (hazard ratio 1.398, 95% confidence interval 0.748–2.613; P=0.293). In individuals with mildly impaired renal function (eGFR <90 mL/min/1.73 m2), a higher baseline cf-PWV level was associated with a higher risk of MACEs (hazard ratio 2.334, 95% confidence interval 1.082–5.036; P=0.031). Conclusion Arterial stiffness is a moderate and independent predictive factor for MACEs in individuals with mildly impaired renal function (eGFR <90 mL/min/1.73 m2). PMID:27621605

  14. Minimizing Cardiovascular Adverse Effects of Atypical Antipsychotic Drugs in Patients with Schizophrenia

    PubMed Central

    Khasawneh, Fadi T.; Shankar, Gollapudi S.

    2014-01-01

    The use of atypical antipsychotic agents has rapidly increased in the United States and worldwide in the last decade. Nonetheless, many health care practitioners do not appreciate the significance of the cardiovascular side effects that may be associated with their use and the means to minimize them. Thus, atypical antipsychotic medications can cause cardiovascular side effects such as arrhythmias and deviations in blood pressure. In rare cases, they may also cause congestive heart failure, myocarditis, and sudden death. Patients with schizophrenia have a higher risk of cardiovascular mortality than healthy individuals, possibly because of excessive smoking, the underlying disorder itself, or a combination of both factors. Increased awareness of these potential complications can allow pharmacists and physicians to better manage and monitor high risk patients. Accurate assessments are very important to avoid medications from being given to patients inappropriately. Additionally, monitoring patients regularly via blood draws and checking blood pressure, heart rate, and electrocardiogram can help catch any clinical problems and prevent further complications. Finally, patient and family-member education, which pharmacists in particular can play key roles in, is central for the management and prevention of side effects, which is known to reflect positively on morbidity and mortality in these patients. PMID:24649390

  15. Tenascin-X, collagen, and Ehlers-Danlos syndrome: tenascin-X gene defects can protect against adverse cardiovascular events.

    PubMed

    Petersen, John W; Douglas, J Yellowlees

    2013-09-01

    Long thought to be two separate syndromes, Ehlers-Danlos syndrome hypermobility type (EDS-HT) and benign joint hypermobility syndrome (BJHS) appear on close examination to represent the same syndrome, with virtually identical clinical manifestations. While both EDS-HT and BJHS were long thought to lack the genetic loci of other connective tissue disorders, including all other types of EDS, researchers have discovered a genetic locus that accounts for manifestations of both EDS-HT and BJHS in a small population of patients. However, given the modest sample size of these studies and the strong correlation between serum levels of tenascin-X with clinical symptoms of both EDS-HT and BJHS, strong evidence exists for the origins of both types of hypermobility originating in haploinsufficiency or deficiency of the gene TNXB, responsible for tenascin-X. Tenascin-X regulates both the structure and stability of elastic fibers and organizes collagen fibrils in the extra-cellular matrix (ECM), impacting the rigidity or elasticity of virtually every cell in the body. While the impacts of tenascin-X insufficiency or deficiency on the skin and joints have received some attention, its potential cardiovascular impacts remain relatively unexplored. Here we set forth two novel hypotheses. First, TNXB haploinsufficiency or deficiency causes the range of clinical manifestations long identified with both EDS-HT and BJHS. And, second, that haploinsufficiency or deficiency of TNXB may provide some benefits against adverse cardiovascular events, including heart attack and stroke, by lowering levels of arterial stiffness associated with aging, as well as by enhancing accommodation of accrued atherosclerotic plaques. This two-fold hypothesis provides insights into the mechanisms underlying the syndromes previous identified with joint hypermobility, at the same time the hypothesis also sheds light on the role of the composition of the extracellular matrix and its impacts on endothelial sheer

  16. Left Atrial Reverse Remodeling: Mechanisms, Evaluation, and Clinical Significance.

    PubMed

    Thomas, Liza; Abhayaratna, Walter P

    2017-01-01

    The left atrium is considered a biomarker for adverse cardiovascular outcomes, particularly in patients with left ventricular diastolic dysfunction and atrial fibrillation in whom left atrial (LA) enlargement is of prognostic importance. LA enlargement with a consequent decrease in LA function represents maladaptive structural and functional "remodeling" that in turn promotes electrical remodeling and a milieu conducive for incident atrial fibrillation. Medical and nonmedical interventions may arrest this pathophysiologic process to the extent that subsequent reverse remodeling results in a reduction in LA size and improvement in LA function. This review examines cellular and basic mechanisms involved in LA remodeling, evaluates the noninvasive techniques that can assess these changes, and examines potential mechanisms that may initiate reverse remodeling.

  17. Adverse outcome analyses of observational data: assessing cardiovascular risk in HIV disease.

    PubMed

    Triant, V A; Josephson, F; Rochester, C G; Althoff, K N; Marcus, K; Munk, R; Cooper, C; D'Agostino, R B; Costagliola, D; Sabin, C A; Williams, P L; Hughes, S; Post, W S; Chandra-Strobos, N; Guaraldi, G; Young, S S; Obenchain, R; Bedimo, R; Miller, V; Strobos, J

    2012-02-01

    Clinical decisions are ideally based on randomized trials but must often rely on observational data analyses, which are less straightforward and more influenced by methodology. The authors, from a series of expert roundtables convened by the Forum for Collaborative HIV Research on the use of observational studies to assess cardiovascular disease risk in human immunodeficiency virus infection, recommend that clinicians who review or interpret epidemiological publications consider 7 key statistical issues: (1) clear explanation of confounding and adjustment; (2) handling and impact of missing data; (3) consistency and clinical relevance of outcome measurements and covariate risk factors; (4) multivariate modeling techniques including time-dependent variables; (5) how multiple testing is addressed; (6) distinction between statistical and clinical significance; and (7) need for confirmation from independent databases. Recommendations to permit better understanding of potential methodological limitations include both responsible public access to de-identified source data, where permitted, and exploration of novel statistical methods.

  18. Sustained myocardial production of stromal cell-derived factor-1α was associated with left ventricular adverse remodeling in patients with myocardial infarction.

    PubMed

    Uematsu, Manabu; Yoshizaki, Toru; Shimizu, Takuya; Obata, Jun-ei; Nakamura, Takamitsu; Fujioka, Daisuke; Watanabe, Kazuhiro; Watanabe, Yosuke; Kugiyama, Kiyotaka

    2015-11-15

    The role of stromal cell-derived factor-1α (SDF-1α) expressed in infarcted myocardium is unknown in humans. We examined whether SDF-1α produced in an infarcted myocardial lesion may play a role in left ventricle (LV) remodeling and dysfunction in patients with acute myocardial infarction (AMI). We measured SDF-1α levels in plasma obtained from aortic root (AO) and anterior interventricular vein (AIV) in the early phase (2 wk after MI) and the chronic phase (6 mo after MI) in 80 patients with anterior MI. An increment in SDF-1α level from AO to AIV, reflecting SDF-1α release from infarcted myocardium, was more frequent in patients with MI in the early phase of MI [n = 52 (65%), P = 0.03] but not in the chronic phase of MI [n = 46 (58%), P = 0.11] compared with that in control patients [n = 6/17 (35%)]. On linear regression analysis, the transmyocardial gradient in SDF-1α level in the chronic phase of MI was correlated with percentage changes in LV end-diastolic volume index (r = 0.39, P < 0.001), LV end-systolic volume index (r = 0.38, P < 0.001), and LV ejection fraction (r = -0.26, P = 0.01) 6 mo after AMI. By contrast, the transmyocardial gradient of SDF-1α in the early phase of MI had no significant correlations. In conclusion, the production of SDF-1α in infarcted myocardium in the chronic phase of MI was associated with LV adverse remodeling and progressive dysfunction in AMI survivors.

  19. Hormonal regulation of energy-protein homeostasis in hemodialysis patients: an anorexigenic profile that may predispose to adverse cardiovascular outcomes.

    PubMed

    Suneja, Manish; Murry, Daryl J; Stokes, John B; Lim, Victoria S

    2011-01-01

    To assess whether endocrine dysfunction may cause derangement in energy homeostasis in patients undergoing hemodialysis (HD), we profiled hormones, during a 3-day period, from the adipose tissue and the gut and the nervous system around the circadian clock in 10 otherwise healthy HD patients and 8 normal controls. The protocol included a 40-h fast. We also measured energy-protein intake and output and assessed appetite and body composition. We found many hormonal abnormalities in HD patients: 1) leptin levels were elevated, due, in part, to increased production, and nocturnal surge in response to daytime feeding, exaggerated. 2) Peptide YY (PYY), an anorexigenic gut hormone, was markedly elevated and displayed an augmented response to feeding. 3) Acylated ghrelin, an orexigenic gut hormone, was lower and did not exhibit the premeal spike as observed in the controls. 4) neuropeptide Y (NPY), a potent orexigenic peptide, was markedly elevated and did not display any circadian variation. 5) Norepinephrine, marginally elevated, did not exhibit the normal nocturnal dip. By contrast, α-melanocyte-stimulating hormone and glucagon-like peptide-1 were not different between the two groups. Despite these hormonal abnormalities, HD patients maintained a good appetite and had normal body lean and fat mass, and there was no evidence of increased energy expenditure or protein catabolism. We explain the hormonal abnormalities as well as the absence of anorexia on suppression of parasympathetic activity (vagus nerve dysfunction), a phenomenon well documented in dialysis patients. Unexpectedly, we noted that the combination of high leptin, PYY, and NPY with suppressed ghrelin may increase arterial blood pressure, impair vasodilatation, and induce cardiac hypertrophy, and thus could predispose to adverse cardiovascular events that are the major causes of morbidity and mortality in the HD population. This is the first report attempting to link hormonal abnormalities associated with

  20. Angiotensin receptor blockade and angiotensin-converting-enzyme inhibition limit adverse remodeling of infarct zone collagens and global diastolic dysfunction during healing after reperfused ST-elevation myocardial infarction.

    PubMed

    Jugdutt, Bodh I; Idikio, Halliday; Uwiera, Richard R E

    2007-09-01

    To determine whether therapy with the angiotensin II type 1 receptor blocker (ARB) candesartan and the comparator angiotensin-converting-enzyme inhibitor (ACEI) enalapril during healing after reperfused ST-elevation myocardial infarction (RSTEMI) limit adverse remodeling of infarct zone (IZ) collagens and left ventricular (LV) diastolic dysfunction, we randomized 24 dogs surviving anterior RSTEMI (90-min coronary occlusion) to placebo, candesartan, and enalapril therapy between day 2 and 42. Six other dogs were sham. We measured regional IZ and non-infarct zone (NIZ) collagens (hydroxyproline; types I/III; cross-linking), transforming growth factor-beta (TGF-beta) and topography at 6 weeks, and hemodynamics, LV diastolic and systolic function, and remodeling over 6 weeks. Compared to sham, placebo-RSTEMI differentially altered regional collagens, with more pronounced increase in TGF-beta, hydroxyproline, and type I, insoluble, and cross-linked collagens in the IZ than NIZ, and increased IZ soluble and type III collagens at 6 weeks, and induced persistent LV filling pressure elevation, diastolic and systolic dysfunction, and LV remodeling over 6 weeks. Compared to placebo-RSTEMI, candesartan and enalapril limited adverse regional collagen remodeling, with normalization of type III, soluble and insoluble collagens and decrease in pyridinoline cross-linking in the IZ at 6 weeks, and attenuation of LV filling pressure, diastolic dysfunction, and remodeling over 6 weeks. The results suggest that candesartan and enalapril during healing after RSTEMI prevent rather than worsen adverse remodeling of IZ collagens and LV diastolic dysfunction, supporting the clinical use of ARBs and ACEIs during subacute RSTEMI.

  1. Association of a 4-tiered classification of left ventricular hypertrophy with adverse cardiovascular outcomes in the general population

    PubMed Central

    Garg, Sonia; de Lemos, James A.; Ayers, Colby; Khouri, Michel G.; Pandey, Ambarish; Berry, Jarett D.; Peshock, Ronald M.; Drazner, Mark H.

    2015-01-01

    Objectives This study was performed to determine whether a 4-tiered classification of left ventricular hypertrophy (LVH) defines subgroups in the general population which are at variable risk of adverse cardiovascular outcomes. Background We recently proposed a 4-tiered classification of LVH where eccentric LVH is subdivided into “indeterminate hypertrophy” and “dilated hypertrophy” and concentric LVH into “thick hypertrophy” and “both thick and dilated hypertrophy,” based on the presence of increased left ventricular end-diastolic volume. Methods Participants from the Dallas Heart study who underwent cardiac magnetic resonance imaging and did not have LV dysfunction or history of heart failure (HF) (n = 2,458) were followed for a median of 9 years for the primary outcome of HF or cardiovascular (CV) death. Multivariable Cox proportional hazard models were used to adjust for age, sex, African-American race, hypertension, diabetes, and history of cardiovascular disease (CVD). Results In the cohort, 70% had no LVH, 404 (16%) had indeterminate hypertrophy, 30 (1%) had dilated hypertrophy, 289 (12%) had thick hypertrophy, and 7 (0.2%) had both thick and dilated hypertrophy. The cumulative incidence of HF or CV death was 2% with no LVH, 1.7% with indeterminate, 16.7% with dilated, 11.1% with thick, and 42.9% with both thick and dilated hypertrophy (log rank p< 0.0001). Compared with participants without LVH, those with dilated (HR 7.3, 95% CI 2.8–18.8), thick (HR 2.4, 95% CI 1.4–4.0), and both thick and dilated (HR 5.8, 95% CI 1.7–19.5) hypertrophy remained at increased risk for HF or CV death after multivariable adjustment, whereas the group with indeterminate hypertrophy was not (HR 0.9, 95% CI 0.4–2.2). Conclusion In the general population, the 4-tiered classification system for LVH stratified LVH into subgroups with differential risk of adverse CV outcomes. Unstructured Abstract: Participants from the Dallas Heart Study were stratified using

  2. High intake of dietary tyramine does not deteriorate glucose handling and does not cause adverse cardiovascular effects in mice.

    PubMed

    Carpéné, Christian; Schaak, Stéphane; Guilbeau-Frugier, Céline; Mercader, Josep; Mialet-Perez, Jeanne

    2016-09-01

    Tyramine is naturally occurring in food and induces pressor responses. Low-tyramine diets are recommended for patients treated with MAO inhibitors to avoid the fatal hypertensive crisis sadly known as "cheese effect". Hence, tyramine intake is suspected to have toxicological consequences in humans, while its administration to type 1 diabetic rodents has been reported to improve glucose tolerance. We investigated in mice whether prolonged tyramine ingestion could alter glucose homeostasis, insulin sensitivity, adipose tissue physiology or cardiovascular functions. Tyramine was added at 0.04 or 0.14 % in the drinking water since this was estimated to increase by 10- to 40-fold the spontaneous tyramine intake of control mice fed a standard diet. Ten to 12 weeks of such tyramine supplementation did not influence body weight gain, adiposity or food consumption. Both doses (reaching approx. 300 and 1100 μmol tyramine/kg bw/day) decreased nonfasting blood glucose but did not modify glucose tolerance or fasting levels of glucose, insulin or circulating lipids. Blood pressure was not increased in tyramine-drinking mice, while only the higher tested dose moderately increased heart rate without change in its variability. Markers of cardiac tissue injury or oxidative stress remained unaltered, except an increased hydrogen peroxide production in heart preparations. In isolated adipocytes, tyramine inhibited lipolysis similarly in treated and control groups, as did insulin. The lack of serious adverse cardiovascular effects of prolonged tyramine supplementation in normoglycemic mice together with the somewhat insulin-like effects found on adipose cells should lead to reconsider favourably the risk/benefit ratio of the intake of this dietary amine.

  3. Rapid Surface Cooling by ThermoSuit System Dramatically Reduces Scar Size, Prevents Post-Infarction Adverse Left Ventricular Remodeling, and Improves Cardiac Function in Rats

    PubMed Central

    Dai, Wangde; Herring, Michael J; Hale, Sharon L; Kloner, Robert A

    2015-01-01

    Background The long-term effects of transient hypothermia by the non-invasive ThermoSuit apparatus on myocardial infarct (MI) scar size, left ventricular (LV) remodeling, and LV function were assessed in rat MI model. Methods and Results Rats were randomized to normothermic or hypothermic groups (n=14 in each group) and subjected to 30 minutes coronary artery occlusion and 6 weeks of reperfusion. For hypothermia therapy, rats were placed into the ThermoSuit apparatus at 2 minutes after the onset of coronary artery occlusion, were taken out of the apparatus when the core body temperature reached 32°C (in ≈8 minutes), and were then allowed to rewarm. After 6 weeks of recovery, rats treated with hypothermia demonstrated markedly reduced scar size (expressed as % of left ventricular area: hypothermia, 6.5±1.1%; normothermia, 19.4±1.7%; P=1.3×10−6); and thicker anterior LV wall (hypothermia, 1.57±0.09 mm; normothermia, 1.07±0.05 mm; P=3.4×10−5); decreased postmortem left ventricular volume (hypothermia, 0.45±0.04 mL; normothermia, 0.6±0.03 mL; P=0.028); and better LV fractional shortening by echocardiography (hypothermia, 37.2±2.8%; normothermia, 18.9±2.3%; P=0.0002) and LV ejection fraction by LV contrast ventriculography (hypothermia, 66.8±2.3%; normothermia, 56.0±2.0%; P=0.0014). Conclusions Rapid, transient non-invasive surface cooling with the ThermoSuit apparatus in the acute phase of MI decreased scar size by 66.5%, attenuated adverse post-infarct left ventricular dilation and remodeling, and improved cardiac function in the chronic phase of experimental MI. PMID:26116692

  4. Cardiovascular

    NASA Video Gallery

    Overview of Cardiovascular research which addresses risks of space flight, including adaptive changes to the cephalad fluid shift (such as reduced circulating blood volume), potential for heart rhy...

  5. The lysyl oxidase inhibitor (β-aminopropionitrile) reduces leptin profibrotic effects and ameliorates cardiovascular remodeling in diet-induced obesity in rats.

    PubMed

    Martínez-Martínez, Ernesto; Rodríguez, Cristina; Galán, María; Miana, María; Jurado-López, Raquel; Bartolomé, María Visitación; Luaces, María; Islas, Fabián; Martínez-González, José; López-Andrés, Natalia; Cachofeiro, Victoria

    2016-03-01

    Lysyl oxidase (LOX) is an extracellular matrix (ECM)-modifying enzyme that has been involved in cardiovascular remodeling. We explore the impact of LOX inhibition in ECM alterations induced by obesity in the cardiovascular system. LOX is overexpressed in the heart and aorta from rats fed a high-fat diet (HFD). β-Aminopropionitrile (BAPN), an inhibitor of LOX activity, significantly attenuated the increase in body weight and cardiac hypertrophy observed in HFD rats. No significant differences were found in cardiac function or blood pressure among any group. However, HFD rats showed cardiac and vascular fibrosis and enhanced levels of superoxide anion (O2(-)), collagen I and transforming growth factor β (TGF-β) in heart and aorta and connective tissue growth factor (CTGF) in aorta, effects that were attenuated by LOX inhibition. Interestingly, BAPN also prevented the increase in circulating leptin levels detected in HFD fed animals. Leptin increased protein levels of collagen I, TGF-β and CTGF, Akt phosphorylation and O2(-) production in both cardiac myofibroblasts and vascular smooth muscle cells in culture, while LOX inhibition ameliorated these alterations. LOX knockdown also attenuated leptin-induced collagen I production in cardiovascular cells. Our findings indicate that LOX inhibition attenuates the fibrosis and the oxidative stress induced by a HFD on the cardiovascular system. The reduction of leptin levels by BAPN in vivo and the ability of this compound to inhibit leptin-induced profibrotic mediators and ROS production in cardiac and vascular cells suggest that interactions between leptin and LOX regulate downstream events responsible for myocardial and vascular fibrosis in obesity.

  6. t-10, c-12 CLA dietary supplementation inhibits atherosclerotic lesion development despite adverse cardiovascular and hepatic metabolic marker profiles.

    PubMed

    Mitchell, Patricia L; Karakach, Tobias K; Currie, Deborah L; McLeod, Roger S

    2012-01-01

    Animal and human studies have indicated that fatty acids such as the conjugated linoleic acids (CLA) found in milk could potentially alter the risk of developing metabolic disorders including diabetes and cardiovascular disease (CVD). Using susceptible rodent models (apoE(-/-) and LDLr(-/-) mice) we investigated the interrelationship between mouse strain, dietary conjugated linoleic acids and metabolic markers of CVD. Despite an adverse metabolic risk profile, atherosclerosis (measured directly by lesion area), was significantly reduced with t-10, c-12 CLA and mixed isomer CLA (Mix) supplementation in both apoE(-/-) (p<0.05, n = 11) and LDLr(-/-) mice (p<0.01, n = 10). Principal component analysis was utilized to delineate the influence of multiple plasma and tissue metabolites on the development of atherosclerosis. Group clustering by dietary supplementation was evident, with the t-10, c-12 CLA supplemented animals having distinct patterns, suggestive of hepatic insulin resistance, regardless of mouse strain. The effect of CLA supplementation on hepatic lipid and fatty acid composition was explored in the LDLr(-/-) strain. Dietary supplementation with t-10, c-12 CLA significantly increased liver weight (p<0.05, n = 10), triglyceride (p<0.01, n = 10) and cholesterol ester content (p<0.01, n = 10). Furthermore, t-10, c-12 CLA also increased the ratio of 18∶1 to 18∶0 fatty acid in the liver suggesting an increase in the activity of stearoyl-CoA desaturase. Changes in plasma adiponectin and liver weight with t-10, c-12 CLA supplementation were evident within 3 weeks of initiation of the diet. These observations provide evidence that the individual CLA isomers have divergent mechanisms of action and that t-10, c-12 CLA rapidly changes plasma and liver markers of metabolic syndrome, despite evidence of reduction in atherosclerosis.

  7. Relationship between Left Ventricular Structural and Metabolic Remodelling in Type 2 Diabetes Mellitus

    PubMed Central

    Levelt, Eylem; Mahmod, Masliza; Piechnik, Stefan K.; Ariga, Rina; Francis, Jane M.; Rodgers, Christopher T.; Clarke, William T.; Sabharwal, Nikant; Schneider, Jurgen E.; Karamitsos, Theodoros D.; Clarke, Kieran; Rider, Oliver J.; Neubauer, Stefan

    2016-01-01

    Concentric left ventricular (LV) remodelling is associated with adverse cardiovascular events and is frequently observed in patients with type 2 diabetes mellitus (T2DM). Despite this, the cause of concentric remodelling in diabetes, per se, is unclear, but may be related to cardiac steatosis and impaired myocardial energetics. Thus, we investigated the relationship amongst myocardial metabolic changes and LV remodelling in T2DM. Forty-six non-hypertensive T2DM patients and twenty matched controls underwent cardiovascular magnetic resonance to assess LV remodelling (LV mass to LV end diastolic volume ratio-LVMVR), function, pre- and post-contrast tissue characterisation using T1 mapping, 1H-, 31P-magnetic resonance spectroscopy for myocardial triglyceride content (MTG) and phosphocreatine to ATP ratio (PCr/ATP) respectively. When compared to body mass index and blood pressure matched controls, diabetes was associated with: concentric LV remodelling, higher MTG, impaired myocardial energetics and impaired systolic strain indicating a subtle contractile dysfunction. Importantly, cardiac steatosis independently predicted concentric remodelling and systolic strain. Extracellular volume fraction was unchanged, indicating absence of fibrosis. In conclusion, cardiac steatosis may contribute to LV concentric remodelling and contractile dysfunction in diabetes. As cardiac steatosis is modifiable, strategies aimed at reducing myocardial triglyceride may be beneficial in reversing concentric remodelling and improving contractile function in the diabetic heart. PMID:26438611

  8. Relationship Between Left Ventricular Structural and Metabolic Remodeling in Type 2 Diabetes.

    PubMed

    Levelt, Eylem; Mahmod, Masliza; Piechnik, Stefan K; Ariga, Rina; Francis, Jane M; Rodgers, Christopher T; Clarke, William T; Sabharwal, Nikant; Schneider, Jurgen E; Karamitsos, Theodoros D; Clarke, Kieran; Rider, Oliver J; Neubauer, Stefan

    2016-01-01

    Concentric left ventricular (LV) remodeling is associated with adverse cardiovascular events and is frequently observed in patients with type 2 diabetes mellitus (T2DM). Despite this, the cause of concentric remodeling in diabetes per se is unclear, but it may be related to cardiac steatosis and impaired myocardial energetics. Thus, we investigated the relationship between myocardial metabolic changes and LV remodeling in T2DM. Forty-six nonhypertensive patients with T2DM and 20 matched control subjects underwent cardiovascular magnetic resonance to assess LV remodeling (LV mass-to-LV end diastolic volume ratio), function, tissue characterization before and after contrast using T1 mapping, and (1)H and (31)P magnetic resonance spectroscopy for myocardial triglyceride content (MTG) and phosphocreatine-to-ATP ratio, respectively. When compared with BMI- and blood pressure-matched control subjects, subjects with diabetes were associated with concentric LV remodeling, higher MTG, impaired myocardial energetics, and impaired systolic strain indicating a subtle contractile dysfunction. Importantly, cardiac steatosis independently predicted concentric remodeling and systolic strain. Extracellular volume fraction was unchanged, indicating the absence of fibrosis. In conclusion, cardiac steatosis may contribute to concentric remodeling and contractile dysfunction of the LV in diabetes. Because cardiac steatosis is modifiable, strategies aimed at reducing MTG may be beneficial in reversing concentric remodeling and improving contractile function in the hearts of patients with diabetes.

  9. Hypertension and cardiovascular remodelling in rats exposed to continuous light: protection by ACE-inhibition and melatonin.

    PubMed

    Simko, Fedor; Pechanova, Olga; Repova Bednarova, Kristina; Krajcirovicova, Kristina; Celec, Peter; Kamodyova, Natalia; Zorad, Stefan; Kucharska, Jarmila; Gvozdjakova, Anna; Adamcova, Michaela; Paulis, Ludovit

    2014-01-01

    Exposure of rats to continuous light attenuates melatonin production and results in hypertension development. This study investigated whether hypertension induced by continuous light (24 hours/day) exposure induces heart and aorta remodelling and if these alterations are prevented by melatonin or angiotensin converting enzyme inhibitor captopril. Four groups of 3-month-old male Wistar rats (10 per group) were treated as follows for six weeks: untreated controls, exposed to continuous light, light-exposed, and treated with either captopril (100 mg/kg/day) or melatonin (10 mg/kg/day). Exposure to continuous light led to hypertension, left ventricular (LV) hypertrophy and fibrosis, and enhancement of the oxidative load in the LV and aorta. Increase in systolic blood pressure by continuous light exposure was prevented completely by captopril and partially by melatonin. Both captopril and melatonin reduced the wall thickness and cross-sectional area of the aorta and reduced the level of oxidative stress. However, only captopril reduced LV hypertrophy development and only melatonin reduced LV hydroxyproline concentration in insoluble and total collagen in rats exposed to continuous light. In conclusion, captopril prevented LV hypertrophy development in the continuous light-induced hypertension model, while only melatonin significantly reduced fibrosis. This antifibrotic action of melatonin may be protective in hypertensive heart disease.

  10. The Personality and Psychological Stress Predict Major Adverse Cardiovascular Events in Patients With Coronary Heart Disease After Percutaneous Coronary Intervention for Five Years.

    PubMed

    Du, Jinling; Zhang, Danyang; Yin, Yue; Zhang, Xiaofei; Li, Jifu; Liu, Dexiang; Pan, Fang; Chen, Wenqiang

    2016-04-01

    To investigate the effects of personality type and psychological stress on the occurrence of major adverse cardiovascular events (MACEs) at 5 years in patients with coronary artery disease (CAD) after percutaneous coronary intervention (PCI). Two hundred twenty patients with stable angina (SA) or non-ST segment elevation acute coronary syndrome (NSTE-ACS) treated with PCI completed type A behavioral questionnaire, type D personality questionnaire, Self-Rating Depression Scale (SDS), Self-Rating Anxiety Scale (SAS), Trait Coping Style Questionnaire (TCSQ), and Symptom Checklist 90 (SCL-90) at 3 days after PCI operation. Meanwhile, biomedical markers (cTnI, CK-MB, LDH, LDH1) were assayed. MACEs were monitored over a 5-year follow-up. NSTE-ACS group had higher ratio of type A behavior, type A/D behavior, and higher single factor scores of type A personality and type D personality than control group and SAP group. NSTE-ACS patients had more anxiety, depression, lower level of mental health (P < 0.05; P < 0.01), more negative coping styles and less positive coping styles. The plasma levels of biomedical predictors had positive relation with anxiety, depression, and lower level of mental health. Type D patients were at a cumulative increased risk of adverse outcome compared with non-type D patients (P < 0.05). Patients treated with PCI were more likely to have type A and type D personality and this tendency was associated with myocardial injury. They also had obvious anxiety, depression emotion, and lower level of mental health, which were related to personality and coping style. Type D personality was an independent predictor of adverse events.

  11. Dietary patterns and the risk of major adverse cardiovascular events in a global study of high-risk patients with stable coronary heart disease

    PubMed Central

    Stewart, Ralph A. H.; Wallentin, Lars; Benatar, Jocelyne; Danchin, Nicolas; Hagström, Emil; Held, Claes; Husted, Steen; Lonn, Eva; Stebbins, Amanda; Chiswell, Karen; Vedin, Ola; Watson, David; White, Harvey D.

    2016-01-01

    Objectives To determine whether dietary pattern assessed by a simple self-administered food frequency questionnaire is associated with major adverse cardiovascular events (MACE) in high-risk patients with stable coronary artery disease. Background A Mediterranean dietary pattern has been associated with lower cardiovascular (CV) mortality. It is less certain whether foods common in western diets are associated with CV risk. Methods At baseline, 15 482 (97.8%) patients (mean age 67 ± 9 years) with stable coronary heart disease from 39 countries who participated in the Stabilisation of atherosclerotic plaque by initiation of darapladib therapy (STABILITY) trial completed a life style questionnaire which included questions on common foods. A Mediterranean diet score (MDS) was calculated for increasing consumption of whole grains, fruits, vegetables, legumes, fish, and alcohol, and for less meat, and a ‘Western diet score’ (WDS) for increasing consumption of refined grains, sweets and deserts, sugared drinks, and deep fried foods. A multi-variable Cox proportional hazards models assessed associations between MDS or WDS and MACE, defined as CV death, non-fatal myocardial infarction, or non-fatal stroke. Results After a median follow-up of 3.7 years MACE occurred in 7.3% of 2885 subjects with an MDS ≥15, 10.5% of 4018 subjects with an MDS of 13–14, and 10.8% of 8579 subjects with an MDS ≤12. A one unit increase in MDS >12 was associated with lower MACE after adjusting for all covariates (+1 category HR 0.95, 95% CI 0.91, 0.98, P = 0.002). There was no association between WDS (adjusted model +1 category HR 0.99, 95% CI 0.97, 1.01) and MACE. Conclusion Greater consumption of healthy foods may be more important for secondary prevention of coronary artery disease than avoidance of less healthy foods typical of Western diets. PMID:27109584

  12. Association Between Vascular Access Dysfunction and Subsequent Major Adverse Cardiovascular Events in Patients on Hemodialysis: A Population-Based Nested Case-Control Study.

    PubMed

    Kuo, Te-Hui; Tseng, Chien-Tzu; Lin, Wei-Hung; Chao, Jo-Yen; Wang, Wei-Ming; Li, Chung-Yi; Wang, Ming-Cheng

    2015-07-01

    The association between dialysis vascular access dysfunction and the risk of developing major adverse cardiovascular events (MACE) in hemodialysis patients is unclear and has not yet been investigated. We analyzed data from the National Health Insurance Research Database of Taiwan to quantify this association. Adopting a case-control design nested within a cohort of patients who received hemodialysis from 2001 to 2010, we identified 9711 incident cases of MACE during the stage of stable maintenance dialysis and 19,422 randomly selected controls matched to cases on age, gender, and duration of dialysis. Events of vascular access dysfunction in the 6-month period before the date of MACE onset (ie, index date) for cases and before index dates for controls were evaluated retrospectively. The presence of vascular access dysfunction was associated with a 1.385-fold higher odds of developing MACE as estimated from the logistic regression analysis. This represents a significantly increased adjusted odds ratio (OR) at 1.268 (95% confidence interval [CI] = 1.186-1.355) after adjustment for comorbidities and calendar years of initiating dialysis. We also noted a significant exposure-response trend (P < 0.001) between the frequency of vascular access dysfunction and MACE, with the greatest risk (adjusted OR = 1.840, 95% CI = 1.549-2.186) noted in patients with ≥3 vascular access events. We concluded that dialysis vascular access dysfunction was significantly associated with an increased risk of MACE. Hence, vascular access failure can be an early sign for MACE in patients receiving maintenance hemodialysis. Active monitoring and treatment of cardiovascular risk factors and related diseases, not merely managing vascular access dysfunction, would be required to reduce the risk of MACE.

  13. Whole-body cardiovascular MRI for the comparison of atherosclerotic burden and cardiac remodelling in healthy South Asian and European adults

    PubMed Central

    Cassidy, Deirdre B; Belch, Jill J F; Gandy, Stephen J; Lambert, Matthew A; Littleford, Roberta C; Rowland, Janice; Struthers, Allan D; Khan, Faisel

    2016-01-01

    Objective: To determine the feasibility of using whole-body cardiovascular MRI (WB-CVMR) to compare South Asians (SAs)—a population known to have a higher risk of cardiovascular disease (CVD) but paradoxically lower prevalence of peripheral arterial disease—and Western Europeans (WEs). Methods: 19 SAs and 38 age-, gender- and body mass index-matched WEs were recruited. All were aged 40 years and over, free from CVD and with a 10-year risk of CVD <20% as assessed by the adult treatment panel (ATP) III risk score. WB-CVMR was performed, comprising a whole-body angiogram (WBA) and cardiac MR (CMR), on a 3-T MRI scanner (Magnetom® Trio; Siemens, Erlangen, Germany) following dual-phase injection of gadolinium-based contrast agent. A standardized atheroma score (SAS) was calculated from the WBA while indexed left ventricular mass and volumes were calculated from the CMR. Results: SAs exhibited a significantly lower iliofemoral atheroma burden (regional SAS 0.0 ± 0.0 vs 1.9 ± 6.9, p = 0.048) and a trend towards lower overall atheroma burden (whole-body SAS 0.7 ± 0.8 vs 1.8 ± 2.3, p = 0.1). They had significantly lower indexed left ventricular mass (46.9 ± 11.8 vs 56.9 ± 13.4 ml m−2, p = 0.008), end diastolic volume (63.9 ± 10.4 vs 75.2 ± 11.4 ml m−2, p=0.001), end systolic volume (20.5 ± 6.1 vs 24.6 ± 6.8 ml m−2, p = 0.03) and stroke volume (43.4 ± 6.6 vs 50.6 ± 7.9 ml m−2, p = 0.001), but with no significant difference in ejection fraction, mass-volume ratio or global functioning index. These differences persisted after accounting for CVD risk factors. Conclusion: WB-CVMR can quantify cardiac and atheroma burden and can detect differences in these metrics between ethnic groups that, if validated, may suggest that the paradoxical high risk of CVD compared with PVD risk may be due to an adverse cardiac haemodynamic status incurred by the smaller heart rather than

  14. Resting heart rate associates with one-year risk of major adverse cardiovascular events in patients with acute coronary syndrome after percutaneous coronary intervention.

    PubMed

    Wang, Shao-Li; Wang, Cheng-Long; Wang, Pei-Li; Xu, Hao; Du, Jian-Peng; Zhang, Da-Wu; Gao, Zhu-Ye; Zhang, Lei; Fu, Chang-Geng; Chen, Ke-Ji; Shi, Da-Zhuo

    2016-03-01

    The study was to access the association between resting heart rate (RHR) and one-year risk of major adverse cardiovascular events (MACE) in acute coronary syndrome (ACS) patients after percutaneous coronary intervention (PCI). Patients with ACS after PCI (n = 808) were prospectively followed-up for MACE. RHR was obtained from electrocardiogram. MACE was defined as a composite of cardiac death, nonfatal recurrent myocardial infarction, ischemic-driven revascularization, and ischemic stroke. The association between RHR and one-year risk of MACE was assessed using Cox proportional hazards regression model. Compared with patients with RHR >76 bpm, the adjusted hazard ratio (AHR) was 0.51 (95% confidence intervals [CI]: 0.23-1.14; P = 0.100) for patients with RHR < 61 bpm, and 0.44 (95%CI: 0.23-0.85; P = 0.014) for those with RHR 61-76 bpm. For patients with RHR ≥ 61 bpm, an increase of 10 bpm in RHR was associated with an increase by 38.0% in the risk of MACE (AHR: 1.38; 95% CI: 1.04-1.83; P = 0.026). ACS patients after PCI with RHR >76 bpm were at higher risk of MACE during one-year follow-up compared with patients with RHR 61-76 bpm. An elevated RHR ≥ 61 bpm was associated with increased risk of one-year MACE in ACS patients.

  15. Troponin T in Prediction of Culprit Lesion Coronary Artery Disease and 1-Year Major Adverse Cerebral and Cardiovascular Events in Patients with Acute Stroke.

    PubMed

    Zeus, Tobias; Ketterer, Ulrike; Leuf, Daniela; Dannenberg, Lisa; Wagstaff, Rabea; Bönner, Florian; Gliem, Michael; Jander, Sebastian; Kelm, Malte; Polzin, Amin

    2016-06-01

    Troponin T (TnT) elevation above the 99th percentile upper reference limit (URL) is considered diagnostic of acute myocardial infarction (MI). Non-specific increases of TnT are frequent in acute stroke patients. However, in these patients, correct diagnosis of MI is crucial because the antithrombotic medications used to treat acute MI might be harmful and produce intracranial bleeding. In this study, we aimed to associate enhanced TnT levels defined by different cutoff values with occurrence of culprit lesion coronary artery disease (CAD) as well as 1-year major adverse cerebral and cardiovascular events (MACCEs). In this cohort study, we investigated 84 consecutive patients with acute ischemic stroke and concomitant MI. TnT levels were measured using a fourth-generation TnT assay. The incidence of culprit lesion CAD was determined by coronary angiography. MACCEs were recorded during 1-year follow-up. Culprit lesion CAD occurred in 55 % of patients, and 1-year MACCE in 37 %. TnT levels above the manufacturers' provided 99th URL (TnT > 0.01) were not associated with culprit lesion CAD (relative risk [RR], 1.3; 95 % confidence interval [CI] 0.96-1.8; P = 0.09). Slightly increased cutoff level (TnT > 0.03) increased specificity and was associated with culprit lesion CAD without decreasing sensitivity (RR, 1.5; 95 % CI 1.1-2.2; P = 0.021) and 1-year MACCE (RR, 1.7; 95 % CI 1.3-2.3; P < 0.001). Slightly increasement of the TnT cutoff level predicted MACCEs and is superior in prediction of culprit lesion CAD in stroke patients without being less sensitive. This finding has to be confirmed in large-scale clinical trials.

  16. Serial measurement of NT-proBNP predicts adverse cardiovascular outcome in children with primary myocardial dysfunction and acute decompensated heart failure (ADHF)

    PubMed Central

    Medar, Shivanand; Hsu, Daphne T.; Ushay, H. Michael; Lamour, Jacqueline M.; Cohen, Hillel W; Killinger, James S.

    2015-01-01

    Introduction In children, elevated amino terminal pro B-type naturetic peptide (NT-proBNP) levels are associated with impaired heart function. The predictive value of serial monitoring of NT-proBNP levels in acute decompensated heart failure (ADHF) is unclear. Methods This prospective observational study enrolled patients ≤ 21 years with primary myocardial dysfunction and ADHF. NT-proBNP levels were obtained on enrollment (D0), day 2 (D2) and day 7 (D7). Clinical, laboratory and imaging data were collected on enrollment. CV outcome was defined as Heart Transplant (HTx), Ventricular Assist Device (VAD) placement, Extracorporeal Membrane Oxygenation or death at 1 year after admission. NT-proBNP levels and the percent change from D0 to D2 and D0 to D7 were calculated and compared between those with and without adverse cardiovascular (ACV) outcome. Results Sixteen consecutive patients were enrolled. ACV outcome occurred in 6 (37.5%, 4 HTx and 2 VAD). In patients with an ACV outcome, median NT-ProBNP levels at D7 were significantly higher (7,365 Vs. 1,196 pg/ml; p= 0.02) and the percent decline in NT-proBNP was significantly smaller (28% vs. 73%, p=0.02) compared to those without an ACV outcome. ROC curve analysis revealed that a less than 55% decline in NT-proBNP levels at D7 had a sensitivity and specificity of 83% and 90% respectively in predicting an ACV [AUC 0.86, CI (0.68,1.0), p=0.02]. Conclusions In conclusion, children with primary myocardial dysfunction and ADHF, a persistently elevated NT-proBNP and/or a lesser degree of decline in NT-proBNP during the first week of presentation were strongly associated with ACV outcome. Serial NT-proBNP monitoring may allow the early identification of children at risk for worse outcome. PMID:25856472

  17. Role of thyroid hormones in ventricular remodeling.

    PubMed

    Rajagopalan, Viswanathan; Gerdes, A Martin

    2015-04-01

    Cardiac remodeling includes alterations in molecular, cellular, and interstitial systems contributing to changes in size, shape, and function of the heart. This may be the result of injury, alterations in hemodynamic load, neurohormonal effects, electrical abnormalities, metabolic changes, etc. Thyroid hormones (THs) serve as master regulators for diverse remodeling processes of the cardiovascular system-from the prenatal period to death. THs promote a beneficial cardiomyocyte shape and improve contractility, relaxation, and survival via reversal of molecular remodeling. THs reduce fibrosis by decreasing interstitial collagen and reduce the incidence and duration of arrhythmias via remodeling ion channel expression and function. THs restore metabolic function and also improve blood flow both by direct effects on the vessel architecture and decreasing atherosclerosis. Optimal levels of THs both in the circulation and in cardiac tissues are critical for normal homeostasis. This review highlights TH-based remodeling and clinically translatable strategies for diverse cardiovascular disorders.

  18. Long-Term Overexpression of Hsp70 Does Not Protect against Cardiac Dysfunction and Adverse Remodeling in a MURC Transgenic Mouse Model with Chronic Heart Failure and Atrial Fibrillation

    PubMed Central

    Bernardo, Bianca C.; Sapra, Geeta; Patterson, Natalie L.; Cemerlang, Nelly; Kiriazis, Helen; Ueyama, Tomomi; Febbraio, Mark A.; McMullen, Julie R.

    2015-01-01

    Previous animal studies had shown that increasing heat shock protein 70 (Hsp70) using a transgenic, gene therapy or pharmacological approach provided cardiac protection in models of acute cardiac stress. Furthermore, clinical studies had reported associations between Hsp70 levels and protection against atrial fibrillation (AF). AF is the most common cardiac arrhythmia presenting in cardiology clinics and is associated with increased rates of heart failure and stroke. Improved therapies for AF and heart failure are urgently required. Despite promising observations in animal studies which targeted Hsp70, we recently reported that increasing Hsp70 was unable to attenuate cardiac dysfunction and pathology in a mouse model which develops heart failure and intermittent AF. Given our somewhat unexpected finding and the extensive literature suggesting Hsp70 provides cardiac protection, it was considered important to assess whether Hsp70 could provide protection in another mouse model of heart failure and AF. The aim of the current study was to determine whether increasing Hsp70 could attenuate adverse cardiac remodeling, cardiac dysfunction and episodes of arrhythmia in a mouse model of heart failure and AF due to overexpression of Muscle-Restricted Coiled-Coil (MURC). Cardiac function and pathology were assessed in mice at approximately 12 months of age. We report here, that chronic overexpression of Hsp70 was unable to provide protection against cardiac dysfunction, conduction abnormalities, fibrosis or characteristic molecular markers of the failing heart. In summary, elevated Hsp70 may provide protection in acute cardiac stress settings, but appears insufficient to protect the heart under chronic cardiac disease conditions. PMID:26660322

  19. Long-Term Overexpression of Hsp70 Does Not Protect against Cardiac Dysfunction and Adverse Remodeling in a MURC Transgenic Mouse Model with Chronic Heart Failure and Atrial Fibrillation.

    PubMed

    Bernardo, Bianca C; Sapra, Geeta; Patterson, Natalie L; Cemerlang, Nelly; Kiriazis, Helen; Ueyama, Tomomi; Febbraio, Mark A; McMullen, Julie R

    2015-01-01

    Previous animal studies had shown that increasing heat shock protein 70 (Hsp70) using a transgenic, gene therapy or pharmacological approach provided cardiac protection in models of acute cardiac stress. Furthermore, clinical studies had reported associations between Hsp70 levels and protection against atrial fibrillation (AF). AF is the most common cardiac arrhythmia presenting in cardiology clinics and is associated with increased rates of heart failure and stroke. Improved therapies for AF and heart failure are urgently required. Despite promising observations in animal studies which targeted Hsp70, we recently reported that increasing Hsp70 was unable to attenuate cardiac dysfunction and pathology in a mouse model which develops heart failure and intermittent AF. Given our somewhat unexpected finding and the extensive literature suggesting Hsp70 provides cardiac protection, it was considered important to assess whether Hsp70 could provide protection in another mouse model of heart failure and AF. The aim of the current study was to determine whether increasing Hsp70 could attenuate adverse cardiac remodeling, cardiac dysfunction and episodes of arrhythmia in a mouse model of heart failure and AF due to overexpression of Muscle-Restricted Coiled-Coil (MURC). Cardiac function and pathology were assessed in mice at approximately 12 months of age. We report here, that chronic overexpression of Hsp70 was unable to provide protection against cardiac dysfunction, conduction abnormalities, fibrosis or characteristic molecular markers of the failing heart. In summary, elevated Hsp70 may provide protection in acute cardiac stress settings, but appears insufficient to protect the heart under chronic cardiac disease conditions.

  20. Mechanosensitive channels in striated muscle and the cardiovascular system: not quite a stretch anymore.

    PubMed

    Stiber, Jonathan A; Seth, Malini; Rosenberg, Paul B

    2009-08-01

    Stretch-activated or mechanosensitive channels transduce mechanical forces into ion fluxes across the cell membrane. These channels have been implicated in several aspects of cardiovascular physiology including regulation of blood pressure, vasoreactivity, and cardiac arrhythmias, as well as the adverse remodeling associated with cardiac hypertrophy and heart failure. This review discusses mechanosensitive channels in skeletal muscle and the cardiovascular system and their role in disease pathogenesis. We describe the regulation of gating of mechanosensitive channels including direct mechanisms and indirect activation by signaling pathways, as well as the influence on activation of these channels by the underlying cytoskeleton and scaffolding proteins. We then focus on the role of transient receptor potential channels, several of which have been implicated as mechanosensitive channels, in the pathogenesis of adverse cardiac remodeling and as potential therapeutic targets in the treatment of heart failure.

  1. Retinal remodeling.

    PubMed

    Jones, B W; Kondo, M; Terasaki, H; Lin, Y; McCall, M; Marc, R E

    2012-07-01

    Retinal photoreceptor degeneration takes many forms. Mutations in rhodopsin genes or disorders of the retinal pigment epithelium, defects in the adenosine triphosphate binding cassette transporter, ABCR gene defects, receptor tyrosine kinase defects, ciliopathies and transport defects, defects in both transducin and arrestin, defects in rod cyclic guanosine 3',5'-monophosphate phosphodiesterase, peripherin defects, defects in metabotropic glutamate receptors, synthetic enzymatic defects, defects in genes associated with signaling, and many more can all result in retinal degenerative disease like retinitis pigmentosa (RP) or RP-like disorders. Age-related macular degeneration (AMD) and AMD-like disorders are possibly due to a constellation of potential gene targets and gene/gene interactions, while other defects result in diabetic retinopathy or glaucoma. However, all of these insults as well as traumatic insults to the retina result in retinal remodeling. Retinal remodeling is a universal finding subsequent to retinal degenerative disease that results in deafferentation of the neural retina from photoreceptor input as downstream neuronal elements respond to loss of input with negative plasticity. This negative plasticity is not passive in the face of photoreceptor degeneration, with a phased revision of retinal structure and function found at the molecular, synaptic, cell, and tissue levels involving all cell classes in the retina, including neurons and glia. Retinal remodeling has direct implications for the rescue of vision loss through bionic or biological approaches, as circuit revision in the retina corrupts any potential surrogate photoreceptor input to a remnant neural retina. However, there are a number of potential opportunities for intervention that are revealed through the study of retinal remodeling, including therapies that are designed to slow down photoreceptor loss, interventions that are designed to limit or arrest remodeling events, and

  2. Sex-Specific Associations Between Coronary Artery Plaque Extent and Risk of Major Adverse Cardiovascular Events: from the CONFIRM Long-Term Registry

    PubMed Central

    Gransar, Heidi; Lin, Fay; Valenti, Valentina; Cho, Iksung; Berman, Daniel; Callister, Tracy; DeLago, Augustin; Hadamitzky, Martin; Hausleiter, Joerg; Al-Mallah, Mouaz; Budoff, Matthew; Kaufmann, Philipp; Achenbach, Stephan; Raff, Gilbert; Chinnaiyan, Kavitha; Cademartiri, Filippo; Maffei, Erica; Villines, Todd; Kim, Yong-Jin; Leipsic, Jonathon; Feuchtner, Gudrun; Rubinshtein, Ronen; Pontone, Gianluca; Andreini, Daniele; Marques, Hugo; Shaw, Leslee; Min, James K.

    2016-01-01

    Objective To examine sex-specific associations, if any, between per-vessel CAD extent and the risk of major adverse cardiovascular events (MACE) over a five-year study duration. Background The presence and extent of coronary artery disease (CAD) diagnosed by coronary computed tomography angiography (CCTA) is associated with increased short-term mortality and MACE. Nevertheless, some uncertainty remains regarding the influence of gender on these findings. Methods 5,632 patients (mean age 60.2 + 11.8 years, 36.5% female) from the CONFIRM (COronary CT Angiography EvaluatioN For Clinical Outcomes: An InteRnational Multicenter) registry were followed over the course of 5 years. Obstructive CAD was defined as ≥50% luminal stenosis in a coronary vessel. Using Cox proportional-hazards models, we calculated the hazard ratio (HR) for incident MACE among women and men, defined as death or myocardial infarction (MI). Results Obstructive CAD was more prevalent in men (42% vs. 26%, p<0.001) whereas women were more likely to have normal coronary arteries (43% vs. 27%, p<0.001). There were a total of 798 incident MACE events. After adjustment, there was a strong association between increased MACE risk and non-obstructive CAD (HR 2.16 for women, 2.56 for men, p<0.001 for both), obstructive one-vessel CAD (HR 3.69 and 2.66, p<0.001), two-vessel CAD (HR 3.92 and 3.55, p<0.001) and three-vessel/left-main CAD (HR 5.94 and 4.44, p<0.001). Further exploratory analyses of atherosclerotic burden did not identify gender-specific patterns predictive of MACE. Conclusion In a large prospective CCTA cohort followed long-term, we did not observe an interaction of gender for the association between MACE risk and increased per-vessel extent of obstructive CAD. These findings highlight the persistent prognostic significance of anatomic CAD subsets as detected by CCTA for the risk of MACE in both women and men. PMID:27056154

  3. Role of reactive oxygen species in myocardial remodeling.

    PubMed

    Zhang, Min; Shah, Ajay M

    2007-03-01

    Adverse cardiac remodeling is a fundamental process in the progression to chronic heart failure. Although the mechanisms underlying cardiac remodeling are multi-factorial, a significant body of evidence points to the crucial roles of increased reactive oxygen species. This article reviews recent advances in delineating the different sources of production for reactive oxygen species (namely mitochondria, xanthine oxidase, uncoupled nitric oxide synthases, and NADPH oxidases) that may be involved in cardiac remodeling and the aspects of the remodeling process that they affect. These data could suggest new ways of targeting redox pathways for the prevention and treatment of adverse cardiac remodeling.

  4. Mediterranean diet reduces the adverse effect of the TCF7L2-rs7903146 polymorphism on cardiovascular risk factors and stroke incidence: a randomized controlled trial in a high-cardiovascular-risk population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcription factor 7-like 2 (TCF7L2) polymorphisms are strongly associated with type 2 diabetes, but controversially with plasma lipids and cardiovascular disease. Interactions of the Mediterranean diet (MedDiet) on these associations are unknown. We investigated whether the TCF7L2-rs7903146 (C>T)...

  5. Mediterranean Diet Reduces the Adverse Effect of the TCF7L2-rs7903146 Polymorphism on Cardiovascular Risk Factors and Stroke Incidence

    PubMed Central

    Corella, Dolores; Carrasco, Paula; Sorlí, Jose V.; Estruch, Ramón; Rico-Sanz, Jesús; Martínez-González, Miguel Ángel; Salas-Salvadó, Jordi; Covas, M. Isabel; Coltell, Oscar; Arós, Fernando; Lapetra, José; Serra-Majem, Lluís; Ruiz-Gutiérrez, Valentina; Warnberg, Julia; Fiol, Miquel; Pintó, Xavier; Ortega-Azorín, Carolina; Muñoz, Miguel Ángel; Martínez, J. Alfredo; Gómez-Gracia, Enrique; González, José I.; Ros, Emilio; Ordovás, José M.

    2013-01-01

    OBJECTIVE Transcription factor 7-like 2 (TCF7L2) polymorphisms are strongly associated with type 2 diabetes, but controversially with plasma lipids and cardiovascular disease. Interactions of the Mediterranean diet (MedDiet) on these associations are unknown. We investigated whether the TCF7L2-rs7903146 (C>T) polymorphism associations with type 2 diabetes, glucose, lipids, and cardiovascular disease incidence were modulated by MedDiet. RESEARCH DESIGN AND METHODS A randomized trial (two MedDiet intervention groups and a control group) with 7,018 participants in the PREvención con DIetaMEDiterránea study was undertaken and major cardiovascular events assessed. Data were analyzed at baseline and after a median follow-up of 4.8 years. Multivariable-adjusted Cox regression was used to estimate hazard ratios (HRs) for cardiovascular events. RESULTS The TCF7L2-rs7903146 polymorphism was associated with type 2 diabetes (odds ratio 1.87 [95% CI 1.62–2.17] for TT compared with CC). MedDiet interacted significantly with rs7903146 on fasting glucose at baseline (P interaction = 0.004). When adherence to the MedDiet was low, TT had higher fasting glucose concentrations (132.3 ± 3.5 mg/dL) than CC+CT (127.3 ± 3.2 mg/dL) individuals (P = 0.001). Nevertheless, when adherence was high, this increase was not observed (P = 0.605). This modulation was also detected for total cholesterol, LDL cholesterol, and triglycerides (P interaction < 0.05 for all). Likewise, in the randomized trial, TT subjects had a higher stroke incidence in the control group (adjusted HR 2.91 [95% CI 1.36–6.19]; P = 0.006 compared with CC), whereas dietary intervention with MedDiet reduced stroke incidence in TT homozygotes (adjusted HR 0.96 [95% CI 0.49–1.87]; P = 0.892 for TT compared with CC). CONCLUSIONS Our novel results suggest that MedDiet may not only reduce increased fasting glucose and lipids in TT individuals, but also stroke incidence. PMID:23942586

  6. Cardiovascular pharmacogenetics.

    PubMed

    Myburgh, Renier; Hochfeld, Warren E; Dodgen, Tyren M; Ker, James; Pepper, Michael S

    2012-03-01

    Human genetic variation in the form of single nucleotide polymorphisms as well as more complex structural variations such as insertions, deletions and copy number variants, is partially responsible for the clinical variation seen in response to pharmacotherapeutic drugs. This affects the likelihood of experiencing adverse drug reactions and also of achieving therapeutic success. In this paper, we review key studies in cardiovascular pharmacogenetics that reveal genetic variations underlying the outcomes of drug treatment in cardiovascular disease. Examples of genetic associations with drug efficacy and toxicity are described, including the roles of genetic variability in pharmacokinetics (e.g. drug metabolizing enzymes) and pharmacodynamics (e.g. drug targets). These findings have functional implications that could lead to the development of genetic tests aimed at minimizing drug toxicity and optimizing drug efficacy in cardiovascular medicine.

  7. Radiation-induced cardiovascular effects

    NASA Astrophysics Data System (ADS)

    Tapio, Soile

    Recent epidemiological studies indicate that exposure to ionising radiation enhances the risk of cardiovascular mortality and morbidity in a moderate but significant manner. Our goal is to identify molecular mechanisms involved in the pathogenesis of radiation-induced cardiovascular disease using cellular and mouse models. Two radiation targets are studied in detail: the vascular endothelium that plays a pivotal role in the regulation of cardiac function, and the myocardium, in particular damage to the cardiac mitochondria. Ionising radiation causes immediate and persistent alterations in several biological pathways in the endothelium in a dose- and dose-rate dependent manner. High acute and cumulative doses result in rapid, non-transient remodelling of the endothelial cytoskeleton, as well as increased lipid peroxidation and protein oxidation of the heart tissue, independent of whether exposure is local or total body. Proteomic and functional changes are observed in lipid metabolism, glycolysis, mitochondrial function (respiration, ROS production etc.), oxidative stress, cellular adhesion, and cellular structure. The transcriptional regulators Akt and PPAR alpha seem to play a central role in the radiation-response of the endothelium and myocardium, respectively. We have recently started co-operation with GSI in Darmstadt to study the effect of heavy ions on the endothelium. Our research will facilitate the identification of biomarkers associated with adverse cardiac effects of ionising radiation and may lead to the development of countermeasures against radiation-induced cardiac damage.

  8. Prenatal programming: adverse cardiac programming by gestational testosterone excess

    PubMed Central

    Vyas, Arpita K.; Hoang, Vanessa; Padmanabhan, Vasantha; Gilbreath, Ebony; Mietelka, Kristy A.

    2016-01-01

    Adverse events during the prenatal and early postnatal period of life are associated with development of cardiovascular disease in adulthood. Prenatal exposure to excess testosterone (T) in sheep induces adverse reproductive and metabolic programming leading to polycystic ovarian syndrome, insulin resistance and hypertension in the female offspring. We hypothesized that prenatal T excess disrupts insulin signaling in the cardiac left ventricle leading to adverse cardiac programming. Left ventricular tissues were obtained from 2-year-old female sheep treated prenatally with T or oil (control) from days 30–90 of gestation. Molecular markers of insulin signaling and cardiac hypertrophy were analyzed. Prenatal T excess increased the gene expression of molecular markers involved in insulin signaling and those associated with cardiac hypertrophy and stress including insulin receptor substrate-1 (IRS-1), phosphatidyl inositol-3 kinase (PI3K), Mammalian target of rapamycin complex 1 (mTORC1), nuclear factor of activated T cells –c3 (NFATc3), and brain natriuretic peptide (BNP) compared to controls. Furthermore, prenatal T excess increased the phosphorylation of PI3K, AKT and mTOR. Myocardial disarray (multifocal) and increase in cardiomyocyte diameter was evident on histological investigation in T-treated females. These findings support adverse left ventricular remodeling by prenatal T excess. PMID:27328820

  9. ADMA, cardiovascular disease and diabetes.

    PubMed

    Krzyzanowska, Katarzyna; Mittermayer, Friedrich; Wolzt, Michael; Schernthaner, Guntram

    2008-12-15

    The endogenous competitive nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA) is an emerging risk marker for future cardiovascular events. Elevated ADMA concentrations have been described in patients with an adverse cardiovascular risk profile. Recently, various studies investigated the independent role of ADMA as a cardiovascular risk predictor in several patient cohorts. In addition, ADMA might not only be a risk marker but also a causative factor for cardiovascular disease. This review summarizes the literature on the relationship between ADMA, cardiovascular disease and diabetes.

  10. Immune modulation of resistance artery remodelling.

    PubMed

    Schiffrin, Ernesto L

    2012-01-01

    Low-grade inflammation plays a role in cardiovascular disease. The innate and the adaptive immune responses participate in mechanisms that contribute to inflammatory responses. It has been increasingly appreciated that different subsets of lymphocytes and the cytokines they produce modulate the vascular remodelling that occurs in cardiovascular disease. Effector T cells such as T-helper (Th) 1 (interferon-γ-producing) and Th2 lymphocytes (that produce interleukin-4), as well as Th17 (that produce interleukin-17), and T suppressor lymphocytes including regulatory T cells (Treg), which express the transcription factor forkhead box P3 (Foxp3), are involved in the remodelling of small arteries that occurs under the action of angiotensin II, deoxycorticosterone-salt and aldosterone-salt, as well as in models of hypertension such as the Dahl-salt-sensitive rat. The mechanism whereby the immune system is activated is unclear, but it has been suggested that neo-antigens may be generated by the elevation of blood pressure or other stimuli, leading to the activation of the immune response. Activated Th1 may contribute to vascular remodelling directly on blood vessels via effects of the cytokines produced or indirectly by actions on the kidney. The protective effect of Treg may be mediated similarly directly or via renal effects. These data offer promise for the discovery of new therapeutic targets to ameliorate vascular remodelling, which could lead to improved outcome in cardiovascular disease in humans.

  11. Risk of cardiovascular adverse events from trastuzumab (Herceptin(®)) in elderly persons with breast cancer: a population-based study.

    PubMed

    Tsai, H-T; Isaacs, C; Fu, A Z; Warren, J L; Freedman, A N; Barac, A; Huang, C-Y; Potosky, A L

    2014-02-01

    Randomized controlled trials have reported a 4-5 times increased risk of heart failure (HF) in breast cancer patients receiving trastuzumab (Herceptin (®) ) compared to patients who do not receive trastuzumab. However, data regarding the cardiac effects of trastuzumab on elderly patients treated in general practice remain very limited. Using the US surveillance, epidemiology, and end results (SEER)-Medicare database, we conducted a retrospective cohort study on the cardiac effects of trastuzumab use in all incident breast cancer patients diagnosed from 1998 to 2007 who were 66 years and older, had no prior recent claims for cardiomyopathy (CM) or HF, and were followed through 2009. We defined our outcome as the first CM/HF event after diagnosis. We performed Cox-proportional hazard models with propensity score adjustment to estimate CM/HF risk associated with trastuzumab use. A total of 6,829 out of 68,536 breast cancer patients (median age: 75) had an incident CM/HF event. Patients who received trastuzumab tended to be younger, non-white, diagnosed more recently, and had a stage IV diagnosis. Trastuzumab use was associated with an increased risk of CM/HF (HR = 2.08, 95 % CI 1.77-2.44, p < 0.001). The trastuzumab-associated CM/HF risk was stronger in patients who were younger (HR = 2.52 for 66-75 years and HR = 1.44 for 76 years and older, p < 0.001) and diagnosed in recent years (HR = 2.58 for 2006-2007 vs. 1.86 for 1998-2005, p = 0.01). The twofold risk of CM/HF associated with trastuzumab remained regardless of patients' diagnosis stage, presence of hypertension, cardiovascular comorbidities, or receipt of anthracyclines, taxanes, or radiation. Trastuzumab may double CM/HF risk among elderly breast cancer patients. Our findings reinforce the need to prevent and manage cardiac risk among elderly breast cancer patients receiving trastuzumab.

  12. Fructose Containing Sugars at Normal Levels of Consumption Do Not Effect Adversely Components of the Metabolic Syndrome and Risk Factors for Cardiovascular Disease.

    PubMed

    Angelopoulos, Theodore J; Lowndes, Joshua; Sinnett, Stephanie; Rippe, James M

    2016-03-23

    The objective of the current study was to explore our hypothesis that average consumption of fructose and fructose containing sugars would not increase risk factors for cardiovascular disease (CVD) and the metabolic syndrome (MetS). A randomized, double blind, parallel group study was conducted where 267 individuals with BMI between 23 and 35 kg/m² consumed low fat sugar sweetened milk, daily for ten weeks as part of usual weight-maintenance diet. One group consumed 18% of calories from high fructose corn syrup (HFCS), another group consumed 18% of calories from sucrose, a third group consumed 9% of calories from fructose, and the fourth group consumed 9% of calories from glucose. There was a small change in waist circumference (80.9 ± 9.5 vs. 81.5 ± 9.5 cm) in the entire cohort, as well as in total cholesterol (4.6 ± 1.0 vs. 4.7 ± 1.0 mmol/L, p < 0.01), triglycerides (TGs) (11.5 ± 6.4 vs. 12.6 ± 8.9 mmol/L, p < 0.01), and systolic (109.2 ± 10.2 vs. 106.1 ± 10.4 mmHg, p < 0.01) and diastolic blood pressure (69.8 ± 8.7 vs. 68.1 ± 9.7 mmHg, p < 0.01). The effects of commonly consumed sugars on components of the MetS and CVD risk factors are minimal, mixed and not clinically significant.

  13. Fructose Containing Sugars at Normal Levels of Consumption Do Not Effect Adversely Components of the Metabolic Syndrome and Risk Factors for Cardiovascular Disease

    PubMed Central

    Angelopoulos, Theodore J.; Lowndes, Joshua; Sinnett, Stephanie; Rippe, James M.

    2016-01-01

    The objective of the current study was to explore our hypothesis that average consumption of fructose and fructose containing sugars would not increase risk factors for cardiovascular disease (CVD) and the metabolic syndrome (MetS). A randomized, double blind, parallel group study was conducted where 267 individuals with BMI between 23 and 35 kg/m2 consumed low fat sugar sweetened milk, daily for ten weeks as part of usual weight-maintenance diet. One group consumed 18% of calories from high fructose corn syrup (HFCS), another group consumed 18% of calories from sucrose, a third group consumed 9% of calories from fructose, and the fourth group consumed 9% of calories from glucose. There was a small change in waist circumference (80.9 ± 9.5 vs. 81.5 ± 9.5 cm) in the entire cohort, as well as in total cholesterol (4.6 ± 1.0 vs. 4.7 ± 1.0 mmol/L, p < 0.01), triglycerides (TGs) (11.5 ± 6.4 vs. 12.6 ± 8.9 mmol/L, p < 0.01), and systolic (109.2 ± 10.2 vs. 106.1 ± 10.4 mmHg, p < 0.01) and diastolic blood pressure (69.8 ± 8.7 vs. 68.1 ± 9.7 mmHg, p < 0.01). The effects of commonly consumed sugars on components of the MetS and CVD risk factors are minimal, mixed and not clinically significant. PMID:27023594

  14. Teaching resources. Chromatin remodeling.

    PubMed

    Lue, Neal F

    2005-07-26

    This Teaching Resource provides lecture notes and slides for a class covering chromatin remodeling mechanisms and is part of the course "Cell Signaling Systems: a Course for Graduate Students." The lecture begins with a discussion of chromatin organization and then proceeds to describe the process of chromatin remodeling through a review of chromatin remodeling complexes and methods used to study their function.

  15. Paroxetine markedly increases plasma concentrations of ophthalmic timolol; CYP2D6 inhibitors may increase the risk of cardiovascular adverse effects of 0.5% timolol eye drops.

    PubMed

    Mäenpää, Jukka; Volotinen-Maja, Marjo; Kautiainen, Hannu; Neuvonen, Mikko; Niemi, Mikko; Neuvonen, Pertti J; Backman, Janne T

    2014-12-01

    Although ophthalmic timolol is generally well tolerated, a significant fraction of topically administered timolol can be systemically absorbed. We investigated the effect of the strong CYP2D6 inhibitor paroxetine on the pharmacokinetics of timolol after ophthalmic administration. In a four-phase crossover study, 12 healthy volunteers ingested either paroxetine (20 mg) or placebo daily for 3 days. In phases 1-2, timolol 0.1% gel, and in phases 3-4, timolol 0.5% drops were administered to both eyes. Paroxetine increased the plasma concentrations of timolol with both timolol formulations to a similar degree. The geometric mean ratio (95% confidence interval) of timolol peak concentration was 1.53-fold (1.23-1.91) with 0.1% timolol and 1.49-fold (0.94-2.36) with 0.5% timolol, and that of timolol area under the plasma concentration-time curve (AUC) from time 0 to 12 hours was 1.61-fold (1.26- to 2.06-fold) and 1.78-fold (1.21-2.62), respectively. During paroxetine administration, six subjects on 0.5% timolol drops, but none on 0.1% timolol gel, had plasma timolol concentrations exceeding 0.7 ng/ml, which can cause systemic adverse effects in patients at risk. There was a positive correlation between the AUC from time 0 to 13 hours of paroxetine and the placebo phase AUC from time 0 to infinity of timolol after timolol 0.5% drops (P < 0.05), and a nonsignificant trend after timolol 0.1% gel, consistent with the role of CYP2D6 in the metabolism of both agents. In the orthostatic test, heart rate immediately after upright standing was significantly lower (P < 0.05) during the paroxetine phase than during the placebo phase at 1 and 3 hours after 0.5% timolol dosing. In conclusion, paroxetine and other CYP2D6 inhibitors can have a clinically important interaction with ophthalmic timolol, particularly when patients are using 0.5% timolol formulations.

  16. Cardiovascular risk

    PubMed Central

    Payne, Rupert A

    2012-01-01

    Cardiovascular disease is a major, growing, worldwide problem. It is important that individuals at risk of developing cardiovascular disease can be effectively identified and appropriately stratified according to risk. This review examines what we understand by the term risk, traditional and novel risk factors, clinical scoring systems, and the use of risk for informing prescribing decisions. Many different cardiovascular risk factors have been identified. Established, traditional factors such as ageing are powerful predictors of adverse outcome, and in the case of hypertension and dyslipidaemia are the major targets for therapeutic intervention. Numerous novel biomarkers have also been described, such as inflammatory and genetic markers. These have yet to be shown to be of value in improving risk prediction, but may represent potential therapeutic targets and facilitate more targeted use of existing therapies. Risk factors have been incorporated into several cardiovascular disease prediction algorithms, such as the Framingham equation, SCORE and QRISK. These have relatively poor predictive power, and uncertainties remain with regards to aspects such as choice of equation, different risk thresholds and the roles of relative risk, lifetime risk and reversible factors in identifying and treating at-risk individuals. Nonetheless, such scores provide objective and transparent means of quantifying risk and their integration into therapeutic guidelines enables equitable and cost-effective distribution of health service resources and improves the consistency and quality of clinical decision making. PMID:22348281

  17. Aldosterone and the cardiovascular system: a dangerous association.

    PubMed

    Cachofeiro, Victoria; López-Andrés, Natalia; Miana, Maria; Martín-Fernández, Beatriz; de Las Heras, Natalia; Martínez, Ernesto; Lahera, Vicente; Fortuño, María Antonia

    2010-12-01

    Initial studies have focussed on the actions of aldosterone in renal electrolyte handling and, as a consequence, blood pressure control. More recently, attention has primarily been focussed on its actions on the heart and vascular system, where it is locally produced. Aldosterone by binding mineralocorticoid receptors causes oxidative stress, fibrosis and triggers an inflammatory response in the cardiovascular system. All these effects could be underlying the role of aldo-sterone on cardiac and vascular remodelling associated with different pathological situations. At the vascular level, aldo-sterone affects endothelial function because administration of aldosterone to rats impaired endothelium-dependent relaxations. In addition, the administration of mineralocorticoid receptor antagonists ameliorates endothelium-dependent relaxation in models of both hypertension and atherosclerosis, and in patients with heart failure. Several mechanisms can participate in this effect, including production of vasoconstrictor factors and a reduction in nitric oxide levels. This reduction can involve both a decrease in its production as well as an increase in its degradation by reactive oxygen species. Aldosterone can produce oxidative stress by the activation of transcription factors such as the NF-κB system, which can also trigger an inflammatory process through the production of different cytokines. At cardiac level, high levels of aldosterone can also adversely impact heart function by producing cardiac hypertrophy, diastolic dysfunction and electrical remodelling through changes in ionic channels. All these effects can explain the beneficial effect of mineralocorticoid blockade in the cardiovascular system.

  18. Exercise-induced cardiac remodeling.

    PubMed

    Weiner, Rory B; Baggish, Aaron L

    2012-01-01

    Early investigations in the late 1890s and early 1900s documented cardiac enlargement in athletes with above-normal exercise capacity and no evidence of cardiovascular disease. Such findings have been reported for more than a century and continue to intrigue scientists and clinicians. It is well recognized that repetitive participation in vigorous physical exercise results in significant changes in myocardial structure and function. This process, termed exercise-induced cardiac remodeling (EICR), is characterized by structural cardiac changes including left ventricular hypertrophy with sport-specific geometry (eccentric vs concentric). Associated alterations in both systolic and diastolic functions are emerging as recognized components of EICR. The increasing popularity of recreational exercise and competitive athletics has led to a growing number of individuals exhibiting these findings in routine clinical practice. This review will provide an overview of EICR in athletes.

  19. [Cardiovascular involvement in rheumatic diseases].

    PubMed

    Driazhenko, I V

    2005-01-01

    Cardiovascular system involvement with early development of atherosclerosis is characteristic for rheumatic diseases. Among causes of death in various rheumatic diseases cardiovascular pathology also prevails. This paper contains a review of most important studies of impairment of the heart, arterial and venous parts of cardiovascular system in patients with diffuse diseases of connective tissue, rheumatoid arthritis and systemic vasculitides. The role of immune mechanisms, endothelial dysfunction, dyslipidemia in pathogenesis of cardiovascular disturbances with development of myocardial and vascular remodeling in rheumatic diseases is also discussed. Major risk factors of cardiovascular pathology in rheumatic patients are presented. Treatment of a cardiovascular pathology in these patients presumes the use of angiotensin converting enzyme inhibitors, aldosterone antagonists and statins.

  20. Prognostic Value of Combined CT Angiography and Myocardial Perfusion Imaging versus Invasive Coronary Angiography and Nuclear Stress Perfusion Imaging in the Prediction of Major Adverse Cardiovascular Events: The CORE320 Multicenter Study.

    PubMed

    Chen, Marcus Y; Rochitte, Carlos E; Arbab-Zadeh, Armin; Dewey, Marc; George, Richard T; Miller, Julie M; Niinuma, Hiroyuki; Yoshioka, Kunihiro; Kitagawa, Kakuya; Sakuma, Hajime; Laham, Roger; Vavere, Andrea L; Cerci, Rodrigo J; Mehra, Vishal C; Nomura, Cesar; Kofoed, Klaus F; Jinzaki, Masahiro; Kuribayashi, Sachio; Scholte, Arthur J; Laule, Michael; Tan, Swee Yaw; Hoe, John; Paul, Narinder; Rybicki, Frank J; Brinker, Jeffrey A; Arai, Andrew E; Matheson, Matthew B; Cox, Christopher; Clouse, Melvin E; Di Carli, Marcelo F; Lima, João A C

    2017-03-14

    Purpose To compare the prognostic importance (time to major adverse cardiovascular event [MACE]) of combined computed tomography (CT) angiography and CT myocardial stress perfusion imaging with that of combined invasive coronary angiography (ICA) and stress single photon emission CT myocardial perfusion imaging. Materials and Methods This study was approved by all institutional review boards, and written informed consent was obtained. Between November 2009 and July 2011, 381 participants clinically referred for ICA and aged 45-85 years were enrolled in the Combined Noninvasive Coronary Angiography and Myocardial Perfusion Imaging Using 320-Detector Row Computed Tomography (CORE320) prospective multicenter diagnostic study. All images were analyzed in blinded independent core laboratories, and a panel of physicians adjudicated all adverse events. MACE was defined as revascularization (>30 days after index ICA), myocardial infarction, or cardiac death; hospitalization for chest pain or congestive heart failure; or arrhythmia. Late MACE was defined similarly, except for patients who underwent revascularization within the first 182 days after ICA, who were excluded. Comparisons of 2-year survival (time to MACE) used standard Kaplan-Meier curves and restricted mean survival times bootstrapped with 2000 replicates. Results An MACE (49 revascularizations, five myocardial infarctions, one cardiac death, nine hospitalizations for chest pain or congestive heart failure, and one arrhythmia) occurred in 51 of 379 patients (13.5%). The 2-year MACE-free rates for combined CT angiography and CT perfusion findings were 94% negative for coronary artery disease (CAD) versus 82% positive for CAD and were similar to combined ICA and single photon emission CT findings (93% negative for CAD vs 77% positive for CAD, P < .001 for both). Event-free rates for CT angiography and CT perfusion versus ICA and single photon emission CT for either positive or negative results were not

  1. Small artery remodelling in diabetes

    PubMed Central

    Rosei, Enrico Agabiti; Rizzoni, Damiano

    2010-01-01

    Abstract The aim of this article is to briefly review available data regarding changes in the structure of microvessels observed in patients with diabetes mellitus, and possible correction by effective treatment. The development of structural changes in the systemic vasculature is the end result of established hypertension. In essential hypertension, small arteries of smooth muscle cells are restructured around a smaller lumen and there is no net growth of the vascular wall, although in some secondary forms of hypertension, a hypertrophic remodelling may be detected. Moreover, in non-insulin-dependent diabetes mellitus a hypertrophic remodelling of subcutaneous small arteries is present. Indices of small resistance artery structure, such as the tunica media to internal lumen ratio, may have a strong prognostic significance in hypertensive and diabetic patients, over and above all other known cardiovascular risk factors. Therefore, regression of vascular alterations is an appealing goal of antihypertensive treatment. Different antihypertensive drugs seem to have different effect on vascular structure. In diabetic hypertensive patients, a significant regression of structural alterations of small resistance arteries with drugs blocking the renin–angiotensin system (angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers) was demonstrated. Alterations in the microcirculation represent a common pathological finding, and microangiopathy is one of the most important mechanisms involved in the development of organ damage as well as of clinical events in patients with diabetes mellitus. Renin–angiotensin system blockade seems to be effective in preventing/regressing alterations in microvascular structure. PMID:20646125

  2. Remodeling A School Shop?

    ERIC Educational Resources Information Center

    Baker, G. E.

    1970-01-01

    Presents guidelines for remodeling a school shop combining major considerations of funds, program changes, class management, and flexibility, with the needs of wiring, painting, and placement of equipment. (Author)

  3. The Role of Hippo/YAP Signaling in Vascular Remodeling and Related Diseases.

    PubMed

    He, Jinlong; Bao, Qiankun; Yan, Meng; Liang, Jing; Zhu, Yi; Wang, Chunjiong; Ai, Ding

    2017-04-03

    Vascular remodeling is a vital process of a wide range of cardiovascular diseases and represents the altered structure and arrangement of blood vessels. The Hippo pathway controls organ size by regulating cell survival, proliferation and apoptosis. Yes-associated protein (YAP), a transcription coactivator, is a downstream effector of the Hippo pathway. Emerging evidence supports that the Hippo/YAP pathway plays an important role in vascular-remodeling and related cardiovascular diseases. The Hippo/YAP pathway has been shown to alter extracellular matrix production or degradation and the growth, death and migration of vascular smooth muscle cells and endothelial cells, which contributes to vascular remodeling in cardiovascular diseases such as pulmonary hypertension, atherosclerosis, restenosis, aortic aneurysms and angiogenesis. In this review, we summarize and discuss recent findings about the roles and mechanisms of Hippo/YAP signaling in vascular-remodeling and related diseases.

  4. Inhalation of hydrogen gas attenuates left ventricular remodeling induced by intermittent hypoxia in mice.

    PubMed

    Hayashi, Tetsuya; Yoshioka, Toshitaka; Hasegawa, Kenichi; Miyamura, Masatoshi; Mori, Tatsuhiko; Ukimura, Akira; Matsumura, Yasuo; Ishizaka, Nobukazu

    2011-09-01

    Sleep apnea syndrome increases the risk of cardiovascular morbidity and mortality. We previously reported that intermittent hypoxia increases superoxide production in a manner dependent on nicotinamide adenine dinucleotide phosphate and accelerates adverse left ventricular (LV) remodeling. Recent studies have suggested that hydrogen (H(2)) may have an antioxidant effect by reducing hydroxyl radicals. In this study, we investigated the effects of H(2) gas inhalation on lipid metabolism and LV remodeling induced by intermittent hypoxia in mice. Male C57BL/6J mice (n = 62) were exposed to intermittent hypoxia (repetitive cycle of 1-min periods of 5 and 21% oxygen for 8 h during daytime) for 7 days. H(2) gas (1.3 vol/100 vol) was given either at the time of reoxygenation, during hypoxic conditions, or throughout the experimental period. Mice kept under normoxic conditions served as controls (n = 13). Intermittent hypoxia significantly increased plasma levels of low- and very low-density cholesterol and the amount of 4-hydroxy-2-nonenal-modified protein adducts in the LV myocardium. It also upregulated mRNA expression of tissue necrosis factor-α, interleukin-6, and brain natriuretic peptide, increased production of superoxide, and induced cardiomyocyte hypertrophy, nuclear deformity, mitochondrial degeneration, and interstitial fibrosis. H(2) gas inhalation significantly suppressed these changes induced by intermittent hypoxia. In particular, H(2) gas inhaled at the timing of reoxygenation or throughout the experiment was effective in preventing dyslipidemia and suppressing superoxide production in the LV myocardium. These results suggest that inhalation of H(2) gas was effective for reducing oxidative stress and preventing LV remodeling induced by intermittent hypoxia relevant to sleep apnea.

  5. Remodeling the Media Center.

    ERIC Educational Resources Information Center

    Baule, Steven M.

    1998-01-01

    Discusses items that need to be considered when remodeling a school media center. Highlights include space and location for various functions, including projections of print versus electronic media; electrical and data wiring needs; lighting; security and supervision; and reuse of existing furniture and equipment. (LRW)

  6. Cardiovascular damage resulting from chronic excessive endurance exercise.

    PubMed

    Patil, Harshal R; O'Keefe, James H; Lavie, Carl J; Magalski, Anthony; Vogel, Robert A; McCullough, Peter A

    2012-01-01

    A daily routine of physical activity is highly beneficial in the prevention and treatment of many prevalent chronic diseases, especially of the cardiovascular (CV) system. However, chronic, excessive sustained endurance exercise may cause adverse structural remodeling of the heart and large arteries. An evolving body of data indicates that chronically training for and participating in extreme endurance competitions such as marathons, ultra-marathons, Iron-man distance triathlons, very long distance bicycle racing, etc., can cause transient acute volume overload of the atria and right ventricle, with transient reductions in right ventricular ejection fraction and elevations of cardiac biomarkers, all of which generally return to normal within seven to ten days. In veteran extreme endurance athletes, this recurrent myocardial injury and repair may eventually result in patchy myocardial fibrosis, particularly in the atria, interventricular septum and right ventricle, potentially creating a substrate for atrial and ventricular arrhythmias. Furthermore, chronic, excessive, sustained, high-intensity endurance exercise may be associated with diastolic dysfunction, large-artery wall stiffening and coronary artery calcification. Not all veteran extreme endurance athletes develop pathological remodeling, and indeed lifelong exercisers generally have low mortality rates and excellent functional capacity. The aim of this review is to discuss the emerging understanding of the cardiac pathophysiology of extreme endurance exercise, and make suggestions about healthier fitness patterns for promoting optimal CV health and longevity.

  7. CARDIOVASCULAR EFFECTS OF ULTRAFINE CARBON PARTICLES IN HYPERTENSIVE RATS (SHR)

    EPA Science Inventory

    Rationale: Epidemiological evidence suggests that ultrafine particles are associated with adverse cardiovascular effects, specifically in elderly individuals with preexisting cardiovascular disease. The objective of this study was (i) to assess cardiopulmonary responses in adult ...

  8. Prediction of Left Ventricular Remodeling after a Myocardial Infarction: Role of Myocardial Deformation: A Systematic Review and Meta-Analysis

    PubMed Central

    Huttin, Olivier; Coiro, Stefano; Selton-Suty, Christine; Juillière, Yves; Donal, Erwan; Magne, Julien; Sadoul, Nicolas; Zannad, Faiez; Rossignol, Patrick; Girerd, Nicolas

    2016-01-01

    Aims Left ventricular (LV) adverse or reverse remodeling after ST-segment elevation myocardial infarction (MI) is the best outcome to assess the benefit of revascularization. Speckle tracking echocardiography (STE) may accurately identify early deformation impairment, while also being predictive of LV remodeling during follow-up. This systematic analysis aimed to provide a comprehensive review of current findings on STE as a predictor of LV remodeling after MI. Methods PubMed databases were searched through December 2014 to identify studies in adults targeting the association between LV remodeling and STE. Meta-regression was performed for longitudinal analysis. Results A total of 23 prospective studies (3066 patients) were found eligible. Eleven studies reported an association between STE and adverse remodeling and twelve studies with reverse remodeling. Using peak systolic longitudinal strain, the most accurate cut-off to predict adverse remodeling and reverse remodeling ranged from -12.8% to -10.2% and from -13.7% to -9.5%, respectively. In smaller studies, assessment of circumferential strain and torsion showed additive value in predicting remodeling. Meta-regression analysis revealed that longitudinal STE was associated with adverse remodeling (pooled univariable OR = 1.27, 1.17–1.38, p<0.001; pooled multivariable OR = 1.38, 1.13–1.70, p = 0.002) while pooled ORs of longitudinal STE only tended to predict reverse remodeling (pooled OR = 0.75, 0.54–1.06, p = 0.09). Conclusions This systematic review suggests that STE is associated with changes in LV volume or function regardless of underlying mechanisms and deformation direction. Meta-regression demonstrates a strong association between peak longitudinal systolic strain and adverse remodeling. Added STE predictive value over other clinical, biological and imaging variables remains to be proven. PMID:28036335

  9. Nucleosome Remodeling and Epigenetics

    PubMed Central

    Becker, Peter B.; Workman, Jerry L.

    2013-01-01

    Eukaryotic chromatin is kept flexible and dynamic to respond to environmental, metabolic, and developmental cues through the action of a family of so-called “nucleosome remodeling” ATPases. Consistent with their helicase ancestry, these enzymes experience conformation changes as they bind and hydrolyze ATP. At the same time they interact with DNA and histones, which alters histone–DNA interactions in target nucleosomes. Their action may lead to complete or partial disassembly of nucleosomes, the exchange of histones for variants, the assembly of nucleosomes, or the movement of histone octamers on DNA. “Remodeling” may render DNA sequences accessible to interacting proteins or, conversely, promote packing into tightly folded structures. Remodeling processes participate in every aspect of genome function. Remodeling activities are commonly integrated with other mechanisms such as histone modifications or RNA metabolism to assemble stable, epigenetic states. PMID:24003213

  10. Consequences of Circadian and Sleep Disturbances for the Cardiovascular System.

    PubMed

    Alibhai, Faisal J; Tsimakouridze, Elena V; Reitz, Cristine J; Pyle, W Glen; Martino, Tami A

    2015-07-01

    Circadian rhythms play a crucial role in our cardiovascular system. Importantly, there has been a recent flurry of clinical and experimental studies revealing the profound adverse consequences of disturbing these rhythms on the cardiovascular system. For example, circadian disturbance worsens outcome after myocardial infarction with implications for patients in acute care settings. Moreover, disturbing rhythms exacerbates cardiac remodelling in heart disease models. Also, circadian dyssynchrony is a causal factor in the pathogenesis of heart disease. These discoveries have profound implications for the cardiovascular health of shift workers, individuals with circadian and sleep disorders, or anyone subjected to the 24/7 demands of society. Moreover, these studies give rise to 2 new frontiers for translational research: (1) circadian rhythms and the cardiac sarcomere, which sheds new light on our understanding of myofilament structure, signalling, and electrophysiology; and (2) knowledge translation, which includes biomarker discovery (chronobiomarkers), timing of therapies (chronotherapy), and other new promising approaches to improve the management and treatment of cardiovascular disease. Reconsidering circadian rhythms in the clinical setting benefits repair mechanisms, and offers new promise for patients.

  11. Role of Arginase in Vessel Wall Remodeling

    PubMed Central

    Durante, William

    2013-01-01

    Arginase metabolizes the semi-essential amino acid l-arginine to l-ornithine and urea. There are two distinct isoforms of arginase, arginase I and II, which are encoded by separate genes and display differences in tissue distribution, subcellular localization, and molecular regulation. Blood vessels express both arginase I and II but their distribution appears to be cell-, vessel-, and species-specific. Both isoforms of arginase are induced by numerous pathologic stimuli and contribute to vascular cell dysfunction and vessel wall remodeling in several diseases. Clinical and experimental studies have documented increases in the expression and/or activity of arginase I or II in blood vessels following arterial injury and in pulmonary and arterial hypertension, aging, and atherosclerosis. Significantly, pharmacological inhibition or genetic ablation of arginase in animals ameliorates abnormalities in vascular cells and normalizes blood vessel architecture and function in all of these pathological states. The detrimental effect of arginase in vascular remodeling is attributable to its ability to stimulate vascular smooth muscle cell and endothelial cell proliferation, and collagen deposition by promoting the synthesis of polyamines and l-proline, respectively. In addition, arginase adversely impacts arterial remodeling by directing macrophages toward an inflammatory phenotype. Moreover, the proliferative, fibrotic, and inflammatory actions of arginase in the vasculature are further amplified by its capacity to inhibit nitric oxide (NO) synthesis by competing with NO synthase for substrate, l-arginine. Pharmacologic or molecular approaches targeting specific isoforms of arginase represent a promising strategy in treating obstructive fibroproliferative vascular disease. PMID:23717309

  12. Adverse effects of cannabis.

    PubMed

    2011-01-01

    establish a causal relationship in either direction, because of these methodological limitations. In Australia, the marked increase in cannabis use has not been accompanied by an increased incidence of schizophrenia. On the basis of the available data, we cannot reach firm conclusions on whether or not cannabis use causes psychosis. It seems prudent to inform apparently vulnerable individuals that cannabis may cause acute psychotic decompensation, especially at high doses. Users can feel dependent on cannabis, but this dependence is usually psychological. Withdrawal symptoms tend to occur within 48 hours following cessation of regular cannabis use, and include increased irritability, anxiety, nervousness, restlessness, sleep difficulties and aggression. Symptoms subside within 2 to 12 weeks. Driving under the influence of cannabis doubles the risk of causing a fatal road accident. Alcohol consumption plays an even greater role. A few studies and a number of isolated reports suggest that cannabis has a role in the occurrence of cardiovascular adverse effects, especially in patients with coronary heart disease. Numerous case-control studies have investigated the role of cannabis in the incidence of some types of cancer. Its role has not been ruled out, but it is not possible to determine whether the risk is distinct from that of the tobacco with which it is often smoked. Studies that have examined the influence of cannabis use on the clinical course of hepatitis C are inconclusive. Alcohol remains the main toxic agent that hepatitis C patients should avoid. In practice, the adverse effects of low-level, recreational cannabis use are generally minor, although they can apparently be serious in vulnerable individuals. The adverse effects of cannabis appear overall to be less serious than those of alcohol, in terms of neuropsychological and somatic effects, accidents and violence.

  13. Ghrelin and the cardiovascular system.

    PubMed

    Tokudome, Takeshi; Kishimoto, Ichiro; Miyazato, Mikiya; Kangawa, Kenj

    2014-01-01

    Ghrelin is a peptide that was originally isolated from the stomach. It exerts potent growth hormone (GH)-releasing and orexigenic activities. Several studies have highlighted the therapeutic benefits of ghrelin for the treatment of cardiovascular disease. In animal models of chronic heart failure, the administration of ghrelin improved cardiac function and remodeling; these findings were replicated in human patients with heart failure. Moreover, in an animal study, ghrelin administration effectively reduced pulmonary hypertension induced by chronic hypoxia. In addition, repeated administration of ghrelin to cachectic patients with chronic obstructive pulmonary disease had positive effects on overall body function, including muscle wasting, functional capacity and sympathetic activity. The administration of ghrelin early after myocardial infarction (MI) reduced fatal arrhythmia and related mortality. In ghrelin-deficient mice, both exogenous and endogenous ghrelin were protective against fatal arrhythmia and promoted remodeling after MI. Although the mechanisms underlying the effects of ghrelin on the cardiovascular system remain unclear, there are indications that its beneficial effects are mediated through both direct physiological actions, including increased GH levels, improved energy balance and direct actions on cardiovascular cells, and regulation of autonomic nervous system activity. Therefore, ghrelin is a promising novel therapeutic agent for cardiovascular disease.

  14. Chromatin Remodeling and Plant Immunity.

    PubMed

    Chen, W; Zhu, Q; Liu, Y; Zhang, Q

    2017-01-01

    Chromatin remodeling, an important facet of the regulation of gene expression in eukaryotes, is performed by two major types of multisubunit complexes, covalent histone- or DNA-modifying complexes, and ATP-dependent chromosome remodeling complexes. Snf2 family DNA-dependent ATPases constitute the catalytic subunits of ATP-dependent chromosome remodeling complexes, which accounts for energy supply during chromatin remodeling. Increasing evidence indicates a critical role of chromatin remodeling in the establishment of long-lasting, even transgenerational immune memory in plants, which is supported by the findings that DNA methylation, histone deacetylation, and histone methylation can prime the promoters of immune-related genes required for disease defense. So what are the links between Snf2-mediated ATP-dependent chromosome remodeling and plant immunity, and what mechanisms might support its involvement in disease resistance?

  15. Cystatin C: an emerging biomarker in cardiovascular disease.

    PubMed

    Angelidis, Christos; Deftereos, Spyridon; Giannopoulos, Georgios; Anatoliotakis, Nikolaos; Bouras, Georgios; Hatzis, Georgios; Panagopoulou, Vasiliki; Pyrgakis, Vlasios; Cleman, Michael W

    2013-01-01

    Cystatin C (cys-C) is a small protein molecule (120 amino acid peptide chain, approximately 13kDa) produced by virtually all nucleated cells in the human body. It belongs to the family of papain-like cysteine proteases and its main biological role is the extracellular inhibition of cathepsins. It's near constant production rate, the fact that it is freely filtered from the glomerular membrane and then completely reabsorbed without being secreted from the proximal tubular cells, made it an almost perfect candidate for estimating renal function. The strong correlation between chronic kidney disease (CKD) and cardiovascular disease (CVD) along with the growing understanding of the role of cysteinyl cathepsins in the pathophysiology of CVD inspired researchers to explore the potential association of cys-C with CVD. Throughout the spectrum of CVD (peripheral arterial disease, stroke, abdominal aortic aneurysm, heart failure, coronary artery disease) adverse outcomes and risk stratification have been associated with high plasma levels of cys-C. The exact mechanisms behind the observed correlations have not been comprehensively clarified. Plausible links between high cys-C levels and poor cardiovascular outcome could be impaired renal function, atherogenesis and inflammatory mediators, remodeling of myocardial tissue and others (genetic factors, aging and social habits). The scope of the present article is to systematically review the current knowledge about cys-C biochemistry, metabolism, methods of detection and quantification and pathophysiological associations with different aspects of CVD.

  16. Advances in stem cell therapy for cardiovascular disease (Review)

    PubMed Central

    SUN, RONGRONG; LI, XIANCHI; LIU, MIN; ZENG, YI; CHEN, SHUANG; ZHANG, PEYING

    2016-01-01

    Cardiovascular disease constitutes the primary cause of mortality and morbidity worldwide, and represents a group of disorders associated with the loss of cardiac function. Despite considerable advances in the understanding of the pathologic mechanisms of the disease, the majority of the currently available therapies remain at best palliative, since the problem of cardiac tissue loss has not yet been addressed. Indeed, few therapeutic approaches offer direct tissue repair and regeneration, whereas the majority of treatment options aim to limit scar formation and adverse remodeling, while improving myocardial function. Of all the existing therapeutic approaches, the problem of cardiac tissue loss is addressed uniquely by heart transplantation. Nevertheless, alternative options, particularly stem cell therapy, has emerged as a novel and promising approach. This approach involves the transplantation of healthy and functional cells to promote the renewal of damaged cells and repair injured tissue. Bone marrow precursor cells were the first cell type used in clinical studies, and subsequently, preclinical and clinical investigations have been extended to the use of various populations of stem cells. This review addresses the present state of research as regards stem cell therapy for cardiovascular disease. PMID:27220939

  17. Effects of Obstructive Sleep Apnea and Obesity on Cardiac Remodeling: The Wisconsin Sleep Cohort Study

    PubMed Central

    Korcarz, Claudia E.; Peppard, Paul E.; Young, Terry B.; Chapman, Carrie B.; Hla, K. Mae; Barnet, Jodi H.; Hagen, Erika; Stein, James H.

    2016-01-01

    Study Objectives: To characterize the prospective associations of obstructive sleep apnea (OSA) with future echocardiographic measures of adverse cardiac remodeling Methods: This was a prospective long-term observational study. Participants had overnight polysomnography followed by transthoracic echocardiography a mean (standard deviation) of 18.0 (3.7) y later. OSA was characterized by the apnea-hypopnea index (AHI, events/hour). Echocardiography was used to assess left ventricular (LV) systolic and diastolic function and mass, left atrial volume and pressure, cardiac output, systemic vascular resistance, and right ventricular (RV) systolic function, size, and hemodynamics. Multivariate regression models estimated associations between log10(AHI+1) and future echocardiographic findings. A secondary analysis looked at oxygen desaturation indices and future echocardiographic findings. Results: At entry, the 601 participants were mean (standard deviation) 47 (8) y old (47% female). After adjustment for age, sex, and body mass index, baseline log10(AHI+1) was associated significantly with future reduced LV ejection fraction and tricuspid annular plane systolic excursion (TAPSE) ≤ 15 mm. After further adjustment for cardiovascular risk factors, participants with higher baseline log10(AHI+1) had lower future LV ejection fraction (β = −1.35 [standard error = 0.6]/log10(AHI+1), P = 0.03) and higher odds of TAPSE ≤ 15 mm (odds ratio = 6.3/log10(AHI+1), 95% confidence interval = 1.3–30.5, P = 0.02). SaO2 desaturation indices were associated independently with LV mass, LV wall thickness, and RV area (all P < 0.03) Conclusions: OSA is associated independently with decreasing LV systolic function and with reduced RV function. Echocardiographic measures of adverse cardiac remodeling are strongly associated with OSA but are confounded by obesity. Hypoxia may be a stimulus for hypertrophy in individuals with OSA. Citation: Korcarz CE, Peppard PE, Young TB, Chapman CB, Hla

  18. Cardiac remodelling and RAS inhibition

    PubMed Central

    Ferrario, Carlos M.

    2016-01-01

    Risk factors such as hypertension and diabetes are known to augment the activity and tissue expression of angiotensin II (Ang II), the major effector peptide of the renin–angiotensin system (RAS). Overstimulation of the RAS has been implicated in a chain of events that contribute to the pathogenesis of cardiovascular (CV) disease, including the development of cardiac remodelling. This chain of events has been termed the CV continuum. The concept of CV disease existing as a continuum was first proposed in 1991 and it is believed that intervention at any point within the continuum can modify disease progression. Treatment with antihypertensive agents may result in regression of left ventricular hypertrophy, with different drug classes exhibiting different degrees of efficacy. The greatest decrease in left ventricular mass is observed following treatment with angiotensin converting enzyme inhibitors (ACE-Is), which inhibit Ang II formation. Although ACE-Is and angiotensin receptor blockers (ARBs) provide significant benefits in terms of CV events and stroke, mortality remains high. This is partly due to a failure to completely suppress the RAS, and, as our knowledge has increased, an escape phenomenon has been proposed whereby the human sequence of the 12 amino acid substrate angiotensin-(1-12) is converted to Ang II by the mast cell protease, chymase. Angiotensin-(1-12) is abundant in a wide range of organs and has been shown to increase blood pressure in animal models, an effect abolished by the presence of ACE-Is or ARBs. This review explores the CV continuum, in addition to examining the influence of the RAS. We also consider novel pathways within the RAS and how new therapeutic approaches that target this are required to further reduce Ang II formation, and so provide patients with additional benefits from a more complete blockade of the RAS. PMID:27105891

  19. Remodeling with the sun

    SciTech Connect

    Bodzin, S.

    1997-05-01

    Remodeling is the perfect time to improve daylighting, direct gain heating and shading with passive solar techniques. It can also provide the best opportunity to add solar water heating or even photoboltaics to a home. This article describes addition of such energy efficient plans to a home in terms of what is needed and what the benefits are: adding windows, North glass, east and west glass, south glass, daylighting, the roof, shingles and roofing tiles, walls and floors, solar hot water, photovoltaics. Two side bars discuss the sunplace: a passive solar room and angles and overhangs.

  20. Klotho and Phosphate Are Modulators of Pathologic Uremic Cardiac Remodeling

    PubMed Central

    Shi, Mingjun; Cho, Han Jun; Adams-Huet, Beverley; Paek, Jean; Hill, Kathy; Shelton, John; Amaral, Ansel P.; Faul, Christian; Taniguchi, Masatomo; Wolf, Myles; Brand, Markus; Takahashi, Masaya; Kuro-o, Makoto; Hill, Joseph A.

    2015-01-01

    Cardiac dysfunction in CKD is characterized by aberrant cardiac remodeling with hypertrophy and fibrosis. CKD is a state of severe systemic Klotho deficiency, and restoration of Klotho attenuates vascular calcification associated with CKD. We examined the role of Klotho in cardiac remodeling in models of Klotho deficiency—genetic Klotho hypomorphism, high dietary phosphate intake, aging, and CKD. Klotho-deficient mice exhibited cardiac dysfunction and hypertrophy before 12 weeks of age followed by fibrosis. In wild-type mice, the induction of CKD led to severe cardiovascular changes not observed in control mice. Notably, non-CKD mice fed a high-phosphate diet had lower Klotho levels and greatly accelerated cardiac remodeling associated with normal aging compared with those on a normal diet. Chronic elevation of circulating Klotho because of global overexpression alleviated the cardiac remodeling induced by either high-phosphate diet or CKD. Regardless of the cause of Klotho deficiency, the extent of cardiac hypertrophy and fibrosis correlated tightly with plasma phosphate concentration and inversely with plasma Klotho concentration, even when adjusted for all other covariables. High-fibroblast growth factor–23 concentration positively correlated with cardiac remodeling in a Klotho-deficient state but not a Klotho-replete state. In vitro, Klotho inhibited TGF-β1–, angiotensin II–, or high phosphate–induced fibrosis and abolished TGF-β1– or angiotensin II–induced hypertrophy of cardiomyocytes. In conclusion, Klotho deficiency is a novel intermediate mediator of pathologic cardiac remodeling, and fibroblast growth factor–23 may contribute to cardiac remodeling in concert with Klotho deficiency in CKD, phosphotoxicity, and aging. PMID:25326585

  1. Adverse effects of statins - myths and reality.

    PubMed

    Šimić, Iveta; Reiner, Željko

    2015-01-01

    Statins reduce cardiovascular mortality and morbidity as well as cardiovascular events in patients with a very high risk of cardiovascular disease (CVD) and also in subjects with high or moderate risk by reducing the levels of low-density lipoprotein cholesterol (LDL-C). Although they are considered to be drugs with a very good safety profile, because of their wide use there are many concerns that their adverse effects might compromise their proven beneficial effects. Therefore this article reviews all the data and provides an evidence- based insight what are the proven adverse effects of statins and what are the "myths" about them. The most important side effects include myopathy and rhabdomyolysis. Another side effect is increased activity of liver tests which occurs occasionally and is reversible. However, recent studies even suggest that statin therapy can improve hepatic steatosis. It is beyond any doubt that statins do slightly increase the incidence of type 2 diabetes mellitus in people with two or more components of metabolic syndrome but the cardiovascular benefits of such a treatment by far exceed this risk. Statin therapy has also been associated with some adverse renal effects, eg. acute renal failure, but recent data suggest even a possible protective effect of these drugs on renal dysfunction. Concerns that statins might increase cancer have not been proven. On the contrary, several studies have indicated a possible benefit of these drugs in patients with different types of cancer. Early concerns about cognitive dysfunction and memory loss associated with statins use could not be proven and most recent data even suggest a possible beneficial effect of statins in the prevention of dementia. Systematic reviews and clinical guidelines suggest that the cardiovascular benefits of statins by far out-weight non-cardiovascular harms in patients with cardiovascular risk.

  2. Cardiovascular Health Status and Incidence of Heart Failure in the Framingham Offspring Study

    PubMed Central

    Nayor, Matthew; Enserro, Danielle M.; Vasan, Ramachandran S.; Xanthakis, Vanessa

    2015-01-01

    Background The American Heart Association Cardiovascular Health (CVH) score is inversely associated with cardiovascular disease, but its relations to cardiac remodeling traits and to heart failure (HF) incidence have not been examined. Methods and Results A 14-point score was constructed for each participant based on the presence of poor, intermediate or ideal status on each of the 7 CVH metrics (ideal score=14). We related the CVH score to echocardiographic traits cross-sectionally, and to HF incidence prospectively in the Framingham Offspring Study. In age- and sex-adjusted models, a higher CVH score was associated with lower left ventricular (LV) mass, LV wall thickness, LV diastolic dimension, and left atrial dimension (p<0.01 for all; N=2392, mean age 58 years, 56% women), and with a 12-15% lower odds of prevalent LV concentric remodeling and concentric hypertrophy, respectively (p<0.0001 for both). On follow-up (mean 12.3 years), 188 incident HF events were observed in 3201 participants (mean age 59 years, 53% women). In age- and sex-adjusted Cox proportional hazards models, the CVH score was inversely associated with HF incidence (hazards ratio [HR] per 1-point higher CVH score 0.77, 95% CI 0.72-0.83). This association was partially attenuated upon adjustment for LV mass and interim myocardial infarction (HR 0.84, 95% CI 0.76-0.93) and was consistent for HF with preserved and reduced ejection fractions. Conclusions In our community-based sample, comprised predominantly of middle-aged white individuals of European descent, better CVH was associated with lower HF incidence, in part due to a lower prevalence of adverse cardiac remodeling. PMID:26699391

  3. Cardiovascular Deconditioning

    NASA Technical Reports Server (NTRS)

    Charles, John B.; Fritsch-Yelle, Janice M.; Whitson, Peggy A.; Wood, Margie L.; Brown, Troy E.; Fortner, G. William

    1999-01-01

    Spaceflight causes adaptive changes in cardiovascular function that may deleteriously affect crew health and safety. Over the last three decades, symptoms of cardiovascular changes have ranged from postflight orthostatic tachycardia and decreased exercise capacity to serious cardiac rhythm disturbances during extravehicular activities (EVA). The most documented symptom of cardiovascular dysfunction, postflight orthostatic intolerance, has affected a significant percentage of U.S. Space Shuttle astronauts. Problems of cardiovascular dysfunction associated with spaceflight are a concern to NASA. This has been particularly true during Shuttle flights where the primary concern is the crew's physical health, including the pilot's ability to land the Orbiter, and the crew's ability to quickly egress and move to safety should a dangerous condition arise. The study of astronauts during Shuttle activities is inherently more difficult than most human research. Consequently, sample sizes have been small and results have lacked consistency. Before the Extended Duration Orbiter Medical Project (EDOMP), there was a lack of normative data on changes in cardiovascular parameters during and after spaceflight. The EDOMP for the first time allowed studies on a large enough number of subjects to overcome some of these problems. There were three primary goals of the Cardiovascular EDOMP studies. The first was to establish, through descriptive studies, a normative data base of cardiovascular changes attributable to spaceflight. The second goal was to determine mechanisms of cardiovascular changes resulting from spaceflight (particularly orthostatic hypotension and cardiac rhythm disturbances). The third was to evaluate possible countermeasures. The Cardiovascular EDOMP studies involved parallel descriptive, mechanistic, and countermeasure evaluations.

  4. To Remodel or To Build?

    ERIC Educational Resources Information Center

    Rosenblum, Todd

    2009-01-01

    The question of remodeling an existing house to make it wheelchair accessible or building a new barrier-free house is a difficult decision. This article presents some initial questions and considerations followed by a list of pros and cons for remodeling an existing house vs. building a new house.

  5. No-Regrets Remodeling, 2nd Edition

    SciTech Connect

    2013-12-01

    No-Regrets Remodeling, sponsored by Oak Ridge National Laboratory, is an informative publication that walks homeowners and/or remodelers through various home remodeling projects. In addition to remodeling information, the publication provides instruction on how to incorporate energy efficiency into the remodeling process. The goal of the publication is to improve homeowner satisfaction after completing a remodeling project and to provide the homeowner with a home that saves energy and is comfortable and healthy.

  6. Cardiovascular and other effects of salt consumption

    PubMed Central

    Cappuccio, Francesco P

    2013-01-01

    Salt is one of the most important determinants of high blood pressure and increased cardiovascular risk worldwide. However, a high salt intake has other adverse effects beyond those involving the cardiovascular system, so that there is renewed interest in the relationships between high salt intake and other diseases. PMID:25019010

  7. Development of Extracorporeal Shock Wave Therapy for the Treatment for Ischemic Cardiovascular Diseases

    NASA Astrophysics Data System (ADS)

    Shimokawa, Hiroaki

    Cardiovascular diseases, such as coronary artery disease and peripheral artery disease, are the major causes of death in developed countries, and the number of elderly patients has been rapidly increasing worldwide. Thus, it is crucial to develop new non-invasive therapeutic strategies for these patients. We found that a low-energy shock wave (SW) (about 10% of the energy density that is used for urolithiasis) effectively increases the expression of vascular endothelial growth factor (VEGF) in cultured endothelial cells. Subsequently, we demonstrated that extracorporeal cardiac SW therapy with low-energy SW up-regulates the expression of VEGF, enhances angiogenesis, and improves myocardial ischemia in a pig model of chronic myocardial ischemia without any adverse effects in vivo. Based on these promising results in animal studies, we have subsequently developed a new, non-invasive angiogenic therapy with low-energy SW for cardiovascular diseases. Our extracorporeal cardiac SW therapy improved symptoms and myocardial perfusion evaluated with stress-scintigraphy in patients with severe coronary artery disease without indication of percutaneous coronary intervention or coronary artery bypass surgery. Importantly, no procedural complications or adverse effects were noted. The SW therapy was also effective in ameliorating left ventricular remodeling after acute myocardial infarction in pigs and in enhancing angiogenesis in hindlimb ischemia in animals and patients with coronary artery disease. Furthermore, our recent experimental studies suggest that the SW therapy is also effective for indications other than cardiovascular diseases. Thus, our extracorporeal cardiac SW therapy is an effective, safe, and non-invasive angiogenic strategy for cardiovascular medicine.

  8. Selective targeting of glucagon-like peptide-1 signalling as a novel therapeutic approach for cardiovascular disease in diabetes

    PubMed Central

    Tate, Mitchel; Chong, Aaron; Robinson, Emma; Green, Brian D; Grieve, David J

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone whose glucose-dependent insulinotropic actions have been harnessed as a novel therapy for glycaemic control in type 2 diabetes. Although it has been known for some time that the GLP-1 receptor is expressed in the CVS where it mediates important physiological actions, it is only recently that specific cardiovascular effects of GLP-1 in the setting of diabetes have been described. GLP-1 confers indirect benefits in cardiovascular disease (CVD) under both normal and hyperglycaemic conditions via reducing established risk factors, such as hypertension, dyslipidaemia and obesity, which are markedly increased in diabetes. Emerging evidence indicates that GLP-1 also exerts direct effects on specific aspects of diabetic CVD, such as endothelial dysfunction, inflammation, angiogenesis and adverse cardiac remodelling. However, the majority of studies have employed experimental models of diabetic CVD and information on the effects of GLP-1 in the clinical setting is limited, although several large-scale trials are ongoing. It is clearly important to gain a detailed knowledge of the cardiovascular actions of GLP-1 in diabetes given the large number of patients currently receiving GLP-1-based therapies. This review will therefore discuss current understanding of the effects of GLP-1 on both cardiovascular risk factors in diabetes and direct actions on the heart and vasculature in this setting and the evidence implicating specific targeting of GLP-1 as a novel therapy for CVD in diabetes. PMID:25231355

  9. Cardiovascular consequences of metabolic syndrome.

    PubMed

    Tune, Johnathan D; Goodwill, Adam G; Sassoon, Daniel J; Mather, Kieren J

    2017-01-09

    The metabolic syndrome (MetS) is defined as the concurrence of obesity-associated cardiovascular risk factors including abdominal obesity, impaired glucose tolerance, hypertriglyceridemia, decreased HDL cholesterol, and/or hypertension. Earlier conceptualizations of the MetS focused on insulin resistance as a core feature, and it is clearly coincident with the above list of features. Each component of the MetS is an independent risk factor for cardiovascular disease and the combination of these risk factors elevates rates and severity of cardiovascular disease, related to a spectrum of cardiovascular conditions including microvascular dysfunction, coronary atherosclerosis and calcification, cardiac dysfunction, myocardial infarction, and heart failure. While advances in understanding the etiology and consequences of this complex disorder have been made, the underlying pathophysiological mechanisms remain incompletely understood, and it is unclear how these concurrent risk factors conspire to produce the variety of obesity-associated adverse cardiovascular diseases. In this review, we highlight current knowledge regarding the pathophysiological consequences of obesity and the MetS on cardiovascular function and disease, including considerations of potential physiological and molecular mechanisms that may contribute to these adverse outcomes.

  10. Obesity and carotid artery remodeling

    PubMed Central

    Kozakova, M; Palombo, C; Morizzo, C; Højlund, K; Hatunic, M; Balkau, B; Nilsson, P M; Ferrannini, E

    2015-01-01

    Background/Objective: The present study tested the hypothesis that obesity-related changes in carotid intima-media thickness (IMT) might represent not only preclinical atherosclerosis but an adaptive remodeling meant to preserve circumferential wall stress (CWS) in altered hemodynamic conditions characterized by body size-dependent increase in stroke volume (SV) and blood pressure (BP). Subjects/Methods: Common carotid artery (CCA) luminal diameter (LD), IMT and CWS were measured in three different populations in order to study: (A) cross-sectional associations between SV, BP, anthropometric parameters and CCA LD (266 healthy subjects with wide range of body weight (24–159 kg)); (B) longitudinal associations between CCA LD and 3-year IMT progression rate (ΔIMT; 571 healthy non-obese subjects without increased cardiovascular (CV) risk); (C) the impact of obesity on CCA geometry and CWS (88 obese subjects without CV complications and 88 non-obese subjects matched for gender and age). Results: CCA LD was independently associated with SV that was determined by body size. In the longitudinal study, baseline LD was an independent determinant of ΔIMT, and ΔIMT of subjects in the highest LD quartile was significantly higher (28±3 μm) as compared with those in the lower quartiles (8±3, 16±4 and 16±3 μm, P=0.001, P<0.05 and P=0.01, respectively). In addition, CCA CWS decreased during the observational period in the highest LD quartile (from 54.2±8.6 to 51.6±7.4 kPa, P<0.0001). As compared with gender- and age-matched lean individuals, obese subjects had highly increased CCA LD and BP (P<0.0001 for both), but only slightly higher CWS (P=0.05) due to a significant increase in IMT (P=0.005 after adjustment for confounders). Conclusions: Our findings suggest that in obese subjects, the CCA wall thickens to compensate the luminal enlargement caused by body size-induced increase in SV, and therefore, to normalize the wall stress. CCA diameter in obesity could

  11. Vaccine Adverse Events

    MedlinePlus

    ... Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products Vaccines, Blood & Biologics Home Vaccines, Blood & Biologics Safety & Availability ( ... Center for Biologics Evaluation & Research Vaccine Adverse Events Vaccine Adverse Events Share Tweet Linkedin Pin it More ...

  12. MYOCARDIAL REMODELING IN LOW-RENIN HYPERTENSION. MOLECULAR PATHWAYS TO CELLULAR INJURY IN RELATIVE ALDOSTERONISM

    PubMed Central

    Bhattacharya, Syamal K.; Gandhi, Malay S.; Kamalov, German; Ahokas, Robert A.; Sun, Yao; Gerling, Ivan C.; Weber, Karl T.

    2010-01-01

    The pathologic hypertrophy of hypertensive heart disease is related to the quality not quantity of myocardium; the presence of fibrosis is inevitably linked to structural and functional insufficiencies with increased cardiovascular risk. Inappropriate (relative to dietary Na+) elevations in plasma aldosterone, or relative aldosteronism, are accompanied by suppressed plasma renin activity, elevation in arterial pressure, and dyshomeostasis of divalent cations. The accompanying hypocalcemia, hypomagnesemia, and hypozincemia of aldosteronism contribute to the appearance of secondary hyperparathyroidism. Parathyroid hormone-mediated intracellular Ca2+ overloading of cardiac myocytes and mitochondria leads to the induction of oxidative stress and molecular pathways associated with cardiomyocyte necrosis and scarring of myocardium, while the dyshomeostasis of Zn2+ compromises antioxidant defenses. This dyshomeostasis of Ca2+ and Zn2+ is intrinsically coupled as pro- and antioxidant, respectively, raising the prospect for therapeutic strategies designed to mitigate intracellular Ca2+ overloading while enhancing Zn2+-mediated antioxidant defenses, thus preventing adverse myocardial remodeling with fibrosis, associated diastolic dysfunction, and cardiac arrhythmias. PMID:19895752

  13. Anxiety Disorders and Cardiovascular Disease.

    PubMed

    Celano, Christopher M; Daunis, Daniel J; Lokko, Hermioni N; Campbell, Kirsti A; Huffman, Jeff C

    2016-11-01

    Anxiety and its associated disorders are common in patients with cardiovascular disease and may significantly influence cardiac health. Anxiety disorders are associated with the onset and progression of cardiac disease, and in many instances have been linked to adverse cardiovascular outcomes, including mortality. Both physiologic (autonomic dysfunction, inflammation, endothelial dysfunction, changes in platelet aggregation) and health behavior mechanisms may help to explain the relationships between anxiety disorders and cardiovascular disease. Given the associations between anxiety disorders and poor cardiac health, the timely and accurate identification and treatment of these conditions is of the utmost importance. Fortunately, pharmacologic and psychotherapeutic interventions for the management of anxiety disorders are generally safe and effective. Further study is needed to determine whether interventions to treat anxiety disorders ultimately impact both psychiatric and cardiovascular health.

  14. Regulation of chromatin structure in the cardiovascular system.

    PubMed

    Rosa-Garrido, Manuel; Karbassi, Elaheh; Monte, Emma; Vondriska, Thomas M

    2013-01-01

    It has been appreciated for some time that cardiovascular disease involves large-scale transcriptional changes in various cell types. What has become increasingly clear only in the past few years, however, is the role of chromatin remodeling in cardiovascular phenotypes in normal physiology, as well as in development and disease. This review summarizes the state of the chromatin field in terms of distinct mechanisms to regulate chromatin structure in vivo, identifying when these modes of regulation have been demonstrated in cardiovascular tissues. We describe areas in which a better understanding of chromatin structure is leading to new insights into the fundamental biology of cardiovascular disease. 

  15. Building and Remodeling Synapses

    PubMed Central

    Benson, Deanna L.; Huntley, George W.

    2011-01-01

    Synaptic junctions are generated by adhesion proteins that bridge the synaptic cleft to firmly anchor pre- and postsynaptic membranes. Several cell adhesion molecule (CAM) families localize to synapses, but it is not yet completely understood how each synaptic CAM family contributes to synapse formation and/or structure, and whether or how smaller groups of CAMs serve as minimal, functionally cooperative adhesive units upon which structure is based. Synapse structure and function evolve over the course of development, and in mature animals, synapses are composed of a greater number of proteins, surrounded by a stabilizing extracellular matrix, and often contacted by astrocytic processes. Thus, in mature networks undergoing plasticity, persistent changes in synapse strength, morphology or number must be accompanied by selective and regulated remodeling of the neuropil. Recent work indicates that regulated, extracellular proteolysis may be essential for this, and rather than simply acting permissively to enable synapse plasticity, is more likely playing a proactive role in driving coordinated synaptic structural and functional modifications that underlie persistent changes in network activity. PMID:20882551

  16. Role of microRNAs in Vascular Remodeling

    PubMed Central

    Fang, Y.-C.; Yeh, C.-H.

    2015-01-01

    Besides being involved in the gradual formation of blood vessels during embryonic development, vascular remodeling also contributes to the progression of various cardiovascular diseases, such as; myocardial infarction, heart failure, atherosclerosis, pulmonary artery hypertension, restenosis, aneurysm, etc. The integrated mechanisms; proliferation of medial smooth muscle cell, dysregulation of intimal endothelial cell, activation of adventitial fibroblast, inflammation of macrophage, and the participation of extracellular matrix proteins are important factors in vascular remodeling. In the recent studies, microRNAs (miRs) have been shown to be expressed in all of these cell-types and play important roles in the mechanisms of vascular remodeling. Therefore, some miRs may be involved in prevention and others in the aggravation of the vascular lesions. miRs are small, endogenous, conserved, single-stranded, non-coding RNAs; which degrade target RNAs or inhibit translation post-transcriptionally. In this paper, we reviewed the function and mechanisms of miRs, which are highly expressed in various cells types, especially endothelial and smooth muscle cells, which are closely involved in the process of vascular remodeling. We also assess the functions of these miRs in the hope that they may provide new possibilities of diagnosis and treatment choices for the related diseases. PMID:26391551

  17. Oral disease in adults treated with hemodialysis: prevalence, predictors, and association with mortality and adverse cardiovascular events: the rationale and design of the ORAL Diseases in hemodialysis (ORAL-D) study, a prospective, multinational, longitudinal, observational, cohort study

    PubMed Central

    2013-01-01

    Background People with end-stage kidney disease treated with dialysis experience high rates of premature death that are at least 30-fold that of the general population, and have markedly impaired quality of life. Despite this, interventions that lower risk factors for mortality (including antiplatelet agents, epoetins, lipid lowering, vitamin D compounds, or dialysis dose) have not been shown to improve clinical outcomes for this population. Although mortality outcomes may be improving overall, additional modifiable determinants of health in people treated with dialysis need to be identified and evaluated. Oral disease is highly prevalent in the general population and represents a potential and preventable cause of poor health in dialysis patients. Oral disease may be increased in patients treated with dialysis due to their lower uptake of public dental services, as well as increased malnutrition and inflammation, although available exploratory data are limited by small sample sizes and few studies evaluating links between oral health and clinical outcomes for this group, including mortality and cardiovascular disease. Recent data suggest periodontitis may be associated with mortality in dialysis patients and well-designed, larger studies are now required. Methods/design The ORAL Diseases in hemodialysis (ORAL-D) study is a multinational, prospective (minimum follow-up 12 months) study. Participants comprise consecutive adults treated with long-term in-center hemodialysis. Between July 2010 and February 2012, we recruited 4500 dialysis patients from randomly selected outpatient dialysis clinics in Europe within a collaborative network of dialysis clinics administered by a dialysis provider, Diaverum, in Europe (France, Hungary, Italy, Poland, Portugal, and Spain) and South America (Argentina). At baseline, dental surgeons with training in periodontology systematically assessed the prevalence and characteristics of oral disease (dental, periodontal, mucosal, and

  18. Relationship between self-reported residential indoor remodeling and semen quality: a case-control study.

    PubMed

    Miao, Mao-Hua; Li, Zheng; Li, De-Kun; Yan, Bei; Liang, Hong; Zhi, Er-Lei; Du, Hong-Wei; Yuan, Wei

    2015-01-01

    The present study examined the association between residential indoor remodeling and poor semen quality. Sperm donors aged 18-45 years old were recruited in Shanghai, China. Semen specimens were collected and analyzed. An in-person interview was conducted to obtain information on the history of indoor remodeling and potential confounders. A total of 70 participants with abnormal semen quality (case group) and 68 controls were examined. A total of 20 subjects reported indoor remodeling in the recent 24 months, and among them 17 subjects reported indoor remodeling in the recent 12 months. Compared with participants with no history of indoor remodeling, participants with a history of indoor remodeling in the recent 24 months were more than three times as likely to have poor sperm quality (adjusted odds ratio = 3.8, 95% confidence interval: 1.3-12.0) after controlling for potential confounders. The association was strengthened when the analysis was restricted to those who had indoor remodeling in the recent 12 months. Our findings provide preliminary evidence that indoor remodeling has an adverse effect on semen quality.

  19. Exercise and the cardiovascular system.

    PubMed

    Golbidi, Saeid; Laher, Ismail

    2012-01-01

    There are alarming increases in the incidence of obesity, insulin resistance, type II diabetes, and cardiovascular disease. The risk of these diseases is significantly reduced by appropriate lifestyle modifications such as increased physical activity. However, the exact mechanisms by which exercise influences the development and progression of cardiovascular disease are unclear. In this paper we review some important exercise-induced changes in cardiac, vascular, and blood tissues and discuss recent clinical trials related to the benefits of exercise. We also discuss the roles of boosting antioxidant levels, consequences of epicardial fat reduction, increases in expression of heat shock proteins and endoplasmic reticulum stress proteins, mitochondrial adaptation, and the role of sarcolemmal and mitochondrial potassium channels in the contributing to the cardioprotection offered by exercise. In terms of vascular benefits, the main effects discussed are changes in exercise-induced vascular remodeling and endothelial function. Exercise-induced fibrinolytic and rheological changes also underlie the hematological benefits of exercise.

  20. Notch signaling in the developing cardiovascular system.

    PubMed

    Niessen, Kyle; Karsan, Aly

    2007-07-01

    The Notch proteins encompass a family of transmembrane receptors that have been highly conserved through evolution as mediators of cell fate. Recent findings have demonstrated a critical role of Notch in the developing cardiovascular system. Notch signaling has been implicated in the endothelial-to-mesenchymal transition during development of the heart valves, in arterial-venous differentiation, and in remodeling of the primitive vascular plexus. Mutations of Notch pathway components in humans are associated with congenital defects of the cardiovascular system such as Alagille syndrome, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), and bicuspid aortic valves. This article focuses on the role of the Notch pathway in the developing cardiovascular system and congenital human cardiovascular diseases.

  1. Cardiovascular risks associated with low dose ionizing particle radiation.

    PubMed

    Yan, Xinhua; Sasi, Sharath P; Gee, Hannah; Lee, JuYong; Yang, Yongyao; Mehrzad, Raman; Onufrak, Jillian; Song, Jin; Enderling, Heiko; Agarwal, Akhil; Rahimi, Layla; Morgan, James; Wilson, Paul F; Carrozza, Joseph; Walsh, Kenneth; Kishore, Raj; Goukassian, David A

    2014-01-01

    Previous epidemiologic data demonstrate that cardiovascular (CV) morbidity and mortality may occur decades after ionizing radiation exposure. With increased use of proton and carbon ion radiotherapy and concerns about space radiation exposures to astronauts on future long-duration exploration-type missions, the long-term effects and risks of low-dose charged particle irradiation on the CV system must be better appreciated. Here we report on the long-term effects of whole-body proton ((1)H; 0.5 Gy, 1 GeV) and iron ion ((56)Fe; 0.15 Gy, 1GeV/nucleon) irradiation with and without an acute myocardial ischemia (AMI) event in mice. We show that cardiac function of proton-irradiated mice initially improves at 1 month but declines by 10 months post-irradiation. In AMI-induced mice, prior proton irradiation improved cardiac function restoration and enhanced cardiac remodeling. This was associated with increased pro-survival gene expression in cardiac tissues. In contrast, cardiac function was significantly declined in (56)Fe ion-irradiated mice at 1 and 3 months but recovered at 10 months. In addition, (56)Fe ion-irradiation led to poorer cardiac function and more adverse remodeling in AMI-induced mice, and was associated with decreased angiogenesis and pro-survival factors in cardiac tissues at any time point examined up to 10 months. This is the first study reporting CV effects following low dose proton and iron ion irradiation during normal aging and post-AMI. Understanding the biological effects of charged particle radiation qualities on the CV system is necessary both for the mitigation of space exploration CV risks and for understanding of long-term CV effects following charged particle radiotherapy.

  2. Cardiovascular Risks Associated with Low Dose Ionizing Particle Radiation

    DOE PAGES

    Yan, Xinhua; Sasi, Sharath P.; Gee, Hannah; ...

    2014-10-22

    Previous epidemiologic data demonstrate that cardiovascular (CV) morbidity and mortality may occur decades after ionizing radiation exposure. With increased use of proton and carbon ion radiotherapy and concerns about space radiation exposures to astronauts on future long-duration exploration-type missions, the long-term effects and risks of low-dose charged particle irradiation on the CV system must be better appreciated. Here we report on the long-term effects of whole-body proton (1H; 0.5 Gy, 1 GeV) and iron ion (56Fe; 0.15 Gy, 1GeV/nucleon) irradiation with and without an acute myocardial ischemia (AMI) event in mice. We show that cardiac function of proton-irradiated mice initiallymore » improves at 1 month but declines by 10 months post-irradiation. In AMI-induced mice, prior proton irradiation improved cardiac function restoration and enhanced cardiac remodeling. This was associated with increased pro-survival gene expression in cardiac tissues. In contrast, cardiac function was significantly declined in 56Fe ion-irradiated mice at 1 and 3 months but recovered at 10 months. In addition, 56Fe ion-irradiation led to poorer cardiac function and more adverse remodeling in AMI-induced mice, and was associated with decreased angiogenesis and pro-survival factors in cardiac tissues at any time point examined up to 10 months. This is the first study reporting CV effects following low dose proton and iron ion irradiation during normal aging and post-AMI. Finally, understanding the biological effects of charged particle radiation qualities on the CV system is necessary both for the mitigation of space exploration CV risks and for understanding of long-term CV effects following charged particle radiotherapy.« less

  3. Cardiovascular Risks Associated with Low Dose Ionizing Particle Radiation

    SciTech Connect

    Yan, Xinhua; Sasi, Sharath P.; Gee, Hannah; Lee, JuYong; Yang, Yongyao; Mehrzad, Raman; Onufrak, Jillian; Song, Jin; Enderling, Heiko; Agarwal, Akhil; Rahimi, Layla; Morgan, James; Wilson, Paul F.; Carrozza, Joseph; Walsh, Kenneth; Kishore, Raj; Goukassian, David A.

    2014-10-22

    Previous epidemiologic data demonstrate that cardiovascular (CV) morbidity and mortality may occur decades after ionizing radiation exposure. With increased use of proton and carbon ion radiotherapy and concerns about space radiation exposures to astronauts on future long-duration exploration-type missions, the long-term effects and risks of low-dose charged particle irradiation on the CV system must be better appreciated. Here we report on the long-term effects of whole-body proton (1H; 0.5 Gy, 1 GeV) and iron ion (56Fe; 0.15 Gy, 1GeV/nucleon) irradiation with and without an acute myocardial ischemia (AMI) event in mice. We show that cardiac function of proton-irradiated mice initially improves at 1 month but declines by 10 months post-irradiation. In AMI-induced mice, prior proton irradiation improved cardiac function restoration and enhanced cardiac remodeling. This was associated with increased pro-survival gene expression in cardiac tissues. In contrast, cardiac function was significantly declined in 56Fe ion-irradiated mice at 1 and 3 months but recovered at 10 months. In addition, 56Fe ion-irradiation led to poorer cardiac function and more adverse remodeling in AMI-induced mice, and was associated with decreased angiogenesis and pro-survival factors in cardiac tissues at any time point examined up to 10 months. This is the first study reporting CV effects following low dose proton and iron ion irradiation during normal aging and post-AMI. Finally, understanding the biological effects of charged particle radiation qualities on the CV system is necessary both for the mitigation of space exploration CV risks and for understanding of long-term CV effects following charged particle radiotherapy.

  4. Cardiovascular Risks Associated with Low Dose Ionizing Particle Radiation

    PubMed Central

    Yan, Xinhua; Sasi, Sharath P.; Gee, Hannah; Lee, JuYong; Yang, Yongyao; Mehrzad, Raman; Onufrak, Jillian; Song, Jin; Enderling, Heiko; Agarwal, Akhil; Rahimi, Layla; Morgan, James; Wilson, Paul F.; Carrozza, Joseph; Walsh, Kenneth; Kishore, Raj; Goukassian, David A.

    2014-01-01

    Previous epidemiologic data demonstrate that cardiovascular (CV) morbidity and mortality may occur decades after ionizing radiation exposure. With increased use of proton and carbon ion radiotherapy and concerns about space radiation exposures to astronauts on future long-duration exploration-type missions, the long-term effects and risks of low-dose charged particle irradiation on the CV system must be better appreciated. Here we report on the long-term effects of whole-body proton (1H; 0.5 Gy, 1 GeV) and iron ion (56Fe; 0.15 Gy, 1GeV/nucleon) irradiation with and without an acute myocardial ischemia (AMI) event in mice. We show that cardiac function of proton-irradiated mice initially improves at 1 month but declines by 10 months post-irradiation. In AMI-induced mice, prior proton irradiation improved cardiac function restoration and enhanced cardiac remodeling. This was associated with increased pro-survival gene expression in cardiac tissues. In contrast, cardiac function was significantly declined in 56Fe ion-irradiated mice at 1 and 3 months but recovered at 10 months. In addition, 56Fe ion-irradiation led to poorer cardiac function and more adverse remodeling in AMI-induced mice, and was associated with decreased angiogenesis and pro-survival factors in cardiac tissues at any time point examined up to 10 months. This is the first study reporting CV effects following low dose proton and iron ion irradiation during normal aging and post-AMI. Understanding the biological effects of charged particle radiation qualities on the CV system is necessary both for the mitigation of space exploration CV risks and for understanding of long-term CV effects following charged particle radiotherapy. PMID:25337914

  5. Compensatory Effect between Aortic Stiffening and Remodelling during Ageing

    PubMed Central

    Guala, Andrea; Camporeale, Carlo; Ridolfi, Luca

    2015-01-01

    The arterial tree exhibits a complex spatio-temporal wave pattern, whose healthy behaviour depends on a subtle balance between mechanical and geometrical properties. Several clinical studies demonstrated that such a balance progressively breaks down during ageing, when the aorta stiffens and remodels by increasing its diameter. These two degenerative processes however, have different impacts on the arterial wave pattern. They both tend to compensate for each other, thus reducing the detrimental effect they would have had if they had arisen individually. This remarkable compensatory mechanism is investigated by a validated multi-scale model, with the aim to elucidate how aortic stiffening and remodelling quantitatively impact the complex interplay between forward and reflected backward waves in the arterial network. We focus on the aorta and on the pressure at the ventricular-aortic interface, which epidemiological studies demonstrate to play a key role in cardiovascular diseases. PMID:26426360

  6. Cardiovascular Safety Pharmacology of Sibutramine

    PubMed Central

    Yun, Jaesuk; Chung, Eunyong; Choi, Ki Hwan; Cho, Dae Hyun; Song, Yun Jeong; Han, Kyoung Moon; Cha, Hey Jin; Shin, Ji Soon; Seong, Won-Keun; Kim, Young-Hoon; Kim, Hyung Soo

    2015-01-01

    Sibutramine is an anorectic that has been banned since 2010 due to cardiovascular safety issues. However, counterfeit drugs or slimming products that include sibutramine are still available in the market. It has been reported that illegal sibutramine-contained pharmaceutical products induce cardiovascular crisis. However, the mechanism underlying sibutramine-induced cardiovascular adverse effect has not been fully evaluated yet. In this study, we performed cardiovascular safety pharmacology studies of sibutramine systemically using by hERG channel inhibition, action potential duration, and telemetry assays. Sibutramine inhibited hERG channel current of HEK293 cells with an IC50 of 3.92 μM in patch clamp assay and increased the heart rate and blood pressure (76 Δbpm in heart rate and 51 ΔmmHg in blood pressure) in beagle dogs at a dose of 30 mg/kg (per oral), while it shortened action potential duration (at 10 μM and 30 μM, resulted in 15% and 29% decreases in APD50, and 9% and 17% decreases in APD90, respectively) in the Purkinje fibers of rabbits and had no effects on the QTc interval in beagle dogs. These results suggest that sibutramine has a considerable adverse effect on the cardiovascular system and may contribute to accurate drug safety regulation. PMID:26157557

  7. Research into Specific Modulators of Vascular Sex Hormone Receptors in the Management of Postmenopausal Cardiovascular Disease

    PubMed Central

    do Nascimento, Graciliano R. A.; Barros, Yaskara V. R.; Wells, Amanda K.; Khalil, Raouf A.

    2010-01-01

    Cardiovascular disease (CVD) is more common in men and postmenopausal women than premenopausal women, suggesting vascular benefits of female sex hormones. Studies on the vasculature have identified estrogen receptors ERα, ERβ and a novel estrogen binding membrane protein GPR30, that mediate genomic and/or non-genomic effects. Estrogen promotes endothelium-dependent relaxation by inducing the production/activity of nitric oxide, prostacyclin, and hyperpolarizing factor, and inhibits the mechanisms of vascular smooth muscle contraction including [Ca2+]i, protein kinase C, Rho kinase and mitogen-activated protein kinase. Additional effects of estrogen on the cytoskeleton, matrix metalloproteinases and inflammatory factors contribute to vascular remodeling. However, the experimental evidence did not translate into vascular benefits of menopausal hormone therapy (MHT), and the HERS, HERS-II and WHI clinical trials demonstrated adverse cardiovascular events. The discrepancy has been partly related to delayed MHT and potential changes in the vascular ER amount, integrity, affinity, and downstream signaling pathways due to the subjects' age and preexisting CVD. The adverse vascular effects of MHT also highlighted the need of specific modulators of vascular sex hormone receptors. The effectiveness of MHT can be improved by delineating the differences in phramcokinetics and pharmacodynamics of natural, synthetic, and conjugated equine estrogens. Estriol, “hormone bioidenticals” and phytoestrogens are potential estradiol substitutes. The benefits of low dose MHT, and transdermal or vaginal estrogens over oral preparations are being evaluated. Specific ER modulators (SERMs) and ER agonists are being developed to maximize the effects on vascular ERs. Also, the effects of estrogen are being examined in the context of the whole body hormonal environment and the levels of progesterone and androgens. Thus, the experimental vascular benefits of estrogen can be translated to

  8. A Case control study of cardiovascular disease and arsenic exposure in Inner Mongolia, China

    EPA Science Inventory

    Background: Millions of people are at risk from the adverse effects of waterborne arsenic. Although the cardiovascular effects of high exposures to arsenic have been well documented, few individual level prospective studies have assessed cardiovascular risk at moderate exposures....

  9. Echocardiographic Predictors for Left Ventricular Remodeling after Acute ST Elevation Myocardial Infarction with Low Risk Group: Speckle Tracking Analysis

    PubMed Central

    Na, Hyun-Min; Lee, Joo Myung; Cha, Myung-Jin; Yoon, Yeonyee E.; Lee, Seung-Pyo; Kim, Hyung-Kwan; Kim, Yong-Jin; Sohn, Dae-Won

    2016-01-01

    Background We sought to assess echocardiographic predictors of left ventricular (LV) adverse remodeling after successfully reperfused acute ST elevation myocardial infarction (STEMI). LV remodeling is commonly found in STEMI patients and it may suggest adverse outcome in acute myocardial infarction. We sought to identify whether 2D strain and torsion be independent parameters for prediction of LV adverse remodeling. Methods We investigated 208 patients with low-risk STEMI patients who had follow up echocardiography at 6 or more months. After clinical assessments, all patients received revascularization according to current guideline. LV remodeling was defined as > 20% increase in end-diastolic volume (EDV) at follow up. Results During the follow-up (11.9 ± 5.3 months), 53 patients (25.5%) showed LV remodeling. In univariate analysis, EDV, end-systolic volume, deceleration time (DT), CK-MB, and global longitudinal strain (GLS) were associated with LV remodeling. In multivariate analysis, EDV [hazard ratio (HR): 0.922, 95% confidence interval (CI): 0.897–0.948, p< 0.001], GLS (HR: 0.842, 95% CI: 0.728–0.974, p = 0.020), DT (HR: 0.989, 95% CI: 0.980–0.998, p = 0.023) and CK-MB (HR: 1.003, 95% CI: 1.000–1.005, p = 0.033) independently predicted LV remodeling. However, global circumferential strain, net twist, and twist or untwist rate were not associated with remodeling. Conclusion Of various parameters of speckle strain, only GLS predicted adverse remodeling in STEMI patients. PMID:27358705

  10. Cardiovascular Disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cardiovascular disease (CVD), particularly CHD (coronary heart disease) and stroke, remain the leading causes of death of women in America and most developed countries. In recent years the rate of CVD has declined in men but not in women. This is contributed to by an under-recognition of women’s C...

  11. Ventricular remodeling in heart failure: the role of myocardial collagen.

    PubMed

    Janicki, J S; Brower, G L; Henegar, J R; Wang, L

    1995-01-01

    Collagen which is present in the myocardium in relatively small amounts is the most abundant structural protein of the connective tissue network. Its structural organization consists of a complex weave of collagen fibers that surrounds and interconnects myocytes, groups of myocytes, muscle fibers and muscle bundles. The conformation of interstitial fibrillar collagen makes it highly resistant to degradation by all proteinases other than specific collagenases. In hearts with myocardial damage secondary to myocardial infarction, chronic ischemia, inflammation, or cardiomyopathy, a complex sequence of compensatory events occur that eventually result in an adverse left ventricular remodeling. This continual state of remodeling is characterized by persistent collagenase activity, fibrillar collagen degradation, and progressive myocyte loss. The net effect is a shift in the balance between collagen synthesis and degradation which leads to an inadequate fibrillar collagen matrix, progressive ventricular dilatation and sphericalization with wall thinning and eventual congestive heart failure.

  12. Recent insights and therapeutic perspectives of angiotensin-(1-9) in the cardiovascular system.

    PubMed

    Ocaranza, Maria Paz; Michea, Luis; Chiong, Mario; Lagos, Carlos F; Lavandero, Sergio; Jalil, Jorge E

    2014-11-01

    Chronic RAS (renin-angiotensin system) activation by both AngII (angiotensin II) and aldosterone leads to hypertension and perpetuates a cascade of pro-hypertrophic, pro-inflammatory, pro-thrombotic and atherogenic effects associated with cardiovascular damage. In 2000, a new pathway consisting of ACE2 (angiotensin-converting enzyme2), Ang-(1-9) [angiotensin-(1-9)], Ang-(1-7) [angiotensin-(1-7)] and the Mas receptor was discovered. Activation of this novel pathway stimulates vasodilation, anti-hypertrophy and anti-hyperplasia. For some time, studies have focused mainly on ACE2, Ang-(1-7) and the Mas receptor, and their biological properties that counterbalance the ACE/AngII/AT1R (angiotensin type 1 receptor) axis. No previous information about Ang-(1-9) suggested that this peptide had biological properties. However, recent data suggest that Ang-(1-9) protects the heart and blood vessels (and possibly the kidney) from adverse cardiovascular remodelling in patients with hypertension and/or heart failure. These beneficial effects are not modified by the Mas receptor antagonist A779 [an Ang-(1-7) receptor blocker], but they are abolished by the AT2R (angiotensin type 2 receptor) antagonist PD123319. Current information suggests that the beneficial effects of Ang-(1-9) are mediated via the AT2R. In the present review, we summarize the biological effects of the novel vasoactive peptide Ang-(1-9), providing new evidence of its cardiovascular-protective activity. We also discuss the potential mechanism by which this peptide prevents and ameliorates the cardiovascular damage induced by RAS activation.

  13. Social factors and cardiovascular morbidity.

    PubMed

    Brunner, Eric John

    2017-03-01

    Recent progress in population health at aggregate level, measured by life expectancy, has been accompanied by lack of progress in reducing the difference in health prospects between groups defined by social status. Cardiovascular disease is an important contributor to this undesirable situation. The stepwise gradient of higher risk with lower status is accounted for partly by social gradients in health behaviors. The psychosocial hypothesis provides a stronger explanation, based on social patterning of living and working environments and psychological assets that individuals develop during childhood. Three decades of research based on Whitehall II and other cohort studies provide evidence for psychosocial pathways leading to cardiovascular morbidity and mortality. Job stress is a useful paradigm because exposure is long term and depends on occupational status. Studies of social-biological translation implicate autonomic and neuroendocrine function among the biological systems that mediate between chronic adverse psychosocial exposures and increased cardiometabolic risk and cardiovascular disease incidence.

  14. [Cardiovascular pharmacogenomics].

    PubMed

    Scibona, Paula; Angriman, Federico; Simonovich, Ventura; Heller, Martina M; Belloso, Waldo H

    2014-01-01

    Cardiovascular disease remains a major cause of morbidity and mortality worldwide. Current medical practice takes into account information based on population studies and benefits observed in large populations or cohorts. However, individual patients present great differences in both toxicity and clinical efficacy that can be explained by variations in adherence, unknown drug to drug interactions and genetic variability. The latter seems to explain from 20% up to 95% of patient to patient variability. Treating patients with cardiovascular disorders faces the clinician with the challenge to include genomic analysis into daily practice. There are several examples within cardiovascular disease of treatments that can vary in toxicity or clinical usefulness based on genetic changes. One of the main factors affecting the efficacy of Clopidogrel is the phenotype associated with polymorphisms in the gene CYP 2C9. Furthermore, regarding oral anticoagulants, changes in CYP2C9 and VKORC1 play an important role in changing the clinical response to anticoagulation. When analyzing statin treatment, one of their main toxicities (myopathy) can be predicted by the SLCO1B1 polymorphism. The potential for prediction of toxicity and clinical efficacy from the use of genetic analysis warrants further studies aiming towards its inclusion in daily clinical practice.

  15. Translational Success Stories: Role of Mineralocorticoid Receptor Antagonists in Cardiovascular Disease

    PubMed Central

    Ferrario, Carlos M; Schiffrin, Ernesto L

    2014-01-01

    Aldosterone exerts its best known sodium homeostasis actions by controlling sodium excretion at the level of the distal tubules via activation of the apical epithelial sodium channel (ENaC) and the basolateral Na+/K+ ATPase pump. Recently, this mineralocorticoid hormone has been demonstrated to act on the heart and blood vessels. Excess release of aldosterone in relation to the salt status induces both genomic and non-genomic effects that by promoting endothelial dysfunction, and vascular and cardio-renal adverse remodeling, contribute to the target organ damage found in hypertension, heart failure, myocardial infarction and chronic renal failure. Mineralocorticoid receptor blockers have been shown to be highly effective in resistant hypertension and to slow down heart failure progression, and in experimental animals, the development of atherosclerosis. Blockade of the action of aldosterone and potentially other mineralocorticoid steroids has been increasingly demonstrated to be an extremely beneficial therapy in different forms of cardiovascular disease. This review provides a summary of the knowledge that exists regarding aldosterone actions in the cardiovascular system and, in providing the translational impact of this knowledge to the clinical arena, illustrates how much more needs to be achieved in exploring the use of mineralocorticoid receptor blockers in less advanced stages of heart, renal, and vascular disease. PMID:25552697

  16. Microtissues in Cardiovascular Medicine: Regenerative Potential Based on a 3D Microenvironment

    PubMed Central

    Günter, Julia; Wolint, Petra; Bopp, Annina; Steiger, Julia; Cambria, Elena; Hoerstrup, Simon P.; Emmert, Maximilian Y.

    2016-01-01

    More people die annually from cardiovascular diseases than from any other cause. In particular, patients who suffer from myocardial infarction may be affected by ongoing adverse remodeling processes of the heart that may ultimately lead to heart failure. The introduction of stem and progenitor cell-based applications has raised substantial hope for reversing these processes and inducing cardiac regeneration. However, current stem cell therapies using single-cell suspensions have failed to demonstrate long-lasting efficacy due to the overall low retention rate after cell delivery to the myocardium. To overcome this obstacle, the concept of 3D cell culture techniques has been proposed to enhance therapeutic efficacy and cell engraftment based on the simulation of an in vivo-like microenvironment. Of great interest is the use of so-called microtissues or spheroids, which have evolved from their traditional role as in vitro models to their novel role as therapeutic agents. This review will provide an overview of the therapeutic potential of microtissues by addressing primarily cardiovascular regeneration. It will accentuate their advantages compared to other regenerative approaches and summarize the methods for generating clinically applicable microtissues. In addition, this review will illustrate the unique properties of the microenvironment within microtissues that makes them a promising next-generation therapeutic approach. PMID:27073399

  17. The adverse health effects of chronic cannabis use.

    PubMed

    Hall, Wayne; Degenhardt, Louisa

    2014-01-01

    This paper summarizes the most probable of the adverse health effects of regular cannabis use sustained over years, as indicated by epidemiological studies that have established an association between cannabis use and adverse outcomes; ruled out reverse causation; and controlled for plausible alternative explanations. We have also focused on adverse outcomes for which there is good evidence of biological plausibility. The focus is on those adverse health effects of greatest potential public health significance--those that are most likely to occur and to affect a substantial proportion of regular cannabis users. These most probable adverse effects of regular use include a dependence syndrome, impaired respiratory function, cardiovascular disease, adverse effects on adolescent psychosocial development and mental health, and residual cognitive impairment.

  18. Adrenal Androgen Dehydroepiandrosterone Sulfate Inhibits Vascular Remodeling Following Arterial Injury

    PubMed Central

    Ii, Masaaki; Hoshiga, Masaaki; Negoro, Nobuyuki; Fukui, Ryosuke; Nakakoji, Takahiro; Kohbayashi, Eiko; Shibata, Nobuhiko; Furutama, Daisuke; Ishihara, Tadashi; Hanafusa, Toshiaki; Losordo, Douglas W.; Ohsawa, Nakaaki

    2009-01-01

    Recent epidemiologic studies have suggested that serum dehydroepiandrosterone sulfate (DHEAS) levels have a significant inverse correlation with the incidence of cardiovascular diseases. However, direct evidence for the association with DHEAS and vascular disorders has not yet been explored. DHEAS significantly reduced neointima formation 28 days after surgery without altering other serum metabolite levels in a rabbit carotid balloon injury model. Immunohistochemical analyses revealed the reduction of proliferating cell nuclear antigen (PCNA) index and increase of TdT-mediated dUTP-biotin Nick End Labeling (TUNEL) index, expressing differentiated vascular smooth muscle cell (VSMC) markers in the media 7 days after surgery. In vitro, DHEAS exhibited inhibitory effects on VSMC proliferation and migration activities, inducing G1 cell cycle arrest with upregulation of one of the cyclin dependent kinase (CDK) inhibitors p16INK4a and apoptosis with activating peroxisome proliferator-activated receptor (PPAR)-α in VSMCs. DHEAS inhibits vascular remodeling reducing neointima formation after vascular injury via its effects on VSMC phenotypic modulation, functions and apoptosis upregulating p16INK4a/activating PPARα. DHEAS may play a pathophysiological role for vascular remodeling in cardiovascular disease. PMID:19298964

  19. The angiotensin receptor blocker losartan reduces coronary arteriole remodeling in type 2 diabetic mice.

    PubMed

    Husarek, Kathryn E; Katz, Paige S; Trask, Aaron J; Galantowicz, Maarten L; Cismowski, Mary J; Lucchesi, Pamela A

    2016-01-01

    Cardiovascular complications are a leading cause of morbidity and mortality in type 2 diabetes mellitus (T2DM) and are associated with alterations of blood vessel structure and function. Although endothelial dysfunction and aortic stiffness have been documented, little is known about the effects of T2DM on coronary microvascular structural remodeling. The renin-angiotensin-aldosterone system plays an important role in large artery stiffness and mesenteric vessel remodeling in hypertension and T2DM. The goal of this study was to determine whether the blockade of AT1R signaling dictates vascular smooth muscle growth that partially underlies coronary arteriole remodeling in T2DM. Control and db/db mice were given AT1R blocker losartan via drinking water for 4 weeks. Using pressure myography, we found that coronary arterioles from 16-week db/db mice undergo inward hypertrophic remodeling due to increased wall thickness and wall-to-lumen ratio with a decreased lumen diameter. This remodeling was accompanied by decreased elastic modulus (decreased stiffness). Losartan treatment decreased wall thickness, wall-to-lumen ratio, and coronary arteriole cell number in db/db mice. Losartan treatment did not affect incremental elastic modulus. However, losartan improved coronary flow reserve. Our data suggest that Ang II-AT1R signaling mediates, at least in part, coronary arteriole inward hypertrophic remodeling in T2DM without affecting vascular mechanics, further suggesting that targeting the coronary microvasculature in T2DM may help reduce cardiac ischemic events.

  20. Remodeling of ribosomal genes in somatic cells by Xenopus egg extract

    SciTech Connect

    Ostrup, Olga; Hyttel, Poul; Klaerke, Dan A.; Collas, Philippe

    2011-09-02

    Highlights: {yields} Xenopus egg extract remodels nuclei and alter cell growth characteristics. {yields} Ribosomal genes are reprogrammed within 6 h after extract exposure. {yields} rDNA reprogramming involves promoter targeting of SNF2H remodeling complex. {yields} Xenopus egg extract does not initiate stress-related response in somatic cells. {yields} Aza-cytidine elicits a stress-induced response in reprogrammed cells. -- Abstract: Extracts from Xenopus eggs can reprogram gene expression in somatic nuclei, however little is known about the earliest processes associated with the switch in the transcriptional program. We show here that an early reprogramming event is the remodeling of ribosomal chromatin and gene expression. This occurs within hours of extract treatment and is distinct from a stress response. Egg extract elicits remodeling of the nuclear envelope, chromatin and nucleolus. Nucleolar remodeling involves a rapid and stable decrease in ribosomal gene transcription, and promoter targeting of the nucleolar remodeling complex component SNF2H without affecting occupancy of the transcription factor UBF and the stress silencers SUV39H1 and SIRT1. During this process, nucleolar localization of UBF and SIRT1 is not altered. On contrary, azacytidine pre-treatment has an adverse effect on rDNA remodeling induced by extract and elicits a stress-type nuclear response. Thus, an early event of Xenopus egg extract-mediated nuclear reprogramming is the remodeling of ribosomal genes involving nucleolar remodeling complex. Condition-specific and rapid silencing of ribosomal genes may serve as a sensitive marker for evaluation of various reprogramming methods.

  1. Mechanisms of ATP Dependent Chromatin Remodeling

    PubMed Central

    Gangaraju, Vamsi K.; Bartholomew, Blaine

    2007-01-01

    The inter-relationship between DNA repair and ATP dependent chromatin remodeling has begun to become very apparent with recent discoveries. ATP dependent remodeling complexes mobilize nucleosomes along DNA, promote the exchange of histones, or completely displace nucleosomes from DNA. These remodeling complexes are often categorized based on the domain organization of their catalytic subunit. The biochemical properties and structural information of several of these remodeling complexes are reviewed. The different models for how these complexes are able to mobilize nucleosomes and alter nucleosome structure are presented incorporating several recent findings. Finally the role of histone tails and their respective modifications in ATP-dependent remodeling are discussed. PMID:17306844

  2. Neural remodeling in retinal degeneration.

    PubMed

    Marc, Robert E; Jones, Bryan W; Watt, Carl B; Strettoi, Enrica

    2003-09-01

    Mammalian retinal degenerations initiated by gene defects in rods, cones or the retinal pigmented epithelium (RPE) often trigger loss of the sensory retina, effectively leaving the neural retina deafferented. The neural retina responds to this challenge by remodeling, first by subtle changes in neuronal structure and later by large-scale reorganization. Retinal degenerations in the mammalian retina generally progress through three phases. Phase 1 initiates with expression of a primary insult, followed by phase 2 photoreceptor death that ablates the sensory retina via initial photoreceptor stress, phenotype deconstruction, irreversible stress and cell death, including bystander effects or loss of trophic support. The loss of cones heralds phase 3: a protracted period of global remodeling of the remnant neural retina. Remodeling resembles the responses of many CNS assemblies to deafferentation or trauma, and includes neuronal cell death, neuronal and glial migration, elaboration of new neurites and synapses, rewiring of retinal circuits, glial hypertrophy and the evolution of a fibrotic glial seal that isolates the remnant neural retina from the surviving RPE and choroid. In early phase 2, stressed photoreceptors sprout anomalous neurites that often reach the inner plexiform and ganglion cell layers. As death of rods and cones progresses, bipolar and horizontal cells are deafferented and retract most of their dendrites. Horizontal cells develop anomalous axonal processes and dendritic stalks that enter the inner plexiform layer. Dendrite truncation in rod bipolar cells is accompanied by revision of their macromolecular phenotype, including the loss of functioning mGluR6 transduction. After ablation of the sensory retina, Müller cells increase intermediate filament synthesis, forming a dense fibrotic layer in the remnant subretinal space. This layer invests the remnant retina and seals it from access via the choroidal route. Evidence of bipolar cell death begins in

  3. Frontiers in growth and remodeling

    PubMed Central

    Menzel, Andreas; Kuhl, Ellen

    2012-01-01

    Unlike common engineering materials, living matter can autonomously respond to environmental changes. Living structures can grow stronger, weaker, larger, or smaller within months, weeks, or days as a result of a continuous microstructural turnover and renewal. Hard tissues can adapt by increasing their density and grow strong. Soft tissues can adapt by increasing their volume and grow large. For more than three decades, the mechanics community has actively contributed to understand the phenomena of growth and remodeling from a mechanistic point of view. However, to date, there is no single, unified characterization of growth, which is equally accepted by all scientists in the field. Here we shed light on the continuum modeling of growth and remodeling of living matter, and give a comprehensive overview of historical developments and trends. We provide a state-of-the-art review of current research highlights, and discuss challenges and potential future directions. Using the example of volumetric growth, we illustrate how we can establish and utilize growth theories to characterize the functional adaptation of soft living matter. We anticipate this review to be the starting point for critical discussions and future research in growth and remodeling, with a potential impact on life science and medicine. PMID:22919118

  4. Vascular Remodeling in Pulmonary Hypertension

    PubMed Central

    Shimoda, Larissa A; Laurie, Steven S.

    2013-01-01

    Pulmonary hypertension is a complex, progressive condition arising from a variety of genetic and pathogenic causes. Patients present with a spectrum of histologic and pathophysiological features, likely reflecting the diversity in underlying pathogenesis. It is widely recognized that structural alterations in the vascular wall contribute to all forms of pulmonary hypertension. Features characteristic of the remodeled vasculature in patients with pulmonary hypertension include increased stiffening of the elastic proximal pulmonary arteries, thickening of the intimal and/or medial layer of muscular arteries, development of vaso-occlusive lesions and the appearance of cells expressing smooth muscle specific markers in normally non-muscular small diameter vessels, resulting from proliferation and migration of pulmonary arterial smooth muscle cells and cellular trans-differentiation. The development of several animal models of pulmonary hypertension has provided the means to explore the mechanistic underpinnings of pulmonary vascular remodeling, although none of the experimental models currently used entirely replicates the pulmonary arterial hypertension observed in patients. Herein, we provide an overview of the histological abnormalities observed in humans with pulmonary hypertension and in preclinical models and discuss insights gained regarding several key signaling pathways contributing to the remodeling process. In particular, we will focus on the roles of ion homeostasis, endothelin-1, serotonin, bone morphogenetic proteins, Rho kinase and hypoxia-inducible factor 1 in pulmonary arterial smooth muscle and endothelial cells, highlighting areas of cross-talk between these pathways and potentials for therapeutic targeting. PMID:23334338

  5. The Role and Molecular Mechanism of Non-Coding RNAs in Pathological Cardiac Remodeling

    PubMed Central

    Gao, Jinning; Xu, Wenhua; Wang, Jianxun; Wang, Kun; Li, Peifeng

    2017-01-01

    Non-coding RNAs (ncRNAs) are a class of RNA molecules that do not encode proteins. Studies show that ncRNAs are not only involved in cell proliferation, apoptosis, differentiation, metabolism and other physiological processes, but also involved in the pathogenesis of diseases. Cardiac remodeling is the main pathological basis of a variety of cardiovascular diseases. Many studies have shown that the occurrence and development of cardiac remodeling are closely related with the regulation of ncRNAs. Recent research of ncRNAs in heart disease has achieved rapid development. Thus, we summarize here the latest research progress and mainly the molecular mechanism of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), in cardiac remodeling, aiming to look for new targets for heart disease treatment. PMID:28287427

  6. Traditional Chinese Medication Qiliqiangxin attenuates cardiac remodeling after acute myocardial infarction in mice

    PubMed Central

    Tao, Lichan; Shen, Sutong; Fu, Siyi; Fang, Hongyi; Wang, Xiuzhi; Das, Saumya; Sluijter, Joost P. G.; Rosenzweig, Anthony; Zhou, Yonglan; Kong, Xiangqing; Xiao, Junjie; Li, Xinli

    2015-01-01

    In a multicenter randomized double-blind study we demonstrated that Qiliqiangxin (QLQX), a traditional Chinese medicine, had a protective effect in heart failure patients. However, whether and via which mechanism QLQX attenuates cardiac remodeling after acute myocardial infarction (AMI) is still unclear. AMI was created by ligating the left anterior descending coronary artery in mice. Treating the mice in the initial 3 days after AMI with QLQX did not change infarct size. However, QLQX treatment ameliorated adverse cardiac remodeling 3 weeks after AMI including better preservation of cardiac function, decreased apoptosis and reduced fibrosis. Peroxisome proliferator-activated receptor-γ (PPARγ) was down-regulated in control animals after AMI and up-regulated by QLQX administration. Interestingly, expression of AKT, SAPK/JNK, and ERK was not altered by QLQX treatment. Inhibition of PPARγ reduced the beneficial effects of QLQX in AMI remodeling, whereas activation of PPARγ failed to provide additional improvement in the presence of QLQX, suggesting a key role for PPARγ in the effects of QLQX during cardiac remodeling after AMI. This study indicates that QLQX attenuates cardiac remodeling after AMI by increasing PPARγ levels. Taken together, QLQX warrants further investigation as as a therapeutic intervention to mitigate remodeling and heart failure after AMI. PMID:25669146

  7. How May Proton Pump Inhibitors Impair Cardiovascular Health?

    PubMed

    Sukhovershin, Roman A; Cooke, John P

    2016-06-01

    Proton pump inhibitors (PPIs) are among the most widely used drugs worldwide. They are used to treat a number of gastroesophageal disorders and are usually prescribed as a long-term medication or even taken without a prescription. There are a number of clinical studies that associate PPI use with an increased cardiovascular risk. In this article, we review the clinical evidence for adverse cardiovascular effects of PPIs, and we discuss possible biological mechanisms by which PPIs can impair cardiovascular health.

  8. Erythrocyte Stiffness during Morphological Remodeling Induced by Carbon Ion Radiation

    PubMed Central

    Zhang, Baoping; Liu, Bin; Zhang, Hong; Wang, Jizeng

    2014-01-01

    The adverse effect induced by carbon ion radiation (CIR) is still an unavoidable hazard to the treatment object. Thus, evaluation of its adverse effects on the body is a critical problem with respect to radiation therapy. We aimed to investigate the change between the configuration and mechanical properties of erythrocytes induced by radiation and found differences in both the configuration and the mechanical properties with involving in morphological remodeling process. Syrian hamsters were subjected to whole-body irradiation with carbon ion beams (1, 2, 4, and 6 Gy) or X-rays (2, 4, 6, and 12 Gy) for 3, 14 and 28 days. Erythrocytes in peripheral blood and bone marrow were collected for cytomorphological analysis. The mechanical properties of the erythrocytes were determined using atomic force microscopy, and the expression of the cytoskeletal protein spectrin-α1 was analyzed via western blotting. The results showed that dynamic changes were evident in erythrocytes exposed to different doses of carbon ion beams compared with X-rays and the control (0 Gy). The magnitude of impairment of the cell number and cellular morphology manifested the subtle variation according to the irradiation dose. In particular, the differences in the size, shape and mechanical properties of the erythrocytes were well exhibited. Furthermore, immunoblot data showed that the expression of the cytoskeletal protein spectrin-α1 was changed after irradiation, and there was a common pattern among its substantive characteristics in the irradiated group. Based on these findings, the present study concluded that CIR could induce a change in mechanical properties during morphological remodeling of erythrocytes. According to the unique characteristics of the biomechanical categories, we deduce that changes in cytomorphology and mechanical properties can be measured to evaluate the adverse effects generated by tumor radiotherapy. Additionally, for the first time, the current study provides a new

  9. Scientists Trace Adversity's Toll

    ERIC Educational Resources Information Center

    Sparks, Sarah D.

    2012-01-01

    The stress of a spelling bee or a challenging science project can enhance a student's focus and promote learning. But the stress of a dysfunctional or unstable home life can poison a child's cognitive ability for a lifetime, according to new research. Those studies show that stress forms the link between childhood adversity and poor academic…

  10. Cardiovascular group

    NASA Technical Reports Server (NTRS)

    Blomqvist, Gunnar

    1989-01-01

    As a starting point, the group defined a primary goal of maintaining in flight a level of systemic oxygen transport capacity comparable to each individual's preflight upright baseline. The goal of maintaining capacity at preflight levels would seem to be a reasonable objective for several different reasons, including the maintenance of good health in general and the preservation of sufficient cardiovascular reserve capacity to meet operational demands. It is also important not to introduce confounding variables in whatever other physiological studies are being performed. A change in the level of fitness is likely to be a significant confounding variable in the study of many organ systems. The principal component of the in-flight cardiovascular exercise program should be large-muscle activity such as treadmill exercise. It is desirable that at least one session per week be monitored to assure maintenance of proper functional levels and to provide guidance for any adjustments of the exercise prescription. Appropriate measurements include evaluation of the heart-rate/workload or the heart-rate/oxygen-uptake relationship. Respiratory gas analysis is helpful by providing better opportunities to document relative workload levels from analysis of the interrelationships among VO2, VCO2, and ventilation. The committee felt that there is no clear evidence that any particular in-flight exercise regimen is protective against orthostatic hypotension during the early readaptation phase. Some group members suggested that maintenance of the lower body muscle mass and muscle tone may be helpful. There is also evidence that late in-flight interventions to reexpand blood volume to preflight levels are helpful in preventing or minimizing postflight orthostatic hypotension.

  11. Mineral metabolism and cardiovascular disease in CKD.

    PubMed

    Fujii, Hideki; Joki, Nobuhiko

    2017-03-01

    The mineral bone disorder of CKD, called Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD), has a major role in the etiology and progression of cardiovascular disease in CKD patients. Since the main emphasis in CKD-MBD is on three categories (bone abnormalities, laboratory abnormalities, and vascular calcifications), we have routinely accepted ectopic cardiovascular calcifications as a central risk factor in the pathophysiology of CKD-MBD for cardiac events. However, recent compelling evidence suggests that some CKD-MBD-specific factors other than vascular calcification might contribute to the onset of cardiovascular disease. Most notable is fibroblast growth factor-23 (FGF23), which is thought to be independently associated with cardiac remodeling. Slow progression of cardiac disorders, such as vascular calcification and cardiac remodeling, characterizes cardiac disease due to CKD-MBD. In contrast, fatal arrhythmia may be induced when QT prolongation occurs with CKD-MBD treatment, such as with lower Ca dialysate or the use of calcimimetics. Sudden onset of fatal cardiac events, such as heart failure and sudden cardiac death, due to fatal arrhythmia would be another distinctive phenomenon of CKD-MBD. This may be defined as CKD-MBD-specific cardiac complex syndrome.

  12. Radiotherapy-induced right ventricular remodelling: The missing piece of the puzzle.

    PubMed

    Tadic, Marijana; Cuspidi, Cesare; Hering, Dagmara; Venneri, Lucia; Grozdic-Milojevic, Isidora

    2017-02-01

    The number of studies demonstrating that right ventricular structure, function and mechanics are valuable predictors of cardiovascular and total morbidity and mortality in patients with a wide range of cardiovascular conditions is constantly increasing. Most studies that evaluated the influence of radiotherapy on the heart focused on left ventricular remodelling, which is why current guidelines only recommend detailed assessment of the left ventricle. Data regarding right ventricular changes in cancer patients treated with radiotherapy are scarce. Given that radiotherapy more often induces late cardiac impairment - unlike chemotherapy-induced cardiotoxicity, which is usually acute - it is quite reasonable to follow these patients echocardiographically for a long time (even for 20years after initiation of radiotherapy). Investigations that have followed cancer survivors for at least 10years after radiotherapy agree that right ventricular structure, systolic/diastolic function and mechanics are significantly impaired. The mechanisms of radiation-induced right ventricular remodelling are still unclear, but it is thought that fibrosis is the dominant factor in myocardial remodelling and vascular changes. Many factors may contribute to right ventricular impairment during and after radiotherapy: cumulative radiation dose; dose per treatment; delivery technique; radiation target (chest and mediastinum); and co-morbidities. In this review, we aim to provide a comprehensive overview of the potential mechanisms of radiation-induced right ventricular remodelling, and to summarize clinical studies involving radiotherapy-treated cancer patients.

  13. Pulsatile Fluid Shear in Bone Remodeling

    NASA Technical Reports Server (NTRS)

    Frangos, John A.

    1997-01-01

    The objective of this investigation was to elucidate the sensitivity to transients in fluid shear stress in bone remodeling. Bone remodeling is clearly a function of the local mechanical environment which includes interstitial fluid flow. Traditionally, load-induced remodeling has been associated with low frequency (1-2 Hz) signals attributed to normal locomotion. McLeod and Rubin, however, demonstrated in vivo remodeling events associated with high frequency (15-30 Hz) loading. Likewise, other in vivo studies demonstrated that slowly applied strains did not trigger remodeling events. We therefore hypothesized that the mechanosensitive pathways which control bone maintenance and remodeling are differentially sensitive to varying rates of applied fluid shear stress.

  14. Adverse health effects of non-medical cannabis use.

    PubMed

    Hall, Wayne; Degenhardt, Louisa

    2009-10-17

    For over two decades, cannabis, commonly known as marijuana, has been the most widely used illicit drug by young people in high-income countries, and has recently become popular on a global scale. Epidemiological research during the past 10 years suggests that regular use of cannabis during adolescence and into adulthood can have adverse effects. Epidemiological, clinical, and laboratory studies have established an association between cannabis use and adverse outcomes. We focus on adverse health effects of greatest potential public health interest-that is, those that are most likely to occur and to affect a large number of cannabis users. The most probable adverse effects include a dependence syndrome, increased risk of motor vehicle crashes, impaired respiratory function, cardiovascular disease, and adverse effects of regular use on adolescent psychosocial development and mental health.

  15. PPARγ and Its Role in Cardiovascular Diseases

    PubMed Central

    Chandra, Mini

    2017-01-01

    Peroxisome proliferator-activated receptor Gamma (PPARγ), a ligand-activated transcription factor, has a role in various cellular functions as well as glucose homeostasis, lipid metabolism, and prevention of oxidative stress. The activators of PPARγ are already widely used in the treatment of diabetes mellitus. The cardioprotective effect of PPARγ activation has been studied extensively over the years making them potential therapeutic targets in diseases associated with cardiovascular disorders. However, they are also associated with adverse cardiovascular events such as congestive heart failure and myocardial infarction. This review aims to discuss the role of PPARγ in the various cardiovascular diseases and summarize the current knowledge on PPARγ agonists from multiple clinical trials. Finally, we also review the new PPARγ agonists under development as potential therapeutics with reduced or no adverse effects. PMID:28243251

  16. Adverse cardiac events to monoclonal antibodies used for cancer therapy

    PubMed Central

    Kounis, Nicholas G; Soufras, George D; Tsigkas, Grigorios; Hahalis, George

    2014-01-01

    Monoclonal antibodies are currently used in the treatment of neoplastic, hematological, or inflammatory diseases, a practice that is occasionally associated with a variety of systemic and cutaneous adverse events. Cardiac adverse events include cardiomyopathy, ventricular dysfunction, arrhythmias, arrests, and acute coronary syndromes, such as acute myocardial infarction and vasospastic angina pectoris. These events generally follow hypersensitivity reactions including cutaneous erythema, pruritus chills, and precordial pain. Recently, IgE specific for therapeutic monoclonal antibodies have been detected, pointing to the existence of hypersensitivity and Kounis hypersensitivity-associated syndrome. Therefore, the careful monitoring of cardiovascular events is of paramount importance in the course of monoclonal antibody-based therapies. Moreover, further studies are needed to elucidate the pathophysiology of cardiovascular adverse events elicited by monoclonal antibodies and to identify preventive, protective, and therapeutic measures. PMID:25340003

  17. Laser therapy in cardiovascular disease

    NASA Astrophysics Data System (ADS)

    Rindge, David

    2009-02-01

    Cardiovascular disease is the number one cause of death worldwide. It is broadly defined to include anything which adversely affects the heart or blood vessels. One-third of Americans have one or more forms of it. By one estimate, average human life expectancy would increase by seven years if it were eliminated. The mainstream medical model seeks mostly to "manage" cardiovascular disease with pharmaceuticals or to surgically bypass or reopen blocked vessels via angioplasty. These methods have proven highly useful and saved countless lives. Yet drug therapy may be costly and ongoing, and it carries the risk of side effects while often doing little or nothing to improve underlying health concerns. Similarly, angioplasty or surgery are invasive methods which entail risk. Laser therapy1 regenerates tissue, stimulates biological function, reduces inflammation and alleviates pain. Its efficacy and safety have been increasingly well documented in cardiovascular disease of many kinds. In this article we will explore the effects of laser therapy in angina, atherosclerosis, coronary artery disease, hypertension, hyperlipidemia, myocardial infarction, stroke and other conditions. The clinical application of various methods of laser therapy, including laserpuncture and transcutaneous, supravascular and intravenous irradiation of blood will be discussed. Implementing laser therapy in the treatment of cardiovascular disease offers the possibility of increasing the health and wellbeing of patients while reducing the costs and enhancing safety of medical care.

  18. Adverse drug reactions.

    PubMed

    O'Reilly-Foley, Georgina

    2017-04-05

    What was the nature of the CPD activity, practice-related feedback and/or event and/or experience in your practice? The CPD article defined the different types of adverse drug reactions (ADRs) and explored when they can occur. It emphasised the importance of being knowledgeable about medications, considering patient safety when patients are taking medications, being alert to the possibility of ADRs, and recognising and responding to suspected ADRs.

  19. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer.

    PubMed

    Cox, Thomas R; Erler, Janine T

    2011-03-01

    Dynamic remodeling of the extracellular matrix (ECM) is essential for development, wound healing and normal organ homeostasis. Life-threatening pathological conditions arise when ECM remodeling becomes excessive or uncontrolled. In this Perspective, we focus on how ECM remodeling contributes to fibrotic diseases and cancer, which both present challenging obstacles with respect to clinical treatment, to illustrate the importance and complexity of cell-ECM interactions in the pathogenesis of these conditions. Fibrotic diseases, which include pulmonary fibrosis, systemic sclerosis, liver cirrhosis and cardiovascular disease, account for over 45% of deaths in the developed world. ECM remodeling is also crucial for tumor malignancy and metastatic progression, which ultimately cause over 90% of deaths from cancer. Here, we discuss current methodologies and models for understanding and quantifying the impact of environmental cues provided by the ECM on disease progression, and how improving our understanding of ECM remodeling in these pathological conditions is crucial for uncovering novel therapeutic targets and treatment strategies. This can only be achieved through the use of appropriate in vitro and in vivo models to mimic disease, and with technologies that enable accurate monitoring, imaging and quantification of the ECM.

  20. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer

    PubMed Central

    Cox, Thomas R.; Erler, Janine T.

    2011-01-01

    Dynamic remodeling of the extracellular matrix (ECM) is essential for development, wound healing and normal organ homeostasis. Life-threatening pathological conditions arise when ECM remodeling becomes excessive or uncontrolled. In this Perspective, we focus on how ECM remodeling contributes to fibrotic diseases and cancer, which both present challenging obstacles with respect to clinical treatment, to illustrate the importance and complexity of cell-ECM interactions in the pathogenesis of these conditions. Fibrotic diseases, which include pulmonary fibrosis, systemic sclerosis, liver cirrhosis and cardiovascular disease, account for over 45% of deaths in the developed world. ECM remodeling is also crucial for tumor malignancy and metastatic progression, which ultimately cause over 90% of deaths from cancer. Here, we discuss current methodologies and models for understanding and quantifying the impact of environmental cues provided by the ECM on disease progression, and how improving our understanding of ECM remodeling in these pathological conditions is crucial for uncovering novel therapeutic targets and treatment strategies. This can only be achieved through the use of appropriate in vitro and in vivo models to mimic disease, and with technologies that enable accurate monitoring, imaging and quantification of the ECM. PMID:21324931

  1. Gender-related differences in β-adrenergic receptor-mediated cardiac remodeling.

    PubMed

    Zhu, Baoling; Liu, Kai; Yang, Chengzhi; Qiao, Yuhui; Li, Zijian

    2016-12-01

    Cardiac remodeling is the pathological basis of various cardiovascular diseases. In this study, we found gender-related differences in β-adrenergic receptor (AR)-mediated pathological cardiac remodeling. Cardiac remodeling model was established by subcutaneous injection of isoprenaline (ISO) for 14 days. Heart rate (HR), mean arterial pressure (MAP), and echocardiography were obtained on 7th and 14th days during ISO administration. Myocardial cross-sectional area and the ratio of heart mass to tibia length (HM/TL) were detected to assess cardiac hypertrophy. Picro-Sirius red staining (picric acid + Sirius red F3B) was used to evaluate cardiac fibrosis. Myocardial capillary density was assessed by immunohistochemistry for von Willebrand factor. Further, real-time PCR was used to measure the expression of β1-AR and β2-AR. Results showed that ISO induced cardiac remodeling, the extent of which was different between female and male mice. The extent of increase in cardiac wall thickness, myocardial cross-sectional area, and collagen deposition in females was less than that in males. However, no gender-related difference was observed in HR, MAP, cardiac function, and myocardial capillary density. The distinctive decrease of β2-AR expression, rather than a decrease of β1-AR expression, seemed to result in gender-related differences in cardiac remodeling.

  2. The brain norepinephrine system, stress and cardiovascular vulnerability.

    PubMed

    Wood, Susan K; Valentino, Rita J

    2017-03-01

    Chronic exposure to psychosocial stress has adverse effects on cardiovascular health, however the stress-sensitive neurocircuitry involved remains to be elucidated. The anatomical and physiological characteristics of the locus coeruleus (LC)-norepinephrine (NE) system position it to contribute to stress-induced cardiovascular disease. This review focuses on cardiovascular dysfunction produced by social stress and a major theme highlighted is that differences in coping strategy determine individual differences in social stress-induced cardiovascular vulnerability. The establishment of different coping strategies and cardiovascular vulnerability during repeated social stress has recently been shown to parallel a unique plasticity in LC afferent regulation, resulting in either excitatory or inhibitory input to the LC. This contrasting regulation of the LC would translate to differences in cardiovascular regulation and may serve as the basis for individual differences in the cardiopathological consequences of social stress. The advances described suggest new directions for developing treatments and/or strategies for decreasing stress-induced cardiovascular vulnerability.

  3. Classification and Prognostic Evaluation of Left Ventricular Remodeling in Patients With Asymptomatic Heart Failure.

    PubMed

    Pugliese, Nicola Riccardo; Fabiani, Iacopo; La Carrubba, Salvatore; Conte, Lorenzo; Antonini-Canterin, Francesco; Colonna, Paolo; Caso, Pio; Benedetto, Frank; Santini, Veronica; Carerj, Scipione; Romano, Maria Francesca; Citro, Rodolfo; Di Bello, Vitantonio

    2017-01-01

    Patients with asymptomatic heart failure (HF; stage A and B) are characterized by maladaptive left ventricular (LV) remodeling. Classic 4-group classification of remodeling considers only LV mass index and relative wall thickness as variables. Complex remodeling classification (CRC) includes also LV end-diastolic volume index. Main aim was to assess the prognostic impact of CRC in stage A and B HF. A total of 1,750 asymptomatic subjects underwent echocardiographic examination as a screening evaluation in the presence of cardiovascular risk factors. LV dysfunction, both systolic (ejection fraction) and diastolic (transmitral flow velocity pattern), was evaluated, together with LV remodeling. We considered a composite end point: all-cause death, myocardial infarction, coronary revascularizations, cerebrovascular events, and acute pulmonary edema. CRC was suitable for 1,729 patients (men 53.6%; age 58.3 ± 13 years). Two hundred thirty-eight patients presented systolic dysfunction (ejection fraction <50%) and 483 diastolic dysfunction. According to the CRC, 891 patients were normals or presented with physiologic hypertrophy, 273 concentric remodeling, 47 eccentric remodeling, 350 concentric hypertrophy, 29 mixed hypertrophy, 86 dilated hypertrophy, and 53 eccentric hypertrophy. Age and gender distribution was noticed (p <0.001). After a median follow-up of 21 months, Kaplan-Meier analysis showed different survival distribution (p <0.001) of the CRC patterns. In multivariate Cox regression (adjusted for age, gender, history of stable ischemic heart disease, classic remodeling classification, systolic, and diastolic dysfunction), CRC was independent predictor of primary end point (p = 0.044, hazard ratio 1.101, 95% CI 1.003 to 1.21), confirmed in a logistic regression (p <0.03). In conclusion, CRC could help physicians in prognostic stratification of patients in stage A and B HF.

  4. Bone remodeling after renal transplantation.

    PubMed

    Bellorin-Font, Ezequiel; Rojas, Eudocia; Carlini, Raul G; Suniaga, Orlando; Weisinger, José R

    2003-06-01

    Several studies have indicated that bone alterations after transplantation are heterogeneous. Short-term studies after transplantation have shown that many patients exhibit a pattern consistent with adynamic bone disease. In contrast, patients with long-term renal transplantation show a more heterogeneous picture. Thus, while adynamic bone disease has also been described in these patients, most studies show decreased bone formation and prolonged mineralization lag-time faced with persisting bone resorption, and even clear evidence of generalized or focal osteomalacia in many patients. Thus, the main alterations in bone remodeling are a decrease in bone formation and mineralization up against persistent bone resorption, suggesting defective osteoblast function, decreased osteoblastogenesis, or increased osteoblast death rates. Indeed, recent studies from our laboratory have demonstrated that there is an early decrease in osteoblast number and surfaces, as well as in reduced bone formation rate and delayed mineralization after transplantation. These alterations are associated with an early increase in osteoblast apoptosis that correlates with low levels of serum phosphorus. These changes were more frequently observed in patients with low turnover bone disease. In contrast, PTH seemed to preserve osteoblast survival. The mechanisms of hypophosphatemia in these patients appear to be independent of PTH, suggesting that other phosphaturic factors may play a role. However, further studies are needed to determine the nature of a phosphaturic factor and its relationship to the alterations of bone remodeling after transplantation.

  5. Impact of microvascular obstruction on semiautomated techniques for quantifying acute and chronic myocardial infarction by cardiovascular magnetic resonance

    PubMed Central

    Bulluck, Heerajnarain; Rosmini, Stefania; Abdel-Gadir, Amna; Bhuva, Anish N; Treibel, Thomas A; Fontana, Marianna; Weinmann, Shane; Sirker, Alex; Herrey, Anna S; Manisty, Charlotte; Moon, James C; Hausenloy, Derek J

    2016-01-01

    Aims The four most promising semiautomated techniques (5-SD, 6-SD, Otsu and the full width half maximum (FWHM)) were compared in paired acute and follow-up cardiovascular magnetic resonance (CMR), taking into account the impact of microvascular obstruction (MVO) and using automated extracellular volume fraction (ECV) maps for reference. Furthermore, their performances on the acute scan were compared against manual myocardial infarct (MI) size to predict adverse left ventricular (LV) remodelling (≥20% increase in end-diastolic volume). Methods 40 patients with reperfused ST segment elevation myocardial infarction (STEMI) with a paired acute (4±2 days) and follow-up CMR scan (5±2 months) were recruited prospectively. All CMR analysis was performed on CVI42. Results Using manual MI size as the reference standard, 6-SD accurately quantified acute (24.9±14.0%LV, p=0.81, no bias) and chronic MI size (17.2±9.7%LV, p=0.88, no bias). The performance of FWHM for acute MI size was affected by the acquisition sequence used. Furthermore, FWHM underestimated chronic MI size in those with previous MVO due to the significantly higher ECV in the MI core on the follow-up scans previously occupied by MVO (82 (75–88)% vs 62 (51–68)%, p<0.001). 5-SD and Otsu were precise but overestimated acute and chronic MI size. All techniques were performed with high diagnostic accuracy and equally well to predict adverse LV remodelling. Conclusions 6-SD was the most accurate for acute and chronic MI size and should be the preferred semiautomatic technique in randomised controlled trials. However, 5-SD, FWHM and Otsu could also be used when precise MI size quantification may be adequate (eg, observational studies). PMID:28008358

  6. Remodeling, Renovation, & Conversion of Educational Facilities.

    ERIC Educational Resources Information Center

    Association of Physical Plant Administrators of Universities and Colleges, Washington, DC.

    Based on a series of workshops, this collection of papers provides a framework for thought--emphasizing planning within time, flexibility, and maintenance constraints--as well as a practical guide for actual engineering of remodeling/renovation/conversion projects. Is remodeling always less expensive than new construction? Should high initial…

  7. Chromatin remodeling: nucleosomes bulging at the seams.

    PubMed

    Peterson, Craig L

    2002-04-02

    ATP-dependent chromatin remodeling enzymes, such as SWI/SNF, hydrolyze thousands of ATPs to regulate gene expression on chromatin fibers. Recent mechanistic studies suggest that these enzymes generate localized changes in DNA topology that drive formation of multiple, remodeled nucleosomal states.

  8. Metabolic Remodeling in early development and cardiomyocyte maturation

    PubMed Central

    Kreipke, Rebecca; Wang, Yuliang; Miklas, Jason Wayne; Mathieu, Julie; Ruohola-Baker, Hannele

    2016-01-01

    Aberrations in metabolism contribute to a large number of diseases, such as diabetes, obesity, cancer, and cardiovascular diseases, that have a substantial impact on the mortality rates and quality of life worldwide. However, the mechanisms leading to these changes in metabolic state – and whether they are conserved between diseases – is not well understood. Changes in metabolism similar to those seen in pathological conditions are observed during normal development in a number of different cell types. This provides hope that understanding the mechanism of these metabolic switches in normal development may provide useful insight in correcting them in pathological cases. Here, we focus on the metabolic remodeling observed both in early stage embryonic stem cells and during the maturation of cardiomyocytes. PMID:26912118

  9. Ghrelin signaling in heart remodeling of adult obese mice.

    PubMed

    Lacerda-Miranda, Glauciane; Soares, Vivian M; Vieira, Anatalia K G; Lessa, Juliana G; Rodrigues-Cunha, Alessandra C S; Cortez, Erika; Garcia-Souza, Erica P; Moura, Anibal S

    2012-05-01

    Ghrelin, an endogenous ligand of the growth hormone secretagogue receptor (GHS-R), has been suggested to be associated to obesity, insulin secretion, cardiovascular growth and homeostasis. GHS-R has been found in most of the tissues, and among the hormone action it is included the regulation of heart energy metabolism. Therefore, hypernutrition during early life leads to obesity, induces cardiac hypertrophy, compromises myocardial function, inducing heart failure in adulthood. We examined ghrelin signaling process in cardiac remodeling in these obese adult mice. The cardiomyocytes (cmy) of left ventricle were analyzed by light microscopy and stereology, content and phosphorilation of cardiac proteins: ghrelin receptor (growth hormone secretagogue receptor 1a, GHSR-1a), protein kinase B (AKT and pAKT), phosphatidil inositol 3 kinase (PI3K), AMP-activated protein kinase (AMPK and pAMPK) and actin were achieved by Western blotting. GHSR-1a gene expression was analyzed by Real Time-PCR. We observed hyperglycemia and higher liver and visceral fat weight in obese when compared to control group. Obese mice presented a marked increase in heart weight/tibia length, indicating an enlarged heart size or a remodeling process. Obese mice had increased GHSR-1a content and expression in the heart associated to PI3K content and increased AKT content and phosphorylation. In contrast, AMPK content and phosphorylation in heart was not different between experimental groups. Ghrelin plasma levels in obese group were decreased when compared to control group. Our data suggest that remodeled myocardial in adult obese mice overnourished in early life are associated with higher phosphorylation of GHSR-1a, PI3K and AKT but not with AMPK.

  10. Hypothyroidism and its rapid correction alter cardiac remodeling.

    PubMed

    Hajje, Georges; Saliba, Youakim; Itani, Tarek; Moubarak, Majed; Aftimos, Georges; Farès, Nassim

    2014-01-01

    The cardiovascular effects of mild and overt thyroid disease include a vast array of pathological changes. As well, thyroid replacement therapy has been suggested for preserving cardiac function. However, the influence of thyroid hormones on cardiac remodeling has not been thoroughly investigated at the molecular and cellular levels. The purpose of this paper is to study the effect of hypothyroidism and thyroid replacement therapy on cardiac alterations. Thirty Wistar rats were divided into 2 groups: a control (n = 10) group and a group treated with 6-propyl-2-thiouracil (PTU) (n = 20) to induce hypothyroidism. Ten of the 20 rats in the PTU group were then treated with L-thyroxine to quickly re-establish euthyroidism. The serum levels of inflammatory markers, such as C-reactive protein (CRP), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL6) and pro-fibrotic transforming growth factor beta 1 (TGF-β1), were significantly increased in hypothyroid rats; elevations in cardiac stress markers, brain natriuretic peptide (BNP) and cardiac troponin T (cTnT) were also noted. The expressions of cardiac remodeling genes were induced in hypothyroid rats in parallel with the development of fibrosis, and a decline in cardiac function with chamber dilation was measured by echocardiography. Rapidly reversing the hypothyroidism and restoring the euthyroid state improved cardiac function with a decrease in the levels of cardiac remodeling markers. However, this change further increased the levels of inflammatory and fibrotic markers in the plasma and heart and led to myocardial cellular infiltration. In conclusion, we showed that hypothyroidism is related to cardiac function decline, fibrosis and inflammation; most importantly, the rapid correction of hypothyroidism led to cardiac injuries. Our results might offer new insights for the management of hypothyroidism-induced heart disease.

  11. Adverse reactions to vaccines.

    PubMed

    Martin, Bryan L; Nelson, Michael R; Hershey, Joyce N; Engler, Renata J M

    2003-06-01

    (The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense.) Immunization healthcare is becoming increasingly complex as the number and types of vaccines have continued to expand. Like all prescription drugs, vaccines may be associated with adverse events. The majority of these reactions are self-limited and not associated with prolonged disability. The media, Internet and public advocacy groups have focused on potentially serious vaccine-associated adverse events with questions raised about causal linkages to increasing frequencies of diseases such as autism and asthma. Despite a lack of evidence of a causal relationship to a variety of vaccine safety concerns, including extensive reviews by the Institute of Medicine, questions regarding vaccine safety continue to threaten the success of immunization programs. Risk communication arid individual risk assessment is further challenged by the public health success of vaccine programs creating the perception that certain vaccines are no longer necessary or justified because of the rare reaction risk. There is a need for improved understanding of true vaccine contraindications and precautions as well as host factors and disease threat in order to develop a patient specific balanced risk communication intervention. When they occur, vaccine related adverse events must be treated, documented and reported through the VAERS system. The increasing complexity of vaccination health care has led the Center of Disease Control and Prevention (CDC) to identify Vaccine Safety Assessment and Evaluation as a potential new specialty.

  12. Nucleosome dynamics during chromatin remodeling in vivo.

    PubMed

    Ramachandran, Srinivas; Henikoff, Steven

    2016-01-01

    Precise positioning of nucleosomes around regulatory sites is achieved by the action of chromatin remodelers, which use the energy of ATP to slide, evict or change the composition of nucleosomes. Chromatin remodelers act to bind nucleosomes, disrupt histone-DNA interactions and translocate the DNA around the histone core to reposition nucleosomes. Hence, remodeling is expected to involve nucleosomal intermediates with a structural organization that is distinct from intact nucleosomes. We describe the identification of a partially unwrapped nucleosome structure using methods that map histone-DNA contacts genome-wide. This alternative nucleosome structure is likely formed as an intermediate or by-product during nucleosome remodeling by the RSC complex. Identification of the loss of histone-DNA contacts during chromatin remodeling by RSC in vivo has implications for the regulation of transcriptional initiation.

  13. Structural Stability and Functional Remodeling of High-Density Lipoproteins

    PubMed Central

    Gursky, Olga

    2015-01-01

    Lipoproteins are protein-lipid nanoparticles that transport lipids in circulation and are central in atherosclerosis and other disorders of lipid metabolism. Apolipoproteins form flexible structural scaffolds and important functional ligands on the particle surface and direct lipoprotein metabolism. Lipoproteins undergo multiple rounds of metabolic remodeling that is crucial to lipid transport. Important aspects of this remodeling, including apolipoprotein dissociation and particle fusion, are mimicked in thermal or chemical denaturation and are modulated by free energy barriers. Here we review our biophysical studies that revealed kinetic mechanism of lipoprotein stabilization and unraveled its structural basis. The main focus is on high-density lipoprotein (HDL). An inverse correlation between stability and functions of various HDLs in cholesterol transport suggests functional role of structural disorder. A mechanism for conformational adaptation of the major HDL proteins, apoA-I and apoA-II, to the increasing lipid load is proposed. Together, these studies help understand why HDL form discrete subclasses separated by kinetic barriers, which have distinct composition, conformation and functional properties. Understanding these properties may help improve HDL quality and develop novel therapies for cardiovascular disease. PMID:25749369

  14. Left ventricular structure and remodeling in patients with COPD

    PubMed Central

    Pelà, Giovanna; Li Calzi, Mauro; Pinelli, Silvana; Andreoli, Roberta; Sverzellati, Nicola; Bertorelli, Giuseppina; Goldoni, Matteo; Chetta, Alfredo

    2016-01-01

    Background Data on cardiac alterations such as left ventricular (LV) hypertrophy, diastolic dysfunction, and lower stroke volume in patients with COPD are discordant. In this study, we investigated whether early structural and functional cardiac changes occur in patients with COPD devoid of manifest cardiovascular disease, and we assessed their associations with clinical and functional features. Methods Forty-nine patients with COPD belonging to all Global Initiative for Chronic Obstructive Lung Disease (GOLD) classes were enrolled and compared with 36 controls. All subjects underwent clinical history assessment, lung function testing, blood pressure measurement, electrocardiography, and conventional and Doppler tissue echocardiography. Patients were also subjected to computed tomography to quantify emphysema score. Results Patients with COPD had lower LV cavity associated with a marked increase in relative wall thickness (RWT), suggesting concentric remodeling without significant changes in LV mass. RWT was significantly associated with ratio of the forced expiratory volume in 1 second to the forced vital capacity and emphysema score and was the only cardiac parameter that – after multivariate analysis – significantly correlated with COPD conditions in all individuals. Receiver operating characteristic curve analysis showed that RWT (with a cutoff point of 0.42) predicted the severity of COPD with 83% specificity and 56% sensitivity (area under the curve =0.69, 95% confidence interval =0.59–0.81). Patients with COPD showed right ventricular to be functional but no structural changes. Conclusion Patients with COPD without evident cardiovascular disease exhibit significant changes in LV geometry, resulting in concentric remodeling. In all individuals, RWT was significantly and independently related to COPD. However, its prognostic role should be determined in future studies. PMID:27257378

  15. Rheumatoid Arthritis is Associated with Left Ventricular Concentric Remodeling: Results of a Population-based Cross-sectional Study

    PubMed Central

    Myasoedova, Elena; Davis, John M.; Crowson, Cynthia S.; Roger, Véronique L.; Karon, Barry L.; Borgeson, Daniel D.; Therneau, Terry M.; Matteson, Eric L.; Rodeheffer, Richard J.; Gabriel, Sherine E.

    2014-01-01

    Objective To study left ventricular (LV) geometry in patients with rheumatoid arthritis (RA) who have no heart failure (HF) versus subjects without either RA or HF, and to determine the impact of RA on LV remodeling. Methods A cross-sectional, community-based study was conducted among adult (≥50 years) RA patients and age- and sex-matched non-RA subjects without a history of HF. All participants underwent a standard 2D/Doppler echocardiography. LV geometry was classified into four categories based on relative wall thickness and sex-specific cut-offs for LV mass index: concentric remodeling, concentric hypertrophy, eccentric hypertrophy, or normal geometry. Results The study included 200 RA patients and 600 matched non-RA subjects (mean age 65; 74% female in both cohorts). RA patients were significantly more likely to have abnormal LV geometry than non-RA subjects (odds ratio [OR] 1.44; 95% confidence interval [CI] 1.03, 2.00), adjusting for cardiovascular risk factors and comorbidities. Among those with abnormal LV geometry, RA patients had significantly increased odds of concentric LV remodeling (OR 4.73; 95% CI 2.85, 7.83). In linear regression analyses, LV mass index appeared to be lower in RA patients currently using corticosteroids (Beta +/− standard error: −0.082 +/− 0.027; p=0.002), adjusting for cardiovascular risk factors and comorbidities. Conclusion RA was strongly associated with abnormal LV remodeling, particularly, with concentric LV remodeling, among patients without HF. This association was significant beyond adjustment for cardiovascular risk factors and comorbidities. RA disease related factors may promote changes in LV geometry. The biological mechanisms underlying LV remodeling warrant further investigation. PMID:23553738

  16. Diffuse myocardial fibrosis by T1-mapping in children with subclinical anthracycline cardiotoxicity: relationship to exercise capacity, cumulative dose and remodeling

    PubMed Central

    2013-01-01

    Background The late cardiotoxic effects of anthracycline chemotherapy influence morbidity and mortality in the growing population of childhood cancer survivors. Even with lower anthracycline doses, evidence of adverse cardiac remodeling and reduced exercise capacity exist. We aim to examine the relationship between cardiac structure, function and cardiovascular magnetic resonance (CMR) tissue characteristics with chemotherapy dose and exercise capacity in childhood cancer survivors. Methods Thirty patients (15 ± 3 years), at least 2 years following anthracycline treatment, underwent CMR, echocardiography, and cardiopulmonary exercise testing (peak VO2). CMR measured ventricular function, mass, T1 and T2 values, and myocardial extracellular volume fraction, ECV, a measure of diffuse fibrosis based on changes in myocardial T1 values pre- and post-gadolinium. Cardiac function was also assessed with conventional and speckle tracking echocardiography. Results Patients had normal LVEF (59 ± 7%) but peak VO2 was 17% lower than age-predicted normal values and were correlated with anthracycline dose (r = −0.49). Increased ECV correlated with decreased mass/volume ratio (r = −0.64), decreased LV wall thickness/height ratio (r = −0.72), lower peak VO2(r = −0.52), and higher cumulative dose (r = 0.40). Echocardiographic measures of systolic and diastolic function were reduced compared to normal values (p < 0.01), but had no relation to ECV, peak VO2 or cumulative dose. Conclusions Myocardial T1 and ECV were found to be early tissue markers of ventricular remodeling that may represent diffuse fibrosis in children with normal ejection fraction post anthracycline therapy, and are related to cumulative dose, exercise capacity and myocardial wall thinning. PMID:23758789

  17. Vitamin D and cardiovascular disease.

    PubMed

    Zittermann, Armin

    2014-09-01

    It has long been known from case series that vitamin D excess can lead to atherosclerosis and vascular calcification in humans. In the 1980s, ecological studies provided data that deficient human vitamin D status may also increase the risk of developing cardiovascular disease (CVD). The assumption of a biphasic vitamin D effect on CVD is supported by experimental studies: Numerous studies have demonstrated positive effects of the vitamin D hormone (1,25-dihydroxyviramin D) on the cardiovascular system. However, the effects and mechanisms that lead to vascular calcification by vitamin D excess could also be confirmed. Large prospective observational studies support the hypothesis of a U-shaped association between vitamin D and CVD. These studies indicate that deficient circulating 25-hydroxyvitamin D levels (<30 nmol/l) are independently-associated with increased CVD morbidity and mortality. They also suggest that those circulating 25-hydroxyvitamin D levels, which have long been considered to be safe (100-150 nmol/l), are associated with an increased CVD risk. Meanwhile, numerous randomized controlled trials have investigated the effects of vitamin D supplements or ultraviolet B radiation on biochemical cardiovascular risk markers, cardiovascular physiology, and cardiovascular outcomes. Overall, results are mixed with the majority of studies reporting neither beneficial nor adverse vitamin D effects. Several limitations in the study design, which may have prevented beneficial vitamin D effects, are discussed. In conclusion, it must be stated that the role of vitamin D in the prevention and management of CVD as well as the dose-response relationship of potentially harmful effects still remain to be established.

  18. A natural product telomerase activator as part of a health maintenance program: metabolic and cardiovascular response.

    PubMed

    Harley, Calvin B; Liu, Weimin; Flom, Peter L; Raffaele, Joseph M

    2013-10-01

    A short average telomere length is associated with low telomerase activity and certain degenerative diseases. Studies in animals and with human cells confirm a causal mechanism for cell or tissue dysfunction triggered by critically short telomeres, suggesting that telomerase activation may be an approach to health maintenance. Previously, we reported on positive immune remodeling in humans taking a commercial health maintenance program, PattonProtocol-1, composed of TA-65® (a natural product-derived telomerase activator) and other dietary supplements. In over a 5-year period and an estimated 7000 person-years of use, no adverse events or effects have been attributed to TA-65 by physicians licensed to sell the product. Here we report on changes in metabolic markers measured at baseline (n=97-107 subjects) and every 3-6 months (n=27-59 subjects) during the first 12 months of study. Rates of change per year from baseline determined by a multi-level model were -3.72 mg/dL for fasting glucose (p=0.02), -1.32 mIU/mL for insulin (p=0.01), -13.2 and -11.8 mg/dL for total cholesterol and low-density lipoprotein cholesterol (LDL-C) (p=0.002, p=0.002, respectively), -17.3 and -4.2 mmHg for systolic and diastolic blood pressure (p=0.007 and 0.001, respectively), and -3.6 μmole/L homocysteine (p=0.001). In a subset of individuals with bone mineral density (BMD) measured at baseline and 12 months, density increased 2.0% in the spine (p=0.003). We conclude that in addition to apparent positive immune remodeling, PattonProtocol-1 may improve markers of metabolic, bone, and cardiovascular health.

  19. Statin-Associated Muscle Adverse Events

    PubMed Central

    Al-Mohaissen, Maha A.; Ignaszewski, Martha J.; Frohlich, Jiri; Ignaszewski, Andrew P.

    2016-01-01

    Statins are potent medications which reduce low-density lipoprotein cholesterol (LDL-C) levels. Their efficacy in cardiovascular risk reduction is well established and indications for their use are expanding. While statins are generally well tolerated and safe, adverse events are relatively common, particularly statin-associated muscle adverse events (SaMAEs), which are the most frequently encountered type of adverse event. Recent guidelines and guideline updates on SaMAEs and statin intolerance have included revised definitions of SaMAEs, incorporating new evidence on their pathogenesis and management. As SaMAEs emerge as a therapeutic challenge, it is important for physicians to be aware of updates on management strategies to ensure better patient outcomes. The majority of patients who are considered statin-intolerant can nevertheless tolerate some forms of statin therapy and successfully achieve optimal LDL-C levels. This review article discusses the recent classification of SaMAEs with emphasis on pathogenesis and management strategies. PMID:28003885

  20. [Ventricular "remodeling" after myocardial infarction].

    PubMed

    Cohen-Solal, A; Himbert, D; Guéret, P; Gourgon, R

    1991-06-01

    Cardiac failure is the principal medium-term complication of myocardial infarction. Changes in left ventricular geometry are observed after infarction, called ventricular remodeling, which, though compensatory initially, cause ventricular failure in the long-term. Experimental and clinical studies suggest that early treatment by coronary recanalisation, trinitrin and angiotensin converting enzyme inhibitors may prevent or limit the expansion and left ventricular dilatation after infarction, so improving ventricular function, and, at least in the animal, reduce mortality. Large scale trials with converting enzyme inhibitors are currently under way to determine the effects of this new therapeutic option. It would seem possible at present, independently of any reduction in the size of the infarction, to reduce or delay left ventricular dysfunction by interfering with the natural process of dilatation and ventricular modeling after infarction.

  1. Calcium signalling remodelling and disease.

    PubMed

    Berridge, Michael J

    2012-04-01

    A wide range of Ca2+ signalling systems deliver the spatial and temporal Ca2+ signals necessary to control the specific functions of different cell types. Release of Ca2+ by InsP3 (inositol 1,4,5-trisphosphate) plays a central role in many of these signalling systems. Ongoing transcriptional processes maintain the integrity and stability of these cell-specific signalling systems. However, these homoeostatic systems are highly plastic and can undergo a process of phenotypic remodelling, resulting in the Ca2+ signals being set either too high or too low. Such subtle dysregulation of Ca2+ signals have been linked to some of the major diseases in humans such as cardiac disease, schizophrenia, bipolar disorder and Alzheimer's disease.

  2. Zika Virus Induced Cellular Remodeling.

    PubMed

    Rossignol, Evan D; Peters, Kristen N; Connor, John H; Bullitt, Esther

    2017-03-20

    Zika virus (ZIKV) has been associated with morbidities such as Guillain-Barré, infant microcephaly, and ocular disease. The spread of this positive-sense, single-stranded RNA virus and its growing public health threat underscore gaps in our understanding of basic ZIKV virology. To advance knowledge of the virus replication cycle within mammalian cells, we use serial section three-dimensional electron tomography to demonstrate the widespread remodeling of intracellular membranes upon infection with ZIKV. We report extensive structural rearrangements of the endoplasmic reticulum and reveal stages of the ZIKV viral replication cycle. Structures associated with RNA genome replication and virus assembly are observed integrated within the endoplasmic reticulum, and we show viruses in transit through the Golgi apparatus for viral maturation, and subsequent cellular egress. This study characterizes in detail the three-dimensional ultrastructural organization of the ZIKV replication cycle stages. Our results show close adherence of the ZIKV replication cycle to the existing flavivirus replication paradigm.

  3. Tissue remodelling in pulmonary fibrosis.

    PubMed

    Knudsen, Lars; Ruppert, Clemens; Ochs, Matthias

    2017-03-01

    Many lung diseases result in fibrotic remodelling. Fibrotic lung disorders can be divided into diseases with known and unknown aetiology. Among those with unknown aetiology, idiopathic pulmonary fibrosis (IPF) is a common diagnosis. Because of its progressive character leading to a rapid decline in lung function, it is a fatal disease with poor prognosis and limited therapeutic options. Thus, IPF has motivated many studies in the last few decades in order to increase our mechanistic understanding of the pathogenesis of the disease. The current concept suggests an ongoing injury of the alveolar epithelium, an impaired regeneration capacity, alveolar collapse and, finally, a fibroproliferative response. The origin of lung injury remains elusive but a diversity of factors, which will be discussed in this article, has been shown to be associated with IPF. Alveolar epithelial type II (AE2) cells play a key role in lung fibrosis and their crucial role for epithelial regeneration, stabilisation of alveoli and interaction with fibroblasts, all known to be responsible for collagen deposition, will be illustrated. Whereas mechanisms of collagen deposition and fibroproliferation are the focus of many studies in the field, the awareness of other mechanisms in this disease is currently limited to biochemical and imaging studies including quantitative assessments of lung structure in IPF and animal models assigning alveolar collapse and collapse induration crucial roles for the degradation of the lung resulting in de-aeration and loss of surface area. Dysfunctional AE2 cells, instable alveoli and mechanical stress trigger remodelling that consists of collapsed alveoli absorbed by fibrotic tissue (i.e., collapse induration).

  4. Impact of gestational risk factors on maternal cardiovascular system

    PubMed Central

    Perales, María; Santos-Lozano, Alejandro; Luaces, María; Pareja-Galeano, Helios; Garatachea, Nuria; Barakat, Rubén; Lucia, Alejandro

    2016-01-01

    Background Scarce evidence is available on the potential cardiovascular abnormalities associated with some common gestational complications. We aimed to analyze the potential maternal cardiac alterations related to gestational complications, including body mass index (BMI) >25 kg/m2, gaining excessive weight, or developing antenatal depression. Methods The design of this study was a secondary analysis of a randomized controlled trial. Echocardiography was performed to assess cardiovascular indicators of maternal hemodynamic, cardiac remodeling and left ventricular (LV) function in 59 sedentary pregnant women at 20 and 34 weeks of gestation. Results Starting pregnancy with a BMI >25 kg/m2, gaining excessive weight, and developing antenatal depression had no cardiovascular impact on maternal health (P value >0.002). Depressed women were more likely to exceed weight gain recommendations than non-depressed women (P value <0.002). Conclusions The evaluated gestational complications seem not to induce cardiovascular alterations in hemodynamic, remodeling and LV function indicators. However, developing antenatal depression increases the risk of an excessive weight gain. This finding is potentially important because excessive weight gain during pregnancy associates with a higher risk of cardiovascular diseases (CVD) later in life. PMID:27500154

  5. Cardiovascular pharmacogenomics: current status and future directions

    PubMed Central

    Roden, Dan M

    2016-01-01

    Drugs are widely used and highly effective in the treatment of heart disease. Nevertheless, in some instances, even drugs effective in a population display lack of efficacy or adverse drug reactions in individual patients, often in an apparently unpredictable fashion. This review summarizes the genomic factors now known to influence variability in responses to widely used cardiovascular drugs such as clopidogrel, warfarin, heparin and statins. Genomic approaches being used to discover new pathways in common cardiovascular diseases and thus potential new targets for drug development are described. Finally, the way in which this new information is likely to be used in an electronic medical record environment is discussed. PMID:26178435

  6. [Cutaneous adverse drug reactions].

    PubMed

    Lebrun-Vignes, B; Valeyrie-Allanore, L

    2015-04-01

    Cutaneous adverse drug reactions (CADR) represent a heterogeneous field including various clinical patterns without specific features suggesting drug causality. Exanthematous eruptions, urticaria and vasculitis are the most common forms of CADR. Fixed eruption is uncommon in western countries. Serious reactions (fatal outcome, sequelae) represent 2% of CADR: bullous reactions (Stevens-Johnson syndrome, toxic epidermal necrolysis), DRESS (drug reaction with eosinophilia and systemic symptoms or drug-induced hypersensitivity syndrome) and acute generalized exanthematous pustulosis (AGEP). These forms must be quickly diagnosed to guide their management. The main risk factors are immunosuppression, autoimmunity and some HLA alleles in bullous reactions and DRESS. Most systemic drugs may induce cutaneous adverse reactions, especially antibiotics, anticonvulsivants, antineoplastic drugs, non-steroidal anti-inflammatory drugs, allopurinol and contrast media. Pathogenesis includes immediate or delayed immunologic mechanism, usually not related to dose, and pharmacologic/toxic mechanism, commonly dose-dependent or time-dependent. In case of immunologic mechanism, allergologic exploration is possible to clarify drug causality, with a variable sensitivity according to the drug and to the CADR type. It includes epicutaneous patch testing, prick test and intradermal test. However, no in vivo or in vitro test can confirm the drug causality. To determine the cause of the eruption, a logical approach based on clinical characteristics, chronologic factors and elimination of differential diagnosis is required, completed with a literature search. A reporting to pharmacovigilance network is essential in case of a serious CADR whatever the suspected drug and in any case if the involved drug is a newly marketed one or unusually related to cutaneous reactions.

  7. Airway remodeling in asthma: what really matters.

    PubMed

    Fehrenbach, Heinz; Wagner, Christina; Wegmann, Michael

    2017-03-01

    Airway remodeling is generally quite broadly defined as any change in composition, distribution, thickness, mass or volume and/or number of structural components observed in the airway wall of patients relative to healthy individuals. However, two types of airway remodeling should be distinguished more clearly: (1) physiological airway remodeling, which encompasses structural changes that occur regularly during normal lung development and growth leading to a normal mature airway wall or as an acute and transient response to injury and/or inflammation, which ultimately results in restoration of a normal airway structures; and (2) pathological airway remodeling, which comprises those structural alterations that occur as a result of either disturbed lung development or as a response to chronic injury and/or inflammation leading to persistently altered airway wall structures and function. This review will address a few major aspects: (1) what are reliable quantitative approaches to assess airway remodeling? (2) Are there any indications supporting the notion that airway remodeling can occur as a primary event, i.e., before any inflammatory process was initiated? (3) What is known about airway remodeling being a secondary event to inflammation? And (4), what can we learn from the different animal models ranging from invertebrate to primate models in the study of airway remodeling? Future studies are required addressing particularly pheno-/endotype-specific aspects of airway remodeling using both endotype-specific animal models and "endotyped" human asthmatics. Hopefully, novel in vivo imaging techniques will be further advanced to allow monitoring development, growth and inflammation of the airways already at a very early stage in life.

  8. Maternal Uterine Vascular Remodeling During Pregnancy

    PubMed Central

    Osol, George; Mandala, Maurizio

    2009-01-01

    Sufficient uteroplacental blood flow is essential for normal pregnancy outcome and is accomplished by the coordinated growth and remodeling of the entire uterine circulation, as well as the creation of a new fetal vascular organ: the placenta. The process of remodeling involves a number of cellular processes, including hyperplasia and hypertrophy, rearrangement of existing elements, and changes in extracellular matrix. In this review, we provide information on uterine blood flow increases during pregnancy, the influence of placentation type on the distribution of uterine vascular resistance, consideration of the patterns, nature, and extent of maternal uterine vascular remodeling during pregnancy, and what is known about the underlying cellular mechanisms. PMID:19196652

  9. Fetal Programming and Cardiovascular Pathology

    PubMed Central

    Alexander, Barbara T.; Dasinger, John Henry; Intapad, Suttira

    2016-01-01

    Low birth weight serves as a crude proxy for impaired growth during fetal life and indicates a failure for the fetus to achieve its full growth potential. Low birth weight can occur in response to numerous etiologies that include complications during pregnancy, poor prenatal care, parental smoking, maternal alcohol consumption or stress. Numerous epidemiological and experimental studies demonstrate that birth weight is inversely associated with blood pressure and coronary heart disease. Sex and age impact the developmental programming of hypertension. In addition, impaired growth during fetal life also programs enhanced vulnerability to a secondary insult. Macrosomia, which occurs in response to maternal obesity, diabetes and excessive weight gain during gestation, is also associated with increased cardiovascular risk. Yet, the exact mechanisms that permanently change the structure, physiology and endocrine health of an individual across their lifespan following altered growth during fetal life are not entirely clear. Transmission of increased risk from one generation to the next in the absence of an additional prenatal insult indicates an important role for epigenetic processes. Experimental studies also indicate that the sympathetic nervous system, the renin angiotensin system, increased production of oxidative stress and increased endothelin play an important role in the developmental programming of blood pressure in later life. Thus, this review will highlight how adverse influences during fetal life and early development program an increased risk for cardiovascular disease including high blood pressure and provide an overview of the underlying mechanisms that contribute to the fetal origins of cardiovascular pathology. PMID:25880521

  10. Cardiovascular effects of calcium supplements.

    PubMed

    Reid, Ian R

    2013-07-05

    Calcium supplements reduce bone turnover and slow the rate of bone loss. However, few studies have demonstrated reduced fracture incidence with calcium supplements, and meta-analyses show only a 10% decrease in fractures, which is of borderline statistical and clinical significance. Trials in normal older women and in patients with renal impairment suggest that calcium supplements increase the risk of cardiovascular disease. To further assess their safety, we recently conducted a meta-analysis of trials of calcium supplements, and found a 27%-31% increase in risk of myocardial infarction, and a 12%-20% increase in risk of stroke. These findings are robust because they are based on pre-specified analyses of randomized, placebo-controlled trials and are consistent across the trials. Co-administration of vitamin D with calcium does not lessen these adverse effects. The increased cardiovascular risk with calcium supplements is consistent with epidemiological data relating higher circulating calcium concentrations to cardiovascular disease in normal populations. There are several possible pathophysiological mechanisms for these effects, including effects on vascular calcification, vascular cells, blood coagulation and calcium-sensing receptors. Thus, the non-skeletal risks of calcium supplements appear to outweigh any skeletal benefits, and are they appear to be unnecessary for the efficacy of other osteoporosis treatments.

  11. Arterial Stiffness and Cardiovascular Therapy

    PubMed Central

    Janić, Miodrag; Lunder, Mojca; Šabovič, Mišo

    2014-01-01

    The world population is aging and the number of old people is continuously increasing. Arterial structure and function change with age, progressively leading to arterial stiffening. Arterial stiffness is best characterized by measurement of pulse wave velocity (PWV), which is its surrogate marker. It has been shown that PWV could improve cardiovascular event prediction in models that included standard risk factors. Consequently, it might therefore enable better identification of populations at high-risk of cardiovascular morbidity and mortality. The present review is focused on a survey of different pharmacological therapeutic options for decreasing arterial stiffness. The influence of several groups of drugs is described: antihypertensive drugs (angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, calcium channel blockers, beta-blockers, diuretics, and nitrates), statins, peroral antidiabetics, advanced glycation end-products (AGE) cross-link breakers, anti-inflammatory drugs, endothelin-A receptor antagonists, and vasopeptidase inhibitors. All of these have shown some effect in decreasing arterial stiffness. Nevertheless, further studies are needed which should address the influence of arterial stiffness diminishment on major adverse cardiovascular and cerebrovascular events (MACCE). PMID:25170513

  12. Reverse remodeling and recovery from cachexia in rats with aldosteronism.

    PubMed

    Cheema, Yaser; Zhao, Wenyuan; Zhao, Tieqiang; Khan, M Usman; Green, Kelly D; Ahokas, Robert A; Gerling, Ivan C; Bhattacharya, Syamal K; Weber, Karl T

    2012-08-15

    The congestive heart failure (CHF) syndrome with soft tissue wasting, or cachexia, has its pathophysiologic origins rooted in neurohormonal activation. Mechanical cardiocirculatory assistance reveals the potential for reverse remodeling and recovery from CHF, which has been attributed to device-based hemodynamic unloading whereas the influence of hormonal withdrawal remains uncertain. This study addresses the signaling pathways induced by chronic aldosteronism in normal heart and skeletal muscle at organ, cellular/subcellular, and molecular levels, together with their potential for recovery (Recov) after its withdrawal. Eight-week-old male Sprague-Dawley rats were examined at 4 wk of aldosterone/salt treatment (ALDOST) and following 4-wk Recov. Compared with untreated, age-/sex-/strain-matched controls, ALDOST was accompanied by 1) a failure to gain weight, reduced muscle mass with atrophy, and a heterogeneity in cardiomyocyte size across the ventricles, including hypertrophy and atrophy at sites of microscopic scarring; 2) increased cardiomyocyte and mitochondrial free Ca(2+), coupled to oxidative stress with increased H(2)O(2) production and 8-isoprostane content, and increased opening potential of the mitochondrial permeability transition pore; 3) differentially expressed genes reflecting proinflammatory myocardial and catabolic muscle phenotypes; and 4) reversal to or toward recovery of these responses with 4-wk Recov. Aldosteronism in rats is accompanied by cachexia and leads to an adverse remodeling of the heart and skeletal muscle at organ, cellular/subcellular, and molecular levels. However, evidence presented herein implicates that these tissues retain their inherent potential for recovery after complete hormone withdrawal.

  13. Simulations of trabecular remodeling and fatigue: is remodeling helpful or harmful?

    PubMed

    van Oers, René F M; van Rietbergen, Bert; Ito, Keita; Huiskes, Rik; Hilbers, Peter A J

    2011-05-01

    Microdamage-targeted resorption is paradoxal, because it entails the removal of bone from a region that was already overloaded. Under continued intense loading, resorption spaces could potentially cause more damage than they remove. To investigate this problem, we incorporated damage algorithms in a computer-simulation model for trabecular remodeling. We simulated damage accumulation and bone remodeling in a trabecular architecture, for two fatigue regimens, a 'moderate' regimen, and an 'intense' regimen with a higher number of loading cycles per day. Both simulations were also performed without bone remodeling to investigate if remodeling removed or exacerbated the damage. We found that remodeling tends to remove damage under the 'moderate' fatigue regimen, but it exacerbates damage under the 'intense' regimen. This harmful effect of remodeling may play a role in the development of stress fractures.

  14. Minireview: Nuclear Receptor Regulation of Osteoclast and Bone Remodeling

    PubMed Central

    Jin, Zixue; Li, Xiaoxiao

    2015-01-01

    Osteoclasts are bone-resorbing cells essential for skeletal remodeling and regeneration. However, excessive osteoclasts often contribute to prevalent bone degenerative diseases such as osteoporosis, arthritis, and cancer bone metastasis. Osteoclast dysregulation is also associated with rare disorders such as osteopetrosis, pycnodysostosis, Paget's disease, and Gorham-Stout syndrome. The nuclear receptor (NR) family of transcription factors functions as metabolic sensors that control a variety of physiological processes including skeletal homeostasis and serves as attractive therapeutic targets for many diseases. In this review, we highlight recent findings on the new players and the new mechanisms for how NRs regulate osteoclast differentiation and bone resorption. An enhanced understanding of NR functions in osteoclastogenesis will facilitate the development of not only novel osteoprotective medicine but also prudent strategies to minimize the adverse skeletal effects of certain NR-targeting drugs for a better treatment of cancer and metabolic diseases. PMID:25549044

  15. Emerging importance of chemokine receptor CXCR3 and its ligands in cardiovascular diseases.

    PubMed

    Altara, Raffaele; Manca, Marco; Brandão, Rita D; Zeidan, Asad; Booz, George W; Zouein, Fouad A

    2016-04-01

    The CXC chemokines, CXCL4, -9, -10, -11, CXCL4L1, and the CC chemokine CCL21, activate CXC chemokine receptor 3 (CXCR3), a cell-surface G protein-coupled receptor expressed mainly by Th1 cells, cytotoxic T (Tc) cells and NK cells that have a key role in immunity and inflammation. However, CXCR3 is also expressed by vascular smooth muscle and endothelial cells, and appears to be important in controlling physiological vascular function. In the last decade, evidence from pre-clinical and clinical studies has revealed the participation of CXCR3 and its ligands in multiple cardiovascular diseases (CVDs) of different aetiologies including atherosclerosis, hypertension, cardiac hypertrophy and heart failure, as well as in heart transplant rejection and transplant coronary artery disease (CAD). CXCR3 ligands have also proven to be valid biomarkers for the development of heart failure and left ventricular dysfunction, suggesting an underlining pathophysiological relation between levels of these chemokines and the development of adverse cardiac remodelling. The observation that several of the above-mentioned chemokines exert biological actions independent of CXCR3 provides both opportunities and challenges for developing effective drug strategies. In this review, we provide evidence to support our contention that CXCR3 and its ligands actively participate in the development and progression of CVDs, and may additionally have utility as diagnostic and prognostic biomarkers.

  16. Targeting angiotensin-converting enzyme 2 as a new therapeutic target for cardiovascular diseases.

    PubMed

    Parajuli, Nirmal; Ramprasath, Tharmarajan; Patel, Vaibhav B; Wang, Wang; Putko, Brendan; Mori, Jun; Oudit, Gavin Y

    2014-07-01

    Angiotensin-converting enzyme 2 (ACE2) is a monocarboxypeptidase that metabolizes several vasoactive peptides, including angiotensin II (Ang-II; a vasoconstrictive/proliferative peptide), which it converts to Ang-(1-7). Ang-(1-7) acts through the Mas receptor to mediate vasodilatory/antiproliferative actions. The renin-angiotensin system involving the ACE-Ang-II-Ang-II type-1 receptor (AT1R) axis is antagonized by the ACE2-Ang-(1-7)-Mas receptor axis. Loss of ACE2 enhances adverse remodeling and susceptibility to pressure and volume overload. Human recombinant ACE2 may act to suppress myocardial hypertrophy, fibrosis, inflammation, and diastolic dysfunction in heart failure patients. The ACE2-Ang-(1-7)-Mas axis may present a new therapeutic target for the treatment of heart failure patients. This review is mainly focused on the analysis of ACE2, including its influence and potentially positive effects, as well as the potential use of human recombinant ACE2 as a novel therapy for the treatment cardiovascular diseases, such as hypertension and heart failure.

  17. Cardiovascular Disease and Diabetes

    MedlinePlus

    ... Disease Venous Thromboembolism Aortic Aneurysm More Cardiovascular Disease & Diabetes Updated:Nov 4,2016 The following statistics speak ... disease. This content was last reviewed August 2015. Diabetes • Home • About Diabetes • Why Diabetes Matters Introduction Cardiovascular ...

  18. [Anaphylaxis to protamine during cardiovascular surgery].

    PubMed

    Madani, H; Sadiki, E O; Bouziane, M; Amaarouch, S; Madani, M; Khatouf, M

    2014-05-01

    Protamine is a polypeptide with low molecular weights that is used widely to reverse heparin anticoagulation during cardiac surgery. Protamine, efficient and relatively sure, can produce multiple adverse reactions after intravenous administration, including pulmonary hypertension, or systemic hypotension leading at times to cardiovascular collapse and death. Physiopathologic mechanisms, underlying these reactions, are not clear. Immunologic and non-immunologic pathways are suggested. Some risk factors expose to protamine's adverse reactions. Preoperative identification of these factors should prompt specific preventive measures. The anesthesiologist and the cardiac surgeon must be vigilant when administrating protamine. Reheparinization and reinstitution of cardiopulmonary bypass should be considered in patients with refractory shock.

  19. Space radiation and cardiovascular disease risk.

    PubMed

    Boerma, Marjan; Nelson, Gregory A; Sridharan, Vijayalakshmi; Mao, Xiao-Wen; Koturbash, Igor; Hauer-Jensen, Martin

    2015-12-26

    Future long-distance space missions will be associated with significant exposures to ionizing radiation, and the health risks of these radiation exposures during manned missions need to be assessed. Recent Earth-based epidemiological studies in survivors of atomic bombs and after occupational and medical low dose radiation exposures have indicated that the cardiovascular system may be more sensitive to ionizing radiation than was previously thought. This has raised the concern of a cardiovascular disease risk from exposure to space radiation during long-distance space travel. Ground-based studies with animal and cell culture models play an important role in estimating health risks from space radiation exposure. Charged particle space radiation has dense ionization characteristics and may induce unique biological responses, appropriate simulation of the space radiation environment and careful consideration of the choice of the experimental model are critical. Recent studies have addressed cardiovascular effects of space radiation using such models and provided first results that aid in estimating cardiovascular disease risk, and several other studies are ongoing. Moreover, astronauts could potentially be administered pharmacological countermeasures against adverse effects of space radiation, and research is focused on the development of such compounds. Because the cardiovascular response to space radiation has not yet been clearly defined, the identification of potential pharmacological countermeasures against cardiovascular effects is still in its infancy.

  20. Space radiation and cardiovascular disease risk

    PubMed Central

    Boerma, Marjan; Nelson, Gregory A; Sridharan, Vijayalakshmi; Mao, Xiao-Wen; Koturbash, Igor; Hauer-Jensen, Martin

    2015-01-01

    Future long-distance space missions will be associated with significant exposures to ionizing radiation, and the health risks of these radiation exposures during manned missions need to be assessed. Recent Earth-based epidemiological studies in survivors of atomic bombs and after occupational and medical low dose radiation exposures have indicated that the cardiovascular system may be more sensitive to ionizing radiation than was previously thought. This has raised the concern of a cardiovascular disease risk from exposure to space radiation during long-distance space travel. Ground-based studies with animal and cell culture models play an important role in estimating health risks from space radiation exposure. Charged particle space radiation has dense ionization characteristics and may induce unique biological responses, appropriate simulation of the space radiation environment and careful consideration of the choice of the experimental model are critical. Recent studies have addressed cardiovascular effects of space radiation using such models and provided first results that aid in estimating cardiovascular disease risk, and several other studies are ongoing. Moreover, astronauts could potentially be administered pharmacological countermeasures against adverse effects of space radiation, and research is focused on the development of such compounds. Because the cardiovascular response to space radiation has not yet been clearly defined, the identification of potential pharmacological countermeasures against cardiovascular effects is still in its infancy. PMID:26730293

  1. The Fuster-CNIC-Ferrer Cardiovascular Polypill: a polypill for secondary cardiovascular prevention.

    PubMed

    Tamargo, Juan; Castellano, José M; Fuster, Valentín

    2015-12-01

    During the last decade, there has been a tremendous effort to develop different cardiovascular polypills in response to the upsurge in global cardiovascular disease worldwide. The pharmacological development of such a strategy has proven to be extremely complex from a formulation standpoint. Not all drugs are suitable for use in a polypill because of potential drug incompatibilities between them. Candidate agents must be safe, well tolerated, effective, guideline recommended and physiochemically compatible with the other components of the pill. The Fuster-CNIC-Ferrer cardiovascular (CV) polypill has been found to be the first-in-class polypill to be approved and commercialized in Europe and Latinamerican Countries. In this article, we review the pharmacological properties of its three components, including the clinical evidence supporting their use in patients with established cardiovascular disease, their pharmacokinetic properties, adverse effects, drug interactions and contraindications.

  2. Raise the Floor When Remodeling Science Labs

    ERIC Educational Resources Information Center

    Nation's Schools, 1972

    1972-01-01

    A new remodeling idea adopts the concept of raised floor covering gas, water, electrical, and drain lines. The accessible floor has removable panels set into an adjustable support frame 24 inches above a concrete subfloor. (Author)

  3. Lead Poisoning in Remodeling of Old Homes

    ERIC Educational Resources Information Center

    Barnes, Bart

    1973-01-01

    An article based on Dr. Muriel D. Wolf's study of elevated blood lead levels in children and adults present during the remodeling of old homes. Lead poisoning examples, symptoms, and precautions are given. (ST)

  4. B.B. Contracting & Remodeling Information Sheet

    EPA Pesticide Factsheets

    B.B. Contracting & Remodeling (the Company) is located in St. Louis, Missouri. The settlement involves renovation activities conducted at property constructed prior to 1978, located in St. Louis, Missouri.

  5. Infection and Cardiovascular Disease

    ClinicalTrials.gov

    2016-02-17

    Cardiovascular Diseases; Coronary Disease; Cerebrovascular Accident; Heart Diseases; Myocardial Infarction; Infection; Chlamydia Infections; Cytomegalovirus Infections; Helicobacter Infections; Atherosclerosis

  6. Adverse cutaneous drug reaction.

    PubMed

    Nayak, Surajit; Acharjya, Basanti

    2008-01-01

    In everyday clinical practice, almost all physicians come across many instances of suspected adverse cutaneous drug reactions (ACDR) in different forms. Although such cutaneous reactions are common, comprehensive information regarding their incidence, severity and ultimate health effects are often not available as many cases go unreported. It is also a fact that in the present world, almost everyday a new drug enters market; therefore, a chance of a new drug reaction manifesting somewhere in some form in any corner of world is unknown or unreported. Although many a times, presentation is too trivial and benign, the early identification of the condition and identifying the culprit drug and omit it at earliest holds the keystone in management and prevention of a more severe drug rash. Therefore, not only the dermatologists, but all practicing physicians should be familiar with these conditions to diagnose them early and to be prepared to handle them adequately. However, we all know it is most challenging and practically difficult when patient is on multiple medicines because of myriad clinical symptoms, poorly understood multiple mechanisms of drug-host interaction, relative paucity of laboratory testing that is available for any definitive and confirmatory drug-specific testing. Therefore, in practice, the diagnosis of ACDR is purely based on clinical judgment. In this discussion, we will be primarily focusing on pathomechanism and approach to reach a diagnosis, which is the vital pillar to manage any case of ACDR.

  7. Ventricular remodeling in global ischemia.

    PubMed

    Anversa, P; Zhang, X; Li, P; Olivetti, G; Cheng, W; Reiss, K; Sonnenblick, E H; Kajstura, J

    1995-06-01

    To determine the effects of chronic constriction of the left coronary artery on the function and structure of the heart, coronary artery narrowing was surgically induced in rats and ventricular pump performance, extent and distribution of myocardial damage, and the hypertrophic and hyperplastic response of myocytes were examined. Alterations in cardiac hemodynamics were found in all rats, but the characteristics of the physiological properties of the heart allowed a separation of the animals into two groups which exhibited left ventricular dysfunction and failure, respectively. Left ventricular hypertrophy occurred in both groups and was characterized by ventricular dilatation and wall thinning which were more severe in the failing animals. Multiple foci of myocardial damage across the wall were seen in all animals but tissue injury was more prominent in the endomyocardium and in failing rats. The anatomical and hemodynamic changes resulted in a significant increase in diastolic wall stress which paralleled the depression in ventricular performance. Myocyte cell loss and myocyte cellular hypertrophy were more severe with ventricular failure than with dysfunction. Finally, diastolic overload appeared to be coupled with activation of the DNA synthetic machinery of myocytes and nuclear mitotic division. In conclusion, a fixed lesion of the left coronary artery leads to abnormalities in cardiac dynamics with marked increases in diastolic wall stress and extensive ventricular remodeling in spite of compensatory myocyte cellular hypertrophy and hyperplasia in the remaining viable tissue.

  8. [Remodeling of the aging heart : Sinus node dysfunction and atrial fibrillation].

    PubMed

    Weirich, Jörg

    2017-03-01

    The incidence of both sinus node dysfunction (SND) and atrial fibrillation (AF) increases with age. SND and AF frequently coexist. Likewise, they are often associated with cardiovascular diseases. Both arrhythmias share similar pathomechanisms such as structural and functional remodeling, i. e., degenerative fibrosis and altered Ca(2+) handling, respectively. A growing body of evidence suggests an important role for the CamKII (Ca(2+)/calmodulin-dependent protein kinase II) in structural as well as in functional remodeling. In the sinus node, remodeling leads to degenerative fibrosis and as a consequence to sinus node arrest or to reentry (brady/tachycardia). In the atrium, remodeling sets the conditions for reentry and its triggering mechanisms, especially the conditions for triggered activity on the basis of delayed afterdepolarizations (DAD). Thus, SND and AF seem to be different phenotypes of related pathophysiological mechanisms. On the other hand, it remains controversial as to whether SND causes AF or vice versa.

  9. Conceptual Model for Assessing Criteria Air Pollutants in a Multipollutant Context: A Modified Adverse Outcome Pathway Approach

    EPA Science Inventory

    Background: Air pollution consists of a complex mixture of particulate and gaseous components. Individual criteria and other hazardous air pollutants have been linked to adverse respiratory and cardiovascular health outcomes. However, assessing risk of air pollutant mixtures is d...

  10. Bone remodeling as a spatial evolutionary game.

    PubMed

    Ryser, Marc D; Murgas, Kevin A

    2017-04-07

    Bone remodeling is a complex process involving cell-cell interactions, biochemical signaling and mechanical stimuli. Early models of the biological aspects of remodeling were non-spatial and focused on the local dynamics at a fixed location in the bone. Several spatial extensions of these models have been proposed, but they generally suffer from two limitations: first, they are not amenable to analysis and are computationally expensive, and second, they neglect the role played by bone-embedded osteocytes. To address these issues, we developed a novel model of spatial remodeling based on the principles of evolutionary game theory. The analytically tractable framework describes the spatial interactions between zones of bone resorption, bone formation and quiescent bone, and explicitly accounts for regulation of remodeling by bone-embedded, mechanotransducing osteocytes. Using tools from the theory of interacting particle systems we systematically classified the different dynamic regimes of the spatial model and identified regions of parameter space that allow for global coexistence of resorption, formation and quiescence, as observed in physiological remodeling. In coexistence scenarios, three-dimensional simulations revealed the emergence of sponge-like bone clusters. Comparison between spatial and non-spatial dynamics revealed substantial differences and suggested a stabilizing role of space. Our findings emphasize the importance of accounting for spatial structure and bone-embedded osteocytes when modeling the process of bone remodeling. Thanks to the lattice-based framework, the proposed model can easily be coupled to a mechanical model of bone loading.

  11. Fibrinolysis inhibitors adversely affect remodeling of tissues sealed with fibrin glue.

    PubMed

    Krishnan, Lissy K; Vijayan Lal, Arthur; Uma Shankar, P R; Mohanty, Mira

    2003-01-01

    Experiments have been carried out to determine if aprotinin and epsilon -amino caproic acid increases the quality of Fibrin glue. A rat model was used for tissues such as liver and skin while rabbits were used for application of glue in dura mater. Apposition of all the tissues, glued with fibrin was found to be good and remnants of the polymerized fibrin were seen even on the seventh day of application, though inhibitors were not incorporated with the glue. In skin, excessive amounts of fibrin remained as a result of addition of aprotinin and epsilon -amino caproic acid, as compared to the glue applied without any inhibitor. After dural sealing, the wound repair and new bone formation at craniotomy site progressed well in the fibrin glue applied area as compared to the commercially available glue that contained aprotinin. The adhesive strength of the glue without or with fibrinolysis inhibitors was found to be similar, after 1h grafts on rat back. The observations from this study suggests that the use of aprotinin with fibrin glue may not be required because, even liver tissue that is known to have high fibrinolytic activity was sealed and repaired well in the absence of plasminogen inhibitors. On the other hand, it was found that if inhibitors were added, nondegraded matrix remained in the tissue even after 15 days and affected migration of repair cells. Thus, the inhibition of fibrinolysis after fibrin glue application is found detrimental to wound healing.

  12. Mitochondrial dynamics, mitophagy and cardiovascular disease

    PubMed Central

    Vásquez‐Trincado, César; García‐Carvajal, Ivonne; Pennanen, Christian; Parra, Valentina; Hill, Joseph A.; Rothermel, Beverly A.

    2016-01-01

    Abstract Cardiac hypertrophy is often initiated as an adaptive response to haemodynamic stress or myocardial injury, and allows the heart to meet an increased demand for oxygen. Although initially beneficial, hypertrophy can ultimately contribute to the progression of cardiac disease, leading to an increase in interstitial fibrosis and a decrease in ventricular function. Metabolic changes have emerged as key mechanisms involved in the development and progression of pathological remodelling. As the myocardium is a highly oxidative tissue, mitochondria play a central role in maintaining optimal performance of the heart. ‘Mitochondrial dynamics’, the processes of mitochondrial fusion, fission, biogenesis and mitophagy that determine mitochondrial morphology, quality and abundance have recently been implicated in cardiovascular disease. Studies link mitochondrial dynamics to the balance between energy demand and nutrient supply, suggesting that changes in mitochondrial morphology may act as a mechanism for bioenergetic adaptation during cardiac pathological remodelling. Another critical function of mitochondrial dynamics is the removal of damaged and dysfunctional mitochondria through mitophagy, which is dependent on the fission/fusion cycle. In this article, we discuss the latest findings regarding the impact of mitochondrial dynamics and mitophagy on the development and progression of cardiovascular pathologies, including diabetic cardiomyopathy, atherosclerosis, damage from ischaemia–reperfusion, cardiac hypertrophy and decompensated heart failure. We will address the ability of mitochondrial fusion and fission to impact all cell types within the myocardium, including cardiac myocytes, cardiac fibroblasts and vascular smooth muscle cells. Finally, we will discuss how these findings can be applied to improve the treatment and prevention of cardiovascular diseases. PMID:26537557

  13. Nanoparticles and the cardiovascular system: a critical review.

    PubMed

    Donaldson, Ken; Duffin, Rodger; Langrish, Jeremy P; Miller, Mark R; Mills, Nicholas L; Poland, Craig A; Raftis, Jennifer; Shah, Anoop; Shaw, Catherine A; Newby, David E

    2013-03-01

    Nanoparticles (NPs) are tiny particles with a diameter of less than 100 nm. Traffic exhaust is a major source of combustion-derived NPs (CDNPs), which represent a significant component in urban air pollution. Epidemiological, panel and controlled human chamber studies clearly demonstrate that exposure to CDNPs is associated with multiple adverse cardiovascular effects in both healthy individuals and those with pre-existing cardiovascular disease. NPs are also manufactured from a large range of materials for industrial use in a vast array of products including for use as novel imaging agents for medical use. There is currently little information available on the impacts of manufactured NPs in humans, but experimental studies demonstrate similarities to the detrimental cardiovascular actions of CDNPs. This review describes the evidence for these cardiovascular effects and attempts to resolve the paradox between the adverse effects of the unintentional exposure of CDNPs and the intentional delivery of manufactured NPs for medical purposes.

  14. Telithromycin: review of adverse effects.

    PubMed

    2014-11-01

    Telithromycin is a macrolide antibiotic that has been marketed since the early 2000s. It has not been shown to be more effective against any bacteria than other macrolide antibiotics. Its antibacterial activity is in no way remarkable. In early 2014, we reviewed its adverse effect profile using data from periodic safety update reports, drug regulatory agencies, and detailed published case reports. In addition to the adverse effect profile telithromycin shares with the other macrolides, it provokes several specific adverse effects: visual disturbances due to impaired accommodation; taste and smell disorders; severe liver damage; worsening of myasthenia gravis; rhabdomyolysis; and loss of consciousness. Prolongation of the QT interval with standard oral doses is a worrisome adverse effect. In practice, it is better not to use telithromycin as it exposes patients to disproportionate, serious adverse effects. When treatment with a macrolide antibiotic appears necessary, it is prudent to choose a different macrolide, such as spiramycin or azithromycin, which have fewer adverse effects.

  15. Testosterone Replacement Therapy and the Cardiovascular System.

    PubMed

    Naderi, Sahar

    2016-04-01

    As testosterone replacement therapy (TRT) has emerged as a commonly prescribed therapy for symptomatic low testosterone, conflicting data have been reported in terms of both its efficacy and potential adverse outcomes. One of the most controversial associations has been that of TRT and cardiovascular morbidity and mortality. This review briefly provides background on the history of TRT, the indications for TRT, and the data behind TRT for symptomatic low testosterone. It then specifically delves into the rather limited data for cardiovascular outcomes of those with low endogenous testosterone and those who receive TRT. The available body of literature strongly suggests that more work, by way of clinical trials, needs to be done to better understand the impact of testosterone and TRT on the cardiovascular system.

  16. ISPD Cardiovascular and Metabolic Guidelines in Adult Peritoneal Dialysis Patients Part I - Assessment and Management of Various Cardiovascular Risk Factors.

    PubMed

    Wang, Angela Yee Moon; Brimble, K Scott; Brunier, Gillian; Holt, Stephen G; Jha, Vivekanand; Johnson, David W; Kang, Shin-Wook; Kooman, Jeroen P; Lambie, Mark; McIntyre, Chris; Mehrotra, Rajnish; Pecoits-Filho, Roberto

    2015-01-01

    Cardiovascular disease contributes significantly to the adverse clinical outcomes of peritoneal dialysis (PD) patients. Numerous cardiovascular risk factors play important roles in the development of various cardiovascular complications. Of these, loss of residual renal function is regarded as one of the key cardiovascular risk factors and is associated with an increased mortality and cardiovascular death. It is also recognized that PD solutions may incur significant adverse metabolic effects in PD patients. The International Society for Peritoneal Dialysis (ISPD) commissioned a global workgroup in 2012 to formulate a series of recommendations regarding lifestyle modification, assessment and management of various cardiovascular risk factors, as well as management of the various cardiovascular complications including coronary artery disease, heart failure, arrhythmia (specifically atrial fibrillation), cerebrovascular disease, peripheral arterial disease and sudden cardiac death, to be published in 2 guideline documents. This publication forms the first part of the guideline documents and includes recommendations on assessment and management of various cardiovascular risk factors. The documents are intended to serve as a global clinical practice guideline for clinicians who look after PD patients. The ISPD workgroup also identifies areas where evidence is lacking and further research is needed.

  17. Growth and Remodeling in Blood Vessels Studied In Vivo With Fractal Analysis

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia A.

    2003-01-01

    Every cell in the human body must reside in close proximity to a blood vessel (within approximately 200 mm) because blood vessels provide the oxygen, metabolite, and fluid exchanges required for cellular existence. The growth and remodeling of blood vessels are required to support the normal physiology of embryonic development, reproductive biology, wound healing and adaptive remodeling to exercise, as well as abnormal tissue change in diseases such as cancer, diabetes, and coronary heart disease. Cardiovascular and hemodynamic (blood flow dynamics) alterations experienced by astronauts during long-term spaceflight, including orthostatic intolerance, fluid shifts in the body, and reduced numbers of red (erythrocyte) and white (immune) blood cells, are identified as risk factors of very high priority in the NASA task force report on risk reduction for human spaceflight, the "Critical Path Roadmap."

  18. Subclinical cardiovascular damage and fat utilization in overweight/obese individuals receiving the same dietary and pharmacological interventions.

    PubMed

    Montalcini, Tiziana; Lamprinoudi, Theodora; Gorgone, Gaetano; Ferro, Yvelise; Romeo, Stefano; Pujia, Arturo

    2014-12-01

    Subclinical organ damage precedes the occurrence of cardiovascular events in individuals with obesity and hypertension. The aim of this study was to assess the relationship between fuel utilization and subclinical cardiovascular damage in overweight/obese individuals free of established cardiovascular disease receiving the same diet and pharmacological intervention. In this retrospective study a total of 35 subjects following a balanced diet were enrolled. They underwent a complete nutritional and cardiovascular assessment. Echocardiography and ultrasonography of the carotid arteries was performed. The respiratory quotient (fuel utilization index) was assessed by indirect calorimetry. A total of 18 had left ventricular concentric remodeling, 17 were normal. Between these two groups, a significant difference of intima-media thickness was showed (p = 0.015). Also a difference of respiratory quotient was shown with the highest value in those with remodeling (p = 0.038). At univariate and multivariate analysis, cardiac remodeling was associated with respiratory quotient (RQ) (p = 0.04; beta = 0.38; SE = 0.021; B = 0.044). The area under the receiver operating characteristic (ROC) curve for respiratory quotient to predict remodeling was 0.72 (SE = 0.093; p = 0.031; RQ = 0.87; 72% sensitivity, 84% specificity). The respiratory quotient is significantly different between those participants with and without cardiac remodeling. Its measurement may help for interpreting the (patho)physiological mechanisms in the nutrients utilization of obese people with different response to dietary or pharmacological interventions.

  19. Subclinical Cardiovascular Damage and Fat Utilization in Overweight/Obese Individuals Receiving the Same Dietary and Pharmacological Interventions

    PubMed Central

    Montalcini, Tiziana; Lamprinoudi, Theodora; Gorgone, Gaetano; Ferro, Yvelise; Romeo, Stefano; Pujia, Arturo

    2014-01-01

    Subclinical organ damage precedes the occurrence of cardiovascular events in individuals with obesity and hypertension. The aim of this study was to assess the relationship between fuel utilization and subclinical cardiovascular damage in overweight/obese individuals free of established cardiovascular disease receiving the same diet and pharmacological intervention. In this retrospective study a total of 35 subjects following a balanced diet were enrolled. They underwent a complete nutritional and cardiovascular assessment. Echocardiography and ultrasonography of the carotid arteries was performed. The respiratory quotient (fuel utilization index) was assessed by indirect calorimetry. A total of 18 had left ventricular concentric remodeling, 17 were normal. Between these two groups, a significant difference of intima-media thickness was showed (p = 0.015). Also a difference of respiratory quotient was shown with the highest value in those with remodeling (p = 0.038). At univariate and multivariate analysis, cardiac remodeling was associated with respiratory quotient (RQ) (p = 0.04; beta = 0.38; SE = 0.021; B = 0.044). The area under the receiver operating characteristic (ROC) curve for respiratory quotient to predict remodeling was 0.72 (SE = 0.093; p = 0.031; RQ = 0.87; 72% sensitivity, 84% specificity). The respiratory quotient is significantly different between those participants with and without cardiac remodeling. Its measurement may help for interpreting the (patho)physiological mechanisms in the nutrients utilization of obese people with different response to dietary or pharmacological interventions. PMID:25470378

  20. The aged cardiovascular risk patient.

    PubMed

    Priebe, H J

    2000-11-01

    factors contribute most of the increased perioperative risk related to advanced age. First, physiological ageing is accompanied by a progressive decline in resting organ function. Consequently, the reserve capacity to compensate for impaired organ function, drug metabolism and added physiological demands is increasingly impaired. Functional disability will occur more quickly and take longer to be cured. Second, ageing is associated with progressive manifestation of chronic disease which further limits baseline function and accelerates loss of functional reserve in the affected organ. Some of the age-related decline in organ function (e.g. impaired pulmonary gas exchange, diminished renal capacity to conserve and eliminate water and salt, or disturbed thermoregulation) will increase cardiovascular risk. The unpredictable interaction between age-related and disease-associated changes in organ functions, and the altered neurohumoral response to various forms of stress in the elderly may result in a rather atypical clinical presentation of a disease. This may, in turn, delay the correct diagnosis and appropriate treatment and, ultimately, worsen outcome. Third, related to the increased intake of medications and altered pharmacokinetics and pharmacodynamics, the incidence of untoward reactions to medications, anaesthetic agents, and medical and surgical interventions increases with advancing age. On the basis of various clinical studies and observations, it must be concluded that advanced age is an independent predictor of adverse perioperative cardiac outcome. It is to be expected that the aged cardiovascular risk patient carries an even higher perioperative cardiac risk than the younger cardiovascular risk patient. Although knowledge of the physiology of ageing should help reduce age-related complications, successful prophylaxis is hindered by the heterogeneity of age-related changes, unpredictable physiological and pharmacological interactions and diagnostic difficultie

  1. Periprosthetic Bone Remodelling in Total Knee Arthroplasty

    PubMed Central

    GEORGEANU, Vlad; ATASIEI, Tudor; GRUIONU, Lucian

    2014-01-01

    Introduction: The clinical studies have shown that the displacement of the prosthesis components, especially of the tibial one is higher during the first year, after which it reaches an equilibrum position compatible with a good long term functioning. This displacement takes place due to bone remodelling close to the implant secondary to different loading concentrations over different areas of bone. Material and Method: Our study implies a simulation on a computational model using the finite element analysis. The simulation started taking into account arbitrary points because of non-linear conditions of bone-prosthesis interface and it was iterative.. A hundred consecutive situations corresponding to intermediate bone remodelling phases have been calculated according to given loadings. Bone remodelling was appreciated as a function of time and bone density for each constitutive element of the computational model created by finite element method. For each constitutive element a medium value of stress during the walking cycle was applied. Results: Analyse of proximal epiphysis-prosthesis complex slices showed that bone density increase is maintained all over the stem in the immediately post-operative period. At 10 months, the moment considered to be the end of bone remodelling, areas with increased bone density are fewer and smaller. Meanwhile, their distribution with a concentration toward the internal compartment in the distal metaphysis is preserved. Conclusions: After the total knee arthroplasty the tibial bone suffered a process of remodelling adapted to the new stress conditions. This bone remodelling can influence, sometimes negatively, especially in the cases with tibial component varus malposition, the fixation, respectively the survival of the prosthesis. This process has been demonstrated both by clinical trials and by simulation, using the finite elements method of periprosthetic bone remodelling. PMID:25553127

  2. Adverse effects of anabolic steroids in athletes. A constant threat.

    PubMed

    Maravelias, C; Dona, A; Stefanidou, M; Spiliopoulou, C

    2005-09-15

    Anabolic-androgenic steroids (AAS) are used as ergogenic aids by athletes and non-athletes to enhance performance by augmenting muscular development and strength. AAS administration is often associated with various adverse effects that are generally dose related. High and multi-doses of AAS used for athletic enhancement can lead to serious and irreversible organ damage. Among the most common adverse effects of AAS are some degree of reduced fertility and gynecomastia in males and masculinization in women and children. Other adverse effects include hypertension and atherosclerosis, blood clotting, jaundice, hepatic neoplasms and carcinoma, tendon damage, psychiatric and behavioral disorders. More specifically, this article reviews the reproductive, hepatic, cardiovascular, hematological, cerebrovascular, musculoskeletal, endocrine, renal, immunologic and psychologic effects. Drug-prevention counseling to athletes is highlighted and the use of anabolic steroids is must be avoided, emphasizing that sports goals may be met within the framework of honest competition, free of doping substances.

  3. Adverse Reactions to Hallucinogenic Drugs.

    ERIC Educational Resources Information Center

    Meyer, Roger E. , Ed.

    This reports a conference of psychologists, psychiatrists, geneticists and others concerned with the biological and psychological effects of lysergic acid diethylamide and other hallucinogenic drugs. Clinical data are presented on adverse drug reactions. The difficulty of determining the causes of adverse reactions is discussed, as are different…

  4. Circulating microRNAs in Cardiovascular Diseases.

    PubMed

    Orlicka-Płocka, Marta; Gurda, Dorota; Fedoruk-Wyszomirska, Agnieszka; Smolarek, Iwona; Wyszko, Eliza

    2016-01-01

    Cardiovascular Diseases (CD) are currently one of the most common causes of death. Because heart related deaths occur on such an enormous scale this phenomenon is referred to as an epidemic. Chronic and acute injury of the heart could be an effect of cardiac remodeling, which is a result of molecular, cellular and interstitial changes, influenced by hemodynamic load or neurohormonal activation (Cohn et al., 2000). These small deviations in cardiac activity and morphology may lead to an enormous negative effect. Despite a significant progress, knowledge of standard risk factors for cardiovascular diseases has become less and less effective, which is why predicting and seeking an appropriate treatment is very challenging. As a result, there is a growing interest in finding new markers of the CD. MicroRNAs (miRNAs), are short, non-coding RNAs responsible for regulation of gene expression at the post-transcriptional level. Among them that have the greatest potential are microRNA molecules that circulate in the blood plasma or serum, that are related to direct activation of signaling pathways, implicated in the aging process and thus for the development of cardiovascular disease. This paper is a summary of the current state of knowledge on miRNAs, their biogenesis and potential role as biomarkers to diagnose heart disease.

  5. Retinal remodeling in inherited photoreceptor degenerations.

    PubMed

    Marc, Robert E; Jones, Bryan W

    2003-10-01

    Photoreceptor degenerations initiated in rods or the retinal pigmented epithelium usually evoke secondary cone death and sensory deafferentation of the surviving neural retina. In the mature central nervous system, deafferentation evokes atrophy and connective re-patterning. It has been assumed that the neural retina does not remodel, and that it is a passive survivor. Screening of advanced stages of human and rodent retinal degenerations with computational molecular phenotyping has exposed a prolonged period of aggressive negative remodeling in which neurons migrate along aberrant glial columns and seals, restructuring the adult neural retina (1). Many neurons die, but survivors rewire the remnant inner plexiform layer (IPL), forming thousands of novel ectopic microneuromas in the remnant inner nuclear layer (INL). Bipolar and amacrine cells engage in new circuits that are most likely corruptive. Remodeling in human and rodent retinas emerges regardless of the molecular defects that initially trigger retinal degenerations. Although remodeling may constrain therapeutic intervals for molecular, cellular, or bionic rescue, the exposure of intrinsic retinal remodeling by the removal of sensory control in retinal degenerations suggests that neuronal organization in the normal retina may be more plastic than previously believed.

  6. Temperature-induced cardiac remodelling in fish

    PubMed Central

    Keen, Adam N.; Klaiman, Jordan M.; Shiels, Holly A.

    2017-01-01

    ABSTRACT Thermal acclimation causes the heart of some fish species to undergo significant remodelling. This includes changes in electrical activity, energy utilization and structural properties at the gross and molecular level of organization. The purpose of this Review is to summarize the current state of knowledge of temperature-induced structural remodelling in the fish ventricle across different levels of biological organization, and to examine how such changes result in the modification of the functional properties of the heart. The structural remodelling response is thought to be responsible for changes in cardiac stiffness, the Ca2+ sensitivity of force generation and the rate of force generation by the heart. Such changes to both active and passive properties help to compensate for the loss of cardiac function caused by a decrease in physiological temperature. Hence, temperature-induced cardiac remodelling is common in fish that remain active following seasonal decreases in temperature. This Review is organized around the ventricular phases of the cardiac cycle – specifically diastolic filling, isovolumic pressure generation and ejection – so that the consequences of remodelling can be fully described. We also compare the thermal acclimation-associated modifications of the fish ventricle with those seen in the mammalian ventricle in response to cardiac pathologies and exercise. Finally, we consider how the plasticity of the fish heart may be relevant to survival in a climate change context, where seasonal temperature changes could become more extreme and variable. PMID:27852752

  7. Sleep Deficiency and Deprivation Leading to Cardiovascular Disease

    PubMed Central

    Kohansieh, Michelle; Makaryus, Amgad N.

    2015-01-01

    Sleep plays a vital role in an individual's mental, emotional, and physiological well-being. Not only does sleep deficiency lead to neurological and psychological disorders, but also the literature has explored the adverse effects of sleep deficiency on the cardiovascular system. Decreased quantity and quality of sleep have been linked to cardiovascular disease (CVD) risk factors, such as hypertension, obesity, diabetes, and dyslipidemia. We explore the literature correlating primary sleep deficiency and deprivation as a cause for cardiovascular disease and cite endothelial dysfunction as a common underlying mechanism. PMID:26495139

  8. Astaxanthin in cardiovascular health and disease.

    PubMed

    Fassett, Robert G; Coombes, Jeff S

    2012-02-20

    Oxidative stress and inflammation are established processes contributing to cardiovascular disease caused by atherosclerosis. However, antioxidant therapies tested in cardiovascular disease such as vitamin E, C and β-carotene have proved unsuccessful at reducing cardiovascular events and mortality. Although these outcomes may reflect limitations in trial design, new, more potent antioxidant therapies are being pursued. Astaxanthin, a carotenoid found in microalgae, fungi, complex plants, seafood, flamingos and quail is one such agent. It has antioxidant and anti-inflammatory effects. Limited, short duration and small sample size studies have assessed the effects of astaxanthin on oxidative stress and inflammation biomarkers and have investigated bioavailability and safety. So far no significant adverse events have been observed and biomarkers of oxidative stress and inflammation are attenuated with astaxanthin supplementation. Experimental investigations in a range of species using a cardiac ischaemia-reperfusion model demonstrated cardiac muscle preservation when astaxanthin is administered either orally or intravenously prior to the induction of ischaemia. Human clinical cardiovascular studies using astaxanthin therapy have not yet been reported. On the basis of the promising results of experimental cardiovascular studies and the physicochemical and antioxidant properties and safety profile of astaxanthin, clinical trials should be undertaken.

  9. Adult ADHD Medications and Their Cardiovascular Implications

    PubMed Central

    Lewis, O.

    2016-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is a chronic neurobiological disorder exhibited by difficulty maintaining attention, as well as hyperactivity and impulsive behavior. Central nervous system (CNS) stimulants are the first line of treatment for ADHD. With the increase in number of adults on CNS stimulants, the question that arises is how well do we understand the long-term cardiovascular effects of these drugs. There has been increasing concern that adults with ADHD are at greater risk for developing adverse cardiovascular events such as sudden death, myocardial infarction, and stroke as compared to pediatric population. Cardiovascular response attributed to ADHD medication has mainly been observed in heart rate and blood pressure elevations, while less is known about the etiology of rare cardiovascular events like acute myocardial infarction (AMI), arrhythmia, and cardiomyopathy and its long-term sequelae. We present a unique case of AMI in an adult taking Adderall (mixed amphetamine salts) and briefly discuss the literature relevant to the cardiovascular safety of CNS stimulants for adult ADHD. PMID:27579185

  10. Cardiovascular Effects of Concentrated Ambient Fine and Ultrafine Particulate Matter Exposure in Healthy Older Volunteers

    EPA Science Inventory

    Rationale: Epidemiological studies have shown an association between the incidence of adverse cardiovascular effects and exposure to ambient particulate matter (PM). Advanced age is among the factors identified as conferring susceptibility to PM inhalation. In order to characteri...

  11. Rutaecarpine attenuates hypoxia-induced right ventricular remodeling in rats.

    PubMed

    Li, Wen-Qun; Li, Xiao-Hui; Du, Jie; Zhang, Wang; Li, Dai; Xiong, Xiao-Ming; Li, Yuan-Jian

    2016-07-01

    Rutaecarpine has been shown to exhibit wide pharmacological effects in the cardiovascular system via stimulation of calcitonin gene-related peptide (CGRP) release. In the present study, the effect of rutaecarpine on hypoxia-induced right ventricular (RV) remodeling and the underlying mechanisms were evaluated. RV remodeling was induced by hypoxia (10 % O2, 3 weeks) in rats. Rats were treated with rutaecarpine (20 or 40 mg/kg) by intragastric administration. Proliferation of cardiac fibroblasts was induced by TGF-β1 (5 ng/mL) and determined by MTS and EdU incorporation method. Cardiac fibroblasts were treated with exogenous CGRP (10 or 100 nM). The concentrations of CGRP and TGF-β1 in plasma were measured by ELISA. The expression of eIF3a, p27, α-SMA, collagen-I/III, ANP, and BNP were measured by real-time PCR or western blot. Hypoxia induced an increase of right ventricle systolic pressure (RVSP), ration of RV/LV+S, and RV/tibial length in rats, while cardiac hypertrophy, apoptosis, and fibrosis were detected. The expression of ANP, BNP, α-SMA, collagen-I, collagen-III, eIF3a, and TGF-β1 was up-regulated, and the expression of p27 was down-regulated in the right ventricle of hypoxia-treated rats. The plasma concentration of CGRP was decreased and TGF-β1 was increased in hypoxia-treated rats. All of these effects induced by hypoxia were attenuated by rutaecarpine in a dose-dependent manner. In cultured cardiac fibroblasts, TGF-β1 significantly promoted the proliferation and up-regulated the expression of α-SMA and collagen-I/III, while the expression of eIF3a was up-regulated and the expression of p27 was down-regulated. The effects of TGF-β1 were attenuated by CGRP. CGRP8-37, a selective CGRP receptor antagonist, abolished the effects of CGRP. Rutaecarpine attenuates hypoxia-induced RV remodeling via stimulation of CGRP release, and the effects of rutaecarpine involve the eIF3a/p27 pathway.

  12. Molecular Aspects of Exercise-induced Cardiac Remodeling.

    PubMed

    Bernardo, Bianca C; McMullen, Julie R

    2016-11-01

    Exercise-induced cardiac remodeling is typically an adaptive response associated with cardiac myocyte hypertrophy and renewal, increased cardiac myocyte contractility, sarcomeric remodeling, cell survival, metabolic and mitochondrial adaptations, electrical remodeling, and angiogenesis. Initiating stimuli/triggers of cardiac remodeling include increased hemodynamic load, increased sympathetic activity, and the release of hormones and growth factors. Prolonged and strenuous exercise may lead to maladaptive exercise-induced cardiac remodeling including cardiac dysfunction and arrhythmia. In addition, this article describes novel therapeutic approaches for the treatment of heart failure that target mechanisms responsible for adaptive exercise-induced cardiac remodeling, which are being developed and tested in preclinical models.

  13. [Cardiovascular alterations associated with doping].

    PubMed

    Thieme, D; Büttner, A

    2015-05-01

    Doping -the abuse of anabolic-androgenic steroids in particular- is widespread in amateur and recreational sports and does not solely represent a problem of professional sports. Excessive overdose of anabolic steroids is well documented in bodybuilding or powerlifting leading to significant side effects. Cardiovascular damages are most relevant next to adverse endocrine effects.Clinical cases as well as forensic investigations of fatalities or steroid consumption in connection with trafficking of doping agents provide only anecdotal evidence of correlations between side effects and substance abuse. Analytical verification and self-declarations of steroid users have repeatedly confirmed the presumption of weekly dosages between 300 and 2000 mg, extra to the fact that co-administration of therapeutics to treat side-effects represent a routine procedure. Beside the most frequent use of medications used to treat erectile dysfunction or estrogenic side-effects, a substantial number of antihypertensive drugs of various classes, i.e. beta-blockers, diuretics, angiotensin II receptor antagonists, calcium channel blockers, as well as ACE inhibitors were recently confiscated in relevant doping cases. The presumptive correlation between misuse of anabolic steroids and self-treatment of cardiovascular side effects was explicitly confirmed by detailed user statements.Two representative fatalities of bodybuilders were introduced to outline characteristic, often lethal side effects of excessive steroid abuse. Moreover, illustrative autopsy findings of steroid acne, thrombotic occlusion of Ramus interventricularis anterior and signs of cardiac infarctions are presented.A potential steroid abuse should be carefully considered in cases of medical consultations of patients exhibiting apparent constitutional modifications and corresponding adverse effects. Moreover, common self-medications -as frequently applied by steroid consumers- should be taken into therapeutic considerations.

  14. Updates on cardiovascular comorbidities associated with psoriatic diseases: epidemiology and mechanisms.

    PubMed

    Yim, Kaitlyn M; Armstrong, April W

    2017-01-01

    Psoriasis and psoriatic arthritis are associated with a significantly increased risk of cardiovascular risk factors and major adverse cardiovascular events (MACE). Active research is ongoing to elucidate this relationship between psoriatic diseases and cardiovascular comorbidities, as well as their shared pathogenic mechanisms. This review focuses on (1) the epidemiologic association between psoriasis and cardiovascular risk factors, (2) the epidemiologic association between psoriasis and MACE, (3) the epidemiologic association between psoriatic arthritis, cardiovascular risk factors, and MACE, and (4) proposed mechanisms for the contribution of psoriatic diseases to cardiovascular diseases. The proposed mechanisms for shared pathogenesis between psoriatic diseases and cardiovascular diseases are inflammation, insulin resistance, dyslipidemia, angiogenesis, oxidative stress, and endothelial dysfunction. There is complex interplay and overlap among these mechanisms and their contributions to shared pathogenesis. Future translational research is necessary to elucidate the link between psoriatic diseases and cardiovascular diseases. Such findings may be applied clinically to improve the lives of psoriasis patients.

  15. Exosomes and Cardiovascular Protection.

    PubMed

    Davidson, Sean M; Takov, Kaloyan; Yellon, Derek M

    2017-02-01

    Most, if not all, cells of the cardiovascular system secrete small, lipid bilayer vesicles called exosomes. Despite technical challenges in their purification and analysis, exosomes from various sources have been shown to be powerfully cardioprotective. Indeed, it is possible that much of the so-called "paracrine" benefit in cardiovascular function obtained by stem cell therapy can be replicated by the injection of exosomes produced by stem cells. However, exosomes purified from plasma appear to be just as capable of activating cardioprotective pathways. We discuss the potential roles of endogenous exosomes in the cardiovascular system, how this is perturbed in cardiovascular disease, and evaluate their potential as therapeutic agents to protect the heart.

  16. [Psoriasis and cardiovascular disease].

    PubMed

    Torres, Tiago; Sales, Rita; Vasconcelos, Carlos; Selores, Manuela

    2013-01-01

    Psoriasis is a common, chronic and systemic inflammatory disease associated with several comorbidities, such as obesity, hypertension, diabetes, dyslipidaemia and metabolic syndrome, but also with an increased risk of cardiovascular disease, like myocardial infarction or stroke. The chronic inflammatory nature of psoriasis has been suggested to be a contributing and potentially independent risk factor for the development of cardiovascular comorbidities and precocious atherosclerosis. Aiming at alerting clinicians to the need of screening and monitoring cardiovascular diseases and its risk factors in psoriatic patients, this review will focus on the range of cardiometabolic comorbidities and increased risk of cardiovascular disease associated with psoriasis.

  17. Cardiovascular Session Summary

    NASA Technical Reports Server (NTRS)

    Raven, Peter; Schneider, Sue

    1999-01-01

    It was apparent that the bed-rest and spaceflight data indicated that decreases in plasma volume and cardiac atrophy along with cardiac remodeling were fundamental changes which predisposed many astronauts to post flight orthostatic intolerance. Despite the recently acquired in-flight and post-flight muscle sympathetic nerve activity findings suggesting that the sympathetic nerve responses were appropriate there remains significant contrary data from bed-rest studies, post- flight stand tests and hind-limb unweighted rat studies that suggest that the vasoconstrictive responses were compromised at least insufficient in susceptible individuals. The key issues raised is whether a diminished increase in sympathetic activity from baseline without changes in 254 First Biennial Space Biomedical Investigators'Workshop Cardiovascular peak response or receptor adaptations is an abnormal response or is an individual variance of response to the accentuated decrease in stroke volume. Data relating autonomic neural control of heart rate were presented to suggest that the vagal and sympathetic control of heart rate was attenuated. Also, bed-rest and space flight induced attenuated baroreflex control of heart rate was shown to be restored to pre-bedrest function by one bout of maximal dynamic exercise. However, these data were confounded by relying on the use of R-R interval as a measure of efferent responses of the baroreflex during a condition in which the baseline heart rate was changed. Clearly the idea that the autonomic control of heart rate may be changed by microgravity needs further investigation. This direction is suggested despite the fact that in the triple product (HR x SV x TPR = MAP) assessment of the regulation of arterial blood pressure during orthostasis the role of the HR reflex may be less influential than that associated. with cardiac atrophy (SV changes) and aberrant sympathetic vasoconstriction (resistance) changes. Although sympathetic nerve activity

  18. The Chd Family of Chromatin Remodelers

    PubMed Central

    Marfella, Concetta G.A.; Imbalzano, Anthony N.

    2007-01-01

    Chromatin remodeling enzymes contribute to the dynamic changes that occur in chromatin structure during cellular processes such as transcription, recombination, repair, and replication. Members of the chromodomain helicase DNA-binding (Chd) family of enzymes belong to the SNF2 superfamily of ATP-dependent chromatin remodelers. The Chd proteins are distinguished by the presence of two N-terminal chromodomains that function as interaction surfaces for a variety of chromatin components. Genetic, biochemical, and structural studies demonstrate that Chd proteins are important regulators of transcription and play critical roles during developmental processes. Numerous Chd proteins are also implicated in human disease. PMID:17350655

  19. Scar remodeling after strabismus surgery.

    PubMed Central

    Ludwig, I H

    1999-01-01

    limitation of versions, less separation of the tendons from sclera, and thicker appearance of the scar segments. The use of nonabsorbable sutures in the repair procedure reduced the recurrence rate. Histologic examination of the clinical stretched scar specimens showed dense connective tissue that was less well organized compared with normal tendon. In the tissue culture studies, cells cultured from the stretched scar specimens grew rapidly and were irregularly shaped. A high-molecular-weight protein was identified in the culture medium. By contrast, cells cultured from normal tendon (controls) grew more slowly and regularly, stopped growing at 4 days, and produced less total protein than cultured stretched scar specimens. In the animal model studies, the collagenase-treated sites showed elongated scars with increased collagen between the muscle and the sclera, as well as increased collagen creep rates, compared with the saline-treated controls. The use of nonabsorbable sutures in collagenase-treated animal model surgery sites was associated with shorter, thicker scars compared with similar sites sutured with absorbable sutures. CONCLUSIONS: A lengthened or stretched, remodeled scar between an operated muscle tendon and sclera is a common occurrence and is a factor contributing to the variability of outcome after strabismus repair, even years later. This abnormality may be revealed by careful exploration of previously operated muscles. Definitive repair requires firm reattachment of tendon to sclera with nonabsorbable suture support. Images FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 11 FIGURE 12 FIGURE 13 FIGURE 14 FIGURE 15 FIGURE 16 FIGURE 17 FIGURE 18 FIGURE 19 FIGURE 20 FIGURE 21 FIGURE 22 FIGURE 23 FIGURE 24 FIGURE 25 FIGURE 26 FIGURE 27 FIGURE 28 FIGURE 29 FIGURE 30 FIGURE 31 FIGURE 32 FIGURE 33 FIGURE 34 FIGURE 35 FIGURE 36 FIGURE 37 FIGURE 38 FIGURE 39 FIGURE 40 FIGURE 41 FIGURE 42 FIGURE 43 FIGURE 44 FIGURE 45 FIGURE 46 FIGURE 52

  20. Simulated Microgravity and Recovery-Induced Remodeling of the Left and Right Ventricle.

    PubMed

    Zhong, Guohui; Li, Yuheng; Li, Hongxing; Sun, Weijia; Cao, Dengchao; Li, Jianwei; Zhao, Dingsheng; Song, Jinping; Jin, Xiaoyan; Song, Hailin; Yuan, Xinxin; Wu, Xiaorui; Li, Qi; Xu, Qing; Kan, Guanghan; Cao, Hongqing; Ling, Shukuan; Li, Yingxian

    2016-01-01

    Physiological adaptations to microgravity involve alterations in cardiovascular systems. These adaptations result in cardiac remodeling and orthostatic hypotension. However, the response of the left ventricle (LV) and right ventricle (RV) following hindlimb unloading (HU) and hindlimb reloading (HR) is not clear and the underlying mechanism remains to be understood. In this study, three groups of mice were subjected to HU by tail suspension for 28 days. Following this, two groups were allowed to recover for 7 or 14 days. The control group was treated equally, with the exception of tail suspension. Echocardiography was performed to detect the structure and function changes of heart. Compared with the control, the HU group of mice showed reduced LV-EF (ejection fraction), and LV-FS (fractional shortening). However, mice that were allowed to recover for 7 days after HU (HR-7d) showed increased LVIDs (systolic LV internal diameter) and LV Vols (systolic LV volume). Mice that recovered for 14 days (HR-14d) returned to the normal state. In comparison, RV-EF and RV-FS didn't recover to the normal conditions till being reloaded for 14 days. Compared with the control, RVIDd (diastolic RV internal diameter), and RV Vold (diastolic RV volume) were reduced in HU group and recovered to the normal conditions in HR-7d and HR-14d groups, in which groups RVIDs (systolic RV internal diameter) and RV Vols (systolic RV volume) were increased. Histological analysis and cardiac remodeling gene expression results indicated that HU induces left and right ventricular remodeling. Western blot demonstrated that the phosphorylation of HDAC4 and ERK1/2 and the ratio of LC3-II / LC3-I, were increased following HU and recovered following HR in both LV and RV, and the phosphorylation of AMPK was inhibited in both LV and RV following HU, but only restored in LV following HR for 14 days. These results indicate that simulated microgravity leads to cardiac remodeling, and the remodeling changes can

  1. Simulated Microgravity and Recovery-Induced Remodeling of the Left and Right Ventricle

    PubMed Central

    Zhong, Guohui; Li, Yuheng; Li, Hongxing; Sun, Weijia; Cao, Dengchao; Li, Jianwei; Zhao, Dingsheng; Song, Jinping; Jin, Xiaoyan; Song, Hailin; Yuan, Xinxin; Wu, Xiaorui; Li, Qi; Xu, Qing; Kan, Guanghan; Cao, Hongqing; Ling, Shukuan; Li, Yingxian

    2016-01-01

    Physiological adaptations to microgravity involve alterations in cardiovascular systems. These adaptations result in cardiac remodeling and orthostatic hypotension. However, the response of the left ventricle (LV) and right ventricle (RV) following hindlimb unloading (HU) and hindlimb reloading (HR) is not clear and the underlying mechanism remains to be understood. In this study, three groups of mice were subjected to HU by tail suspension for 28 days. Following this, two groups were allowed to recover for 7 or 14 days. The control group was treated equally, with the exception of tail suspension. Echocardiography was performed to detect the structure and function changes of heart. Compared with the control, the HU group of mice showed reduced LV-EF (ejection fraction), and LV-FS (fractional shortening). However, mice that were allowed to recover for 7 days after HU (HR-7d) showed increased LVIDs (systolic LV internal diameter) and LV Vols (systolic LV volume). Mice that recovered for 14 days (HR-14d) returned to the normal state. In comparison, RV-EF and RV-FS didn't recover to the normal conditions till being reloaded for 14 days. Compared with the control, RVIDd (diastolic RV internal diameter), and RV Vold (diastolic RV volume) were reduced in HU group and recovered to the normal conditions in HR-7d and HR-14d groups, in which groups RVIDs (systolic RV internal diameter) and RV Vols (systolic RV volume) were increased. Histological analysis and cardiac remodeling gene expression results indicated that HU induces left and right ventricular remodeling. Western blot demonstrated that the phosphorylation of HDAC4 and ERK1/2 and the ratio of LC3-II / LC3-I, were increased following HU and recovered following HR in both LV and RV, and the phosphorylation of AMPK was inhibited in both LV and RV following HU, but only restored in LV following HR for 14 days. These results indicate that simulated microgravity leads to cardiac remodeling, and the remodeling changes can

  2. Biochemistry, Physiology and Pathophysiology of NADPH Oxidases in the Cardiovascular System

    PubMed Central

    Lassègue, Bernard; San Martín, Alejandra; Griendling, Kathy K.

    2012-01-01

    The NADPH oxidase (Nox) enzymes are critical mediators of cardiovascular physiology and pathophysiology. These proteins are expressed in virtually all cardiovascular cells, and regulate such diverse functions as differentiation, proliferation, apoptosis, senescence, inflammatory responses and oxygen sensing. They target a number of important signaling molecules, including kinases, phosphatases, transcription factors, ion channels and proteins that regulate the cytoskeleton. Nox enzymes have been implicated in many different cardiovascular pathologies: atherosclerosis, hypertension, cardiac hypertrophy and remodeling, angiogenesis and collateral formation, stroke and heart failure. In this review, we discuss in detail the biochemistry of Nox enzymes expressed in the cardiovascular system (Nox1, 2, 4 and 5), their roles in cardiovascular cell biology, and their contributions to disease development. PMID:22581922

  3. Role of connexin 43 in cardiovascular diseases.

    PubMed

    Michela, Pecoraro; Velia, Verrilli; Aldo, Pinto; Ada, Popolo

    2015-12-05

    Gap junctions (GJs) channels provide the basis for intercellular communication in the cardiovascular system for maintenance of the normal cardiac rhythm, regulation of vascular tone and endothelial function as well as metabolic interchange between the cells. They allow the transfer of small molecules and may enable slow calcium wave spreading, transfer of "death" or of "survival" signals. In the cardiomyocytes the most abundant isoform is Connexin 43 (Cx43). Alterations in Cx43 expression and distribution were observed in myocardium disease; i.e. in hypertrophic cardiomyopathy, heart failure and ischemia. Recent reports suggest the presence of Cx43 in the mitochondria as well, at least in the inner mitochondrial membrane, where it plays a central role in ischemic preconditioning. In this review, the current knowledge on the relationship between the remodeling of cardiac gap junctions and cardiac diseases are summarized.

  4. Strategies for Energy Efficient Remodeling: SEER 2003 Case Study Report

    SciTech Connect

    2004-11-01

    The goal of the Strategies for Energy Efficiency in Remodeling (SEER) project is to provide information, based on research and case studies, to remodelers and consumers about opportunities to increase home energy performance.

  5. Exposure to diesel exhaust particulates induces cardiac dysfunction and remodeling

    PubMed Central

    Bradley, Jessica M.; Cryar, Kipp A.; El Hajj, Milad C.; El Hajj, Elia C.

    2013-01-01

    Chronic exposure to diesel exhaust particulates (DEP) increases the risk of cardiovascular disease in urban residents, predisposing them to the development of several cardiovascular stresses, including myocardial infarctions, arrhythmias, thrombosis, and heart failure. DEP contain a high level of polycyclic aromatic hydrocarbons, which activate the aryl hydrocarbon receptor (AHR). We hypothesize that exposure to DEP elicits ventricular remodeling through the activation of the AHR pathway, leading to ventricular dilation and dysfunction. Male Sprague-Dawley rats were exposed by nose-only nebulization to DEP (SRM 2975, 0.2 mg/ml) or vehicle for 20 min/day × 5 wk. DEP exposure resulted in eccentric left ventricular dilation (8% increased left ventricular internal diameter at diastole and 23% decreased left ventricular posterior wall thickness at diastole vs. vehicle), as shown by echocardiograph assessment. Histological analysis using Picrosirius red staining revealed that DEP reduced cardiac interstitial collagen (23% decrease vs. vehicle). Further assessment of cardiac function using a pressure-volume catheter indicated impaired diastolic function (85% increased end-diastolic pressure and 19% decreased Tau vs. vehicle) and contractility (57 and 48% decreased end-systolic pressure-volume relationship and maximum change in pressure over time vs. end-diastolic volume compared with vehicle, respectively) in the DEP-exposed animals. Exposure to DEP significantly increased cardiac expression of AHR (19% increase vs. vehicle). In addition, DEP significantly decreased the cardiac expression of hypoxia inducible factor-1α, the competitive pathway to the AHR, and vascular endothelial growth factor, a downstream mediator of hypoxia inducible factor-1α (26 and 47% decrease vs. vehicle, respectively). These findings indicate that exposure to DEP induced left ventricular dilation by loss of collagen through an AHR-dependent mechanism. PMID:23887904

  6. Cutaneous adverse reactions to lenalidomide.

    PubMed

    Imbesi, S; Allegra, A; Calapai, G; Musolino, C; Gangemi, S

    2015-01-01

    Lenalidomide is an immunomodulatory drug (IMiD) used principally in the treatment of multiple myeloma (MM), myelodysplastic syndromes (MS) and amyloidosis. Adverse reactions related to lenalidomide include myelosuppression (mainly neutropenia but also thrombocytopenia), gastrointestinal problems, skin eruption, atrial fibrillation and asthenia, decreased peripheral blood stem cell yield during stem cell collection, venous thromboembolism, and secondary malignances. In this review we focused our attention on the cutaneous adverse reactions to lenalidomide.

  7. Dietary sodium and cardiovascular disease.

    PubMed

    Smyth, Andrew; O'Donnell, Martin; Mente, Andrew; Yusuf, Salim

    2015-06-01

    Although an essential nutrient, higher sodium intake is associated with increasing blood pressure (BP), forming the basis for current population-wide sodium restriction guidelines. While short-term clinical trials have achieved low intake (<2.0 g/day), this has not been reproduced in long-term trials (>6 months). Guidelines assume that low sodium intake will reduce BP and reduce cardiovascular disease (CVD), compared to moderate intake. However, current observational evidence suggests a J-shaped association between sodium intake and CVD; the lowest risks observed with 3-5 g/day but higher risk with <3 g/day. Importantly, these observational data also confirm the association between higher intake (>5 g/day) and increased risk of CVD. Although lower intake may reduce BP, this may be offset by marked increases in neurohormones and other adverse effects which may paradoxically be adverse. Large randomised clinical trials with sufficient follow-up are required to provide robust data on the long-term effects of sodium reduction on CVD incidence. Until such trials are completed, current evidence suggests that moderate sodium intake for the general population (3-5 g/day) is likely the optimum range for CVD prevention.

  8. Reverse Engineering Adverse Outcome Pathways

    SciTech Connect

    Perkins, Edward; Chipman, J.K.; Edwards, Stephen; Habib, Tanwir; Falciani, Francesco; Taylor, Ronald C.; Van Aggelen, Graham; Vulpe, Chris; Antczak, Philipp; Loguinov, Alexandre

    2011-01-30

    The toxicological effects of many stressors are mediated through unknown, or poorly characterized, mechanisms of action. We describe the application of reverse engineering complex interaction networks from high dimensional omics data (gene, protein, metabolic, signaling) to characterize adverse outcome pathways (AOPs) for chemicals that disrupt the hypothalamus-pituitary-gonadal endocrine axis in fathead minnows. Gene expression changes in fathead minnow ovaries in response to 7 different chemicals, over different times, doses, and in vivo versus in vitro conditions were captured in a large data set of 868 arrays. We examined potential AOPs of the antiandrogen flutamide using two mutual information theory methods, ARACNE and CLR to infer gene regulatory networks and potential adverse outcome pathways. Representative networks from these studies were used to predict a network path from stressor to adverse outcome as a candidate AOP. The relationship of individual chemicals to an adverse outcome can be determined by following perturbations through the network in response to chemical treatment leading to the nodes associated with the adverse outcome. Identification of candidate pathways allows for formation of testable hypotheses about key biologic processes, biomarkers or alternative endpoints, which could be used to monitor an adverse outcome pathway. Finally, we identify the unique challenges facing the application of this approach in ecotoxicology, and attempt to provide a road map for the utilization of these tools. Key Words: mechanism of action, toxicology, microarray, network inference

  9. Interleukin-2/Anti-Interleukin-2 Immune Complex Attenuates Cardiac Remodeling after Myocardial Infarction through Expansion of Regulatory T Cells.

    PubMed

    Zeng, Zhipeng; Yu, Kunwu; Chen, Long; Li, Weihua; Xiao, Hong; Huang, Zhengrong

    2016-01-01

    CD4+CD25+Foxp3+ regulatory T cells (Treg cells) have protective effects in wound healing and adverse ventricular remodeling after myocardial infarction (MI). We hypothesize that the interleukin- (IL-) 2 complex comprising the recombinant mouse IL-2/anti-IL-2 mAb (JES6-1) attenuates cardiac remodeling after MI through the expansion of Treg. Mice were subjected to surgical left anterior descending coronary artery ligation and treated with either PBS or IL-2 complex. The IL-2 complex significantly attenuates ventricular remodeling, as demonstrated by reduced infarct size, improved left ventricular (LV) function, and attenuated cardiomyocyte apoptosis. The IL-2 complex increased the percentage of CD4+CD25+Foxp3+ Treg cells, which may be recruited to the infarcted heart, and decreased the frequencies of IFN-γ- and IL-17-producing CD4+ T helper (Th) cells among the CD4+Foxp3- T cells in the spleen. Furthermore, the IL-2 complex inhibited the gene expression of proinflammatory cytokines as well as macrophage infiltrates in the infarcted myocardium and induced the differentiation of macrophages from M1 to M2 phenotype in border zone of infarcted myocardium. Our studies indicate that the IL-2 complex may serve as a promising therapeutic approach to attenuate adverse remodeling after MI through expanding Treg cells specifically.

  10. Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction.

    PubMed

    Wang, Wei; Zhang, Fuyang; Xia, Yunlong; Zhao, Shihao; Yan, Wenjun; Wang, Helin; Lee, Yan; Li, Congye; Zhang, Ling; Lian, Kun; Gao, Erhe; Cheng, Hexiang; Tao, Ling

    2016-11-01

    Cardiac metabolic remodeling is a central event during heart failure (HF) development following myocardial infarction (MI). It is well known that myocardial glucose and fatty acid dysmetabolism contribute to post-MI cardiac dysfunction and remodeling. However, the role of amino acid metabolism in post-MI HF remains elusive. Branched chain amino acids (BCAAs) are an important group of essential amino acids and function as crucial nutrient signaling in mammalian animals. The present study aimed to determine the role of cardiac BCAA metabolism in post-MI HF progression. Utilizing coronary artery ligation-induced murine MI models, we found that myocardial BCAA catabolism was significantly impaired in response to permanent MI, therefore leading to an obvious elevation of myocardial BCAA abundance. In MI-operated mice, oral BCAA administration further increased cardiac BCAA levels, activated the mammalian target of rapamycin (mTOR) signaling, and exacerbated cardiac dysfunction and remodeling. These data demonstrate that BCAAs act as a direct contributor to post-MI cardiac pathologies. Furthermore, these BCAA-mediated deleterious effects were improved by rapamycin cotreatment, revealing an indispensable role of mTOR in BCAA-mediated adverse effects on cardiac function/structure post-MI. Of note, pharmacological inhibition of branched chain ketoacid dehydrogenase kinase (BDK), a negative regulator of myocardial BCAA catabolism, significantly improved cardiac BCAA catabolic disorders, reduced myocardial BCAA levels, and ameliorated post-MI cardiac dysfunction and remodeling. In conclusion, our data provide the evidence that impaired cardiac BCAA catabolism directly contributes to post-MI cardiac dysfunction and remodeling. Moreover, improving cardiac BCAA catabolic defects may be a promising therapeutic strategy against post-MI HF.

  11. Adverse effects of thyroid hormone preparations and antithyroid drugs.

    PubMed

    Bartalena, L; Bogazzi, F; Martino, E

    1996-07-01

    Thyroid hormone preparations, especially thyroxine, are widely used either at replacement doses to correct hypothyroidism or at suppressive doses to abolish thyrotropin (thyroid-stimulating hormone) secretion in patients with differentiated thyroid carcinoma after total thyroidectomy or with diffuse/ nodular nontoxic goitre. In order to suppress thyrotropin secretion, it is necessary to administer slightly supraphysiological doses of thyroxine. Possible adverse effects of this therapy include cardiovascular changes (shortening of systolic time intervals, increased frequency of atrial premature beats and, possibly, left ventricular hypertrophy) and bone changes (reduced bone density and bone mass), but the risk of these adverse effects can be minimised by carefully monitoring serum free thyroxine and free liothyronine (triiodothyronine) measurements and adjusting the dosage accordingly. Thionamides [thiamazole (methimazole), carbimazole, propylthiouracil] are the most widely used antithyroid drugs. They are given for long periods of time and cause adverse effects in 3 to 5% of patients. In most cases, adverse effects are minor and transient (e.g. skin rash, itching, mild leucopenia). The most dangerous effect is agranulocytosis, which occurs in 0.1 to 0.5% of patients. This life-threatening condition can now be effectively treated by granulocyte colony-stimulating factor administration. Other major adverse effects (aplastic anaemia, thrombocytopenia, lupus erythematosus-like syndrome, vasculitis) are exceedingly rare.

  12. Re-Modelling as De-Professionalisation

    ERIC Educational Resources Information Center

    Thompson, Meryl

    2006-01-01

    The article sets out the consequences of the British Government's remodelling agenda and its emphasis on less demarcation, for the professional status of teachers in England. It describes how the National Agreement on Raising Standards and Tackling Workload, reached between five of the six trade unions for teachers and headteachers paves the way…

  13. Challenging Modernization: Remodelling the Education Workforce

    ERIC Educational Resources Information Center

    Butt, Graham; Gunter, Helen

    2005-01-01

    This special edition enables an in-depth look at the process of modernization of education in England, in relation to other international developments. In particular we focus on the reform of teachers? work by examining the antecedence of the current policy of remodelling through three articles based on the Evaluation of the Department for…

  14. Revealing remodeler function: Varied and unique

    NASA Astrophysics Data System (ADS)

    Eastlund, Allen

    Chromatin remodelers perform a necessary and required function for the successful expression of our genetic code. By modifying, shifting, or ejecting nucleosomes from the chromatin structure they allow access to the underlying DNA to the rest of the cell's machinery. This research has focused on two major remodeler motors from major families of chromatin remodelers: the trimeric motor domain of RSC and the motor domain of the ISWI family, ISWI. Using primarily stopped-flow spectrofluorometry, I have categorized the time-dependent motions of these motor domains along their preferred substrate, double-stranded DNA. Combined with collected ATP utilization data, I present the subsequent analysis and associated conclusions that stem from the underlying assumptions and models. Interestingly, there is little in common between the investigated proteins aside from their favored medium. While RSC exhibits modest translocation characteristics and highly effective motion with the ability for large molecular forces, ISWI is not only structurally different but highly inefficient in its motion leading to difficulties in determining its specific translocation mechanics. While chromatin remodeling is a ubiquitous facet of eukaryotic life, there remains much to be understood about their general mechanisms.

  15. Retinal remodeling in human retinitis pigmentosa.

    PubMed

    Jones, B W; Pfeiffer, R L; Ferrell, W D; Watt, C B; Marmor, M; Marc, R E

    2016-09-01

    Retinitis Pigmentosa (RP) in the human is a progressive, currently irreversible neural degenerative disease usually caused by gene defects that disrupt the function or architecture of the photoreceptors. While RP can initially be a disease of photoreceptors, there is increasing evidence that the inner retina becomes progressively disorganized as the outer retina degenerates. These alterations have been extensively described in animal models, but remodeling in humans has not been as well characterized. This study, using computational molecular phenotyping (CMP) seeks to advance our understanding of the retinal remodeling process in humans. We describe cone mediated preservation of overall topology, retinal reprogramming in the earliest stages of the disease in retinal bipolar cells, and alterations in both small molecule and protein signatures of neurons and glia. Furthermore, while Müller glia appear to be some of the last cells left in the degenerate retina, they are also one of the first cell classes in the neural retina to respond to stress which may reveal mechanisms related to remodeling and cell death in other retinal cell classes. Also fundamentally important is the finding that retinal network topologies are altered. Our results suggest interventions that presume substantial preservation of the neural retina will likely fail in late stages of the disease. Even early intervention offers no guarantee that the interventions will be immune to progressive remodeling. Fundamental work in the biology and mechanisms of disease progression are needed to support vision rescue strategies.

  16. Endothelial cell dynamics in vascular remodelling.

    PubMed

    Barbacena, Pedro; Carvalho, Joana R; Franco, Claudio A

    2016-01-01

    In this ESCHM 2016 conference talk report, we summarise two recently published original articles Franco et al. PLoS Biology 2015 and Franco et al. eLIFE 2016. The vascular network undergoes extensive vessel remodelling to become fully functional. Is it well established that blood flow is a main driver for vascular remodelling. It has also been proposed that vessel pruning is a central process within physiological vessel remodelling. However, despite its central function, the cellular and molecular mechanisms regulating vessel regression, and their interaction with blood flow patterns, remain largely unexplained. We investigated the cellular process governing developmental vascular remodelling in mouse and zebrafish. We established that polarised reorganization of endothelial cells is at the core of vessel regression, representing vessel anastomosis in reverse. Moreover, we established for the first time an axial polarity map for all endothelial cells together with an in silico method for the computation of the haemodynamic forces in the murine retinal vasculature. Using network-level analysis and microfluidics, we showed that endothelial non-canonical Wnt signalling regulates endothelial sensitivity to shear forces. Loss of Wnt5a/11 renders endothelial cells more sensitive to shear, resulting in axial polarisation at lower shear stress levels. Collectively our data suggest that non-canonical Wnt signalling stabilizes forming vascular networks by reducing endothelial shear sensitivity, thus keeping vessels open under low flow conditions that prevail in the primitive plexus.

  17. Pulmonary arterial strain- and remodeling-induced stiffening are differentiated in a chronic model of pulmonary hypertension.

    PubMed

    Golob, Mark J; Tabima, Diana M; Wolf, Gregory D; Johnston, James L; Forouzan, Omid; Mulchrone, Ashley M; Kellihan, Heidi B; Bates, Melissa L; Chesler, Naomi C

    2017-04-11

    Pulmonary hypertension (PH) is a debilitating vascular disease that leads to pulmonary artery (PA) stiffening, which is a predictor of patient mortality. During PH development, PA stiffening adversely affects right ventricular function. PA stiffening has been investigated through the arterial nonlinear elastic response during mechanical testing using a canine PH model. However, only circumferential properties were reported and in the absence of chronic PH-induced PA remodeling. Remodeling can alter arterial nonlinear elastic properties via chronic changes in extracellular matrix (ECM) content and geometry. Here, we used an established constitutive model to demonstrate and differentiate between strain-stiffening, which is due to nonlinear elasticity, and remodeling-induced stiffening, which is due to ECM and geometric changes, in a canine model of chronic thromboembolic PH (CTEPH). To do this, circumferential and axial tissue strips of large extralobar PAs from control and CTEPH tissues were tested in uniaxial tension, and data were fit to a phenomenological constitutive model. Strain-induced stiffening was evident from mechanical testing as nonlinear elasticity in both directions and computationally by a high correlation coefficient between the mechanical data and model (R(2)=0.89). Remodeling-induced stiffening was evident from a significant increase in the constitutive model stress parameter, which correlated with increased PA collagen content and decreased PA elastin content as measured histologically. The ability to differentiate between strain- and remodeling-induced stiffening in vivo may lead to tailored clinical treatments for PA stiffening in PH patients.

  18. Gender differences in developmental programming of cardiovascular diseases.

    PubMed

    Dasinger, John Henry; Alexander, Barbara T

    2016-03-01

    Hypertension is a risk factor for cardiovascular disease, the leading cause of death worldwide. Although multiple factors contribute to the pathogenesis of hypertension, studies by Dr David Barker reporting an inverse relationship between birth weight and blood pressure led to the hypothesis that slow growth during fetal life increased blood pressure and the risk for cardiovascular disease in later life. It is now recognized that growth during infancy and childhood, in addition to exposure to adverse influences during fetal life, contributes to the developmental programming of increased cardiovascular risk. Numerous epidemiological studies support the link between influences during early life and later cardiovascular health; experimental models provide proof of principle and indicate that numerous mechanisms contribute to the developmental origins of chronic disease. Sex has an impact on the severity of cardiovascular risk in experimental models of developmental insult. Yet, few studies examine the influence of sex on blood pressure and cardiovascular health in low-birth weight men and women. Fewer still assess the impact of ageing on sex differences in programmed cardiovascular risk. Thus, the aim of the present review is to highlight current data about sex differences in the developmental programming of blood pressure and cardiovascular disease.

  19. Calcitriol attenuates cardiac remodeling and dysfunction in a murine model of polycystic ovary syndrome.

    PubMed

    Gao, Ling; Cao, Jia-Tian; Liang, Yan; Zhao, Yi-Chao; Lin, Xian-Hua; Li, Xiao-Cui; Tan, Ya-Jing; Li, Jing-Yi; Zhou, Cheng-Liang; Xu, Hai-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-05-01

    Polycystic ovary syndrome (PCOS) is a complex reproductive and metabolic disorder affecting 10 % of reproductive-aged women, and is well associated with an increased prevalence of cardiovascular risk factors. However, there are few data concerning the direct association of PCOS with cardiac pathologies. The present study aims to investigate the changes in cardiac structure, function, and cardiomyocyte survival in a PCOS model, and explore the possible effect of calcitriol administration on these changes. PCOS was induced in C57BL/6J female mice by chronic dihydrotestosterone administration, as evidenced by irregular estrous cycles, obesity and dyslipidemia. PCOS mice progressively developed cardiac abnormalities including cardiac hypertrophy, interstitial fibrosis, myocardial apoptosis, and cardiac dysfunction. Conversely, concomitant administration of calcitriol significantly attenuated cardiac remodeling and cardiomyocyte apoptosis, and improved cardiac function. Molecular analysis revealed that the beneficial effect of calcitriol was associated with normalized autophagy function by increasing phosphorylation levels of AMP-activated protein kinase and inhibiting phosphorylation levels of mammalian target of rapamycin complex. Our findings provide the first evidence for the presence of cardiac remodeling in a PCOS model, and vitamin D supplementation may be a potential therapeutic strategy for the prevention and treatment of PCOS-related cardiac remodeling.

  20. Catestatin-A Novel Predictor of Left Ventricular Remodeling After Acute Myocardial Infarction

    PubMed Central

    Zhu, Dan; Xie, Hong; Wang, Xinyu; Liang, Ying; Yu, Haiyi; Gao, Wei

    2017-01-01

    Catestatin was discovered as a potent inhibitor of catecholamine secretion and plays important roles in the cardiovascular system. Our previous study demonstrates a close relationship between catestatin levels and prognosis of ST-elevation myocardial infarction (STEMI). Using the same population, the goal of this study is to investigate the ability of catestatin to predict left ventricular (LV) remodeling in STEMI patients. 72 patients and 30 controls were included. Catestatin was sampled after admission to the emergency room (ER), at day3 (D3), and day7 (D7) after STEMI. Echocardiography was performed at D3 and after 65 months for evaluation of LVEDD, EF, IVS, LVPW, E, A, E’, E/A, and E/E’. The changes of these parameters from D3 to 65 months were used to reflect the changes of ventricular structure and function. We found that plasma catestatin levels at D3 were highly correlated with the changes of LVEDD, EF, E, A, E’, E/A, as well as E/E’. Patients with higher catestatin levels developed worse ventricular function during the follow-up period. Single-point catestatin was effective to predict LVEDD change. And concurrently increasing catestatin and NT-proBNP levels predicted the highest risk of LV remodeling. This study suggests an important prognostic information of catestatin on LV remodeling.

  1. Adaptive Redox Response of Mesenchymal Stromal Cells to Stimulation with Lipopolysaccharide Inflammagen: Mechanisms of Remodeling of Tissue Barriers in Sepsis

    DTIC Science & Technology

    2013-03-08

    Mechanisms of Remodeling of Tissue Barriers in Sepsis Nikolai V. Gorbunov1*, Bradley R. Garrison1, Dennis P. McDaniel2, Min Zhai1, Pei-Jyun Liao1... sepsis [2, 5]. This problem leads to the searching for other potential mechanisms that could produce adverse effects on host metabolome resulting...understanding of the basic cellular mechanisms implicated in redox adaptive responses in 16 tissue barriers. This particular area of the molecular

  2. Arterial Remodeling in B-Type Natriuretic Peptide Knock-Out Females

    PubMed Central

    Holditch, Sara J.; Schreiber, Claire A.; Burnett, John C.; Ikeda, Yasuhiro

    2016-01-01

    Sexual dimorphisms are recognized in cardiovascular conditions such as hypertension, stroke, thrombosis and vasculitis. B-type natriuretic peptide (BNP) is a guanylyl cyclase A (GC-A) agonist. The anti-hypertensive, vasodilatory, anti-fibrotic, and anti-hypertrophic properties of BNP are well established in male animal models. Although circulating BNP levels are higher in women, when compared to age-matched men, the cardiovascular protective propensity of BNP in females is poorly understood. We assessed the cardiovascular consequences of BNP deletion in genetically null (Nppb−/−) female rat lines. Throughout the study, blood pressure (BP) remained uninfluenced by genotype, and cardiorenal consequences of BNP knock out remained minor. Unexpectedly, approximately 60% of Nppb−/− females developed mesenteric polyarteritis-nodosa (PAN)-like vasculitis in their life span, some as early as 4 months of age. Mesenteric lesions involved intense arterial remodeling, progressive inflammation, occluded lumens, and less frequently intestinal necrosis and multiple visceral arterial aneurysms. Cumulative pathologies resulted in a significant decline in survival of the Nppb−/− female. This study highlights BNP’s vasoprotective propensity, bringing to light a possible sex specific difference in the cardiovascular protection provided by BNP. Defects in the BNP/GC-A/cGMP pathway may play a role in arteriopathies in women, while GC-A agonists may provide effective therapy for arteritis. PMID:27162120

  3. Fermented wheat germ extract (avemar) in the treatment of cardiac remodeling and metabolic symptoms in rats.

    PubMed

    Iyer, Abishek; Brown, Lindsay

    2011-01-01

    Avemar, a product of industrial fermentation of wheat germ with a standardized content of benzoquinone and plant flavonoids, has been tested as an anti-cancer and immunomodulatory dietary supplement. Proposed mechanisms include anti-oxidant and anti-inflammatory actions. This study has determined whether these actions of Avemar may also be useful in the treatment of cardiovascular diseases. Two experimental rat models of cardiovascular remodeling were used in this project: the deoxycorticosterone acetate (DOCA)-salt-induced model of chronic hypertension (study I) and a high-carbohydrate/high-fat diet-induced model producing chronic symptoms of the metabolic syndrome and its associated cardiovascular complications (study II). Our results in these rat models of hypertension and diet-induced obesity show that treatment with Avemar improved cardiac function, decreased macrophage infiltration resulting in decreased collagen deposition in the ventricular myocardium, reversed an increased stiffness of the left ventricle in the diseased hearts and attenuated increased plasma malondialdehyde concentrations. In addition to the changes in the heart, Avemar reversed glucose intolerance, normalized systolic blood pressure and decreased visceral fat deposition in rats fed a high-fat/high-carbohydrate diet. In conclusion, the fermented wheat germ extract Avemar has a potential role in attenuating chronic hypertension, diabetes or metabolic syndrome-induced cardiovascular symptoms along with metabolic abnormalities such as glucose tolerance and obesity.

  4. Vitamin D, cardiovascular disease and mortality.

    PubMed

    Pilz, Stefan; Tomaschitz, Andreas; März, Winfried; Drechsler, Christiane; Ritz, Eberhard; Zittermann, Armin; Cavalier, Etienne; Pieber, Thomas R; Lappe, Joan M; Grant, William B; Holick, Michael F; Dekker, Jacqueline M

    2011-11-01

    A poor vitamin D status, i.e. low serum levels of 25-hydroxyvitamin D [25(OH)D], is common in the general population. This finding is of concern not only because of the classic vitamin D effects on musculoskeletal outcomes, but also because expression of the vitamin D receptor (VDR) and vitamin D metabolizing enzymes in the heart and blood vessels suggests a role of vitamin D in the cardiovascular system. VDR-knockout mice suffer from cardiovascular disease (CVD), and various experimental studies suggest cardiovascular protection by vitamin D, including antiatherosclerotic, anti-inflammatory and direct cardio-protective actions, beneficial effects on classic cardiovascular risk factors as well as suppression of parathyroid hormone (PTH) levels. In epidemiological studies, low levels of 25(OH)D are associated with increased risk of CVD and mortality. Data from randomized controlled trials (RCTs) are sparse and have partially, but not consistently, shown some beneficial effects of vitamin D supplementation on cardiovascular risk factors (e.g. arterial hypertension). We have insufficient data on vitamin D effects on cardiovascular events, but meta-analyses of RCTs indicate that vitamin D may modestly reduce all-cause mortality. Despite accumulating data suggesting that a sufficient vitamin D status may protect against CVD, we still must wait for results of large-scale RCTs before raising general recommendations for vitamin D in the prevention and treatment of CVD. In current clinical practice, the overall risks and costs of vitamin D supplementation should be weighed against the potential adverse consequences of untreated vitamin D deficiency.

  5. Selective serotonin reuptake inhibitors and cardiovascular events: A systematic review

    PubMed Central

    Nezafati, Mohammad Hassan; Eshraghi, Ali; Vojdanparast, Mohammad; Abtahi, Saeed; Nezafati, Pouya

    2016-01-01

    Background: Given the importance of the role of depression in predicting the outcome of cardiovascular disorders, current medications for treating depression, particularly selective serotonin reuptake inhibitors (SSRIs), are taken into consideration. This study aimed to systematically review the published findings in the use of SSRIs and the risk for cardiac events. Materials and Methods: An independent review of the Web of Science, PubMed, Scopus, Cochrane, CINAHL, index Copernicus, and Google Scholar, up to 2014, was performed. We identified studies evaluating the effect of SSRIs, on cardiovascular events. Articles in English with full text availability, review articles, and experimental studies were included in the study. Among 150 studies reviewed based on the included keywords, 17 met the study criteria and were finally reviewed. Results: The use of some types of SSRIs may prevent platelet adhesion and aggregation; control the cardiovascular risk profile including hypertension, insulin resistance, and body weight; and also inhibit inflammatory processes. The appearance of adverse cardiac events, including cardiac arrhythmias (torsade de pointes and QT prolongation), syncope, increased systolic and diastolic right ventricular volume, and the production of pro-inflammatory cytokines leading atherosclerosis development, has also been expected with the chronic use of some types of SSRIs. Conclusion: According to our systematic review, both beneficial and adverse cardiovascular events can be established following the chronic use of various types of SSRIs. Therefore, when taking SSRIs, the cardiovascular effect of each SSRI has to be carefully considered, based on patients’ cardiovascular risk profiles. PMID:27904611

  6. Mechanisms of remodelling of small arteries, antihypertensive therapy and the immune system in hypertension.

    PubMed

    Schiffrin, Ernesto L

    2015-12-04

    This review summarizes my lecture for the 2015 Distinguished Scientist Award from the Canadian Society of Clinical Investigation, and is based mainly on studies in my laboratory on the mechanisms of remodelling of small arteries in experimental animal and human hypertension and on treatments that lower blood pressure and improve structure and function of resistance vessels. Small resistance arteries undergo either inward eutrophic or hypertrophic remodelling, which raises blood pressure and impairs tissue perfusion. These vascular changes are corrected by some antihypertensive drugs, which may lead to improved outcomes. Vasoconstriction, growth, oxidative stress and inflammation are some of the mechanisms, within the vascular wall, that can be beneficially affected by antihypertensive agents. These antihypertensive-sensitive mechanisms are reviewed in this review, together with the inflammatory and immune mechanisms that may participate in hypertension and associated cardiovascular injury. Molecular studies, based on this research, will hopefully identify novel diagnostic and therapeutic targets, which will improve our ability to prevent and treat hypertension and cardiovascular disease.

  7. Impact of Immune Deficiency on Remodeling of Maternal Resistance Vasculature 4 Weeks Postpartum in Mice.

    PubMed

    Bonney, Elizabeth A; Howard, Ann; Krebs, Kendall; Begin, Kelly; Veilleux, Kelsey; Gokina, Natalia I

    2017-04-01

    Pregnancy manifests changes in the vascular and immune systems that persist postpartum (PP), have important implications for future pregnancies, and may modify responses to cardiovascular stress in late life. The association between immune and vascular function and the generation or progression of cardiovascular disease beg the question of whether altered immunity modifies pregnancy-induced changes in the vasculature. Our objective was to compare changes in the function and remodeling of systemic resistance vessels 4 weeks PP in normal C57BL/6 (B6), and immunodeficient mice recombinase 1-deficient/B6 ( Rag1(-/-)). Immune deficiency did not change the responsiveness to acetylcholine (ACh) and phenylephrine at baseline but decreased arterial distensibility and increased stiffness PP. Adoptive transfer of CD8 T cells into Rag1(-/-) mice decreased the response to ACh while increasing distensibility and wall thickness. When compared to PP Rag1(-/-), vessels from PP CD4-deficient mice, which have B cells and CD8 T cells, but no CD4 cells, show increased distensibility and decreased responsiveness to ACh in a pattern similar to that seen in Rag1(-/-) given CD8 T cells prior to mating. These studies suggest a key role for T cell, particularly CD8 T cell, associated factors in the PP remodeling of maternal resistance vessels.

  8. Introduction: Cardiovascular physics.

    PubMed

    Wessel, Niels; Kurths, Jürgen; Ditto, William; Bauernschmitt, Robert

    2007-03-01

    The number of patients suffering from cardiovascular diseases increases unproportionally high with the increase of the human population and aging, leading to very high expenses in the public health system. Therefore, the challenge of cardiovascular physics is to develop high-sophisticated methods which are able to, on the one hand, supplement and replace expensive medical devices and, on the other hand, improve the medical diagnostics with decreasing the patient's risk. Cardiovascular physics-which interconnects medicine, physics, biology, engineering, and mathematics-is based on interdisciplinary collaboration of specialists from the above scientific fields and attempts to gain deeper insights into pathophysiology and treatment options. This paper summarizes advances in cardiovascular physics with emphasis on a workshop held in Bad Honnef, Germany, in May 2005. The meeting attracted an interdisciplinary audience and led to a number of papers covering the main research fields of cardiovascular physics, including data analysis, modeling, and medical application. The variety of problems addressed by this issue underlines the complexity of the cardiovascular system. It could be demonstrated in this Focus Issue, that data analyses and modeling methods from cardiovascular physics have the ability to lead to significant improvements in different medical fields. Consequently, this Focus Issue of Chaos is a status report that may invite all interested readers to join the community and find competent discussion and cooperation partners.

  9. Introduction: Cardiovascular physics

    NASA Astrophysics Data System (ADS)

    Wessel, Niels; Kurths, Jürgen; Ditto, William; Bauernschmitt, Robert

    2007-03-01

    The number of patients suffering from cardiovascular diseases increases unproportionally high with the increase of the human population and aging, leading to very high expenses in the public health system. Therefore, the challenge of cardiovascular physics is to develop high-sophisticated methods which are able to, on the one hand, supplement and replace expensive medical devices and, on the other hand, improve the medical diagnostics with decreasing the patient's risk. Cardiovascular physics-which interconnects medicine, physics, biology, engineering, and mathematics-is based on interdisciplinary collaboration of specialists from the above scientific fields and attempts to gain deeper insights into pathophysiology and treatment options. This paper summarizes advances in cardiovascular physics with emphasis on a workshop held in Bad Honnef, Germany, in May 2005. The meeting attracted an interdisciplinary audience and led to a number of papers covering the main research fields of cardiovascular physics, including data analysis, modeling, and medical application. The variety of problems addressed by this issue underlines the complexity of the cardiovascular system. It could be demonstrated in this Focus Issue, that data analyses and modeling methods from cardiovascular physics have the ability to lead to significant improvements in different medical fields. Consequently, this Focus Issue of Chaos is a status report that may invite all interested readers to join the community and find competent discussion and cooperation partners.

  10. Association Between Myocardial Mechanics and Ischemic LV Remodeling.

    PubMed

    D'Elia, Nicholas; D'hooge, Jan; Marwick, Thomas H

    2015-12-01

    The outcomes associated with heart failure after myocardial infarction are still poor. Both global and regional left ventricular (LV) remodeling are associated with the progression of the post-infarct patient to heart failure, but although global remodeling can be accurately measured, regional LV remodeling has been more difficult to investigate. Preliminary evidence suggests that post-MI assessment of LV mechanics using stress and strain may predict global (and possibly regional) LV remodeling. A method of predicting both global and regional LV remodeling might facilitate earlier, targeted, and more extensive clinical intervention in those most likely to benefit from novel interventions such as cell therapy.

  11. Mental stress and human cardiovascular disease.

    PubMed

    Esler, Murray

    2017-03-01

    The London physician and neuroanatomist Thomas Willis in the 17th century correctly attributed the source of emotions to the brain, not the heart as believed in antiquity. Contemporary research documents the phenomenon of "triggered" heart disease, when the autonomic nervous system control of the heart by the brain goes awry, producing heart disease of sudden onset, precipitated by acute emotional upheaval. This can take the form of, variously, cardiac arrhythmias, myocardial infarction, Takotsubo cardiomyopathy and sudden death. Chronic psychological distress also can have adverse cardiovascular consequences, in the causal linkage of depressive illness to heart disease, and in the probable causation of atherosclerosis and hypertension by chronic mental stress. In patients with essential hypertension, stress biomarkers are present. The sympathetic nervous system is the usual mediator between these acute and chronic psychological substrates and cardiovascular disease.

  12. Androgen therapy and atherosclerotic cardiovascular disease.

    PubMed

    McGrath, K-C Y; McRobb, L S; Heather, A K

    2008-01-01

    Cardiovascular disease (CVD) remains the leading cause of death in Western society today. There is a striking gender difference in CVD with men predisposed to earlier onset and more severe disease. Following the recent reevaluation and ongoing debate regarding the estrogen protection hypothesis, and given that androgen use and abuse is increasing in our society, the alternate view that androgens may promote CVD in men is assuming increasing importance. Whether androgens adversely affect CVD in either men or women remains a contentious issue within both the cardiovascular and endocrinological fraternities. This review draws from basic science, animal and clinical studies to outline our current understanding regarding androgen effects on atherosclerosis, the major CVD, and asks where future directions of atherosclerosis-related androgen research may lie.

  13. Implications of fundamental signalling alterations in diabetes mellitus-associated cardiovascular disease .

    PubMed

    Balakumar, Pitchai

    2014-12-01

    The chronic diabetes mellitus (DM) is a major risk factor for cardiovascular disease. The incidence of cardiovascular disease might be a foremost cause of morbidity and mortality in patients afflicted with DM. In fact, DM is associated with multi-factorial cardiovascular signalling alterations via significant modulation of expression pattern, activation or release of PI3K, PKB, eNOS, EDRF, NADPH oxidase, EDHF, CGRP, adenosine, iNOS, ROCK, PKC-β2, CaMKII, microRNA (miR)-126 and miR-130a, which could result in inadequate maintenance of cardiovascular physiology and subsequent development of cardiovascular pathology. This review highlights the possible adverse implications of fundamental cardiovascular signalling alteration in DM-associated cardiovascular disease pathology.

  14. Residential Proximity to Environmental Hazards and Adverse Health Outcomes

    PubMed Central

    Maantay, Juliana A.; Chakraborty, Jayajit

    2011-01-01

    How living near environmental hazards contributes to poorer health and disproportionate health outcomes is an ongoing concern. We conducted a substantive review and critique of the literature regarding residential proximity to environmental hazards and adverse pregnancy outcomes, childhood cancer, cardiovascular and respiratory illnesses, end-stage renal disease, and diabetes. Several studies have found that living near hazardous wastes sites, industrial sites, cropland with pesticide applications, highly trafficked roads, nuclear power plants, and gas stations or repair shops is related to an increased risk of adverse health outcomes. Government agencies should consider these findings in establishing rules and permitting and enforcement procedures to reduce pollution from environmentally burdensome facilities and land uses. PMID:22028451

  15. A Role for Soluble ST2 in Vascular Remodeling Associated with Obesity in Rats

    PubMed Central

    Martínez-Martínez, Ernesto; Miana, María; Jurado-López, Raquel; Rousseau, Elodie; Rossignol, Patrick; Zannad, Faiez; Cachofeiro, Victoria; López-Andrés, Natalia

    2013-01-01

    Background The function of the Interleukin-33 (IL-33)/ST2 system has been mainly investigated on immunological aspects, but recent data suggest that this pathway plays also an important role in cardiovascular system and adipose tissue. Whereas IL-33 has been demonstrated to exert anti-inflammatory and protective effects, circulating soluble ST2 (sST2) has emerged as a prognostic biomarker in patients with myocardial infarction and heart failure. Furthermore, sST2 is increased in severe obesity, although its role in the pathogenesis of vascular remodeling associated with obesity is still not well defined. Methodology/Principal Findings Male Wistar rats fed standard diet (Control) or high fat diet (HFD) for 6 weeks. Aortic tunica media from diet-induced obese animals showed hypertrophy and fibrosis. The IL-33/ST2 system was spontaneously expressed in the aorta from Wistar rats. Administration of HFD in animals did not modify IL-33 expression at the transcriptional level. By contrast, HFD group showed an increase in aortic soluble sST2 and a decrease in the transmembrane isoform (ST2L) levels, resulting in decreased protective pathway activity. Aortic sST2 mRNA levels were associated with parameters showing vascular hypertrophy and fibrosis. In vitro experiments showed that primary cultured vascular smooth muscle cells (VSMCs) spontaneously expressed the IL-33/ST2 system. VSMCs stimulated with sST2 showed an increase in collagen type I, fibronectin and profibrotic factors. Conclusions This is the first study demonstrating a deleterious role for sST2 in the vascular remodeling associated with obesity. In addition, we demonstrated that sST2 may act not only as a decoy receptor by binding IL-33 and preventing ST2L, but also modulating ECM remodeling and turnover. Thus, sST2 could be a new therapeutic target to reduce vascular remodeling in the context of obesity. PMID:24265755

  16. Region-specific vascular remodeling and its prevention by artificial gravity in weightless environment.

    PubMed

    Zhang, Li-Fan

    2013-12-01

    Evidence from recent ground and spaceflight studies with animals and humans supports the notion that microgravity-induced vascular remodeling contributes to postflight orthostatic intolerance. In the vascular beds of lower body, such as in splanchnic and lower limb circulation, resistance vessels would undergo hypotrophy and decrement in myogenic tone and vasoreactivity. Thus, despite the concurrent sympathetic activation, the increase in peripheral vascular resistance would still be compromised while astronauts were re-exposed to Earth's 1-G gravity, since ~75 % of the total vascular conductance lies below the heart. On the contrary, cerebral arteries would undergo hypertrophy and vasoreactivity enhancement due to adaptation to cerebral hypertension, which protects the down-stream microcirculation in the brain during spaceflight. However, the enhanced vasoreactivity of cerebral vessels might also aggravate postflight orthostatic intolerance, particularly after long-duration spaceflight. Animal studies have indicated that the underlying mechanisms may involve ion-channel remodeling in vascular smooth muscle cells and vascular NO-NOS and local renin-angiotensin system (L-RAS). Furthermore, vascular remodeling and associated ion-channel and L-RAS changes can be prevented by a countermeasure of daily short-duration restoring to normal standing posture. These findings substantiate in general the hypothesis that redistribution of transmural pressure along the arterial vasculature due to the removal of gravity might be the primary factor that initiates vascular remodeling in microgravity, and daily short-duration restoring its normal distribution by intermittent artificial gravity (IAG) can effectively prevent the vascular adaptation and hence postflight cardiovascular deconditioning. IAG might also be beneficial in maintaining vascular health during future long-duration space flight.

  17. Low lymphocyte count and cardiovascular diseases.

    PubMed

    Núñez, J; Miñana, G; Bodí, V; Núñez, E; Sanchis, J; Husser, O; Llàcer, A

    2011-01-01

    Inflammation plays a crucial pathophysiological role in the entire continuum of the atherosclerotic process, from its initiation, progression, and plaque destabilization leading ultimately to an acute coronary event. Furthermore, once the clinical event has occurred, inflammation also influences the left ventricular remodelling process. Under the same paradigm, there is evidence that lymphocytes play an important role in the modulation of the inflammatory response at every level of the atherosclerotic process. Low lymphocyte count (LLC) is a common finding during the systemic inflammatory response, and clinical and animal studies suggest that LCC plays a putative role in accelerated atherosclerosis. For instance, there is recent evidence that LLC is associated with worse outcomes in patients with heart failure, chronic ischemic heart disease and acute coronary syndromes. Further indirect evidence supports the pathologic role of LLC related to the fact that 1) lymphopenia--due to a decreased count of lymphocyte T cells--normally occurs as a part of the human ageing process, and 2) increased incidence of cardiovascular events has been reported in conditions where lymphopenia is common, such as renal transplant recipients, human immunodeficiency virus infection, survivors of nuclear disasters and autoimmune diseases. The aim of the present article is to review: a) the pathophysiological mechanisms that have been proposed for the observed association between LLC and cardiovascular diseases (CVD), b) the available evidence regarding the diagnostic and prognostic role attributable to LLC in patients with CVD, and; c) the potential therapeutic implications of these findings.

  18. Role of endothelin in the cardiovascular system.

    PubMed

    Rodríguez-Pascual, Fernando; Busnadiego, Oscar; Lagares, David; Lamas, Santiago

    2011-06-01

    The endothelin (ET) system consists of three peptide ligands (ET-1, ET-2 and ET-3) and two G-protein-coupled receptors, ET(A) and ET(B). In the cardiovascular system, ETs, particularly ET-1, are expressed in smooth muscle cells, cardiomyocytes, fibroblasts, and notably in vascular endothelial cells. Intense research over the last 10 years has changed the original view of ET-1 as mainly a vasoconstrictor regulating blood pressure, into a biological factor regulating processes such as vascular remodeling, angiogenesis or extracellular matrix synthesis. The advent of specific (and type-selective) ET receptor antagonists has greatly fostered our knowledge of the biological function of ET-1, and has offered a potential therapeutic approach for numerous diseases including hypertension, atherosclerosis or fibrosis. In this article, we review the regulation of the expression of vascular ET-1, as well as the contribution of ET-1 to endothelial, smooth muscle and fibroblast cell function, with particular interest in the role of ET-1 in the development of cardiovascular diseases.

  19. [Cardiovascular Disease In Children With Ckd].

    PubMed

    Corrado, Ciro; Pellitteri, Veronica; Alaimo, Annalisa; Galione, Maria Alessandra; Mongiovì, Rosalia; Maringhini, Silvio

    2015-01-01

    Cardiovascular disease (CVD) is the most important risk factor for morbidity and mortality in patients with chronic kidney disease (CKD). Aim of this study was to evaluate cardiac and vascular geometry in children with CKD stages 2, 3 and 4.Twenty-seven patients (18 males and 9 females) mean age 10.9 +/- 5.4 years with CKD and 30 children (control group) were enrolled with comparable age and sex. Weight, height, systolic and diastolic blood pressure were evaluated. We also analyzed biochemical assessments and proteinuria. We performed echocardiography with Philips iE33 and pulse wave velocity (PWV) with Vicorder PWS system. We documented significantly higher level of left ventricular mass index (LVMI) (30.3 +/- 7.6 g/m2.7) and PWV (4.7 +/- 1.6 m/sec) in CKD patients. Left ventricular hypertrophy (LVH) was present in 12 % and concentric remodelling in 36% of our patients. PWV values were significantly correlated with interventricular septal thickness (p<0.01) and with LVMI (p<0.05). In this study we documented the alterations of cardiac and vascular geometry since the early stages of CKD. PWV and echocardiographic measurements must be considered to assess cardiovascular risk in children with CKD stages 2-4.

  20. Cardiovascular modeling and diagnostics

    SciTech Connect

    Kangas, L.J.; Keller, P.E.; Hashem, S.; Kouzes, R.T.

    1995-12-31

    In this paper, a novel approach to modeling and diagnosing the cardiovascular system is introduced. A model exhibits a subset of the dynamics of the cardiovascular behavior of an individual by using a recurrent artificial neural network. Potentially, a model will be incorporated into a cardiovascular diagnostic system. This approach is unique in that each cardiovascular model is developed from physiological measurements of an individual. Any differences between the modeled variables and the variables of an individual at a given time are used for diagnosis. This approach also exploits sensor fusion to optimize the utilization of biomedical sensors. The advantage of sensor fusion has been demonstrated in applications including control and diagnostics of mechanical and chemical processes.

  1. Cocaine and Cardiovascular Events.

    ERIC Educational Resources Information Center

    Cantwell, John D.; Rose, Fred D.

    1986-01-01

    The case of a 21-year-old man who suffered a myocardial infarction after using cocaine and amphetamines is reported. A brief literature review provides evidence of cocaine's potential cardiovascular effects. (Author/MT)

  2. Ventricular remodeling: from bedside to molecule.

    PubMed

    Jaffe, R; Flugelman, M Y; Halon, D A; Lewis, B S

    1997-01-01

    The multiple mechanisms that bring about the decompensation of the hypertrophic remodeled myocardium are synergistic and not fully understood. Our current hypothesis is that the increased stress on the ventricle is initially offset by compensatory myocardial hypertrophy. In many instances, however, progressive ventricular dilatation and heart failure occur as a result of maladaptive hypertrophy (abnormal myosin-actin production), programmed cell death (apoptosis) and/or changes in the interstitial vasculature and collagen composition. The molecular and genetic background to these processes includes changes in myocardial gene expression, activation of the local tissue renin-angiotensin and other neurohormonal systems, increased matrix metalloproteinase activity (including collagenase), and expression of certain components of the immune system, such as TNF-alpha. Future research will hopefully provide better methods for limiting the remodeling-ventricular dilatation process by novel pharmacotherapies, gene therapy and, possibly, surgical therapy, and determine the impact of such interventions on survival.

  3. Chromatin Remodeling, DNA Damage Repair and Aging

    PubMed Central

    Liu, Baohua; Yip, Raymond KH; Zhou, Zhongjun

    2012-01-01

    Cells are constantly exposed to a variety of environmental and endogenous conditions causing DNA damage, which is detected and repaired by conserved DNA repair pathways to maintain genomic integrity. Chromatin remodeling is critical in this process, as the organization of eukaryotic DNA into compact chromatin presents a natural barrier to all DNA-related events. Studies on human premature aging syndromes together with normal aging have suggested that accumulated damages might lead to exhaustion of resources that are required for physiological functions and thus accelerate aging. In this manuscript, combining the present understandings and latest findings, we focus mainly on discussing the role of chromatin remodeling in the repair of DNA double-strand breaks (DSBs) and regulation of aging. PMID:23633913

  4. Remodeling of Calcium Entry Pathways in Cancer.

    PubMed

    Villalobos, Carlos; Sobradillo, Diego; Hernández-Morales, Miriam; Núñez, Lucía

    2016-01-01

    Ca(2+) entry pathways play important roles in control of many cellular functions, including long-term proliferation, migration and cell death. In recent years, it is becoming increasingly clear that, in some types of tumors, remodeling of Ca(2+) entry pathways could contribute to cancer hallmarks such as excessive proliferation, cell migration and invasion as well as resistance to cell death or survival. In this chapter we briefly review findings related to remodeling of Ca(2+) entry pathways in cancer with emphasis on the mechanisms that contribute to increased store-operated Ca(2+) entry (SOCE) and store-operated currents (SOCs) in colorectal cancer cells. Finally, since SOCE appears critically involved in colon tumorogenesis, the inhibition of SOCE by aspirin and other NSAIDs and its possible contribution to colon cancer chemoprevention is reviewed.

  5. Adverse Childhood Experiences and Hallucinations

    ERIC Educational Resources Information Center

    Whitfield, C.L.; Dube, S.R.; Felitti, V.J.; Anda, R.F.

    2005-01-01

    Objective:: Little information is available about the contribution of multiple adverse childhood experiences (ACEs) to the likelihood of reporting hallucinations. We used data from the ACE study to assess this relationship. Methods:: We conducted a survey about childhood abuse and household dysfunction while growing up, with questions about health…

  6. Adverse ocular reactions to drugs.

    PubMed Central

    Spiteri, M. A.; James, D. G.

    1983-01-01

    Drugs acting on various parts of the body may also affect the eye insidiously. Increased awareness of such drug toxicity by the prescribing doctor should encourage him to consider effects on the cornea, lens, retina, optic nerve and elsewhere when checking the patient's progress. The following review concerns adverse ocular effects of systemic drug administration. PMID:6356101

  7. Urbanicity, social adversity and psychosis

    PubMed Central

    Heinz, Andreas; Deserno, Lorenz; Reininghaus, Ulrich

    2013-01-01

    In recent years, there has been increasing interest in research on geographical variation in the incidence of schizophrenia and other psychoses. In this paper, we review the evidence on variation in incidence of schizophrenia and other psychoses in terms of place, as well as the individual- and area-level factors that account for this variation. We further review findings on potential mechanisms that link adverse urban environment and psychosis. There is evidence from earlier and more recent studies that urbanicity is associated with an increased incidence of schizophrenia and non-affective psychosis. In addition, considerable variation in incidence across neighbourhoods has been observed for these disorders. Findings suggest it is unlikely that social drift alone can fully account for geographical variation in incidence. Evidence further suggests that the impact of adverse social contexts – indexed by area-level exposures such as population density, social fragmentation and deprivation – on risk of psychosis is explained (confounding) or modified (interaction) by environmental exposures at the individual level (i.e., cannabis use, social adversity, exclusion and discrimination). On a neurobiological level, several studies suggest a close link between social adversity, isolation and stress on the one hand, and monoamine dysfunction on the other, which resembles findings in schizophrenia patients. However, studies directly assessing correlations between urban stress or discrimination and neurobiological alterations in schizophrenia are lacking to date. PMID:24096775

  8. Reverse engineering adverse outcome pathways.

    PubMed

    Perkins, Edward J; Chipman, J Kevin; Edwards, Stephen; Habib, Tanwir; Falciani, Francesco; Taylor, Ronald; Van Aggelen, Graham; Vulpe, Chris; Antczak, Philipp; Loguinov, Alexandre

    2011-01-01

    The toxicological effects of many stressors are mediated through unknown, or incompletely characterized, mechanisms of action. The application of reverse engineering complex interaction networks from high dimensional omics data (gene, protein, metabolic, signaling) can be used to overcome these limitations. This approach was used to characterize adverse outcome pathways (AOPs) for chemicals that disrupt the hypothalamus-pituitary-gonadal endocrine axis in fathead minnows (FHM, Pimephales promelas). Gene expression changes in FHM ovaries in response to seven different chemicals, over different times, doses, and in vivo versus in vitro conditions, were captured in a large data set of 868 arrays. Potential AOPs of the antiandrogen flutamide were examined using two mutual information-based methods to infer gene regulatory networks and potential AOPs. Representative networks from these studies were used to predict network paths from stressor to adverse outcome as candidate AOPs. The relationship of individual chemicals to an adverse outcome can be determined by following perturbations through the network in response to chemical treatment, thus leading to the nodes associated with the adverse outcome. Identification of candidate pathways allows for formation of testable hypotheses about key biological processes, biomarkers, or alternative endpoints that can be used to monitor an AOP. Finally, the unique challenges facing the application of this approach in ecotoxicology were identified and a road map for the utilization of these tools presented.

  9. Trending Cardiovascular Nutrition Controversies.

    PubMed

    Freeman, Andrew M; Morris, Pamela B; Barnard, Neal; Esselstyn, Caldwell B; Ros, Emilio; Agatston, Arthur; Devries, Stephen; O'Keefe, James; Miller, Michael; Ornish, Dean; Williams, Kim; Kris-Etherton, Penny

    2017-03-07

    The potential cardiovascular benefits of several trending foods and dietary patterns are still incompletely understood, and nutritional science continues to evolve. However, in the meantime, a number of controversial dietary patterns, foods, and nutrients have received significant media exposure and are mired by hype. This review addresses some of the more popular foods and dietary patterns that are promoted for cardiovascular health to provide clinicians with accurate information for patient discussions in the clinical setting.

  10. Violence and Cardiovascular Health

    PubMed Central

    Suglia, Shakira F.; Sapra, Katherine J.; Koenen, Karestan C.

    2014-01-01

    Context Violence, experienced in either childhood or adulthood, has been associated with physical health outcomes including cardiovascular disease. However, the consistency of the existing literature has not been evaluated. Evidence acquisition In 2013, the authors conducted a PubMed and Web of Science review of peer reviewed articles published prior to August 2013 on the relation between violence exposure, experienced in either childhood or adulthood, and cardiovascular outcomes. To meet inclusion criteria, articles had to present estimates for the relation between violence exposure and cardiovascular outcomes (hypertension, blood pressure, stroke, coronary disease, or myocardial infarction) adjusted for demographic factors. Articles focusing on violence from TV, video games, natural disasters, terrorism, or war were excluded. Evidence synthesis The initial search yielded 2,273 articles; after removing duplicates and applying inclusion and exclusion criteria, 30 articles were selected for review. A consistent positive relation was noted on the association between violence experienced during childhood and cardiovascular outcomes in adulthood (i.e., hypertension, coronary heart disease, and myocardial infarction). Associations across genders with varying types of violence exposure were also noted. By contrast, findings were mixed on the relation between adult violence exposure and cardiovascular outcome. Conclusions Despite varying definitions of violence exposure and cardiovascular endpoints, a consistent relation exists between childhood violence exposure, largely assessed retrospectively, and cardiovascular endpoints. Findings are mixed for the adult violence–cardiovascular health relation. The cross-sectional nature of most adult studies and the reliance of self-reported outcomes can potentially be attributed to the lack of findings among adult violence exposure studies. PMID:25599905

  11. Mechanisms of epigenetic remodelling during preimplantation development.

    PubMed

    Ross, Pablo Juan; Canovas, Sebastian

    2016-01-01

    Epigenetics involves mechanisms independent of modifications in the DNA sequence that result in changes in gene expression and are maintained through cell divisions. Because all cells in the organism contain the same genetic blueprint, epigenetics allows for cells to assume different phenotypes and maintain them upon cell replication. As such, during the life cycle, there are moments in which the epigenetic information needs to be reset for the initiation of a new organism. In mammals, the resetting of epigenetic marks occurs at two different moments, which both happen to be during gestation, and include primordial germ cells (PGCs) and early preimplantation embryos. Because epigenetic information is reversible and sensitive to environmental changes, it is probably no coincidence that both these extensive periods of epigenetic remodelling happen in the female reproductive tract, under a finely controlled maternal environment. It is becoming evident that perturbations during the extensive epigenetic remodelling in PGCs and embryos can lead to permanent and inheritable changes to the epigenome that can result in long-term changes to the offspring derived from them, as indicated by the Developmental Origins of Health and Disease (DOHaD) hypothesis and recent demonstration of inter- and trans-generational epigenetic alterations. In this context, an understanding of the mechanisms of epigenetic remodelling during early embryo development is important to assess the potential for gametic epigenetic mutations to contribute to the offspring and for new epimutations to be established during embryo manipulations that could affect a large number of cells in the offspring. It is of particular interest to understand whether and how epigenetic information can be passed on from the gametes to the embryo or offspring, and whether abnormalities in this process could lead to transgenerationally inheritable phenotypes. The aim of this review is to highlight recent progress made in

  12. REACTIVE OXYGEN SPECIES IN PULMONARY VASCULAR REMODELING

    PubMed Central

    Aggarwal, Saurabh; Gross, Christine M.; Sharma, Shruti; Fineman, Jeffrey R.; Black, Stephen M.

    2014-01-01

    The pathogenesis of pulmonary hypertension is a complex multifactorial process that involves the remodeling of pulmonary arteries. This remodeling process encompasses concentric medial thickening of small arterioles, neomuscularization of previously nonmuscular capillary-like vessels, and structural wall changes in larger pulmonary arteries. The pulmonary arterial muscularization is characterized by vascular smooth muscle cell (SMC) hyperplasia and hypertrophy. In addition, in uncontrolled pulmonary hypertension, the clonal expansion of apoptosis-resistant endothelial cells leads to the formation of plexiform lesions. Based upon a large number of studies in animal models, the three major stimuli that drive the vascular remodeling process are inflammation, shear stress and hypoxia. Although, the precise mechanisms by which these stimuli impair pulmonary vascular function and structure are unknown, reactive oxygen species (ROS)-mediated oxidative damage appears to play an important role. ROS are highly reactive due to their unpaired valence shell electron. Oxidative damage occurs when the production of ROS exceeds the quenching capacity of the anti-oxidant mechanisms of the cell. ROS can be produced from complexes in the cell membrane (nicotinamide adenine dinucleotide phosphate-oxidase), cellular organelles (peroxisomes and mitochondria), and in the cytoplasm (xanthine oxidase). Furthermore, low levels of tetrahydrobiopterin (BH4) and L-arginine the rate limiting co-factor and substrate for endothelial nitric oxide synthase (eNOS), can cause the uncoupling of eNOS, resulting in decreased NO production and increased ROS production. This review will focus on the ROS generation systems, scavenger antioxidants, and oxidative stress associated alterations in vascular remodeling in pulmonary hypertension. PMID:23897679

  13. [Remodeling in asthma: review of the literature].

    PubMed

    Montero Mora, Patricia; González Espinosa, Alicia Ma; Guidos Foguelbach, Guillermo A; Tinajero Castañeda, Olga Adriana; Serrano Cuevas, Saúl

    2003-01-01

    Remodeling, understood as a new or different reconstruction, has been observed in every organ after a chronic inflammatory response. In allergy, it has very important clinical consequences. As an example, in asthma this process is responsible for functional deterioration. In this case, the myofibroblasts play a central role in the process, together with a succession of products that are involved. In this bibliographic review we analyze the most important factors.

  14. Right ventricular remodeling in pulmonary hypertension.

    PubMed

    Franco, Veronica

    2012-07-01

    The right ventricle (RV) is in charge of pumping blood to the lungs for oxygenation. Pulmonary arterial hypertension (PAH) is characterized by high pulmonary vascular resistance and vascular remodeling, which results in a striking increase in RV afterload and subsequent failure. There is still unexploited potential for therapies that directly target the RV with the aim of supporting and protecting the right side of the heart, striving to prolong survival in patients with PAH.

  15. Age‐related remodeling of small arteries is accompanied by increased sphingomyelinase activity and accumulation of long‐chain ceramides

    PubMed Central

    Ohanian, Jacqueline; Liao, Aiyin; Forman, Simon P.; Ohanian, Vasken

    2014-01-01

    Abstract The structure and function of large arteries alters with age leading to increased risk of cardiovascular disease. Age‐related large artery remodeling and arteriosclerosis is associated with increased collagen deposition, inflammation, and endothelial dysfunction. Bioactive sphingolipids are known to regulate these processes, and are also involved in aging and cellular senescence. However, less is known about age‐associated alterations in small artery morphology and function or whether changes in arterial sphingolipids occur in aging. We show that mesenteric small arteries from old sheep have increased lumen diameter and media thickness without a change in media to lumen ratio, indicative of outward hypertrophic remodeling. This remodeling occurred without overt changes in blood pressure or pulse pressure indicating it was a consequence of aging per se. There was no age‐associated change in mechanical properties of the arteries despite an increase in total collagen content and deposition of collagen in a thickened intima layer in arteries from old animals. Analysis of the sphingolipid profile showed an increase in long‐chain ceramide (C14–C20), but no change in the levels of sphingosine or sphingosine‐1‐phosphate in arteries from old compared to young animals. This was accompanied by a parallel increase in acid and neutral sphingomyelinase activity in old arteries compared to young. This study demonstrates remodeling of small arteries during aging that is accompanied by accumulation of long‐chain ceramides. This suggests that sphingolipids may be important mediators of vascular aging. PMID:24872355

  16. Therapeutic potential of ginseng in the management of cardiovascular disorders.

    PubMed

    Karmazyn, Morris; Moey, Melissa; Gan, Xiaohong Tracey

    2011-10-22

    Although employed in Asian societies for thousands of years, the use of ginseng as an herbal medication for a variety of disorders has increased tremendously worldwide in recent years. Ginseng belongs to the genus Panax, of which there exists a variety, generally reflecting their geographic origin. North American ginseng (Panax quinquefolius) and Asian ginseng (Panax ginseng) are two such varieties possessing a plethora of pharmacological properties, which are attributed primarily to the presence of different ginsenosides that bestow these ginsengs with distinct pharmacodynamic profiles. The many cardiovascular benefits attributed to ginseng include cardioprotection, antihypertensive effects, and attenuation of myocardial hypertrophy and heart failure. Experimental studies have revealed a number of beneficial properties of ginseng, particularly in the area of cardiac protection, where ginseng and ginsenosides have been shown to protect the ischaemic and reperfused heart in a variety of experimental models. Emerging evidence also suggests that ginseng attenuates myocardial hypertrophy, thus blunting the remodelling and heart failure processes. However, clinical evidence of efficacy is not convincing, likely owing primarily to the paucity of well designed, randomized, controlled clinical trials. Adding to the complexity in understanding the cardiovascular effects of ginseng is the fact that each of the different ginseng varieties possesses distinct cardiovascular properties, as a result of their respective ginsenoside composition, rendering it difficult to assign a general, common cardiovascular effect to ginseng. Additional challenges include the identification of mechanisms (likely multifaceted) that account for the effects of ginseng and determining which ginsenoside(s) mediate these cardiovascular properties. These concerns notwithstanding, the potential cardiovascular benefit of ginseng is worthy of further studies in view of its possible development as a

  17. Stepwise nucleosome translocation by RSC remodeling complexes.

    PubMed

    Harada, Bryan T; Hwang, William L; Deindl, Sebastian; Chatterjee, Nilanjana; Bartholomew, Blaine; Zhuang, Xiaowei

    2016-02-19

    The SWI/SNF-family remodelers regulate chromatin structure by coupling the free energy from ATP hydrolysis to the repositioning and restructuring of nucleosomes, but how the ATPase activity of these enzymes drives the motion of DNA across the nucleosome remains unclear. Here, we used single-molecule FRET to monitor the remodeling of mononucleosomes by the yeast SWI/SNF remodeler, RSC. We observed that RSC primarily translocates DNA around the nucleosome without substantial displacement of the H2A-H2B dimer. At the sites where DNA enters and exits the nucleosome, the DNA moves largely along or near its canonical wrapping path. The translocation of DNA occurs in a stepwise manner, and at both sites where DNA enters and exits the nucleosome, the step size distributions exhibit a peak at approximately 1-2 bp. These results suggest that the movement of DNA across the nucleosome is likely coupled directly to DNA translocation by the ATPase at its binding site inside the nucleosome.

  18. Retinal remodeling triggered by photoreceptor degenerations.

    PubMed

    Jones, Bryan W; Watt, Carl B; Frederick, Jeanne M; Baehr, Wolfgang; Chen, Ching-Kang; Levine, Edward M; Milam, Ann H; Lavail, Matthew M; Marc, Robert E

    2003-09-08

    Many photoreceptor degenerations initially affect rods, secondarily leading to cone death. It has long been assumed that the surviving neural retina is largely resistant to this sensory deafferentation. New evidence from fast retinal degenerations reveals that subtle plasticities in neuronal form and connectivity emerge early in disease. By screening mature natural, transgenic, and knockout retinal degeneration models with computational molecular phenotyping, we have found an extended late phase of negative remodeling that radically changes retinal structure. Three major transformations emerge: 1) Müller cell hypertrophy and elaboration of a distal glial seal between retina and the choroid/retinal pigmented epithelium; 2) apparent neuronal migration along glial surfaces to ectopic sites; and 3) rewiring through evolution of complex neurite fascicles, new synaptic foci in the remnant inner nuclear layer, and new connections throughout the retina. Although some neurons die, survivors express molecular signatures characteristic of normal bipolar, amacrine, and ganglion cells. Remodeling in human and rodent retinas is independent of the initial molecular targets of retinal degenerations, including defects in the retinal pigmented epithelium, rhodopsin, or downstream phototransduction elements. Although remodeling may constrain therapeutic intervals for molecular, cellular, or bionic rescue, it suggests that the neural retina may be more plastic than previously believed.

  19. Psoriatic architecture constructed by epidermal remodeling.

    PubMed

    Iizuka, Hajime; Takahashi, Hidetoshi; Ishida-Yamamoto, Akemi

    2004-08-01

    Epidermal remodeling is the concept that epidermal architecture is determined by a simple self-organizing mechanism; epidermal hyperproliferation constructs typical psoriatic architecture. This is based on the assumption that the enlargements in both the two-dimensional proliferative compartment (basal cell layer) and three-dimensional whole epidermal volume coexist. During this process, the dermal papillae become markedly, but passively, expanded by enlargement of the proliferative compartment. This creates a considerable shrinkage force against the crowded basal cell layer, which is forced to lose adherence to the dermal extracellular matrix (ECM). This results in anoikis, a type of apoptosis characterized by cell detachment, and, consequently, a markedly diminished epidermal turnover time in psoriasis. The papillary shrinkage force also explains the fact that dermal papillary height does not exceed a certain limit. At the cessation of hyperproliferation a normalisation remodeling takes place toward normal tissue architecture. Thus the concept of epidermal remodeling explains the self-organizing mechanism of the architectural change in psoriasis, which is essentially a reversible disorder depending on epidermal hyperproliferation.

  20. Application of Petri nets in bone remodeling.

    PubMed

    Li, Lingxi; Yokota, Hiroki

    2009-07-06

    Understanding a mechanism of bone remodeling is a challenging task for both life scientists and model builders, since this highly interactive and nonlinear process can seldom be grasped by simple intuition. A set of ordinary differential equations (ODEs) have been built for simulating bone formation as well as bone resorption. Although solving ODEs numerically can provide useful predictions for dynamical behaviors in a continuous time frame, an actual bone remodeling process in living tissues is driven by discrete events of molecular and cellular interactions. Thus, an event-driven tool such as Petri nets (PNs), which may dynamically and graphically mimic individual molecular collisions or cellular interactions, seems to augment the existing ODE-based systems analysis. Here, we applied PNs to expand the ODE-based approach and examined discrete, dynamical behaviors of key regulatory molecules and bone cells. PNs have been used in many engineering areas, but their application to biological systems needs to be explored. Our PN model was based on 8 ODEs that described an osteoprotegerin linked molecular pathway consisting of 4 types of bone cells. The models allowed us to conduct both qualitative and quantitative evaluations and evaluate homeostatic equilibrium states. The results support that application of PN models assists understanding of an event-driven bone remodeling mechanism using PN-specific procedures such as places, transitions, and firings.

  1. Aggravated myocardial infarction-induced cardiac remodeling and heart failure in histamine-deficient mice

    PubMed Central

    Chen, Jinmiao; Hong, Tao; Ding, Suling; Deng, Long; Abudupataer, Mieradilijiang; Zhang, Weiwei; Tong, Minghong; Jia, Jianguo; Gong, Hui; Zou, Yunzeng; Wang, Timothy C.; Ge, Junbo; Yang, Xiangdong

    2017-01-01

    Histamine has pleiotropic pathophysiological effects, but its role in myocardial infarction (MI)-induced cardiac remodeling remains unclear. Histidine decarboxylase (HDC) is the main enzyme involved in histamine production. Here, we clarified the roles of HDC-expressing cells and histamine in heart failure post-MI using HDC-EGFP transgenic mice and HDC-knockout (HDC−/−) mice. HDC+CD11b+ myeloid cell numbers markedly increased in the injured hearts, and histamine levels were up-regulated in the circulation post-MI. HDC−/− mice exhibited more adverse cardiac remodeling, poorer left ventricular function and higher mortality by increasing cardiac fibrogenesis post-MI. In vitro assays further confirmed that histamine inhibited heart fibroblast proliferation. Furthermore, histamine enhanced the signal transducer and activator of transcription (STAT)-6 phosphorylation level in murine heart fibroblasts, and the inhibitive effects of histamine on fibroblast proliferation could be blocked by JAK3/STAT6 signaling selective antagonist. STAT6-knockout (STAT6−/−) mice had a phenotype similar to that of HDC−/− mice post-MI; however, in contrast to HDC−/− mice, the beneficial effects of exogenous histamine injections were abrogated in STAT6−/− mice. These data suggest that histamine exerts protective effects by modulating cardiac fibrosis and remodeling post-MI, in part through the STAT6-dependent signaling pathway. PMID:28272448

  2. The Periconceptional Environment and Cardiovascular Disease: Does In Vitro Embryo Culture and Transfer Influence Cardiovascular Development and Health?

    PubMed Central

    Padhee, Monalisa; Zhang, Song; Lie, Shervi; Wang, Kimberley C.; Botting, Kimberley J.; McMillen, I. Caroline; MacLaughlin, Severence M.; Morrison, Janna L.

    2015-01-01

    Assisted Reproductive Technologies (ARTs) have revolutionised reproductive medicine; however, reports assessing the effects of ARTs have raised concerns about the immediate and long-term health outcomes of the children conceived through ARTs. ARTs include manipulations during the periconceptional period, which coincides with an environmentally sensitive period of gamete/embryo development and as such may alter cardiovascular development and health of the offspring in postnatal life. In order to identify the association between ARTs and cardiovascular health outcomes, it is important to understand the events that occur during the periconceptional period and how they are affected by procedures involved in ARTs. This review will highlight the emerging evidence implicating adverse cardiovascular outcomes before and after birth in offspring conceived through ARTs in both human and animal studies. In addition, it will identify the potential underlying causes and molecular mechanisms responsible for the congenital and adult cardiovascular dysfunctions in offspring whom were conceived through ARTs. PMID:25699984

  3. The vortex--an early predictor of cardiovascular outcome?

    PubMed

    Pedrizzetti, Gianni; La Canna, Giovanni; Alfieri, Ottavio; Tonti, Giovanni

    2014-09-01

    Blood motion in the heart features vortices that accompany the redirection of jet flows towards the outlet tracks. Vortices have a crucial role in fluid dynamics. The stability of cardiac vorticity is vital to the dynamic balance between rotating blood and myocardial tissue and to the development of cardiac dysfunction. Moreover, vortex dynamics immediately reflect physiological changes to the surrounding system, and can provide early indications of long-term outcome. However, the pathophysiological relevance of cardiac fluid dynamics is still unknown. We postulate that maladaptive intracardiac vortex dynamics might modulate the progressive remodelling of the left ventricle towards heart failure. The evaluation of blood flow presents a new paradigm in cardiac function analysis, with the potential for sensitive risk identification of cardiac abnormalities. Description of cardiac flow patterns after surgery or device therapy provides an intrinsic qualitative evaluation of therapeutic procedures, and could enable early risk stratification of patients vulnerable to adverse cardiac remodelling.

  4. Mental stress-induced left ventricular dysfunction and adverse outcome in ischemic heart disease patients.

    PubMed

    Sun, Julia L; Boyle, Stephen H; Samad, Zainab; Babyak, Michael A; Wilson, Jennifer L; Kuhn, Cynthia; Becker, Richard C; Ortel, Thomas L; Williams, Redford B; Rogers, Joseph G; O'Connor, Christopher M; Velazquez, Eric J; Jiang, Wei

    2017-04-01

    Aims Mental stress-induced myocardial ischemia (MSIMI) occurs in up to 70% of patients with clinically stable ischemic heart disease and is associated with increased risk of adverse prognosis. We aimed to examine the prognostic value of indices of MSIMI and exercise stress-induced myocardial ischemia (ESIMI) in a population of ischemic heart disease patients that was not confined by having a recent positive physical stress test. Methods and results The Responses of Mental Stress Induced Myocardial Ischemia to Escitalopram Treatment (REMIT) study enrolled 310 subjects who underwent mental and exercise stress testing and were followed annually for a median of four years. Study endpoints included time to first and total rate of major adverse cardiovascular events, defined as all-cause mortality and hospitalizations for cardiovascular causes. Cox and negative binomial regression adjusting for age, sex, resting left ventricular ejection fraction, and heart failure status were used to examine associations of indices of MSIMI and ESIMI with study endpoints. The continuous variable of mental stress-induced left ventricular ejection fraction change was significantly associated with both endpoints (all p values < 0.05). For every reduction of 5% in left ventricular ejection fraction induced by mental stress, patients had a 5% increase in the probability of a major adverse cardiovascular event at the median follow-up time and a 20% increase in the number of major adverse cardiovascular events endured over the follow-up period of six years. Indices of ESIMI did not predict endpoints ( ps > 0.05). Conclusion In patients with stable ischemic heart disease, mental, but not exercise, stress-induced left ventricular ejection fraction change significantly predicts risk of future adverse cardiovascular events.

  5. Rho-kinase inhibition in the therapy of cardiovascular disease.

    PubMed

    Lai, Andrew; Frishman, William H

    2005-01-01

    Rho is a GTPase known to be a major mediator in the formation of stress fibers and focal adhesions, cell morphology, and smooth muscle contraction. Its role in smooth muscle contraction has led to exploration into the connection between Rho-mediated kinase activity and cardiovascular disease. The role of Rho-kinase in calcium sensitization for vascular smooth muscle contraction has recently been characterized. Inappropriate coronary artery vasoconstriction resulting from increased Rho-kinase in the vascular system is likely involved in the pathogenesis of exercise-induced myocardial ischemia, spontaneous coronary artery spasm, and hypertension. In clinical trials, Rho-kinase inhibitors such as fasudil and Y-27632 have demonstrated antiischemic, antivasospastic, and antihypertensive effects. These compounds have also exhibited the ability to blunt progression of cardiomyocyte hypertrophy and cardiac remodeling in heart failure. As such, Rho-kinase inhibition represents a potential novel therapeutic approach in cardiovascular disease.

  6. [Vitamin D and cardiovascular risk].

    PubMed

    Mayer, Otto

    2012-05-01

    The pathogenesis of cardiovascular disease is without any doubt multifactorial, and it is generally accepted, that conventional risk factors determined only about 80% of cardiovascular risk. There is accumulating evidence that vitamin D exerts important pathophysiological effects on cardiovascular system. Low vitamin D was associated with increased cardiovascular risk in several reports. This review summarizes recent epidemiological evidence and possible pathophysiological mechanism for a role of low vitamin D in cardiovascular diseases. Moreover, available data concerning vitamin D supplementation are depicted.

  7. Adverse drug events in hospital: pilot study with trigger tool

    PubMed Central

    Rozenfeld, Suely; Giordani, Fabiola; Coelho, Sonia

    2013-01-01

    OBJECTIVE To estimate the frequency of and to characterize the adverse drug events at a terciary care hospital. METHODS A retrospective review was carried out of 128 medical records from a hospital in Rio de Janeiro in 2007, representing 2,092 patients. The instrument used was a list of triggers, such as antidotes, abnormal laboratory analysis results and sudden suspension of treatment, among others. A simple random sample of patients aged 15 and over was extracted. Oncologic and obstetric patients were excluded as were those hospitalized for less than 48 hours or in the emergency room. Social and demographic characteristics and those of the disease of patients who underwent adverse events were compared with those of patients who did not in order to test for differences between the groups. RESULTS Around 70.0% of the medical records assessed showed at least one trigger. Adverse drug events triggers had an overall positive predictive value of 14.4%. The incidence of adverse drug events was 26.6 per 100 patients and 15.6% patients suffered one or more event. The median length of stay for patients suffering an adverse drug event was 35.2 days as against 10.7 days for those who did not (p < 0.01). The pharmacological classes most commonly associated with an adverse drug event were related to the cardiovascular system, nervous system and alimentary tract and metabolism. The most common active substances associated with an adverse drug event were tramadol, dypirone, glibenclamide and furosemide. Over 80.0% of events provoked or contributed to temporary harm to the patient and required intervention and 6.0% may have contributed to the death of the patient. It was estimated that in the hospital, 131 events involving drowsiness or fainting 33 involving falls, and 33 episodes of hemorrhage related to adverse drug effects occur annually. CONCLUSIONS Almost one-sixth of in-patients (16,0%) suffered an adverse drug event. The instrument used may prove useful as a technique for

  8. Vaccenic acid and trans fatty acid isomers from partially hydrogenated oil both adversely affect LDL cholesterol: a double-blind, randomized controlled trial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evidence of the adverse effects of industrially-produced trans fatty acids (iTFA) on risk of cardiovascular disease is consistent and well documented in the scientific literature; however, the cardiovascular effects of naturally-occurring TFA synthesized in ruminant animals (rTFA), such as vaccenic ...

  9. [Elevated blood pressure as cardiovascular risk factor].

    PubMed

    Kowalewski, Wiesław; Hebel, Kazimiera

    2013-01-01

    Cardiovascular diseases for decades have been and still are the main and current health problem of the Polish society and there are many reasons for these diseases. Hypertension is one of the major risk factors for developing cardiovascular disease. The factors significantly increasing risk the of cardiovascular disease are in addition to high blood pressure, smoking (also passive), high blood fats (cholesterol and its HDL, LDL fractions as well as triglyceride levels, obesity, lack of exercise, diabetes and hereditary features. Other important factors which play an important role are external factors such as e.g. environmental pollution, lifestyle, stress. Prediction of cardiovascular disease should start from the evaluation of the fetal period because low birth weight may be a risk of coronary heart disease, hypertension, obesity or diabetes in adulthood. The authors of the referred tests showed that the level of blood pressure observed during childhood is closely associated with the level of blood pressure in adults and is also dependent on the body weight. Since the issue of the effects of high pressure on the cardiovascular system is inherent in the issue of the metabolic syndrome, it should be mentioned also that another causative factor may be an irregularity in the removal of urine from the body and the amount of insulin. The control of hypertension is a complex problem, at least in view of the wide range of adverse factors affecting the human body: hypertension is often either a constituent of other lesions. Therefore, it is difficult to treat high blood pressure in the strict sense; more often it is a combination therapy based on pharmacology caused for other reasons.

  10. The orphan nuclear receptor Nur77 inhibits low shear stress-induced carotid artery remodeling in mice.

    PubMed

    Yu, Ying; Cai, Zhaohua; Cui, Mingli; Nie, Peng; Sun, Zhe; Sun, Shiqun; Chu, Shichun; Wang, Xiaolei; Hu, Liuhua; Yi, Jing; Shen, Linghong; He, Ben

    2015-12-01

    Shear stress, particularly low and oscillatory shear stress, plays a critical pathophysiological role in vascular remodeling-related cardiovascular diseases. Growing evidence suggests that the orphan nuclear receptor Nur77 [also known as TR3 or nuclear receptor subfamily 4, group A, member 1 (NR4A1)] is expressed in diseased human vascular tissue and plays an important role in vascular physiology and pathology. In the present study, we used a mouse model of flow-dependent remodeling by partial ligation of the left common carotid artery (LCCA) to define the exact role of Nur77 in vascular remodeling induced by low shear stress. Following vascular remodeling, Nur77 was highly expressed in neointimal vascular smooth muscle cells (VSMCs) in the ligated carotid arteries. The reactive oxygen species (ROS) levels were elevated in the remodeled arteries in vivo and in primary rat VSMCs in vitro following stimulation with platelet-derived growth factor (PDGF). Further in vitro experiments revealed that Nur77 expression was rapidly increased in the VSMCs following stimulation with PDGF and H2O2, whereas treatment with N-acetyl cysteine (NAC, a ROS scavenger) reversed the increase in the protein level of Nur77 induced by H2O2. Moreover, Nur77 overexpression markedly inhibited the proliferation and migration of VSMCs, induced by PDGF. Finally, to determine the in vivo role of Nur77 in low shear stress-induced vascular remodeling, wild-type (WT) and Nur77-deficient mice were subjected to partial ligation of the LCCA. Four weeks following surgery, in the LCCAs of the Nur77‑deficient mice, a significant increase in the intima-media area and carotid intima-media thickness was noted, as well as more severe elastin disruption and collagen deposition compared to the WT mice. Immunofluorescence staining revealed an increase in VSMC proliferation [determined by the expression of proliferating cell nuclear antigen (PCNA)] and matrix metalloproteinase 9 (MMP-9) production in the Nur77

  11. Adverse drug reactions: part II.

    PubMed

    Wooten, James M

    2010-11-01

    Pharmacovigilance is the process of identifying, monitoring, and effectively reducing adverse drug reactions. Adverse drug reactions (ADRs) are an important consideration when assessing a patient's health. The proliferation of new pharmaceuticals means that the incidence of ADRs is increasing. The goal for all health care providers must be to minimize the risk of ADRs as much as possible. Steps to achieve this include understanding the pharmacology for all drugs prescribed and proactively assessing and monitoring those patients at greatest risk for developing an ADR. Groups at greatest risk for developing ADRs include the elderly, children, and pregnant patients, as well as others. Pharmacovigilance must be effectively practiced by all health care providers in order to avoid ADRs.

  12. Adverse drug reactions: Part I.

    PubMed

    Wooten, James M

    2010-10-01

    Pharmacovigilance is the process of identifying, monitoring, and effectively reducing adverse drug reactions. Adverse drug reactions (ADRs) are an important consideration when assessing a patient's health. The proliferation of new pharmaceuticals means that the incidence of ADRs is increasing. The goal for all health care providers must be to minimize the risk of ADRs as much as possible. Steps to achieve this include understanding the pharmacology for all drugs prescribed and proactively assessing and monitoring those patients at greatest risk for developing an ADR. Groups at greatest risk for developing ADRs include the elderly, children, and pregnant patients, as well as others. Pharmacovigilance must effectively be practiced by all health providers in order to avoid ADRs.

  13. Estrogen attenuates chronic volume overload induced structural and functional remodeling in male rat hearts.

    PubMed

    Gardner, Jason D; Murray, David B; Voloshenyuk, Tetyana G; Brower, Gregory L; Bradley, Jessica M; Janicki, Joseph S

    2010-02-01

    We have previously reported gender differences in ventricular remodeling and development of heart failure using the aortocaval fistula model of chronic volume overload in rats. In contrast to males, female rats exhibited no adverse ventricular remodeling and less mortality in response to volume overload. This gender-specific cardioprotection was lost following ovariectomy and was partially restored using estrogen replacement. However, it is not known if estrogen treatment would be as effective in males. The purpose of this study was to evaluate the structural and functional effects of estrogen in male rats subjected to chronic volume overload. Four groups of male rats were studied at 3 days and 8 wk postsurgery as follows: fistula and sham-operated controls, with and without estrogen treatment. Biochemical and histological studies were performed at 3 days postsurgery, with chronic structural and functional effects studied at 8 wk. Measurement of systolic and diastolic pressure-volume relationships was obtained using a blood-perfused isolated heart preparation. Both fistula groups developed significant ventricular hypertrophy after 8 wk of volume overload. Untreated rats with fistula exhibited extensive ventricular dilatation, which was coupled with a loss of systolic function. Estrogen attenuated left ventricular dilatation and maintained function in treated rats. Estrogen treatment was also associated with a reduction in oxidative stress and circulating endothelin-1 levels, as well as prevention of matrix metalloproteinase-2 and -9 activation and breakdown of ventricular collagen in the early stage of remodeling. These data demonstrate that estrogen attenuates ventricular remodeling and disease progression in male rats subjected to chronic volume overload.

  14. Adverse health effects of high-effort/low-reward conditions.

    PubMed

    Siegrist, J

    1996-01-01

    In addition to the person-environment fit model (J. R. French, R. D. Caplan, & R. V. Harrison, 1982) and the demand-control model (R. A. Karasek & T. Theorell, 1990), a third theoretical concept is proposed to assess adverse health effects of stressful experience at work: the effort-reward imbalance model. The focus of this model is on reciprocity of exchange in occupational life where high-cost/low-gain conditions are considered particularly stressful. Variables measuring low reward in terms of low status control (e.g., lack of promotion prospects, job insecurity) in association with high extrinsic (e.g., work pressure) or intrinsic (personal coping pattern, e.g., high need for control) effort independently predict new cardiovascular events in a prospective study on blue-collar men. Furthermore, these variables partly explain prevalence of cardiovascular risk factors (hypertension, atherogenic lipids) in 2 independent studies. Studying adverse health effects of high-effort/low-reward conditions seems well justified, especially in view of recent developments of the labor market.

  15. [Finasteride adverse effects: An update].

    PubMed

    Carreño-Orellana, Néstor; Moll-Manzur, Catherina; Carrasco-Zuber, Juan Eduardo; Álvarez-Véliz, Sergio; Berroeta-Mauriziano, Daniela; Porras-Kusmanic, Ninoska

    2016-12-01

    Finasteride is a 5-α reductase inhibitor that is widely used in the management of benign prostate hyperplasia and male pattern hair loss. It is well known that these agents improve the quality of life in men suffering from these conditions. However, they are associated with some transient and even permanent adverse effects. The aim of this article is to clarify the controversies about the safety of finasteride by analyzing the evidence available in the literature.

  16. [Pain as adverse drug reaction].

    PubMed

    Böhmdorfer, Birgit; Schaffarzick, Daniel; Nagano, Marietta; Janowitz, Susanne Melitta; Schweitzer, Ekkehard

    2012-09-01

    We present a multidisciplinary (anaesthesiology--clinical pharmacy--bioinformatics) analysis of pain as possible adverse drug reaction taking different manifestations of pain, indication groups, relevance to the Austrian drug market and possible mechanistic influence of drugs on development and apprehension of pain into consideration.We designed an overview that shows how transmitters that play a part in nociception and antinociception can be influenced by drugs. This allows conclusions to the dolorigene potential of therapeutics.

  17. Marathon run: cardiovascular adaptation and cardiovascular risk.

    PubMed

    Predel, Hans-Georg

    2014-11-21

    The first marathon run as an athletic event took place in the context of the Olympic Games in 1896 in Athens, Greece. Today, participation in a 'marathon run' has become a global phenomenon attracting young professional athletes as well as millions of mainly middle-aged amateur athletes worldwide each year. One of the main motives for these amateur marathon runners is the expectation that endurance exercise (EE) delivers profound beneficial health effects. However, with respect to the cardiovascular system, a controversial debate has emerged whether the marathon run itself is healthy or potentially harmful to the cardiovascular system, especially in middle-aged non-elite male amateur runners. In this cohort, exercise-induced increases in cardiac biomarkers-troponin and brain natriuretic peptide-and acute functional cardiac alterations have been observed and interpreted as potential cardiac damage. Furthermore, in the cohort of 40- to 65-year-old males engaged in intensive EE, a significant risk for the development of atrial fibrillation has been identified. Fortunately, recent studies demonstrated a normalization of the cardiac biomarkers and the functional alterations within a short time frame. Therefore, these alterations may be perceived as physiological myocardial reactions to the strenuous exercise and the term 'cardiac fatigue' has been coined. This interpretation is supported by a recent analysis of 10.9 million marathon runners demonstrating that there was no significantly increased overall risk of cardiac arrest during long-distance running races. In conclusion, intensive and long-lasting EE, e.g. running a full-distance Marathon, results in high cardiovascular strain whose clinical relevance especially for middle-aged and older athletes is unclear and remains a matter of controversy. Furthermore, there is a need for evidence-based recommendations with respect to medical screening and training strategies especially in male amateur runners over the age of

  18. ROS, Notch, and Wnt signaling pathways: crosstalk between three major regulators of cardiovascular biology.

    PubMed

    Caliceti, C; Nigro, P; Rizzo, P; Ferrari, R

    2014-01-01

    Reactive oxygen species (ROS), traditionally viewed as toxic by-products that cause damage to biomolecules, now are clearly recognized as key modulators in a variety of biological processes and pathological states. The development and regulation of the cardiovascular system require orchestrated activities; Notch and Wnt/β -catenin signaling pathways are implicated in many aspects of them, including cardiomyocytes and smooth muscle cells survival, angiogenesis, progenitor cells recruitment and differentiation, arteriovenous specification, vascular cell migration, and cardiac remodelling. Several novel findings regarding the role of ROS in Notch and Wnt/β-catenin modulation prompted us to review their emerging function in the cardiovascular system during embryogenesis and postnatally.

  19. Cardioprotective effects of lysyl oxidase inhibition against volume overload-induced extracellular matrix remodeling.

    PubMed

    El Hajj, Elia C; El Hajj, Milad C; Ninh, Van K; Gardner, Jason D

    2016-03-01

    A hallmark of heart failure (HF) is adverse extracellular matrix (ECM) remodeling, which is regulated by the collagen cross-linking enzyme, lysyl oxidase (LOX). In this study, we evaluate the efficacy of LOX inhibition to prevent adverse left ventricular (LV) remodeling and dysfunction using an experimental model of HF. Sprague-Dawley rats were subjected to surgically induced volume overload (VO) by creation of aortocaval fistula (ACF). A LOX inhibitor, beta-aminopropionitrile (BAPN; 100 mg/kg/day), was administered to rats with ACF or sham surgery at eight weeks postsurgery. Echocardiography was used to assess progressive alterations in cardiac ventricular structure and function. Left ventricular (LV) catheterization was used to assess alterations in contractility, stiffness, LV pressure and volume, and other indices of cardiac function. The LV ECM alterations were assessed by: (a) histological staining of collagen, (b) protein expression of collagen types I and III, (c) hydroxyproline assay, and (d) cross-linking assay. LOX inhibition attenuated VO-induced increases in cardiac stress, and attenuated increases in interstitial myocardial collagen, total collagen, and protein levels of collagens I and III. Both echocardiography and catheterization measurements indicated improved cardiac function post-VO in BAPN treated rats vs. untreated. Inhibition of LOX attenuated VO-induced decreases in LV stiffness and cardiac function. Overall, our data indicate that LOX inhibition was cardioprotective in the volume overloaded heart.

  20. Thiocolchicoside: review of adverse effects.

    PubMed

    2016-02-01

    Thiocolchicoside has long been used as a muscle relaxant, despite a lack of proven efficacy beyond the placebo effect. Its chemical structure consists of colchicine, a sugar (ose) and a sulphur-containing radical (thio), and its adverse effects are therefore likely to be similar to those of colchicine. Using the standard Prescrire methodology, we reviewed the available data on the adverse effects of thiocolchicoside. Liver injury, pancreatitis, seizures, blood cell disorders, severe cutaneous disorders, rhabdomyolysis and reproductive disorders have all been recorded in the French and European pharmacovigilance databases and in the periodic updates that the companies concerned submit to regulatory agencies. These data do not specify the frequency of the disorders nor do they identify the most susceptible patient populations. Thiocolchicoside is teratogenic in experimental animals and also damages chromosomes. Human data are limited to a follow-up of about 30 pregnant women (no major malformations) and reports of altered spermatogenesis, including cases of azoospermia. In practice, there is no justification for exposing patients to the adverse effects of thiocolchicoside. It is better to use an effective, well-known analgesic for patients complaining of muscle pain, starting with paracetamol.

  1. Adverse food-drug interactions.

    PubMed

    de Boer, Alie; van Hunsel, Florence; Bast, Aalt

    2015-12-01

    Food supplements and herbal products are increasingly popular amongst consumers. This leads to increased risks of interactions between prescribed drugs and these products containing bioactive ingredients. From 1991 up to 2014, 55 cases of suspected adverse drug reactions due to concomitant intake of health-enhancing products and drugs were reported to Lareb, the Netherlands Pharmacovigilance Centre. An overview of these suspected interactions is presented and their potential mechanisms of action are described. Mainly during the metabolism of xenobiotics and due to the pharmacodynamics effects interactions seem to occur, which may result in adverse drug reactions. Where legislation is seen to distinct food and medicine, legislation concerning these different bioactive products is less clear-cut. This can only be resolved by increasing the molecular knowledge on bioactive substances and their potential interactions. Thereby potential interactions can be better understood and prevented on an individual level. By considering the dietary pattern and use of bioactive substances with prescribed medication, both health professionals and consumers will be increasingly aware of interactions and these interactive adverse effects can be prevented.

  2. Nutrition and cardiovascular health.

    PubMed

    Berciano, Silvia; Ordovás, José M

    2014-09-01

    A multitude of studies have been published on the relationship between cardiovascular disease risk and a variety of nutrients, foods, and dietary patterns. Despite the well-accepted notion that diet has a significant influence on the development and prevention of cardiovascular disease, the foods considered healthy and harmful have varied over the years. This review aims to summarize the current scientific evidence on the cardioprotective effect of those foods and nutrients that have been considered healthy as well as those that have been deemed unhealthy at any given time in history. For this purpose, we reviewed the most recent literature using as keywords foods and nutrients (ie, meat, omega-3) and cardiovascular disease-related terms (ie, cardiovascular diseases, stroke). Emphasis has been placed on meta-analyses and Cochrane reviews. In general, there is a paucity of intervention studies with a high level of evidence supporting the benefits of healthy foods (ie, fruits and vegetables), whereas the evidence supporting the case against those foods considered less healthy (ie, saturated fat) seems to be weakened by most recent evidence. In summary, most of the evidence supporting the benefits and harms of specific foods and nutrients is based on observational epidemiological studies. The outcome of randomized clinical trials reveals a more confusing picture with most studies providing very small effects in one direction or another; the strongest evidence comes from dietary patterns. The current status of the relationship between diet and cardiovascular disease risk calls for more tailored recommendations based on genomic technologies.

  3. Cardiovascular Pharmacology of Cannabinoids

    PubMed Central

    Pacher, P.; Bátkai, S.; Kunos, G.

    2008-01-01

    Cannabinoids and their synthetic and endogenous analogs affect a broad range of physiological functions, including cardiovascular variables, the most important component of their effect being profound hypotension. The mechanisms of the cardiovascular effects of cannabinoids in vivo are complex and may involve modulation of autonomic outflow in both the central and peripheral nervous systems as well as direct effects on the myocardium and vasculature. Although several lines of evidence indicate that the cardiovascular depressive effects of cannabinoids are mediated by peripherally localized CB1 receptors, recent studies provide strong support for the existence of as-yet-undefined endothelial and cardiac receptor(s) that mediate certain endocannabinoid-induced cardiovascular effects. The endogenous cannabinoid system has been recently implicated in the mechanism of hypotension associated with hemorrhagic, endotoxic, and cardiogenic shock, and advanced liver cirrhosis. Furthermore, cannabinoids have been considered as novel antihypertensive agents. A protective role of endocannabinoids in myocardial ischemia has also been documented. In this chapter, we summarize current information on the cardiovascular effects of cannabinoids and highlight the importance of these effects in a variety of pathophysiological conditions. PMID:16596789

  4. Soluble Guanylate Cyclase Stimulation Prevents Fibrotic Tissue Remodeling and Improves Survival in Salt-Sensitive Dahl Rats

    PubMed Central

    Geschka, Sandra; Kretschmer, Axel; Sharkovska, Yuliya; Evgenov, Oleg V.; Lawrenz, Bettina; Hucke, Andreas; Hocher, Berthold; Stasch, Johannes-Peter

    2011-01-01

    Background A direct pharmacological stimulation of soluble guanylate cyclase (sGC) is an emerging therapeutic approach to the management of various cardiovascular disorders associated with endothelial dysfunction. Novel sGC stimulators, including riociguat (BAY 63-2521), have a dual mode of action: They sensitize sGC to endogenously produced nitric oxide (NO) and also directly stimulate sGC independently of NO. Little is known about their effects on tissue remodeling and degeneration and survival in experimental malignant hypertension. Methods and Results Mortality, hemodynamics and biomarkers of tissue remodeling and degeneration were assessed in Dahl salt-sensitive rats maintained on a high salt diet and treated with riociguat (3 or 10 mg/kg/d) for 14 weeks. Riociguat markedly attenuated systemic hypertension, improved systolic heart function and increased survival from 33% to 85%. Histological examination of the heart and kidneys revealed that riociguat significantly ameliorated fibrotic tissue remodeling and degeneration. Correspondingly, mRNA expression of the pro-fibrotic biomarkers osteopontin (OPN), tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and plasminogen activator inhibitor-1 (PAI-1) in the myocardium and the renal cortex was attenuated by riociguat. In addition, riociguat reduced plasma and urinary levels of OPN, TIMP-1, and PAI-1. Conclusions Stimulation of sGC by riociguat markedly improves survival and attenuates systemic hypertension and systolic dysfunction, as well as fibrotic tissue remodeling in the myocardium and the renal cortex in a rodent model of pressure and volume overload. These findings suggest a therapeutic potential of sGC stimulators in diseases associated with impaired cardiovascular and renal functions. PMID:21789188

  5. Diabetes Drugs and Cardiovascular Safety

    PubMed Central

    2016-01-01

    Diabetes is a well-known risk factor of cardiovascular morbidity and mortality, and the beneficial effect of improved glycemic control on cardiovascular complications has been well established. However, the rosiglitazone experience aroused awareness of potential cardiovascular risk associated with diabetes drugs and prompted the U.S. Food and Drug Administration to issue new guidelines about cardiovascular risk. Through postmarketing cardiovascular safety trials, some drugs demonstrated cardiovascular benefits, while some antidiabetic drugs raised concern about a possible increased cardiovascular risk associated with drug use. With the development of new classes of drugs, treatment options became wider and the complexity of glycemic management in type 2 diabetes has increased. When choosing the appropriate treatment strategy for patients with type 2 diabetes at high cardiovascular risk, not only the glucose-lowering effects, but also overall benefits and risks for cardiovascular disease should be taken into consideration. PMID:27302713

  6. Diabetes Drugs and Cardiovascular Safety.

    PubMed

    Bae, Ji Cheol

    2016-06-01

    Diabetes is a well-known risk factor of cardiovascular morbidity and mortality, and the beneficial effect of improved glycemic control on cardiovascular complications has been well established. However, the rosiglitazone experience aroused awareness of potential cardiovascular risk associated with diabetes drugs and prompted the U.S. Food and Drug Administration to issue new guidelines about cardiovascular risk. Through postmarketing cardiovascular safety trials, some drugs demonstrated cardiovascular benefits, while some antidiabetic drugs raised concern about a possible increased cardiovascular risk associated with drug use. With the development of new classes of drugs, treatment options became wider and the complexity of glycemic management in type 2 diabetes has increased. When choosing the appropriate treatment strategy for patients with type 2 diabetes at high cardiovascular risk, not only the glucose-lowering effects, but also overall benefits and risks for cardiovascular disease should be taken into consideration.

  7. Control of bone remodelling by applied dynamic loads

    NASA Technical Reports Server (NTRS)

    Lanyon, L. E.; Rubin, C. T.

    1984-01-01

    The data showing the relationship between bone mass and peak strain magnitude prepared and submitted for publication. The data from experiments relating remodelling activity with static or dynamic loads were prepared and submitted for publication. Development of programs to relate the location of remodelling activity with he natural and artificial dynamic strain distributions continued. Experiments on the effect of different strain rates on the remodelling response continued.

  8. Cardiovascular Reactivity in Patients With Major Depressive Disorder With High- or Low-Level Depressive Symptoms: A Cross-Sectional Comparison of Cardiovascular Reactivity to Laboratory-Induced Mental Stress.

    PubMed

    Wang, Mei-Yeh; Chiu, Chen-Huan; Lee, Hsin-Chien; Su, Chien-Tien; Tsai, Pei-Shan

    2016-03-01

    Depression increases the risk of adverse cardiac events. Cardiovascular reactivity is defined as the pattern of cardiovascular responses to mental stress. An altered pattern of cardiovascular reactivity is an indicator of subsequent cardiovascular disease. Because depression and adverse cardiac events may have a dose-dependent association, this study examined the differences in cardiovascular reactivity to mental stress between patients with major depressive disorder (MDD) with high depression levels and those with low depression levels. Moreover, autonomic nervous system regulation is a highly plausible biological mechanism for the pattern of cardiovascular reactivity to mental stress. The association between cardiovascular reactivity and parameters of heart rate variability (HRV), an index for quantifying autonomic nervous system activity modulation, was thus examined. This study included 88 patients with MDD. HRV was measured before stress induction. The Stroop Color and Word Test and mirror star-tracing task were used to induce mental stress. We observed no significant association between depressive symptom level and any of the cardiovascular reactivity parameters. Cardiovascular reactivity to mental stress was comparable between patients with MDD with high-level depressive symptoms and those with low-level depressive symptoms. After adjusting for confounding variables, the high-frequency domain of HRV was found to be an independent predictor of the magnitude of heart rate reactivity (β = -.33, p = .002). In conclusion, the magnitude of cardiovascular reactivity may be independent of depression severity in patients with MDD. The autonomic regulation of cardiovascular responses to mental stress primarily influences heart rate reactivity in patients with MDD.

  9. Overall cardiovascular profile of sildenafil citrate.

    PubMed

    Zusman, R M; Morales, A; Glasser, D B; Osterloh, I H

    1999-03-04

    Sildenafil, a selective inhibitor of phosphodiesterase type 5 (PDE5), is the first in a new class of orally effective treatments for erectile dysfunction. During sexual stimulation, the cavernous nerves release nitric oxide (NO), which induces cyclic guanosine monophosphate (cGMP) formation and smooth muscle relaxation in the corpus cavernosum. Sildenafil facilitates the erectile process during sexual stimulation by inhibiting PDE5 and thus blocking the breakdown of cGMP. Sildenafil alone can cause mean peak reductions in systolic/diastolic blood pressure of 10/7 mm Hg that are not dose related, whereas the heart rate is unchanged. Sildenafil and nitrates both increase cGMP levels in the systemic circulation but at different points along the NO-cGMP pathway. The combination is contraindicated because they synergistically potentiate vasodilation and may cause excessive reductions in blood pressure. Erectile dysfunction is a significant medical condition that shares numerous risk factors with ischemic heart disease, and hence a substantial overlap exists between these patient groups. From extensive clinical trials, the most commonly reported cardiovascular adverse events in patients treated with sildenafil were headache (16%), flushing (10%), and dizziness (2%). The incidences of hypotension, orthostatic hypotension, and syncope and the rate of discontinuation of treatment due to adverse events were <2% and were the same in patients taking sildenafil and those taking placebo. Retrospective analysis of the concomitant use of antihypertensive medications (beta blockers, alpha blockers, diuretics, angiotensin-converting enzyme inhibitors, and calcium antagonists) in patients taking sildenafil did not indicate an increase in the reports of adverse events or significant episodes of hypotension compared with patients treated with sildenafil alone. In clinical trials, the incidence of serious cardiovascular adverse events, including stroke and myocardial infarction, was the

  10. Differential Role of Leptin and Adiponectin in Cardiovascular System

    PubMed Central

    Ghantous, C. M.; Azrak, Z.; Hanache, S.; Abou-Kheir, W.; Zeidan, A.

    2015-01-01

    Leptin and adiponectin are differentially expressed adipokines in obesity and cardiovascular diseases. Leptin levels are directly associated with adipose tissue mass, while adiponectin levels are downregulated in obesity. Although significantly produced by adipocytes, leptin is also produced by vascular smooth muscle cells and cardiomyocytes. Plasma leptin concentrations are elevated in cases of cardiovascular diseases, such as hypertension, congestive heart failure, and myocardial infarction. As for the event of left ventricular hypertrophy, researchers have been stirring controversy about the role of leptin in this form of cardiac remodeling. In this review, we discuss how leptin has been shown to play an antihypertrophic role in the development of left ventricular hypertrophy through in vitro experiments, population-based cross-sectional studies, and longitudinal cohort studies. Conversely, we also examine how leptin may actually promote left ventricular hypertrophy using in vitro analysis and human-based univariate and multiple linear stepwise regression analysis. On the other hand, as opposed to leptin's generally detrimental effects on the cardiovascular system, adiponectin is a cardioprotective hormone that reduces left ventricular and vascular hypertrophy, oxidative stress, and inflammation. In this review, we also highlight adiponectin signaling and its protective actions on the cardiovascular system. PMID:26064110

  11. Cell death and survival signalling in the cardiovascular system.

    PubMed

    Tucka, Joanna; Bennett, Martin; Littlewood, Trevor

    2012-01-01

    The loss of cells is an important factor in many diseases, including those of the cardiovascular system. Whereas apoptosis is an essential process in development and tissue homeostasis, its occurrence is often associated with various pathologies. Apoptosis of neurons that fail to make appropriate connections is essential for the selection of correct neural signalling in the developing embryo, but its appearance in adults is often associated with neurodegenerative disease. Similarly, in the cardiovascular system, remodeling of the mammalian outflow tract during the transition from a single to dual series circulation with four chambers is accompanied by a precise pattern of cell death, but apoptosis of cardiomyocytes contributes to ischemia-reperfusion injury in the heart. In many cases, it is unclear whether apoptosis represents a causative association or merely a consequence of the disease itself. There are many excellent reviews on cell death in the cardiovascular system (1-5); in this review we outline the critical signalling pathways that promote the survival of cardiovascular cells, and their relevance to both physiological cell death and disease.

  12. Hydrogen sulfide as a potent cardiovascular protective agent.

    PubMed

    Yu, Xiao-Hua; Cui, Li-Bao; Wu, Kai; Zheng, Xi-Long; Cayabyab, Francisco S; Chen, Zhi-Wei; Tang, Chao-Ke

    2014-11-01

    Hydrogen sulfide (H2S) is a well-known toxic gas with the characteristic smell of rotten eggs. It is synthesized endogenously in mammals from the sulfur-containing amino acid l-cysteine by the action of several distinct enzymes: cystathionine-γ-lyase (CSE), cystathionine-ß-synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (3-MST) along with cysteine aminotransferase (CAT). In particular, CSE is considered to be the major H2S-producing enzyme in the cardiovascular system. As the third gasotransmitter next to nitric oxide (NO) and carbon monoxide (CO), H2S plays an important role in the regulation of vasodilation, angiogenesis, inflammation, oxidative stress and apoptosis. Growing evidence has demonstrated that this gas exerts a significant protective effect against the progression of cardiovascular diseases by a number of mechanisms such as vasorelaxation, inhibition of cardiovascular remodeling and resistance to form foam cells. The aim of this review is to provide an overview of the physiological functions of H2S and its protection against several major cardiovascular diseases, and to explore its potential health and therapeutic benefits. A better understanding will help develop novel H2S-based therapeutic interventions for these diseases.

  13. Role of Endogenous Sulfur Dioxide in Regulating Vascular Structural Remodeling in Hypertension

    PubMed Central

    Chen, Selena; Tang, Chaoshu

    2016-01-01

    Sulfur dioxide (SO2), an emerging gasotransmitter, was discovered to be endogenously generated in the cardiovascular system. Recently, the physiological effects of endogenous SO2 were confirmed. Vascular structural remodeling (VSR), an important pathological change in many cardiovascular diseases, plays a crucial role in the pathogenesis of the diseases. Here, the authors reviewed the research progress of endogenous SO2 in regulating VSR by searching the relevant data from PubMed and Medline. In spontaneously hypertensive rats (SHRs) and pulmonary hypertensive rats, SO2/aspartate aminotransferase (AAT) pathway was significantly altered. SO2 inhibited vascular smooth muscle cell (VSMC) proliferation, promoted apoptosis, inhibited the synthesis of extracellular collagen but promoted its degradation, and enhanced antioxidative capacity, thereby playing a significant role in attenuating VSR. However, the detailed mechanisms needed to be further explored. Further studies in this field would be important for the better understanding of the pathogenesis of systemic hypertension and pulmonary hypertension. Also, clinical trials are needed to demonstrate if SO2 would be a potential therapeutic target in cardiovascular diseases. PMID:27721913

  14. The Effect of Rosuvastatin on Inflammation, Matrix Turnover and Left Ventricular Remodeling in Dilated Cardiomyopathy: A Randomized, Controlled Trial

    PubMed Central

    Gjertsen, Erik; Ueland, Thor; Yndestad, Arne; Godang, Kristin; Stueflotten, Wenche; Andreassen, Johanna; Svendsmark, Rolf; Smith, Hans-Jørgen; Aakhus, Svend; Aukrust, Pål; Gullestad, Lars

    2014-01-01

    Background Dilated cardiomyopathy is characterized by left ventricular dilatation and dysfunction. Inflammation and adverse remodeling of the extracellular matrix may be involved in the pathogenesis. Statins reduce levels of low density lipoprotein cholesterol, but may also attenuate inflammation and affect matrix remodeling. We hypothesized that treatment with rosuvastatin would reduce or even reverse left ventricular remodeling in dilated cardiomyopathy. Materials and Methods In this multicenter, randomized, double blind, placebo-controlled study, 71 patients were randomized to 10 mg of rosuvastatin or matching placebo. Physical examination, blood sampling, echocardiography and cardiac magnetic resonance imaging were performed at baseline and at six months’ follow-up. The pre-specified primary end point was the change in left ventricular ejection fraction from baseline to six months. Results Over all, left ventricular ejection fraction improved 5 percentage points over the duration of the study, but there was no difference in the change in left ventricular ejection fraction between patients allocated to rosuvastatin and those allocated to placebo. Whereas serum low density lipoprotein cholesterol concentration fell significantly in the treatment arm, rosuvastatin did not affect plasma or serum levels of a wide range of inflammatory variables, including C-reactive protein. The effect on markers of extracellular matrix remodeling was modest. Conclusion Treatment with rosuvastatin does not improve left ventricular ejection fraction in patients with dilated cardiomyopathy. Trial Registration ClinicalTrials.gov NCT00505154 PMID:24586994

  15. Nucleosome remodelers in double-strand break repair.

    PubMed

    Seeber, Andrew; Hauer, Michael; Gasser, Susan M

    2013-04-01

    ATP-dependent nucleosome remodelers use ATP hydrolysis to shift, evict and exchange histone dimers or octamers and have well-established roles in transcription. Earlier work has suggested a role for nucleosome remodelers such as INO80 in double-strand break (DSB) repair. This review will begin with an update on recent studies that explore how remodelers are recruited to DSBs. We then examine their impact on various steps of repair, focusing on resection and the formation of the Rad51-ssDNA nucleofilament. Finally, we will explore new studies that implicate remodelers in the physical movement of chromatin in response to damage.

  16. Chromatin remodelling: the industrial revolution of DNA around histones.

    PubMed

    Saha, Anjanabha; Wittmeyer, Jacqueline; Cairns, Bradley R

    2006-06-01

    Chromatin remodellers are specialized multi-protein machines that enable access to nucleosomal DNA by altering the structure, composition and positioning of nucleosomes. All remodellers have a catalytic ATPase subunit that is similar to known DNA-translocating motor proteins, suggesting DNA translocation as a unifying aspect of their mechanism. Here, we explore the diversity and specialization of chromatin remodellers, discuss how nucleosome modifications regulate remodeller activity and consider a model for the exposure of nucleosomal DNA that involves the use of directional DNA translocation to pump 'DNA waves' around the nucleosome.

  17. LRP1 regulates remodeling of the extracellular matrix by fibroblasts

    PubMed Central

    Gaultier, Alban; Hollister, Margaret; Reynolds, Irene; Hsieh, En-hui; Gonias, Steven L.

    2009-01-01

    Low density lipoprotein receptor-related protein (LRP1) is an endocytic receptor for diverse proteases, protease inhibitors, and other plasma membrane proteins, including the urokinase receptor (uPAR). LRP1 also functions in cell-signaling and regulates gene expression. The goal of this study was to determine whether LRP1 regulates remodeling of provisional extracellular matrix (ECM) by fibroblasts. To address this problem, we utilized an in vitro model in which type I collagen was reconstituted and overlaid with fibronectin. Either the collagen or fibronectin was fluorescently-labeled. ECM remodeling by fibroblasts deficient in LRP1, uPAR, or MT1-MMP was studied. MT1-MMP was required for efficient remodeling of the deep collagen layer but not involved in fibronectin remodeling. Instead, fibronectin was remodeled by a system that required urokinase-type plasminogen activator (uPA), uPAR, and exogenously-added plasminogen. LRP1 markedly inhibited fibronectin remodeling by regulating cell-surface uPAR and plasminogen activation. LRP1 also regulated remodeling of the deep collagen layer but not by controlling MT1-MMP. Instead, LRP1 deficiency or inhibition de-repressed a secondary pathway for collagen remodeling, which was active in MT1-MMP-deficient cells but not in uPAR-deficient cells. These results demonstrate that LRP1 regulates ECM remodeling principally by repressing pathways that require plasminogen activation by uPA in association with uPAR. PMID:19699300

  18. Advancing cardiovascular tissue engineering

    PubMed Central

    Truskey, George A.

    2016-01-01

    Cardiovascular tissue engineering offers the promise of biologically based repair of injured and damaged blood vessels, valves, and cardiac tissue. Major advances in cardiovascular tissue engineering over the past few years involve improved methods to promote the establishment and differentiation of induced pluripotent stem cells (iPSCs), scaffolds from decellularized tissue that may produce more highly differentiated tissues and advance clinical translation, improved methods to promote vascularization, and novel in vitro microphysiological systems to model normal and diseased tissue function. iPSC technology holds great promise, but robust methods are needed to further promote differentiation. Differentiation can be further enhanced with chemical, electrical, or mechanical stimuli. PMID:27303643

  19. Cardiovascular adaptation in athletes.

    PubMed

    Kovacs, Richard; Baggish, Aaron L

    2016-01-01

    Millions of athletes train for and participate in competitive athletics each year. Many of these athletes will present to a cardiovascular specialist with signs or symptoms that might indicate heart disease and these athletes/patients will ask for advice on their ability to continue to train and compete safely. By virtue of their training, athletes׳ hearts may undergo significant structural and electrical change, presenting a special challenge for the cardiovascular specialist. It is important to understand normal adaptive changes in order to separate normal physiology from pathology.

  20. [Sugar and cardiovascular disease].

    PubMed

    Gómez Morales, Luis; Beltrán Romero, Luis Matías; García Puig, Juan

    2013-07-01

    Cardiovascular diseases are the leading cause of death in the Spanish population and may be a relationship between the prevalence of these and excessive sugar consumption. In recent years, researchers have focused on the properties of these nutrients. Although there are many studies examining this association, the results are not unanimous. In any case there is sufficient basis for designing public health strategies in order to reduce the consumption of sugary drinks as part of a healthy lifestyle. Therefore, the question we address is: sugar intake in abundant amounts, is associated with a higher risk of cardiovascular disease? We use as the focus of the discussion SAFO analysis model.

  1. Myeloperoxidase and cardiovascular disease.

    PubMed

    Nicholls, Stephen J; Hazen, Stanley L

    2005-06-01

    Myeloperoxidase (MPO) is a leukocyte-derived enzyme that catalyzes the formation of a number of reactive oxidant species. In addition to being an integral component of the innate immune response, evidence has emerged that MPO-derived oxidants contribute to tissue damage during inflammation. MPO-catalyzed reactions have been attributed to potentially proatherogenic biological activities throughout the evolution of cardiovascular disease, including during initiation, propagation, and acute complication phases of the atherosclerotic process. As a result, MPO and its downstream inflammatory pathways represent attractive targets for both prognostication and therapeutic intervention in the prophylaxis of atherosclerotic cardiovascular disease.

  2. Clocks and cardiovascular function

    PubMed Central

    McLoughlin, Sarah C.; Haines, Philip; FitzGerald, Garret A.

    2016-01-01

    Circadian clocks in central and peripheral tissues enable the temporal synchronization and organization of molecular and physiological processes of rhythmic animals, allowing optimum functioning of cells and organisms at the most appropriate time of day. Disruption of circadian rhythms, from external or internal forces, leads to widespread biological disruption and is postulated to underlie many human conditions, such as the incidence and timing of cardiovascular disease. Here, we describe in vivo and in vitro methodology relevant to studying the role of circadian rhythms in cardiovascular function and dysfunction PMID:25707279

  3. Cardiovascular bubble dynamics.

    PubMed

    Bull, Joseph L

    2005-01-01

    Gas bubbles can form in the cardiovascular system as a result of patho-physiological conditions or can be intentionally introduced for diagnostic or therapeutic reasons. The dynamic behavior of these bubbles is caused by a variety of mechanisms, such as inertia, pressure, interfacial tension, viscosity, and gravity. We review recent advances in the fundamental mechanics and applications of cardiovascular bubbles, including air embolism, ultrasound contrast agents, targeted microbubbles for drug delivery and molecular imaging, cavitation-induced tissue erosion for ultrasonic surgery, microbubble-induced angiogenesis and arteriogenesis, and gas embolotherapy.

  4. CHD chromatin remodelers and the transcription cycle.

    PubMed

    Murawska, Magdalena; Brehm, Alexander

    2011-01-01

    It is well established that ATP-dependent chromatin remodelers modulate DNA access of transcription factors and RNA polymerases by "opening" or "closing" chromatin structure. However, this view is far too simplistic. Recent findings have demonstrated that these enzymes not only set the stage for the transcription machinery to act but are actively involved at every step of the transcription process. As a consequence, they affect initiation, elongation, termination and RNA processing. In this review we will use the CHD family as a paradigm to illustrate the progress that has been made in revealing these new concepts.

  5. Bacterial genome remodeling through bacteriophage recombination.

    PubMed

    Menouni, Rachid; Hutinet, Geoffrey; Petit, Marie-Agnès; Ansaldi, Mireille

    2015-01-01

    Bacteriophages co-exist and co-evolve with their hosts in natural environments. Virulent phages lyse infected cells through lytic cycles, whereas temperate phages often remain dormant and can undergo lysogenic or lytic cycles. In their lysogenic state, prophages are actually part of the host genome and replicate passively in rhythm with host division. However, prophages are far from being passive residents: they can modify or bring new properties to their host. In this review, we focus on two important phage-encoded recombination mechanisms, i.e. site-specific recombination and homologous recombination, and how they remodel bacterial genomes.

  6. miR-222 is Necessary for Exercise-induced Cardiac Growth and Protects Against Pathological Cardiac Remodeling

    PubMed Central

    Liu, Xiaojun; Xiao, Junjie; Zhu, Han; Wei, Xin; Platt, Colin; Damilano, Federico; Xiao, Chunyang; Bezzerides, Vassilios; Boström, Pontus; Che, Lin; Zhang, Chunxiang; Spiegelman, Bruce M; Rosenzweig, Anthony

    2015-01-01

    SUMMARY Exercise induces physiological cardiac growth and protects the heart against pathological remodeling. Recent work suggests exercise also enhances the heart’s capacity for repair, which could be important for regenerative therapies. While microRNAs are important in certain cardiac pathologies, less is known about their functional roles in exercise-induced cardiac phenotypes. We profiled cardiac microRNA expression in two distinct models of exercise and found microRNA-222 (miR-222) was upregulated in both. Downstream miR-222 targets modulating cardiomyocyte phenotype were identified, including HIPK1 and Homeobox-1. Inhibition of miR-222 in vivo completely blocked cardiac and cardiomyocyte growth in response to exercise, while reducing markers of cardiomyocyte proliferation. Importantly, mice with inducible cardiomyocyte miR-222 expression were resistant to adverse cardiac remodeling and dysfunction after ischemic injury. These studies implicate miR-222 as necessary for exercise-induced cardiomyocyte growth and proliferation in the adult mammalian heart and show that it is sufficient to protect the heart against adverse remodeling. PMID:25863248

  7. miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling.

    PubMed

    Liu, Xiaojun; Xiao, Junjie; Zhu, Han; Wei, Xin; Platt, Colin; Damilano, Federico; Xiao, Chunyang; Bezzerides, Vassilios; Boström, Pontus; Che, Lin; Zhang, Chunxiang; Spiegelman, Bruce M; Rosenzweig, Anthony

    2015-04-07

    Exercise induces physiological cardiac growth and protects the heart against pathological remodeling. Recent work suggests exercise also enhances the heart's capacity for repair, which could be important for regenerative therapies. While microRNAs are important in certain cardiac pathologies, less is known about their functional roles in exercise-induced cardiac phenotypes. We profiled cardiac microRNA expression in two distinct models of exercise and found microRNA-222 (miR-222) was upregulated in both. Downstream miR-222 targets modulating cardiomyocyte phenotypes were identified, including HIPK1 and HMBOX1. Inhibition of miR-222 in vivo completely blocked cardiac and cardiomyocyte growth in response to exercise while reducing markers of cardiomyocyte proliferation. Importantly, mice with inducible cardiomyocyte miR-222 expression were resistant to adverse cardiac remodeling and dysfunction after ischemic injury. These studies implicate miR-222 as necessary for exercise-induced cardiomyocyte growth and proliferation in the adult mammalian heart and show that it is sufficient to protect the heart against adverse remodeling.

  8. Hyperthyroidism and cardiovascular morbidity and mortality.

    PubMed

    Osman, Faizel; Gammage, Michael D; Franklyn, Jayne A

    2002-06-01

    Hyperthyroidism is a common disorder affecting multiple systems in the body. The cardiovascular effects are among the most striking. The availability of effective treatments for hyperthyroidism has led to the widespread perception that it is a reversible disorder without any long-term consequences. Recent evidence suggests, however, that there may be adverse outcomes. Long-term follow-up studies have revealed increased mortality from cardiovascular and cerebrovascular disease in those with a past history of overt hyperthyroidism treated with radioiodine, as well as those with subclinical hyperthyroidism. Thyroid hormones are known to exert direct effects on the myocardium, as well as the systemic vasculature and predispose to dysrhythmias, especially supraventricular. Atrial fibrillation (AF) is a recognized complication of overt hyperthyroidism, and subclinical hyperthyroidism is also known to be a risk factor for development of AF. Supraventricular dysrhythmias, particularly atrial fibrillation, in older patients may account for some of the excess cardiovascular and cerebrovascular mortality described, especially because AF is known to predispose to embolic phenomena.

  9. Physiological role of FGF signaling in growth and remodeling of developing cardiovascular system.

    PubMed

    Krejci, E; Pesevski, Z; Nanka, O; Sedmera, D

    2016-07-18

    Fibroblast growth factor (FGF) signaling plays an important role during embryonic induction and patterning, as well as in modulating proliferative and hypertrophic growth in fetal and adult organs. Hemodynamically induced stretching is a powerful physiological stimulus for embryonic myocyte proliferation. The aim of this study was to assess the effect of FGF2 signaling on growth and vascularization of chick embryonic ventricular wall and its involvement in transmission of mechanical stretch-induced signaling to myocyte growth in vivo. Myocyte proliferation was significantly higher at the 48 h sampling interval in pressure-overloaded hearts. Neither Western blotting, nor immunohistochemistry performed on serial paraffin sections revealed any changes in the amount of myocardial FGF2 at that time point. ELISA showed a significant increase of FGF2 in the serum. Increased amount of FGF2 mRNA in the heart was confirmed by real time PCR. Blocking of FGF signaling by SU5402 led to decreased myocyte proliferation, hemorrhages in the areas of developing vasculature in epicardium and digit tips. FGF2 synthesis is increased in embryonic ventricular cardiomyocytes in response to increased stretch due to pressure overload. Inhibition of FGF signaling impacts also vasculogenesis, pointing to partial functional redundancy in paracrine control of cell proliferation in the developing heart.

  10. Adverse responses to local anaesthetics.

    PubMed

    Fisher, M M; Graham, R

    1984-11-01

    Progressive challenge was used to investigate twenty-seven patients with a history of an adverse response to local anaesthesia. True allergy was detected in only one patient. The method does not exclude reactions to additives and preservatives in local anaesthetics. If preservative-free local anaesthetics are used for subsequent exposure in patients with no response to progressive challenge, subsequent exposure is safe. The possibility that some of these patients may be reacting to preservatives in the solutions cannot be excluded by such testing. Where possible preservative-free local anaesthetic preparations should be used for subsequent anaesthesia.

  11. Adverse Outcomes in Group Psychotherapy

    PubMed Central

    Roback, Howard B.

    2000-01-01

    Group forms of therapy have been growing at a rapid rate, in part because of their documented effectiveness and economic considerations such as managed care. It is therefore becoming increasingly important to assess the psychological risks of these interventions. The author provides an overview of the published literature and conference presentations on negative effects in adult outpatient groups. Although much of the literature on adverse outcomes in group therapy focuses on single risk factors (e.g., negative leader, group process, or patient characteristics), the author argues that an interactional model should be encouraged. Means of reducing casualties are also discussed, as well as methodological issues and research directions. PMID:10896735

  12. Right ventricular relative wall thickness as a predictor of outcomes and of right ventricular reverse remodeling for patients with pulmonary hypertension.

    PubMed

    Sano, Hiroyuki; Tanaka, Hidekazu; Motoji, Yoshiki; Fukuda, Yuko; Mochizuki, Yasuhide; Hatani, Yutaka; Matsuzoe, Hiroki; Hatazawa, Keiko; Shimoura, Hiroyuki; Ooka, Junichi; Ryo-Koriyama, Keiko; Nakayama, Kazuhiko; Matsumoto, Kensuke; Emoto, Noriaki; Hirata, Ken-Ichi

    2017-03-01

    Mid-term right ventricular (RV) reverse remodeling after treatment in patients with pulmonary hypertension (PH) is associated with long-term outcome as well as baseline RV remodeling. However, baseline factors influencing mid-term RV reverse remodeling after treatment and its prognostic capability remain unclear. We studied 54 PH patients. Mid-term RV remodeling was assessed in terms of the RV area, which was traced planimetrically at the end-systole (RVESA). RV reverse remodeling was defined as a relative decrease in the RVESA of at least 15% at 10.2 ± 9.4 months after treatment. Long-term follow-up was 5 years. Adverse events occurred in ten patients (19%) and mid-term RV reverse remodeling after treatment was observed in 37 (69%). Patients with mid-term RV reverse remodeling had more favorable long-term outcomes than those without (log-rank: p = 0.01). Multivariate logistic regression analysis showed that RV relative wall thickness (RV-RWT), as calculated as RV free-wall thickness/RV basal linear dimension at end-diastole, was an independent predictor of mid-term RV reverse remodeling (OR 1.334; 95% CI, 1.039-1.713; p = 0.03). Moreover, patients with RV-RWT ≥0.21 showed better long-term outcomes than did those without (log-rank p = 0.03), while those with RV-RWT ≥0.21 and mid-term RV reverse remodeling had the best long-term outcomes. Patients with RV-RWT <0.21 and without mid-term RV reverse remodeling, on the other hand, had worse long-term outcomes than other sub-groups. In conclusions, RV-RWT could predict mid-term RV reverse remodeling after treatment in PH patients, and was associated with long-term outcomes. Our finding may have clinical implications for better management of PH patients.

  13. Attributable Risk Estimate of Severe Psoriasis on Major Cardiovascular Events

    PubMed Central

    Mehta, Nehal N.; Yu, YiDing; Pinnelas, Rebecca; Krishnamoorthy, Parasuram; Shin, Daniel B.; Troxel, Andrea B.; Gelfand, Joel M.

    2011-01-01

    Background Recent studies suggest that psoriasis, particularly if severe, may be a risk factor for major adverse cardiac events such as myocardial infarction, stroke, and mortality from cardiovascular disease. We compared the risk of major adverse cardiac events between patients with psoriasis and the general population and estimated the attributable risk of severe psoriasis. Methods We performed a cohort study in the General Practice Research Database. Severe psoriasis was defined as receiving a psoriasis diagnosis and systemic therapy (N=3,603). Up to 4 patients without psoriasis were selected from the same practices and start dates for each patient with psoriasis (N=14,330). Results Severe psoriasis was a risk factor for major adverse cardiac events (hazard ratio 1.53; 95% confidence interval 1.26, 1.85) after adjusting for age, gender, diabetes, hypertension, tobacco use and hyperlipidemia. After fully adjusted analysis, severe psoriasis conferred an additional 6.2% absolute risk of 10-year major adverse cardiac events. Conclusions Severe psoriasis confers an additional 6.2% absolute risk of 10-year rate of major adverse cardiac events compared to the general population. This potentially has important therapeutic implications for cardiovascular risk stratification and prevention in patients with severe psoriasis. Future prospective studies are needed to validate these findings. PMID:21787906

  14. Epigenetics and cardiovascular disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite advances in the prevention and management of cardiovascular disease (CVD), this group of multifactorial disorders remains a leading cause of mortality worldwide. CVD is associated with multiple genetic and modifiable risk factors; however, known environmental and genetic influences can only...

  15. Photonics in cardiovascular medicine

    NASA Astrophysics Data System (ADS)

    van Soest, Gijs; Regar, Evelyn; van der Steen, Antonius F. W.

    2015-10-01

    The use of photonics technology is bringing new capabilities and insights to cardiovascular medicine. Intracoronary imaging and sensing, laser ablation and optical pacing are just some of the functions being explored to help diagnose and treat conditions of the heart and arteries.

  16. Pharmacogenetics of cardiovascular drugs.

    PubMed

    Johnson, Julie A; Humma, Larisa M

    2002-02-01

    Pharmacogenetics is a field aimed at understanding the genetic contribution to inter-patient variability in drug efficacy and toxicity. Treatment of cardiovascular disease is, in most cases, guided by evidence from well-controlled clinical trials. Given the solid scientific basis for the treatment of most cardiovascular diseases, it is common for patients with a given disease to be treated in essentially the same manner. Thus, the clinical trials have been very informative about treating large groups of patients with a given disease, but are slightly less informative about the treatment of individual patients. Pharmacogenetics and pharmacogenomics have the potential of taking the information derived from large clinical trials and further refining it to select the drugs with the greatest likelihood for benefit, and least likelihood for harm, in individual patients, based on their genetic make-up. In this paper, the current literature on cardiovascular pharmacogenetics is emphasised, and how the use of pharmacogenetic/pharmacogenomic information may be particularly useful in the future in the treatment of cardiovascular diseases is also highlighted.

  17. Epidemiology of Cardiovascular Diseases.

    ERIC Educational Resources Information Center

    Jenkins, C. David

    1988-01-01

    Reviews epidemiological studies of cardiovascular diseases especially coronary heart disease (CHD), to document their major public health importance, changes in mortality during this century, and international comparisons of trends. Finds major risk factors for CHD are determined in large part by psychosocial and behavioral mechanisms. Asserts…

  18. Neuropeptides in cardiovascular control.

    PubMed

    Ganong, W F

    1984-12-01

    Neuropeptides can affect cardiovascular function in various ways. They can serve as cotransmitters in the autonomic nervous system; for example, vasoactive intestinal peptide (VIP) is released with acetylcholine and neuropeptide Y with norepinephrine from postganglionic neurons. Substance P and, presumably, other peptides can can affect cardiovascular function when released near blood vessels by antidromically conducted impulses in branches of stimulated sensory neurons. In the central nervous system, many different neuropeptides appear to function as transmitters or contransmittes in the neural pathways that regulate the cardiovascular system. In addition neuropeptides such as vasopressin and angiotensin II also circulate as hormones that are involved in cardiovascular control. Large doses of exogenous vasopressin are required to increase blood pressure in normal animals because the increase in total peripheral resistance produced by the hormones is accompanied by a decrease in cardiac output. However, studies with synthetic peptides that selectively antagonize the vasopressor action of vasopressin indicate that circulating vasopressin is important in maintaining blood pressure when animals are hypovolemic due to dehydration, haemorrhage or adrenocortical insufficiency. VIP dilates blood vessels and stimulates renin secretion by a direct action on the juxtaglomerular cells. Renin secretion is stimulated when the concentration of VIP in plasma exceeds 75 pmol/litre, and higher values are seen in a number of conditions. Neostigmine, a drug which increases the secretion of endogenous VIP, also increases renin secretion, and this increase is not blocked by renal denervation or propranolol. Thus, VIP may be a physiologically significant renin stimulating hormone.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. [Cardiovascular prevention: begin young].

    PubMed

    Visseren, Frank L J

    2009-01-01

    Atherosclerotic vascular disease is rare in the young. Nevertheless, the foundations for atherosclerotic disease in later life are laid early by a harmful lifestyle including overweight and smoking. Adolescents who are overweight or have the metabolic syndrome are at increased cardiovascular risk later in life.

  20. Vascular remodeling underlies rebleeding in hemophilic arthropathy.

    PubMed

    Bhat, Vikas; Olmer, Merissa; Joshi, Shweta; Durden, Donald L; Cramer, Thomas J; Barnes, Richard Fw; Ball, Scott T; Hughes, Tudor H; Silva, Mauricio; Luck, James V; Moore, Randy E; Mosnier, Laurent O; von Drygalski, Annette

    2015-11-01

    Hemophilic arthropathy is a debilitating condition that can develop as a consequence of frequent joint bleeding despite adequate clotting factor replacement. The mechanisms leading to repeated spontaneous bleeding are unknown. We investigated synovial, vascular, stromal, and cartilage changes in response to a single induced hemarthrosis in the FVIII-deficient mouse. We found soft-tissue hyperproliferation with marked induction of neoangiogenesis and evolving abnormal vascular architecture. While soft-tissue changes were rapidly reversible, abnormal vascularity persisted for months and, surprisingly, was also seen in uninjured joints. Vascular changes in FVIII-deficient mice involved pronounced remodeling with expression of α-Smooth Muscle Actin (SMA), Endoglin (CD105), and vascular endothelial growth factor, as well as alterations of joint perfusion as determined by in vivo imaging. Vascular architecture changes and pronounced expression of α-SMA appeared unique to hemophilia, as these were not found in joint tissue obtained from mouse models of rheumatoid arthritis and osteoarthritis and from patients with the same conditions. Evidence that vascular changes in hemophilia were significantly associated with bleeding and joint deterioration was obtained prospectively by dynamic in vivo imaging with musculoskeletal ultrasound and power Doppler of 156 joints (elbows, knees, and ankles) in a cohort of 26 patients with hemophilia at baseline and during painful episodes. These observations support the hypothesis that vascular remodeling contributes significantly to bleed propagation and development of hemophilic arthropathy. Based on these findings, the development of molecular targets for angiogenesis inhibition may be considered in this disease.

  1. Specific remodeling of splenic architecture by cytomegalovirus.

    PubMed

    Benedict, Chris A; De Trez, Carl; Schneider, Kirsten; Ha, Sukwon; Patterson, Ginelle; Ware, Carl F

    2006-03-01

    Efficient immune defenses are facilitated by the organized microarchitecture of lymphoid organs, and this organization is regulated by the compartmentalized expression of lymphoid tissue chemokines. Mouse cytomegalovirus (MCMV) infection induces significant remodeling of splenic microarchitecture, including loss of marginal zone macrophage populations and dissolution of T and B cell compartmentalization. MCMV preferentially infected the splenic stroma, targeting endothelial cells (EC) as revealed using MCMV-expressing green fluorescent protein. MCMV infection caused a specific, but transient transcriptional suppression of secondary lymphoid chemokine (CCL21). The loss of CCL21 was associated with the failure of T lymphocytes to locate within the T cell zone, although trafficking to the spleen was unaltered. Expression of CCL21 in lymphotoxin (LT)-alpha-deficient mice is dramatically reduced, however MCMV infection further reduced CCL21 levels, suggesting that viral modulation of CCL21 was independent of LTalpha signaling. Activation of LTbeta-receptor signaling with an agonistic antibody partially restored CCL21 mRNA expression and redirected transferred T cells to the splenic T cell zone in MCMV-infected mice. These results indicate that virus-induced alterations in lymphoid tissues can occur through an LT-independent modulation of chemokine transcription, and targeting of the LT cytokine system can counteract lymphoid tissue remodeling by MCMV.

  2. Densitometric evaluation of periprosthetic bone remodeling

    PubMed Central

    Parchi, Paolo Domenico; Cervi, Valentina; Piolanti, Nicola; Ciapini, Gianluca; Andreani, Lorenzo; Castellini, Iacopo; Poggetti, Andrea; Lisanti, Michele

    2014-01-01

    Summary The application of Dual-energy X-ray absorptiometry (DEXA) in orthopaedic surgery gradually has been extended from the study of osteoporosis to different areas of interest like the study of the relation between bone and prosthetic implants. Aim of this review is to analyze changes that occur in periprosthetic bone after the implantation of a total hip arthroplasty (THA) or a total knee arthroplasty (TKA). In THA the pattern of adaptive bone remodeling with different cementless femoral stems varies and it appears to be strictly related to the design and more specifically to where the femoral stem is fixed on bone. Short stems with metaphyseal fixation allow the maintenance of a more physiologic load transfer to the proximal femur decreasing the entity of bone loss. Femoral bone loss after TKA seems to be related to the stress shielding induced by the implants while tibial bone remodeling seems to be related to postoperative changes in knee alignment (varus/valgus) and consequently in tibial load transfer. After both THA and TKA stress shielding seems to be an inevitable phenomenon that occurs mainly in the first year after surgery. PMID:25568658

  3. Astaxanthin: a potential therapeutic agent in cardiovascular disease.

    PubMed

    Fassett, Robert G; Coombes, Jeff S

    2011-03-21

    Astaxanthin is a xanthophyll carotenoid present in microalgae, fungi, complex plants, seafood, flamingos and quail. It is an antioxidant with anti-inflammatory properties and as such has potential as a therapeutic agent in atherosclerotic cardiovascular disease. Synthetic forms of astaxanthin have been manufactured. The safety, bioavailability and effects of astaxanthin on oxidative stress and inflammation that have relevance to the pathophysiology of atherosclerotic cardiovascular disease, have been assessed in a small number of clinical studies. No adverse events have been reported and there is evidence of a reduction in biomarkers of oxidative stress and inflammation with astaxanthin administration. Experimental studies in several species using an ischaemia-reperfusion myocardial model demonstrated that astaxanthin protects the myocardium when administered both orally or intravenously prior to the induction of the ischaemic event. At this stage we do not know whether astaxanthin is of benefit when administered after a cardiovascular event and no clinical cardiovascular studies in humans have been completed and/or reported. Cardiovascular clinical trials are warranted based on the physicochemical and antioxidant properties, the safety profile and preliminary experimental cardiovascular studies of astaxanthin.

  4. Cardiovascular Pharmacogenomics – Implications for Patients with Chronic Kidney Disease

    PubMed Central

    Cavallari, Larisa H.; Mason, Darius L.

    2016-01-01

    Chronic kidney disease (CKD) is an independent risk factor for cardiovascular disease. Thus, patients with CKD often require treatment with cardiovascular drugs, such as antiplatelet, antihypertensive, anticoagulant, and lipid-lowering agents. There is significant inter-patient variability in response to cardiovascular therapies, which contributes to risk for treatment failure or adverse drug effects. Pharmacogenomics offers the potential to optimize cardiovascular pharmacotherapy and improve outcomes in patients with cardiovascular disease, though data in patients with concomitant CKD are limited. The drugs with the most pharmacogenomic evidence are warfarin, clopidogrel, and statins. There are also accumulating data for genetic contributions to β-blocker response. Guidelines are now available to assist with applying pharmacogenetic test results to optimize warfarin dosing, selection of antiplatelet therapy after percutaneous coronary intervention, and prediction of risk for statin-induced myopathy. Clinical data, such as age, body size, and kidney function have long been used to optimize drug prescribing. An increasing number of institutions are also implementing genetic testing to be considered in the context of important clinical factors to further personalize drug therapy for patients with cardiovascular disease. PMID:26979147

  5. Pharmacogenomics of statins: understanding susceptibility to adverse effects

    PubMed Central

    Kitzmiller, Joseph P; Mikulik, Eduard B; Dauki, Anees M; Murkherjee, Chandrama; Luzum, Jasmine A

    2016-01-01

    Statins are a cornerstone of the pharmacologic treatment and prevention of atherosclerotic cardiovascular disease. Atherosclerotic disease is a predominant cause of mortality and morbidity worldwide. Statins are among the most commonly prescribed classes of medications, and their prescribing indications and target patient populations have been significantly expanded in the official guidelines recently published by the American and European expert panels. Adverse effects of statin pharmacotherapy, however, result in significant cost and morbidity and can lead to nonadherence and discontinuation of therapy. Statin-associated muscle symptoms occur in ~10% of patients on statins and constitute the most commonly reported adverse effect associated with statin pharmacotherapy. Substantial clinical and nonclinical research effort has been dedicated to determining whether genetics can provide meaningful insight regarding an individual patient’s risk of statin adverse effects. This contemporary review of the relevant clinical research on polymorphisms in several key genes that affect statin pharmacokinetics (eg, transporters and metabolizing enzymes), statin efficacy (eg, drug targets and pathways), and end-organ toxicity (eg, myopathy pathways) highlights several promising pharmacogenomic candidates. However, SLCO1B1 521C is currently the only clinically relevant pharmacogenetic test regarding statin toxicity, and its relevance is limited to simvastatin myopathy. PMID:27757045

  6. The cardiovascular safety profile of escitalopram.

    PubMed

    Thase, Michael E; Larsen, Klaus G; Reines, Elin; Kennedy, Sidney H

    2013-11-01

    The cardiovascular effects of escitalopram were examined in a large group of participants in double-blind, randomized, placebo-controlled studies. Escitalopram (n=3298) was administered at doses between 5 and 20mg/day. Patients were treated in acute (8-12 weeks) and long-term (24 weeks) studies. Assessment of cardiovascular safety included heart rate, blood pressure (BP), treatment-emergent adverse events (TEAEs) and electrocardiograms (ECGs). In the short-term, there was a small, but statistically significant 2 beats per minute decrease in heart rate with escitalopram compared with placebo. The difference compared to placebo in systolic or diastolic BP was not clinically or statistically significant. Valid ECG assessments at both baseline and last assessment were available for 2407 escitalopram patients and 1952 placebo patients. Escitalopram-placebo differences in mean changes in ECG values were not clinically meaningful. The mean difference to placebo in the corrected QT [Fridericia's (QTcF)] interval was 3.5 ms (all escitalopram doses); 1.3 ms (escitalopram 10mg) and 1.7 ms (escitalopram 20mg) (p=0.2836 for 10 versus 20 mg). One out of 2407 escitalopram patients had a QTcF interval >500 ms and a change from baseline >60 ms. The incidence and types of cardiac-associated adverse events were similar between patients treated for 8-12 weeks with placebo (2.2%) or escitalopram (1.9%) and for 24 weeks with placebo (2.7%) or escitalopram (2.3%). Analyses of data from long-term studies and studies of the elderly showed similar results. In conclusion, these data demonstrate that escitalopram, like other SSRIs, has a statistically significant effect on heart rate and no clinically meaningful effect on ECG values, BP, with a placebo-level incidence of cardiac-associated adverse events.

  7. [Cardiovascular system and aging].

    PubMed

    Saner, H

    2005-12-01

    Aging is one of the most important cardiovascular risk factors. Age-related morphologic changes in large resistance vessels include an intima-media-thickening and increased deposition of matrix substance, ultimately leading to a reduced compliance and an increased stiffness of the vessels. Aging of the heart is mainly characterized by an increase of the left ventricular mass in relation to the chamber volume and a decrease of diastolic function. There is some controversy in regard to the question if these changes in the vessel wall are the consequence of aging or if a decrease in physical activity is a major contributor of this process. With age the cardiovascular profile is changing. Whereas smoking is less prominent, arterial hypertension and diabetes mellitus are more often encountered. Primary and secondary prevention through cardiovascular risk factor management is also very important in the aging population due to the increased risk of acute vascular complications with age. Preventive measures have to include life style factor interventions as well as optimized drug therapy. There is no scientific evidence that vascular aging can be prevented by administration of supplements such as antioxidant vitamins. Aspirin is effective for cardiovascular prevention up to a higher age. Betablockers and ACE-inhibitors are generally underused in older patients after myocardial infarctions. Statins are effective in reducing cardiovascular complications up to an age of 80 years. Myocardial infarction in elderly patients is often characterized by atypical symptoms and may be even silent. Interventional therapy in elderly patients is as successful as in younger patients but has an increased complication rate. Ambulatory cardiac rehabilitation in elderly patients leads to significant improvements of physical capacity, well-being and quality of life and may help to prevent social isolation.

  8. "Adversative Conjunction": The Poetics of Linguistic Opposition.

    ERIC Educational Resources Information Center

    Wallerstein, Nicholas

    1992-01-01

    The general use of adversative conjunction in (primarily) English and U.S. poetry is outlined. The contention is that the adversative is not merely a grammatical convenience but sometimes a highly functional tool of rhetorical strategy. (36 references) (LB)

  9. The international serious adverse events consortium.

    PubMed

    Holden, Arthur L; Contreras, Jorge L; John, Sally; Nelson, Matthew R

    2014-11-01

    The International Serious Adverse Events Consortium is generating novel insights into the genetics and biology of drug-induced serious adverse events, and thereby improving pharmaceutical product development and decision-making.

  10. Evaluation of the National Remodelling Team: Year 3. Final Report

    ERIC Educational Resources Information Center

    Easton, Claire; Eames, Anna; Wilson, Rebekah; Walker, Matthew; Sharp, Caroline

    2006-01-01

    The aim of the National Foundation for Educational Research (NFER) evaluation was to examine the effectiveness and impact of the work of the National Remodelling Team (NRT) in completing the third phase of the remodeling program and its effectiveness in applying its model, tools and techniques to the extended schools program. This evaluation has…

  11. CCR3 Blockade Attenuates Eosinophilic Ileitis and Associated Remodeling.

    PubMed

    Masterson, Joanne C; McNamee, Eóin N; Jedlicka, Paul; Fillon, Sophie; Ruybal, Joseph; Hosford, Lindsay; Rivera-Nieves, Jesús; Lee, James J; Furuta, Glenn T

    2011-11-01

    Intestinal remodeling and stricture formation is a complication of inflammatory bowel disease (IBD) that often requires surgical intervention. Although eosinophils are associated with mucosal remodeling in other organs and are increased in IBD tissues, their role in IBD-associated remodeling is unclear. Histological and molecular features of ileitis and remodeling were assessed using immunohistochemical, histomorphometric, flow cytometric, and molecular analysis (real-time RT-PCR) techniques in a murine model of chronic eosinophilic ileitis. Collagen protein was assessed by Sircol assay. Using a spontaneous eosinophilic Crohn's-like mouse model SAMP1/SkuSlc, we demonstrate an association between ileitis progression and remodeling over the course of 40 weeks. Mucosal and submucosal eosinophilia increased over the time course and correlated with increased histological inflammatory indices. Ileitis and remodeling increased over the 40 weeks, as did expression of fibronectin. CCR3-specific antibody-mediated reduction of eosinophils resulted in significant decrease in goblet cell hyperplasia, muscularis propria hypertrophy, villus blunting, and expression of inflammatory and remodeling genes, including fibronectin. Cellularity of local mesenteric lymph nodes, including T- and B-lymphocytes, was also significantly reduced. Thus, eosinophils participate in intestinal remodeling, supporting eosinophils as a novel therapeutic target.

  12. Effects of Growth Hormone on Cardiac Remodeling During Resistance Training in Rats

    PubMed Central

    Junqueira, Adriana; Cicogna, Antônio Carlos; Engel, Letícia Estevam; Aldá, Maiara Almeida; de Tomasi, Loreta Casquel; Giuffrida, Rogério; Giometti, Inês Cristina; Freire, Ana Paula Coelho Figueira; Aguiar, Andreo Fernando; Pacagnelli, Francis Lopes

    2016-01-01

    Background Although the beneficial effects of resistance training (RT) on the cardiovascular system are well established, few studies have investigated the effects of the chronic growth hormone (GH) administration on cardiac remodeling during an RT program. Objective To evaluate the effects of GH on the morphological features of cardiac remodeling and Ca2+ transport gene expression in rats submitted to RT. Methods Male Wistar rats were divided into 4 groups (n = 7 per group): control (CT), GH, RT and RT with GH (RTGH). The dose of GH was 0.2 IU/kg every other day for 30 days. The RT model used was the vertical jump in water (4 sets of 10 jumps, 3 bouts/wk) for 30 consecutive days. After the experimental period, the following variables were analyzed: final body weight (FBW), left ventricular weight (LVW), LVW/FBW ratio, cardiomyocyte cross-sectional area (CSA), collagen fraction, creatine kinase muscle-brain fraction (CK-MB) and gene expressions of SERCA2a, phospholamban (PLB) and ryanodine (RyR). Results There was no significant (p > 0.05) difference among groups for FBW, LVW, LVW/FBW ratio, cardiomyocyte CSA, and SERCA2a, PLB and RyR gene expressions. The RT group showed a significant (p < 0.05) increase in collagen fraction compared to the other groups. Additionally, the trained groups (RT and RTGH) had greater CK-MB levels compared to the untrained groups (CT and GH). Conclusion GH may attenuate the negative effects of RT on cardiac remodeling by counteracting the increased collagen synthesis, without affecting the gene expression that regulates cardiac Ca2+ transport. PMID:26647722

  13. Vessel remodelling, pregnancy hormones and extravillous trophoblast function.

    PubMed

    Chen, Jessie Z-J; Sheehan, Penelope M; Brennecke, Shaun P; Keogh, Rosemary J

    2012-02-26

    During early human pregnancy, extravillous trophoblast (EVT) cells from the placenta invade the uterine decidual spiral arterioles and mediate the remodelling of these vessels such that a low pressure, high blood flow can be supplied to the placenta. This is essential to facilitate normal growth and development of the foetus. Defects in remodelling can manifest as the serious pregnancy complication pre-eclampsia. During the period of vessel remodelling three key pregnancy-associated hormones, human chorionic gonadotrophin (hCG), progesterone (P(4)) and oestradiol (E(2)), are found in high concentrations at the maternal-foetal interface. Potentially these hormones may control EVT movement and thus act as regulators of vessel remodelling. This review will discuss what is known about how these hormones affect EVT proliferation, migration and invasion during vascular remodelling and the potential relationship between hCG, P(4), E(2) and the development of pre-eclampsia.

  14. Proliferation and tissue remodeling in cancer: the hallmarks revisited.

    PubMed

    Markert, E K; Levine, A J; Vazquez, A

    2012-10-04

    Although cancers are highly heterogeneous at the genomic level, they can manifest common patterns of gene expression. Here, we use gene expression signatures to interrogate two major processes in cancer, proliferation and tissue remodeling. We demonstrate that proliferation and remodeling signatures are partially independent and result in four distinctive cancer subtypes. Cancers with the proliferation signature are characterized by signatures of p53 and PTEN inactivation and concomitant Myc activation. In contrast, remodeling correlates with RAS, HIF-1α and NFκB activation. From the metabolic point of view, proliferation is associated with upregulation of glycolysis and serine/glycine metabolism, whereas remodeling is characterized by a downregulation of oxidative phosphorylation. Notably, the proliferation signature correlates with poor outcome in lung, prostate, breast and brain cancer, whereas remodeling increases mortality rates in colorectal and ovarian cancer.

  15. Chromatin remodeling in DNA double-strand break repair.

    PubMed

    Bao, Yunhe; Shen, Xuetong

    2007-04-01

    ATP-dependent chromatin remodeling complexes use ATP hydrolysis to remodel nucleosomes and have well-established functions in transcription. However, emerging lines of evidence suggest that chromatin remodeling complexes are important players in DNA double-strand break (DSB) repair as well. The INO80 and SWI2 subfamilies of chromatin remodeling complexes have been found to be recruited to the double-strand lesions and to function directly in both homologous recombination and non-homologous end-joining, the two major conserved DSB repair pathways. Improperly repaired DSBs are implicated in cancer development in higher organisms. Understanding how chromatin remodeling complexes contribute to DSB repair should provide new insights into the mechanisms of carcinogenesis and might suggest new targets for cancer treatment.

  16. Cardiovascular safety risk assessment for new candidate drugs from functional and pathological data: Conference report.

    PubMed

    Klein, Stephanie K; Redfern, Will S

    2015-01-01

    This is a report on a 2-day joint meeting between the British Society of Toxicological Pathology (BSTP) and the Safety Pharmacology Society (SPS) held in the UK in November 2013. Drug induced adverse effects on the cardiovascular system are associated with the attrition of more marketed and candidate drugs than any other safety issue. The objectives of this meeting were to foster inter-disciplinary approaches to address cardiovascular risk assessment, improve understanding of the respective disciplines, and increase awareness of new technologies. These aims were achieved. This well attended meeting covered both 'purely functional' cardiovascular adverse effects of drugs (e.g., electrophysiological and haemodynamic changes) as well as adverse effects encompassing both functional and pathological changes. Most of the presentations focused on nonclinical safety data, with information on translation to human where known. To reflect the content of the presentations we have cited key references and review articles.

  17. Reduced cardiac remodelling and prevention of glutathione deficiency after omega-3 supplementation in chronic heart failure.

    PubMed

    Fang, Yuehua; Favre, Julie; Vercauteren, Magalie; Laillet, Brigitte; Remy-Jouet, Isabelle; Skiba, Mohamed; Lallemand, Françoise; Dehaudt, Cathy; Monteil, Christelle; Thuillez, Christian; Mulder, Paul

    2011-06-01

    n-3 polyunsaturated fatty acids (omega-3) supplementation is associated with reduced cardiovascular mortality and post-infarction death. However, the impact of omega-3 supplementation in congestive heart failure (CHF) is still unknown. This study assesses the effects of omega-3 supplementation on left ventricular (LV) function and remodelling. We assessed, in rats with CHF induced by left coronary ligation, the effects of a 1-week and a 12-week supplementation with omega-3 (450 mg/kg per day) on LV hemodynamics, function and structure. Chronic omega-3 reduces total peripheral resistance due to an increase in cardiac output without modification of arterial pressure. Only chronic omega-3 reduces LV end-diastolic pressure and LV relaxation constant. Moreover, chronic omega-3 decreases LV systolic and diastolic diameters, LV weight and collagen density. Acute and chronic omega-3 increase LV γ-glutamyl-cysteine synthetase and oppose glutathione deficiency resulting in a reduction of myocardial oxidized glutathione. In experimental CHF, long-term omega-3 supplementation improves LV hemodynamics and function and prevents LV remodelling and glutathione deficiency. The latter might be one of the mechanisms involved, but whether other mechanism, independent of myocardial redox 'status', such as reduced inflammation, are implicated remains to be confirmed.

  18. Childhood obesity and cardiac remodeling: from cardiac structure to myocardial mechanics.

    PubMed

    Tadic, Marijana; Cuspidi, Cesare

    2015-08-01

    Epidemic of obesity, especially morbid obesity, among children and adolescents, is a key factor associated with the dramatic increase in prevalence of type 2 diabetes mellitus, arterial hypertension, and metabolic syndrome in this population. Furthermore, childhood obesity represents a very important predictor of obesity in adulthood that is related to cardiovascular and cerebrovascular diseases. Overweight and obesity in children and adolescents are associated with impairment of cardiac structure and function. The majority of studies investigated the influence of obesity on left ventricular remodeling. However, the impact of obesity on the right ventricle, both the atria, and myocardial mechanics has been insufficiently studied. The aim of this review article is to summarize all data about heart remodeling in childhood, from cardiac size, throughout systolic and diastolic function, to myocardial mechanics, using a wide range of mainly echocardiographic techniques and parameters. Additionally, we sought to present current knowledge about the influence of weight loss, achieved by various therapeutic approaches, on the improvement of cardiac geometry, structure, and function in obese children and adolescents.

  19. The Regulatory Roles of MicroRNAs in Bone Remodeling and Perspectives as Biomarkers in Osteoporosis

    PubMed Central

    Sun, Mengge; Zhou, Xiaoya; Chen, Lili; Huang, Shishu; Leung, Victor; Wu, Nan; Pan, Haobo; Zhen, Wanxin; Lu, William; Peng, Songlin

    2016-01-01

    MicroRNAs are involved in many cellular and molecular activities and played important roles in many biological and pathological processes, such as tissue formation, cancer development, diabetes, neurodegenerative diseases, and cardiovascular diseases. Recently, it has been reported that microRNAs can modulate the differentiation and activities of osteoblasts and osteoclasts, the key cells that are involved in bone remodeling process. Meanwhile, the results from our and other research groups showed that the expression profiles of microRNAs in the serum and bone tissues are significantly different in postmenopausal women with or without fractures compared to the control. Therefore, it can be postulated that microRNAs might play important roles in bone remodeling and that they are very likely to be involved in the pathological process of postmenopausal osteoporosis. In this review, we will present the updated research on the regulatory roles of microRNAs in osteoblasts and osteoclasts and the expression profiles of microRNAs in osteoporosis and osteoporotic fracture patients. The perspective of serum microRNAs as novel biomarkers in bone loss disorders such as osteoporosis has also been discussed. PMID:27073801

  20. Human miR-221/222 in Physiological and Atherosclerotic Vascular Remodeling

    PubMed Central

    Chistiakov, Dmitry A.; Sobenin, Igor A.; Orekhov, Alexander N.; Bobryshev, Yuri V.

    2015-01-01

    A cluster of miR-221/222 is a key player in vascular biology through exhibiting its effects on vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). These miRNAs contribute to vascular remodeling, an adaptive process involving phenotypic and behavioral changes in vascular cells in response to vascular injury. In proliferative vascular diseases such as atherosclerosis, pathological vascular remodeling plays a prominent role. The miR-221/222 cluster controls development and differentiation of ECs but inhibits their proangiogenic activation, proliferation, and migration. miR-221/222 are primarily implicated in maintaining endothelial integrity and supporting quiescent EC phenotype. Vascular expression of miR-221/222 is upregulated in initial atherogenic stages causing inhibition of angiogenic recruitment of ECs and increasing endothelial dysfunction and EC apoptosis. In contrast, these miRNAs stimulate VSMCs and switching from the VSMC “contractile” phenotype to the “synthetic” phenotype associated with induction of proliferation and motility. In atherosclerotic vessels, miR-221/222 drive neointima formation. Both miRNAs contribute to atherogenic calcification of VSMCs. In advanced plaques, chronic inflammation downregulates miR-221/222 expression in ECs that in turn could activate intralesion neoangiogenesis. In addition, both miRNAs could contribute to cardiovascular pathology through their effects on fat and glucose metabolism in nonvascular tissues such as adipose tissue, liver, and skeletal muscles. PMID:26221589

  1. The Renin-Angiotensin-Aldosterone System in Vascular Inflammation and Remodeling

    PubMed Central

    Pacurari, Maricica; Kafoury, Ramzi; Tchounwou, Paul B.; Ndebele, Kenneth

    2014-01-01

    The RAAS through its physiological effectors plays a key role in promoting and maintaining inflammation. Inflammation is an important mechanism in the development and progression of CVD such as hypertension and atherosclerosis. In addition to its main role in regulating blood pressure and its role in hypertension, RAAS has proinflammatory and profibrotic effects at cellular and molecular levels. Blocking RAAS provides beneficial effects for the treatment of cardiovascular and renal diseases. Evidence shows that inhibition of RAAS positively influences vascular remodeling thus improving CVD outcomes. The beneficial vascular effects of RAAS inhibition are likely due to decreasing vascular inflammation, oxidative stress, endothelial dysfunction, and positive effects on regeneration of endothelial progenitor cells. Inflammatory factors such as ICAM-1, VCAM-1, TNFα, IL-6, and CRP have key roles in mediating vascular inflammation and blocking RAAS negatively modulates the levels of these inflammatory molecules. Some of these inflammatory markers are clinically associated with CVD events. More studies are required to establish long-term effects of RAAS inhibition on vascular inflammation, vascular cells regeneration, and CVD clinical outcomes. This review presents important information on RAAS's role on vascular inflammation, vascular cells responses to RAAS, and inhibition of RAAS signaling in the context of vascular inflammation, vascular remodeling, and vascular inflammation-associated CVD. Nevertheless, the review also equates the need to rethink and rediscover new RAAS inhibitors. PMID:24804145

  2. Adverse reactions to drug additives.

    PubMed

    Simon, R A

    1984-10-01

    There is a long list of additives used by the pharmaceutical industry. Most of the agents used have not been implicated in hypersensitivity reactions. Among those that have, only reactions to parabens and sulfites have been well established. Parabens have been shown to be responsible for rare immunoglobulin E-mediated reactions that occur after the use of local anesthetics. Sulfites, which are present in many drugs, including agents commonly used to treat asthma, have been shown to provoke severe asthmatic attacks in sensitive individuals. Recent studies indicate that additives do not play a significant role in "hyperactivity." The role of additives in urticaria is not well established and therefore the incidence of adverse reactions in this patient population is simply not known. In double-blind, placebo-controlled studies, reactions to tartrazine or additives other than sulfites, if they occur at all, are indeed quite rare for the asthmatic population, even for the aspirin-sensitive subpopulation.

  3. Relation of serum uric acid to cardiovascular disease.

    PubMed

    Wu, Audrey H; Gladden, James D; Ahmed, Mustafa; Ahmed, Ali; Filippatos, Gerasimos

    2016-06-15

    This review summarizes recent published literature on the association between serum uric acid and cardiovascular disease, a relationship which is complex and not fully elucidated. Uric acid may be a marker for risk, a causative agent in cardiovascular disease, or both. Various biologic factors can influence serum uric acid levels, and serum uric acid level itself is closely related to conditions such as hypertension, dyslipidemia, obesity, and impaired glucose metabolism, that contribute to cardiovascular disease pathophysiology. Serum uric acid levels have been found to be associated with adverse outcomes, including mortality, in the general population. In addition, serum uric acid is associated with increased risk for incident coronary heart disease, heart failure, and atrial fibrillation. In the setting of established systolic heart failure, serum uric acid is positively associated with disease severity and mortality risk. Whether targeting treatment based on uric acid levels might affect clinical outcomes is still being studied.

  4. Bioinformatics of cardiovascular miRNA biology.

    PubMed

    Kunz, Meik; Xiao, Ke; Liang, Chunguang; Viereck, Janika; Pachel, Christina; Frantz, Stefan; Thum, Thomas; Dandekar, Thomas

    2015-12-01

    MicroRNAs (miRNAs) are small ~22 nucleotide non-coding RNAs and are highly conserved among species. Moreover, miRNAs regulate gene expression of a large number of genes associated with important biological functions and signaling pathways. Recently, several miRNAs have been found to be associated with cardiovascular diseases. Thus, investigating the complex regulatory effect of miRNAs may lead to a better understanding of their functional role in the heart. To achieve this, bioinformatics approaches have to be coupled with validation and screening experiments to understand the complex interactions of miRNAs with the genome. This will boost the subsequent development of diagnostic markers and our understanding of the physiological and therapeutic role of miRNAs in cardiac remodeling. In this review, we focus on and explain different bioinformatics strategies and algorithms for the identification and analysis of miRNAs and their regulatory elements to better understand cardiac miRNA biology. Starting with the biogenesis of miRNAs, we present approaches such as LocARNA and miRBase for combining sequence and structure analysis including phylogenetic comparisons as well as detailed analysis of RNA folding patterns, functional target prediction, signaling pathway as well as functional analysis. We also show how far bioinformatics helps to tackle the unprecedented level of complexity and systemic effects by miRNA, underlining the strong therapeutic potential of miRNA and miRNA target structures in cardiovascular disease. In addition, we discuss drawbacks and limitations of bioinformatics algorithms and the necessity of experimental approaches for miRNA target identification. This article is part of a Special Issue entitled 'Non-coding RNAs'.

  5. Purinergic Signaling in the Cardiovascular System.

    PubMed

    Burnstock, Geoffrey

    2017-01-06

    There is nervous control of the heart by ATP as a cotransmitter in sympathetic, parasympathetic, and sensory-motor nerves, as well as in intracardiac neurons. Centers in the brain control heart activities and vagal cardiovascular reflexes involve purines. Adenine nucleotides and nucleosides act on purinoceptors on cardiomyocytes, AV and SA nodes, cardiac fibroblasts, and coronary blood vessels. Vascular tone is controlled by a dual mechanism. ATP, released from perivascular sympathetic nerves, causes vasoconstriction largely via P2X1 receptors. Endothelial cells release ATP in response to changes in blood flow (via shear stress) or hypoxia, to act on P2 receptors on endothelial cells to produce nitric oxide, endothelium-derived hyperpolarizing factor, or prostaglandins to cause vasodilation. ATP is also released from sensory-motor nerves during antidromic reflex activity, to produce relaxation of some blood vessels. Purinergic signaling is involved in the physiology of erythrocytes, platelets, and leukocytes. ATP is released from erythrocytes and platelets, and purinoceptors and ectonucleotidases are expressed by these cells. P1, P2Y1, P2Y12, and P2X1 receptors are expressed on platelets, which mediate platelet aggregation and shape change. Long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides promote migration and proliferation of vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis, vessel remodeling during restenosis after angioplasty and atherosclerosis. The involvement of purinergic signaling in cardiovascular pathophysiology and its therapeutic potential are discussed, including heart failure, infarction, arrhythmias, syncope, cardiomyopathy, angina, heart transplantation and coronary bypass grafts, coronary artery disease, diabetic cardiomyopathy, hypertension, ischemia, thrombosis, diabetes mellitus, and migraine.

  6. Effects of thyroid hormone on the cardiovascular system.

    PubMed

    Fazio, Serafino; Palmieri, Emiliano A; Lombardi, Gaetano; Biondi, Bernadette

    2004-01-01

    Increased or reduced action of thyroid hormone on certain molecular pathways in the heart and vasculature causes relevant cardiovascular derangements. It is well established that overt hyperthyroidism induces a hyperdynamic cardiovascular state (high cardiac output with low systemic vascular resistance), which is associated with a faster heart rate, enhanced left ventricular (LV) systolic and diastolic function, and increased prevalence of supraventricular tachyarrhythmias - namely, atrial fibrillation - whereas overt hypothyroidism is characterized by the opposite changes. However, whether changes in cardiac performance associated with overt thyroid dysfunction are due mainly to alterations of myocardial contractility or to loading conditions remains unclear. Extensive evidence indicates that the cardiovascular system responds to the minimal but persistent changes in circulating thyroid hormone levels, which are typical of individuals with subclinical thyroid dysfunction. Subclinical hyperthyroidism is associated with increased heart rate, atrial arrhythmias, increased LV mass, impaired ventricular relaxation, reduced exercise performance, and increased risk of cardiovascular mortality. Subclinical hypothyroidism is associated with impaired LV diastolic function and subtle systolic dysfunction and an enhanced risk for atherosclerosis and myocardial infarction. Because all cardiovascular abnormalities are reversed by restoration of euthyroidism ("subclinical hypothyroidism") or blunted by beta-blockade and L-thyroxine (L-T4) dose tailoring ("subclinical hyperthyroidism"), timely treatment is advisable in an attempt to avoid adverse cardiovascular effects. Interestingly, some data indicate that patients with acute and chronic cardiovascular disorders and those undergoing cardiac surgery may have altered peripheral thyroid hormone metabolism that, in turn, may contribute to altered cardiac function. Preliminary clinical investigations suggest that administration of

  7. Anti-remodeling effects of rapamycin in experimental heart failure: dose response and interaction with angiotensin receptor blockade.

    PubMed

    Bishu, Kalkidan; Ogut, Ozgur; Kushwaha, Sudhir; Mohammed, Selma F; Ohtani, Tomohito; Xu, Xiaolei; Brozovich, Frank V; Redfield, Margaret M

    2013-01-01

    While neurohumoral antagonists improve outcomes in heart failure (HF), cardiac remodeling and dysfunction progress and outcomes remain poor. Therapies superior or additive to standard HF therapy are needed. Pharmacologic mTOR inhibition by rapamycin attenuated adverse cardiac remodeling and dysfunction in experimental heart failure (HF). However, these studies used rapamycin doses that produced blood drug levels targeted for primary immunosuppression in human transplantation and therefore the immunosuppressive effects may limit clinical translation. Further, the relative or incremental effect of rapamycin combined with standard HF therapies targeting upstream regulators of cardiac remodeling (neurohumoral antagonists) has not been defined. Our objectives were to determine if anti-remodeling effects of rapamycin were preserved at lower doses and whether rapamycin effects were similar or additive to a standard HF therapy (angiotensin receptor blocker (losartan)). Experimental murine HF was produced by transverse aortic constriction (TAC). At three weeks post-TAC, male mice with established HF were treated with placebo, rapamycin at a dose producing immunosuppressive drug levels (target dose), low dose (50% target dose) rapamycin, losartan or rapamycin + losartan for six weeks. Cardiac structure and function (echocardiography, catheterization, pathology, hypertrophic and fibrotic gene expression profiles) were assessed. Downstream mTOR signaling pathways regulating protein synthesis (S6K1 and S6) and autophagy (LC3B-II) were characterized. TAC-HF mice displayed eccentric hypertrophy, systolic dysfunction and pulmonary congestion. These perturbations were attenuated to a similar degree by oral rapamycin doses achieving target (13.3±2.1 ng/dL) or low (6.7±2.5 ng/dL) blood levels. Rapamycin treatment decreased mTOR mediated regulators of protein synthesis and increased mTOR mediated regulators of autophagy. Losartan monotherapy did not attenuate remodeling, whereas

  8. Adverse effects of glucocorticoids: coagulopathy.

    PubMed

    Coelho, Maria Caroline Alves; Santos, Camila Vicente; Vieira Neto, Leonardo; Gadelha, Mônica R

    2015-10-01

    Hypercortisolism is associated with various systemic manifestations, including central obesity, arterial hypertension, glucose intolerance/diabetes mellitus, dyslipidemia, nephrolithiasis, osteoporosis, gonadal dysfunction, susceptibility to infections, psychiatric disorders, and hypercoagulability. The activation of the hemostatic system contributes to the development of atherosclerosis and subsequent cardiovascular morbidity and mortality. Previous studies have identified an increased risk of both unprovoked and postoperative thromboembolic events in patients with endogenous and exogenous Cushing's syndrome (CS). The risk for postoperative venous thromboembolism in endogenous CS is comparable to the risk after total hip or knee replacement under short-term prophylaxis. The mechanisms that are involved in the thromboembolic complications in hypercortisolism include endothelial dysfunction, hypercoagulability, and stasis (Virchow's triad). It seems that at least two factors from Virchow's triad must be present for the occurrence of a thrombotic event in these patients. Most studies have demonstrated that this hypercoagulable state is explained by increased levels of procoagulant factors, mainly factors VIII, IX, and von Willebrand factor, and also by an impaired fibrinolytic capacity, which mainly results from an elevation in plasminogen activator inhibitor 1. Consequently, there is a shortening of activated partial thromboplastin time and increased thrombin generation. For these reasons, anticoagulant prophylaxis might be considered in patients with CS whenever they have concomitant prothrombotic risk factors. However, multicenter studies are needed to determine which patients will benefit from anticoagulant therapy and the dose and time of anticoagulation.

  9. Chondromodulin I Is a Bone Remodeling Factor

    PubMed Central

    Nakamichi, Yuko; Shukunami, Chisa; Yamada, Takashi; Aihara, Ken-ichi; Kawano, Hirotaka; Sato, Takashi; Nishizaki, Yuriko; Yamamoto, Yoko; Shindo, Masayo; Yoshimura, Kimihiro; Nakamura, Takashi; Takahashi, Naoyuki; Kawaguchi, Hiroshi; Hiraki, Yuji; Kato, Shigeaki

    2003-01-01

    Chondromodulin I (ChM-I) was supposed from its limited expression in cartilage and its functions in cultured chondrocytes as a major regulator in cartilage development. Here, we generated mice deficient in ChM-I by targeted disruption of the ChM-I gene. No overt abnormality was detected in endochondral bone formation during embryogenesis and cartilage development during growth stages of ChM-I−/− mice. However, a significant increase in bone mineral density with lowered bone resorption with respect to formation was unexpectedly found in adult ChM-I−/− mice. Thus, the present study established that ChM-I is a bone remodeling factor. PMID:12509461

  10. Molecular mechanisms of synaptic remodeling in alcoholism.

    PubMed

    Kyzar, Evan J; Pandey, Subhash C

    2015-08-05

    Alcohol use and alcohol addiction represent dysfunctional brain circuits resulting from neuroadaptive changes during protracted alcohol exposure and its withdrawal. Alcohol exerts a potent effect on synaptic plasticity and dendritic spine formation in specific brain regions, providing a neuroanatomical substrate for the pathophysiology of alcoholism. Epigenetics has recently emerged as a critical regulator of gene expression and synaptic plasticity-related events in the brain. Alcohol exposure and withdrawal induce changes in crucial epigenetic processes in the emotional brain circuitry (amygdala) that may be relevant to the negative affective state defined as the "dark side" of addiction. Here, we review the literature concerning synaptic plasticity and epigenetics, with a particular focus on molecular events related to dendritic remodeling during alcohol abuse and alcoholism. Targeting epigenetic processes that modulate synaptic plasticity may yield novel treatments for alcoholism.

  11. Matrix Remodeling in Pulmonary Fibrosis and Emphysema.

    PubMed

    Kulkarni, Tejaswini; O'Reilly, Philip; Antony, Veena B; Gaggar, Amit; Thannickal, Victor J

    2016-06-01

    Pulmonary fibrosis and emphysema are chronic lung diseases characterized by a progressive decline in lung function, resulting in significant morbidity and mortality. A hallmark of these diseases is recurrent or persistent alveolar epithelial injury, typically caused by common environmental exposures such as cigarette smoke. We propose that critical determinants of the outcome of the injury-repair processes that result in fibrosis versus emphysema are mesenchymal cell fate and associated extracellular matrix dynamics. In this review, we explore the concept that regulation of mesenchymal cells under the influence of soluble factors, in particular transforming growth factor-β1, and the extracellular matrix determine the divergent tissue remodeling responses seen in pulmonary fibrosis and emphysema.

  12. RNA helicase proteins as chaperones and remodelers

    PubMed Central

    Jarmoskaite, Inga; Russell, Rick

    2014-01-01

    Superfamily 2 helicase proteins are ubiquitous in RNA biology and have an extraordinarily broad set of functional roles. Central among these roles are to promote rearrangements of structured RNAs and to remodel RNA-protein complexes (RNPs), allowing formation of native RNA structure or progression through a functional cycle of structures. While all superfamily 2 helicases share a conserved helicase core, they are divided evolutionarily into several families, and it is principally proteins from three families, the DEAD-box, DEAH/RHA and Ski2-like families, that function to manipulate structured RNAs and RNPs. Strikingly, there are emerging differences in the mechanisms of these proteins, both between families and within the largest family (DEAD-box), and these differences appear to be tuned to their RNA or RNP substrates and their specific roles. This review outlines basic mechanistic features of the three families and surveys individual proteins and the current understanding of their biological substrates and mechanisms. PMID:24635478

  13. Cell wall remodeling under abiotic stress

    PubMed Central

    Tenhaken, Raimund

    2015-01-01

    Plants exposed to abiotic stress respond to unfavorable conditions on multiple levels. One challenge under drought stress is to reduce shoot growth while maintaining root growth, a process requiring differential cell wall synthesis and remodeling. Key players in this process are the formation of reactive oxygen species (ROS) and peroxidases, which initially cross-link phenolic compounds and glycoproteins of the cell walls causing stiffening. The function of ROS shifts after having converted all the peroxidase substrates in the cell wall. If ROS-levels remain high during prolonged stress, OH°-radicals are formed which lead to polymer cleavage. In concert with xyloglucan modifying enzymes and expansins, the resulting cell wall loosening allows further growth of stressed organs. PMID:25709610

  14. Bone Remodeling and Energy Metabolism: New Perspectives

    PubMed Central

    de Paula, Francisco J. A.; Rosen, Clifford J.

    2013-01-01

    Bone mineral, adipose tissue and energy metabolism are interconnected by a complex and multilevel series of networks. Calcium and phosphorus are utilized for insulin secretion and synthesis of high energy compounds. Adipose tissue store lipids and cholecalciferol, which, in turn, can influence calcium balance and energy expenditure. Hormones long-thought to solely modulate energy and mineral homeostasis may influence adipocytic function. Osteoblasts are a target of insulin action in bone. Moreover, endocrine mediators, such as osteocalcin, are synthesized in the skeleton but regulate carbohydrate disposal and insulin secretion. Finally, osteoblasts and adipocytes originate from the same mesenchymal progenitor. The mutual crosstalk between osteoblasts and adipocytes within the bone marrow microenvironment plays a crucial role in bone remodeling. In the present review we provide an overview of the reciprocal control between bone and energy metabolism and its clinical implications. PMID:26273493

  15. Chromatin remodeling: from transcription to cancer.

    PubMed

    Yaniv, Moshe

    2014-09-01

    In this short review article, I have tried to trace the path that led my laboratory from the early studies of the structure of papova minichromosomes and transcription control to the investigation of chromatin remodeling complexes of the SWI/SNF family. I discuss briefly the genetic and biochemical studies that lead to the discovery of the SWI/SNF complex in yeast and drosophila and summarize some of the studies on the developmental role of the murine complex. The discovery of the tumor suppressor function of the SNF5/INI1/SMARCB1 gene in humans and the identification of frequent mutations in other subunits of this complex in different human tumors opened a fascinating field of research on this epigenetic regulator. The hope is to better understand tumor development and to develop novel treatments.

  16. Cardiovascular adaptation to spaceflight

    NASA Technical Reports Server (NTRS)

    Hargens, A. R.; Watenpaugh, D. E.

    1996-01-01

    This article reviews recent flight and ground-based studies of cardiovascular adaptation to spaceflight. Prominent features of microgravity exposure include loss of gravitational pressures, relatively low venous pressures, headward fluid shifts, plasma volume loss, and postflight orthostatic intolerance and reduced exercise capacity. Many of these short-term responses to microgravity extend themselves during long-duration microgravity exposure and may be explained by altered pressures (blood and tissue) and fluid balance in local tissues nourished by the cardiovascular system. In this regard, it is particularly noteworthy that tissues of the lower body (e.g., foot) are well adapted to local hypertension on Earth, whereas tissues of the upper body (e.g., head) are not as well adapted to increase in local blood pressure. For these and other reasons, countermeasures for long-duration flight should include reestablishment of higher, Earth-like blood pressures in the lower body.

  17. Cardiovascular instrumentation for spaceflight

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Polhemus, J. T.; Ganiaris, N. J.

    1976-01-01

    The observation mechanisms dealing with pressure, flow, morphology, temperature, etc. are discussed. The approach taken in the performance of this study was to (1) review ground and space-flight data on cardiovascular function, including earlier related ground-based and space-flight animal studies, Mercury, Gemini, Apollo, Skylab, and recent bed-rest studies, (2) review cardiovascular measurement parameters required to assess individual performance and physiological alternations during space flight, (3) perform an instrumentation survey including a literature search as well as personal contact with the applicable investigators, (4) assess instrumentation applicability with respect to the established criteria, and (5) recommend future research and development activity. It is concluded that, for the most part, the required instrumentation technology is available but that mission-peculiar criteria will require modifications to adapt the applicable instrumentation to a space-flight configuration.

  18. Slow breathing and cardiovascular disease

    PubMed Central

    Chaddha, Ashish

    2015-01-01

    Cardiovascular disease is the leading cause of death for both men and women worldwide. Much emphasis has been placed on the primary and secondary prevention of cardiovascular disease. While depression and anxiety increase the risk of developing cardiovascular disease, cardiovascular disease also increases the risk of developing anxiety and depression. Thus, promoting optimal mental health may be important for both primary and secondary prevention of cardiovascular disease. Like lowering blood pressure, lipids, and body weight, lowering anger and hostility and improving depression and anxiety may also be an important intervention in preventive cardiology. As we strive to further improve cardiovascular outcomes, the next bridge to cross may be one of offering patients nonpharmacologic means for combating daily mental stress and promoting mental health, such as yoga and pranayama. Indeed, the best preventive cardiovascular medicine may be a blend of both Western and Eastern medicine. PMID:26170595

  19. Slow breathing and cardiovascular disease.

    PubMed

    Chaddha, Ashish

    2015-01-01

    Cardiovascular disease is the leading cause of death for both men and women worldwide. Much emphasis has been placed on the primary and secondary prevention of cardiovascular disease. While depression and anxiety increase the risk of developing cardiovascular disease, cardiovascular disease also increases the risk of developing anxiety and depression. Thus, promoting optimal mental health may be important for both primary and secondary prevention of cardiovascular disease. Like lowering blood pressure, lipids, and body weight, lowering anger and hostility and improving depression and anxiety may also be an important intervention in preventive cardiology. As we strive to further improve cardiovascular outcomes, the next bridge to cross may be one of offering patients nonpharmacologic means for combating daily mental stress and promoting mental health, such as yoga and pranayama. Indeed, the best preventive cardiovascular medicine may be a blend of both Western and Eastern medicine.

  20. Remodeling of the fovea in Parkinson disease.

    PubMed

    Spund, B; Ding, Y; Liu, T; Selesnick, I; Glazman, S; Shrier, E M; Bodis-Wollner, I

    2013-05-01

    To quantify the thickness of the inner retinal layers in the foveal pit where the nerve fiber layer (NFL) is absent, and quantify changes in the ganglion cells and inner plexiform layer. Pixel-by-pixel volumetric measurements were obtained via Spectral-Domain optical coherence tomography (SD-OCT) from 50 eyes of Parkinson disease (PD) (n = 30) and 50 eyes of healthy control subjects (n = 27). Receiver operating characteristics (ROC) were used to classify individual subjects with respect to sensitivity and specificity calculations at each perifoveolar distance. Three-dimensional topographic maps of the healthy and PD foveal pit were created. The foveal pit is thinner and broader in PD. The difference becomes evident in an annular zone between 0.5 and 2 mm from the foveola and the optimal (ROC-defined) zone is from 0.75 to 1.5 mm. This zone is nearly devoid of NFL and partially overlaps the foveal avascular zone. About 78 % of PD eyes can be discriminated from HC eyes based on this zone. ROC applied to OCT pixel-by-pixel analysis helps to discriminate PD from HC retinae. Remodeling of the foveal architecture is significant because it may provide a visible and quantifiable signature of PD. The specific location of remodeling in the fovea raises a novel concept for exploring the mechanism of oxidative stress on retinal neurons in PD. OCT is a promising quantitative tool in PD research. However, larger scale studies are needed before the method can be applied to clinical follow-ups.

  1. Generic versus brand-name drugs used in cardiovascular diseases.

    PubMed

    Manzoli, Lamberto; Flacco, Maria Elena; Boccia, Stefania; D'Andrea, Elvira; Panic, Nikola; Marzuillo, Carolina; Siliquini, Roberta; Ricciardi, Walter; Villari, Paolo; Ioannidis, John P A

    2016-04-01

    This meta-analysis aimed to compare the efficacy and adverse events, either serious or mild/moderate, of all generic versus brand-name cardiovascular medicines. We searched randomized trials in MEDLINE, Scopus, EMBASE, Cochrane Controlled Clinical Trial Register, and ClinicalTrials.gov (last update December 1, 2014). Attempts were made to contact the investigators of all potentially eligible trials. Two investigators independently extracted and analyzed soft (including systolic blood pressure, LDL cholesterol, and others) and hard efficacy outcomes (including major cardiovascular adverse events and death), minor/moderate and serious adverse events. We included 74 randomized trials; 53 reported ≥1 efficacy outcome (overall sample 3051), 32 measured mild/moderate adverse events (n = 2407), and 51 evaluated serious adverse events (n = 2892). We included trials assessing ACE inhibitors (n = 12), anticoagulants (n = 5), antiplatelet agents (n = 17), beta-blockers (n = 11), calcium channel blockers (n = 7); diuretics (n = 13); statins (n = 6); and others (n = 3). For both soft and hard efficacy outcomes, 100 % of the trials showed non-significant differences between generic and brand-name drugs. The aggregate effect size was 0.01 (95 % CI -0.05; 0.08) for soft outcomes; -0.06 (-0.71; 0.59) for hard outcomes. All but two trials showed non-significant differences in mild/moderate adverse events, and aggregate effect size was 0.07 (-0.06; 0.20). Comparable results were observed for each drug class and in each stratified meta-analysis. Overall, 8 serious possibly drug-related adverse events were reported: 5/2074 subjects on generics; 3/2076 subjects on brand-name drugs (OR 1.69; 95 % CI 0.40-7.20). This meta-analysis strengthens the evidence for clinical equivalence between brand-name and generic cardiovascular drugs. Physicians could be reassured about prescribing generic cardiovascular drugs, and health care organization about endorsing their wider

  2. Cardiovascular Imaging in Mice

    PubMed Central

    Phoon, Colin K.L.; Turnbull, Daniel H.

    2016-01-01

    The mouse is the mammalian model of choice for investigating cardiovascular biology, given our ability to manipulate it by genetic, pharmacologic, mechanical, and environmental means. Imaging is an important approach to phenotyping both function and structure of cardiac and vascular components. This review details commonly used imaging approaches, with a focus on echocardiography and magnetic resonance imaging and brief overviews of other imaging modalities. We also briefly outline emerging imaging approaches but caution that reliability and validity data may be lacking. PMID:26928662

  3. Adventures in cardiovascular research.

    PubMed

    Braunwald, Eugene

    2009-07-14

    This article, derived from an invited Distinguished Scientist lecture presented at the American Heart Association Scientific Sessions in 2007, reviews 4 themes (adventures) in clinical cardiovascular research carried out over a period of 58 years. It begins with the author's introduction to cardiovascular hemodynamics during a medical school elective in 1951. The 4 adventures include valvular heart disease, hypertrophic cardiomyopathy, heart failure (HF), and myocardial ischemia. In each of these adventures, the author describes briefly what was known when he entered each field, followed by the author's contribution to the field (the adventure), and ends with comments about the current status of the field. Of particular interest are the changes in the technologies used in clinical cardiovascular research over the past half century, commencing with pressure tracings in left heart chambers with the use of needle puncture in the operating room to genetic technologies designed to understand differences between drugs that inhibit platelet activation. The article ends with some general comments on conducting research and the rewards that can come with this activity.

  4. Adverse events in healthcare: learning from mistakes.

    PubMed

    Rafter, N; Hickey, A; Condell, S; Conroy, R; O'Connor, P; Vaughan, D; Williams, D

    2015-04-01

    Large national reviews of patient charts estimate that approximately 10% of hospital admissions are associated with an adverse event (defined as an injury resulting in prolonged hospitalization, disability or death, caused by healthcare management). Apart from having a significant impact on patient morbidity and mortality, adverse events also result in increased healthcare costs due to longer hospital stays. Furthermore, a substantial proportion of adverse events are preventable. Through identifying the nature and rate of adverse events, initiatives to improve care can be developed. A variety of methods exist to gather adverse event data both retrospectively and prospectively but these do not necessarily capture the same events and there is variability in the definition of an adverse event. For example, hospital incident reporting collects only a very small fraction of the adverse events found in retrospective chart reviews. Until there are systematic methods to identify adverse events, progress in patient safety cannot be reliably measured. This review aims to discuss the need for a safety culture that can learn from adverse events, describe ways to measure adverse events, and comment on why current adverse event monitoring is unable to demonstrate trends in patient safety.

  5. Activity-adjusted 24-hour ambulatory blood pressure and cardiac remodeling in children with sleep disordered breathing.

    PubMed

    Amin, Raouf; Somers, Virend K; McConnell, Keith; Willging, Paul; Myer, Charles; Sherman, Marc; McPhail, Gary; Morgenthal, Ashley; Fenchel, Matthew; Bean, Judy; Kimball, Thomas; Daniels, Stephen

    2008-01-01

    Questions remain as to whether pediatric sleep disordered breathing increases the risk for elevated blood pressure and blood pressure-dependent cardiac remodeling. We tested the hypothesis that activity-adjusted morning blood pressure surge, blood pressure load, and diurnal and nocturnal blood pressure are significantly higher in children with sleep disordered breathing than in healthy controls and that these blood pressure parameters relate to left ventricular remodeling. 24-hour ambulatory blood pressure parameters were compared between groups. The associations between blood pressure and left ventricular relative wall thickness and mass were measured. 140 children met the inclusion criteria. In children with apnea hypopnea index <5 per hour, a significant difference from controls was the morning blood surge. Significant increases in blood pressure surge, blood pressure load, and in 24-hour ambulatory blood pressure were evident in those whom the apnea hypopnea index exceeded 5 per hour. Sleep disordered breathing and body mass index had similar effect on blood pressure parameters except for nocturnal diastolic blood pressure, where sleep disordered breathing had a significantly greater effect than body mass index. Diurnal and nocturnal systolic blood pressure, diastolic blood pressure, and mean arterial blood pressure predicted the changes in left ventricular relative wall thickness. Therefore, sleep disordered breathing in children who are otherwise healthy is independently associated with an increase in morning blood pressure surge, blood pressure load, and 24-hour ambulatory blood pressure. The association between left ventricular remodeling and 24-hour blood pressure highlights the role of sleep disordered breathing in increasing cardiovascular morbidity.

  6. Environmental Exposures, Epigenetics and Cardiovascular Disease

    PubMed Central

    Ghosh, Sanjukta

    2013-01-01

    Purpose of the Review Epigenetic modifications are heritable alterations of the genome, which can govern gene expression without altering the DNA sequence. The purpose of this review is to render an overview of the possible mechanisms of epigenetic regulation of gene expression in response to environmental pollutants leading to cardiovascular diseases (CVD). Recent Findings An era of cataloging epigenetic marks of the various diseased states has recently commenced, including those within the genes responsible for atherosclerosis, ischemia, hypertension and heart failure. From varied study approaches directed either towards the general understanding of the key pathway regulatory genes, or sampling population cohorts for global and gene-specific changes, it has been possible to identify several epigenetic signatures of environmental exposure relevant to CVD. Signatures of epigenetic dysregulation can be detected in peripheral blood samples, even within few hours of environmental exposure. However, the field now faces the demand for thorough, systematic, rationalized approaches to establish the relation of an exposure-driven epigenetic changes to clinical outcomes, by using sophisticated and reliable research designs and tools. Summary An understanding of chromatin remodeling in response to environmental stimuli conducive to CVD is emerging, with the promise of novel diagnostic and therapeutic candidates. PMID:22669047

  7. Childhood Adversity as a Predictor of Non-Adherence to Statin Therapy in Adulthood

    PubMed Central

    Korhonen, Maarit Jaana; Halonen, Jaana I.; Brookhart, M. Alan; Kawachi, Ichiro; Pentti, Jaana; Karlsson, Hasse; Kivimäki, Mika; Vahtera, Jussi

    2015-01-01

    Purpose To investigate whether adverse experiences in childhood predict non-adherence to statin therapy in adulthood. Methods A cohort of 1378 women and 538 men who initiated statin therapy during 2008–2010 after responding to a survey on childhood adversities, was followed for non-adherence during the first treatment year. Log-binomial regression was used to estimate predictors of non-adherence, defined as the proportion of days covered by dispensed statin tablets <80%. In fully adjusted models including age, education, marital status, current smoking, heavy alcohol use, physical inactivity, obesity, presence of depression and cardiovascular comorbidity, the number of women ranged from 1172 to 1299 and that of men from 473 to 516, because of missing data on specific adversities and covariates. Results Two in three respondents reported at least one of the following six adversities in the family: divorce/separation of the parents, long-term financial difficulties, severe conflicts, frequent fear, severe illness, or alcohol problem of a family member. 51% of women and 44% of men were non-adherent. In men, the number of childhood adversities predicted an increased risk of non-adherence (risk ratio [RR] per adversity 1.11, 95% confidence interval [CI] 1.01–1.21], P for linear trend 0.013). Compared with those reporting no adversities, men reporting 3–6 adversities had a 1.44-fold risk of non-adherence (95% CI 1.12–1.85). Experiencing severe conflicts in the family (RR 1.27, 95% CI 1.03–1.57]) and frequent fear of a family member (RR 1.27, 95% CI 1.00–1.62]) in particular, predicted an increased risk of non-adherence. In women, neither the number of adversities nor any specific type of adversity predicted non-adherence. Conclusions Exposure to childhood adversity may predict non-adherence to preventive cardiovascular medication in men. Usefulness of information on childhood adversities in identification of adults at high risk of non-adherence deserves

  8. Melatonin rescues cardiovascular dysfunction during hypoxic development in the chick embryo.

    PubMed

    Itani, Nozomi; Skeffington, Katie L; Beck, Christian; Niu, Youguo; Giussani, Dino A

    2016-01-01

    There is a search for rescue therapy against fetal origins of cardiovascular disease in pregnancy complicated by chronic fetal hypoxia, particularly following clinical diagnosis of fetal growth restriction (FGR). Melatonin protects the placenta in adverse pregnancy; however, whether melatonin protects the fetal heart and vasculature in hypoxic pregnancy independent of effects on the placenta is unknown. Whether melatonin can rescue fetal cardiovascular dysfunction when treatment commences following FGR diagnosis is also unknown. We isolated the effects of melatonin on the developing cardiovascular system of the chick embryo during hypoxic incubation. We tested the hypothesis that melatonin directly protects the fetal cardiovascular system in adverse development and that it can rescue dysfunction following FGR diagnosis. Chick embryos were incubated under normoxia or hypoxia (14% O2) from day 1 ± melatonin treatment (1 mg/kg/day) from day 13 of incubation (term ~21 days). Melatonin in hypoxic chick embryos rescued cardiac systolic dysfunction, impaired cardiac contractility and relaxability, increased cardiac sympathetic dominance, and endothelial dysfunction in peripheral circulations. The mechanisms involved included reduced oxidative stress, enhanced antioxidant capacity and restored vascular endothelial growth factor expression, and NO bioavailability. Melatonin treatment of the chick embryo starting at day 13 of incubation, equivalent to ca. 25 wk of gestation in human pregnancy, rescues early origins of cardiovascular dysfunction during hypoxic development. Melatonin may be a suitable antioxidant candidate for translation to human therapy to protect the fetal cardiovascular system in adverse pregnancy.

  9. Poverty in childhood and adverse health outcomes in adulthood.

    PubMed

    Raphael, Dennis

    2011-05-01

    The experience of poverty during childhood is a potent predictor of a variety of adverse health outcomes during middle and late adulthood. Children who live in poverty are more likely as adults than their peers to develop and die earlier from a range of diseases. These effects are especially strong for cardiovascular disease and type II diabetes. Most disturbingly, these effects appear in large part to be biologically embedded such that later improved life circumstances have only a modest ameliorative effect. Considering these findings and the relatively high rates of child poverty in nations such as Canada, UK, and USA, those concerned with improving the health of citizens should focus their attention on advocating for public policy that will reduce the incidence of child poverty.

  10. Symptomatic sinus bradycardia: A rare adverse effect of intravenous ondansetron

    PubMed Central

    Moazzam, Md Shahnawaz; Nasreen, Farah; Bano, Shahjahan; Amir, Syed Hussain

    2011-01-01

    Ondansetron is a serotonin receptor antagonist which has been used frequently to reduce the incidence of post-operative nausea and vomiting in laparoscopic surgery. It has become very popular drug for the prevention of post-operative nausea and vomiting due to its superiority in-terms of efficacy as well as lack of side effects and drug interactions. Although cardiovascular adverse effects of this drug are rare, we found a case of symptomatic sinus bradycardia in a 43-year-old female patient, going for laparoscopic cholecystectomy, who developed the same after she was given intravenous ondansetron in operation theater during premedication. Hence, we report this case, as the rare possibility of encountering bradycardia effect after intravenous administration of ondansetron should be born in mind. PMID:21655029

  11. Effect of RAAS blockers on adverse clinical outcomes in high CVD risk subjects with atrial fibrillation

    PubMed Central

    Chaugai, Sandip; Sherpa, Lhamo Yanchang; Sepehry, Amir A.; Arima, Hisatomi; Wang, Dao Wen

    2016-01-01

    Abstract Recent studies have demonstrated that atrial fibrillation significantly increases the risk of adverse clinical outcomes in high cardiovascular disease risk subjects. Application of renin–angiotensin–aldosterone system blockers for prevention of recurrence of atrial fibrillation and adverse clinical outcomes in subjects with atrial fibrillation is a theoretically appealing concept. However, results of clinical trials evaluating the effect of renin–angiotensin–aldosterone blockers on adverse clinical outcomes in high cardiovascular disease risk subjects with atrial fibrillation remain inconclusive. A pooled study of 6 randomized controlled trials assessing the efficacy of renin–angiotensin–aldosterone blockers on subjects with atrial fibrillation was performed. A total of 6 randomized controlled trials enrolled a total of 53,510 patients followed for 1 to 5 years. RAAS blockade therapy was associated with 14% reduction in the incidence of heart failure (OR: 0.86, [95%CI: 0.76– 0.97], P=0.018) and 17% reduction in the incidence of CVE (OR: 0.83, [95%CI: 0.70–0.99], P = 0.038). The corresponding decline in absolute risk against heart failure (ARR: 1.4%, [95%CI: 0.2–2.6%], P = 0.018) and CVE (ARR: 3.5%, [95%CI: 0.0–6.9%], P = 0.045) in the AF group was much higher than the non-AF group for heart failure (ARR: 0.4%, [95%CI: 0.0–0.7%], P = 0.057) and CVE (ARR: 1.6%, [95%CI: –0.1% to 3.3%], P = 0.071). No significant effect was noted on all-cause or cardiovascular mortality, stroke, or myocardial infarction. This study suggests that RAAS blockade offers protection against heart failure and cardiovascular events in high cardiovascular disease risk subjects with atrial fibrillation. PMID:27368043

  12. Nonenzymatic biomimetic remodeling of phospholipids in synthetic liposomes.

    PubMed

    Brea, Roberto J; Rudd, Andrew K; Devaraj, Neal K

    2016-08-02

    Cell membranes have a vast repertoire of phospholipid species whose structures can be dynamically modified by enzymatic remodeling of acyl chains and polar head groups. Lipid remodeling plays important roles in membrane biology and dysregulation can lead to disease. Although there have been tremendous advances in creating artificial membranes to model the properties of native membranes, a major obstacle has been developing straightforward methods to mimic lipid membrane remodeling. Stable liposomes are typically kinetically trapped and are not prone to exchanging diacylphospholipids. Here, we show that reversible chemoselective reactions can be harnessed to achieve nonenzymatic spontaneous remodeling of phospholipids in synthetic membranes. Our approach relies on transthioesterification/acyl shift reactions that occur spontaneously and reversibly between tertiary amides and thioesters. We demonstrate exchange and remodeling of both lipid acyl chains and head groups. Using our synthetic model system we demonstrate the ability of spontaneous phospholipid remodeling to trigger changes in vesicle spatial organization, composition, and morphology as well as recruit proteins that can affect vesicle curvature. Membranes capable of chemically exchanging lipid fragments could be used to help further understand the specific roles of lipid structure remodeling in biological membranes.

  13. PECAM-1 is necessary for flow-induced vascular remodeling

    PubMed Central

    Chen, Zhongming; Tzima, Ellie

    2009-01-01

    OBJECTIVE Vascular remodeling is a physiological process that occurs in response to long-term changes in hemodynamic conditions, but may also contribute to the pathophysiology of intima-media thickening (IMT) and vascular disease. Shear stress detection by the endothelium is thought to be an important determinant of vascular remodeling. Previous work showed that Platelet endothelial cell adhesion molecule-1 (PECAM-1) is a component of a mechanosensory complex that mediates endothelial cell (EC) responses to shear stress. METHODS AND RESULTS We tested the hypothesis that PECAM-1 contributes to vascular remodeling by analyzing the response to partial carotid artery ligation in PECAM-1 knockout mice and wild-type littermates. PECAM-1 deficiency resulted in impaired vascular remodeling and significantly reduced IMT in areas of low flow. Inward remodeling was associated with PECAM-1-dependent NFκB activation, surface adhesion molecule expression and leukocyte infiltration as well as Akt activation and vascular cell proliferation. CONCLUSIONS PECAM-1 plays a crucial role in the activation of the NFκB and Akt pathways and inflammatory cell accumulation during vascular remodeling and IMT. Elucidation of some of the signals that drive vascular remodeling represent pharmacologically tractable targets for the treatment of restenosis after balloon angioplasty or stent placement. PMID:19390054

  14. Role of (pro)renin receptor in cardiovascular cells from the aspect of signaling.

    PubMed

    Hitom, Hirofumi; Liu, Gang; Nishiyama, Akira

    2010-06-01

    The renin-angiotensin-aldosterone system regulates homeostasis of salt and water, vasoconstriction, and remodeling in cardiovascular and renal cells via activation of intracellular signaling pathway. Prorenin, the precursor of renin, had long been considered to be an inactive form. However, a receptor--the (pro)renin receptor--that binds to both renin and prorenin has been recently identified. Prorenin binding to (pro)renin receptors both results in angiotensinogen cleaving into angiotensin (Ang) I, and triggers activation of (pro)renin receptor-stimulated signal transduction pathways, independent of generating Ang II. In the last decade, it has been reported that the intracellular signaling pathway is activated by prorenin in cardiomyocytes, mesangial cells, podocytes, distal tubular cells, vascular endothelial cells and vascular smooth muscle cells, indicating that prorenin mediates intracellular effects in various cardiovascular and kidney cells. In this review, we summarize novel intracellular signaling systems and their downstream effects via (pro)renin receptors in cardiovascular and kidney cells.

  15. Adverse effects of antihypertensive drugs.

    PubMed

    Husserl, F E; Messerli, F H

    1981-09-01

    Early essential hypertension is asymptomatic and should remain so throughout treatment. In view of the increasing number of available antihypertensive agents, clinicians need to become familiar with the potential side effects of these drugs. By placing more emphasis on non-pharmacological treatment (sodium restriction, weight loss, exercise) and thoroughly evaluating each case in particular, the pharmacological regimen can be optimally tailored to the patient's needs. Potential side effects should be predicted and can often be avoided; if they become clinically significant they should be rapidly recognised and corrected. These side effects can be easily remembered in most instances, as they fall into 3 broad categories: (a) those caused by an exaggerated therapeutic effect; (b) those due to a non-therapeutic pharmacological effect; and (c) those caused by a non-therapeutic, non-pharmacological effect probably representing idiosyncratic reactions. This review focuses mainly on adverse effects of the second and third kind. Each group of drugs in general shares the common side effects of the first two categories, while each individual drug has its own idiosyncratic side effects.

  16. Rethinking the Measurement of Adversity.

    PubMed

    Mersky, Joshua P; Janczewski, Colleen E; Topitzes, James

    2017-02-01

    Research on adverse childhood experiences (ACEs) has unified the study of interrelated risks and generated insights into the origins of disorder and disease. Ten indicators of child maltreatment and household dysfunction are widely accepted as ACEs, but further progress requires a more systematic approach to conceptualizing and measuring ACEs. Using data from a diverse, low-income sample of women who received home visiting services in Wisconsin ( N = 1,241), this study assessed the prevalence of and interrelations among 10 conventional ACEs and 7 potential ACEs: family financial problems, food insecurity, homelessness, parental absence, parent/sibling death, bullying, and violent crime. Associations between ACEs and two outcomes, perceived stress and smoking, were examined. The factor structure and test-retest reliability of ACEs was also explored. As expected, prevalence rates were high compared to studies of more representative samples. Except for parent/sibling death, all ACEs were intercorrelated and associated at the bivariate level with perceived stress and smoking. Exploratory factor analysis confirmed that conventional ACEs loaded on two factors, child maltreatment and household dysfunction, though a more complex four-factor solution emerged once new ACEs were introduced. All ACEs demonstrated acceptable test-retest reliability. Implications and future directions toward a second generation of ACE research are discussed.

  17. B-type natriuretic peptide and cardiac troponin I are associated with adverse outcomes in stable kidney transplant recipients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Approximately 200 000 kidney transplant recipients are living in the United States; they are at increased risk for cardiovascular and other adverse outcomes. Biomarkers predicting these outcomes are needed. Using specimens collected during the Folic Acid for Vascular Outcome Reduction in...

  18. Implication of sphingosin-1-phosphate in cardiovascular regulation

    PubMed Central

    Li, Ningjun; Zhang, Fan

    2016-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite generated by phosphorylation of sphingosine catalyzed by sphingosine kinase. S1P acts mainly through its high affinity G-protein-coupled receptors and participates in the regulation of multiple systems, including cardiovascular system. It has been shown that S1P signaling is involved in the regulation of cardiac chronotropy and inotropy and contributes to cardioprotection as well as cardiac remodeling; S1P signaling regulates vascular function, such as vascular tone and endothelial barrier, and possesses an anti-atherosclerotic effect; S1P signaling is also implicated in the regulation of blood pressure. Therefore, manipulation of S1P signaling may offer novel therapeutic approaches to cardiovascular diseases. As several S1P receptor modulators and sphingosine kinase inhibitors have been approved or under clinical trials for the treatment of other diseases, it may expedite the test and implementation of these S1P-based drugs in cardiovascular diseases. PMID:27100508

  19. Remodeling of endogenous mammary epithelium by breast cancer stem cells.

    PubMed

    Parashurama, Natesh; Lobo, Neethan A; Ito, Ken; Mosley, Adriane R; Habte, Frezghi G; Zabala, Maider; Smith, Bryan R; Lam, Jessica; Weissman, Irving L; Clarke, Michael F; Gambhir, Sanjiv S

    2012-10-01

    Poorly regulated tissue remodeling results in increased breast cancer risk, yet how breast cancer stem cells (CSC) participate in remodeling is unknown. We performed in vivo imaging of changes in fluorescent, endogenous duct architecture as a metric for remodeling. First, we quantitatively imaged physiologic remodeling of primary branches of the developing and regenerating mammary tree. To assess CSC-specific remodeling events, we isolated CSC from MMTV-Wnt1 (mouse mammary tumor virus long-term repeat enhancer driving Wnt1 oncogene) breast tumors, a well studied model in which tissue remodeling affects tumorigenesis. We confirm that CSC drive tumorigenesis, suggesting a link between CSC and remodeling. We find that normal, regenerating, and developing gland maintain a specific branching pattern. In contrast, transplantation of CSC results in changes in the branching patterns of endogenous ducts while non-CSC do not. Specifically, in the presence of CSC, we identified an increased number of branches, branch points, ducts which have greater than 40 branches (5/33 for CSC and 0/39 for non-CSC), and histological evidence of increased branching. Moreover, we demonstrate that only CSC implants invade into surrounding stroma with structures similar to developing mammary ducts (nine for CSC and one for non-CSC). Overall, we demonstrate a novel approach for imaging physiologic and pathological remodeling. Furthermore, we identify unique, CSC-specific, remodeling events. Our data suggest that CSC interact with the microenvironment differently than non-CSC, and that this could eventually be a therapeutic approach for targeting CSC.

  20. Cytokines profile in hypertensive patients with left ventricular remodeling and dysfunction.

    PubMed

    Kuznetsova, Tatiana; Haddad, Francois; Knez, Judita; Rosenberg-Hasson, Yael; Sung, Janine; Cauwenberghs, Nicholas; Thijs, Lutgarde; Karakikes, Ioannis; Maecker, Holden; Mahaffey, Kenneth W; Wu, Joseph C; Staessen, Jan A

    2015-12-01

    There is strong evidence that inflammatory mediators play a key role in the progression to heart failure in patients with systemic hypertension (HTN). The present study aimed to identify a set of cytokines that are associated with early left ventricular (LV) remodeling and dysfunction as captured by echocardiography in patients with HTN in a cross-sectional case-control study nested within the FLEMish study on ENvironment, Genes and Health Outcome. We identified three groups of participants from the cohort: normotensive subjects (normotension; n = 30), HTN with normal LV structure and function (HTN [LV-]; n = 30), and HTN with evidence of adverse LV remodeling (HTN [LV+]; n = 50). We measured cytokines using a 63-plex Luminex platform. Using partial least squares-discriminant analysis, we constructed three latent variables from the measured cytokines that explained 35%-45% of the variance between groups. We identified five common cytokines (interleukin 18, monokine induced by gamma interferon, hepatocyte growth factor, epithelial neutrophil-activating peptide 78, and vascular endothelial growth factor D) with a stable signal which had a major impact on the construction of the latent variables. Among these cytokines, after adjustment for confounders, interleukin 18 remained significantly different between HTN participants with and without LV involvement (P = .02). Moreover, granulocyte-macrophage colony-stimulating factor and leptin showed a consistent upward trend in all HTN patients compared with normotensive subjects. In conclusion, in HTN patients with LV remodeling or/and dysfunction, we identified a set of cytokines strongly associated with LV maladaptation. We also found a distinct profile of inflammatory biomarkers that characterize HTN.

  1. Pioglitazone alleviates cardiac and vascular remodelling and improves survival in monocrotaline induced pulmonary arterial hypertension.

    PubMed

    Behringer, Arnica; Trappiel, Manuela; Berghausen, Eva Maria; Ten Freyhaus, Henrik; Wellnhofer, Ernst; Odenthal, Margarete; Blaschke, Florian; Er, Fikret; Gassanov, Natig; Rosenkranz, Stephan; Baldus, Stephan; Kappert, Kai; Caglayan, Evren

    2016-04-01

    Pulmonary arterial hypertension (PAH) is a fatal disease with limited therapeutic options. Pathophysiological changes comprise obliterative vascular remodelling of small pulmonary arteries, elevated mean pulmonary arterial systolic pressure (PASP) due to elevated resistance of pulmonary vasculature, adverse right ventricular remodelling, and heart failure. Recent findings also indicate a role of increased inflammation and insulin resistance underlying the development of PAH. We hypothesized that treatment of this condition with the peroxisome proliferator-activated receptor-γ (PPARγ) activator pioglitazone, known to regulate the expression of different genes addressing insulin resistance, inflammatory changes, and vascular remodelling, could be a beneficial approach. PAH was induced in adult rats by a single subcutaneous injection of monocrotaline (MCT). Pioglitazone was administered for 2 weeks starting 3 weeks after MCT-injection. At day 35, hemodynamics, organ weights, and -indices were measured. We performed morphological and molecular characterization of the pulmonary vasculature, including analysis of the degree of muscularization, proliferation rates, and medial wall thickness of the small pulmonary arteries. Furthermore, markers of cardiac injury, collagen content, and cardiomyocyte size were analyzed. Survival rates were monitored throughout the experimental period. Pioglitazone treatment improved survival, reduced PASP, muscularization of small pulmonary arteries, and medial wall thickness. Further, MCT-induced right ventricular hypertrophy and fibrosis were attenuated. This was accompanied with reduced cardiac expression of brain natriuretic peptide, as well as decreased cardiomyocyte size. Finally, pulmonary macrophage content and osteopontin gene expression were attenuated. Based on the beneficial impact of pioglitazone, activation of PPARγ might be a promising treatment option in PAH.

  2. Rat Heterotopic Heart Transplantation Model to Investigate Unloading-Induced Myocardial Remodeling

    PubMed Central

    Fu, Xuebin; Segiser, Adrian; Carrel, Thierry P.; Tevaearai Stahel, Hendrik T.; Most, Henriette

    2016-01-01

    Unloading of the failing left ventricle in order to achieve myocardial reverse remodeling and improvement of contractile function has been developed as a strategy with the increasing frequency of implantation of left ventricular assist devices in clinical practice. But, reverse remodeling remains an elusive target, with high variability and exact mechanisms still largely unclear. The small animal model of heterotopic heart transplantation (hHTX) in rodents has been widely implemented to study the effects of complete and partial unloading on cardiac failing and non-failing tissue to better understand the structural and molecular changes that underlie myocardial recovery. We herein review the current knowledge on the effects of volume unloading the left ventricle via different methods of hHTX in rats, differentiating between changes that contribute to functional recovery and adverse effects observed in unloaded myocardium. We focus on methodological aspects of heterotopic transplantation, which increase the correlation between the animal model and the setting of the failing unloaded human heart. Last, but not least, we describe the late use of sophisticated techniques to acquire data, such as small animal MRI and catheterization, as well as ways to assess unloaded hearts under “reloaded” conditions. While giving regard to certain limitations, heterotopic rat heart transplantation certainly represents the crucial model to mimic unloading-induced changes in the heart and as such the intricacies and challenges deserve highest consideration. Careful translational research will further improve our knowledge of the reverse remodeling process and how to potentiate its effect in order to achieve recovery of contractile function in more patients. PMID:27807535

  3. Polycyclic aromatic hydrocarbons, tobacco smoke, and epigenetic remodeling in asthma

    PubMed Central

    Klingbeil, E. C.; Hew, K. M.; Nygaard, U. C.; Nadeau, K. C.

    2014-01-01

    Environmental determinants including aerosolized pollutants such as polycyclic aromatic hydrocarbons (PAHs) and tobacco smoke have been associated with exacerbation and increased incidence of asthma. The influence of aerosolized pollutants on the development of immune dysfunction in asthmatics has been suggested to be mediated through epigenetic remodeling. Genome accessibility and transcription are regulated primarily through DNA methylation, histone modification, and microRNA transcript silencing. Epigenetic remodeling has been shown in studies to be associated with Th2 polarization and associated cytokine and chemokine regulation in the development of asthma. This review will present evidence for the contribution of the aerosolized pollutants PAH and environmental tobacco smoke to epigenetic remodeling in asthma. PMID:24760221

  4. Cardiac Remodeling: Concepts, Clinical Impact, Pathophysiological Mechanisms and Pharmacologic Treatment

    PubMed Central

    Azevedo, Paula S.; Polegato, Bertha F.; Minicucci, Marcos F.; Paiva, Sergio A. R.; Zornoff, Leonardo A. M.

    2016-01-01

    Cardiac remodeling is defined as a group of molecular, cellular and interstitial changes that manifest clinically as changes in size, mass, geometry and function of the heart after injury. The process results in poor prognosis because of its association with ventricular dysfunction and malignant arrhythmias. Here, we discuss the concepts and clinical implications of cardiac remodeling, and the pathophysiological role of different factors, including cell death, energy metabolism, oxidative stress, inflammation, collagen, contractile proteins, calcium transport, geometry and neurohormonal activation. Finally, the article describes the pharmacological treatment of cardiac remodeling, which can be divided into three different stages of strategies: consolidated, promising and potential strategies. PMID:26647721

  5. OAE: The Ontology of Adverse Events

    PubMed Central

    2014-01-01

    Background A medical intervention is a medical procedure or application intended to relieve or prevent illness or injury. Examples of medical interventions include vaccination and drug administration. After a medical intervention, adverse events (AEs) may occur which lie outside the intended consequences of the intervention. The representation and analysis of AEs are critical to the improvement of public health. Description The Ontology of Adverse Events (OAE), previously named Adverse Event Ontology (AEO), is a community-driven ontology developed to standardize and integrate data relating to AEs arising subsequent to medical interventions, as well as to support computer-assisted reasoning. OAE has over 3,000 terms with unique identifiers, including terms imported from existing ontologies and more than 1,800 OAE-specific terms. In OAE, the term ‘adverse event’ denotes a pathological bodily process in a patient that occurs after a medical intervention. Causal adverse events are defined by OAE as those events that are causal consequences of a medical intervention. OAE represents various adverse events based on patient anatomic regions and clinical outcomes, including symptoms, signs, and abnormal processes. OAE has been used in the analysis of several different sorts of vaccine and drug adverse event data. For example, using the data extracted from the Vaccine Adverse Event Reporting System (VAERS), OAE was used to analyse vaccine adverse events associated with the administrations of different types of influenza vaccines. OAE has also been used to represent and classify the vaccine adverse events cited in package inserts of FDA-licensed human vaccines in the USA. Conclusion OAE is a biomedical ontology that logically defines and classifies various adverse events occurring after medical interventions. OAE has successfully been applied in several adverse event studies. The OAE ontological framework provides a platform for systematic representation and analysis of

  6. The Adverse Effects of Air Pollution on the Nervous System

    PubMed Central

    Genc, Sermin; Zadeoglulari, Zeynep; Fuss, Stefan H.; Genc, Kursad

    2012-01-01

    Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS), including stroke, Alzheimer's disease, Parkinson's disease, and neurodevelopmental disorders. It has been demonstrated that various components of air pollution, such as nanosized particles, can easily translocate to the CNS where they can activate innate immune responses. Furthermore, systemic inflammation arising from the pulmonary or cardiovascular system can affect CNS health. Despite intense studies on the health effects of ambient air pollution, the underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests that air pollution-induced neuroinflammation, oxidative stress, microglial activation, cerebrovascular dysfunction, and alterations in the blood-brain barrier contribute to CNS pathology. A better understanding of the mediators and mechanisms will enable the development of new strategies to protect individuals at risk and to reduce detrimental effects of air pollution on the nervous system and mental health. PMID:22523490

  7. Cardiovascular pharmacogenetics in the SNP era.

    PubMed

    Mooser, V; Waterworth, D M; Isenhour, T; Middleton, L

    2003-07-01

    In the past pharmacological agents have contributed to a significant reduction in age-adjusted incidence of cardiovascular events. However, not all patients treated with these agents respond favorably, and some individuals may develop side-effects. With aging of the population and the growing prevalence of cardiovascular risk factors worldwide, it is expected that the demand for cardiovascular drugs will increase in the future. Accordingly, there is a growing need to identify the 'good' responders as well as the persons at risk for developing adverse events. Evidence is accumulating to indicate that responses to drugs are at least partly under genetic control. As such, pharmacogenetics - the study of variability in drug responses attributed to hereditary factors in different populations - may significantly assist in providing answers toward meeting this challenge. Pharmacogenetics mostly relies on associations between a specific genetic marker like single nucleotide polymorphisms (SNPs), either alone or arranged in a specific linear order on a certain chromosomal region (haplotypes), and a particular response to drugs. Numerous associations have been reported between selected genotypes and specific responses to cardiovascular drugs. Recently, for instance, associations have been reported between specific alleles of the apoE gene and the lipid-lowering response to statins, or the lipid-elevating effect of isotretinoin. Thus far, these types of studies have been mostly limited to a priori selected candidate gene