Sample records for cardiovascular engineering modelization

  1. Engineering three-dimensional cardiac microtissues for potential drug screening applications.

    PubMed

    Wang, L; Huang, G; Sha, B; Wang, S; Han, Y L; Wu, J; Li, Y; Du, Y; Lu, T J; Xu, F

    2014-01-01

    Heart disease is one of the major global health issues. Despite rapid advances in cardiac tissue engineering, limited successful strategies have been achieved to cure cardiovascular diseases. This situation is mainly due to poor understanding of the mechanism of diverse heart diseases and unavailability of effective in vitro heart tissue models for cardiovascular drug screening. With the development of microengineering technologies, three-dimensional (3D) cardiac microtissue (CMT) models, mimicking 3D architectural microenvironment of native heart tissues, have been developed. The engineered 3D CMT models hold greater potential to be used for assessing effective drugs candidates than traditional two-dimensional cardiomyocyte culture models. This review discusses the development of 3D CMT models and highlights their potential applications for high-throughput screening of cardiovascular drug candidates.

  2. Cardiovascular system simulation in biomedical engineering education.

    NASA Technical Reports Server (NTRS)

    Rideout, V. C.

    1972-01-01

    Use of complex cardiovascular system models, in conjunction with a large hybrid computer, in biomedical engineering courses. A cardiovascular blood pressure-flow model, driving a compartment model for the study of dye transport, was set up on the computer for use as a laboratory exercise by students who did not have the computer experience or skill to be able to easily set up such a simulation involving some 27 differential equations running at 'real time' rate. The students were given detailed instructions regarding the model, and were then able to study effects such as those due to septal and valve defects upon the pressure, flow, and dye dilution curves. The success of this experiment in the use of involved models in engineering courses was such that it seems that this type of laboratory exercise might be considered for use in physiology courses as an adjunct to animal experiments.

  3. Project Super Heart--Year One.

    ERIC Educational Resources Information Center

    Bellardini, Harry; And Others

    1980-01-01

    A model cardiovascular disease prevention program for young children is described. Components include physical examinations, health education (anatomy and physiology of the cardiovascular system), nutrition instruction, first aid techniques, role modeling, and environmental engineering. (JN)

  4. Adaptation and development of software simulation methodologies for cardiovascular engineering: present and future challenges from an end-user perspective

    PubMed Central

    Díaz-Zuccarini, V.; Narracott, A.J.; Burriesci, G.; Zervides, C.; Rafiroiu, D.; Jones, D.; Hose, D.R.; Lawford, P.V.

    2009-01-01

    This paper describes the use of diverse software tools in cardiovascular applications. These tools were primarily developed in the field of engineering and the applications presented push the boundaries of the software to address events related to venous and arterial valve closure, exploration of dynamic boundary conditions or the inclusion of multi-scale boundary conditions from protein to organ levels. The future of cardiovascular research and the challenges that modellers and clinicians face from validation to clinical uptake are discussed from an end-user perspective. PMID:19487202

  5. Adaptation and development of software simulation methodologies for cardiovascular engineering: present and future challenges from an end-user perspective.

    PubMed

    Díaz-Zuccarini, V; Narracott, A J; Burriesci, G; Zervides, C; Rafiroiu, D; Jones, D; Hose, D R; Lawford, P V

    2009-07-13

    This paper describes the use of diverse software tools in cardiovascular applications. These tools were primarily developed in the field of engineering and the applications presented push the boundaries of the software to address events related to venous and arterial valve closure, exploration of dynamic boundary conditions or the inclusion of multi-scale boundary conditions from protein to organ levels. The future of cardiovascular research and the challenges that modellers and clinicians face from validation to clinical uptake are discussed from an end-user perspective.

  6. Modeling the impact of scaffold architecture and mechanical loading on collagen turnover in engineered cardiovascular tissues.

    PubMed

    Argento, G; de Jonge, N; Söntjens, S H M; Oomens, C W J; Bouten, C V C; Baaijens, F P T

    2015-06-01

    The anisotropic collagen architecture of an engineered cardiovascular tissue has a major impact on its in vivo mechanical performance. This evolving collagen architecture is determined by initial scaffold microstructure and mechanical loading. Here, we developed and validated a theoretical and computational microscale model to quantitatively understand the interplay between scaffold architecture and mechanical loading on collagen synthesis and degradation. Using input from experimental studies, we hypothesize that both the microstructure of the scaffold and the loading conditions influence collagen turnover. The evaluation of the mechanical and topological properties of in vitro engineered constructs reveals that the formation of extracellular matrix layers on top of the scaffold surface influences the mechanical anisotropy on the construct. Results show that the microscale model can successfully capture the collagen arrangement between the fibers of an electrospun scaffold under static and cyclic loading conditions. Contact guidance by the scaffold, and not applied load, dominates the collagen architecture. Therefore, when the collagen grows inside the pores of the scaffold, pronounced scaffold anisotropy guarantees the development of a construct that mimics the mechanical anisotropy of the native cardiovascular tissue.

  7. 3D Bioprinting and In Vitro Cardiovascular Tissue Modeling.

    PubMed

    Jang, Jinah

    2017-08-18

    Numerous microfabrication approaches have been developed to recapitulate morphologically and functionally organized tissue microarchitectures in vitro; however, the technical and operational limitations remain to be overcome. 3D printing technology facilitates the building of a construct containing biomaterials and cells in desired organizations and shapes that have physiologically relevant geometry, complexity, and micro-environmental cues. The selection of biomaterials for 3D printing is considered one of the most critical factors to achieve tissue function. It has been reported that some printable biomaterials, having extracellular matrix-like intrinsic microenvironment factors, were capable of regulating stem cell fate and phenotype. In particular, this technology can control the spatial positions of cells, and provide topological, chemical, and complex cues, allowing neovascularization and maturation in the engineered cardiovascular tissues. This review will delineate the state-of-the-art 3D bioprinting techniques in the field of cardiovascular tissue engineering and their applications in translational medicine. In addition, this review will describe 3D printing-based pre-vascularization technologies correlated with implementing blood perfusion throughout the engineered tissue equivalent. The described engineering method may offer a unique approach that results in the physiological mimicry of human cardiovascular tissues to aid in drug development and therapeutic approaches.

  8. 3D Bioprinting and In Vitro Cardiovascular Tissue Modeling

    PubMed Central

    Jang, Jinah

    2017-01-01

    Numerous microfabrication approaches have been developed to recapitulate morphologically and functionally organized tissue microarchitectures in vitro; however, the technical and operational limitations remain to be overcome. 3D printing technology facilitates the building of a construct containing biomaterials and cells in desired organizations and shapes that have physiologically relevant geometry, complexity, and micro-environmental cues. The selection of biomaterials for 3D printing is considered one of the most critical factors to achieve tissue function. It has been reported that some printable biomaterials, having extracellular matrix-like intrinsic microenvironment factors, were capable of regulating stem cell fate and phenotype. In particular, this technology can control the spatial positions of cells, and provide topological, chemical, and complex cues, allowing neovascularization and maturation in the engineered cardiovascular tissues. This review will delineate the state-of-the-art 3D bioprinting techniques in the field of cardiovascular tissue engineering and their applications in translational medicine. In addition, this review will describe 3D printing-based pre-vascularization technologies correlated with implementing blood perfusion throughout the engineered tissue equivalent. The described engineering method may offer a unique approach that results in the physiological mimicry of human cardiovascular tissues to aid in drug development and therapeutic approaches. PMID:28952550

  9. Tissue engineering therapy for cardiovascular disease.

    PubMed

    Nugent, Helen M; Edelman, Elazer R

    2003-05-30

    The present treatments for the loss or failure of cardiovascular function include organ transplantation, surgical reconstruction, mechanical or synthetic devices, or the administration of metabolic products. Although routinely used, these treatments are not without constraints and complications. The emerging and interdisciplinary field of tissue engineering has evolved to provide solutions to tissue creation and repair. Tissue engineering applies the principles of engineering, material science, and biology toward the development of biological substitutes that restore, maintain, or improve tissue function. Progress has been made in engineering the various components of the cardiovascular system, including blood vessels, heart valves, and cardiac muscle. Many pivotal studies have been performed in recent years that may support the move toward the widespread application of tissue-engineered therapy for cardiovascular diseases. The studies discussed include endothelial cell seeding of vascular grafts, tissue-engineered vascular conduits, generation of heart valve leaflets, cardiomyoplasty, genetic manipulation, and in vitro conditions for optimizing tissue-engineered cardiovascular constructs.

  10. Bioreactors as engineering support to treat cardiac muscle and vascular disease.

    PubMed

    Massai, Diana; Cerino, Giulia; Gallo, Diego; Pennella, Francesco; Deriu, Marco A; Rodriguez, Andres; Montevecchi, Franco M; Bignardi, Cristina; Audenino, Alberto; Morbiducci, Umberto

    2013-01-01

    Cardiovascular disease is the leading cause of morbidity and mortality in the Western World. The inability of fully differentiated, load-bearing cardiovascular tissues to in vivo regenerate and the limitations of the current treatment therapies greatly motivate the efforts of cardiovascular tissue engineering to become an effective clinical strategy for injured heart and vessels. For the effective production of organized and functional cardiovascular engineered constructs in vitro, a suitable dynamic environment is essential, and can be achieved and maintained within bioreactors. Bioreactors are technological devices that, while monitoring and controlling the culture environment and stimulating the construct, attempt to mimic the physiological milieu. In this study, a review of the current state of the art of bioreactor solutions for cardiovascular tissue engineering is presented, with emphasis on bioreactors and biophysical stimuli adopted for investigating the mechanisms influencing cardiovascular tissue development, and for eventually generating suitable cardiovascular tissue replacements.

  11. Intrinsic Cell Stress is Independent of Organization in Engineered Cell Sheets.

    PubMed

    van Loosdregt, Inge A E W; Dekker, Sylvia; Alford, Patrick W; Oomens, Cees W J; Loerakker, Sandra; Bouten, Carlijn V C

    2018-06-01

    Understanding cell contractility is of fundamental importance for cardiovascular tissue engineering, due to its major impact on the tissue's mechanical properties as well as the development of permanent dimensional changes, e.g., by contraction or dilatation of the tissue. Previous attempts to quantify contractile cellular stresses mostly used strongly aligned monolayers of cells, which might not represent the actual organization in engineered cardiovascular tissues such as heart valves. In the present study, therefore, we investigated whether differences in organization affect the magnitude of intrinsic stress generated by individual myofibroblasts, a frequently used cell source for in vitro engineered heart valves. Four different monolayer organizations were created via micro-contact printing of fibronectin lines on thin PDMS films, ranging from strongly anisotropic to isotropic. Thin film curvature, cell density, and actin stress fiber distribution were quantified, and subsequently, intrinsic stress and contractility of the monolayers were determined by incorporating these data into sample-specific finite element models. Our data indicate that the intrinsic stress exerted by the monolayers in each group correlates with cell density. Additionally, after normalizing for cell density and accounting for differences in alignment, no consistent differences in intrinsic contractility were found between the different monolayer organizations, suggesting that the intrinsic stress exerted by individual myofibroblasts is independent of the organization. Consequently, this study emphasizes the importance of choosing proper architectural properties for scaffolds in cardiovascular tissue engineering, as these directly affect the stresses in the tissue, which play a crucial role in both the functionality and remodeling of (engineered) cardiovascular tissues.

  12. Roadmap for cardiovascular circulation model

    PubMed Central

    Bradley, Christopher P.; Suresh, Vinod; Mithraratne, Kumar; Muller, Alexandre; Ho, Harvey; Ladd, David; Hellevik, Leif R.; Omholt, Stig W.; Chase, J. Geoffrey; Müller, Lucas O.; Watanabe, Sansuke M.; Blanco, Pablo J.; de Bono, Bernard; Hunter, Peter J.

    2016-01-01

    Abstract Computational models of many aspects of the mammalian cardiovascular circulation have been developed. Indeed, along with orthopaedics, this area of physiology is one that has attracted much interest from engineers, presumably because the equations governing blood flow in the vascular system are well understood and can be solved with well‐established numerical techniques. Unfortunately, there have been only a few attempts to create a comprehensive public domain resource for cardiovascular researchers. In this paper we propose a roadmap for developing an open source cardiovascular circulation model. The model should be registered to the musculo‐skeletal system. The computational infrastructure for the cardiovascular model should provide for near real‐time computation of blood flow and pressure in all parts of the body. The model should deal with vascular beds in all tissues, and the computational infrastructure for the model should provide links into CellML models of cell function and tissue function. In this work we review the literature associated with 1D blood flow modelling in the cardiovascular system, discuss model encoding standards, software and a model repository. We then describe the coordinate systems used to define the vascular geometry, derive the equations and discuss the implementation of these coupled equations in the open source computational software OpenCMISS. Finally, some preliminary results are presented and plans outlined for the next steps in the development of the model, the computational software and the graphical user interface for accessing the model. PMID:27506597

  13. Roadmap for cardiovascular circulation model.

    PubMed

    Safaei, Soroush; Bradley, Christopher P; Suresh, Vinod; Mithraratne, Kumar; Muller, Alexandre; Ho, Harvey; Ladd, David; Hellevik, Leif R; Omholt, Stig W; Chase, J Geoffrey; Müller, Lucas O; Watanabe, Sansuke M; Blanco, Pablo J; de Bono, Bernard; Hunter, Peter J

    2016-12-01

    Computational models of many aspects of the mammalian cardiovascular circulation have been developed. Indeed, along with orthopaedics, this area of physiology is one that has attracted much interest from engineers, presumably because the equations governing blood flow in the vascular system are well understood and can be solved with well-established numerical techniques. Unfortunately, there have been only a few attempts to create a comprehensive public domain resource for cardiovascular researchers. In this paper we propose a roadmap for developing an open source cardiovascular circulation model. The model should be registered to the musculo-skeletal system. The computational infrastructure for the cardiovascular model should provide for near real-time computation of blood flow and pressure in all parts of the body. The model should deal with vascular beds in all tissues, and the computational infrastructure for the model should provide links into CellML models of cell function and tissue function. In this work we review the literature associated with 1D blood flow modelling in the cardiovascular system, discuss model encoding standards, software and a model repository. We then describe the coordinate systems used to define the vascular geometry, derive the equations and discuss the implementation of these coupled equations in the open source computational software OpenCMISS. Finally, some preliminary results are presented and plans outlined for the next steps in the development of the model, the computational software and the graphical user interface for accessing the model. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  14. * A Rat Model for the In Vivo Assessment of Biological and Tissue-Engineered Valvular and Vascular Grafts.

    PubMed

    Sugimura, Yukiharu; Schmidt, Anna Kathrin; Lichtenberg, Artur; Assmann, Alexander; Akhyari, Payam

    2017-12-01

    The demand for an improvement of the biocompatibility and durability of vascular and valvular implants requires translational animal models to study the in vivo fate of cardiovascular grafts. In the present article, a review on the development and application of a microsurgical rat model of infrarenal implantation of aortic grafts and aortic valved conduits is provided. By refinement of surgical techniques and inclusion of hemodynamic considerations, a functional model has been created, which provides a modular platform for the in vivo assessment of biological and tissue-engineered grafts. Through optional addition of procalcific diets, disease-inducing agents, and genetic modifications, complex multimorbidity scenarios mimicking the clinical reality in cardiovascular patients can be simulated. Applying this model, crucial aspects of the biocompatibility, biofunctionality and degeneration of vascular and valvular implants in dependency on graft preparation, and modification as well as systemic antidegenerative treatment of the recipient have been and will be addressed.

  15. Application of stem cells for cardiovascular grafts tissue engineering.

    PubMed

    Wu, Kaihong; Liu, Ying Long; Cui, Bin; Han, Zhongchao

    2006-06-01

    Congenital and acquired heart diseases are leading causes of morbidity and mortality world-wide. Currently, the synthetic materials or bioprosthetic replacement devices for cardiovascular surgery are imperfect and subject patients to one or more ongoing risks including thrombosis, limited durability and need for reoperations due to lack of growth in children and young adults. Suitable replacement grafts should have appropriate characteristics, including resistance to infection, low immunogenicity, good biocompatability and thromboresistance, with appropriate mechanical and physiological properties. Tissue engineering is a new scientific field aiming at fabrication of living, autologous grafts having structure or function properties that can be used to restore, maintain or improve tissue function. The use of autologous stem cells in cardiovascular tissue engineering is quite promising due to their capacity of self-renewal, high proliferation, and differentiation into specialized progeny. Progress has been made in engineering the various components of the cardiovascular system, including myocardial constructs, heart valves, and vascular patches or conduits with autologous stem cells. This paper will review the current achievements in stem cell-based cardiovascular grafts tissue engineering, with an emphasis on its clinical or possible clinical use in cardiovascular surgery.

  16. Cardiovascular tissue engineering: where we come from and where are we now?

    PubMed

    Smit, Francis E; Dohmen, Pascal M

    2015-01-27

    Abstract Tissue engineering was introduced by Vacanti and Langer in the 80's, exploring the potential of this new technology starting with the well-known "human ear on the mouse back". The goal is to create a substitute which supplies an individual therapy for patients with regeneration, remodeling and growth potential. The growth potential of these subjects is of special interest in congenital cardiac surgery, avoiding repeated interventions and surgery. Initial applications of tissue engineered created substitutes were relatively simple cardiovascular grafts seeded initially by end-differentiated autologous endothelial cells. Important data were collected from these initial clinical autologous endothelial cell seeded grafts in peripheral and coronary vessel disease. After these initial successfully implantation bone marrow cell were used to seed patches and pulmonary conduits were implanted in patients. Driven by the positive results of tissue engineered material implanted under low pressure circumstances, first tissue engineered patches were implanted in the systemic circulation followed by the implantation of tissue engineered aortic heart valves. Tissue engineering is an extreme dynamic technology with continuously modifications and improvements to optimize clinical products. New technologies are unified and so this has also be done with tissue engineering and new application features, so called transcatheter valve intervention. First studies are initiated to apply tissue engineered heart valves with this new transcatheter delivery system less invasive. Simultaneously studies have been started on tissue engineering of so-called whole organs since organ transplantation is restricted due to donor shortage and tissue engineering could overcome this problem. Initial studies of whole heart engineering in the rat model are promising and larger size models are initiated.

  17. Computational Fluid Dynamics and Additive Manufacturing to Diagnose and Treat Cardiovascular Disease.

    PubMed

    Randles, Amanda; Frakes, David H; Leopold, Jane A

    2017-11-01

    Noninvasive engineering models are now being used for diagnosing and planning the treatment of cardiovascular disease. Techniques in computational modeling and additive manufacturing have matured concurrently, and results from simulations can inform and enable the design and optimization of therapeutic devices and treatment strategies. The emerging synergy between large-scale simulations and 3D printing is having a two-fold benefit: first, 3D printing can be used to validate the complex simulations, and second, the flow models can be used to improve treatment planning for cardiovascular disease. In this review, we summarize and discuss recent methods and findings for leveraging advances in both additive manufacturing and patient-specific computational modeling, with an emphasis on new directions in these fields and remaining open questions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Introduction: Cardiovascular physics

    NASA Astrophysics Data System (ADS)

    Wessel, Niels; Kurths, Jürgen; Ditto, William; Bauernschmitt, Robert

    2007-03-01

    The number of patients suffering from cardiovascular diseases increases unproportionally high with the increase of the human population and aging, leading to very high expenses in the public health system. Therefore, the challenge of cardiovascular physics is to develop high-sophisticated methods which are able to, on the one hand, supplement and replace expensive medical devices and, on the other hand, improve the medical diagnostics with decreasing the patient's risk. Cardiovascular physics-which interconnects medicine, physics, biology, engineering, and mathematics-is based on interdisciplinary collaboration of specialists from the above scientific fields and attempts to gain deeper insights into pathophysiology and treatment options. This paper summarizes advances in cardiovascular physics with emphasis on a workshop held in Bad Honnef, Germany, in May 2005. The meeting attracted an interdisciplinary audience and led to a number of papers covering the main research fields of cardiovascular physics, including data analysis, modeling, and medical application. The variety of problems addressed by this issue underlines the complexity of the cardiovascular system. It could be demonstrated in this Focus Issue, that data analyses and modeling methods from cardiovascular physics have the ability to lead to significant improvements in different medical fields. Consequently, this Focus Issue of Chaos is a status report that may invite all interested readers to join the community and find competent discussion and cooperation partners.

  19. Biomaterials in myocardial tissue engineering

    PubMed Central

    Reis, Lewis A.; Chiu, Loraine L. Y.; Feric, Nicole; Fu, Lara; Radisic, Milica

    2016-01-01

    Cardiovascular disease is the leading cause of death in the developed world, and as such there is a pressing need for treatment options. Cardiac tissue engineering emerged from the need to develop alternate sources and methods of replacing tissue damaged by cardiovascular diseases, as the ultimate treatment option for many who suffer from end-stage heart failure is a heart transplant. In this review we focus on biomaterial approaches to augment injured or impaired myocardium with specific emphasis on: the design criteria for these biomaterials; the types of scaffolds—composed of natural or synthetic biomaterials, or decellularized extracellular matrix—that have been used to develop cardiac patches and tissue models; methods to vascularize scaffolds and engineered tissue, and finally injectable biomaterials (hydrogels)designed for endogenous repair, exogenous repair or as bulking agents to maintain ventricular geometry post-infarct. The challenges facing the field and obstacles that must be overcome to develop truly clinically viable cardiac therapies are also discussed. PMID:25066525

  20. Engineered heart tissues and induced pluripotent stem cells: Macro- and microstructures for disease modeling, drug screening, and translational studies.

    PubMed

    Tzatzalos, Evangeline; Abilez, Oscar J; Shukla, Praveen; Wu, Joseph C

    2016-01-15

    Engineered heart tissue has emerged as a personalized platform for drug screening. With the advent of induced pluripotent stem cell (iPSC) technology, patient-specific stem cells can be developed and expanded into an indefinite source of cells. Subsequent developments in cardiovascular biology have led to efficient differentiation of cardiomyocytes, the force-producing cells of the heart. iPSC-derived cardiomyocytes (iPSC-CMs) have provided potentially limitless quantities of well-characterized, healthy, and disease-specific CMs, which in turn has enabled and driven the generation and scale-up of human physiological and disease-relevant engineered heart tissues. The combined technologies of engineered heart tissue and iPSC-CMs are being used to study diseases and to test drugs, and in the process, have advanced the field of cardiovascular tissue engineering into the field of precision medicine. In this review, we will discuss current developments in engineered heart tissue, including iPSC-CMs as a novel cell source. We examine new research directions that have improved the function of engineered heart tissue by using mechanical or electrical conditioning or the incorporation of non-cardiomyocyte stromal cells. Finally, we discuss how engineered heart tissue can evolve into a powerful tool for therapeutic drug testing. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Microengineering in cardiovascular research: new developments and translational applications.

    PubMed

    Chan, Juliana M; Wong, Keith H K; Richards, Arthur Mark; Drum, Chester L

    2015-04-01

    Microfluidic, cellular co-cultures that approximate macro-scale biology are important tools for refining the in vitro study of organ-level function and disease. In recent years, advances in technical fabrication and biological integration have provided new insights into biological phenomena, improved diagnostic measurements, and made major steps towards de novo tissue creation. Here we review applications of these technologies specific to the cardiovascular field, emphasizing three general categories of use: reductionist vascular models, tissue-engineered vascular models, and point-of-care diagnostics. With continued progress in the ability to purposefully control microscale environments, the detailed study of both primary and cultured cells may find new relevance in the general cardiovascular research community. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Cardiology.

  2. A Re-Engineered Software Interface and Workflow for the Open-Source SimVascular Cardiovascular Modeling Package.

    PubMed

    Lan, Hongzhi; Updegrove, Adam; Wilson, Nathan M; Maher, Gabriel D; Shadden, Shawn C; Marsden, Alison L

    2018-02-01

    Patient-specific simulation plays an important role in cardiovascular disease research, diagnosis, surgical planning and medical device design, as well as education in cardiovascular biomechanics. simvascular is an open-source software package encompassing an entire cardiovascular modeling and simulation pipeline from image segmentation, three-dimensional (3D) solid modeling, and mesh generation, to patient-specific simulation and analysis. SimVascular is widely used for cardiovascular basic science and clinical research as well as education, following increased adoption by users and development of a GATEWAY web portal to facilitate educational access. Initial efforts of the project focused on replacing commercial packages with open-source alternatives and adding increased functionality for multiscale modeling, fluid-structure interaction (FSI), and solid modeling operations. In this paper, we introduce a major SimVascular (SV) release that includes a new graphical user interface (GUI) designed to improve user experience. Additional improvements include enhanced data/project management, interactive tools to facilitate user interaction, new boundary condition (BC) functionality, plug-in mechanism to increase modularity, a new 3D segmentation tool, and new computer-aided design (CAD)-based solid modeling capabilities. Here, we focus on major changes to the software platform and outline features added in this new release. We also briefly describe our recent experiences using SimVascular in the classroom for bioengineering education.

  3. Optimization of nanoparticles for cardiovascular tissue engineering.

    PubMed

    Izadifar, Mohammad; Kelly, Michael E; Haddadi, Azita; Chen, Xiongbiao

    2015-06-12

    Nano-particulate delivery systems have increasingly been playing important roles in cardiovascular tissue engineering. Properties of nanoparticles (e.g. size, polydispersity, loading capacity, zeta potential, morphology) are essential to system functions. Notably, these characteristics are regulated by fabrication variables, but in a complicated manner. This raises a great need to optimize fabrication process variables to ensure the desired nanoparticle characteristics. This paper presents a comprehensive experimental study on this matter, along with a novel method, the so-called Geno-Neural approach, to analyze, predict and optimize fabrication variables for desired nanoparticle characteristics. Specifically, ovalbumin was used as a protein model of growth factors used in cardiovascular tissue regeneration, and six fabrication variables were examined with regard to their influence on the characteristics of nanoparticles made from high molecular weight poly(lactide-co-glycolide). The six-factor five-level central composite rotatable design was applied to the conduction of experiments, and based on the experimental results, a geno-neural model was developed to determine the optimum fabrication conditions. For desired particle sizes of 150, 200, 250 and 300 nm, respectively, the optimum conditions to achieve the low polydispersity index, higher negative zeta potential and higher loading capacity were identified based on the developed geno-neural model and then evaluated experimentally. The experimental results revealed that the polymer and the external aqueous phase concentrations and their interactions with other fabrication variables were the most significant variables to affect the size, polydispersity index, zeta potential, loading capacity and initial burst release of the nanoparticles, while the electron microscopy images of the nanoparticles showed their spherical geometries with no sign of large pores or cracks on their surfaces. The release study revealed that the onset of the third phase of release can be affected by the polymer concentration. Circular dichroism spectroscopy indicated that ovalbumin structural integrity is preserved during the encapsulation process. Findings from this study would greatly contribute to the design of high molecular weight poly(lactide-co-glycolide) nanoparticles for prolonged release patterns in cardiovascular engineering.

  4. Lentiviral vectors for gene therapy of heart disease.

    PubMed

    Higuchi, Koji; Medin, Jeffrey A

    2007-01-01

    Technological advances in genetic engineering developed over the past few years have been applied to the research and treatment of cardiovascular diseases. In many animal models, gene therapy has been shown to be an effective treatment schema. Some of these gene therapy treatments are now being applied in clinical trials. Also, as the science of gene therapy has progressed, alternative vector systems such as lentiviruses have been developed and implemented. Here we focus on the emerging role of lentiviral vectors in the treatment of cardiovascular disease.

  5. Computational fluid dynamics modelling in cardiovascular medicine

    PubMed Central

    Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P

    2016-01-01

    This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards ‘digital patient’ or ‘virtual physiological human’ representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges. PMID:26512019

  6. Design Approaches to Myocardial and Vascular Tissue Engineering.

    PubMed

    Akintewe, Olukemi O; Roberts, Erin G; Rim, Nae-Gyune; Ferguson, Michael A H; Wong, Joyce Y

    2017-06-21

    Engineered tissues represent an increasingly promising therapeutic approach for correcting structural defects and promoting tissue regeneration in cardiovascular diseases. One of the challenges associated with this approach has been the necessity for the replacement tissue to promote sufficient vascularization to maintain functionality after implantation. This review highlights a number of promising prevascularization design approaches for introducing vasculature into engineered tissues. Although we focus on encouraging blood vessel formation within myocardial implants, we also discuss techniques developed for other tissues that could eventually become relevant to engineered cardiac tissues. Because the ultimate solution to engineered tissue vascularization will require collaboration between wide-ranging disciplines such as developmental biology, tissue engineering, and computational modeling, we explore contributions from each field.

  7. Biomaterial-driven in situ cardiovascular tissue engineering-a multi-disciplinary perspective.

    PubMed

    Wissing, Tamar B; Bonito, Valentina; Bouten, Carlijn V C; Smits, Anthal I P M

    2017-01-01

    There is a persistent and growing clinical need for readily-available substitutes for heart valves and small-diameter blood vessels. In situ tissue engineering is emerging as a disruptive new technology, providing ready-to-use biodegradable, cell-free constructs which are designed to induce regeneration upon implantation, directly in the functional site. The induced regenerative process hinges around the host response to the implanted biomaterial and the interplay between immune cells, stem/progenitor cell and tissue cells in the microenvironment provided by the scaffold in the hemodynamic environment. Recapitulating the complex tissue microstructure and function of cardiovascular tissues is a highly challenging target. Therein the scaffold plays an instructive role, providing the microenvironment that attracts and harbors host cells, modulating the inflammatory response, and acting as a temporal roadmap for new tissue to be formed. Moreover, the biomechanical loads imposed by the hemodynamic environment play a pivotal role. Here, we provide a multidisciplinary view on in situ cardiovascular tissue engineering using synthetic scaffolds; starting from the state-of-the art, the principles of the biomaterial-driven host response and wound healing and the cellular players involved, toward the impact of the biomechanical, physical, and biochemical microenvironmental cues that are given by the scaffold design. To conclude, we pinpoint and further address the main current challenges for in situ cardiovascular regeneration, namely the achievement of tissue homeostasis, the development of predictive models for long-term performances of the implanted grafts, and the necessity for stratification for successful clinical translation.

  8. Health effects of inhaled gasoline engine emissions.

    PubMed

    McDonald, Jacob D; Reed, Matthew D; Campen, Matthew J; Barrett, Edward G; Seagrave, JeanClare; Mauderly, Joe L

    2007-01-01

    Despite their prevalence in the environment, and the myriad studies that have shown associations between morbidity or mortality with proximity to roadways (proxy for motor vehicle exposures), relatively little is known about the toxicity of gasoline engine emissions (GEE). We review the studies conducted on GEE to date, and summarize the findings from each of these studies. While there have been several studies, most of the studies were conducted prior to 1980 and thus were not conducted with contemporary engines, fuels, and driving cycles. In addition, many of the biological assays conducted during those studies did not include many of the assays that are conducted on contemporary inhalation exposures to air pollutants, including cardiovascular responses and others. None of the exposures from these earlier studies were characterized at the level of detail that would be considered adequate today. A recent GEE study was conducted as part of the National Environmental Respiratory Center (www.nercenter.org). In this study several in-use mid-mileage General Motors (Chevrolet S-10) vehicles were purchased and utilized for inhalation exposures. An exposure protocol was developed where engines were operated with a repeating California Unified Driving Cycle with one cold start per day. Two separate engines were used to provide two cold starts over a 6-h inhalation period. The exposure atmospheres were characterized in detail, including detailed chemical and physical analysis of the gas, vapor, and particle phase. Multiple rodent biological models were studied, including general toxicity and inflammation (e.g., serum chemistry, lung lavage cell counts/differentials, cytokine/chemokine analysis, histopathology), asthma (adult and in utero exposures with pulmonary function and biochemical analysis), cardiovascular effects (biochemical and electrocardiograph changes in susceptible rodent models), and susceptibility to infection (Pseudomonas bacteria challenge). GEE resulted in significant biological effects for upregulation of MIP-2, clearance of Pseudomonas bacteria, development of allergic response after in utero exposure, and cardiovascular indicators of vasoconstriction, oxidant stress, and damage.

  9. A mock heart engineered with helical aramid fibers for in vitro cardiovascular device testing.

    PubMed

    Jansen-Park, So-Hyun; Hsu, Po-Lin; Müller, Indra; Steinseifer, Ulrich; Abel, Dirk; Autschbach, Rüdiger; Rossaint, Rolf; Schmitz-Rode, Thomas

    2017-04-01

    Mock heart circulation loops (MHCLs) serve as in-vitro platforms to investigate the physiological interaction between circulatory systems and cardiovascular devices. A mock heart (MH) engineered with silicone walls and helical aramid fibers, to mimic the complex contraction of a natural heart, has been developed to advance the MHCL previously developed in our group. A mock aorta with an anatomical shape enables the evaluation of a cannulation method for ventricular assist devices (VADs) and investigation of the usage of clinical measurement systems like pressure-volume catheters. Ventricle and aorta molds were produced based on MRI data and cast with silicone. Aramid fibers were layered in the silicone ventricle to reproduce ventricle torsion. A rotating hollow shaft was connected to the apex enabling the rotation of the MH and the connection of a VAD. Silicone wall thickness, aramid fiber angle and fiber pitch were varied to generate different MH models. All MH models were placed in a tank filled with variable amounts of water and air simulating the compliance. In this work, physiological ventricular torsion angles (15°-26°) and physiological pressure-volume loops were achieved. This MHCL can serve as a comprehensive testing platform for cardiovascular devices, such as artificial heart valves and cannulation of VADs.

  10. Computational fluid dynamics modelling in cardiovascular medicine.

    PubMed

    Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P

    2016-01-01

    This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards 'digital patient' or 'virtual physiological human' representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  11. Efficient Genome Editing in Induced Pluripotent Stem Cells with Engineered Nucleases In Vitro.

    PubMed

    Termglinchan, Vittavat; Seeger, Timon; Chen, Caressa; Wu, Joseph C; Karakikes, Ioannis

    2017-01-01

    Precision genome engineering is rapidly advancing the application of the induced pluripotent stem cells (iPSCs) technology for in vitro disease modeling of cardiovascular diseases. Targeted genome editing using engineered nucleases is a powerful tool that allows for reverse genetics, genome engineering, and targeted transgene integration experiments to be performed in a precise and predictable manner. However, nuclease-mediated homologous recombination is an inefficient process. Herein, we describe the development of an optimized method combining site-specific nucleases and the piggyBac transposon system for "seamless" genome editing in pluripotent stem cells with high efficiency and fidelity in vitro.

  12. Current progress in 3D printing for cardiovascular tissue engineering.

    PubMed

    Mosadegh, Bobak; Xiong, Guanglei; Dunham, Simon; Min, James K

    2015-03-16

    3D printing is a technology that allows the fabrication of structures with arbitrary geometries and heterogeneous material properties. The application of this technology to biological structures that match the complexity of native tissue is of great interest to researchers. This mini-review highlights the current progress of 3D printing for fabricating artificial tissues of the cardiovascular system, specifically the myocardium, heart valves, and coronary arteries. In addition, how 3D printed sensors and actuators can play a role in tissue engineering is discussed. To date, all the work with building 3D cardiac tissues have been proof-of-principle demonstrations, and in most cases, yielded products less effective than other traditional tissue engineering strategies. However, this technology is in its infancy and therefore there is much promise that through collaboration between biologists, engineers and material scientists, 3D bioprinting can make a significant impact on the field of cardiovascular tissue engineering.

  13. Flow and pressure regulation in the cardiovascular system. [engineering systems model

    NASA Technical Reports Server (NTRS)

    Iberall, A.

    1974-01-01

    Principles and descriptive fragments which may contribute to a model of the regulating chains in the cardiovascular system are presented. Attention is given to the strain sensitivity of blood vessels, the law of the autonomy of the heart beat oscillator, the law of the encapsulation of body fluids, the law of the conservation of protein, the law of minimum 'arterial' pressure, the design of the 'mammalian' kidney, questions of homeokinetic organization, and the development of self-regulatory chains. Details concerning the development program for the heart muscle are considered along with the speed of response of the breathing rate and the significance of the pulmonary vascular pressure-flow characteristics.

  14. Engine-Operating Load Influences Diesel Exhaust Composition and Cardiopulmonary and Immune Responses

    PubMed Central

    Campen, Matthew J.; Harrod, Kevin S.; Seagrave, JeanClare; Seilkop, Steven K.; Mauderly, Joe L.

    2011-01-01

    Background: The composition of diesel engine exhaust (DEE) varies by engine type and condition, fuel, engine operation, and exhaust after treatment such as particle traps. DEE has been shown to increase inflammation, susceptibility to infection, and cardiovascular responses in experimentally exposed rodents and humans. Engines used in these studies have been operated at idle, at different steady-state loads, or on variable-load cycles, but exposures are often reported only as the mass concentration of particulate matter (PM), and the effects of different engine loads and the resulting differences in DEE composition are unknown. Objectives: We assessed the impacts of load-related differences in DEE composition on models of inflammation, susceptibility to infection, and cardiovascular toxicity. Methods: We assessed inflammation and susceptibility to viral infection in C57BL/6 mice and cardiovascular toxicity in APOE–/– mice after being exposed to DEE generated from a single-cylinder diesel generator operated at partial or full load. Results: At the same PM mass concentration, partial load resulted in higher proportions of particle organic carbon content and a smaller particle size than did high load. Vapor-phase hydrocarbon content was greater at partial load. Compared with high-load DEE, partial-load DEE caused greater responses in heart rate and T-wave morphology, in terms of both magnitude and rapidity of onset of effects, consistent with previous findings that systemic effects may be driven largely by the gas phase of the exposure atmospheres. However, high-load DEE caused more lung inflammation and greater susceptibility to viral infection than did partial load. Conclusions: Differences in engine load, as well as other operating variables, are important determinants of the type and magnitude of responses to inhaled DEE. PM mass concentration alone is not a sufficient basis for comparing or combining results from studies using DEE generated under different conditions. PMID:21524982

  15. Cardiovascular Bio-Engineering: Current State of the Art.

    PubMed

    Simon-Yarza, Teresa; Bataille, Isabelle; Letourneur, Didier

    2017-04-01

    Despite the introduction of new drugs and innovative devices contributing in the last years to improve patients' quality of life, morbidity and mortality from cardiovascular diseases remain high. There is an urgent need for addressing the underlying problem of the loss of cardiac or vascular tissues and therefore developing new therapies. Autologous vascular transplants are often limited by poor quality of donor sites and heart organ transplantation by donor shortage. Vascular and cardiac tissue engineering, whose aim is to repair or replace cardiovascular tissues by the use of cells, engineering and materials, as well as biochemical and physicochemical factors, appears in this scenario as a promising tool to repair the damaged hearts and vessels. We will present a general overview on the fundamentals in the area of cardiac and vascular tissue engineering as well as on the latest progresses and challenges.

  16. Sharing and reusing cardiovascular anatomical models over the Web: a step towards the implementation of the virtual physiological human project.

    PubMed

    Gianni, Daniele; McKeever, Steve; Yu, Tommy; Britten, Randall; Delingette, Hervé; Frangi, Alejandro; Hunter, Peter; Smith, Nicolas

    2010-06-28

    Sharing and reusing anatomical models over the Web offers a significant opportunity to progress the investigation of cardiovascular diseases. However, the current sharing methodology suffers from the limitations of static model delivery (i.e. embedding static links to the models within Web pages) and of a disaggregated view of the model metadata produced by publications and cardiac simulations in isolation. In the context of euHeart--a research project targeting the description and representation of cardiovascular models for disease diagnosis and treatment purposes--we aim to overcome the above limitations with the introduction of euHeartDB, a Web-enabled database for anatomical models of the heart. The database implements a dynamic sharing methodology by managing data access and by tracing all applications. In addition to this, euHeartDB establishes a knowledge link with the physiome model repository by linking geometries to CellML models embedded in the simulation of cardiac behaviour. Furthermore, euHeartDB uses the exFormat--a preliminary version of the interoperable FieldML data format--to effectively promote reuse of anatomical models, and currently incorporates Continuum Mechanics, Image Analysis, Signal Processing and System Identification Graphical User Interface (CMGUI), a rendering engine, to provide three-dimensional graphical views of the models populating the database. Currently, euHeartDB stores 11 cardiac geometries developed within the euHeart project consortium.

  17. Amniotic Fluid-Derived Stem Cells for Cardiovascular Tissue Engineering Applications

    PubMed Central

    Petsche Connell, Jennifer; Camci-Unal, Gulden; Khademhosseini, Ali

    2013-01-01

    Recent research has demonstrated that a population of stem cells can be isolated from amniotic fluid removed by amniocentesis that are broadly multipotent and nontumorogenic. These amniotic fluid-derived stem cells (AFSC) could potentially provide an autologous cell source for treatment of congenital defects identified during gestation, particularly cardiovascular defects. In this review, the various methods of isolating, sorting, and culturing AFSC are compared, along with techniques for inducing differentiation into cardiac myocytes and endothelial cells. Although research has not demonstrated complete and high-yield cardiac differentiation, AFSC have been shown to effectively differentiate into endothelial cells and can effectively support cardiac tissue. Additionally, several tissue engineering and regenerative therapeutic approaches for the use of these cells in heart patches, injection after myocardial infarction, heart valves, vascularized scaffolds, and blood vessels are summarized. These applications show great promise in the treatment of congenital cardiovascular defects, and further studies of isolation, culture, and differentiation of AFSC will help to develop their use for tissue engineering, regenerative medicine, and cardiovascular therapies. PMID:23350771

  18. Trends in Tissue Engineering for Blood Vessels

    PubMed Central

    Nemeno-Guanzon, Judee Grace; Lee, Soojung; Berg, Johan Robert; Jo, Yong Hwa; Yeo, Jee Eun; Nam, Bo Mi; Koh, Yong-Gon; Lee, Jeong Ik

    2012-01-01

    Over the years, cardiovascular diseases continue to increase and affect not only human health but also the economic stability worldwide. The advancement in tissue engineering is contributing a lot in dealing with this immediate need of alleviating human health. Blood vessel diseases are considered as major cardiovascular health problems. Although blood vessel transplantation is the most convenient treatment, it has been delimited due to scarcity of donors and the patient's conditions. However, tissue-engineered blood vessels are promising alternatives as mode of treatment for blood vessel defects. The purpose of this paper is to show the importance of the advancement on biofabrication technology for treatment of soft tissue defects particularly for vascular tissues. This will also provide an overview and update on the current status of tissue reconstruction especially from autologous stem cells, scaffolds, and scaffold-free cellular transplantable constructs. The discussion of this paper will be focused on the historical view of cardiovascular tissue engineering and stem cell biology. The representative studies featured in this paper are limited within the last decade in order to trace the trend and evolution of techniques for blood vessel tissue engineering. PMID:23251085

  19. Challenges in translating vascular tissue engineering to the pediatric clinic.

    PubMed

    Duncan, Daniel R; Breuer, Christopher K

    2011-10-14

    The development of tissue-engineered vascular grafts for use in cardiovascular surgery holds great promise for improving outcomes in pediatric patients with complex congenital cardiac anomalies. Currently used synthetic grafts have a number of shortcomings in this setting but a tissue engineering approach has emerged in the past decade as a way to address these limitations. The first clinical trial of this technology showed that it is safe and effective but the primary mode of graft failure is stenosis. A variety of murine and large animal models have been developed to study and improve tissue engineering approaches with the hope of translating this technology into routine clinical use, but challenges remain. The purpose of this report is to address the clinical problem and review recent advances in vascular tissue engineering for pediatric applications. A deeper understanding of the mechanisms of neovessel formation and stenosis will enable rational design of improved tissue-engineered vascular grafts.

  20. LITTLE FISH, BIG DATA: ZEBRAFISH AS A MODEL FOR CARDIOVASCULAR AND METABOLIC DISEASE.

    PubMed

    Gut, Philipp; Reischauer, Sven; Stainier, Didier Y R; Arnaout, Rima

    2017-07-01

    The burden of cardiovascular and metabolic diseases worldwide is staggering. The emergence of systems approaches in biology promises new therapies, faster and cheaper diagnostics, and personalized medicine. However, a profound understanding of pathogenic mechanisms at the cellular and molecular levels remains a fundamental requirement for discovery and therapeutics. Animal models of human disease are cornerstones of drug discovery as they allow identification of novel pharmacological targets by linking gene function with pathogenesis. The zebrafish model has been used for decades to study development and pathophysiology. More than ever, the specific strengths of the zebrafish model make it a prime partner in an age of discovery transformed by big-data approaches to genomics and disease. Zebrafish share a largely conserved physiology and anatomy with mammals. They allow a wide range of genetic manipulations, including the latest genome engineering approaches. They can be bred and studied with remarkable speed, enabling a range of large-scale phenotypic screens. Finally, zebrafish demonstrate an impressive regenerative capacity scientists hope to unlock in humans. Here, we provide a comprehensive guide on applications of zebrafish to investigate cardiovascular and metabolic diseases. We delineate advantages and limitations of zebrafish models of human disease and summarize their most significant contributions to understanding disease progression to date. Copyright © 2017 the American Physiological Society.

  1. Estimation of the Long-term Cardiovascular Events Using UKPDS Risk Engine in Metabolic Syndrome Patients.

    PubMed

    Shivakumar, V; Kandhare, A D; Rajmane, A R; Adil, M; Ghosh, P; Badgujar, L B; Saraf, M N; Bodhankar, S L

    2014-03-01

    Long-term cardiovascular complications in metabolic syndrome are a major cause of mortality and morbidity in India and forecasted estimates in this domain of research are scarcely reported in the literature. The aim of present investigation is to estimate the cardiovascular events associated with a representative Indian population of patients suffering from metabolic syndrome using United Kingdom Prospective Diabetes Study risk engine. Patient level data was collated from 567 patients suffering from metabolic syndrome through structured interviews and physician records regarding the input variables, which were entered into the United Kingdom Prospective Diabetes Study risk engine. The patients of metabolic syndrome were selected according to guidelines of National Cholesterol Education Program - Adult Treatment Panel III, modified National Cholesterol Education Program - Adult Treatment Panel III and International Diabetes Federation criteria. A projection for 10 simulated years was run on the engine and output was determined. The data for each patient was processed using the United Kingdom Prospective Diabetes Study risk engine to calculate an estimate of the forecasted value for the cardiovascular complications after a period of 10 years. The absolute risk (95% confidence interval) for coronary heart disease, fatal coronary heart disease, stroke and fatal stroke for 10 years was 3.79 (1.5-3.2), 9.6 (6.8-10.7), 7.91 (6.5-9.9) and 3.57 (2.3-4.5), respectively. The relative risk (95% confidence interval) for coronary heart disease, fatal coronary heart disease, stroke and fatal stroke was 17.8 (12.98-19.99), 7 (6.7-7.2), 5.9 (4.0-6.6) and 4.7 (3.2-5.7), respectively. Simulated projections of metabolic syndrome patients predict serious life-threatening cardiovascular consequences in the representative cohort of patients in western India.

  2. Biomaterial based cardiac tissue engineering and its applications

    PubMed Central

    Huyer, Locke Davenport; Montgomery, Miles; Zhao, Yimu; Xiao, Yun; Conant, Genevieve; Korolj, Anastasia; Radisic, Milica

    2015-01-01

    Cardiovascular disease is a leading cause of death worldwide, necessitating the development of effective treatment strategies. A myocardial infarction involves the blockage of a coronary artery leading to depletion of nutrient and oxygen supply to cardiomyocytes and massive cell death in a region of the myocardium. Cardiac tissue engineering is the growth of functional cardiac tissue in vitro on biomaterial scaffolds for regenerative medicine application. This strategy relies on the optimization of the complex relationship between cell networks and biomaterial properties. In this review, we discuss important biomaterial properties for cardiac tissue engineering applications, such as elasticity, degradation, and induced host response, and their relationship to engineered cardiac cell environments. With these properties in mind, we also emphasize in vitro use of cardiac tissues for high-throughput drug screening and disease modelling. PMID:25989939

  3. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip

    PubMed Central

    Zhang, Yu Shrike; Arneri, Andrea; Bersini, Simone; Shin, Su-Ryon; Zhu, Kai; Goli-Malekabadi, Zahra; Aleman, Julio; Colosi, Cristina; Busignani, Fabio; Dell'Erba, Valeria; Bishop, Colin; Shupe, Thomas; Demarchi, Danilo; Moretti, Matteo; Rasponi, Marco; Dokmeci, Mehmet Remzi; Atala, Anthony; Khademhosseini, Ali

    2016-01-01

    Engineering cardiac tissues and organ models remains a great challenge due to the hierarchical structure of the native myocardium. The need of integrating blood vessels brings additional complexity, limiting the available approaches that are suitable to produce integrated cardiovascular organoids. In this work we propose a novel hybrid strategy based on 3D bioprinting, to fabricate endothelialized myocardium. Enabled by the use of our composite bioink, endothelial cells directly bioprinted within microfibrous hydrogel scaffolds gradually migrated towards the peripheries of the microfibers to form a layer of confluent endothelium. Together with controlled anisotropy, this 3D endothelial bed was then seeded with cardiomyocytes to generate aligned myocardium capable of spontaneous and synchronous contraction. We further embedded the organoids into a specially designed microfluidic perfusion bioreactor to complete the endothelialized-myocardium-on-a-chip platform for cardiovascular toxicity evaluation. Finally, we demonstrated that such a technique could be translated to human cardiomyocytes derived from induced pluripotent stem cells to construct endothelialized human myocardium. We believe that our method for generation of endothelialized organoids fabricated through an innovative 3D bioprinting technology may find widespread applications in regenerative medicine, drug screening, and potentially disease modeling. PMID:27710832

  4. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip.

    PubMed

    Zhang, Yu Shrike; Arneri, Andrea; Bersini, Simone; Shin, Su-Ryon; Zhu, Kai; Goli-Malekabadi, Zahra; Aleman, Julio; Colosi, Cristina; Busignani, Fabio; Dell'Erba, Valeria; Bishop, Colin; Shupe, Thomas; Demarchi, Danilo; Moretti, Matteo; Rasponi, Marco; Dokmeci, Mehmet Remzi; Atala, Anthony; Khademhosseini, Ali

    2016-12-01

    Engineering cardiac tissues and organ models remains a great challenge due to the hierarchical structure of the native myocardium. The need of integrating blood vessels brings additional complexity, limiting the available approaches that are suitable to produce integrated cardiovascular organoids. In this work we propose a novel hybrid strategy based on 3D bioprinting, to fabricate endothelialized myocardium. Enabled by the use of our composite bioink, endothelial cells directly bioprinted within microfibrous hydrogel scaffolds gradually migrated towards the peripheries of the microfibers to form a layer of confluent endothelium. Together with controlled anisotropy, this 3D endothelial bed was then seeded with cardiomyocytes to generate aligned myocardium capable of spontaneous and synchronous contraction. We further embedded the organoids into a specially designed microfluidic perfusion bioreactor to complete the endothelialized-myocardium-on-a-chip platform for cardiovascular toxicity evaluation. Finally, we demonstrated that such a technique could be translated to human cardiomyocytes derived from induced pluripotent stem cells to construct endothelialized human myocardium. We believe that our method for generation of endothelialized organoids fabricated through an innovative 3D bioprinting technology may find widespread applications in regenerative medicine, drug screening, and potentially disease modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Virtual medicine: Utilization of the advanced cardiac imaging patient avatar for procedural planning and facilitation.

    PubMed

    Shinbane, Jerold S; Saxon, Leslie A

    Advances in imaging technology have led to a paradigm shift from planning of cardiovascular procedures and surgeries requiring the actual patient in a "brick and mortar" hospital to utilization of the digitalized patient in the virtual hospital. Cardiovascular computed tomographic angiography (CCTA) and cardiovascular magnetic resonance (CMR) digitalized 3-D patient representation of individual patient anatomy and physiology serves as an avatar allowing for virtual delineation of the most optimal approaches to cardiovascular procedures and surgeries prior to actual hospitalization. Pre-hospitalization reconstruction and analysis of anatomy and pathophysiology previously only accessible during the actual procedure could potentially limit the intrinsic risks related to time in the operating room, cardiac procedural laboratory and overall hospital environment. Although applications are specific to areas of cardiovascular specialty focus, there are unifying themes related to the utilization of technologies. The virtual patient avatar computer can also be used for procedural planning, computational modeling of anatomy, simulation of predicted therapeutic result, printing of 3-D models, and augmentation of real time procedural performance. Examples of the above techniques are at various stages of development for application to the spectrum of cardiovascular disease processes, including percutaneous, surgical and hybrid minimally invasive interventions. A multidisciplinary approach within medicine and engineering is necessary for creation of robust algorithms for maximal utilization of the virtual patient avatar in the digital medical center. Utilization of the virtual advanced cardiac imaging patient avatar will play an important role in the virtual health care system. Although there has been a rapid proliferation of early data, advanced imaging applications require further assessment and validation of accuracy, reproducibility, standardization, safety, efficacy, quality, cost effectiveness, and overall value to medical care. Copyright © 2018 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  6. Cardiovascular mortality and exposure to extremely low frequency magnetic fields: a cohort study of Swiss railway workers

    PubMed Central

    Röösli, Martin; Egger, Matthias; Pfluger, Dominik; Minder, Christoph

    2008-01-01

    Background Exposure to intermittent magnetic fields of 16 Hz has been shown to reduce heart rate variability, and decreased heart rate variability predicts cardiovascular mortality. We examined mortality from cardiovascular causes in railway workers exposed to varying degrees to intermittent 16.7 Hz magnetic fields. Methods We studied a cohort of 20,141 Swiss railway employees between 1972 and 2002, including highly exposed train drivers (median lifetime exposure 120.5 μT-years), and less or little exposed shunting yard engineers (42.1 μT-years), train attendants (13.3 μT-years) and station masters (5.7 μT-years). During 464,129 person-years of follow up, 5,413 deaths were recorded and 3,594 deaths were attributed to cardio-vascular diseases. We analyzed data using Cox proportional hazards models. Results For all cardiovascular mortality the hazard ratio compared to station masters was 0.99 (95%CI: 0.91, 1.08) in train drivers, 1.13 (95%CI: 0.98, 1.30) in shunting yard engineers, and 1.09 (95%CI: 1.00, 1.19) in train attendants. Corresponding hazard ratios for arrhythmia related deaths were 1.04 (95%CI: 0.68, 1.59), 0.58 (95%CI: 0.24, 1.37) and 10 (95%CI: 0.87, 1.93) and for acute myocardial infarction 1.00 (95%CI: 0.73, 1.36), 1.56 (95%CI: 1.04, 2.32), and 1.14 (95%CI: 0.85, 1.53). The hazard ratio for arrhythmia related deaths per 100 μT-years of cumulative exposure was 0.94 (95%CI: 0.71, 1.24) and 0.91 (95%CI: 0.75, 1.11) for acute myocardial infarction. Conclusion This study provides evidence against an association between long-term occupational exposure to intermittent 16.7 Hz magnetic fields and cardiovascular mortality. PMID:18593477

  7. Finite element strategies to satisfy clinical and engineering requirements in the field of percutaneous valves.

    PubMed

    Capelli, Claudio; Biglino, Giovanni; Petrini, Lorenza; Migliavacca, Francesco; Cosentino, Daria; Bonhoeffer, Philipp; Taylor, Andrew M; Schievano, Silvia

    2012-12-01

    Finite element (FE) modelling can be a very resourceful tool in the field of cardiovascular devices. To ensure result reliability, FE models must be validated experimentally against physical data. Their clinical application (e.g., patients' suitability, morphological evaluation) also requires fast simulation process and access to results, while engineering applications need highly accurate results. This study shows how FE models with different mesh discretisations can suit clinical and engineering requirements for studying a novel device designed for percutaneous valve implantation. Following sensitivity analysis and experimental characterisation of the materials, the stent-graft was first studied in a simplified geometry (i.e., compliant cylinder) and validated against in vitro data, and then in a patient-specific implantation site (i.e., distensible right ventricular outflow tract). Different meshing strategies using solid, beam and shell elements were tested. Results showed excellent agreement between computational and experimental data in the simplified implantation site. Beam elements were found to be convenient for clinical applications, providing reliable results in less than one hour in a patient-specific anatomical model. Solid elements remain the FE choice for engineering applications, albeit more computationally expensive (>100 times). This work also showed how information on device mechanical behaviour differs when acquired in a simplified model as opposed to a patient-specific model.

  8. Clinical Application of Stem Cells in the Cardiovascular System

    NASA Astrophysics Data System (ADS)

    Stamm, Christof; Klose, Kristin; Choi, Yeong-Hoon

    Regenerative medicine encompasses "tissue engineering" - the in vitro fabrication of tissues and/or organs using scaffold material and viable cells - and "cell therapy" - the transplantation or manipulation of cells in diseased tissue in vivo. In the cardiovascular system, tissue engineering strategies are being pursued for the development of viable replacement blood vessels, heart valves, patch material, cardiac pacemakers and contractile myocardium. Anecdotal clinical applications of such vessels, valves and patches have been described, but information on systematic studies of the performance of such implants is not available, yet. Cell therapy for cardiovascular regeneration, however, has been performed in large series of patients, and numerous clinical studies have produced sometimes conflicting results. The purpose of this chapter is to summarize the clinical experience with cell therapy for diseases of the cardiovascular system, and to analyse possible factors that may influence its outcome.

  9. PI3K Phosphorylation Is Linked to Improved Electrical Excitability in an In Vitro Engineered Heart Tissue Disease Model System.

    PubMed

    Kana, Kujaany; Song, Hannah; Laschinger, Carol; Zandstra, Peter W; Radisic, Milica

    2015-09-01

    Myocardial infarction, a prevalent cardiovascular disease, is associated with cardiomyocyte cell death, and eventually heart failure. Cardiac tissue engineering has provided hopes for alternative treatment options, and high-fidelity tissue models for drug discovery. The signal transduction mechanisms relayed in response to mechanoelectrical (physical) stimulation or biochemical stimulation (hormones, cytokines, or drugs) in engineered heart tissues (EHTs) are poorly understood. In this study, an EHT model was used to elucidate the signaling mechanisms involved when insulin was applied in the presence of electrical stimulation, a stimulus that mimics functional heart tissue environment in vitro. EHTs were insulin treated, electrically stimulated, or applied in combination (insulin and electrical stimulation). Electrical excitability parameters (excitation threshold and maximum capture rate) were measured. Protein kinase B (AKT) and phosphatidylinositol-3-kinase (PI3K) phosphorylation revealed that insulin and electrical stimulation relayed electrical excitability through two separate signaling cascades, while there was a negative crosstalk between sustained activation of AKT and PI3K.

  10. Recent Progress in Genome Editing Approaches for Inherited Cardiovascular Diseases.

    PubMed

    Kaur, Balpreet; Perea-Gil, Isaac; Karakikes, Ioannis

    2018-06-02

    This review describes the recent progress in nuclease-based therapeutic applications for inherited heart diseases in vitro, highlights the development of the most recent genome editing technologies and discusses the associated challenges for clinical translation. Inherited cardiovascular disorders are passed from generation to generation. Over the past decade, considerable progress has been made in understanding the genetic basis of inherited heart diseases. The timely emergence of genome editing technologies using engineered programmable nucleases has revolutionized the basic research of inherited cardiovascular diseases and holds great promise for the development of targeted therapies. The genome editing toolbox is rapidly expanding, and new tools have been recently added that significantly expand the capabilities of engineered nucleases. Newer classes of versatile engineered nucleases, such as the "base editors," have been recently developed, offering the potential for efficient and precise therapeutic manipulation of the human genome.

  11. Measured outcomes with hypnosis as an experimental tool in a cardiovascular physiology laboratory.

    PubMed

    Casiglia, Edoardo; Tikhonoff, Valérie; Giordano, Nunzia; Andreatta, Elisa; Regaldo, Giuseppe; Tosello, Maria T; Rossi, Augusto M; Bordin, Daniele; Giacomello, Margherita; Facco, Enrico

    2012-01-01

    The authors detail their multidisciplinary collaboration of cardiologists, physiologists, neurologists, psychologists, engineers, and statisticians in researching the effects of hypnosis on the cardiovascular system and their additions to that incomplete literature. The article details their results and provides guidelines for researchers interested in replicating their research on hypnosis' effect on the cardiovascular system.

  12. Fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system.

    PubMed

    Kucinska-Lipka, J; Gubanska, I; Janik, H; Sienkiewicz, M

    2015-01-01

    Electrospinning is a unique technique, which provides forming of polymeric scaffolds for soft tissue engineering, which include tissue scaffolds for soft tissues of the cardiovascular system. Such artificial soft tissues of the cardiovascular system may possess mechanical properties comparable to native vascular tissues. Electrospinning technique gives the opportunity to form fibres with nm- to μm-scale in diameter. The arrangement of obtained fibres and their surface determine the biocompatibility of the scaffolds. Polyurethanes (PUs) are being commonly used as a prosthesis of cardiovascular soft tissues due to their excellent biocompatibility, non-toxicity, elasticity and mechanical properties. PUs also possess fine spinning properties. The combination of a variety of PU properties with an electrospinning technique, conducted at the well tailored conditions, gives unlimited possibilities of forming novel polyurethane materials suitable for soft tissue scaffolds applied in cardiovascular tissue engineering. This paper can help researches to gain more widespread and deeper understanding of designing electrospinable PU materials, which may be used as cardiovascular soft tissue scaffolds. In this paper we focus on reagents used in PU synthesis designed to increase PU biocompatibility (polyols) and biodegradability (isocyanates). We also describe suggested surface modifications of electrospun PUs, and the direct influence of surface wettability on providing enhanced biocompatibility of scaffolds. We indicate a great influence of electrospinning parameters (voltage, flow rate, working distance) and used solvents (mostly DMF, THF and HFIP) on fibre alignment and diameter - what impacts the biocompatibility and hemocompatibility of such electrospun PU scaffolds. Moreover, we present PU modifications with natural polymers with novel approach applied in electrospinning of PU scaffolds. This work may contribute with further developing of novel electrospun PUs, which may be applied as soft tissue scaffolds of the cardiovascular system. Copyright © 2014. Published by Elsevier B.V.

  13. Associations of short-term exposure to traffic-related air pollution with cardiovascular and respiratory hospital admissions in London, UK.

    PubMed

    Samoli, Evangelia; Atkinson, Richard W; Analitis, Antonis; Fuller, Gary W; Green, David C; Mudway, Ian; Anderson, H Ross; Kelly, Frank J

    2016-05-01

    There is evidence of adverse associations between short-term exposure to traffic-related pollution and health, but little is known about the relative contribution of the various sources and particulate constituents. For each day for 2011-2012 in London, UK over 100 air pollutant metrics were assembled using monitors, modelling and chemical analyses. We selected a priori metrics indicative of traffic sources: general traffic, petrol exhaust, diesel exhaust and non-exhaust (mineral dust, brake and tyre wear). Using Poisson regression models, controlling for time-varying confounders, we derived effect estimates for cardiovascular and respiratory hospital admissions at prespecified lags and evaluated the sensitivity of estimates to multipollutant modelling and effect modification by season. For single day exposure, we found consistent associations between adult (15-64 years) cardiovascular and paediatric (0-14 years) respiratory admissions with elemental and black carbon (EC/BC), ranging from 0.56% to 1.65% increase per IQR change, and to a lesser degree with carbon monoxide (CO) and aluminium (Al). The average of past 7 days EC/BC exposure was associated with elderly (65+ years) cardiovascular admissions. Indicated associations were higher during the warm period of the year. Although effect estimates were sensitive to the adjustment for other pollutants they remained consistent in direction, indicating independence of associations from different sources, especially between diesel and petrol engines, as well as mineral dust. Our results suggest that exhaust related pollutants are associated with increased numbers of adult cardiovascular and paediatric respiratory hospitalisations. More extensive monitoring in urban centres is required to further elucidate the associations. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. Associations of short-term exposure to traffic-related air pollution with cardiovascular and respiratory hospital admissions in London, UK

    PubMed Central

    Samoli, Evangelia; Atkinson, Richard W; Analitis, Antonis; Fuller, Gary W; Green, David C; Mudway, Ian; Anderson, H Ross; Kelly, Frank J

    2016-01-01

    Objectives There is evidence of adverse associations between short-term exposure to traffic-related pollution and health, but little is known about the relative contribution of the various sources and particulate constituents. Methods For each day for 2011–2012 in London, UK over 100 air pollutant metrics were assembled using monitors, modelling and chemical analyses. We selected a priori metrics indicative of traffic sources: general traffic, petrol exhaust, diesel exhaust and non-exhaust (mineral dust, brake and tyre wear). Using Poisson regression models, controlling for time-varying confounders, we derived effect estimates for cardiovascular and respiratory hospital admissions at prespecified lags and evaluated the sensitivity of estimates to multipollutant modelling and effect modification by season. Results For single day exposure, we found consistent associations between adult (15–64 years) cardiovascular and paediatric (0–14 years) respiratory admissions with elemental and black carbon (EC/BC), ranging from 0.56% to 1.65% increase per IQR change, and to a lesser degree with carbon monoxide (CO) and aluminium (Al). The average of past 7 days EC/BC exposure was associated with elderly (65+ years) cardiovascular admissions. Indicated associations were higher during the warm period of the year. Although effect estimates were sensitive to the adjustment for other pollutants they remained consistent in direction, indicating independence of associations from different sources, especially between diesel and petrol engines, as well as mineral dust. Conclusions Our results suggest that exhaust related pollutants are associated with increased numbers of adult cardiovascular and paediatric respiratory hospitalisations. More extensive monitoring in urban centres is required to further elucidate the associations. PMID:26884048

  15. Cardiac 3D Printing and its Future Directions.

    PubMed

    Vukicevic, Marija; Mosadegh, Bobak; Min, James K; Little, Stephen H

    2017-02-01

    Three-dimensional (3D) printing is at the crossroads of printer and materials engineering, noninvasive diagnostic imaging, computer-aided design, and structural heart intervention. Cardiovascular applications of this technology development include the use of patient-specific 3D models for medical teaching, exploration of valve and vessel function, surgical and catheter-based procedural planning, and early work in designing and refining the latest innovations in percutaneous structural devices. In this review, we discuss the methods and materials being used for 3D printing today. We discuss the basic principles of clinical image segmentation, including coregistration of multiple imaging datasets to create an anatomic model of interest. With applications in congenital heart disease, coronary artery disease, and surgical and catheter-based structural disease, 3D printing is a new tool that is challenging how we image, plan, and carry out cardiovascular interventions. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  16. Cardiac 3D Printing and Its Future Directions

    PubMed Central

    Vukicevic, Marija; Mosadegh, Bobak; Min, James K.; Little, Stephen H.

    2017-01-01

    3D printing is at the crossroads of printer and materials engineering; non-invasive diagnostic imaging; computer aided design (CAD); and structural heart intervention. Cardiovascular applications of this technology development include the use of patient-specific 3D models for medical teaching, exploration of valve and vessel function, surgical and catheter-based procedural planning, and early work in designing and refining the latest innovations in percutaneous structural devices. In this review we discuss the methods and materials being used for 3D printing today. We discuss the basic principles of clinical image segmentation including co-registration of multiple imaging datasets to create an anatomic model of interest. With applications in congenital heart disease, coronary artery disease, and in surgical and catheter-based structural disease – 3D printing is a new tool that is challenging how we image, plan, and carry out cardiovascular interventions. PMID:28183437

  17. The role of Wnt regulation in heart development, cardiac repair and disease: A tissue engineering perspective.

    PubMed

    Pahnke, Aric; Conant, Genna; Huyer, Locke Davenport; Zhao, Yimu; Feric, Nicole; Radisic, Milica

    2016-05-06

    Wingless-related integration site (Wnt) signaling has proven to be a fundamental mechanism in cardiovascular development as well as disease. Understanding its particular role in heart formation has helped to develop pluripotent stem cell differentiation protocols that produce relatively pure cardiomyocyte populations. The resultant cardiomyocytes have been used to generate heart tissue for pharmaceutical testing, and to study physiological and disease states. Such protocols in combination with induced pluripotent stem cell technology have yielded patient-derived cardiomyocytes that exhibit some of the hallmarks of cardiovascular disease and are therefore being used to model disease states. While FDA approval of new treatments typically requires animal experiments, the burgeoning field of tissue engineering could act as a replacement. This would necessitate the generation of reproducible three-dimensional cardiac tissues in a well-controlled environment, which exhibit native heart properties, such as cellular density, composition, extracellular matrix composition, and structure-function. Such tissues could also enable the further study of Wnt signaling. Furthermore, as Wnt signaling has been found to have a mechanistic role in cardiac pathophysiology, e.g. heart attack, hypertrophy, atherosclerosis, and aortic stenosis, its strategic manipulation could provide a means of generating reproducible and specific, physiological and pathological cardiac models. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Heart Rate and Electrocardiography Monitoring in Mice

    PubMed Central

    Ho, David; Zhao, Xin; Gao, Shumin; Hong, Chull; Vatner, Dorothy E.; Vatner, Stephen F.

    2011-01-01

    The majority of current cardiovascular research involves studies in genetically engineered mouse models. The measurement of heart rate is central to understanding cardiovascular control under normal conditions, with altered autonomic tone, superimposed stress or disease states, both in wild type mice as well as those with altered genes. Electrocardiography (ECG) is the “gold standard” using either hard wire or telemetry transmission. In addition, heart rate is measured or monitored from the frequency of the arterial pressure pulse or cardiac contraction, or by pulse oximetry. For each of these techniques, discussions of materials and methods, as well as advantages and limitations are covered. However, only the direct ECG monitoring will determine not only the precise heart rates but also whether the cardiac rhythm is normal or not. PMID:21743842

  19. A fully implantable pacemaker for the mouse: from battery to wireless power.

    PubMed

    Laughner, Jacob I; Marrus, Scott B; Zellmer, Erik R; Weinheimer, Carla J; MacEwan, Matthew R; Cui, Sophia X; Nerbonne, Jeanne M; Efimov, Igor R

    2013-01-01

    Animal models have become a popular platform for the investigation of the molecular and systemic mechanisms of pathological cardiovascular physiology. Chronic pacing studies with implantable pacemakers in large animals have led to useful models of heart failure and atrial fibrillation. Unfortunately, molecular and genetic studies in these large animal models are often prohibitively expensive or not available. Conversely, the mouse is an excellent species for studying molecular mechanisms of cardiovascular disease through genetic engineering. However, the large size of available pacemakers does not lend itself to chronic pacing in mice. Here, we present the design for a novel, fully implantable wireless-powered pacemaker for mice capable of long-term (>30 days) pacing. This design is compared to a traditional battery-powered pacemaker to demonstrate critical advantages achieved through wireless inductive power transfer and control. Battery-powered and wireless-powered pacemakers were fabricated from standard electronic components in our laboratory. Mice (n = 24) were implanted with endocardial, battery-powered devices (n = 14) and epicardial, wireless-powered devices (n = 10). Wireless-powered devices were associated with reduced implant mortality and more reliable device function compared to battery-powered devices. Eight of 14 (57.1%) mice implanted with battery-powered pacemakers died following device implantation compared to 1 of 10 (10%) mice implanted with wireless-powered pacemakers. Moreover, device function was achieved for 30 days with the wireless-powered device compared to 6 days with the battery-powered device. The wireless-powered pacemaker system presented herein will allow electrophysiology studies in numerous genetically engineered mouse models as well as rapid pacing-induced heart failure and atrial arrhythmia in mice.

  20. Engineering an in vitro organotypic model for studying cardiac hypertrophy.

    PubMed

    Jain, Aditi; Hasan, Jafar; Desingu, Perumal Arumugam; Sundaresan, Nagalingam R; Chatterjee, Kaushik

    2018-05-01

    Neonatal cardiomyocytes cultured on flat surfaces are commonly used as a model to study cardiac failure of diverse origin. A major drawback of such a system is that the cardiomyocytes do not exhibit alignment, organization and calcium transients, similar to the native heart. Therefore, there is a need to develop in vitro platforms that recapitulate the cellular microenvironment of the murine heart as organotypic models to study cardiovascular diseases. In this study, we report an engineered platform that mimics cardiac cell organization and function of the heart. For this purpose, microscale ridges were fabricated on silicon using ultraviolet lithography and reactive ion etching techniques. Physical characterization of the microstructures was done using scanning electron microscopy and atomic force microscopy. Cardiomyocytes grown on these micro-ridges showed global parallel alignment and elliptical nuclear morphology as observed in the heart. Interestingly, calcium currents traversed the engineered cardiomyocytes in a coordinated and directional manner. Moreover, the cardiomyocytes on the engineered substrates were found to be responsive to hypertrophic stimuli, as observed by the expression of a fetal gene, atrial natriuretic peptide and increase in calcium transients upon agonist treatment. Taken together, our work demonstrates that micro-ridges can be used to obtain cardiomyocyte response in vitro, which closely resembles mammalian heart. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Whole and particle-free diesel exhausts differentially affect cardiac electrophysiology, blood pressure, and autonomic balance in heart failure-prone rats

    EPA Science Inventory

    Epidemiologic studies strongly link short-term exposures to vehicular traffic and particulate matter (PM) air pollution with adverse cardiovascular events, especially in those with preexisting cardiovascular disease. Diesel engine exhaust (DE) is a key contributor to urban ambien...

  2. Carbon nanotubes reinforced chitosan films: mechanical properties and cell response of a novel biomaterial for cardiovascular tissue engineering.

    PubMed

    Kroustalli, A; Zisimopoulou, A E; Koch, S; Rongen, L; Deligianni, D; Diamantouros, S; Athanassiou, G; Kokozidou, M; Mavrilas, D; Jockenhoevel, S

    2013-12-01

    Carbon nanotubes have been proposed as fillers to reinforce polymeric biomaterials for the strengthening of their structural integrity to achieve better biomechanical properties. In this study, a new polymeric composite material was introduced by incorporating various low concentrations of multiwalled carbon nanotubes (MWCNTs) into chitosan (CS), aiming at achieving a novel composite biomaterial with superior mechanical and biological properties compared to neat CS, in order to be used in cardiovascular tissue engineering applications. Both mechanical and biological characteristics in contact with the two relevant cell types (endothelial cells and vascular myofibroblasts) were studied. Regarding the mechanical behavior of MWCNT reinforced CS (MWCNT/CS), 5 and 10 % concentrations of MWCNTs enhanced the mechanical behavior of CS, with that of 5 % exhibiting a superior mechanical strength compared to 10 % concentration and neat CS. Regarding biological properties, MWCNT/CS best supported proliferation of endothelial and myofibroblast cells, MWCNTs and MWCNT/CS caused no apoptosis and were not toxic of the examined cell types. Conclusively, the new material could be suitable for tissue engineering (TE) and particularly for cardiovascular TE applications.

  3. Modelling and Simulating the Adhesion and Detachment of Chondrocytes in Shear Flow

    NASA Astrophysics Data System (ADS)

    Hao, Jian; Pan, Tsorng-Whay; Rosenstrauch, Doreen

    Chondrocytes are typically studied in the environment where they normally reside such as the joints in hips, intervertebral disks or the ear. For example, in [SKE+99], the effect of seeding duration on the strength of chondrocyte adhesion to articulate cartilage has been studied in shear flow chamber since such adhesion may play an important role in the repair of articular defects by maintaining cells in positions where their biosynthetic products can contribute to the repair process. However, in this investigation, we focus mainly on the use of auricular chondrocytes in cardiovascular implants. They are abundant, easily and efficiently harvested by a minimally invasive technique. Auricular chondrocytes have ability to produce collagen type-II and other important extracellular matrix constituents; this allows them to adhere strongly to the artificial surfaces. They can be genetically engineered to act like endothelial cells so that the biocompatibility of cardiovascular prothesis can be improved. Actually in [SBBR+02], genetically engineered auricular chondrocytes can be used to line blood-contacting luminal surfaces of left ventricular assist device (LVAD) and a chondrocyte-lined LVAD has been planted into the tissue-donor calf and the results in vivo have proved the feasibility of using autologous auricular chondrocytes to improve the biocompatibility of the blood-biomaterial interface in LVADs and cardiovascular prothesis. Therefore, cultured chondrocytes may offer a more efficient and less invasive means of covering artificial surface with a viable and adherent cell layer.

  4. Translational Applications of Tissue Engineering in Cardiovascular Medicine.

    PubMed

    Dogan, Arin; Elcin, A Eser; Elcin, Y Murat

    2017-03-26

    Cardiovascular diseases are the leading cause of global deaths. The current paradigm in medicine seeks novel approaches for the treatment of progressive or end-stage diseases. The organ transplantation option is limited in availability, and unfortunately, a significant number of patients are lost while waiting for donor organs. Animal studies have shown that upon myocardial infarction, it is possible to stop adverse remodeling in its tracks and reverse with tissue engineering methods. Regaining the myocardium function and avoiding further deterioration towards heart failure can benefit millions of people with a significantly lesser burden on healthcare systems worldwide. The advent of induced pluripotent stem cells brings the unique advantage of testing candidate drug molecules on organ-on-chip systems, which mimics human heart in vitro. Biomimetic three-dimensional constructs that contain disease-specific or normal cardiomyocytes derived from human induced pluripotent stem cells are a useful tool for screening drug molecules and studying dosage, mode of action and cardio-toxicity. Tissue engineering approach aims to develop the treatments for heart valve deficiency, ischemic heart disease and a wide range of vascular diseases. Translational research seeks to improve the patient's quality of life, progressing towards developing cures, rather than treatments. To this end, researchers are working on tissue engineered heart valves, blood vessels, cardiac patches, and injectable biomaterials, hence developing new ways for engineering bio-artificial organs or tissue parts that the body will adopt as its own. In this review, we summarize translational methods for cardiovascular tissue engineering and present useful tables on pre-clinical and clinical applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Insoluble elastin reduces collagen scaffold stiffness, improves viscoelastic properties, and induces a contractile phenotype in smooth muscle cells.

    PubMed

    Ryan, Alan J; O'Brien, Fergal J

    2015-12-01

    Biomaterials with the capacity to innately guide cell behaviour while also displaying suitable mechanical properties remain a challenge in tissue engineering. Our approach to this has been to utilise insoluble elastin in combination with collagen as the basis of a biomimetic scaffold for cardiovascular tissue engineering. Elastin was found to markedly alter the mechanical and biological response of these collagen-based scaffolds. Specifically, during extensive mechanical assessment elastin was found to reduce the specific tensile and compressive moduli of the scaffolds in a concentration dependant manner while having minimal effect on scaffold microarchitecture with both scaffold porosity and pore size still within the ideal ranges for tissue engineering applications. However, the viscoelastic properties were significantly improved with elastin addition with a 3.5-fold decrease in induced creep strain, a 6-fold increase in cyclical strain recovery, and with a four-parameter viscoelastic model confirming the ability of elastin to confer resistance to long term deformation/creep. Furthermore, elastin was found to result in the modulation of SMC phenotype towards a contractile state which was determined via reduced proliferation and significantly enhanced expression of early (α-SMA), mid (calponin), and late stage (SM-MHC) contractile proteins. This allows the ability to utilise extracellular matrix proteins alone to modulate SMC phenotype without any exogenous factors added. Taken together, the ability of elastin to alter the mechanical and biological response of collagen scaffolds has led to the development of a biomimetic biomaterial highly suitable for cardiovascular tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Towards Robot-Assisted Echocardiographic Monitoring in Catheterization Laboratories : Usability-Centered Manipulator for Transesophageal Echocardiography.

    PubMed

    Pahl, Christina; Ebelt, Henning; Sayahkarajy, Mostafa; Supriyanto, Eko; Soesanto, Amiliana

    2017-08-15

    This paper proposes a robotic Transesophageal Echocardiography (TOE) system concept for Catheterization Laboratories. Cardiovascular disease causes one third of all global mortality. TOE is utilized to assess cardiovascular structures and monitor cardiac function during diagnostic procedures and catheter-based structural interventions. However, the operation of TOE underlies various conditions that may cause a negative impact on performance, the health of the cardiac sonographer and patient safety. These factors have been conflated and evince the potential of robot-assisted TOE. Hence, a careful integration of clinical experience and Systems Engineering methods was used to develop a concept and physical model for TOE manipulation. The motion of different actuators of the fabricated motorized system has been tested. It is concluded that the developed medical system, counteracting conflated disadvantages, represents a progressive approach for cardiac healthcare.

  7. Association of working hours with biological indices related to the cardiovascular system among engineers in a machinery manufacturing company.

    PubMed

    Sasaki, T; Iwasaki, K; Oka, T; Hisanaga, N

    1999-10-01

    A field survey of 278 engineers (20-59 years) in a machinery manufacturing company was conducted to investigate the association of working hours with biological indices related to the cardiovascular system (heart rate variability, blood pressure and serum levels of magnesium, dehydroepiandrosterone sulfate and cholesterol). Average working hours (defined as <"hours at workplace" + "half a commuting time">) and sleeping hours in this study were 60.2 +/- 6.3 hr/week and 6.6 +/- 0.8 hr/day respectively. There were no significant relationships between working hours and biological indices related to the cardiovascular system, but sleeping hours was closely related to working hours negatively. Furthermore, the serum DHEA-S level was significantly related to sleeping hours positively. Combining these two results, it appeared that long working hours might lower the serum DHEA-S level due to the reduction of sleeping hours.

  8. A Fully Implantable Pacemaker for the Mouse: From Battery to Wireless Power

    PubMed Central

    Zellmer, Erik R.; Weinheimer, Carla J.; MacEwan, Matthew R.; Cui, Sophia X.; Nerbonne, Jeanne M.; Efimov, Igor R.

    2013-01-01

    Animal models have become a popular platform for the investigation of the molecular and systemic mechanisms of pathological cardiovascular physiology. Chronic pacing studies with implantable pacemakers in large animals have led to useful models of heart failure and atrial fibrillation. Unfortunately, molecular and genetic studies in these large animal models are often prohibitively expensive or not available. Conversely, the mouse is an excellent species for studying molecular mechanisms of cardiovascular disease through genetic engineering. However, the large size of available pacemakers does not lend itself to chronic pacing in mice. Here, we present the design for a novel, fully implantable wireless-powered pacemaker for mice capable of long-term (>30 days) pacing. This design is compared to a traditional battery-powered pacemaker to demonstrate critical advantages achieved through wireless inductive power transfer and control. Battery-powered and wireless-powered pacemakers were fabricated from standard electronic components in our laboratory. Mice (n = 24) were implanted with endocardial, battery-powered devices (n = 14) and epicardial, wireless-powered devices (n = 10). Wireless-powered devices were associated with reduced implant mortality and more reliable device function compared to battery-powered devices. Eight of 14 (57.1%) mice implanted with battery-powered pacemakers died following device implantation compared to 1 of 10 (10%) mice implanted with wireless-powered pacemakers. Moreover, device function was achieved for 30 days with the wireless-powered device compared to 6 days with the battery-powered device. The wireless-powered pacemaker system presented herein will allow electrophysiology studies in numerous genetically engineered mouse models as well as rapid pacing-induced heart failure and atrial arrhythmia in mice. PMID:24194832

  9. State-of-the-Art Review of 3D Bioprinting for Cardiovascular Tissue Engineering.

    PubMed

    Duan, Bin

    2017-01-01

    3D bioprinting is a group of rapidly growing techniques that allows building engineered tissue constructs with complex and hierarchical structures, mechanical and biological heterogeneity. It enables implementation of various bioinks through different printing mechanisms and precise deposition of cell and/or biomolecule laden biomaterials in predefined locations. This review briefly summarizes applicable bioink materials and various bioprinting techniques, and presents the recent advances in bioprinting of cardiovascular tissues, with focusing on vascularized constructs, myocardium and heart valve conduits. Current challenges and further perspectives are also discussed to help guide the bioink and bioprinter development, improve bioprinting strategies and direct future organ bioprinting and translational applications.

  10. Bioreactor Technology in Cardiovascular Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Mertsching, H.; Hansmann, J.

    Cardiovascular tissue engineering is a fast evolving field of biomedical science and technology to manufacture viable blood vessels, heart valves, myocar-dial substitutes and vascularised complex tissues. In consideration of the specific role of the haemodynamics of human circulation, bioreactors are a fundamental of this field. The development of perfusion bioreactor technology is a consequence of successes in extracorporeal circulation techniques, to provide an in vitro environment mimicking in vivo conditions. The bioreactor system should enable an automatic hydrodynamic regime control. Furthermore, the systematic studies regarding the cellular responses to various mechanical and biochemical cues guarantee the viability, bio-monitoring, testing, storage and transportation of the growing tissue.

  11. Vascular tissue engineering: towards the next generation vascular grafts.

    PubMed

    Naito, Yuji; Shinoka, Toshiharu; Duncan, Daniel; Hibino, Narutoshi; Solomon, Daniel; Cleary, Muriel; Rathore, Animesh; Fein, Corey; Church, Spencer; Breuer, Christopher

    2011-04-30

    The application of tissue engineering technology to cardiovascular surgery holds great promise for improving outcomes in patients with cardiovascular diseases. Currently used synthetic vascular grafts have several limitations including thrombogenicity, increased risk of infection, and lack of growth potential. We have completed the first clinical trial evaluating the feasibility of using tissue engineered vascular grafts (TEVG) created by seeding autologous bone marrow-derived mononuclear cells (BM-MNC) onto biodegradable tubular scaffolds. Despite an excellent safety profile, data from the clinical trial suggest that the primary graft related complication of the TEVG is stenosis, affecting approximately 16% of grafts within the first seven years after implantation. Continued investigation into the cellular and molecular mechanisms underlying vascular neotissue formation will improve our basic understanding and provide insights that will enable the rationale design of second generation TEVG. Published by Elsevier B.V.

  12. Adding dimension to cellular mechanotransduction: Advances in biomedical engineering of multiaxial cell-stretch systems and their application to cardiovascular biomechanics and mechano-signaling.

    PubMed

    Friedrich, O; Schneidereit, D; Nikolaev, Y A; Nikolova-Krstevski, V; Schürmann, S; Wirth-Hücking, A; Merten, A L; Fatkin, D; Martinac, B

    2017-11-01

    Hollow organs (e.g. heart) experience pressure-induced mechanical wall stress sensed by molecular mechano-biosensors, including mechanosensitive ion channels, to translate into intracellular signaling. For direct mechanistic studies, stretch devices to apply defined extensions to cells adhered to elastomeric membranes have stimulated mechanotransduction research. However, most engineered systems only exploit unilateral cellular stretch. In addition, it is often taken for granted that stretch applied by hardware translates 1:1 to the cell membrane. However, the latter crucially depends on the tightness of the cell-substrate junction by focal adhesion complexes and is often not calibrated for. In the heart, (increased) hemodynamic volume/pressure load is associated with (increased) multiaxial wall tension, stretching individual cardiomyocytes in multiple directions. To adequately study cellular models of chronic organ distension on a cellular level, biomedical engineering faces challenges to implement multiaxial cell stretch systems that allow observing cell reactions to stretch during live-cell imaging, and to calibrate for hardware-to-cell membrane stretch translation. Here, we review mechanotransduction, cell stretch technologies from uni-to multiaxial designs in cardio-vascular research, and the importance of the stretch substrate-cell membrane junction. We also present new results using our IsoStretcher to demonstrate mechanosensitivity of Piezo1 in HEK293 cells and stretch-induced Ca 2+ entry in 3D-hydrogel-embedded cardiomyocytes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A preliminary investigation of the growth of an aneurysm with a multiscale monolithic Fluid-Structure interaction solver

    NASA Astrophysics Data System (ADS)

    Cerroni, D.; Manservisi, S.; Pozzetti, G.

    2015-11-01

    In this work we investigate the potentialities of multi-scale engineering techniques to approach complex problems related to biomedical and biological fields. In particular we study the interaction between blood and blood vessel focusing on the presence of an aneurysm. The study of each component of the cardiovascular system is very difficult due to the fact that the movement of the fluid and solid is determined by the rest of system through dynamical boundary conditions. The use of multi-scale techniques allows us to investigate the effect of the whole loop on the aneurysm dynamic. A three-dimensional fluid-structure interaction model for the aneurysm is developed and coupled to a mono-dimensional one for the remaining part of the cardiovascular system, where a point zero-dimensional model for the heart is provided. In this manner it is possible to achieve rigorous and quantitative investigations of the cardiovascular disease without loosing the system dynamic. In order to study this biomedical problem we use a monolithic fluid-structure interaction (FSI) model where the fluid and solid equations are solved together. The use of a monolithic solver allows us to handle the convergence issues caused by large deformations. By using this monolithic approach different solid and fluid regions are treated as a single continuum and the interface conditions are automatically taken into account. In this way the iterative process characteristic of the commonly used segregated approach, it is not needed any more.

  14. Effects of Aftermarket Control Technologies on Gas and Particle Phase Oxidative Potential from Diesel Engine Emissions

    EPA Science Inventory

    Particulate matter (PM) originating from diesel combustion is a public health concern due to its association with adverse effects on respiratory and cardiovascular diseases and lung cancer. This study investigated emissions from three stationary diesel engines (gensets) with var...

  15. The Healthy Heart Race: A Short-Duration, Hands-on Activity in Cardiovascular Physiology for Museums and Science Festivals

    ERIC Educational Resources Information Center

    Pressley, Thomas A.; Limson, Melvin; Byse, Miranda; Matyas, Marsha Lakes

    2011-01-01

    The "Healthy Heart Race" activity provides a hands-on demonstration of cardiovascular function suitable for lay audiences. It was field tested during the United States of America Science and Engineering Festival held in Washington, DC, in October 2010. The basic equipment for the activity consisted of lengths of plastic tubing, a hand…

  16. Tunable Elastomers with an Antithrombotic Component for Cardiovascular Applications.

    PubMed

    Stahl, Alexander M; Yang, Yunzhi Peter

    2018-05-31

    This study reports the development of a novel family of biodegradable polyurethanes for use as tissue engineered cardiovascular scaffolds or blood-contacting medical devices. Covalent incorporation of the antiplatelet agent dipyridamole into biodegradable polycaprolactone-based polyurethanes yields biocompatible materials with improved thromboresistance and tunable mechanical strength and elasticity. Altering the ratio of the dipyridamole to the diisocyanate linking unit and the polycaprolactone macromer enables control over both the drug content and the polymer cross-link density. Covalent cross-linking in the materials achieves significant elasticity and a tunable range of elastic moduli similar to that of native cardiovascular tissues. Interestingly, the cross-link density of the polyurethanes is inversely related to the elastic modulus, an effect attributed to decreasing crystallinity in the more cross-linked polymers. In vitro characterization shows that the antiplatelet agent is homogeneously distributed in the materials and is released slowly throughout the polymer degradation process. The drug-containing polyurethanes support endothelial cell and vascular smooth muscle cell proliferation, while demonstrating reduced levels of platelet adhesion and activation, supporting their candidacy as promising substrates for cardiovascular tissue engineering. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Correlation between vortices and wall shear stress in a curved artery model under pulsatile flow conditions

    NASA Astrophysics Data System (ADS)

    Cox, Christopher; Plesniak, Michael W.

    2017-11-01

    One of the most physiologically relevant factors within the cardiovascular system is the wall shear stress. The wall shear stress affects endothelial cells via mechanotransduction and atherosclerotic regions are strongly correlated with curvature and branching in the human vasculature, where the shear stress is both oscillatory and multidirectional. Also, the combined effect of curvature and pulsatility in cardiovascular flows produces unsteady vortices. In this work, our goal is to assess the correlation between multiple vortex pairs and wall shear stress. To accomplish this, we use an in-house high-order flux reconstruction Navier-Stokes solver to simulate pulsatile flow of a Newtonian blood-analog fluid through a rigid 180° curved artery model. We use a physiologically relevant flow rate and generate results using both fully developed and uniform entrance conditions, the latter motivated by the fact that flow upstream to a curved artery may not be fully developed. Under these two inflow conditions, we characterize the evolution of various vortex pairs and their subsequent effect on several wall shear stress metrics. Supported by GW Center for Biomimetics and Bioinspired Engineering.

  18. High-order numerical simulations of pulsatile flow in a curved artery model

    NASA Astrophysics Data System (ADS)

    Cox, Christopher; Liang, Chunlei; Plesniak, Michael W.

    2016-11-01

    Cardiovascular flows are pulsatile, incompressible and occur in complex geometries with compliant walls. Together, these factors can produce an environment that can affect the progression of cardiovascular disease by altering wall shear stresses. Unstructured high-order CFD methods are well suited for capturing unsteady vortex-dominated viscous flows, and these methods provide high accuracy for similar cost as low-order methods. We use an in-house three-dimensional flux reconstruction Navier-Stokes solver to simulate secondary flows and vortical structures within a rigid 180-degree curved artery model under pulsatile flow of a Newtonian blood-analog fluid. Our simulations use a physiological flowrate waveform taken from the carotid artery. We are particularly interested in the dynamics during the deceleration phase of the waveform, where we observe the deformed-Dean, Dean, Lyne and Wall vortices. Our numerical results reveal the complex nature of these vortices both in space and time and their effect on overall wall shear stress. Numerical results agree with and complement experimental results obtained in our laboratory using particle image velocimetry. Supported by the GW Center for Biomimetics and Bioinspired Engineering.

  19. NASA/ASEE Summer Faculty Fellowship Program, 1990, Volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1990-01-01

    The 1990 Johnson Space Center (JSC) NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston-University Park and JSC. A compilation of the final reports on the research projects are presented. The topics covered include: the Space Station; the Space Shuttle; exobiology; cell biology; culture techniques; control systems design; laser induced fluorescence; spacecraft reliability analysis; reduced gravity; biotechnology; microgravity applications; regenerative life support systems; imaging techniques; cardiovascular system; physiological effects; extravehicular mobility units; mathematical models; bioreactors; computerized simulation; microgravity simulation; and dynamic structural analysis.

  20. In vitro fabrication of a tissue engineered human cardiovascular patch for future use in cardiovascular surgery.

    PubMed

    Yang, Chao; Sodian, Ralf; Fu, Ping; Lüders, Cora; Lemke, Thees; Du, Jing; Hübler, Michael; Weng, Yuguo; Meyer, Rudolf; Hetzer, Roland

    2006-01-01

    One approach to tissue engineering has been the development of in vitro conditions for the fabrication of functional cardiovascular structures intended for implantation. In this experiment, we developed a pulsatile flow system that provides biochemical and biomechanical signals in order to regulate autologous, human patch-tissue development in vitro. We constructed a biodegradable patch scaffold from porous poly-4-hydroxy-butyrate (P4HB; pore size 80 to 150 microm). The scaffold was seeded with pediatric aortic cells. The cell-seeded patch constructs were placed in a self-developed bioreactor for 7 days to observe potential tissue formation under dynamic cell culture conditions. As a control, cell-seeded scaffolds were not conditioned in the bioreactor system. After maturation in vitro, the analysis of the tissue engineered constructs included biochemical, biomechanical, morphologic, and immunohistochemical examination. Macroscopically, all tissue engineered constructs were covered by cells. After conditioning in the bioreactor, the cells were mostly viable, had grown into the pores, and had formed tissue on the patch construct. Electron microscopy showed confluent smooth surfaces. Additionally, we demonstrated the capacity to generate collagen and elastin under in vitro pulsatile flow conditions in biochemical examination. Biomechanical testing showed mechanical properties of the tissue engineered human patch tissue without any statistical differences in strength or resistance to stretch between the static controls and the conditioned patches. Immunohistochemical examination stained positive for alpha smooth muscle actin, collagen type I, and fibronectin. There was minor tissue formation in the nonconditioned control samples. Porous P4HB may be used to fabricate a biodegradable patch scaffold. Human vascular cells attached themselves to the polymeric scaffold, and extracellular matrix formation was induced under controlled biomechanical and biodynamic stimuli in a self-developed pulsatile bioreactor system.

  1. Ultrasound biomicroscopy in mouse cardiovascular development

    NASA Astrophysics Data System (ADS)

    Turnbull, Daniel H.

    2004-05-01

    The mouse is the preferred animal model for studying mammalian cardiovascular development and many human congenital heart diseases. Ultrasound biomicroscopy (UBM), utilizing high-frequency (40-50-MHz) ultrasound, is uniquely capable of providing in vivo, real-time microimaging and Doppler blood velocity measurements in mouse embryos and neonates. UBM analyses of normal and abnormal mouse cardiovascular function will be described to illustrate the power of this microimaging approach. In particular, real-time UBM images have been used to analyze dimensional changes in the mouse heart from embryonic to neonatal stages. UBM-Doppler has been used recently to examine the precise timing of onset of a functional circulation in early-stage mouse embryos, from the first detectable cardiac contractions. In other experiments, blood velocity waveforms have been analyzed to characterize the functional phenotype of mutant mouse embryos having defects in cardiac valve formation. Finally, UBM has been developed for real-time, in utero image-guided injection of mouse embryos, enabling cell transplantation and genetic gain-of-function experiments with transfected cells and retroviruses. In summary, UBM provides a unique and powerful approach for in vivo analysis and image-guided manipulation in normal and genetically engineered mice, over a wide range of embryonic to neonatal developmental stages.

  2. Polycaprolactone nanowire surfaces as interfaces for cardiovascular applications

    NASA Astrophysics Data System (ADS)

    Leszczak, Victoria

    Cardiovascular disease is the leading killer of people worldwide. Current treatments include organ transplants, surgery, metabolic products and mechanical/synthetic implants. Of these, mechanical and synthetic implants are the most promising. However, rejection of cardiovascular implants continues to be a problem, eliciting a need for understanding the mechanisms behind tissue-material interaction. Recently, bioartificial implants, consisting of synthetic tissue engineering scaffolds and cells, have shown great promise for cardiovascular repair. An ideal cardiovascular implant surface must be capable of adhering cells and providing appropriate physiological responses while the native tissue integrates with the scaffold. However, the success of these implants is not only dependent on tissue integration but also hemocompatibility (interaction of material with blood components), a property that depends on the surface of the material. A thorough understanding of the interaction of cardiovascular cells and whole blood and its components with the material surface is essential in order to have a successful application which promotes healing as well as native tissue integration and regeneration. The purpose of this research is to study polymeric nanowire surfaces as potential interfaces for cardiovascular applications by investigating cellular response as well as hemocompatibility.

  3. Big Data and Genome Editing Technology: A New Paradigm of Cardiovascular Genomics.

    PubMed

    Krittanawong, Chayakrit; Sun, Tao; Herzog, Eyal

    2017-01-01

    Opinion Statements: Cardiovascular diseases (CVDs) encompass a range of conditions extending from congenital heart disease to acute coronary syndrome most of which are heterogenous in nature and some of them are multiple genetic loci. However, the pathogenesis of most CVDs remains incompletely understood. The advance in genome-editing technologies, an engineering process of DNA sequences at precise genomic locations, has enabled a new paradigm that human genome can be precisely modified to achieve a therapeutic effect. Genome-editing includes the correction of genetic variants that cause disease, the addition of therapeutic genes to specific sites in the genomic locations, and the removal of deleterious genes or genome sequences. Site-specific genome engineering can be used as nucleases (known as molecular scissors) including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) systems to provide remarkable opportunities for developing novel therapies in cardiovascular clinical care. Here we discuss genetic polymorphisms and mechanistic insights in CVDs with an emphasis on the impact of genome-editing technologies. The current challenges and future prospects for genomeediting technologies in cardiovascular medicine are also discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. The Various Applications of 3D Printing in Cardiovascular Diseases.

    PubMed

    El Sabbagh, Abdallah; Eleid, Mackram F; Al-Hijji, Mohammed; Anavekar, Nandan S; Holmes, David R; Nkomo, Vuyisile T; Oderich, Gustavo S; Cassivi, Stephen D; Said, Sameh M; Rihal, Charanjit S; Matsumoto, Jane M; Foley, Thomas A

    2018-05-10

    To highlight the various applications of 3D printing in cardiovascular disease and discuss its limitations and future direction. Use of handheld 3D printed models of cardiovascular structures has emerged as a facile modality in procedural and surgical planning as well as education and communication. Three-dimensional (3D) printing is a novel imaging modality which involves creating patient-specific models of cardiovascular structures. As percutaneous and surgical therapies evolve, spatial recognition of complex cardiovascular anatomic relationships by cardiologists and cardiovascular surgeons is imperative. Handheld 3D printed models of cardiovascular structures provide a facile and intuitive road map for procedural and surgical planning, complementing conventional imaging modalities. Moreover, 3D printed models are efficacious educational and communication tools. This review highlights the various applications of 3D printing in cardiovascular diseases and discusses its limitations and future directions.

  5. Leveraging model-informed approaches for drug discovery and development in the cardiovascular space.

    PubMed

    Dockendorf, Marissa F; Vargo, Ryan C; Gheyas, Ferdous; Chain, Anne S Y; Chatterjee, Manash S; Wenning, Larissa A

    2018-06-01

    Cardiovascular disease remains a significant global health burden, and development of cardiovascular drugs in the current regulatory environment often demands large and expensive cardiovascular outcome trials. Thus, the use of quantitative pharmacometric approaches which can help enable early Go/No Go decision making, ensure appropriate dose selection, and increase the likelihood of successful clinical trials, have become increasingly important to help reduce the risk of failed cardiovascular outcomes studies. In addition, cardiovascular safety is an important consideration for many drug development programs, whether or not the drug is designed to treat cardiovascular disease; modeling and simulation approaches also have utility in assessing risk in this area. Herein, examples of modeling and simulation applied at various stages of drug development, spanning from the discovery stage through late-stage clinical development, for cardiovascular programs are presented. Examples of how modeling approaches have been utilized in early development programs across various therapeutic areas to help inform strategies to mitigate the risk of cardiovascular-related adverse events, such as QTc prolongation and changes in blood pressure, are also presented. These examples demonstrate how more informed drug development decisions can be enabled by modeling and simulation approaches in the cardiovascular area.

  6. Particle traps prevent adverse vascular and prothrombotic effects of diesel engine exhaust inhalation in men.

    PubMed

    Lucking, Andrew J; Lundbäck, Magnus; Barath, Stefan L; Mills, Nicholas L; Sidhu, Manjit K; Langrish, Jeremy P; Boon, Nicholas A; Pourazar, Jamshid; Badimon, Juan J; Gerlofs-Nijland, Miriam E; Cassee, Flemming R; Boman, Christoffer; Donaldson, Kenneth; Sandstrom, Thomas; Newby, David E; Blomberg, Anders

    2011-04-26

    In controlled human exposure studies, diesel engine exhaust inhalation impairs vascular function and enhances thrombus formation. The aim of the present study was to establish whether an exhaust particle trap could prevent these adverse cardiovascular effects in men. Nineteen healthy volunteers (mean age, 25±3 years) were exposed to filtered air and diesel exhaust in the presence or absence of a particle trap for 1 hour in a randomized, double-blind, 3-way crossover trial. Bilateral forearm blood flow and plasma fibrinolytic factors were assessed with venous occlusion plethysmography and blood sampling during intra-arterial infusion of acetylcholine, bradykinin, sodium nitroprusside, and verapamil. Ex vivo thrombus formation was determined with the use of the Badimon chamber. Compared with filtered air, diesel exhaust inhalation was associated with reduced vasodilatation and increased ex vivo thrombus formation under both low- and high-shear conditions. The particle trap markedly reduced diesel exhaust particulate number (from 150 000 to 300 000/cm(3) to 30 to 300/cm(3); P<0.001) and mass (320±10 to 7.2±2.0 μg/m(3); P<0.001), and was associated with increased vasodilatation, reduced thrombus formation, and an increase in tissue-type plasminogen activator release. Exhaust particle traps are a highly efficient method of reducing particle emissions from diesel engines. With a range of surrogate measures, the use of a particle trap prevents several adverse cardiovascular effects of exhaust inhalation in men. Given these beneficial effects on biomarkers of cardiovascular health, the widespread use of particle traps on diesel-powered vehicles may have substantial public health benefits and reduce the burden of cardiovascular disease.

  7. Vitamin D, calcium, and cardiovascular mortality: a perspective from a plenary lecture given at the annual meeting of the American Association of Clinical Endocrinologists.

    PubMed

    Miller, Paul D

    2011-01-01

    To examine data showing associations between serum 25-hydroxyvitamin D levels and calcium intake and cardiovascular mortality. The articles reviewed include those published from 1992-2011 derived from search engines (PubMed, Scopus, Medscape) using the following search terms: vitamin D, calcium, cardiovascular events, cardiovascular mortality, all-cause mortality, vascular calcification, chronic kidney disease, renal stones, and hypercalciuria. Because these articles were not weighted (graded) on the level of evidence, this review reflects my own perspective on the data and how they should be applied to clinical management. For skeletal health, vitamin D and calcium are both needed to ensure proper skeletal growth (modeling) and repair (remodeling). Nutritional deficiencies of either vitamin D or calcium may lead to a spectrum of metabolic bone disorders. Excessive consumption of either nutrient has been linked to a variety of medical disorders, such as hypercalcemia or renal stones. There have also been associations between vitamin D or calcium intake and cardiovascular disease. However, neither of these associations have established evidence nor known causality for increasing cardiovascular risk or all-cause mortality in patients with creatinine clearances greater than 60 mL/min. In patients with more severe chronic kidney disease, stronger data link excess calcium (or phosphorus) intake and increase in vascular calcification, but not mortality. The safe upper limit for vitamin D intake is at least 4000 IU daily and probably 10 000 IU daily; for calcium, the safe upper limit is between 2000 and 3000 mg daily. While no solid scientific evidence validates that serum vitamin D levels between 15 and 70 ng/mL are associated with increased cardiovascular disease risk, stronger but inconsistent evidence shows an association between calcium supplementation greater than 500 mg daily and an increase in cardiovascular disease risk. Most professional societies suggest that replacement levels of these nutrients be personalized with the goal of reaching a 25-hydroxyvitamin D concentration between 30 and 50 ng/mL and a calcium intake of 1200 mg daily.

  8. Novel Risk Engine for Diabetes Progression and Mortality in USA: Building, Relating, Assessing, and Validating Outcomes (BRAVO).

    PubMed

    Shao, Hui; Fonseca, Vivian; Stoecker, Charles; Liu, Shuqian; Shi, Lizheng

    2018-05-03

    There is an urgent need to update diabetes prediction, which has relied on the United Kingdom Prospective Diabetes Study (UKPDS) that dates back to 1970 s' European populations. The objective of this study was to develop a risk engine with multiple risk equations using a recent patient cohort with type 2 diabetes mellitus reflective of the US population. A total of 17 risk equations for predicting diabetes-related microvascular and macrovascular events, hypoglycemia, mortality, and progression of diabetes risk factors were estimated using the data from the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial (n = 10,251). Internal and external validation processes were used to assess performance of the Building, Relating, Assessing, and Validating Outcomes (BRAVO) risk engine. One-way sensitivity analysis was conducted to examine the impact of risk factors on mortality at the population level. The BRAVO risk engine added several risk factors including severe hypoglycemia and common US racial/ethnicity categories compared with the UKPDS risk engine. The BRAVO risk engine also modeled mortality escalation associated with intensive glycemic control (i.e., glycosylated hemoglobin < 6.5%). External validation showed a good prediction power on 28 endpoints observed from other clinical trials (slope = 1.071, R 2  = 0.86). The BRAVO risk engine for the US diabetes cohort provides an alternative to the UKPDS risk engine. It can be applied to assist clinical and policy decision making such as cost-effective resource allocation in USA.

  9. Progress in scaffold-free bioprinting for cardiovascular medicine.

    PubMed

    Moldovan, Nicanor I

    2018-06-01

    Biofabrication of tissue analogues is aspiring to become a disruptive technology capable to solve standing biomedical problems, from generation of improved tissue models for drug testing to alleviation of the shortage of organs for transplantation. Arguably, the most powerful tool of this revolution is bioprinting, understood as the assembling of cells with biomaterials in three-dimensional structures. It is less appreciated, however, that bioprinting is not a uniform methodology, but comprises a variety of approaches. These can be broadly classified in two categories, based on the use or not of supporting biomaterials (known as "scaffolds," usually printable hydrogels also called "bioinks"). Importantly, several limitations of scaffold-dependent bioprinting can be avoided by the "scaffold-free" methods. In this overview, we comparatively present these approaches and highlight the rapidly evolving scaffold-free bioprinting, as applied to cardiovascular tissue engineering. © 2018 The Author. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  10. Small animal models of cardiovascular disease: tools for the study of the roles of metabolic syndrome, dyslipidemia, and atherosclerosis.

    PubMed

    Russell, James C; Proctor, Spencer D

    2006-01-01

    Cardiovascular disease, the leading cause of death in much of the modern world, is the common symptomatic end stage of a number of distinct diseases and, therefore, is multifactorial and polygenetic in character. The two major underlying causes are disorders of lipid metabolism and metabolic syndrome. The ability to develop preventative and ameliorative treatments will depend on animal models that mimic human disease processes. The focus of this review is to identify suitable animal models and insights into cardiovascular disease achieved to date using such models. The ideal animal model of cardiovascular disease will mimic the human subject metabolically and pathophysiologically, will be large enough to permit physiological and metabolic studies, and will develop end-stage disease comparable to those in humans. Given the complex multifactorial nature of cardiovascular disease, no one species will be suitable for all studies. Potential larger animal models are problematic due to cost, ethical considerations, or poor pathophysiological comparability to humans. Rabbits require high-cholesterol diets to develop cardiovascular disease, and there are no rabbit models of metabolic syndrome. Spontaneous mutations in rats provide several complementary models of obesity, hyperlipidemia, insulin resistance, and type 2 diabetes, one of which spontaneously develops cardiovascular disease and ischemic lesions. The mouse, like normal rats, is characteristically resistant to cardiovascular disease, although genetically altered strains respond to cholesterol feeding with atherosclerosis, but not with end-stage ischemic lesions. The most useful and valid species/strains for the study of cardiovascular disease appear to be small rodents, rats, and mice. This fragmented field would benefit from a consensus on well-characterized appropriate models for the study of different aspects of cardiovascular disease and a renewed emphasis on the biology of underlying diseases.

  11. A Novel Bioreactor System for the Assessment of Endothelialization on Deformable Surfaces

    PubMed Central

    Bachmann, Björn J.; Bernardi, Laura; Loosli, Christian; Marschewski, Julian; Perrini, Michela; Ehrbar, Martin; Ermanni, Paolo; Poulikakos, Dimos; Ferrari, Aldo; Mazza, Edoardo

    2016-01-01

    The generation of a living protective layer at the luminal surface of cardiovascular devices, composed of an autologous functional endothelium, represents the ideal solution to life-threatening, implant-related complications in cardiovascular patients. The initial evaluation of engineering strategies fostering endothelial cell adhesion and proliferation as well as the long-term tissue homeostasis requires in vitro testing in environmental model systems able to recapitulate the hemodynamic conditions experienced at the blood-to-device interface of implants as well as the substrate deformation. Here, we introduce the design and validation of a novel bioreactor system which enables the long-term conditioning of human endothelial cells interacting with artificial materials under dynamic combinations of flow-generated wall shear stress and wall deformation. The wall shear stress and wall deformation values obtained encompass both the physiological and supraphysiological range. They are determined through separate actuation systems which are controlled based on validated computational models. In addition, we demonstrate the good optical conductivity of the system permitting online monitoring of cell activities through live-cell imaging as well as standard biochemical post-processing. Altogether, the bioreactor system defines an unprecedented testing hub for potential strategies toward the endothelialization or re-endothelialization of target substrates. PMID:27941901

  12. A CRISPR Path to Engineering New Genetic Mouse Models for Cardiovascular Research.

    PubMed

    Miano, Joseph M; Zhu, Qiuyu Martin; Lowenstein, Charles J

    2016-06-01

    Previous efforts to target the mouse genome for the addition, subtraction, or substitution of biologically informative sequences required complex vector design and a series of arduous steps only a handful of laboratories could master. The facile and inexpensive clustered regularly interspaced short palindromic repeats (CRISPR) method has now superseded traditional means of genome modification such that virtually any laboratory can quickly assemble reagents for developing new mouse models for cardiovascular research. Here, we briefly review the history of CRISPR in prokaryotes, highlighting major discoveries leading to its formulation for genome modification in the animal kingdom. Core components of CRISPR technology are reviewed and updated. Practical pointers for 2-component and 3-component CRISPR editing are summarized with many applications in mice including frameshift mutations, deletion of enhancers and noncoding genes, nucleotide substitution of protein-coding and gene regulatory sequences, incorporation of loxP sites for conditional gene inactivation, and epitope tag integration. Genotyping strategies are presented and topics of genetic mosaicism and inadvertent targeting discussed. Finally, clinical applications and ethical considerations are addressed as the biomedical community eagerly embraces this astonishing innovation in genome editing to tackle previously intractable questions. © 2016 American Heart Association, Inc.

  13. A CRISPR Path to Engineering New Genetic Mouse Models for Cardiovascular Research

    PubMed Central

    Miano, Joseph M.; Zhu, Qiuyu Martin; Lowenstein, Charles J.

    2016-01-01

    Previous efforts to target the mouse genome for the addition, subtraction, or substitution of biologically informative sequences required complex vector design and a series of arduous steps only a handful of labs could master. The facile and inexpensive clustered regularly interspaced short palindromic repeats (CRISPR) method has now superseded traditional means of genome modification such that virtually any lab can quickly assemble reagents for developing new mouse models for cardiovascular research. Here we briefly review the history of CRISPR in prokaryotes, highlighting major discoveries leading to its formulation for genome modification in the animal kingdom. Core components of CRISPR technology are reviewed and updated. Practical pointers for two-component and three-component CRISPR editing are summarized with a number of applications in mice including frameshift mutations, deletion of enhancers and non-coding genes, nucleotide substitution of protein-coding and gene regulatory sequences, incorporation of loxP sites for conditional gene inactivation, and epitope tag integration. Genotyping strategies are presented and topics of genetic mosaicism and inadvertent targeting discussed. Finally, clinical applications and ethical considerations are addressed as the biomedical community eagerly embraces this astonishing innovation in genome editing to tackle previously intractable questions. PMID:27102963

  14. Cardiovascular Adaptations Induced by Resistance Training in Animal Models.

    PubMed

    Melo, S F S; da Silva Júnior, N D; Barauna, V G; Oliveira, E M

    2018-01-01

    In the last 10 years the number of studies showing the benefits of resistance training (RT) to the cardiovascular system, have grown. In comparison to aerobic training, RT-induced favorable adaptations to the cardiovascular system have been ignored for many years, thus the mechanisms of the RT-induced cardiovascular adaptations are still uncovered. The lack of animal models with comparable protocols to the RT performed by humans hampers the knowledge. We have used squat-exercise model, which is widely used by many others laboratories. However, to a lesser extent, other models are also employed to investigate the cardiovascular adaptations. In the subsequent sections we will review the information regarding cardiac morphological adaptations, signaling pathway of the cardiac cell, cardiac function and the vascular adaptation induced by RT using this animal model developed by Tamaki et al. in 1992. Furthermore, we also describe cardiovascular findings observed using other animal models of RT.

  15. CARDIOCOG. Experiment ops

    NASA Image and Video Library

    2006-11-29

    ISS014-E-08795 (29 Nov. 2006) --- European Space Agency (ESA) astronaut Thomas Reiter, Expedition 14 flight engineer, works with the Cognitive Cardiovascular (Cardiocog-2) experiment in the Zvezda Service Module of the International Space Station. Cardiocog-2 will determine the impact of weightlessness on the cardiovascular system and respiratory system and the cognitive reactions of crewmembers. The results of this study will be used to develop additional countermeasures that will continue to keep crewmembers healthy during long-duration space exploration.

  16. Mathematical modeling of human cardiovascular system for simulation of orthostatic response

    NASA Technical Reports Server (NTRS)

    Melchior, F. M.; Srinivasan, R. S.; Charles, J. B.

    1992-01-01

    This paper deals with the short-term response of the human cardiovascular system to orthostatic stresses in the context of developing a mathematical model of the overall system. It discusses the physiological issues involved and how these issues have been handled in published cardiovascular models for simulation of orthostatic response. Most of the models are stimulus specific with no demonstrated capability for simulating the responses to orthostatic stimuli of different types. A comprehensive model incorporating all known phenomena related to cardiovascular regulation would greatly help to interpret the various orthostatic responses of the system in a consistent manner and to understand the interactions among its elements. This paper provides a framework for future efforts in mathematical modeling of the entire cardiovascular system.

  17. 3D bioprinting of biomimetic aortic vascular constructs with self-supporting cells.

    PubMed

    Kucukgul, Can; Ozler, S Burce; Inci, Ilyas; Karakas, Ezgi; Irmak, Ster; Gozuacik, Devrim; Taralp, Alpay; Koc, Bahattin

    2015-04-01

    Cardiovascular diseases are the leading cause of deaths throughout the world. Vascular diseases are mostly treated with autografts and blood vessel transplantations. However, traditional grafting methods have several problems including lack of suitable harvest sites, additional surgical costs for harvesting procedure, pain, infection, lack of donors, and even no substitutes at all. Recently, tissue engineering and regenerative medicine approaches are used to regenerate damaged or diseased tissues. Most of the tissue engineering investigations have been based on the cell seeding into scaffolds by providing a suitable environment for cell attachment, proliferation, and differentiation. Because of the challenges such as difficulties in seeding cells spatially, rejection, and inflammation of biomaterials used, the recent tissue engineering studies focus on scaffold-free techniques. In this paper, the development of novel computer aided algorithms and methods are developed for 3D bioprinting of scaffold-free biomimetic macrovascular structures. Computer model mimicking a real human aorta is generated using imaging techniques and the proposed computational algorithms. An optimized three-dimensional bioprinting path planning are developed with the proposed self-supported model. Mouse embryonic fibroblast (MEF) cell aggregates and support structures (hydrogels) are 3D bioprinted layer-by-layer according to the proposed self-supported method to form an aortic tissue construct. © 2014 Wiley Periodicals, Inc.

  18. Point-of-Care Technologies for Precision Cardiovascular Care and Clinical Research

    PubMed Central

    King, Kevin; Grazette, Luanda P.; Paltoo, Dina N.; McDevitt, John T.; Sia, Samuel K.; Barrett, Paddy M.; Apple, Fred S.; Gurbel, Paul A.; Weissleder, Ralph; Leeds, Hilary; Iturriaga, Erin J.; Rao, Anupama; Adhikari, Bishow; Desvigne-Nickens, Patrice; Galis, Zorina S.; Libby, Peter

    2016-01-01

    Point-of-care technologies (POC or POCT) are enabling innovative cardiovascular diagnostics that promise to improve patient care across diverse clinical settings. The National Heart, Lung, and Blood Institute convened a working group to discuss POCT in cardiovascular medicine. The multidisciplinary working group, which included clinicians, scientists, engineers, device manufacturers, regulatory officials, and program staff, reviewed the state of the POCT field; discussed opportunities for POCT to improve cardiovascular care, realize the promise of precision medicine, and advance the clinical research enterprise; and identified barriers facing translation and integration of POCT with existing clinical systems. A POCT development roadmap emerged to guide multidisciplinary teams of biomarker scientists, technologists, health care providers, and clinical trialists as they: 1) formulate needs assessments; 2) define device design specifications; 3) develop component technologies and integrated systems; 4) perform iterative pilot testing; and 5) conduct rigorous prospective clinical testing to ensure that POCT solutions have substantial effects on cardiovascular care. PMID:26977455

  19. Nanotechnology and stem cell therapy for cardiovascular diseases: potential applications.

    PubMed

    La Francesca, Saverio

    2012-01-01

    The use of stem cell therapy for the treatment of cardiovascular diseases has generated significant interest in recent years. Limitations to the clinical application of this therapy center on issues of stem cell delivery, engraftment, and fate. Nanotechnology-based cell labeling and imaging techniques facilitate stem cell tracking and engraftment studies. Nanotechnology also brings exciting new opportunities to translational stem cell research as it enables the controlled engineering of nanoparticles and nanomaterials that can properly relate to the physical scale of cell-cell and cell-niche interactions. This review summarizes the most relevant potential applications of nanoscale technologies to the field of stem cell therapy for the treatment of cardiovascular diseases.

  20. Fostering diffusion of scientific contents of National Society Cardiovascular Journals: The new ESC search engine.

    PubMed

    Alfonso, Fernando; Gonçalves, Lino; Pinto, Fausto; Timmis, Adam; Ector, Hugo; Ambrosio, Giuseppe; Vardas, Panos

    2015-05-01

    European Society of Cardiology (ESC) National Society Cardiovascular Journals (NSCJs) are high-quality biomedical journals focused on cardiovascular diseases. The Editors' Network of the ESC devises editorial initiatives aimed at improving the scientific quality and diffusion of NSCJ. In this article we will discuss on the importance of the Internet, electronic editions and open access strategies on scientific publishing. Finally, we will propose a new editorial initiative based on a novel electronic tool on the ESC web-page that may further help to increase the dissemination of contents and visibility of NSCJs. Copyright © 2013 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  1. Collaborative research in cardiovascular dynamics and bone elasticity

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A collaborative research program covering a variety of topics of biomechanics and biomedical engineering within the fields of cardiovascular dynamics, respiration, bone elasticity and vestibular physiology is described. The goals of the research were to promote: (1) a better understanding of the mechanical behavior of the circulatory system and its control mechanisms; (2) development of noninvasive methods of measuring the changes in the mechanical properties of blood vessels and other cardiovascular parameters in man; (3) application of these noninvasive methods to examine in man the physiological effects of environmental changes, including earth-simulated gravitational changes; and (4) development of in-flight methods for studying the events which lead to post-flight postural hypotension.

  2. EMERGING APPLICATIONS OF NANOMEDICINE FOR THERAPY AND DIAGNOSIS OF CARDIOVASCULAR DISEASES

    PubMed Central

    Godin, Biana; Sakamoto, Jason H.; Serda, Rita E.; Grattoni, Alessandro; Bouamrani, Ali; Ferrari, Mauro

    2010-01-01

    Nanomedicine is an emerging field of medicine which utilizes nanotechnology concepts for advanced therapy and diagnostics. This convergent discipline, which merges research areas such as chemistry, biology, physics, mathematics and engineering thus bridging the gap between molecular and cellular interactions, has a potential to revolutionize current medical practice. This review presents recent developments in nanomedicine research, which are poised to have an important impact on cardiovascular disease and treatment by improving therapy and diagnosis of such cardiovascular disorders as atherosclerosis, restenosis and myocardial infarction. Specifically, we discuss the use of nanoparticles for molecular imaging and advanced therapeutics, specially designed drug eluting stents and in vivo/ex vivo early detection techniques. PMID:20172613

  3. Cardiovascular effects in patrol officers are associated with fine particulate matter from brake wear and engine emissions

    PubMed Central

    Riediker, Michael; Devlin, Robert B; Griggs, Thomas R; Herbst, Margaret C; Bromberg, Philip A; Williams, Ronald W; Cascio, Wayne E

    2004-01-01

    Background Exposure to fine particulate matter air pollutants (PM2.5) affects heart rate variability parameters, and levels of serum proteins associated with inflammation, hemostasis and thrombosis. This study investigated sources potentially responsible for cardiovascular and hematological effects in highway patrol troopers. Results Nine healthy young non-smoking male troopers working from 3 PM to midnight were studied on four consecutive days during their shift and the following night. Sources of in-vehicle PM2.5 were identified with variance-maximizing rotational principal factor analysis of PM2.5-components and associated pollutants. Two source models were calculated. Sources of in-vehicle PM2.5 identified were 1) crustal material, 2) wear of steel automotive components, 3) gasoline combustion, 4) speed-changing traffic with engine emissions and brake wear. In one model, sources 1 and 2 collapsed to a single source. Source factors scores were compared to cardiac and blood parameters measured ten and fifteen hours, respectively, after each shift. The "speed-change" factor was significantly associated with mean heart cycle length (MCL, +7% per standard deviation increase in the factor score), heart rate variability (+16%), supraventricular ectopic beats (+39%), % neutrophils (+7%), % lymphocytes (-10%), red blood cell volume MCV (+1%), von Willebrand Factor (+9%), blood urea nitrogen (+7%), and protein C (-11%). The "crustal" factor (but not the "collapsed" source) was associated with MCL (+3%) and serum uric acid concentrations (+5%). Controlling for potential confounders had little influence on the effect estimates. Conclusion PM2.5 originating from speed-changing traffic modulates the autonomic control of the heart rhythm, increases the frequency of premature supraventricular beats and elicits pro-inflammatory and pro-thrombotic responses in healthy young men. PMID:15813985

  4. Gene Editing With CRISPR/Cas9 RNA-Directed Nuclease.

    PubMed

    Doetschman, Thomas; Georgieva, Teodora

    2017-03-03

    Genetic engineering of model organisms and cultured cells has for decades provided important insights into the mechanisms underlying cardiovascular development and disease. In the past few years the development of several nuclease systems has broadened the range of model/cell systems that can be engineered. Of these, the CRISPR (clustered regularly interspersed short palindromic repeats)/Cas9 (CRISPR-associated protein 9) system has become the favorite for its ease of application. Here we will review this RNA-guided nuclease system for gene editing with respect to its usefulness for cardiovascular studies and with an eye toward potential therapy. Studies on its off-target activity, along with approaches to minimize this activity will be given. The advantages of gene editing versus gene targeting in embryonic stem cells, including the breadth of species and cell types to which it is applicable, will be discussed. We will also cover its use in iPSC for research and possible therapeutic purposes; and we will review its use in muscular dystrophy studies where considerable progress has been made toward dystrophin correction in mice. The CRISPR/Ca9s system is also being used for high-throughput screening of genes, gene regulatory regions, and long noncoding RNAs. In addition, the CRISPR system is being used for nongene-editing purposes such as activation and inhibition of gene expression, as well as for fluorescence tagging of chromosomal regions and individual mRNAs to track their cellular location. Finally, an approach to circumvent the inability of post-mitotic cells to support homologous recombination-based gene editing will be presented. In conclusion, applications of the CRISPR/Cas system are expanding at a breath-taking pace and are revolutionizing approaches to gain a better understanding of human diseases. © 2017 American Heart Association, Inc.

  5. Cardiovascular effects in patrol officers are associated with fine particulate matter from brake wear and engine emissions.

    PubMed

    Riediker, Michael; Devlin, Robert B; Griggs, Thomas R; Herbst, Margaret C; Bromberg, Philip A; Williams, Ronald W; Cascio, Wayne E

    2004-12-09

    BACKGROUND: Exposure to fine particulate matter air pollutants (PM2.5) affects heart rate variability parameters, and levels of serum proteins associated with inflammation, hemostasis and thrombosis. This study investigated sources potentially responsible for cardiovascular and hematological effects in highway patrol troopers. RESULTS: Nine healthy young non-smoking male troopers working from 3 PM to midnight were studied on four consecutive days during their shift and the following night. Sources of in-vehicle PM2.5 were identified with variance-maximizing rotational principal factor analysis of PM2.5-components and associated pollutants. Two source models were calculated. Sources of in-vehicle PM2.5 identified were 1) crustal material, 2) wear of steel automotive components, 3) gasoline combustion, 4) speed-changing traffic with engine emissions and brake wear. In one model, sources 1 and 2 collapsed to a single source. Source factors scores were compared to cardiac and blood parameters measured ten and fifteen hours, respectively, after each shift. The "speed-change" factor was significantly associated with mean heart cycle length (MCL, +7% per standard deviation increase in the factor score), heart rate variability (+16%), supraventricular ectopic beats (+39%), % neutrophils (+7%), % lymphocytes (-10%), red blood cell volume MCV (+1%), von Willebrand Factor (+9%), blood urea nitrogen (+7%), and protein C (-11%). The "crustal" factor (but not the "collapsed" source) was associated with MCL (+3%) and serum uric acid concentrations (+5%). Controlling for potential confounders had little influence on the effect estimates. CONCLUSION: PM2.5 originating from speed-changing traffic modulates the autonomic control of the heart rhythm, increases the frequency of premature supraventricular beats and elicits pro-inflammatory and pro-thrombotic responses in healthy young men.

  6. Computational modeling of muscular thin films for cardiac repair

    NASA Astrophysics Data System (ADS)

    Böl, Markus; Reese, Stefanie; Parker, Kevin Kit; Kuhl, Ellen

    2009-03-01

    Motivated by recent success in growing biohybrid material from engineered tissues on synthetic polymer films, we derive a computational simulation tool for muscular thin films in cardiac repair. In this model, the polydimethylsiloxane base layer is simulated in terms of microscopically motivated tetrahedral elements. Their behavior is characterized through a volumetric contribution and a chain contribution that explicitly accounts for the polymeric microstructure of networks of long chain molecules. Neonatal rat ventricular cardiomyocytes cultured on these polymeric films are modeled with actively contracting truss elements located on top of the sheet. The force stretch response of these trusses is motivated by the cardiomyocyte force generated during active contraction as suggested by the filament sliding theory. In contrast to existing phenomenological models, all material parameters of this novel model have a clear biophyisical interpretation. The predictive features of the model will be demonstrated through the simulation of muscular thin films. First, the set of parameters will be fitted for one particular experiment documented in the literature. This parameter set is then used to validate the model for various different experiments. Last, we give an outlook of how the proposed simulation tool could be used to virtually predict the response of multi-layered muscular thin films. These three-dimensional constructs show a tremendous regenerative potential in repair of damaged cardiac tissue. The ability to understand, tune and optimize their structural response is thus of great interest in cardiovascular tissue engineering.

  7. Numerical Simulation of cardiovascular deconditioning in different reduced gravity exposure scenarios. Parabolic flight validation.

    NASA Astrophysics Data System (ADS)

    Perez-Poch, Antoni; Gonzalez, Daniel

    Numerical models and simulations are an emerging area of research in human physiology. As complex numerical models are available, along with high-speed computing technologies, it is possible to produce more accurate predictions of the long-term effects of reduced gravity on the human body. NELME (Numerical Emulation of Long-Term Microgravity Effects) has been developed as an electrical-like control system model of the pysiological changes that may arise when gravity changes are applied to the cardiovascular system. Validation of the model has been carried out in parabolic flights at UPC BarcelonaTech Platform. A number of parabolas of up to 8 seconds were performed at Sabadell Airport with an aerobatic single-engine CAP10B plane capable of performing such maneuvres. Heart rate, arterial pressure, and gravity data was collected and compared to the output obtained from the model in order to optimize its parameters. The model is then able to perform simulations for long-term periods of exposure to microgravity, and then the risk for a major malfunction is evaluated. Vascular resistance is known to be impaired during a long-term mission. This effects are not fully understood, and the model is capable of providing a continuous thread of simulated scenarios, while varying gravity in a nearly-continuous way. Aerobic exercise as countermeasure has been simulated as a periodic perturbation into the simulated physiological system. Results are discussed in terms of the validaty and reliability of the outcomes from the model, that have been found compatible with the available data in the literature. Different gender sensitivities to microgravity exposure are discussed. Also thermal stress along with exercise, as it happens in the case of Extravehicular activity is smulated. Results show that vascular resistance is significantly impared (p<0,05) at gravity levels less than 0,4g, when exposed for a period of time longer than 16 days. This degree of impairement is comparable with that resulting from a microgravity exposure. These results suggest that long-term activities on the surface of Mars may have a greater impact on the cardiovascular health than previously thought.

  8. Engineering studies of vectorcardiographs in blood pressure measuring systems

    NASA Technical Reports Server (NTRS)

    Mark, R. G.

    1975-01-01

    The following projects involving cardiovascular instrumentation were conducted: (1) the development and fabrication of a three-dimensional display measurement system for vectorcardiograms, (2) the development and fabrication of a cardiovascular monitoring system to noninvasively monitor beat-by-beat the blood pressure and heart rate using aortic pulse wave velocity, (3) the development of software for an interactive system to analyze systolic time interval data, and (4) the development of microprocessor-based physiologic instrumentation, focussing initially on EKG rhythm analysis. Brief descriptions of these projects were given.

  9. Micro- and nanotechnology in cardiovascular tissue engineering.

    PubMed

    Zhang, Boyang; Xiao, Yun; Hsieh, Anne; Thavandiran, Nimalan; Radisic, Milica

    2011-12-09

    While in nature the formation of complex tissues is gradually shaped by the long journey of development, in tissue engineering constructing complex tissues relies heavily on our ability to directly manipulate and control the micro-cellular environment in vitro. Not surprisingly, advancements in both microfabrication and nanofabrication have powered the field of tissue engineering in many aspects. Focusing on cardiac tissue engineering, this paper highlights the applications of fabrication techniques in various aspects of tissue engineering research: (1) cell responses to micro- and nanopatterned topographical cues, (2) cell responses to patterned biochemical cues, (3) controlled 3D scaffolds, (4) patterned tissue vascularization and (5) electromechanical regulation of tissue assembly and function.

  10. Clinical and pathological manifestations of cardiovascular disease in rat models: the influence of acute ozone exposure

    EPA Science Inventory

    This paper shows that rat models of cardiovascular diseases have differential degrees of underlying pathologies at a young age. Rodent models of cardiovascular diseases (CVD) and metabolic disorders are used for examining susceptibility variations to environmental exposures. How...

  11. Cardiovascular oscillations: in search of a nonlinear parametric model

    NASA Astrophysics Data System (ADS)

    Bandrivskyy, Andriy; Luchinsky, Dmitry; McClintock, Peter V.; Smelyanskiy, Vadim; Stefanovska, Aneta; Timucin, Dogan

    2003-05-01

    We suggest a fresh approach to the modeling of the human cardiovascular system. Taking advantage of a new Bayesian inference technique, able to deal with stochastic nonlinear systems, we show that one can estimate parameters for models of the cardiovascular system directly from measured time series. We present preliminary results of inference of parameters of a model of coupled oscillators from measured cardiovascular data addressing cardiorespiratory interaction. We argue that the inference technique offers a very promising tool for the modeling, able to contribute significantly towards the solution of a long standing challenge -- development of new diagnostic techniques based on noninvasive measurements.

  12. A Comprehensive TALEN-Based Knockout Library for Generating Human Induced Pluripotent Stem Cell-Based Models for Cardiovascular Diseases

    PubMed Central

    Karakikes, Ioannis; Termglinchan, Vittavat; Cepeda, Diana A.; Lee, Jaecheol; Diecke, Sebastian; Hendel, Ayal; Itzhaki, Ilanit; Ameen, Mohamed; Shrestha, Rajani; Wu, Haodi; Ma, Ning; Shao, Ning-Yi; Seeger, Timon; Woo, Nicole; Wilson, Kitchener D.; Matsa, Elena; Porteus, Matthew H.; Sebastiano, Vittorio; Wu, Joseph C.

    2017-01-01

    Rationale Targeted genetic engineering using programmable nucleases such as transcription activator–like effector nucleases (TALENs) is a valuable tool for precise, site-specific genetic modification in the human genome. Objective The emergence of novel technologies such as human induced pluripotent stem cells (iPSCs) and nuclease-mediated genome editing represent a unique opportunity for studying cardiovascular diseases in vitro. Methods and Results By incorporating extensive literature and database searches, we designed a collection of TALEN constructs to knockout (KO) eighty-eight human genes that are associated with cardiomyopathies and congenital heart diseases. The TALEN pairs were designed to induce double-strand DNA break near the starting codon of each gene that either disrupted the start codon or introduced a frameshift mutation in the early coding region, ensuring faithful gene KO. We observed that all the constructs were active and disrupted the target locus at high frequencies. To illustrate the general utility of the TALEN-mediated KO technique, six individual genes (TNNT2, LMNA/C, TBX5, MYH7, ANKRD1, and NKX2.5) were knocked out with high efficiency and specificity in human iPSCs. By selectively targeting a dilated cardiomyopathy (DCM)-causing mutation (TNNT2 p.R173W) in patient-specific iPSC-derived cardiac myocytes (iPSC-CMs), we demonstrated that the KO strategy ameliorates the DCM phenotype in vitro. In addition, we modeled the Holt-Oram syndrome (HOS) in iPSC-CMs in vitro and uncovered novel pathways regulated by TBX5 in human cardiac myocyte development. Conclusion Collectively, our study illustrates the powerful combination of iPSCs and genome editing technology for understanding the biological function of genes and the pathological significance of genetic variants in human cardiovascular diseases. The methods, strategies, constructs and iPSC lines developed in this study provide a validated, readily available resource for cardiovascular research. PMID:28246128

  13. Space physiology IV: mathematical modeling of the cardiovascular system in space exploration.

    PubMed

    Keith Sharp, M; Batzel, Jerry Joseph; Montani, Jean-Pierre

    2013-08-01

    Mathematical modeling represents an important tool for analyzing cardiovascular function during spaceflight. This review describes how modeling of the cardiovascular system can contribute to space life science research and illustrates this process via modeling efforts to study postflight orthostatic intolerance (POI), a key issue for spaceflight. Examining this application also provides a context for considering broader applications of modeling techniques to the challenges of bioastronautics. POI, which affects a large fraction of astronauts in stand tests upon return to Earth, presents as dizziness, fainting and other symptoms, which can diminish crew performance and cause safety hazards. POI on the Moon or Mars could be more critical. In the field of bioastronautics, POI has been the dominant application of cardiovascular modeling for more than a decade, and a number of mechanisms for POI have been investigated. Modeling approaches include computational models with a range of incorporated factors and hemodynamic sophistication, and also physical models tested in parabolic and orbital flight. Mathematical methods such as parameter sensitivity analysis can help identify key system mechanisms. In the case of POI, this could lead to more effective countermeasures. Validation is a persistent issue in modeling efforts, and key considerations and needs for experimental data to synergistically improve understanding of cardiovascular responses are outlined. Future directions in cardiovascular modeling include subject-specific assessment of system status, as well as research on integrated physiological responses, leading, for instance, to assessment of subject-specific susceptibility to POI or effects of cardiovascular alterations on muscular, vision and cognitive function.

  14. 75 FR 18849 - Food and Drug Administration/National Heart Lung and Blood Institute/National Science Foundation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-13

    ... cardiovascular diseases and therapies; Patient-specific modeling, including virtual surgical planning and... Workshop on Computer Methods for Cardiovascular Devices: The Integration of Nonclinical and Clinical Models... Workshop on Computer Methods for Cardiovascular Devices: The Integration of Nonclinical and Clinical Models...

  15. A Pulsatile Cardiovascular Computer Model for Teaching Heart-Blood Vessel Interaction.

    ERIC Educational Resources Information Center

    Campbell, Kenneth; And Others

    1982-01-01

    Describes a model which gives realistic predictions of pulsatile pressure, flow, and volume events in the cardiovascular system. Includes computer oriented laboratory exercises for veterinary and graduate students; equations of the dynamic and algebraic models; and a flow chart for the cardiovascular teaching program. (JN)

  16. A special issue on reviews in biomedical applications of nanomaterials, tissue engineering, stem cells, bioimaging, and toxicity.

    PubMed

    Nalwa, Hari Singh

    2014-10-01

    This second special issue of the Journal of Biomedical Nanotechnology in a series contains another 30 state-of-the-art reviews focused on the biomedical applications of nanomaterials, biosensors, bone tissue engineering, MRI and bioimaging, single-cell detection, stem cells, endothelial progenitor cells, toxicity and biosafety of nanodrugs, nanoparticle-based new therapeutic approaches for cancer, hepatic and cardiovascular disease.

  17. Applications of 3D printing in cardiovascular diseases.

    PubMed

    Giannopoulos, Andreas A; Mitsouras, Dimitris; Yoo, Shi-Joon; Liu, Peter P; Chatzizisis, Yiannis S; Rybicki, Frank J

    2016-12-01

    3D-printed models fabricated from CT, MRI, or echocardiography data provide the advantage of haptic feedback, direct manipulation, and enhanced understanding of cardiovascular anatomy and underlying pathologies. Reported applications of cardiovascular 3D printing span from diagnostic assistance and optimization of management algorithms in complex cardiovascular diseases, to planning and simulating surgical and interventional procedures. The technology has been used in practically the entire range of structural, valvular, and congenital heart diseases, and the added-value of 3D printing is established. Patient-specific implants and custom-made devices can be designed, produced, and tested, thus opening new horizons in personalized patient care and cardiovascular research. Physicians and trainees can better elucidate anatomical abnormalities with the use of 3D-printed models, and communication with patients is markedly improved. Cardiovascular 3D bioprinting and molecular 3D printing, although currently not translated into clinical practice, hold revolutionary potential. 3D printing is expected to have a broad influence in cardiovascular care, and will prove pivotal for the future generation of cardiovascular imagers and care providers. In this Review, we summarize the cardiovascular 3D printing workflow, from image acquisition to the generation of a hand-held model, and discuss the cardiovascular applications and the current status and future perspectives of cardiovascular 3D printing.

  18. Computer model of cardiovascular control system responses to exercise

    NASA Technical Reports Server (NTRS)

    Croston, R. C.; Rummel, J. A.; Kay, F. J.

    1973-01-01

    Approaches of systems analysis and mathematical modeling together with computer simulation techniques are applied to the cardiovascular system in order to simulate dynamic responses of the system to a range of exercise work loads. A block diagram of the circulatory model is presented, taking into account arterial segments, venous segments, arterio-venous circulation branches, and the heart. A cardiovascular control system model is also discussed together with model test results.

  19. 3D printing from cardiovascular CT: a practical guide and review

    PubMed Central

    Birbara, Nicolette S.; Hussain, Tarique; Greil, Gerald; Foley, Thomas A.; Pather, Nalini

    2017-01-01

    Current cardiovascular imaging techniques allow anatomical relationships and pathological conditions to be captured in three dimensions. Three-dimensional (3D) printing, or rapid prototyping, has also become readily available and made it possible to transform virtual reconstructions into physical 3D models. This technology has been utilised to demonstrate cardiovascular anatomy and disease in clinical, research and educational settings. In particular, 3D models have been generated from cardiovascular computed tomography (CT) imaging data for purposes such as surgical planning and teaching. This review summarises applications, limitations and practical steps required to create a 3D printed model from cardiovascular CT. PMID:29255693

  20. Polymeric Nanofibers in Tissue Engineering

    PubMed Central

    Dahlin, Rebecca L.; Kasper, F. Kurtis

    2011-01-01

    Polymeric nanofibers can be produced using methods such as electrospinning, phase separation, and self-assembly, and the fiber composition, diameter, alignment, degradation, and mechanical properties can be tailored to the intended application. Nanofibers possess unique advantages for tissue engineering. The small diameter closely matches that of extracellular matrix fibers, and the relatively large surface area is beneficial for cell attachment and bioactive factor loading. This review will update the reader on the aspects of nanofiber fabrication and characterization important to tissue engineering, including control of porous structure, cell infiltration, and fiber degradation. Bioactive factor loading will be discussed with specific relevance to tissue engineering. Finally, applications of polymeric nanofibers in the fields of bone, cartilage, ligament and tendon, cardiovascular, and neural tissue engineering will be reviewed. PMID:21699434

  1. Human Stem Cell Derived Cardiomyocytes: An Alternative ...

    EPA Pesticide Factsheets

    Chemical spills and associated deaths in the US has increased 2.6-fold and 16-fold from 1983 to 2012, respectfully. In addition, the number of chemicals to which humans are exposed to in the environment has increased almost 10-fold from 2001 to 2013 within the US. Internationally, a WHO report on the global composite impact of chemicals on health reported that 16% of the total burden of cardiovascular disease was attributed to environmental chemical exposure with 2.5 million deaths per year. Clearly, the cardiovascular system, at all its various developmental and life stages, represents a critical target organ system that can be adversely affected by existing and emerging chemicals (e.g., engineered nanomaterials) in a variety of environmental media. The ability to assess chemical cardiac risk and safety is critically needed but extremely challenging due to the number and categories of chemicals in commerce, as indicated. This presentation\\session will evaluate the use of adult human stem cell derived cardiomyocytes, and existing platforms, as an alternative model to evaluate environmental chemical cardiac toxicity as well as provide key information for the development of predictive adverse outcomes pathways associated with environmental chemical exposures. (This abstract does not represent EPA policy) Rapid and translatable chemical safety screening models for cardiotoxicity current status for informing regulatory decisions, a workshop sponsored by the Society

  2. Pulse wave analysis in a 180-degree curved artery model: Implications under physiological and non-physiological inflows

    NASA Astrophysics Data System (ADS)

    Bulusu, Kartik V.; Plesniak, Michael W.

    2013-11-01

    Systolic and diastolic blood pressures, pulse pressures, and left ventricular hypertrophy contribute to cardiovascular risks. Increase of arterial stiffness due to aging and hypertension is an important factor in cardiovascular, chronic kidney and end-stage-renal-diseases. Pulse wave analysis (PWA) based on arterial pressure wave characteristics, is well established in clinical practice for evaluation of arterial distensibility and hypertension. The objective of our exploratory study in a rigid 180-degree curved artery model was to evaluate arterial pressure waveforms. Bend upstream conditions were measured using a two-component, two-dimensional, particle image velocimeter (2C-2D PIV). An ultrasonic transit-time flow meter and a catheter with a MEMS-based solid state pressure sensor, capable of measuring up to 20 harmonics of the observed pressure waveform, monitored flow conditions downstream of the bend. Our novel continuous wavelet transform algorithm (PIVlet 1.2), in addition to detecting coherent secondary flow structures is used to evaluate arterial pulse wave characteristics subjected to physiological and non-physiological inflows. Results of this study will elucidate the utility of wavelet transforms in arterial function evaluation and pulse wave speed. Supported by NSF Grant No. CBET- 0828903 and GW Center for Biomimetics and Bioinspired Engineering.

  3. Utilisation of three-dimensional printed heart models for operative planning of complex congenital heart defects.

    PubMed

    Olejník, Peter; Nosal, Matej; Havran, Tomas; Furdova, Adriana; Cizmar, Maros; Slabej, Michal; Thurzo, Andrej; Vitovic, Pavol; Klvac, Martin; Acel, Tibor; Masura, Jozef

    2017-01-01

    To evaluate the accuracy of the three-dimensional (3D) printing of cardiovascular structures. To explore whether utilisation of 3D printed heart replicas can improve surgical and catheter interventional planning in patients with complex congenital heart defects. Between December 2014 and November 2015 we fabricated eight cardiovascular models based on computed tomography data in patients with complex spatial anatomical relationships of cardiovascular structures. A Bland-Altman analysis was used to assess the accuracy of 3D printing by comparing dimension measurements at analogous anatomical locations between the printed models and digital imagery data, as well as between printed models and in vivo surgical findings. The contribution of 3D printed heart models for perioperative planning improvement was evaluated in the four most representative patients. Bland-Altman analysis confirmed the high accuracy of 3D cardiovascular printing. Each printed model offered an improved spatial anatomical orientation of cardiovascular structures. Current 3D printers can produce authentic copies of patients` cardiovascular systems from computed tomography data. The use of 3D printed models can facilitate surgical or catheter interventional procedures in patients with complex congenital heart defects due to better preoperative planning and intraoperative orientation.

  4. Zebrafish models of cardiovascular diseases and their applications in herbal medicine research.

    PubMed

    Seto, Sai-Wang; Kiat, Hosen; Lee, Simon M Y; Bensoussan, Alan; Sun, Yu-Ting; Hoi, Maggie P M; Chang, Dennis

    2015-12-05

    The zebrafish (Danio rerio) has recently become a powerful animal model for cardiovascular research and drug discovery due to its ease of maintenance, genetic manipulability and ability for high-throughput screening. Recent advances in imaging techniques and generation of transgenic zebrafish have greatly facilitated in vivo analysis of cellular events of cardiovascular development and pathogenesis. More importantly, recent studies have demonstrated the functional similarity of drug metabolism systems between zebrafish and humans, highlighting the clinical relevance of employing zebrafish in identifying lead compounds in Chinese herbal medicine with potential beneficial cardiovascular effects. This paper seeks to summarise the scope of zebrafish models employed in cardiovascular studies and the application of these research models in Chinese herbal medicine to date. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  5. Kotov collects data for the Cardiocog-2 Experiment in the SM during Expedition 15

    NASA Image and Video Library

    2007-05-01

    ISS015-E-08661 (May 2007) --- Cosmonaut Oleg V. Kotov, Expedition 15 flight engineer representing Russia's Federal Space Agency, collects medical data for the Cognitive Cardiovascular (Cardiocog-2) experiment in the Zvezda Service Module of the International Space Station. Cardiocog-2 will determine the impact of weightlessness on the cardiovascular system and respiratory system and the cognitive reactions of crewmembers. The results of this study will be used to develop additional countermeasures that will continue to keep crewmembers healthy during long-duration space exploration.

  6. Kotov collects data for the Cardiocog-2 Experiment in the SM during Expedition 15

    NASA Image and Video Library

    2007-05-01

    ISS015-E-08660 (May 2007) --- Cosmonaut Oleg V. Kotov, Expedition 15 flight engineer representing Russia's Federal Space Agency, collects medical data for the Cognitive Cardiovascular (Cardiocog-2) experiment in the Zvezda Service Module of the International Space Station. Cardiocog-2 will determine the impact of weightlessness on the cardiovascular system and respiratory system and the cognitive reactions of crewmembers. The results of this study will be used to develop additional countermeasures that will continue to keep crewmembers healthy during long-duration space exploration.

  7. Kotov collects data for the Cardiocog-2 Experiment in the SM during Expedition 15

    NASA Image and Video Library

    2007-05-01

    ISS015-E-08659 (May 2007) --- Cosmonaut Oleg V. Kotov, Expedition 15 flight engineer representing Russia's Federal Space Agency, checks procedures checklists while collecting medical data for the Cognitive Cardiovascular (Cardiocog-2) experiment in the Zvezda Service Module of the International Space Station. Cardiocog-2 will determine the impact of weightlessness on the cardiovascular system and respiratory system and the cognitive reactions of crewmembers. The results of this study will be used to develop additional countermeasures that will continue to keep crewmembers healthy during long-duration space exploration.

  8. Simulation of Cardiovascular Response to the Head-Up/Head-Down Tilt at Different Angles

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Lu, Hong-Bing; Jiao, Chun; Zhang, Li-Fan

    2008-06-01

    The disappearance of hydrostatic pressure is the original factor that causes the changes of cardiovascular system under microgravity. The hydrostatical changes can be simulated by postural changes. Especially the head-down position can be used to simulate the effects of microgravity. The goal of this investigation was to develop a mathematical model for simulation of the human cardiovascular responses to acute and prolonged exposure under microgravity environment. We were particularly interested in the redistribution of transmural pressures, flows, blood volume, and the consequent alterations in local hemodynamics in different cardiovascular compartments during acute exposure and chronic adjustments. As a preliminary study, we first developed a multi-element, distributed hemodynamic model of human cardiovascular system, and verified the model to simulate cardiovascular changes during head up/down tilt at various angles.

  9. Engineered myocardium model to study the roles of HIF-1α and HIF1A-AS1 in paracrine-only signaling under pathological level oxidative stress.

    PubMed

    Acun, Aylin; Zorlutuna, Pinar

    2017-08-01

    Studying heart tissue is critical for understanding and developing treatments for cardiovascular diseases. In this work, we fabricated precisely controlled and biomimetic engineered model tissues to study how cell-cell and cell-matrix interactions influence myocardial cell survival upon exposure to pathological level oxidative stress. Specifically, the interactions of endothelial cells (ECs) and cardiomyocytes (CMs), and the role of hypoxia inducible factor-1α (HIF-1α), with its novel alternative regulator, HIF-1α antisense RNA1 (HIF1A-AS1), in these interactions were investigated. We encapsulated CMs in photo-crosslinkable, biomimetic hydrogels with or without ECs, then exposed to oxidative stress followed by normoxia. With precisely controlled microenvironment provided by the model tissues, cell-cell interactions were restricted to be solely through the secreted factors. CM survival after oxidative stress was significantly improved, in the presence of ECs, when cells were in the model tissues that were functionalized with cell attachment motifs. Importantly, the cardioprotective effect of ECs was reduced when HIF-1α expression was knocked down suggesting that HIF-1α is involved in cardioprotection from oxidative damage, provided through secreted factors conferred by the ECs. Using model tissues, we showed that cell survival increased with increased cell-cell communication and enhanced cell-matrix interactions. In addition, whole genome transcriptome analysis showed, for the first time to our knowledge, a possible role for HIF1A-AS1 in oxidative regulation of HIF-1α. We showed that although HIF1A-AS1 knockdown helps CM survival, its effect is overridden by CM-EC bidirectional interactions as we showed that the conditioned media taken from the CM-EC co-cultures improved CM survival, regardless of HIF1A-AS1 expression. Cardiovascular diseases, most of which are associated with oxidative stress, is the most common cause of death worldwide. Thus, understanding the molecular events as well as the role of intercellular communication under oxidative stress is upmost importance in its prevention. In this study we used 3D engineered tissue models to investigate the role of HIF-1α and its regulation in EC-mediated cardioprotection. We showed that EC-mediated protection is only possible when there is a bidirectional crosstalk between ECs and CMs even without physical cell-cell contact. In addition, this protective effect is at least partially related to cell-ECM interactions and HIF-1α, which is regulated by HIF1A-AS1 under oxidative stress. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Nanomaterials for Cardiac Myocyte Tissue Engineering.

    PubMed

    Amezcua, Rodolfo; Shirolkar, Ajay; Fraze, Carolyn; Stout, David A

    2016-07-19

    Since their synthesizing introduction to the research community, nanomaterials have infiltrated almost every corner of science and engineering. Over the last decade, one such field has begun to look at using nanomaterials for beneficial applications in tissue engineering, specifically, cardiac tissue engineering. During a myocardial infarction, part of the cardiac muscle, or myocardium, is deprived of blood. Therefore, the lack of oxygen destroys cardiomyocytes, leaving dead tissue and possibly resulting in the development of arrhythmia, ventricular remodeling, and eventual heart failure. Scarred cardiac muscle results in heart failure for millions of heart attack survivors worldwide. Modern cardiac tissue engineering research has developed nanomaterial applications to combat heart failure, preserve normal heart tissue, and grow healthy myocardium around the infarcted area. This review will discuss the recent progress of nanomaterials for cardiovascular tissue engineering applications through three main nanomaterial approaches: scaffold designs, patches, and injectable materials.

  11. Computational Models of the Cardiovascular System and Its Response to Microgravity

    NASA Technical Reports Server (NTRS)

    Kamm, Roger D.

    1999-01-01

    Computational models of the cardiovascular system are powerful adjuncts to ground-based and in-flight experiments. We will provide NSBRI with a model capable of simulating the short-term effects of gravity on cardiovascular function. The model from this project will: (1) provide a rational framework which quantitatively defines interactions among complex cardiovascular parameters and which supports the critical interpretation of experimental results and testing of hypotheses. (2) permit predictions of the impact of specific countermeasures in the context of various hypothetical cardiovascular abnormalities induced by microgravity. Major progress has been made during the first 18 months of the program: (1) We have developed an operational first-order computer model capable of simulating the cardiovascular response to orthostatic stress. The model consists of a lumped parameter hemodynamic model and a complete reflex control system. The latter includes cardiopulmonary and carotid sinus reflex limbs and interactions between the two. (2) We have modeled the physiologic stress of tilt table experiments and lower body negative pressure procedures (LBNP). We have verified our model's predictions by comparing them with experimental findings from the literature. (3) We have established collaborative efforts with leading investigators interested in experimental studies of orthostatic intolerance, cardiovascular control, and physiologic responses to space flight. (4) We have established a standardized method of transferring data to our laboratory from the ongoing NSBRI bedrest studies. We use this data to estimate input parameters to our model and compare our model predictions to actual data to further verify our model. (5) We are in the process of systematically simulating current hypotheses concerning the mechanism underlying orthostatic intolerance by matching our simulations to stand test data from astronauts pre- and post-flight. (6) We are in the process of developing a JAVA version of the simulator which will be distributed amongst the cardiovascular team members. Future work on this project involves modifications of the model to represent a rodent (rat) model, further evaluation of the bedrest astronaut and animal data, and systematic investigation of specific countermeasures.

  12. Stress, depression, and cardiovascular dysregulation: A review of neurobiological mechanisms and the integration of research from preclinical disease models

    PubMed Central

    Grippo, Angela J.; Johnson, Alan Kim

    2008-01-01

    A bidirectional association between mood disorders such as depression, and cardiovascular diseases such as myocardial infarction and congestive heart failure, has been described; however, the precise neurobiological mechanisms that underlie these associations have not been fully elucidated. This review is focused on the neurobiological processes and mediators that are common to both mood and cardiovascular disorders, with an emphasis on the role of exogenous stressors in addition to: (a) neuroendocrine and neurohumoral changes involving dysfunction of the hypothalamic-pituitary-adrenal axis and activation of the renin-angiotensin-aldosterone system, (b) immune alterations including activation of pro-inflammatory cytokines, (c) autonomic and cardiovascular dysregulation including increased sympathetic drive, withdrawal of parasympathetic tone, cardiac rate and rhythm disturbances, and altered baroreceptor reflex function, (d) central neurotransmitter system dysfunction including dopamine, norepinephrine and serotonin, and (e) behavioral changes including fatigue and physical inactivity. We also focus specifically on experimental investigations with preclinical disease models, conducted to elucidate the neurobiological mechanisms underlying the link between mood disorders and cardiovascular disease. These include: (a) the chronic mild stress model of depression, (b) a model of congestive heart failure, a model of cardiovascular deconditioning, (d) pharmacological manipulations of body fluid and sodium balance, and (e) pharmacological manipulations of the central serotonergic system. In combination with the extensive literature describing findings from human research, the investigation of mechanisms underlying mood and cardiovascular regulation using animal models will enhance our understanding of the association of depression and cardiovascular disease, and can promote the development of better treatments and interventions for individuals with these co-morbid conditions. PMID:19116888

  13. Cost-effectiveness of statins for primary prevention in patients newly diagnosed with type 2 diabetes in the Netherlands.

    PubMed

    de Vries, Folgerdiena M; Denig, Petra; Visser, Sipke T; Hak, Eelko; Postma, Maarten J

    2014-03-01

    Statins are lipid-lowering drugs that reduce the risk of cardiovascular events in patients with diabetes. The objective of this study was to determine whether statin treatment for primary prevention in newly diagnosed type 2 diabetes is cost-effective, taking nonadherence, baseline risk, and age into account. A cost-effectiveness analysis was performed by using a Markov model with a time horizon of 10 years. The baseline 10-year cardiovascular risk was estimated in a Dutch population of primary prevention patients with newly diagnosed diabetes from the Groningen Initiative to Analyse Type 2 Diabetes Treatment (GIANTT) database, using the United Kingdom Prospective Diabetes Study risk engine. Statin adherence was measured as pill days covered in the IADB.nl pharmacy research database. Cost-effectiveness was measured in costs per quality-adjusted life-year (QALY) from the health care payers' perspective. For an average patient aged 60 years, the base case, statin treatment was highly cost-effective at €2245 per QALY. Favorable cost-effectiveness was robust in sensitivity analysis. Differences in age and 10-year cardiovascular risk showed large differences in cost-effectiveness from almost €100,000 per QALY to almost being cost saving. Treating all patients younger than 45 years at diabetes diagnosis was not cost-effective (weighted cost-effectiveness of almost €60,000 per QALY). Despite the nonadherence levels observed in actual practice, statin treatment is cost-effective for primary prevention in patients newly diagnosed with type 2 diabetes. Because of large differences in cost-effectiveness according to different risk and age groups, the efficiency of the treatment could be increased by targeting patients with relatively higher cardiovascular risk and higher ages. Copyright © 2014 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  14. Job dimensions associated with severe disability due to cardiovascular disease.

    PubMed

    Murphy, L R

    1991-01-01

    This study explored associations among job activities and disability due to cardiovascular disease by merging national disability data with independently-obtained job activity data. Disability data were taken from a 1978 U.S. health interview survey (n = 9855). Expert ratings of job activities (dimensions) were obtained from a job analysis database (n = 2485 occupations). The two databases were merged such that job dimension data were imputed to each occupation in the disability database. Odds ratios for cardiovascular disability were calculated for scores in the second, third, and fourth quartiles for each of the 32 job dimensions, using scores in the first quartile as the standard. Job dimensions associated with cardiovascular disability were (a) hazardous situations; (b) vigilant work and responsibility for others; (c) exchanging job-related information; and (d) attention to devices. Occupations identified with high scores on these job dimensions included transportation jobs (air traffic controllers, airline pilots and attendants, bus drivers, locomotive engineers, truck drivers), teachers (preschool, adult education), and craftsmen/foremen (machinists, carpenters, and foremen).

  15. From Microscale Devices to 3D Printing: Advances in Fabrication of 3D Cardiovascular Tissues

    PubMed Central

    Borovjagin, Anton V.; Ogle, Brenda; Berry, Joel; Zhang, Jianyi

    2016-01-01

    Current strategies for engineering cardiovascular cells and tissues have yielded a variety of sophisticated tools for studying disease mechanisms, for development of drug therapies, and for fabrication of tissue equivalents that may have application in future clinical use. These efforts are motivated by the need to extend traditional two-dimensional (2D) cell culture systems into 3D to more accurately replicate in vivo cell and tissue function of cardiovascular structures. Developments in microscale devices and bioprinted 3D tissues are beginning to supplant traditional 2D cell cultures and pre-clinical animal studies that have historically been the standard for drug and tissue development. These new approaches lend themselves to patient-specific diagnostics, therapeutics, and tissue regeneration. The emergence of these technologies also carries technical challenges to be met before traditional cell culture and animal testing become obsolete. Successful development and validation of 3D human tissue constructs will provide powerful new paradigms for more cost effective and timely translation of cardiovascular tissue equivalents. PMID:28057791

  16. Small intestinal submucosa extracellular matrix (CorMatrix®) in cardiovascular surgery: a systematic review

    PubMed Central

    Mosala Nezhad, Zahra; Poncelet, Alain; de Kerchove, Laurent; Gianello, Pierre; Fervaille, Caroline; El Khoury, Gebrine

    2016-01-01

    Extracellular matrix (ECM) derived from small intestinal submucosa (SIS) is widely used in clinical applications as a scaffold for tissue repair. Recently, CorMatrix® porcine SIS-ECM (CorMatrix Cardiovascular, Inc., Roswell, GA, USA) has gained popularity for ‘next-generation’ cardiovascular tissue engineering due to its ease of use, remodelling properties, lack of immunogenicity, absorbability and potential to promote native tissue growth. Here, we provide an overview of the biology of porcine SIS-ECM and systematically review the preclinical and clinical literature on its use in cardiovascular surgery. CorMatrix® has been used in a variety of cardiovascular surgical applications, and since it is the most widely used SIS-ECM, this material is the focus of this review. Since CorMatrix® is a relatively new product for cardiovascular surgery, some clinical and preclinical studies published lack systematic reporting of functional and pathological findings in sufficient numbers of subjects. There are also emerging reports to suggest that, contrary to expectations, an undesirable inflammatory response may occur in CorMatrix® implants in humans and longer-term outcomes at particular sites, such as the heart valves, may be suboptimal. Large-scale clinical studies are needed driven by robust protocols that aim to quantify the pathological process of tissue repair. PMID:26912574

  17. Serum peroxiredoxin 4: a marker of oxidative stress associated with mortality in type 2 diabetes (ZODIAC-28).

    PubMed

    Gerrits, Esther G; Alkhalaf, Alaa; Landman, Gijs W D; van Hateren, Kornelis J J; Groenier, Klaas H; Struck, Joachim; Schulte, Janin; Gans, Reinold O B; Bakker, Stephan J L; Kleefstra, Nanne; Bilo, Henk J G

    2014-01-01

    Oxidative stress plays an underlying pathophysiologic role in the development of diabetes complications. The aim of this study was to investigate peroxiredoxin 4 (Prx4), a proposed novel biomarker of oxidative stress, and its association with and capability as a biomarker in predicting (cardiovascular) mortality in type 2 diabetes mellitus. Prx4 was assessed in baseline serum samples of 1161 type 2 diabetes patients. Cox proportional hazard models were used to evaluate the relationship between Prx4 and (cardiovascular) mortality. Risk prediction capabilities of Prx4 for (cardiovascular) mortality were assessed with Harrell's C statistic, the integrated discrimination improvement and net reclassification improvement. Mean age was 67 and the median diabetes duration was 4.0 years. After a median follow-up period of 5.8 years, 327 patients died; 137 cardiovascular deaths. Prx4 was associated with (cardiovascular) mortality. The Cox proportional hazard models added the variables: Prx4 (model 1); age and gender (model 2), and BMI, creatinine, smoking, diabetes duration, systolic blood pressure, cholesterol-HDL ratio, history of macrovascular complications, and albuminuria (model 3). Hazard ratios (HR) (95% CI) for cardiovascular mortality were 1.93 (1.57 - 2.38), 1.75 (1.39 - 2.20), and 1.63 (1.28 - 2.09) for models 1, 2 and 3, respectively. HR for all-cause mortality were 1.73 (1.50 - 1.99), 1.50 (1.29 - 1.75), and 1.44 (1.23 - 1.67) for models 1, 2 and 3, respectively. Addition of Prx4 to the traditional risk factors slightly improved risk prediction of (cardiovascular) mortality. Prx4 is independently associated with (cardiovascular) mortality in type 2 diabetes patients. After addition of Prx4 to the traditional risk factors, there was a slightly improvement in risk prediction of (cardiovascular) mortality in this patient group.

  18. Contemporary model for cardiovascular risk prediction in people with type 2 diabetes.

    PubMed

    Kengne, Andre Pascal; Patel, Anushka; Marre, Michel; Travert, Florence; Lievre, Michel; Zoungas, Sophia; Chalmers, John; Colagiuri, Stephen; Grobbee, Diederick E; Hamet, Pavel; Heller, Simon; Neal, Bruce; Woodward, Mark

    2011-06-01

    Existing cardiovascular risk prediction equations perform non-optimally in different populations with diabetes. Thus, there is a continuing need to develop new equations that will reliably estimate cardiovascular disease (CVD) risk and offer flexibility for adaptation in various settings. This report presents a contemporary model for predicting cardiovascular risk in people with type 2 diabetes mellitus. A 4.5-year follow-up of the Action in Diabetes and Vascular disease: preterax and diamicron-MR controlled evaluation (ADVANCE) cohort was used to estimate coefficients for significant predictors of CVD using Cox models. Similar Cox models were used to fit the 4-year risk of CVD in 7168 participants without previous CVD. The model's applicability was tested on the same sample and another dataset. A total of 473 major cardiovascular events were recorded during follow-up. Age at diagnosis, known duration of diabetes, sex, pulse pressure, treated hypertension, atrial fibrillation, retinopathy, HbA1c, urinary albumin/creatinine ratio and non-HDL cholesterol at baseline were significant predictors of cardiovascular events. The model developed using these predictors displayed an acceptable discrimination (c-statistic: 0.70) and good calibration during internal validation. The external applicability of the model was tested on an independent cohort of individuals with type 2 diabetes, where similar discrimination was demonstrated (c-statistic: 0.69). Major cardiovascular events in contemporary populations with type 2 diabetes can be predicted on the basis of routinely measured clinical and biological variables. The model presented here can be used to quantify risk and guide the intensity of treatment in people with diabetes.

  19. [Psychosocial factors at work and cardiovascular diseases: contribution of the Effort-Reward Imbalance model].

    PubMed

    Niedhammer, I; Siegrist, J

    1998-11-01

    The effect of psychosocial factors at work on health, especially cardiovascular health, has given rise to growing concern in occupational epidemiology over the last few years. Two theoretical models, Karasek's model and the Effort-Reward Imbalance model, have been developed to evaluate psychosocial factors at work within specific conceptual frameworks in an attempt to take into account the serious methodological difficulties inherent in the evaluation of such factors. Karasek's model, the most widely used model, measures three factors: psychological demands, decision latitude and social support at work. Many studies have shown the predictive effects of these factors on cardiovascular diseases independently of well-known cardiovascular risk factors. More recently, the Effort-Reward Imbalance model takes into account the role of individual coping characteristics which was neglected in the Karasek model. The effort-reward imbalance model focuses on the reciprocity of exchange in occupational life where high-cost/low-gain conditions are considered particularly stressful. Three dimensions of rewards are distinguished: money, esteem and gratifications in terms of promotion prospects and job security. Some studies already support that high-effort/low reward-conditions are predictive of cardiovascular diseases.

  20. The oxidized low-density lipoprotein receptor mediates vascular effects of inhaled vehicle emissions

    EPA Science Inventory

    Rationale: To determine vascular signaling pathways involved in air pollution (vehicular engine emission) exposure -induced exacerbation of atherosclerosis, associated with onset of clinical cardiovascular events. Objective: To elucidate the role of oxidized LDL (oxLDL) and its ...

  1. Epidemiological study of health hazards among workers handling engineered nanomaterials

    NASA Astrophysics Data System (ADS)

    Liou, Saou-Hsing; Tsou, Tsui-Chun; Wang, Shu-Li; Li, Lih-Ann; Chiang, Hung-Che; Li, Wan-Fen; Lin, Pin-Pin; Lai, Ching-Huang; Lee, Hui-Ling; Lin, Ming-Hsiu; Hsu, Jin-Huei; Chen, Chiou-Rong; Shih, Tung-Sheng; Liao, Hui-Yi; Chung, Yu-Teh

    2012-08-01

    The aim of this study was to establish and identify the health effect markers of workers with potential exposure to nanoparticles (20-100 nm) during manufacturing and/or application of nanomaterials. For this cross-sectional study, we recruited 227 workers who handled nanomaterials and 137 workers for comparison who did not from 14 plants in Taiwan. A questionnaire was used to collect data on exposure status, demographics, and potential confounders. The health effect markers were measured in the medical laboratory. Control banding from the Nanotool Risk Level Matrix was used to categorize the exposure risk levels of the workers. The results showed that the antioxidant enzyme, superoxide dismutase (SOD) in risk level 1 (RL1) and risk level 2 (RL2) workers was significantly ( p < 0.05) lower than in control workers. A significantly decreasing gradient was found for SOD (control > RL1 > RL2). Another antioxidant, glutathione peroxidase (GPX), was significantly lower only in RL1 workers than in the control workers. The cardiovascular markers, fibrinogen and ICAM (intercellular adhesion molecule), were significantly higher in RL2 workers than in controls and a significant dose-response with an increasing trend was found for these two cardiovascular markers. Another cardiovascular marker, interleukin-6, was significantly increased among RL1 workers, but not among RL2 workers. The accuracy rate for remembering 7-digits and reciting them backwards was significantly lower in RL2 workers (OR = 0.48) than in controls and a significantly reversed gradient was also found for the correct rate of backward memory (OR = 0.90 for RL1, OR = 0.48 for RL2, p < 0.05 in test for trend). Depression of antioxidant enzymes and increased expression of cardiovascular markers were found among workers handling nanomaterials. Antioxidant enzymes, such as SOD and GPX, and cardiovascular markers, such as fibrinogen, ICAM, and interluekin-6, are possible biomarkers for medical surveillance of workers handling engineered nanomaterials.

  2. Chronic stress impacts the cardiovascular system: animal models and clinical outcomes.

    PubMed

    Golbidi, Saeid; Frisbee, Jefferson C; Laher, Ismail

    2015-06-15

    Psychological stresses are associated with cardiovascular diseases to the extent that cardiovascular diseases are among the most important group of psychosomatic diseases. The longstanding association between stress and cardiovascular disease exists despite a large ambiguity about the underlying mechanisms. An array of possibilities have been proposed including overactivity of the autonomic nervous system and humoral changes, which then converge on endothelial dysfunction that initiates unwanted cardiovascular consequences. We review some of the features of the two most important stress-activated systems, i.e., the humoral and nervous systems, and focus on alterations in endothelial function that could ensue as a result of these changes. Cardiac and hematologic consequences of stress are also addressed briefly. It is likely that activation of the inflammatory cascade in association with oxidative imbalance represents key pathophysiological components of stress-induced cardiovascular changes. We also review some of the commonly used animal models of stress and discuss the cardiovascular outcomes reported in these models of stress. The unique ability of animals for adaptation under stressful conditions lessens the extrapolation of laboratory findings to conditions of human stress. An animal model of unpredictable chronic stress, which applies various stress modules in a random fashion, might be a useful solution to this predicament. The use of stress markers as indicators of stress intensity is also discussed in various models of animal stress and in clinical studies. Copyright © 2015 the American Physiological Society.

  3. Changes in diet, cardiovascular risk factors and modelled cardiovascular risk following diagnosis of diabetes: 1-year results from the ADDITION-Cambridge trial cohort.

    PubMed

    Savory, L A; Griffin, S J; Williams, K M; Prevost, A T; Kinmonth, A-L; Wareham, N J; Simmons, R K

    2014-02-01

    To describe change in self-reported diet and plasma vitamin C, and to examine associations between change in diet and cardiovascular disease risk factors and modelled 10-year cardiovascular disease risk in the year following diagnosis of Type 2 diabetes. Eight hundred and sixty-seven individuals with screen-detected diabetes underwent assessment of self-reported diet, plasma vitamin C, cardiovascular disease risk factors and modelled cardiovascular disease risk at baseline and 1 year (n = 736) in the ADDITION-Cambridge trial. Multivariable linear regression was used to quantify the association between change in diet and cardiovascular disease risk at 1 year, adjusting for change in physical activity and cardio-protective medication. Participants reported significant reductions in energy, fat and sodium intake, and increases in fruit, vegetable and fibre intake over 1 year. The reduction in energy was equivalent to an average-sized chocolate bar; the increase in fruit was equal to one plum per day. There was a small increase in plasma vitamin C levels. Increases in fruit intake and plasma vitamin C were associated with small reductions in anthropometric and metabolic risk factors. Increased vegetable intake was associated with an increase in BMI and waist circumference. Reductions in fat, energy and sodium intake were associated with reduction in HbA1c , waist circumference and total cholesterol/modelled cardiovascular disease risk, respectively. Improvements in dietary behaviour in this screen-detected population were associated with small reductions in cardiovascular disease risk, independently of change in cardio-protective medication and physical activity. Dietary change may have a role to play in the reduction of cardiovascular disease risk following diagnosis of diabetes. © 2013 The Authors. Diabetic Medicine published by John Wiley & Sons Ltd on behalf of Diabetes UK.

  4. Lentiviral vectors and cardiovascular diseases: a genetic tool for manipulating cardiomyocyte differentiation and function.

    PubMed

    Di Pasquale, E; Latronico, M V G; Jotti, G S; Condorelli, G

    2012-06-01

    Engineered recombinant viral vectors are a powerful tool for vehiculating genetic information into mammalian cells. Because of their ability to infect both dividing and non-dividing cells with high efficiency, lentiviral vectors have gained particular interest for basic research and preclinical studies in the cardiovascular field. We review here the major applications for lentiviral-vector technology in the cardiovascular field: we will discuss their use in trailing gene expression during the induction of differentiation, in protocols for the isolation of cardiac cells and in the tracking of cardiac cells after transplantation in vivo; we will also describe lentivirally-mediated gene delivery uses, such as the induction of a phenotype of interest in a target cell or the treatment of cardiovascular diseases. In addition, a section of the review will be dedicated to reprogramming approaches, focusing attention on the generation of pluripotent stem cells and on transdifferentiation, two emerging strategies for the production of cardiac myocytes from human cells and for the investigation of human diseases. Finally, in order to give a perspective on their future clinical use we will critically discuss advantages and disadvantages of lentivirus-based strategies for the treatment of cardiovascular diseases.

  5. Interaction Studies of Withania Somnifera's Key Metabolite Withaferin A with Different Receptors Assoociated with Cardiovascular Disease.

    PubMed

    Ravindran, Rekha; Sharma, Nitika; Roy, Sujata; Thakur, Ashoke R; Ganesh, Subhadra; Kumar, Sriram; Devi, Jamuna; Rajkumar, Johanna

    2015-01-01

    Withania somnifera commonly known as Ashwagandha in India is used in many herbal formulations to treat various cardiovascular diseases. The key metabolite of this plant, Withaferin A was analyzed for its molecular mechanism through docking studies on different targets of cardiovascular disease. Six receptor proteins associated with cardiovascular disease were selected and interaction studies were performed with Withaferin A using AutoDock Vina. CORINA was used to model the small molecules and HBAT to compute the hydrogen bonding. Among the six targets, β1- adrenergic receptors, HMG-CoA and Angiotensinogen-converting enzyme showed significant interaction with Withaferin A. Pharmacophore modeling was done using PharmaGist to understand the pharmacophoric potential of Withaferin A. Clustering of Withaferin A with different existing drug molecules for cardiovascular disease was performed with ChemMine based on structural similarity and physicochemical properties. The ability of natural active component, Withaferin A to interact with different receptors associated with cardiovascular disease was elucidated with various modeling techniques. These studies conclusively revealed Withaferin A as a potent lead compound against multiple targets associated with cardiovascular disease.

  6. Compared to the amniotic membrane, Wharton's jelly may be a more suitable source of mesenchymal stem cells for cardiovascular tissue engineering and clinical regeneration.

    PubMed

    Pu, Lei; Meng, Mingyao; Wu, Jian; Zhang, Jing; Hou, Zongliu; Gao, Hui; Xu, Hui; Liu, Boyu; Tang, Weiwei; Jiang, Lihong; Li, Yaxiong

    2017-03-21

    The success of developing cardiovascular tissue engineering (CTE) grafts greatly needs a readily available cell substitute for endothelial and interstitial cells. Perinatal annexes have been proposed as a valuable source of mesenchymal stem cells (MSCs) for tissue engineering and regenerative medicine. The objective of the present study is to evaluate the potential of human Wharton's jelly MSCs (WJ-MSCs) and amniotic membrane MSCs (AM-MSCs) as a seeding cell in CTE and cardiovascular regenerative medicine. WJ-MSCs/AM-MSCs were isolated and characterized in vitro according to their morphology, proliferation, self-renewal, phenotype, and multipotency. More importantly, the characteristics of hemocompatibility, extracellular matrix deposition, and gene expression and viability of both MSCs were investigated. Fibroblast-like human WJ-MSCs and AM-MSCs were successfully isolated and positively expressed the characteristic markers CD73, CD90, and CD105 but were negative for CD34, CD45, and HLA-DR. Both MSCs shared trilineage differentiation toward the adipogenic, osteogenic, and chondrogenic lineages. The proliferative and self-renewal capacity of WJ-MSCs was significantly higher than that of AM-MSCs (P < 0.001). WJ-MSCs provided comparable properties of antiplatelet adhesion and did not activate the coagulation cascade to endothelial cells. However, aggregated platelets were visualized on the surface of AM-MSCs-derived cell sheets and the intrinsic pathway was activated. Furthermore, WJ-MSCs have superior properties of collagen deposition and higher viability than AM-MSCs during cell sheet formation. This study highlights that WJ-MSCs could act as a functional substitute of endothelial and interstitial cells, which could serve as an appealing and practical single-cell source for CTE and regenerative therapy.

  7. Bridging the gap between measurements and modelling: a cardiovascular functional avatar.

    PubMed

    Casas, Belén; Lantz, Jonas; Viola, Federica; Cedersund, Gunnar; Bolger, Ann F; Carlhäll, Carl-Johan; Karlsson, Matts; Ebbers, Tino

    2017-07-24

    Lumped parameter models of the cardiovascular system have the potential to assist researchers and clinicians to better understand cardiovascular function. The value of such models increases when they are subject specific. However, most approaches to personalize lumped parameter models have thus far required invasive measurements or fall short of being subject specific due to a lack of the necessary clinical data. Here, we propose an approach to personalize parameters in a model of the heart and the systemic circulation using exclusively non-invasive measurements. The personalized model is created using flow data from four-dimensional magnetic resonance imaging and cuff pressure measurements in the brachial artery. We term this personalized model the cardiovascular avatar. In our proof-of-concept study, we evaluated the capability of the avatar to reproduce pressures and flows in a group of eight healthy subjects. Both quantitatively and qualitatively, the model-based results agreed well with the pressure and flow measurements obtained in vivo for each subject. This non-invasive and personalized approach can synthesize medical data into clinically relevant indicators of cardiovascular function, and estimate hemodynamic variables that cannot be assessed directly from clinical measurements.

  8. A closed-loop hybrid physiological model relating to subjects under physical stress.

    PubMed

    El-Samahy, Emad; Mahfouf, Mahdi; Linkens, Derek A

    2006-11-01

    The objective of this research study is to derive a comprehensive physiological model relating to subjects under physical stress conditions. The model should describe the behaviour of the cardiovascular system, respiratory system, thermoregulation and brain activity in response to physical workload. An experimental testing rig was built which consists of recumbent high performance bicycle for inducing the physical load and a data acquisition system comprising monitors and PCs. The signals acquired and used within this study are the blood pressure, heart rate, respiration, body temperature, and EEG signals. The proposed model is based on a grey-box based modelling approach which was used because of the sufficient level of details it provides. Cardiovascular and EEG Data relating to 16 healthy subject volunteers (data from 12 subjects were used for training/validation and the data from 4 subjects were used for model testing) were collected using the Finapres and the ProComp+ monitors. For model validation, residual analysis via the computing of the confidence intervals as well as related histograms was performed. Closed-loop simulations for different subjects showed that the model can provide reliable predictions for heart rate, blood pressure, body temperature, respiration, and the EEG signals. These findings were also reinforced by the residual analyses data obtained, which suggested that the residuals were within the 90% confidence bands and that the corresponding histograms were of a normal distribution. A higher intelligent level was added to the model, based on neural networks, to extend the capabilities of the model to predict over a wide range of subjects dynamics. The elicited physiological model describing the effect of physiological stress on several physiological variables can be used to predict performance breakdown of operators in critical environments. Such a model architecture lends itself naturally to exploitation via feedback control in a 'reverse-engineering' fashion to control stress via the specification of a safe operating range for the psycho-physiological variables.

  9. Microgravity cultivation of cells and tissues

    NASA Technical Reports Server (NTRS)

    Freed, L. E.; Pellis, N.; Searby, N.; de Luis, J.; Preda, C.; Bordonaro, J.; Vunjak-Novakovic, G.

    1999-01-01

    In vitro studies of cells and tissues in microgravity, either simulated by cultivation conditions on earth or actual, during spaceflight, are expected to help identify mechanisms underlying gravity sensing and transduction in biological organisms. In this paper, we review rotating bioreactor studies of engineered skeletal and cardiovascular tissues carried out in unit gravity, a four month long cartilage tissue engineering study carried out aboard the Mir Space Station, and the ongoing laboratory development and testing of a system for cell and tissue cultivation aboard the International Space Station.

  10. An integrated mathematical model of the human cardiopulmonary system: model development.

    PubMed

    Albanese, Antonio; Cheng, Limei; Ursino, Mauro; Chbat, Nicolas W

    2016-04-01

    Several cardiovascular and pulmonary models have been proposed in the last few decades. However, very few have addressed the interactions between these two systems. Our group has developed an integrated cardiopulmonary model (CP Model) that mathematically describes the interactions between the cardiovascular and respiratory systems, along with their main short-term control mechanisms. The model has been compared with human and animal data taken from published literature. Due to the volume of the work, the paper is divided in two parts. The present paper is on model development and normophysiology, whereas the second is on the model's validation on hypoxic and hypercapnic conditions. The CP Model incorporates cardiovascular circulation, respiratory mechanics, tissue and alveolar gas exchange, as well as short-term neural control mechanisms acting on both the cardiovascular and the respiratory functions. The model is able to simulate physiological variables typically observed in adult humans under normal and pathological conditions and to explain the underlying mechanisms and dynamics. Copyright © 2016 the American Physiological Society.

  11. Particulate Emissions Hazards Associated with Fueling Heat Engines

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Bushnell, Dennis M.

    2010-01-01

    All hydrocarbon- (HC-) fueled heat engine exhaust (tailpipe) emissions (<10 to 140 nm) contribute as health hazards, including emissions from transportation vehicles (e.g., aircraft) and other HC-fueled power systems. CO2 emissions are tracked, and when mapped, show outlines of major transportation routes and cities. Particulate pollution affects living tissue and is found to be detrimental to cardiovascular and respiratory systems where ultrafine particulates directly translocate to promote vascular system diseases potentially detectable as organic vapors. This paper discusses aviation emissions, fueling, and certification issues, including heat engine emissions hazards, detection at low levels and tracking of emissions, and alternate energy sources for general aviation.

  12. Ischemic cardiovascular disease in workers occupationally exposed to urban air pollution - A systematic review.

    PubMed

    De Marchis, Paola; Verso, Maria Gabriella; Tramuto, Fabio; Amodio, Emanuele; Picciotto, Diego

    2018-03-14

    Cardiovascular disease is the first cause of morbidity and mortality worldwide. Among several known risk factors, researchers also focus their attention on the chronic exposure to air pollution. There is much evidence that exposure to air pollution, especially to ultrafine particles, can damage the endothelium and can favour cardiovascular diseases in the general population. Occupational exposition could be an additive risk factor for the cardiovascular system. This article presents a scientific review of the linkage between occupational exposure to air pollution and ischemic heart disease. A scientific review was undertaken, followed by PRISMA Statements. Observational studies were selected from several scientific databases, likesuch as Pubmed, Google Scholar, Nioshtic-2 and Reserchgate, searching for selected key words: police workers, professional drivers, mail carriers, filling station attendants, road cleaners, garage workers, motor vehicles and engine maintenance. All the key words were combined with "Boolean Operators" with the following words: cardiovascular (or cardiac) disease, cardiovascular function, cardiovascular system, ischemic heart disease, coronary disease, myocardial infarction. During the systematic research, the focus was on retrospective and prospective studies from January 1990 - December 2014. Both the retrospective and prospective studies showed an increased risk of ischemic heart disease in occupationally occupied people exposed to air pollution. Only one study presented a ly minor risk. The findings of this systematic review suggest a possible linkage between occupational exposure to urban air pollution, especially to motor exhaust and particulate, and ischemic heart disease.

  13. Simulation, identification and statistical variation in cardiovascular analysis (SISCA) - A software framework for multi-compartment lumped modeling.

    PubMed

    Huttary, Rudolf; Goubergrits, Leonid; Schütte, Christof; Bernhard, Stefan

    2017-08-01

    It has not yet been possible to obtain modeling approaches suitable for covering a wide range of real world scenarios in cardiovascular physiology because many of the system parameters are uncertain or even unknown. Natural variability and statistical variation of cardiovascular system parameters in healthy and diseased conditions are characteristic features for understanding cardiovascular diseases in more detail. This paper presents SISCA, a novel software framework for cardiovascular system modeling and its MATLAB implementation. The framework defines a multi-model statistical ensemble approach for dimension reduced, multi-compartment models and focuses on statistical variation, system identification and patient-specific simulation based on clinical data. We also discuss a data-driven modeling scenario as a use case example. The regarded dataset originated from routine clinical examinations and comprised typical pre and post surgery clinical data from a patient diagnosed with coarctation of aorta. We conducted patient and disease specific pre/post surgery modeling by adapting a validated nominal multi-compartment model with respect to structure and parametrization using metadata and MRI geometry. In both models, the simulation reproduced measured pressures and flows fairly well with respect to stenosis and stent treatment and by pre-treatment cross stenosis phase shift of the pulse wave. However, with post-treatment data showing unrealistic phase shifts and other more obvious inconsistencies within the dataset, the methods and results we present suggest that conditioning and uncertainty management of routine clinical data sets needs significantly more attention to obtain reasonable results in patient-specific cardiovascular modeling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Structural identifiability analysis of a cardiovascular system model.

    PubMed

    Pironet, Antoine; Dauby, Pierre C; Chase, J Geoffrey; Docherty, Paul D; Revie, James A; Desaive, Thomas

    2016-05-01

    The six-chamber cardiovascular system model of Burkhoff and Tyberg has been used in several theoretical and experimental studies. However, this cardiovascular system model (and others derived from it) are not identifiable from any output set. In this work, two such cases of structural non-identifiability are first presented. These cases occur when the model output set only contains a single type of information (pressure or volume). A specific output set is thus chosen, mixing pressure and volume information and containing only a limited number of clinically available measurements. Then, by manipulating the model equations involving these outputs, it is demonstrated that the six-chamber cardiovascular system model is structurally globally identifiable. A further simplification is made, assuming known cardiac valve resistances. Because of the poor practical identifiability of these four parameters, this assumption is usual. Under this hypothesis, the six-chamber cardiovascular system model is structurally identifiable from an even smaller dataset. As a consequence, parameter values computed from limited but well-chosen datasets are theoretically unique. This means that the parameter identification procedure can safely be performed on the model from such a well-chosen dataset. Thus, the model may be considered suitable for use in diagnosis. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. Proceedings of the Symposium Teaching Cardiovascular Physiology Outside the Lecture Hall.

    ERIC Educational Resources Information Center

    Michael, Joel A.; Rovick, Allen A., Eds.

    1983-01-01

    Provided are 10 papers presented during a symposium on teaching cardiovascular physiology outside the lecture hall. Topics addressed include a mechanical model of the cardiovascular system for effective teaching, separate course for experiments in cardiovascular physiology, selective laboratory (alternative to cookbook experiments), cardiovascular…

  16. A forward model-based validation of cardiovascular system identification

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.; Cohen, R. J.

    2001-01-01

    We present a theoretical evaluation of a cardiovascular system identification method that we previously developed for the analysis of beat-to-beat fluctuations in noninvasively measured heart rate, arterial blood pressure, and instantaneous lung volume. The method provides a dynamical characterization of the important autonomic and mechanical mechanisms responsible for coupling the fluctuations (inverse modeling). To carry out the evaluation, we developed a computational model of the cardiovascular system capable of generating realistic beat-to-beat variability (forward modeling). We applied the method to data generated from the forward model and compared the resulting estimated dynamics with the actual dynamics of the forward model, which were either precisely known or easily determined. We found that the estimated dynamics corresponded to the actual dynamics and that this correspondence was robust to forward model uncertainty. We also demonstrated the sensitivity of the method in detecting small changes in parameters characterizing autonomic function in the forward model. These results provide confidence in the performance of the cardiovascular system identification method when applied to experimental data.

  17. Using models in cardiovascular research: report on the satellite meeting to the International Congress of Physiological Sciences, Models in Cardiovascular Research.

    PubMed

    Doggrell, S A; Chan, V

    2001-10-01

    Humans have used animals for centuries to understand their own biology. From September 2-4, 2001, scientists from around the world converged on Brisbane, in Australia, to discuss the use of animal models in cardiovascular research at a satellite meeting to the 34th International Congress of Physiological Sciences (August 26-September 1, 2001, Christchurch, New Zealand). The appropriateness of each model to the human disease was a major consideration. Other themes were the use of models to understand pathological processes, and to determine potential new targets for pharmacological intervention.

  18. Personalising the decision for prolonged dual antiplatelet therapy: development, validation and potential impact of prognostic models for cardiovascular events and bleeding in myocardial infarction survivors

    PubMed Central

    Pasea, Laura; Chung, Sheng-Chia; Pujades-Rodriguez, Mar; Moayyeri, Alireza; Denaxas, Spiros; Fox, Keith A.A.; Wallentin, Lars; Pocock, Stuart J.; Timmis, Adam; Banerjee, Amitava; Patel, Riyaz; Hemingway, Harry

    2017-01-01

    Aims The aim of this study is to develop models to aid the decision to prolong dual antiplatelet therapy (DAPT) that requires balancing an individual patient’s potential benefits and harms. Methods and results Using population-based electronic health records (EHRs) (CALIBER, England, 2000–10), of patients evaluated 1 year after acute myocardial infarction (MI), we developed (n = 12 694 patients) and validated (n = 5613) prognostic models for cardiovascular (cardiovascular death, MI or stroke) events and three different bleeding endpoints. We applied trial effect estimates to determine potential benefits and harms of DAPT and the net clinical benefit of individuals. Prognostic models for cardiovascular events (c-index: 0.75 (95% CI: 0.74, 0.77)) and bleeding (c index 0.72 (95% CI: 0.67, 0.77)) were well calibrated: 3-year risk of cardiovascular events was 16.5% overall (5.2% in the lowest- and 46.7% in the highest-risk individuals), while for major bleeding, it was 1.7% (0.3% in the lowest- and 5.4% in the highest-risk patients). For every 10 000 patients treated per year, we estimated 249 (95% CI: 228, 269) cardiovascular events prevented and 134 (95% CI: 87, 181) major bleeding events caused in the highest-risk patients, and 28 (95% CI: 19, 37) cardiovascular events prevented and 9 (95% CI: 0, 20) major bleeding events caused in the lowest-risk patients. There was a net clinical benefit of prolonged DAPT in 63–99% patients depending on how benefits and harms were weighted. Conclusion Prognostic models for cardiovascular events and bleeding using population-based EHRs may help to personalise decisions for prolonged DAPT 1-year following acute MI. PMID:28329300

  19. Personalising the decision for prolonged dual antiplatelet therapy: development, validation and potential impact of prognostic models for cardiovascular events and bleeding in myocardial infarction survivors.

    PubMed

    Pasea, Laura; Chung, Sheng-Chia; Pujades-Rodriguez, Mar; Moayyeri, Alireza; Denaxas, Spiros; Fox, Keith A A; Wallentin, Lars; Pocock, Stuart J; Timmis, Adam; Banerjee, Amitava; Patel, Riyaz; Hemingway, Harry

    2017-04-07

    The aim of this study is to develop models to aid the decision to prolong dual antiplatelet therapy (DAPT) that requires balancing an individual patient's potential benefits and harms. Using population-based electronic health records (EHRs) (CALIBER, England, 2000-10), of patients evaluated 1 year after acute myocardial infarction (MI), we developed (n = 12 694 patients) and validated (n = 5613) prognostic models for cardiovascular (cardiovascular death, MI or stroke) events and three different bleeding endpoints. We applied trial effect estimates to determine potential benefits and harms of DAPT and the net clinical benefit of individuals. Prognostic models for cardiovascular events (c-index: 0.75 (95% CI: 0.74, 0.77)) and bleeding (c index 0.72 (95% CI: 0.67, 0.77)) were well calibrated: 3-year risk of cardiovascular events was 16.5% overall (5.2% in the lowest- and 46.7% in the highest-risk individuals), while for major bleeding, it was 1.7% (0.3% in the lowest- and 5.4% in the highest-risk patients). For every 10 000 patients treated per year, we estimated 249 (95% CI: 228, 269) cardiovascular events prevented and 134 (95% CI: 87, 181) major bleeding events caused in the highest-risk patients, and 28 (95% CI: 19, 37) cardiovascular events prevented and 9 (95% CI: 0, 20) major bleeding events caused in the lowest-risk patients. There was a net clinical benefit of prolonged DAPT in 63-99% patients depending on how benefits and harms were weighted. Prognostic models for cardiovascular events and bleeding using population-based EHRs may help to personalise decisions for prolonged DAPT 1-year following acute MI. © The Author 2017. Published on behalf of the European Society of Cardiology

  20. Mathematical modelling of the human cardiovascular system in the presence of stenosis

    NASA Technical Reports Server (NTRS)

    Sud, V. K.; Srinivasan, R. S.; Charles, J. B.; Bungo, M. W.

    1993-01-01

    This paper reports a theoretical study on the distribution of blood flow in the human cardiovascular system when one or more blood vessels are affected by stenosis. The analysis employs a mathematical model of the entire system based on the finite element method. The arterial-venous network is represented by a large number of interconnected segments in the model. Values for the model parameters are based upon the published data on the physiological and rheological properties of blood. Computational results show how blood flow through various parts of the cardiovascular system is affected by stenosis in different blood vessels. No significant changes in the flow parameters of the cardiovascular system were found to occur when the reduction in the lumen diameter of the stenosed vessels was less than 65%.

  1. Review of Zero-D and 1-D Models of Blood Flow in the Cardiovascular System

    PubMed Central

    2011-01-01

    Background Zero-dimensional (lumped parameter) and one dimensional models, based on simplified representations of the components of the cardiovascular system, can contribute strongly to our understanding of circulatory physiology. Zero-D models provide a concise way to evaluate the haemodynamic interactions among the cardiovascular organs, whilst one-D (distributed parameter) models add the facility to represent efficiently the effects of pulse wave transmission in the arterial network at greatly reduced computational expense compared to higher dimensional computational fluid dynamics studies. There is extensive literature on both types of models. Method and Results The purpose of this review article is to summarise published 0D and 1D models of the cardiovascular system, to explore their limitations and range of application, and to provide an indication of the physiological phenomena that can be included in these representations. The review on 0D models collects together in one place a description of the range of models that have been used to describe the various characteristics of cardiovascular response, together with the factors that influence it. Such models generally feature the major components of the system, such as the heart, the heart valves and the vasculature. The models are categorised in terms of the features of the system that they are able to represent, their complexity and range of application: representations of effects including pressure-dependent vessel properties, interaction between the heart chambers, neuro-regulation and auto-regulation are explored. The examination on 1D models covers various methods for the assembly, discretisation and solution of the governing equations, in conjunction with a report of the definition and treatment of boundary conditions. Increasingly, 0D and 1D models are used in multi-scale models, in which their primary role is to provide boundary conditions for sophisticate, and often patient-specific, 2D and 3D models, and this application is also addressed. As an example of 0D cardiovascular modelling, a small selection of simple models have been represented in the CellML mark-up language and uploaded to the CellML model repository http://models.cellml.org/. They are freely available to the research and education communities. Conclusion Each published cardiovascular model has merit for particular applications. This review categorises 0D and 1D models, highlights their advantages and disadvantages, and thus provides guidance on the selection of models to assist various cardiovascular modelling studies. It also identifies directions for further development, as well as current challenges in the wider use of these models including service to represent boundary conditions for local 3D models and translation to clinical application. PMID:21521508

  2. Covalent modification of pericardial patches for sustained rapamycin delivery inhibits venous neointimal hyperplasia

    PubMed Central

    Bai, Hualong; Lee, Jung Seok; Chen, Elizabeth; Wang, Mo; Xing, Ying; Fahmy, Tarek M.; Dardik, Alan

    2017-01-01

    Prosthetic grafts and patches are commonly used in cardiovascular surgery, however neointimal hyperplasia remains a significant concern, especially under low flow conditions. We hypothesized that delivery of rapamycin from nanoparticles (NP) covalently attached to patches allows sustained site-specific delivery of therapeutic agents targeted to inhibit localized neointimal hyperplasia. NP were covalently linked to pericardial patches using EDC/NHS chemistry and could deliver at least 360 ng rapamycin per patch without detectable rapamycin in serum; nanoparticles were detectable in the liver, kidney and spleen but no other sites within 24 hours. In a rat venous patch angioplasty model, control patches developed robust neointimal hyperplasia on the patch luminal surface characterized by Eph-B4-positive endothelium and underlying SMC and infiltrating cells such as macrophages and leukocytes. Patches delivering rapamycin developed less neointimal hyperplasia, less smooth muscle cell proliferation, and had fewer infiltrating cells but retained endothelialization. NP covalently linked to pericardial patches are a novel composite delivery system that allows sustained site-specific delivery of therapeutics; NP delivering rapamycin inhibit patch neointimal hyperplasia. NP linked to patches may represent a next generation of tissue engineered cardiovascular implants. PMID:28071663

  3. Covalent modification of pericardial patches for sustained rapamycin delivery inhibits venous neointimal hyperplasia

    NASA Astrophysics Data System (ADS)

    Bai, Hualong; Lee, Jung Seok; Chen, Elizabeth; Wang, Mo; Xing, Ying; Fahmy, Tarek M.; Dardik, Alan

    2017-01-01

    Prosthetic grafts and patches are commonly used in cardiovascular surgery, however neointimal hyperplasia remains a significant concern, especially under low flow conditions. We hypothesized that delivery of rapamycin from nanoparticles (NP) covalently attached to patches allows sustained site-specific delivery of therapeutic agents targeted to inhibit localized neointimal hyperplasia. NP were covalently linked to pericardial patches using EDC/NHS chemistry and could deliver at least 360 ng rapamycin per patch without detectable rapamycin in serum; nanoparticles were detectable in the liver, kidney and spleen but no other sites within 24 hours. In a rat venous patch angioplasty model, control patches developed robust neointimal hyperplasia on the patch luminal surface characterized by Eph-B4-positive endothelium and underlying SMC and infiltrating cells such as macrophages and leukocytes. Patches delivering rapamycin developed less neointimal hyperplasia, less smooth muscle cell proliferation, and had fewer infiltrating cells but retained endothelialization. NP covalently linked to pericardial patches are a novel composite delivery system that allows sustained site-specific delivery of therapeutics; NP delivering rapamycin inhibit patch neointimal hyperplasia. NP linked to patches may represent a next generation of tissue engineered cardiovascular implants.

  4. Future cardiovascular disease in China: Markov model and risk factor scenario projections from the Coronary Heart Disease Policy Model-China

    PubMed Central

    Moran, Andrew; Gu, Dongfeng; Zhao, Dong; Coxson, Pamela; Wang, Y. Claire; Chen, Chung-Shiuan; Liu, Jing; Cheng, Jun; Bibbins-Domingo, Kirsten; Shen, Yu-Ming; He, Jiang; Goldman, Lee

    2010-01-01

    Background The relative effects of individual and combined risk factor trends on future cardiovascular disease in China have not been quantified in detail. Methods and Results Future risk factor trends in China were projected based on prior trends. Cardiovascular disease (coronary heart disease and stroke) in adults ages 35 to 84 years was projected from 2010 to 2030 using the Coronary Heart Disease Policy Model–China, a Markov computer simulation model. With risk factor levels held constant, projected annual cardiovascular events increased by >50% between 2010 and 2030 based on population aging and growth alone. Projected trends in blood pressure, total cholesterol, diabetes (increases), and active smoking (decline) would increase annual cardiovascular disease events by an additional 23%, an increase of approximately 21.3 million cardiovascular events and 7.7 million cardiovascular deaths over 2010 to 2030. Aggressively reducing active smoking in Chinese men to 20% prevalence in 2020 and 10% prevalence in 2030 or reducing mean systolic blood pressure by 3.8 mm Hg in men and women would counteract adverse trends in other risk factors by preventing cardiovascular events and 2.9 to 5.7 million total deaths over 2 decades. Conclusions Aging and population growth will increase cardiovascular disease by more than a half over the coming 20 years, and projected unfavorable trends in blood pressure, total cholesterol, diabetes, and body mass index may accelerate the epidemic. National policy aimed at controlling blood pressure, smoking, and other risk factors would counteract the expected future cardiovascular disease epidemic in China. PMID:20442213

  5. Magnetic resonance imaging and spectroscopy of the murine cardiovascular system.

    PubMed

    Akki, Ashwin; Gupta, Ashish; Weiss, Robert G

    2013-03-01

    Magnetic resonance imaging (MRI) has emerged as a powerful and reliable tool to noninvasively study the cardiovascular system in clinical practice. Because transgenic mouse models have assumed a critical role in cardiovascular research, technological advances in MRI have been extended to mice over the last decade. These have provided critical insights into cardiac and vascular morphology, function, and physiology/pathophysiology in many murine models of heart disease. Furthermore, magnetic resonance spectroscopy (MRS) has allowed the nondestructive study of myocardial metabolism in both isolated hearts and in intact mice. This article reviews the current techniques and important pathophysiological insights from the application of MRI/MRS technology to murine models of cardiovascular disease.

  6. Magnetic resonance imaging and spectroscopy of the murine cardiovascular system

    PubMed Central

    Akki, Ashwin; Gupta, Ashish

    2013-01-01

    Magnetic resonance imaging (MRI) has emerged as a powerful and reliable tool to noninvasively study the cardiovascular system in clinical practice. Because transgenic mouse models have assumed a critical role in cardiovascular research, technological advances in MRI have been extended to mice over the last decade. These have provided critical insights into cardiac and vascular morphology, function, and physiology/pathophysiology in many murine models of heart disease. Furthermore, magnetic resonance spectroscopy (MRS) has allowed the nondestructive study of myocardial metabolism in both isolated hearts and in intact mice. This article reviews the current techniques and important pathophysiological insights from the application of MRI/MRS technology to murine models of cardiovascular disease. PMID:23292717

  7. From Microscale Devices to 3D Printing: Advances in Fabrication of 3D Cardiovascular Tissues.

    PubMed

    Borovjagin, Anton V; Ogle, Brenda M; Berry, Joel L; Zhang, Jianyi

    2017-01-06

    Current strategies for engineering cardiovascular cells and tissues have yielded a variety of sophisticated tools for studying disease mechanisms, for development of drug therapies, and for fabrication of tissue equivalents that may have application in future clinical use. These efforts are motivated by the need to extend traditional 2-dimensional (2D) cell culture systems into 3D to more accurately replicate in vivo cell and tissue function of cardiovascular structures. Developments in microscale devices and bioprinted 3D tissues are beginning to supplant traditional 2D cell cultures and preclinical animal studies that have historically been the standard for drug and tissue development. These new approaches lend themselves to patient-specific diagnostics, therapeutics, and tissue regeneration. The emergence of these technologies also carries technical challenges to be met before traditional cell culture and animal testing become obsolete. Successful development and validation of 3D human tissue constructs will provide powerful new paradigms for more cost effective and timely translation of cardiovascular tissue equivalents. © 2017 American Heart Association, Inc.

  8. Acute and Chronic Exercise in Animal Models.

    PubMed

    Thu, Vu Thi; Kim, Hyoung Kyu; Han, Jin

    2017-01-01

    Numerous animal cardiac exercise models using animal subjects have been established to uncover the cardiovascular physiological mechanism of exercise or to determine the effects of exercise on cardiovascular health and disease. In most cases, animal-based cardiovascular exercise modalities include treadmill running, swimming, and voluntary wheel running with a series of intensities, times, and durations. Those used animals include small rodents (e.g., mice and rats) and large animals (e.g., rabbits, dogs, goats, sheep, pigs, and horses). Depending on the research goal, each experimental protocol should also describe whether its respective exercise treatment can produce the anticipated acute or chronic cardiovascular adaptive response. In this chapter, we will briefly describe the most common kinds of animal models of acute and chronic cardiovascular exercises that are currently being conducted and are likely to be chosen in the near future. Strengths and weakness of animal-based cardiac exercise modalities are also discussed.

  9. Cardiovascular health promotion for elementary school children. The Heart Smart Program.

    PubMed

    Berenson, G S; Arbeit, M L; Hunter, S M; Johnson, C C; Nicklas, T A

    1991-01-01

    Models of health promotion directed to cardiovascular disease prevention are becoming increasingly important, based on the wealth of behavioral and physiologic data that examine the determinants, distributions, and interrelationships and trends over time of cardiovascular risk factors in children. The epidemiologic studies of children of cardiovascular risk factors and of life-styles provide the foundation to address intervention strategies beginning at the school age. Cardiovascular health promotion programs in elementary schools have tremendous potential for the prevention of adult cardiovascular diseases in our nation.

  10. Vascular biology in altered gravity conditions

    NASA Astrophysics Data System (ADS)

    Bradamante, Silvia; Maier, Janette A. M.; Duncker, Dirk J.

    2005-10-01

    The physical environment of Endothelial Cells profoundly affects their gene expression, structure, function, growth differentiation and apoptosis. However, the mechanisms by which the genetic and local growth determinants driving morphogenesis are established and maintained remain unknown. Understanding how gravity affects vascular cells will offer new insights for novel therapeutical approaches for cardiovascular disease in general. In terms of tissue engineering and stem-cell therapy, significant future developments will depend on a profound understanding of the cellular and molecular basis of angiogenesis and of the biology of circulating Endothelial Precursor Cells. this MAP project has demonstrated how modelled microgravity influences endothelial proliferation and differentiation with the involvement of anti-angiogenic factors that may be responsible for the non-spontaneous formation of blood vessels.

  11. A novel cost-effectiveness model of prescription eicosapentaenoic acid extrapolated to secondary prevention of cardiovascular diseases in the United States.

    PubMed

    Philip, Sephy; Chowdhury, Sumita; Nelson, John R; Benjamin Everett, P; Hulme-Lowe, Carolyn K; Schmier, Jordana K

    2016-10-01

    Given the substantial economic and health burden of cardiovascular disease and the residual cardiovascular risk that remains despite statin therapy, adjunctive therapies are needed. The purpose of this model was to estimate the cost-effectiveness of high-purity prescription eicosapentaenoic acid (EPA) omega-3 fatty acid intervention in secondary prevention of cardiovascular diseases in statin-treated patient populations extrapolated to the US. The deterministic model utilized inputs for cardiovascular events, costs, and utilities from published sources. Expert opinion was used when assumptions were required. The model takes the perspective of a US commercial, third-party payer with costs presented in 2014 US dollars. The model extends to 5 years and applies a 3% discount rate to costs and benefits. Sensitivity analyses were conducted to explore the influence of various input parameters on costs and outcomes. Using base case parameters, EPA-plus-statin therapy compared with statin monotherapy resulted in cost savings (total 5-year costs $29,393 vs $30,587 per person, respectively) and improved utilities (average 3.627 vs 3.575, respectively). The results were not sensitive to multiple variations in model inputs and consistently identified EPA-plus-statin therapy to be the economically dominant strategy, with both lower costs and better patient utilities over the modeled 5-year period. The model is only an approximation of reality and does not capture all complexities of a real-world scenario without further inputs from ongoing trials. The model may under-estimate the cost-effectiveness of EPA-plus-statin therapy because it allows only a single event per patient. This novel model suggests that combining EPA with statin therapy for secondary prevention of cardiovascular disease in the US may be a cost-saving and more compelling intervention than statin monotherapy.

  12. Engineering studies of vectorcardiographs in blood pressure measuring systems, appendix 2

    NASA Technical Reports Server (NTRS)

    Mark, R. G.

    1975-01-01

    The development of a cardiovascular monitoring system to noninvasively monitor the blood pressure and heart rate using pulse wave velocity was described. The following topics were covered: (1) pulse wave velocity as a measure of arterial blood pressure, (2) diastolic blood pressure and pulse wave velocity in humans, (3) transducer development for blood pressure measuring device, and (4) cardiovascular monitoring system. It was found, in experiments on dogs, that the pulse wave velocity is linearly related to diastolic blood pressure over a wide range of blood pressure and in the presence of many physiological perturbations. A similar relationship was observed in normal, young human males over a moderate range of pressures. Past methods for monitoring blood pressure and a new method based on pulse wave velocity determination were described. Two systems were tested: a Doppler ultrasonic transducer and a photoelectric plethysmograph. A cardiovascular monitoring system was described, including operating instructions.

  13. Gender differences in developmental programming of cardiovascular diseases

    PubMed Central

    Dasinger, John Henry; Alexander, Barbara T.

    2016-01-01

    Hypertension is a risk factor for cardiovascular disease, the leading cause of death worldwide. Although multiple factors contribute to the pathogenesis of hypertension, studies by Dr. David Barker reporting an inverse relationship between birth weight and blood pressure led to the hypothesis that slow growth during fetal life increases blood pressure and the risk for cardiovascular disease in later life. It is now recognized that growth during infancy and childhood in addition to exposure to adverse influences during fetal life contribute to the developmental programming of increased cardiovascular risk. Numerous epidemiological studies support the link between influences during early life with later cardiovascular health; experimental models provide proof of principle and indicate that numerous mechanisms contribute to the developmental origins of chronic disease. Sex impacts the severity of cardiovascular risk in experimental models of developmental insult. Yet, few studies examine the influence of sex on blood pressure and cardiovascular health in low birth weight men and women. Fewer still assess how aging impacts sex differences in programmed cardiovascular risk. Thus, the aim of this review is to highlight current data regarding sex differences in the developmental programming of blood pressure and cardiovascular disease. PMID:26814204

  14. Detection of Cardiovascular Disease Risk's Level for Adults Using Naive Bayes Classifier.

    PubMed

    Miranda, Eka; Irwansyah, Edy; Amelga, Alowisius Y; Maribondang, Marco M; Salim, Mulyadi

    2016-07-01

    The number of deaths caused by cardiovascular disease and stroke is predicted to reach 23.3 million in 2030. As a contribution to support prevention of this phenomenon, this paper proposes a mining model using a naïve Bayes classifier that could detect cardiovascular disease and identify its risk level for adults. The process of designing the method began by identifying the knowledge related to the cardiovascular disease profile and the level of cardiovascular disease risk factors for adults based on the medical record, and designing a mining technique model using a naïve Bayes classifier. Evaluation of this research employed two methods: accuracy, sensitivity, and specificity calculation as well as an evaluation session with cardiologists and internists. The characteristics of cardiovascular disease are identified by its primary risk factors. Those factors are diabetes mellitus, the level of lipids in the blood, coronary artery function, and kidney function. Class labels were assigned according to the values of these factors: risk level 1, risk level 2 and risk level 3. The evaluation of the classifier performance (accuracy, sensitivity, and specificity) in this research showed that the proposed model predicted the class label of tuples correctly (above 80%). More than eighty percent of respondents (including cardiologists and internists) who participated in the evaluation session agree till strongly agreed that this research followed medical procedures and that the result can support medical analysis related to cardiovascular disease. The research showed that the proposed model achieves good performance for risk level detection of cardiovascular disease.

  15. A comprehensive guide to telocytes and their great potential in cardiovascular system.

    PubMed

    Kucybala, I; Janas, P; Ciuk, S; Cholopiak, W; Klimek-Piotrowska, W; Holda, M K

    2017-01-01

    Telocytes, a recently discovered type of interstitial cells, have a very distinctive morphology - the small cell body with long extensions, named telopodes. In our review, apart from introducing general aspects of telocytes, we focus on properties, functions and future potential of those cells in cardiovascular system. However, physiological functions of telocytes in cardiovascular system are still regarded as quite enigmatic. Previous studies claim that they play a role in organogenesis and regeneration, bioelectrical signalling, mechanoelectrical coupling, anti-oxidative protection, angiogenesis and regulation of blood flow. As well, they are presumably connected with the presence of blood-myocardium barrier and proper organisation of extracellular matrix. Moreover, there exists a significant link between the quantity of telocytes in tissue and numerous cardiovascular diseases such as: myocardial infarction, cardiomyopathies, systemic sclerosis, heart failure, atrial fibrillation, isolated atrial amyloidosis, myxomatous valve degeneration and hyperplastic consequences of vascular injury. Thanks to their unique properties, telocytes might be a breakthrough in treatment of cardiovascular diseases, as they may be effective in reversing effects of myocardial infarction. Telocytes also may play a major role in tissue engineering - they might be the key factor in creating stable and efficient vascular network in larger synthetic tissues or organs (Tab. 1, Fig. 3, Ref. 53).

  16. Protective Effects of Terpenes on the Cardiovascular System: Current Advances and Future Perspectives.

    PubMed

    Alves-Silva, Jorge M; Zuzarte, Monica; Marques, Carla; Salgueiro, Ligia; Girao, Henrique

    2016-01-01

    Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide that seriously affect patient's life quality and are responsible for huge economic and social burdens. It is widely accepted that a plant-based diet may reduce the risk of CVDs by attenuating several risk factors and/or modulating disease's onset and progression. Plants are rich in secondary metabolites, being terpenes the most abundant and structurally diverse group. These compounds have shown broad therapeutic potential as antimicrobial, antiviral, anti-inflammatory and antitumor agents. Despite their popularity, scientific evidence on terpenes cardiovascular effects remains sparse, limiting their potential use as cardioprotective and/or cardiotherapeutic agents. Bearing in mind the lack of comprehensive and systematic studies, the present review aims to gather the knowledge and some of the most scientific evidence accumulated over the past years on the effect of terpenes in the cardiovascular field with focus on CVDs namely ischemic heart disease, heart failure, arrhythmias and hypertension. Several popular search engines including PubMed, Science Direct, Scopus and Google Scholar were consulted. The bibliographic research focused primarily on English written papers published over the last 15 years. A systematic and comprehensive update on the cardiovascular effects of terpenes is provided. Moreover, whenever known, the possible mechanisms of action underlying the cardiovascular effects are pointed out as well as an attempt to identify the most relevant structure- activity relationships of the different classes of terpenes. Overall, this review enables a better understanding of the cardiovascular effects of terpenes, thus paving the way towards future research in medicinal chemistry and rational drug design.

  17. Space radiation and cardiovascular disease risk

    PubMed Central

    Boerma, Marjan; Nelson, Gregory A; Sridharan, Vijayalakshmi; Mao, Xiao-Wen; Koturbash, Igor; Hauer-Jensen, Martin

    2015-01-01

    Future long-distance space missions will be associated with significant exposures to ionizing radiation, and the health risks of these radiation exposures during manned missions need to be assessed. Recent Earth-based epidemiological studies in survivors of atomic bombs and after occupational and medical low dose radiation exposures have indicated that the cardiovascular system may be more sensitive to ionizing radiation than was previously thought. This has raised the concern of a cardiovascular disease risk from exposure to space radiation during long-distance space travel. Ground-based studies with animal and cell culture models play an important role in estimating health risks from space radiation exposure. Charged particle space radiation has dense ionization characteristics and may induce unique biological responses, appropriate simulation of the space radiation environment and careful consideration of the choice of the experimental model are critical. Recent studies have addressed cardiovascular effects of space radiation using such models and provided first results that aid in estimating cardiovascular disease risk, and several other studies are ongoing. Moreover, astronauts could potentially be administered pharmacological countermeasures against adverse effects of space radiation, and research is focused on the development of such compounds. Because the cardiovascular response to space radiation has not yet been clearly defined, the identification of potential pharmacological countermeasures against cardiovascular effects is still in its infancy. PMID:26730293

  18. Carotid Atherosclerosis Progression and Risk of Cardiovascular Events in a Community in Taiwan.

    PubMed

    Chen, Pei-Chun; Jeng, Jiann-Shing; Hsu, Hsiu-Ching; Su, Ta-Chen; Chien, Kuo-Liong; Lee, Yuan-Teh

    2016-05-12

    The authors investigated the association between progression of carotid atherosclerosis and incidence of cardiovascular disease in a community cohort in Taiwan. Data has rarely been reported in Asian populations. Study subjects were 1,398 participants who underwent ultrasound measures of common carotid artery intima-media thickness (IMT) and extracranial carotid artery plaque score at both 1994-1995 and 1999-2000 surveys. Cox proportional hazards model was used to assess the risk of incident cardiovascular disease. During a median follow-up of 13 years (1999-2013), 71 strokes and 68 coronary events occurred. The 5-year individual IMT change was not associated with development of cardiovascular events in unadjusted and adjusted models. Among subjects without plaque in 1994-1995, we observed elevated risk associated with presence of new plaque (plaque score >0 in 1999-2000) in a dose-response manner in unadjusted and age- and sex- adjusted models. The associations attenuated and became statistically non-significant after controlling for cardiovascular risk factors (hazard ratio [95% confidence interval] for plaque score >2 vs. 0: stroke, 1.61 [0.79-3.27], coronary events, 1.13 [0.48-2.69]). This study suggested that carotid plaque formation measured by ultrasound is associated increased risk of developing cardiovascular disease, and cardiovascular risk factors explain the associations to a large extent.

  19. Space radiation and cardiovascular disease risk.

    PubMed

    Boerma, Marjan; Nelson, Gregory A; Sridharan, Vijayalakshmi; Mao, Xiao-Wen; Koturbash, Igor; Hauer-Jensen, Martin

    2015-12-26

    Future long-distance space missions will be associated with significant exposures to ionizing radiation, and the health risks of these radiation exposures during manned missions need to be assessed. Recent Earth-based epidemiological studies in survivors of atomic bombs and after occupational and medical low dose radiation exposures have indicated that the cardiovascular system may be more sensitive to ionizing radiation than was previously thought. This has raised the concern of a cardiovascular disease risk from exposure to space radiation during long-distance space travel. Ground-based studies with animal and cell culture models play an important role in estimating health risks from space radiation exposure. Charged particle space radiation has dense ionization characteristics and may induce unique biological responses, appropriate simulation of the space radiation environment and careful consideration of the choice of the experimental model are critical. Recent studies have addressed cardiovascular effects of space radiation using such models and provided first results that aid in estimating cardiovascular disease risk, and several other studies are ongoing. Moreover, astronauts could potentially be administered pharmacological countermeasures against adverse effects of space radiation, and research is focused on the development of such compounds. Because the cardiovascular response to space radiation has not yet been clearly defined, the identification of potential pharmacological countermeasures against cardiovascular effects is still in its infancy.

  20. Laboratory-based versus non-laboratory-based method for assessment of cardiovascular disease risk: the NHANES I Follow-up Study cohort

    PubMed Central

    Gaziano, Thomas A; Young, Cynthia R; Fitzmaurice, Garrett; Atwood, Sidney; Gaziano, J Michael

    2008-01-01

    Summary Background Around 80% of all cardiovascular deaths occur in developing countries. Assessment of those patients at high risk is an important strategy for prevention. Since developing countries have limited resources for prevention strategies that require laboratory testing, we assessed if a risk prediction method that did not require any laboratory tests could be as accurate as one requiring laboratory information. Methods The National Health and Nutrition Examination Survey (NHANES) was a prospective cohort study of 14 407 US participants aged between 25–74 years at the time they were first examined (between 1971 and 1975). Our follow-up study population included participants with complete information on these surveys who did not report a history of cardiovascular disease (myocardial infarction, heart failure, stroke, angina) or cancer, yielding an analysis dataset N=6186. We compared how well either method could predict first-time fatal and non-fatal cardiovascular disease events in this cohort. For the laboratory-based model, which required blood testing, we used standard risk factors to assess risk of cardiovascular disease: age, systolic blood pressure, smoking status, total cholesterol, reported diabetes status, and current treatment for hypertension. For the non-laboratory-based model, we substituted body-mass index for cholesterol. Findings In the cohort of 6186, there were 1529 first-time cardiovascular events and 578 (38%) deaths due to cardiovascular disease over 21 years. In women, the laboratory-based model was useful for predicting events, with a c statistic of 0·829. The c statistic of the non-laboratory-based model was 0·831. In men, the results were similar (0·784 for the laboratory-based model and 0·783 for the non-laboratory-based model). Results were similar between the laboratory-based and non-laboratory-based models in both men and women when restricted to fatal events only. Interpretation A method that uses non-laboratory-based risk factors predicted cardiovascular events as accurately as one that relied on laboratory-based values. This approach could simplify risk assessment in situations where laboratory testing is inconvenient or unavailable. PMID:18342687

  1. Arterial stiffness and cardiovascular events: the Framingham Heart Study.

    PubMed

    Mitchell, Gary F; Hwang, Shih-Jen; Vasan, Ramachandran S; Larson, Martin G; Pencina, Michael J; Hamburg, Naomi M; Vita, Joseph A; Levy, Daniel; Benjamin, Emelia J

    2010-02-02

    Various measures of arterial stiffness and wave reflection have been proposed as cardiovascular risk markers. Prior studies have not assessed relations of a comprehensive panel of stiffness measures to prognosis in the community. We used proportional hazards models to analyze first-onset major cardiovascular disease events (myocardial infarction, unstable angina, heart failure, or stroke) in relation to arterial stiffness (pulse wave velocity [PWV]), wave reflection (augmentation index, carotid-brachial pressure amplification), and central pulse pressure in 2232 participants (mean age, 63 years; 58% women) in the Framingham Heart Study. During median follow-up of 7.8 (range, 0.2 to 8.9) years, 151 of 2232 participants (6.8%) experienced an event. In multivariable models adjusted for age, sex, systolic blood pressure, use of antihypertensive therapy, total and high-density lipoprotein cholesterol concentrations, smoking, and presence of diabetes mellitus, higher aortic PWV was associated with a 48% increase in cardiovascular disease risk (95% confidence interval, 1.16 to 1.91 per SD; P=0.002). After PWV was added to a standard risk factor model, integrated discrimination improvement was 0.7% (95% confidence interval, 0.05% to 1.3%; P<0.05). In contrast, augmentation index, central pulse pressure, and pulse pressure amplification were not related to cardiovascular disease outcomes in multivariable models. Higher aortic stiffness assessed by PWV is associated with increased risk for a first cardiovascular event. Aortic PWV improves risk prediction when added to standard risk factors and may represent a valuable biomarker of cardiovascular disease risk in the community.

  2. Effects of artificial gravity on the cardiovascular system: Computational approach

    NASA Astrophysics Data System (ADS)

    Diaz Artiles, Ana; Heldt, Thomas; Young, Laurence R.

    2016-09-01

    Artificial gravity has been suggested as a multisystem countermeasure against the negative effects of weightlessness. However, many questions regarding the appropriate configuration are still unanswered, including optimal g-level, angular velocity, gravity gradient, and exercise protocol. Mathematical models can provide unique insight into these questions, particularly when experimental data is very expensive or difficult to obtain. In this research effort, a cardiovascular lumped-parameter model is developed to simulate the short-term transient hemodynamic response to artificial gravity exposure combined with ergometer exercise, using a bicycle mounted on a short-radius centrifuge. The model is thoroughly described and preliminary simulations are conducted to show the model capabilities and potential applications. The model consists of 21 compartments (including systemic circulation, pulmonary circulation, and a cardiac model), and it also includes the rapid cardiovascular control systems (arterial baroreflex and cardiopulmonary reflex). In addition, the pressure gradient resulting from short-radius centrifugation is captured in the model using hydrostatic pressure sources located at each compartment. The model also includes the cardiovascular effects resulting from exercise such as the muscle pump effect. An initial set of artificial gravity simulations were implemented using the Massachusetts Institute of Technology (MIT) Compact-Radius Centrifuge (CRC) configuration. Three centripetal acceleration (artificial gravity) levels were chosen: 1 g, 1.2 g, and 1.4 g, referenced to the subject's feet. Each simulation lasted 15.5 minutes and included a baseline period, the spin-up process, the ergometer exercise period (5 minutes of ergometer exercise at 30 W with a simulated pedal cadence of 60 RPM), and the spin-down process. Results showed that the cardiovascular model is able to predict the cardiovascular dynamics during gravity changes, as well as the expected steady-state cardiovascular behavior during sustained artificial gravity and exercise. Further validation of the model was performed using experimental data from the combined exercise and artificial gravity experiments conducted on the MIT CRC, and these results will be presented separately in future publications. This unique computational framework can be used to simulate a variety of centrifuge configuration and exercise intensities to improve understanding and inform decisions about future implementation of artificial gravity in space.

  3. No added value of age at menopause and the lifetime cumulative number of menstrual cycles for cardiovascular risk prediction in postmenopausal women.

    PubMed

    Atsma, Femke; van der Schouw, Yvonne T; Grobbee, Diederick E; Hoes, Arno W; Bartelink, Marie-Louise E L

    2008-11-12

    The aim of the present study was to investigate the added value of age at menopause and the lifetime cumulative number of menstrual cycles in cardiovascular risk prediction in postmenopausal women. This study included 971 women. The ankle-arm index was used as a proxy for cardiovascular morbidity and mortality. The ankle-arm index was calculated for each leg by dividing the highest ankle systolic blood pressure by the highest brachial systolic blood pressure. A cut-off value of 0.95 was used to differentiate between low and high risk women. Three cardiovascular risk models were constructed. In the initial model all classical predictors for cardiovascular disease were investigated. This model was then extended by age at menopause or the lifetime cumulative number of menstrual cycles to test their added value for cardiovascular risk prediction. Differences in discriminative power between the models were investigated by comparing the area under the receiver operating characteristic (ROC) curves. The mean age was 66.0 (+/-5.6) years. The 6 independent predictors for cardiovascular disease were age, systolic blood pressure, total to HDL cholesterol ratio, current smoking, glucose level, and body mass index > or =30 kg/m(2). The ROC area was 0.69 (0.64-0.73) and did not change when age at menopause or the lifetime cumulative number of menstrual cycles was added. The findings in this study among postmenopausal women did not support the view that age at menopause or a refined estimation of lifetime endogenous estrogen exposure would improve cardiovascular risk prediction as approximated by the ankle-arm index.

  4. Cardiovascular comorbidities of pediatric psoriasis among hospitalized children in the United States.

    PubMed

    Kwa, Lauren; Kwa, Michael C; Silverberg, Jonathan I

    2017-12-01

    Psoriasis has been shown to be associated with cardiovascular disease in adults. Little is known about cardiovascular risk in pediatric psoriasis. To determine if there is an association between pediatric psoriasis and cardiovascular comorbidities. Data were analyzed from the 2002-2012 Nationwide Inpatient Sample, which included 4,884,448 hospitalized children aged 0-17 years. Bivariate and multivariate survey logistic regression models were created to calculate the odds of psoriasis on cardiovascular comorbidities. In multivariate survey logistic regression models adjusting for age, sex, and race/ethnicity, pediatric psoriasis was significantly associated with 5 of 10 cardiovascular comorbidities (adjusted odds ratio [95% confidence interval]), including obesity (3.15 [2.46-4.05]), hypertension (2.63 [1.93-3.59]), diabetes (2.90 [1.90-4.42]), arrhythmia (1.39 [1.02-1.88]), and valvular heart disease (1.90 [1.07-3.37]). The highest odds of cardiovascular risk factors occurred in blacks and Hispanics and children ages 0-9 years, but there were no sex differences. The study was limited to hospitalized children. We were unable to assess the impact of psoriasis treatment or family history on cardiovascular risk. Pediatric psoriasis is associated with higher odds of multiple cardiovascular comorbidities among hospitalized patients. Strategies for mitigating excess cardiovascular risk in pediatric psoriasis need to be determined. Copyright © 2017 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  5. Biosynthesis and metabolic engineering of palmitoleate production, an important contributor to human health and sustainable industry.

    PubMed

    Wu, Yongmei; Li, Runzhi; Hildebrand, David F

    2012-10-01

    Palmitoleate (cis-Δ9-16:1) shows numerous health benefits such as increased cell membrane fluidity, reduced inflammation, protection of the cardiovascular system, and inhibition of oncogenesis. Plant oils containing this unusual fatty acid can also be sustainable feedstocks for producing industrially important and high-demand 1-octene. Vegetable oils rich in palmitoleate are the ideal candidates for biodiesel production. Several wild plants are known that can synthesize high levels of palmitoleate in seeds. However, low yields and poor agronomic characteristics of these plants limit their commercialization. Metabolic engineering has been developed to create oilseed crops that accumulate high levels of palmitoleate or other unusual fatty acids, and significant advances have been made recently in this field, particularly using the model plant Arabidopsis as the host. The engineered targets for enhancing palmitoleate synthesis include overexpression of Δ9 desaturase from mammals, yeast, fungi, and plants, down-regulating KASII, coexpression of an ACP-Δ9 desaturase in plastids and CoA-Δ9 desaturase in endoplasmic reticulum (ER), and optimizing the metabolic flux into triacylglycerols (TAGs). This review will mainly describe the recent progress towards producing palmitoleate in transgenic plants by metabolic engineering along with our current understanding of palmitoleate biosynthesis and its regulation, as well as highlighting the bottlenecks that require additional investigation by combining lipidomics, transgenics and other "-omics" tools. A brief review of reported health benefits and non-food uses of palmitoleate will also be covered. Copyright © 2012. Published by Elsevier Ltd.

  6. The effectiveness and cost effectiveness of dark chocolate consumption as prevention therapy in people at high risk of cardiovascular disease: best case scenario analysis using a Markov model

    PubMed Central

    Zomer, Ella; Owen, Alice; Magliano, Dianna J; Liew, Danny

    2012-01-01

    Objective To model the long term effectiveness and cost effectiveness of daily dark chocolate consumption in a population with metabolic syndrome at high risk of cardiovascular disease. Design Best case scenario analysis using a Markov model. Setting Australian Diabetes, Obesity and Lifestyle study. Participants 2013 people with hypertension who met the criteria for metabolic syndrome, with no history of cardiovascular disease and not receiving antihypertensive therapy. Main outcome measures Treatment effects associated with dark chocolate consumption derived from published meta-analyses were used to determine the absolute number of cardiovascular events with and without treatment. Costs associated with cardiovascular events and treatments were applied to determine the potential amount of funding required for dark chocolate therapy to be considered cost effective. Results Daily consumption of dark chocolate (polyphenol content equivalent to 100 g of dark chocolate) can reduce cardiovascular events by 85 (95% confidence interval 60 to 105) per 10 000 population treated over 10 years. $A40 (£25; €31; $42) could be cost effectively spent per person per year on prevention strategies using dark chocolate. These results assume 100% compliance and represent a best case scenario. Conclusions The blood pressure and cholesterol lowering effects of dark chocolate consumption are beneficial in the prevention of cardiovascular events in a population with metabolic syndrome. Daily dark chocolate consumption could be an effective cardiovascular preventive strategy in this population. PMID:22653982

  7. The effectiveness and cost effectiveness of dark chocolate consumption as prevention therapy in people at high risk of cardiovascular disease: best case scenario analysis using a Markov model.

    PubMed

    Zomer, Ella; Owen, Alice; Magliano, Dianna J; Liew, Danny; Reid, Christopher M

    2012-05-30

    To model the long term effectiveness and cost effectiveness of daily dark chocolate consumption in a population with metabolic syndrome at high risk of cardiovascular disease. Best case scenario analysis using a Markov model. Australian Diabetes, Obesity and Lifestyle study. 2013 people with hypertension who met the criteria for metabolic syndrome, with no history of cardiovascular disease and not receiving antihypertensive therapy. Treatment effects associated with dark chocolate consumption derived from published meta-analyses were used to determine the absolute number of cardiovascular events with and without treatment. Costs associated with cardiovascular events and treatments were applied to determine the potential amount of funding required for dark chocolate therapy to be considered cost effective. Daily consumption of dark chocolate (polyphenol content equivalent to 100 g of dark chocolate) can reduce cardiovascular events by 85 (95% confidence interval 60 to 105) per 10,000 population treated over 10 years. $A40 (£25; €31; $42) could be cost effectively spent per person per year on prevention strategies using dark chocolate. These results assume 100% compliance and represent a best case scenario. The blood pressure and cholesterol lowering effects of dark chocolate consumption are beneficial in the prevention of cardiovascular events in a population with metabolic syndrome. Daily dark chocolate consumption could be an effective cardiovascular preventive strategy in this population.

  8. Projected impact of urbanization on cardiovascular disease in China.

    PubMed

    Chan, Faye; Adamo, Susana; Coxson, Pamela; Goldman, Lee; Gu, Dongfeng; Zhao, Dong; Chen, Chung-Shiuan; He, Jiang; Mara, Valentina; Moran, Andrew

    2012-10-01

    The Coronary Heart Disease (CHD) Policy Model-China, a national scale cardiovascular disease computer simulation model, was used to project future impact of urbanization. Populations and cardiovascular disease incidence rates were stratified into four submodels: North-Urban, South-Urban, North-Rural, and South-Rural. 2010 was the base year, and high and low urbanization rate scenarios were used to project 2030 populations. Rural-to-urban migration, population growth, and aging were projected to more than double cardiovascular disease events in urban areas and increase events by 27.0-45.6% in rural areas. Urbanization is estimated to raise age-standardized coronary heart disease incidence by 73-81 per 100,000 and stroke incidence only slightly. Rural-to-urban migration will likely be a major demographic driver of the cardiovascular disease epidemic in China.

  9. Left Ventricular Gene Expression Profile of Healthy and Cardiovascular Compromised Rat Models Used in Air Pollution Studies

    EPA Science Inventory

    The link between pollutant exposure and cardiovascular disease (CVD) has prompted mechanistic research with animal models of CVD. We hypothesized that the cardiac gene expression patterns of healthy and genetically compromised, CVD-prone rat models, with or without metabolic impa...

  10. A Computer Model of the Cardiovascular System for Effective Learning.

    ERIC Educational Resources Information Center

    Rothe, Carl F.

    1980-01-01

    Presents a model of the cardiovascular system which solves a set of interacting, possibly nonlinear, differential equations. Figures present a schematic diagram of the model and printouts that simulate normal conditions, exercise, hemorrhage, reduced contractility. The nine interacting equations used to describe the system are described in the…

  11. SimVascular: An Open Source Pipeline for Cardiovascular Simulation.

    PubMed

    Updegrove, Adam; Wilson, Nathan M; Merkow, Jameson; Lan, Hongzhi; Marsden, Alison L; Shadden, Shawn C

    2017-03-01

    Patient-specific cardiovascular simulation has become a paradigm in cardiovascular research and is emerging as a powerful tool in basic, translational and clinical research. In this paper we discuss the recent development of a fully open-source SimVascular software package, which provides a complete pipeline from medical image data segmentation to patient-specific blood flow simulation and analysis. This package serves as a research tool for cardiovascular modeling and simulation, and has contributed to numerous advances in personalized medicine, surgical planning and medical device design. The SimVascular software has recently been refactored and expanded to enhance functionality, usability, efficiency and accuracy of image-based patient-specific modeling tools. Moreover, SimVascular previously required several licensed components that hindered new user adoption and code management and our recent developments have replaced these commercial components to create a fully open source pipeline. These developments foster advances in cardiovascular modeling research, increased collaboration, standardization of methods, and a growing developer community.

  12. Effectiveness and cost effectiveness of cardiovascular disease prevention in whole populations: modelling study.

    PubMed

    Barton, Pelham; Andronis, Lazaros; Briggs, Andrew; McPherson, Klim; Capewell, Simon

    2011-07-28

    To estimate the potential cost effectiveness of a population-wide risk factor reduction programme aimed at preventing cardiovascular disease. Economic modelling analysis. England and Wales. Population Entire population. Model Spreadsheet model to quantify the reduction in cardiovascular disease over a decade, assuming the benefits apply consistently for men and women across age and risk groups. Cardiovascular events avoided, quality adjusted life years gained, and savings in healthcare costs for a given effectiveness; estimates of how much it would be worth spending to achieve a specific outcome. A programme across the entire population of England and Wales (about 50 million people) that reduced cardiovascular events by just 1% would result in savings to the health service worth at least £30m (€34m; $48m) a year compared with no additional intervention. Reducing mean cholesterol concentrations or blood pressure levels in the population by 5% (as already achieved by similar interventions in some other countries) would result in annual savings worth at least £80m to £100m. Legislation or other measures to reduce dietary salt intake by 3 g/day (current mean intake approximately 8.5 g/day) would prevent approximately 30,000 cardiovascular events, with savings worth at least £40m a year. Legislation to reduce intake of industrial trans fatty acid by approximately 0.5% of total energy content might gain around 570,000 life years and generate NHS savings worth at least £230m a year. Any intervention that achieved even a modest population-wide reduction in any major cardiovascular risk factor would produce a net cost saving to the NHS, as well as improving health. Given the conservative assumptions used in this model, the true benefits would probably be greater.

  13. Generation and Assessment of Functional Biomaterial Scaffolds for Applications in Cardiovascular Tissue Engineering and Regenerative Medicine

    PubMed Central

    Hinderer, Svenja; Brauchle, Eva

    2015-01-01

    Current clinically applicable tissue and organ replacement therapies are limited in the field of cardiovascular regenerative medicine. The available options do not regenerate damaged tissues and organs, and, in the majority of the cases, show insufficient restoration of tissue function. To date, anticoagulant drug‐free heart valve replacements or growing valves for pediatric patients, hemocompatible and thrombus‐free vascular substitutes that are smaller than 6 mm, and stem cell‐recruiting delivery systems that induce myocardial regeneration are still only visions of researchers and medical professionals worldwide and far from being the standard of clinical treatment. The design of functional off‐the‐shelf biomaterials as well as automatable and up‐scalable biomaterial processing methods are the focus of current research endeavors and of great interest for fields of tissue engineering and regenerative medicine. Here, various approaches that aim to overcome the current limitations are reviewed, focusing on biomaterials design and generation methods for myocardium, heart valves, and blood vessels. Furthermore, novel contact‐ and marker‐free biomaterial and extracellular matrix assessment methods are highlighted. PMID:25778713

  14. Burn mortality in patients with preexisting cardiovascular disease.

    PubMed

    Knowlin, Laquanda; Reid, Trista; Williams, Felicia; Cairns, Bruce; Charles, Anthony

    2017-08-01

    Burn shock, a complex process, which develops following burn leads to severe and unique derangement of cardiovascular function. Patients with preexisting comorbidities such as cardiovascular diseases may be more susceptible. We therefore sought to examine the impact of preexisting cardiovascular disease on burn outcomes. A retrospective analysis of patients admitted to a regional burn center from 2002 to 2012. Independent variables analyzed included basic demographics, burn mechanism, presence of inhalation injury, TBSA, pre-existing comorbidities, and length of ICU/hospital stay. Bivariate analysis was performed and Poisson regression modeling was utilized to estimate the incidence of being in the ICU and mortality. There were a total of 5332 adult patients admitted over the study period. 6% (n=428) had a preexisting cardiovascular disease. Cardiovascular disease patients had a higher mortality rate (16%) compared to those without cardiovascular disease (3%, p<0.001). The adjusted Poisson regression model to estimate incidence risk of being in intensive care unit in patients with cardiovascular disease was 33% higher compared to those without cardiovascular disease (IRR=1.33, 95% CI=1.22-1.47). The risk for mortality is 42% higher (IRR=1.42, 95% CI=1.10-1.84) for patients with pre-existing cardiovascular disease compared to those without cardiovascular disease after controlling for other covariates. Preexisting cardiovascular disease significantly increases the risk of intensive care unit admission and mortality in burn patients. Given the increasing number of Americans with cardiovascular diseases, there will likely be a greater number of individuals at risk for worse outcomes following burn. This knowledge can help with burn prognostication. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  15. Effects of Couple Interactions and Relationship Quality on Plasma Oxytocin and Cardiovascular Reactivity: Empirical Findings and Methodological Considerations

    PubMed Central

    Smith, Timothy W.; Uchino, Bert N.; MacKenzie, Justin; Hicks, Angela; Campo, Rebecca A.; Reblin, Maija; Grewen, Karen; Amico, Janet A.; Light, Kathleen C.

    2016-01-01

    Cardiovascular reactivity is a potential mechanism underlying associations of close relationship quality with cardiovascular disease. Two models describe oxytocin as another mechanism. The “calm and connect” model posits an association between positive relationship experiences and oxytocin levels and responses, whereas the “tend and befriend” model emphasizes the effects of negative relationship experiences in evoking oxytocin release. In this study of 180 younger couples, relationship quality had a small, marginally significant inverse association with plasma oxytocin levels, and neither positive nor negative couple interactions evoked change in plasma oxytocin. Negative couple interactions evoked significant cardiovascular reactivity, especially among women. Hence, in the largest study of these issues to date, there was little support for key tenets of the “calm and connect” model, and only very modest support for the ”tend and befriend” model. However, findings were consistent with the view that CVR contributes to the effects of relationship difficulties on health. PMID:22543270

  16. Practical identifiability analysis of a minimal cardiovascular system model.

    PubMed

    Pironet, Antoine; Docherty, Paul D; Dauby, Pierre C; Chase, J Geoffrey; Desaive, Thomas

    2017-01-17

    Parameters of mathematical models of the cardiovascular system can be used to monitor cardiovascular state, such as total stressed blood volume status, vessel elastance and resistance. To do so, the model parameters have to be estimated from data collected at the patient's bedside. This work considers a seven-parameter model of the cardiovascular system and investigates whether these parameters can be uniquely determined using indices derived from measurements of arterial and venous pressures, and stroke volume. An error vector defined the residuals between the simulated and reference values of the seven clinically available haemodynamic indices. The sensitivity of this error vector to each model parameter was analysed, as well as the collinearity between parameters. To assess practical identifiability of the model parameters, profile-likelihood curves were constructed for each parameter. Four of the seven model parameters were found to be practically identifiable from the selected data. The remaining three parameters were practically non-identifiable. Among these non-identifiable parameters, one could be decreased as much as possible. The other two non-identifiable parameters were inversely correlated, which prevented their precise estimation. This work presented the practical identifiability analysis of a seven-parameter cardiovascular system model, from limited clinical data. The analysis showed that three of the seven parameters were practically non-identifiable, thus limiting the use of the model as a monitoring tool. Slight changes in the time-varying function modeling cardiac contraction and use of larger values for the reference range of venous pressure made the model fully practically identifiable. Copyright © 2017. Published by Elsevier B.V.

  17. The application of motivational theory to cardiovascular risk reduction.

    PubMed

    Fleury, J

    1992-01-01

    The level of motivation sustained by an individual has been identified as a primary predictor of success in sustained cardiovascular risk factor modification efforts. This article reviews the primary motivational theories that have been used to explain and predict cardiovascular risk reduction. Specifically, the application of the Health Belief Model, Health Promotion Model, Theory of Reasoned Action, Theory of Planned Behavior and Self-efficacy Theory to the initiation and maintenance of cardiovascular health behavior is addressed. The implication of these theories for the development of nursing interventions as well as new directions for nursing research and practice in the study of individual motivation in health behavior change are discussed.

  18. Development of a flow feedback pulse duplicator system with rhesus monkey arterial input impedance characteristics

    NASA Technical Reports Server (NTRS)

    Schaub, J. D.; Koenig, S. C.; Schroeder, M. J.; Ewert, D. L.; Drew, G. A.; Swope, R. D.; Convertino, V. A. (Principal Investigator)

    1999-01-01

    An in vitro pulsatile pump flow system that is capable of producing physiologic pressures and flows in a mock circulatory system tuned to reproduce the first nine harmonics of the input impedance of a rhesus monkey was developed and tested. The system was created as a research tool for evaluating cardiovascular function and for the design, testing, and evaluation of electrical-mechanical cardiovascular models and chronically implanted sensors. The system possesses a computerized user interface for controlling a linear displacement pulsatile pump in a controlled flow loop format to emulate in vivo cardiovascular characteristics. Evaluation of the pump system consisted of comparing its aortic pressure and flow profiles with in vivo rhesus hemodynamic waveforms in the time and frequency domains. Comparison of aortic pressure and flow data between the pump system and in vivo data showed good agreement in the time and frequency domains, however, the pump system produced a larger pulse pressure. The pump system can be used for comparing cardiovascular parameters with predicted cardiovascular model values and for evaluating such items as vascular grafts, heart valves, biomaterials, and sensors. This article describes the development and evaluation of this feedback controlled cardiovascular dynamics simulation modeling system.

  19. Engineered mutations in fibrillin-1 leading to Marfan syndrome act at the protein, cellular and organismal levels.

    PubMed

    Zeyer, Karina A; Reinhardt, Dieter P

    2015-01-01

    Fibrillins are the major components of microfibrils in the extracellular matrix of elastic and non-elastic tissues. They are multi-domain proteins, containing primarily calcium binding epidermal growth factor-like (cbEGF) domains and 8-cysteine/transforming growth factor-beta binding protein-like (TB) domains. Mutations in the fibrillin-1 gene give rise to Marfan syndrome, a connective tissue disorder with clinical complications in the cardiovascular, skeletal, ocular and other organ systems. Here, we review the consequences of engineered Marfan syndrome mutations in fibrillin-1 at the protein, cellular and organismal levels. Representative point mutations associated with Marfan syndrome in affected individuals have been introduced and analyzed in recombinant fibrillin-1 fragments. Those mutations affect fibrillin-1 on a structural and functional level. Mutations which impair folding of cbEGF domains can affect protein trafficking. Protein folding disrupted by some mutations can lead to defective secretion in mutant fibrillin-1 fragments, whereas fragments with other Marfan mutations are secreted normally. Many Marfan mutations render fibrillin-1 more susceptible to proteolysis. There is also evidence that some mutations affect heparin binding. Few mutations have been further analyzed in mouse models. An extensively studied mouse model of Marfan syndrome expresses mouse fibrillin-1 with a missense mutation (p.C1039G). The mice display similar characteristics to human patients with Marfan syndrome. Overall, the analyses of engineered mutations leading to Marfan syndrome provide important insights into the pathogenic molecular mechanisms exerted by mutated fibrillin-1. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Cardiovascular Disease Risk Varies by Birth Month in Canines.

    PubMed

    Boland, Mary Regina; Kraus, Marc S; Dziuk, Eddie; Gelzer, Anna R

    2018-05-17

    The canine heart is a robust physiological model for the human heart. Recently, birth month associations have been reported and replicated in humans using clinical health records. While animals respond readily to their environment in the wild, a systematic investigation of birth season dependencies among pets and specifically canines remains lacking. We obtained data from the Orthopedic Foundation of Animals on 129,778 canines representing 253 distinct breeds. Among canines that were not predisposed to cardiovascular disease, a clear birth season relationship is observed with peak risk occurring in June-August. Our findings indicate that acquired cardiovascular disease among canines, especially those that are not predisposed to cardiovascular disease, appears birth season dependent. The relative risk of cardiovascular disease for canines not predisposed to cardiovascular disease was as high as 1.47 among July pups. The overall adjusted odds ratio, when mixed breeds were excluded, for the birth season effect was 1.02 (95% CI: 1.002, 1.047, p = 0.032) after adjusting for breed and genetic cardiovascular predisposition effects. Studying birth season effects in model organisms can help to elucidate potential mechanisms behind the reported associations.

  1. Emotional Stress and Cardiovascular Complications in Animal Models: A Review of the Influence of Stress Type

    PubMed Central

    Crestani, Carlos C.

    2016-01-01

    Emotional stress has been recognized as a modifiable risk factor for cardiovascular diseases. The impact of stress on physiological and psychological processes is determined by characteristics of the stress stimulus. For example, distinct responses are induced by acute vs. chronic aversive stimuli. Additionally, the magnitude of stress responses has been reported to be inversely related to the degree of predictability of the aversive stimulus. Therefore, the purpose of the present review was to discuss experimental research in animal models describing the influence of stressor stimulus characteristics, such as chronicity and predictability, in cardiovascular dysfunctions induced by emotional stress. Regarding chronicity, the importance of cardiovascular and autonomic adjustments during acute stress sessions and cardiovascular consequences of frequent stress response activation during repeated exposure to aversive threats (i.e., chronic stress) is discussed. Evidence of the cardiovascular and autonomic changes induced by chronic stressors involving daily exposure to the same stressor (predictable) vs. different stressors (unpredictable) is reviewed and discussed in terms of the impact of predictability in cardiovascular dysfunctions induced by stress. PMID:27445843

  2. Mouse models to study the effect of cardiovascular risk factors on brain structure and cognition

    PubMed Central

    Bink, Diewertje I; Ritz, Katja; Aronica, Eleonora; van der Weerd, Louise; Daemen, Mat JAP

    2013-01-01

    Recent clinical data indicates that hemodynamic changes caused by cardiovascular diseases such as atherosclerosis, heart failure, and hypertension affect cognition. Yet, the underlying mechanisms of the resulting vascular cognitive impairment (VCI) are poorly understood. One reason for the lack of mechanistic insights in VCI is that research in dementia primarily focused on Alzheimer's disease models. To fill in this gap, we critically reviewed the published data and various models of VCI. Typical findings in VCI include reduced cerebral perfusion, blood–brain barrier alterations, white matter lesions, and cognitive deficits, which have also been reported in different cardiovascular mouse models. However, the tests performed are incomplete and differ between models, hampering a direct comparison between models and studies. Nevertheless, from the currently available data we conclude that a few existing surgical animal models show the key features of vascular cognitive decline, with the bilateral common carotid artery stenosis hypoperfusion mouse model as the most promising model. The transverse aortic constriction and myocardial infarction models may be good alternatives, but these models are as yet less characterized regarding the possible cerebral changes. Mixed models could be used to study the combined effects of different cardiovascular diseases on the deterioration of cognition during aging. PMID:23963364

  3. Coronary Heart Disease and Stroke Attributable to Major Risk Factors is Similar in Argentina and the United States: the Coronary Heart Disease Policy Model

    PubMed Central

    Moran, Andrew; DeGennaro, Vincent; Ferrante, Daniel; Coxson, Pamela G.; Palmas, Walter; Mejia, Raul; Perez-Stable, Eliseo J.; Goldman, Lee

    2011-01-01

    Background Cardiovascular disease is the leading cause of death in Argentina and the U.S. Argentina is 92% urban, with cardiovascular disease risk factor levels approximating the U.S. Methods The Coronary Heart Disease (CHD) Policy Model is a national-scale computer model of CHD and stroke. Risk factor data were obtained from the Cardiovascular Risk Factor Multiple Evaluation in Latin America Study (2003–04), Argentina National Risk Factor Survey (2005) and U.S. national surveys. Proportions of cardiovascular events over 2005–2015 attributable to risk factors were simulated by setting risk factors to optimal exposure levels [systolic blood pressure (SBP) 115 mm Hg, low-density lipoprotein cholesterol (LDL) 2.00 mmol/l (78 mg/dl), high-density lipoprotein cholesterol (HDL) 1.03 mmol/l (60 mg/dl), absence of diabetes, and smoking]. Cardiovascular disease attributable to body mass index (BMI) > 21 kg/m2 was assumed mediated through SBP, LDL, HDL, and diabetes. Results Cardiovascular disease attributable to major risk factors was similar between Argentina and the U.S., except for elevated SBP in men (CHD 8 % points higher in Argentine men, 6% higher for stroke). CHD attributable to BMI > 21 kg/m2 was substantially higher in the U.S. (men 10–11 % points higher; women CHD 13–14% higher). Conclusions Projected cardiovascular disease attributable to major risk factors appeared similar in Argentina and the U.S., though elevated BMI may be responsible for more of U.S. cardiovascular disease. A highly urbanized middle-income nation can have cardiovascular disease rates and risk factor levels comparable to a high income nation, but fewer resources for fighting the epidemic. PMID:21550675

  4. A systematic review of 3-D printing in cardiovascular and cerebrovascular diseases

    PubMed Central

    Sun, Zhonghua; Lee, Shen-Yuan

    2017-01-01

    Objective: The application of 3-D printing has been increasingly used in medicine, with research showing many applications in cardiovascular disease. This systematic review analyzes those studies published about the applications of 3-D printed, patient-specific models in cardiovascular and cerebrovascular diseases. Methods: A search of PubMed/Medline and Scopus databases was performed to identify studies investigating the 3-D printing in cardiovascular and cerebrovascular diseases. Only studies based on patient’s medical images were eligible for review, while reports on in vitro phantom or review articles were excluded. Results: A total of 48 studies met selection criteria for inclusion in the review. A range of patient-specific 3-D printed models of different cardiovascular and cerebrovascular diseases were generated in these studies with most of them being developed using cardiac CT and MRI data, less commonly with 3-D invasive angiographic or echocardiographic images. The review of these studies showed high accuracy of 3-D printed, patient-specific models to represent complex anatomy of the cardiovascular and cerebrovascular system and depict various abnormalities, especially congenital heart diseases and valvular pathologies. Further, 3-D printing can serve as a useful education tool for both parents and clinicians, and a valuable tool for pre-surgical planning and simulation. Conclusion: This systematic review shows that 3-D printed models based on medical imaging modalities can accurately replicate complex anatomical structures and pathologies of the cardiovascular and cerebrovascular system. 3-D printing is a useful tool for both education and surgical planning in these diseases. PMID:28430115

  5. In vivo functional photoacoustic microscopy of cutaneous microvasculature in human skin.

    PubMed

    Favazza, Christopher P; Cornelius, Lynn A; Wang, Lihong V

    2011-02-01

    Microcirculation is an important component of the cardiovascular system and can be used to assess systemic cardiovascular health. Numerous studies have investigated cutaneous microcirculation as an indicator of cardiovascular related diseases. Such research has shown promising results; however, there are many limitations regarding the employed measurement techniques, such as poor depth and spatial resolution and measurement versatility. Here we show the results of functional cutaneous microvascular experiments measured with photoacoustic microscopy, which provides high spatial resolution and multiparameter measurements. In a set of experiments, microvascular networks located in the palms of volunteers were perturbed by periodic ischemic events, and the subsequent hemodynamic response to the stimulus was recorded. Results indicate that during periods of arterial occlusion, the relative oxygen saturation of the capillary vessels decreased below resting levels, and temporarily increased above resting levels immediately following the occlusion. Furthermore, a hyperemic reaction to the occlusions was measured, and the observation agreed well with similar measurements using more conventional imaging techniques. Due to its exceptional capability to functionally image vascular networks with high spatial resolution, photoacoustic microscopy could be a beneficial biomedical tool to assess microvascular functioning and applied to patients with diseases that affect cardiovascular health. © 2011 Society of Photo-Optical Instrumentation Engineers.

  6. A cardiovascular system model for lower-body negative pressure response

    NASA Technical Reports Server (NTRS)

    Mitchell, B. A., Jr.; Giese, R. P.

    1971-01-01

    Mathematical models used to study complex physiological control systems are discussed. Efforts were made to modify a model of the cardiovascular system for use in studying lower body negative pressure. A computer program was written which allows orderly, straightforward expansion to include exercise, metabolism (thermal stress), respiration, and other body functions.

  7. Pulmonary Complications Resulting from Genetic Cardiovascular Disease in Two Rat Models

    EPA Science Inventory

    Underlying cardiovascular disease (CVD) has been considered a risk factor for exacerbation of air pollution health effects. Therefore, rodent models of CVD are increasingly used to examine mechanisms of variation in susceptibility. Pulmonary complications and altered iron homeost...

  8. Prediction of First Cardiovascular Disease Event in Type 1 Diabetes Mellitus: The Steno Type 1 Risk Engine.

    PubMed

    Vistisen, Dorte; Andersen, Gregers Stig; Hansen, Christian Stevns; Hulman, Adam; Henriksen, Jan Erik; Bech-Nielsen, Henning; Jørgensen, Marit Eika

    2016-03-15

    Patients with type 1 diabetes mellitus are at increased risk of developing cardiovascular disease (CVD), but they are currently undertreated. There are no risk scores used on a regular basis in clinical practice for assessing the risk of CVD in type 1 diabetes mellitus. From 4306 clinically diagnosed adult patients with type 1 diabetes mellitus, we developed a prediction model for estimating the risk of first fatal or nonfatal CVD event (ischemic heart disease, ischemic stroke, heart failure, and peripheral artery disease). Detailed clinical data including lifestyle factors were linked to event data from validated national registers. The risk prediction model was developed by using a 2-stage approach. First, a nonparametric, data-driven approach was used to identify potentially informative risk factors and interactions (random forest and survival tree analysis). Second, based on results from the first step, Poisson regression analysis was used to derive the final model. The final CVD prediction model was externally validated in a different population of 2119 patients with type 1 diabetes mellitus. During a median follow-up of 6.8 years (interquartile range, 2.9-10.9) a total of 793 (18.4%) patients developed CVD. The final prediction model included age, sex, diabetes duration, systolic blood pressure, low-density lipoprotein cholesterol, hemoglobin A1c, albuminuria, glomerular filtration rate, smoking, and exercise. Discrimination was excellent for a 5-year CVD event with a C-statistic of 0.826 (95% confidence interval, 0.807-0.845) in the derivation data and a C-statistic of 0.803 (95% confidence interval, 0.767-0.839) in the validation data. The Hosmer-Lemeshow test showed good calibration (P>0.05) in both cohorts. This high-performing CVD risk model allows for the implementation of decision rules in a clinical setting. © 2016 American Heart Association, Inc.

  9. Racial Differences in Ideal Cardiovascular Health Metrics Among Mississippi Adults, 2009 Mississippi Behavioral Risk Factor Surveillance System

    PubMed Central

    Gamble, Abigail; Mendy, Vincent

    2013-01-01

    Introduction Cardiovascular disease is a leading cause of death and health disparities in Mississippi. Identifying populations with poor cardiovascular health may help direct interventions toward those populations disproportionately affected, which may ultimately increase cardiovascular health and decrease prominent disparities. Our objective was to assess racial differences in the prevalence of cardiovascular health metrics among Mississippi adults. Methods We used data from the 2009 Mississippi Behavioral Risk Factor Surveillance System to determine age-standardized prevalence estimates and 95% confidence intervals of cardiovascular health metrics among 2,003 black and 5,125 white adults. Logistic regression models were used to evaluate the relationship between race and cardiovascular health metrics. The mean cardiovascular metrics score and percentage of the population with ideal and poor cardiovascular health were calculated by subgroup. Results Approximately 1.3% of blacks and 2.6% of whites exhibited ideal levels of all 7 cardiovascular health metrics. The prevalence of 4 of the 7 cardiovascular health metrics was significantly lower among the total population of blacks than among whites, including a normal body mass index (20.8% vs 32.3%, P < .001), no history of diabetes (85.1% vs 91.3%, P < .001), no history of hypertension (53.9% vs 67.9%, P < .001), and physical activity (52.8% vs 62.2%, P < .001). The logistic regression models revealed significant race-by-sex interactions; differences between blacks and whites for normal body mass index, no history of diabetes mellitus, and no current smoking were found among women but not among men. Conclusion Cardiovascular health is poor among Mississippi adults overall, and racial differences exist. PMID:24262026

  10. Fruit, vegetable, and legume intake, and cardiovascular disease and deaths in 18 countries (PURE): a prospective cohort study.

    PubMed

    Miller, Victoria; Mente, Andrew; Dehghan, Mahshid; Rangarajan, Sumathy; Zhang, Xiaohe; Swaminathan, Sumathi; Dagenais, Gilles; Gupta, Rajeev; Mohan, Viswanathan; Lear, Scott; Bangdiwala, Shrikant I; Schutte, Aletta E; Wentzel-Viljoen, Edelweiss; Avezum, Alvaro; Altuntas, Yuksel; Yusoff, Khalid; Ismail, Noorhassim; Peer, Nasheeta; Chifamba, Jephat; Diaz, Rafael; Rahman, Omar; Mohammadifard, Noushin; Lana, Fernando; Zatonska, Katarzyna; Wielgosz, Andreas; Yusufali, Afzalhussein; Iqbal, Romaina; Lopez-Jaramillo, Patricio; Khatib, Rasha; Rosengren, Annika; Kutty, V Raman; Li, Wei; Liu, Jiankang; Liu, Xiaoyun; Yin, Lu; Teo, Koon; Anand, Sonia; Yusuf, Salim

    2017-11-04

    The association between intake of fruits, vegetables, and legumes with cardiovascular disease and deaths has been investigated extensively in Europe, the USA, Japan, and China, but little or no data are available from the Middle East, South America, Africa, or south Asia. We did a prospective cohort study (Prospective Urban Rural Epidemiology [PURE] in 135 335 individuals aged 35 to 70 years without cardiovascular disease from 613 communities in 18 low-income, middle-income, and high-income countries in seven geographical regions: North America and Europe, South America, the Middle East, south Asia, China, southeast Asia, and Africa. We documented their diet using country-specific food frequency questionnaires at baseline. Standardised questionnaires were used to collect information about demographic factors, socioeconomic status (education, income, and employment), lifestyle (smoking, physical activity, and alcohol intake), health history and medication use, and family history of cardiovascular disease. The follow-up period varied based on the date when recruitment began at each site or country. The main clinical outcomes were major cardiovascular disease (defined as death from cardiovascular causes and non-fatal myocardial infarction, stroke, and heart failure), fatal and non-fatal myocardial infarction, fatal and non-fatal strokes, cardiovascular mortality, non-cardiovascular mortality, and total mortality. Cox frailty models with random effects were used to assess associations between fruit, vegetable, and legume consumption with risk of cardiovascular disease events and mortality. Participants were enrolled into the study between Jan 1, 2003, and March 31, 2013. For the current analysis, we included all unrefuted outcome events in the PURE study database through March 31, 2017. Overall, combined mean fruit, vegetable and legume intake was 3·91 (SD 2·77) servings per day. During a median 7·4 years (5·5-9·3) of follow-up, 4784 major cardiovascular disease events, 1649 cardiovascular deaths, and 5796 total deaths were documented. Higher total fruit, vegetable, and legume intake was inversely associated with major cardiovascular disease, myocardial infarction, cardiovascular mortality, non-cardiovascular mortality, and total mortality in the models adjusted for age, sex, and centre (random effect). The estimates were substantially attenuated in the multivariable adjusted models for major cardiovascular disease (hazard ratio [HR] 0·90, 95% CI 0·74-1·10, p trend =0·1301), myocardial infarction (0·99, 0·74-1·31; p trend =0·2033), stroke (0·92, 0·67-1·25; p trend =0·7092), cardiovascular mortality (0·73, 0·53-1·02; p trend =0·0568), non-cardiovascular mortality (0·84, 0·68-1·04; p trend =0·0038), and total mortality (0·81, 0·68-0·96; p trend <0·0001). The HR for total mortality was lowest for three to four servings per day (0·78, 95% CI 0·69-0·88) compared with the reference group, with no further apparent decrease in HR with higher consumption. When examined separately, fruit intake was associated with lower risk of cardiovascular, non-cardiovascular, and total mortality, while legume intake was inversely associated with non-cardiovascular death and total mortality (in fully adjusted models). For vegetables, raw vegetable intake was strongly associated with a lower risk of total mortality, whereas cooked vegetable intake showed a modest benefit against mortality. Higher fruit, vegetable, and legume consumption was associated with a lower risk of non-cardiovascular, and total mortality. Benefits appear to be maximum for both non-cardiovascular mortality and total mortality at three to four servings per day (equivalent to 375-500 g/day). Full funding sources listed at the end of the paper (see Acknowledgments). Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Evaluating cardiovascular mortality in type 2 diabetes patients: an analysis based on competing risks Markov chains and additive regression models.

    PubMed

    Rosato, Rosalba; Ciccone, G; Bo, S; Pagano, G F; Merletti, F; Gregori, D

    2007-06-01

    Type 2 diabetes represents a condition significantly associated with increased cardiovascular mortality. The aims of the study are: (i) to estimate the cumulative incidence function for cause-specific mortality using Cox and Aalen model; (ii) to describe how the prediction of cardiovascular or other causes mortality changes for patients with different pattern of covariates; (iii) to show if different statistical methods may give different results. Cox and Aalen additive regression model through the Markov chain approach, are used to estimate the cause-specific hazard for cardiovascular or other causes mortality in a cohort of 2865 type 2 diabetic patients without insulin treatment. The models are compared in the estimation of the risk of death for patients of different severity. For younger patients with a better covariates profile, the Cumulative Incidence Function estimated by Cox and Aalen model was almost the same; for patients with the worst covariates profile, models gave different results: at the end of follow-up cardiovascular mortality rate estimated by Cox and Aalen model was 0.26 [95% confidence interval (CI) = 0.21-0.31] and 0.14 (95% CI = 0.09-0.18). Standard Cox and Aalen model capture the risk process for patients equally well with average profiles of co-morbidities. The Aalen model, in addition, is shown to be better at identifying cause-specific risk of death for patients with more severe clinical profiles. This result is relevant in the development of analytic tools for research and resource management within diabetes care.

  12. Simulating the Impact of Improved Cardiovascular Risk Interventions on Clinical and Economic Outcomes in Russia

    PubMed Central

    Shum, Kenny; Alperin, Peter; Shalnova, Svetlana; Boytsov, Sergey; Kontsevaya, Anna; Vigdorchik, Alexey; Guetz, Adam; Eriksson, Jennifer; Hughes, David

    2014-01-01

    Objectives Russia faces a high burden of cardiovascular disease. Prevalence of all cardiovascular risk factors, especially hypertension, is high. Elevated blood pressure is generally poorly controlled and medication usage is suboptimal. With a disease-model simulation, we forecast how various treatment programs aimed at increasing blood pressure control would affect cardiovascular outcomes. In addition, we investigated what additional benefit adding lipid control and smoking cessation to blood pressure control would generate in terms of reduced cardiovascular events. Finally, we estimated the direct health care costs saved by treating fewer cardiovascular events. Methods The Archimedes Model, a detailed computer model of human physiology, disease progression, and health care delivery was adapted to the Russian setting. Intervention scenarios of achieving systolic blood pressure control rates (defined as systolic blood pressure <140 mmHg) of 40% and 60% were simulated by modifying adherence rates of an antihypertensive medication combination and compared with current care (23.9% blood pressure control rate). Outcomes of major adverse cardiovascular events; cerebrovascular event (stroke), myocardial infarction, and cardiovascular death over a 10-year time horizon were reported. Direct health care costs of strokes and myocardial infarctions were derived from official Russian statistics and tariff lists. Results To achieve systolic blood pressure control rates of 40% and 60%, adherence rates to the antihypertensive treatment program were 29.4% and 65.9%. Cardiovascular death relative risk reductions were 13.2%, and 29.6%, respectively. For the current estimated 43,855,000-person Russian hypertensive population, each control-rate scenario resulted in an absolute reduction of 1.0 million and 2.4 million cardiovascular deaths, and a reduction of 1.2 million and 2.7 million stroke/myocardial infarction diagnoses, respectively. Averted direct costs from current care levels ($7.6 billion [in United States dollars]) were $1.1 billion and $2.6 billion, respectively. PMID:25141122

  13. Pulmonary Transcriptional Response to Ozone in Healthy and Cardiovascular Compromised Rat Models

    EPA Science Inventory

    The genetic cardiovascular disease (CVD) and associated metabolic impairments can influence the lung injury from inhaled pollutants. We hypothesized that comparative assessment of global pulmonary expression profile of healthy and CVD-prone rat models will provide mechanistic ins...

  14. Pulmonary oxidative stress, inflammation and dysregulated iron homeostatis in rat models of cardiovascular disease

    EPA Science Inventory

    Underlying cardiovascular disease (CVD) is considered a risk factor for the exacerbation of air pollution health effects. Therefore, rodent models of CVD are increasingly used to examine mechanisms ofvariation in susceptibility. Pulmonary oxidative stress, inflammation and altere...

  15. A concentrated parameter model for the human cardiovascular system including heart valve dynamics and atrioventricular interaction.

    PubMed

    Korakianitis, Theodosios; Shi, Yubing

    2006-09-01

    Numerical modeling of the human cardiovascular system has always been an active research direction since the 19th century. In the past, various simulation models of different complexities were proposed for different research purposes. In this paper, an improved numerical model to study the dynamic function of the human circulation system is proposed. In the development of the mathematical model, the heart chambers are described with a variable elastance model. The systemic and pulmonary loops are described based on the resistance-compliance-inertia concept by considering local effects of flow friction, elasticity of blood vessels and inertia of blood in different segments of the blood vessels. As an advancement from previous models, heart valve dynamics and atrioventricular interaction, including atrial contraction and motion of the annulus fibrosus, are specifically modeled. With these improvements the developed model can predict several important features that were missing in previous numerical models, including regurgitant flow on heart valve closure, the value of E/A velocity ratio in mitral flow, the motion of the annulus fibrosus (called the KG diaphragm pumping action), etc. These features have important clinical meaning and their changes are often related to cardiovascular diseases. Successful simulation of these features enhances the accuracy of simulations of cardiovascular dynamics, and helps in clinical studies of cardiac function.

  16. Is tree loss associated with cardiovascular-disease risk in the Women's Health Initiative? A natural experiment

    Treesearch

    Geoffrey H. Donovan; Yvonne L. Michael; Demetrios Gatziolis; Jeffrey P. Prestemon; Eric A. Whitsel

    2015-01-01

    Data from the Women's Health Initiative were used to quantify the relationship between the loss of trees to an invasive forest pest—the emerald ash borer—and cardiovascular disease. We estimated semi- parametric Cox proportional hazards model of time to cardiovascular disease, adjusting for confounders. We defined the incidence of cardiovascular disease as acute...

  17. The prevention of diabetes and cardiovascular disease in people with schizophrenia.

    PubMed

    Holt, R I G

    2015-08-01

    Primary prevention of diabetes and cardiovascular disease is an important priority for people with schizophrenia. This review aims to identify lifestyle and pharmacological interventions that reduce diabetes and cardiovascular disease in people with schizophrenia. PubMed and other electronic databases were searched to identify relevant articles. Lifestyle interventions that focus on diet and physical activity reduce the incidence of diabetes. Similar programmes in people with schizophrenia have led to significant weight loss and may reasonably be expected to reduce diabetes in the long-term. Metformin may be considered when lifestyle change is not feasible or effective. Lifestyle interventions, particularly smoking cessation, are likely to be effective in reducing cardiovascular disease in people with schizophrenia. Although cardiovascular prevention trials with statins have not been performed in people with schizophrenia, similar reductions in cholesterol has been seen as in the general population and statins should be considered for those at high risk. Traditional cardiovascular risk prediction models perform well in identifying those at high cardiovascular risk, but bespoke prediction models using data from people with schizophrenia perform better. Reducing diabetes and cardiovascular disease requires a coordinated and concerted effort from mental and physical health teams working across primary and secondary care. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. The Future Role of the United States in Global Health: Emphasis on Cardiovascular Disease.

    PubMed

    Fuster, Valentin; Frazer, Jendayi; Snair, Megan; Vedanthan, Rajesh; Dzau, Victor

    2017-12-26

    U.S. global health investment has focused on detection, treatment, and eradication of infectious diseases such as tuberculosis, malaria, and human immunodeficiency virus/acquired immunodeficiency syndrome, with significant results. Although efforts should be maintained and expanded to provide ongoing therapy for chronic infectious disease, there is a pressing need to meet the challenge of noncommunicable diseases, which constitute the highest burden of diseases globally. A Committee of the National Academies of Sciences, Engineering, and Medicine has made 14 recommendations that require ongoing commitments to eradication of infectious disease and increase the emphasis on chronic diseases such as cardiovascular disease. These include improving early detection and treatment, mitigating disease risk factors, shifting global health infrastructure to include management of cardiovascular disease, developing global partners and private-public ventures to meet infrastructure and funding challenges, streamlining medical product development and supply, increasing research and development capacity, and addressing gaps in global political and institutional leadership to meet the shifting challenge. Copyright © 2017. Published by Elsevier Inc.

  19. Feeling the right force: How to contextualize the cell mechanical behavior in physiologic turnover and pathologic evolution of the cardiovascular system.

    PubMed

    Pesce, Maurizio; Santoro, Rosaria

    2017-03-01

    Although traditionally linked to the physiology of tissues in 'motion', the ability of the cells to transduce external forces into coordinated gene expression programs is emerging as an integral component of the fundamental structural organization of multicellular organisms with consequences for cell differentiation even from the beginning of embryonic development. The ability of the cells to 'feel' the surrounding mechanical environment, even in the absence of tissue motion, is then translated into 'positional' or 'social' sensing that instructs, before the organ renewal, the correct patterning of the embryos. In the present review, we will highlight how these basic concepts, emerging from the employment of novel cell engineering tools, can be linked to pathophysiology of the cardiovascular system, and may contribute to understanding the molecular bases of some of the major cardiovascular diseases like heart failure, heart valve stenosis and failure of the venous aorto-coronary bypass. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Using human factors engineering to improve patient safety in the cardiovascular operating room.

    PubMed

    Gurses, Ayse P; Martinez, Elizabeth A; Bauer, Laura; Kim, George; Lubomski, Lisa H; Marsteller, Jill A; Pennathur, Priyadarshini R; Goeschel, Chris; Pronovost, Peter J; Thompson, David

    2012-01-01

    Despite significant medical advances, cardiac surgery remains a high risk procedure. Sub-optimal work system design characteristics can contribute to the risks associated with cardiac surgery. However, hazards due to work system characteristics have not been identified in the cardiovascular operating room (CVOR) in sufficient detail to guide improvement efforts. The purpose of this study was to identify and categorize hazards (anything that has the potential to cause a preventable adverse patient safety event) in the CVOR. An interdisciplinary research team used prospective hazard identification methods including direct observations, contextual inquiry, and photographing to collect data in 5 hospitals for a total 22 cardiac surgeries. We performed thematic analysis of the qualitative data guided by a work system model. 60 categories of hazards such as practice variations, high workload, non-compliance with evidence-based guidelines, not including clinicians' in medical device purchasing decisions were found. Results indicated that hazards are common in cardiac surgery and should be eliminated or mitigated to improve patient safety. To improve patient safety in the CVOR, efforts should focus on creating a culture of safety, increasing compliance with evidence based infection control practices, improving communication and teamwork, and designing better tools and technologies through partnership among all stakeholders.

  1. Patient-specific cardiovascular progenitor cells derived from integration-free induced pluripotent stem cells for vascular tissue regeneration.

    PubMed

    Hu, Jiang; Wang, Yongyu; Jiao, Jiao; Liu, Zhongning; Zhao, Chao; Zhou, Zhou; Zhang, Zhanpeng; Forde, Kaitlynn; Wang, Lunchang; Wang, Jiangang; Baylink, David J; Zhang, Xiao-Bing; Gao, Shaorong; Yang, Bo; Chen, Y Eugene; Ma, Peter X

    2015-12-01

    Tissue-engineered blood vessels (TEBVs) are promising in regenerating a live vascular replacement. However, the vascular cell source is limited, and it is crucial to develop a scaffold that accommodates new type of vascular progenitor cells and facilitates in vivo lineage specification of the cells into functional vascular smooth muscle cells (VSMCs) to regenerate vascular tissue. In the present study, integration-free human induced pluripotent stem cells (hiPSCs) were established from patient peripheral blood mononuclear cells through episomal vector nucleofection of reprogramming factors. The established hiPSCs were then induced into mesoderm-originated cardiovascular progenitor cells (CVPCs) with a highly efficient directed lineage specification method. The derived CVPCs were demonstrated to be able to differentiate into functional VSMCs. Subcutaneous implantation of CVPCs seeded on macroporous nanofibrous poly(l-lactide) scaffolds led to in vivo VSMC lineage specification and matrix deposition inside the scaffolds. In summary, we established integration-free patient-specific hiPSCs from peripheral blood mononuclear cells, derived CVPCs through directed lineage specification, and developed an advanced scaffold for these progenitor cells to further differentiate in vivo into VSMCs and regenerate vascular tissue in a subcutaneous implantation model. This study has established an efficient patient-specific approach towards in vivo regeneration of vascular tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. A multi-scale cardiovascular system model can account for the load-dependence of the end-systolic pressure-volume relationship

    PubMed Central

    2013-01-01

    Background The end-systolic pressure-volume relationship is often considered as a load-independent property of the heart and, for this reason, is widely used as an index of ventricular contractility. However, many criticisms have been expressed against this index and the underlying time-varying elastance theory: first, it does not consider the phenomena underlying contraction and second, the end-systolic pressure volume relationship has been experimentally shown to be load-dependent. Methods In place of the time-varying elastance theory, a microscopic model of sarcomere contraction is used to infer the pressure generated by the contraction of the left ventricle, considered as a spherical assembling of sarcomere units. The left ventricle model is inserted into a closed-loop model of the cardiovascular system. Finally, parameters of the modified cardiovascular system model are identified to reproduce the hemodynamics of a normal dog. Results Experiments that have proven the limitations of the time-varying elastance theory are reproduced with our model: (1) preload reductions, (2) afterload increases, (3) the same experiments with increased ventricular contractility, (4) isovolumic contractions and (5) flow-clamps. All experiments simulated with the model generate different end-systolic pressure-volume relationships, showing that this relationship is actually load-dependent. Furthermore, we show that the results of our simulations are in good agreement with experiments. Conclusions We implemented a multi-scale model of the cardiovascular system, in which ventricular contraction is described by a detailed sarcomere model. Using this model, we successfully reproduced a number of experiments that have shown the failing points of the time-varying elastance theory. In particular, the developed multi-scale model of the cardiovascular system can capture the load-dependence of the end-systolic pressure-volume relationship. PMID:23363818

  3. Lab-on-a-brane: A novel physiologically relevant planar arterial model to study transendothelial transport

    NASA Astrophysics Data System (ADS)

    Budhwani, Karim Ismail

    The tremendous quality of life impact notwithstanding, cardiovascular diseases and Cancer add up to over US$ 700bn each year in financial costs alone. Aging and population growth are expected to further expand the problem space while drug research and development remain expensive. However, preclinical costs can be substantially mitigated by substituting animal models with in vitro devices that accurately model human cardiovascular transport. Here we present a novel physiologically relevant lab-on-a-brane that simulates in vivo pressure, flow, strain, and shear waveforms associated with normal and pathological conditions in large and small blood vessels for studying molecular transport across the endothelial monolayer. The device builds upon previously demonstrated integrated microfluidic loop design by: (a) introducing nanoscale pores in the substrate membrane to enable transmembrane molecular transport, (b) transforming the substrate membrane into a nanofibrous matrix for 3D smooth muscle cell (SMC) tissue culture, (c) integrating electrospinning fabrication methods, (d) engineering an invertible sandwich cell culture device architecture, and (e) devising a healthy co-culture mechanism for human arterial endothelial cell (HAEC) monolayer and multiple layers of human smooth muscle cells (HSMC) to accurately mimic arterial anatomy. Structural and mechanical characterization was conducted using confocal microscopy, SEM, stress/strain analysis, and infrared spectroscopy. Transport was characterized using FITC-Dextran hydraulic permeability protocol. Structure and transport characterization successfully demonstrate device viability as a physiologically relevant arterial mimic for testing transendothelial transport. Thus, our lab-on-a-brane provides a highly effective and efficient, yet considerably inexpensive, physiologically relevant alternative for pharmacokinetic evaluation; possibly reducing animals used in pre-clinical testing, clinical trials cost from false starts, and time-to-market. Furthermore, this platform can be easily configured for testing targeted therapeutic delivery and in multiple simultaneous arrays for personalized and precision medicine applications.

  4. Clinical Prediction Models for Cardiovascular Disease: Tufts Predictive Analytics and Comparative Effectiveness Clinical Prediction Model Database.

    PubMed

    Wessler, Benjamin S; Lai Yh, Lana; Kramer, Whitney; Cangelosi, Michael; Raman, Gowri; Lutz, Jennifer S; Kent, David M

    2015-07-01

    Clinical prediction models (CPMs) estimate the probability of clinical outcomes and hold the potential to improve decision making and individualize care. For patients with cardiovascular disease, there are numerous CPMs available although the extent of this literature is not well described. We conducted a systematic review for articles containing CPMs for cardiovascular disease published between January 1990 and May 2012. Cardiovascular disease includes coronary heart disease, heart failure, arrhythmias, stroke, venous thromboembolism, and peripheral vascular disease. We created a novel database and characterized CPMs based on the stage of development, population under study, performance, covariates, and predicted outcomes. There are 796 models included in this database. The number of CPMs published each year is increasing steadily over time. Seven hundred seventeen (90%) are de novo CPMs, 21 (3%) are CPM recalibrations, and 58 (7%) are CPM adaptations. This database contains CPMs for 31 index conditions, including 215 CPMs for patients with coronary artery disease, 168 CPMs for population samples, and 79 models for patients with heart failure. There are 77 distinct index/outcome pairings. Of the de novo models in this database, 450 (63%) report a c-statistic and 259 (36%) report some information on calibration. There is an abundance of CPMs available for a wide assortment of cardiovascular disease conditions, with substantial redundancy in the literature. The comparative performance of these models, the consistency of effects and risk estimates across models and the actual and potential clinical impact of this body of literature is poorly understood. © 2015 American Heart Association, Inc.

  5. Cardiovascular physiology and diseases of the rabbit.

    PubMed

    Pariaut, Romain

    2009-01-01

    This article reviews what is known about the diagnosis and management of cardiovascular diseases in the pet rabbit. Current knowledge is based on anecdotal reports, derived from research data using the rabbit as an animal model of human cardiovascular diseases, but most importantly canine and feline cardiology. It is likely that, as cardiovascular diseases are more often recognized, more specific information will soon become available for the treatment of the pet rabbit with cardiac disease.

  6. 77 FR 24497 - Government-Owned Inventions; Availability for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-24

    ... distribution and may be useful as model systems for studies of cardiovascular disease, drug metabolism and... tissue distribution and may be useful as model systems for studies of cardiovascular disease, drug..., Atherosclerosis, Metabolic Syndrome and Lipid Storage Diseases Description of Technology: Lipid droplets are key...

  7. A Computer Model of the Cardiovascular System for Effective Learning.

    ERIC Educational Resources Information Center

    Rothe, Carl F.

    1979-01-01

    Described is a physiological model which solves a set of interacting, possibly nonlinear, differential equations through numerical integration on a digital computer. Sample printouts are supplied and explained for effects on the components of a cardiovascular system when exercise, hemorrhage, and cardiac failure occur. (CS)

  8. Strain Differences in Antioxidants in Rat Models of Cardiovascular Disease Exposed to Ozone

    EPA Science Inventory

    We examined the hypothesis that antioxidant substances and enzymes in lung, heart and in bronchoalveolar lavage fluid (BALF) are altered in response to 03 in cardiovascular disease and/or metabolic syndrome (CVD)-prone rat models. CVD strains [spontaneously hypertensive (SH), SH ...

  9. An Efficient Framework for Compressed Sensing Reconstruction of Highly Accelerated Dynamic Cardiac MRI

    NASA Astrophysics Data System (ADS)

    Ting, Samuel T.

    The research presented in this work seeks to develop, validate, and deploy practical techniques for improving diagnosis of cardiovascular disease. In the philosophy of biomedical engineering, we seek to identify an existing medical problem having significant societal and economic effects and address this problem using engineering approaches. Cardiovascular disease is the leading cause of mortality in the United States, accounting for more deaths than any other major cause of death in every year since 1900 with the exception of the year 1918. Cardiovascular disease is estimated to account for almost one-third of all deaths in the United States, with more than 2150 deaths each day, or roughly 1 death every 40 seconds. In the past several decades, a growing array of imaging modalities have proven useful in aiding the diagnosis and evaluation of cardiovascular disease, including computed tomography, single photon emission computed tomography, and echocardiography. In particular, cardiac magnetic resonance imaging is an excellent diagnostic tool that can provide within a single exam a high quality evaluation of cardiac function, blood flow, perfusion, viability, and edema without the use of ionizing radiation. The scope of this work focuses on the application of engineering techniques for improving imaging using cardiac magnetic resonance with the goal of improving the utility of this powerful imaging modality. Dynamic cine imaging, or the capturing of movies of a single slice or volume within the heart or great vessel region, is used in nearly every cardiac magnetic resonance imaging exam, and adequate evaluation of cardiac function and morphology for diagnosis and evaluation of cardiovascular disease depends heavily on both the spatial and temporal resolution as well as the image quality of the reconstruction cine images. This work focuses primarily on image reconstruction techniques utilized in cine imaging; however, the techniques discussed are also relevant to other dynamic and static imaging techniques based on cardiac magnetic resonance. Conventional segmented techniques for cardiac cine imaging require breath-holding as well as regular cardiac rhythm, and can be time-consuming to acquire. Inadequate breath-holding or irregular cardiac rhythm can result in completely non-diagnostic images, limiting the utility of these techniques in a significant patient population. Real-time single-shot cardiac cine imaging enables free-breathing acquisition with significantly shortened imaging time and promises to significantly improve the utility of cine imaging for diagnosis and evaluation of cardiovascular disease. However, utility of real-time cine images depends heavily on the successful reconstruction of final cine images from undersampled data. Successful reconstruction of images from more highly undersampled data results directly in images exhibiting finer spatial and temporal resolution provided that image quality is sufficient. This work focuses primarily on the development, validation, and deployment of practical techniques for enabling the reconstruction of real-time cardiac cine images at the spatial and temporal resolutions and image quality needed for diagnostic utility. Particular emphasis is placed on the development of reconstruction approaches resulting in with short computation times that can be used in the clinical environment. Specifically, the use of compressed sensing signal recovery techniques is considered; such techniques show great promise in allowing successful reconstruction of highly undersampled data. The scope of this work concerns two primary topics related to signal recovery using compressed sensing: (1) long reconstruction times of these techniques, and (2) improved sparsity models for signal recovery from more highly undersampled data. Both of these aspects are relevant to the practical application of compressed sensing techniques in the context of improving image reconstruction of real-time cardiac cine images. First, algorithmic and implementational approaches are proposed for reducing the computational time for a compressed sensing reconstruction framework. Specific optimization algorithms based on the fast iterative/shrinkage algorithm (FISTA) are applied in the context of real-time cine image reconstruction to achieve efficient per-iteration computation time. Implementation within a code framework utilizing commercially available graphics processing units (GPUs) allows for practical and efficient implementation directly within the clinical environment. Second, patch-based sparsity models are proposed to enable compressed sensing signal recovery from highly undersampled data. Numerical studies demonstrate that this approach can help improve image quality at higher undersampling ratios, enabling real-time cine imaging at higher acceleration rates. In this work, it is shown that these techniques yield a holistic framework for achieving efficient reconstruction of real-time cine images with spatial and temporal resolution sufficient for use in the clinical environment. A thorough description of these techniques from both a theoretical and practical view is provided - both of which may be of interest to the reader in terms of future work.

  10. Job strain (demands and control model) as a predictor of cardiovascular risk factors among petrochemical personnel

    PubMed Central

    Habibi, Ehsanollah; Poorabdian, Siamak; Shakerian, Mahnaz

    2015-01-01

    Background: One of the practical models for the assessment of stressful working conditions due to job strain is job demand and control model, which explains how physical and psychological adverse consequences, including cardiovascular risk factors can be established due to high work demands (the amount of workload, in addition to time limitations to complete that work) and low control of the worker on his/her work (lack of decision making) in the workplace. The aim of this study was to investigate how certain cardiovascular risk factors (including body mass index [BMI], heart rate, blood pressure, cholesterol and smoking) and the job demand and job control are related to each other. Materials and Methods: This prospective cohort study was conducted on 500 workers of the petrochemical industry in south of Iran, 2009. The study population was selected using simple random statistical method. They completed job demand and control questionnaire. The cardiovascular risk factors data was extracted from the workers hygiene profiles. Chi-square (χ2) test and hypothesis test (η) were used to assess the possible relationship between different quantified variables, individual demographic and cardiovascular risk factors. Results: The results of this study revealed that a significant relationship can be found between job demand control model and cardiovascular risk factors. Chi-square test result for the heart rate showed the highest (χ2 = 145.078) relationship, the corresponding results for smoking and BMI were χ2 = 85.652 and χ2 = 30.941, respectively. Subsequently, hypothesis testing results for cholesterol and hypertension was 0.469 and 0.684, respectively. Discussion: Job strain is likely to be associated with an increased risk of cardiovascular risk factors among male staff in a petrochemical company in Iran. The parameters illustrated in the Job demands and control model can act as acceptable predictors for the probability of job stress occurrence followed by showing a high trend of CVD risk factors. PMID:25861661

  11. Estrogen in cardiovascular disease during systemic lupus erythematosus.

    PubMed

    Gilbert, Emily L; Ryan, Michael J

    2014-12-01

    Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease that disproportionately affects women during their childbearing years. Cardiovascular disease is the leading cause of mortality in this patient population at an age when women often have low cardiovascular risk. Hypertension is a major cardiovascular disease risk factor, and its prevalence is markedly increased in women with SLE. Estrogen has traditionally been implicated in SLE disease progression because of the prevalence of the disease in women; however, its role in cardiovascular risk factors such as hypertension is unclear. The objective of this review is to discuss evidence for the role of estrogen in both human and murine SLE with emphasis on the effect of estrogen on cardiovascular risk factors, including hypertension. PubMed was used to search for articles with terms related to estradiol and SLE. The references of retrieved publications were also reviewed. The potential permissive role of estrogen in SLE development is supported by studies from experimental animal models of lupus in which early removal of estrogen or its effects leads to attenuation of SLE disease parameters, including autoantibody production and renal injury. However, data about the role of estrogens in human SLE are much less clear, with most studies not reaching firm conclusions about positive or negative outcomes after hormonal manipulations involving estrogen during SLE (ie, oral contraceptives, hormone therapy). Significant gaps in knowledge remain about the effect of estrogen on cardiovascular risk factors during SLE. Studies in women with SLE were not designed to determine the effect of estrogen or hormone therapy on blood pressure even though hypertension is highly prevalent, and risk of premature ovarian failure could necessitate use of hormone therapy in women with SLE. Recent evidence from an experimental animal model of lupus found that estrogen may protect against cardiovascular risk factors in adulthood. In addition, increasing evidence suggests that estrogen may have distinct temporal effects on cardiovascular risk factors during SLE. Data from experimental models of lupus suggest that estrogens may have an important permissive role for developing SLE early in life. However, their role in adulthood remains unclear, particularly for the effect on cardiovascular disease and its risk factors. Additional work is needed to understand the effect of estrogens in human SLE, and preclinical studies in experimental models of SLE may contribute important mechanistic insight to further advance the field. Copyright © 2014 Elsevier HS Journals, Inc. All rights reserved.

  12. Estrogen in Cardiovascular Disease during Systemic Lupus Erythematosus

    PubMed Central

    Gilbert, Emily L.; Ryan, Michael J.

    2015-01-01

    Purpose Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease that disproportionately affects women during their childbearing years. Cardiovascular disease is the leading cause of mortality in this patient population at an age when women often have low cardiovascular risk. Hypertension is a major cardiovascular disease risk factor, and its prevalence is markedly increased in women with SLE. Estrogen has traditionally been implicated in SLE disease progression because of the prevalence of the disease in women; however, its role in cardiovascular risk factors such as hypertension is unclear. The objective of this review is to discuss evidence for the role of estrogen in both human and murine SLE with emphasis on the effect of estrogen on cardiovascular risk factors, including hypertension. Methods PubMed was used to search for articles with terms related to estradiol and SLE. The references of retrieved publications were also reviewed. Findings The potential permissive role of estrogen in SLE development is supported by studies from experimental animal models of lupus in which early removal of estrogen or its effects leads to attenuation of SLE disease parameters, including autoantibody production and renal injury. However, data about the role of estrogens in human SLE are much less clear, with most studies not reaching firm conclusions about positive or negative outcomes after hormonal manipulations involving estrogen during SLE (ie, oral contraceptives, hormone therapy). Significant gaps in knowledge remain about the effect of estrogen on cardiovascular risk factors during SLE. Studies in women with SLE were not designed to determine the effect of estrogen or hormone therapy on blood pressure even though hypertension is highly prevalent, and risk of premature ovarian failure could necessitate use of hormone therapy in women with SLE. Recent evidence from an experimental animal model of lupus found that estrogen may protect against cardiovascular risk factors in adulthood. In addition, increasing evidence suggests that estrogen may have distinct temporal effects on cardiovascular risk factors during SLE. Implications Data from experimental models of lupus suggest that estrogens may have an important permissive role for developing SLE early in life. However, their role in adulthood remains unclear, particularly for the effect on cardiovascular disease and its risk factors. Additional work is needed to understand the effect of estrogens in human SLE, and preclinical studies in experimental models of SLE may contribute important mechanistic insight to further advance the field. PMID:25194860

  13. Rebuilding the Damaged Heart: Mesenchymal Stem Cells, Cell-Based Therapy, and Engineered Heart Tissue.

    PubMed

    Golpanian, Samuel; Wolf, Ariel; Hatzistergos, Konstantinos E; Hare, Joshua M

    2016-07-01

    Mesenchymal stem cells (MSCs) are broadly distributed cells that retain postnatal capacity for self-renewal and multilineage differentiation. MSCs evade immune detection, secrete an array of anti-inflammatory and anti-fibrotic mediators, and very importantly activate resident precursors. These properties form the basis for the strategy of clinical application of cell-based therapeutics for inflammatory and fibrotic conditions. In cardiovascular medicine, administration of autologous or allogeneic MSCs in patients with ischemic and nonischemic cardiomyopathy holds significant promise. Numerous preclinical studies of ischemic and nonischemic cardiomyopathy employing MSC-based therapy have demonstrated that the properties of reducing fibrosis, stimulating angiogenesis, and cardiomyogenesis have led to improvements in the structure and function of remodeled ventricles. Further attempts have been made to augment MSCs' effects through genetic modification and cell preconditioning. Progression of MSC therapy to early clinical trials has supported their role in improving cardiac structure and function, functional capacity, and patient quality of life. Emerging data have supported larger clinical trials that have been either completed or are currently underway. Mechanistically, MSC therapy is thought to benefit the heart by stimulating innate anti-fibrotic and regenerative responses. The mechanisms of action involve paracrine signaling, cell-cell interactions, and fusion with resident cells. Trans-differentiation of MSCs to bona fide cardiomyocytes and coronary vessels is also thought to occur, although at a nonphysiological level. Recently, MSC-based tissue engineering for cardiovascular disease has been examined with quite encouraging results. This review discusses MSCs from their basic biological characteristics to their role as a promising therapeutic strategy for clinical cardiovascular disease. Copyright © 2016 the American Physiological Society.

  14. Effect of Mental Arithmetic on heart rate responses during Parabolic Flights: the Barcelona Zero-G Challenge

    NASA Astrophysics Data System (ADS)

    Osborne, Jeffrey R.; Alonsopérez Lanza, María Victoria; Desclaux, David Ferrer; Goswami, Nandu; González Alonso, Daniel Ventura; Moser, Maximilian; Grote, Vincent; Garcia-Cuadrado, Gloria; Perez-Poch, Antoni

    2014-07-01

    When an astronaut transitions from a low to high gravitational environment, fluid shifts from the head towards the feet resulting in orthostatic intolerance and syncope. Ground based experiments have shown that by stimulating the cardiovascular system via simple mental stressors, syncope can be delayed, potentially enabling astronauts to reach assistance before loss of consciousness. However, the effect of mental stressors on the stimulation of the cardiovascular system in gravitational environments different than that of Earth's is unknown. As such, this paper investigates the effects that mental stressors under various gravitational environments. To do this, a pilot study was performed in which two participants were flown on two separate parabolic flights that simulated hyper and hypogravity conditions. The plane used was an Aerobatic Single-Engine Cap-10B plane (twin seater), and each participant executed 11 parabolas. The participants were the winners of the Barcelona Zero-G Challenge 2011 organized by UPC Universitat Politècnica de Catalunya-BarcelonaTech and Aeroclub Barcelona-Sabadell. Measurements were made of the participants' hemodynamic and autonomic response throughout the parabolas, using a Chronocord: high precision HRV monitor. Comparisons of the baseline response without mental stressors, and the response with mental stressors during different gravitational loading conditions were made. It was observed that there is an increase in cardiovascular activity during hypo- and hyper-gravity when performing mental arithmetic. Our results show that the twin seater aerobatic single engine CAP-10B aicraft can provide changing gravitational loading conditions for enough periods to study changes in physiological systems.

  15. Gene therapy for cardiovascular disease: advances in vector development, targeting, and delivery for clinical translation.

    PubMed

    Rincon, Melvin Y; VandenDriessche, Thierry; Chuah, Marinee K

    2015-10-01

    Gene therapy is a promising modality for the treatment of inherited and acquired cardiovascular diseases. The identification of the molecular pathways involved in the pathophysiology of heart failure and other associated cardiac diseases led to encouraging preclinical gene therapy studies in small and large animal models. However, the initial clinical results yielded only modest or no improvement in clinical endpoints. The presence of neutralizing antibodies and cellular immune responses directed against the viral vector and/or the gene-modified cells, the insufficient gene expression levels, and the limited gene transduction efficiencies accounted for the overall limited clinical improvements. Nevertheless, further improvements of the gene delivery technology and a better understanding of the underlying biology fostered renewed interest in gene therapy for heart failure. In particular, improved vectors based on emerging cardiotropic serotypes of the adeno-associated viral vector (AAV) are particularly well suited to coax expression of therapeutic genes in the heart. This led to new clinical trials based on the delivery of the sarcoplasmic reticulum Ca(2+)-ATPase protein (SERCA2a). Though the first clinical results were encouraging, a recent Phase IIb trial did not confirm the beneficial clinical outcomes that were initially reported. New approaches based on S100A1 and adenylate cyclase 6 are also being considered for clinical applications. Emerging paradigms based on the use of miRNA regulation or CRISPR/Cas9-based genome engineering open new therapeutic perspectives for treating cardiovascular diseases by gene therapy. Nevertheless, the continuous improvement of cardiac gene delivery is needed to allow the use of safer and more effective vector doses, ultimately bringing gene therapy for heart failure one step closer to reality. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Cardiology.

  16. Locating Errors Through Networked Surveillance: A Multimethod Approach to Peer Assessment, Hazard Identification, and Prioritization of Patient Safety Efforts in Cardiac Surgery.

    PubMed

    Thompson, David A; Marsteller, Jill A; Pronovost, Peter J; Gurses, Ayse; Lubomski, Lisa H; Goeschel, Christine A; Gosbee, John W; Wahr, Joyce; Martinez, Elizabeth A

    2015-09-01

    The objectives were to develop a scientifically sound and feasible peer-to-peer assessment model that allows health-care organizations to evaluate patient safety in cardiovascular operating rooms and to establish safety priorities for improvement. The locating errors through networked surveillance study was conducted to identify hazards in cardiac surgical care. A multidisciplinary team, composed of organizational sociology, organizational psychology, applied social psychology, clinical medicine, human factors engineering, and health services researchers, conducted the study. We used a transdisciplinary approach, which integrated the theories, concepts, and methods from each discipline, to develop comprehensive research methods. Multiple data collection was involved: focused literature review of cardiac surgery-related adverse events, retrospective analysis of cardiovascular events from a national database in the United Kingdom, and prospective peer assessment at 5 sites, involving survey assessments, structured interviews, direct observations, and contextual inquiries. A nominal group methodology, where one single group acts to problem solve and make decisions was used to review the data and develop a list of the top priority hazards. The top 6 priority hazard themes were as follows: safety culture, teamwork and communication, infection prevention, transitions of care, failure to adhere to practices or policies, and operating room layout and equipment. We integrated the theories and methods of a diverse group of researchers to identify a broad range of hazards and good clinical practices within the cardiovascular surgical operating room. Our findings were the basis for a plan to prioritize improvements in cardiac surgical care. These study methods allowed for the comprehensive assessment of a high-risk clinical setting that may translate to other clinical settings.

  17. Mathematical multi-scale model of the cardiovascular system including mitral valve dynamics. Application to ischemic mitral insufficiency

    PubMed Central

    2011-01-01

    Background Valve dysfunction is a common cardiovascular pathology. Despite significant clinical research, there is little formal study of how valve dysfunction affects overall circulatory dynamics. Validated models would offer the ability to better understand these dynamics and thus optimize diagnosis, as well as surgical and other interventions. Methods A cardiovascular and circulatory system (CVS) model has already been validated in silico, and in several animal model studies. It accounts for valve dynamics using Heaviside functions to simulate a physiologically accurate "open on pressure, close on flow" law. However, it does not consider real-time valve opening dynamics and therefore does not fully capture valve dysfunction, particularly where the dysfunction involves partial closure. This research describes an updated version of this previous closed-loop CVS model that includes the progressive opening of the mitral valve, and is defined over the full cardiac cycle. Results Simulations of the cardiovascular system with healthy mitral valve are performed, and, the global hemodynamic behaviour is studied compared with previously validated results. The error between resulting pressure-volume (PV) loops of already validated CVS model and the new CVS model that includes the progressive opening of the mitral valve is assessed and remains within typical measurement error and variability. Simulations of ischemic mitral insufficiency are also performed. Pressure-Volume loops, transmitral flow evolution and mitral valve aperture area evolution follow reported measurements in shape, amplitude and trends. Conclusions The resulting cardiovascular system model including mitral valve dynamics provides a foundation for clinical validation and the study of valvular dysfunction in vivo. The overall models and results could readily be generalised to other cardiac valves. PMID:21942971

  18. Plasma Lipidomic Profiles Improve on Traditional Risk Factors for the Prediction of Cardiovascular Events in Type 2 Diabetes Mellitus.

    PubMed

    Alshehry, Zahir H; Mundra, Piyushkumar A; Barlow, Christopher K; Mellett, Natalie A; Wong, Gerard; McConville, Malcolm J; Simes, John; Tonkin, Andrew M; Sullivan, David R; Barnes, Elizabeth H; Nestel, Paul J; Kingwell, Bronwyn A; Marre, Michel; Neal, Bruce; Poulter, Neil R; Rodgers, Anthony; Williams, Bryan; Zoungas, Sophia; Hillis, Graham S; Chalmers, John; Woodward, Mark; Meikle, Peter J

    2016-11-22

    Clinical lipid measurements do not show the full complexity of the altered lipid metabolism associated with diabetes mellitus or cardiovascular disease. Lipidomics enables the assessment of hundreds of lipid species as potential markers for disease risk. Plasma lipid species (310) were measured by a targeted lipidomic analysis with liquid chromatography electrospray ionization-tandem mass spectrometry on a case-cohort (n=3779) subset from the ADVANCE trial (Action in Diabetes and Vascular Disease: Preterax and Diamicron-MR Controlled Evaluation). The case-cohort was 61% male with a mean age of 67 years. All participants had type 2 diabetes mellitus with ≥1 additional cardiovascular risk factors, and 35% had a history of macrovascular disease. Weighted Cox regression was used to identify lipid species associated with future cardiovascular events (nonfatal myocardial infarction, nonfatal stroke, and cardiovascular death) and cardiovascular death during a 5-year follow-up period. Multivariable models combining traditional risk factors with lipid species were optimized with the Akaike information criteria. C statistics and NRIs were calculated within a 5-fold cross-validation framework. Sphingolipids, phospholipids (including lyso- and ether- species), cholesteryl esters, and glycerolipids were associated with future cardiovascular events and cardiovascular death. The addition of 7 lipid species to a base model (14 traditional risk factors and medications) to predict cardiovascular events increased the C statistic from 0.680 (95% confidence interval [CI], 0.678-0.682) to 0.700 (95% CI, 0.698-0.702; P<0.0001) with a corresponding continuous NRI of 0.227 (95% CI, 0.219-0.235). The prediction of cardiovascular death was improved with the incorporation of 4 lipid species into the base model, showing an increase in the C statistic from 0.740 (95% CI, 0.738-0.742) to 0.760 (95% CI, 0.757-0.762; P<0.0001) and a continuous net reclassification index of 0.328 (95% CI, 0.317-0.339). The results were validated in a subcohort with type 2 diabetes mellitus (n=511) from the LIPID trial (Long-Term Intervention With Pravastatin in Ischemic Disease). The improvement in the prediction of cardiovascular events, above traditional risk factors, demonstrates the potential of plasma lipid species as biomarkers for cardiovascular risk stratification in diabetes mellitus. URL: https://clinicaltrials.gov. Unique identifier: NCT00145925. © 2016 American Heart Association, Inc.

  19. SUBCHRONIC PULMONARY PATHOLOGY, IRON-OVERLOAD AND TRANSCRIPTIONAL ACTIVITY AFTER LIBBY AMPHIBOLE EXPOSURE IN RAT MODELS OF CARDIOVASCULAR DISEASE

    EPA Science Inventory

    Background: Surface-available iron (Fe) is proposed to contribute to asbestos-induced toxicity through the production of reactive oxygen species.Objective: Our goal was to evaluate the hypothesis that rat models of cardiovascular disease with coexistent Fe overload would be incre...

  20. Variability in Ozone-Induced Pulmonary Injury and Inflammation in Healthy and Cardiovascular Compromised Rat Models

    EPA Science Inventory

    The molecular bases for variability in air pollutant-induced pulmonary injury due to underlying cardiovascular (CVD) and/or metabolic diseases are unknown. We hypothesized that healthy and genetic CVD-prone rat models will exhibit exacerbated response to acute ozone exposure depe...

  1. Urinary Sodium Concentration Is an Independent Predictor of All-Cause and Cardiovascular Mortality in a Type 2 Diabetes Cohort Population

    PubMed Central

    Gand, Elise; Ragot, Stéphanie; Bankir, Lise; Piguel, Xavier; Fumeron, Frédéric; Halimi, Jean-Michel; Marechaud, Richard; Roussel, Ronan; Hadjadj, Samy; Study group, SURDIAGENE

    2017-01-01

    Objective. Sodium intake is associated with cardiovascular outcomes. However, no study has specifically reported an association between cardiovascular mortality and urinary sodium concentration (UNa). We examined the association of UNa with mortality in a cohort of type 2 diabetes (T2D) patients. Methods. Patients were followed for all-cause death and cardiovascular death. Baseline UNa was measured from second morning spot urinary sample. We used Cox proportional hazard models to identify independent predictors of mortality. Improvement in prediction of mortality by the addition of UNa to a model including known risk factors was assessed by the relative integrated discrimination improvement (rIDI) index. Results. Participants (n = 1,439) were followed for a median of 5.7 years, during which 254 cardiovascular deaths and 429 all-cause deaths were recorded. UNa independently predicted all-cause and cardiovascular mortality. An increase of one standard deviation of UNa was associated with a decrease of 21% of all-cause mortality and 22% of cardiovascular mortality. UNa improved all-cause and cardiovascular mortality prediction beyond identified risk factors (rIDI = 2.8%, P = 0.04 and rIDI = 4.6%, P = 0.02, resp.). Conclusions. In T2D, UNa was an independent predictor of mortality (low concentration is associated with increased risk) and improved modestly its prediction in addition to traditional risk factors. PMID:28255559

  2. Non-linear Equation using Plasma Brain Natriuretic Peptide Levels to Predict Cardiovascular Outcomes in Patients with Heart Failure

    NASA Astrophysics Data System (ADS)

    Fukuda, Hiroki; Suwa, Hideaki; Nakano, Atsushi; Sakamoto, Mari; Imazu, Miki; Hasegawa, Takuya; Takahama, Hiroyuki; Amaki, Makoto; Kanzaki, Hideaki; Anzai, Toshihisa; Mochizuki, Naoki; Ishii, Akira; Asanuma, Hiroshi; Asakura, Masanori; Washio, Takashi; Kitakaze, Masafumi

    2016-11-01

    Brain natriuretic peptide (BNP) is the most effective predictor of outcomes in chronic heart failure (CHF). This study sought to determine the qualitative relationship between the BNP levels at discharge and on the day of cardiovascular events in CHF patients. We devised a mathematical probabilistic model between the BNP levels at discharge (y) and on the day (t) of cardiovascular events after discharge for 113 CHF patients (Protocol I). We then prospectively evaluated this model on another set of 60 CHF patients who were readmitted (Protocol II). P(t|y) was the probability of cardiovascular events occurring after >t, the probability on t was given as p(t|y) = -dP(t|y)/dt, and p(t|y) = pP(t|y) = αyβP(t|y), along with p = αyβ (α and β were constant); the solution was p(t|y) = αyβ exp(-αyβt). We fitted this equation to the data set of Protocol I using the maximum likelihood principle, and we obtained the model p(t|y) = 0.000485y0.24788 exp(-0.000485y0.24788t). The cardiovascular event-free rate was computed as P(t) = 1/60Σi=1,…,60 exp(-0.000485yi0.24788t), based on this model and the BNP levels yi in a data set of Protocol II. We confirmed no difference between this model-based result and the actual event-free rate. In conclusion, the BNP levels showed a non-linear relationship with the day of occurrence of cardiovascular events in CHF patients.

  3. The Survey on Cellular and Engineered Tissue Therapies in Europe in 2012*

    PubMed Central

    Ireland, Hilary; Baldomero, Helen; Passweg, Jakob

    2015-01-01

    Following the coordinated efforts of five established scientific organizations, this report describes activity in Europe for the year 2012 in the area of cellular and engineered tissue therapies, excluding hematopoietic stem cell (HSC) treatments for the reconstitution of hematopoiesis. Three hundred thirteen teams from 33 countries responded to the cellular and engineered tissue therapy survey: 138 teams from 27 countries provided data on 2157 patients, while a further 175 teams reported no activity. Indications were musculoskeletal/rheumatological disorders (36%; 80% autologous), cardiovascular disorders (25%; 95% autologous), hematology/oncology, predominantly prevention or treatment of graft versus host disease and HSC graft enhancement (19%; 1% autologous), neurological disorders (3%; 99% autologous), gastrointestinal disorders (1%; 71% autologous), and other indications (16%; 79% autologous). Autologous cells were predominantly used for musculoskeletal/rheumatological (42%) and cardiovascular (34%) disorders, whereas allogeneic cells were mainly used for hematology/oncology (60%). The reported cell types were mesenchymal stem/stromal cells (49%), HSC (28%), chondrocytes (11%), dermal fibroblasts (4%), keratinocytes (1%), and others (7%). In 51% of the grafts, cells were delivered after ex vivo expansion, whereas cells were transduced or sorted in 10% and 16%, respectively, of the reported cases. Cells were delivered intra-organ (35%), intravenously (31%), on a membrane or gel (15%), or using 3D scaffolds (19%). The data are compared with those collected since 2008 to identify trends in the field and discussed in the light of recent publications and ongoing clinical studies. PMID:25425342

  4. Virts on ergometer in U.S. Lab

    NASA Image and Video Library

    2014-12-27

    ISS042E082884 (12/27/2014) --- Expedition 42 Flight Engineer Terry Virts of NASA straps into the station’s stationary exercise bicycle known as the Cycle Ergometer with Vibration Isolation System (CEVIS). Each crew member spends an average of 2.5 hours a day exercising to combat the negative effects of prolonged weightlessness by maintaining bone and muscle mass and cardiovascular health.

  5. Generation and Assessment of Functional Biomaterial Scaffolds for Applications in Cardiovascular Tissue Engineering and Regenerative Medicine.

    PubMed

    Hinderer, Svenja; Brauchle, Eva; Schenke-Layland, Katja

    2015-11-18

    Current clinically applicable tissue and organ replacement therapies are limited in the field of cardiovascular regenerative medicine. The available options do not regenerate damaged tissues and organs, and, in the majority of the cases, show insufficient restoration of tissue function. To date, anticoagulant drug-free heart valve replacements or growing valves for pediatric patients, hemocompatible and thrombus-free vascular substitutes that are smaller than 6 mm, and stem cell-recruiting delivery systems that induce myocardial regeneration are still only visions of researchers and medical professionals worldwide and far from being the standard of clinical treatment. The design of functional off-the-shelf biomaterials as well as automatable and up-scalable biomaterial processing methods are the focus of current research endeavors and of great interest for fields of tissue engineering and regenerative medicine. Here, various approaches that aim to overcome the current limitations are reviewed, focusing on biomaterials design and generation methods for myocardium, heart valves, and blood vessels. Furthermore, novel contact- and marker-free biomaterial and extracellular matrix assessment methods are highlighted. © 2015 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The Tissue-Engineered Vascular Graft—Past, Present, and Future

    PubMed Central

    Pashneh-Tala, Samand; MacNeil, Sheila

    2016-01-01

    Cardiovascular disease is the leading cause of death worldwide, with this trend predicted to continue for the foreseeable future. Common disorders are associated with the stenosis or occlusion of blood vessels. The preferred treatment for the long-term revascularization of occluded vessels is surgery utilizing vascular grafts, such as coronary artery bypass grafting and peripheral artery bypass grafting. Currently, autologous vessels such as the saphenous vein and internal thoracic artery represent the gold standard grafts for small-diameter vessels (<6 mm), outperforming synthetic alternatives. However, these vessels are of limited availability, require invasive harvest, and are often unsuitable for use. To address this, the development of a tissue-engineered vascular graft (TEVG) has been rigorously pursued. This article reviews the current state of the art of TEVGs. The various approaches being explored to generate TEVGs are described, including scaffold-based methods (using synthetic and natural polymers), the use of decellularized natural matrices, and tissue self-assembly processes, with the results of various in vivo studies, including clinical trials, highlighted. A discussion of the key areas for further investigation, including graft cell source, mechanical properties, hemodynamics, integration, and assessment in animal models, is then presented. PMID:26447530

  7. Multidisciplinary collaboration as a sustainable research model for device development.

    PubMed

    Chandra, Ankur

    2013-02-01

    The concurrent problems of research sustainability and decreased clinician involvement with medical device development can be jointly addressed through a novel, multidisciplinary solution. The University of Rochester Cardiovascular Device Design Program is a sustainable program in medical device design supported through a collaboration between the Schools of Medicine and Engineering. This article provides a detailed description of the motivation for starting the program, the current structure of the program, the methods of financial sustainability, and the direct impact it intends to have on the national vascular surgery community. The further expansion of this program and encouragement for development of similar programs throughout the country aims to address many of our current challenges in both research funding and device development education. Copyright © 2013 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  8. The metabolic syndrome in South Asians: epidemiology, determinants, and prevention.

    PubMed

    Misra, Anoop; Khurana, Lokesh

    2009-12-01

    The prevalence of obesity and the metabolic syndrome is rapidly increasing in India and other south Asian countries, leading to increased morbidity and mortality due to type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). The literature search has been carried out using the key words "insulin resistance, the metabolic syndrome, cardiovascular risk, diabetes, obesity, Asian Indians, and South Asians" in the medical search engine Pubmed (National Library of Medicine, Bethesda, MD) from 1966 to September 2009. A high prevalence of the metabolic syndrome and associated cardiovascular risk factors has been observed not only in urban South Asian/Asian Indian adults and children but also in economically disadvantaged people residing in urban slums and rural areas. The main drivers are rapid nutrition, lifestyle, and socioeconomic transitions, consequent to increasing affluence, urbanization, mechanization, and rural-to-urban migration. Less investigated determinants of the metabolic syndrome include psychological stress in urban setting, genetic predisposition, adverse perinatal environment, and childhood "catch up" obesity. Data show atherogenic dyslipidemia, glucose intolerance, thrombotic tendency, subclinical inflammation, and endothelial dysfunction are higher in South Asians than Caucasians. Many of these manifestations are more severe and are seen at an early age (childhood) in South Asians than Caucasians. Metabolic syndrome and cardiovascular risk in South Asians is also heightened by their higher body fat, truncal subcutaneous fat, intra-abdominal fat, and ectopic fat deposition (liver fat, etc.). Further, cardiovascular risk cluster manifests at a lower level of adiposity and abdominal obesity. The cutoffs of body mass index and waist circumference for defining obesity and abdominal obesity, respectively, have been lowered and the definition of the metabolic syndrome has been revised for Asian Indians in a recent consensus statement, so that physicians could intervene early with lifestyle management. Data from a major intervention program conducted by us on urban adolescent schoolchildren in north India for prevention of obesity (the MARG project) has shown encouraging results, making it a model for any future intervention program in South Asians. Cardiometabolic risk is high in South Asians, starting at an early age. Increasing awareness of cluster of risk factors and how to prevent them should be emphasized in population-wide prevention strategies in South Asian countries, primarily focusing on children.

  9. In-line pressure-flow module for in vitro modelling of haemodynamics and biosensor validation

    NASA Technical Reports Server (NTRS)

    Koenig, S. C.; Schaub, J. D.; Ewert, D. L.; Swope, R. D.; Convertino, V. A. (Principal Investigator)

    1997-01-01

    An in-line pressure-flow module for in vitro modelling of haemodynamics and biosensor validation has been developed. Studies show that good accuracy can be achieved in the measurement of pressure and of flow, in steady and pulstile flow systems. The model can be used for development, testing and evaluation of cardiovascular-mechanical-electrical anlogue models, cardiovascular prosthetics (i.e. valves, vascular grafts) and pressure and flow biosensors.

  10. Modeling of short-term mechanism of arterial pressure control in the cardiovascular system: object-oriented and acausal approach.

    PubMed

    Kulhánek, Tomáš; Kofránek, Jiří; Mateják, Marek

    2014-11-01

    This letter introduces an alternative approach to modeling the cardiovascular system with a short-term control mechanism published in Computers in Biology and Medicine, Vol. 47 (2014), pp. 104-112. We recommend using abstract components on a distinct physical level, separating the model into hydraulic components, subsystems of the cardiovascular system and individual subsystems of the control mechanism and scenario. We recommend utilizing an acausal modeling feature of Modelica language, which allows model variables to be expressed declaratively. Furthermore, the Modelica tool identifies which are the dependent and independent variables upon compilation. An example of our approach is introduced on several elementary components representing the hydraulic resistance to fluid flow and the elastic response of the vessel, among others. The introduced model implementation can be more reusable and understandable for the general scientific community. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. An Integrated Model of the Cardiovascular and Central Nervous Systems for Analysis of Microgravity Induced Fluid Redistribution

    NASA Technical Reports Server (NTRS)

    Price, R.; Gady, S.; Heinemann, K.; Nelson, E. S.; Mulugeta, L.; Ethier, C. R.; Samuels, B. C.; Feola, A.; Vera, J.; Myers, J. G.

    2015-01-01

    A recognized side effect of prolonged microgravity exposure is visual impairment and intracranial pressure (VIIP) syndrome. The medical understanding of this phenomenon is at present preliminary, although it is hypothesized that the headward shift of bodily fluids in microgravity may be a contributor. Computational models can be used to provide insight into the origins of VIIP. In order to further investigate this phenomenon, NASAs Digital Astronaut Project (DAP) is developing an integrated computational model of the human body which is divided into the eye, the cerebrovascular system, and the cardiovascular system. This presentation will focus on the development and testing of the computational model of an integrated model of the cardiovascular system (CVS) and central nervous system (CNS) that simulates the behavior of pressures, volumes, and flows within these two physiological systems.

  12. Common carotid intima-media thickness does not add to Framingham risk score in individuals with diabetes mellitus: the USE-IMT initiative.

    PubMed

    den Ruijter, H M; Peters, S A E; Groenewegen, K A; Anderson, T J; Britton, A R; Dekker, J M; Engström, G; Eijkemans, M J; Evans, G W; de Graaf, J; Grobbee, D E; Hedblad, B; Hofman, A; Holewijn, S; Ikeda, A; Kavousi, M; Kitagawa, K; Kitamura, A; Koffijberg, H; Ikram, M A; Lonn, E M; Lorenz, M W; Mathiesen, E B; Nijpels, G; Okazaki, S; O'Leary, D H; Polak, J F; Price, J F; Robertson, C; Rembold, C M; Rosvall, M; Rundek, T; Salonen, J T; Sitzer, M; Stehouwer, C D A; Witteman, J C; Moons, K G; Bots, M L

    2013-07-01

    The aim of this work was to investigate whether measurement of the mean common carotid intima-media thickness (CIMT) improves cardiovascular risk prediction in individuals with diabetes. We performed a subanalysis among 4,220 individuals with diabetes in a large ongoing individual participant data meta-analysis involving 56,194 subjects from 17 population-based cohorts worldwide. We first refitted the risk factors of the Framingham heart risk score on the individuals without previous cardiovascular disease (baseline model) and then expanded this model with the mean common CIMT (CIMT model). The absolute 10 year risk for developing a myocardial infarction or stroke was estimated from both models. In individuals with diabetes we compared discrimination and calibration of the two models. Reclassification of individuals with diabetes was based on allocation to another cardiovascular risk category when mean common CIMT was added. During a median follow-up of 8.7 years, 684 first-time cardiovascular events occurred among the population with diabetes. The C statistic was 0.67 for the Framingham model and 0.68 for the CIMT model. The absolute 10 year risk for developing a myocardial infarction or stroke was 16% in both models. There was no net reclassification improvement with the addition of mean common CIMT (1.7%; 95% CI -1.8, 3.8). There were no differences in the results between men and women. There is no improvement in risk prediction in individuals with diabetes when measurement of the mean common CIMT is added to the Framingham risk score. Therefore, this measurement is not recommended for improving individual cardiovascular risk stratification in individuals with diabetes.

  13. Metal Nanomaterial Toxicity Variations Within the Vascular System

    PubMed Central

    Abukabda, Alaeddin B.; Stapleton, Phoebe A.; Nurkiewicz, Timothy R.

    2016-01-01

    Engineered nanomaterials (ENM) are anthropogenic materials with at least one dimension less than 100 nm. Their ubiquitous employment in biomedical and industrial applications in the absence of full toxicological assessments raises significant concerns over their safety on human health. This is a significant concern, especially for metal and metal oxide ENM as they may possess the greatest potential to impair human health. A large body of literature has developed that reflects adverse systemic effects associated with exposure to these materials, but an integrated mechanistic framework for how ENM exposure influences morbidity remains elusive. This may be due in large part to the tremendous diversity of existing ENM and the rate at which novel ENM are produced. In this review, the influence of specific ENM physicochemical characteristics and hemodynamic factors on cardiovascular toxicity are discussed. Additionally, the toxicity of metallic, and metal oxide ENM is presented in the context of the cardiovascular system and its discrete anatomical and functional components. Finally, future directions and understudied topics are presented. While it is clear that the nanotechnology boom has increased our interest in ENM toxicity, it is also evident that the field of cardiovascular nanotoxicology remains in its infancy and continued, expansive research is necessary in order to determine the mechanisms via which ENM exposure contributes to cardiovascular morbidity. PMID:27686080

  14. In vivo functional photoacoustic microscopy of cutaneous microvasculature in human skin

    PubMed Central

    Favazza, Christopher P.; Cornelius, Lynn A.; Wang, Lihong V.

    2011-01-01

    Microcirculation is an important component of the cardiovascular system and can be used to assess systemic cardiovascular health. Numerous studies have investigated cutaneous microcirculation as an indicator of cardiovascular related diseases. Such research has shown promising results; however, there are many limitations regarding the employed measurement techniques, such as poor depth and spatial resolution and measurement versatility. Here we show the results of functional cutaneous microvascular experiments measured with photoacoustic microscopy, which provides high spatial resolution and multiparameter measurements. In a set of experiments, microvascular networks located in the palms of volunteers were perturbed by periodic ischemic events, and the subsequent hemodynamic response to the stimulus was recorded. Results indicate that during periods of arterial occlusion, the relative oxygen saturation of the capillary vessels decreased below resting levels, and temporarily increased above resting levels immediately following the occlusion. Furthermore, a hyperemic reaction to the occlusions was measured, and the observation agreed well with similar measurements using more conventional imaging techniques. Due to its exceptional capability to functionally image vascular networks with high spatial resolution, photoacoustic microscopy could be a beneficial biomedical tool to assess microvascular functioning and applied to patients with diseases that affect cardiovascular health. © 2011 Society of Photo-Optical Instrumentation Engineers. PMID:21361688

  15. Marital History and the Burden of Cardiovascular Disease in Midlife

    ERIC Educational Resources Information Center

    Zhang, Zhenmei

    2006-01-01

    This study examines the effects of marital history on the burden of cardiovascular disease in midlife. With use of data from the 1992 Health and Retirement Study, a series of nested logistic regression models was used to estimate the association between marital history and the likelihood of cardiovascular disease. Results suggest that, in midlife,…

  16. Adaptation of cardiovascular system stent implants.

    PubMed

    Ostasevicius, Vytautas; Tretsyakou-Savich, Yahor; Venslauskas, Mantas; Bertasiene, Agne; Minchenya, Vladimir; Chernoglaz, Pavel

    2018-06-27

    Time-consuming design and manufacturing processes are a serious disadvantage when adapting human cardiovascular implants as they cause unacceptable delays after the decision to intervene surgically has been made. An ideal cardiovascular implant should have a broad range of characteristics such as strength, viscoelasticity and blood compatibility. The present research proposes the sequence of the geometrical adaptation procedures and presents their results. The adaptation starts from the identification of a person's current health status while performing abdominal aortic aneurysm (AAA) imaging, which is a point of departure for the mathematical model of a cardiovascular implant. The computerized tomography scan shows the patient-specific geometry parameters of AAA and helps to create a model using COMSOL Multiphysics software. The initial parameters for flow simulation are taken from the results of a patient survey. The simulation results allow choosing the available shape of an implant which ensures a non-turbulent flow. These parameters are essential for the design and manufacturing of an implant prototype which should be tested experimentally for the assurance that the mathematical model is adequate to a physical one. The article gives a focused description of competences and means that are necessary to achieve the shortest possible preparation of the adapted cardiovascular implant for the surgery.

  17. Mathematical biomarkers for the autonomic regulation of cardiovascular system.

    PubMed

    Campos, Luciana A; Pereira, Valter L; Muralikrishna, Amita; Albarwani, Sulayma; Brás, Susana; Gouveia, Sónia

    2013-10-07

    Heart rate and blood pressure are the most important vital signs in diagnosing disease. Both heart rate and blood pressure are characterized by a high degree of short term variability from moment to moment, medium term over the normal day and night as well as in the very long term over months to years. The study of new mathematical algorithms to evaluate the variability of these cardiovascular parameters has a high potential in the development of new methods for early detection of cardiovascular disease, to establish differential diagnosis with possible therapeutic consequences. The autonomic nervous system is a major player in the general adaptive reaction to stress and disease. The quantitative prediction of the autonomic interactions in multiple control loops pathways of cardiovascular system is directly applicable to clinical situations. Exploration of new multimodal analytical techniques for the variability of cardiovascular system may detect new approaches for deterministic parameter identification. A multimodal analysis of cardiovascular signals can be studied by evaluating their amplitudes, phases, time domain patterns, and sensitivity to imposed stimuli, i.e., drugs blocking the autonomic system. The causal effects, gains, and dynamic relationships may be studied through dynamical fuzzy logic models, such as the discrete-time model and discrete-event model. We expect an increase in accuracy of modeling and a better estimation of the heart rate and blood pressure time series, which could be of benefit for intelligent patient monitoring. We foresee that identifying quantitative mathematical biomarkers for autonomic nervous system will allow individual therapy adjustments to aim at the most favorable sympathetic-parasympathetic balance.

  18. The role of psychosocial stress at work for the development of cardiovascular diseases: a systematic review.

    PubMed

    Backé, Eva-Maria; Seidler, Andreas; Latza, Ute; Rossnagel, Karin; Schumann, Barbara

    2012-01-01

    A systematic review was carried out to assess evidence for the association between different models of stress at work, and cardiovascular morbidity and mortality. A literature search was conducted using five databases (MEDLINE, Cochrane Library, EMBASE, PSYNDEX and PsycINFO). Inclusion criteria for studies were the following: self-reported stress for individual workplaces, prospective study design and incident disease (myocardial infarction, stroke, angina pectoris, high blood pressure). Evaluation, according to the criteria of the Scottish Intercollegiate Guidelines Network, was done by two readers. In case of disagreement, a third reader was involved. Twenty-six publications were included, describing 40 analyses out of 20 cohorts. The risk estimates for work stress were associated with a statistically significant increased risk of cardiovascular disease in 13 out of the 20 cohorts. Associations were significant for 7 out of 13 cohorts applying the demand-control model, all three cohorts using the effort-reward model and 3 out of 6 cohorts investigating other models. Most significant results came from analyses considering only men. Results for the association between job stress and cardiovascular diseases in women were not clear. Associations were weaker in participants above the age of 55. In accordance with other systematic reviews, this review stresses the importance of psychosocial factors at work in the aetiology of cardiovascular diseases. Besides individual measures to manage stress and to cope with demanding work situations, organisational changes at the workplace need to be considered to find options to reduce occupational risk factors for cardiovascular diseases.

  19. Mathematical biomarkers for the autonomic regulation of cardiovascular system

    PubMed Central

    Campos, Luciana A.; Pereira, Valter L.; Muralikrishna, Amita; Albarwani, Sulayma; Brás, Susana; Gouveia, Sónia

    2013-01-01

    Heart rate and blood pressure are the most important vital signs in diagnosing disease. Both heart rate and blood pressure are characterized by a high degree of short term variability from moment to moment, medium term over the normal day and night as well as in the very long term over months to years. The study of new mathematical algorithms to evaluate the variability of these cardiovascular parameters has a high potential in the development of new methods for early detection of cardiovascular disease, to establish differential diagnosis with possible therapeutic consequences. The autonomic nervous system is a major player in the general adaptive reaction to stress and disease. The quantitative prediction of the autonomic interactions in multiple control loops pathways of cardiovascular system is directly applicable to clinical situations. Exploration of new multimodal analytical techniques for the variability of cardiovascular system may detect new approaches for deterministic parameter identification. A multimodal analysis of cardiovascular signals can be studied by evaluating their amplitudes, phases, time domain patterns, and sensitivity to imposed stimuli, i.e., drugs blocking the autonomic system. The causal effects, gains, and dynamic relationships may be studied through dynamical fuzzy logic models, such as the discrete-time model and discrete-event model. We expect an increase in accuracy of modeling and a better estimation of the heart rate and blood pressure time series, which could be of benefit for intelligent patient monitoring. We foresee that identifying quantitative mathematical biomarkers for autonomic nervous system will allow individual therapy adjustments to aim at the most favorable sympathetic-parasympathetic balance. PMID:24109456

  20. User's instructions for the GE cardiovascular model to simulate LBNP and tilt experiments, with graphic capabilities

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The present form of this cardiovascular model simulates both 1-g and zero-g LBNP (lower body negative pressure) experiments and tilt experiments. In addition, the model simulates LBNP experiments at any body angle. The model is currently accessible on the Univac 1110 Time-Shared System in an interactive operational mode. Model output may be in tabular form and/or graphic form. The graphic capabilities are programmed for the Tektronix 4010 graphics terminal and the Univac 1110.

  1. Research on Improved Depth Belief Network-Based Prediction of Cardiovascular Diseases

    PubMed Central

    Zhang, Hongpo

    2018-01-01

    Quantitative analysis and prediction can help to reduce the risk of cardiovascular disease. Quantitative prediction based on traditional model has low accuracy. The variance of model prediction based on shallow neural network is larger. In this paper, cardiovascular disease prediction model based on improved deep belief network (DBN) is proposed. Using the reconstruction error, the network depth is determined independently, and unsupervised training and supervised optimization are combined. It ensures the accuracy of model prediction while guaranteeing stability. Thirty experiments were performed independently on the Statlog (Heart) and Heart Disease Database data sets in the UCI database. Experimental results showed that the mean of prediction accuracy was 91.26% and 89.78%, respectively. The variance of prediction accuracy was 5.78 and 4.46, respectively. PMID:29854369

  2. Pharmacological Strategies to Retard Cardiovascular Aging.

    PubMed

    Alfaras, Irene; Di Germanio, Clara; Bernier, Michel; Csiszar, Anna; Ungvari, Zoltan; Lakatta, Edward G; de Cabo, Rafael

    2016-05-13

    Aging is the major risk factor for cardiovascular diseases, which are the leading cause of death in the United States. Traditionally, the effort to prevent cardiovascular disease has been focused on addressing the conventional risk factors, including hypertension, hyperglycemia, hypercholesterolemia, and high circulating levels of triglycerides. However, recent preclinical studies have identified new approaches to combat cardiovascular disease. Calorie restriction has been reproducibly shown to prolong lifespan in various experimental model animals. This has led to the development of calorie restriction mimetics and other pharmacological interventions capable to delay age-related diseases. In this review, we will address the mechanistic effects of aging per se on the cardiovascular system and focus on the prolongevity benefits of various therapeutic strategies that support cardiovascular health. © 2016 American Heart Association, Inc.

  3. A Path Analysis of a Randomized "Promotora de Salud" Cardiovascular Disease-Prevention Trial among At-Risk Hispanic Adults

    ERIC Educational Resources Information Center

    de Heer, Hendrik Dirk; Balcazar, Hector G.; Castro, Felipe; Schulz, Leslie

    2012-01-01

    This study assessed effectiveness of an educational community intervention taught by "promotoras de salud" in reducing cardiovascular disease (CVD) risk among Hispanics using a structural equation modeling (SEM) approach. Model development was guided by a social ecological framework proposing CVD risk reduction through improvement of…

  4. The senescence accelerated mouse prone 8 (SAMP8): A novel murine model for cardiac aging.

    PubMed

    Karuppagounder, Vengadeshprabhu; Arumugam, Somasundaram; Babu, Sahana Suresh; Palaniyandi, Suresh S; Watanabe, Kenichi; Cooke, John P; Thandavarayan, Rajarajan A

    2017-05-01

    Because cardiovascular disease remains the major cause of mortality and morbidity world-wide, there remains a compelling need for new insights and novel therapeutic avenues. In this regard, the senescence-accelerated mouse prone 8 (SAMP8) line is a particularly good model for studying the effects of aging on cardiovascular health. Accumulating evidence suggests that this model may shed light on age-associated cardiac and vascular dysfunction and disease. These animals manifest evidence of inflammation, oxidative stress and adverse cardiac remodeling that may recapitulate processes involved in human disease. Early alterations in oxidative damage promote endoplasmic reticulum stress to trigger apoptosis and cytokine production in this genetically susceptible mouse strain. Conversely, pharmacological treatments that reduce inflammation and oxidative stress improve cardiac function in these animals. Therefore, the SAMP8 mouse model provides an exciting opportunity to expand our knowledge of aging in cardiovascular disease and the potential identification of novel targets of treatment. Herein, we review the previous studies performed in SAMP8 mice that provide insight into age-related cardiovascular alterations. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Cardiovascular Reactivity During Marital Conflict in Laboratory and Naturalistic Settings: Differential Associations with Relationship and Individual Functioning Across Contexts.

    PubMed

    Baucom, Brian R W; Baucom, Katherine J W; Hogan, Jasara N; Crenshaw, Alexander O; Bourne, Stacia V; Crowell, Sheila E; Georgiou, Panayiotis; Goodwin, Matthew S

    2018-03-25

    Cardiovascular reactivity during spousal conflict is considered to be one of the main pathways for relationship distress to impact physical, mental, and relationship health. However, the magnitude of association between cardiovascular reactivity during laboratory marital conflict and relationship functioning is small and inconsistent given the scope of its importance in theoretical models of intimate relationships. This study tests the possibility that cardiovascular data collected in laboratory settings downwardly bias the magnitude of these associations when compared to measures obtained in naturalistic settings. Ambulatory cardiovascular reactivity data were collected from 20 couples during two relationship conflicts in a research laboratory, two planned relationship conflicts at couples' homes, and two spontaneous relationship conflicts during couples' daily lives. Associations between self-report measures of relationship functioning, individual functioning, and cardiovascular reactivity across settings are tested using multilevel models. Cardiovascular reactivity was significantly larger during planned and spontaneous relationship conflicts in naturalistic settings than during planned relationship conflicts in the laboratory. Similarly, associations with relationship and individual functioning variables were statistically significantly larger for cardiovascular data collected in naturalistic settings than the same data collected in the laboratory. Our findings suggest that cardiovascular reactivity during spousal conflict in naturalistic settings is statistically significantly different from that elicited in laboratory settings both in magnitude and in the pattern of associations with a wide range of inter- and intrapersonal variables. These differences in findings across laboratory and naturalistic physiological responses highlight the value of testing physiological phenomena across interaction contexts in romantic relationships. © 2018 Family Process Institute.

  6. Generating favorable growth factor and protease release profiles to enable extracellular matrix accumulation within an in vitro tissue engineering environment.

    PubMed

    Zhang, Xiaoqing; Battiston, Kyle G; Labow, Rosalind S; Simmons, Craig A; Santerre, J Paul

    2017-05-01

    Tissue engineering (particularly for the case of load-bearing cardiovascular and connective tissues) requires the ability to promote the production and accumulation of extracellular matrix (ECM) components (e.g., collagen, glycosaminoglycan and elastin). Although different approaches have been attempted in order to enhance ECM accumulation in tissue engineered constructs, studies of underlying signalling mechanisms that influence ECM deposition and degradation during tissue remodelling and regeneration in multi-cellular culture systems have been limited. The current study investigated vascular smooth muscle cell (VSMC)-monocyte co-culture systems using different VSMC:monocyte ratios, within a degradable polyurethane scaffold, to assess their influence on ECM generation and degradation processes, and to elucidate relevant signalling molecules involved in this in vitro vascular tissue engineering system. It was found that a desired release profile of growth factors (e.g. insulin growth factor-1 (IGF-1)) and hydrolytic proteases (e.g. matrix-metalloproteinases 2, 9, 13 and 14 (MMP2, MMP9, MMP13 and MMP14)), could be achieved in co-culture systems, yielding an accumulation of ECM (specifically for 2:1 and 4:1 VSMC:monocyte culture systems). This study has significant implications for the tissue engineering field (including vascular tissue engineering), not only because it identified important cytokines and proteases that control ECM accumulation/degradation within synthetic tissue engineering scaffolds, but also because the established culture systems could be applied to improve the development of different types of tissue constructs. Sufficient extracellular matrix accumulation within cardiovascular and connective tissue engineered constructs is a prerequisite for their appropriate function in vivo. This study established co-culture systems with tissue specific cells (vascular smooth muscle cells (VSMCs)) and defined ratios of immune cells (monocytes) to investigate extracellular matrix (ECM) generation and degradation processes, revealing important mechanisms underlying ECM turnover during vascular tissue regeneration/remodelling. A specific growth factor (IGF-1), as well as hydrolytic proteases (e.g. MMP2, MMP9, MMP13 and MMP14), were identified as playing important roles in these processes. ECM accumulation was found to be dependent on achieving a desired release profile of these ECM-promoting and ECM-degrading factors within the multi-cellular microenvironment. The findings enhance our understanding of ECM deposition and degradation during in vitro tissue engineering and would be applicable to the repair or regeneration of a variety of tissues. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Comparison of Venous Return Characteristics with Right Ventricular Mechanics During Cephalic Fluid Shift

    NASA Technical Reports Server (NTRS)

    Elliott, Morgan; Martin, David

    2015-01-01

    For my summer internship project, I organized a pilot study to analyze the effects of a cephalic fluid shift on venous return and right ventricular mechanics to increase right ventricular and venous knowledge. To accomplish this pilot study, I wrote a testing protocol, obtained Institutional Review Board (IRB) approval, completed subject payment forms, lead testing sessions, and analyzed the data. This experiment used -20deg head down tilt (20 HDT) as the ground based simulation for the fluid shift that occurs during spaceflight and compared it to data obtained from the seated and supine positions. Using echocardiography, data was collected for the right ventricle, hepatic vein, internal jugular vein, external jugular vein, and inferior vena cava. Additionally, non-invasive venous pressure measurements, similar to those soon to be done in-orbit, were collected. It was determined that the venous return from below the heard is increased during 20 HDT, which was supported by increased hepatic vein velocities, increased right ventricular inflow, and increased right ventricular strain at 20 HDT relative to seated values. Jugular veins in the neck undergo an increase in pressure and area, but no significant increase in flow, relative to seated values when a subject is tilted 20 HDT. Contrary to the initial expectations based on this jugular flow, there was no significant increase in central venous pressure, as evidenced by no change in Doppler indices for right arterial pressure or inferior vena cava diameter. It is suspected that these differences in pressure are due to the hydrostatic pressure indifference point shifting during tilt; there is a potential for a similar phenomenon with microgravity. This data will hopefully lead to a more in-depth understanding of the response of the body to microgravity and how those relate to the previously mentioned cardiovascular risk of fluid shift that is associated with spaceflight. These results were presented in greater detail to the Cardiovascular Laboratory and the Space Life Science Summer Institute, which helped me prepare for future graduate school research presentations. This internship allowed me to apply and expand the anatomy, physiology, and mechanics information I learned during my undergraduate degree in Biomedical Engineering to the cardiovascular system with the unique zero gravity perspective. Additionally, I was able to develop skills with data analysis techniques involving speckle tracking for ventricular strain and Doppler waveforms for blood velocities. Additionally, I was able to expand upon my previous work in the Cardiovascular Laboratory by writing a literature review on a data analysis project I completed last summer. Ultimately, this internship and venous relationship comparison project provided me with a significant learning experience and additional skill sets, which are applicable to my goals of attaining a Ph.D. in biomedical engineering with a focus on tissue engineering and the cardiovascular system.

  8. Efficiency of Respirator Filter Media against Diesel Particulate Matter: A Comparison Study Using Two Diesel Particulate Sources.

    PubMed

    Burton, Kerrie A; Whitelaw, Jane L; Jones, Alison L; Davies, Brian

    2016-07-01

    Diesel engines have been a mainstay within many industries since the early 1900s. Exposure to diesel particulate matter (DPM) is a major issue in many industrial workplaces given the potential for serious health impacts to exposed workers; including the potential for lung cancer and adverse irritant and cardiovascular effects. Personal respiratory protective devices are an accepted safety measure to mitigate worker exposure against the potentially damaging health impacts of DPM. To be protective, they need to act as effective filters against carbon and other particulates. In Australia, the filtering efficiency of respiratory protective devices is determined by challenging test filter media with aerosolised sodium chloride to determine penetration at designated flow rates. The methodology outlined in AS/NZS1716 (Standards Australia International Ltd and Standards New Zealand 2012. Respiratory protective devices. Sydney/Wellington: SAI Global Limited/Standards New Zealand) does not account for the differences between characteristics of workplace contaminants like DPM and sodium chloride such as structure, composition, and particle size. This study examined filtering efficiency for three commonly used AS/NZS certified respirator filter models, challenging them with two types of diesel emissions; those from a diesel generator and a diesel engine. Penetration through the filter media of elemental carbon (EC), total carbon (TC), and total suspended particulate (TSP) was calculated. Results indicate that filtering efficiency assumed by P2 certification in Australia was achieved for two of the three respirator models for DPM generated using the small diesel generator, whilst when the larger diesel engine was used, filtering efficiency requirements were met for all three filter models. These results suggest that the testing methodology specified for certification of personal respiratory protective devices by Standards Australia may not ensure adequate protection for respirator users against DPM under all circumstances of diesel generated particles. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  9. User's instructions for the cardiovascular Walters model

    NASA Technical Reports Server (NTRS)

    Croston, R. C.

    1973-01-01

    The model is a combined, steady-state cardiovascular and thermal model. It was originally developed for interactive use, but was converted to batch mode simulation for the Sigma 3 computer. The model has the purpose to compute steady-state circulatory and thermal variables in response to exercise work loads and environmental factors. During a computer simulation run, several selected variables are printed at each time step. End conditions are also printed at the completion of the run.

  10. Long-term regulation in the cardiovascular system - Cornerstone in the development of a composite physiological model

    NASA Technical Reports Server (NTRS)

    White, R. J.

    1974-01-01

    The present work discusses a model of the cardiovascular system and related subsystems capable of long-term simulations of the type desired for in-space hypogravic human physiological performance prediction. The discussion centers around the model of Guyton and modifications of it. In order to draw attention to the fluid handling capabilities of the model, one of several transfusion simulations performed is presented, namely, the isotonic saline transfusion simulation.

  11. The discount rate in the economic evaluation of prevention: a thought experiment.

    PubMed

    Bonneux, L; Birnie, E

    2001-02-01

    In the standard economic model of evaluation, constant discount rates devalue the long term health benefits of prevention strongly. This study shows that it is unlikely that this reflects societal preference. A thought experiment in a cause elimination life table calculates savings of eliminating cardiovascular disease from the Dutch population. A cost effectiveness analysis calculates the acceptable costs of such an intervention at a threshold of 18 000 Euro per saved life year. Cause specific mortality (all cardiovascular causes of death and all other causes) and health care costs (all costs of cardiovascular disease and all other causes of costs) by age and male sex of 1994. At a 0% discount rate, an intervention eliminating cardiovascular disease may cost 71 100 Euro. At the same threshold but at discount rates of 3% or 6%, the same intervention may cost 8100 Euro (8.8 times less) or 1100 Euro (65 times less). The standard economic model needs more realistic duration dependent models of time preference, which reflect societal preference.

  12. A Temporal Chromatin Signature in Human Embryonic Stem Cells Identifies Regulators of Cardiac Development

    PubMed Central

    Paige, Sharon L.; Thomas, Sean; Stoick-Cooper, Cristi L.; Wang, Hao; Maves, Lisa; Sandstrom, Richard; Pabon, Lil; Reinecke, Hans; Pratt, Gabriel; Keller, Gordon; Moon, Randall T.; Stamatoyannopoulos, John; Murry, Charles E.

    2012-01-01

    Summary Directed differentiation of human embryonic stem cells (ESCs) into cardiovascular cells provides a model for studying molecular mechanisms of human cardiovascular development. Though it is known that chromatin modification patterns in ESCs differ markedly from those in lineage-committed progenitors and differentiated cells, the temporal dynamics of chromatin alterations during differentiation along a defined lineage have not been studied. We show that differentiation of human ESCs into cardiovascular cells is accompanied by programmed temporal alterations in chromatin structure that distinguish key regulators of cardiovascular development from other genes. We used this temporal chromatin signature to identify regulators of cardiac development, including the homeobox gene MEIS2. We demonstrate using the zebrafish model that MEIS2 is critical for proper heart tube formation and subsequent cardiac looping. Temporal chromatin signatures should be broadly applicable to other models of stem cell differentiation to identify regulators and provide key insights into major developmental decisions. PMID:22981225

  13. Laboratory model of the cardiovascular system for experimental demonstration of pulse wave propagation

    NASA Astrophysics Data System (ADS)

    Stojadinović, Bojana; Nestorović, Zorica; Djurić, Biljana; Tenne, Tamar; Zikich, Dragoslav; Žikić, Dejan

    2017-03-01

    The velocity by which a disturbance moves through the medium is the wave velocity. Pulse wave velocity is among the key parameters in hemodynamics. Investigation of wave propagation through the fluid-filled elastic tube has a great importance for the proper biophysical understanding of the nature of blood flow through the cardiovascular system. Here, we present a laboratory model of the cardiovascular system. We have designed an experimental setup which can help medical and nursing students to properly learn and understand basic fluid hemodynamic principles, pulse wave and the phenomenon of wave propagation in blood vessels. Demonstration of wave propagation allowed a real time observation of the formation of compression and expansion waves by students, thus enabling them to better understand the difference between the two waves, and also to measure the pulse wave velocity for different fluid viscosities. The laboratory model of the cardiovascular system could be useful as an active learning methodology and a complementary tool for understanding basic principles of hemodynamics.

  14. The effects of sleep duration on the incidence of cardiovascular events among middle-aged male workers in Japan.

    PubMed

    Hamazaki, Yuko; Morikawa, Yuko; Nakamura, Koshi; Sakurai, Masaru; Miura, Katsuyuki; Ishizaki, Masao; Kido, Teruhiko; Naruse, Yuchi; Suwazono, Yasushi; Nakagawa, Hideaki

    2011-09-01

    Although previous epidemiological studies have investigated the relationship between sleep duration and various cardiovascular events, the results have been inconsistent. Accordingly, we conducted a follow-up survey to investigate the relationship between sleep duration and cardiovascular events among male workers, accounting for occupational factors that might confound the true relationship. A total of 2282 male employees aged 35-54 years based in a factory in Japan were followed for 14 years. The risk of cardiovascular events was compared among 4 groups stratified based on sleep duration at baseline (<6, 6-6.9, 7-7.9, and ≥8 hours). Cardiovascular events included stroke, coronary events and sudden cardiac death. The hazard ratios for events were calculated using a Cox proportional hazards model, with the 7-7.9-hour group serving as a reference. The model was adjusted for potential confounders including traditional cardiovascular risk factors and working characteristics. During 14 years of follow-up, 64 cardiovascular events were recorded including 30 strokes, 27 coronary events and 7 sudden cardiac deaths. After adjustment for possible confounders, the hazard ratios for cardiovascular and coronary events in the <6-hour group were 3.49 [95% confidence interval (95% CI) 1.30-9.40] and 4.95 (95% CI 1.31-18.73), respectively. There was no significant increment in the risk of stroke for any sleep duration groups. Short sleep duration (<6 hours) was a significant risk factor for coronary events in a Japanese male working population.

  15. [Mathematical modeling for conditionality of cardiovascular disease by housing conditions].

    PubMed

    Meshkov, N A

    2014-01-01

    There was studied the influence of living conditions (housing area per capita, availability of housing water supply, sewerage and central heating) on the morbidity of the cardiovascular diseases in child and adult population. With the method of regression analysis the morbidity rate was established to significantly decrease with the increase in the area of housing, constructed models are statistically significant, respectively, p = 0.01 and p = 0.02. There was revealed the relationship of the morbidity rate of cardiovascular diseases in children and adults with the supply with housing central heating (p = 0.02 and p = 0.009).

  16. Mathematical modeling of acute and chronic cardiovascular changes during Extended Duration Orbiter (EDO) flights

    NASA Technical Reports Server (NTRS)

    White, Ronald J.; Leonard, Joel I.; Srinivasan, R. Srini; Charles, John B.

    1991-01-01

    The purpose of NASA's Extended Duration Orbiter program is a gradual extension of the capabilities of the Space Shuttle Orbiter beyond its current 7-10 day limit on mission duration, as warranted by deepening understanding of the long-term physiological effects of weightlessness. Attention is being given to the cardiovascular problem of orthostatic tolerance loss due to its adverse effects on crew performance and health during reentry and initial readaptation to earth gravity. An account is given of the results of the application of proven mathematical models of circulatory and cardiovascular systems under microgravity conditions.

  17. Creating Simulated Microgravity Patient Models

    NASA Technical Reports Server (NTRS)

    Hurst, Victor; Doerr, Harold K.; Bacal, Kira

    2004-01-01

    The Medical Operational Support Team (MOST) has been tasked by the Space and Life Sciences Directorate (SLSD) at the NASA Johnson Space Center (JSC) to integrate medical simulation into 1) medical training for ground and flight crews and into 2) evaluations of medical procedures and equipment for the International Space Station (ISS). To do this, the MOST requires patient models that represent the physiological changes observed during spaceflight. Despite the presence of physiological data collected during spaceflight, there is no defined set of parameters that illustrate or mimic a 'space normal' patient. Methods: The MOST culled space-relevant medical literature and data from clinical studies performed in microgravity environments. The areas of focus for data collection were in the fields of cardiovascular, respiratory and renal physiology. Results: The MOST developed evidence-based patient models that mimic the physiology believed to be induced by human exposure to a microgravity environment. These models have been integrated into space-relevant scenarios using a human patient simulator and ISS medical resources. Discussion: Despite the lack of a set of physiological parameters representing 'space normal,' the MOST developed space-relevant patient models that mimic microgravity-induced changes in terrestrial physiology. These models are used in clinical scenarios that will medically train flight surgeons, biomedical flight controllers (biomedical engineers; BME) and, eventually, astronaut-crew medical officers (CMO).

  18. Southern Seven Women's Initiative for Cardiovascular Health: Lessons Learned in Community Health Outreach with Rural Women

    ERIC Educational Resources Information Center

    Zimmermann, Kristine; Khare, Manorama M.; Huber, Rachel; Moehring, Patricia A.; Koch, Abby; Geller, Stacie E.

    2012-01-01

    Background: Cardiovascular disease is the leading cause of death in women in the United States. Rural women have an increased risk of cardiovascular disease due to both behavioral and environmental factors. Models of prevention that are tailored to community needs and build on existing resources are essential for effective outreach to rural women.…

  19. Hypertension Control in Adults With Diabetes Mellitus and Recurrent Cardiovascular Events: Global Results From the Trial Evaluating Cardiovascular Outcomes With Sitagliptin.

    PubMed

    Navar, Ann Marie; Gallup, Dianne S; Lokhnygina, Yuliya; Green, Jennifer B; McGuire, Darren K; Armstrong, Paul W; Buse, John B; Engel, Samuel S; Lachin, John M; Standl, Eberhard; Van de Werf, Frans; Holman, Rury R; Peterson, Eric D

    2017-11-01

    Systolic blood pressure (SBP) treatment targets for adults with diabetes mellitus remain unclear. SBP levels among 12 275 adults with diabetes mellitus, prior cardiovascular disease, and treated hypertension were evaluated in the TECOS (Trial Evaluating Cardiovascular Outcomes With Sitagliptin) randomized trial of sitagliptin versus placebo. The association between baseline SBP and recurrent cardiovascular disease was evaluated using multivariable Cox proportional hazards modeling with restricted cubic splines, adjusting for clinical characteristics. Kaplan-Meier curves by baseline SBP were created to assess time to cardiovascular disease and 2 potential hypotension-related adverse events: worsening kidney function and fractures. The association between time-updated SBP and outcomes was examined using multivariable Cox proportional hazards models. Overall, 42.2% of adults with diabetes mellitus, cardiovascular disease, and hypertension had an SBP ≥140 mm Hg. The association between SBP and cardiovascular disease risk was U shaped, with a nadir ≈130 mm Hg. When the analysis was restricted to those with baseline SBP of 110 to 150 mm Hg, the adjusted association between SBP and cardiovascular disease risk was flat (hazard ratio per 10-mm Hg increase, 0.96; 95% confidence interval, 0.91-1.02). There was no association between SBP and risk of fracture. Above 150 mm Hg, higher SBP was associated with increasing risk of worsening kidney function (hazard ratio per 10-mm Hg increase, 1.10; 95% confidence interval, 1.02-1.18). Many patients with diabetes mellitus have uncontrolled hypertension. The U-shaped association between SBP and cardiovascular disease events was largely driven by those with very high or low SBP, with no difference in cardiovascular disease risk between 110 and 150 mm Hg. Lower SBP was not associated with higher risks of fractures or worsening kidney function. © 2017 American Heart Association, Inc.

  20. Usefulness of the addition of beta-2-microglobulin, cystatin C and C-reactive protein to an established risk factors model to improve mortality risk prediction in patients undergoing coronary angiography.

    PubMed

    Nead, Kevin T; Zhou, Margaret J; Caceres, Roxanne Diaz; Sharp, Stephen J; Wehner, Mackenzie R; Olin, Jeffrey W; Cooke, John P; Leeper, Nicholas J

    2013-03-15

    Evidence-based therapies are available to reduce the risk for death from cardiovascular disease, yet many patients go untreated. Novel methods are needed to identify those at highest risk for cardiovascular death. In this study, the biomarkers β2-microglobulin, cystatin C, and C-reactive protein were measured at baseline in a cohort of participants who underwent coronary angiography. Adjusted Cox proportional-hazards models were used to determine whether the biomarkers predicted all-cause and cardiovascular mortality. Additionally, improvements in risk reclassification and discrimination were evaluated by calculating the net reclassification improvement, C-index, and integrated discrimination improvement with the addition of the biomarkers to a baseline model of risk factors for cardiovascular disease and death. During a median follow-up period of 5.6 years, there were 78 deaths among 470 participants. All biomarkers independently predicted future all-cause and cardiovascular mortality. A significant improvement in risk reclassification was observed for all-cause (net reclassification improvement 35.8%, p = 0.004) and cardiovascular (net reclassification improvement 61.9%, p = 0.008) mortality compared to the baseline risk factors model. Additionally, there was significantly increased risk discrimination with C-indexes of 0.777 (change in C-index 0.057, 95% confidence interval 0.016 to 0.097) and 0.826 (change in C-index 0.071, 95% confidence interval 0.010 to 0.133) for all-cause and cardiovascular mortality, respectively. Improvements in risk discrimination were further supported using the integrated discrimination improvement index. In conclusion, this study provides evidence that β2-microglobulin, cystatin C, and C-reactive protein predict mortality and improve risk reclassification and discrimination for a high-risk cohort of patients who undergo coronary angiography. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. A proposal to enhance Engineering education in biology and Medicine by following the legacy of René Favaloro.

    PubMed

    Armentano, Ricardo L; Cardelino, Juan; Wray, Sandra; Cymberknop, Leandro J; Kun, Luis

    2015-01-01

    The synergy amongst Engineering, Medicine and Biology evolves as fast as these disciplines. We propose to articulate these specialties based on the premise that new professionals must face different situations or crisis due to the so-called islands of excellence. René Favaloro focused his work and struggles against poverty, since malnutrition and environmental degradation may increase the propensity to cardiovascular diseases. Doctor Favaloro has dedicated, throughout his career, a considerable amount of time to prepare and qualify a research group, aware of the importance that an adequate working environment has over the final results. He created a team of young students, engineers, medical doctors, physicists, mathematicians and other specialists. He centered his attention on human resources, in order to disseminate his latest advances in Biology, Medicine and Engineering. We are revising the programs of biomedical engineering education and the application of new pedagogic paradigms, where critical thinking is the key: a holistic challenge that consists of a new way of learning, innovating, communicating and shearing, with a creative attitude that represents quality of perception.

  2. Current status of nanotechnology approaches for cardiovascular disease: a personal perspective.

    PubMed

    Buxton, Denis B

    2009-01-01

    Nanotechnology is poised to have an increasing impact on cardiovascular health in coming years. Diagnostically, multiplexed point-of-care devices will enable rapid genotyping and biomarker measurement to optimize and tailor therapies for the individual patient. Nanoparticle-based molecular imaging agents will take advantage of targeted agents to provide increased insight into disease pathways rather then simply providing structural and functional information. Drug delivery will be impacted by targeting of nanoparticle-encapsulated drugs to the site of action, increasing the effective concentration and decreasing systemic dosage and side effects. Controlled and tailored release of drugs from polymers will improve control of pharmacokinetics and bioavailability. The application of nanotechnology to tissue engineering will facilitate the fabrication of better tissue implants in vitro, and provide scaffolds to promote regeneration in vivo taking advantage of the body's own repair mechanisms. Medical devices will benefit from the development of nanostructured surfaces and coatings to provide better control of thrombogenicity and infection. Taken together, these new technologies have enormous potential for improving the diagnosis and treatment of cardiovascular diseases. (c) 2009 John Wiley & Sons, Inc.

  3. Nanoparticles for Cardiovascular Imaging and Therapeutic Delivery, Part 1: Compositions and Features.

    PubMed

    Stendahl, John C; Sinusas, Albert J

    2015-10-01

    Imaging agents made from nanoparticles are functionally versatile and have unique properties that may translate to clinical utility in several key cardiovascular imaging niches. Nanoparticles exhibit size-based circulation, biodistribution, and elimination properties different from those of small molecules and microparticles. In addition, nanoparticles provide versatile platforms that can be engineered to create both multimodal and multifunctional imaging agents with tunable properties. With these features, nanoparticulate imaging agents can facilitate fusion of high-sensitivity and high-resolution imaging modalities and selectively bind tissues for targeted molecular imaging and therapeutic delivery. Despite their intriguing attributes, nanoparticulate imaging agents have thus far achieved only limited clinical use. The reasons for this restricted advancement include an evolving scope of applications, the simplicity and effectiveness of existing small-molecule agents, pharmacokinetic limitations, safety concerns, and a complex regulatory environment. This review describes general features of nanoparticulate imaging agents and therapeutics and discusses challenges associated with clinical translation. A second, related review to appear in a subsequent issue of JNM highlights nuclear-based nanoparticulate probes in preclinical cardiovascular imaging. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  4. Is Sex Good for Your Health? A National Study on Partnered Sexuality and Cardiovascular Risk Among Older Men and Women

    PubMed Central

    Liu, Hui; Waite, Linda; Shen, Shannon; Wang, Donna

    2016-01-01

    Working from a social relationship and life course perspective, we provide generalizable population-based evidence on partnered sexuality linked to cardiovascular risk in later life using national longitudinal data from the NSHAP (N=2204). We consider characteristics of partnered sexuality of older men and women, particularly sexual activity and sexual quality, as they affect cardiovascular risk. Cardiovascular risk is defined as hypertension, rapid heart rate, elevated CRP, and general cardiovascular events. We find that older men are more likely to report being sexually active, report having sex more often and more enjoyably than are older women. Results from cross-lagged models suggest that high frequency of sex is positively related to later risk of cardiovascular events for men but not women, whereas good sexual quality seems to protect women but not men from cardiovascular risk in later life. We find no evidence that poor cardiovascular health interferes with later sexuality for either gender. PMID:27601406

  5. Wave processes in the human cardiovascular system: The measuring complex, computing models, and diagnostic analysis

    NASA Astrophysics Data System (ADS)

    Ganiev, R. F.; Reviznikov, D. L.; Rogoza, A. N.; Slastushenskiy, Yu. V.; Ukrainskiy, L. E.

    2017-03-01

    A description of a complex approach to investigation of nonlinear wave processes in the human cardiovascular system based on a combination of high-precision methods of measuring a pulse wave, mathematical methods of processing the empirical data, and methods of direct numerical modeling of hemodynamic processes in an arterial tree is given.

  6. Role Models and the Psychological Characteristics That Buffer Low-Socioeconomic-Status Youth from Cardiovascular Risk

    ERIC Educational Resources Information Center

    Chen, Edith; Lee, William K.; Cavey, Lisa; Ho, Amanda

    2013-01-01

    Little is understood about why some youth from low-socioeconomic-status (SES) environments exhibit good health despite adversity. This study tested whether role models and "shift-and-persist" approaches (reframing stressors more benignly while persisting with future optimism) protect low-SES youth from cardiovascular risk. A total of 163…

  7. Cardiovascular disease risk scores in the current practice: which to use in rheumatoid arthritis?

    PubMed

    Purcarea, A; Sovaila, S; Gheorghe, A; Udrea, G; Stoica, V

    2014-01-01

    Cardiovascular disease (CVD) is the highest prevalence disease in the general population (GP) and it accounts for 20 million deaths worldwide each year. Its prevalence is even higher in rheumatoid arthritis. Early detection of subclinical disease is critical and the use of cardiovascular risk prediction models and calculators is widely spread. The impact of such techniques in the GP was previously studied. Despite their common background and similarities, some disagreement exists between most scores and their importance in special high-risk populations like rheumatoid arthritis (RA), having a low level of evidence. The current article aims to single out those predictive models (models) that could be most useful in the care of rheumatoid arthritis patients.

  8. Cardiovascular disease risk scores in the current practice: which to use in rheumatoid arthritis?

    PubMed Central

    Purcarea, A; Sovaila, S; Gheorghe, A; Udrea, G; Stoica, V

    2014-01-01

    Cardiovascular disease (CVD) is the highest prevalence disease in the general population (GP) and it accounts for 20 million deaths worldwide each year. Its prevalence is even higher in rheumatoid arthritis. Early detection of subclinical disease is critical and the use of cardiovascular risk prediction models and calculators is widely spread. The impact of such techniques in the GP was previously studied. Despite their common background and similarities, some disagreement exists between most scores and their importance in special high-risk populations like rheumatoid arthritis (RA), having a low level of evidence. The current article aims to single out those predictive models (models) that could be most useful in the care of rheumatoid arthritis patients. PMID:25713603

  9. Predictive modeling of cardiovascular complications in incident hemodialysis patients.

    PubMed

    Ion Titapiccolo, J; Ferrario, M; Barbieri, C; Marcelli, D; Mari, F; Gatti, E; Cerutti, S; Smyth, P; Signorini, M G

    2012-01-01

    The administration of hemodialysis (HD) treatment leads to the continuous collection of a vast quantity of medical data. Many variables related to the patient health status, to the treatment, and to dialyzer settings can be recorded and stored at each treatment session. In this study a dataset of 42 variables and 1526 patients extracted from the Fresenius Medical Care database EuCliD was used to develop and apply a random forest predictive model for the prediction of cardiovascular events in the first year of HD treatment. A ridge-lasso logistic regression algorithm was then applied to the subset of variables mostly involved in the prediction model to get insights in the mechanisms underlying the incidence of cardiovascular complications in this high risk population of patients.

  10. The Cost-Effectiveness of Low-Cost Essential Antihypertensive Medicines for Hypertension Control in China: A Modelling Study.

    PubMed

    Gu, Dongfeng; He, Jiang; Coxson, Pamela G; Rasmussen, Petra W; Huang, Chen; Thanataveerat, Anusorn; Tzong, Keane Y; Xiong, Juyang; Wang, Miao; Zhao, Dong; Goldman, Lee; Moran, Andrew E

    2015-08-01

    Hypertension is China's leading cardiovascular disease risk factor. Improved hypertension control in China would result in result in enormous health gains in the world's largest population. A computer simulation model projected the cost-effectiveness of hypertension treatment in Chinese adults, assuming a range of essential medicines list drug costs. The Cardiovascular Disease Policy Model-China, a Markov-style computer simulation model, simulated hypertension screening, essential medicines program implementation, hypertension control program administration, drug treatment and monitoring costs, disease-related costs, and quality-adjusted life years (QALYs) gained by preventing cardiovascular disease or lost because of drug side effects in untreated hypertensive adults aged 35-84 y over 2015-2025. Cost-effectiveness was assessed in cardiovascular disease patients (secondary prevention) and for two blood pressure ranges in primary prevention (stage one, 140-159/90-99 mm Hg; stage two, ≥160/≥100 mm Hg). Treatment of isolated systolic hypertension and combined systolic and diastolic hypertension were modeled as a reduction in systolic blood pressure; treatment of isolated diastolic hypertension was modeled as a reduction in diastolic blood pressure. One-way and probabilistic sensitivity analyses explored ranges of antihypertensive drug effectiveness and costs, monitoring frequency, medication adherence, side effect severity, background hypertension prevalence, antihypertensive medication treatment, case fatality, incidence and prevalence, and cardiovascular disease treatment costs. Median antihypertensive costs from Shanghai and Yunnan province were entered into the model in order to estimate the effects of very low and high drug prices. Incremental cost-effectiveness ratios less than the per capita gross domestic product of China (11,900 international dollars [Int$] in 2015) were considered cost-effective. Treating hypertensive adults with prior cardiovascular disease for secondary prevention was projected to be cost saving in the main simulation and 100% of probabilistic simulation results. Treating all hypertension for primary and secondary prevention would prevent about 800,000 cardiovascular disease events annually (95% uncertainty interval, 0.6 to 1.0 million) and was borderline cost-effective incremental to treating only cardiovascular disease and stage two patients (2015 Int$13,000 per QALY gained [95% uncertainty interval, Int$10,000 to Int$18,000]). Of all one-way sensitivity analyses, assuming adherence to taking medications as low as 25%, high Shanghai drug costs, or low medication efficacy led to the most unfavorable results (treating all hypertension, about Int$47,000, Int$37,000, and Int$27,000 per QALY were gained, respectively). The strengths of this study were the use of a recent Chinese national health survey, vital statistics, health care costs, and cohort study outcomes data as model inputs and reliance on clinical-trial-based estimates of coronary heart disease and stroke risk reduction due to antihypertensive medication treatment. The limitations of the study were the use of several sources of data, limited clinical trial evidence for medication effectiveness and harms in the youngest and oldest age groups, lack of information about geographic and ethnic subgroups, lack of specific information about indirect costs borne by patients, and uncertainty about the future epidemiology of cardiovascular diseases in China. Expanded hypertension treatment has the potential to prevent about 800,000 cardiovascular disease events annually and be borderline cost-effective in China, provided low-cost essential antihypertensive medicines programs can be implemented.

  11. Biomedical research, development, and engineering at the Johns Hopkins University Applied Physics Laboratory. Annual report 1 October 1978-30 September 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Medical Institutions of The Johns Hopkins University and The Johns Hopkins University Applied Physics Laboratory have developed a vigorous collaborative program of biomedical research, development, and systems engineering. An important objective of the program is to apply the expertise in engineering, the physical sciences, and systems analysis acquired by APL in defense and space research and development to problems of medical research and health care delivery. This program has grown to include collaboration with many of the clinical and basic science departments of the medical divisions. Active collaborative projects exist in ophthalmology, neurosensory research and instrumentation development, cardiovascular systems,more » patient monitoring, therapeutic and rehabilitation systems, clinical information systems, and clinical engineering. This application of state-of-the-art technology has contributed to advances in many areas of basic medical research and in clinical diagnosis and therapy through improvement of instrumentation, techniques, and basic understanding.« less

  12. Using Acellular Bioactive Extracellular Matrix Scaffolds to Enhance Endogenous Cardiac Repair

    PubMed Central

    Svystonyuk, Daniyil A.; Mewhort, Holly E. M.; Fedak, Paul W. M.

    2018-01-01

    An inability to recover lost cardiac muscle following acute ischemic injury remains the biggest shortcoming of current therapies to prevent heart failure. As compared to standard medical and surgical treatments, tissue engineering strategies offer the promise of improved heart function by inducing regeneration of functional heart muscle. Tissue engineering approaches that use stem cells and genetic manipulation have shown promise in preclinical studies but have also been challenged by numerous critical barriers preventing effective clinical translational. We believe that surgical intervention using acellular bioactive ECM scaffolds may yield similar therapeutic benefits with minimal translational hurdles. In this review, we outline the limitations of cellular-based tissue engineering strategies and the advantages of using acellular biomaterials with bioinductive properties. We highlight key anatomic targets enriched with cellular niches that can be uniquely activated using bioactive scaffold therapy. Finally, we review the evolving cardiovascular tissue engineering landscape and provide critical insights into the potential therapeutic benefits of acellular scaffold therapy. PMID:29696148

  13. Utility of different cardiovascular disease prediction models in rheumatoid arthritis.

    PubMed

    Purcarea, A; Sovaila, S; Udrea, G; Rezus, E; Gheorghe, A; Tiu, C; Stoica, V

    2014-01-01

    Rheumatoid arthritis comes with a 30% higher probability for cardiovascular disease than the general population. Current guidelines advocate for early and aggressive primary prevention and treatment of risk factors in high-risk populations but this excess risk is under-addressed in RA in real life. This is mainly due to difficulties met in the correct risk evaluation. This study aims to underline the differences in results of the main cardiovascular risk screening models in the real life rheumatoid arthritis population. In a cross-sectional study, patients addressed to a tertiary care center in Romania for an biannual follow-up of rheumatoid arthritis and the ones who were considered free of any cardiovascular disease were assessed for subclinical atherosclerosis. Clinical, biological and carotidal ultrasound evaluations were performed. A number of cardiovascular disease prediction scores were performed and differences between tests were noted in regard to subclinical atherosclerosis as defined by the existence of carotid intima media thickness over 0,9 mm or carotid plaque. In a population of 29 Romanian rheumatoid arthritis patients free of cardiovascular disease, the performance of Framingham Risk Score, HeartSCORE, ARIC cardiovascular disease prediction score, Reynolds Risk Score, PROCAM risk score and Qrisk2 score were compared. All the scores under-diagnosed subclinical atherosclerosis. With an AUROC of 0,792, the SCORE model was the only one that could partially stratify patients in low, intermediate and high-risk categories. The use of the EULAR recommended modifier did not help to reclassify patients. The only score that showed a statistically significant prediction capacity for subclinical atherosclerosis in a Romanian rheumatoid arthritis population was SCORE. The additional calibration or the use of imaging techniques in CVD risk prediction for the intermediate risk category might be warranted.

  14. Utility of different cardiovascular disease prediction models in rheumatoid arthritis

    PubMed Central

    Purcarea, A; Sovaila, S; Udrea, G; Rezus, E; Gheorghe, A; Tiu, C; Stoica, V

    2014-01-01

    Background. Rheumatoid arthritis comes with a 30% higher probability for cardiovascular disease than the general population. Current guidelines advocate for early and aggressive primary prevention and treatment of risk factors in high-risk populations but this excess risk is under-addressed in RA in real life. This is mainly due to difficulties met in the correct risk evaluation. This study aims to underline the differences in results of the main cardiovascular risk screening models in the real life rheumatoid arthritis population. Methods. In a cross-sectional study, patients addressed to a tertiary care center in Romania for an biannual follow-up of rheumatoid arthritis and the ones who were considered free of any cardiovascular disease were assessed for subclinical atherosclerosis. Clinical, biological and carotidal ultrasound evaluations were performed. A number of cardiovascular disease prediction scores were performed and differences between tests were noted in regard to subclinical atherosclerosis as defined by the existence of carotid intima media thickness over 0,9 mm or carotid plaque. Results. In a population of 29 Romanian rheumatoid arthritis patients free of cardiovascular disease, the performance of Framingham Risk Score, HeartSCORE, ARIC cardiovascular disease prediction score, Reynolds Risk Score, PROCAM risk score and Qrisk2 score were compared. All the scores under-diagnosed subclinical atherosclerosis. With an AUROC of 0,792, the SCORE model was the only one that could partially stratify patients in low, intermediate and high-risk categories. The use of the EULAR recommended modifier did not help to reclassify patients. Conclusion. The only score that showed a statistically significant prediction capacity for subclinical atherosclerosis in a Romanian rheumatoid arthritis population was SCORE. The additional calibration or the use of imaging techniques in CVD risk prediction for the intermediate risk category might be warranted. PMID:25713628

  15. PCL-PDMS-PCL copolymer-based microspheres mediate cardiovascular differentiation from embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Song, Liqing

    Poly-epsilon-caprolactone (PCL) based copolymers have received much attention as drug or growth factor delivery carriers and tissue engineering scaffolds due to their biocompatibility, biodegradability, and tunable biophysical properties. Copolymers of PCL and polydimethylsiloxane (PDMS) also have shape memory behaviors and can be made into thermoresponsive shape memory polymers for various biomedical applications such as smart sutures and vascular stents. However, the influence of biophysical properties of PCL-PDMS-PCL copolymers on stem cell lineage commitment is not well understood. In this study, PDMS was used as soft segments of varying length to tailor the biophysical properties of PCL-based co-polymers. While low elastic modulus (<10 kPa) of the tri-block copolymer PCL-PDMS-PCL affected cardiovascular differentiation of embryonic stem cells, the range of 60-100 MPa PCL-PDMS-PCL showed little influence on the differentiation. Then different size (30-140 mum) of microspheres were fabricated from PCL-PDMS-PCL copolymers and incorporated within embryoid bodies (EBs). Mesoderm differentiation was induced using bone morphogenetic protein (BMP)-4 for cardiovascular differentiation. Differential expressions of mesoderm progenitor marker KDR and vascular markers CD31 and VE-cadherin were observed for the cells differentiated from EBs incorporated with microspheres of different size, while little difference was observed for cardiac marker alpha-actinin expression. Small size of microspheres (30 mum) resulted in higher expression of KDR while medium size of microspheres (94 mum) resulted in higher CD31 and VE-cadherin expression. This study indicated that the biophysical properties of PCL-based copolymers impacted stem cell lineage commitment, which should be considered for drug delivery and tissue engineering applications.

  16. Modeling Single Ventricle Physiology: Review of Engineering Tools to Study First Stage Palliation of Hypoplastic Left Heart Syndrome

    PubMed Central

    Biglino, Giovanni; Giardini, Alessandro; Hsia, Tain-Yen; Figliola, Richard; Taylor, Andrew M.; Schievano, Silvia

    2013-01-01

    First stage palliation of hypoplastic left heart syndrome, i.e., the Norwood operation, results in a complex physiological arrangement, involving different shunting options (modified Blalock-Taussig, RV-PA conduit, central shunt from the ascending aorta) and enlargement of the hypoplastic ascending aorta. Engineering techniques, both computational and experimental, can aid in the understanding of the Norwood physiology and their correct implementation can potentially lead to refinement of the decision-making process, by means of patient-specific simulations. This paper presents some of the available tools that can corroborate clinical evidence by providing detailed insight into the fluid dynamics of the Norwood circulation as well as alternative surgical scenarios (i.e., virtual surgery). Patient-specific anatomies can be manufactured by means of rapid prototyping and such models can be inserted in experimental set-ups (mock circulatory loops) that can provide a valuable source of validation data as well as hydrodynamic information. Such models can be tuned to respond to differing the patient physiologies. Experimental set-ups can also be compatible with visualization techniques, like particle image velocimetry and cardiovascular magnetic resonance, further adding to the knowledge of the local fluid dynamics. Multi-scale computational models include detailed three-dimensional (3D) anatomical information coupled to a lumped parameter network representing the remainder of the circulation. These models output both overall hemodynamic parameters while also enabling to investigate the local fluid dynamics of the aortic arch or the shunt. As an alternative, pure lumped parameter models can also be employed to model Stage 1 palliation, taking advantage of a much lower computational cost, albeit missing the 3D anatomical component. Finally, analytical techniques, such as wave intensity analysis, can be employed to study the Norwood physiology, providing a mechanistic perspective on the ventriculo-arterial coupling for this specific surgical scenario. PMID:24400277

  17. Cardiovascular risk estimation in women with a history of hypertensive pregnancy disorders at term: a longitudinal follow-up study

    PubMed Central

    2013-01-01

    Background Cardiovascular disease is associated with major morbidity and mortality in women in the Western world. Prediction of an individual cardiovascular disease risk in young women is difficult. It is known that women with hypertensive pregnancy complications have an increased risk for developing cardiovascular disease in later life and pregnancy might be used as a cardiovascular stress test to identify women who are at high risk for cardiovascular disease. In this study we assess the possibility of long term cardiovascular risk prediction in women with a history of hypertensive pregnancy disorders at term. Methods In a longitudinal follow-up study, between June 2008 and November 2010, 300 women with a history of hypertensive pregnancy disorders at term (HTP cohort) and 94 women with a history of normotensive pregnancies at term (NTP cohort) were included. From the cardiovascular risk status that was known two years after index pregnancy we calculated individual (extrapolated) 10-and 30-year cardiovascular event risks using four different risk prediction models including the Framingham risk score, the SCORE score and the Reynolds risk score. Continuous data were analyzed using the Student’s T test and Mann–Whitney U test and categorical data by the Chi-squared test. A poisson regression analysis was performed to calculate the incidence risk ratios and corresponding 95% confidence intervals for the different cardiovascular risk estimation categories. Results After a mean follow-up of 2.5 years, HTP women had significantly higher mean (SD) extrapolated 10-year cardiovascular event risks (HTP 7.2% (3.7); NTP 4.4% (1.9) (p<.001, IRR 5.8, 95% CI 1.9 to 19)) and 30-year cardiovascular event risks (HTP 11% (7.6); NTP 7.3% (3.5) (p<.001, IRR 2.7, 95% CI 1.6 to 4.5)) as compared to NTP women calculated by the Framingham risk scores. The SCORE score and the Reynolds risk score showed similar significant results. Conclusions Women with a history of gestational hypertension or preeclampsia at term have higher predicted (extrapolated) 10-year and 30-year cardiovascular event risks as compared to women with a history of uncomplicated pregnancies. Further large prospective studies have to evaluate whether hypertensive pregnancy disorders have to be included as an independent variable in cardiovascular risk prediction models for women. PMID:23734952

  18. The effects of air pollution on daily cardiovascular diseases hospital admissions in Wuhan from 2013 to 2015

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoying; Wang, Wangcheng; Jiao, Shilin; Yuan, Jing; Hu, Chunping; Wang, Lin

    2018-06-01

    To evaluate the short-term effect of ambient air pollution on cardiovascular hospital admissions and capture the susceptible subpopulations in Wuhan, China, we adopted a generalized additive model to quantitatively analyze the influences of air pollutants on daily cardiovascular diseases hospital admissions and examine the influences of different subgroups. The largest significant effects for PM2.5, SO2 and NO2 on cardiovascular hospital admissions were observed at lag0, lag02 and lag02, respectively, and a 10μg/m3 increment in concentration of PM2.5, SO2 and NO2 were associated with 0.87% (95%CI: 0.05%-1.7%), 3.41% (95%CI: -0.21%-7.17%) and 2.98% (95%CI: 0.66%-5.37%) increases in cardiovascular hospital admissions. Nearly linear relationships were found for NO2 and PM2.5 with cardiovascular hospital admissions, and the J-shaped exposure-response relationship was observed for SO2 with cardiovascular hospital admissions. NO2 might have independent health effects of PM2.5 on the population at risk. The effect estimates for PM2.5 and SO2 were not sensitive with the inclusion of the co-pollutant adjustment. The gender, age and seasonal specific association between three pollutants and cardiovascular disease didn't show obvious differences in the magnitude and trend of the effects except that the seasonal difference of SO2 was significant. This study showed that PM2.5 and NO2 had effects on cardiovascular diseases, and the multiple pollutants should be considered together in the hazard models. In addition, the government should remind the resident to protect themselves and wear masks to avoid the harmful effect of air pollution, especially for the susceptible population.

  19. Prediction model with metabolic syndrome to predict recurrent vascular events in patients with clinically manifest vascular diseases.

    PubMed

    Wassink, Annemarie M; van der Graaf, Yolanda; Janssen, Kristel J; Cook, Nancy R; Visseren, Frank L

    2012-12-01

    Although the overall average 10-year cardiovascular risk for patients with manifest atherosclerosis is considered to be more than 20%, actual risk for individual patients ranges from much lower to much higher. We investigated whether information on metabolic syndrome (MetS) or its individual components improves cardiovascular risk stratification in these patients. We conducted a prospective cohort study in 3679 patients with clinical manifest atherosclerosis from the Secondary Manifestations of ARTerial disease (SMART) study. Primary outcome was defined as any cardiovascular event (cardiovascular death, ischemic stroke or myocardial infarction). Three pre-specified prediction models were derived, all including information on established MetS components. The association between outcome and predictors was quantified using a Cox proportional hazard analysis. Model performance was assessed using global goodness-of-fit fit (χ(2)), discrimination (C-index) and ability to improve risk stratification. A total of 417 cardiovascular events occurred among 3679 patients with 15,102 person-years of follow-up (median follow-up 3.7 years, range 1.6-6.4 years). Compared to a model with age and gender only, all MetS-based models performed slightly better in terms of global model fit (χ(2)) but not C-index. The Net Reclassification Index associated with the addition of MetS (yes/no), the dichotomous MetS-components or the continuous MetS-components on top of age and gender was 2.1% (p = 0.29), 2.3% (p = 0.31) and 7.5% (p = 0.01), respectively. Prediction models incorporating age, gender and MetS can discriminate between patients with clinical manifest atherosclerosis at the highest vascular risk and those at lower risk. The addition of MetS components to a model with age and gender correctly reclassifies only a small proportion of patients into higher- and lower-risk categories. The clinical utility of a prediction model with MetS is therefore limited.

  20. Association of anemia with the risk of cardiovascular adverse events in overweight/obese patients.

    PubMed

    Winther, S A; Finer, N; Sharma, A M; Torp-Pedersen, C; Andersson, C

    2014-03-01

    Anemia is associated with increased cardiovascular risks. Obesity may cause anemia in several ways, for example, by low-grade inflammation and relative iron deficit. The outcomes associated with anemia in overweight/obese patients at high cardiovascular risk are however not known. Therefore, we investigated the cardiovascular prognosis in overweight/obese subjects with anemia. A total of 9,687 overweight/obese cardiovascular high-risk patients from the Sibutramine Cardiovascular OUTcomes trial were studied. Patients were stratified after baseline hemoglobin level and followed for the risks of primary event (comprising nonfatal myocardial infarction, nonfatal stroke, resuscitated cardiac arrest or cardiovascular death) and all-cause mortality. Risk estimates (hazard ratios (HR) with 95% confidence intervals (CI)) were calculated using Cox regression models. Anemia was unadjusted associated with increased risk for the primary event, HR 1.73 (CI 1.37-2.18) and HR 2.02 (CI 1.34-3.06) for patients with mild or moderate-to-severe anemia, respectively, compared with patients without anemia. Adjusted for several confounders, anemia remained of prognostic importance. Increased risk of the primary events appeared to be driven by risk of cardiovascular death, adjusted HR 1.82 (CI 1.33-2.51) for mild anemia and adjusted HR 1.65 (CI 0.90-3.04) for moderate-to-severe anemia, and all-cause mortality, adjusted HR 1.50 (CI 1.17-1.93) for mild and adjusted HR 1.61 (CI 1.04-2.51) for moderate-to-severe anemia. While adding serum creatinine to the models, the increased risk of mild anemia was still a significant predictor for mortality (cardiovascular and all-cause), whereas moderate-to-severe anemia was not. For the primary events, anemia was no longer of independent prognostic importance when including serum creatinine. Anemia is associated with an increased risk of long-term adverse cardiovascular events and deaths among overweight/obese cardiovascular high-risk patients. The increased risk appeared to be driven by the risk of cardiovascular death and all-cause mortality, and renal impairments seemed to have a role in the increased risk.

  1. Computer model for the cardiovascular system: development of an e-learning tool for teaching of medical students.

    PubMed

    Warriner, David Roy; Bayley, Martin; Shi, Yubing; Lawford, Patricia Victoria; Narracott, Andrew; Fenner, John

    2017-11-21

    This study combined themes in cardiovascular modelling, clinical cardiology and e-learning to create an on-line environment that would assist undergraduate medical students in understanding key physiological and pathophysiological processes in the cardiovascular system. An interactive on-line environment was developed incorporating a lumped-parameter mathematical model of the human cardiovascular system. The model outputs were used to characterise the progression of key disease processes and allowed students to classify disease severity with the aim of improving their understanding of abnormal physiology in a clinical context. Access to the on-line environment was offered to students at all stages of undergraduate training as an adjunct to routine lectures and tutorials in cardiac pathophysiology. Student feedback was collected on this novel on-line material in the course of routine audits of teaching delivery. Medical students, irrespective of their stage of undergraduate training, reported that they found the models and the environment interesting and a positive experience. After exposure to the environment, there was a statistically significant improvement in student performance on a series of 6 questions based on cardiovascular medicine, with a 33% and 22% increase in the number of questions answered correctly, p < 0.0001 and p < 0.001 respectively. Considerable improvement was found in students' knowledge and understanding during assessment after exposure to the e-learning environment. Opportunities exist for development of similar environments in other fields of medicine, refinement of the existing environment and further engagement with student cohorts. This work combines some exciting and developing fields in medical education, but routine adoption of these types of tool will be possible only with the engagement of all stake-holders, from educationalists, clinicians, modellers to, most importantly, medical students.

  2. Sunlight exposure and cardiovascular risk factors in the REGARDS study: a cross-sectional split-sample analysis

    PubMed Central

    2014-01-01

    Background Previous research has suggested that vitamin D and sunlight are related to cardiovascular outcomes, but associations between sunlight and risk factors have not been investigated. We examined whether increased sunlight exposure was related to improved cardiovascular risk factor status. Methods Residential histories merged with satellite, ground monitor, and model reanalysis data were used to determine previous-year sunlight radiation exposure for 17,773 black and white participants aged 45+ from the US. Exploratory and confirmatory analyses were performed by randomly dividing the sample into halves. Logistic regression models were used to examine relationships with cardiovascular risk factors. Results The lowest, compared to the highest quartile of insolation exposure was associated with lower high-density lipoprotein levels in adjusted exploratory (−2.7 mg/dL [95% confidence interval: −4.2, −1.2]) and confirmatory (−1.5 mg/dL [95% confidence interval: −3.0, −0.1]) models. The lowest, compared to the highest quartile of insolation exposure was associated with higher systolic blood pressure levels in unadjusted exploratory and confirmatory, as well as the adjusted exploratory model (2.3 mmHg [95% confidence interval: 0.8, 3.8]), but not the adjusted confirmatory model (1.6 mg/dL [95% confidence interval: −0.5, 3.7]). Conclusions The results of this study suggest that lower long-term sunlight exposure has an association with lower high-density lipoprotein levels. However, all associations were weak, thus it is not known if insolation may affect cardiovascular outcomes through these risk factors. PMID:24946776

  3. Bayesian network modeling: A case study of an epidemiologic system analysis of cardiovascular risk.

    PubMed

    Fuster-Parra, P; Tauler, P; Bennasar-Veny, M; Ligęza, A; López-González, A A; Aguiló, A

    2016-04-01

    An extensive, in-depth study of cardiovascular risk factors (CVRF) seems to be of crucial importance in the research of cardiovascular disease (CVD) in order to prevent (or reduce) the chance of developing or dying from CVD. The main focus of data analysis is on the use of models able to discover and understand the relationships between different CVRF. In this paper a report on applying Bayesian network (BN) modeling to discover the relationships among thirteen relevant epidemiological features of heart age domain in order to analyze cardiovascular lost years (CVLY), cardiovascular risk score (CVRS), and metabolic syndrome (MetS) is presented. Furthermore, the induced BN was used to make inference taking into account three reasoning patterns: causal reasoning, evidential reasoning, and intercausal reasoning. Application of BN tools has led to discovery of several direct and indirect relationships between different CVRF. The BN analysis showed several interesting results, among them: CVLY was highly influenced by smoking being the group of men the one with highest risk in CVLY; MetS was highly influence by physical activity (PA) being again the group of men the one with highest risk in MetS, and smoking did not show any influence. BNs produce an intuitive, transparent, graphical representation of the relationships between different CVRF. The ability of BNs to predict new scenarios when hypothetical information is introduced makes BN modeling an Artificial Intelligence (AI) tool of special interest in epidemiological studies. As CVD is multifactorial the use of BNs seems to be an adequate modeling tool. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Study report on guidelines and test procedures for investigating stability of nonlinear cardiovascular control system models

    NASA Technical Reports Server (NTRS)

    Fitzjerrell, D. G.

    1974-01-01

    A general study of the stability of nonlinear as compared to linear control systems is presented. The analysis is general and, therefore, applies to other types of nonlinear biological control systems as well as the cardiovascular control system models. Both inherent and numerical stability are discussed for corresponding analytical and graphic methods and numerical methods.

  5. A structural model of health behavior modification among patients with cardiovascular disease.

    PubMed

    Goong, Hwasoo; Ryu, Seungmi; Xu, Lijuan

    2016-02-01

    The purpose of the study was to test a structural equation model in which social support, health beliefs, and stage of change predict the health behaviors of patients with cardiovascular disease. A cross-sectional correlational design was used. Using convenience sampling, a survey about social support, health belief, stage of change, and health behavior was completed by 314 adults with cardiovascular disease from outpatient clinics in 2 university hospitals in Korea. Data were analyzed using a structural equation model with the Analysis of Moment program. The participants were aged 53.44±13.19 years (mean±SD), and about 64% of them were male. The proposed model fit the data from the study well, explaining 19% and 60% of the variances in the stage of change and health behavior, respectively. The findings indicate that the performance of health behavior modification among the patients with cardiovascular disease can be explained by social support, health belief, and stage of change based on a health-belief and stage-of-change model. Further studies are warranted to confirm the efficacy of health-promoting strategies in initiating and maintaining the performance of health behaviors by providing social support from family and medical staff and enhancing health belief. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. An Integrative Model of the Cardiovascular System Coupling Heart Cellular Mechanics with Arterial Network Hemodynamics

    PubMed Central

    Kim, Young-Tae; Lee, Jeong Sang; Youn, Chan-Hyun; Choi, Jae-Sung

    2013-01-01

    The current study proposes a model of the cardiovascular system that couples heart cell mechanics with arterial hemodynamics to examine the physiological role of arterial blood pressure (BP) in left ventricular hypertrophy (LVH). We developed a comprehensive multiphysics and multiscale cardiovascular model of the cardiovascular system that simulates physiological events, from membrane excitation and the contraction of a cardiac cell to heart mechanics and arterial blood hemodynamics. Using this model, we delineated the relationship between arterial BP or pulse wave velocity and LVH. Computed results were compared with existing clinical and experimental observations. To investigate the relationship between arterial hemodynamics and LVH, we performed a parametric study based on arterial wall stiffness, which was obtained in the model. Peak cellular stress of the left ventricle and systolic blood pressure (SBP) in the brachial and central arteries also increased; however, further increases were limited for higher arterial stiffness values. Interestingly, when we doubled the value of arterial stiffness from the baseline value, the percentage increase of SBP in the central artery was about 6.7% whereas that of the brachial artery was about 3.4%. It is suggested that SBP in the central artery is more critical for predicting LVH as compared with other blood pressure measurements. PMID:23960442

  7. [Cardiovascular risk in Spanish smokers compared to non-smokers: RETRATOS study].

    PubMed

    Fernández de Bobadilla, Jaime; Sanz de Burgoa, Verónica; Garrido Morales, Patricio; López de Sá, Esteban

    2011-11-01

    To evaluate the level of cardiovascular risk in smokers seenin Primary Care clinics. Epidemiologic, cross-sectional and multicentre study. Primary Care. Every investigator included 4 consecutive patients (3 smokers, 1 non-smoker) aged 35-50 years, who came to the clinic for any reason. A total of 2,184 patients were included; 2,124 (1,597 smokers; 527 non-smokers) were evaluated and 60 patients were excluded because they did not meet with selection criteria. The 10-year risk of suffering from a fatal cardiovascular disease (CVDR) was calculated according to the SCORE (Systematic Coronary Risk Evaluation) model. The 10-year lethal CVR according SCORE model, was classified as: very high (> 15%), high (10-14%), slightly high (5-9%), average (3-4%), low (2%), very low (1%) and negligible (< 1%). A logistical regression model was used to estimate the relationship between smoking and prior cardiovascular events. 10-year fatal CVDR according to the SCORE model was significantly higher in smokers (40±5.3) vs. non-smokers (1.9±2.5) (P<.0001). low (< 3%) [78.0% non-smokers vs. 60.7% smokers (P<.0001)]; intermediate (3-5%) [11.1% non-smokers vs. 12.6% smokers (P<.001)]; high (> 5%) [10.9% non-smokers vs. 26.7% smokers (P<.001)]. The logistical regression model showed that non-smokers vs. smokers had less probability of suffering myocardial infarction (OR 0.3; 95% confidence interval (95% CI): 0.1-0.8; P<.0001), peripheral vascular disease (OR 0.6; 95% CI: 0.4-1.0; P=.0180) and chronic obstructive lung disease (OR 0.18; 95% CI: 0.1-0.2; P=.0507). Smoking is related to a high risk of fatal cardiovascular disease. Active promotion in Primary Care clinics of measures aimed at reducing the prevalence of the smoking habit would lead to a lowering of cardiovascular morbidity and mortality. Copyright © 2010 Elsevier España, S.L. All rights reserved.

  8. Micropatterned nanostructures: a bioengineered approach to mass-produce functional myocardial grafts.

    PubMed

    Serpooshan, Vahid; Mahmoudi, Morteza

    2015-02-13

    Cell-based therapies are a recently established path for treating a wide range of human disease. Tissue engineering of contractile heart muscle for replacement therapy is among the most exciting and important of these efforts. However, current in vitro techniques of cultivating functional mature cardiac grafts have only been moderately successful due to the poor capability of traditional two-dimensional cell culture systems to recapitulate necessary in vivo conditions. In this issue, Kiefer et al introduce a laser-patterned nanostructured substrate (Al/Al2O3 nanowires) for efficient maintenance of oriented human cardiomyocytes, with great potential to open new roads to mass-production of contractile myocardial grafts for cardiovascular tissue engineering.

  9. Micropatterned nanostructures: a bioengineered approach to mass-produce functional myocardial grafts

    NASA Astrophysics Data System (ADS)

    Serpooshan, Vahid; Mahmoudi, Morteza

    2015-02-01

    Cell-based therapies are a recently established path for treating a wide range of human disease. Tissue engineering of contractile heart muscle for replacement therapy is among the most exciting and important of these efforts. However, current in vitro techniques of cultivating functional mature cardiac grafts have only been moderately successful due to the poor capability of traditional two-dimensional cell culture systems to recapitulate necessary in vivo conditions. In this issue, Kiefer et al [1] introduce a laser-patterned nanostructured substrate (Al/Al2O3 nanowires) for efficient maintenance of oriented human cardiomyocytes, with great potential to open new roads to mass-production of contractile myocardial grafts for cardiovascular tissue engineering.

  10. Advanced research to qualify man for long term weightlessness.

    NASA Technical Reports Server (NTRS)

    Jones, W. L.

    1972-01-01

    NASA is in the process of conducting a broad program of research and development of technology to qualify, support, and permit the successful use of man in long-term space flight. The technological tasks include human engineering, extravehicular engineering, life support, and human research to assess the effect of space stresses on human physiology and psychology. Various testing techniques that are being used may have future relevance to world health. These include a biocybernetic approach to the study of cardiovascular stresses, measurement of blood flow by means of the Doppler effect, and a device for simulating radiation dosages similar to those produced in solar flares. The planned program includes a study of both humans and animals.

  11. Quantitative pharmacokinetic-pharmacodynamic modelling of baclofen-mediated cardiovascular effects using BP and heart rate in rats.

    PubMed

    Kamendi, Harriet; Barthlow, Herbert; Lengel, David; Beaudoin, Marie-Eve; Snow, Debra; Mettetal, Jerome T; Bialecki, Russell A

    2016-10-01

    While the molecular pathways of baclofen toxicity are understood, the relationships between baclofen-mediated perturbation of individual target organs and systems involved in cardiovascular regulation are not clear. Our aim was to use an integrative approach to measure multiple cardiovascular-relevant parameters [CV: mean arterial pressure (MAP), systolic BP, diastolic BP, pulse pressure, heart rate (HR); CNS: EEG; renal: chemistries and biomarkers of injury] in tandem with the pharmacokinetic properties of baclofen to better elucidate the site(s) of baclofen activity. Han-Wistar rats were administered vehicle or ascending doses of baclofen (3, 10 and 30 mg·kg(-1) , p.o.) at 4 h intervals and baclofen-mediated changes in parameters recorded. A pharmacokinetic-pharmacodynamic model was then built by implementing an existing mathematical model of BP in rats. Final model fits resulted in reasonable parameter estimates and showed that the drug acts on multiple homeostatic processes. In addition, the models testing a single effect on HR, total peripheral resistance or stroke volume alone did not describe the data. A final population model was constructed describing the magnitude and direction of the changes in MAP and HR. The systems pharmacology model developed fits baclofen-mediated changes in MAP and HR well. The findings correlate with known mechanisms of baclofen pharmacology and suggest that similar models using limited parameter sets may be useful to predict the cardiovascular effects of other pharmacologically active substances. © 2016 The British Pharmacological Society.

  12. Bioengineered vascular constructs as living models for in vitro cardiovascular research.

    PubMed

    Wolf, Frederic; Vogt, Felix; Schmitz-Rode, Thomas; Jockenhoevel, Stefan; Mela, Petra

    2016-09-01

    Cardiovascular diseases represent the most common cause of morbidity and mortality worldwide. In this review, we explore the potential of bioengineered vascular constructs as living models for in vitro cardiovascular research to advance the current knowledge of pathophysiological processes and support the development of clinical therapies. Bioengineered vascular constructs capable of recapitulating the cellular and mechanical environment of native vessels represent a valuable platform to study cellular interactions and signaling cascades, test drugs and medical devices under (patho)physiological conditions, with the additional potential benefit of reducing the number of animals required for preclinical testing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Leukocyte Trafficking in Cardiovascular Disease: Insights from Experimental Models

    PubMed Central

    2017-01-01

    Chemokine-induced leukocyte migration into the vessel wall is an early pathological event in the progression of atherosclerosis, the underlying cause of myocardial infarction. The immune-inflammatory response, mediated by both the innate and adaptive immune cells, is involved in the initiation, recruitment, and resolution phases of cardiovascular disease progression. Activation of leukocytes via inflammatory mediators such as chemokines, cytokines, and adhesion molecules is instrumental in these processes. In this review, we highlight leukocyte activation with the main focus being on the mechanisms of chemokine-mediated recruitment in atherosclerosis and the response postmyocardial infarction with key examples from experimental models of cardiovascular inflammation. PMID:28465628

  14. Leukocyte Trafficking in Cardiovascular Disease: Insights from Experimental Models.

    PubMed

    Jones, Daniel P; True, Harry D; Patel, Jyoti

    2017-01-01

    Chemokine-induced leukocyte migration into the vessel wall is an early pathological event in the progression of atherosclerosis, the underlying cause of myocardial infarction. The immune-inflammatory response, mediated by both the innate and adaptive immune cells, is involved in the initiation, recruitment, and resolution phases of cardiovascular disease progression. Activation of leukocytes via inflammatory mediators such as chemokines, cytokines, and adhesion molecules is instrumental in these processes. In this review, we highlight leukocyte activation with the main focus being on the mechanisms of chemokine-mediated recruitment in atherosclerosis and the response postmyocardial infarction with key examples from experimental models of cardiovascular inflammation.

  15. Large-scale production of human pluripotent stem cell derived cardiomyocytes.

    PubMed

    Kempf, Henning; Andree, Birgit; Zweigerdt, Robert

    2016-01-15

    Regenerative medicine, including preclinical studies in large animal models and tissue engineering approaches as well as innovative assays for drug discovery, will require the constant supply of hPSC-derived cardiomyocytes and other functional progenies. Respective cell production processes must be robust, economically viable and ultimately GMP-compliant. Recent research has enabled transition of lab scale protocols for hPSC expansion and cardiomyogenic differentiation towards more controlled processing in industry-compatible culture platforms. Here, advanced strategies for the cultivation and differentiation of hPSCs will be reviewed by focusing on stirred bioreactor-based techniques for process upscaling. We will discuss how cardiomyocyte mass production might benefit from recent findings such as cell expansion at the cardiovascular progenitor state. Finally, remaining challenges will be highlighted, specifically regarding three dimensional (3D) hPSC suspension culture and critical safety issues ahead of clinical translation. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Effects of androgens on cardiovascular remodeling.

    PubMed

    Ikeda, Yasumasa; Aihara, Ken-ichi; Yoshida, Sumiko; Akaike, Masashi; Matsumoto, Toshio

    2012-07-01

    Androgens, the male sex hormones, exert various biological effects on many target organs through the transcriptional effects of the nuclear androgen receptor (AR). ARs are expressed not only in classical target organs, such as the brain, genital organs, bone, and skeletal muscles, but also in the cardiovascular system. Because the female sex hormones estrogens are well-known to protect against cardiovascular disease, sex has been considered to have a significant clinical impact on cardiovascular mortality. However, the influence of androgens on the cardiovascular system has not been fully elucidated. To clarify this issue, we analyzed the effects of administration of angiotensin II and doxorubicin, an anticancer agent, in a loading model in male wild-type and AR-deficient mice. In this review, we focus on the actions of androgens as potential targets for the prevention of cardiovascular diseases in males.

  17. The effect of sibutramine prescribing in routine clinical practice on cardiovascular outcomes: a cohort study in the United Kingdom

    PubMed Central

    Hayes, J F; Bhaskaran, K; Batterham, R; Smeeth, L; Douglas, I

    2015-01-01

    Background/Objectives: The marketing authorization for the weight loss drug sibutramine was suspended in 2010 following a major trial that showed increased rates of non-fatal myocardial infarction and cerebrovascular events in patients with pre-existing cardiovascular disease. In routine clinical practice, sibutramine was already contraindicated in patients with cardiovascular disease and so the relevance of these influential clinical trial findings to the ‘real World' population of patients receiving or eligible for the drug is questionable. We assessed rates of myocardial infarction and cerebrovascular events in a cohort of patients prescribed sibutramine or orlistat in the United Kingdom. Subjects/Methods: A cohort of patients prescribed weight loss medication was identified within the Clinical Practice Research Datalink. Rates of myocardial infarction or cerebrovascular event, and all-cause mortality were compared between patients prescribed sibutramine and similar patients prescribed orlistat, using both a multivariable Cox proportional hazard model, and propensity score-adjusted model. Possible effect modification by pre-existing cardiovascular disease and cardiovascular risk factors was assessed. Results: Patients prescribed sibutramine (N=23 927) appeared to have an elevated rate of myocardial infarction or cerebrovascular events compared with those taking orlistat (N=77 047; hazard ratio 1.69, 95% confidence interval 1.12–2.56). However, subgroup analysis showed the elevated rate was larger in those with pre-existing cardiovascular disease (hazard ratio 4.37, 95% confidence interval 2.21–8.64), compared with those with no cardiovascular disease (hazard ratio 1.52, 95% confidence interval 0.92–2.48, P-interaction=0.0076). All-cause mortality was not increased in those prescribed sibutramine (hazard ratio 0.67, 95% confidence interval 0.34–1.32). Conclusions: Sibutramine was associated with increased rates of acute cardiovascular events in people with pre-existing cardiovascular disease, but there was a low absolute risk in those without. Sibutramine's marketing authorization may have, therefore, been inappropriately withdrawn for people without cardiovascular disease. PMID:25971925

  18. Comorbid Anxiety and Depression and Their Impact on Cardiovascular Disease in Type 2 Diabetes: The Fremantle Diabetes Study Phase II.

    PubMed

    Bruce, David G; Davis, Wendy A; Dragovic, Milan; Davis, Timothy M E; Starkstein, Sergio E

    2016-10-01

    The aims were to determine whether anxious depression, defined by latent class analysis (LCA), predicts cardiovascular outcomes in type 2 diabetes and to compare the predictive power of anxious depression with Diagnostic & Statistical Manual Versions IV and 5 (DSM-IV/5) categories of depression and generalized anxiety disorder (GAD). Prospective observational study of 1,337 type 2 participants. Baseline assessment with the 9-item Patient Health Questionnaire and the GAD Scale; LCA-defined groups with minor or major anxious depression based on anxiety and depression symptoms. Cox modeling used to compare the independent impact of: (1) LCA anxious depression, (2) DSM-IV/5 depression, (3) GAD on incident cardiovascular events and deaths after 4 years. LCA minor and major anxious depression was present in 21.9 and 7.8% of participants, respectively, DSM-IV/5 minor and major depression in 6.2 and 6.1%, respectively, and GAD in 4.8%. There were 110 deaths, 31 cardiovascular deaths, and 199 participants had incident cardiovascular events. In adjusted models, minor anxious depression (Hazard ratio (95% confidence intervals): 1.70 (1.15-2.50)) and major anxious depression (1.90 (1.11-3.25)) predicted incident cardiovascular events and major anxious depression also predicted cardiovascular mortality (4.32 (1.35-13.86)). By comparison, incident cardiovascular events were predicted by DSM-IV/5 major depression (2.10 (1.22-3.62)) only and cardiovascular mortality was predicted by both DSM-IV/5 major depression (3.56 (1.03-12.35)) and GAD (5.92 (1.84-19.08)). LCA-defined anxious depression is more common than DSM-IV/5 categories and is a strong predictor of cardiovascular outcomes in type 2 diabetes. These data suggest that this diagnostic scheme has predictive validity and clinical relevance. © 2016 Wiley Periodicals, Inc.

  19. The effect of sibutramine prescribing in routine clinical practice on cardiovascular outcomes: a cohort study in the United Kingdom.

    PubMed

    Hayes, J F; Bhaskaran, K; Batterham, R; Smeeth, L; Douglas, I

    2015-09-01

    The marketing authorization for the weight loss drug sibutramine was suspended in 2010 following a major trial that showed increased rates of non-fatal myocardial infarction and cerebrovascular events in patients with pre-existing cardiovascular disease. In routine clinical practice, sibutramine was already contraindicated in patients with cardiovascular disease and so the relevance of these influential clinical trial findings to the 'real World' population of patients receiving or eligible for the drug is questionable. We assessed rates of myocardial infarction and cerebrovascular events in a cohort of patients prescribed sibutramine or orlistat in the United Kingdom. A cohort of patients prescribed weight loss medication was identified within the Clinical Practice Research Datalink. Rates of myocardial infarction or cerebrovascular event, and all-cause mortality were compared between patients prescribed sibutramine and similar patients prescribed orlistat, using both a multivariable Cox proportional hazard model, and propensity score-adjusted model. Possible effect modification by pre-existing cardiovascular disease and cardiovascular risk factors was assessed. Patients prescribed sibutramine (N=23,927) appeared to have an elevated rate of myocardial infarction or cerebrovascular events compared with those taking orlistat (N=77,047; hazard ratio 1.69, 95% confidence interval 1.12-2.56). However, subgroup analysis showed the elevated rate was larger in those with pre-existing cardiovascular disease (hazard ratio 4.37, 95% confidence interval 2.21-8.64), compared with those with no cardiovascular disease (hazard ratio 1.52, 95% confidence interval 0.92-2.48, P-interaction=0.0076). All-cause mortality was not increased in those prescribed sibutramine (hazard ratio 0.67, 95% confidence interval 0.34-1.32). Sibutramine was associated with increased rates of acute cardiovascular events in people with pre-existing cardiovascular disease, but there was a low absolute risk in those without. Sibutramine's marketing authorization may have, therefore, been inappropriately withdrawn for people without cardiovascular disease.

  20. Proton pump inhibitor use and risk of adverse cardiovascular events in aspirin treated patients with first time myocardial infarction: nationwide propensity score matched study

    PubMed Central

    Grove, Erik L; Hansen, Peter Riis; Olesen, Jonas B; Ahlehoff, Ole; Selmer, Christian; Lindhardsen, Jesper; Madsen, Jan Kyst; Køber, Lars; Torp-Pedersen, Christian; Gislason, Gunnar H

    2011-01-01

    Objective To examine the effect of proton pump inhibitors on adverse cardiovascular events in aspirin treated patients with first time myocardial infarction. Design Retrospective nationwide propensity score matched study based on administrative data. Setting All hospitals in Denmark. Participants All aspirin treated patients surviving 30 days after a first myocardial infarction from 1997 to 2006, with follow-up for one year. Patients treated with clopidogrel were excluded. Main outcome measures The risk of the combined end point of cardiovascular death, myocardial infarction, or stroke associated with use of proton pump inhibitors was analysed using Kaplan-Meier analysis, Cox proportional hazard models, and propensity score matched Cox proportional hazard models. Results 3366 of 19 925 (16.9%) aspirin treated patients experienced recurrent myocardial infarction, stroke, or cardiovascular death. The hazard ratio for the combined end point in patients receiving proton pump inhibitors based on the time dependent Cox proportional hazard model was 1.46 (1.33 to 1.61; P<0.001) and for the propensity score matched model based on 8318 patients it was 1.61 (1.45 to 1.79; P<0.001). A sensitivity analysis showed no increase in risk related to use of H2 receptor blockers (1.04, 0.79 to 1.38; P=0.78). Conclusion In aspirin treated patients with first time myocardial infarction, treatment with proton pump inhibitors was associated with an increased risk of adverse cardiovascular events. PMID:21562004

  1. Cardiovascular reactivity as a mechanism linking child trauma to adolescent psychopathology.

    PubMed

    Heleniak, Charlotte; McLaughlin, Katie A; Ormel, Johan; Riese, Harriette

    2016-10-01

    Alterations in physiological reactivity to stress are argued to be central mechanisms linking adverse childhood environmental experiences to internalizing and externalizing psychopathology. Childhood trauma exposure may influence physiological reactivity to stress in distinct ways from other forms of childhood adversity. This study applied a novel theoretical model to investigate the impact of childhood trauma on cardiovascular stress reactivity - the biopsychosocial model of challenge and threat. This model suggests that inefficient cardiovascular responses to stress - a threat as opposed to challenge profile - are characterized by blunted cardiac output (CO) reactivity and increased vascular resistance. We examined whether childhood trauma exposure predicted an indicator of the threat profile of cardiovascular reactivity and whether such a pattern was associated with adolescent psychopathology in a population-representative sample of 488 adolescents (M=16.17years old, 49.2% boys) in the TRacking Adolescents' Individual Lives Survey (TRAILS). Exposure to trauma was associated with both internalizing and externalizing symptoms and a pattern of cardiovascular reactivity consistent with the threat profile, including blunted CO reactivity during a social stress task. Blunted CO reactivity, in turn, was positively associated with externalizing, but not internalizing symptoms and mediated the link between trauma and externalizing psychopathology. None of these associations varied by gender. The biopsychosocial model of challenge and threat provides a novel theoretical framework for understanding disruptions in physiological reactivity to stress following childhood trauma exposure, revealing a potential pathway linking such exposure with externalizing problems in adolescents. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Cardiovascular reactivity as a mechanism linking child trauma to adolescent psychopathology

    PubMed Central

    Heleniak, Charlotte; McLaughlin, Katie A.; Ormel, Johan; Riese, Harriette

    2016-01-01

    Alterations in physiological reactivity to stress are argued to be central mechanisms linking adverse childhood environmental experiences to internalizing and externalizing psychopathology. Childhood trauma exposure may influence physiological reactivity to stress in distinct ways from other forms of childhood adversity. This study applied a novel theoretical model to investigate the impact of childhood trauma on cardiovascular stress reactivity – the biopsychosocial model of challenge and threat. This model suggests that inefficient cardiovascular responses to stress – a threat as opposed to challenge profile – are characterized by blunted cardiac output (CO) reactivity and increased vascular resistance. We examined whether childhood trauma exposure predicted an indicator of the threat profile of cardiovascular reactivity and whether such a pattern was associated with adolescent psychopathology in a population-representative sample of 488 adolescents (M = 16.17 years old, 49.2% boys) in the TRacking Adolescents’ Individual Lives Survey (TRAILS). Exposure to trauma was associated with both internalizing and externalizing symptoms and a pattern of cardiovascular reactivity consistent with the threat profile, including blunted CO reactivity during a social stress task. Blunted CO reactivity, in turn, was positively associated with externalizing, but not internalizing symptoms and mediated the link between trauma and externalizing psychopathology. None of these associations varied by gender. The biopsychosocial model of challenge and threat provides a novel theoretical framework for understanding disruptions in physiological reactivity to stress following childhood trauma exposure, revealing a potential pathway linking such exposure with externalizing problems in adolescents. PMID:27568327

  3. Thymosin β4: Roles in Development, Repair, and Engineering of the Cardiovascular System.

    PubMed

    Marks, E D; Kumar, A

    2016-01-01

    The burden of cardiovascular disease is a growing worldwide issue that demands attention. While many clinical trials are ongoing to test therapies for treating the heart after myocardial infarction (MI) and heart failure, there are few options doctors able to currently give patients to repair the heart. This eventually leads to decreased ventricular contractility and increased systemic disease, including vascular disorders that could result in stroke. Small peptides such as thymosin β4 (Tβ4) are upregulated in the cardiovascular niche during fetal development and after injuries such as MI, providing increased neovasculogenesis and paracrine signals for endogenous stem cell recruitment to aid in wound repair. New research is looking into the effects of in vivo administration of Tβ4 through injections and coatings on implants, as well as its effect on cell differentiation. Results so far demonstrate Tβ4 administration leads to robust increases in angiogenesis and wound healing in the heart after MI and the brain after stroke, and can differentiate adult stem cells toward the cardiac lineage for implantation to the heart to increase contractility and survival. Future work, some of which is currently in clinical trials, will demonstrate the in vivo effect of these therapies on human patients, with the goal of helping the millions of people worldwide affected by cardiovascular disease. © 2016 Elsevier Inc. All rights reserved.

  4. Optimizing Cardiovascular Benefits of Exercise: A Review of Rodent Models

    PubMed Central

    Davis, Brittany; Moriguchi, Takeshi; Sumpio, Bauer

    2013-01-01

    Although research unanimously maintains that exercise can ward off cardiovascular disease (CVD), the optimal type, duration, intensity, and combination of forms are yet not clear. In our review of existing rodent-based studies on exercise and cardiovascular health, we attempt to find the optimal forms, intensities, and durations of exercise. Using Scopus and Medline, a literature review of English language comparative journal studies of cardiovascular benefits and exercise was performed. This review examines the existing literature on rodent models of aerobic, anaerobic, and power exercise and compares the benefits of various training forms, intensities, and durations. The rodent studies reviewed in this article correlate with reports on human subjects that suggest regular aerobic exercise can improve cardiac and vascular structure and function, as well as lipid profiles, and reduce the risk of CVD. Findings demonstrate an abundance of rodent-based aerobic studies, but a lack of anaerobic and power forms of exercise, as well as comparisons of these three components of exercise. Thus, further studies must be conducted to determine a truly optimal regimen for cardiovascular health. PMID:24436579

  5. Instantaneous nonlinear assessment of complex cardiovascular dynamics by Laguerre-Volterra point process models.

    PubMed

    Valenza, Gaetano; Citi, Luca; Barbieri, Riccardo

    2013-01-01

    We report an exemplary study of instantaneous assessment of cardiovascular dynamics performed using point-process nonlinear models based on Laguerre expansion of the linear and nonlinear Wiener-Volterra kernels. As quantifiers, instantaneous measures such as high order spectral features and Lyapunov exponents can be estimated from a quadratic and cubic autoregressive formulation of the model first order moment, respectively. Here, these measures are evaluated on heartbeat series coming from 16 healthy subjects and 14 patients with Congestive Hearth Failure (CHF). Data were gathered from the on-line repository PhysioBank, which has been taken as landmark for testing nonlinear indices. Results show that the proposed nonlinear Laguerre-Volterra point-process methods are able to track the nonlinear and complex cardiovascular dynamics, distinguishing significantly between CHF and healthy heartbeat series.

  6. Palpation Simulator of Beating Aorta for Cardiovascular Surgery Training

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yasuhiro; Nakao, Megumi; Kuroda, Tomohiro; Oyama, Hiroshi; Komori, Masaru; Matsuda, Tetsuya; Sakaguchi, Genichi; Komeda, Masashi; Takahashi, Takashi

    In field of cardiovascular surgeries, palpation of aorta plays important roles in decision of surgical site.This paper develops palpation simulator of aorta based on a finite element based physical model.The proposed model calculates soft tissue deformation according to the affection of inner pressure and the operation of a surgeon.The proposed method is implemented on a prototype with dual PHANToM device.Experimental results confirmed our model achieves real time simulation of the surgical palpation.

  7. Mathematical Model of Cardiovascular and Metabolic Responses to Umbilical Cord Occlusions in Fetal Sheep.

    PubMed

    Wang, Qiming; Gold, Nathan; Frasch, Martin G; Huang, Huaxiong; Thiriet, Marc; Wang, Xiaogang

    2015-12-01

    Fetal acidemia during labor is associated with an increased risk of brain injury and lasting neurological deficits. This is in part due to the repetitive occlusions of the umbilical cord (UCO) induced by uterine contractions. Whereas fetal heart rate (FHR) monitoring is widely used clinically, it fails to detect fetal acidemia. Hence, new approaches are needed for early detection of fetal acidemia during labor. We built a mathematical model of the UCO effects on FHR, mean arterial blood pressure (MABP), oxygenation and metabolism. Mimicking fetal experiments, our in silico model reproduces salient features of experimentally observed fetal cardiovascular and metabolic behavior including FHR overshoot, gradual MABP decrease and mixed metabolic and respiratory acidemia during UCO. Combined with statistical analysis, our model provides valuable insight into the labor-like fetal distress and guidance for refining FHR monitoring algorithms to improve detection of fetal acidemia and cardiovascular decompensation.

  8. Mathematical modelling of intra-aortic balloon pump.

    PubMed

    Abdolrazaghi, Mona; Navidbakhsh, Mahdi; Hassani, Kamran

    2010-10-01

    Ischemic heart diseases now afflict thousands of Iranians and are the major cause of death in many industrialised countries. Mathematical modelling of an intra-aortic balloon pump (IABP) could provide a better understanding of its performance and help to represent blood flow and pressure in systemic arteries before and after inserting the pump. A mathematical modelling of the whole cardiovascular system was formulated using MATLAB software. The block diagram of the model consists of 43 compartments. All the anatomical data was extracted from the physiological references. In the next stage, myocardial infarction (MI) was induced in the model by decreasing the contractility of the left ventricle. The IABP was mathematically modelled and inserted in the model in the thoracic aorta I artery just before the descending aorta. The effects of IABP on MI were studied using the mathematical model. The normal operation of the cardiovascular system was studied firstly. The pressure-time graphs of the ventricles, atriums, aorta, pulmonary system, capillaries and arterioles were obtained. The volume-time curve of the left ventricle was also presented. The pressure-time curves of the left ventricle and thoracic aorta I were obtained for normal, MI, and inserted IABP conditions. Model verification was performed by comparing the simulation results with the clinical observations reported in the literature. IABP can be described by a theoretical model. Our model representing the cardiovascular system is capable of showing the effects of different pathologies such as MI and we have shown that MI effects can be reduced using IABP in accordance with the modelling results. The mathematical model should serve as a useful tool to simulate and better understand cardiovascular operation in normal and pathological conditions.

  9. Mitochondria and Cardiovascular Aging

    PubMed Central

    Dai, Dao-Fu; Ungvari, Zoltan

    2013-01-01

    Old age is a major risk factor for cardiovascular diseases. Several lines of evidence in experimental animal models have indicated the central role of mitochondria both in lifespan determination and cardiovascular aging. In this article we review the evidence supporting the role of mitochondrial oxidative stress, mitochondrial damage and biogenesis as well as the crosstalk between mitochondria and cellular signaling in cardiac and vascular aging. Intrinsic cardiac aging in the murine model closely recapitulates age-related cardiac changes in humans (left ventricular hypertrophy, fibrosis and diastolic dysfunction), while the phenotype of vascular aging include endothelial dysfunction, reduced vascular elasticity and chronic vascular inflammation. Both cardiac and vascular aging involve neurohormonal signaling (e.g. renin-angiotensin, adrenergic, insulin-IGF1 signaling) and cell-autonomous mechanisms. The potential therapeutic strategies to improve mitochondrial function in aging and cardiovascular diseases are also discussed, with a focus on mitochondrial-targeted antioxidants, calorie restriction, calorie restriction mimetics and exercise training. PMID:22499901

  10. FE6 during Sprint Ultrasound Scans

    NASA Image and Video Library

    2013-11-22

    ISS038-E-007119 (21 Nov. 2013) --- Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, wears ultrasound gear around his legs while performing the Integrated Resistance and Aerobic Training Study (Sprint) experiment in the Columbus laboratory of the International Space Station. Sprint evaluates the use of high intensity, low volume exercise training to minimize loss of muscle, bone, and cardiovascular function in station crew members during long-duration missions.

  11. Expedition 10 Preflight

    NASA Image and Video Library

    2004-10-07

    Expedition 10 Commander Leroy Chiao undergoes physical testing on a mechanized tilt table at crew quarters in Baikonur, Kazakhstan, Friday, October 8, 2004, in preparation for launch with Flight Engineer and Soyuz Commander Salizhan Sharipov and Russian Space Forces Agency cosmonaut Yuri Shargin to the International Space Station on October 14. The tilt table is used to condition the crewmembers' cardiovascular system against the effects of weightlessness once on orbit. Photo Credit: (NASA/Bill Ingalls)

  12. Expedition 10 Preflight

    NASA Image and Video Library

    2004-10-07

    Expedition 10 Commander Leroy Chiao, left, and Russian Space Forces cosmonaut Yuri Shargin undergo physical testing on a mechanized tilt table at their crew quarters in Baikonur, Kazakhstan, Friday, October 8, 2004, in preparation for launch with Flight Engineer and Soyuz Commander Salizhan Sharipov to the International Space Station on October 14. The tilt table is used to condition the crewmembers' cardiovascular system against the effects of weightlessness once in orbit. Photo Credit: (NASA/Bill Ingalls)

  13. Ultra Fine Particles from Diesel Engines Induce Vascular Oxidative Stress via JNK Activation

    PubMed Central

    Li, Rongsong; Ning, Zhi; Cui, Jeffery; Khalsa, Bhavraj; Ai, Lisong; Takabe, Wakako; Beebe, Tyler; Majumdar, Rohit; Sioutas, Constantinos; Hsiai, Tzung

    2011-01-01

    Exposure of particulate air pollution is linked to increased incidences of cardiovascular diseases. Ambient ultra fine particles (UFP) from diesel vehicle engines have been shown to be pro-atherogenic in apoE knockout mice and may constitute a major cardiovascular risk in humans. We posited that circulating nano-sized particles from traffic pollution sources induced vascular oxidative stress via JNK activation in endothelial cells. Diesel UFP were collected from a 1998 Kenworth truck. Intra-cellular superoxide assay revealed that these UFP dose-dependently induced superoxide (O2·-) production in human aortic endothelial cells (HAEC). Flow cytometry (FACS) showed that UFP increased MitoSOX Red intensity specific for mitochondrial superoxide. Protein carbonyl content is increased by UFP as an indication of vascular oxidative stress. UFP also up-regulated hemeoxygenase-1 (HO-1) and tissue factor (TF) mRNA expression, and pre-treatment with antioxidant, N-acetyl cysteine (NAC), significantly decreased their expression. Furthermore, UFP transiently activated JNK in HAEC. Treatment with JNK inhibitor SP600125 and silencing of both JNK1 and JNK2 with siRNA inhibited UFP stimulated O2·- production and mRNA expression of HO-1 and TF. Our findings suggest that JNK activation play an important role in UFP-induced oxidative stress and stress response gene expression. PMID:19154785

  14. Effect of working hours on cardiovascular-autonomic nervous functions in engineers in an electronics manufacturing company.

    PubMed

    Sasaki, T; Iwasaki, K; Oka, T; Hisanaga, N; Ueda, T; Takada, Y; Fujiki, Y

    1999-01-01

    A field survey of 147 engineers (23-49 years) in an electronics manufacturing company was conducted to investigate the effect of working hours on cardiovascular-autonomic nervous functions (urinary catecholamines, heart rate variability and blood pressure). The subjects were divided into 3 groups by age: 23-29 (n = 49), 30-39 (n = 74) and 40-49 (n = 24) year groups. Subjects in each age group were further divided into shorter (SWH) and longer (LWH) working hour subgroups according to the median of weekly working hours. In the 30-39 year group, urinary noradrenaline in the afternoon for LWH was significantly lower than that for SWH and a similar tendency was found in the LF/HF ratio of heart rate variability at rest. Because these two autonomic nervous indices are related to sympathetic nervous activity, the findings suggested that sympathetic nervous activity for LWH was lower than that for SWH in the 30-39 year group. Furthermore, there were significant relationships both between long working hours and short sleeping hours, and between short sleeping hours and high complaint rates of "drowsiness and dullness" in the morning in this age group. Summarizing these results, it appeared that long working hours might lower sympathetic nervous activity due to chronic sleep deprivation.

  15. Associations of Grip Strength and Change in Grip Strength With All-Cause and Cardiovascular Mortality in a European Older Population

    PubMed Central

    Prasitsiriphon, Orawan; Pothisiri, Wiraporn

    2018-01-01

    Objective: (1) To examine the associations between 3 measures of grip strength: static grip strength, change in grip strength, and the combination of grip strength and its change, with all-cause and cardiovascular mortality, and (2) to determine which measure is the most powerful predictor of all-cause and cardiovascular mortality among the European older population. Method: Data come from the first 4 waves of the Survey of Health, Ageing and Retirement in Europe (SHARE). A Cox proportional hazard model and a competing risk regression model were used to assess the associations. To determine the best predictor, Akaike information criterion was applied. Results: Grip strength and the combination of grip strength and its change were associated with all-cause and cardiovascular mortality. Change in grip strength was correlated with only all-cause mortality. Among the 3 measures, the static measure of grip strength was the best predictor of cardiovascular mortality whereas the combined measure is that of all-cause mortality. Discussion: Grip strength is a significant indicator of all-cause and cardiovascular mortality. The combination of grip strength and its change can be used to increase the accuracy for prediction of all-cause mortality among older persons.

  16. Engineering blood vessels by gene and cell therapy.

    PubMed

    Zarbiv, Gabriel; Preis, Meir; Ben-Yosef, Yaara; Flugelman, Moshe Y

    2007-08-01

    Cardiovascular-related syndromes are the leading cause of morbidity and mortality worldwide. Arterial narrowing and blockage due to atherosclerosis cause reduced blood flow to the brain, heart and legs. Bypass surgery to improve blood flow to the heart and legs in these patients is performed in hundreds of thousands of patients every year. Autologous grafts, such as the internal thoracic artery and saphenous vein, are used in most patients, but in a significant number of patients such grafts are not available and synthetic grafts are used. Synthetic grafts have higher failure rates than autologous grafts due to thrombosis and scar formation within graft lumen. Cell and gene therapy combined with tissue engineering hold a great promise to provide grafts that will be biocompatible and durable. This review describes the field of vascular grafts in the context of tissue engineering using cell and gene therapies.

  17. Genetic engineering of mesenchymal stem cells and its application in human disease therapy.

    PubMed

    Hodgkinson, Conrad P; Gomez, José A; Mirotsou, Maria; Dzau, Victor J

    2010-11-01

    The use of stem cells for tissue regeneration and repair is advancing both at the bench and bedside. Stem cells isolated from bone marrow are currently being tested for their therapeutic potential in a variety of clinical conditions including cardiovascular injury, kidney failure, cancer, and neurological and bone disorders. Despite the advantages, stem cell therapy is still limited by low survival, engraftment, and homing to damage area as well as inefficiencies in differentiating into fully functional tissues. Genetic engineering of mesenchymal stem cells is being explored as a means to circumvent some of these problems. This review presents the current understanding of the use of genetically engineered mesenchymal stem cells in human disease therapy with emphasis on genetic modifications aimed to improve survival, homing, angiogenesis, and heart function after myocardial infarction. Advancements in other disease areas are also discussed.

  18. The Impact of Biomechanics in Tissue Engineering and Regenerative Medicine

    PubMed Central

    Butler, David L.; Goldstein, Steven A.; Guo, X. Edward; Kamm, Roger; Laurencin, Cato T.; McIntire, Larry V.; Mow, Van C.; Nerem, Robert M.; Sah, Robert L.; Soslowsky, Louis J.; Spilker, Robert L.; Tranquillo, Robert T.

    2009-01-01

    Biomechanical factors profoundly influence the processes of tissue growth, development, maintenance, degeneration, and repair. Regenerative strategies to restore damaged or diseased tissues in vivo and create living tissue replacements in vitro have recently begun to harness advances in understanding of how cells and tissues sense and adapt to their mechanical environment. It is clear that biomechanical considerations will be fundamental to the successful development of clinical therapies based on principles of tissue engineering and regenerative medicine for a broad range of musculoskeletal, cardiovascular, craniofacial, skin, urinary, and neural tissues. Biomechanical stimuli may in fact hold the key to producing regenerated tissues with high strength and endurance. However, many challenges remain, particularly for tissues that function within complex and demanding mechanical environments in vivo. This paper reviews the present role and potential impact of experimental and computational biomechanics in engineering functional tissues using several illustrative examples of past successes and future grand challenges. PMID:19583462

  19. Is Sex Good for Your Health? A National Study on Partnered Sexuality and Cardiovascular Risk among Older Men and Women.

    PubMed

    Liu, Hui; Waite, Linda J; Shen, Shannon; Wang, Donna H

    2016-09-01

    Working from a social relationship and life course perspective, we provide generalizable population-based evidence on partnered sexuality linked to cardiovascular risk in later life using national longitudinal data from the National Social Life, Health and Aging Project (NSHAP) (N = 2,204). We consider characteristics of partnered sexuality of older men and women, particularly sexual activity and sexual quality, as they affect cardiovascular risk. Cardiovascular risk is defined as hypertension, rapid heart rate, elevated C-reactive protein (CRP), and general cardiovascular events. We find that older men are more likely to report being sexually active, having sex more often, and more enjoyably than are older women. Results from cross-lagged models suggest that high frequency of sex is positively related to later risk of cardiovascular events for men but not women, whereas good sexual quality seems to protect women but not men from cardiovascular risk in later life. We find no evidence that poor cardiovascular health interferes with later sexuality for either gender. © American Sociological Association 2016.

  20. A coupling method for a cardiovascular simulation model which includes the Kalman filter.

    PubMed

    Hasegawa, Yuki; Shimayoshi, Takao; Amano, Akira; Matsuda, Tetsuya

    2012-01-01

    Multi-scale models of the cardiovascular system provide new insight that was unavailable with in vivo and in vitro experiments. For the cardiovascular system, multi-scale simulations provide a valuable perspective in analyzing the interaction of three phenomenons occurring at different spatial scales: circulatory hemodynamics, ventricular structural dynamics, and myocardial excitation-contraction. In order to simulate these interactions, multiscale cardiovascular simulation systems couple models that simulate different phenomena. However, coupling methods require a significant amount of calculation, since a system of non-linear equations must be solved for each timestep. Therefore, we proposed a coupling method which decreases the amount of calculation by using the Kalman filter. In our method, the Kalman filter calculates approximations for the solution to the system of non-linear equations at each timestep. The approximations are then used as initial values for solving the system of non-linear equations. The proposed method decreases the number of iterations required by 94.0% compared to the conventional strong coupling method. When compared with a smoothing spline predictor, the proposed method required 49.4% fewer iterations.

  1. Ideal cardiovascular health influences cardiovascular disease risk associated with high lipoprotein(a) levels and genotype: The EPIC-Norfolk prospective population study.

    PubMed

    Perrot, Nicolas; Verbeek, Rutger; Sandhu, Manjinder; Boekholdt, S Matthijs; Hovingh, G Kees; Wareham, Nicholas J; Khaw, Kay-Tee; Arsenault, Benoit J

    2017-01-01

    Lipoprotein(a) (Lp[a]) is a strong genetic risk factor for cardiovascular disease (CVD). The American Heart Association has prioritised seven cardiovascular health metrics to reduce the burden of CVD: body mass index, healthy diet, physical activity, smoking status, blood pressure, diabetes and cholesterol levels (together also known as ideal cardiovascular health). Our objective was to determine if individuals with high Lp(a) levels could derive cardiovascular benefits if characterized by ideal cardiovascular health. A total of 14,051 participants of the EPIC-Norfolk study were stratified according to the cardiovascular health score (based on the number of health metrics with an ideal, intermediate or poor status). Of them, 1732 had a CVD event during a mean follow-up of 11.5 years. Cox proportional hazards models were used to describe the association between the cardiovascular health score and Lp(a) level or genotype (as estimated by the rs10455872 variant) with the risk of CVD. We observed little or no differences in serum Lp(a) levels across the seven cardiovascular health metric categories. Among participants with high serum Lp(a) levels ≥50 mg/dl), those in the highest (i.e. healthiest) cardiovascular health score category (10-14) had an adjusted hazard ratio for cardiovascular disease of 0.33 (95% CI = 0.17-0.63, p = 0.001) compared to participants in the lowest (i.e. unhealthiest) cardiovascular health score category(0-4). Similar results were obtained when we replaced Lp(a) with rs10455872. Although Lp(a) levels are only slightly influenced by cardiovascular health metrics, an ideal cardiovascular health could substantially reduce CVD risk associated with high Lp(a) levels or genotype. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Physiological system integrations with emphasis on the respiratory-cardiovascular system

    NASA Technical Reports Server (NTRS)

    Gallagher, R. R.

    1975-01-01

    The integration of two types of physiological system simulations is presented. The long term model is a circulatory system model which simulates long term blood flow variations and compartmental fluid shifts. The short term models simulate transient phenomena of the respiratory, thermoregulatory, and pulsatile cardiovascular systems as they respond to stimuli such as LBNP, exercise, and environmental gaseous variations. An overview of the interfacing approach is described. Descriptions of the variable interface for long term to short term and between the three short term models are given.

  3. Localized Scleroderma, Systemic Sclerosis and Cardiovascular Risk: A Danish Nationwide Cohort Study.

    PubMed

    Hesselvig, Jeanette Halskou; Kofoed, Kristian; Wu, Jashin J; Dreyer, Lene; Gislason, Gunnar; Ahlehoff, Ole

    2018-03-13

    Recent findings indicate that patients with systemic sclerosis have an increased risk of cardiovascular disease. To determine whether patients with systemic sclerosis or localized scleroderma are at increased risk of cardiovascular disease, a cohort study of the entire Danish population aged ≥ 18 and ≤ 100 years was conducted, followed from 1997 to 2011 by individual-level linkage of nationwide registries. Multivariable adjusted Cox regression models were used to estimate the hazard ratios (HRs) for a composite cardiovascular disease endpoint. A total of 697 patients with localized scleroderma and 1,962 patients with systemic sclerosis were identified and compared with 5,428,380 people in the reference population. In systemic sclerosis, the adjusted HR was 2.22 (95% confidence interval 1.99-2.48). No association was seen between patients with localized scleroderma and cardiovascular disease. In conclusion, systemic sclerosis is a significant cardiovascular disease risk factor, while patients with localized scleroderma are not at increased risk of cardiovascular disease.

  4. The Emerging Role of IGF-1 Deficiency in Cardiovascular Aging: Recent Advances

    PubMed Central

    Csiszar, Anna

    2012-01-01

    This review focuses on cardiovascular protective effects of insulin-like growth factor (IGF)-1, provides a landscape of molecular mechanisms involved in cardiovascular alterations in patients and animal models with congenital and adult-onset IGF-1 deficiency, and explores the link between age-related IGF-1 deficiency and the molecular, cellular, and functional changes that occur in the cardiovascular system during aging. Microvascular protection conferred by endocrine and paracrine IGF-1 signaling, its implications for the pathophysiology of cardiac failure and vascular cognitive impairment, and the role of impaired cellular stress resistance in cardiovascular aging considered here are based on emerging knowledge of the effects of IGF-1 on Nrf2-driven antioxidant response. PMID:22451468

  5. A plausible radiobiological model of cardiovascular disease at low or fractionated doses

    NASA Astrophysics Data System (ADS)

    Little, Mark; Vandoolaeghe, Wendy; Gola, Anna; Tzoulaki, Ioanna

    Atherosclerosis is the main cause of coronary heart disease and stroke, the two major causes of death in developed society. There is emerging evidence of excess risk of cardiovascular disease at low radiation doses in various occupationally-exposed groups receiving small daily radia-tion doses. Assuming that they are causal, the mechanisms for effects of chronic fractionated radiation exposures on cardiovascular disease are unclear. We outline a spatial reaction-diffusion model for atherosclerosis, and perform stability analysis, based wherever possible on human data. We show that a predicted consequence of multiple small radiation doses is to cause mean chemo-attractant (MCP-1) concentration to increase linearly with cumulative dose. The main driver for the increase in MCP-1 is monocyte death, and consequent reduction in MCP-1 degradation. The radiation-induced risks predicted by the model are quantitatively consistent with those observed in a number of occupationally-exposed groups. The changes in equilibrium MCP-1 concentrations with low density lipoprotein cholesterol concentration are also consistent with experimental and epidemiologic data. This proposed mechanism would be experimentally testable. If true, it also has substantive implications for radiological protection, which at present does not take cardiovascular disease into account. The Japanese A-bomb survivor data implies that cardiovascular disease and can-cer mortality contribute similarly to radiogenic risk. The major uncertainty in assessing the low-dose risk of cardiovascular disease is the shape of the dose response relationship, which is unclear in the Japanese data. The analysis of the present paper suggests that linear extrapo-lation would be appropriate for this endpoint.

  6. Sex differences in cardiovascular and subjective stress reactions: prospective evidence in a realistic military setting.

    PubMed

    Taylor, Marcus K; Larson, Gerald E; Hiller Lauby, Melissa D; Padilla, Genieleah A; Wilson, Ingrid E; Schmied, Emily A; Highfill-McRoy, Robyn M; Morgan, Charles A

    2014-01-01

    Evidence points to heightened physiological arousal in response to acute stress exposure as both a prospective indicator and a core characteristic of posttraumatic stress disorder (PTSD). Because females may be at higher risk for PTSD development, it is important to evaluate sex differences in acute stress reactions. This study characterized sex differences in cardiovascular and subjective stress reactions among military survival trainees. One hundred and eighty-five military members (78% males) were studied before, during, and 24 h after stressful mock captivity. Cardiovascular (heart rate [HR], systolic blood pressure [SBP], diastolic blood pressure [DBP]) and dissociative states were measured at all three time points. Psychological impact of mock captivity was assessed during recovery. General linear modeling with repeated measures evaluated sex differences for each cardiovascular endpoint, and causal steps modeling was used to explore interrelationships among sex, cardiovascular reactions and psychological impact of mock captivity. Although females had lower SBP than males at all three time points, the difference was most pronounced at baseline and during stress. Accordingly, females showed greater residual elevation in SBP during recovery. Females had lower DBP at all three time points. In addition, females reported greater psychological impact of mock captivity than males. Exploratory causal steps modeling suggested that stress-induced HR may partially mediate the effect of sex on psychological impact of mock captivity. In conclusion, this study demonstrated sex-specific cardiovascular stress reactions in military personnel, along with greater psychological impact of stress exposure in females. This research may elucidate sex differences in PTSD development.

  7. Projections of preventable risks for cardiovascular disease in Canada to 2021: a microsimulation modelling approach

    PubMed Central

    Manuel, Douglas G.; Tuna, Meltem; Hennessy, Deirdre; Okhmatovskaia, Anya; Finès, Philippe; Tanuseputro, Peter; Tu, Jack V.; Flanagan, William

    2014-01-01

    Background Reductions in preventable risks associated with cardiovascular disease have contributed to a steady decrease in its incidence over the past 50 years in most developed countries. However, it is unclear whether this trend will continue. Our objective was to examine future risk by projecting trends in preventable risk factors in Canada to 2021. Methods We created a population-based microsimulation model using national data on births, deaths and migration; socioeconomic data; cardiovascular disease risk factors; and algorithms for changes in these risk factors (based on sociodemographic characteristics and previous cardiovascular disease risk). An initial population of 22.5 million people, representing the Canadian adult population in 2001, had 13 characteristics including the risk factors used in clinical risk prediction. There were 6.1 million potential exposure profiles for each person each year. Outcome measures included annual prevalence of risk factors (smoking, obesity, diabetes, hypertension and lipid levels) and of co-occurring risks. Results From 2003 to 2009, the projected risks of cardiovascular disease based on the microsimulation model closely approximated those based on national surveys. Except for obesity and diabetes, all risk factors were projected to decrease through to 2021. The largest projected decreases were for the prevalence of smoking (from 25.7% in 2001 to 17.7% in 2021) and uncontrolled hypertension (from 16.1% to 10.8%). Between 2015 and 2017, obesity was projected to surpass smoking as the most prevalent risk factor. Interpretation Risks of cardiovascular disease are projected to decrease modestly in Canada, leading to a likely continuing decline in its incidence. PMID:25077135

  8. New Zealand Diabetes Cohort Study cardiovascular risk score for people with Type 2 diabetes: validation in the PREDICT cohort.

    PubMed

    Robinson, Tom; Elley, C Raina; Wells, Sue; Robinson, Elizabeth; Kenealy, Tim; Pylypchuk, Romana; Bramley, Dale; Arroll, Bruce; Crengle, Sue; Riddell, Tania; Ameratunga, Shanthi; Metcalf, Patricia; Drury, Paul L

    2012-09-01

    New Zealand (NZ) guidelines recommend treating people for cardiovascular disease (CVD) risk on the basis of five-year absolute risk using a NZ adaptation of the Framingham risk equation. A diabetes-specific Diabetes Cohort Study (DCS) CVD predictive risk model has been developed and validated using NZ Get Checked data. To revalidate the DCS model with an independent cohort of people routinely assessed using PREDICT, a web-based CVD risk assessment and management programme. People with Type 2 diabetes without pre-existing CVD were identified amongst people who had a PREDICT risk assessment between 2002 and 2005. From this group we identified those with sufficient data to allow estimation of CVD risk with the DCS models. We compared the DCS models with the NZ Framingham risk equation in terms of discrimination, calibration, and reclassification implications. Of 3044 people in our study cohort, 1829 people had complete data and therefore had CVD risks calculated. Of this group, 12.8% (235) had a cardiovascular event during the five-year follow-up. The DCS models had better discrimination than the currently used equation, with C-statistics being 0.68 for the two DCS models and 0.65 for the NZ Framingham model. The DCS models were superior to the NZ Framingham equation at discriminating people with diabetes who will have a cardiovascular event. The adoption of a DCS model would lead to a small increase in the number of people with diabetes who are treated with medication, but potentially more CVD events would be avoided.

  9. Thermodynamic Modeling and Analysis of Human Stress Response

    NASA Technical Reports Server (NTRS)

    Boregowda, S. C.; Tiwari, S. N.

    1999-01-01

    A novel approach based on the second law of thermodynamics is developed to investigate the psychophysiology and quantify human stress level. Two types of stresses (thermal and mental) are examined. A Unified Stress Response Theory (USRT) is developed under the new proposed field of study called Engineering Psychophysiology. The USRT is used to investigate both thermal and mental stresses from a holistic (human body as a whole) and thermodynamic viewpoint. The original concepts and definitions are established as postulates which form the basis for thermodynamic approach to quantify human stress level. An Objective Thermal Stress Index (OTSI) is developed by applying the second law of thermodynamics to the human thermal system to quantify thermal stress or dis- comfort in the human body. The human thermal model based on finite element method is implemented. It is utilized as a "Computational Environmental Chamber" to conduct series of simulations to examine the human thermal stress responses under different environmental conditions. An innovative hybrid technique is developed to analyze human thermal behavior based on series of human-environment interaction simulations. Continuous monitoring of thermal stress is demonstrated with the help of OTSI. It is well established that the human thermal system obeys the second law of thermodynamics. Further, the OTSI is validated against the experimental data. Regarding mental stress, an Objective Mental Stress Index (OMSI) is developed by applying the Maxwell relations of thermodynamics to the combined thermal and cardiovascular system in the human body. The OMSI is utilized to demonstrate the technique of monitoring mental stress continuously and is validated with the help of series of experimental studies. Although the OMSI indicates the level of mental stress, it provides a strong thermodynamic and mathematical relationship between activities of thermal and cardiovascular systems of the human body.

  10. Verification of a computational cardiovascular system model comparing the hemodynamics of a continuous flow to a synchronous valveless pulsatile flow left ventricular assist device.

    PubMed

    Gohean, Jeffrey R; George, Mitchell J; Pate, Thomas D; Kurusz, Mark; Longoria, Raul G; Smalling, Richard W

    2013-01-01

    The purpose of this investigation is to use a computational model to compare a synchronized valveless pulsatile left ventricular assist device with continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate the support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous pulsatile valveless dual-piston positive displacement pump. These results were compared with measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared with the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device.

  11. Verification of a computational cardiovascular system model comparing the hemodynamics of a continuous flow to a synchronous valveless pulsatile flow left ventricular assist device

    PubMed Central

    Gohean, Jeffrey R.; George, Mitchell J.; Pate, Thomas D.; Kurusz, Mark; Longoria, Raul G.; Smalling, Richard W.

    2012-01-01

    The purpose of this investigation is to utilize a computational model to compare a synchronized valveless pulsatile left ventricular assist device to continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous, pulsatile, valveless, dual piston positive displacement pump. These results were compared to measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared to the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device. PMID:23438771

  12. Multi-photon microscopy of tobacco-exposed organotypic skin models

    NASA Astrophysics Data System (ADS)

    Dao, Belinda; Yamazaki, Alissa; Sun, Chung Ho; Wang, Zifu; Pham, Nguyen; Oldham, Michael; Wong, Brian J. F.

    2006-02-01

    Cigarette smoking is the most preventable cause of death in the United States. Researchers have extensively studied smoking in regards to its association with cancer, cardiovascular, and pulmonary disease. In contrast, the impact of cigarette smoking on skin has received much less attention. To provide a better understanding of the effect of cigarette smoking on the human dermal layer, this study used multi-photon microscopy (MPM) to examine collagen in organotypic skin models exposed to cigarette smoke condensate (CSC). Adult and neonatal organotypic tissue-engineered artificial skin models (RAFTs) were constructed and exposed to varying concentrations of CSC. Imaging of the RAFTs was performed using MPM and second-harmonic generation signals (SHG), which allowed for collagen structure to be viewed and analyzed as well as for collagen density to be assessed from derived depth-dependent decay (DDD) values. RAFT contraction as related to exposure concentration was monitored as well. Results indicated a dose dependent between contraction rates and CSC concentration. Collagen structure showed more preservation of its original structure at a greater depth in RAFTs with higher concentrations of CSC. No clear trends could be drawn from analysis of derived DDD values.

  13. Generation of Human Liver Chimeric Mice with Hepatocytes from Familial Hypercholesterolemia Induced Pluripotent Stem Cells.

    PubMed

    Yang, Jiayin; Wang, Yu; Zhou, Ting; Wong, Lai-Yung; Tian, Xiao-Yu; Hong, Xueyu; Lai, Wing-Hon; Au, Ka-Wing; Wei, Rui; Liu, Yuqing; Cheng, Lai-Hung; Liang, Guichan; Huang, Zhijian; Fan, Wenxia; Zhao, Ping; Wang, Xiwei; Ibañez, David P; Luo, Zhiwei; Li, Yingying; Zhong, Xiaofen; Chen, Shuhan; Wang, Dongye; Li, Li; Lai, Liangxue; Qin, Baoming; Bao, Xichen; Hutchins, Andrew P; Siu, Chung-Wah; Huang, Yu; Esteban, Miguel A; Tse, Hung-Fat

    2017-03-14

    Familial hypercholesterolemia (FH) causes elevation of low-density lipoprotein cholesterol (LDL-C) in blood and carries an increased risk of early-onset cardiovascular disease. A caveat for exploration of new therapies for FH is the lack of adequate experimental models. We have created a comprehensive FH stem cell model with differentiated hepatocytes (iHeps) from human induced pluripotent stem cells (iPSCs), including genetically engineered iPSCs, for testing therapies for FH. We used FH iHeps to assess the effect of simvastatin and proprotein convertase subtilisin/kexin type 9 (PCSK9) antibodies on LDL-C uptake and cholesterol lowering in vitro. In addition, we engrafted FH iHeps into the liver of Ldlr -/- /Rag2 -/- /Il2rg -/- mice, and assessed the effect of these same medications on LDL-C clearance and endothelium-dependent vasodilation in vivo. Our iHep models recapitulate clinical observations of higher potency of PCSK9 antibodies compared with statins for reversing the consequences of FH, demonstrating the utility for preclinical testing of new therapies for FH patients. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. [Modern polyurethanes in cardiovascular surgery].

    PubMed

    Gostev, A A; Laktionov, P P; Karpenko, A A

    Currently, there is great clinical demand for synthetic tissue-engineered cardiovascular prostheses with good long-term patency. Polyurethanes belong to the class of polymers with excellent bio- and hemocompatibility. They are known to possess good mechanical properties, but are prone to processes of degradation in conditions of functioning in living organisms. Attempts at solving this problem have resulted in the development of various new subclasses of polyurethanes such as thermoplastic polyether polyurethanes, polyurethanes with a silicone segment, polycarbonate polyurethanes and nanocomposite polyurethanes. This was accompanied and followed by offering a series of new technologies of production of implantable medical devices such as vascular grafts, heart valves and others. In the presented review, we discuss biological and mechanical properties of modern subclasses of polyurethanes, as well as modern methods of manufacturing implantable medical devices made of polyurethanes, especially small-diameter vascular prostheses.

  15. Cardiovascular risk assessment in type 2 diabetes mellitus: comparison of the World Health Organization/International Society of Hypertension risk prediction charts versus UK Prospective Diabetes Study risk engine.

    PubMed

    Herath, Herath M Meththananda; Weerarathna, Thilak Priyantha; Umesha, Dilini

    2015-01-01

    Patients with type 2 diabetes mellitus (T2DM) are at higher risk of developing cardiovascular diseases, and assessment of their cardiac risk is important for preventive strategies. The Ministry of Health of Sri Lanka has recommended World Health Organization/International Society of Hypertension (WHO/ISH) charts for cardiac risk assessment in individuals with T2DM. However, the most suitable cardiac risk assessment tool for Sri Lankans with T2DM has not been studied. This study was designed to evaluate the performance of two cardiac risk assessments tools; WHO/ISH charts and UK Prospective Diabetes Study (UKPDS) risk engine. Cardiac risk assessments were done in 2,432 patients with T2DM attending a diabetes clinic in Southern Sri Lanka using the two risk assessment tools. Validity of two assessment tools was further assessed by their ability to recognize individuals with raised low-density lipoprotein (LDL) and raised diastolic blood pressure in a cohort of newly diagnosed T2DM patients (n=332). WHO/ISH charts identified 78.4% of subjects as low cardiac risk whereas the UKPDS risk engine categorized 52.3% as low cardiac risk (P<0.001). In the risk categories of 10%-<20%, the UKPDS risk engine identified higher proportions of patients (28%) compared to WHO/ISH charts (7%). Approximately 6% of subjects were classified as low cardiac risk (<10%) by WHO/ISH when UKPDS recognized them as cardiac risk of >20%. Agreement between the two tools was poor (κ value =0.144, P<0.01). Approximately 82% of individuals categorized as low cardiac risk by WHO/ISH had higher LDL cholesterol than the therapeutic target of 100 mg/dL. There is a significant discrepancy between the two assessment tools with WHO/ISH risk chart recognizing higher proportions of patients having low cardiac risk than the UKPDS risk engine. Risk assessment by both assessment tools demonstrated poor sensitivity in identifying those with treatable levels of LDL cholesterol and diastolic blood pressure.

  16. Isolated heart models: cardiovascular system studies and technological advances.

    PubMed

    Olejnickova, Veronika; Novakova, Marie; Provaznik, Ivo

    2015-07-01

    Isolated heart model is a relevant tool for cardiovascular system studies. It represents a highly reproducible model for studying broad spectrum of biochemical, physiological, morphological, and pharmaceutical parameters, including analysis of intrinsic heart mechanics, metabolism, and coronary vascular response. Results obtained in this model are under no influence of other organ systems, plasma concentration of hormones or ions and influence of autonomic nervous system. The review describes various isolated heart models, the modes of heart perfusion, and advantages and limitations of various experimental setups. It reports the improvements of perfusion setup according to Langendorff introduced by the authors.

  17. CARDIOVASCULAR AND BLOOD COAGULATION EFFECTS OF PULMONARY ZINC EXPOSURE

    EPA Science Inventory

    Cardiovascular damage induced by pulmonary exposure to environmental chemicals can result from direct action or, secondarily, from pulmonary injury. We have developed a rat model of pulmonary exposure to zinc to demonstrate cardiac, coagulative, and fibrinolytic alterations. Mal...

  18. Lipoprotein metabolism indicators improve cardiovascular risk prediction

    USDA-ARS?s Scientific Manuscript database

    Background: Cardiovascular disease risk increases when lipoprotein metabolism is dysfunctional. We have developed a computational model able to derive indicators of lipoprotein production, lipolysis, and uptake processes from a single lipoprotein profile measurement. This is the first study to inves...

  19. Performance of the UK Prospective Diabetes Study Risk Engine and the Framingham Risk Equations in Estimating Cardiovascular Disease in the EPIC- Norfolk Cohort

    PubMed Central

    Simmons, Rebecca K.; Coleman, Ruth L.; Price, Hermione C.; Holman, Rury R.; Khaw, Kay-Tee; Wareham, Nicholas J.; Griffin, Simon J.

    2009-01-01

    OBJECTIVE The purpose of this study was to examine the performance of the UK Prospective Diabetes Study (UKPDS) Risk Engine (version 3) and the Framingham risk equations (2008) in estimating cardiovascular disease (CVD) incidence in three populations: 1) individuals with known diabetes; 2) individuals with nondiabetic hyperglycemia, defined as A1C ≥6.0%; and 3) individuals with normoglycemia defined as A1C <6.0%. RESEARCH DESIGN AND METHODS This was a population-based prospective cohort (European Prospective Investigation of Cancer-Norfolk). Participants aged 40–79 years recruited from U.K. general practices attended a health examination (1993–1998) and were followed for CVD events/death until April 2007. CVD risk estimates were calculated for 10,137 individuals. RESULTS Over 10.1 years, there were 69 CVD events in the diabetes group (25.4%), 160 in the hyperglycemia group (17.7%), and 732 in the normoglycemia group (8.2%). Estimated CVD 10-year risk in the diabetes group was 33 and 37% using the UKPDS and Framingham equations, respectively. In the hyperglycemia group, estimated CVD risks were 31 and 22%, respectively, and for the normoglycemia group risks were 20 and 14%, respectively. There were no significant differences in the ability of the risk equations to discriminate between individuals at different risk of CVD events in each subgroup; both equations overestimated CVD risk. The Framingham equations performed better in the hyperglycemia and normoglycemia groups as they did not overestimate risk as much as the UKPDS Risk Engine, and they classified more participants correctly. CONCLUSIONS Both the UKPDS Risk Engine and Framingham risk equations were moderately effective at ranking individuals and are therefore suitable for resource prioritization. However, both overestimated true risk, which is important when one is using scores to communicate prognostic information to individuals. PMID:19114615

  20. Genetically engineered pigs as models for human disease

    PubMed Central

    Perleberg, Carolin; Kind, Alexander

    2018-01-01

    ABSTRACT Genetically modified animals are vital for gaining a proper understanding of disease mechanisms. Mice have long been the mainstay of basic research into a wide variety of diseases but are not always the most suitable means of translating basic knowledge into clinical application. The shortcomings of rodent preclinical studies are widely recognised, and regulatory agencies around the world now require preclinical trial data from nonrodent species. Pigs are well suited to biomedical research, sharing many similarities with humans, including body size, anatomical features, physiology and pathophysiology, and they already play an important role in translational studies. This role is set to increase as advanced genetic techniques simplify the generation of pigs with precisely tailored modifications designed to replicate lesions responsible for human disease. This article provides an overview of the most promising and clinically relevant genetically modified porcine models of human disease for translational biomedical research, including cardiovascular diseases, cancers, diabetes mellitus, Alzheimer's disease, cystic fibrosis and Duchenne muscular dystrophy. We briefly summarise the technologies involved and consider the future impact of recent technical advances. PMID:29419487

  1. [Italian intersocietary consensus document on aspirin therapy in primary cardiovascular prevention].

    PubMed

    Volpe, Massimo; Abrignani, Maurizio Giuseppe; Borghi, Claudio; Coccheri, Sergio; Gresele, Paolo; Patti, Giuseppe; Trimarco, Bruno; De Caterina, Raffaele

    2014-01-01

    The indications for the use of aspirin in primary cardiovascular prevention continue to be a source of intense debate, with major international guidelines providing conflicting advices. This document, written by delegates of the main Italian scientific societies dealing with cardiovascular prevention and modeled on a similar document by the European Society of Cardiology Working Group on Thrombosis, reviews the evidence in favor and against the use of aspirin therapy in primary prevention based on data cumulated so far, including recent data linking aspirin with cancer protection. While awaiting the results of several ongoing studies, this document argues for a pragmatic approach to the use of low-dose aspirin in primary cardiovascular prevention, and suggests its use in patients at high cardiovascular risk, defined as ≥2 major cardiovascular events (death, myocardial infarction, or stroke) projected per 100 person-years, who are not at increased risk of bleeding.

  2. Hippo signaling pathway in cardiovascular development and diseases.

    PubMed

    Wang, Yong-yu; Yu, Wei; Zhou, Bin

    2017-07-20

    Cardiovascular diseases have become the leading cause of death in the world. Understanding the development of cardiovascular system and the pathogenesis of cardiovascular diseases will promote the generation of novel preventive and therapeutic strategy. The Hippo pathway is a recently identified signaling cascade that plays a critical role in organ size control, cell proliferation, apoptosis and fate determination of stem cells. Gene knockout and transgenic mouse models have revealed that the Hippo signaling pathway is involved in heart development, cardiomyocyte proliferation, apoptosis, hypertrophy and cardiac regeneration. The Hippo signaling pathway also regulates vascular development, differentiation and various functions of vascular cells. Dysregulation of the Hippo signaling pathway leads to different kinds of cardiovascular diseases, such as myocardial infarction, cardiac hypertrophy, neointima formation and atherosclerosis. In this review, we briefly summarize current research on the roles and regulation mechanisms of the Hippo signaling pathway in cardiovascular development and diseases.

  3. Current status of cardiovascular surgery in Japan, 2013 and 2014: A report based on the Japan Cardiovascular Surgery Database (JCVSD). 1: Mission and history of JCVSD.

    PubMed

    Takamoto, Shinichi; Motomura, Noboru; Miyata, Hiroaki; Tsukihara, Hiroyuki

    2018-01-01

    The Japan Cardiovascular Surgery Database (JCVSD) was created in 2000 with the support of the Society of Thoracic Surgeons (STS). The STS database content was translated to Japanese using the same disease criteria and in 2001, data entry for adult cardiac surgeries was initiated online using the University Hospital Medical Information Network (UMIN). In 2008, data entry for congenital heart surgeries was initiated in the congenital section of JCVSD and preoperative expected mortality (JapanSCORE) in adult cardiovascular surgeries was first calculated using the risk model of JCVSD. The Japan Surgical Board system merged with JCVSD in 2011, and all cardiovascular surgical data were registered in the JCVSD from 2012 onward. The reports resulting from the data analyses of the JCVSD will encourage further improvements in the quality of cardiovascular surgeries, patient safety, and medical care in Japan.

  4. Prognostic Utility of Novel Biomarkers of Cardiovascular Stress: The Framingham Heart Study

    PubMed Central

    Wang, Thomas J.; Wollert, Kai C.; Larson, Martin G.; Coglianese, Erin; McCabe, Elizabeth L.; Cheng, Susan; Ho, Jennifer E.; Fradley, Michael G.; Ghorbani, Anahita; Xanthakis, Vanessa; Kempf, Tibor; Benjamin, Emelia J.; Levy, Daniel; Vasan, Ramachandran S.; Januzzi, James L.

    2013-01-01

    Background Biomarkers for predicting cardiovascular events in community-based populations have not consistently added information to standard risk factors. A limitation of many previously studied biomarkers is their lack of cardiovascular specificity. Methods and Results To determine the prognostic value of 3 novel biomarkers induced by cardiovascular stress, we measured soluble ST2, growth differentiation factor-15, and high-sensitivity troponin I in 3,428 participants (mean age 59, 53% women) in the Framingham Heart Study. We performed multivariable-adjusted proportional hazards models to assess the individual and combined ability of the biomarkers to predict adverse outcomes. We also constructed a “multimarker” score composed of the 3 biomarkers, in addition to B-type natriuretic peptide and high-sensitivity C-reactive protein. During a mean follow-up of 11.3 years, there were 488 deaths, 336 major cardiovascular events, 162 heart failure events, and 142 coronary events. In multivariable-adjusted models, the 3 new biomarkers were associated with each endpoint (p<0.001) except for coronary events. Individuals with multimarker scores in the highest quartile had a 3-fold risk of death (adjusted hazard ratio, 3.2, 95% CI, 2.2–4.7; p<0.001), 6-fold risk of heart failure (6.2, 95% CI, 2.6–14.8; p<0.001), and 2-fold risk of cardiovascular events (1.9, 95% CI, 1.3–2.7; p=0.001). Addition of the multimarker score to clinical variables led to significant increases in the c-statistic (p=0.007 or lower) and net reclassification improvement (p=0.001 or lower). Conclusions Multiple biomarkers of cardiovascular stress are detectable in ambulatory individuals, and add prognostic value to standard risk factors for predicting death, overall cardiovascular events, and heart failure. PMID:22907935

  5. Prognostic utility of novel biomarkers of cardiovascular stress: the Framingham Heart Study.

    PubMed

    Wang, Thomas J; Wollert, Kai C; Larson, Martin G; Coglianese, Erin; McCabe, Elizabeth L; Cheng, Susan; Ho, Jennifer E; Fradley, Michael G; Ghorbani, Anahita; Xanthakis, Vanessa; Kempf, Tibor; Benjamin, Emelia J; Levy, Daniel; Vasan, Ramachandran S; Januzzi, James L

    2012-09-25

    Biomarkers for predicting cardiovascular events in community-based populations have not consistently added information to standard risk factors. A limitation of many previously studied biomarkers is their lack of cardiovascular specificity. To determine the prognostic value of 3 novel biomarkers induced by cardiovascular stress, we measured soluble ST2, growth differentiation factor-15, and high-sensitivity troponin I in 3428 participants (mean age, 59 years; 53% women) in the Framingham Heart Study. We performed multivariable-adjusted proportional hazards models to assess the individual and combined ability of the biomarkers to predict adverse outcomes. We also constructed a "multimarker" score composed of the 3 biomarkers in addition to B-type natriuretic peptide and high-sensitivity C-reactive protein. During a mean follow-up of 11.3 years, there were 488 deaths, 336 major cardiovascular events, 162 heart failure events, and 142 coronary events. In multivariable-adjusted models, the 3 new biomarkers were associated with each end point (P<0.001) except coronary events. Individuals with multimarker scores in the highest quartile had a 3-fold risk of death (adjusted hazard ratio, 3.2; 95% confidence interval, 2.2-4.7; P<0.001), 6-fold risk of heart failure (6.2; 95% confidence interval, 2.6-14.8; P<0.001), and 2-fold risk of cardiovascular events (1.9; 95% confidence interval, 1.3-2.7; P=0.001). Addition of the multimarker score to clinical variables led to significant increases in the c statistic (P=0.005 or lower) and net reclassification improvement (P=0.001 or lower). Multiple biomarkers of cardiovascular stress are detectable in ambulatory individuals and add prognostic value to standard risk factors for predicting death, overall cardiovascular events, and heart failure.

  6. Topical Beta-Blockers and Cardiovascular Mortality: Systematic Review and Meta-Analysis with Data from the EPIC-Norfolk Cohort Study

    PubMed Central

    Pinnock, Claude; Yip, Jennifer L. Y.; Khawaja, Anthony P.; Luben, Robert; Hayat, Shabina; Broadway, David C.; Foster, Paul J.; Khaw, Kay-Tee; Wareham, Nick

    2016-01-01

    ABSTRACT Purpose: To determine if topical beta-blocker use is associated with increased cardiovascular mortality, particularly among people with self-reported glaucoma. Methods: All participants who participated in the first health check (N = 25,639) of the European Prospective Investigation into Cancer (EPIC) Norfolk cohort (1993–2013) were included in this prospective cohort study, with a median follow-up of 17.0 years. We determined use of topical beta-blockers at baseline through a self-reported questionnaire and prescription check at the first clinical visit. Cardiovascular mortality was ascertained through data linkage with the Office for National Statistics mortality database. Hazard ratios (HRs) were estimated using multivariable Cox regression models. Meta-analysis of the present study’s results together with other identified literature was performed using a random effects model. Results: We did not find an association between the use of topical beta-blockers and cardiovascular mortality (HR 0.93, 95% confidence interval, CI, 0.67–1.30). In the 514 participants with self-reported glaucoma, no association was found between the use of topical beta-blockers and cardiovascular mortality (HR 0.89, 95% CI 0.56–1.40). In the primary meta-analysis of four publications, there was no evidence of an association between the use of topical beta-blockers and cardiovascular mortality (pooled HR estimate 1.10, 95% CI 0.84–1.36). Conclusion: Topical beta-blockers do not appear to be associated with excess cardiovascular mortality. This evidence does not indicate that a change in current practice is warranted, although clinicians should continue to assess individual patients and their cardiovascular risk prior to commencing topical beta-blockers. PMID:27551956

  7. Association of cardiovascular system medications with cognitive function and dementia in older adults living in nursing homes in Australia.

    PubMed

    Liu, Enwu; Dyer, Suzanne M; O'Donnell, Lisa Kouladjian; Milte, Rachel; Bradley, Clare; Harrison, Stephanie L; Gnanamanickam, Emmanuel; Whitehead, Craig; Crotty, Maria

    2017-06-01

    To examine associations between cardiovascular system medication use with cognition function and diagnosis of dementia in older adults living in nursing homes in Australia. As part of a cross-sectional study of 17 Australian nursing homes examining quality of life and resource use, we examined the association between cognitive impairment and cardiovascular medication use (identified using the Anatomical Therapeutic Classification System) using general linear regression and logistic regression models. People who were receiving end of life care were excluded. Participants included 541 residents with a mean age of 85.5 years (± 8.5), a mean Psychogeriatric Assessment Scale-Cognitive Impairment (PAS-Cog) score of 13.3 (± 7.7), a prevalence of cardiovascular diseases of 44% and of hypertension of 47%. Sixty-four percent of participants had been diagnosed with dementia and 72% had received cardiovascular system medications within the previous 12 months. Regression models demonstrated the use of cardiovascular medications was associated with lower (better) PAS-Cog scores [Coefficient (β) = -3.7; 95% CI: -5.2 to -2.2; P < 0.0001] and a lower probability of a dementia diagnosis (OR = 0.44; 95% CI: 0.26 to 0.75, P = 0.0022). Analysis by subgroups of medications showed cardiac therapy medications (C01), beta blocking agents (C07), and renin-angiotensin system agents (C09) were associated with lower PAS-Cog scores (better cognition) and lower dementia diagnosis probability. This analysis has demonstrated an association between greater cardiovascular system medication use and better cognitive status among older adults living in nursing homes. In this population, there may be differential access to health care and treatment of cardiovascular risk factors. This association warrants further investigation in large cohort studies.

  8. Plasma stromal cell-derived factor 1α/CXCL12 level predicts long-term adverse cardiovascular outcomes in patients with coronary artery disease.

    PubMed

    Ghasemzadeh, Nima; Hritani, Abdul Wahab; De Staercke, Christine; Eapen, Danny J; Veledar, Emir; Al Kassem, Hatem; Khayata, Mohamed; Zafari, A Maziar; Sperling, Laurence; Hooper, Craig; Vaccarino, Viola; Mavromatis, Kreton; Quyyumi, Arshed A

    2015-01-01

    Stromal derived factor-1α/CXCL12 is a chemoattractant responsible for homing of progenitor cells to ischemic tissues. We aimed to investigate the association of plasma CXCL12 with long-term cardiovascular outcomes in patients with coronary artery disease (CAD). 785 patients aged: 63 ± 12 undergoing coronary angiography were independently enrolled into discovery (N = 186) and replication (N = 599) cohorts. Baseline levels of plasma CXCL12 were measured using Quantikine CXCL12 ELISA assay (R&D systems). Patients were followed for cardiovascular death and/or myocardial infarction (MI) for a mean of 2.6 yrs. Cox proportional hazard was used to determine independent predictors of cardiovascular death/MI. The incidence of cardiovascular death/MI was 13% (N = 99). High CXCL12 level based on best discriminatory threshold derived from the ROC analysis predicted risk of cardiovascular death/MI (HR = 4.81, p = 1 × 10(-6)) independent of traditional risk factors in the pooled cohort. Addition of CXCL12 to a baseline model was associated with a significant improvement in c-statistic (AUC: 0.67-0.73, p = 0.03). Addition of CXCL12 was associated with correct risk reclassification of 40% of events and 10.5% of non-events. Similarly for the outcome of cardiovascular death, the addition of the CXCL12 to the baseline model was associated with correct reclassification of 20.7% of events and 9% of non-events. These results were replicated in two independent cohorts. Plasma CXCL12 level is a strong independent predictor of adverse cardiovascular outcomes in patients with CAD and improves risk reclassification. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Genetic risk score and cardiovascular mortality in a southern european population with coronary artery disease.

    PubMed

    Pereira, Andreia; Mendonca, Maria Isabel; Sousa, Ana Célia; Borges, Sofia; Freitas, Sónia; Henriques, Eva; Rodrigues, Mariana; Freitas, Ana Isabel; Guerra, Graça; Ornelas, Ilídio; Pereira, Décio; Brehm, António; Palma Dos Reis, Roberto

    2017-06-01

    Several genetic risk scores (GRS) have been associated with cardiovascular disease; their role, however, in survival from proven coronary artery disease (CAD) have yielded conflicting results. The objective of this study was to evaluate long-term cardiovascular mortality according to the genetic risk score in a Southern European population with CAD. A cohort of 1464 CAD patients with angiographic proven CAD were followed up prospectively for up to 58.3 (interquartile range: 25.8-88.1) months. Genotyping of 32 single-nucleotide polymorphisms previously associated with CAD was performed using oligonucleotides probes marked with fluorescence for each allele. GRS was constructed according to the additive model assuming codominance and categorised using the median (=26). Cox Regression analysis was performed to determine independent multivariate predictors of cardiovascular mortality. Kaplan-Meier survival curves compared high vs low GRS using log-rank test. C-index was done for our population, as a measure of discrimination in survival analysis model. During a mean follow-up of 58.3 months, 156 patients (10.7%) died, 107 (7.3%) of CV causes. High GRS (≥26) was associated with reduced cardiovascular survival. Survival analysis with Cox regression model adjusted for 8 variables showed that high GRS, dyslipidemia, diabetes and 3-vessel disease were independent risk factors for cardiovascular mortality (HR=1.53, P=.037; HR=3.64, P=.012; HR=1.75, P=.004; HR=2.97, P<.0001, respectively). At the end of follow-up, the estimated survival probability was 70.8% for high GRS and 80.8% for low GRS (Log-rank test 5.6; P=.018). C-Index of 0.71 was found when GRS was added to a multivariate survival model of diabetes, dyslipidemia, smoking, hypertension and 3 vessel disease, stable angina and dual antiplatelet therapy. Besides the classical risk factors management, this work highlights the relevance of the genetic profile in survival from CAD. It is expected that new therapies will be dirsected to gene targets with proven value in cardiovascular survival. © 2017 John Wiley & Sons Ltd.

  10. ART-ML: a new markup language for modelling and representation of biological processes in cardiovascular diseases.

    PubMed

    Karvounis, E C; Exarchos, T P; Fotiou, E; Sakellarios, A I; Iliopoulou, D; Koutsouris, D; Fotiadis, D I

    2013-01-01

    With an ever increasing number of biological models available on the internet, a standardized modelling framework is required to allow information to be accessed and visualized. In this paper we propose a novel Extensible Markup Language (XML) based format called ART-ML that aims at supporting the interoperability and the reuse of models of geometry, blood flow, plaque progression and stent modelling, exported by any cardiovascular disease modelling software. ART-ML has been developed and tested using ARTool. ARTool is a platform for the automatic processing of various image modalities of coronary and carotid arteries. The images and their content are fused to develop morphological models of the arteries in 3D representations. All the above described procedures integrate disparate data formats, protocols and tools. ART-ML proposes a representation way, expanding ARTool, for interpretability of the individual resources, creating a standard unified model for the description of data and, consequently, a format for their exchange and representation that is machine independent. More specifically, ARTool platform incorporates efficient algorithms which are able to perform blood flow simulations and atherosclerotic plaque evolution modelling. Integration of data layers between different modules within ARTool are based upon the interchange of information included in the ART-ML model repository. ART-ML provides a markup representation that enables the representation and management of embedded models within the cardiovascular disease modelling platform, the storage and interchange of well-defined information. The corresponding ART-ML model incorporates all relevant information regarding geometry, blood flow, plaque progression and stent modelling procedures. All created models are stored in a model repository database which is accessible to the research community using efficient web interfaces, enabling the interoperability of any cardiovascular disease modelling software models. ART-ML can be used as a reference ML model in multiscale simulations of plaque formation and progression, incorporating all scales of the biological processes.

  11. Guidelines for measuring cardiac physiology in mice

    PubMed Central

    Kassiri, Zamaneh; Virag, Jitka A. I.; de Castro Brás, Lisandra E.; Scherrer-Crosbie, Marielle

    2018-01-01

    Cardiovascular disease is a leading cause of death, and translational research is needed to understand better mechanisms whereby the left ventricle responds to injury. Mouse models of heart disease have provided valuable insights into mechanisms that occur during cardiac aging and in response to a variety of pathologies. The assessment of cardiovascular physiological responses to injury or insult is an important and necessary component of this research. With increasing consideration for rigor and reproducibility, the goal of this guidelines review is to provide best-practice information regarding how to measure accurately cardiac physiology in animal models. In this article, we define guidelines for the measurement of cardiac physiology in mice, as the most commonly used animal model in cardiovascular research. Listen to this article’s corresponding podcast at http://ajpheart.podbean.com/e/guidelines-for-measuring-cardiac-physiology-in-mice/. PMID:29351456

  12. Care assessment platform: an ICT-enabled home care model for secondary prevention of cardiovascular diseases.

    PubMed

    Karunanithi, Mohanraj; Varnfield, Marlien; Ding, Hang; Garcia, Elsa; Whittaker, Frank; Sarela, Antti

    2010-01-01

    Cardiovascular disease (CVD) is the leading chronic diseases affecting developed countries. Traditional approach to secondary prevention of CVD through hospital-based cardiac rehabilitation (CR) is hampered by the lack of uptake and adherence.

  13. Whole Body Plethysmography Reveals Differential Ventilatory Responses to Ozone in Rat Models of Cardiovascular Disease

    EPA Science Inventory

    Increasingly, urban air pollution is recognized as an important determinant of cardiovascular disease. Host susceptibility to air pollution can vary due to genetic predisposition and underlying disease. To elucidate key factors of host ...

  14. ACUTE EXPOSURE TO PARTICULATE MATTER IN A RAT MODEL OF HEART FAILURE

    EPA Science Inventory

    Human exposure to ambient particulate matter (PM) has been linked to cardiovascular morbidity and mortality. This association strengthens in people with preexisting cardiopulmonary diseases—especially heart failure (HF). To better characterize the cardiovascular effects of PM, we...

  15. Protein–Hydrogel Interactions in Tissue Engineering: Mechanisms and Applications

    PubMed Central

    Zustiak, Silviya P.; Wei, Yunqian

    2013-01-01

    Recent advances in our understanding of the sophistication of the cellular microenvironment and the dynamics of tissue remodeling during development, disease, and regeneration have increased our appreciation of the current challenges facing tissue engineering. As this appreciation advances, we are better equipped to approach problems in the biology and therapeutics of even more complex fields, such as stem cells and cancer. To aid in these studies, as well as the established areas of tissue engineering, including cardiovascular, musculoskeletal, and neural applications, biomaterials scientists have developed an extensive array of materials with specifically designed chemical, mechanical, and biological properties. Herein, we highlight an important topic within this area of biomaterials research, protein–hydrogel interactions. Due to inherent advantages of hydrated scaffolds for soft tissue engineering as well as specialized bioactivity of proteins and peptides, this field is well-posed to tackle major needs within emerging areas of tissue engineering. We provide an overview of the major modes of interactions between hydrogels and proteins (e.g., weak forces, covalent binding, affinity binding), examples of applications within growth factor delivery and three-dimensional scaffolds, and finally future directions within the area of hydrogel–protein interactions that will advance our ability to control the cell–biomaterial interface. PMID:23150926

  16. Cardiovascular Surgery Residency Program: Training Coronary Anastomosis Using the Arroyo Simulator and UNIFESP Models.

    PubMed

    Maluf, Miguel Angel; Gomes, Walter José; Bras, Ademir Massarico; Araújo, Thiago Cavalcante Vila Nova de; Mota, André Lupp; Cardoso, Caio Cesar; Coutinho, Rafael Viana dos S

    2015-01-01

    Engage the UNIFESP Cardiovascular Surgery residents in coronary anastomosis, assess their skills and certify results, using the Arroyo Anastomosis Simulator and UNIFESP surgical models. First to 6th year residents attended a weekly program of technical training in coronary anastomosis, using 4 simulation models: 1. Arroyo simulator; 2. Dummy with a plastic heart; 3. Dummy with a bovine heart; and 4. Dummy with a beating pig heart. The assessment test was comprised of 10 items, using a scale from 1 to 5 points in each of them, creating a global score of 50 points maximum. The technical performance of the candidate showed improvement in all items, especially manual skill and technical progress, critical sense of the work performed, confidence in the procedure and reduction of the time needed to perform the anastomosis after 12 weeks practice. In response to the multiplicity of factors that currently influence the cardiovascular surgeon training, there have been combined efforts to reform the practices of surgical medical training. 1 - The four models of simulators offer a considerable contribution to the field of cardiovascular surgery, improving the skill and dexterity of the surgeon in training. 2 - Residents have shown interest in training and cooperate in the development of innovative procedures for surgical medical training in the art.

  17. Cardiovascular Surgery Residency Program: Training Coronary Anastomosis Using the Arroyo Simulator and UNIFESP Models

    PubMed Central

    Maluf, Miguel Angel; Gomes, Walter José; Bras, Ademir Massarico; de Araújo, Thiago Cavalcante Vila Nova; Mota, André Lupp; Cardoso, Caio Cesar; Coutinho, Rafael Viana dos S.

    2015-01-01

    OBJECTIVE Engage the UNIFESP Cardiovascular Surgery residents in coronary anastomosis, assess their skills and certify results, using the Arroyo Anastomosis Simulator and UNIFESP surgical models. METHODS First to 6th year residents attended a weekly program of technical training in coronary anastomosis, using 4 simulation models: 1. Arroyo simulator; 2. Dummy with a plastic heart; 3. Dummy with a bovine heart; and 4. Dummy with a beating pig heart. The assessment test was comprised of 10 items, using a scale from 1 to 5 points in each of them, creating a global score of 50 points maximum. RESULTS The technical performance of the candidate showed improvement in all items, especially manual skill and technical progress, critical sense of the work performed, confidence in the procedure and reduction of the time needed to perform the anastomosis after 12 weeks practice. In response to the multiplicity of factors that currently influence the cardiovascular surgeon training, there have been combined efforts to reform the practices of surgical medical training. CONCLUSION 1 - The four models of simulators offer a considerable contribution to the field of cardiovascular surgery, improving the skill and dexterity of the surgeon in training. 2 - Residents have shown interest in training and cooperate in the development of innovative procedures for surgical medical training in the art. PMID:26735604

  18. Ambient carbon monoxide and cardiovascular mortality: a nationwide time-series analysis in 272 cities in China.

    PubMed

    Liu, Cong; Yin, Peng; Chen, Renjie; Meng, Xia; Wang, Lijun; Niu, Yue; Lin, Zhijing; Liu, Yunning; Liu, Jiangmei; Qi, Jinlei; You, Jinling; Kan, Haidong; Zhou, Maigeng

    2018-01-01

    Evidence of the acute health effects of ambient carbon monoxide air pollution in developing countries is scarce and mixed. We aimed to evaluate short-term associations between carbon monoxide and daily cardiovascular disease mortality in China. We did a nationwide time-series analysis in 272 major cities in China from January, 2013, to December, 2015. We extracted daily cardiovascular disease mortality data from China's Disease Surveillance Points system. Data on daily carbon monoxide concentrations for each city were obtained from the National Urban Air Quality Real-time Publishing Platform. City-specific associations between carbon monoxide concentrations and daily mortality from cardiovascular disease, coronary heart disease, and stroke were estimated with over-dispersed generalised linear models. Bayesian hierarchical models were used to obtain national and regional average associations. Exposure-response association curves and potential effect modifiers were evaluated. Two-pollutant models were fit to evaluate the robustness of the effects of carbon monoxide on cardiovascular mortality. The average annual mean carbon monoxide concentration in these cities from 2013 to 2015 was 1·20 mg/m 3 , ranging from 0·43 mg/m 3 to 2·45 mg/m 3 . For a 1 mg/m 3 increase in average carbon monoxide concentrations on the present day and previous day (lag 0-1), we observed significant increments in mortality of 1·12% (95% posterior interval [PI] 0·42-1·83) from cardiovascular disease, 1·75% (0·85-2·66) from coronary heart disease, and 0·88% (0·07-1·69) from stroke. These associations did not vary substantially by city, region, and demographic characteristics (age, sex, and level of education), and the associations for cardiovascular disease and coronary heart disease were robust to the adjustment of criteria co-pollutants. We did not find a threshold below which carbon monoxide exposure had no effect on cardiovascular disease mortality. This analysis is, to our knowledge, the largest study done in a developing country, and provides robust evidence of the association between short-term exposure to ambient carbon monoxide and increased cardiovascular disease mortality, especially coronary heart disease mortality. Public Welfare Research Program. Copyright © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license. Published by Elsevier Ltd.. All rights reserved.

  19. C-reactive protein, fibrinogen, and cardiovascular disease prediction.

    PubMed

    Kaptoge, Stephen; Di Angelantonio, Emanuele; Pennells, Lisa; Wood, Angela M; White, Ian R; Gao, Pei; Walker, Matthew; Thompson, Alexander; Sarwar, Nadeem; Caslake, Muriel; Butterworth, Adam S; Amouyel, Philippe; Assmann, Gerd; Bakker, Stephan J L; Barr, Elizabeth L M; Barrett-Connor, Elizabeth; Benjamin, Emelia J; Björkelund, Cecilia; Brenner, Hermann; Brunner, Eric; Clarke, Robert; Cooper, Jackie A; Cremer, Peter; Cushman, Mary; Dagenais, Gilles R; D'Agostino, Ralph B; Dankner, Rachel; Davey-Smith, George; Deeg, Dorly; Dekker, Jacqueline M; Engström, Gunnar; Folsom, Aaron R; Fowkes, F Gerry R; Gallacher, John; Gaziano, J Michael; Giampaoli, Simona; Gillum, Richard F; Hofman, Albert; Howard, Barbara V; Ingelsson, Erik; Iso, Hiroyasu; Jørgensen, Torben; Kiechl, Stefan; Kitamura, Akihiko; Kiyohara, Yutaka; Koenig, Wolfgang; Kromhout, Daan; Kuller, Lewis H; Lawlor, Debbie A; Meade, Tom W; Nissinen, Aulikki; Nordestgaard, Børge G; Onat, Altan; Panagiotakos, Demosthenes B; Psaty, Bruce M; Rodriguez, Beatriz; Rosengren, Annika; Salomaa, Veikko; Kauhanen, Jussi; Salonen, Jukka T; Shaffer, Jonathan A; Shea, Steven; Ford, Ian; Stehouwer, Coen D A; Strandberg, Timo E; Tipping, Robert W; Tosetto, Alberto; Wassertheil-Smoller, Sylvia; Wennberg, Patrik; Westendorp, Rudi G; Whincup, Peter H; Wilhelmsen, Lars; Woodward, Mark; Lowe, Gordon D O; Wareham, Nicholas J; Khaw, Kay-Tee; Sattar, Naveed; Packard, Chris J; Gudnason, Vilmundur; Ridker, Paul M; Pepys, Mark B; Thompson, Simon G; Danesh, John

    2012-10-04

    There is debate about the value of assessing levels of C-reactive protein (CRP) and other biomarkers of inflammation for the prediction of first cardiovascular events. We analyzed data from 52 prospective studies that included 246,669 participants without a history of cardiovascular disease to investigate the value of adding CRP or fibrinogen levels to conventional risk factors for the prediction of cardiovascular risk. We calculated measures of discrimination and reclassification during follow-up and modeled the clinical implications of initiation of statin therapy after the assessment of CRP or fibrinogen. The addition of information on high-density lipoprotein cholesterol to a prognostic model for cardiovascular disease that included age, sex, smoking status, blood pressure, history of diabetes, and total cholesterol level increased the C-index, a measure of risk discrimination, by 0.0050. The further addition to this model of information on CRP or fibrinogen increased the C-index by 0.0039 and 0.0027, respectively (P<0.001), and yielded a net reclassification improvement of 1.52% and 0.83%, respectively, for the predicted 10-year risk categories of "low" (<10%), "intermediate" (10% to <20%), and "high" (≥20%) (P<0.02 for both comparisons). We estimated that among 100,000 adults 40 years of age or older, 15,025 persons would initially be classified as being at intermediate risk for a cardiovascular event if conventional risk factors alone were used to calculate risk. Assuming that statin therapy would be initiated in accordance with Adult Treatment Panel III guidelines (i.e., for persons with a predicted risk of ≥20% and for those with certain other risk factors, such as diabetes, irrespective of their 10-year predicted risk), additional targeted assessment of CRP or fibrinogen levels in the 13,199 remaining participants at intermediate risk could help prevent approximately 30 additional cardiovascular events over the course of 10 years. In a study of people without known cardiovascular disease, we estimated that under current treatment guidelines, assessment of the CRP or fibrinogen level in people at intermediate risk for a cardiovascular event could help prevent one additional event over a period of 10 years for every 400 to 500 people screened. (Funded by the British Heart Foundation and others.).

  20. Diagnostic characteristics and prognoses of primary-care patients referred for clinical exercise testing: a prospective observational study.

    PubMed

    Nilsson, Gunnar; Mooe, Thomas; Stenlund, Hans; Samuelsson, Eva

    2014-04-18

    Evaluation of angina symptoms in primary care often includes clinical exercise testing. We sought to identify clinical characteristics that predicted the outcome of exercise testing and to describe the occurrence of cardiovascular events during follow-up. This study followed patients referred to exercise testing for suspected coronary disease by general practitioners in the County of Jämtland, Sweden (enrolment, 25 months from February 2010). Patient characteristics were registered by pre-test questionnaire. Exercise tests were performed with a bicycle ergometer, a 12-lead electrocardiogram, and validated scales for scoring angina symptoms. Exercise tests were classified as positive (ST-segment depression >1 mm and chest pain indicative of angina), non-conclusive (ST depression or chest pain), or negative. Odds ratios (ORs) for exercise-test outcome were calculated with a bivariate logistic model adjusted for age, sex, systolic blood pressure, and previous cardiovascular events. Cardiovascular events (unstable angina, myocardial infarctions, decisions on revascularization, cardiovascular death, and recurrent angina in primary care) were recorded within six months. A probability cut-off of 10% was used to detect cardiovascular events in relation to the predicted test outcome. We enrolled 865 patients (mean age 63.5 years, 50.6% men); 6.4% of patients had a positive test, 75.5% were negative, 16.4% were non-conclusive, and 1.7% were not assessable. Positive or non-conclusive test results were predicted by exertional chest pain (OR 2.46, 95% confidence interval (CI) 1.69-3.59), a pathologic ST-T segment on resting electrocardiogram (OR 2.29, 95% CI 1.44-3.63), angina according to the patient (OR 1.70, 95% CI 1.13-2.55), and medication for dyslipidaemia (OR 1.51, 95% CI 1.02-2.23). During follow-up, cardiovascular events occurred in 8% of all patients and 4% were referred to revascularization. Cardiovascular events occurred in 52.7%, 18.3%, and 2% of patients with positive, non-conclusive, or negative tests, respectively. The model predicted 67/69 patients with a cardiovascular event. Clinical characteristics can be used to predict exercise test outcome. Primary care patients with a negative exercise test have a very low risk of cardiovascular events, within six months. A predictive model based on clinical characteristics can be used to refine the identification of low-risk patients.

  1. Uncomplicating the Macrovascular Complications of Diabetes: The 2014 Edwin Bierman Award Lecture

    PubMed Central

    2015-01-01

    The risk of cardiovascular events in humans increases in the presence of type 1 or type 2 diabetes mellitus, in large part due to exacerbated atherosclerosis. Genetically engineered mouse models have begun to elucidate cellular and molecular mechanisms responsible for diabetes-exacerbated atherosclerosis. Research on these mouse models has revealed that diabetes independently accelerates initiation and progression of lesions of atherosclerosis and also impairs the regression of lesions following aggressive lipid lowering. Myeloid cell activation in combination with proatherogenic changes allowing for increased monocyte recruitment into arteries of diabetic mice has emerged as an important mediator of the effects of diabetes on the three stages of atherosclerosis. The effects of diabetes on atherosclerosis appear to be dependent on an interplay between glucose and lipids, as well as other factors, and result in increased recruitment of monocytes into both progressing and regressing lesions of atherosclerosis. Importantly, some of the mechanisms revealed by mouse models are now being studied in human subjects. This Perspective highlights new mechanistic findings based on mouse models of diabetes-exacerbated atherosclerosis and discusses the relevance to humans and areas in which more research is urgently needed in order to lessen the burden of macrovascular complications of type 1 and type 2 diabetes mellitus. PMID:26207031

  2. Health Social Networks as Online Life Support Groups for Patients With Cardiovascular Diseases

    PubMed Central

    Medina, Edhelmira Lima; Loques, Orlando; Mesquita, Cláudio Tinoco

    2013-01-01

    The number of patients who use the internet in search for information that might improve their health conditions has increased. Among them, those looking for virtual environments to share experiences, doubts, opinions, and emotions, and to foster relationships aimed at giving and getting support stand out. Therefore, there is an increasing need to assess how those environments can affect the patients' health. This study was aimed at identifying scientific studies on the proliferation and impact of virtual communities, known as health social networks or online support groups, directed to cardiovascular diseases, which might be useful to patients with certain conditions, providing them with information and emotional support. A systematic review of the literature was conducted with articles published from 2007 to 2012, related to cardiovascular diseases and collected from the following databases: PubMed; Association for Computing Machinery(ACM); and Institute of Electrical and Electronics Engineers (IEEE). Four articles meeting the inclusion criteria were selected. The results were interesting and relevant from the health viewpoint, identifying therapeutic benefits, such as provision of emotional support, greater compliance to treatment, and information sharing on diseases and on life experiences. PMID:24030085

  3. OS104. Are preeclampsia and adverse obstetrical outcomes predictors for longterm cardiovascular disease?

    PubMed

    Sia, W W; Tsuyuki, R; Pertman, S; Hui, W

    2012-07-01

    Epidemiologic studies suggest that pregnancy complications such as preeclampsia, gestational diabetes, preterm delivery and low birth weight independently increase maternal risk for future development of cardiovascular disease. To further investigate whether preeclampsia, gestational diabetes, and adverse obstetrical outcomes such as placental abruption, intrauterine growth restriction and preterm delivery, are independent risk factors for longterm cardiovascular disease. This was a case-control study where 252 parous women (cases) with coronary artery disease were matched with a parous woman within 5 years of age with no known coronary artery disease (controls). Participants were recruited from the Royal Alexandra Hospital in cardiac catheterization lab recovery room in Edmonton, Canada. Women with significant angiographic coronary artery stenosis were eligible as cases and those without were eligible as controls. Participants were interviewed on their pregnancy histories and traditional cardiovascular risk factors, such as hypertension, diabetes etc. Descriptive statistics, chi-square tests and conditional regression analysis were performed. We recruited 244 cases and 246 controls. The average age was 66.3 and 65.8 respectively. Cases were more likely obese, had more pregnancies as well as traditional cardiovascular risk factors than controls. Adverse pregnancy outcomes were similar between the two groups except gestational hypertension. However, it was not statistically significant in the conditional logistic regression model. Independent risk factors for future cardiovascular diseases were: dyslipidemia (OR 12.8), hypertension (3.0), and being a current (OR 7.4) or former smoker (1.8). Adverse pregnancy outcomes In this study, adverse pregnancy outcomes were not independently associated with cardiovascular disorders. Our study was limited by recall bias, and ascertainment of diagnosis.Our study supports that dyslipidemia, hypertensiion and smoking increase future cardiovascular disease. Further studies are needed to examine a postpartum intervention model to proactively manage cardiovascular risk factors, such as lipids, in these at-risk women. Copyright © 2012. Published by Elsevier B.V.

  4. Reducing indoor air pollution by air conditioning is associated with improvements in cardiovascular health among the general population.

    PubMed

    Lin, Lian-Yu; Chuang, Hsiao-Chi; Liu, I-Jung; Chen, Hua-Wei; Chuang, Kai-Jen

    2013-10-01

    Indoor air pollution is associated with cardiovascular effects, however, little is known about the effects of improving indoor air quality on cardiovascular health. The aim of this study was to explore whether improving indoor air quality through air conditioning can improve cardiovascular health in human subjects. We recruited a panel of 300 healthy subjects from Taipei, aged 20 and over, to participate in six home visits each, to measure a variety of cardiovascular endpoints, including high sensitivity-C-reactive protein (hs-CRP), 8-hydroxy-2'-deoxyguanosine (8-OHdG), fibrinogen in plasma and heart rate variability (HRV). Indoor particles and total volatile organic compounds (VOCs) were measured simultaneously at the participant's home during each visit. Three exposure conditions were investigated in this study: participants were requested to keep their windows open during the first two visits, close their windows during the next two visits, and close the windows and turn on their air conditioners during the last two visits. We used linear mixed-effects models to associate the cardiovascular endpoints with individual indoor air pollutants. The results showed that increases in hs-CRP, 8-OHdG and fibrinogen, and decreases in HRV indices were associated with increased levels of indoor particles and total VOCs in single-pollutant and two-pollutant models. The effects of indoor particles and total VOCs on cardiovascular endpoints were greatest during visits with the windows open. During visits with the air conditioners turned on, no significant changes in cardiovascular endpoints were observed. In conclusion, indoor air pollution is associated with inflammation, oxidative stress, blood coagulation and autonomic dysfunction. Reductions in indoor air pollution and subsequent improvements in cardiovascular health can be achieved by closing windows and turning on air conditioners at home. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Left ventricular mass, blood pressure, and lowered cognitive performance in the Framingham offspring.

    PubMed

    Elias, Merrill F; Sullivan, Lisa M; Elias, Penelope K; D'Agostino, Ralph B; Wolf, Philip A; Seshadri, Sudha; Au, Rhoda; Benjamin, Emelia J; Vasan, Ramachandran S

    2007-03-01

    The purpose of this study was to determine whether echocardiographic left ventricular mass is related to cognitive performance beyond casual blood pressure adjusting for the influence of other vascular risk factors. We used multivariable regression analyses to relate left ventricular mass assessed at a routine examination (1995-1998) to measures of cognitive ability obtained routinely (1998-2001) in 1673 Framingham Offspring Study participants (56% women; mean age: 57 years) free from stroke, transient ischemic attack, and dementia. We adjusted for the following covariates hierarchically: (1) age, education, sex, body weight, height, interval between left ventricular mass measurement and neuropsychological testing (basic model); (2) basic model+blood pressure+treatment for hypertension; and (3) basic model+blood pressure+treatment for hypertension+vascular risk factors and prevalent cardiovascular disease. For the basic model, left ventricular mass was inversely associated with abstract reasoning (similarities), visual-spatial memory and organization, and verbal memory. For the basic model+blood pressure+treatment for hypertension, left ventricular mass was inversely associated with similarities and visual-spatial memory and organization. For the basic+blood pressure+treatment for hypertension+risk factors+cardiovascular disease model, no significant associations were observed. Echocardiographic left ventricular mass is associated with cognitive performance beyond casual and time-averaged systolic blood pressure, but this association is attenuated and rendered nonsignificant with additional adjustment for cardiovascular risk factors and cardiovascular disease, thus suggesting that these variables play an important role in mediating the association between left ventricular mass and cognition.

  6. Comparison of primary care models in the prevention of cardiovascular disease - a cross sectional study

    PubMed Central

    2011-01-01

    Background Primary care providers play an important role in preventing and managing cardiovascular disease. This study compared the quality of preventive cardiovascular care delivery amongst different primary care models. Methods This is a secondary analysis of a larger randomized control trial, known as the Improved Delivery of Cardiovascular Care (IDOCC) through Outreach Facilitation. Using baseline data collected through IDOCC, we conducted a cross-sectional study of 82 primary care practices from three delivery models in Eastern Ontario, Canada: 43 fee-for-service, 27 blended-capitation and 12 community health centres with salary-based physicians. Medical chart audits from 4,808 patients with or at high risk of developing cardiovascular disease were used to examine each practice's adherence to ten evidence-based processes of care for diabetes, chronic kidney disease, dyslipidemia, hypertension, weight management, and smoking cessation care. Generalized estimating equation models adjusting for age, sex, rurality, number of cardiovascular-related comorbidities, and year of data collection were used to compare guideline adherence amongst the three models. Results The percentage of patients with diabetes that received two hemoglobin A1c tests during the study year was significantly higher in community health centres (69%) than in fee-for-service (45%) practices (Adjusted Odds Ratio (AOR) = 2.4 [95% CI 1.4-4.2], p = 0.001). Blended capitation practices had a significantly higher percentage of patients who had their waistlines monitored than in fee-for-service practices (19% vs. 5%, AOR = 3.7 [1.8-7.8], p = 0.0006), and who were recommended a smoking cessation drug when compared to community health centres (33% vs. 16%, AOR = 2.4 [1.3-4.6], p = 0.007). Overall, quality of diabetes care was higher in community health centres, while smoking cessation care and weight management was higher in the blended-capitation models. Fee-for-service practices had the greatest gaps in care, most noticeably in diabetes care and weight management. Conclusions This study adds to the evidence suggesting that primary care delivery model impacts quality of care. These findings support current Ontario reforms to move away from the traditional fee-for-service practice. Trial Registration ClinicalTrials.gov: NCT00574808 PMID:22008366

  7. Biomedical signal and image processing.

    PubMed

    Cerutti, Sergio; Baselli, Giuseppe; Bianchi, Anna; Caiani, Enrico; Contini, Davide; Cubeddu, Rinaldo; Dercole, Fabio; Rienzo, Luca; Liberati, Diego; Mainardi, Luca; Ravazzani, Paolo; Rinaldi, Sergio; Signorini, Maria; Torricelli, Alessandro

    2011-01-01

    Generally, physiological modeling and biomedical signal processing constitute two important paradigms of biomedical engineering (BME): their fundamental concepts are taught starting from undergraduate studies and are more completely dealt with in the last years of graduate curricula, as well as in Ph.D. courses. Traditionally, these two cultural aspects were separated, with the first one more oriented to physiological issues and how to model them and the second one more dedicated to the development of processing tools or algorithms to enhance useful information from clinical data. A practical consequence was that those who did models did not do signal processing and vice versa. However, in recent years,the need for closer integration between signal processing and modeling of the relevant biological systems emerged very clearly [1], [2]. This is not only true for training purposes(i.e., to properly prepare the new professional members of BME) but also for the development of newly conceived research projects in which the integration between biomedical signal and image processing (BSIP) and modeling plays a crucial role. Just to give simple examples, topics such as brain–computer machine or interfaces,neuroengineering, nonlinear dynamical analysis of the cardiovascular (CV) system,integration of sensory-motor characteristics aimed at the building of advanced prostheses and rehabilitation tools, and wearable devices for vital sign monitoring and others do require an intelligent fusion of modeling and signal processing competences that are certainly peculiar of our discipline of BME.

  8. Mathematical modelling of the maternal cardiovascular system in the three stages of pregnancy.

    PubMed

    Corsini, Chiara; Cervi, Elena; Migliavacca, Francesco; Schievano, Silvia; Hsia, Tain-Yen; Pennati, Giancarlo

    2017-09-01

    In this study, a mathematical model of the female circulation during pregnancy is presented in order to investigate the hemodynamic response to the cardiovascular changes associated with each trimester of pregnancy. First, a preliminary lumped parameter model of the circulation of a non-pregnant female was developed, including the heart, the systemic circulation with a specific block for the uterine district and the pulmonary circulation. The model was first tested at rest; then heart rate and vascular resistances were individually varied to verify the correct response to parameter alterations characterising pregnancy. In order to simulate hemodynamics during pregnancy at each trimester, the main changes applied to the model consisted in reducing vascular resistances, and simultaneously increasing heart rate and ventricular wall volumes. Overall, reasonable agreement was found between model outputs and in vivo data, with the trends of the cardiac hemodynamic quantities suggesting correct response of the heart model throughout pregnancy. Results were reported for uterine hemodynamics, with flow tracings resembling typical Doppler velocity waveforms at each stage, including pulsatility indexes. Such a model may be used to explore the changes that happen during pregnancy in female with cardiovascular diseases. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  9. ANIMAL MODELS: CARDIOVASCULAR DISEASE, CNS INJURY AND ULTRAFINE PARTICLE BIOKINETICS

    EPA Science Inventory

    The Animal Core studies will help to answer the question of why subpopulations are at increased risk of adverse health outcomes following PM exposure. They will identify the cellular and molecular mechanisms which underlie cardiovascular susceptibility. Exposure-response rel...

  10. Teaching Materials and Methods.

    ERIC Educational Resources Information Center

    Physiologist, 1982

    1982-01-01

    Twelve abstracts of papers presented at the 33rd Annual Fall Meeting of the American Physiological Society are listed, focusing on teaching materials/methods. Topics, among others, include trends in physiology laboratory programs, cardiovascular system model, cardiovascular computer simulation with didactic feedback, and computer generated figures…

  11. SUSCEPTIBILITY TO OZONE-INDUCED INJURY AND ANTIOXIDANT COMPENSATION IN RAT MODELS OF CARDIOVASCULAR DISEASE

    EPA Science Inventory

    Increased oxidative stress and compromised antioxidant status are common pathologic factors of cardiovascular diseases (CVD). It is hypothesized that individuals with chronic CVD are more susceptible to environmental exposures due to underlying oxidative stress. To determine the ...

  12. Interactive effects of stress reactivity and usual stress on adolescents cardiovascular health

    USDA-ARS?s Scientific Manuscript database

    Adolescents experience stressful situations at high rates during school. Psychological stress is associated with the progression of cardiovascular disease (CVD). The diathesis-stress model suggests that youth experiencing the greatest cumulative stress are at greatest risk for developing antecedents...

  13. Interventional cardiovascular magnetic resonance: still tantalizing

    PubMed Central

    Ratnayaka, Kanishka; Faranesh, Anthony Z; Guttman, Michael A; Kocaturk, Ozgur; Saikus, Christina E; Lederman, Robert J

    2008-01-01

    The often touted advantages of MR guidance remain largely unrealized for cardiovascular interventional procedures in patients. Many procedures have been simulated in animal models. We argue these opportunities for clinical interventional MR will be met in the near future. This paper reviews technical and clinical considerations and offers advice on how to implement a clinical-grade interventional cardiovascular MR (iCMR) laboratory. We caution that this reflects our personal view of the "state of the art." PMID:19114017

  14. Reduction of NADPH-Oxidase Activity Ameliorates the Cardiovascular Phenotype in a Mouse Model of Williams-Beuren Syndrome

    PubMed Central

    Campuzano, Victoria; Segura-Puimedon, Maria; Terrado, Verena; Sánchez-Rodríguez, Carolina; Coustets, Mathilde; Menacho-Márquez, Mauricio; Nevado, Julián; Bustelo, Xosé R.; Francke, Uta; Pérez-Jurado, Luis A.

    2012-01-01

    A hallmark feature of Williams-Beuren Syndrome (WBS) is a generalized arteriopathy due to elastin deficiency, presenting as stenoses of medium and large arteries and leading to hypertension and other cardiovascular complications. Deletion of a functional NCF1 gene copy has been shown to protect a proportion of WBS patients against hypertension, likely through reduced NADPH-oxidase (NOX)–mediated oxidative stress. DD mice, carrying a 0.67 Mb heterozygous deletion including the Eln gene, presented with a generalized arteriopathy, hypertension, and cardiac hypertrophy, associated with elevated angiotensin II (angII), oxidative stress parameters, and Ncf1 expression. Genetic (by crossing with Ncf1 mutant) and/or pharmacological (with ang II type 1 receptor blocker, losartan, or NOX inhibitor apocynin) reduction of NOX activity controlled hormonal and biochemical parameters in DD mice, resulting in normalized blood pressure and improved cardiovascular histology. We provide strong evidence for implication of the redox system in the pathophysiology of the cardiovascular disease in a mouse model of WBS. The phenotype of these mice can be ameliorated by either genetic or pharmacological intervention reducing NOX activity, likely through reduced angII–mediated oxidative stress. Therefore, anti-NOX therapy merits evaluation to prevent the potentially serious cardiovascular complications of WBS, as well as in other cardiovascular disorders mediated by similar pathogenic mechanism. PMID:22319452

  15. Abdominal obesity modifies the risk of hypertriglyceridemia for all-cause and cardiovascular mortality in hemodialysis patients.

    PubMed

    Postorino, Maurizio; Marino, Carmen; Tripepi, Giovanni; Zoccali, Carmine

    2011-04-01

    Hypertriglyceridemia is the most prevalent lipid alteration in end-stage renal disease, and we studied the relationship between serum triglycerides and all-cause and cardiovascular death in these patients. Since abdominal fat modifies the effect of lipids on atherosclerosis, we analyzed the interaction between serum lipids and waist circumference (WC) as a metric of abdominal obesity. In a cohort of 537 hemodialysis patients, 182 died, 113 from cardiovascular causes, over an average follow-up of 29 months. In Cox models that included traditional and nontraditional risk factors, there were significant strong interactions between triglycerides and WC to both all-cause and cardiovascular death. A fixed (50 mg/dl) excess in triglycerides was associated with a progressive lower risk of all-cause and cardiovascular mortality in patients with threshold WC <95 cm but with a progressive increased risk in those above this threshold. A significant interaction between cholesterol and WC with all-cause and cardiovascular death emerged only in models excluding the triglycerides-WC interaction. Neither high-density lipoprotein (HDL) nor non-HDL cholesterol or their interaction terms with WC were associated with study outcomes. Thus, the predictive value of triglycerides and cholesterol for survival and atherosclerotic complications in hemodialysis patients is critically dependent on WC. Hence, intervention studies in end-stage renal disease should specifically target patients with abdominal obesity and hyperlipidemia.

  16. Electrospun Scaffolds for Tissue Engineering of Vascular Grafts

    PubMed Central

    Hasan, Anwarul; Memic, Adnan; Annabi, Nasim; Hossain, Monowar; Paul, Arghya; Dokmeci, Mehmet R.; Dehghani, Fariba; Khademhosseini, Ali

    2013-01-01

    There is a growing demand for off-the-shelf tissue engineered vascular grafts (TEVGs) for replacement or bypass of damaged arteries in various cardiovascular diseases. Scaffolds from the decellularized tissue skeletons to biopolymers and biodegradable synthetic polymers have been used for fabricating TEVGs. However, several issues have not yet been resolved, which include the inability to mimic the mechanical properties of native tissues, and the ability for long term patency and growth required for in vivo function. Electrospinning is a popular technique for the production of scaffolds that has the potential to address these issues. However, its application to human TEVGs has not yet been achieved. This review provides an overview of tubular scaffolds that have been prepared by electrospinning with potential for TEVG applications. PMID:23973391

  17. The NASA Space Life Sciences Training Program - Preparing the way

    NASA Technical Reports Server (NTRS)

    Biro, Ronald; Munsey, Bill; Long, Irene

    1990-01-01

    Attention is given to the goals and methods adopted in the NASA Space Life Sciences Training Program (SLSTP) for preparing scientists and engineers for space-related life-sciences research and operations. The SLSTP is based on six weeks of projects and lectures which give an overview of payload processing and experiment flow in the space environment. The topics addressed in the course of the program include descriptions of space vehicles, support hardware, equipment, and research directions. Specific lecture topics include the gravity responses of plants, mission integration of a flight experiment, and the cardiovascular deconditioning. The SLSTP is shown to be an important part of the process of recruiting and training qualified scientists and engineers to support space activities.

  18. Preparation and features of polycaprolactone vascular grafts with the incorporated vascular endothelial growth factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevostyanova, V. V., E-mail: sevostyanova.victoria@gmail.com; Khodyrevskaya, Y. I.; Glushkova, T. V.

    The development of tissue-engineered small-diameter vascular grafts is an urgent issue in cardiovascular surgery. In this study, we assessed how the incorporation of the vascular endothelial growth factor (VEGF) affects morphological and mechanical properties of polycaprolactone (PCL) vascular grafts along with its release kinetics. Vascular grafts were prepared using two-phase electrospinning. In pursuing our aims, we performed scanning electron microscopy, mechanical testing, and enzyme-linked immunosorbent assay. Our results demonstrated the preservation of a highly porous structure and improvement of PCL/VEGF scaffold mechanical properties as compared to PCL grafts. A prolonged VEGF release testifies the use of this construct as amore » scaffold for tissue-engineered vascular grafts.« less

  19. Mortality of mothers from cardiovascular and non-cardiovascular causes following pregnancy complications in first delivery.

    PubMed

    Lykke, Jacob A; Langhoff-Roos, Jens; Lockwood, Charles J; Triche, Elizabeth W; Paidas, Michael J

    2010-07-01

    The combined effects of preterm delivery, small-for-gestational-age offspring, hypertensive disorders of pregnancy, placental abruption and stillbirth on early maternal death from cardiovascular causes have not previously been described in a large cohort. We investigated the effects of pregnancy complications on early maternal death in a registry-based retrospective cohort study of 782 287 women with a first singleton delivery in Denmark 1978-2007, followed for a median of 14.8 years (range 0.25-30.2) accruing 11.6 million person-years. We employed Cox proportional hazard models of early death from cardiovascular and non-cardiovascular causes following preterm delivery, small-for-gestational-age offspring and hypertensive disorders of pregnancy. We found that preterm delivery and small-for-gestational-age were both associated with subsequent death of mothers from cardiovascular and non-cardiovascular causes. Severe pre-eclampsia was associated with death from cardiovascular causes only. There was a less than additive effect on cardiovascular mortality hazard ratios with increasing number of pregnancy complications: preterm delivery 1.90 [95% confidence intervals 1.49, 2.43]; preterm delivery and small-for-gestational-age offspring 3.30 [2.25, 4.84]; preterm delivery, small-for-gestational-age offspring and pre-eclampsia 3.85 [2.07, 7.19]. Thus, we conclude that, separately and combined, preterm delivery and small-for-gestational-age are strong markers of early maternal death from both cardiovascular and non-cardiovascular causes, while hypertensive disorders of pregnancy are markers of early death of mothers from cardiovascular causes.

  20. Exploiting the Pleiotropic Antioxidant Effects of Established Drugs in Cardiovascular Disease

    PubMed Central

    Steven, Sebastian; Münzel, Thomas; Daiber, Andreas

    2015-01-01

    Cardiovascular disease is a leading cause of death and reduced quality of life worldwide. Arterial vessels are a primary target for endothelial dysfunction and atherosclerosis, which is accompanied or even driven by increased oxidative stress. Recent research in this field identified different sources of reactive oxygen and nitrogen species contributing to the pathogenesis of endothelial dysfunction. According to lessons from the past, improvement of endothelial function and prevention of cardiovascular disease by systemic, unspecific, oral antioxidant therapy are obviously too simplistic an approach. Source- and cell organelle-specific antioxidants as well as activators of intrinsic antioxidant defense systems might be more promising. Since basic research demonstrated the contribution of different inflammatory cells to vascular oxidative stress and clinical trials identified chronic inflammatory disorders as risk factors for cardiovascular events, atherosclerosis and cardiovascular disease are closely associated with inflammation. Therefore, modulation of the inflammatory response is a new and promising approach in the therapy of cardiovascular disease. Classical anti-inflammatory therapeutic compounds, but also established drugs with pleiotropic immunomodulatory abilities, demonstrated protective effects in various models of cardiovascular disease. However, results from ongoing clinical trials are needed to further evaluate the value of immunomodulation for the treatment of cardiovascular disease. PMID:26251902

  1. Smoking cessation and the risk of cardiovascular disease outcomes predicted from established risk scores: results of the Cardiovascular Risk Assessment among Smokers in Primary Care in Europe (CV-ASPIRE) study.

    PubMed

    Mallaina, Pablo; Lionis, Christos; Rol, Hugo; Imperiali, Renzo; Burgess, Andrew; Nixon, Mark; Malvestiti, Franco Mondello

    2013-04-18

    Smoking is a major risk factor for cardiovascular disease (CVD). This multicenter, cross-sectional survey was designed to estimate the cardiovascular (CV) risk attributable to smoking using risk assessment tools, to better understand patient behaviors and characteristics related to smoking, and characterize physician practice patterns. 1,439 smokers were recruited from Europe during 2011. Smokers were ≥40 years old, smoked > 10 cigarettes/day and had recent measurements on blood pressure and lipids. CV risk was calculated using the SCORE system, Framingham risk equations, and Progetto CUORE model. The CV risk attributable to smoking was evaluated using a simulated control (hypothetical non-smoker) with identical characteristics as the enrolled smoker. Risks assessed included CV mortality, coronary heart disease (CHD), CVD and hard CHD. Demographics, comorbidities, primary reasons for consultation, behavior towards previous attempts to quit, and interest in smoking cessation was assessed. Dependence on nicotine was evaluated using the Fagerström Test for Nicotine Dependence. GP practice patterns were assessed through a questionnaire. The prediction models consistently demonstrated a high CV risk attributable to smoking. For instance, the SCORE model demonstrated that this study population of smokers have a 100% increased probability of death due to cardiovascular disease in the next 10-years compared to non-smokers. A considerable amount of patients would like to hear from their GP about the different alternatives available to support their quitting attempt. The findings of this study reinforce the importance of smoking as a significant predictor of long-term cardiovascular events. One of the best gains in health could be obtained by tackling the most important modifiable risk factors; these results suggest smoking is among the most important.

  2. Association between air pollution and cardiovascular mortality in Hefei, China: A time-series analysis.

    PubMed

    Zhang, Chao; Ding, Rui; Xiao, Changchun; Xu, Yachun; Cheng, Han; Zhu, Furong; Lei, Ruoqian; Di, Dongsheng; Zhao, Qihong; Cao, Jiyu

    2017-10-01

    In recent years, air pollution has become an alarming problem in China. However, evidence on the effects of air pollution on cardiovascular mortality is still not conclusive to date. This research aimed to assess the short-term effects of air pollution on cardiovascular morbidity in Hefei, China. Data of air pollution, cardiovascular mortality, and meteorological characteristics in Hefei between 2010 and 2015 were collected. Time-series analysis in generalized additive model was applied to evaluate the association between air pollution and daily cardiovascular mortality. During the study period, the annual average concentration of PM 10, SO 2 , and NO 2 was 105.91, 20.58, and 30.93 μg/m 3 , respectively. 21,816 people (including 11,876 man, and 14,494 people over 75 years of age) died of cardiovascular diseases. In single pollutant model, the effects of multi-day exposure were greater than single-day exposure of the air pollution. For every increase of 10 μg/m 3 in SO 2 , NO 2 , and PM 10 levels, CVD mortality increased by 5.26% (95%CI: 3.31%-7.23%), 2.71% (95%CI: 1.23%-4.22%), and 0.68% (95%CI: 0.33%-1.04%) at a lag03, respectively. The multi-pollutant models showed that PM 10 and SO 2 remained associated with CVD mortality, although the effect estimates attenuated. However, the effect of NO 2 on CVD mortality decreased to statistically insignificant. Subgroup analyses further showed that women were more vulnerable than man upon air pollution exposure. These findings showed that air pollution could significantly increase the CVD mortality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Cardiovascular disease in live related renal transplantation.

    PubMed

    Kaul, A; Sharm, R K; Gupta, A; Sinha, N; Singh, U

    2011-11-01

    Cardiovascular disease has become the leading cause of morbidity and mortality in renal transplant recipients, although its pathogenesis and treatment are poorly understood. Modifiable cardiovascular risk factors and graft dysfunction both play an important role in development of post transplant cardiovascular events. Prevalence of cardiovascular disease was studied in stable kidney transplant patients on cyclosporine based triple immunosuppression in relation to the various risk factors and post transplant cardiovascular events. Analysis of 562 post transplant patients with stable graft function for 6 months, the patients were evaluated for cardiovascular events in post transplant period. Pre and post transplant risk factors were analyzed using the COX proportional hazard model. 174 patients had undergone pre transplant coronary angiography, 15 of these patients underwent coronary revascularization (angioplasty in 12, CABG in 3). The prevalence of CAD was 7.2% in transplant recipients. Of 42 patients with CAD 31 (73.8%) had cardiovascular event in post transplant period. Age > or = 40 yrs, male sex, graft dysfunction, diabetes as primary renal disease, pre transplant cardiovascular event, chronic rejection showed significant correlation in univariate analysis and there was significant between age > or = 40 years (OR = 2.16 with 95% CI, 0.977-4.78) S creatinine > or = 1.4 mg % (OR = 2.40 with 95% CI, 1.20 - 4.82), diabetes as primary disease (OR with 95% CI 3.67, 3.2-14.82), PTDM (OR 3.67, 95% CI 1.45-9.40), pre-transplant cardiovascular disease (OR 4.14, 95% CI .38-13.15) with post transplant cardiovascular event on multivariate analysis. There was poor patient and graft survival among those who suffered post transplant cardiovascular event. The incidence of cardiovascular disease continues to be high after renal transplantation and modifiable risk factors should be identified to prevent occurrence of events in post transplant period.

  4. Engineering approaches to energy balance and obesity: opportunities for novel collaborations and research: report of a joint national science foundation and national institutes of health workshop.

    PubMed

    Ershow, Abby G; Ortega, Alfonso; Timothy Baldwin, J; Hill, James O

    2007-01-01

    Energy balance disorders account for a large public health burden. The obesity epidemic in particular is one of the most rapidly evolving public health problems of our day. At present, two-thirds of American adults and one-sixth of American children and adolescents are considered either overweight or obese. Public health concern about obesity is high because of the increased risk and increased mortality of cardiovascular disease, Type 2 diabetes, many forms of cancer, gallbladder disease, and osteoarthritis. These risks increase with the severity of the obesity. Excess adipose tissue, representing fat storage, ultimately derives from an imbalance between energy intake and energy expenditure. Conversely, undesirable and inadvertent loss of body weight and muscle mass, as seen in aging and cachectic states of chronic diseases such as heart failure and cancer, have serious clinical and functional consequences without satisfactory clinical or behavioral solutions. Innovative engineering technologies could help to address unresolved problems in energy balance, intake, and expenditure. Novel sensors, devices, imaging technologies, nanotechnologies, biomaterials, technologies to detect biochemical markers of energy balance, mathematical modeling, systems biology, and other approaches could be developed, evaluated, and leveraged through multidisciplinary collaborations. Engineers, physical scientists, and mathematicians can work with scientists from other relevant disciplines who possess expertise in obesity and nutrition. Furthermore, the possibility of re-engineering the "built environment" to encourage higher levels of physical activity has been suggested as another promising and important approach to which engineers can contribute (see http://www.obesityresearch.nih.gov). Ultimately, systematic application of the "Engineering Approach" can help in developing the needed technologies and tools to facilitate research and eventually support therapeutic advances and behavioral change. This article summarizes important public health concerns related to disordered energy balance and describes research priorities identified at a recent National Science Foundation-National Institutes of Health workshop. Research funding opportunities are described as posted on the NIH Guide to Grants and Contracts (see http://www.nih.gov/grants/guide).

  5. Engineering Approaches to Energy Balance and Obesity: Opportunities for Novel Collaborations and Research: Report of a Joint National Science Foundation and National Institutes of Health Workshop

    PubMed Central

    Ershow, Abby G.; Ortega, Alfonso; Timothy Baldwin, J.; Hill, James O.

    2007-01-01

    Energy balance disorders account for a large public health burden. The obesity epidemic in particular is one of the most rapidly evolving public health problems of our day. At present, two-thirds of American adults and one-sixth of American children and adolescents are considered either overweight or obese. Public health concern about obesity is high because of the increased risk and increased mortality of cardiovascular disease, Type 2 diabetes, many forms of cancer, gallbladder disease, and osteoarthritis. These risks increase with the severity of the obesity. Excess adipose tissue, representing fat storage, ultimately derives from an imbalance between energy intake and energy expenditure. Conversely, undesirable and inadvertent loss of body weight and muscle mass, as seen in aging and cachectic states of chronic diseases such as heart failure and cancer, have serious clinical and functional consequences without satisfactory clinical or behavioral solutions. Innovative engineering technologies could help to address unresolved problems in energy balance, intake, and expenditure. Novel sensors, devices, imaging technologies, nanotechnologies, biomaterials, technologies to detect biochemical markers of energy balance, mathematical modeling, systems biology, and other approaches could be developed, evaluated, and leveraged through multidisciplinary collaborations. Engineers, physical scientists, and mathematicians can work with scientists from other relevant disciplines who possess expertise in obesity and nutrition. Furthermore, the possibility of re-engineering the “built environment” to encourage higher levels of physical activity has been suggested as another promising and important approach to which engineers can contribute (see http://www.obesityresearch.nih.gov). Ultimately, systematic application of the “Engineering Approach” can help in developing the needed technologies and tools to facilitate research and eventually support therapeutic advances and behavioral change. This article summarizes important public health concerns related to disordered energy balance and describes research priorities identified at a recent National Science Foundation-National Institutes of Health workshop. Research funding opportunities are described as posted on the NIH Guide to Grants and Contracts (see http://www.nih.gov/grants/guide). PMID:19888386

  6. [Oxygen peak consumption is a better predictor of cardiovascular risk than handgrip strength in older Chilean women].

    PubMed

    Farías-Valenzuela, Claudio; Pérez-Luco, Cristian; Ramírez-Campillo, Rodrigo; Álvarez, Cristian; Castro-Sepúlveda, Mauricio

    Handgrip strength (HS) and peak oxygen consumption (Vo2peak) are powerful predictors of cardiovascular risk, although it is unknown which of the two variables is the better predictor. The objective of the following study was to relate HS and Vo2peak to cardiovascular risk markers in older Chilean women. Physically active adult women (n=51; age, 69±4.7years) participated in this study. The HS and Vo2peak were evaluated and related to the anthropometric variables of body mass, body mass index (BMI), waist circumference (WC), hip circumference (HC), waist ratio (WR), and waist height ratio (WHR), as well as with the cardiovascular variables systolic (SBP) and diastolic (DBP) and cardiac recovery in one minute (RHR1). A multilinear regression model was used for the analysis of the associated variables (P<.05). The cardiovascular risk markers associated (P<.05) with the handgrip strength of the dominant limb (HS DL ) were body mass, BMI, WR, and WHR. The handgrip strength of the non-dominant limb (HS NDL ) was associated with body mass. Vo2peak was associated with body mass, BMI, HC and RHR1. The multilinear regression model showed a value of r=0.43 in HS DL , r=0.39 in HS NDL and r=0.69 in peak Vo2. Although HS and Vo2peak were related to cardiovascular risk markers, Vo2peak offers greater associative power with these cardiovascular risk factors. Copyright © 2017 SEGG. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Race/Ethnic Differences in the Associations of the Framingham Risk Factors with Carotid IMT and Cardiovascular Events

    PubMed Central

    Hoefer, Imo E.; Eijkemans, Marinus J. C.; Asselbergs, Folkert W.; Anderson, Todd J.; Britton, Annie R.; Dekker, Jacqueline M.; Engström, Gunnar; Evans, Greg W.; de Graaf, Jacqueline; Grobbee, Diederick E.; Hedblad, Bo; Holewijn, Suzanne; Ikeda, Ai; Kitagawa, Kazuo; Kitamura, Akihiko; de Kleijn, Dominique P. V.; Lonn, Eva M.; Lorenz, Matthias W.; Mathiesen, Ellisiv B.; Nijpels, Giel; Okazaki, Shuhei; O’Leary, Daniel H.; Pasterkamp, Gerard; Peters, Sanne A. E.; Polak, Joseph F.; Price, Jacqueline F.; Robertson, Christine; Rembold, Christopher M.; Rosvall, Maria; Rundek, Tatjana; Salonen, Jukka T.; Sitzer, Matthias; Stehouwer, Coen D. A.; Bots, Michiel L.; den Ruijter, Hester M.

    2015-01-01

    Background Clinical manifestations and outcomes of atherosclerotic disease differ between ethnic groups. In addition, the prevalence of risk factors is substantially different. Primary prevention programs are based on data derived from almost exclusively White people. We investigated how race/ethnic differences modify the associations of established risk factors with atherosclerosis and cardiovascular events. Methods We used data from an ongoing individual participant meta-analysis involving 17 population-based cohorts worldwide. We selected 60,211 participants without cardiovascular disease at baseline with available data on ethnicity (White, Black, Asian or Hispanic). We generated a multivariable linear regression model containing risk factors and ethnicity predicting mean common carotid intima-media thickness (CIMT) and a multivariable Cox regression model predicting myocardial infarction or stroke. For each risk factor we assessed how the association with the preclinical and clinical measures of cardiovascular atherosclerotic disease was affected by ethnicity. Results Ethnicity appeared to significantly modify the associations between risk factors and CIMT and cardiovascular events. The association between age and CIMT was weaker in Blacks and Hispanics. Systolic blood pressure associated more strongly with CIMT in Asians. HDL cholesterol and smoking associated less with CIMT in Blacks. Furthermore, the association of age and total cholesterol levels with the occurrence of cardiovascular events differed between Blacks and Whites. Conclusion The magnitude of associations between risk factors and the presence of atherosclerotic disease differs between race/ethnic groups. These subtle, yet significant differences provide insight in the etiology of cardiovascular disease among race/ethnic groups. These insights aid the race/ethnic-specific implementation of primary prevention. PMID:26134404

  8. Race/Ethnic Differences in the Associations of the Framingham Risk Factors with Carotid IMT and Cardiovascular Events.

    PubMed

    Gijsberts, Crystel M; Groenewegen, Karlijn A; Hoefer, Imo E; Eijkemans, Marinus J C; Asselbergs, Folkert W; Anderson, Todd J; Britton, Annie R; Dekker, Jacqueline M; Engström, Gunnar; Evans, Greg W; de Graaf, Jacqueline; Grobbee, Diederick E; Hedblad, Bo; Holewijn, Suzanne; Ikeda, Ai; Kitagawa, Kazuo; Kitamura, Akihiko; de Kleijn, Dominique P V; Lonn, Eva M; Lorenz, Matthias W; Mathiesen, Ellisiv B; Nijpels, Giel; Okazaki, Shuhei; O'Leary, Daniel H; Pasterkamp, Gerard; Peters, Sanne A E; Polak, Joseph F; Price, Jacqueline F; Robertson, Christine; Rembold, Christopher M; Rosvall, Maria; Rundek, Tatjana; Salonen, Jukka T; Sitzer, Matthias; Stehouwer, Coen D A; Bots, Michiel L; den Ruijter, Hester M

    2015-01-01

    Clinical manifestations and outcomes of atherosclerotic disease differ between ethnic groups. In addition, the prevalence of risk factors is substantially different. Primary prevention programs are based on data derived from almost exclusively White people. We investigated how race/ethnic differences modify the associations of established risk factors with atherosclerosis and cardiovascular events. We used data from an ongoing individual participant meta-analysis involving 17 population-based cohorts worldwide. We selected 60,211 participants without cardiovascular disease at baseline with available data on ethnicity (White, Black, Asian or Hispanic). We generated a multivariable linear regression model containing risk factors and ethnicity predicting mean common carotid intima-media thickness (CIMT) and a multivariable Cox regression model predicting myocardial infarction or stroke. For each risk factor we assessed how the association with the preclinical and clinical measures of cardiovascular atherosclerotic disease was affected by ethnicity. Ethnicity appeared to significantly modify the associations between risk factors and CIMT and cardiovascular events. The association between age and CIMT was weaker in Blacks and Hispanics. Systolic blood pressure associated more strongly with CIMT in Asians. HDL cholesterol and smoking associated less with CIMT in Blacks. Furthermore, the association of age and total cholesterol levels with the occurrence of cardiovascular events differed between Blacks and Whites. The magnitude of associations between risk factors and the presence of atherosclerotic disease differs between race/ethnic groups. These subtle, yet significant differences provide insight in the etiology of cardiovascular disease among race/ethnic groups. These insights aid the race/ethnic-specific implementation of primary prevention.

  9. Use of focus groups to develop methods to communicate cardiovascular disease risk and potential for risk reduction to people with type 2 diabetes.

    PubMed

    Price, Hermione C; Dudley, Christina; Barrow, Beryl; Kennedy, Ian; Griffin, Simon J; Holman, Rury R

    2009-10-01

    People need to perceive a risk in order to build an intention-to-change behaviour yet our ability to interpret information about risk is highly variable. We aimed to use a user-centred design process to develop an animated interface for the UK Prospective Diabetes Study (UKPDS) Risk Engine to illustrate cardiovascular disease (CVD) risk and the potential to reduce this risk. In addition, we sought to use the same approach to develop a brief lifestyle advice intervention. Three focus groups were held. Participants were provided with examples of materials used to communicate CVD risk and a leaflet containing a draft brief lifestyle advice intervention and considered their potential to increase motivation-to-change behaviours including diet, physical activity, and smoking in order to reduce CVD risk. Discussions were tape-recorded, transcribed and coded and recurring themes sought. Sixty-two percent of participants were male, mean age was 66 years (range = 47-76 years) and median age at leaving full-time education was 18 years (range = 15-40 years). Sixteen had type 2 diabetes and none had a prior history of CVD. Recurring themes from focus group discussions included the following: being less numerate is common, CVD risk reduction is important and a clear visual representation aids comprehension. A simple animated interface of the UKPDS Risk Engine to illustrate CVD risk and the potential for reducing this risk has been developed for use as a motivational tool, along with a brief lifestyle advice intervention. Future work will investigate whether use of this interactive version of the UKPDS Risk Engine and brief lifestyle advice is associated with increased behavioural intentions and changes in health behaviours designed to reduce CVD risk.

  10. A Multiscale Closed-Loop Cardiovascular Model, with Applications to Heart Pacing and Hemorrhage

    NASA Astrophysics Data System (ADS)

    Canuto, Daniel; Eldredge, Jeff; Chong, Kwitae; Benharash, Peyman; Dutson, Erik

    2017-11-01

    A computational tool is developed for simulating the dynamic response of the human cardiovascular system to various stressors and injuries. The tool couples zero-dimensional models of the heart, pulmonary vasculature, and peripheral vasculature to one-dimensional models of the major systemic arteries. To simulate autonomic response, this multiscale circulatory model is integrated with a feedback model of the baroreflex, allowing control of heart rate, cardiac contractility, and peripheral impedance. The performance of the tool is demonstrated in two scenarios: increasing heart rate by stimulating the sympathetic nervous system, and an acute 10 percent hemorrhage from the left femoral artery.

  11. Cardiovascular RiskprofilE - IMaging and gender-specific disOrders (CREw-IMAGO): rationale and design of a multicenter cohort study.

    PubMed

    Zoet, Gerbrand A; Meun, Cindy; Benschop, Laura; Boersma, Eric; Budde, Ricardo P J; Fauser, Bart C J M; de Groot, Christianne J M; van der Lugt, Aad; Maas, Angela H E M; Moons, Karl G M; Roeters van Lennep, Jeanine E; Roos-Hesselink, Jolien W; Steegers, Eric A P; van Rijn, Bas B; Laven, Joop S E; Franx, Arie; Velthuis, Birgitta K

    2017-08-07

    Reproductive disorders, such as polycystic ovary syndrome (PCOS), primary ovarian insufficiency (POI) and hypertensive pregnancy disorders (HPD) like pre-eclampsia (PE), are associated with an increased risk of cardiovascular disease (CVD). Detection of early signs of cardiovascular disease (CVD), as well as identification of risk factors among women of reproductive age which improve cardiovascular risk prediction, is a challenge and current models might underestimate long-term health risks. The aim of this study is to assess cardiovascular disease in patients with a history of a reproductive disorder by low-dose computed tomography (CT). Women of 45 - 55 years, who experienced a reproductive disorder (PCOS, POI, HPD), are invited to participate in this multicenter, prospective, cohort study. Women will be recruited after regular cardiovascular screening, including assessment of classical cardiovascular risk factors. CT of the coronary arteries (both coronary artery calcium scoring (CACS), and contrast-enhanced coronary CT angiography (CCTA)) and carotid siphon calcium scoring (CSC) is planned in 300 women with HPD and 300 women with PCOS or POI. In addition, arterial stiffness (non-invasive pulse wave velocity (PWV)) measurement and cell-based biomarkers (inflammatory circulating cells) will be obtained. Initial inclusion is focused on women of 45 - 55 years. However, the age range (40 - 45 years and/or ≥ 55 years) and group composition may be adjusted based on the findings of the interim analysis. Participants can potentially benefit from information obtained in this study concerning their current cardiovascular health and expected future risk of cardiovascular events. The results of this study will provide insights in the development of CVD in women with a history of reproductive disorders. Ultimately, this study may lead to improved cardiovascular prediction models and will provide an opportunity for timely adjustment of preventive strategies. Limitations of this study include the possibility of overdiagnosis and the average radiation dose of 3.5 mSv during coronary and carotid siphon CT, although the increased lifetime malignancy risk is negligible. Netherlands Trial Register, NTR5531 . Date registered: October 21st, 2015.

  12. Imaging of cardiovascular dynamics in early mouse embryos with swept source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Larina, Irina V.; Liebling, Michael; Dickinson, Mary E.; Larin, Kirill V.

    2009-02-01

    Congenital cardiovascular defects are very common, occurring in 1% of live births, and cardiovascular failures are the leading cause of birth defect-related deaths in infants. To improve diagnostics, prevention and treatment of cardiovascular abnormalities, we need to understand not only how cells form the heart and vessels but also how physical factors such as heart contraction and blood flow influence heart development and changes in the circulatory network. Mouse models are an excellent resource for studying cardiovascular development and disease because of the resemblance to humans, rapid generation time, and availability of mutants with cardiovascular defects linked to human diseases. In this work, we present results on development and application of Doppler Swept Source Optical Coherence Tomography (DSS-OCT) for imaging of cardiovascular dynamics and blood flow in the mouse embryonic heart and vessels. Our studies demonstrated that the spatial and temporal resolution of the DSS-OCT makes it possible to perform sensitive measurements of heart and vessel wall movements and to investigate how contractile waves facilitate the movement of blood through the circulatory system.

  13. Fish oil metabolites: translating promising findings from bench to bedside to reduce cardiovascular disease

    PubMed Central

    Calderon Artero, P; Champagne, C; Garigen, S; Mousa, SA; Block, RC

    2012-01-01

    Cardiovascular disease is an inflammatory process and the leading cause of death in the United States. Novel omega-3 derived potent lipid mediators, termed resolvins and protectins, have been identified as major pathophysiologic players in the resolution phase of the inflammatory response. Potent lipid mediators offer tremendous metabolic and pathophysiologic insights in regard to the risk and treatment of cardiovascular disease. In this review, resolvins and protectins are described and analyzed as accelerators of discovery via their potential role as biomarkers for research and clinical decision making in cardiovascular disease. Specific barriers relating to biomarker validation, laboratory methods, and improvement of risk models are introduced and discussed. Potential therapeutic impacts in cardiovascular disease are also mentioned with special consideration for cost-saving implications with respect to dietary fish oil as an alternative to resolvin and protectin treatment. Given the high tolerability of fish oil supplements and previously described benefits of omega-3 fatty acid intake in cardiovascular disease, we conclude that resolvins and protectins are set to soon take center stage as future biomarkers and well-tolerated therapies for cardiovascular disease. PMID:22708071

  14. Astaxanthin: A Potential Therapeutic Agent in Cardiovascular Disease

    PubMed Central

    Fassett, Robert G.; Coombes, Jeff S.

    2011-01-01

    Astaxanthin is a xanthophyll carotenoid present in microalgae, fungi, complex plants, seafood, flamingos and quail. It is an antioxidant with anti-inflammatory properties and as such has potential as a therapeutic agent in atherosclerotic cardiovascular disease. Synthetic forms of astaxanthin have been manufactured. The safety, bioavailability and effects of astaxanthin on oxidative stress and inflammation that have relevance to the pathophysiology of atherosclerotic cardiovascular disease, have been assessed in a small number of clinical studies. No adverse events have been reported and there is evidence of a reduction in biomarkers of oxidative stress and inflammation with astaxanthin administration. Experimental studies in several species using an ischaemia-reperfusion myocardial model demonstrated that astaxanthin protects the myocardium when administered both orally or intravenously prior to the induction of the ischaemic event. At this stage we do not know whether astaxanthin is of benefit when administered after a cardiovascular event and no clinical cardiovascular studies in humans have been completed and/or reported. Cardiovascular clinical trials are warranted based on the physicochemical and antioxidant properties, the safety profile and preliminary experimental cardiovascular studies of astaxanthin. PMID:21556169

  15. Palm oil taxes and cardiovascular disease mortality in India: economic-epidemiologic model

    PubMed Central

    Babiarz, Kim S; Ebrahim, Shah; Vellakkal, Sukumar; Stuckler, David; Goldhaber-Fiebert, Jeremy D

    2013-01-01

    Objective To examine the potential effect of a tax on palm oil on hyperlipidemia and on mortality due to cardiovascular disease in India. Design Economic-epidemiologic model. Modeling methods A microsimulation model of mortality due to myocardial infarction and stroke among Indian populations was constructed, incorporating nationally representative data on systolic blood pressure, total cholesterol, tobacco smoking, diabetes, and cardiovascular event history, and stratified by age, sex, and urban/rural residence. Household expenditure data were used to estimate the change in consumption of palm oil following changes in oil price and the potential substitution of alternative oils that might occur after imposition of a tax. A 20% excise tax on palm oil purchases was simulated over the period 2014-23. Main outcome measures The model was used to project future mortality due to myocardial infarction and stroke, as well as the potential effect of a tax on food insecurity, accounting for the effect of increased food prices. Results A 20% tax on palm oil purchases would be expected to avert approximately 363 000 (95% confidence interval 247 000 to 479 000) deaths from myocardial infarctions and strokes over the period 2014-23 in India (1.3% reduction in cardiovascular deaths) if people do not substitute other oils for reduced palm oil consumption. Given estimates of substitution of palm oil with other oils following a 20% price increase for palm oil, the beneficial effects of increased polyunsaturated fat consumption would be expected to enhance the projected reduction in deaths to as much as 421 000 (256 000 to 586 000). The tax would be expected to benefit men more than women and urban populations more than rural populations, given differential consumption and cardiovascular risk. In a scenario incorporating the effect of taxation on overall food expenditures, the tax may increase food insecurity by <1%, resulting in 16 000 (95% confidence interval 12 000 to 22 000) deaths. Conclusions Curtailing palm oil intake through taxation may modestly reduce hyperlipidemia and cardiovascular mortality, but with potential distributional consequences differentially benefiting male and urban populations, as well as affecting food security. PMID:24149818

  16. Fresh gasoline emissions, not paved road dust, alter cardiac repolarization in ApoE-/- mice.

    PubMed

    Campen, Matthew J; McDonald, Jacob D; Reed, Matthew D; Seagrave, Jeanclare

    2006-01-01

    Fresh vehicular emissions potentially represent a ubiquitous environmental concern for cardiovascular health. We compared electrocardiographic effects of fresh gasoline engine emissions with resuspended paved road dust in a mouse model of coronary insufficiency. Apolipoprotein E (ApoE)-/- mice on a high fat diet were exposed by whole-body inhalation to either gasoline emissions at 60 microg/m3 particulate matter (PM), an equivalent atmosphere with particles filtered out of the whole exhaust, or paved road dust at 0.5 and 3.5 mg /m3 for 6 h/d for 3 d. Radiotelemetry recordings of electrocardiogram (ECG) were analyzed for changes in T-wave morphology (QT interval, T-wave amplitude, and T-wave Area). Following exposures, lung lavage and blood samples were obtained to assay for markers of pulmonary and systemic inflammation. No exposure induced significant changes in heart rate and only the high concentration of road dust induced signs of pulmonary inflammation. T-wave area exhibited significant deviation from baseline values during exposure to gasoline exhaust particulates, but not to either concentration of road dust or gasoline emissions sans particulates. Gasoline-exposed mice demonstrated elevated plasma endothelin-1, but did not cause systemic inflammation. These data support the hypothesis that freshly-generated engine emissions, as opposed to resuspended paved road dust, may drive cardiac effects that have been observed at road-sides in the environment. The absence of ECG effects for both very high concentrations of road dust PM and equivalent concentrations of the vapor/gas phase of gasoline engine exhaust further indicate the specific risk conferred by fresh vehicular PM.

  17. Performance of uncertainty quantification methodologies and linear solvers in cardiovascular simulations

    NASA Astrophysics Data System (ADS)

    Seo, Jongmin; Schiavazzi, Daniele; Marsden, Alison

    2017-11-01

    Cardiovascular simulations are increasingly used in clinical decision making, surgical planning, and disease diagnostics. Patient-specific modeling and simulation typically proceeds through a pipeline from anatomic model construction using medical image data to blood flow simulation and analysis. To provide confidence intervals on simulation predictions, we use an uncertainty quantification (UQ) framework to analyze the effects of numerous uncertainties that stem from clinical data acquisition, modeling, material properties, and boundary condition selection. However, UQ poses a computational challenge requiring multiple evaluations of the Navier-Stokes equations in complex 3-D models. To achieve efficiency in UQ problems with many function evaluations, we implement and compare a range of iterative linear solver and preconditioning techniques in our flow solver. We then discuss applications to patient-specific cardiovascular simulation and how the problem/boundary condition formulation in the solver affects the selection of the most efficient linear solver. Finally, we discuss performance improvements in the context of uncertainty propagation. Support from National Institute of Health (R01 EB018302) is greatly appreciated.

  18. Pulmonary Toxicity and Modifications in Iron Homeostasis Following Libby Amphibole Asbestos Exposure in Rat Models of Cardiovascular Disease

    EPA Science Inventory

    Rationale: Individuals suffering from cardiovascular disease (CVD) develop iron dysregulation which may influence pulmonary toxicity and injury upon exposure to asbestos. We hypothesized spontaneously hypertensive (SH) and spontaneously hypertensive heart failure (SHHF) rats woul...

  19. ALTERATIONS OF FE HOMEOSTASIS IN RAT CARDIOVASCULAR DISEASE MODELS AND ITS CONTRIBUTION TO CARDIOPULMONARY TOXICITY

    EPA Science Inventory

    Introduction: Fe homeostasis can be disrupted in human cardiovascular diseases (CVD). We addressed how dysregulation of Fe homeostasis affected the pulmonary inflammation/oxidative stress response and disease progression after exposure to Libby amphibole (LA), an asbestifonn mine...

  20. Cardiovascular Organ-on-a-Chip Platforms for Drug Discovery and Development

    PubMed Central

    Ribas, João; Sadeghi, Hossein; Manbachi, Amir; Leijten, Jeroen; Brinegar, Katelyn; Zhang, Yu Shrike; Ferreira, Lino

    2016-01-01

    Abstract Cardiovascular diseases are prevalent worldwide and are the most frequent causes of death in the United States. Although spending in drug discovery/development has increased, the amount of drug approvals has seen a progressive decline. Particularly, adverse side effects to the heart and general vasculature have become common causes for preclinical project closures, and preclinical models do not fully recapitulate human in vivo dynamics. Recently, organs-on-a-chip technologies have been proposed to mimic the dynamic conditions of the cardiovascular system—in particular, heart and general vasculature. These systems pay particular attention to mimicking structural organization, shear stress, transmural pressure, mechanical stretching, and electrical stimulation. Heart- and vasculature-on-a-chip platforms have been successfully generated to study a variety of physiological phenomena, model diseases, and probe the effects of drugs. Here, we review and discuss recent breakthroughs in the development of cardiovascular organs-on-a-chip platforms, and their current and future applications in the area of drug discovery and development. PMID:28971113

  1. Similar support for three different life course socioeconomic models on predicting premature cardiovascular mortality and all-cause mortality

    PubMed Central

    Rosvall, Maria; Chaix, Basile; Lynch, John; Lindström, Martin; Merlo, Juan

    2006-01-01

    Background There are at least three broad conceptual models for the impact of the social environment on adult disease: the critical period, social mobility, and cumulative life course models. Several studies have shown an association between each of these models and mortality. However, few studies have investigated the importance of the different models within the same setting and none has been performed in samples of the whole population. The purpose of the present study was to study the relation between socioeconomic position (SEP) and mortality using different conceptual models in the whole population of Scania. Methods In the present investigation we use socioeconomic information on all men (N = 48,909) and women (N = 47,688) born between 1945 and 1950, alive on January, 1st,1990, and living in the Region of Scania, in Sweden. Focusing on three specific life periods (i.e., ages 10–15, 30–35 and 40–45), we examined the association between SEP and the 12-year risk of premature cardiovascular mortality and all-cause mortality. Results There was a strong relation between SEP and mortality among those inside the workforce, irrespective of the conceptual model used. There was a clear upward trend in the mortality hazard rate ratios (HRR) with accumulated exposure to manual SEP in both men (p for trend < 0.001 for both cardiovascular and all-cause mortality) and women (p for trend = 0.01 for cardiovascular mortality) and (p for trend = 0.003 for all-cause mortality). Inter- and intragenerational downward social mobility was associated with an increased mortality risk. When applying similar conceptual models based on workforce participation, it was shown that mortality was affected by the accumulated exposure to being outside the workforce. Conclusion There was a strong relation between SEP and cardiovascular and all-cause mortality, irrespective of the conceptual model used. The critical period, social mobility, and cumulative life course models, showed the same fit to the data. That is, one model could not be pointed out as "the best" model and even in this large unselected sample it was not possible to adjudicate which theories best describe the links between life course SEP and mortality risk. PMID:16889658

  2. Doppler velocity measurements from large and small arteries of mice

    PubMed Central

    Reddy, Anilkumar K.; Madala, Sridhar; Entman, Mark L.; Michael, Lloyd H.; Taffet, George E.

    2011-01-01

    With the growth of genetic engineering, mice have become increasingly common as models of human diseases, and this has stimulated the development of techniques to assess the murine cardiovascular system. Our group has developed nonimaging and dedicated Doppler techniques for measuring blood velocity in the large and small peripheral arteries of anesthetized mice. We translated technology originally designed for human vessels for use in smaller mouse vessels at higher heart rates by using higher ultrasonic frequencies, smaller transducers, and higher-speed signal processing. With these methods one can measure cardiac filling and ejection velocities, velocity pulse arrival times for determining pulse wave velocity, peripheral blood velocity and vessel wall motion waveforms, jet velocities for the calculation of the pressure drop across stenoses, and left main coronary velocity for the estimation of coronary flow reserve. These noninvasive methods are convenient and easy to apply, but care must be taken in interpreting measurements due to Doppler sample volume size and angle of incidence. Doppler methods have been used to characterize and evaluate numerous cardiovascular phenotypes in mice and have been particularly useful in evaluating the cardiac and vascular remodeling that occur following transverse aortic constriction. Although duplex ultrasonic echo-Doppler instruments are being applied to mice, dedicated Doppler systems are more suitable for some applications. The magnitudes and waveforms of blood velocities from both cardiac and peripheral sites are similar in mice and humans, such that much of what is learned using Doppler technology in mice may be translated back to humans. PMID:21572013

  3. Hostility and Anger Expression: Behavioral and Cardiovascular Responses to Mental Stress Among Cardiovascular Disease Patients

    DTIC Science & Technology

    2002-01-01

    Yeung et al., 1991). In other words, in patients with heart disease, coronary arteries that would under normal circumstances dilate in response to...44 1993). Verrier and colleagues presented a canine model of anger to discuss how acute anger may lead to ischemia (Verrier...anger response. The physiological changes noted in the canine model, such as increases in heart rate, mean arterial pressure, and coronary blood flow

  4. Fabrication and evaluation of novel rabbit model cardiovascular simulator with 3D printer

    NASA Astrophysics Data System (ADS)

    Jang, Min; Lee, Min-Woo; Seo, See-Yoon; Shin, Sang-Hoon

    2017-03-01

    Simulators allow researchers to study the hemodynamics of the cardiovascular system in a reproducible way without using complicated equations. Previous simulators focused on heart functions. However, a detailed model of the vessels is required to replicate the pulse wave of the arterial system. A computer simulation was used to simplify the arterial branch because producing every small artery is neither possible nor necessary. A 3D-printed zig was used to make a hand-made arterial tree. The simulator that was developed was evaluated by comparing its results to in-vivo data, in terms of the hemodynamic parameters (waveform, augmentation index, impedance, etc.) that were measured at three points: the ascending aorta, the thoracic aorta, and the brachiocephalic artery. The results from the simulator showed good agreement with the in-vivo data. Therefore, this simulator can be used as a research tool for the cardiovascular study of animal models, specifically rabbits.

  5. Affordability, accountability, and accessibility in health care reform: implications for cardiovascular and pulmonary rehabilitation.

    PubMed

    King, Marjorie L

    2013-01-01

    Because health care costs in the United States have been growing disproportionately compared to inflation for many years, without a clear connection to improved quality or increased access to care, employers and payers have begun to test new models of health care delivery and payment. These models are linked to the concepts of affordability, accountability, and accessibility and incorporate the premise that there must be shared responsibility for improving meaningful patient outcomes, with attention to the coordination of team-based and patient-centered care, and value for services purchased. This article explores emerging health care delivery and payment models, including expanded access to care related to the Affordable Care Act of 2010, patient-centered medical homes and neighborhoods, accountable and coordinated care organizations, and value-based purchasing and insurance design, with an emphasis on implications for cardiovascular and pulmonary rehabilitation programs and the American Association of Cardiovascular and Pulmonary Rehabilitation.

  6. [A meta-analysis on the association between genetic polymorphisms of osteoprotegerin and cardiovascular disease].

    PubMed

    Xin, J Y; Cong, H L

    2018-06-24

    Objective: To explore the association between genetic polymorphisms of rs2073617T/C (950T/C) and rs2073618G/C(1181G/C) in the osteoprotegerin gene and cardiovascular disease with meta-analysis. Methods: A computer-based search for the study of relationship between genetic polymorphisms of rs2073617T/C and rs2073618G/C in the osteoprotegerin gene and cardiovascular disease were performed in electronic databases including China National Knowledge Infrastructure(CNKI), China Biomedical Literature Database, Wanfang Database, Chinese Journal Full-text Database, Embase, PubMed, and Cochrane Library, supplemented by manual search, from the beginning of library to February 28, 2017. The quality of the included studies were assessed by the Newcastle-Ottawa Scale (NOS) scoring system. Data were analyzed using STATA 12.0 software. Results: Eleven clinical case-control studies that enrolled 2 115 patients with cardiovascular disease and 1 467 healthy subjects were included.The results indicated that osteoprotegerin gene polymorphisms of rs2073617T/C and rs2073618G/C might be closely associated with the susceptibility to cardiovascular disease(rs2073617T/C allele model: OR= 0.79, 95% CI 0.73-0.87, P= 0.001;rs2073618G/C M allele and W allele: OR= 0.83, 95% CI 0.74-0.92, P= 0.001). The osteoprotegerin gene polymorphisms of rs2073617T/C and rs2073618G/C were significantly related to the incidence of coronary artery disease and acute coronary syndrome(coronary artery disease allele model: OR= 0.83, 95% CI 0.75-0.92, P= 0.001; acute coronary syndrome allele model: OR= 0.73, 95% CI 0.62-0.85, P< 0.001). However, there was no significant correlation between the genetic polymorphisms of these two sites and the lesion vessel number of coronary artery (rs2073617T/C allele model: OR= 1.00, 95% CI 0.81-1.24, P= 0.985;rs2073618G/C allele model: OR= 0.98, 95% CI 0.80-1.21, P= 0.626). Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and polymerase chain reaction-ligase detection reaction(PCR-LDR) evidenced the association between osteoprotegerin gene polymorphisms and cardiovascular disease(allele model: OR= 0.79, 95% CI 0.72-0.86, P< 0.001), but no obvious relationship was found with fluorogenic quantitative detection and molecularprobe(allele model: OR= 0.86, 95% CI 0.65-1.12, P= 0.263). Conclusion: This meta-analysis indicates that the osteoprotegerin gene polymorphisms of rs2073617T/C and rs2073618G/C may be closely related to the increased risk of cardiovascular disease.

  7. Sheep (Ovis aries) as a Model for Cardiovascular Surgery and Management before, during, and after Cardiopulmonary Bypass

    PubMed Central

    DiVincenti, Louis; Westcott, Robin; Lee, Candice

    2014-01-01

    Because of its similarity to humans in important respects, sheep (Ovis aries) are a common animal model for translational research in cardiovascular surgery. However, some unique aspects of sheep anatomy and physiology present challenges to its use in these complicated experiments. In this review, we discuss relevant anatomy and physiology of sheep and discuss management before, during, and after procedures requiring cardiopulmonary bypass to provide a concise source of information for veterinarians, technicians, and researchers developing and implementing protocols with this model. PMID:25255065

  8. Resource management in cardiovascular engineering: is outsourcing the solution?

    PubMed

    Feyrer, Richard; Weyand, Michael; Kunzmann, Udo

    2005-09-01

    In recent years, modern medicine has changed considerably. At maximum care centers, in particular, the use of state-of-the-art medical equipment has become an essential part of patient care. HoWever, using such high-tech products also means a considerable burden on the financial resources available, because additional financing is rare. Consequently, there is a need for approaches that allow the use of state-of-the-art equipment without straining the budget unduly. The question now is whether economic strategies that have long since been established in other industries, e.g., the outsourcing of certain services, represent a potential solution for the economic problems of modern clinics. The fundamentals of outsourcing and its pros and cons are outlined and discussed, taking cardiovascular perfusion as an example, a cost-intensive field of heart surgery that is responsible for attending to heart-lung machines, artificial hearts and circulatory support systems.

  9. Multi-scale Modeling of the Cardiovascular System: Disease Development, Progression, and Clinical Intervention.

    PubMed

    Zhang, Yanhang; Barocas, Victor H; Berceli, Scott A; Clancy, Colleen E; Eckmann, David M; Garbey, Marc; Kassab, Ghassan S; Lochner, Donna R; McCulloch, Andrew D; Tran-Son-Tay, Roger; Trayanova, Natalia A

    2016-09-01

    Cardiovascular diseases (CVDs) are the leading cause of death in the western world. With the current development of clinical diagnostics to more accurately measure the extent and specifics of CVDs, a laudable goal is a better understanding of the structure-function relation in the cardiovascular system. Much of this fundamental understanding comes from the development and study of models that integrate biology, medicine, imaging, and biomechanics. Information from these models provides guidance for developing diagnostics, and implementation of these diagnostics to the clinical setting, in turn, provides data for refining the models. In this review, we introduce multi-scale and multi-physical models for understanding disease development, progression, and designing clinical interventions. We begin with multi-scale models of cardiac electrophysiology and mechanics for diagnosis, clinical decision support, personalized and precision medicine in cardiology with examples in arrhythmia and heart failure. We then introduce computational models of vasculature mechanics and associated mechanical forces for understanding vascular disease progression, designing clinical interventions, and elucidating mechanisms that underlie diverse vascular conditions. We conclude with a discussion of barriers that must be overcome to provide enhanced insights, predictions, and decisions in pre-clinical and clinical applications.

  10. Multi-scale Modeling of the Cardiovascular System: Disease Development, Progression, and Clinical Intervention

    PubMed Central

    Zhang, Yanhang; Barocas, Victor H.; Berceli, Scott A.; Clancy, Colleen E.; Eckmann, David M.; Garbey, Marc; Kassab, Ghassan S.; Lochner, Donna R.; McCulloch, Andrew D.; Tran-Son-Tay, Roger; Trayanova, Natalia A.

    2016-01-01

    Cardiovascular diseases (CVDs) are the leading cause of death in the western world. With the current development of clinical diagnostics to more accurately measure the extent and specifics of CVDs, a laudable goal is a better understanding of the structure-function relation in the cardiovascular system. Much of this fundamental understanding comes from the development and study of models that integrate biology, medicine, imaging, and biomechanics. Information from these models provides guidance for developing diagnostics, and implementation of these diagnostics to the clinical setting, in turn, provides data for refining the models. In this review, we introduce multi-scale and multi-physical models for understanding disease development, progression, and designing clinical interventions. We begin with multi-scale models of cardiac electrophysiology and mechanics for diagnosis, clinical decision support, personalized and precision medicine in cardiology with examples in arrhythmia and heart failure. We then introduce computational models of vasculature mechanics and associated mechanical forces for understanding vascular disease progression, designing clinical interventions, and elucidating mechanisms that underlie diverse vascular conditions. We conclude with a discussion of barriers that must be overcome to provide enhanced insights, predictions, and decisions in pre-clinical and clinical applications. PMID:27138523

  11. A Novel Mean-Value Model of the Cardiovascular System Including a Left Ventricular Assist Device.

    PubMed

    Ochsner, Gregor; Amacher, Raffael; Schmid Daners, Marianne

    2017-06-01

    Time-varying elastance models (TVEMs) are often used for simulation studies of the cardiovascular system with a left ventricular assist device (LVAD). Because these models are computationally expensive, they cannot be used for long-term simulation studies. In addition, their equilibria are periodic solutions, which prevent the extraction of a linear time-invariant model that could be used e.g. for the design of a physiological controller. In the current paper, we present a new type of model to overcome these problems: the mean-value model (MVM). The MVM captures the behavior of the cardiovascular system by representative mean values that do not change within the cardiac cycle. For this purpose, each time-varying element is manually converted to its mean-value counterpart. We compare the derived MVM to a similar TVEM in two simulation experiments. In both cases, the MVM is able to fully capture the inter-cycle dynamics of the TVEM. We hope that the new MVM will become a useful tool for researchers working on physiological control algorithms. This paper provides a plant model that enables for the first time the use of tools from classical control theory in the field of physiological LVAD control.

  12. N-terminal fraction of pro-B-type natriuretic peptide versus clinical risk scores for prognostic stratification in chronic systolic heart failure.

    PubMed

    Arzilli, Chiara; Aimo, Alberto; Vergaro, Giuseppe; Ripoli, Andrea; Senni, Michele; Emdin, Michele; Passino, Claudio

    2018-05-01

    Background The Seattle heart failure model or the cardiac and comorbid conditions (3C-HF) scores may help define patient risk in heart failure. Direct comparisons between them or versus N-terminal fraction of pro-B-type natriuretic peptide (NT-proBNP) have never been performed. Methods Data from consecutive patients with stable systolic heart failure and 3C-HF data were examined. A subgroup of patients had the Seattle heart failure model data available. The endpoints were one year all-cause or cardiovascular death. Results The population included 2023 patients, aged 68 ± 12 years, 75% were men. At the one year time-point, 198 deaths were recorded (10%), 124 of them (63%) from cardiovascular causes. While areas under the curve were not significantly different, NT-proBNP displayed better reclassification capability than the 3C-HF score for the prediction of one year all-cause and cardiovascular death. Adding NT-proBNP to the 3C-HF score resulted in a significant improvement in risk prediction. Among patients with Seattle heart failure model data available ( n = 798), the area under the curve values for all-cause and cardiovascular death were similar for the Seattle heart failure model score (0.790 and 0.820), NT-proBNP (0.783 and 0.803), and the 3C-HF score (0.770 and 0.800). The combination of the 3C-HF score and NT-proBNP displayed a similar prognostic performance to the Seattle heart failure model score for both endpoints. Adding NT-proBNP to the Seattle heart failure model score performed better than the Seattle heart failure model alone in terms of reclassification, but not discrimination. Conclusions Among systolic heart failure patients, NT-proBNP levels had better reclassification capability for all-cause and cardiovascular death than the 3C-HF score. The inclusion of NT-proBNP to the 3C-HF and Seattle heart failure model score resulted in significantly better risk stratification.

  13. Cardiovascular metabolic syndrome: mediators involved in the pathophysiology from obesity to coronary heart disease.

    PubMed

    Roos, Cornelis J; Quax, Paul H A; Jukema, J Wouter

    2012-02-01

    Patients with obesity and diabetes mellitus are at increased risk for cardiovascular events and have a higher cardiovascular morbidity and mortality. This worse prognosis is partly explained by the late recognition of coronary heart disease in these patients, due to the absence of symptoms. Early identification of coronary heart disease is vital, to initiate preventive medical therapy and improve prognosis. At present, with the use of cardiovascular risk models, the identification of coronary heart disease in these patients remains inadequate. To this end, biomarkers should improve the early identification of patients at increased cardiovascular risk. The first part of this review describes the pathophysiologic pathway from obesity to coronary heart disease. The second part evaluates several mediators from this pathophysiologic pathway for their applicability as biomarkers for the identification of coronary heart disease.

  14. Cannabinoids in the Cardiovascular System.

    PubMed

    Ho, Wing S V; Kelly, Melanie E M

    2017-01-01

    Cannabinoids are known to modulate cardiovascular functions including heart rate, vascular tone, and blood pressure in humans and animal models. Essential components of the endocannabinoid system, namely, the production, degradation, and signaling pathways of endocannabinoids have been described not only in the central and peripheral nervous system but also in myocardium, vasculature, platelets, and immune cells. The mechanisms of cardiovascular responses to endocannabinoids are often complex and may involve cannabinoid CB 1 and CB 2 receptors or non-CB 1/2 receptor targets. Preclinical and some clinical studies have suggested that targeting the endocannabinoid system can improve cardiovascular functions in a number of pathophysiological conditions, including hypertension, metabolic syndrome, sepsis, and atherosclerosis. In this chapter, we summarize the local and systemic cardiovascular effects of cannabinoids and highlight our current knowledge regarding the therapeutic potential of endocannabinoid signaling and modulation. © 2017 Elsevier Inc. All rights reserved.

  15. The Role of Oxidative Stress and Inflammation in Cardiovascular Aging

    PubMed Central

    Wu, Junzhen; Xia, Shijin; Kalionis, Bill; Sun, Tao

    2014-01-01

    Age is an independent risk factor of cardiovascular disease, even in the absence of other traditional factors. Emerging evidence in experimental animal and human models has emphasized a central role for two main mechanisms of age-related cardiovascular disease: oxidative stress and inflammation. Excess reactive oxygen species (ROS) and superoxide generated by oxidative stress and low-grade inflammation accompanying aging recapitulate age-related cardiovascular dysfunction, that is, left ventricular hypertrophy, fibrosis, and diastolic dysfunction in the heart as well as endothelial dysfunction, reduced vascular elasticity, and increased vascular stiffness. We describe the signaling involved in these two main mechanisms that include the factors NF-κB, JunD, p66Shc, and Nrf2. Potential therapeutic strategies to improve the cardiovascular function with aging are discussed, with a focus on calorie restriction, SIRT1, and resveratrol. PMID:25143940

  16. O-GlcNAc and the Cardiovascular System

    PubMed Central

    Dassanayaka, Sujith; Jones, Steven P.

    2014-01-01

    The cardiovascular system is capable of robust changes in response to physiologic and pathologic stimuli through intricate signaling mechanisms. The area of metabolism has witnessed a veritable renaissance in the cardiovascular system. In particular, the post-translational β-O-linkage of N-acetylglucosamine (O-GlcNAc) to cellular proteins represents one such signaling pathway that has been implicated in the pathophysiology of cardiovascular disease. This highly dynamic protein modification may induce functional changes in proteins and regulate key cellular processes including translation, transcription, and cell death. In addition, its potential interplay with phosphorylation provides an additional layer of complexity to post-translational regulation. The hexosamine biosynthetic pathway generally requires glucose to form the nucleotide sugar, UDP-GlcNAc. Accordingly, O-GlcNAcylation may be altered in response to nutrient availability and cellular stress. Recent literature supports O-GlcNAcylation as an autoprotective response in models of acute stress (hypoxia, ischemia, oxidative stress). Models of sustained stress, such as pressure overload hypertrophy, and infarct-induced heart failure, may also require protein O-GlcNAcylation as a partial compensatory mechanism. Yet, in models of Type II diabetes, O-GlcNAcylation has been implicated in the subsequent development of vascular, and even cardiac, dysfunction. This review will address this apparent paradox and discuss the potential mechanisms of O-GlcNAc-mediated cardioprotection and cardiovascular dysfunction. This discussion will also address potential targets for pharmacologic interventions and the unique considerations related to such targets. PMID:24287310

  17. O-GlcNAc and the cardiovascular system.

    PubMed

    Dassanayaka, Sujith; Jones, Steven P

    2014-04-01

    The cardiovascular system is capable of robust changes in response to physiologic and pathologic stimuli through intricate signaling mechanisms. The area of metabolism has witnessed a veritable renaissance in the cardiovascular system. In particular, the post-translational β-O-linkage of N-acetylglucosamine (O-GlcNAc) to cellular proteins represents one such signaling pathway that has been implicated in the pathophysiology of cardiovascular disease. This highly dynamic protein modification may induce functional changes in proteins and regulate key cellular processes including translation, transcription, and cell death. In addition, its potential interplay with phosphorylation provides an additional layer of complexity to post-translational regulation. The hexosamine biosynthetic pathway generally requires glucose to form the nucleotide sugar, UDP-GlcNAc. Accordingly, O-GlcNAcylation may be altered in response to nutrient availability and cellular stress. Recent literature supports O-GlcNAcylation as an autoprotective response in models of acute stress (hypoxia, ischemia, oxidative stress). Models of sustained stress, such as pressure overload hypertrophy, and infarct-induced heart failure, may also require protein O-GlcNAcylation as a partial compensatory mechanism. Yet, in models of Type II diabetes, O-GlcNAcylation has been implicated in the subsequent development of vascular, and even cardiac, dysfunction. This review will address this apparent paradox and discuss the potential mechanisms of O-GlcNAc-mediated cardioprotection and cardiovascular dysfunction. This discussion will also address potential targets for pharmacologic interventions and the unique considerations related to such targets. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. CARDIOVASCULAR DISEASES, SUSCEPTIBILITY TO OXIDATIVE INJURY AND COMPENSATORY MECHANISMS: INSIGHTS FROM RODENT MODELS

    EPA Science Inventory

    Cardiovascular diseases (CVD) are the number one cause for human mortality and nearly 25% of the population develops chronic CVD at an age of 65 years or older. Environmental and genetic interactions govern pathogenesis. Increased oxidative stress and compromised antioxidant stat...

  19. Fine Particulate Matter and Cardiovascular Disease: Comparison of Assessment Methods for Long-term Exposure

    EPA Science Inventory

    Background Adverse cardiovascular events have been linked with PM2.5 exposure obtained primarily from air quality monitors, which rarely co-locate with participant residences. Modeled PM2.5 predictions at finer resolution may more accurately predict residential exposure; however...

  20. Multi-Fidelity Uncertainty Propagation for Cardiovascular Modeling

    NASA Astrophysics Data System (ADS)

    Fleeter, Casey; Geraci, Gianluca; Schiavazzi, Daniele; Kahn, Andrew; Marsden, Alison

    2017-11-01

    Hemodynamic models are successfully employed in the diagnosis and treatment of cardiovascular disease with increasing frequency. However, their widespread adoption is hindered by our inability to account for uncertainty stemming from multiple sources, including boundary conditions, vessel material properties, and model geometry. In this study, we propose a stochastic framework which leverages three cardiovascular model fidelities: 3D, 1D and 0D models. 3D models are generated from patient-specific medical imaging (CT and MRI) of aortic and coronary anatomies using the SimVascular open-source platform, with fluid structure interaction simulations and Windkessel boundary conditions. 1D models consist of a simplified geometry automatically extracted from the 3D model, while 0D models are obtained from equivalent circuit representations of blood flow in deformable vessels. Multi-level and multi-fidelity estimators from Sandia's open-source DAKOTA toolkit are leveraged to reduce the variance in our estimated output quantities of interest while maintaining a reasonable computational cost. The performance of these estimators in terms of computational cost reductions is investigated for a variety of output quantities of interest, including global and local hemodynamic indicators. Sandia National Labs is a multimission laboratory managed and operated by NTESS, LLC, for the U.S. DOE under contract DE-NA0003525. Funding for this project provided by NIH-NIBIB R01 EB018302.

  1. Blood Pressure Control

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Engineering Development Laboratory developed a system for the cardiovascular study of weightless astronauts. This was designed to aid people with congestive heart failure and diabetes. While in space, astronauts' blood pressure rises, heart rate becomes unstable, and there are sometimes postflight lightheadedness or blackouts. The Baro-Cuff studies the resetting of blood pressure. When a silicone rubber chamber is strapped to the neck, the Baro-Cuff stimulates the carotid arteries by electronically controlled pressure application. Blood pressure controls in patients may be studied.

  2. Improving hemodynamics of cardiovascular system under a novel intraventricular assist device support via modeling and simulations.

    PubMed

    Zhu, Shidong; Luo, Lin; Yang, Bibo; Li, Xinghui; Wang, Xiaohao

    2017-12-01

    Ventricular assist devices (LVADs) are increasingly recognized for supporting blood circulation in heart failure patients who are non-transplant eligible. Because of its volume, the traditional pulsatile device is not easy to implant intracorporeally. Continuous flow LVADs (CF-LVADs) reduce arterial pulsatility and only offer continuous flow, which is different from physiological flow, and may cause long-term complications in the cardiovascular system. The aim of this study was to design a new pulsatile assist device that overcomes this disadvantage, and to test this device in the cardiovascular system. Firstly, the input and output characteristics of the new device were tested in a simple cardiovascular mock system. A detailed mathematical model was established by fitting the experimental data. Secondly, the model was tested in four pathological cases, and was simulated and coupled with a fifth-order cardiovascular system and a new device model using Matlab software. Using assistance of the new device, we demonstrated that the left ventricle pressure, aortic pressure, and aortic flow of heart failure patients improved to the levels of a healthy individual. Especially, in state IV level heart failure patients, the systolic blood pressure increased from 81.34 mmHg to 132.1 mmHg, whereas the diastolic blood pressure increased from 54.28 mmHg to 78.7 mmHg. Cardiac output increased from 3.21 L/min to 5.16 L/min. The newly-developed assist device not only provided a physiological flow that was similar to healthy individuals, but also effectively improved the ability of the pathological ventricular volume. Finally, the effects of the new device on other hemodynamic parameters are discussed.

  3. The Association between Triglyceride/High-Density Lipoprotein Cholesterol Ratio and All-Cause Mortality in Acute Coronary Syndrome after Coronary Revascularization

    PubMed Central

    Wan, Ke; Zhao, Jianxun; Huang, Hao; Zhang, Qing; Chen, Xi; Zeng, Zhi; Zhang, Li; Chen, Yucheng

    2015-01-01

    Aims High triglycerides (TG) and low high-density lipoprotein cholesterol (HDL-C) are cardiovascular risk factors. A positive correlation between elevated TG/HDL-C ratio and all-cause mortality and cardiovascular events exists in women. However, utility of TG to HDL-C ratio for prediction is unknown among acute coronary syndrome (ACS). Methods Fasting lipid profiles, detailed demographic data, and clinical data were obtained at baseline from 416 patients with ACS after coronary revascularization. Subjects were stratified into three levels of TG/HDL-C. We constructed multivariate Cox-proportional hazard models for all-cause mortality over a median follow-up of 3 years using log TG to HDL-C ratio as a predictor variable and analyzing traditional cardiovascular risk factors. We constructed a logistic regression model for major adverse cardiovascular events (MACEs) to prove that the TG/HDL-C ratio is a risk factor. Results The subject’s mean age was 64 ± 11 years; 54.5% were hypertensive, 21.8% diabetic, and 61.0% current or prior smokers. TG/HDL-C ratio ranged from 0.27 to 14.33. During the follow-up period, there were 43 deaths. In multivariate Cox models after adjusting for age, smoking, hypertension, diabetes, and severity of angiographic coronary disease, patients in the highest tertile of ACS had a 5.32-fold increased risk of mortality compared with the lowest tertile. After adjusting for conventional coronary heart disease risk factors by the logistic regression model, the TG/HDL-C ratio was associated with MACEs. Conclusion The TG to HDL-C ratio is a powerful independent predictor of all-cause mortality and is a risk factor of cardiovascular events. PMID:25880982

  4. Ethnic differences in risk factors and total risk of cardiovascular disease based on the Norwegian CONOR study.

    PubMed

    Rabanal, Kjersti S; Lindman, Anja S; Selmer, Randi M; Aamodt, Geir

    2013-12-01

    Risk of cardiovascular disease varies between ethnic groups and the aim of this study was to investigate differences in cardiovascular risk factors, and total cardiovascular risk between ethnic groups in Norway. Cross-sectional study using data from the Cohort of Norway (CONOR). A sample of 62,145 participants, 40-65 years of age, originating from 11 geographical regions, were included in our study. Self-reported variables, blood samples and physical measurements were used to estimate age- and time-adjusted mean values of cardiovascular risk factors for different ethnic groups. The 10-year risks of cardiovascular mortality and cardiovascular events were calculated using the Framingham and NORRISK risk models. We observed differences between ethnic groups for cardiovascular risk factors and both Framingham and NORRISK risk scores. NORRISK showed significant differences by ethnicity in women only. Immigrants from the Indian subcontinent had the lowest high-density lipoprotein (HDL) levels, the highest levels of blood glucose, triglycerides, total cholesterol/HDL ratio, waist hip ratio and diabetes prevalence. Immigrants from the former Yugoslavia had the highest Framingham scores, high blood pressure, high total cholesterol/HDL ratio, overweight measures and smoking. Low cardiovascular risk was observed among East Asian immigrants. The previously reported excess cardiovascular risk among immigrants from the Indian subcontinent was supported in this study. We also showed that immigrants from the former Yugoslavian countries had a higher total 10-year risk of cardiovascular events than other ethnic groups. This study adds information about ethnic groups in Norway which needs to be addressed in further research and targeted prevention strategies.

  5. Influence of a silicon (Si14)-based coating substrate for biomaterials on fibroblast growth and human C5a.

    PubMed

    Hiebl, B; Hopperdietzel, C; Hünigen, H; Jung, F; Scharnagl, N

    2013-01-01

    Despite considerable efforts in biomaterial development there is still a lack on substrates for cardiovascular tissue engineering approaches which allow the establishment of a tight a functional endothelial layer on their surface to provide hemocompatibility. The study aimed to test the biocompatibility of a silicon (Si14)-based coating substrate (Supershine Medicare, Permanon) which was designed to resist temperatures from -40°C up to 300°C and which allows the use of established heat-inducing sterilization techniques respectively. By X-ray photoelectron spectroscopy it could be validated that this substrate is able to establish a 40-50 nm thick layer of silica, oxygen and carbon without including any further elements from the substrate on an exemplary selection of materials (silicone, soda-lime-silica glass, stainless steel). Analysis of the LDH-release, the cell activity/proliferation (MTS assay) and the cell phenotype after growing 3T3 cells with extracts of the coated materials did not indicate any signs of cytotoxicity. Additionally by measuring the C5a release after exposure of the coated materials with human serum it could be demonstrated, that the coating had no impact on the activation of the complement system. These results generally suggest the tested substrate as a promising candidate for the coating of materials which are aimed to be used in cardiovascular tissue engineering approaches.

  6. Practical aspects of the control of cardiovascular risk in type 2 diabetes mellitus and the metabolic syndrome

    PubMed Central

    Cerghizan, Anca; Bala, Cornelia; Nita, Cristina; Hancu, Nicolae

    2007-01-01

    Cardiovascular disease is unanimously recognized as the major burden in type 2 diabetes, in terms of both mortality and morbidity. There is an extensive evidence coming from epidemiological studies that supports this statement. The presence of the metabolic syndrome confers a higher risk of long-term death, and dysglycemia appears to be responsible for the most of the excess risk. The metabolic syndrome also has an essential role in the modern concept of cardiovascular prevention. Global cardiovascular risk represents the action and consequences of all risk factors that simultaneously or sequentially act on the body, leading to atherogenesis/atherosclerosis. In daily practice, a stepwise approach to control cardiovascular risk in people with type 2 diabetes has been proposed. This algorithm comprises three steps: identification of cardiovascular risk factors, interpretation of global cardiovascular risk, and intervention for all identified risk factors and diseases. In the past decades, the whole concept of diabetes and the metabolic syndrome care has undergone a radical change. From here the concept of modern management of those diseases emerged: early, multi-factorial and intensive control. This concept emphasized early and aggressive interventions for all cardiovascular risk factors in the long-term management. The model of multiple cardiovascular risk factor intervention ought to be implemented in daily practice as much as possible. This offers a unique opportunity to reduce the devastating cardiovascular morbidity and mortality in people with type 2 diabetes and the metabolic syndrome. PMID:18650987

  7. Cardiovascular event risk assessment in psoriasis patients treated with tumor necrosis factor-α inhibitors versus methotrexate.

    PubMed

    Wu, Jashin J; Guérin, Annie; Sundaram, Murali; Dea, Katherine; Cloutier, Martin; Mulani, Parvez

    2017-01-01

    Psoriasis is associated with increased risk for cardiovascular disease. To compare major cardiovascular event risk in psoriasis patients receiving methotrexate or tumor necrosis factor-α inhibitor (TNFi) and to assess TNFi treatment duration impact on major cardiovascular event risk. Adult psoriasis patients with ≥2 TNFi or methotrexate prescriptions in the Truven MarketScan Databases (Q1 2000-Q3 2011) were classified as TNFi or methotrexate users. The index date for each of these drugs was the TNFi initiation date or a randomly selected methotrexate dispensing date, respectively. Cardiovascular event risks and cumulative TNFi effect were analyzed by using multivariate Cox proportional-hazards models. By 12 months, TNFi users (N = 9148) had fewer cardiovascular events than methotrexate users (N = 8581) (Kaplan-Meier rates: 1.45% vs 4.09%: P < .01). TNFi users had overall lower cardiovascular event hazards than methotrexate users (hazard ratio = 0.55; P < .01). Over 24 months' median follow-up, every 6 months of cumulative exposure to TNFis were associated with an 11% cardiovascular event risk reduction (P = .02). Lack of clinical assessment measures. Psoriasis patients receiving TNFis had a lower major cardiovascular event risk compared to those receiving methotrexate. Cumulative exposure to TNFis was associated with a reduced risk for major cardiovascular events. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  8. Targeted disruption of LDLR causes hypercholesterolemia and atherosclerosis in Yucatan miniature pigs.

    PubMed

    Davis, Bryan T; Wang, Xiao-Jun; Rohret, Judy A; Struzynski, Jason T; Merricks, Elizabeth P; Bellinger, Dwight A; Rohret, Frank A; Nichols, Timothy C; Rogers, Christopher S

    2014-01-01

    Recent progress in engineering the genomes of large animals has spurred increased interest in developing better animal models for diseases where current options are inadequate. Here, we report the creation of Yucatan miniature pigs with targeted disruptions of the low-density lipoprotein receptor (LDLR) gene in an effort to provide an improved large animal model of familial hypercholesterolemia and atherosclerosis. Yucatan miniature pigs are well established as translational research models because of similarities to humans in physiology, anatomy, genetics, and size. Using recombinant adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer, male and female LDLR+/- pigs were generated. Subsequent breeding of heterozygotes produced LDLR-/- pigs. When fed a standard swine diet (low fat, no cholesterol), LDLR+/- pigs exhibited a moderate, but consistent increase in total and LDL cholesterol, while LDLR-/- pigs had considerably elevated levels. This severe hypercholesterolemia in homozygote animals resulted in atherosclerotic lesions in the coronary arteries and abdominal aorta that resemble human atherosclerosis. These phenotypes were more severe and developed over a shorter time when fed a diet containing natural sources of fat and cholesterol. LDLR-targeted Yucatan miniature pigs offer several advantages over existing large animal models including size, consistency, availability, and versatility. This new model of cardiovascular disease could be an important resource for developing and testing novel detection and treatment strategies for coronary and aortic atherosclerosis and its complications.

  9. Predictive value of the transtheoretical model to smoking cessation in hospitalized patients with cardiovascular disease.

    PubMed

    Chouinard, Maud-Christine; Robichaud-Ekstrand, Sylvie

    2007-02-01

    Several authors have questioned the transtheoretical model. Determining the predictive value of each cognitive-behavioural element within this model could explain the multiple successes reported in smoking cessation programmes. The purpose of this study was to predict point-prevalent smoking abstinence at 2 and 6 months, using the constructs of the transtheoretical model, when applied to a pooled sample of individuals who were hospitalized for a cardiovascular event. The study follows a predictive correlation design. Recently hospitalized patients (n=168) with cardiovascular disease were pooled from a randomized, controlled trial. Independent variables of the predictive transtheoretical model comprise stages and processes of change, pros and cons to quit smoking (decisional balance), self-efficacy, and social support. These were evaluated at baseline, 2 and 6 months. Compared to smokers, individuals who abstained from smoking at 2 and 6 months were more confident at baseline to remain non-smokers, perceived less pros and cons to continue smoking, utilized less consciousness raising and self-re-evaluation experiential processes of change, and received more positive reinforcement from their social network with regard to their smoke-free behaviour. Self-efficacy and stages of change at baseline were predictive of smoking abstinence after 6 months. Other variables found to be predictive of smoking abstinence at 6 months were an increase in self-efficacy; an increase in positive social support behaviour and a decrease of the pros within the decisional balance. The results partially support the predictive value of the transtheoretical model constructs in smoking cessation for cardiovascular disease patients.

  10. Three-dimensional printing in cardiac surgery and interventional cardiology: a single-centre experience.

    PubMed

    Schmauss, Daniel; Haeberle, Sandra; Hagl, Christian; Sodian, Ralf

    2015-06-01

    In individual cases, routine preoperative imaging might not be sufficient for optimal planning of cardiovascular procedures. Three-dimensional printing (3D), a widely used technique to build life-like replicas of anatomical structures that has proven value in different medical disciplines, might overcome these shortcomings. However, data on 3D printing in cardiovascular medicine are limited to single reports. This stimulated us to present our single-centre experience with 3D printing models in cardiac surgery and interventional cardiology. Between the years 2006 and 2013, we fabricated 3D printing models using preoperative computed tomography or magnetic resonance imaging data in paediatric and adult cardiac surgery, as well as interventional cardiology. We present the 8 most representative cases. The models were very helpful for perioperative planning and orientation, as well as simulation of procedures due to the exact and life-like illustration of the cardiovascular anatomy. The fabrication of 3D printing models is feasible for perioperative planning and simulation in a variety of complex cases in paediatric and adult cardiac surgery, as well as in interventional cardiology. Further studies including more patients and providing more data are expected to demonstrate that the use of 3D printing may decrease morbidity and mortality of complex, non-routine procedures in cardiovascular medicine. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  11. Reforming Cardiovascular Care in the United States towards High-Quality Care at Lower Cost with Examples from Model Programs in the State of Michigan.

    PubMed

    Alyeshmerni, Daniel; Froehlich, James B; Lewin, Jack; Eagle, Kim A

    2014-07-01

    Despite its status as a world leader in treatment innovation and medical education, a quality chasm exists in American health care. Care fragmentation and poor coordination contribute to expensive care with highly variable quality in the United States. The rising costs of health care since 1990 have had a huge impact on individuals, families, businesses, the federal and state governments, and the national budget deficit. The passage of the Affordable Care Act represents a large shift in how health care is financed and delivered in the United States. The objective of this review is to describe some of the economic and social forces driving health care reform, provide an overview of the Patient Protection and Affordable Care Act (ACA), and review model cardiovascular quality improvement programs underway in the state of Michigan. As health care reorganization occurs at the federal level, local and regional efforts can serve as models to accelerate improvement toward achieving better population health and better care at lower cost. Model programs in Michigan have achieved this goal in cardiovascular care through the systematic application of evidence-based care, the utilization of regional quality improvement collaboratives, community-based childhood wellness promotion, and medical device-based competitive bidding strategies. These efforts are examples of the direction cardiovascular care delivery will need to move in this era of the Affordable Care Act.

  12. Role of Cardiovascular Disease-associated iron overload in Libby amphibole-induced acute pulmonary injury and inflammation

    EPA Science Inventory

    Pulmonary toxicity induced by asbestos is thought to be mediated through redox-cycling of fiber-bound and bioavailable iron (Fe). We hypothesized that Libby amphibole (LA)-induced cute lung injury will be exacerbated in rat models of cardiovascular disease (CVD)-associated Fe-ove...

  13. Acute and delayed effects of intermittant ozone on cardiovascular and thermoregulatory responses of young and aged rats

    EPA Science Inventory

    Ozone (03) is associated with cardiovascular and respiratory diseases. The aged population is considered to be more sensitive to air pollutants but relatively few studies have demonstrated increased susceptibility in animal models of aging. To study the acute and delayed physiolo...

  14. Examination of Susceptibility to Libby Amphibole Asbestos-Induced Injury in Rat Models of Cardiovascular Disease

    EPA Science Inventory

    Although cardiovascular disease (CVD) is considered a risk factor for the exacerbation of air pollution health effects, no studies have been done assessing the influence of the disease on the development of lung injury induced by asbestos exposure. In this study we examined lung ...

  15. Rat Models of Cardiovascular Disease Demonstrate Distinctive Pulmonary Gene Expressions for Vascular Response Genes: Impact of Ozone Exposure

    EPA Science Inventory

    Comparative gene expression profiling of multiple tissues from rat strains with genetic predisposition to diverse cardiovascular diseases (CVD) can help decode the transcriptional program that governs organ-specific functions. We examined expressions of CVD genes in the lungs of ...

  16. DIFFERENTIAL CARDIAC SUSCEPTIBILITY OF WISTAR KYOTO (WKY) AND SPONTANEOUSLY HYPERTENSIVE RATS (SHR) TO DIESEL EXHAUST EXPOSURE

    EPA Science Inventory

    Exposure to diesel exhaust particles (DEP) is linked to increases in cardiovascular effects. This is enhanced in individuals with pre-existing disease. Animal models of cardiovascular disease are used to study this susceptibility. The heart is rich in mitochondria, which produce ...

  17. Adaptive servo ventilation for central sleep apnoea in heart failure: SERVE-HF on-treatment analysis.

    PubMed

    Woehrle, Holger; Cowie, Martin R; Eulenburg, Christine; Suling, Anna; Angermann, Christiane; d'Ortho, Marie-Pia; Erdmann, Erland; Levy, Patrick; Simonds, Anita K; Somers, Virend K; Zannad, Faiez; Teschler, Helmut; Wegscheider, Karl

    2017-08-01

    This on-treatment analysis was conducted to facilitate understanding of mechanisms underlying the increased risk of all-cause and cardiovascular mortality in heart failure patients with reduced ejection fraction and predominant central sleep apnoea randomised to adaptive servo ventilation versus the control group in the SERVE-HF trial.Time-dependent on-treatment analyses were conducted (unadjusted and adjusted for predictive covariates). A comprehensive, time-dependent model was developed to correct for asymmetric selection effects (to minimise bias).The comprehensive model showed increased cardiovascular death hazard ratios during adaptive servo ventilation usage periods, slightly lower than those in the SERVE-HF intention-to-treat analysis. Self-selection bias was evident. Patients randomised to adaptive servo ventilation who crossed over to the control group were at higher risk of cardiovascular death than controls, while control patients with crossover to adaptive servo ventilation showed a trend towards lower risk of cardiovascular death than patients randomised to adaptive servo ventilation. Cardiovascular risk did not increase as nightly adaptive servo ventilation usage increased.On-treatment analysis showed similar results to the SERVE-HF intention-to-treat analysis, with an increased risk of cardiovascular death in heart failure with reduced ejection fraction patients with predominant central sleep apnoea treated with adaptive servo ventilation. Bias is inevitable and needs to be taken into account in any kind of on-treatment analysis in positive airway pressure studies. Copyright ©ERS 2017.

  18. Prognosis and cardiovascular morbidity and mortality in prospective study of hypertensive patients with obstructive sleep apnea syndrome in St Petersburg, Russia.

    PubMed

    Korostovtseva, Lyudmila S; Sviryaev, Yurii V; Zvartau, Nadezhda E; Konradi, Alexandra O; Kalinkin, Alexander L

    2011-02-25

    To assess the impact of obstructive sleep apnea-hypopnea syndrome (OSAHS) on prognosis and cardiovascular morbidity and mortality in relation to other major cardiovascular risk factors. This prospective study recruited 234 patients from an out-patient clinic. Based on the Berlin questionnaire, 147 patients (90 males, mean age 52.1 ± 10.4 years) with highly suspected sleep breathing disorders were included in the study. Based on cardiorespiratory monitoring, patients were divided into 2 groups: 42 patients without sleep breathing disorders (SBD), and 105 patients with OSAHS. Among these, 12 patients started CPAP therapy and formed the third group. The mean follow-up period was 46.4 ± 14.3 months. Event-free survival was lowest in the untreated OSAHS patients (log rank test 6.732, p = 0.035). In the non-adjusted regression model, OSAHS was also associated with a higher risk of cardiovascular events (OR = 8.557, 95% CI 1.142-64.131, p = 0.037). OSAHS patients demonstrated higher rates of hospitalization compared to the control group without SBD (OR 2.750, 95%CI 1.100-6.873, p = 0.04). OSAHS hypertensive patients, and in particular, according to our model, patients with severe OSAHS (AHI ≥ 30/h), are at higher risk of fatal and non-fatal cardiovascular events. Moreover, untreated OSAHS patients demonstrate higher rates of hospitalization caused by the onset or deterioration of cardiovascular disease.

  19. Differential influence of distinct components of increased blood pressure on cardiovascular outcomes: from the atherosclerosis risk in communities study.

    PubMed

    Cheng, Susan; Gupta, Deepak K; Claggett, Brian; Sharrett, A Richey; Shah, Amil M; Skali, Hicham; Takeuchi, Madoka; Ni, Hanyu; Solomon, Scott D

    2013-09-01

    Elevation in blood pressure (BP) increases risk for all cardiovascular events. Nevertheless, the extent to which different indices of BP elevation may be associated to varying degrees with different cardiovascular outcomes remains unclear. We studied 13340 participants (aged 54 ± 6 years, 56% women and 27% black) of the Atherosclerosis Risk in Communities Study who were free of baseline cardiovascular disease. We used Cox proportional hazards models to compare the relative contributions of systolic BP, diastolic BP, pulse pressure, and mean arterial pressure to risk for coronary heart disease, heart failure, stroke, and all-cause mortality. For each multivariable-adjusted model, the largest area under the receiver-operating curve (AUC) and smallest -2 log-likelihood values were used to identify BP measures with the greatest contribution to risk prediction for each outcome. A total of 2095 coronary heart disease events, 1669 heart failure events, 771 stroke events, and 3016 deaths occurred during 18 ± 5 years of follow-up. In multivariable analyses adjusting for traditional cardiovascular risk factors, the BP measures with the greatest risk contributions were the following: systolic BP for coronary heart disease (AUC=0.74); pulse pressure for heart failure (AUC=0.79); systolic BP for stroke (AUC=0.74); and pulse pressure for all-cause mortality (AUC=0.74). With few exceptions, results were similar in analyses stratified by age, sex, and race. Our data indicate that distinct BP components contribute variably to risk for different cardiovascular outcomes.

  20. Differential Influence of Distinct Components of Increased Blood Pressure on Cardiovascular OutcomesR3

    PubMed Central

    Cheng, Susan; Gupta, Deepak K.; Claggett, Brian; Sharrett, A. Richey; Shah, Amil M.; Skali, Hicham; Takeuchi, Madoka; Ni, Hanyu; Solomon, Scott D.

    2013-01-01

    Elevation in blood pressure (BP) increases risk for all cardiovascular events. Nevertheless, the extent to which different indices of BP elevation may be associated to varying degrees with different cardiovascular outcomes remains unclear. We studied 13,340 participants (aged 54±6 years, 56% women, 27% black) of the Atherosclerosis Risk in Communities Study who were free of baseline cardiovascular disease. We used Cox proportional hazards models to compare the relative contributions of systolic (SBP), diastolic (DBP), pulse pressure (PP), and mean arterial pressure (MAP) to risk for coronary heart disease (CHD), heart failure (HF), stroke, and all-cause mortality. For each multivariable-adjusted model, the largest area under the receiver-operating curve (AUC) and smallest -2 log likelihood values were used to identify BP measures with the greatest contribution to risk prediction for each outcome. A total of 2095 CHD events, 1669 HF events, 771 stroke events, and 3016 deaths occurred during up to 18±5 years of follow up. In multivariable analyses adjusting for traditional cardiovascular risk factors, the BP measures with the greatest risk contributions were: SBP for CHD (AUC=0.74); PP for HF (AUC=0.79), SBP for stroke (AUC=0.74), and PP for all-cause mortality (AUC=0.74). With few exceptions, results were similar in analyses stratified by age, sex, and race. Our data indicate that distinct BP components contribute variably to risk for different cardiovascular outcomes. PMID:23876475

  1. Chronic kidney disease as a cardiovascular risk factor: lessons from kidney donors.

    PubMed

    Price, Anna M; Edwards, Nicola C; Hayer, Manvir K; Moody, William E; Steeds, Richard P; Ferro, Charles J; Townend, Jonathan N

    2018-07-01

    Chronic kidney disease (CKD) is a major risk factor for cardiovascular disease but is often associated with other risks such as diabetes and hypertension and can be both a cause and an effect of cardiovascular disease. Although epidemiologic data of an independent association of reduced glomerular filtration rate with cardiovascular risk are strong, causative mechanisms are unclear. Living kidney donors provide a useful model for assessing the "pure" effects of reduced kidney function on the cardiovascular system. After nephrectomy, the glomerular filtration rate ultimately falls by about one-third so many can be classified as having chronic kidney disease stages 2 or 3. This prompts concern based on the data showing an elevated cardiovascular risk with these stages of chronic kidney disease. However, initial data suggested no increase in adverse cardiovascular effects compared with control populations. Recent reports have shown a possible late increase in cardiovascular event rates and an early increase in left ventricular mass and markers of risk such as urate and albuminuria. The long-term significance of these small changes is unknown. More detailed and long-term research is needed to determine the natural history of these changes and their clinical significance. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  2. Cognitive Support During High-Consequence Episodes of Care in Cardiovascular Surgery.

    PubMed

    Conboy, Heather M; Avrunin, George S; Clarke, Lori A; Osterweil, Leon J; Christov, Stefan C; Goldman, Julian M; Yule, Steven J; Zenati, Marco A

    2017-03-01

    Despite significant efforts to reduce preventable adverse events in medical processes, such events continue to occur at unacceptable rates. This paper describes a computer science approach that uses formal process modeling to provide situationally aware monitoring and management support to medical professionals performing complex processes. These process models represent both normative and non-normative situations, and are validated by rigorous automated techniques such as model checking and fault tree analysis, in addition to careful review by experts. Context-aware Smart Checklists are then generated from the models, providing cognitive support during high-consequence surgical episodes. The approach is illustrated with a case study in cardiovascular surgery.

  3. The Cardio-oncology Program: A Multidisciplinary Approach to the Care of Cancer Patients With Cardiovascular Disease.

    PubMed

    Parent, Sarah; Pituskin, Edith; Paterson, D Ian

    2016-07-01

    Improved cancer survivorship has resulted in a growing number of Canadians affected by cancer and cardiovascular disease. As a consequence, cardio-oncology programs are rapidly emerging to treat cancer patients with de novo and preexisting cardiovascular disease. The primary goal of a cardio-oncology program is to preserve cardiovascular health to allow the timely delivery of cancer therapy and achieve disease-free remission. Multidisciplinary programs in oncology and cardiology have been associated with enhanced patient well-being and improved clinical outcomes. Because of the complex needs of these multisystem patients, a similar model of care is gaining acceptance. The optimal composition of the cardio-oncology team will typically involve support from cardiology, oncology, and nursing. Depending on the clinical scenario, additional consultation from dietetics, pharmacy, and social services might be required. Timely access to consultation and testing is another prerequisite for cardio-oncology programs because delays in treating cardiac complications and nonadherence to prescribed cancer therapy are each associated with poor outcomes. Recommended reasons for referral to cardio-oncology programs include primary prevention for those at high risk for cardiotoxicity and the secondary treatment of new or worsening cardiovascular disease in cancer patients and survivors. Management is multifaceted and can involve lifestyle education, pharmacotherapy, enhanced cardiovascular surveillance, and support services, such as exercise training. The lack of evidence to guide clinical decisions and recommendations in cardio-oncology is a major challenge and opportunity for health care professionals. Large multicentre prospective registries are needed to adequately power risk model calculations and generate hypotheses for novel interventions. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  4. Cardiovascular outcomes after pharmacologic stress myocardial perfusion imaging.

    PubMed

    Lee, Douglas S; Husain, Mansoor; Wang, Xuesong; Austin, Peter C; Iwanochko, Robert M

    2016-04-01

    While pharmacologic stress single photon emission computed tomography myocardial perfusion imaging (SPECT-MPI) is used for noninvasive evaluation of patients who are unable to perform treadmill exercise, its impact on net reclassification improvement (NRI) of prognosis is unknown. We evaluated the prognostic value of pharmacologic stress MPI for prediction of cardiovascular death or non-fatal myocardial infarction (MI) within 1 year at a single-center, university-based laboratory. We examined continuous and categorical NRI of pharmacologic SPECT-MPI for prediction of outcomes beyond clinical factors alone. Six thousand two hundred forty patients (median age 66 years [IQR 56-74], 3466 men) were studied and followed for 5963 person-years. SPECT-MPI variables associated with increased risk of cardiovascular death or non-fatal MI included summed stress score, stress ST-shift, and post-stress resting left ventricular ejection fraction ≤50%. Compared to a clinical model which included age, sex, cardiovascular disease, risk factors, and medications, model χ(2) (210.5 vs. 281.9, P < .001) and c-statistic (0.74 vs. 0.78, P < .001) were significantly increased by addition of SPECT-MPI predictors (summed stress score, stress ST-shift and stress resting left ventricular ejection fraction). SPECT-MPI predictors increased continuous NRI by 49.4% (P < .001), reclassifying 66.5% of patients as lower risk and 32.8% as higher risk of cardiovascular death or non-fatal MI. Addition of MPI predictors to clinical factors using risk categories, defined as <1%, 1% to 3%, and >3% annualized risk of cardiovascular death or non-fatal MI, yielded a 15.0% improvement in NRI (95% CI 7.6%-27.6%, P < .001). Pharmacologic stress MPI substantially improved net reclassification of cardiovascular death or MI risk beyond that afforded by clinical factors. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Medicine is not health care, food is health care: plant metabolic engineering, diet and human health.

    PubMed

    Martin, Cathie; Li, Jie

    2017-11-01

    Contents 699 I. 699 II. 700 III. 700 IV. 706 V. 707 VI. 714 714 References 714 SUMMARY: Plants make substantial contributions to our health through our diets, providing macronutrients for energy and growth as well as essential vitamins and phytonutrients that protect us from chronic diseases. Imbalances in our food can lead to deficiency diseases or obesity and associated metabolic disorders, increased risk of cardiovascular diseases and cancer. Nutritional security is now a global challenge which can be addressed, at least in part, through plant metabolic engineering for nutritional improvement of foods that are accessible to and eaten by many. We review the progress that has been made in nutritional enhancement of foods, both improvements through breeding and through biotechnology and the engineering principles on which increased phytonutrient levels are based. We also consider the evidence, where available, that such foods do enhance health and protect against chronic diseases. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  6. Human iPS cell-engineered cardiac tissue sheets with cardiomyocytes and vascular cells for cardiac regeneration

    PubMed Central

    Masumoto, Hidetoshi; Ikuno, Takeshi; Takeda, Masafumi; Fukushima, Hiroyuki; Marui, Akira; Katayama, Shiori; Shimizu, Tatsuya; Ikeda, Tadashi; Okano, Teruo; Sakata, Ryuzo; Yamashita, Jun K.

    2014-01-01

    To realize cardiac regeneration using human induced pluripotent stem cells (hiPSCs), strategies for cell preparation, tissue engineering and transplantation must be explored. Here we report a new protocol for the simultaneous induction of cardiomyocytes (CMs) and vascular cells [endothelial cells (ECs)/vascular mural cells (MCs)], and generate entirely hiPSC-engineered cardiovascular cell sheets, which showed advantageous therapeutic effects in infarcted hearts. The protocol adds to a previous differentiation protocol of CMs by using stage-specific supplementation of vascular endothelial cell growth factor for the additional induction of vascular cells. Using this cell sheet technology, we successfully generated physically integrated cardiac tissue sheets (hiPSC-CTSs). HiPSC-CTS transplantation to rat infarcted hearts significantly improved cardiac function. In addition to neovascularization, we confirmed that engrafted human cells mainly consisted of CMs in >40% of transplanted rats four weeks after transplantation. Thus, our HiPSC-CTSs show promise for cardiac regenerative therapy. PMID:25336194

  7. A multilevel model for cardiovascular disease prevalence in the US and its application to micro area prevalence estimates.

    PubMed

    Congdon, Peter

    2009-01-30

    Estimates of disease prevalence for small areas are increasingly required for the allocation of health funds according to local need. Both individual level and geographic risk factors are likely to be relevant to explaining prevalence variations, and in turn relevant to the procedure for small area prevalence estimation. Prevalence estimates are of particular importance for major chronic illnesses such as cardiovascular disease. A multilevel prevalence model for cardiovascular outcomes is proposed that incorporates both survey information on patient risk factors and the effects of geographic location. The model is applied to derive micro area prevalence estimates, specifically estimates of cardiovascular disease for Zip Code Tabulation Areas in the USA. The model incorporates prevalence differentials by age, sex, ethnicity and educational attainment from the 2005 Behavioral Risk Factor Surveillance System survey. Influences of geographic context are modelled at both county and state level, with the county effects relating to poverty and urbanity. State level influences are modelled using a random effects approach that allows both for spatial correlation and spatial isolates. To assess the importance of geographic variables, three types of model are compared: a model with person level variables only; a model with geographic effects that do not interact with person attributes; and a full model, allowing for state level random effects that differ by ethnicity. There is clear evidence that geographic effects improve statistical fit. Geographic variations in disease prevalence partly reflect the demographic composition of area populations. However, prevalence variations may also show distinct geographic 'contextual' effects. The present study demonstrates by formal modelling methods that improved explanation is obtained by allowing for distinct geographic effects (for counties and states) and for interaction between geographic and person variables. Thus an appropriate methodology to estimate prevalence at small area level should include geographic effects as well as person level demographic variables.

  8. A multilevel model for cardiovascular disease prevalence in the US and its application to micro area prevalence estimates

    PubMed Central

    Congdon, Peter

    2009-01-01

    Background Estimates of disease prevalence for small areas are increasingly required for the allocation of health funds according to local need. Both individual level and geographic risk factors are likely to be relevant to explaining prevalence variations, and in turn relevant to the procedure for small area prevalence estimation. Prevalence estimates are of particular importance for major chronic illnesses such as cardiovascular disease. Methods A multilevel prevalence model for cardiovascular outcomes is proposed that incorporates both survey information on patient risk factors and the effects of geographic location. The model is applied to derive micro area prevalence estimates, specifically estimates of cardiovascular disease for Zip Code Tabulation Areas in the USA. The model incorporates prevalence differentials by age, sex, ethnicity and educational attainment from the 2005 Behavioral Risk Factor Surveillance System survey. Influences of geographic context are modelled at both county and state level, with the county effects relating to poverty and urbanity. State level influences are modelled using a random effects approach that allows both for spatial correlation and spatial isolates. Results To assess the importance of geographic variables, three types of model are compared: a model with person level variables only; a model with geographic effects that do not interact with person attributes; and a full model, allowing for state level random effects that differ by ethnicity. There is clear evidence that geographic effects improve statistical fit. Conclusion Geographic variations in disease prevalence partly reflect the demographic composition of area populations. However, prevalence variations may also show distinct geographic 'contextual' effects. The present study demonstrates by formal modelling methods that improved explanation is obtained by allowing for distinct geographic effects (for counties and states) and for interaction between geographic and person variables. Thus an appropriate methodology to estimate prevalence at small area level should include geographic effects as well as person level demographic variables. PMID:19183458

  9. Aortic pulse wave velocity and HeartSCORE: improving cardiovascular risk stratification. a sub-analysis of the EDIVA (Estudo de DIstensibilidade VAscular) project.

    PubMed

    Pereira, T; Maldonado, J; Polónia, J; Silva, J A; Morais, J; Rodrigues, T; Marques, M

    2014-04-01

    HeartSCORE is a tool for assessing cardiovascular risk, basing its estimates on the relative weight of conventional cardiovascular risk factors. However, new markers of cardiovascular risk have been identified, such as aortic pulse wave velocity (PWV). The purpose of this study was to evaluate to what extent the incorporation of PWV in HeartSCORE increases its discriminative power of major cardiovascular events (MACE). This study is a sub-analysis of the EDIVA project, which is a prospective cohort, multicenter and observational study involving 2200 individuals of Portuguese nationality (1290 men and 910 women) aged between 18 and 91 years (mean 46.33 ± 13.76 years), with annual measurements of PWV (Complior). Only participants above 35 years old were included in the present re-analysis, resulting in a population of 1709 participants. All MACE - death, cerebrovascular accident, coronary accidents (coronary heart disease), peripheral arterial disease and renal failure - were recorded. During a mean follow-up period of 21.42 ± 10.76 months, there were 47 non-fatal MACE (2.1% of the sample). Cardiovascular risk was estimated in all patients based on the HeartSCORE risk factors. For the analysis, the refitted HeartSCORE and PWV were divided into three risk categories. The event-free survival at 2 years was 98.6%, 98.0% and 96.1%, respectively in the low-, intermediate- and high-risk categories of HeartSCORE (log-rank p < 0.001). The multi-adjusted hazard ratio (HR) per 1 - standard deviation (SD) of MACE was 1.86 (95% CI 1.37-2.53, p < 0.001) for PWV. The risk of MACE by tertiles of PWV and risk categories of the HeartSCORE increased linearly, and the risk was particularly more pronounced in the highest tertile of PWV for any category of the HeartSCORE, demonstrating an improvement in the prediction of cardiovascular risk. It was clearly depicted a high discriminative capacity of PWV even in groups of apparent intermediate cardiovascular risk. Measures of model fit, discrimination and calibration revealed an improvement in risk classification when PWV was added to the risk-factor model. The C statistics improved from 0.69 to 0.78 (adding PWV, p = 0.005). The net reclassification improvement (NRI) and integrated discrimination improvement (IDI) were also determined, and indicated further evidence of improvements in discrimination of the outcome when including PWV in the risk-factor model (NRI = 0.265; IDI = 0.012). The results clearly illustrate the benefits of integrating PWV in the risk assessment strategies, as advocated by HeartSCORE, insofar as it contributes to a better discriminative capacity of global cardiovascular risk, particularly in individuals with low or moderate cardiovascular risk.

  10. Cardiovascular risk status of Afro-origin populations across the spectrum of economic development: findings from the Modeling the Epidemiologic Transition Study.

    PubMed

    Dugas, Lara R; Forrester, Terrence E; Plange-Rhule, Jacob; Bovet, Pascal; Lambert, Estelle V; Durazo-Arvizu, Ramon A; Cao, Guichan; Cooper, Richard S; Khatib, Rasha; Tonino, Laura; Riesen, Walter; Korte, Wolfgang; Kliethermes, Stephanie; Luke, Amy

    2017-05-12

    Cardiovascular risk factors are increasing in most developing countries. To date, however, very little standardized data has been collected on the primary risk factors across the spectrum of economic development. Data are particularly sparse from Africa. In the Modeling the Epidemiologic Transition Study (METS) we examined population-based samples of men and women, ages 25-45 of African ancestry in metropolitan Chicago, Kingston, Jamaica, rural Ghana, Cape Town, South Africa, and the Seychelles. Key measures of cardiovascular disease risk are described. The risk factor profile varied widely in both total summary estimates of cardiovascular risk and in the magnitude of component factors. Hypertension ranged from 7% in women from Ghana to 35% in US men. Total cholesterol was well under 200 mg/dl for all groups, with a mean of 155 mg/dl among men in Ghana, South Africa and Jamaica. Among women total cholesterol values varied relatively little by country, following between 160 and 178 mg/dl for all 5 groups. Levels of HDL-C were virtually identical in men and women from all study sites. Obesity ranged from 64% among women in the US to 2% among Ghanaian men, with a roughly corresponding trend in diabetes. Based on the Framingham risk score a clear trend toward higher total risk in association with socioeconomic development was observed among men, while among women there was considerable overlap, with the US participants having only a modestly higher risk score. These data provide a comprehensive estimate of cardiovascular risk across a range of countries at differing stages of social and economic development and demonstrate the heterogeneity in the character and degree of emerging cardiovascular risk. Severe hypercholesterolemia, as characteristic in the US and much of Western Europe at the onset of the coronary epidemic, is unlikely to be a feature of the cardiovascular risk profile in these countries in the foreseeable future, suggesting that stroke may remain the dominant cardiovascular event.

  11. [Risk of deaths from cardiovascular diseases in Polish urban population associated with changes in maximal daily temperature].

    PubMed

    Rabczenko, Daniel; Wojtyniak, Bogdan; Kuchcik, Magdalena; Seroka, Wojciech

    2009-01-01

    The paper presents results of analysis of short-term effect of changes in maximal daily temperature on daily mortality from cardiovascular diseases in warm season in years 1999-2006. Analysis was carried out in six large Polish cities--Katowice, Kraków, Łódź, Poznań, Warszawa and Wrocław. Generalized additive models were used in the analysis. Potential confounding factors--long term changes of mortality, day of week and other meteorological factors (atmospheric pressure, humidity, mean wind speed) were taken into account during model building process. Analysis was done for two age groups--0-69 and 70 years and older. Significant, positive association between daily maximal temperature and risk of death from cardiovascular diseases was found only in older age group.

  12. Modeling of the aorta artery aneurysms and renal artery stenosis using cardiovascular electronic system

    PubMed Central

    Hassani, Kamran; Navidbakhsh, Mahdi; Rostami, Mostafa

    2007-01-01

    Background The aortic aneurysm is a dilatation of the aortic wall which occurs in the saccular and fusiform types. The aortic aneurysms can rupture, if left untreated. The renal stenosis occurs when the flow of blood from the arteries leading to the kidneys is constricted by atherosclerotic plaque. This narrowing may lead to the renal failure. Previous works have shown that, modelling is a useful tool for understanding of cardiovascular system functioning and pathophysiology of the system. The present study is concerned with the modelling of aortic aneurysms and renal artery stenosis using the cardiovascular electronic system. Methods The geometrical models of the aortic aneurysms and renal artery stenosis, with different rates, were constructed based on the original anatomical data. The pressure drop of each section due to the aneurysms or stenosis was computed by means of computational fluid dynamics method. The compliance of each section with the aneurysms or stenosis is also calculated using the mathematical method. An electrical system representing the cardiovascular circulation was used to study the effects of these pressure drops and the compliance variations on this system. Results The results showed the decreasing of pressure along the aorta and renal arteries lengths, due to the aneurysms and stenosis, at the peak systole. The mathematical method demonstrated that compliances of the aorta sections and renal increased with the expansion rate of the aneurysms and stenosis. The results of the modelling, such as electrical pressure graphs, exhibited the features of the pathologies such as hypertension and were compared with the relevant experimental data. Conclusion We conclude from the study that the aortic aneurysms as well as renal artery stenosis may be the most important determinant of the arteries rupture and failure. Furthermore, these pathologies play important rules in increase of the cardiovascular pulse pressure which leads to the hypertension. PMID:17559685

  13. Developing a Reliable Mouse Model for Cancer Therapy-Induced Cardiovascular Toxicity in Cancer Patients and Survivors.

    PubMed

    Ko, Kyung Ae; Wang, Yin; Kotla, Sivareddy; Fujii, Yuka; Vu, Hang Thi; Venkatesulu, Bhanu P; Thomas, Tamlyn N; Medina, Jan L; Gi, Young Jin; Hada, Megumi; Grande-Allen, Jane; Patel, Zarana S; Milgrom, Sarah A; Krishnan, Sunil; Fujiwara, Keigi; Abe, Jun-Ichi

    2018-01-01

    The high incidence of cardiovascular events in cancer survivors has long been noted, but the mechanistic insights of cardiovascular toxicity of cancer treatments, especially for vessel diseases, remain unclear. It is well known that atherosclerotic plaque formation begins in the area exposed to disturbed blood flow, but the relationship between cancer therapy and disturbed flow in regulating plaque formation has not been well studied. Therefore, we had two goals for this study; (1) Generate an affordable, reliable, and reproducible mouse model to recapitulate the cancer therapy-induced cardiovascular events in cancer survivors, and (2) Establish a mouse model to investigate the interplay between disturbed flow and various cancer therapies in the process of atherosclerotic plaque formation. We examined the effects of two cancer drugs and ionizing radiation (IR) on disturbed blood flow-induced plaque formation using a mouse carotid artery partial ligation (PCL) model of atherosclerosis. We found that doxorubicin and cisplatin, which are commonly used anti-cancer drugs, had no effect on plaque formation in partially ligated carotid arteries. Similarly, PCL-induced plaque formation was not affected in mice that received IR (2 Gy) and PCL surgery performed one week later. In contrast, when PCL surgery was performed 26 days after IR treatment, not only the atherosclerotic plaque formation but also the necrotic core formation was significantly enhanced. Lastly, we found a significant increase in p90RSK phosphorylation in the plaques from the IR-treated group compared to those from the non-IR treated group. Our results demonstrate that IR not only increases atherosclerotic events but also vulnerable plaque formation. These increases were a somewhat delayed effect of IR as they were observed in mice with PCL surgery performed 26 days, but not 10 days, after IR exposure. A proper animal model must be developed to study how to minimize the cardiovascular toxicity due to cancer treatment.

  14. Short-term effects of fine particulate air pollution on cardiovascular hospital emergency room visits: a time-series study in Beijing, China.

    PubMed

    Su, Chang; Breitner, Susanne; Schneider, Alexandra; Liu, Liqun; Franck, Ulrich; Peters, Annette; Pan, Xiaochuan

    2016-05-01

    The link between particulate matter (PM) and cardiovascular morbidity has been investigated in numerous studies. Less evidence exists, however, about how age, gender and season may modify this relationship. The aim of this study was to evaluate the association between ambient PM2.5 (PM ≤ 2.5 µm) and daily hospital emergency room visits (ERV) for cardiovascular diseases in Beijing, China. Moreover, potential effect modification by age, gender, season, air mass origin and the specific period with 2008 Beijing Olympic were investigated. Finally, the temporal lag structure of PM2.5 has also been explored. Daily counts of cardiovascular ERV were obtained from the Peking University Third Hospital from January 2007 to December 2008. Concurrently, data on PM2.5, PM10 (PM ≤ 10 µm), nitrogen dioxide and sulfur dioxide concentrations were obtained from monitoring networks and a fixed monitoring station. Poisson regression models adjusting for confounders were used to estimate immediate, delayed and cumulative air pollution effects. The temporal lag structure was also estimated using polynomial distributed lag (PDL) models. We calculated the relative risk (RR) for overall cardiovascular disease ERV as well as for specific causes of disease; and also investigated the potential modifying effect of age, gender, season, air mass origin and the period with 2008 Beijing Olympics. We observed adverse effects of PM2.5 on cardiovascular ERV--an IQR increase (68 μg/m(3)) in PM2.5 was associated with an overall RR of 1.022 (95% CI 0.990-1.057) obtained from PDL model. Strongest effects of PM2.5 on cardiovascular ERV were found for a lag of 7 days; the respective estimate was 1.012 (95% CI 1.002-1.022). The effects were more pronounced in females and in spring. Arrhythmia and cerebrovascular diseases showed a stronger association with PM2.5. We also found stronger PM-effects for stagnant and southern air masses and the period of Olympics modified the air pollution effects. We observed a rather delayed effect of PM2.5 on cardiovascular ERV, which was modified by gender and season. Our findings provide new evidence about effect modifications and may have implications to improve policy making for particulate air pollution standards in Beijing, China.

  15. Impaired vascular function after exposure to diesel exhaust generated at urban transient running conditions

    PubMed Central

    2010-01-01

    Background Traffic emissions including diesel engine exhaust are associated with increased respiratory and cardiovascular morbidity and mortality. Controlled human exposure studies have demonstrated impaired vascular function after inhalation of exhaust generated by a diesel engine under idling conditions. Objectives To assess the vascular and fibrinolytic effects of exposure to diesel exhaust generated during urban-cycle running conditions that mimic ambient 'real-world' exposures. Methods In a randomised double-blind crossover study, eighteen healthy male volunteers were exposed to diesel exhaust (approximately 250 μg/m3) or filtered air for one hour during intermittent exercise. Diesel exhaust was generated during the urban part of the standardized European Transient Cycle. Six hours post-exposure, vascular vasomotor and fibrinolytic function was assessed during venous occlusion plethysmography with intra-arterial agonist infusions. Measurements and Main Results Forearm blood flow increased in a dose-dependent manner with both endothelial-dependent (acetylcholine and bradykinin) and endothelial-independent (sodium nitroprusside and verapamil) vasodilators. Diesel exhaust exposure attenuated the vasodilatation to acetylcholine (P < 0.001), bradykinin (P < 0.05), sodium nitroprusside (P < 0.05) and verapamil (P < 0.001). In addition, the net release of tissue plasminogen activator during bradykinin infusion was impaired following diesel exhaust exposure (P < 0.05). Conclusion Exposure to diesel exhaust generated under transient running conditions, as a relevant model of urban air pollution, impairs vasomotor function and endogenous fibrinolysis in a similar way as exposure to diesel exhaust generated at idling. This indicates that adverse vascular effects of diesel exhaust inhalation occur over different running conditions with varying exhaust composition and concentrations as well as physicochemical particle properties. Importantly, exposure to diesel exhaust under ETC conditions was also associated with a novel finding of impaired of calcium channel-dependent vasomotor function. This implies that certain cardiovascular endpoints seem to be related to general diesel exhaust properties, whereas the novel calcium flux-related effect may be associated with exhaust properties more specific for the ETC condition, for example a higher content of diesel soot particles along with their adsorbed organic compounds. PMID:20653945

  16. Re-evaluating the functional landscape of the cardiovascular system during development

    PubMed Central

    Takada, Norio; Omae, Madoka; Sagawa, Fumihiko; Chi, Neil C.; Endo, Satsuki; Kozawa, Satoshi

    2017-01-01

    ABSTRACT The cardiovascular system facilitates body-wide distribution of oxygen, a vital process for the development and survival of virtually all vertebrates. However, the zebrafish, a vertebrate model organism, appears to form organs and survive mid-larval periods without a functional cardiovascular system. Despite such dispensability, it is the first organ to develop. Such enigma prompted us to hypothesize other cardiovascular functions that are important for developmental and/or physiological processes. Hence, systematic cellular ablations and functional perturbations were performed on the zebrafish cardiovascular system to gain comprehensive and body-wide understanding of such functions and to elucidate the underlying mechanisms. This approach identifies a set of organ-specific genes, each implicated for important functions. The study also unveils distinct cardiovascular mechanisms, each differentially regulating their expressions in organ-specific and oxygen-independent manners. Such mechanisms are mediated by organ-vessel interactions, circulation-dependent signals, and circulation-independent beating-heart-derived signals. A comprehensive and body-wide functional landscape of the cardiovascular system reported herein may provide clues as to why it is the first organ to develop. Furthermore, these data could serve as a resource for the study of organ development and function. PMID:28982700

  17. Large daily stock variation is associated with cardiovascular mortality in two cities of Guangdong, China.

    PubMed

    Lin, Hualiang; Zhang, Yonghui; Xu, Yanjun; Liu, Tao; Xiao, Jianpeng; Luo, Yuan; Xu, Xiaojun; He, Yanhui; Ma, Wenjun

    2013-01-01

    The current study aimed to examine the effects of daily change of the Shenzhen Stock Exchange Index on cardiovascular mortality in Guangzhou and Taishan, China. Daily mortality and stock performance data during 2006-2010 were collected to construct the time series for the two cities. A distributed lag non-linear model was utilized to examine the effect of daily stock index changes on cardiovascular mortality after controlling for potential confounding factors. We observed a delayed non-linear effect of the stock index change on cardiovascular mortality: both rising and declining of the stock index were associated with increased cardiovascular deaths. In Guangzhou, the 15-25 lag days cumulative relative risk of an 800 index drop was 2.08 (95% CI: 1.38-3.14), and 2.38 (95% CI: 1.31-4.31) for an 800 stock index increase on the cardiovascular mortality, respectively. In Taishan, the cumulative relative risk over 15-25 days lag was 1.65 (95% CI: 1.13-2.42) for an 800 index drop and 2.08 (95% CI: 1.26-3.42) for an 800 index rising, respectively. Large ups and downs in daily stock index might be important predictor of cardiovascular mortality.

  18. Re-evaluating the functional landscape of the cardiovascular system during development.

    PubMed

    Takada, Norio; Omae, Madoka; Sagawa, Fumihiko; Chi, Neil C; Endo, Satsuki; Kozawa, Satoshi; Sato, Thomas N

    2017-11-15

    The cardiovascular system facilitates body-wide distribution of oxygen, a vital process for the development and survival of virtually all vertebrates. However, the zebrafish, a vertebrate model organism, appears to form organs and survive mid-larval periods without a functional cardiovascular system. Despite such dispensability, it is the first organ to develop. Such enigma prompted us to hypothesize other cardiovascular functions that are important for developmental and/or physiological processes. Hence, systematic cellular ablations and functional perturbations were performed on the zebrafish cardiovascular system to gain comprehensive and body-wide understanding of such functions and to elucidate the underlying mechanisms. This approach identifies a set of organ-specific genes, each implicated for important functions. The study also unveils distinct cardiovascular mechanisms, each differentially regulating their expressions in organ-specific and oxygen-independent manners. Such mechanisms are mediated by organ-vessel interactions, circulation-dependent signals, and circulation-independent beating-heart-derived signals. A comprehensive and body-wide functional landscape of the cardiovascular system reported herein may provide clues as to why it is the first organ to develop. Furthermore, these data could serve as a resource for the study of organ development and function. © 2017. Published by The Company of Biologists Ltd.

  19. Effect of depression on mortality and cardiovascular morbidity in type 2 diabetes mellitus after 3 years follow up. The DIADEMA study protocol.

    PubMed

    de Burgos-Lunar, Carmen; Gómez-Campelo, Paloma; Cárdenas-Valladolid, Juan; Fuentes-Rodríguez, Carmen Y; Granados-Menéndez, María I; López-López, Francisco; Salinero-Fort, Miguel A

    2012-07-30

    Type 2 diabetes mellitus and depression are highly prevalent diseases that are associated with an increased risk of cardiovascular disease and mortality. There is evidence about a bidirectional association between depressive symptoms and type 2 diabetes mellitus. However, prognostic implications of the joint effects of these two diseases on cardiovascular morbidity and mortality are not well-known. A three-year, observational, prospective, cohort study, carried out in Primary Health Care Centres in Madrid (Spain). The project aims to analyze the effect of depression on cardiovascular events, all-cause and cardiovascular mortality in patients with type 2 diabetes mellitus, and to estimate a clinical predictive model of depression in these patients.The number of patients required is 3255, all them with type 2 diabetes mellitus, older than 18 years, who regularly visit their Primary Health Care Centres and agree to participate. They are chosen by simple random sampling from the list of patients with type 2 diabetes mellitus of each general practitioner.The main outcome measures are all-cause and cardiovascular mortality and cardiovascular morbidity; and exposure variable is the major depressive disorder.There will be a comparison between depressed and not depressed patients in all-cause mortality, cardiovascular mortality, coronary artery disease and stroke using the Chi-squared test. Logistic regression with random effects will be used to adjust for prognostic factors. Confounding factors that might alter the effect recorded will be taken into account in this analysis. To assess the effect of depression on the mortality, a survival analysis will be used comparing the two groups using the log-rank test. The control of potential confounding variables will be performed by the construction of a Cox regression model. Our study's main contribution is to evaluate the increase in the risk of cardiovascular morbidity and mortality, in depressed Spanish adults with type 2 diabetes mellitus attended in Primary Health Care Setting. It would also be useful to identify subgroups of patients for which the interventions could be more beneficial.

  20. Effect of depression on mortality and cardiovascular morbidity in type 2 diabetes mellitus after 3 years follow up. The DIADEMA study protocol

    PubMed Central

    2012-01-01

    Background Type 2 diabetes mellitus and depression are highly prevalent diseases that are associated with an increased risk of cardiovascular disease and mortality. There is evidence about a bidirectional association between depressive symptoms and type 2 diabetes mellitus. However, prognostic implications of the joint effects of these two diseases on cardiovascular morbidity and mortality are not well-known. Method/design A three-year, observational, prospective, cohort study, carried out in Primary Health Care Centres in Madrid (Spain). The project aims to analyze the effect of depression on cardiovascular events, all-cause and cardiovascular mortality in patients with type 2 diabetes mellitus, and to estimate a clinical predictive model of depression in these patients. The number of patients required is 3255, all them with type 2 diabetes mellitus, older than 18 years, who regularly visit their Primary Health Care Centres and agree to participate. They are chosen by simple random sampling from the list of patients with type 2 diabetes mellitus of each general practitioner. The main outcome measures are all-cause and cardiovascular mortality and cardiovascular morbidity; and exposure variable is the major depressive disorder. There will be a comparison between depressed and not depressed patients in all-cause mortality, cardiovascular mortality, coronary artery disease and stroke using the Chi-squared test. Logistic regression with random effects will be used to adjust for prognostic factors. Confounding factors that might alter the effect recorded will be taken into account in this analysis. To assess the effect of depression on the mortality, a survival analysis will be used comparing the two groups using the log-rank test. The control of potential confounding variables will be performed by the construction of a Cox regression model. Discussion Our study’s main contribution is to evaluate the increase in the risk of cardiovascular morbidity and mortality, in depressed Spanish adults with type 2 diabetes mellitus attended in Primary Health Care Setting. It would also be useful to identify subgroups of patients for which the interventions could be more beneficial. PMID:22846516

  1. Longitudinal Associations of Smoke-Free Policies and Incident Cardiovascular Disease: CARDIA Study.

    PubMed

    Mayne, Stephanie L; Widome, Rachel; Carroll, Allison J; Schreiner, Pamela J; Gordon-Larsen, Penny; Jacobs, David R; Kershaw, Kiarri N

    2018-05-07

    Background -Smoke-free legislation has been associated with lower rates of cardiovascular disease hospital admissions in ecological studies. However, prior studies lacked detailed information on individual-level factors (eg, sociodemographic and clinical characteristics) that could potentially confound associations. Our objective was to estimate associations of smoke-free policies with incident cardiovascular disease in a longitudinal cohort after controlling for sociodemographics, cardiovascular disease risk factors, and policy covariates. Methods -Longitudinal data from 3783 black and white adults in the CARDIA study (Coronary Artery Risk Development in Young Adults; 1995-2015) were linked to state, county, and local 100% smoke-free policies in bars, restaurants, and nonhospitality workplaces by Census tract. Extended Cox regression estimated hazard ratios (HRs) of incident cardiovascular disease associated with time-dependent smoke-free policy exposures. Models were adjusted for sociodemographic characteristics, cardiovascular disease risk factors, state cigarette tax, participant-reported presence of a smoking ban at their workplace, field center, and metropolitan statistical area poverty. Results -During a median follow-up of 20 years (68 332 total personyears), 172 participants had an incident cardiovascular disease event (2.5 per 1000 person-years). Over the follow-up period, 80% of participants lived in areas with smoke-free policies in restaurants, 67% in bars, and 65% in nonhospitality workplaces. In fully adjusted models, participants living in an area with a restaurant, bar, or workplace smoke-free policy had a lower risk of incident cardiovascular disease compared with those in areas without smoke-free policies (HR, 0.75, 95% confidence interval, 0.49-1.15; HR, 0.76, 95% confidence interval, 0.47-1.24; HR, 0.54, 95% confidence interval, 0.34-0.86, respectively; HR, 0.58, 95% confidence interval, 0.33-1.00 for living in an area with all 3 types of policies compared with none). The estimated preventive fraction was 25% for restaurant policies, 24% for bar policies, and 46% for workplace policies. Conclusions -Consistent with prior ecological studies, these individual-based data add to the evidence that 100% smoke-free policies are associated with lower risk of cardiovascular disease among middle-aged adults.

  2. Development of a mathematical model of the human cardiovascular system: An educational perspective

    NASA Astrophysics Data System (ADS)

    Johnson, Bruce Allen

    A mathematical model of the human cardiovascular system will be a useful educational tool in biological sciences and bioengineering classrooms. The goal of this project is to develop a mathematical model of the human cardiovascular system that responds appropriately to variations of significant physical variables. Model development is based on standard fluid statics and dynamics principles, pressure-volume characteristics of the cardiac cycle, and compliant behavior of blood vessels. Cardiac cycle phases provide the physical and logical model structure, and Boolean algebra links model sections. The model is implemented using VisSim, a highly intuitive and easily learned block diagram modeling software package. Comparisons of model predictions of key variables to published values suggest that the model reasonably approximates expected behavior of those variables. The model responds plausibly to variations of independent variables. Projected usefulness of the model as an educational tool is threefold: independent variables which determine heart function may be easily varied to observe cause and effect; the model is used in an interactive setting; and the relationship of governing equations to model behavior is readily viewable and intuitive. Future use of this model in classrooms may give a more reasonable indication of its value as an educational tool.* *This dissertation includes a CD that is multimedia (contains text and other applications that are not available in a printed format). The CD requires the following applications: CorelPhotoHouse, CorelWordPerfect, VisSinViewer (included on CD), Internet access.

  3. Simulating physiological interactions in a hybrid system of mathematical models.

    PubMed

    Kretschmer, Jörn; Haunsberger, Thomas; Drost, Erick; Koch, Edmund; Möller, Knut

    2014-12-01

    Mathematical models can be deployed to simulate physiological processes of the human organism. Exploiting these simulations, reactions of a patient to changes in the therapy regime can be predicted. Based on these predictions, medical decision support systems (MDSS) can help in optimizing medical therapy. An MDSS designed to support mechanical ventilation in critically ill patients should not only consider respiratory mechanics but should also consider other systems of the human organism such as gas exchange or blood circulation. A specially designed framework allows combining three model families (respiratory mechanics, cardiovascular dynamics and gas exchange) to predict the outcome of a therapy setting. Elements of the three model families are dynamically combined to form a complex model system with interacting submodels. Tests revealed that complex model combinations are not computationally feasible. In most patients, cardiovascular physiology could be simulated by simplified models decreasing computational costs. Thus, a simplified cardiovascular model that is able to reproduce basic physiological behavior is introduced. This model purely consists of difference equations and does not require special algorithms to be solved numerically. The model is based on a beat-to-beat model which has been extended to react to intrathoracic pressure levels that are present during mechanical ventilation. The introduced reaction to intrathoracic pressure levels as found during mechanical ventilation has been tuned to mimic the behavior of a complex 19-compartment model. Tests revealed that the model is able to represent general system behavior comparable to the 19-compartment model closely. Blood pressures were calculated with a maximum deviation of 1.8 % in systolic pressure and 3.5 % in diastolic pressure, leading to a simulation error of 0.3 % in cardiac output. The gas exchange submodel being reactive to changes in cardiac output showed a resulting deviation of less than 0.1 %. Therefore, the proposed model is usable in combinations where cardiovascular simulation does not have to be detailed. Computing costs have been decreased dramatically by a factor 186 compared to a model combination employing the 19-compartment model.

  4. Twenty-Four-Hour Central Pulse Pressure for Cardiovascular Events Prediction in a Low-Cardiovascular-Risk Population: Results From the Bordeaux Cohort.

    PubMed

    Cremer, Antoine; Boulestreau, Romain; Gaillard, Prune; Lainé, Marion; Papaioannou, Georgios; Gosse, Philippe

    2018-02-23

    Central blood pressure (BP) is a promising marker to identify subjects with higher cardiovascular risk than expected by traditional risk factors. Significant results have been obtained in populations with high cardiovascular risk, but little is known about low-cardiovascular-risk patients, although the differences between central and peripheral BP (amplification) are usually greater in this population. The study aim was to evaluate central BP over 24 hours for cardiovascular event prediction in hypertensive subjects with low cardiovascular risk. Peripheral and central BPs were recorded during clinical visits and over 24 hours in hypertensive patients with low cardiovascular risk (Systematic Coronary Risk Evaluation ≤5%). Our primary end point is the occurrence of a cardiovascular event during follow-up. To assess the potential interest in central pulse pressure over 24 hours, we performed Cox proportional hazard models analysis and comparison of area under the curves using the contrast test for peripheral and central BP. A cohort of 703 hypertensive subjects from Bordeaux were included. After the first 24 hours of BP measurement, the subjects were then followed up for an average of 112.5±70 months. We recorded 65 cardiovascular events during follow-up. Amplification was found to be significantly associated with cardiovascular events when added to peripheral 24-hour pulse pressure ( P =0.0259). The area under the curve of 24-hour central pulse pressure is significantly more important than area under the curve of office BP ( P =0.0296), and there is a trend of superiority with the area under the curve of peripheral 24-hour pulse pressure. Central pulse pressure over 24 hours improves the prediction of cardiovascular events for hypertensive patients with low cardiovascular risk compared to peripheral pulse pressure. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  5. The ERICE-score: the new native cardiovascular score for the low-risk and aged Mediterranean population of Spain.

    PubMed

    Gabriel, Rafael; Brotons, Carlos; Tormo, M José; Segura, Antonio; Rigo, Fernando; Elosua, Roberto; Carbayo, Julio A; Gavrila, Diana; Moral, Irene; Tuomilehto, Jaakko; Muñiz, Javier

    2015-03-01

    In Spain, data based on large population-based cohorts adequate to provide an accurate prediction of cardiovascular risk have been scarce. Thus, calibration of the EuroSCORE and Framingham scores has been proposed and done for our population. The aim was to develop a native risk prediction score to accurately estimate the individual cardiovascular risk in the Spanish population. Seven Spanish population-based cohorts including middle-aged and elderly participants were assembled. There were 11800 people (6387 women) representing 107915 person-years of follow-up. A total of 1214 cardiovascular events were identified, of which 633 were fatal. Cox regression analyses were conducted to examine the contributions of the different variables to the 10-year total cardiovascular risk. Age was the strongest cardiovascular risk factor. High systolic blood pressure, diabetes mellitus and smoking were strong predictive factors. The contribution of serum total cholesterol was small. Antihypertensive treatment also had a significant impact on cardiovascular risk, greater in men than in women. The model showed a good discriminative power (C-statistic=0.789 in men and C=0.816 in women). Ten-year risk estimations are displayed graphically in risk charts separately for men and women. The ERICE is a new native cardiovascular risk score for the Spanish population derived from the background and contemporaneous risk of several Spanish cohorts. The ERICE score offers the direct and reliable estimation of total cardiovascular risk, taking in consideration the effect of diabetes mellitus and cardiovascular risk factor management. The ERICE score is a practical and useful tool for clinicians to estimate the total individual cardiovascular risk in Spain. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  6. Gastric Bypass Surgery Produces a Durable Reduction in Cardiovascular Disease Risk Factors and Reduces the Long-Term Risks of Congestive Heart Failure.

    PubMed

    Benotti, Peter N; Wood, G Craig; Carey, David J; Mehra, Vishal C; Mirshahi, Tooraj; Lent, Michelle R; Petrick, Anthony T; Still, Christopher; Gerhard, Glenn S; Hirsch, Annemarie G

    2017-05-23

    Obesity and its association with reduced life expectancy are well established, with cardiovascular disease as one of the major causes of fatality. Metabolic surgery is a powerful intervention for severe obesity, resulting in improvement in comorbid diseases and in cardiovascular risk factors. This study investigates the relationship between metabolic surgery and long-term cardiovascular events. A cohort of Roux-en-Y gastric bypass surgery (RYGB) patients was tightly matched by age, body mass index, sex, Framingham Risk Score, smoking history, use of antihypertension medication, diabetes mellitus status, and calendar year with a concurrent cohort of nonoperated control patients. The primary study end points of major cardiovascular events (myocardial infarction, stroke, and congestive heart failure) were evaluated using Cox regression. Secondary end points of longitudinal cardiovascular risk factors were evaluated using repeated-measures regression. The RYGB and matched controls (N=1724 in each cohort) were followed for up to 12 years after surgery (overall median of 6.3 years). Kaplan-Meier analysis revealed a statistically significant reduction in incident major composite cardiovascular events ( P =0.017) and congestive heart failure (0.0077) for the RYGB cohort. Adjusted Cox regression models confirmed the reductions in severe composite cardiovascular events in the RYGB cohort (hazard ratio=0.58, 95% CI=0.42-0.82). Improvements of cardiovascular risk factors (eg, 10-year cardiovascular risk score, total cholesterol, high-density lipoprotein, systolic blood pressure, and diabetes mellitus) were observed within the RYGB cohort after surgery. Gastric bypass is associated with a reduced risk of major cardiovascular events and the development of congestive heart failure. © 2017 The Authors and Geisinger Clinic. Published on behalf of the American Heart Association, Inc., by Wiley.

  7. Evaluation of Fentanyl Disposition and Effects in Newborn Piglets as an Experimental Model for Human Neonates

    PubMed Central

    Valls-i-Soler, Adolfo; Encinas, Esther; Lukas, John C.; Vozmediano, Valvanera; Suárez, Elena

    2014-01-01

    Background Fentanyl is widely used off-label in NICU. Our aim was to investigate its cerebral, cardiovascular and pulmonary effects as well as pharmacokinetics in an experimental model for neonates. Methods Fentanyl (5 µg/kg bolus immediately followed by a 90 minute infusion of 3 µg/kg/h) was administered to six mechanically ventilated newborn piglets. Cardiovascular, ventilation, pulmonary and oxygenation indexes as well as brain activity were monitored from T = 0 up to the end of experiments (T = 225–300 min). Also plasma samples for quantification of fentanyl were drawn. Results A “reliable degree of sedation” was observed up to T = 210–240 min, consistent with the selected dosing regimen and the observed fentanyl plasma levels. Unlike cardiovascular parameters, which were unmodified except for an increasing trend in heart rate, some of the ventilation and oxygenation indexes as well as brain activity were significantly altered. The pulmonary and brain effects of fentanyl were mostly recovered from T = 210 min to the end of experiment. Conclusion The newborn piglet was shown to be a suitable experimental model for studying fentanyl disposition as well as respiratory and cardiovascular effects in human neonates. Therefore, it could be extremely useful for further investigating the drug behaviour under pathophysiological conditions. PMID:24595018

  8. Endurance exercise in a rat model of metabolic syndrome.

    PubMed

    Cameron, Isabelle; Alam, Mohammad Ashraful; Wang, Jianxiong; Brown, Lindsay

    2012-11-01

    We have measured the responses to endurance exercise training on body composition and glucose regulation, as well as cardiovascular and liver structure and function in rats fed a high carbohydrate and high fat (HCHF) diet as a model of human metabolic syndrome. Male Wistar rats (9-10 weeks old) were randomly allocated into corn starch (CS) or HCHF diet groups for 16 weeks; half of each group were exercised on a treadmill for 20, 25, and then 30 min/day, 5 days/week, during the last 8 weeks of the protocol. Metabolic, cardiovascular, and liver parameters were monitored. The HCHF diet induced symptoms of metabolic syndrome, including obesity, dyslipidemia, impaired glucose tolerance, and increased systolic blood pressure associated with the development of cardiovascular remodeling and nonalcoholic steatohepatitis. Exercise in HCHF rats decreased body mass, abdominal fat pads and circumference, blood glucose concentrations, plasma lipid profiles, systolic blood pressure, left ventricular diastolic stiffness, collagen deposition and inflammatory cell infiltration in the left ventricle, improved aortic contractile and relaxation responses, and decreased liver mass and hepatic fat accumulation. This study demonstrates that endurance exercise is effective in this rat model of diet-induced metabolic syndrome in improving body composition and glucose regulation, as well as cardiovascular and liver structure and function.

  9. Prevalence of stroke/cardiovascular risk factors in Hungary

    NASA Astrophysics Data System (ADS)

    Bodo, M.; Sipos, K.; Thuroczy, G.; Panczel, G.; Ilias, L.; Szonyi, P.; Bodo, M., Jr.; Nebella, T.; Banyasz, A.; Nagy, Z.

    2010-04-01

    A cross-sectional survey was conducted in Hungary using the Cerberus system which includes: 1) a questionnaire addressing the risk factors for stroke/cardiovascular disease; 2) amplifiers to record the pulse waves of cerebral arteries (rheoencephalography) and peripheral arteries, electrocardiogram and electroencephalogram. Additionally, subjects were measured for carotid stenosis by Doppler ultrasound and 12-lead electrocardiogram; subjects were also screened for blood cholesterol, glucose, and triglyceride levels. Prevalence of the following stroke risk factors was identified: overweight, 63.25%; sclerotic brain arteries (by rheoencephalogram), 54.29%; heart disease, 37.92%; pathologic carotid flow, 34.24%; smoking, 30.55%; high blood cholesterol, 28.70%; hypertension, 27.83%; high triglyceride, 24.35%; abnormality in electrocardiogram, 20%; high glucose, 15.95%; symptoms of transient ischemic attack, 16.07%; alcohol abuse, 6.74%; and diabetes, 4.53%. The study demonstrates a possible model for primary cardiovascular disease/stroke prevention. This method offers a standardizable, cost effective, practical technique for mass screenings by identifying the population at high risk for cardiovascular disturbances, especially cerebrovascular disease (primary prevention). In this model, the rheoencephalogram can detect cerebrovascular arteriosclerosis in the susceptibility/presymptomatic phase, earlier than the Doppler ultrasound technique. The method also provides a model for storing analog physiological signals in a computer-based medical record and is a first step in applying an expert system to stroke prevention.

  10. Constipation and Risk of Cardiovascular Disease among Post-Menopausal Women

    PubMed Central

    Salmoirago-Blotcher, Elena; Crawford, Sybil; Jackson, Elizabeth; Ockene, Judith; Ockene, Ira

    2011-01-01

    Background Constipation is common in Western societies, accounting for 2.5 million-physician visits/year in the US. Since many factors predisposing to constipation are also risk factors for cardiovascular disease, we hypothesized that constipation may be associated with increased risk of cardiovascular events. Methods We conducted a secondary analysis in 93,676 women enrolled in the observational arm of the Women’s Health Initiative. Constipation was evaluated at baseline by a self-administered questionnaire. Estimates of the risk of cardiovascular events (cumulative endpoint including mortality from coronary heart disease, myocardial infarction, angina, coronary revascularization, stroke and transient ischemic attack) were derived from Cox proportional hazards models adjusted for demographics, risk factors and other clinical variables (median follow-up: 6.9 years). Results The analysis included 73,047 women. Constipation was associated with increased age, African American and Hispanic descent, smoking, diabetes, high cholesterol, family history of myocardial infarction, hypertension, obesity, lower physical activity levels, lower fiber intake, and depression. Women with moderate and severe constipation experienced more cardiovascular events (14.2 and 19.1 events/1000 person-years, respectively) compared to women with no constipation (9.6/1000 person-years). After adjustment for demographics, risk factors, dietary factors, medications, frailty and other psychological variables, constipation was no longer associated with an increased risk of cardiovascular events except for the severe constipation group, which had a 23% higher risk of cardiovascular events. Conclusion In postmenopausal women, constipation is a marker for cardiovascular risk factors and increased cardiovascular risk. Since constipation is easily assessed, it may be a helpful tool to identify women with increased cardiovascular risk. PMID:21663887

  11. Pharmacological Strategies to Retard Cardiovascular Aging

    PubMed Central

    Alfaras, Irene; Di Germanio, Clara; Bernier, Michel; Csiszar, Anna; Ungvari, Zoltan; Lakatta, Edward G.; de Cabo, Rafael

    2016-01-01

    Aging is the major risk factor for cardiovascular diseases (CVD), which are the leading cause of death in the United States. Traditionally, the effort to prevent CVD has been focused on addressing the conventional risk factors, including hypertension, hyperglycemia, hypercholesterolemia, and high circulating levels of triglycerides. However, recent preclinical studies have identified new approaches to combat CVD. Calorie restriction has been reproducibly shown to prolong lifespan in various experimental model animals. This has led to the development of calorie restriction mimetics and other pharmacological interventions capable to delay age-related diseases. In this review, we will address the mechanistic effects of aging per se on the cardiovascular system and focus on the pro-longevity benefits of various therapeutic strategies that support cardiovascular health. PMID:27174954

  12. Action mechanism and cardiovascular effect of anthocyanins: a systematic review of animal and human studies.

    PubMed

    Reis, Jordano Ferreira; Monteiro, Valter Vinicius Silva; de Souza Gomes, Rafaelli; do Carmo, Matheus Moraes; da Costa, Glauber Vilhena; Ribera, Paula Cardoso; Monteiro, Marta Chagas

    2016-11-15

    Cardiovascular diseases (CVD) are an important cause of death worldwide. Anthocyanins are a subgroup of flavonoids found in berries, flowers, fruits and leaves. In epidemiological and clinical studies, these polyphenols have been associated with improved cardiovascular risk profiles as well as decreased comorbidities. Human intervention studies using berries, vegetables, parts of plants and cereals (either fresh or as juice) or purified anthocyanin-rich extracts have demonstrated significant improvements in low density lipoproteins oxidation, lipid peroxidation, total plasma antioxidant capacity, and dyslipidemia as well as reduced levels of CVD molecular biomarkers. This review discusses the use of anthocyanins in animal models and their applications in human medicine, as dietary supplements or as new potent drugs against cardiovascular disease.

  13. Cardiovascular genetics: technological advancements and applicability for dilated cardiomyopathy.

    PubMed

    Kummeling, G J M; Baas, A F; Harakalova, M; van der Smagt, J J; Asselbergs, F W

    2015-07-01

    Genetics plays an important role in the pathophysiology of cardiovascular diseases, and is increasingly being integrated into clinical practice. Since 2008, both capacity and cost-efficiency of mutation screening of DNA have been increased magnificently due to the technological advancement obtained by next-generation sequencing. Hence, the discovery rate of genetic defects in cardiovascular genetics has grown rapidly and the financial threshold for gene diagnostics has been lowered, making large-scale DNA sequencing broadly accessible. In this review, the genetic variants, mutations and inheritance models are briefly introduced, after which an overview is provided of current clinical and technological applications in gene diagnostics and research for cardiovascular disease and in particular, dilated cardiomyopathy. Finally, a reflection on the future perspectives in cardiogenetics is given.

  14. Large Mammalian Animal Models of Heart Disease

    PubMed Central

    Camacho, Paula; Fan, Huimin; Liu, Zhongmin; He, Jia-Qiang

    2016-01-01

    Due to the biological complexity of the cardiovascular system, the animal model is an urgent pre-clinical need to advance our knowledge of cardiovascular disease and to explore new drugs to repair the damaged heart. Ideally, a model system should be inexpensive, easily manipulated, reproducible, a biological representative of human disease, and ethically sound. Although a larger animal model is more expensive and difficult to manipulate, its genetic, structural, functional, and even disease similarities to humans make it an ideal model to first consider. This review presents the commonly-used large animals—dog, sheep, pig, and non-human primates—while the less-used other large animals—cows, horses—are excluded. The review attempts to introduce unique points for each species regarding its biological property, degrees of susceptibility to develop certain types of heart diseases, and methodology of induced conditions. For example, dogs barely develop myocardial infarction, while dilated cardiomyopathy is developed quite often. Based on the similarities of each species to the human, the model selection may first consider non-human primates—pig, sheep, then dog—but it also depends on other factors, for example, purposes, funding, ethics, and policy. We hope this review can serve as a basic outline of large animal models for cardiovascular researchers and clinicians. PMID:29367573

  15. STS-32 crewmembers test DSO 0478 lower body negative pressure (LBNP) device

    NASA Image and Video Library

    1989-11-29

    STS-32 crewmembers test the inflight lower body negative pressure (LBNP) device. Mission Specialist (MS) Bonnie J. Dunbar (lying down) inside the cylindrical LBNP device prepares for testing as principal investigator Dr. John Charles, a cardiovascular scientist in JSC's Space Biomedical Research Institute, and Michele Jones, a KRUG International biomedical engineer, review procedures with MS G. David Low. The inflight LBNP will be part of detailed supplementary objective (DSO) 0478. Photo taken by JSC photographer Jack Jacob.

  16. Coleman during ICV Assessment in the Kibo JPM during Expedition 26

    NASA Image and Video Library

    2011-01-07

    ISS026-E-015923 (7 Jan. 2011) --- NASA astronaut Catherine (Cady) Coleman, Expedition 26 flight engineer, participates in the ambulatory monitoring part of the Integrated Cardiovascular (ICV) assessment research experiment in the Kibo laboratory of the International Space Station. Coleman is wearing electrodes, a Holter Monitor 2 (HM2) for recording Electrocardiogram (ECG), a European Space Agency (ESA) Cardio pressure / Blood Pressure unit to continuously monitor blood pressure and two Actiwatches (hip/waist and ankle) for monitoring activity levels.

  17. Status of cardiovascular health among adults in a rural area of Northwest China

    PubMed Central

    Zhao, Yaling; Yan, Hong; Yang, Ruihai; Li, Qiang; Dang, Shaonong; Liu, Ruru; Pei, Leilei; Cao, Lei; Marshall, Roger J.; Wang, Duolao

    2016-01-01

    Abstract The aim of this study was to assess the status of cardiovascular health among a rural population in Northwest China and to determine the associated factors for cardiovascular health. A population-based cross-sectional study was conducted in the rural areas of Hanzhong in Northwest China. Interview, physical examination, and fasting blood glucose and lipid measurements were completed for 2693 adults. The construct of cardiovascular health and the definitions of cardiovascular health metrics proposed by the American Heart Association were used to assess cardiovascular health. The proportions of subjects with cardiovascular health metrics were calculated, adjusting for age and sex. The multiple logistic regression model was used to evaluate the association between ideal cardiovascular health and its associated factors. Only 0.5% (0.0% in men vs 0.9% in women, P = 0.002) of the participants had ideal cardiovascular health, whereas 33.8% (18.0% in men vs 50.0% in women, P < 0.001) and 65.7% (82.0% in men vs 49.1% in women, P < 0.001) of the participants had intermediate and poor cardiovascular health, respectively. The prevalence of poor cardiovascular health increased with increasing age (P < 0.001 for trend). Participants fulfilled, on average, 4.4 (95% confidence interval: 4.2–4.7) of the ideal cardiovascular health metrics. Also, 22.2% of the participants presented with 3 or fewer ideal metrics. Only 19.4% of the participants presented with 6 or more ideal metrics. 24.1% of the participants had all 4 ideal health factors, but only 1.1% of the participants had all 4 ideal health behaviors. Women were more likely to have ideal cardiovascular health, whereas adults aged 35 years or over and those who had a family history of hypertension were less likely to have ideal cardiovascular health. The prevalence of ideal cardiovascular health was extremely low among the rural population in Northwest China. Most adults, especially men and the elderly, had a poor cardiovascular health status. To improve cardiovascular health among the rural population, efforts, especially lifestyle improvements, education and interventions to make healthier food choices, reduce salt intake, increase physical activities, and cease smoking, will be required at the individual, population, and social levels. PMID:27428234

  18. Stem Cells on Biomaterials for Synthetic Grafts to Promote Vascular Healing

    PubMed Central

    Babczyk, Patrick; Conzendorf, Clelia; Klose, Jens; Schulze, Margit; Harre, Kathrin; Tobiasch, Edda

    2014-01-01

    This review is divided into two interconnected parts, namely a biological and a chemical one. The focus of the first part is on the biological background for constructing tissue-engineered vascular grafts to promote vascular healing. Various cell types, such as embryonic, mesenchymal and induced pluripotent stem cells, progenitor cells and endothelial- and smooth muscle cells will be discussed with respect to their specific markers. The in vitro and in vivo models and their potential to treat vascular diseases are also introduced. The chemical part focuses on strategies using either artificial or natural polymers for scaffold fabrication, including decellularized cardiovascular tissue. An overview will be given on scaffold fabrication including conventional methods and nanotechnologies. Special attention is given to 3D network formation via different chemical and physical cross-linking methods. In particular, electron beam treatment is introduced as a method to combine 3D network formation and surface modification. The review includes recently published scientific data and patents which have been registered within the last decade. PMID:26237251

  19. Cost-effectiveness of milk powder fortified with potassium to decrease blood pressure and prevent cardiovascular events among the adult population in China: a Markov model

    PubMed Central

    Dainelli, Livia; Xu, Tingting; Li, Min; Zimmermann, Diane; Fang, Hai; Wu, Yangfeng; Detzel, Patrick

    2017-01-01

    Objective To model the long-term cost-effectiveness of consuming milk powder fortified with potassium to decrease systolic blood pressure (SBP) and prevent cardiovascular events. Design A best case scenario analysis using a Markov model was conducted. Participants 8.67% of 50–79 year olds who regularly consume milk in China, including individuals with and without a prior diagnosis of hypertension. Intervention The model simulated the potential impact of a daily intake of two servings of milk powder fortified with potassium (+700 mg/day) vs the consumption of a milk powder without potassium fortification, assuming a market price equal to 0.99 international dollars (intl$; the consumption of a milk powder without potassium fortification, assuming a market price equal to intl$0.99 for the latter and to intl$1.12 for the first (+13.13%). Both deterministic and probabilistic sensitivity analyses were conducted to test the robustness of the results. Main outcome measures Estimates of the incidence of cardiovascular events and subsequent mortality in China were derived from the literature as well as the effect of increasing potassium intake on blood pressure. The incremental cost-effectiveness ratio (ICER) was used to determine the cost-effectiveness of a milk powder fortified with potassium taking into consideration the direct medical costs associated with the cardiovascular events, loss of working days and health utilities impact. Results With an ICER equal to int$4711.56 per QALY (quality-adjusted life year) in the best case scenario and assuming 100% compliance, the daily consumption of a milk powder fortified with potassium shown to be a cost-effective approach to decrease SBP and reduce cardiovascular events in China. Healthcare savings due to prevention would amount to intl$8.41 billion. Sensitivity analyses showed the robustness of the results. Conclusion Together with other preventive interventions, the consumption of a milk powder fortified with potassium could represent a cost-effective strategy to attenuate the rapid rise in cardiovascular burden among the 50–79 year olds who regularly consume milk in China. PMID:28951410

  20. Palm oil taxes and cardiovascular disease mortality in India: economic-epidemiologic model.

    PubMed

    Basu, Sanjay; Babiarz, Kim S; Ebrahim, Shah; Vellakkal, Sukumar; Stuckler, David; Goldhaber-Fiebert, Jeremy D

    2013-10-22

    To examine the potential effect of a tax on palm oil on hyperlipidemia and on mortality due to cardiovascular disease in India. Economic-epidemiologic model. A microsimulation model of mortality due to myocardial infarction and stroke among Indian populations was constructed, incorporating nationally representative data on systolic blood pressure, total cholesterol, tobacco smoking, diabetes, and cardiovascular event history, and stratified by age, sex, and urban/rural residence. Household expenditure data were used to estimate the change in consumption of palm oil following changes in oil price and the potential substitution of alternative oils that might occur after imposition of a tax. A 20% excise tax on palm oil purchases was simulated over the period 2014-23. The model was used to project future mortality due to myocardial infarction and stroke, as well as the potential effect of a tax on food insecurity, accounting for the effect of increased food prices. A 20% tax on palm oil purchases would be expected to avert approximately 363,000 (95% confidence interval 247,000 to 479,000) deaths from myocardial infarctions and strokes over the period 2014-23 in India (1.3% reduction in cardiovascular deaths) if people do not substitute other oils for reduced palm oil consumption. Given estimates of substitution of palm oil with other oils following a 20% price increase for palm oil, the beneficial effects of increased polyunsaturated fat consumption would be expected to enhance the projected reduction in deaths to as much as 421,000 (256,000 to 586,000). The tax would be expected to benefit men more than women and urban populations more than rural populations, given differential consumption and cardiovascular risk. In a scenario incorporating the effect of taxation on overall food expenditures, the tax may increase food insecurity by <1%, resulting in 16,000 (95% confidence interval 12,000 to 22,000) deaths. Curtailing palm oil intake through taxation may modestly reduce hyperlipidemia and cardiovascular mortality, but with potential distributional consequences differentially benefiting male and urban populations, as well as affecting food security.

Top