Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-04
... Authority, Foreign-Trade Zone 153; Abbott Cardiovascular Systems, Inc., (Cardiovascular Devices), Riverside... of Abbott Cardiovascular Systems, Inc., within Sites 11-13 of FTZ 153, located in Riverside County... behalf of Abbott Cardiovascular Systems, Inc., as described in the application and Federal Register...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-06
... Respiratory System, Cardiovascular System, Hearing Impairment, and Ear, Nose and Throat Diseases AGENCY... System, Cardiovascular System, Hearing Impairment, and Ear, Nose and Throat Diseases. The purpose of this...) the Cardiovascular System (38 CFR 4.100-4.104), (3) the Impairment of Auditory Acuity (38 CFR 4.85 and...
38 CFR 4.104 - Schedule of ratings-cardiovascular system.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-cardiovascular system. 4.104 Section 4.104 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS SCHEDULE FOR RATING DISABILITIES Disability Ratings The Cardiovascular System § 4.104 Schedule of ratings—cardiovascular system. Diseases of the Heart Rating Note (1): Evaluate cor pulmonale, which is a form of...
Advances in the study on endogenous sulfur dioxide in the cardiovascular system.
Tian, Hong
2014-01-01
This review summarized the current advances in understanding the role of the novel gasotransmitter, sulfur dioxide (SO2), in the cardiovascular system. Articles on the advances in the study of the role of endogenous sulfur dioxide in the cardiovascular system were accessed from PubMed and CNKI from 2003 to 2013, using keywords such as "endogenous sulfur dioxide" and "cardiovascular system". Articles with regard to the role of SO2 in the regulation of cardiovascular system were selected. Recently, scientists discovered that an endogenous SO2 pathway is present in the cardiovascular system and exerts physiologically significant effects, such as regulation of the cardiac function and the pathogenesis of various cardiopulmonary diseases such as hypoxic pulmonary hypertension, hypertension, coronary atherosclerosis, and cardiac ischemia-reperfusion (I/R) injury, in the cardiovascular system. Endogenous SO2 is a novel member of the gasotransmitter family in addition to the nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S). Studies indicated that it has a role in regulating the cardiovascular disease.
Aquaporins in Cardiovascular System.
Tie, Lu; Wang, Di; Shi, Yundi; Li, Xuejun
2017-01-01
Recent studies have shown that some aquaporins (AQPs ), including AQP1, AQP4, AQP7 and AQP9, are expressed in endothelial cells, vascular smooth muscle cells and heart of cardiovascular system. These AQPs are involved in the cardiovascular function and in pathological process of related diseases, such as cerebral ischemia , congestion heart failure , hypertension and angiogenesis. Therefore, it is important to understand the accurate association between AQPs and cardiovascular system, which may provide novel approaches to prevent and treat related diseases. Here we will discuss the expression and physiological function of AQPs in cardiovascular system and summarize recent researches on AQPs related cardiovascular diseases.
Localized Scleroderma, Systemic Sclerosis and Cardiovascular Risk: A Danish Nationwide Cohort Study.
Hesselvig, Jeanette Halskou; Kofoed, Kristian; Wu, Jashin J; Dreyer, Lene; Gislason, Gunnar; Ahlehoff, Ole
2018-03-13
Recent findings indicate that patients with systemic sclerosis have an increased risk of cardiovascular disease. To determine whether patients with systemic sclerosis or localized scleroderma are at increased risk of cardiovascular disease, a cohort study of the entire Danish population aged ≥ 18 and ≤ 100 years was conducted, followed from 1997 to 2011 by individual-level linkage of nationwide registries. Multivariable adjusted Cox regression models were used to estimate the hazard ratios (HRs) for a composite cardiovascular disease endpoint. A total of 697 patients with localized scleroderma and 1,962 patients with systemic sclerosis were identified and compared with 5,428,380 people in the reference population. In systemic sclerosis, the adjusted HR was 2.22 (95% confidence interval 1.99-2.48). No association was seen between patients with localized scleroderma and cardiovascular disease. In conclusion, systemic sclerosis is a significant cardiovascular disease risk factor, while patients with localized scleroderma are not at increased risk of cardiovascular disease.
Direct and Indirect Effects of PM on the Cardiovascular System
Nelin, Timothy D.; Joseph, Allan M.; Gorr, Matthew W.; Wold, Loren E.
2011-01-01
Human exposure to particulate matter (PM) elicits a variety of responses on the cardiovascular system through both direct and indirect pathways. Indirect effects of PM on the cardiovascular system are mediated through the autonomic nervous system, which controls heart rate variability, and inflammatory responses, which augment acute cardiovascular events and atherosclerosis. Recent research demonstrates that PM also affects the cardiovascular system directly by entry into the systemic circulation. This process causes myocardial dysfunction through mechanisms of reactive oxygen species production, calcium ion interference, and vascular dysfunction. In this review, we will present key evidence in both the direct and indirect pathways, suggest clinical applications of the current literature, and recommend directions for future research. PMID:22119171
Fasano, S; Margiotta, D P; Navarini, L; Pierro, L; Pantano, I; Riccardi, A; Afeltra, A; Valentini, G
2017-12-01
Background Systemic lupus erythematosus is associated with an increased risk of cardiovascular disease. Low-dose aspirin, hydroxychloroquine and statins have been suggested to play a prophylactic role of cardiovascular events. This study is devoted to reviewing the literature on the topic and assessing the effects of these drugs in preventing a first cardiovascular event in a two-centre Italian series. Methods A PubMed search on cardiovascular prevention in systemic lupus erythematosus was performed. Moreover, systemic lupus erythematosus patients admitted to two centres from 2000-2015, who at admission had not experienced any cardiovascular event, were investigated. Aspirin, hydroxychloroquine and statin use, and the occurrence of any cardiovascular event, were recorded at each visit. Kaplan-Meier and Cox regression analyses were performed to evaluate the role of traditional, disease-related cardiovascular risk factors and of each of the three drugs in the occurrence of new cardiovascular events. Results The literature search produced conflicting results. Two hundred and ninety-one systemic lupus erythematosus patients were included in the study and followed for a median of eight years. During follow-up, 16 cardiovascular events occurred. At multivariate analysis, taking aspirin (hazard ratio: 0.24) and hydroxychloroquine for more than five years (hazard ratio: 0.27) reduced, while antiphospholipid antibody positivity (hazard ratio: 4.32) increased, the risk of a first cardiovascular event. No effect of statins emerged. Conclusion Our study confirms an additive role of aspirin and hydroxychloroquine in the primary prophylaxis of cardiovascular events in Italian patients with systemic lupus erythematosus. The lack of any detected effect in previous reports may depend on the design of studies and their short follow-up period.
Multiparametric Imaging of Organ System Interfaces
Vandoorne, Katrien; Nahrendorf, Matthias
2017-01-01
Cardiovascular diseases are a consequence of genetic and environmental risk factors that together generate arterial wall and cardiac pathologies. Blood vessels connect multiple systems throughout the entire body and allow organs to interact via circulating messengers. These same interactions facilitate nervous and metabolic system influence on cardiovascular health. Multiparametric imaging offers the opportunity to study these interfacing systems’ distinct processes, to quantify their interactions and to explore how these contribute to cardiovascular disease. Noninvasive multiparametric imaging techniques are emerging tools that can further our understanding of this complex and dynamic interplay. PET/MRI and multichannel optical imaging are particularly promising because they can simultaneously sample multiple biomarkers. Preclinical multiparametric diagnostics could help discover clinically relevant biomarker combinations pivotal for understanding cardiovascular disease. Interfacing systems important to cardiovascular disease include the immune, nervous and hematopoietic systems. These systems connect with ‘classical’ cardiovascular organs, like the heart and vasculature, and with the brain. The dynamic interplay between these systems and organs enables processes such as hemostasis, inflammation, angiogenesis, matrix remodeling, metabolism and fibrosis. As the opportunities provided by imaging expand, mapping interconnected systems will help us decipher the complexity of cardiovascular disease and monitor novel therapeutic strategies. PMID:28360260
Platelet-derived growth factor-C and -D in the cardiovascular system and diseases.
Lee, Chunsik; Li, Xuri
2018-08-01
The cardiovascular system is among the first organs formed during development and is pivotal for the formation and function of the rest of the organs and tissues. Therefore, the function and homeostasis of the cardiovascular system are finely regulated by many important molecules. Extensive studies have shown that platelet-derived growth factors (PDGFs) and their receptors are critical regulators of the cardiovascular system. Even though PDGF-C and PDGF-D are relatively new members of the PDGF family, their critical roles in the cardiovascular system as angiogenic and survival factors have been amply demonstrated. Understanding the functions of PDGF-C and PDGF-D and the signaling pathways involved may provide novel insights into both basic biomedical research and new therapeutic possibilities for the treatment of cardiovascular diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Czarzasta, Katarzyna; Cudnoch-Jedrzejewska, Agnieszka
2014-01-01
Research studies indicate a role of the apelinergic and vasopressinergic systems both in the regulation of the cardiovascular system and the pathogenesis of CVD, including in such settings as obesity and stress. Based on these data, it may be suggested that interactions between these systems underlie numerous physiological and pathophysiological processes, some of them related to the cardiovascular system. Better understanding of the role of these systems and their interactions, both physiological and related to the pathogenesis of CVD, will allow further advances in prevention and drug therapy.
Riley, Callum James; Gavin, Matthew
2017-06-01
Riley, Callum James, and Matthew Gavin. Physiological changes to the cardiovascular system at high altitude and its effects on cardiovascular disease. High Alt Med Biol. 18:102-113, 2017.-The physiological changes to the cardiovascular system in response to the high altitude environment are well understood. More recently, we have begun to understand how these changes may affect and cause detriment to cardiovascular disease. In addition to this, the increasing availability of altitude simulation has dramatically improved our understanding of the physiology of high altitude. This has allowed further study on the effect of altitude in those with cardiovascular disease in a safe and controlled environment as well as in healthy individuals. Using a thorough PubMed search, this review aims to integrate recent advances in cardiovascular physiology at altitude with previous understanding, as well as its potential implications on cardiovascular disease. Altogether, it was found that the changes at altitude to cardiovascular physiology are profound enough to have a noteworthy effect on many forms of cardiovascular disease. While often asymptomatic, there is some risk in high altitude exposure for individuals with certain cardiovascular diseases. Although controlled research in patients with cardiovascular disease was largely lacking, meaning firm conclusions cannot be drawn, these risks should be a consideration to both the individual and their physician.
Pathophysiological effects of RhoA and Rho-associated kinase on cardiovascular system.
Cai, Anping; Li, Liwen; Zhou, Yingling
2016-01-01
In past decades, growing evidence from basic and clinical researches reveal that small guanosine triphosphate binding protein ras homolog gene family, member A (RhoA) and its main effector Rho-associated kinase (ROCK) play central and complex roles in cardiovascular systems, and increasing RhoA and ROCK activity is associated with a broad range of cardiovascular diseases such as congestive heart failure, atherosclerosis, and hypertension. Favorable outcomes have been observed with ROCK inhibitors treatment. In this review, we briefly summarize the pathophysiological roles of RhoA/ROCK signaling pathway on cardiovascular system, displaying the potential benefits in the cardiovascular system with controlling RhoA/ROCK signaling pathway.
Dusi, Veronica; Ghidoni, Alice; Ravera, Alice; De Ferrari, Gaetano M.; Calvillo, Laura
2016-01-01
Among the chemokines discovered to date, nineteen are presently considered to be relevant in heart disease and are involved in all stages of cardiovascular response to injury. Chemokines are interesting as biomarkers to predict risk of cardiovascular events in apparently healthy people and as possible therapeutic targets. Moreover, they could have a role as mediators of crosstalk between immune and cardiovascular system, since they seem to act as a “working-network” in deep linkage with the autonomic nervous system. In this paper we will describe the single chemokines more involved in heart diseases; then we will present a comprehensive perspective of them as a complex network connecting the cardiovascular system to both the immune and the autonomic nervous systems. Finally, some recent evidences indicating chemokines as a possible new tool to predict cardiovascular risk will be described. PMID:27242392
Mathematical modeling of human cardiovascular system for simulation of orthostatic response
NASA Technical Reports Server (NTRS)
Melchior, F. M.; Srinivasan, R. S.; Charles, J. B.
1992-01-01
This paper deals with the short-term response of the human cardiovascular system to orthostatic stresses in the context of developing a mathematical model of the overall system. It discusses the physiological issues involved and how these issues have been handled in published cardiovascular models for simulation of orthostatic response. Most of the models are stimulus specific with no demonstrated capability for simulating the responses to orthostatic stimuli of different types. A comprehensive model incorporating all known phenomena related to cardiovascular regulation would greatly help to interpret the various orthostatic responses of the system in a consistent manner and to understand the interactions among its elements. This paper provides a framework for future efforts in mathematical modeling of the entire cardiovascular system.
Reactive oxygen species: players in the cardiovascular effects of testosterone
Carneiro, Fernando S.; Carvalho, Maria Helena C.; Reckelhoff, Jane F.
2015-01-01
Androgens are essential for the development and maintenance of male reproductive tissues and sexual function and for overall health and well being. Testosterone, the predominant and most important androgen, not only affects the male reproductive system, but also influences the activity of many other organs. In the cardiovascular system, the actions of testosterone are still controversial, its effects ranging from protective to deleterious. While early studies showed that testosterone replacement therapy exerted beneficial effects on cardiovascular disease, some recent safety studies point to a positive association between endogenous and supraphysiological levels of androgens/testosterone and cardiovascular disease risk. Among the possible mechanisms involved in the actions of testosterone on the cardiovascular system, indirect actions (changes in the lipid profile, insulin sensitivity, and hemostatic mechanisms, modulation of the sympathetic nervous system and renin-angiotensin-aldosterone system), as well as direct actions (modulatory effects on proinflammatory enzymes, on the generation of reactive oxygen species, nitric oxide bioavailability, and on vasoconstrictor signaling pathways) have been reported. This mini-review focuses on evidence indicating that testosterone has prooxidative actions that may contribute to its deleterious actions in the cardiovascular system. The controversial effects of testosterone on ROS generation and oxidant status, both prooxidant and antioxidant, in the cardiovascular system and in cells and tissues of other systems are reviewed. PMID:26538238
NASA Technical Reports Server (NTRS)
Schaub, J. D.; Koenig, S. C.; Schroeder, M. J.; Ewert, D. L.; Drew, G. A.; Swope, R. D.; Convertino, V. A. (Principal Investigator)
1999-01-01
An in vitro pulsatile pump flow system that is capable of producing physiologic pressures and flows in a mock circulatory system tuned to reproduce the first nine harmonics of the input impedance of a rhesus monkey was developed and tested. The system was created as a research tool for evaluating cardiovascular function and for the design, testing, and evaluation of electrical-mechanical cardiovascular models and chronically implanted sensors. The system possesses a computerized user interface for controlling a linear displacement pulsatile pump in a controlled flow loop format to emulate in vivo cardiovascular characteristics. Evaluation of the pump system consisted of comparing its aortic pressure and flow profiles with in vivo rhesus hemodynamic waveforms in the time and frequency domains. Comparison of aortic pressure and flow data between the pump system and in vivo data showed good agreement in the time and frequency domains, however, the pump system produced a larger pulse pressure. The pump system can be used for comparing cardiovascular parameters with predicted cardiovascular model values and for evaluating such items as vascular grafts, heart valves, biomaterials, and sensors. This article describes the development and evaluation of this feedback controlled cardiovascular dynamics simulation modeling system.
Lymphatic System in Cardiovascular Medicine.
Aspelund, Aleksanteri; Robciuc, Marius R; Karaman, Sinem; Makinen, Taija; Alitalo, Kari
2016-02-05
The mammalian circulatory system comprises both the cardiovascular system and the lymphatic system. In contrast to the blood vascular circulation, the lymphatic system forms a unidirectional transit pathway from the extracellular space to the venous system. It actively regulates tissue fluid homeostasis, absorption of gastrointestinal lipids, and trafficking of antigen-presenting cells and lymphocytes to lymphoid organs and on to the systemic circulation. The cardinal manifestation of lymphatic malfunction is lymphedema. Recent research has implicated the lymphatic system in the pathogenesis of cardiovascular diseases including obesity and metabolic disease, dyslipidemia, inflammation, atherosclerosis, hypertension, and myocardial infarction. Here, we review the most recent advances in the field of lymphatic vascular biology, with a focus on cardiovascular disease. © 2016 American Heart Association, Inc.
Hansen, Dominique; Dendale, Paul; Coninx, Karin; Vanhees, Luc; Piepoli, Massimo F; Niebauer, Josef; Cornelissen, Veronique; Pedretti, Roberto; Geurts, Eva; Ruiz, Gustavo R; Corrà, Ugo; Schmid, Jean-Paul; Greco, Eugenio; Davos, Constantinos H; Edelmann, Frank; Abreu, Ana; Rauch, Bernhard; Ambrosetti, Marco; Braga, Simona S; Barna, Olga; Beckers, Paul; Bussotti, Maurizio; Fagard, Robert; Faggiano, Pompilio; Garcia-Porrero, Esteban; Kouidi, Evangelia; Lamotte, Michel; Neunhäuserer, Daniel; Reibis, Rona; Spruit, Martijn A; Stettler, Christoph; Takken, Tim; Tonoli, Cajsa; Vigorito, Carlo; Völler, Heinz; Doherty, Patrick
2017-07-01
Background Exercise rehabilitation is highly recommended by current guidelines on prevention of cardiovascular disease, but its implementation is still poor. Many clinicians experience difficulties in prescribing exercise in the presence of different concomitant cardiovascular diseases and risk factors within the same patient. It was aimed to develop a digital training and decision support system for exercise prescription in cardiovascular disease patients in clinical practice: the European Association of Preventive Cardiology Exercise Prescription in Everyday Practice and Rehabilitative Training (EXPERT) tool. Methods EXPERT working group members were requested to define (a) diagnostic criteria for specific cardiovascular diseases, cardiovascular disease risk factors, and other chronic non-cardiovascular conditions, (b) primary goals of exercise intervention, (c) disease-specific prescription of exercise training (intensity, frequency, volume, type, session and programme duration), and (d) exercise training safety advices. The impact of exercise tolerance, common cardiovascular medications and adverse events during exercise testing were further taken into account for optimized exercise prescription. Results Exercise training recommendations and safety advices were formulated for 10 cardiovascular diseases, five cardiovascular disease risk factors (type 1 and 2 diabetes, obesity, hypertension, hypercholesterolaemia), and three common chronic non-cardiovascular conditions (lung and renal failure and sarcopaenia), but also accounted for baseline exercise tolerance, common cardiovascular medications and occurrence of adverse events during exercise testing. An algorithm, supported by an interactive tool, was constructed based on these data. This training and decision support system automatically provides an exercise prescription according to the variables provided. Conclusion This digital training and decision support system may contribute in overcoming barriers in exercise implementation in common cardiovascular diseases.
Regulation of the Cardiovascular System by Histamine.
Hattori, Yuichi; Hattori, Kohshi; Matsuda, Naoyuki
2017-01-01
Histamine mediates a wide range of cellular responses, including allergic and inflammatory reactions, gastric acid secretion, and neurotransmission in the central nervous system. Histamine also exerts a series of actions upon the cardiovascular system but may not normally play a significant role in regulating cardiovascular function. During tissue injury, inflammation, and allergic responses, mast cells (or non-mast cells) within the tissues can release large amounts of histamine that leads to noticeable cardiovascular effects. Owing to intensive research during several decades, the distribution, function, and pathophysiological role of cardiovascular H 1 - and H 2 -receptors has become recognized adequately. Besides the recognized H 1 - and H 2 -receptor-mediated cardiovascular responses, novel roles of H 3 - and H 4 -receptors in cardiovascular physiology and pathophysiology have been identified over the last decade. In this review, we describe recent advances in our understanding of cardiovascular function and dysfunction mediated by histamine receptors, including H 3 - and H 4 -receptors, their potential mechanisms of action, and their pathological significance.
Androgen actions on endothelium functions and cardiovascular diseases
Cai, Jing-Jing; Wen, Juan; Jiang, Wei-Hong; Lin, Jian; Hong, Yuan; Zhu, Yuan-Shan
2016-01-01
The roles of androgens on cardiovascular physiology and pathophysiology are controversial as both beneficial and detrimental effects have been reported. Although the reasons for this discrepancy are unclear, multiple factors such as genetic and epigenetic variation, sex-specificity, hormone interactions, drug preparation and route of administration may contribute. Recently, growing evidence suggests that androgens exhibit beneficial effects on cardiovascular function though the mechanism remains to be elucidated. Endothelial cells (ECs) which line the interior surface of blood vessels are distributed throughout the circulatory system, and play a crucial role in cardiovascular function. Endothelial progenitor cells (EPCs) are considered an indispensable element for the reconstitution and maintenance of an intact endothelial layer. Endothelial dysfunction is regarded as an initiating step in development of atherosclerosis and cardiovascular diseases. The modulation of endothelial functions by androgens through either genomic or nongenomic signal pathways is one possible mechanism by which androgens act on the cardiovascular system. Obtaining insight into the mechanisms by which androgens affect EC and EPC functions will allow us to determine whether androgens possess beneficial effects on the cardiovascular system. This in turn may be critical in the prevention and therapy of cardiovascular diseases. This article seeks to review recent progress in androgen regulation of endothelial function, the sex-specificity of androgen actions, and its clinical applications in the cardiovascular system. PMID:27168746
Serious Allergic Reactions (Anaphylaxis)
... more of these body systems: skin digestive system respiratory system cardiovascular system For example, someone may feel tightness or closing in the throat (respiratory system) together with a fast heartbeat (cardiovascular system). Here ...
A review on cardiovascular diseases originated from subclinical hypothyroidism.
Mansourian, Azad Reza
2012-01-15
Thyroid hormones play an important role on the cardiovascular systems and thyroid disorder ultimately have a profound adverse effects on myocardium and vascular functions. There are extensive reports on the role of overt thyroid dysfunction which adversely can modify the cardiovascular metabolism but even at the present of some controversial reports, the subclinical thyroid disorders are able also to manipulate cardiovascular system to some extent. The aim of this study is to review the cardiovascular disorders accompanied with subclinical hypothyroidism. It is concluded that adverse effect of thyroid malfunction on myocardium and vascular organs are through the direct role of thyroid hormone and dyslipidemia on heart muscle cells at nuclear level and vascular system, respectively. It seems many cardiovascular disorders initially would not have been occurred in the first place if the thyroid of affected person had functioned properly, therefore thyroid function tests should be one of a prior laboratory examinations in cardiovascular disorders.
The impact of cardiovascular drugs on the efficacy of local anesthesia in dentistry.
Milosavljevic, Мarko J; Jankovic, Slobodan M
2016-12-01
Drugs used chronically by patients with diseases of the cardiovascular system (group C of the ATC classification) may act on adrenergic receptors and/or certain ion channels, which gives them the potential to interact with the action of local dental anesthetics. The aim of the study was to investigate the effect of systemically administered chronic cardiovascular medication (oral route) on the efficacy of intraoral local anesthesia in patients with diseases of the cardiovascular system. This was a prospective cohort study which analyzed the efficacy of local terminal anesthesia (onset of anesthesia, duration anesthetized area) in the upper jaw of 70 patients: 40 patients on medication for cardiovascular system disorders and 30 patients who were not using these drugs (the control group). The following cardiovascular drugs were used: beta blockers, angiotensin converting enzyme inhibitors, calcium channel blockers, vasodilatators, diuretics, angiotensin receptor blockers, antiarrhythmics, statins and alfa blockers. The onset of anesthesia on the vestibular side was faster in those taking cardiovascular drugs (40.50±19.87 s) than the control patients (58.93±31.07 s; P = 0.004) and duration of anesthesia on this side was shorter. Although the difference was not significant, it was evident that on vestibular and palatal side the anesthetized area was more rapidly reduced in the patients taking cardiovascular drugs. The duration of cardiovascular therapy also had a significant impact on the anesthetized area. Drugs acting on cardiovascular system may influence the effect of local anesthetics used in dentistry, possibly through interaction with autonomic receptors and ion channels.
NASA Astrophysics Data System (ADS)
Bari, Vlasta; Marchi, Andrea; De Maria, Beatrice; Rossato, Gianluca; Nollo, Giandomenico; Faes, Luca; Porta, Alberto
2016-05-01
Cardiovascular and cerebrovascular regulatory systems are vital control mechanisms responsible for guaranteeing homeostasis and are affected by respiration. This work proposes the investigation of cardiovascular and cerebrovascular control systems and the nonlinear influences of respiration on both regulations through joint symbolic analysis (JSA), conditioned or unconditioned on respiration. Interactions between cardiovascular and cerebrovascular regulatory systems were evaluated as well by performing correlation analysis between JSA indexes describing the two control systems. Heart period, systolic and mean arterial pressure, mean cerebral blood flow velocity and respiration were acquired on a beat-to-beat basis in 13 subjects experiencing recurrent syncope episodes (SYNC) and 13 healthy individuals (non-SYNC) in supine resting condition and during head-up tilt test at 60° (TILT). Results showed that JSA distinguished conditions and groups, whereas time domain parameters detected only the effect of TILT. Respiration affected cardiovascular and cerebrovascular regulatory systems in a nonlinear way and was able to modulate the interactions between the two control systems with different outcome in non-SYNC and SYNC groups, thus suggesting that the analysis of the impact of respiration on cardiovascular and cerebrovascular regulatory systems might improve our understanding of the mechanisms underpinning the development of postural-related syncope.
Vargas, Félix; Rodríguez-Gómez, Isabel; Vargas-Tendero, Pablo; Jimenez, Eugenio; Montiel, Mercedes
2012-04-01
Thyroid disorders are among the most common endocrine diseases and affect virtually all physiological systems, with an especially marked impact on cardiovascular and renal systems. This review summarizes the effects of thyroid hormones on the renin-angiotensin system (RAS) and the participation of the RAS in the cardiovascular and renal manifestations of thyroid disorders. Thyroid hormones are important regulators of cardiac and renal mass, vascular function, renal sodium handling, and consequently blood pressure (BP). The RAS acts globally to control cardiovascular and renal functions, while RAS components act systemically and locally in individual organs. Various authors have implicated the systemic and local RAS in the mediation of functional and structural changes in cardiovascular and renal tissues due to abnormal thyroid hormone levels. This review analyzes the influence of thyroid hormones on RAS components and discusses the role of the RAS in BP, cardiac mass, vascular function, and renal abnormalities in thyroid disorders.
ERIC Educational Resources Information Center
Ahopelto, Ilona; Mikkila-Erdmann, Mirjamaija; Olkinuora, Erkki; Kaapa, Pekka
2011-01-01
Novice medical students usually hold initial conceptions concerning medical domains, such as the cardiovascular system, which may contradict scientific explanations and thus hinder learning. The purpose of this study was to investigate which kinds of biomedical representations medical students constructed of the central cardiovascular system in…
Computer model of cardiovascular control system responses to exercise
NASA Technical Reports Server (NTRS)
Croston, R. C.; Rummel, J. A.; Kay, F. J.
1973-01-01
Approaches of systems analysis and mathematical modeling together with computer simulation techniques are applied to the cardiovascular system in order to simulate dynamic responses of the system to a range of exercise work loads. A block diagram of the circulatory model is presented, taking into account arterial segments, venous segments, arterio-venous circulation branches, and the heart. A cardiovascular control system model is also discussed together with model test results.
The role of PPARδ signaling in the cardiovascular system.
Ding, Yishu; Yang, Kevin D; Yang, Qinglin
2014-01-01
Peroxisome proliferator-activated receptors (PPARα, β/δ, and γ), members of the nuclear receptor transcription factor superfamily, play important roles in the regulation of metabolism, inflammation, and cell differentiation. All three PPAR subtypes are expressed in the cardiovascular system with various expression patterns. Among the three PPAR subtypes, PPARδ is the least studied but has arisen as a potential therapeutic target for cardiovascular and many other diseases. It is known that PPARδ is ubiquitously expressed and abundantly expressed in cardiomyocytes. Accumulated evidence illustrates the role of PPARδ in regulating cardiovascular function and determining pathological progression. In this chapter, we will discuss the current knowledge in the role of PPARδ in the cardiovascular system, the mechanistic insights, and the potential therapeutic utilization for treating cardiovascular disease. © 2014 Elsevier Inc. All rights reserved.
Re-evaluating the functional landscape of the cardiovascular system during development
Takada, Norio; Omae, Madoka; Sagawa, Fumihiko; Chi, Neil C.; Endo, Satsuki; Kozawa, Satoshi
2017-01-01
ABSTRACT The cardiovascular system facilitates body-wide distribution of oxygen, a vital process for the development and survival of virtually all vertebrates. However, the zebrafish, a vertebrate model organism, appears to form organs and survive mid-larval periods without a functional cardiovascular system. Despite such dispensability, it is the first organ to develop. Such enigma prompted us to hypothesize other cardiovascular functions that are important for developmental and/or physiological processes. Hence, systematic cellular ablations and functional perturbations were performed on the zebrafish cardiovascular system to gain comprehensive and body-wide understanding of such functions and to elucidate the underlying mechanisms. This approach identifies a set of organ-specific genes, each implicated for important functions. The study also unveils distinct cardiovascular mechanisms, each differentially regulating their expressions in organ-specific and oxygen-independent manners. Such mechanisms are mediated by organ-vessel interactions, circulation-dependent signals, and circulation-independent beating-heart-derived signals. A comprehensive and body-wide functional landscape of the cardiovascular system reported herein may provide clues as to why it is the first organ to develop. Furthermore, these data could serve as a resource for the study of organ development and function. PMID:28982700
Re-evaluating the functional landscape of the cardiovascular system during development.
Takada, Norio; Omae, Madoka; Sagawa, Fumihiko; Chi, Neil C; Endo, Satsuki; Kozawa, Satoshi; Sato, Thomas N
2017-11-15
The cardiovascular system facilitates body-wide distribution of oxygen, a vital process for the development and survival of virtually all vertebrates. However, the zebrafish, a vertebrate model organism, appears to form organs and survive mid-larval periods without a functional cardiovascular system. Despite such dispensability, it is the first organ to develop. Such enigma prompted us to hypothesize other cardiovascular functions that are important for developmental and/or physiological processes. Hence, systematic cellular ablations and functional perturbations were performed on the zebrafish cardiovascular system to gain comprehensive and body-wide understanding of such functions and to elucidate the underlying mechanisms. This approach identifies a set of organ-specific genes, each implicated for important functions. The study also unveils distinct cardiovascular mechanisms, each differentially regulating their expressions in organ-specific and oxygen-independent manners. Such mechanisms are mediated by organ-vessel interactions, circulation-dependent signals, and circulation-independent beating-heart-derived signals. A comprehensive and body-wide functional landscape of the cardiovascular system reported herein may provide clues as to why it is the first organ to develop. Furthermore, these data could serve as a resource for the study of organ development and function. © 2017. Published by The Company of Biologists Ltd.
Cannabinoids in the Cardiovascular System.
Ho, Wing S V; Kelly, Melanie E M
2017-01-01
Cannabinoids are known to modulate cardiovascular functions including heart rate, vascular tone, and blood pressure in humans and animal models. Essential components of the endocannabinoid system, namely, the production, degradation, and signaling pathways of endocannabinoids have been described not only in the central and peripheral nervous system but also in myocardium, vasculature, platelets, and immune cells. The mechanisms of cardiovascular responses to endocannabinoids are often complex and may involve cannabinoid CB 1 and CB 2 receptors or non-CB 1/2 receptor targets. Preclinical and some clinical studies have suggested that targeting the endocannabinoid system can improve cardiovascular functions in a number of pathophysiological conditions, including hypertension, metabolic syndrome, sepsis, and atherosclerosis. In this chapter, we summarize the local and systemic cardiovascular effects of cannabinoids and highlight our current knowledge regarding the therapeutic potential of endocannabinoid signaling and modulation. © 2017 Elsevier Inc. All rights reserved.
Gać, Paweł; Poręba, Małgorzata; Pawlas, Krystyna; Sobieszczańska, Małgorzata; Poręba, Rafał
Exposure to tobacco smoke is a significant problem of environmental medicine. Tobacco smoke contains over one thousand identified chemicals including numerous toxicants. Cardiovascular system diseases are the major cause of general mortality. The recent development of diagnostic imaging provided methods which enable faster and more precise diagnosis of numerous diseases, also those of cardiovascular system. This paper reviews the most significant scientific research concerning relationship between environmental exposure to tobacco smoke and the morphology and function of cardiovascular system carried out using diagnostic imaging methods, i.e. ultrasonography, angiography, computed tomography and magnetic resonance imaging. In the forthcoming future, the studies using current diagnostic imaging methods should contribute to the reliable documentation, followed by the wide-spreading knowledge of the harmful impact of the environmental tobacco smoke exposure on the cardiovascular system.
Impact of the cardiovascular system-associated adipose tissue on atherosclerotic pathology.
Chistiakov, Dimitry A; Grechko, Andrey V; Myasoedova, Veronika A; Melnichenko, Alexandra A; Orekhov, Alexander N
2017-08-01
Cardiac obesity makes an important contribution to the pathogenesis of cardiovascular disease. One of the important pathways of this contribution is the inflammatory process that takes place in the adipose tissue. In this review, we consider the role of the cardiovascular system-associated fat in atherosclerotic cardiovascular pathology and a non-atherosclerotic cause of coronary artery disease, such as atrial fibrillation. Cardiovascular system-associated fat not only serves as the energy store, but also releases adipokines that control local and systemic metabolism, heart/vascular function and vessel tone, and a number of vasodilating and anti-inflammatory substances. Adipokine appears to play an important protective role in cardiovascular system. Under chronic inflammation conditions, the repertoire of signaling molecules secreted by cardiac fat can be altered, leading to a higher amount of pro-inflammatory messengers, vasoconstrictors, profibrotic modulators. This further aggravates cardiovascular inflammation and leads to hypertension, induction of the pathological tissue remodeling and cardiac fibrosis. Contemporary imaging techniques showed that epicardial fat thickness correlates with the visceral fat mass, which is an established risk factor and predictor of cardiovascular disease in obese subjects. However, this correlation is no longer present after adjustment for other covariates. Nevertheless, recent studies showed that pericardial fat volume and epicardial fat thickness can probably serve as a better indicator for atrial fibrillation. Copyright © 2017 Elsevier B.V. All rights reserved.
Transgenerational Epigenetics: The Role of Maternal Effects in Cardiovascular Development
Ho, Dao H.
2014-01-01
Transgenerational epigenetics, the study of non-genetic transfer of information from one generation to the next, has gained much attention in the past few decades due to the fact that, in many instances, epigenetic processes outweigh direct genetic processes in the manifestation of aberrant phenotypes across several generations. Maternal effects, or the influences of maternal environment, phenotype, and/or genotype on offsprings’ phenotypes, independently of the offsprings’ genotypes, are a subcategory of transgenerational epigenetics. Due to the intimate role of the mother during early development in animals, there is much interest in investigating the means by which maternal effects can shape the individual. Maternal effects are responsible for cellular organization, determination of the body axis, initiation and maturation of organ systems, and physiological performance of a wide variety of species and biological systems. The cardiovascular system is the first to become functional and can significantly influence the development of other organ systems. Thus, it is important to elucidate the role of maternal effects in cardiovascular development, and to understand its impact on adult cardiovascular health. Topics to be addressed include: (1) how and when do maternal effects change the developmental trajectory of the cardiovascular system to permanently alter the adult’s cardiovascular phenotype, (2) what molecular mechanisms have been associated with maternally induced cardiovascular phenotypes, and (3) what are the evolutionary implications of maternally mediated changes in cardiovascular phenotype? PMID:24813463
ERIC Educational Resources Information Center
National Highway Traffic Safety Administration (DOT), Washington, DC.
This instructor's lesson plan guide on the cardiovascular system is one of fifteen modules designed for use in the training of emergency medical technicians (paramedics). Seven units of study are presented: (1) the anatomy and physiology of the cardiovascular system; (2) patient assessment for the cardiac patient; (3) pathophysiology; (4) reading…
[THE CHARACTERISTICS OF CARDIOVASCULAR SYSTEM IN CHILDREN WITH INFLUENZA INFECTION].
Dudnik, V; Mantak, G; Andrikevych, I; Roizman, A
2015-01-01
Clinical changes in the cardiovascular system observed in most patients. The extent and nature of these changes may depend on the characteristics of epidemic outbreaks, such as virus, immune responsiveness, age composition patients. Flu-like lesions of the cardiovascular system in most cases occurring beneficial--quickly disappear change of heart, normal pulse and blood pressure.
Evidence for sex differences in cardiovascular aging and adaptive responses to physical activity.
Parker, Beth A; Kalasky, Martha J; Proctor, David N
2010-09-01
There are considerable data addressing sex-related differences in cardiovascular system aging and disease risk/progression. Sex differences in cardiovascular aging are evident during resting conditions, exercise, and other acute physiological challenges (e.g., orthostasis). In conjunction with these sex-related differences-or perhaps even as an underlying cause-the impact of cardiorespiratory fitness and/or physical activity on the aging cardiovascular system also appears to be sex-specific. Potential mechanisms contributing to sex-related differences in cardiovascular aging and adaptability include changes in sex hormones with age as well as sex differences in baseline fitness and the dose of activity needed to elicit cardiovascular adaptations. The purpose of the present paper is thus to review the primary research regarding sex-specific plasticity of the cardiovascular system to fitness and physical activity in older adults. Specifically, the paper will (1) briefly review known sex differences in cardiovascular aging, (2) detail emerging evidence regarding observed cardiovascular outcomes in investigations of exercise and physical activity in older men versus women, (3) explore mechanisms underlying the differing adaptations to exercise and habitual activity in men versus women, and (4) discuss implications of these findings with respect to chronic disease risk and exercise prescription.
Evidence for sex differences in cardiovascular aging and adaptive responses to physical activity
Parker, Beth A.; Kalasky, Martha J.; Proctor, David N.
2010-01-01
There are considerable data addressing sex-related differences in cardiovascular system aging and disease risk/progression. Sex differences in cardiovascular aging are evident during resting conditions, exercise, and other acute physiological challenges (e.g., orthostasis). In conjunction with these sex-related differences—or perhaps even as an underlying cause—the impact of cardiorespiratory fitness and/or physical activity on the aging cardiovascular system also appears to be sex-specific. Potential mechanisms contributing to sex-related differences in cardiovascular aging and adaptability include changes in sex hormones with age as well as sex differences in baseline fitness and the dose of activity needed to elicit cardiovascular adaptations. The purpose of the present paper is thus to review the primary research regarding sex-specific plasticity of the cardiovascular system to fitness and physical activity in older adults. Specifically, the paper will (1) briefly review known sex differences in cardiovascular aging, (2) detail emerging evidence regarding observed cardiovascular outcomes in investigations of exercise and physical activity in older men versus women, (3) explore mechanisms underlying the differing adaptations to exercise and habitual activity in men versus women, and (4) discuss implications of these findings with respect to chronic disease risk and exercise prescription. PMID:20480371
Evaluation of the electromechanical properties of the cardiovascular system
NASA Technical Reports Server (NTRS)
Bergman, S. A., Jr.; Hoffler, G. W.; Johnson, R. L.
1974-01-01
Cardiovascular electromechanical measurements were collected on returning Skylab crewmembers at rest and during both lower body negative pressure and exercise stress testing. These data were compared with averaged responses from multiple preflight tests. Systolic time intervals and first heart sound amplitude changes were measured. Clinical cardiovascular examinations and clinical phonocardiograms were evaluated. All changes noted returned to normal within 30 days postflight so that the processes appear to be transient and self limited. The cardiovascular system seems to adapt quite readily to zero-g, and more importantly it is capable of readaptation to one-g after long duration space flight. Repeated exposures to zero-g also appear to have no detrimental effects on the cardiovascular system.
Protein O-GlcNAcylation and Cardiovascular (Patho)physiology*
Marsh, Susan A.; Collins, Helen E.; Chatham, John C.
2014-01-01
Our understanding of the role of protein O-GlcNAcylation in the regulation of the cardiovascular system has increased rapidly in recent years. Studies have linked increased O-GlcNAc levels to glucose toxicity and diabetic complications; conversely, acute activation of O-GlcNAcylation has been shown to be cardioprotective. However, it is also increasingly evident that O-GlcNAc turnover plays a central role in the delicate regulation of the cardiovascular system. Therefore, the goals of this minireview are to summarize our current understanding of how changes in O-GlcNAcylation influence cardiovascular pathophysiology and to highlight the evidence that O-GlcNAc cycling is critical for normal function of the cardiovascular system. PMID:25336635
Local Renin Angiotensin Aldosterone Systems and Cardiovascular Diseases.
De Mello, Walmor C
2017-01-01
The presence of local renin angiotensin aldosterone systems (RAAS) in the cardiovascular and renal tissues and their influence in cardiovascular and renal diseases are described. The fundamental role of ACE/Ang II/AT1 receptor axis activation as well the counterregulatory role of ACE2/Ang (1-7)/Mas receptor activation on cardiovascular and renal physiology and pathology are emphasized. The presence of a local RAS and its influence on hypertension is discussed, and finally, the hypothesis that epigenetic factors change the RAAS in utero and induce the expression of renin or Ang II inside the cells of the cardiovascular system is presented. Copyright © 2016 Elsevier Inc. All rights reserved.
Effects of Interleukin 17 on the cardiovascular system.
Robert, Marie; Miossec, Pierre
2017-09-01
Cardiovascular diseases remain the leading cause of death worldwide and account for most of the premature mortality observed in chronic inflammatory diseases. Common mechanisms underlie these two types of disorders, where the contribution of Interleukin (IL)-17A, the founding member of the IL-17 family, is highly suspected. While the local effects of IL-17A in inflammatory disorders have been well described, those on the cardiovascular system remain less studied. This review focuses on the effects of IL-17 on the cardiovascular system both on isolated cells and in vivo. IL-17A acts on vessel and cardiac cells, leading to inflammation, coagulation and thrombosis. In vivo and clinical studies have shown its involvement in the pathogenesis of cardiovascular diseases including atherosclerosis and myocardial infarction that occur prematurely in chronic inflammatory disorders. As new therapeutic approaches are targeting the IL-17 pathway, this review should help to better understand their positive and negative outcomes on the cardio-vascular system. Copyright © 2017 Elsevier B.V. All rights reserved.
Reintrepreting the cardiovascular system as a mechanical model
NASA Astrophysics Data System (ADS)
Lemos, Diogo; Machado, José; Minas, Graça; Soares, Filomena; Barros, Carla; Leão, Celina Pinto
2013-10-01
The simulation of the different physiological systems is very useful as a pedagogical tool, allowing a better understanding of the mechanisms and the functions of the processes. The observation of the physiological phenomena through mechanical simulators represents a great asset. Furthermore, the development of these simulators allows reinterpreting physiological systems, with the advantage of using the same transducers and sensors that are commonly used in diagnostic and therapeutic cardiovascular procedures for the monitoring of system' parameters. The cardiovascular system is one of the most important systems of the human body and has been the target of several biomedical studies. The present work describes a mechanical simulation of the cardiovascular system, in particularly, the systemic circulation, which can be described in terms of its hemodynamic variables. From the mechanical process and parameters, physiological system's behavior was reproduced, as accurately as possible.
Chirakarnjanakorn, Srisakul; Navaneethan, Sankar D.; Francis, Gary S.; Tang, W.H. Wilson
2017-01-01
Patients undergoing maintenance hemodialysis develop both structural and functional cardiovascular abnormalities. Despite improvement of dialysis technology, cardiovascular mortality of this population remains high. The pathophysiological mechanisms of these changes are complex and not well understood. It has been postulated that several non-traditional, uremic-related risk factors, especially the long-term uremic state, which may affect the cardiovascular system. There are many cardiovascular changes that occur in chronic kidney disease including left ventricular hypertrophy, myocardial fibrosis, microvascular disease, accelerated atherosclerosis and arteriosclerosis. These structural and functional changes in patients receiving chronic dialysis make them more susceptible to myocardial ischemia. Hemodialysis itself may adversely affect the cardiovascular system due to non-physiologic fluid removal, leading to hemodynamic instability and initiation of systemic inflammation. In the past decade there has been growing awareness that pathophysiological mechanisms cause cardiovascular dysfunction in patients on chronic dialysis, and there are now pharmacological and non-pharmacological therapies that may improve the poor quality of life and high mortality rate that these patients experience. PMID:28108129
[Adverse effects of ultrafine particles on the cardiovascular system and its mechanisms].
Yi, Tie-ci; Li, Jian-ping
2014-12-18
Cardiovascular disease is one of the major threats to human. Air pollution, which , as it become a problem too serious to be ignored in China, is known to be an important risk factor for cardiovascular disease. Among all pollutants, ultrafine particles ( UFPs) , defined as particles with their diameter less than 0. 1 f.Lm, are a specific composition. They are very small in size, large in quantity and surface area, and most important, capable of passing through the air-blood barrier. These unique features of UFPs make them special in their impact on cardiovascular system. Nowadays, the influence of UFPs on the cardiovascular system has become a hot topic. On the one side, studies have shown that UFPs can cause inflammation and oxidative stress in the lung, and then induce systemic inflammation by releasing cytokine and reactive oxygen species into the circulation. On the other side, UFPs themselves can "spillout"into the circulation and interact with their targets. By this way, UFPs directly affect endothelial cells, myocardial cells and the autonomic nervous system, which ultimately result in increased cardiovascular events. We intend to make an overview about the recent progress about the influence of UFPs on human cardiovascular disease and the related mechanisms, and argue for more attention to this issue.
Endogenous Sulfur Dioxide: A New Member of Gasotransmitter Family in the Cardiovascular System
Huang, Yaqian; Tang, Chaoshu; Du, Junbao; Jin, Hongfang
2016-01-01
Sulfur dioxide (SO2) was previously regarded as a toxic gas in atmospheric pollutants. But it has been found to be endogenously generated from metabolism of sulfur-containing amino acids in mammals through transamination by aspartate aminotransferase (AAT). SO2 could be produced in cardiovascular tissues catalyzed by its synthase AAT. In recent years, studies revealed that SO2 had physiological effects on the cardiovascular system, including vasorelaxation and cardiac function regulation. In addition, the pathophysiological effects of SO2 were also determined. For example, SO2 ameliorated systemic hypertension and pulmonary hypertension, prevented the development of atherosclerosis, and protected against myocardial ischemia-reperfusion (I/R) injury and isoproterenol-induced myocardial injury. These findings suggested that endogenous SO2 was a novel gasotransmitter in the cardiovascular system and provided a new therapy target for cardiovascular diseases. PMID:26839635
Endogenous Sulfur Dioxide: A New Member of Gasotransmitter Family in the Cardiovascular System.
Huang, Yaqian; Tang, Chaoshu; Du, Junbao; Jin, Hongfang
2016-01-01
Sulfur dioxide (SO2) was previously regarded as a toxic gas in atmospheric pollutants. But it has been found to be endogenously generated from metabolism of sulfur-containing amino acids in mammals through transamination by aspartate aminotransferase (AAT). SO2 could be produced in cardiovascular tissues catalyzed by its synthase AAT. In recent years, studies revealed that SO2 had physiological effects on the cardiovascular system, including vasorelaxation and cardiac function regulation. In addition, the pathophysiological effects of SO2 were also determined. For example, SO2 ameliorated systemic hypertension and pulmonary hypertension, prevented the development of atherosclerosis, and protected against myocardial ischemia-reperfusion (I/R) injury and isoproterenol-induced myocardial injury. These findings suggested that endogenous SO2 was a novel gasotransmitter in the cardiovascular system and provided a new therapy target for cardiovascular diseases.
The Brain Norepinephrine System, Stress and Cardiovascular Vulnerability
Wood, Susan K.; Valentino, Rita J.
2016-01-01
Chronic exposure to psychosocial stress has adverse effects on cardiovascular health, however the stress-sensitive neurocircuitry involved remains to be elucidated. The anatomical and physiological characteristics of the locus coeruleus (LC)-norepinephrine (NE) system position it to contribute to stress-induced cardiovascular disease. This review focuses on cardiovascular dysfunction produced by social stress and a major theme highlighted is that differences in coping strategy determine individual differences in social stress-induced cardiovascular vulnerability. The establishment of different coping strategies and cardiovascular vulnerability during repeated social stress has recently been shown to parallel a unique plasticity in LC afferent regulation, resulting in either excitatory or inhibitory input to the LC. This contrasting regulation of the LC would translate to differences in cardiovascular regulation and may serve as the basis for individual differences in the cardiopathological consequences of social stress. The advances described suggest new directions for developing treatments and/or strategies for decreasing stress-induced cardiovascular vulnerability. PMID:27131968
Cardiovascular safety of biologic therapies for the treatment of RA.
Greenberg, Jeffrey D; Furer, Victoria; Farkouh, Michael E
2011-11-15
Cardiovascular disease represents a major source of extra-articular comorbidity in patients with rheumatoid arthritis (RA). A combination of traditional cardiovascular risk factors and RA-related factors accounts for the excess risk in RA. Among RA-related factors, chronic systemic inflammation has been implicated in the pathogenesis and progression of atherosclerosis. A growing body of evidence--mainly derived from observational databases and registries--suggests that specific RA therapies, including methotrexate and anti-TNF biologic agents, can reduce the risk of future cardiovascular events in patients with RA. The cardiovascular profile of other biologic therapies for the treatment of RA has not been adequately studied, including of investigational drugs that improve systemic inflammation but alter traditional cardiovascular risk factors. In the absence of large clinical trials adequately powered to detect differences in cardiovascular events between biologic drugs in RA, deriving firm conclusions on cardiovascular safety is challenging. Nevertheless, observational research using large registries has emerged as a promising approach to study the cardiovascular risk of emerging RA biologic therapies.
Drug Delivery and Nanoformulations for the Cardiovascular System.
Geldenhuys, W J; Khayat, M T; Yun, J; Nayeem, M A
2017-02-01
Therapeutic delivery to the cardiovascular system may play an important role in the successful treatment of a variety of disease state, including atherosclerosis, ischemic-reperfusion injury and other types of microvascular diseases including hypertension. In this review we evaluate the different options available for the development of suitable delivery systems that include the delivery of small organic compounds [adenosin A 2A receptor agonist (CGS 21680), CYP-epoxygenases inhibitor (N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide, trans-4-[4-(3-adamantan-1-ylureido)cyclohexyloxy] benzoic acid), soluble epoxide hydrolase inhibitor (N-methylsulfonyl-12,12-dibromododec-11-enamide), PPARγ agonist (rosiglitazone) and PPARγ antagonist (T0070907)], nanoparticles, peptides, and siRNA to the cardiovascular system. Effective formulations of nanoproducts have significant potential to overcome physiological barriers and improve therapeutic outcomes in patients. As per the literature covering targeted delivery to the cardiovascular system, we found that this area is still at infancy stage, as compare to the more mature fields of tumor cancer or brain delivery (e.g. blood-brain barrier permeability) with fewer publications focused on the targeted drug delivery technologies. Additionally, we show how pharmacology needs to be well understood when considering the cardiovascular system. Therefore, we discussed in this review various receptors agonists, antagonists, activators and inhibitors which will have effects on cardiovascular system.
NASA Technical Reports Server (NTRS)
Hooker, John C.
1991-01-01
Three measures of nonlinear chaos (fractal dimension, Approximate Entropy (ApEn), and Lyapunov exponents) were studied as potential measures of cardiovascular condition. It is suggested that these measures have potential in the assessment of cardiovascular condition in environments of normal cardiovascular stress (normal gravity on the Earth surface), cardiovascular deconditioning (microgravity of space), and increased cardiovascular stress (lower body negative pressure (LBNP) treatments).
Abramovich, S G; Fedotchenko, A A; Koriakina, A V; Pogodin, K V; Smirnov, S N
1999-01-01
Central hemodynamics, diastolic and pumping functions of the heart, myocardial reactivity, microcirculation and biological age of cardiovascular system were studied in 66 elderly patients suffering from hypertension and ischemic heart disease. The patients received systemic magnetotherapy which produced a geroprotective effect as shown by improved microcirculation, myocardial reactivity, central hemodynamics reducing biological age of cardiovascular system and inhibiting its ageing.
Cardiovascular oscillations: in search of a nonlinear parametric model
NASA Astrophysics Data System (ADS)
Bandrivskyy, Andriy; Luchinsky, Dmitry; McClintock, Peter V.; Smelyanskiy, Vadim; Stefanovska, Aneta; Timucin, Dogan
2003-05-01
We suggest a fresh approach to the modeling of the human cardiovascular system. Taking advantage of a new Bayesian inference technique, able to deal with stochastic nonlinear systems, we show that one can estimate parameters for models of the cardiovascular system directly from measured time series. We present preliminary results of inference of parameters of a model of coupled oscillators from measured cardiovascular data addressing cardiorespiratory interaction. We argue that the inference technique offers a very promising tool for the modeling, able to contribute significantly towards the solution of a long standing challenge -- development of new diagnostic techniques based on noninvasive measurements.
Mavrogeni, Sophie; Markousis-Mavrogenis, George; Koutsogeorgopoulou, Loukia; Kolovou, Genovefa
2017-01-01
Cardiovascular magnetic resonance imaging is a recently developed noninvasive, nonradiating, operator-independent technique that has been successfully used for the evaluation of congenital heart disease, valvular and pericardial diseases, iron overload, cardiomyopathies, great and coronary vessel diseases, cardiac inflammation, stress–rest myocardial perfusion, and fibrosis. Rheumatoid arthritis and other spondyloarthropathies, systemic lupus erythematosus, inflammatory myopathies, mixed connective tissue diseases (CTDs), systemic sclerosis, vasculitis, and sarcoidosis are among CTDs with serious cardiovascular involvement; this is due to multiple causative factors such as myopericarditis, micro/macrovascular disease, coronary artery disease, myocardial fibrosis, pulmonary hypertension, and finally heart failure. The complicated pathophysiology and the high cardiovascular morbidity and mortality of CTDs demand a versatile, noninvasive, nonradiative diagnostic tool for early cardiovascular diagnosis, risk stratification, and treatment follow-up. Cardiovascular magnetic resonance imaging can detect early silent cardiovascular lesions, assess disease acuteness, and reliably evaluate the effect of both cardiac and rheumatic medication in the cardiovascular system, due to its capability to perform tissue characterization and its high spatial resolution. However, until now, high cost; lack of interaction between cardiologists, radiologists, and rheumatologists; lack of availability; and lack of experts in the field have limited its wider adoption in the clinical practice. PMID:28546762
Adipokines and the cardiovascular system: mechanisms mediating health and disease.
Northcott, Josette M; Yeganeh, Azadeh; Taylor, Carla G; Zahradka, Peter; Wigle, Jeffrey T
2012-08-01
This review focuses on the role of adipokines in the maintenance of a healthy cardiovascular system, and the mechanisms by which these factors mediate the development of cardiovascular disease in obesity. Adipocytes are the major cell type comprising the adipose tissue. These cells secrete numerous factors, termed adipokines, into the blood, including adiponectin, leptin, resistin, chemerin, omentin, vaspin, and visfatin. Adipose tissue is a highly vascularised endocrine organ, and different adipose depots have distinct adipokine secretion profiles, which are altered with obesity. The ability of many adipokines to stimulate angiogenesis is crucial for adipose tissue expansion; however, excessive blood vessel growth is deleterious. As well, some adipokines induce inflammation, which promotes cardiovascular disease progression. We discuss how these 7 aforementioned adipokines act upon the various cardiovascular cell types (endothelial progenitor cells, endothelial cells, vascular smooth muscle cells, pericytes, cardiomyocytes, and cardiac fibroblasts), the direct effects of these actions, and their overall impact on the cardiovascular system. These were chosen, as these adipokines are secreted predominantly from adipocytes and have known effects on cardiovascular cells.
Chirakarnjanakorn, Srisakul; Navaneethan, Sankar D; Francis, Gary S; Tang, W H Wilson
2017-04-01
Patients undergoing maintenance hemodialysis develop both structural and functional cardiovascular abnormalities. Despite improvement of dialysis technology, cardiovascular mortality of this population remains high. The pathophysiological mechanisms of these changes are complex and not well understood. It has been postulated that several non-traditional, uremic-related risk factors, especially the long-term uremic state, which may affect the cardiovascular system. There are many cardiovascular changes that occur in chronic kidney disease including left ventricular hypertrophy, myocardial fibrosis, microvascular disease, accelerated atherosclerosis and arteriosclerosis. These structural and functional changes in patients receiving chronic dialysis make them more susceptible to myocardial ischemia. Hemodialysis itself may adversely affect the cardiovascular system due to non-physiologic fluid removal, leading to hemodynamic instability and initiation of systemic inflammation. In the past decade there has been growing awareness that pathophysiological mechanisms cause cardiovascular dysfunction in patients on chronic dialysis, and there are now pharmacological and non-pharmacological therapies that may improve the poor quality of life and high mortality rate that these patients experience. Copyright © 2017 Elsevier B.V. All rights reserved.
Role of TRP channels in the cardiovascular system
Yue, Zhichao; Xie, Jia; Yu, Albert S.; Stock, Jonathan; Du, Jianyang
2014-01-01
The transient receptor potential (TRP) superfamily consists of a large number of nonselective cation channels with variable degree of Ca2+-permeability. The 28 mammalian TRP channel proteins can be grouped into six subfamilies: canonical, vanilloid, melastatin, ankyrin, polycystic, and mucolipin TRPs. The majority of these TRP channels are expressed in different cell types including both excitable and nonexcitable cells of the cardiovascular system. Unlike voltage-gated ion channels, TRP channels do not have a typical voltage sensor, but instead can sense a variety of other stimuli including pressure, shear stress, mechanical stretch, oxidative stress, lipid environment alterations, hypertrophic signals, and inflammation products. By integrating multiple stimuli and transducing their activity to downstream cellular signal pathways via Ca2+ entry and/or membrane depolarization, TRP channels play an essential role in regulating fundamental cell functions such as contraction, relaxation, proliferation, differentiation, and cell death. With the use of targeted deletion and transgenic mouse models, recent studies have revealed that TRP channels are involved in numerous cellular functions and play an important role in the pathophysiology of many diseases in the cardiovascular system. Moreover, several TRP channels are involved in inherited diseases of the cardiovascular system. This review presents an overview of current knowledge concerning the physiological functions of TRP channels in the cardiovascular system and their contributions to cardiovascular diseases. Ultimately, TRP channels may become potential therapeutic targets for cardiovascular diseases. PMID:25416190
Role of TRP channels in the cardiovascular system.
Yue, Zhichao; Xie, Jia; Yu, Albert S; Stock, Jonathan; Du, Jianyang; Yue, Lixia
2015-02-01
The transient receptor potential (TRP) superfamily consists of a large number of nonselective cation channels with variable degree of Ca(2+)-permeability. The 28 mammalian TRP channel proteins can be grouped into six subfamilies: canonical, vanilloid, melastatin, ankyrin, polycystic, and mucolipin TRPs. The majority of these TRP channels are expressed in different cell types including both excitable and nonexcitable cells of the cardiovascular system. Unlike voltage-gated ion channels, TRP channels do not have a typical voltage sensor, but instead can sense a variety of other stimuli including pressure, shear stress, mechanical stretch, oxidative stress, lipid environment alterations, hypertrophic signals, and inflammation products. By integrating multiple stimuli and transducing their activity to downstream cellular signal pathways via Ca(2+) entry and/or membrane depolarization, TRP channels play an essential role in regulating fundamental cell functions such as contraction, relaxation, proliferation, differentiation, and cell death. With the use of targeted deletion and transgenic mouse models, recent studies have revealed that TRP channels are involved in numerous cellular functions and play an important role in the pathophysiology of many diseases in the cardiovascular system. Moreover, several TRP channels are involved in inherited diseases of the cardiovascular system. This review presents an overview of current knowledge concerning the physiological functions of TRP channels in the cardiovascular system and their contributions to cardiovascular diseases. Ultimately, TRP channels may become potential therapeutic targets for cardiovascular diseases. Copyright © 2015 the American Physiological Society.
Kinect system in home-based cardiovascular rehabilitation.
Vieira, Ágata; Gabriel, Joaquim; Melo, Cristina; Machado, Jorge
2017-01-01
Cardiovascular diseases lead to a high consumption of financial resources. An important part of the recovery process is the cardiovascular rehabilitation. This study aimed to present a new cardiovascular rehabilitation system to 11 outpatients with coronary artery disease from a Hospital in Porto, Portugal, later collecting their opinions. This system is based on a virtual reality game system, using the Kinect sensor while performing an exercise protocol which is integrated in a home-based cardiovascular rehabilitation programme, with a duration of 6 months and at the maintenance phase. The participants responded to a questionnaire asking for their opinion about the system. The results demonstrated that 91% of the participants (n = 10) enjoyed the artwork, while 100% (n = 11) agreed on the importance and usefulness of the automatic counting of the number of repetitions, moreover 64% (n = 7) reported motivation to continue performing the programme after the end of the study, and 100% (n = 11) recognized Kinect as an instrument with potential to be an asset in cardiovascular rehabilitation. Criticisms included limitations in motion capture and gesture recognition, 91% (n = 10), and the lack of home space, 27% (n = 3). According to the participants' opinions, the Kinect has the potential to be used in cardiovascular rehabilitation; however, several technical details require improvement, particularly regarding the motion capture and gesture recognition.
Pharmacological effects of Chinese herb aconite (fuzi) on cardiovascular system.
Zhao, Dandan; Wang, Jie; Cui, Yanjing; Wu, Xinfang
2012-09-01
Fuzi (aconite, Radix Aconiti praeparata), a widely used Chinese herb, plays a significant role in the cardiovascular system. This is mainly reflected by Fuzi's cardiotonic effect, its protective effect on myocardial cells, and its effect on heart rate and rhythm, blood pressure, and hemodynamics. In this article, the pharmacological effects and the corresponding mechanisms of Fuzi (aconite) and its active components on cardiovascular system are reviewed.
Liu, Enwu; Dyer, Suzanne M; O'Donnell, Lisa Kouladjian; Milte, Rachel; Bradley, Clare; Harrison, Stephanie L; Gnanamanickam, Emmanuel; Whitehead, Craig; Crotty, Maria
2017-06-01
To examine associations between cardiovascular system medication use with cognition function and diagnosis of dementia in older adults living in nursing homes in Australia. As part of a cross-sectional study of 17 Australian nursing homes examining quality of life and resource use, we examined the association between cognitive impairment and cardiovascular medication use (identified using the Anatomical Therapeutic Classification System) using general linear regression and logistic regression models. People who were receiving end of life care were excluded. Participants included 541 residents with a mean age of 85.5 years (± 8.5), a mean Psychogeriatric Assessment Scale-Cognitive Impairment (PAS-Cog) score of 13.3 (± 7.7), a prevalence of cardiovascular diseases of 44% and of hypertension of 47%. Sixty-four percent of participants had been diagnosed with dementia and 72% had received cardiovascular system medications within the previous 12 months. Regression models demonstrated the use of cardiovascular medications was associated with lower (better) PAS-Cog scores [Coefficient (β) = -3.7; 95% CI: -5.2 to -2.2; P < 0.0001] and a lower probability of a dementia diagnosis (OR = 0.44; 95% CI: 0.26 to 0.75, P = 0.0022). Analysis by subgroups of medications showed cardiac therapy medications (C01), beta blocking agents (C07), and renin-angiotensin system agents (C09) were associated with lower PAS-Cog scores (better cognition) and lower dementia diagnosis probability. This analysis has demonstrated an association between greater cardiovascular system medication use and better cognitive status among older adults living in nursing homes. In this population, there may be differential access to health care and treatment of cardiovascular risk factors. This association warrants further investigation in large cohort studies.
21 CFR 870.1270 - Intracavitary phonocatheter system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Intracavitary phonocatheter system. 870.1270... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1270 Intracavitary phonocatheter system. (a) Identification. An intracavitary phonocatheter system is a system that includes a...
21 CFR 870.1270 - Intracavitary phonocatheter system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Intracavitary phonocatheter system. 870.1270... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1270 Intracavitary phonocatheter system. (a) Identification. An intracavitary phonocatheter system is a system that includes a...
21 CFR 870.1270 - Intracavitary phonocatheter system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Intracavitary phonocatheter system. 870.1270... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1270 Intracavitary phonocatheter system. (a) Identification. An intracavitary phonocatheter system is a system that includes a...
Depression, anxiety, and the cardiovascular system: the psychiatrist's perspective.
Roose, S P
2001-01-01
It is becoming clear that the comorbidity of depression and cardiovascular disease does not occur by chance but rather is an inevitable consequence of the relationship between the conditions. Depression in patients with cardiovascular disease is a significant risk factor for developing symptomatic and fatal ischemic heart disease. Moreover, depressed patients have a higher than expected rate of sudden cardiovascular death. Therefore, appropriate treatment of patients with depression and cardiovascular disease cannot be restricted to considerations of either depression or cardiovascular disease in isolation. The tricyclic antidepressants (TCAs) have various effects on the cardiovascular system, including Type IA antiarrhythmic activity that has been associated with an increased risk of mortality in post-myocardial infarction patients. The selective serotonin reuptake inhibitors (SSRIs) are not associated with adverse cardiac effects. The SSRI paroxetine was compared with a therapeutic level of the TCA nortriptyline in a randomized, controlled study and demonstrated a benign cardiovascular profile, while the TCA induced a significantly higher rate of serious adverse cardiovascular events. On the basis of this favorable cardiovascular profile, the SSRIs should therefore be the preferred choice for the treatment of most patients with comorbid depression and cardiovascular disease. Investigation of putative pathophysiologic mechanisms linking depression and cardiovascular mortality, such as the role of platelet activation, will form the basis for further investigation of antidepressant treatments in order to establish if the antidepressants have a beneficial effect on the prognosis of cardiovascular diseases.
MedlinePlus Videos and Cool Tools
The cardiovascular system is composed of the heart and the network of arteries, veins, and capillaries that transport blood throughout the ... carries waste products from the tissues to the systems of the body through which they are eliminated. ...
Mathematical modelling of the human cardiovascular system in the presence of stenosis
NASA Technical Reports Server (NTRS)
Sud, V. K.; Srinivasan, R. S.; Charles, J. B.; Bungo, M. W.
1993-01-01
This paper reports a theoretical study on the distribution of blood flow in the human cardiovascular system when one or more blood vessels are affected by stenosis. The analysis employs a mathematical model of the entire system based on the finite element method. The arterial-venous network is represented by a large number of interconnected segments in the model. Values for the model parameters are based upon the published data on the physiological and rheological properties of blood. Computational results show how blood flow through various parts of the cardiovascular system is affected by stenosis in different blood vessels. No significant changes in the flow parameters of the cardiovascular system were found to occur when the reduction in the lumen diameter of the stenosed vessels was less than 65%.
Kwonjoon Lee; Kiseok Song; Taehwan Roh; Hoi-Jun Yoo
2016-08-01
The wrist patch-type ECG/APW sensor system is proposed for continuous and comprehensive monitoring of the patient's cardiovascular system. The wrist patch-type ECG/APW sensor system is consists of ECG/APW sensor, ECG/APW electrodes, and base station for real-time monitoring of the patient's status. The ECG/APW sensor and electrodes are composed of wrist patch, bandage-type ECG electrode and fabric APW electrode, respectively so that the patient's cardiovascular system can be continuously monitored in daily life with free hand-movement. Since the proposed wrist patchtype ECG/APW sensor simultaneously measures ECG/APW, the cardiac indicators, such as HR and PAT, can be extracted for comprehensive and accurate monitoring of the patient's cardiovascular system. The proposed wrist patch-type ECG/APW sensor system is successfully verified using the commercial PPG sensor (RP520) and demonstrated with the customized Android application on the smart phone.
Sirtuins in the Cardiovascular System: Potential Targets in Pediatric Cardiology.
Ianni, Alessandro; Yuan, Xuejun; Bober, Eva; Braun, Thomas
2018-06-01
Cardiovascular diseases represent a major cause of death and morbidity. Cardiac and vascular pathologies develop predominantly in the aged population in part due to lifelong exposure to numerous risk factors but are also found in children and during adolescence. In comparison to adults, much has to be learned about the molecular pathways driving cardiovascular diseases in the pediatric population. Sirtuins are highly conserved enzymes that play pivotal roles in ensuring cardiac homeostasis under physiological and stress conditions. In this review, we discuss novel findings about the biological functions of these molecules in the cardiovascular system and their possible involvement in pediatric cardiovascular diseases.
Kuo, Terry B J; Li, Jia-Yi; Lai, Chun-Ting; Huang, Yu-Chun; Hsu, Ya-Chuan; Yang, Cheryl C H
2013-01-01
Different types of mattresses affect sleep quality and waking muscle power. Whether manual muscle testing (MMT) predicts the cardiovascular effects of the bedding system was explored using ten healthy young men. For each participant, two bedding systems, one inducing the strongest limb muscle force (strong bedding system) and the other inducing the weakest limb force (weak bedding system), were identified using MMT. Each bedding system, in total five mattresses and eight pillows of different firmness, was used for two continuous weeks at the participant's home in a random and double-blind sequence. A sleep log, a questionnaire, and a polysomnography were used to differentiate the two bedding systems. Heart rate variability and arterial pressure variability analyses showed that the strong bedding system resulted in decreased cardiovascular sympathetic modulation, increased cardiac vagal activity, and increased baroreceptor reflex sensitivity during sleep as compared to the weak bedding system. Different bedding systems have distinct cardiovascular effects during sleep that can be predicted by MMT.
Kuo, Terry B. J.; Li, Jia-Yi; Lai, Chun-Ting; Huang, Yu-Chun; Hsu, Ya-Chuan; Yang, Cheryl C. H.
2013-01-01
Background. Different types of mattresses affect sleep quality and waking muscle power. Whether manual muscle testing (MMT) predicts the cardiovascular effects of the bedding system was explored using ten healthy young men. Methods. For each participant, two bedding systems, one inducing the strongest limb muscle force (strong bedding system) and the other inducing the weakest limb force (weak bedding system), were identified using MMT. Each bedding system, in total five mattresses and eight pillows of different firmness, was used for two continuous weeks at the participant's home in a random and double-blind sequence. A sleep log, a questionnaire, and a polysomnography were used to differentiate the two bedding systems. Results and Conclusion. Heart rate variability and arterial pressure variability analyses showed that the strong bedding system resulted in decreased cardiovascular sympathetic modulation, increased cardiac vagal activity, and increased baroreceptor reflex sensitivity during sleep as compared to the weak bedding system. Different bedding systems have distinct cardiovascular effects during sleep that can be predicted by MMT. PMID:24371836
Bulbospinal substance P and sympathetic regulation of the cardiovascular system: a review.
Helke, C J; Charlton, C G; Keeler, J R
1985-01-01
The neurotransmitter role of substance P in mediating sympathoexcitatory effects in the spinal cord and cardiovascular effects elicited from the ventral medulla is presented. SP neurons located in the ventral medulla project to the intermediolateral cell column (IML) of the thoracic spinal cord. Intrathecal administration of a SP analog excites sympathetic outflow to the cardiovascular system. Likewise, activation of the ventral medulla results in sympathetically mediated increases in blood pressure and heart rate which are blocked with SP antagonists. The IML contained a high density of SP binding sites through which the peptide likely exerts its sympathoexcitatory influence on the cardiovascular system.
Gouweleeuw, L; Naudé, P J W; Rots, M; DeJongste, M J L; Eisel, U L M; Schoemaker, R G
2015-05-01
Depression is more common in patients with cardiovascular disease than in the general population. Conversely, depression is a risk factor for developing cardiovascular disease. Comorbidity of these two pathologies worsens prognosis. Several mechanisms have been indicated in the link between cardiovascular disease and depression, including inflammation. Systemic inflammation can have long-lasting effects on the central nervous system, which could be associated with depression. NGAL is an inflammatory marker and elevated plasma levels are associated with both cardiovascular disease and depression. While patients with depression show elevated NGAL levels, in patients with comorbid heart failure, NGAL levels are significantly higher and associated with depression scores. Systemic inflammation evokes NGAL expression in the brain. This is considered a proinflammatory effect as it is involved in microglia activation and reactive astrocytosis. Animal studies support a direct link between NGAL and depression/anxiety associated behavior. In this review we focus on the role of NGAL in linking depression and cardiovascular disease. Copyright © 2015 Elsevier Inc. All rights reserved.
Measured outcomes with hypnosis as an experimental tool in a cardiovascular physiology laboratory.
Casiglia, Edoardo; Tikhonoff, Valérie; Giordano, Nunzia; Andreatta, Elisa; Regaldo, Giuseppe; Tosello, Maria T; Rossi, Augusto M; Bordin, Daniele; Giacomello, Margherita; Facco, Enrico
2012-01-01
The authors detail their multidisciplinary collaboration of cardiologists, physiologists, neurologists, psychologists, engineers, and statisticians in researching the effects of hypnosis on the cardiovascular system and their additions to that incomplete literature. The article details their results and provides guidelines for researchers interested in replicating their research on hypnosis' effect on the cardiovascular system.
Proceedings of the Symposium Teaching Cardiovascular Physiology Outside the Lecture Hall.
ERIC Educational Resources Information Center
Michael, Joel A.; Rovick, Allen A., Eds.
1983-01-01
Provided are 10 papers presented during a symposium on teaching cardiovascular physiology outside the lecture hall. Topics addressed include a mechanical model of the cardiovascular system for effective teaching, separate course for experiments in cardiovascular physiology, selective laboratory (alternative to cookbook experiments), cardiovascular…
Marzetti, Emanuele; Csiszar, Anna; Dutta, Debapriya; Balagopal, Gauthami; Calvani, Riccardo
2013-01-01
Advanced age is associated with a disproportionate prevalence of cardiovascular disease (CVD). Intrinsic alterations in the heart and the vasculature occurring over the life course render the cardiovascular system more vulnerable to various stressors in late life, ultimately favoring the development of CVD. Several lines of evidence indicate mitochondrial dysfunction as a major contributor to cardiovascular senescence. Besides being less bioenergetically efficient, damaged mitochondria also produce increased amounts of reactive oxygen species, with detrimental structural and functional consequences for the cardiovascular system. The age-related accumulation of dysfunctional mitochondrial likely results from the combination of impaired clearance of damaged organelles by autophagy and inadequate replenishment of the cellular mitochondrial pool by mitochondriogenesis. In this review, we summarize the current knowledge about relevant mechanisms and consequences of age-related mitochondrial decay and alterations in mitochondrial quality control in the cardiovascular system. The involvement of mitochondrial dysfunction in the pathogenesis of cardiovascular conditions especially prevalent in late life and the emerging connections with neurodegeneration are also illustrated. Special emphasis is placed on recent discoveries on the role played by alterations in mitochondrial dynamics (fusion and fission), mitophagy, and their interconnections in the context of age-related CVD and endothelial dysfunction. Finally, we discuss pharmacological interventions targeting mitochondrial dysfunction to delay cardiovascular aging and manage CVD. PMID:23748424
Antioxidant-based therapies for angiotensin II-associated cardiovascular diseases
Rosenbaugh, Erin G.; Savalia, Krupa K.; Manickam, Devika S.
2013-01-01
Cardiovascular diseases, including hypertension and heart failure, are associated with activation of the renin-angiotensin system (RAS) and increased circulating and tissue levels of ANG II, a primary effector peptide of the RAS. Through its actions on various cell types and organ systems, ANG II contributes to the pathogenesis of cardiovascular diseases by inducing cardiac and vascular hypertrophy, vasoconstriction, sodium and water reabsorption in kidneys, sympathoexcitation, and activation of the immune system. Cardiovascular research over the past 15–20 years has clearly implicated an important role for elevated levels of reactive oxygen species (ROS) in mediating these pathophysiological actions of ANG II. As such, the use of antioxidants, to reduce the elevated levels of ROS, as potential therapies for various ANG II-associated cardiovascular diseases has been intensely investigated. Although some antioxidant-based therapies have shown therapeutic impact in animal models of cardiovascular disease and in human patients, others have failed. In this review, we discuss the benefits and limitations of recent strategies, including gene therapy, dietary sources, low-molecular-weight free radical scavengers, polyethylene glycol conjugation, and nanomedicine-based technologies, which are designed to deliver antioxidants for the improved treatment of cardiovascular diseases. Although much work has been completed, additional research focusing on developing specific antioxidant molecules or proteins and identifying the ideal in vivo delivery system for such antioxidants is necessary before the use of antioxidant-based therapies for cardiovascular diseases become a clinical reality. PMID:23552499
An experimental design for quantification of cardiovascular responses to music stimuli in humans.
Chang, S-H; Luo, C-H; Yeh, T-L
2004-01-01
There have been several researches on the relationship between music and human physiological or psychological responses. However, there are cardiovascular index factors that have not been explored quantitatively due to the qualitative nature of acoustic stimuli. This study proposes and demonstrates an experimental design for quantification of cardiovascular responses to music stimuli in humans. The system comprises two components: a unit for generating and monitoring quantitative acoustic stimuli and a portable autonomic nervous system (ANS) analysis unit for quantitative recording and analysis of the cardiovascular responses. The experimental results indicate that the proposed system can exactly achieve the goal of full control and measurement for the music stimuli, and also effectively support many quantitative indices of cardiovascular response in humans. In addition, the analysis results are discussed and predicted in the future clinical research.
21 CFR 870.5900 - Thermal regulating system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Thermal regulating system. 870.5900 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Therapeutic Devices § 870.5900 Thermal regulating system. (a) Identification. A thermal regulating system is an external system consisting of a device that...
21 CFR 870.5900 - Thermal regulating system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Thermal regulating system. 870.5900 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Therapeutic Devices § 870.5900 Thermal regulating system. (a) Identification. A thermal regulating system is an external system consisting of a device that...
21 CFR 870.5900 - Thermal regulating system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Thermal regulating system. 870.5900 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Therapeutic Devices § 870.5900 Thermal regulating system. (a) Identification. A thermal regulating system is an external system consisting of a device that...
21 CFR 870.5900 - Thermal regulating system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Thermal regulating system. 870.5900 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Therapeutic Devices § 870.5900 Thermal regulating system. (a) Identification. A thermal regulating system is an external system consisting of a device that...
The Spleen: A Hub Connecting Nervous and Immune Systems in Cardiovascular and Metabolic Diseases
Lori, Andrea; Perrotta, Marialuisa; Lembo, Giuseppe; Carnevale, Daniela
2017-01-01
Metabolic disorders have been identified as major health problems affecting a large portion of the world population. In addition, obesity and insulin resistance are principal risk factors for the development of cardiovascular diseases. Altered immune responses are common features of both hypertension and obesity and, moreover, the involvement of the nervous system in the modulation of immune system is gaining even more attention in both pathophysiological contexts. For these reasons, during the last decades, researches focused their efforts on the comprehension of the molecular mechanisms connecting immune system to cardiovascular and metabolic diseases. On the other hand, it has been reported that in these pathological conditions, central neural pathways modulate the activity of the peripheral nervous system, which is strongly involved in onset and progression of the disease. It is interesting to notice that neural reflex can also participate in the modulation of immune functions. In this scenario, the spleen becomes the crucial hub allowing the interaction of different systems differently involved in metabolic and cardiovascular diseases. Here, we summarize the major findings that dissect the role of the immune system in disorders related to metabolic and cardiovascular dysfunctions, and how this could also be influenced by neural reflexes. PMID:28590409
De León-Luis, Juan; Bravo, Coral; Gámez, Francisco; Ortiz-Quintana, Luis
2015-07-01
To evaluate the reproducibility and feasibility of the new cardiovascular system sonographic evaluation algorithm for studying the extended fetal cardiovascular system, including the portal, thymic, and supra-aortic areas, in the second trimester of pregnancy (19-22 weeks). We performed a cross-sectional study of pregnant women with healthy fetuses (singleton and twin pregnancies) attending our center from March to August 2011. The extended fetal cardiovascular system was evaluated by following the new algorithm, a sequential acquisition of axial views comprising the following (caudal to cranial): I, portal sinus; II, ductus venosus; III, hepatic veins; IV, 4-chamber view; V, left ventricular outflow tract; VI, right ventricular outflow tract; VII, 3-vessel and trachea view; VIII, thy-box; and IX, subclavian arteries. Interobserver agreement on the feasibility and exploration time was estimated in a subgroup of patients. The feasibility and exploration time were determined for the main cohort. Maternal, fetal, and sonographic factors affecting both features were evaluated. Interobserver agreement was excellent for all views except view VIII; the difference in the mean exploration time between observers was 1.5 minutes (95% confidence interval, 0.7-2.1 minutes; P < .05). In 184 fetuses (mean gestational age ± SD, 20 ± 0.6 weeks), the feasibility of all views was close to 99% except view VIII (88.7%). The complete feasibility of the algorithm was 81.5%. The mean exploration time was 5.6 ± 4.2 minutes. Only the occiput anterior fetal position was associated with a lower frequency of visualization and a longer exploration time (P < .05). The cardiovascular system sonographic evaluation algorithm is a reproducible and feasible approach for exploration of the extended fetal cardiovascular system in a second-trimester scan. It can be used to explore these areas in normal and abnormal conditions and provides an integrated image of extended fetal cardiovascular anatomy. © 2015 by the American Institute of Ultrasound in Medicine.
Emerging role of neurotensin in regulation of the cardiovascular system.
Osadchii, Oleg E
2015-09-05
There is increasing evidence in support of an important role played by neurotensin (NT), a tridecapeptide originally found in bovine hypothalamus, in regulation of cardiovascular system. Elevated systemic levels of NT may contribute to pathogenesis of acute circulatory disoders, and predict the risk for cardiovascular morbidity and mortality in population-based studies. Within cardiovascular system, NT-containing neural fibers are found in close contact with atrial and ventricular cardiac myocytes, cardiac conduction system, intracardiac ganglia, as well as coronary vessels in humans and various animal species. The density of NT-immunoreactive innervation is reduced in cardiac disease. NT produces a variety of cardiovascular actions including effects on heart rate, myocardial contractility, systemic blood pressure, coronary vascular tone, venous smooth muscle tone, and regional blood flow in gastrointestinal tract, cutaneous and adipose tissue. NT could trigger cardiovascular reflexes by stimulating primary visceral afferents synaptically connected with preganglionic sympathetic neurons at the spinal cord. Structural determinants of biological activity of NT reside primarily in the C-terminal portion of its molecule which is responsible for receptor activation. NT effects are mediated via activation of NT receptors, or produced indirectly via stimulation of release of various endogenous neuromodulators/neurotransmitters such as histamine, catecholamines and prostaglandins. Three subtypes of NT receptor (NTS1, NTS2 and NTS3) have been shown to be expressed in the myocardium. NTS1, a high-affinity NT binding site coupled to phospholipase C-inositoltrisphosphate transduction pathway, is thought to mediate NT-induced cardiovascular responses. Copyright © 2015 Elsevier B.V. All rights reserved.
Stimulation of cardiovascular adaptability during prolonged space exposure
NASA Technical Reports Server (NTRS)
Gorman, H. A.
1971-01-01
The deconditioning effects of weightlessness on the cardiovascular system of astronauts are discussed. It is believed that man cannot tolerate indefinite exposure to weightlessness without considerable circulatory deterioration. Analyses of data collected from space flights to date substantiate these beliefs, and confirm the fact that some form of compensation must be provided to keep the cardiovascular system of space travelers properly conditioned. Sequential pulsatile devices were investigated to produce periodic hydrostatic pressure gradients in the venous system of eight subhuman primates. Intermittent venous pooling of blood in the extremities triggers and stimulates the vascular reflex mechanisms of the cardiovascular system that may have significant benefits in maintaining the circulatory system in proper tone under weightless conditions. Electrocardiograms, blood pressure measurements, cardiac output and stroke volume determinations were used to evaluate the efficiency of the described technique. Results were amazingly consistent to indicate an efficient system for intermittently exercising the heart within safe and medically acceptable limits.
Neuro-Cardio Mechanisms in Huntington's Disease and Other Neurodegenerative Disorders.
Critchley, Bethan J; Isalan, Mark; Mielcarek, Michal
2018-01-01
Although Huntington's disease is generally considered to be a neurological disorder, there is mounting evidence that heart malfunction plays an important role in disease progression. This is perhaps not unexpected since both cardiovascular and nervous systems are strongly connected - both developmentally and subsequently in health and disease. This connection occurs through a system of central and peripheral neurons that control cardiovascular performance, while in return the cardiovascular system works as a sensor for the nervous system to react to physiological events. Hence, given their permanent interconnectivity, any pathological events occurring in one system might affect the second. In addition, some pathological signals from Huntington's disease might occur simultaneously in both the cardiovascular and nervous systems, since mutant huntingtin protein is expressed in both. Here we aim to review the source of HD-related cardiomyopathy in the light of recently published studies, and to identify similarities between HD-related cardiomyopathy and other neuro-cardio disorders.
Maddox, Thomas M; Albert, Nancy M; Borden, William B; Curtis, Lesley H; Ferguson, T Bruce; Kao, David P; Marcus, Gregory M; Peterson, Eric D; Redberg, Rita; Rumsfeld, John S; Shah, Nilay D; Tcheng, James E
2017-04-04
The learning healthcare system uses health information technology and the health data infrastructure to apply scientific evidence at the point of clinical care while simultaneously collecting insights from that care to promote innovation in optimal healthcare delivery and to fuel new scientific discovery. To achieve these goals, the learning healthcare system requires systematic redesign of the current healthcare system, focusing on 4 major domains: science and informatics, patient-clinician partnerships, incentives, and development of a continuous learning culture. This scientific statement provides an overview of how these learning healthcare system domains can be realized in cardiovascular disease care. Current cardiovascular disease care innovations in informatics, data uses, patient engagement, continuous learning culture, and incentives are profiled. In addition, recommendations for next steps for the development of a learning healthcare system in cardiovascular care are presented. © 2017 American Heart Association, Inc.
21 CFR 870.3535 - Intra-aortic balloon and control system
Code of Federal Regulations, 2011 CFR
2011-04-01
... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3535 Intra-aortic... consists of an inflatable balloon, which is placed in the aorta to improve cardiovascular functioning...
21 CFR 870.3535 - Intra-aortic balloon and control system
Code of Federal Regulations, 2010 CFR
2010-04-01
... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3535 Intra-aortic... consists of an inflatable balloon, which is placed in the aorta to improve cardiovascular functioning...
Cell death and survival signalling in the cardiovascular system.
Tucka, Joanna; Bennett, Martin; Littlewood, Trevor
2012-01-01
The loss of cells is an important factor in many diseases, including those of the cardiovascular system. Whereas apoptosis is an essential process in development and tissue homeostasis, its occurrence is often associated with various pathologies. Apoptosis of neurons that fail to make appropriate connections is essential for the selection of correct neural signalling in the developing embryo, but its appearance in adults is often associated with neurodegenerative disease. Similarly, in the cardiovascular system, remodeling of the mammalian outflow tract during the transition from a single to dual series circulation with four chambers is accompanied by a precise pattern of cell death, but apoptosis of cardiomyocytes contributes to ischemia-reperfusion injury in the heart. In many cases, it is unclear whether apoptosis represents a causative association or merely a consequence of the disease itself. There are many excellent reviews on cell death in the cardiovascular system (1-5); in this review we outline the critical signalling pathways that promote the survival of cardiovascular cells, and their relevance to both physiological cell death and disease.
Effect of blockage of the endocannabinoid system by CB(1) antagonism on cardiovascular risk.
Mach, François; Montecucco, Fabrizio; Steffens, Sabine
2009-01-01
The endocannabinoid system is a crucial player in the inflammatory processes underlying atherosclerosis. Recently, basic research studies and animal models have strongly supported the role of the endocannabinoid system not only in the regulation of classical cardiovascular risk factors (including lipid profile and glucose homeostasis), but also in the activation of immune cells and inflammatory mediators. Clinical trials investigating treatment with rimonabant (a selective antagonist of the cannabinoid type 1 receptor) have suggested a beneficial effect of this drug in the management of obesity. Further studies are needed to explore a possible use for rimonabant in treating type 2 diabetes and acute and chronic cardiovascular disease. Despite the slight increase in adverse events (mainly psychiatric), which has led to the recent withdrawal of rimonabant from the market, CB(1) receptor antagonism might represent a very promising therapeutic strategy to reduce the cardiovascular risk. In the present review, we focused on the most important experimental investigations into the role of the endocannabinoid system in atherosclerosis and cardiovascular risk.
Wood, Christopher S.; Valentino, Rita J.; Wood, Susan K.
2016-01-01
Repeated exposure to psychosocial stress is a robust sympathomimetic stressor and as such has adverse effects on cardiovascular health. While the neurocircuitry involved remains unclear, the physiological and anatomical characteristics of the locus coeruleus (LC)-norepinephrine (NE) system suggest that it is poised to contribute to stress-induced cardiovascular vulnerability. A major theme throughout is to review studies that shed light on the role that the LC may play in individual differences in vulnerability to social stress-induced cardiovascular dysfunction. Recent findings are discussed that support a unique plasticity in afferent regulation of the LC, resulting in either excitatory or inhibitory input to the LC during establishment of different stress coping strategies. This contrasting regulation of the LC by either afferent regulation, or distinct differences in stress-induced neuroinflammation would translate to differences in cardiovascular regulation and may serve as the basis for individual differences in the cardiopathological consequences of social stress. The goal of this review is to highlight recent developments in the interplay between the LC-NE and cardiovascular systems during repeated stress in an effort to advance therapeutic treatments for the development of stress-induced cardiovascular vulnerability. PMID:27423323
Synchronisation and coupling analysis: applied cardiovascular physics in sleep medicine.
Wessel, Niels; Riedl, Maik; Kramer, Jan; Muller, Andreas; Penzel, Thomas; Kurths, Jurgen
2013-01-01
Sleep is a physiological process with an internal program of a number of well defined sleep stages and intermediate wakefulness periods. The sleep stages modulate the autonomous nervous system and thereby the sleep stages are accompanied by different regulation regimes for the cardiovascular and respiratory system. The differences in regulation can be distinguished by new techniques of cardiovascular physics. The number of patients suffering from sleep disorders increases unproportionally with the increase of the human population and aging, leading to very high expenses in the public health system. Therefore, the challenge of cardiovascular physics is to develop highly-sophisticated methods which are able to, on the one hand, supplement and replace expensive medical devices and, on the other hand, improve the medical diagnostics with decreasing the patient's risk. Methods of cardiovascular physics are used to analyze heart rate, blood pressure and respiration to detect changes of the autonomous nervous system in different diseases. Data driven modeling analysis, synchronization and coupling analysis and their applications to biosignals in healthy subjects and patients with different sleep disorders are presented. Newly derived methods of cardiovascular physics can help to find indicators for these health risks.
21 CFR 870.3460 - Endovascular Suturing System.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Endovascular Suturing System. 870.3460 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3460 Endovascular Suturing System. (a) Identification. An endovascular suturing system is a medical device intended to provide...
21 CFR 870.3460 - Endovascular Suturing System.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Endovascular Suturing System. 870.3460 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3460 Endovascular Suturing System. (a) Identification. An endovascular suturing system is a medical device intended to provide...
21 CFR 870.1290 - Steerable catheter control system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Steerable catheter control system. 870.1290... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1290 Steerable catheter control system. (a) Identification. A steerable catheter control system is a device that is...
21 CFR 870.1290 - Steerable catheter control system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Steerable catheter control system. 870.1290... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1290 Steerable catheter control system. (a) Identification. A steerable catheter control system is a device that is...
21 CFR 870.3460 - Endovascular Suturing System.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Endovascular Suturing System. 870.3460 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3460 Endovascular Suturing System. (a) Identification. An endovascular suturing system is a medical device intended to provide...
21 CFR 870.1290 - Steerable catheter control system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Steerable catheter control system. 870.1290... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1290 Steerable catheter control system. (a) Identification. A steerable catheter control system is a device that is...
Thyroid disease and the cardiovascular system.
Danzi, Sara; Klein, Irwin
2014-06-01
Thyroid hormones, specifically triiodothyronine (T3), have significant effects on the heart and cardiovascular system. Hypothyroidism, hyperthyroidism, subclinical thyroid disease, and low T3 syndrome each cause cardiac and cardiovascular abnormalities through both genomic and nongenomic effects on cardiac myocytes and vascular smooth muscle cells. In compromised health, such as occurs in heart disease, alterations in thyroid hormone metabolism may further impair cardiac and cardiovascular function. Diagnosis and treatment of cardiac disease may benefit from including analysis of thyroid hormone status, including serum total T3 levels. Copyright © 2014 Elsevier Inc. All rights reserved.
Cardiovascular magnetic resonance in systemic hypertension
2012-01-01
Systemic hypertension is a highly prevalent potentially modifiable cardiovascular risk factor. Imaging plays an important role in the diagnosis of underlying causes for hypertension, in assessing cardiovascular complications of hypertension, and in understanding the pathophysiology of the disease process. Cardiovascular magnetic resonance (CMR) provides accurate and reproducible measures of ventricular volumes, mass, function and haemodynamics as well as uniquely allowing tissue characterization of diffuse and focal fibrosis. In addition, CMR is well suited for exclusion of common secondary causes for hypertension. We review the current and emerging clinical and research applications of CMR in hypertension. PMID:22559053
Effects of androgens on cardiovascular remodeling.
Ikeda, Yasumasa; Aihara, Ken-ichi; Yoshida, Sumiko; Akaike, Masashi; Matsumoto, Toshio
2012-07-01
Androgens, the male sex hormones, exert various biological effects on many target organs through the transcriptional effects of the nuclear androgen receptor (AR). ARs are expressed not only in classical target organs, such as the brain, genital organs, bone, and skeletal muscles, but also in the cardiovascular system. Because the female sex hormones estrogens are well-known to protect against cardiovascular disease, sex has been considered to have a significant clinical impact on cardiovascular mortality. However, the influence of androgens on the cardiovascular system has not been fully elucidated. To clarify this issue, we analyzed the effects of administration of angiotensin II and doxorubicin, an anticancer agent, in a loading model in male wild-type and AR-deficient mice. In this review, we focus on the actions of androgens as potential targets for the prevention of cardiovascular diseases in males.
Simulation of Cardiovascular Response to the Head-Up/Head-Down Tilt at Different Angles
NASA Astrophysics Data System (ADS)
Liu, Yang; Lu, Hong-Bing; Jiao, Chun; Zhang, Li-Fan
2008-06-01
The disappearance of hydrostatic pressure is the original factor that causes the changes of cardiovascular system under microgravity. The hydrostatical changes can be simulated by postural changes. Especially the head-down position can be used to simulate the effects of microgravity. The goal of this investigation was to develop a mathematical model for simulation of the human cardiovascular responses to acute and prolonged exposure under microgravity environment. We were particularly interested in the redistribution of transmural pressures, flows, blood volume, and the consequent alterations in local hemodynamics in different cardiovascular compartments during acute exposure and chronic adjustments. As a preliminary study, we first developed a multi-element, distributed hemodynamic model of human cardiovascular system, and verified the model to simulate cardiovascular changes during head up/down tilt at various angles.
Chronic stress impacts the cardiovascular system: animal models and clinical outcomes.
Golbidi, Saeid; Frisbee, Jefferson C; Laher, Ismail
2015-06-15
Psychological stresses are associated with cardiovascular diseases to the extent that cardiovascular diseases are among the most important group of psychosomatic diseases. The longstanding association between stress and cardiovascular disease exists despite a large ambiguity about the underlying mechanisms. An array of possibilities have been proposed including overactivity of the autonomic nervous system and humoral changes, which then converge on endothelial dysfunction that initiates unwanted cardiovascular consequences. We review some of the features of the two most important stress-activated systems, i.e., the humoral and nervous systems, and focus on alterations in endothelial function that could ensue as a result of these changes. Cardiac and hematologic consequences of stress are also addressed briefly. It is likely that activation of the inflammatory cascade in association with oxidative imbalance represents key pathophysiological components of stress-induced cardiovascular changes. We also review some of the commonly used animal models of stress and discuss the cardiovascular outcomes reported in these models of stress. The unique ability of animals for adaptation under stressful conditions lessens the extrapolation of laboratory findings to conditions of human stress. An animal model of unpredictable chronic stress, which applies various stress modules in a random fashion, might be a useful solution to this predicament. The use of stress markers as indicators of stress intensity is also discussed in various models of animal stress and in clinical studies. Copyright © 2015 the American Physiological Society.
RhoA/Rho-Kinase in the Cardiovascular System.
Shimokawa, Hiroaki; Sunamura, Shinichiro; Satoh, Kimio
2016-01-22
Twenty years ago, Rho-kinase was identified as an important downstream effector of the small GTP-binding protein, RhoA. Thereafter, a series of studies demonstrated the important roles of Rho-kinase in the cardiovascular system. The RhoA/Rho-kinase pathway is now widely known to play important roles in many cellular functions, including contraction, motility, proliferation, and apoptosis, and its excessive activity induces oxidative stress and promotes the development of cardiovascular diseases. Furthermore, the important role of Rho-kinase has been demonstrated in the pathogenesis of vasospasm, arteriosclerosis, ischemia/reperfusion injury, hypertension, pulmonary hypertension, and heart failure. Cyclophilin A is secreted by vascular smooth muscle cells and inflammatory cells and activated platelets in a Rho-kinase-dependent manner, playing important roles in a wide range of cardiovascular diseases. Thus, the RhoA/Rho-kinase pathway plays crucial roles under both physiological and pathological conditions and is an important therapeutic target in cardiovascular medicine. Recently, functional differences between ROCK1 and ROCK2 have been reported in vitro. ROCK1 is specifically cleaved by caspase-3, whereas granzyme B cleaves ROCK2. However, limited information is available on the functional differences and interactions between ROCK1 and ROCK2 in the cardiovascular system in vivo. Herein, we will review the recent advances about the importance of RhoA/Rho-kinase in the cardiovascular system. © 2016 American Heart Association, Inc.
Building Sustainable Capacity for Cardiovascular Care at a Public Hospital in Western Kenya
Binanay, Cynthia A.; Akwanalo, Constantine O.; Aruasa, Wilson; Barasa, Felix A.; Corey, G. Ralph; Crowe, Susie; Esamai, Fabian; Einterz, Robert; Foster, Michael C.; Gardner, Adrian; Kibosia, John; Kimaiyo, Sylvester; Koech, Myra; Korir, Belinda; Lawrence, John E.; Lukas, Stephanie; Manji, Imran; Maritim, Peris; Ogaro, Francis; Park, Peter; Pastakia, Sonak; Sugut, Wilson; Vedanthan, Rajesh; Yanoh, Reuben; Velazquez, Eric J.; Bloomfield, Gerald S.
2015-01-01
Cardiovascular disease deaths are increasing in low- and middle-income countries and are exacerbated by health care systems that are ill-equipped to manage chronic diseases. Global health partnerships, which have stemmed the tide of infectious diseases in low- and middle-income countries, can be similarly applied to address cardiovascular diseases. In this review, we present the experiences of an academic partnership between North American and Kenyan medical centers to improve cardiovascular health in a national public referral hospital. We highlight our stepwise approach to developing sustainable cardiovascular services using the health system strengthening World Health Organization Framework for Action. The building blocks of this framework (leadership and governance, health workforce, health service delivery, health financing, access to essential medicines, and health information system) guided our comprehensive and sustainable approach to delivering subspecialty care in a resource limited setting. Our experiences may guide the development of similar collaborations in other settings. PMID:26653630
21 CFR 870.2600 - Signal isolation system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Signal isolation system. 870.2600 Section 870.2600...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2600 Signal isolation system. (a) Identification. A signal isolation system is a device that electrically isolates the patient...
21 CFR 870.2600 - Signal isolation system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Signal isolation system. 870.2600 Section 870.2600...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2600 Signal isolation system. (a) Identification. A signal isolation system is a device that electrically isolates the patient...
21 CFR 870.2600 - Signal isolation system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Signal isolation system. 870.2600 Section 870.2600...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2600 Signal isolation system. (a) Identification. A signal isolation system is a device that electrically isolates the patient...
Melatonin, mitochondria and hypertension.
Baltatu, Ovidiu C; Amaral, Fernanda G; Campos, Luciana A; Cipolla-Neto, Jose
2017-11-01
Melatonin, due to its multiple means and mechanisms of action, plays a fundamental role in the regulation of the organismal physiology by fine tunning several functions. The cardiovascular system is an important site of action as melatonin regulates blood pressure both by central and peripheral interventions, in addition to its relation with the renin-angiotensin system. Besides, the systemic management of several processes, melatonin acts on mitochondria regulation to maintain a healthy cardiovascular system. Hypertension affects target organs in different ways and cellular energy metabolism is frequently involved due to mitochondrial alterations that include a rise in reactive oxygen species production and an ATP synthesis decrease. The discussion that follows shows the role played by melatonin in the regulation of mitochondrial physiology in several levels of the cardiovascular system, including brain, heart, kidney, blood vessels and, particularly, regulating the renin-angiotensin system. This discussion shows the putative importance of using melatonin as a therapeutic tool involving its antioxidant potential and its action on mitochondrial physiology in the cardiovascular system.
21 CFR 870.4380 - Cardiopulmonary bypass pump speed control.
Code of Federal Regulations, 2012 CFR
2012-04-01
... SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Surgical Devices § 870.4380... device used that incorporates an electrical system or a mechanical system, or both, and is used to...
21 CFR 870.4380 - Cardiopulmonary bypass pump speed control.
Code of Federal Regulations, 2014 CFR
2014-04-01
... SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Surgical Devices § 870.4380... device used that incorporates an electrical system or a mechanical system, or both, and is used to...
21 CFR 870.4380 - Cardiopulmonary bypass pump speed control.
Code of Federal Regulations, 2013 CFR
2013-04-01
... SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Surgical Devices § 870.4380... device used that incorporates an electrical system or a mechanical system, or both, and is used to...
Effects of interventions on oxidative stress and inflammation of cardiovascular diseases
Lee, Sewon; Park, Yoonjung; Zuidema, Mozow Yusof; Hannink, Mark; Zhang, Cuihua
2011-01-01
Excessive oxidative stress and low-grade chronic inflammation are major pathophysiological factors contributing to the development of cardiovascular diseases (CVD) such as hypertension, diabetes and atherosclerosis. Accumulating evidence suggests that a compromised anti-oxidant system can lead to excessive oxidative stress in cardiovascular related organs, resulting in cell damage and death. In addition, increased circulating levels of pro-inflammatory cytokines, such as tumor necrosis factor α, interleukin-6 and C-reactive protein, are closely related to morbidity and mortality of cardiovascular complications. Emerging evidence suggests that interventions including nutrition, pharmacology and exercise may activate expression of cellular anti-oxidant systems via the nuclear factor erythroid 2-related factor 2-Kelch-like ECH-associated protein 1 signaling pathway and play a role in preventing inflammatory processes in CVD. The focus of the present review is to summarize recent evidence showing the role of these anti-oxidant and anti-inflammatory interventions in cardiovascular disease. We believe that these findings may prompt new effective pathogenesis-oriented interventions, based on the exercise-induced protection from disease in the cardiovascular system, aimed at targeting oxidant stress and inflammation. PMID:21286214
21 CFR 870.2855 - Implantable Intra-aneurysm Pressure Measurement System.
Code of Federal Regulations, 2012 CFR
2012-04-01
... System. 870.2855 Section 870.2855 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2855 Implantable Intra-aneurysm Pressure Measurement System. (a) Identification. Implantable intra...
21 CFR 870.2855 - Implantable Intra-aneurysm Pressure Measurement System.
Code of Federal Regulations, 2013 CFR
2013-04-01
... System. 870.2855 Section 870.2855 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2855 Implantable Intra-aneurysm Pressure Measurement System. (a) Identification. Implantable intra...
21 CFR 870.2855 - Implantable Intra-aneurysm Pressure Measurement System.
Code of Federal Regulations, 2014 CFR
2014-04-01
... System. 870.2855 Section 870.2855 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2855 Implantable Intra-aneurysm Pressure Measurement System. (a) Identification. Implantable intra...
The cardiovascular macrophage: a missing link between gut microbiota and cardiovascular diseases?
Chen, X; Zheng, L; Zheng, Y-Q; Yang, Q-G; Lin, Y; Ni, F-H; Li, Z-H
2018-03-01
The prevalence of cardiovascular diseases is on the rise. Interventions that would aid prevention or treatment of these diseases are essential. The microbes residing in the gut, collectively called "gut microbiota", produce a plethora of compounds that enter the bloodstream and affect the cardiovascular system. Signals ascending from gut microbiome are believed to modulate differentiation and functional activity of macrophages residing in perivascular tissue, atherosclerotic plaques, and perivascular areas of the brain. Cardiovascular macrophages may be the key players that transform the signals ascending from gut microbiome into increased predisposition to cardiovascular diseases. The present review summarizes the knowledge to date on potential relationships between gut microbiota, cardiovascular macrophages, and cardiovascular diseases.
Preparing nurses for leadership roles in cardiovascular disease prevention.
Lanuza, Dorothy M; Davidson, Patricia M; Dunbar, Sandra B; Hughes, Suzanne; De Geest, Sabina
2011-01-01
Cardiovascular disease (CVD) is a critical global health issue, and cardiovascular nurses play a vital role in decreasing the global burden and contributing to improving outcomes in individuals and communities. Cardiovascular nurses require the knowledge, skills, and resources that will enable them to function as leaders in CVD. This article addresses the education, training, and strategies that are needed to prepare nurses for leadership roles in preventing and managing CVD. Building on the World Health Organization core competencies for 21st-century health care workers, the specific competencies of cardiovascular nurses working in prevention are outlined. These can be further strengthened by investing in the development of cultural, system change and leadership competencies. Mentorship is proposed as a powerful strategy for promoting the cardiovascular nursing role and equipping individual nurses to contribute meaningfully to health system reform and community engagement in CVD risk reduction.
Cardiovascular Adaptations Induced by Resistance Training in Animal Models.
Melo, S F S; da Silva Júnior, N D; Barauna, V G; Oliveira, E M
2018-01-01
In the last 10 years the number of studies showing the benefits of resistance training (RT) to the cardiovascular system, have grown. In comparison to aerobic training, RT-induced favorable adaptations to the cardiovascular system have been ignored for many years, thus the mechanisms of the RT-induced cardiovascular adaptations are still uncovered. The lack of animal models with comparable protocols to the RT performed by humans hampers the knowledge. We have used squat-exercise model, which is widely used by many others laboratories. However, to a lesser extent, other models are also employed to investigate the cardiovascular adaptations. In the subsequent sections we will review the information regarding cardiac morphological adaptations, signaling pathway of the cardiac cell, cardiac function and the vascular adaptation induced by RT using this animal model developed by Tamaki et al. in 1992. Furthermore, we also describe cardiovascular findings observed using other animal models of RT.
[Effect of lead on the cardiovascular system].
Zyśko, Dorota; Chlebda, Ewa; Gajek, Jacek
2004-11-01
Lead is a metal widely spread in the natural environment. It is strongly toxic, particularly to the peripheral and central nervous systems. The toxic influence on the cardiovascular system is most pronounced in case of higher exposures, where myocardium and the renal circulation are affected, in consequence of which secondary arterial hypertension can develop. It seems that lead affects the cardiovascular system mainly by changing the peripheral autonomic nervous system and leading to chronic neuropathy. Chronic exposure, even to low doses of lead, can impair conduction in myocardium. In order to assess those changes thoroughly prospective studies involving newly employed workers with occupational exposure to toxic activity of lead will be necessary.
Brudey, Chevelle; Park, Jeanie; Wiaderkiewicz, Jan; Kobayashi, Ihori; Mellman, Thomas A; Marvar, Paul J
2015-08-15
Stress- and anxiety-related disorders are on the rise in both military and general populations. Over the next decade, it is predicted that treatment of these conditions, in particular, posttraumatic stress disorder (PTSD), along with its associated long-term comorbidities, will challenge the health care system. Multiple organ systems are adversely affected by PTSD, and PTSD is linked to cancer, arthritis, digestive disease, and cardiovascular disease. Evidence for a strong link between PTSD and cardiovascular disease is compelling, and this review describes current clinical data linking PTSD to cardiovascular disease, via inflammation, autonomic dysfunction, and the renin-angiotensin system. Recent clinical and preclinical evidence regarding the role of the renin-angiotensin system in the extinction of fear memory and relevance in PTSD-related immune and autonomic dysfunction is also addressed. Copyright © 2015 the American Physiological Society.
[Atmospheric pollution and cardiovascular damage].
Román, Oscar; Prieto, María José; Mancilla, Pedro
2004-06-01
The damaging effect of atmospheric pollution with particulate matter and toxic gases on the respiratory system and its effect in the incidence and severity of respiratory diseases, is well known. A similar effect on the cardiovascular system is currently under investigation. Epidemiological studies have demonstrated that the inhalation of particulate matter can increase cardiovascular disease incidence and mortality, specially ischemic heart disease. The damage would be mediated by alterations in the autonomic nervous system, inflammation, infections and free radicals. In human studies, environmental pollution is associated with alterations in cardiac frequency variability and blood pressure and with changes in ventricular repolarization. Experimentally, an enhancement of ischemia, due to coronary obstruction, has been demonstrated. The study of the toxic effects of environmental pollution over the cardiovascular system, is an open field, specially in Chile, were the big cities have serious contamination problems.
Management of cardiovascular risk in systemic lupus erythematosus: a systematic review.
Andrades, C; Fuego, C; Manrique-Arija, S; Fernández-Nebro, A
2017-11-01
Systemic lupus erythematosus is associated with accelerated atherosclerosis and increased risk of cardiovascular complications. The aim of this study was to review the effectiveness of interventions for primary and secondary prevention of cardiovascular events and mortality and to review the effectiveness of interventions for cardiovascular risk factor reduction in systemic lupus erythematosus patients. A systematic review was conducted. Electronic databases Medline and Embase (1961-2015) were searched. Nineteen articles met the inclusion criteria and were selected. Low-calorie and/or low glycaemic index calories may be a useful option for secondary prevention in obese patients with systemic lupus erythematosus, and exercise would be useful in improving the endothelial function measured by flow-mediated dilation in this group of patients. The use of lipid-lowering drugs may improve the lipid profile in patients with systemic lupus erythematosus and hyperlipidaemia, but the effect of this treatment on overall cardiovascular mortality remains unknown. Antiplatelets, anticoagulants, antimalarials and lipid-lowering drugs may be effective in the primary and secondary prevention of major cardiovascular events, such as acute myocardial infarction or stroke. Similarly, lipid-lowering drugs and antimalarial drugs appear to reduce the serum levels of total cholesterol, low-density lipoprotein, glucose, diastolic blood pressure and calcium deposition at the coronary arteries. They may also improve insulin resistance and the level of high-density lipoproteins. It appears that treatment with antihypertensive drugs reduces blood pressure in patients with systemic lupus erythematosus, but the available studies are of low quality.
[Effect of underground work on cardiovascular system in coal miners].
Lai, Zhiwei; Wang, Xiaoye; Tan, Hongzhuan; Huang, Yaoyu; Lu, Changcheng
2015-10-01
To study the effect of underground work on cardiovascular system health in coal miners. Male coal miners, who received electrocardiographic examinations between June, 2013 and August, 2014 in Hunan Prevention and Treatment Institute for Occupational Diseases to exclude pneumoconiosis, were enrolled for this study (n=3 134). Miners with 2 years or more underground work experience were selected as the exposed group (n=2 370), while miners without underground work experience were selected as the control group (n=764). The prevalence of electrocardiographic abnormalities and the influential factors were compared between the 2 groups. The prevalences of electrocardiographic abnormalities, hypertension, heart rate abnormalities and cardiovascular system abnormalities in the exposed group vs the control group were 37.6% vs 25.4%, 20.5% vs 13.4%, 5.7% vs 6.0%, 49.8% vs 35.2%, respectively. The cardiovascular system abnormalities were correlated with the underground work (OR=3.128, 95% CI: 1.969-4.970), the underground work experience (OR=1.205, 95% CI: 1.070-1.358) and the type of works (mining worker OR=1.820, 95% CI: 1.527-2.169; auxiliary worker OR=1.937, 95% CI: 1.511-2.482; other worker OR=3.291, 95%CI: 2.120-5.109). Underground work may increase the prevalence of cardiovascular system abnormalities for coal miners. The longer the coal miners work in underground, the higher the risk of the cardiovascular system abnormalities they are.
Does treatment of SDB in children improve cardiovascular outcome?
Vlahandonis, Anna; Walter, Lisa M; Horne, Rosemary S C
2013-02-01
Sleep disordered breathing (SDB) is a common disorder in both adults and children and is caused by the obstruction of the upper airway during sleep. Unlike adults, most cases of paediatric SDB are due to the presence of enlarged tonsils and adenoids, thus the main treatment option is adenotonsillectomy (T&A). It is well known that obstructive sleep apnoea in adults increases the risk for hypertension, coronary artery disease and stroke, and there is now mounting evidence that SDB also has a significant impact on the cardiovascular system in children with reports of elevated blood pressure, endothelial dysfunction and altered autonomic cardiovascular control. As there is now substantial evidence that elevated blood pressure in childhood is carried on to adulthood it is important to know if treatment of SDB improves cardiovascular outcomes. Studies in adults have shown that treatment of SDB leads to improvements in cardiovascular function, including a reduction in pulmonary artery pressure, systemic blood pressure and endothelial dysfunction. However, studies exploring the outcomes of treatment of SDB in children on the cardiovascular system are limited and varied in their methodology and outcome measures. As a number of cardiovascular disturbances are sequelae of SDB, early detection and management could result in the reduction of elevated blood pressure in children, and consequently a reduction in cardiovascular morbidity in adulthood. The aim of this review is to summarise the findings of studies to date which have investigated the cardiovascular outcomes in children treated for SDB and to make recommendations for future management of this very common disease. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Space physiology IV: mathematical modeling of the cardiovascular system in space exploration.
Keith Sharp, M; Batzel, Jerry Joseph; Montani, Jean-Pierre
2013-08-01
Mathematical modeling represents an important tool for analyzing cardiovascular function during spaceflight. This review describes how modeling of the cardiovascular system can contribute to space life science research and illustrates this process via modeling efforts to study postflight orthostatic intolerance (POI), a key issue for spaceflight. Examining this application also provides a context for considering broader applications of modeling techniques to the challenges of bioastronautics. POI, which affects a large fraction of astronauts in stand tests upon return to Earth, presents as dizziness, fainting and other symptoms, which can diminish crew performance and cause safety hazards. POI on the Moon or Mars could be more critical. In the field of bioastronautics, POI has been the dominant application of cardiovascular modeling for more than a decade, and a number of mechanisms for POI have been investigated. Modeling approaches include computational models with a range of incorporated factors and hemodynamic sophistication, and also physical models tested in parabolic and orbital flight. Mathematical methods such as parameter sensitivity analysis can help identify key system mechanisms. In the case of POI, this could lead to more effective countermeasures. Validation is a persistent issue in modeling efforts, and key considerations and needs for experimental data to synergistically improve understanding of cardiovascular responses are outlined. Future directions in cardiovascular modeling include subject-specific assessment of system status, as well as research on integrated physiological responses, leading, for instance, to assessment of subject-specific susceptibility to POI or effects of cardiovascular alterations on muscular, vision and cognitive function.
21 CFR 870.3535 - Intra-aortic balloon and control system
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Intra-aortic balloon and control system 870.3535... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3535 Intra-aortic balloon and control system (a) Identification. A intra-aortic balloon and control system is a device that...
21 CFR 870.3535 - Intra-aortic balloon and control system
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Intra-aortic balloon and control system 870.3535... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3535 Intra-aortic balloon and control system (a) Identification. A intra-aortic balloon and control system is a device that...
Beneficial and adverse effects of testosterone on the cardiovascular system in men.
Ruige, Johannes B; Ouwens, D Margriet; Kaufman, Jean-Marc
2013-11-01
The widespread use of T therapy, particularly in aging males, necessitates knowledge of the relationship between T and the cardiovascular system. The review is based on a 1970 to 2013 PubMed search with terms related to androgens in combination with cardiovascular disease, including T, dihydrotestosterone, trial, mortality, cardiovascular disease, myocardial infarction, blood pressure, endothelial function, dyslipidemia, thrombosis, ventricular function, and arrhythmia. Original articles, systematic reviews and meta-analyses, and relevant citations were screened. Low T has been linked to increased blood pressure, dyslipidemia, atherosclerosis, arrhythmia, thrombosis, endothelial dysfunction, as well as to impaired left ventricular function. On the one hand, a modest association is suggested between low endogenous T and incident cardiovascular disease or cardiovascular mortality, implying unrecognized beneficial T effects, residual confounding, or a relationship with health status. On the other hand, treatments with T to restore "normal concentrations" have so far not been proven to be beneficial with respect to cardiovascular disease; neither have they definitely shown specific adverse cardiovascular effects. The cardiovascular risk-benefit profile of T therapy remains largely evasive in view of a lack of well-designed and adequately powered randomized clinical trials. The important knowledge gap as to the exact relationship between T and cardiovascular disease would support a cautious, restrained approach to T therapy in aging men, pending clarification of benefits and risks by adequately powered clinical trials of sufficient duration.
Wang, Mei-Yeh; Chiu, Chen-Huan; Lee, Hsin-Chien; Su, Chien-Tien; Tsai, Pei-Shan
2016-03-01
Depression increases the risk of adverse cardiac events. Cardiovascular reactivity is defined as the pattern of cardiovascular responses to mental stress. An altered pattern of cardiovascular reactivity is an indicator of subsequent cardiovascular disease. Because depression and adverse cardiac events may have a dose-dependent association, this study examined the differences in cardiovascular reactivity to mental stress between patients with major depressive disorder (MDD) with high depression levels and those with low depression levels. Moreover, autonomic nervous system regulation is a highly plausible biological mechanism for the pattern of cardiovascular reactivity to mental stress. The association between cardiovascular reactivity and parameters of heart rate variability (HRV), an index for quantifying autonomic nervous system activity modulation, was thus examined. This study included 88 patients with MDD. HRV was measured before stress induction. The Stroop Color and Word Test and mirror star-tracing task were used to induce mental stress. We observed no significant association between depressive symptom level and any of the cardiovascular reactivity parameters. Cardiovascular reactivity to mental stress was comparable between patients with MDD with high-level depressive symptoms and those with low-level depressive symptoms. After adjusting for confounding variables, the high-frequency domain of HRV was found to be an independent predictor of the magnitude of heart rate reactivity (β = -.33, p = .002). In conclusion, the magnitude of cardiovascular reactivity may be independent of depression severity in patients with MDD. The autonomic regulation of cardiovascular responses to mental stress primarily influences heart rate reactivity in patients with MDD. © The Author(s) 2015.
Exploiting the Pleiotropic Antioxidant Effects of Established Drugs in Cardiovascular Disease
Steven, Sebastian; Münzel, Thomas; Daiber, Andreas
2015-01-01
Cardiovascular disease is a leading cause of death and reduced quality of life worldwide. Arterial vessels are a primary target for endothelial dysfunction and atherosclerosis, which is accompanied or even driven by increased oxidative stress. Recent research in this field identified different sources of reactive oxygen and nitrogen species contributing to the pathogenesis of endothelial dysfunction. According to lessons from the past, improvement of endothelial function and prevention of cardiovascular disease by systemic, unspecific, oral antioxidant therapy are obviously too simplistic an approach. Source- and cell organelle-specific antioxidants as well as activators of intrinsic antioxidant defense systems might be more promising. Since basic research demonstrated the contribution of different inflammatory cells to vascular oxidative stress and clinical trials identified chronic inflammatory disorders as risk factors for cardiovascular events, atherosclerosis and cardiovascular disease are closely associated with inflammation. Therefore, modulation of the inflammatory response is a new and promising approach in the therapy of cardiovascular disease. Classical anti-inflammatory therapeutic compounds, but also established drugs with pleiotropic immunomodulatory abilities, demonstrated protective effects in various models of cardiovascular disease. However, results from ongoing clinical trials are needed to further evaluate the value of immunomodulation for the treatment of cardiovascular disease. PMID:26251902
[Why is obstructive sleep apnea (OSA) a cardiovascular risk factor?].
Koehler, U; Becker, H F; Gross, V; Reinke, C; Penzel, T; Schäfer, H; Vogelmeier, C
2003-12-01
Patients with obstructive sleep apnea (OSA) frequently suffer from cardiovascular diseases. Mechanisms like intrathoracic pressure variations, changes in blood gases (hypoxia), arousals and neurohumeral adaptation mechanisms, combined with breathing disorders are causing these cardiovascular sequelae. In particular repetitive hypoxemia and activation of the sympathetic nervous system have to be considered as stressors for the cardiovascular system. Special clinical findings should take OSA into consideration as a differential diagnosis. A systematic anamnesis with questions to daytime conditions (hypersomnia, decrease of performance), snoring and apneas while sleeping is easy to ascertain, and will lead to the correct diagnosis in more than 90% of cases. The extent and need for therapy should be assessed by three criteria: 1) daytime symptoms, 2) the extent of breathing disorder and 3) cardiovascular comorbidity.
Role of inflammation in cardiopulmonary health effects of PM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donaldson, Ken; Mills, Nicholas; MacNee, William
2005-09-01
The relationship between increased exposure to PM and adverse cardiovascular effects is well documented in epidemiological studies. Inflammation in the lungs, caused by deposited particles, can be seen as a key process that could mediate adverse effects on the cardiovascular system. There are at least three potential pathways that could lead from pulmonary inflammation to adverse cardiovascular effects. Firstly, inflammation in the lung could lead to systemic inflammation, which is well known to be linked to sudden death from cardiovascular causes. Systemic inflammation can lead to destabilization by activation of inflammatory processes in atheromatous plaques. Secondly, inflammation can cause anmore » imbalance in coagulation factors that favor propagation of thrombi if thrombosis is initiated. Thirdly, inflammation could affect the autonomic nervous system activity in ways that could lead to alterations in the control of heart rhythm which could culminate in fatal dysrhythmia.« less
Eichhorn, L; Doerner, J; Luetkens, J A; Lunkenheimer, J M; Dolscheid-Pommerich, R C; Erdfelder, F; Fimmers, R; Nadal, J; Stoffel-Wagner, B; Schild, H H; Hoeft, A; Zur, B; Naehle, C P
2018-06-18
Prolonged breath holding results in hypoxemia and hypercapnia. Compensatory mechanisms help maintain adequate oxygen supply to hypoxia sensitive organs, but burden the cardiovascular system. The aim was to investigate human compensatory mechanisms and their effects on the cardiovascular system with regard to cardiac function and morphology, blood flow redistribution, serum biomarkers of the adrenergic system and myocardial injury markers following prolonged apnoea. Seventeen elite apnoea divers performed maximal breath-hold during cardiovascular magnetic resonance imaging (CMR). Two breath-hold sessions were performed to assess (1) cardiac function, myocardial tissue properties and (2) blood flow. In between CMR sessions, a head MRI was performed for the assessment of signs of silent brain ischemia. Urine and blood samples were analysed prior to and up to 4 h after the first breath-hold. Mean breath-hold time was 297 ± 52 s. Left ventricular (LV) end-systolic, end-diastolic, and stroke volume increased significantly (p < 0.05). Peripheral oxygen saturation, LV ejection fraction, LV fractional shortening, and heart rate decreased significantly (p < 0.05). Blood distribution was diverted to cerebral regions with no significant changes in the descending aorta. Catecholamine levels, high-sensitivity cardiac troponin, and NT-pro-BNP levels increased significantly, but did not reach pathological levels. Compensatory effects of prolonged apnoea substantially burden the cardiovascular system. CMR tissue characterisation did not reveal acute myocardial injury, indicating that the resulting cardiovascular stress does not exceed compensatory physiological limits in healthy subjects. However, these compensatory mechanisms could overly tax those limits in subjects with pre-existing cardiac disease. For divers interested in competetive apnoea diving, a comprehensive medical exam with a special focus on the cardiovascular system may be warranted. This prospective single-centre study was approved by the institutional ethics committee review board. It was retrospectively registered under ClinicalTrials.gov (Trial registration: NCT02280226 . Registered 29 October 2014).
Cardiovascular studies using the chimpanzee (Pan troglodytes)
NASA Technical Reports Server (NTRS)
Hinds, J. E.; Cothran, L. N.; Hawthorne, E. W.
1977-01-01
Despite the phylogenetic similarities between chimpanzees and man, there exists a paucity of reliable data on normal cardiovascular function and the physiological responses of the system to standard interventions. Totally implanted biotelemetry systems or hardwire analog techniques were used to examine the maximum number of cardiovascular variables which could be simultaneously monitored without significantly altering the system's performance. This was performed in order to acquire base-line data not previously obtained in this species, to determine cardiovascular response to specific forcing functions such as ventricular pacing, drug infusions, and lower body negative pressure. A cardiovascular function profile protocol was developed in order to adjust independently the three major factors which modify ventricular performance, namely, left ventricular performance, left ventricular preload, afterload, and contractility. Cardiac pacing at three levels above the ambient rate was used to adjust end diastolic volume (preload). Three concentrations of angiotensin were infused continuously to evaluate afterload in a stepwide fashion. A continuous infusion of dobutamine was administered to raise the manifest contractile state of the heart.
Building Sustainable Capacity for Cardiovascular Care at a Public Hospital in Western Kenya.
Binanay, Cynthia A; Akwanalo, Constantine O; Aruasa, Wilson; Barasa, Felix A; Corey, G Ralph; Crowe, Susie; Esamai, Fabian; Einterz, Robert; Foster, Michael C; Gardner, Adrian; Kibosia, John; Kimaiyo, Sylvester; Koech, Myra; Korir, Belinda; Lawrence, John E; Lukas, Stephanie; Manji, Imran; Maritim, Peris; Ogaro, Francis; Park, Peter; Pastakia, Sonak D; Sugut, Wilson; Vedanthan, Rajesh; Yanoh, Reuben; Velazquez, Eric J; Bloomfield, Gerald S
2015-12-08
Cardiovascular disease deaths are increasing in low- and middle-income countries and are exacerbated by health care systems that are ill-equipped to manage chronic diseases. Global health partnerships, which have stemmed the tide of infectious diseases in low- and middle-income countries, can be similarly applied to address cardiovascular diseases. In this review, we present the experiences of an academic partnership between North American and Kenyan medical centers to improve cardiovascular health in a national public referral hospital. We highlight our stepwise approach to developing sustainable cardiovascular services using the health system strengthening World Health Organization Framework for Action. The building blocks of this framework (leadership and governance, health workforce, health service delivery, health financing, access to essential medicines, and health information system) guided our comprehensive and sustainable approach to delivering subspecialty care in a resource-limited setting. Our experiences may guide the development of similar collaborations in other settings. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
[Autophagy in the cardiovascular system].
Kheloufi, Marouane; Rautou, Pierre-Emmanuel; Boulanger, Chantal M
2017-03-01
Cardiovascular diseases are the leading cause of mortality worldwide. Studies regarding the role of autophagy in cardiac and vascular tissues have opened new therapeutic avenues to treat cardiovascular disorders. Altogether, these studies point out that autophagic activity needs to be maintained at an optimal level to preserve cardiovascular function. Reaching this goal constitutes a challenge for future efficient therapeutic strategies. The present review therefore highlights recent advances in the understanding of the role of autophagy in cardiovascular pathologies. © 2017 médecine/sciences – Inserm.
Regulators and effectors of bone morphogenetic protein signalling in the cardiovascular system.
Luo, Jiang-Yun; Zhang, Yang; Wang, Li; Huang, Yu
2015-07-15
Bone morphogenetic proteins (BMPs) play key roles in the regulation of cell proliferation, differentiation and apoptosis in various tissues and organs, including the cardiovascular system. BMPs signal through both Smad-dependent and -independent cascades to exert a wide spectrum of biological activities. Cardiovascular disorders such as abnormal angiogenesis, atherosclerosis, pulmonary hypertension and cardiac hypertrophy have been linked to aberrant BMP signalling. To correct the dysregulated BMP signalling in cardiovascular pathogenesis, it is essential to get a better understanding of how the regulators and effectors of BMP signalling control cardiovascular function and how the dysregulated BMP signalling contributes to cardiovascular dysfunction. We hence highlight several key regulators of BMP signalling such as extracellular regulators of ligands, mechanical forces, microRNAs and small molecule drugs as well as typical BMP effectors like direct downstream target genes, mitogen-activated protein kinases, reactive oxygen species and microRNAs. The insights into these molecular processes will help target both the regulators and important effectors to reverse BMP-associated cardiovascular pathogenesis. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Redox-mediated signal transduction by cardiovascular Nox NADPH oxidases.
Brandes, Ralf P; Weissmann, Norbert; Schröder, Katrin
2014-08-01
The only known function of the Nox family of NADPH oxidases is the production of reactive oxygen species (ROS). Some Nox enzymes show high tissue-specific expression and the ROS locally produced are required for synthesis of hormones or tissue components. In the cardiovascular system, Nox enzymes are low abundant and function as redox-modulators. By reacting with thiols, nitric oxide (NO) or trace metals, Nox-derived ROS elicit a plethora of cellular responses required for physiological growth factor signaling and the induction and adaptation to pathological processes. The interactions of Nox-derived ROS with signaling elements in the cardiovascular system are highly diverse and will be detailed in this article, which is part of a Special Issue entitled "Redox Signalling in the Cardiovascular System". Copyright © 2014 Elsevier Ltd. All rights reserved.
A Computer Model of the Cardiovascular System for Effective Learning.
ERIC Educational Resources Information Center
Rothe, Carl F.
1980-01-01
Presents a model of the cardiovascular system which solves a set of interacting, possibly nonlinear, differential equations. Figures present a schematic diagram of the model and printouts that simulate normal conditions, exercise, hemorrhage, reduced contractility. The nine interacting equations used to describe the system are described in the…
Autophagy in health and disease: focus on the cardiovascular system.
Mialet-Perez, Jeanne; Vindis, Cécile
2017-12-12
Autophagy is a highly conserved mechanism of lysosome-mediated protein and organelle degradation that plays a crucial role in maintaining cellular homeostasis. In the last few years, specific functions for autophagy have been identified in many tissues and organs. In the cardiovascular system, autophagy appears to be essential to heart and vessel homeostasis and function; however defective or excessive autophagy activity seems to contribute to major cardiovascular disorders including heart failure (HF) or atherosclerosis. Here, we review the current knowledge on the role of cardiovascular autophagy in physiological and pathophysiological conditions. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Heart in space: effect of the extraterrestrial environment on the cardiovascular system.
Hughson, Richard L; Helm, Alexander; Durante, Marco
2018-03-01
National space agencies and private corporations aim at an extended presence of humans in space in the medium to long term. Together with currently suboptimal technology, microgravity and cosmic rays raise health concerns about deep-space exploration missions. Both of these physical factors affect the cardiovascular system, whose gravity-dependence is pronounced. Heart and vascular function are, therefore, susceptible to substantial changes in weightlessness. The altered cardiovascular function in space causes physiological problems in the postflight period. A compromised cardiovascular system can be excessively vulnerable to space radiation, synergistically resulting in increased damage. The space radiation dose is significantly lower than in patients undergoing radiotherapy, in whom cardiac damage is well-documented following cancer therapy in the thoracic region. Nevertheless, epidemiological findings suggest an increased risk of late cardiovascular disease even with low doses of radiation. Moreover, the peculiar biological effectiveness of heavy ions in cosmic rays might increase this risk substantially. However, whether radiation-induced cardiovascular effects have a threshold at low doses is still unclear. The main countermeasures to mitigate the effect of the space environment on cardiac function are physical exercise, antioxidants, nutraceuticals, and radiation shielding.
PPARs and the Cardiovascular System
Hamblin, Milton; Chang, Lin; Fan, Yanbo; Zhang, Jifeng
2009-01-01
Abstract Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone-receptor superfamily. Originally cloned in 1990, PPARs were found to be mediators of pharmacologic agents that induce hepatocyte peroxisome proliferation. PPARs also are expressed in cells of the cardiovascular system. PPARγ appears to be highly expressed during atherosclerotic lesion formation, suggesting that increased PPARγ expression may be a vascular compensatory response. Also, ligand-activated PPARγ decreases the inflammatory response in cardiovascular cells, particularly in endothelial cells. PPARα, similar to PPARγ, also has pleiotropic effects in the cardiovascular system, including antiinflammatory and antiatherosclerotic properties. PPARα activation inhibits vascular smooth muscle proinflammatory responses, attenuating the development of atherosclerosis. However, PPARδ overexpression may lead to elevated macrophage inflammation and atherosclerosis. Conversely, PPARδ ligands are shown to attenuate the pathogenesis of atherosclerosis by improving endothelial cell proliferation and survival while decreasing endothelial cell inflammation and vascular smooth muscle cell proliferation. Furthermore, the administration of PPAR ligands in the form of TZDs and fibrates has been disappointing in terms of markedly reducing cardiovascular events in the clinical setting. Therefore, a better understanding of PPAR-dependent and -independent signaling will provide the foundation for future research on the role of PPARs in human cardiovascular biology. Antioxid. Redox Signal. 11, 1415–1452. PMID:19061437
Consequences of Circadian and Sleep Disturbances for the Cardiovascular System.
Alibhai, Faisal J; Tsimakouridze, Elena V; Reitz, Cristine J; Pyle, W Glen; Martino, Tami A
2015-07-01
Circadian rhythms play a crucial role in our cardiovascular system. Importantly, there has been a recent flurry of clinical and experimental studies revealing the profound adverse consequences of disturbing these rhythms on the cardiovascular system. For example, circadian disturbance worsens outcome after myocardial infarction with implications for patients in acute care settings. Moreover, disturbing rhythms exacerbates cardiac remodelling in heart disease models. Also, circadian dyssynchrony is a causal factor in the pathogenesis of heart disease. These discoveries have profound implications for the cardiovascular health of shift workers, individuals with circadian and sleep disorders, or anyone subjected to the 24/7 demands of society. Moreover, these studies give rise to 2 new frontiers for translational research: (1) circadian rhythms and the cardiac sarcomere, which sheds new light on our understanding of myofilament structure, signalling, and electrophysiology; and (2) knowledge translation, which includes biomarker discovery (chronobiomarkers), timing of therapies (chronotherapy), and other new promising approaches to improve the management and treatment of cardiovascular disease. Reconsidering circadian rhythms in the clinical setting benefits repair mechanisms, and offers new promise for patients. Copyright © 2015 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Endothelial to mesenchymal transition in the cardiovascular system.
Gong, Hui; Lyu, Xing; Wang, Qiong; Hu, Min; Zhang, Xiangyu
2017-09-01
Endothelial to mesenchymal transition (EndMT) is a special type of epithelial to mesenchymal transition. It is a process that is characterized by the loss of features of endothelial cells and acquisition of specific markers of mesenchymal cells. A variety of stimuli, such as inflammation, growth factors, and hypoxia, regulate EndMT through various signaling pathways and intracellular transcription factors. It has been demonstrated that epigenetic modifications are also involved in this process. Recent studies have identified the essential role of EndMT in the cardiovascular system. EndMT contributes to steps in cardiovascular development, such as cardiac valve formation and septation, as well as the pathogenesis of various cardiovascular disorders, such as congenital heart disease, myocardial fibrosis, myocardial infarction and pulmonary arterial hypertension. Thus, comprehensive understanding of the underlying mechanisms of EndMT will provide novel therapeutic strategies to overcome congenital heart disease due to abnormal development and other cardiovascular diseases. This review will focus on summarizing the currently understood signaling pathways and epigenetic modifications involved in the regulation of EndMT and the role of EndMT in pathophysiological conditions of the cardiovascular system. Copyright © 2017. Published by Elsevier Inc.
The inflammatory protein Pentraxin 3 in cardiovascular disease.
Fornai, Francesco; Carrizzo, Albino; Forte, Maurizio; Ambrosio, Mariateresa; Damato, Antonio; Ferrucci, Michela; Biagioni, Francesca; Busceti, Carla; Puca, Annibale A; Vecchione, Carmine
2016-01-01
The acute phase protein Pentraxin 3 (PTX3) plays a non-redundant role as a soluble pattern recognition receptor for selected pathogens and it represents a rapid biomarker for primary local activation of innate immunity and inflammation. Recent evidence indicates that PTX3 exerts an important role in modulating the cardiovascular system in humans and experimental models. In particular, there are conflicting points concerning the effects of PTX3 in cardiovascular diseases (CVD) since several observations indicate a cardiovascular protective effect of PTX3 while others speculate that the increased plasma levels of PTX3 in subjects with CVD correlate with disease severity and with poor prognosis in elderly patients. In the present review, we discuss the multifaceted effects of PTX3 on the cardiovascular system focusing on its involvement in atherosclerosis, endothelial function, hypertension, myocardial infarction and angiogenesis. This may help to explain how the specific modulation of PTX3 such as the use of different dosing, time, and target organs could help to contain different vascular diseases. These opposite actions of PTX3 will be emphasized concerning the modulation of cardiovascular system where potential therapeutic implications of PTX3 in humans are discussed.
Microelectronics bioinstrumentation systems
NASA Technical Reports Server (NTRS)
Ko, W. H.
1977-01-01
Microelectronic bioinstrumentation systems to be employed in the Cardiovascular Deconditioning Program were developed. Implantable telemetry systems for long-term monitoring of animals on earth were designed to collect physiological data necessary for the understanding of the mechanisms of cardiovascular deconditioning. In-flight instrumentation systems, microelectronic instruments, and RF powering techniques for other life science experiments in the NASA program were studied.
ERIC Educational Resources Information Center
White, Robert C.; And Others
1978-01-01
The data show that biology teachers spend relatively little time on diseases of the cardiovascular system. Approximately one period per year is spent on each of eight given cardiovascular disease risk factors. (MP)
Mathematical biomarkers for the autonomic regulation of cardiovascular system.
Campos, Luciana A; Pereira, Valter L; Muralikrishna, Amita; Albarwani, Sulayma; Brás, Susana; Gouveia, Sónia
2013-10-07
Heart rate and blood pressure are the most important vital signs in diagnosing disease. Both heart rate and blood pressure are characterized by a high degree of short term variability from moment to moment, medium term over the normal day and night as well as in the very long term over months to years. The study of new mathematical algorithms to evaluate the variability of these cardiovascular parameters has a high potential in the development of new methods for early detection of cardiovascular disease, to establish differential diagnosis with possible therapeutic consequences. The autonomic nervous system is a major player in the general adaptive reaction to stress and disease. The quantitative prediction of the autonomic interactions in multiple control loops pathways of cardiovascular system is directly applicable to clinical situations. Exploration of new multimodal analytical techniques for the variability of cardiovascular system may detect new approaches for deterministic parameter identification. A multimodal analysis of cardiovascular signals can be studied by evaluating their amplitudes, phases, time domain patterns, and sensitivity to imposed stimuli, i.e., drugs blocking the autonomic system. The causal effects, gains, and dynamic relationships may be studied through dynamical fuzzy logic models, such as the discrete-time model and discrete-event model. We expect an increase in accuracy of modeling and a better estimation of the heart rate and blood pressure time series, which could be of benefit for intelligent patient monitoring. We foresee that identifying quantitative mathematical biomarkers for autonomic nervous system will allow individual therapy adjustments to aim at the most favorable sympathetic-parasympathetic balance.
Mathematical biomarkers for the autonomic regulation of cardiovascular system
Campos, Luciana A.; Pereira, Valter L.; Muralikrishna, Amita; Albarwani, Sulayma; Brás, Susana; Gouveia, Sónia
2013-01-01
Heart rate and blood pressure are the most important vital signs in diagnosing disease. Both heart rate and blood pressure are characterized by a high degree of short term variability from moment to moment, medium term over the normal day and night as well as in the very long term over months to years. The study of new mathematical algorithms to evaluate the variability of these cardiovascular parameters has a high potential in the development of new methods for early detection of cardiovascular disease, to establish differential diagnosis with possible therapeutic consequences. The autonomic nervous system is a major player in the general adaptive reaction to stress and disease. The quantitative prediction of the autonomic interactions in multiple control loops pathways of cardiovascular system is directly applicable to clinical situations. Exploration of new multimodal analytical techniques for the variability of cardiovascular system may detect new approaches for deterministic parameter identification. A multimodal analysis of cardiovascular signals can be studied by evaluating their amplitudes, phases, time domain patterns, and sensitivity to imposed stimuli, i.e., drugs blocking the autonomic system. The causal effects, gains, and dynamic relationships may be studied through dynamical fuzzy logic models, such as the discrete-time model and discrete-event model. We expect an increase in accuracy of modeling and a better estimation of the heart rate and blood pressure time series, which could be of benefit for intelligent patient monitoring. We foresee that identifying quantitative mathematical biomarkers for autonomic nervous system will allow individual therapy adjustments to aim at the most favorable sympathetic-parasympathetic balance. PMID:24109456
The Cardiovascular Effects of Cocaine.
Havakuk, Ofer; Rezkalla, Shereif H; Kloner, Robert A
2017-07-04
Cocaine is the leading cause for drug-abuse-related visits to emergency departments, most of which are due to cardiovascular complaints. Through its diverse pathophysiological mechanisms, cocaine exerts various adverse effects on the cardiovascular system, many times with grave results. Described here are the varied cardiovascular effects of cocaine, areas of controversy, and therapeutic options. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
The epigenetic landscape related to reactive oxygen species formation in the cardiovascular system.
Kietzmann, Thomas; Petry, Andreas; Shvetsova, Antonina; Gerhold, Joachim M; Görlach, Agnes
2017-06-01
Cardiovascular diseases are among the leading causes of death worldwide. Reactive oxygen species (ROS) can act as damaging molecules but also represent central hubs in cellular signalling networks. Increasing evidence indicates that ROS play an important role in the pathogenesis of cardiovascular diseases, although the underlying mechanisms and consequences of pathophysiologically elevated ROS in the cardiovascular system are still not completely resolved. More recently, alterations of the epigenetic landscape, which can affect DNA methylation, post-translational histone modifications, ATP-dependent alterations to chromatin and non-coding RNA transcripts, have been considered to be of increasing importance in the pathogenesis of cardiovascular diseases. While it has long been accepted that epigenetic changes are imprinted during development or even inherited and are not changed after reaching the lineage-specific expression profile, it becomes more and more clear that epigenetic modifications are highly dynamic. Thus, they might provide an important link between the actions of ROS and cardiovascular diseases. This review will provide an overview of the role of ROS in modulating the epigenetic landscape in the context of the cardiovascular system. This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc. © 2017 The British Pharmacological Society.
The epigenetic landscape related to reactive oxygen species formation in the cardiovascular system
Kietzmann, Thomas; Petry, Andreas; Shvetsova, Antonina; Gerhold, Joachim M
2017-01-01
Cardiovascular diseases are among the leading causes of death worldwide. Reactive oxygen species (ROS) can act as damaging molecules but also represent central hubs in cellular signalling networks. Increasing evidence indicates that ROS play an important role in the pathogenesis of cardiovascular diseases, although the underlying mechanisms and consequences of pathophysiologically elevated ROS in the cardiovascular system are still not completely resolved. More recently, alterations of the epigenetic landscape, which can affect DNA methylation, post‐translational histone modifications, ATP‐dependent alterations to chromatin and non‐coding RNA transcripts, have been considered to be of increasing importance in the pathogenesis of cardiovascular diseases. While it has long been accepted that epigenetic changes are imprinted during development or even inherited and are not changed after reaching the lineage‐specific expression profile, it becomes more and more clear that epigenetic modifications are highly dynamic. Thus, they might provide an important link between the actions of ROS and cardiovascular diseases. This review will provide an overview of the role of ROS in modulating the epigenetic landscape in the context of the cardiovascular system. Linked Articles This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc PMID:28332701
Noise and cardiovascular effects in workers of the sanitary fixtures industry.
Assunta, Capozzella; Ilaria, Samperi; Simone, De Sio; Gianfranco, Tomei; Teodorico, Casale; Carmina, Sacco; Anastasia, Suppi; Roberto, Giubilati; Francesco, Tomei; Valeria, Rosati Maria
2015-01-01
The aim of the present study is to evaluate whether workers in the sanitary fixtures industry are a category at risk of developing cardiovascular diseases, and in particular, whether chronic noise exposure may play a role in cardiovascular effects in exposed workers. Seventy-five employees engaged in sanitation fixtures production and a control group of sixty-four office workers, who were not exposed to agents that could damage the cardiovascular system, participated in our study. The selected workers completed a clinical-anamnestic questionnaire, and underwent a medical examination, blood pressure test, electrocardiogram (ECG), blood tests, and audiometry. Measurements of environmental noise, dust, and lead were also carried out. The exposed workers, in comparison to the control group, showed a higher frequency of hypertension, systolic and diastolic blood pressure (p<0.05, p<0.05), as well as electrocardiographic abnormalities (p<0.05). There was also a higher frequency of hypertension and electrocardiographic abnormalities among subjects with audiometric deficit compared to normoacoustic subjects (p<0.05 and p<0.05). from our study suggest that work activity in the sanitary fixtures industry can have an influence on the cardiovascular system, and noise can be the main cause of damage for the cardiovascular system in exposed workers, as cardiovascular damage seems to be linked to hearing loss. Copyright © 2014 Elsevier GmbH. All rights reserved.
The cardiovascular system in the ageing patient
Moore, A; Mangoni, A A; Lyons, D; Jackson, S H D
2003-01-01
The ageing process is associated with important changes in the responses of the cardiovascular system to pharmacological stimuli. They are not limited to the arterial system, involved in the modulation of cardiac afterload and vascular resistance, but they also involve the low-resistance capacitance venous system and the heart. The main changes include loss of large artery compliance, dysfunction of some of the systems modulating resistance vessel tone, increased activity of the sympathetic nervous system, and reduced haemodynamic responses to inotropic agents. This review focuses on the effects of ageing on arterial and venous reactivity to drugs and hormones, the autonomic nervous system, and the cardiovascular responses to inotropic agents. Some of the age-related changes might be at least partially reversible. This may have important therapeutic implications. PMID:12919173
Asselbergs, Folkert W; Visseren, Frank Lj; Bots, Michiel L; de Borst, Gert J; Buijsrogge, Marc P; Dieleman, Jan M; van Dinther, Baukje Gf; Doevendans, Pieter A; Hoefer, Imo E; Hollander, Monika; de Jong, Pim A; Koenen, Steven V; Pasterkamp, Gerard; Ruigrok, Ynte M; van der Schouw, Yvonne T; Verhaar, Marianne C; Grobbee, Diederick E
2017-05-01
Background Cardiovascular disease remains the major contributor to morbidity and mortality. In routine care for patients with an elevated cardiovascular risk or with symptomatic cardiovascular disease information is mostly collected in an unstructured manner, making the data of limited use for structural feedback, quality control, learning and scientific research. Objective The Utrecht Cardiovascular Cohort (UCC) initiative aims to create an infrastructure for uniform registration of cardiovascular information in routine clinical practice for patients referred for cardiovascular care at the University Medical Center Utrecht, the Netherlands. This infrastructure will promote optimal care according to guidelines, continuous quality control in a learning healthcare system and creation of a research database. Methods The UCC comprises three parts. UCC-1 comprises enrolment of all eligible cardiovascular patients in whom the same information will be collected, based on the Dutch cardiovascular management guideline. A sample of UCC-1 will be invited for UCC-2. UCC-2 involves an enrichment through extensive clinical measurements with emphasis on heart failure, cerebral ischaemia, arterial aneurysms, diabetes mellitus and elevated blood pressure. UCC-3 comprises on-top studies, with in-depth measurements in smaller groups of participants typically based on dedicated project grants. All participants are followed up for morbidity and mortality through linkage with national registries. Conclusion In a multidisciplinary effort with physicians, patients and researchers the UCC sets a benchmark for a learning cardiovascular healthcare system. UCC offers an invaluable resource for future high quality care as well as for first-class research for investigators.
Gamble, Abigail; Mendy, Vincent
2013-01-01
Introduction Cardiovascular disease is a leading cause of death and health disparities in Mississippi. Identifying populations with poor cardiovascular health may help direct interventions toward those populations disproportionately affected, which may ultimately increase cardiovascular health and decrease prominent disparities. Our objective was to assess racial differences in the prevalence of cardiovascular health metrics among Mississippi adults. Methods We used data from the 2009 Mississippi Behavioral Risk Factor Surveillance System to determine age-standardized prevalence estimates and 95% confidence intervals of cardiovascular health metrics among 2,003 black and 5,125 white adults. Logistic regression models were used to evaluate the relationship between race and cardiovascular health metrics. The mean cardiovascular metrics score and percentage of the population with ideal and poor cardiovascular health were calculated by subgroup. Results Approximately 1.3% of blacks and 2.6% of whites exhibited ideal levels of all 7 cardiovascular health metrics. The prevalence of 4 of the 7 cardiovascular health metrics was significantly lower among the total population of blacks than among whites, including a normal body mass index (20.8% vs 32.3%, P < .001), no history of diabetes (85.1% vs 91.3%, P < .001), no history of hypertension (53.9% vs 67.9%, P < .001), and physical activity (52.8% vs 62.2%, P < .001). The logistic regression models revealed significant race-by-sex interactions; differences between blacks and whites for normal body mass index, no history of diabetes mellitus, and no current smoking were found among women but not among men. Conclusion Cardiovascular health is poor among Mississippi adults overall, and racial differences exist. PMID:24262026
FGF-23 and cardiovascular disease: review of literature.
Batra, Jasveen; Buttar, Rupinder Singh; Kaur, Pardeep; Kreimerman, Jacqueline; Melamed, Michal L
2016-12-01
This review examines associations between fibroblast growth factor 23 (FGF-23) and cardiovascular disease. FGF-23 is a hormone produced by osteocytes and osteoblasts that aids with phosphate excretion by the kidney and acts as a negative feedback regulator for activated vitamin D synthesis. Recent studies have found associations between elevated FGF-23 levels and a number of cardiovascular diseases, including hypertension, left ventricular hypertrophy, endothelial dysfunction, cardiovascular events and mortality. Recent studies have explored the possible effects of FGF-23 on the cardiovascular system. In animal and observational human studies, there is a link between elevated FGF-23 levels and multiple cardiovascular outcomes, including hypertension, left ventricular hypertrophy and cardiovascular events and mortality. Further studies are required to evaluate whether decreasing FGF-23 levels improves cardiovascular outcomes.
Sex hormones in the cardiovascular system.
dos Santos, Roger Lyrio; da Silva, Fabrício Bragança; Ribeiro, Rogério Faustino; Stefanon, Ivanita
2014-05-01
Gender-associated differences in the development of cardiovascular diseases have been described in humans and animals. These differences could explain the low incidence of cardiovascular disease in women in the reproductive period, such as stroke, hypertension, and atherosclerosis. The cardiovascular protection observed in females has been attributed to the beneficial effects of estrogen on endothelial function. Besides estrogen, sex hormones are able to modulate blood pressure by acting on important systems as cardiovascular, renal, and neural. They can have complementary or antagonistic actions. For example, testosterone can raise blood pressure by stimulating the renin-angiotensin-aldosterone system, whereas estrogen alone or combined with progesterone has been associated with decreased blood pressure. The effects of testosterone in the development of cardiovascular disease are contradictory. Although some researchers suggest a positive effect, others indicate negative actions of testosterone. Estrogens physiologically stimulate the release of endothelium-derived vasodilator factors and inhibit the renin-angiotensin system. Although the cardioprotective effects of estrogen are widely appreciated, little is known about the effects of progesterone, which is commonly used in hormone replacement therapy. Progesterone has both vasodilatory and vasoconstrictive effects in the vasculature, depending on the location of the vessel and the level of exposure. Nevertheless, the mechanisms through which sex hormones modulate blood pressure have not been fully elucidated. Therefore, the characterization of those could lead to a better understanding of hypertension in women and men and perhaps to improved forms of therapy.
The cardiovascular system after exercise
Romero, Steven A.; Minson, Christopher T.
2017-01-01
Recovery from exercise refers to the time period between the end of a bout of exercise and the subsequent return to a resting or recovered state. It also refers to specific physiological processes or states occurring after exercise that are distinct from the physiology of either the exercising or the resting states. In this context, recovery of the cardiovascular system after exercise occurs across a period of minutes to hours, during which many characteristics of the system, even how it is controlled, change over time. Some of these changes may be necessary for long-term adaptation to exercise training, yet some can lead to cardiovascular instability during recovery. Furthermore, some of these changes may provide insight into when the cardiovascular system has recovered from prior training and is physiologically ready for additional training stress. This review focuses on the most consistently observed hemodynamic adjustments and the underlying causes that drive cardiovascular recovery and will highlight how they differ following resistance and aerobic exercise. Primary emphasis will be placed on the hypotensive effect of aerobic and resistance exercise and associated mechanisms that have clinical relevance, but if left unchecked, can progress to symptomatic hypotension and syncope. Finally, we focus on the practical application of this information to strategies to maximize the benefits of cardiovascular recovery, or minimize the vulnerabilities of this state. We will explore appropriate field measures, and discuss to what extent these can guide an athlete’s training. PMID:28153943
Molecular mechanisms of autophagy in the cardiovascular system.
Gatica, Damián; Chiong, Mario; Lavandero, Sergio; Klionsky, Daniel J
2015-01-30
Autophagy is a catabolic recycling pathway triggered by various intra- or extracellular stimuli that is conserved from yeast to mammals. During autophagy, diverse cytosolic constituents are enveloped by double-membrane vesicles, autophagosomes, which later fuse with lysosomes or the vacuole to degrade their cargo. Dysregulation in autophagy is associated with a diverse range of pathologies including cardiovascular disease, the leading cause of death in the world. As such, there is great interest in identifying novel mechanisms that govern the cardiovascular response to disease-related stress. First described in failing hearts, autophagy within the cardiovascular system has been characterized widely in cardiomyocytes, cardiac fibroblasts, endothelial cells, and vascular smooth muscle cells. In all cases, a window of optimal autophagic activity seems to be critical to the maintenance of cardiovascular homeostasis and function; excessive or insufficient levels of autophagic flux can each contribute to heart disease pathogenesis. Here, we review the molecular mechanisms that govern autophagosome formation and analyze the link between autophagy and cardiovascular disease. © 2015 American Heart Association, Inc.
Impact of traditional therapies and biologics on cardiovascular diseases in rheumatoid arthritis.
Boyer, Jean-Frédéric; Cantagrel, Alain; Constantin, Arnaud
2008-07-01
In chronic inflammatory diseases such as rheumatoid arthritis (RA), systemic inflammation appears as an independent risk factor, contributing to increased cardiovascular mortality. This high cardiovascular mortality reveals the existence of accelerated atherosclerosis, the pathogenesis of which may be associated with traditional risk factors such as smoking, hypertension, dyslipidemia, deterioration of insulin sensitivity, and less traditional risk factors such as hyperhomocysteinemia, inflammatory conditions and endothelial dysfunction. Control of systemic inflammation theoretically provides a means of preventing this higher cardiovascular mortality among RA patients. In this review we address the question of the impact of anti-rheumatic drugs currently used in RA, such as non-steroidal anti-inflammatory drugs (e.g. non-selective or cyclooxygenase-2 selective inhibitors), steroidal anti-inflammatory drugs (glucocorticoids), traditional disease-modifying anti-rheumatic drugs (e.g. methotrexate) or biologics (e.g. anti-tumour necrosis factor alpha anti-tumour necrosis factor alpha) on cardiovascular diseases in RA patients. We also discuss the specific mechanisms involved in the differential cardiovascular effects of these therapeutic agents.
Preparing nurses for leadership roles in cardiovascular disease prevention.
Lanuza, Dorothy M; Davidson, Patricia M; Dunbar, Sandra B; Hughes, Suzanne; De Geest, Sabina
2011-07-01
Cardiovascular disease (CVD) is a critical global health issue, and cardiovascular nurses play a vital role in decreasing the global burden and contributing to improving outcomes in individuals and communities. Cardiovascular nurses require the knowledge, skills, and resources that will enable them to function as leaders in CVD. This article addresses the education, training, and strategies that are needed to prepare nurses for leadership roles in preventing and managing CVD. Building on the World Health Organization core competencies for 21st-century health care workers, the specific competencies of cardiovascular nurses working in prevention are outlined. These can be further strengthened by investing in the development of cultural, system change and leadership competencies. Mentorship is proposed as a powerful strategy for promoting the cardiovascular nursing role and equipping individual nurses to contribute meaningfully to health system reform and community engagement in CVD risk reduction. Copyright © 2011 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.
Cardiovascular effects of environmental noise: research in The Netherlands.
Kempen, Elise van
2011-01-01
The impact of environmental noise on public health, in The Netherlands, is limited: Less than 1% of the myocardial infarction cases per year are attributable to long-term exposure to road traffic noise. Furthermore, although the Dutch noise policy is not directed to prevent cardiovascular disease due to noise exposure, health does play a role in Dutch noise policy. These are the main conclusions of a systematic review of Dutch observational studies, investigating the possible impact of road traffic and aircraft noise exposure on the cardiovascular system. Since 1970, 14 Dutch studies were published investigating the possible impact of road traffic and aircraft noise exposure on the cardiovascular system. Within these studies a large variety of outcomes were investigated, ranging from blood pressure changes to cardiovascular mortality. The results of the studies were not consistent and only weak associations were found.
Cardiovascular Physiology for First-Year Medical Students: Teaching and Learning through Games.
ERIC Educational Resources Information Center
France, Vanetia M.
1978-01-01
Describes a card game designed to help medical students learn to manipulate concepts fundamental to the functions of the cardiovascular system (CVS) and to understand the interrelationships between different controlled variables in the system. (Author/MA)
Ginsenoside Re: pharmacological effects on cardiovascular system.
Peng, Lu; Sun, Shi; Xie, Lai-Hua; Wicks, Sheila M; Xie, Jing-Tian
2012-08-01
Ginsenosides are the bioactive constituents of ginseng, a key herb in traditional Chinese medicine. As a single component of ginseng, ginsenoside Re (G-Re) belongs to the panaxatriol group. Many reports demonstrated that G-Re possesses the multifaceted beneficial pharmacological effects on cardiovascular system. G-Re has negative effect on cardiac contractility and autorhythmicity. It causes alternations in cardiac electrophysiological properties, which may account for its antiarrhythmic effect. In addition, G-Re also exerts antiischemic effect and induces angiogenic regeneration. In this review, we first outline the chemistry and the pharmacological effects of G-Re on the cardiovascular system. © 2011 Blackwell Publishing Ltd.
Structural identifiability analysis of a cardiovascular system model.
Pironet, Antoine; Dauby, Pierre C; Chase, J Geoffrey; Docherty, Paul D; Revie, James A; Desaive, Thomas
2016-05-01
The six-chamber cardiovascular system model of Burkhoff and Tyberg has been used in several theoretical and experimental studies. However, this cardiovascular system model (and others derived from it) are not identifiable from any output set. In this work, two such cases of structural non-identifiability are first presented. These cases occur when the model output set only contains a single type of information (pressure or volume). A specific output set is thus chosen, mixing pressure and volume information and containing only a limited number of clinically available measurements. Then, by manipulating the model equations involving these outputs, it is demonstrated that the six-chamber cardiovascular system model is structurally globally identifiable. A further simplification is made, assuming known cardiac valve resistances. Because of the poor practical identifiability of these four parameters, this assumption is usual. Under this hypothesis, the six-chamber cardiovascular system model is structurally identifiable from an even smaller dataset. As a consequence, parameter values computed from limited but well-chosen datasets are theoretically unique. This means that the parameter identification procedure can safely be performed on the model from such a well-chosen dataset. Thus, the model may be considered suitable for use in diagnosis. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Khanmoradi, Mehrangiz; Nasimi, Ali
2016-10-06
The hypothalamic paraventricular nucleus (PVN) plays essential roles in neuroendocrine and autonomic functions, including cardiovascular regulation. It was shown that microinjection of angiotensin II (AngII) into the PVN produced a pressor response. In this study, we explored the probable mechanisms of this pressor response. AngII was microinjected into the PVN and cardiovascular responses were recorded. Then, the responses were re-tested after systemic injection of a ganglionic blocker, Hexamethonium, or a vasopressin V1 receptor blocker. Hexamethonium pretreatment (i.v.) greatly and significantly attenuated the pressor response to AngII, with no significant effect on heart rate, indicating that the sympathetic system is involved in the cardiovascular effect of AngII in the PVN. Systemic pretreatment (i.v.) with V1 antagonist greatly and significantly attenuated the pressor response to AngII, with no significant effect on heart rate, indicating that vasopressin release is involved in the cardiovascular effect of AngII in the PVN. Overall, we found that AngII microinjected into the PVN produced a pressor response mediated by the sympathetic system and vasopressin release, indicating that other than circulating AngII, endogenous AngII of the PVN increases the vasopressin release from the PVN. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Protein S-sulfhydration by hydrogen sulfide in cardiovascular system.
Meng, Guoliang; Zhao, Shuang; Xie, Liping; Han, Yi; Ji, Yong
2018-04-01
Hydrogen sulfide (H 2 S), independently of any specific transporters, has a number of biological effects on the cardiovascular system. However, until now, the detailed mechanism of H 2 S was not clear. Recently, a novel post-translational modification induced by H 2 S, named S-sulfhydration, has been proposed. S-sulfhydration is the chemical modification of specific cysteine residues of target proteins by H 2 S. There are several methods for detecting S-sulfhydration, such as the modified biotin switch assay, maleimide assay with fluorescent thiol modifying regents, tag-switch method and mass spectrometry. H 2 S induces S-sulfhydration on enzymes or receptors (such as p66Shc, phospholamban, protein tyrosine phosphatase 1B, mitogen-activated extracellular signal-regulated kinase 1 and ATP synthase subunit α), transcription factors (such as specific protein-1, kelch-like ECH-associating protein 1, NF-κB and interferon regulatory factor-1), and ion channels (such as voltage-activated Ca 2+ channels, transient receptor potential channels and ATP-sensitive K + channels) in the cardiovascular system. Although significant progress has been achieved in delineating the role of protein S-sulfhydration by H 2 S in the cardiovascular system, more proteins with detailed cysteine sites of S-sulfhydration as well as physiological function need to be investigated in further studies. This review mainly summarizes the role and possible mechanism of S-sulfhydration in the cardiovascular system. The S-sulfhydrated proteins may be potential novel targets for therapeutic intervention and drug design in the cardiovascular system, which may accelerate the development and application of H 2 S-related drugs in the future. This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc. © 2017 The British Pharmacological Society.
Azer, Samy A; Algrain, Hala A; AlKhelaif, Rana A; AlEshaiwi, Sarah M
2013-11-13
A number of studies have evaluated the educational contents of videos on YouTube. However, little analysis has been done on videos about physical examination. This study aimed to analyze YouTube videos about physical examination of the cardiovascular and respiratory systems. It was hypothesized that the educational standards of videos on YouTube would vary significantly. During the period from November 2, 2011 to December 2, 2011, YouTube was searched by three assessors for videos covering the clinical examination of the cardiovascular and respiratory systems. For each video, the following information was collected: title, authors, duration, number of viewers, and total number of days on YouTube. Using criteria comprising content, technical authority, and pedagogy parameters, videos were rated independently by three assessors and grouped into educationally useful and non-useful videos. A total of 1920 videos were screened. Only relevant videos covering the examination of adults in the English language were identified (n=56). Of these, 20 were found to be relevant to cardiovascular examinations and 36 to respiratory examinations. Further analysis revealed that 9 provided useful information on cardiovascular examinations and 7 on respiratory examinations: scoring mean 14.9 (SD 0.33) and mean 15.0 (SD 0.00), respectively. The other videos, 11 covering cardiovascular and 29 on respiratory examinations, were not useful educationally, scoring mean 11.1 (SD 1.08) and mean 11.2 (SD 1.29), respectively. The differences between these two categories were significant (P<.001 for both body systems). The concordance between the assessors on applying the criteria was 0.89, with a kappa score >.86. A small number of videos about physical examination of the cardiovascular and respiratory systems were identified as educationally useful; these videos can be used by medical students for independent learning and by clinical teachers as learning resources. The scoring system utilized by this study is simple, easy to apply, and could be used by other researchers on similar topics.
A cardiovascular system model for lower-body negative pressure response
NASA Technical Reports Server (NTRS)
Mitchell, B. A., Jr.; Giese, R. P.
1971-01-01
Mathematical models used to study complex physiological control systems are discussed. Efforts were made to modify a model of the cardiovascular system for use in studying lower body negative pressure. A computer program was written which allows orderly, straightforward expansion to include exercise, metabolism (thermal stress), respiration, and other body functions.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-30
... balloon and control system (IABP) devices when indicated for acute coronary syndrome, cardiac and non... and non-cardiac surgery, or complications of heart failure. The special controls for this device are.... FDA-2013-N-0581] Cardiovascular Devices; Reclassification of Intra-Aortic Balloon and Control Systems...
A coupling method for a cardiovascular simulation model which includes the Kalman filter.
Hasegawa, Yuki; Shimayoshi, Takao; Amano, Akira; Matsuda, Tetsuya
2012-01-01
Multi-scale models of the cardiovascular system provide new insight that was unavailable with in vivo and in vitro experiments. For the cardiovascular system, multi-scale simulations provide a valuable perspective in analyzing the interaction of three phenomenons occurring at different spatial scales: circulatory hemodynamics, ventricular structural dynamics, and myocardial excitation-contraction. In order to simulate these interactions, multiscale cardiovascular simulation systems couple models that simulate different phenomena. However, coupling methods require a significant amount of calculation, since a system of non-linear equations must be solved for each timestep. Therefore, we proposed a coupling method which decreases the amount of calculation by using the Kalman filter. In our method, the Kalman filter calculates approximations for the solution to the system of non-linear equations at each timestep. The approximations are then used as initial values for solving the system of non-linear equations. The proposed method decreases the number of iterations required by 94.0% compared to the conventional strong coupling method. When compared with a smoothing spline predictor, the proposed method required 49.4% fewer iterations.
Lee, Kwang Seob; Kronbichler, Andreas; Eisenhut, Michael; Lee, Keum Hwa; Shin, Jae Il
2018-03-01
Systemic autoimmune diseases can affect various kinds of organs including the kidney, the skin, soft tissue and the bone. Among others, cardiovascular involvement in rheumatic diseases has been shown to affect myocardium, pericardium, cardiac vessels, conduction system and valves, eventually leading to increased mortality. In general, underlying chronic inflammation leads to premature atherosclerosis, but also other manifestations such as arrhythmia and heart failure may have a 'silent' progress. Traditional cardiovascular risk factors play a secondary role, while disease-specific factors (i.e. disease duration, severity, antibody positivity, persistent disease activity) can directly influence the cardiovascular system. Therefore, early diagnosis is critical to optimize management and to control inflammatory activity and recent data suggest that risk factors (i.e. hypercholesterolemia and hypertension) need intensive treatment as well. With the advent of immunosuppressive agents, most rheumatic diseases are well controlled on treatment, but information related to their cardioprotective efficacy is not well-defined. In this review, we focus on cardiovascular involvement in rheumatic diseases and highlight current evidence which should be of help for the treating physicians. Moreover, cardiotoxicity of immunosuppressive drugs is a rare issue and such potential adverse events will be briefly discussed. Copyright © 2018. Published by Elsevier B.V.
Kawano, Yuhei
2010-03-01
Alcohol has complex effects on the cardiovascular system. The purpose of this article is to review physio-pathological effects of alcohol on cardiovascular and related systems and to describe its role in hypertension and cardiovascular disease. The relationship between alcohol and hypertension is well known, and a reduction in the alcohol intake is widely recommended in the management of hypertension. Moreover, alcohol has both pressor and depressor actions. The latter actions are clear in Oriental subjects, especially in those who show alcohol flush because of the genetic variation in aldehyde dehydrogenase activity. Repeated alcohol intake in the evening causes an elevation in daytime and a reduction in nighttime blood pressure (BP), with little change in the average 24-h BP in Japanese men. Thus, the hypertensive effect of alcohol seems to be overestimated by the measurement of casual BP during the day. Heavy alcohol intake seems to increase the risk of several cardiovascular diseases, such as hemorrhagic stroke, arrhythmia and heart failure. On the other hand, alcohol may act to prevent atherosclerosis and to decrease the risk of ischemic heart disease, mainly by increasing HDL cholesterol and inhibiting thrombus formation. A J- or U-shaped relationship has been observed between the level of alcohol intake and risk of cardiovascular mortality and total mortality. It is reasonable to reduce the alcohol intake to less than 30 ml per day for men and 15 ml per day for women in the management of hypertension. As a small amount of alcohol seems to be beneficial, abstinence from alcohol is not recommended to prevent cardiovascular disease.
Grippo, Angela J.; Johnson, Alan Kim
2008-01-01
A bidirectional association between mood disorders such as depression, and cardiovascular diseases such as myocardial infarction and congestive heart failure, has been described; however, the precise neurobiological mechanisms that underlie these associations have not been fully elucidated. This review is focused on the neurobiological processes and mediators that are common to both mood and cardiovascular disorders, with an emphasis on the role of exogenous stressors in addition to: (a) neuroendocrine and neurohumoral changes involving dysfunction of the hypothalamic-pituitary-adrenal axis and activation of the renin-angiotensin-aldosterone system, (b) immune alterations including activation of pro-inflammatory cytokines, (c) autonomic and cardiovascular dysregulation including increased sympathetic drive, withdrawal of parasympathetic tone, cardiac rate and rhythm disturbances, and altered baroreceptor reflex function, (d) central neurotransmitter system dysfunction including dopamine, norepinephrine and serotonin, and (e) behavioral changes including fatigue and physical inactivity. We also focus specifically on experimental investigations with preclinical disease models, conducted to elucidate the neurobiological mechanisms underlying the link between mood disorders and cardiovascular disease. These include: (a) the chronic mild stress model of depression, (b) a model of congestive heart failure, a model of cardiovascular deconditioning, (d) pharmacological manipulations of body fluid and sodium balance, and (e) pharmacological manipulations of the central serotonergic system. In combination with the extensive literature describing findings from human research, the investigation of mechanisms underlying mood and cardiovascular regulation using animal models will enhance our understanding of the association of depression and cardiovascular disease, and can promote the development of better treatments and interventions for individuals with these co-morbid conditions. PMID:19116888
Regional variations in ambulatory care and incidence of cardiovascular events
Tu, Jack V.; Chu, Anna; Maclagan, Laura; Austin, Peter C.; Johnston, Sharon; Ko, Dennis T.; Cheung, Ingrid; Atzema, Clare L.; Booth, Gillian L.; Bhatia, R. Sacha; Lee, Douglas S.; Jackevicius, Cynthia A.; Kapral, Moira K.; Tu, Karen; Wijeysundera, Harindra C.; Alter, David A.; Udell, Jacob A.; Manuel, Douglas G.; Mondal, Prosanta; Hogg, William
2017-01-01
BACKGROUND: Variations in the prevalence of traditional cardiac risk factors only partially account for geographic variations in the incidence of cardiovascular disease. We examined the extent to which preventive ambulatory health care services contribute to geographic variations in cardiovascular event rates. METHODS: We conducted a cohort study involving 5.5 million patients aged 40 to 79 years in Ontario, Canada, with no hospital stays for cardiovascular disease as of January 2008, through linkage of multiple population-based health databases. The primary outcome was the occurrence of a major cardiovascular event (myocardial infarction, stroke or cardiovascular-related death) over the following 5 years. We compared patient demographics, cardiac risk factors and ambulatory health care services across the province’s 14 health service regions, known as Local Health Integration Networks (LHINs), and evaluated the contribution of these variables to regional variations in cardiovascular event rates. RESULTS: Cardiovascular event rates across LHINs varied from 3.2 to 5.7 events per 1000 person-years. Compared with residents of high-rate LHINs, those of low-rate health regions received physician services more often (e.g., 4.2 v. 3.5 mean annual family physician visits, p value for LHIN-level trend = 0.01) and were screened for risk factors more often. Low-rate LHINs were also more likely to achieve treatment targets for hypercholes-terolemia (51.8% v. 49.6% of patients, p = 0.03) and controlled hypertension (67.4% v. 53.3%, p = 0.04). Differences in patient and health system factors accounted for 74.5% of the variation in events between LHINs, of which 15.5% was attributable to health system factors alone. INTERPRETATION: Preventive ambulatory health care services were provided more frequently in health regions with lower cardiovascular event rates. Health system interventions to improve equitable access to preventive care might improve cardiovascular outcomes. PMID:28385894
NASA Technical Reports Server (NTRS)
Fitzjerrell, D. G.
1974-01-01
A general study of the stability of nonlinear as compared to linear control systems is presented. The analysis is general and, therefore, applies to other types of nonlinear biological control systems as well as the cardiovascular control system models. Both inherent and numerical stability are discussed for corresponding analytical and graphic methods and numerical methods.
Clinical Application of Stem Cells in the Cardiovascular System
NASA Astrophysics Data System (ADS)
Stamm, Christof; Klose, Kristin; Choi, Yeong-Hoon
Regenerative medicine encompasses "tissue engineering" - the in vitro fabrication of tissues and/or organs using scaffold material and viable cells - and "cell therapy" - the transplantation or manipulation of cells in diseased tissue in vivo. In the cardiovascular system, tissue engineering strategies are being pursued for the development of viable replacement blood vessels, heart valves, patch material, cardiac pacemakers and contractile myocardium. Anecdotal clinical applications of such vessels, valves and patches have been described, but information on systematic studies of the performance of such implants is not available, yet. Cell therapy for cardiovascular regeneration, however, has been performed in large series of patients, and numerous clinical studies have produced sometimes conflicting results. The purpose of this chapter is to summarize the clinical experience with cell therapy for diseases of the cardiovascular system, and to analyse possible factors that may influence its outcome.
Introduction: Cardiovascular physics
NASA Astrophysics Data System (ADS)
Wessel, Niels; Kurths, Jürgen; Ditto, William; Bauernschmitt, Robert
2007-03-01
The number of patients suffering from cardiovascular diseases increases unproportionally high with the increase of the human population and aging, leading to very high expenses in the public health system. Therefore, the challenge of cardiovascular physics is to develop high-sophisticated methods which are able to, on the one hand, supplement and replace expensive medical devices and, on the other hand, improve the medical diagnostics with decreasing the patient's risk. Cardiovascular physics-which interconnects medicine, physics, biology, engineering, and mathematics-is based on interdisciplinary collaboration of specialists from the above scientific fields and attempts to gain deeper insights into pathophysiology and treatment options. This paper summarizes advances in cardiovascular physics with emphasis on a workshop held in Bad Honnef, Germany, in May 2005. The meeting attracted an interdisciplinary audience and led to a number of papers covering the main research fields of cardiovascular physics, including data analysis, modeling, and medical application. The variety of problems addressed by this issue underlines the complexity of the cardiovascular system. It could be demonstrated in this Focus Issue, that data analyses and modeling methods from cardiovascular physics have the ability to lead to significant improvements in different medical fields. Consequently, this Focus Issue of Chaos is a status report that may invite all interested readers to join the community and find competent discussion and cooperation partners.
Sodium and Its Role in Cardiovascular Disease – The Debate Continues
Kong, Yee Wen; Baqar, Sara; Jerums, George; Ekinci, Elif I.
2016-01-01
Guidelines have recommended significant reductions in dietary sodium intake to improve cardiovascular health. However, these dietary sodium intake recommendations have been questioned as emerging evidence has shown that there is a higher risk of cardiovascular disease with a low sodium diet, including in individuals with type 2 diabetes. This may be related to the other pleotropic effects of dietary sodium intake. Therefore, despite recent review of dietary sodium intake guidelines by multiple organizations, including the dietary guidelines for Americans, American Diabetes Association, and American Heart Association, concerns about the impact of the degree of sodium restriction on cardiovascular health continue to be raised. This literature review examines the effects of dietary sodium intake on factors contributing to cardiovascular health, including left ventricular hypertrophy, heart rate, albuminuria, rennin–angiotensin–aldosterone system activation, serum lipids, insulin sensitivity, sympathetic nervous system activation, endothelial function, and immune function. In the last part of this review, the association between dietary sodium intake and cardiovascular outcomes, especially in individuals with diabetes, is explored. Given the increased risk of cardiovascular disease in individuals with diabetes and the increasing incidence of diabetes worldwide, this review is important in summarizing the recent evidence regarding the effects of dietary sodium intake on cardiovascular health, especially in this population. PMID:28066329
Predictors of Cardiovascular Events After Liver Transplantation.
Gallegos-Orozco, Juan F; Charlton, Michael R
2017-05-01
Indications for liver transplant have been extended, and older and sicker patients are undergoing transplantation. Infectious, malignant, and cardiovascular diseases account for the most posttransplant deaths. Cirrhotic patients can develop heart disease through systemic diseases affecting the heart and the liver, cirrhosis-specific heart disease, or common cardiovascular. No single factor can predict posttransplant cardiovascular complications. Patients with history of cardiovascular disease, and specific abnormalities on echocardiography, electrocardiography, or serum markers of heart disease seem to be at increased risk of complications. Pretransplant cardiovascular evaluation is essential to detecting these risk factors so their effects can be mitigated through appropriate intervention. Copyright © 2016 Elsevier Inc. All rights reserved.
Beat to beat variability in cardiovascular variables: noise or music?
NASA Technical Reports Server (NTRS)
Appel, M. L.; Berger, R. D.; Saul, J. P.; Smith, J. M.; Cohen, R. J.
1989-01-01
Cardiovascular variables such as heart rate, arterial blood pressure, stroke volume and the shape of electrocardiographic complexes all fluctuate on a beat to beat basis. These fluctuations have traditionally been ignored or, at best, treated as noise to be averaged out. The variability in cardiovascular signals reflects the homeodynamic interplay between perturbations to cardiovascular function and the dynamic response of the cardiovascular regulatory systems. Modern signal processing techniques provide a means of analyzing beat to beat fluctuations in cardiovascular signals, so as to permit a quantitative, noninvasive or minimally invasive method of assessing closed loop hemodynamic regulation and cardiac electrical stability. This method promises to provide a new approach to the clinical diagnosis and management of alterations in cardiovascular regulation and stability.
Magnetic resonance imaging and spectroscopy of the murine cardiovascular system.
Akki, Ashwin; Gupta, Ashish; Weiss, Robert G
2013-03-01
Magnetic resonance imaging (MRI) has emerged as a powerful and reliable tool to noninvasively study the cardiovascular system in clinical practice. Because transgenic mouse models have assumed a critical role in cardiovascular research, technological advances in MRI have been extended to mice over the last decade. These have provided critical insights into cardiac and vascular morphology, function, and physiology/pathophysiology in many murine models of heart disease. Furthermore, magnetic resonance spectroscopy (MRS) has allowed the nondestructive study of myocardial metabolism in both isolated hearts and in intact mice. This article reviews the current techniques and important pathophysiological insights from the application of MRI/MRS technology to murine models of cardiovascular disease.
Sea buckthorn as a source of important bioactive compounds in cardiovascular diseases.
Olas, Beata
2016-11-01
Hippophae rhamnoides (sea buckthorn) offers many health benefits. It has significant cardioprotective activity and exerts many positive healing effects on the cardiovascular system, including inhibiting blood platelet activation (especially platelet aggregation), lowering cholesterol concentration and blood pressure, and providing antioxidant activity. In addition, sea buckthorn has antibacterial and antiviral properties. The leaves and fruits of the plant, and its oils, are sources of many bioactive substances including vitamins (A, C and E), unsaturated fatty acids, phenolic compounds, especially flavonoids, and phytosterols, which bestow positive effects on the cardiovascular system. This review article summarizes the current knowledge of the biological roles of sea buckthorn in cardiovascular diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.
Magnetic resonance imaging and spectroscopy of the murine cardiovascular system
Akki, Ashwin; Gupta, Ashish
2013-01-01
Magnetic resonance imaging (MRI) has emerged as a powerful and reliable tool to noninvasively study the cardiovascular system in clinical practice. Because transgenic mouse models have assumed a critical role in cardiovascular research, technological advances in MRI have been extended to mice over the last decade. These have provided critical insights into cardiac and vascular morphology, function, and physiology/pathophysiology in many murine models of heart disease. Furthermore, magnetic resonance spectroscopy (MRS) has allowed the nondestructive study of myocardial metabolism in both isolated hearts and in intact mice. This article reviews the current techniques and important pathophysiological insights from the application of MRI/MRS technology to murine models of cardiovascular disease. PMID:23292717
Mendes, Romeu; Themudo Barata, J L
2008-01-01
High blood pressure is a major risk factor of cardiovascular diseases and has a high prevalence in the older individuals becoming in a risk factor associated with high cardiovascular mortality and morbidity among these population. This study has the objective to analyze the changes in the cardiovascular system inherent to the aging process, that provoke the increase of blood pressure levels with the advance of age and that can origin hypertension. With the aging process, changes in the anatomy and cardiovascular physiology occur, even in the absence of illness. High blood pressure is characterized as a systemic condition that involves the presence of structural changes of the arteries and the myocardium, associated to an endotelial and baroreceptors dysfunction.
Wireless Monitoring for Patients with Cardiovascular Diseases and Parkinson's Disease.
Kefaliakos, Antonios; Pliakos, Ioannis; Charalampidou, Martha; Diomidous, Marianna
2016-01-01
The use of applications for mobile devices and wireless sensors is common for the sector of telemedicine. Recently various studies and systems were developed in order to help patients suffering from severe diseases such as cardiovascular diseases and Parkinson's disease. They present a challenge for the sector because such systems demand the flow of accurate data in real time and the use of specialized sensors. In this review will be presented some very interesting applications developed for patients with cardiovascular diseases and Parkinson's disease.
cGMP Signaling in the Cardiovascular System—The Role of Compartmentation and Its Live Cell Imaging
Bork, Nadja I.; Nikolaev, Viacheslav O.
2018-01-01
The ubiquitous second messenger 3′,5′-cyclic guanosine monophosphate (cGMP) regulates multiple physiologic processes in the cardiovascular system. Its intracellular effects are mediated by stringently controlled subcellular microdomains. In this review, we will illustrate the current techniques available for real-time cGMP measurements with a specific focus on live cell imaging methods. We will also discuss currently accepted and emerging mechanisms of cGMP compartmentation in the cardiovascular system. PMID:29534460
A Disintegrin and Metalloprotease 17 in the Cardiovascular and Central Nervous Systems.
Xu, Jiaxi; Mukerjee, Snigdha; Silva-Alves, Cristiane R A; Carvalho-Galvão, Alynne; Cruz, Josiane C; Balarini, Camille M; Braga, Valdir A; Lazartigues, Eric; França-Silva, Maria S
2016-01-01
ADAM17 is a metalloprotease and disintegrin that lodges in the plasmatic membrane of several cell types and is able to cleave a wide variety of cell surface proteins. It is somatically expressed in mammalian organisms and its proteolytic action influences several physiological and pathological processes. This review focuses on the structure of ADAM17, its signaling in the cardiovascular system and its participation in certain disorders involving the heart, blood vessels, and neural regulation of autonomic and cardiovascular modulation.
Grais, Ira Martin; Sowers, James R.
2015-01-01
Thyroid hormones modulate every component of the cardiovascular system necessary for normal cardiovascular development and function. When cardiovascular disease is present, thyroid function tests are characteristically indicated to determine if overt thyroid disorders or even subclinical dysfunction exists. As hypothyroidism, hypertension and cardiovascular disease all increase with advancing age monitoring of TSH, the most sensitive test for hypothyroidism, is important in this expanding segment of our population. A better understanding of the impact of thyroid hormonal status on cardiovascular physiology will enable health care providers to make decisions regarding thyroid hormone evaluation and therapy in concert with evaluating and treating hypertension and cardiovascular disease. The goal of this review is to access contemporary understanding of the effects of thyroid hormones on normal cardiovascular function and the potential role of overt and subclinical hypothyroidism and hyperthyroidism in a variety of cardiovascular diseases. PMID:24662620
A Pulsatile Cardiovascular Computer Model for Teaching Heart-Blood Vessel Interaction.
ERIC Educational Resources Information Center
Campbell, Kenneth; And Others
1982-01-01
Describes a model which gives realistic predictions of pulsatile pressure, flow, and volume events in the cardiovascular system. Includes computer oriented laboratory exercises for veterinary and graduate students; equations of the dynamic and algebraic models; and a flow chart for the cardiovascular teaching program. (JN)
The Checkerboard Cardiovascular Curriculum: A Culturally Oriented Program.
ERIC Educational Resources Information Center
Harris, Mary B.; And Others
1988-01-01
Pilot-testing of a cardiovascular health education curriculum with 218 American Indian and Hispanic fifth graders in rural New Mexico noted significant increases in knowledge about the cardiovascular system, exercise, nutrition, obesity, tobacco use, and habit change, suggesting that the culturally oriented program may help promote a healthy…
Cardiovascular Disease and Cancer: Student Awareness Activities.
ERIC Educational Resources Information Center
Meyer, James H., Comp.
Awareness activities pertaining to cancer and cardiovascular disease are presented as a supplement for high school science classes. The exercises can be used to enrich units of study dealing with the circulatory system, the cell, or human diseases. Eight activities deal with the following topics: (1) cardiovascular disease risk factors; (2)…
Orio, Francesco; Muscogiuri, Giovanna; Nese, Cinar; Palomba, Stefano; Savastano, Silvia; Tafuri, Domenico; Colarieti, Giorgio; La Sala, Giovanbattista; Colao, Annamaria; Yildiz, Bulent O
2016-12-01
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in reproductive aged women and is characterized by two of the following three features: oligoovulation or anovulation, clinical and/or biochemical signs of hyperandrogenism, or polycystic ovaries. It has been demonstrated that PCOS includes a complex number of systemic symptoms in addition to symptoms related to the reproductive apparatus. It has been associated with obesity, metabolic syndrome, type 2 diabetes and an increased risk of cardiovascular disease. Several clinical and basic studies have investigated the link between PCOS and the cardiovascular disease risk, which seems to be due to blunted lipid/glucose metabolism, hypertension, and systemic inflammatory and coagulation disorders. Therefore, the current manuscript aims to review the main findings on PCOS and obesity/obesity-related disease (glucose derangements and cardiovascular disease risk factors). Although there are no long-term data on the morbidity and mortality for cardiovascular disease in PCOS, it is advisable to perform a careful metabolic and cardiovascular assessment in women with PCOS in order to tailor the most suitable strategy to prevent cardiovascular disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Belliere, Julie; Martinez de Lizarrondo, Sara; Choudhury, Robin P; Quenault, Aurélien; Le Béhot, Audrey; Delage, Christine; Chauveau, Dominique; Schanstra, Joost P; Bascands, Jean-Loup; Vivien, Denis; Gauberti, Maxime
2015-01-01
Endothelial activation is a hallmark of cardiovascular diseases, acting either as a cause or a consequence of organ injury. To date, we lack suitable methods to measure endothelial activation in vivo. In the present study, we developed a magnetic resonance imaging (MRI) method allowing non-invasive endothelial activation mapping in the vasculature of the main organs affected during cardiovascular diseases. In clinically relevant contexts in mice (including systemic inflammation, acute and chronic kidney diseases, diabetes mellitus and normal aging), we provided evidence that this method allows detecting endothelial activation before any clinical manifestation of organ failure in the brain, kidney and heart with an exceptional sensitivity. In particular, we demonstrated that diabetes mellitus induces chronic endothelial cells activation in the kidney and heart. Moreover, aged mice presented activated endothelial cells in the kidneys and the cerebrovasculature. Interestingly, depending on the underlying condition, the temporospatial patterns of endothelial activation in the vascular beds of the cardiovascular system were different. These results demonstrate the feasibility of detecting silent endothelial activation occurring in conditions associated with high cardiovascular risk using molecular MRI.
Belliere, Julie; Martinez de Lizarrondo, Sara; Choudhury, Robin P.; Quenault, Aurélien; Le Béhot, Audrey; Delage, Christine; Chauveau, Dominique; Schanstra, Joost P.; Bascands, Jean-Loup; Vivien, Denis; Gauberti, Maxime
2015-01-01
Endothelial activation is a hallmark of cardiovascular diseases, acting either as a cause or a consequence of organ injury. To date, we lack suitable methods to measure endothelial activation in vivo. In the present study, we developed a magnetic resonance imaging (MRI) method allowing non-invasive endothelial activation mapping in the vasculature of the main organs affected during cardiovascular diseases. In clinically relevant contexts in mice (including systemic inflammation, acute and chronic kidney diseases, diabetes mellitus and normal aging), we provided evidence that this method allows detecting endothelial activation before any clinical manifestation of organ failure in the brain, kidney and heart with an exceptional sensitivity. In particular, we demonstrated that diabetes mellitus induces chronic endothelial cells activation in the kidney and heart. Moreover, aged mice presented activated endothelial cells in the kidneys and the cerebrovasculature. Interestingly, depending on the underlying condition, the temporospatial patterns of endothelial activation in the vascular beds of the cardiovascular system were different. These results demonstrate the feasibility of detecting silent endothelial activation occurring in conditions associated with high cardiovascular risk using molecular MRI. PMID:26379785
Rho, Young Hee; Oeser, Annette; Chung, Cecilia P; Morrow, Jason D; Stein, C Michael
2008-01-01
Objectives Cardiovascular risk is increased in patients with systemic lupus erythematosus (SLE). Drugs used to treat SLE can modify traditional cardiovascular risk factors. We examined the effect of selected drugs used in the treatment of SLE on cardiovascular risk factors. Methods We compared systolic and diastolic blood pressure, serum lipid concentrations, glucose, homocysteine, and urinary F2-isoprostane concentrations in 99 patients with lupus who were either current users or non-users of systemic corticosteroids, antimalarials, non-steroidal anti-inflammatory drugs (NSAIDs), COX-2 selective NSAIDs, azathioprine, and methotrexate. Multivariable adjustment was done with linear regression modeling using sex, age and disease activity (SLEDAI) as controlling variables. Results Serum triglyceride concentrations were higher (135.1 ± 61.4 vs. 95.3 ± 47.5 mg/dL, adjusted P = 0.003) in patients receiving corticosteroids. Homocysteine concentrations were marginally higher in patients receiving methotrexate (adjusted P = 0.08). Current use of either NSAIDs or COX-2 inhibitors was not associated with increased cardiovascular risk factors. Current hydroxychloroquine use was not associated with significant alterations in lipid profiles. Conclusions In a non-random sample of patients with SLE, current corticosteroid use was associated with increased triglyceride concentrations, but other drugs had little effect on traditional cardiovascular risk factors. PMID:20157365
Yiallourou, Stephanie R; Wallace, Euan M; Miller, Suzanne L; Horne, Rosemary S C
2016-04-01
Intrauterine growth restriction (IUGR) complicates 5-10% of pregnancies and is associated with increased risk of preterm birth, mortality and neurodevelopmental delay. The development of sleep and cardiovascular control are closely coupled and IUGR is known to alter this development. In the long-term, IUGR is associated with altered sleep and an increased risk of hypertension in adulthood. Melatonin plays an important role in the sleep-wake cycle. Experimental animal studies have shown that melatonin therapy has neuroprotective and cardioprotective effects in the IUGR fetus. Consequently, clinical trials are currently underway to assess the short and long term effects of antenatal melatonin therapy in IUGR pregnancies. Given melatonin's role in sleep regulation, this hormone could affect the developing infants' sleep-wake cycle and cardiovascular function after birth. In this review, we will 1) examine the role of melatonin as a therapy for IUGR pregnancies and the potential implications on sleep and the cardiovascular system; 2) examine the development of sleep-wake cycle in fetal and neonatal life; 3) discuss the development of cardiovascular control during sleep; 4) discuss the effect of IUGR on sleep and the cardiovascular system and 5) discuss the future implications of melatonin therapy in IUGR pregnancies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Air Pollution-Induced Vascular Dysfunction: Potential Role of Endothelin-1 (ET-1) System
Finch, Jordan; Conklin, Daniel J.
2015-01-01
Exposure to air pollution negatively impacts cardiovascular health. Studies show that increased exposure to a number of airborne pollutants increases the risk for cardiovascular disease progression, myocardial events, and cardiovascular mortality. A hypothesized mechanism linking air pollution and cardiovascular disease is the development of systemic inflammation and endothelium dysfunction, the latter of which can result from an imbalance of vasoactive factors within the vasculature. Endothelin-1 (ET-1) is a potent peptide vasoconstrictor that plays a significant role in regulating vascular homeostasis. It has been reported that the production and function of ET-1 and its receptors are upregulated in a number of disease states associated with endothelium dysfunction including hypertension and atherosclerosis. This mini-review surveys epidemiological and experimental air pollution studies focused on ET-1 dysregulation as a plausible mechanism underlying the development of cardiovascular disease. Although alterations in ET-1 system components are observed in some studies, there remains a need for future research to clarify whether these specific changes are compensatory or causally related to vascular injury and dysfunction. Moreover, further research may test the efficacy of selective ET-1 pharmacological interventions (e.g., ETA receptor inhibitors) to determine whether these treatments could impede the deleterious impact of air pollution exposure on cardiovascular health. PMID:26148452
Air Pollution-Induced Vascular Dysfunction: Potential Role of Endothelin-1 (ET-1) System.
Finch, Jordan; Conklin, Daniel J
2016-07-01
Exposure to air pollution negatively impacts cardiovascular health. Studies show that increased exposure to a number of airborne pollutants increases the risk for cardiovascular disease progression, myocardial events, and cardiovascular mortality. A hypothesized mechanism linking air pollution and cardiovascular disease is the development of systemic inflammation and endothelium dysfunction, the latter of which can result from an imbalance of vasoactive factors within the vasculature. Endothelin-1 (ET-1) is a potent peptide vasoconstrictor that plays a significant role in regulating vascular homeostasis. It has been reported that the production and function of ET-1 and its receptors are upregulated in a number of disease states associated with endothelium dysfunction including hypertension and atherosclerosis. This mini-review surveys epidemiological and experimental air pollution studies focused on ET-1 dysregulation as a plausible mechanism underlying the development of cardiovascular disease. Although alterations in ET-1 system components are observed in some studies, there remains a need for future research to clarify whether these specific changes are compensatory or causally related to vascular injury and dysfunction. Moreover, further research may test the efficacy of selective ET-1 pharmacological interventions (e.g., ETA receptor inhibitors) to determine whether these treatments could impede the deleterious impact of air pollution exposure on cardiovascular health.
Cardiovascular Sound and the Stethoscope, 1816 to 2016
Segall, Harold N.
1963-01-01
Cardiovascular sound escaped attention until Laennec invented and demonstrated the usefulness of the stethoscope. Accuracy of diagnosis using cardiovascular sounds as clues increased with improvement in knowledge of the physiology of circulation. Nearly all currently acceptable clinicopathological correlations were established by physicians who used the simplest of stethoscopes or listened with the bare ear. Certain refinements followed the use of modern methods which afford greater precision in timing cardiovascular sounds. These methods contribute to educating the human ear, so that those advantages may be applied which accrue from auscultation, plus the method of writing quantitative symbols to describe what is heard, by focusing the sense of hearing on each segment of the cardiac cycle in turn. By the year 2016, electronic systems of collecting and analyzing data about the cardiovascular system may render the stethoscope obsolete. ImagesFig. 1Fig. 2Fig. 3Fig. 5Fig. 8 PMID:13987676
Wheeler, Jason B.; Ikonomidis, John S.; Jones, Jeffrey A.
2015-01-01
Marfan Syndrome (MFS) and Loeys-Dietz Syndrome (LDS) represent heritable connective tissue disorders that cosegregate with a similar pattern of cardiovascular defects (thoracic aortic aneurysm, mitral valve prolapse/regurgitation, and aortic dilatation with regurgitation). This pattern of cardiovascular defects appears to be expressed along a spectrum of severity in many heritable connective tissue disorders and raises suspicion of a relationship between the normal development of connective tissues and the cardiovascular system. Given the evidence of increased transforming growth factor-beta (TGF-β) signaling in MFS and LDS, this signaling pathway may represent the common link in this relationship. To further explore this hypothetical link, this chapter will review the TGF-β signaling pathway, heritable connective tissue syndromes related to TGF-β receptor (TGFBR) mutations, and discuss the pathogenic contribution of TGF-β to these syndromes with a primary focus on the cardiovascular system. PMID:24443024
Central hypothyroidism and its role for cardiovascular risk factors in hypopituitary patients.
Feldt-Rasmussen, Ulla; Klose, Marianne
2016-10-01
Hypothyroidism is characterized by hypometabolism, and may be seen as a part of secondary failure due to pituitary insufficiency or tertiary due to hypothalamic disease. Secondary and tertiary failures are also referred to as central hypothyroidism. Whereas overt primary hypothyroidism has a well-known affection on the heart and cardiovascular system, and may result in cardiac failure, cardiovascular affection is less well recognized in central hypothyroidism. Studies on central hypothyroidism and cardiovascular outcome are few and given the rarity of the diseases often small. Further, there are several limitations given vast difficulties in diagnosing the condition correctly biochemically, and difficulties monitoring the treatment because normal thyroid-pituitary feedback interrelationships are disrupted. The present review summarizes available studies of central adult hypothyroidism and its possible influence on the cardiovascular system, describe differences from primary thyroid failure and seek evidence for performing guidelines for clinical management of this particular thyroid and hypothalamo-pituitary disorder.
Central Neural Control of the Cardiovascular System: Current Perspectives
ERIC Educational Resources Information Center
Dampney, Roger A. L.
2016-01-01
This brief review, which is based on a lecture presented at the American Physiological Society Teaching Refresher Course on the Brain and Systems Control as part of the Experimental Biology meeting in 2015, aims to summarize current concepts of the principal mechanisms in the brain that regulate the autonomic outflow to the cardiovascular system.…
21 CFR 870.1270 - Intracavitary phonocatheter system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Intracavitary phonocatheter system. 870.1270 Section 870.1270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1270 Intracavitary...
21 CFR 870.2600 - Signal isolation system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Signal isolation system. 870.2600 Section 870.2600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2600 Signal isolation...
21 CFR 870.2600 - Signal isolation system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Signal isolation system. 870.2600 Section 870.2600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2600 Signal isolation...
21 CFR 870.1270 - Intracavitary phonocatheter system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intracavitary phonocatheter system. 870.1270 Section 870.1270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1270 Intracavitary...
A forward model-based validation of cardiovascular system identification
NASA Technical Reports Server (NTRS)
Mukkamala, R.; Cohen, R. J.
2001-01-01
We present a theoretical evaluation of a cardiovascular system identification method that we previously developed for the analysis of beat-to-beat fluctuations in noninvasively measured heart rate, arterial blood pressure, and instantaneous lung volume. The method provides a dynamical characterization of the important autonomic and mechanical mechanisms responsible for coupling the fluctuations (inverse modeling). To carry out the evaluation, we developed a computational model of the cardiovascular system capable of generating realistic beat-to-beat variability (forward modeling). We applied the method to data generated from the forward model and compared the resulting estimated dynamics with the actual dynamics of the forward model, which were either precisely known or easily determined. We found that the estimated dynamics corresponded to the actual dynamics and that this correspondence was robust to forward model uncertainty. We also demonstrated the sensitivity of the method in detecting small changes in parameters characterizing autonomic function in the forward model. These results provide confidence in the performance of the cardiovascular system identification method when applied to experimental data.
Synthetic Cannabinoids and Their Effects on the Cardiovascular System.
Von Der Haar, Jonathan; Talebi, Soheila; Ghobadi, Farzaneh; Singh, Shailinder; Chirurgi, Roger; Rajeswari, Pingle; Kalantari, Hossein; Hassen, Getaw Worku
2016-02-01
In the past couple of years, there has been an outbreak of synthetic cannabinoid (SC) use in major cities in the United States. Patients can present with various symptoms affecting the central nervous and cardiovascular systems. The effects of endocannabinoid on contractility and Ca(2+) signaling have been shown through both cannabinoid receptors and a direct effect on ion channels. These effects result in abnormalities in ionotropy, chronotropy, and conduction. Here we report on two cases of SC abuse and abnormalities in the cardiovascular system. These cases raise concerns about the adverse effects of SCs and the possibility of QTc prolongation and subsequent complications when using antipsychotic medication in the presence of SC abuse. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Given the rise in SC use and the potential effect on the cardiovascular system, physicians need to be mindful of potential cardiac complications, such as QTc prolongation and torsade de pointe, especially when administering medications that have the potential to cause QTc prolongation. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Stojadinović, Bojana; Nestorović, Zorica; Djurić, Biljana; Tenne, Tamar; Zikich, Dragoslav; Žikić, Dejan
2017-03-01
The velocity by which a disturbance moves through the medium is the wave velocity. Pulse wave velocity is among the key parameters in hemodynamics. Investigation of wave propagation through the fluid-filled elastic tube has a great importance for the proper biophysical understanding of the nature of blood flow through the cardiovascular system. Here, we present a laboratory model of the cardiovascular system. We have designed an experimental setup which can help medical and nursing students to properly learn and understand basic fluid hemodynamic principles, pulse wave and the phenomenon of wave propagation in blood vessels. Demonstration of wave propagation allowed a real time observation of the formation of compression and expansion waves by students, thus enabling them to better understand the difference between the two waves, and also to measure the pulse wave velocity for different fluid viscosities. The laboratory model of the cardiovascular system could be useful as an active learning methodology and a complementary tool for understanding basic principles of hemodynamics.
Kucinska-Lipka, J; Gubanska, I; Janik, H; Sienkiewicz, M
2015-01-01
Electrospinning is a unique technique, which provides forming of polymeric scaffolds for soft tissue engineering, which include tissue scaffolds for soft tissues of the cardiovascular system. Such artificial soft tissues of the cardiovascular system may possess mechanical properties comparable to native vascular tissues. Electrospinning technique gives the opportunity to form fibres with nm- to μm-scale in diameter. The arrangement of obtained fibres and their surface determine the biocompatibility of the scaffolds. Polyurethanes (PUs) are being commonly used as a prosthesis of cardiovascular soft tissues due to their excellent biocompatibility, non-toxicity, elasticity and mechanical properties. PUs also possess fine spinning properties. The combination of a variety of PU properties with an electrospinning technique, conducted at the well tailored conditions, gives unlimited possibilities of forming novel polyurethane materials suitable for soft tissue scaffolds applied in cardiovascular tissue engineering. This paper can help researches to gain more widespread and deeper understanding of designing electrospinable PU materials, which may be used as cardiovascular soft tissue scaffolds. In this paper we focus on reagents used in PU synthesis designed to increase PU biocompatibility (polyols) and biodegradability (isocyanates). We also describe suggested surface modifications of electrospun PUs, and the direct influence of surface wettability on providing enhanced biocompatibility of scaffolds. We indicate a great influence of electrospinning parameters (voltage, flow rate, working distance) and used solvents (mostly DMF, THF and HFIP) on fibre alignment and diameter - what impacts the biocompatibility and hemocompatibility of such electrospun PU scaffolds. Moreover, we present PU modifications with natural polymers with novel approach applied in electrospinning of PU scaffolds. This work may contribute with further developing of novel electrospun PUs, which may be applied as soft tissue scaffolds of the cardiovascular system. Copyright © 2014. Published by Elsevier B.V.
Cardiovascular effects in rats after intratracheal instillation of metal welding particles
Zheng, Wen; Antonini, James M.; Lin, Yen-Chang; Roberts, Jenny R.; Kashon, Michael L.; Castranova, Vincent; Kan, Hong
2015-01-01
Studies have indicated that pulmonary exposure to welding fumes can induce a series of adverse effects in the respiratory system, including infection, bronchitis, siderosis and decreased pulmonary function. Recent clinical and epidemiological studies have found that pulmonary exposure to welding fumes is also associated with a higher incidence of cardiovascular events. However, there is insufficient evidence to confirm a direct effect of welding fumes on the cardiovascular system. The present study investigated the effects of pulmonary exposure to welding fumes on the heart and the vascular system in rats. Two chemically distinct welding fumes generated from manual metal arc-hard surfacing (MMA-HS) and gas metal arc-mild steel (GMA-MS) welding were tested. Three groups of rats were instilled intratracheally with MMA-HS (2 mg/rat), GMA-MS (2 mg/rat) or saline as control once a week for seven weeks. On days 1 and 7 after the last treatment, basal cardiovascular function and the cardiovascular response to increasing doses of adrenoreceptor agonists were assessed. MMA-HS treatment reduced the basal levels of left ventricle end-systolic pressure and dP/dtmax at 1 day post-treatment, and decreased dP/dtmin in response to isoproterenol (ISO) at 7 days post-treatment. Unlike MMA-HS, GMA-MS only affected left ventricular end-diastolic pressure in response to ISO at 7 days post-treatment. Treatment with MMA-HS or GMA-MS did not alter heart rate and blood pressure. Our findings suggest that exposure to different welding fumes can induce different adverse effects on the cardiovascular system, and that cardiac contractility may be a sensitive indicator of cardiovascular dysfunction. PMID:25600139
Cardiovascular effects in rats after intratracheal instillation of metal welding particles.
Zheng, Wen; Antonini, James M; Lin, Yen-Chang; Roberts, Jenny R; Kashon, Michael L; Castranova, Vincent; Kan, Hong
2015-01-01
Studies have indicated that pulmonary exposure to welding fumes can induce a series of adverse effects in the respiratory system, including infection, bronchitis, siderosis and decreased pulmonary function. Recent clinical and epidemiological studies have found that pulmonary exposure to welding fumes is also associated with a higher incidence of cardiovascular events. However, there is insufficient evidence to confirm a direct effect of welding fumes on the cardiovascular system. The present study investigated the effects of pulmonary exposure to welding fumes on the heart and the vascular system in rats. Two chemically distinct welding fumes generated from manual metal arc-hard surfacing (MMA-HS) and gas metal arc-mild steel (GMA-MS) welding were tested. Three groups of rats were instilled intratracheally with MMA-HS (2 mg/rat), GMA-MS (2 mg/rat) or saline as control once a week for seven weeks. On days 1 and 7 after the last treatment, basal cardiovascular function and the cardiovascular response to increasing doses of adrenoreceptor agonists were assessed. MMA-HS treatment reduced the basal levels of left ventricle end-systolic pressure and dP/dt(max) at 1 day post-treatment, and decreased dP/dt(min) in response to isoproterenol (ISO) at 7 days post-treatment. Unlike MMA-HS, GMA-MS only affected left ventricular end-diastolic pressure in response to ISO at 7 days post-treatment. Treatment with MMA-HS or GMA-MS did not alter heart rate and blood pressure. Our findings suggest that exposure to different welding fumes can induce different adverse effects on the cardiovascular system, and that cardiac contractility may be a sensitive indicator of cardiovascular dysfunction.
Roadmap for cardiovascular circulation model
Bradley, Christopher P.; Suresh, Vinod; Mithraratne, Kumar; Muller, Alexandre; Ho, Harvey; Ladd, David; Hellevik, Leif R.; Omholt, Stig W.; Chase, J. Geoffrey; Müller, Lucas O.; Watanabe, Sansuke M.; Blanco, Pablo J.; de Bono, Bernard; Hunter, Peter J.
2016-01-01
Abstract Computational models of many aspects of the mammalian cardiovascular circulation have been developed. Indeed, along with orthopaedics, this area of physiology is one that has attracted much interest from engineers, presumably because the equations governing blood flow in the vascular system are well understood and can be solved with well‐established numerical techniques. Unfortunately, there have been only a few attempts to create a comprehensive public domain resource for cardiovascular researchers. In this paper we propose a roadmap for developing an open source cardiovascular circulation model. The model should be registered to the musculo‐skeletal system. The computational infrastructure for the cardiovascular model should provide for near real‐time computation of blood flow and pressure in all parts of the body. The model should deal with vascular beds in all tissues, and the computational infrastructure for the model should provide links into CellML models of cell function and tissue function. In this work we review the literature associated with 1D blood flow modelling in the cardiovascular system, discuss model encoding standards, software and a model repository. We then describe the coordinate systems used to define the vascular geometry, derive the equations and discuss the implementation of these coupled equations in the open source computational software OpenCMISS. Finally, some preliminary results are presented and plans outlined for the next steps in the development of the model, the computational software and the graphical user interface for accessing the model. PMID:27506597
Roadmap for cardiovascular circulation model.
Safaei, Soroush; Bradley, Christopher P; Suresh, Vinod; Mithraratne, Kumar; Muller, Alexandre; Ho, Harvey; Ladd, David; Hellevik, Leif R; Omholt, Stig W; Chase, J Geoffrey; Müller, Lucas O; Watanabe, Sansuke M; Blanco, Pablo J; de Bono, Bernard; Hunter, Peter J
2016-12-01
Computational models of many aspects of the mammalian cardiovascular circulation have been developed. Indeed, along with orthopaedics, this area of physiology is one that has attracted much interest from engineers, presumably because the equations governing blood flow in the vascular system are well understood and can be solved with well-established numerical techniques. Unfortunately, there have been only a few attempts to create a comprehensive public domain resource for cardiovascular researchers. In this paper we propose a roadmap for developing an open source cardiovascular circulation model. The model should be registered to the musculo-skeletal system. The computational infrastructure for the cardiovascular model should provide for near real-time computation of blood flow and pressure in all parts of the body. The model should deal with vascular beds in all tissues, and the computational infrastructure for the model should provide links into CellML models of cell function and tissue function. In this work we review the literature associated with 1D blood flow modelling in the cardiovascular system, discuss model encoding standards, software and a model repository. We then describe the coordinate systems used to define the vascular geometry, derive the equations and discuss the implementation of these coupled equations in the open source computational software OpenCMISS. Finally, some preliminary results are presented and plans outlined for the next steps in the development of the model, the computational software and the graphical user interface for accessing the model. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
The cardiovascular system after exercise.
Romero, Steven A; Minson, Christopher T; Halliwill, John R
2017-04-01
Recovery from exercise refers to the time period between the end of a bout of exercise and the subsequent return to a resting or recovered state. It also refers to specific physiological processes or states occurring after exercise that are distinct from the physiology of either the exercising or the resting states. In this context, recovery of the cardiovascular system after exercise occurs across a period of minutes to hours, during which many characteristics of the system, even how it is controlled, change over time. Some of these changes may be necessary for long-term adaptation to exercise training, yet some can lead to cardiovascular instability during recovery. Furthermore, some of these changes may provide insight into when the cardiovascular system has recovered from prior training and is physiologically ready for additional training stress. This review focuses on the most consistently observed hemodynamic adjustments and the underlying causes that drive cardiovascular recovery and will highlight how they differ following resistance and aerobic exercise. Primary emphasis will be placed on the hypotensive effect of aerobic and resistance exercise and associated mechanisms that have clinical relevance, but if left unchecked, can progress to symptomatic hypotension and syncope. Finally, we focus on the practical application of this information to strategies to maximize the benefits of cardiovascular recovery, or minimize the vulnerabilities of this state. We will explore appropriate field measures, and discuss to what extent these can guide an athlete's training. Copyright © 2017 the American Physiological Society.
Hu, Hejing; Shi, Yanfeng; Zhang, Yannan; Wu, Jing; Asweto, Collins Otieno; Feng, Lin; Yang, Xiaozhe; Duan, Junchao; Sun, Zhiwei
2017-12-31
Air pollution has been shown to increase cardiovascular diseases. However, little attention has been paid to the combined effects of PM and air pollutants on the cardiovascular system. To explore this, a high-throughput sequencing technology was used to determine combined effects of silica nanoparticles (SiNPs) and MeHg in zebrafish. Our study demonstrated that SiNPs and MeHg co-exposure could cause significant changes in mRNA and miRNA expression patterns in zebrafish. The differentially expressed (DE) genes in profiles 17 and 26 of STC analysis suggest that SiNPs and MeHg co-exposure had more proinflammatory and cardiovascular toxicity in zebrafish than single exposure. Major gene functions associated with cardiovascular system in the co-exposed zebrafish were discerned from the dynamic-gene-network, including stxbp1a, celf4, ahr1b and bai2. In addition, the prominently expressed pathway of cardiac muscle contraction was targeted by 3 DE miRNAs identified by the miRNA-pathway-network (dre-miR-7147, dre-miR-26a and dre-miR-375), which included 23 DE genes. This study presents a global view of the combined SiNPs and MeHg toxicity on the dynamic expression of both mRNAs and miRNAs in zebrafish, and could serve as fundamental research clues for future studies, especially on cardiovascular system toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.
Hypothalamic-Pituitary-Adrenal Axis Modulation of Glucocorticoids in the Cardiovascular System
Burford, Natalie G.; Webster, Natalia A.; Cruz-Topete, Diana
2017-01-01
The collective of endocrine organs acting in homeostatic regulation—known as the hypothalamic-pituitary-adrenal (HPA) axis—comprises an integration of the central nervous system as well as peripheral tissues. These organs respond to imminent or perceived threats that elicit a stress response, primarily culminating in the release of glucocorticoids into the systemic circulation by the adrenal glands. Although the secretion of glucocorticoids serves to protect and maintain homeostasis in the typical operation at baseline levels, inadequate regulation can lead to physiologic and psychologic pathologies. The cardiovascular system is especially susceptible to prolonged dysregulation of the HPA axis and glucocorticoid production. There is debate about whether cardiovascular health risks arise from the direct detrimental effects of stress axis activation or whether pathologies develop secondary to the accompanying metabolic strain of excess glucocorticoids. In this review, we will explore the emerging research that indicates stress does have direct effects on the cardiovascular system via the HPA axis activation, with emphasis on the latest research on the impact of glucocorticoids signaling in the vasculature and the heart. PMID:29035323
Role of silver nanoparticles (AgNPs) on the cardiovascular system.
Gonzalez, Carmen; Rosas-Hernandez, Hector; Ramirez-Lee, Manuel Alejandro; Salazar-García, Samuel; Ali, Syed F
2016-03-01
With the advent of nanotechnology, the use and applications of silver nanoparticles (AgNPs) have increased, both in consumer products as well as in medical devices. However, little is known about the effects of these nanoparticles on human health, more specific in the cardiovascular system, since this system represents an important route of action in terms of distribution, bioaccumulation and bioavailability of the different circulating substances in the bloodstream. A collection of studies have addressed the effects and applications of different kinds of AgNPs (shaped, sized, coated and functionalized) in several components of the cardiovascular system, such as endothelial cells, isolated vessels and organs as well as integrative animal models, trying to identify the underlying mechanisms involved in their actions, to understand their implication in the field of biomedicine. The purpose of the present review is to summarize the most relevant studies to date of AgNPs effects in the cardiovascular system and provide a broader picture of the potential toxic effects and exposure risks, which in turn will allow pointing out the directions of further research as well as new applications of these versatile nanomaterials.
Hypothalamic-Pituitary-Adrenal Axis Modulation of Glucocorticoids in the Cardiovascular System.
Burford, Natalie G; Webster, Natalia A; Cruz-Topete, Diana
2017-10-16
The collective of endocrine organs acting in homeostatic regulation-known as the hypothalamic-pituitary-adrenal (HPA) axis-comprises an integration of the central nervous system as well as peripheral tissues. These organs respond to imminent or perceived threats that elicit a stress response, primarily culminating in the release of glucocorticoids into the systemic circulation by the adrenal glands. Although the secretion of glucocorticoids serves to protect and maintain homeostasis in the typical operation at baseline levels, inadequate regulation can lead to physiologic and psychologic pathologies. The cardiovascular system is especially susceptible to prolonged dysregulation of the HPA axis and glucocorticoid production. There is debate about whether cardiovascular health risks arise from the direct detrimental effects of stress axis activation or whether pathologies develop secondary to the accompanying metabolic strain of excess glucocorticoids. In this review, we will explore the emerging research that indicates stress does have direct effects on the cardiovascular system via the HPA axis activation, with emphasis on the latest research on the impact of glucocorticoids signaling in the vasculature and the heart.
Role of substance P in the cardiovascular system.
Mistrova, Eliska; Kruzliak, Peter; Chottova Dvorakova, Magdalena
2016-08-01
This article provides an overview of the structure and function of substance P signalling system and its involvement in the cardiovascular regulation. Substance P is an undecapeptide originating from TAC1 gen and belonging to the tachykinin family. The biological actions of substance P are mainly mediated through neurokinin receptor 1 since substance P is the ligand with the highest affinity to neurokinin receptor 1. Substance P is widely distributed within the central and peripheral nervous systems as well as in the cardiovascular system. Substance P is involved in the regulation of heart frequency, blood pressure and in the stretching of vessels. Substance P plays an important role in ischemia and reperfusion and cardiovascular response to stress. Additionally, it has been also implicated in angiogenesis, pain transmission and inflammation. The substance P/neurokinin receptor 1 receptor system is involved in the molecular bases of many human pathological processes. Antagonists of neurokinin receptor 1 receptor could provide clinical solutions for a variety of diseases. Neurokinin receptor 1 antagonists are already used in the prevention of chemotherapy induced nausea and vomiting. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of zero magnetic field on cardiovascular system and microcirculation
NASA Astrophysics Data System (ADS)
Gurfinkel, Yu. I.; At'kov, O. Yu.; Vasin, A. L.; Breus, T. K.; Sasonko, M. L.; Pishchalnikov, R. Yu.
2016-02-01
The effects of zero magnetic field conditions on cardiovascular system of healthy adults have been studied. In order to generate zero magnetic field, the facility for magnetic fields modeling ;ARFA; has been used. Parameters of the capillary blood flow, blood pressure, and the electrocardiogram (ECG) monitoring were measured during the study. All subjects were tested twice: in zero magnetic field and, for comparison, in sham condition. The obtained results during 60 minutes of zero magnetic field exposure demonstrate a clear effect on cardiovascular system and microcirculation. The results of our experiments can be used in studies of long-term stay in hypo-magnetic conditions during interplanetary missions.
NASA Astrophysics Data System (ADS)
Taruttis, Adrian; Herzog, Eva; Razansky, Daniel; Ntziachristos, Vasilis
2011-03-01
Multispectral Optoacoustic Tomography (MSOT) is an emerging technique for high resolution macroscopic imaging with optical and molecular contrast. We present cardiovascular imaging results from a multi-element real-time MSOT system recently developed for studies on small animals. Anatomical features relevant to cardiovascular disease, such as the carotid arteries, the aorta and the heart, are imaged in mice. The system's fast acquisition time, in tens of microseconds, allows images free of motion artifacts from heartbeat and respiration. Additionally, we present in-vivo detection of optical imaging agents, gold nanorods, at high spatial and temporal resolution, paving the way for molecular imaging applications.
Houston, Mark
2018-03-01
Numerous clinical trials suggest that we have reached a limit in our ability to decrease the incidence of coronary heart disease (CHD) and cardiovascular disease (CVD) utilizing the traditional diagnostic evaluation, prevention and treatment strategies for the top five cardiovascular risk factors of hypertension, diabetes mellitus, dyslipidemia, obesity and smoking. About 80% of heart disease (heart attacks, angina, coronary heart disease and congestive heart failure) can be prevented by optimal nutrition, optimal exercise, optimal weight and body composition, mild alcohol intake and avoiding smoking. Statistics show that approximately 50% of patients continue to have CHD or myocardial infarction (MI) despite presently defined 'normal' levels of the five risk factors listed above. This is often referred to as the 'CHD gap'. Novel and more accurate definitions and evaluations of these top five risk factors are required, such as 24 h ambulatory blood pressure (ABM) results, advanced lipid profiles, redefined fasting and 2 h dysglycemia parameters, a focus on visceral obesity and body composition and the effects of adipokines on cardiovascular risk. There are numerous traumatic insults from the environment that damage the cardiovascular system but there are only three finite vascular endothelial responses, which are inflammation, oxidative stress and immune vascular dysfunction. In addition, the concept of translational cardiovascular medicine is mandatory in order to correlate the myriad of CHD risk factors to the presence or absence of functional or structural damage to the vascular system, preclinical and clinical CHD. This can be accomplished by utilizing advanced and updated CV risk scoring systems, new and redefined CV risk factors and biomarkers, micronutrient testing, cardiovascular genetics, nutrigenomics, metabolomics, genetic expression testing and noninvasive cardiovascular testing.
Houston, Mark
2018-01-01
Numerous clinical trials suggest that we have reached a limit in our ability to decrease the incidence of coronary heart disease (CHD) and cardiovascular disease (CVD) utilizing the traditional diagnostic evaluation, prevention and treatment strategies for the top five cardiovascular risk factors of hypertension, diabetes mellitus, dyslipidemia, obesity and smoking. About 80% of heart disease (heart attacks, angina, coronary heart disease and congestive heart failure) can be prevented by optimal nutrition, optimal exercise, optimal weight and body composition, mild alcohol intake and avoiding smoking. Statistics show that approximately 50% of patients continue to have CHD or myocardial infarction (MI) despite presently defined ‘normal’ levels of the five risk factors listed above. This is often referred to as the ‘CHD gap’. Novel and more accurate definitions and evaluations of these top five risk factors are required, such as 24 h ambulatory blood pressure (ABM) results, advanced lipid profiles, redefined fasting and 2 h dysglycemia parameters, a focus on visceral obesity and body composition and the effects of adipokines on cardiovascular risk. There are numerous traumatic insults from the environment that damage the cardiovascular system but there are only three finite vascular endothelial responses, which are inflammation, oxidative stress and immune vascular dysfunction. In addition, the concept of translational cardiovascular medicine is mandatory in order to correlate the myriad of CHD risk factors to the presence or absence of functional or structural damage to the vascular system, preclinical and clinical CHD. This can be accomplished by utilizing advanced and updated CV risk scoring systems, new and redefined CV risk factors and biomarkers, micronutrient testing, cardiovascular genetics, nutrigenomics, metabolomics, genetic expression testing and noninvasive cardiovascular testing. PMID:29316855
77 FR 24497 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-24
... distribution and may be useful as model systems for studies of cardiovascular disease, drug metabolism and... tissue distribution and may be useful as model systems for studies of cardiovascular disease, drug..., Atherosclerosis, Metabolic Syndrome and Lipid Storage Diseases Description of Technology: Lipid droplets are key...
21 CFR 870.1290 - Steerable catheter control system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Steerable catheter control system. 870.1290 Section 870.1290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1290 Steerable...
21 CFR 870.2855 - Implantable Intra-aneurysm Pressure Measurement System.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implantable Intra-aneurysm Pressure Measurement System. 870.2855 Section 870.2855 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices...
A Computer Model of the Cardiovascular System for Effective Learning.
ERIC Educational Resources Information Center
Rothe, Carl F.
1979-01-01
Described is a physiological model which solves a set of interacting, possibly nonlinear, differential equations through numerical integration on a digital computer. Sample printouts are supplied and explained for effects on the components of a cardiovascular system when exercise, hemorrhage, and cardiac failure occur. (CS)
21 CFR 870.1290 - Steerable catheter control system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Steerable catheter control system. 870.1290 Section 870.1290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1290 Steerable...
21 CFR 870.2855 - Implantable Intra-aneurysm Pressure Measurement System.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implantable Intra-aneurysm Pressure Measurement System. 870.2855 Section 870.2855 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices...
21 CFR 870.1130 - Noninvasive blood pressure measurement system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Noninvasive blood pressure measurement system. 870.1130 Section 870.1130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1130...
Electronic circuit detects left ventricular ejection events in cardiovascular system
NASA Technical Reports Server (NTRS)
Gebben, V. D.; Webb, J. A., Jr.
1972-01-01
Electronic circuit processes arterial blood pressure waveform to produce discrete signals that coincide with beginning and end of left ventricular ejection. Output signals provide timing signals for computers that monitor cardiovascular systems. Circuit operates reliably for heart rates between 50 and 200 beats per minute.
Scotece, Morena; Conde, Javier; Gómez, Rodolfo; López, Verónica; Pino, Jesús; González, Antonio; Lago, Francisca; Gómez-Reino, Juan J.; Gualillo, Oreste
2012-01-01
Patients with rheumatic diseases have an increased risk of mortality by cardiovascular events. In fact, several rheumatic diseases such as rheumatoid arthritis, osteoarthritis, systemic lupus erythematosus, and ankylosing spondylitis are associated with a higher prevalence of cardiovascular diseases (CVDs). Although traditional cardiovascular risk factors have been involved in the pathogenesis of cardiovascular diseases in rheumatic patients, these alterations do not completely explain the enhanced cardiovascular risk in this population. Obesity and its pathologic alteration of fat mass and dysfunction, due to an altered pattern of secretion of proinflammatory adipokines, could be one of the links between cardiovascular and rheumatic diseases. Indeed, the incidence of CVDs is augmented in obese individuals with rheumatic disorders. Thus, in this paper we explore in detail the relationships among adipokines, rheumatic diseases, and cardiovascular complications by giving to the reader a holistic vision and several suggestions for future perspectives and potential clinical implications. PMID:22910888
NASA Technical Reports Server (NTRS)
Price, R.; Gady, S.; Heinemann, K.; Nelson, E. S.; Mulugeta, L.; Ethier, C. R.; Samuels, B. C.; Feola, A.; Vera, J.; Myers, J. G.
2015-01-01
A recognized side effect of prolonged microgravity exposure is visual impairment and intracranial pressure (VIIP) syndrome. The medical understanding of this phenomenon is at present preliminary, although it is hypothesized that the headward shift of bodily fluids in microgravity may be a contributor. Computational models can be used to provide insight into the origins of VIIP. In order to further investigate this phenomenon, NASAs Digital Astronaut Project (DAP) is developing an integrated computational model of the human body which is divided into the eye, the cerebrovascular system, and the cardiovascular system. This presentation will focus on the development and testing of the computational model of an integrated model of the cardiovascular system (CVS) and central nervous system (CNS) that simulates the behavior of pressures, volumes, and flows within these two physiological systems.
Acute pneumonia and the cardiovascular system.
Corrales-Medina, Vicente F; Musher, Daniel M; Shachkina, Svetlana; Chirinos, Julio A
2013-02-09
Although traditionally regarded as a disease confined to the lungs, acute pneumonia has important effects on the cardiovascular system at all severities of infection. Pneumonia tends to affect individuals who are also at high cardiovascular risk. Results of recent studies show that about a quarter of adults admitted to hospital with pneumonia develop a major acute cardiac complication during their hospital stay, which is associated with a 60% increase in short-term mortality. These findings suggest that outcomes of patients with pneumonia can be improved by prevention of the development and progression of associated cardiac complications. Before this hypothesis can be tested, however, an adequate mechanistic understanding of the cardiovascular changes that occur during pneumonia, and their role in the trigger of various cardiac complications, is needed. In this Review, we summarise knowledge about the burden of cardiac complications in adults with acute pneumonia, the cardiovascular response to this infection, the potential effects of commonly used cardiovascular and anti-infective drugs on these associations, and possible directions for future research. Copyright © 2013 Elsevier Ltd. All rights reserved.
Thinking on building the network cardiovasology of Chinese medicine.
Yu, Gui; Wang, Jie
2012-11-01
With advances in complex network theory, the thinking and methods regarding complex systems have changed revolutionarily. Network biology and network pharmacology were built by applying network-based approaches in biomedical research. The cardiovascular system may be regarded as a complex network, and cardiovascular diseases may be taken as the damage of structure and function of the cardiovascular network. Although Chinese medicine (CM) is effective in treating cardiovascular diseases, its mechanisms are still unclear. With the guidance of complex network theory, network biology and network pharmacology, network-based approaches could be used in the study of CM in preventing and treating cardiovascular diseases. A new discipline-network cardiovasology of CM was, therefore, developed. In this paper, complex network theory, network biology and network pharmacology were introduced and the connotation of "disease-syndrome-formula-herb" was illustrated from the network angle. Network biology could be used to analyze cardiovascular diseases and syndromes and network pharmacology could be used to analyze CM formulas and herbs. The "network-network"-based approaches could provide a new view for elucidating the mechanisms of CM treatment.
Sleep apnoea syndromes and the cardiovascular system.
Pepperell, Justin C
2011-06-01
Management of SAS and cardiovascular disease risk should be closely linked. It is important to screen for cardiovascular disease risk in patients with SAS and vice versa. CSA/CSR may be improved by ventilation strategies in heart failure, but benefit remains to be proven. For OSA, although CPAP may reduce cardiovascular disease risk, its main benefit is symptom control. In the longer-term, CPAP should be used alongside standard cardiovascular risk reduction strategies including robust weight management programmes, with referral for bariatric surgery in appropriate cases. CPAP and NIV should be considered for acute admissions with decompensated cardiac failure.
Testosterone Replacement Therapy and the Cardiovascular System.
Naderi, Sahar
2016-04-01
As testosterone replacement therapy (TRT) has emerged as a commonly prescribed therapy for symptomatic low testosterone, conflicting data have been reported in terms of both its efficacy and potential adverse outcomes. One of the most controversial associations has been that of TRT and cardiovascular morbidity and mortality. This review briefly provides background on the history of TRT, the indications for TRT, and the data behind TRT for symptomatic low testosterone. It then specifically delves into the rather limited data for cardiovascular outcomes of those with low endogenous testosterone and those who receive TRT. The available body of literature strongly suggests that more work, by way of clinical trials, needs to be done to better understand the impact of testosterone and TRT on the cardiovascular system.
Dal Lin, Carlo; Tona, Francesco
2015-01-01
Beyond its hemodynamic function, the heart also acts as a neuroendocrine and immunoregulatory organ. A dynamic communication between the heart and other organs takes place constantly to maintain cardiovascular homeostasis. The current understanding highlights the importance of the endocrine, immune, and nervous factors to fine-tune the crosstalk of the cardiovascular system with the entire body. Once disrupted, this complex interorgan communication may promote the onset and the progression of cardiovascular diseases. Thus, expanding our knowledge on how these factors influence the cardiovascular system can lead to novel therapeutic strategies to improve patient care. In the present paper, we review novel concepts on the role of endocrine, immune, and nervous factors in the modulation of microvascular coronary function. PMID:26124827
Clinical neurocardiology defining the value of neuroscience‐based cardiovascular therapeutics
Ajijola, Olujimi A.; Anand, Inder; Armour, J. Andrew; Chen, Peng‐Sheng; Esler, Murray; De Ferrari, Gaetano M.; Fishbein, Michael C.; Goldberger, Jeffrey J.; Harper, Ronald M.; Joyner, Michael J.; Khalsa, Sahib S.; Kumar, Rajesh; Lane, Richard; Mahajan, Aman; Po, Sunny; Schwartz, Peter J.; Somers, Virend K.; Valderrabano, Miguel; Vaseghi, Marmar; Zipes, Douglas P.
2016-01-01
Abstract The autonomic nervous system regulates all aspects of normal cardiac function, and is recognized to play a critical role in the pathophysiology of many cardiovascular diseases. As such, the value of neuroscience‐based cardiovascular therapeutics is increasingly evident. This White Paper reviews the current state of understanding of human cardiac neuroanatomy, neurophysiology, pathophysiology in specific disease conditions, autonomic testing, risk stratification, and neuromodulatory strategies to mitigate the progression of cardiovascular diseases. PMID:27114333
Cardiovascular effects of marijuana and synthetic cannabinoids: the good, the bad, and the ugly.
Pacher, Pal; Steffens, Sabine; Haskó, György; Schindler, Thomas H; Kunos, George
2018-03-01
Dysregulation of the endogenous lipid mediators endocannabinoids and their G-protein-coupled cannabinoid receptors 1 and 2 (CB 1 R and CB 2 R) has been implicated in a variety of cardiovascular pathologies. Activation of CB 1 R facilitates the development of cardiometabolic disease, whereas activation of CB 2 R (expressed primarily in immune cells) exerts anti-inflammatory effects. The psychoactive constituent of marijuana, Δ 9 -tetrahydrocannabinol (THC), is an agonist of both CB 1 R and CB 2 R, and exerts its psychoactive and adverse cardiovascular effects through the activation of CB 1 R in the central nervous and cardiovascular systems. The past decade has seen a nearly tenfold increase in the THC content of marijuana as well as the increased availability of highly potent synthetic cannabinoids for recreational use. These changes have been accompanied by the emergence of serious adverse cardiovascular events, including myocardial infarction, cardiomyopathy, arrhythmias, stroke, and cardiac arrest. In this Review, we summarize the role of the endocannabinoid system in cardiovascular disease, and critically discuss the cardiovascular consequences of marijuana and synthetic cannabinoid use. With the legalization of marijuana for medicinal purposes and/or recreational use in many countries, physicians should be alert to the possibility that the use of marijuana or its potent synthetic analogues might be the underlying cause of severe cardiovascular events and pathologies.
Helminth Infections and Cardiovascular Diseases: Toxocara Species is Contributing to the Disease
Zibaei, Mohammad
2017-01-01
Toxocariasis is the clinical term used to describe human infection with either the dog ascarid Toxocara canis or the feline ascarid Toxocara cati. As with other helminths zoonoses, the infective larvae of these Toxocara species cannot mature into adults in the human host. Instead, the worms wander through organs and tissues, mainly the liver, lungs, myocardium, kidney and central nervous system, in a vain attempt to find that, which they need to mature into adults. The migration of these immature nematode larvae causes local and systemic inflammation, resulting in the “larva migrans” syndrome. The clinical manifestations of toxocariasis are divided into visceral larva migrans, ocular larva migrans and neurotoxocariasis. Subclinical infection is often referred to as covert toxocariasis. One of the primary causes of death all around the world is cardiovascular disease that accounted for up to 30 percent of all-cause mortality. Cardiovascular disease and more precisely atherosclerotic cardiovascular disease, is predicted to remain the single leading cause of death (23.3 million deaths by 2030). A-quarter of people presenting the disease does not show any of the known cardiovascular risk factors. Therefore, there is considerable interest in looking for novel components affecting cardiovascular health, especially for those that could improve global cardiovascular risk prediction. This review endeavours to summarize the clinical aspects, new diagnostic and therapeutic perspectives of toxocaral disease with cardiovascular manifestations. PMID:27492228
Photonic sensing of arterial distension
Ruh, Dominic; Subramanian, Sivaraman; Sherman, Stanislav; Ruhhammer, Johannes; Theodor, Michael; Dirk, Lebrecht; Foerster, Katharina; Heilmann, Claudia; Beyersdorf, Friedhelm; Zappe, Hans; Seifert, Andreas
2016-01-01
Most cardiovascular diseases, such as arteriosclerosis and hypertension, are directly linked to pathological changes in hemodynamics, i.e. the complex coupling of blood pressure, blood flow and arterial distension. To improve the current understanding of cardiovascular diseases and pave the way for novel cardiovascular diagnostics, innovative tools are required that measure pressure, flow, and distension waveforms with yet unattained spatiotemporal resolution. In this context, miniaturized implantable solutions for continuously measuring these parameters over the long-term are of particular interest. We present here an implantable photonic sensor system capable of sensing arterial wall movements of a few hundred microns in vivo with sub-micron resolution, a precision in the micrometer range and a temporal resolution of 10 kHz. The photonic measurement principle is based on transmission photoplethysmography with stretchable optoelectronic sensors applied directly to large systemic arteries. The presented photonic sensor system expands the toolbox of cardiovascular measurement techniques and makes these key vital parameters continuously accessible over the long-term. In the near term, this new approach offers a tool for clinical research, and as a perspective, a continuous long-term monitoring system that enables novel diagnostic methods in arteriosclerosis and hypertension research that follow the trend in quantifying cardiovascular diseases by measuring arterial stiffness and more generally analyzing pulse contours. PMID:27699095
A comprehensive guide to telocytes and their great potential in cardiovascular system.
Kucybala, I; Janas, P; Ciuk, S; Cholopiak, W; Klimek-Piotrowska, W; Holda, M K
2017-01-01
Telocytes, a recently discovered type of interstitial cells, have a very distinctive morphology - the small cell body with long extensions, named telopodes. In our review, apart from introducing general aspects of telocytes, we focus on properties, functions and future potential of those cells in cardiovascular system. However, physiological functions of telocytes in cardiovascular system are still regarded as quite enigmatic. Previous studies claim that they play a role in organogenesis and regeneration, bioelectrical signalling, mechanoelectrical coupling, anti-oxidative protection, angiogenesis and regulation of blood flow. As well, they are presumably connected with the presence of blood-myocardium barrier and proper organisation of extracellular matrix. Moreover, there exists a significant link between the quantity of telocytes in tissue and numerous cardiovascular diseases such as: myocardial infarction, cardiomyopathies, systemic sclerosis, heart failure, atrial fibrillation, isolated atrial amyloidosis, myxomatous valve degeneration and hyperplastic consequences of vascular injury. Thanks to their unique properties, telocytes might be a breakthrough in treatment of cardiovascular diseases, as they may be effective in reversing effects of myocardial infarction. Telocytes also may play a major role in tissue engineering - they might be the key factor in creating stable and efficient vascular network in larger synthetic tissues or organs (Tab. 1, Fig. 3, Ref. 53).
Effects of bedrest 1: cardiovascular, respiratory and haematological systems.
Knight, John; Nigam, Yamni; Jones, Aled
This is the first in a three-part series on the physiological effects of bedrest. It discusses what happens to the cardiovascular, respiratory and haematological systems when a person is bedridden. Other articles in the series will cover the effects of immobility on the digestive, endocrine, renal, nervous, immune and musculoskeletal systems and will examine the effects of bedrest on the skin.
The cardiovascular system, at all its various developmental and life stages, represents a critical target organ system that can be adversely affected by a variety of chemicals and routes of exposure. A World Health Organization report estimated the impact of environmental chemica...
Temporal association between pulmonary and systemic effects of particulate matter in healthy and cardiovascular compromised rats
Urmila P. Kodavanti, Mette C. Schladweiler, Allen D. Ledbetter, Russ Hauser*, David C. Christiani*, John McGee, Judy R. Richards, Daniel L. Co...
Qi, Yan-Hua; Qi, Jian-Guang; Liu, Yu-Peng; Yan, Hui; Liu, Xue-Qin; Zhang, Xin; Xiao, Hui-Jie; Yang, Yan-Ling; DU, Jun-Bao
2015-09-01
To study the clinical features and treatment outcomes of cardiovascular system involvement in children with methylmalonic aciduria combined with hyperhomocysteinemia (MMACHC). The clinical data of 10 children with methylmalonic aciduria combined with hyperhomocysteinemia and who had cardiovascular system involvement were retrospectively analyzed and the treatment outcomes were followed up. In the 10 patients, there were 4 cases with initial presentations of cardiovascular system symptoms such as shortness of breath and dyspnea, 3 cases with urinary tract symptoms such as edema, hematuria and proteinuria, and 3 cases with nervous system symptoms such as developmental retardation and convulsions. The 10 patients had different types and severity of cardiovascular injuries. After 3 months to 8 years of follow-up, the congenital heart defects resolved naturally in 2 cases, and the patient with arrhythmia had no obvious changes. In 5 cases of hypertension, blood pressures recovered to normal in 3 cases, and 1 case was lost to follow-up. In 5 patients with pulmonary hypertension, 2 died, 2 recovered, and 1 case had mildly elevated pulmonary artery pressure. Seven patients underwent MMACHC gene testing, and 5 showed c.80A>G mutations. Metabolic disease should be taken into account for the children with unexplained pulmonary hypertension and hypertension with the onset of the shortness of breath and dyspnea. The severity of cardiovascular system involvement might be one of the most important factors affecting the prognosis of children with MMACHC. Cardiavascular system involvement of the patients may be related to MMACHC c.80A>G mutations.
21 CFR 870.1210 - Continuous flush catheter.
Code of Federal Regulations, 2014 CFR
2014-04-01
...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1210 Continuous flush catheter. (a) Identification. A continuous flush catheter is an attachment to a catheter-transducer system...
21 CFR 870.1210 - Continuous flush catheter.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1210 Continuous flush catheter. (a) Identification. A continuous flush catheter is an attachment to a catheter-transducer system...
21 CFR 870.1210 - Continuous flush catheter.
Code of Federal Regulations, 2013 CFR
2013-04-01
...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1210 Continuous flush catheter. (a) Identification. A continuous flush catheter is an attachment to a catheter-transducer system...
2013-01-01
Background A number of studies have evaluated the educational contents of videos on YouTube. However, little analysis has been done on videos about physical examination. Objective This study aimed to analyze YouTube videos about physical examination of the cardiovascular and respiratory systems. It was hypothesized that the educational standards of videos on YouTube would vary significantly. Methods During the period from November 2, 2011 to December 2, 2011, YouTube was searched by three assessors for videos covering the clinical examination of the cardiovascular and respiratory systems. For each video, the following information was collected: title, authors, duration, number of viewers, and total number of days on YouTube. Using criteria comprising content, technical authority, and pedagogy parameters, videos were rated independently by three assessors and grouped into educationally useful and non-useful videos. Results A total of 1920 videos were screened. Only relevant videos covering the examination of adults in the English language were identified (n=56). Of these, 20 were found to be relevant to cardiovascular examinations and 36 to respiratory examinations. Further analysis revealed that 9 provided useful information on cardiovascular examinations and 7 on respiratory examinations: scoring mean 14.9 (SD 0.33) and mean 15.0 (SD 0.00), respectively. The other videos, 11 covering cardiovascular and 29 on respiratory examinations, were not useful educationally, scoring mean 11.1 (SD 1.08) and mean 11.2 (SD 1.29), respectively. The differences between these two categories were significant (P<.001 for both body systems). The concordance between the assessors on applying the criteria was 0.89, with a kappa score >.86. Conclusions A small number of videos about physical examination of the cardiovascular and respiratory systems were identified as educationally useful; these videos can be used by medical students for independent learning and by clinical teachers as learning resources. The scoring system utilized by this study is simple, easy to apply, and could be used by other researchers on similar topics. PMID:24225171
Polyphenols: Benefits to the Cardiovascular System in Health and in Aging
Khurana, Sandhya; Venkataraman, Krishnan; Hollingsworth, Amanda; Piche, Matthew; Tai, T. C.
2013-01-01
Numerous studies have demonstrated the importance of naturally occurring dietary polyphenols in promoting cardiovascular health and emphasized the significant role these compounds play in limiting the effects of cellular aging. Polyphenols such as resveratrol, epigallocatechin gallate (EGCG), and curcumin have been acknowledged for having beneficial effects on cardiovascular health, while some have also been shown to be protective in aging. This review highlights the literature surrounding this topic on the prominently studied and documented polyphenols as pertaining to cardiovascular health and aging. PMID:24077237
Moya, Fernando Briceño; Pineda Galindo, Luis Francisco; García de la Peña, Maximiliano
2016-01-01
Systemic lupus erythematosus is highly associated with premature atherosclerosis and cardiovascular events. The origin of this subclinical atherosclerosis has been attributed mainly to the inflammatory nature of the disease. To assess the effect of long-term use of glucocorticoids on cardiovascular risk in patients with systemic lupus erythematosus. We conducted a registry-based retrospective cohort study. We determined 2 periods: (1) Time 0, that is, time of diagnosis and (2) time 1, that is, when the study was finalized. At both times, the cardiovascular risk was evaluated using the Framingham scale and their scores were compared. Afterward, the change magnitude between the 2 times was evaluated and associated with the cumulative glucocorticoids dose. One hundred one patients were included. The mean ± SD age was 26.5 ± 5 years. Length of disease evolution was of 7.8 ± 4.9 years. There was an 8-point increase in the Framingham score, from -8.1 ± 4 to 0.8 ± 7; P < 0.0001. The correlation between the magnitude of the increase in Framingham score and their corresponding cumulative dose showed a coefficient of 0.88; P < 0.001. The glucocorticoids are a primary factor that influences cardiovascular risk. There is a directly proportional relationship between the cumulative glucocorticoid dose and the increase in cardiovascular risk.
The interplay between adipose tissue and the cardiovascular system: is fat always bad?
Akoumianakis, Ioannis; Antoniades, Charalambos
2017-07-01
Obesity is a risk factor for cardiovascular disease (CVD). However, clinical research has revealed a paradoxically protective role for obesity in patients with chronic diseases including CVD, suggesting that the biological 'quality' of adipose tissue (AT) may be more important than overall AT mass or body weight. Importantly, AT is recognised as a dynamic organ secreting a wide range of biologically active adipokines, microRNAs, gaseous messengers, and other metabolites that affect the cardiovascular system in both endocrine and paracrine ways. Despite being able to mediate normal cardiovascular function under physiological conditions, AT undergoes a phenotypic shift characterised by acquisition of pro-oxidant and pro-inflammatory properties in cases of CVD. Crucially, recent evidence suggests that AT depots such as perivascular AT and epicardial AT are able to modify their phenotype in response to local signals of vascular and myocardial origin, respectively. Utilisation of this unique property of certain AT depots to dynamically track cardiovascular biology may reveal novel diagnostic and prognostic tools against CVD. Better understanding of the mechanisms controlling the 'quality' of AT secretome, as well as the communication links between AT and the cardiovascular system, is required for the efficient management of CVD. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For Permissions, please email: journals.permissions@oup.com.
Baroreflex Function in Rats after Simulated Microgravity
NASA Technical Reports Server (NTRS)
Hasser, Eileen M.
1997-01-01
Prolonged exposure of humans to decreased gravitational forces during spaceflight results in a number of adverse cardiovascular consequences, often referred to as cardiovascular deconditioning. Prominent among these negative cardiovascular effects are orthostatic intolerance and decreased exercise capacity. Rat hindlimb unweighting is an animal model which simulates weightlessness, and results in similar cardiovascular consequences. Cardiovascular reflexes, including arterial and cardiopulmonary baroreflexes, are required for normal adjustment to both orthostatic challenges and exercise. Therefore, the orthostatic intolerance and decreased exercise capacity associated with exposure to microgravity may be due to cardiovascular reflex dysfunction. The proposed studies will test the general hypothesis that hindlimb unweighting in rats results in impaired autonomic reflex control of the sympathetic nervous system. Specifically, we hypothesize that the ability to reflexly increase sympathetic nerve activity in response to decreases in arterial pressure or blood volume will be blunted due to hindlimb unweighting. There are 3 specific aims: (1) To evaluate arterial and cardiopulmonary baroreflex control of renal and lumbar sympathetic nerve activity in conscious rats subjected to 14 days of hindlimb unweighting; (2) To examine the interaction between arterial and cardiopulmonary baroreflex control of sympathetic nerve activity in conscious hindlimb unweighted rats; (3) to evaluate changes in afferent and/or central nervous system mechanisms in baroreflex regulation of the sympathetic nervous system. These experiments will provide information related to potential mechanisms for orthostatic and exercise intolerance due to microgravity.
Pharmacological Strategies to Retard Cardiovascular Aging.
Alfaras, Irene; Di Germanio, Clara; Bernier, Michel; Csiszar, Anna; Ungvari, Zoltan; Lakatta, Edward G; de Cabo, Rafael
2016-05-13
Aging is the major risk factor for cardiovascular diseases, which are the leading cause of death in the United States. Traditionally, the effort to prevent cardiovascular disease has been focused on addressing the conventional risk factors, including hypertension, hyperglycemia, hypercholesterolemia, and high circulating levels of triglycerides. However, recent preclinical studies have identified new approaches to combat cardiovascular disease. Calorie restriction has been reproducibly shown to prolong lifespan in various experimental model animals. This has led to the development of calorie restriction mimetics and other pharmacological interventions capable to delay age-related diseases. In this review, we will address the mechanistic effects of aging per se on the cardiovascular system and focus on the prolongevity benefits of various therapeutic strategies that support cardiovascular health. © 2016 American Heart Association, Inc.
Exercise and the cardiovascular system: clinical science and cardiovascular outcomes.
Lavie, Carl J; Arena, Ross; Swift, Damon L; Johannsen, Neil M; Sui, Xuemei; Lee, Duck-Chul; Earnest, Conrad P; Church, Timothy S; O'Keefe, James H; Milani, Richard V; Blair, Steven N
2015-07-03
Substantial evidence has established the value of high levels of physical activity, exercise training (ET), and overall cardiorespiratory fitness in the prevention and treatment of cardiovascular diseases. This article reviews some basics of exercise physiology and the acute and chronic responses of ET, as well as the effect of physical activity and cardiorespiratory fitness on cardiovascular diseases. This review also surveys data from epidemiological and ET studies in the primary and secondary prevention of cardiovascular diseases, particularly coronary heart disease and heart failure. These data strongly support the routine prescription of ET to all patients and referrals for patients with cardiovascular diseases, especially coronary heart disease and heart failure, to specific cardiac rehabilitation and ET programs. © 2015 American Heart Association, Inc.
Cardiovascular and Cerebrovascular Control on Return from ISS
NASA Technical Reports Server (NTRS)
Hughson, Richard Lee; Shoemaker, Joel Kevin; Blaber, Andrew Philip; Arbeille, Philippe; Greaves, Danielle Kathleen
2008-01-01
Cardiovascular and Cerebrovascular Control on Return from ISS (CCISS) will study the effects of long-duration spaceflight on crew members' heart functions and their blood vessels that supply the brain. Learning more about the cardiovascular and cerebrovascular systems could lead to specific countermeasures that might better protect future space travelers. This experiment is collaborative with the Canadian Space Agency.
Kim, Hwa; Oh, Seok-Jeong; Kwak, Hui-Chan; Kim, Jong-Kyu; Lim, Cheol-Hong; Yang, Jeong-Sun; Park, Kwangsik; Kim, Sang-Kyum; Lee, Moo-Yeol
2012-01-01
Carbon black (CB) is an industrial chemical with high potential for human exposure. Although the relationship between exposure to particulate matter (PM) and cardiovascular disease is well documented, the risk of adverse cardiovascular effects attributed to CB particles has not been clearly characterized. This study was performed to (1) investigate the effects of CB on cardiovascular system and (2) identify the target tissue or potential biomarkers. Carbon black with a distinct particle size, N330 (ultrafine particle) and N990 (fine particle), was intratracheally instilled into rats at a doses of 1, 3, or 10 mg/kg. Measurements of thrombotic activity and determination of plasma homocysteine levels, cardiac functionality, and inflammatory responses were conducted at 24-h and 1-wk time points. Exposure to N330 accelerated platelet-dependent blood clotting at 10 mg/kg, the highest exposure tested. Unexpectedly, both N330 and N990 led to prolongation of activated partial thromboplastin time (aPTT), whereas these CB particles failed to affect prothrombin time (PT). N990 produced a significant elevation in the level of plasma homocysteine, a well-established etiological factor in cardiovascular diseases. Both N330 and N990 induced apparent inflammation in the lungs; however, both particles failed to initiate systemic inflammation. Neither CB particle produced observable cardiac symptoms as detected by electrocardiography. Taken together, data show CB exposure enhanced the cardiovascular risk by inducing hyperhomocysteinemia and platelet hyperactivity, although these effects may be variable depending on particle size and exposure duration. Homocysteine may be a potential biomarker for cardiovascular toxicity following CB exposure.
Ichinose-Kuwahara, Tomoko; Kondo, Narihiko; Nishiyasu, Takeshi
2015-01-01
Reducing blood flow to working muscles during dynamic exercise causes metabolites to accumulate within the active muscles and evokes systemic pressor responses. Whether a similar cardiovascular response is elicited with normal blood flow to exercising muscles during dynamic exercise remains unknown, however. To address that issue, we tested whether cardiovascular responses are affected by increases in blood flow to active muscles. Thirteen healthy subjects performed dynamic plantarflexion exercise for 12 min at 20%, 40%, and 60% of peak workload (EX20, EX40, and EX60) with their lower thigh enclosed in a negative pressure box. Under control conditions, the box pressure was the same as the ambient air pressure. Under negative pressure conditions, beginning 3 min after the start of the exercise, the box pressure was decreased by 20, 45, and then 70 mmHg in stepwise fashion with 3-min step durations. During EX20, the negative pressure had no effect on blood flow or the cardiovascular responses measured. However, application of negative pressure increased blood flow to the exercising leg during EX40 and EX60. This increase in blood flow had no significant effect on systemic cardiovascular responses during EX40, but it markedly attenuated the pressor responses otherwise seen during EX60. These results demonstrate that during mild exercise, normal blood flow to exercising muscle is not a factor eliciting cardiovascular responses, whereas it elicits an important pressor effect during moderate exercise. This suggests blood flow to exercising muscle is a major determinant of cardiovascular responses during dynamic exercise at higher than moderate intensity. PMID:26377556
In vivo cardiovascular toxicity induced by acetochlor in zebrafish larvae.
Liu, Hongcui; Chu, Tianyi; Chen, Lili; Gui, Wenjun; Zhu, Guonian
2017-08-01
The risk of acetochlor to human health is still unclear, prompting concern over its risk, especially to pesticide suicides population, occupational population (farmers, retailers and pharmaceutical workers), and special population (young children and infants, pregnant women, older people, and those with compromised immune systems). This study was to explore the toxic effect and the possible mechanism of toxic action of acetochlor using zebrafish larvae whose toxicity profiles have been confirmed to be strikingly similar with mammalian. The result indicated that the toxic target organ of acetochlor was cardiovascular system. Thus, cardiovascular toxicity evaluation was investigated systematically. The main phenotypes of cardiovascular toxicity induced by acetochlor were bradycardia, pericardial edema, circulation defect, and thrombosis; Malformed heart was confirmed by histopathological examination. Thrombosis which maybe triggered by bradycardia was further studied using o-dianisidine for erythrocyte staining; Substantial thrombus in the caudal vein and significantly reduced heart red blood cells (RBCs) intensity which can reflect the thrombosis degree were observed in zebrafish in a concentration-dependent manner. Additionally, the mRNA expression level of Nkx2.5 and Gata4 related to induction of cardiac program were down-regulated significantly by quantitative real-time polymerase chain reaction (qRT-PCR), which could cause defects in the cardiovascular system. For the first time, our results demonstrated that acetochlor induced cardiovascular toxicity, and down-regulation of Nkx2.5 and Gata4 might be its possible molecular basis. Our data generated here might provide novel insights into cardiovascular disease risk following acetochlor exposure to human, especially to pesticide suicides population, occupational population and special population. Copyright © 2017. Published by Elsevier Ltd.
Huntink, E; Wensing, M; Klomp, M A; van Lieshout, J
2015-12-15
Although conditions for high quality cardiovascular risk management in primary care in the Netherlands are favourable, there still remains a gap between practice guideline recommendations and practice. The aim of the current study was to identify determinants of cardiovascular primary care in the Netherlands. We performed a qualitative study, using semi-structured interviews with healthcare professionals and patients with established cardiovascular diseases or at high cardiovascular risk. A framework analysis was used to cluster the determinants into seven domains: 1) guideline factors, 2) individual healthcare professional factors, 3) patient factors, 4) professional interaction, 5) incentives and recourses, 6) mandate, authority and accountability, and 7) social, political and legal factors. Twelve healthcare professionals and 16 patients were interviewed. Healthcare professionals and patients mentioned a variety of factors concerning all seven domains. Determinants of practice according to the health care professionals were related to communication between healthcare professionals, patients' lack of knowledge and self-management, time management, market mechanisms in the Dutch healthcare system and motivational interviewing skills of healthcare professionals. Patients mentioned determinants related to their knowledge of risk factors for cardiovascular diseases, medication adherence and self-management as key determinants. A key finding is the mismatch between healthcare professionals' and patients' views on patient's knowledge and self-management. Perceived determinants of cardiovascular risk management were mainly related to patient behaviors and (but only for health professionals) to the healthcare system. Though health care professionals and patients agree upon the importance of patients' knowledge and self-management, their judgment of the current state of knowledge and self-management is entirely different.
Instrumentation for Non-Invasive Assessment of Cardiovascular Regulation
NASA Technical Reports Server (NTRS)
Cohen, Richard J.
1999-01-01
It is critically important to be able to assess alterations in cardiovascular regulation during and after space flight. We propose to develop an instrument for the non-invasive assessment of such alterations that can be used on the ground and potentially during space flight. This instrumentation would be used by the Cardiovascular Alterations Team at multiple sites for the study of the effects of space flight on the cardiovascular system and the evaluation of countermeasures. In particular, the Cardiovascular Alterations Team will use this instrumentation in conjunction with ground-based human bed-rest studies and during application of acute stresses e.g., tilt, lower body negative pressure, and exercise. In future studies, the Cardiovascular Alterations Team anticipates using this instrumentation to study astronauts before and after space flight and ultimately, during space flight. The instrumentation may also be used by the Bone Demineralization/Calcium Metabolism Team, the Neurovestibular Team and the Human Performance Factors, Sleep and Chronobiology Team to measure changes in autonomic nervous function. The instrumentation will be based on a powerful new technology - cardiovascular system identification (CSI) - which has been developed in our laboratory. CSI provides a non-invasive approach for the study of alterations in cardiovascular regulation. This approach involves the analysis of second-to-second fluctuations in physiologic signals such as heart rate and non-invasively measured arterial blood pressure in order to characterize quantitatively the physiologic mechanisms responsible for the couplings between these signals. Through the characterization of multiple physiologic mechanisms, CSI provides a closed-loop model of the cardiovascular regulatory state in an individual subject.
Ress, Claudia; Paulweber, Mariya; Goebel, Georg; Willeit, Karin; Rufinatscha, Kerstin; Strobl, Anna; Salzmann, Karin; Kedenko, Ludmilla; Tschoner, Alexander; Staudacher, Gabriele; Iglseder, Bernhard; Tilg, Herbert; Paulweber, Bernhard; Kaser, Susanne
2018-03-29
Wnt signaling is involved in atherosclerotic plaque formation directly and indirectly by modulating cardiovascular risk factors. We investigated whether circulating concentrations of Wnt inhibitors are associated with cardiovascular events in subjects with intermediate cardiovascular risk. 904 non-diabetic subjects participating in the SAPHIR study were assessed. In the SAPHIR study, middle-aged women without overt atherosclerotic disease at study entry were followed up for 10 years. 88 patients of our study cohort developed cardiovascular disease at follow-up (CVD group). Subjects of the CVD group were 1:2 case-control matched for age, sex, BMI and smoking behavior with subjects without overt cardiovascular disease after a 10 year-follow-up (control group). 18 patients of the CVD group and 19 subjects of the control group were retrospectively excluded due to fulfilling exclusion criteria. Baseline circulating sclerostin, dickkopf (DKK)-1, secreted frizzled-related protein (SFRP)-1 and Wnt inhibitory factor (WIF)-1 levels were assessed by ELISA. Baseline systemic SFRP-1 and WIF-1 levels were significantly higher in patients with cardiovascular events (n = 70) when compared to healthy controls (n = 157) while DKK-1 and sclerostin levels were similar in both groups. Logistic regression analysis revealed WIF-1 as a significant predictor of future cardiovascular events. Our data suggest that increased SFRP-1 and WIF-1 levels precede the development of symptomatic atherosclerotic disease. Assessment of systemic WIF-1 levels, which turned out to be independently associated with CVD, might help to early identify patients at intermediate cardiovascular risk. Copyright © 2018 Elsevier B.V. All rights reserved.
The role of urocortins in the cardiovascular system.
Walczewska, J; Dzieza-Grudnik, A; Siga, O; Grodzicki, T
2014-12-01
Urocortins (Ucn) 1, 2 and 3 are a group of endogenous peptide hormones belonging to the corticotropin-releasing hormone (CRH) family of peptides. The presence of urocortins has been detected in the central nervous system as well as in peripheral tissues. They play an important role in a stress response (with respect to its duration, intensity and restoration of homeostasis). They also act as regulatory factors of the cardiovascular, gastrointestinal, reproductive and immune systems. Urocortins act by binding to G-protein-coupled receptors (GPCR). The "central" effects of urocortins are mediated mainly by activation of CRH receptor 1 (CRH-R1), and the "peripheral" effects by activation of CRH-R2. Ucn2 and Ucn3 are selective CRH-R2 agonists and have much higher binding affinity to this receptor than CRH and Ucn1. Recent studies have shown that urocortins exert various biological effects in the cardiovascular system, such as vasodilation, positive inotropic and lusitropic effects, as well as cardioprotection against ischemia-reperfusion injury. They also suppress the renin-angiotensin system and may have an impact on the sympathetic nervous system. Urocortins and CRH-R2 may be a potential therapeutic target in coronary heart disease, congestive heart failure and hypertension. This review summarizes the data published to date on the role of urocortins in the cardiovascular system.
Screening for cardiac disease in potential recruits to the British Army.
Cox, Andrew T; Cameron-Smith, M; Folkes, F; Sharma, S; Boos, C
2015-09-01
The British Army screens potential recruits for disease, including cardiovascular disease, at the pre-employment medical assessment in the Army Selection Centres. The epidemiology of cardiovascular disease in the Armed Forces coupled with the high physical demand placed on the cardiovascular system, often in remote locations make screening desirable. This is particularly pertinent as servicemen and women die from cardiovascular disease each year. To evaluate this particular screening system it is essential to understand the aim of the system, how it is designed and how screening systems in general are evaluated. The efficacy of a screening test is quantified using the measurements of sensitivity, specificity and likelihood ratios. These measurements are defined and the pitfalls associated with evaluating a screening system are described. The different screening tests used to identify cardiac disease and their individual strengths and weaknesses, are illustrated. Finally the article reviews the previous British Army recruit cardiac screening system, that used a stereotyped history and physical examination and the newer system that replaced it, which includes the incorporation of the 12-lead ECG and on site echocardiography in individuals revealing abnormalities on history, examination or ECG. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Resveratrol and polydatin as modulators of Ca2+ mobilization in the cardiovascular system.
Liu, Wenjuan; Chen, Peiya; Deng, Jianxin; Lv, Jingzhang; Liu, Jie
2017-09-01
In the cardiovascular system, Ca 2+ controls cardiac excitation-contraction coupling and vascular contraction and dilation. Disturbances in intracellular Ca 2+ homeostasis induce malfunctions of the cardiovascular system, including cardiac pump dysfunction, arrhythmia, remodeling, and apoptosis, as well as hypertension and impairment of vascular reactivity. Therefore, developing drugs and strategies manipulating Ca 2+ handling are highly valued in the treatment of cardiovascular disease. Resveratrol (Res) and polydatin (PD), a Res glucoside, have been well established to have beneficial effects on improving cardiovascular function. Studies from our laboratory and others have demonstrated that they exhibit inotropic effects on normal heart and therapeutic effects on hypertension, cardiac ischemia/reperfusion injury, hypertrophy, and heart failure by manipulating Ca 2+ mobilization. The actions of Res and PD on Ca 2+ signals delicately manipulated by multiple Ca 2+ -handling proteins are pleiotropic and somewhat controversial, depending on cellular species and intracellular oxidative status. Here, we focus on the effects of Res and PD on controlling Ca 2+ homeostasis in the heart and vasculature under normal and diseased conditions and highlight the key direct and indirect molecules mediating these effects. © 2017 New York Academy of Sciences.
Ghrelin and the cardiovascular system.
Tokudome, Takeshi; Kishimoto, Ichiro; Miyazato, Mikiya; Kangawa, Kenj
2014-01-01
Ghrelin is a peptide that was originally isolated from the stomach. It exerts potent growth hormone (GH)-releasing and orexigenic activities. Several studies have highlighted the therapeutic benefits of ghrelin for the treatment of cardiovascular disease. In animal models of chronic heart failure, the administration of ghrelin improved cardiac function and remodeling; these findings were replicated in human patients with heart failure. Moreover, in an animal study, ghrelin administration effectively reduced pulmonary hypertension induced by chronic hypoxia. In addition, repeated administration of ghrelin to cachectic patients with chronic obstructive pulmonary disease had positive effects on overall body function, including muscle wasting, functional capacity and sympathetic activity. The administration of ghrelin early after myocardial infarction (MI) reduced fatal arrhythmia and related mortality. In ghrelin-deficient mice, both exogenous and endogenous ghrelin were protective against fatal arrhythmia and promoted remodeling after MI. Although the mechanisms underlying the effects of ghrelin on the cardiovascular system remain unclear, there are indications that its beneficial effects are mediated through both direct physiological actions, including increased GH levels, improved energy balance and direct actions on cardiovascular cells, and regulation of autonomic nervous system activity. Therefore, ghrelin is a promising novel therapeutic agent for cardiovascular disease. © 2014 S. Karger AG, Basel.
Boppart, Stephen A.; Tearney, Gary J.; Bouma, Brett E.; Southern, James F.; Brezinski, Mark E.; Fujimoto, James G.
1997-01-01
Studies investigating normal and abnormal cardiac development are frequently limited by an inability to assess cardiovascular function within the intact organism. In this work, optical coherence tomography (OCT), a new method of micron-scale, noninvasive imaging based on the measurement of backscattered infrared light, was introduced for the high resolution assessment of structure and function in the developing Xenopus laevis cardiovascular system. Microstructural details, such as ventricular size and wall positions, were delineated with OCT at 16-μm resolution and correlated with histology. Three-dimensional representation of the cardiovascular system also was achieved by repeated cross-sectional imaging at intervals of 25 μm. In addition to structural information, OCT provides high speed in vivo axial ranging and imaging, allowing quantitative dynamic activity, such as ventricular ejection fraction, to be assessed. The sensitivity of OCT for dynamic assessment was demonstrated with an inotropic agent that altered cardiac function and dimensions. Optical coherence tomography is an attractive new technology for assessing cardiovascular development because of its high resolution, its ability to image through nontransparent structures, and its inexpensive portable design. In vivo and in vitro imaging are performed at a resolution approaching that of histopathology without the need for animal killing. PMID:9113976
Cardiovascular tissues contain independent circadian clocks
NASA Technical Reports Server (NTRS)
Davidson, A. J.; London, B.; Block, G. D.; Menaker, M.
2005-01-01
Acute cardiovascular events exhibit a circadian rhythm in the frequency of occurrence. The mechanisms underlying these phenomena are not yet fully understood, but they may be due to rhythmicity inherent in the cardiovascular system. We have begun to characterize rhythmicity of the clock gene mPer1 in the rat cardiovascular system. Luciferase activity driven by the mPer1 gene promoter is rhythmic in vitro in heart tissue explants and a wide variety of veins and arteries cultured from the transgenic Per1-luc rat. The tissues showed between 3 and 12 circadian cycles of gene expression in vitro before damping. Whereas peak per1-driven bioluminescence consistently occurred during the late night in the heart and all arteries sampled, the phases of the rhythms in veins varied significantly by anatomical location. Varying the time of the culture procedure relative to the donor animal's light:dark cycle revealed that, unlike some other rat tissues such as liver, the phases of in vitro rhythms of arteries, veins, and heart explants were affected by culture time. However, phase relationships among tissues were consistent across culture times; this suggests diversity in circadian regulation among components of the cardiovascular system.
Gödecke, Axel; Haendeler, Judith
2017-04-20
Intraorgan communication in the cardiovascular system is exerted not only by direct cell-cell contacts but also by locally released factors, which modulate neighboring cells by paracrine signals (e.g., NO, vascular endothelial growth factor, adenosine, reactive oxygen species). Moreover, cells in close proximity to the typical cardiovascular cells such as fibroblasts, red blood cells, as well as resident and invading immune cells must be considered in attempts to understand cardiovascular function in physiology and pathology. The second level of communication is the interorgan communication, which may be distinguished from intraorgan communication, since it involves signaling from remote organs to the heart and circulation. Therefore, mediators released by, for example, the kidney or skeletal muscle reach the heart and modulate its function. This is not only the case under physiological conditions, because there is increasing evidence that the organ-specific response to a primary insult may affect also the function of remote organs by the release of factors. This Forum will summarize novel mechanisms involved in intraorgan and interorgan communication of the cardiovascular system, with a special view on the remote organs, skeletal muscle and kidney. Antioxid. Redox Signal. 26, 613-615.
Effects of zinc oxide nanoparticles on human coronary artery endothelial cells.
Chuang, Kai-Jen; Lee, Kang-Yun; Pan, Chih-Hong; Lai, Ching-Huang; Lin, Lian-Yu; Ho, Shu-Chuan; Ho, Kin-Fai; Chuang, Hsiao-Chi
2016-07-01
Inhalation of zinc oxide (ZnO) metal fumes is known to cause metal fume fever and to have systemic effects; however, the effects of ZnO nanoparticles (ZnONPs) on the cardiovascular system remain unclear. The objective of this study was to investigate the cardiovascular toxicity of ZnONPs. Human coronary artery endothelial cells (HCAECs) were exposed to ZnONPs of different sizes to investigate the cell viability, 8-hydroxy-2'-deoxyguanosine (8-OHdG), interleukin (IL)-6, nitric oxide (NO), and regulation of cardiovascular disease-related genes. Exposure of HCAECs to ZnONPs resulted in decreased cell viability and increased levels of 8-OHdG, IL-6, and NO. Downregulation of cardiovascular-associated genes was observed in response to ZnONPs in HCAECs determined by qPCR, suggesting that the calcium signaling pathway, neuroactive ligand-receptor interaction, hypertrophic cardiomyopathy, dilated cardiomyopathy, and renin-angiotensin system are important affected pathways in response to ZnONPs. Furthermore, we observed a significant response of AGTR1 to ZnONP exposure in HCAECs. Our results suggest that ZnONPs cause toxicity to HCAECs, which could be associated with cardiovascular dysfunction. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kolodziejczyk, Patrycjusz; Gromotowicz-Poplawska, Anna; Aleksiejczuk, Michal; Chabielska, Ewa; Tutka, Piotr; Miltyk, Wojciech
2018-03-26
Aldosterone, the main mineralocorticoid hormone, plays a crucial role in the regulation of electrolyte homeostasis and blood pressure. Although, this role is undoubtedly important, it is not a hormonal action that attracts the most attention. Aldosterone seems to be very important important as a local messenger in the pathology of cardiovascular diseases (CVD). In the last few years, the attention was focused on the correlation between raised aldosterone level and increased risk of cardiovascular events. It has been demonstrated that aldosterone contributes to fibrosis, inflammation, endothelial dysfunction, fibrinolytic disordes, and oxidative stress leading to CVD development and progression. It used to be thought that the effects of aldosterone are mediated via classic nuclear receptors - mineralocorticoid receptors (MR). Now we know that the mechanism of aldosterone action in cardiovascular system is much more complex, since experimental and clinical studies indicate that MR blockade may be not sufficient to abolish aldosterone-incuced harmful effects in the cardiovascular system. Therefore, the involvement of some other than MR, receptors and factors is suggested. Moreover, in addition to the generally known genomic action of aldosterone, which involves MR activation, the nongenomic pathways are postulated in the mode of hormone action. More and more attention is focused on the membrane-coupled receptors, which mediate the rapid effects of aldosterone and have been already confirmed in different cells and tissues of a cardiovascular system. The confirmation of multiple mechanisms of aldosterone action opens a new perspective for more effective therapeutic intervention in aldosterone-related CVD. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Huttary, Rudolf; Goubergrits, Leonid; Schütte, Christof; Bernhard, Stefan
2017-08-01
It has not yet been possible to obtain modeling approaches suitable for covering a wide range of real world scenarios in cardiovascular physiology because many of the system parameters are uncertain or even unknown. Natural variability and statistical variation of cardiovascular system parameters in healthy and diseased conditions are characteristic features for understanding cardiovascular diseases in more detail. This paper presents SISCA, a novel software framework for cardiovascular system modeling and its MATLAB implementation. The framework defines a multi-model statistical ensemble approach for dimension reduced, multi-compartment models and focuses on statistical variation, system identification and patient-specific simulation based on clinical data. We also discuss a data-driven modeling scenario as a use case example. The regarded dataset originated from routine clinical examinations and comprised typical pre and post surgery clinical data from a patient diagnosed with coarctation of aorta. We conducted patient and disease specific pre/post surgery modeling by adapting a validated nominal multi-compartment model with respect to structure and parametrization using metadata and MRI geometry. In both models, the simulation reproduced measured pressures and flows fairly well with respect to stenosis and stent treatment and by pre-treatment cross stenosis phase shift of the pulse wave. However, with post-treatment data showing unrealistic phase shifts and other more obvious inconsistencies within the dataset, the methods and results we present suggest that conditioning and uncertainty management of routine clinical data sets needs significantly more attention to obtain reasonable results in patient-specific cardiovascular modeling. Copyright © 2017 Elsevier Ltd. All rights reserved.
Robotically assisted laparoscopy benefits surgical performance under stress.
Moore, Lee J; Wilson, Mark R; Waine, Elizabeth; McGrath, John S; Masters, Rich S W; Vine, Samuel J
2015-12-01
While the benefits of robotic surgery for the patient have been relatively well established, little is known about the benefits for the surgeon. This study examined whether the advantages of robotically assisted laparoscopy (improved dexterity, a 3-dimensional view, reduction in tremors, etc.) enable the surgeon to better deal with stressful tasks. Subjective and objective (i.e. cardiovascular) responses to stress were assessed while surgeons performed on either a robotic or conventional laparoscopic system. Thirty-two surgeons were assigned to perform a surgical task on either a robotic system or a laparoscopic system, under three stress conditions. The surgeons completed self-report measures of stress before each condition. Furthermore, the surgeons' cardiovascular responses to stress were recorded prior to each condition. Finally, task performance was recorded throughout each condition. While both groups reported experiencing similar levels of stress, compared to the laparoscopic group, the robotic group displayed a more adaptive cardiovascular response to the stress conditions, reflecting a challenge state (i.e. higher blood flow and lower vascular resistance). Furthermore, despite no differences in completion time, the robotic group performed the tasks more accurately than the laparoscopic group across the stress conditions. These results highlight the benefits of using robotic technology during stressful situations. Specifically, the results show that stressful tasks can be performed more accurately with a robotic platform, and that surgeons' cardiovascular responses to stress are more favourable. Importantly, the 'challenge' cardiovascular response to stress displayed when using the robotic system has been associated with more positive long-term health outcomes in domains where stress is commonly experienced (e.g. lower cardiovascular disease risk).
Potential Side Effect of Inadvertent Intravascular Administration of Liposomal Bupivacaine
2017-06-01
treat and is potentially fatal. LAST can impair function of the central nervous system and cause cardiovascular collapse, with potentially...in the reversal of cardiovascular and central nervous system symptoms of local anesthetic and other lipophilic drug overdoses. ILE is gaining...to the sites of toxic action in the central nervous system and the heart. However, liposomal formulations of local anesthetics (EXPAREL in
Research opportunities in cardiovascular deconditioning, phase 1
NASA Technical Reports Server (NTRS)
Levy, M. N. (Editor); Talbot, J. M. (Editor)
1983-01-01
The deconditioning of the cardiovascular system that occurs during spaceflight, NASA's current and projected research program, and the conclusions and suggestions of the ad hoc Working Group are summarized.
21 CFR 870.4200 - Cardiopulmonary bypass accessory equipment.
Code of Federal Regulations, 2014 CFR
2014-04-01
... SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Surgical Devices § 870.4200... mounting bracket or system-priming equipment. (b) Classification. (1) Class I. The device is classified as...
21 CFR 870.4200 - Cardiopulmonary bypass accessory equipment.
Code of Federal Regulations, 2012 CFR
2012-04-01
... SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Surgical Devices § 870.4200... mounting bracket or system-priming equipment. (b) Classification. (1) Class I. The device is classified as...
21 CFR 870.4200 - Cardiopulmonary bypass accessory equipment.
Code of Federal Regulations, 2013 CFR
2013-04-01
... SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Surgical Devices § 870.4200... mounting bracket or system-priming equipment. (b) Classification. (1) Class I. The device is classified as...
Ghrelin and the cardiovascular system.
Isgaard, Jörgen
2013-01-01
Although ghrelin was initially associated with regulation of appetite, the cardiovascular system has also been recognized as a potentially important target for its effects. Moreover, experimental and a limited number of clinical studies suggest a potential role for ghrelin in the treatment of congestive heart failure. So far, reported cardiovascular effects of growth hormone secretagogues and/or ghrelin include lowering of peripheral resistance, either direct at the vascular level and/or by modulating sympathetic nervous activity. Other observed effects indicate possible improvement of contractility and cardioprotective and anti-inflammatory effects both in vivo and in vitro. Taken together, these results offer an interesting perspective on the future where further studies aiming at evaluating a role of growth hormone secretagogues and ghrelin in the treatment of cardiovascular disease are warranted. Copyright © 2013 S. Karger AG, Basel.
Ishiwata, Isamu; Tamagawa, Tomoharu; Tokieda, Yuko; Iguchi, Megumi; Sato, Kahei; Ishikawa, Hiroshi
2003-03-01
Regenerative medical treatment with embryonic stem cells (an ES cell) is a goal for organ transplantation. Structures that are tubular in nature (i.e. blood capillaries) were induced from early embryonic stem (EES) cells in vitro using embryotrophic factor (ETFs). In addition, cardiac muscle cells could be identified as well. However, differentiation of EES cells into a complete cardiovascular system was difficult because 3 germ layer primordial organs are directed embryologically in various ways and it is not possible to guide only cardiovascular organs. Thus, we introduced ETFs after the formation of an embryoid body and were successful in cloning cell clusters that beat, thus deriving only cardiovascular organs. The application of this to the treatment of various cardiovascular diseases is promising.
Regulation of chromatin structure in the cardiovascular system.
Rosa-Garrido, Manuel; Karbassi, Elaheh; Monte, Emma; Vondriska, Thomas M
2013-01-01
It has been appreciated for some time that cardiovascular disease involves large-scale transcriptional changes in various cell types. What has become increasingly clear only in the past few years, however, is the role of chromatin remodeling in cardiovascular phenotypes in normal physiology, as well as in development and disease. This review summarizes the state of the chromatin field in terms of distinct mechanisms to regulate chromatin structure in vivo, identifying when these modes of regulation have been demonstrated in cardiovascular tissues. We describe areas in which a better understanding of chromatin structure is leading to new insights into the fundamental biology of cardiovascular disease.
NASA Technical Reports Server (NTRS)
Mccutcheon, E. P.; Miranda, R.; Fryer, T. B.; Hodges, G.; Newson, B. D.; Pace, N.
1977-01-01
The utility of a multichannel implantable telemetry system for obtaining cardiovascular data was tested in a monkey with a CV-990 aircraft flight simulation of a space flight experiment. Valuable data were obtained to aid planning and execution of flight experiments using chronically instrumented animals.
Therapeutic applications of circadian rhythms for the cardiovascular system
Tsimakouridze, Elena V.; Alibhai, Faisal J.; Martino, Tami A.
2015-01-01
The cardiovascular system exhibits dramatic time-of-day dependent rhythms, for example the diurnal variation of heart rate, blood pressure, and timing of onset of adverse cardiovascular events such as heart attack and sudden cardiac death. Over the past decade, the circadian clock mechanism has emerged as a crucial factor regulating these daily fluctuations. Most recently, these studies have led to a growing clinical appreciation that targeting circadian biology offers a novel therapeutic approach toward cardiovascular (and other) diseases. Here we describe leading-edge therapeutic applications of circadian biology including (1) timing of therapy to maximize efficacy in treating heart disease (chronotherapy); (2) novel biomarkers discovered by testing for genomic, proteomic, metabolomic, or other factors at different times of day and night (chronobiomarkers); and (3) novel pharmacologic compounds that target the circadian mechanism with potential clinical applications (new chronobiology drugs). Cardiovascular disease remains a leading cause of death worldwide and new approaches in the management and treatment of heart disease are clearly warranted and can benefit patients clinically. PMID:25941487
S-nitrosothiols and the S-nitrosoproteome of the cardiovascular system.
Maron, Bradley A; Tang, Shiow-Shih; Loscalzo, Joseph
2013-01-20
Since their discovery in the early 1990's, S-nitrosylated proteins have been increasingly recognized as important determinants of many biochemical processes. Specifically, S-nitrosothiols in the cardiovascular system exert many actions, including promoting vasodilation, inhibiting platelet aggregation, and regulating Ca(2+) channel function that influences myocyte contractility and electrophysiologic stability. Contemporary developments in liquid chromatography-mass spectrometry methods, the development of biotin- and His-tag switch assays, and the availability of cyanide dye-labeling for S-nitrosothiol detection in vitro have increased significantly the identification of a number of cardiovascular protein targets of S-nitrosylation in vivo. Recent analyses using modern S-nitrosothiol detection techniques have revealed the mechanistic significance of S-nitrosylation to the pathophysiology of numerous cardiovascular diseases, including essential hypertension, pulmonary hypertension, ischemic heart disease, stroke, and congestive heart failure, among others. Despite enhanced insight into S-nitrosothiol biochemistry, translating these advances into beneficial pharmacotherapies for patients with cardiovascular diseases remains a primary as-yet unmet goal for investigators within the field.
Point-of-Care Technologies for Precision Cardiovascular Care and Clinical Research
King, Kevin; Grazette, Luanda P.; Paltoo, Dina N.; McDevitt, John T.; Sia, Samuel K.; Barrett, Paddy M.; Apple, Fred S.; Gurbel, Paul A.; Weissleder, Ralph; Leeds, Hilary; Iturriaga, Erin J.; Rao, Anupama; Adhikari, Bishow; Desvigne-Nickens, Patrice; Galis, Zorina S.; Libby, Peter
2016-01-01
Point-of-care technologies (POC or POCT) are enabling innovative cardiovascular diagnostics that promise to improve patient care across diverse clinical settings. The National Heart, Lung, and Blood Institute convened a working group to discuss POCT in cardiovascular medicine. The multidisciplinary working group, which included clinicians, scientists, engineers, device manufacturers, regulatory officials, and program staff, reviewed the state of the POCT field; discussed opportunities for POCT to improve cardiovascular care, realize the promise of precision medicine, and advance the clinical research enterprise; and identified barriers facing translation and integration of POCT with existing clinical systems. A POCT development roadmap emerged to guide multidisciplinary teams of biomarker scientists, technologists, health care providers, and clinical trialists as they: 1) formulate needs assessments; 2) define device design specifications; 3) develop component technologies and integrated systems; 4) perform iterative pilot testing; and 5) conduct rigorous prospective clinical testing to ensure that POCT solutions have substantial effects on cardiovascular care. PMID:26977455
Current Status of Chemical Public Health Risks and Testing ...
The cardiovascular system, at all its various developmental and life stages, represents a critical target organ system that can be adversely affected by a variety of chemicals and routes of exposure. A World Health Organization report estimated the impact of environmental chemical exposures on health to be 16% (range: 7—23%) of the total global burden of cardiovascular disease, corresponding to ~2.5 million deaths per year. Currently, the overall impact of environmental chemical exposures on all causes of cardiovascular disease and the number one cause of morbidity and mortality in the United States is unknown. Evidence from epidemiology, clinical, and toxicological studies will be presented documenting adverse cardiovascular effects associated with environmental exposure to chemicals. The presentation will cover US EPA’s ability to regulate and test chemicals as well as current challenges faced by the Agency to assess chemical cardiovascular risk and public health safety. (This abstract does not necessarily reflect US EPA Policy) Will be presented at the Workshop titled
NASA Technical Reports Server (NTRS)
Knapp, Charles F.; Evans, J. M.; Patwardhan, A.; Levenhagen, D.; Wang, M.; Charles, John B.
1991-01-01
A major focus of our research program is to develop noninvasive procedures for determining changes in cardiovascular function associated with the null gravity environment. We define changes in cardiovascular function to be (1) the result of the regulatory system operating at values different from 'normal' but with an overall control system basically unchanged by the null gravity exposure, or (2) the result of operating with a control system that has significantly different regulatory characteristics after an exposure. To this end, we have used a model of weightlessness that consisted of exposing humans to 2 hrs. in the launch position, followed by 20 hrs. of 6 deg head down bedrest. Our principal objective was to use this model to measure cardiovascular responses to the 6 deg head down bedrest protocol and to develop the most sensitive 'systems identification' procedure for indicating change. A second objective, related to future experiments, is to use the procedure in combination with experiments designed to determine the degree to which a regulatory pathway has been altered and to determine the mechanisms responsible for the changes.
Duan, Junchao; Hu, Hejing; Li, Qiuling; Jiang, Lizhen; Zou, Yang; Wang, Yapei; Sun, Zhiwei
2016-06-01
This study was to investigate the combined toxicity of silica nanoparticles (SiNPs) and methylmercury (MeHg) on cardiovascular system in zebrafish (Danio rerio) embryos. Ultraviolet absorption analysis showed that the co-exposure system had high absorption and stability. The dosages used in this study were based on the NOAEL level. Zebrafish embryos exposed to the co-exposure of SiNPs and MeHg did not show any cardiovascular malformation or atrioventricular block, but had an inhibition effect on bradycardia. Using o-Dianisidine for erythrocyte staining, the cardiac output of zebrafish embryos was decreased gradually in SiNPs, MeHg, co-exposure groups, respectively. Co-exposure of SiNPs and MeHg enhanced the vascular endothelial damage in Tg(fli-1:EGFP) transgenic zebrafish line. Moreover, the co-exposure significantly activated the oxidative stress and inflammatory response in neutrophils-specific Tg(mpo:GFP) transgenic zebrafish line. This study suggested that the combined toxic effects of SiNPs and MeHg on cardiovascular system had more severe toxicity than the single exposure alone. Copyright © 2016 Elsevier B.V. All rights reserved.
Golden ratio: A subtle regulator in our body and cardiovascular system?
Ozturk, Selcuk; Yalta, Kenan; Yetkin, Ertan
2016-11-15
Golden ratio, which is an irrational number and also named as the Greek letter Phi (φ), is defined as the ratio between two lines of unequal length, where the ratio of the lengths of the shorter to the longer is the same as the ratio between the lengths of the longer and the sum of the lengths. The so-called formula is a mathematical ratio and there exist a variety of examples in natural and man-made structures of great beauty. Moreover, golden ratio is expressed throughout the human body in some ways, including digits, uterus, teeth, and cardiovascular system. Although the association of Fibonacci series or golden ratio with systems and organs of human being has not been assessed in depth yet, the mainstream regulation of cardiovascular system seems to be associated with golden ratio. This raises the idea that there might have been a fine and subtle regulator in our body. In this article, we aimed to elaborate the relationship between the existence of golden ratio and the human body and to discuss the golden ratio and its association with cardiovascular system. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Cardiovascular Biology of the Incretin System
Ussher, John R.; Drucker, Daniel J.
2012-01-01
Glucagon-like peptide-1 (GLP-1) is an incretin hormone that enhances glucose-stimulated insulin secretion and exerts direct and indirect actions on the cardiovascular system. GLP-1 and its related incretin hormone, glucose-dependent insulinotropic polypeptide (GIP), are rapidly inactivated by the enzyme dipeptidyl peptidase 4 (DPP-4), a key determinant of incretin bioactivity. Two classes of medications that enhance incretin action, GLP-1R agonists and DPP-4 inhibitors, are used for the treatment of type 2 diabetes mellitus (T2DM). We review herein the cardiovascular biology of GLP-1R agonists and DPP-4 inhibitors, including direct and indirect effects on cardiomyocytes, blood vessels, adipocytes, the control of blood pressure and postprandial lipoprotein secretion. Both GLP-1R activation and DPP-4 inhibition exert multiple cardioprotective actions in preclinical models of cardiovascular dysfunction, and short term studies in human subjects appear to demonstrate modest yet beneficial actions on cardiac function in subjects with ischemic heart disease. Incretin-based agents control body weight, improve glycemic control with a low risk of hypoglycemia, decrease blood pressure, inhibit the secretion of intestinal chylomicrons, and reduce inflammation in preclinical studies. Nevertheless, there is limited information on the cardiovascular actions of these agents in patients with diabetes and established cardiovascular disease. Hence, a more complete understanding of the cardiovascular risk:benefit ratio of incretin-based therapies will require completion of long term cardiovascular outcome studies currently underway in patients with T2DM. PMID:22323472
Toll-like Receptors in the Vascular System: Sensing the Dangers Within
McCarthy, Cameron G.; Webb, R. Clinton
2016-01-01
Toll-like receptors (TLRs) are components of the innate immune system that respond to exogenous infectious ligands (pathogen-associated molecular patterns, PAMPs) and endogenous molecules that are released during host tissue injury/death (damage-associated molecular patterns, DAMPs). Interaction of TLRs with their ligands leads to activation of downstream signaling pathways that induce an immune response by producing inflammatory cytokines, type I interferons (IFN), and other inflammatory mediators. TLR activation affects vascular function and remodeling, and these molecular events prime antigen-specific adaptive immune responses. Despite the presence of TLRs in vascular cells, the exact mechanisms whereby TLR signaling affects the function of vascular tissues are largely unknown. Cardiovascular diseases are considered chronic inflammatory conditions, and accumulating data show that TLRs and the innate immune system play a determinant role in the initiation and development of cardiovascular diseases. This evidence unfolds a possibility that targeting TLRs and the innate immune system may be a novel therapeutic goal for these conditions. TLR inhibitors and agonists are already in clinical trials for inflammatory conditions such as asthma, cancer, and autoimmune diseases, but their study in the context of cardiovascular diseases is in its infancy. In this article, we review the current knowledge of TLR signaling in the cardiovascular system with an emphasis on atherosclerosis, hypertension, and cerebrovascular injury. Furthermore, we address the therapeutic potential of TLR as pharmacological targets in cardiovascular disease and consider intriguing research questions for future study. PMID:26721702
Soh, May Ching; Nelson-Piercy, Catherine; Dib, Fadia; Westgren, Magnus; McCowan, Lesley; Pasupathy, Dharmintra
2015-09-01
To determine if maternal placental syndromes (MPS) are associated with an increased risk of death from cardiovascular causes in women with systemic lupus erythematosus (SLE). Between 1973 and 2011, women with SLE and a history of pregnancy were identified using linked Swedish population registries. The outcome was death from primarily cardiovascular causes, defined as death from acute coronary syndrome or coronary artery disease, stroke, or peripheral vascular disease. The exposure was MPS, defined as any hypertensive disorders in pregnancy, stillbirth, placental abruption, or delivery of a small-for-gestational-age infant. The association of preterm delivery (delivery at <34 weeks of gestation) with death from cardiovascular causes was also explored. Risk of death from cardiovascular causes was determined using logistic regression, adjusting for the year of first delivery, duration of SLE, number of inpatient admissions, and cardiovascular risk factors. A total of 3,977 women with SLE had 7,410 pregnancies during the study interval. Death from primarily cardiovascular causes occurred in 44 of the 325 women who died (13.5%). The median age at death from cardiovascular causes was 54 years (interquartile range 48-58 years), and these women were more likely to have had hypertension and renal disease. MPS was associated with an increased risk of death from primarily cardiovascular causes (adjusted odds ratio [OR] 2.19 [95% confidence interval (95% CI) 1.14-4.22]), specifically, a history of placental abruption (adjusted OR 5.78 [95% CI 1.61-20.72]). Delivery at <34 weeks of gestation, particularly when combined with MPS, was also associated with an increased risk of death from primarily cardiovascular causes (adjusted OR 2.49 [95% CI 1.06-5.85]). MPS in pregnancy is associated with a higher risk of death from primarily cardiovascular causes in women with SLE. © 2015, American College of Rheumatology.
Cardio-oncology: conflicting priorities of anticancer treatment and cardiovascular outcome.
Tilemann, Lisa M; Heckmann, Markus B; Katus, Hugo A; Lehmann, Lorenz H; Müller, Oliver J
2018-04-01
This article about the emerging field of cardio-oncology highlights typical side effects of oncological therapies in the cardiovascular system, cardiovascular complications of malignancies itself, and potential preventive or therapeutic modalities. We performed a selective literature search in PubMed until September 2016. Cardiovascular events in cancer patients can be frequently attributed to oncological therapies or to the underlying malignancy itself. Furthermore, many patients with cancer have pre-existing cardiovascular diseases that can be aggravated by the malignancy or its therapy. Cardiovascular abnormalities in oncological patients comprise a broad spectrum from alterations in electrophysiological, laboratory or imaging tests to the occurrence of thromboembolic, ischemic or rhythmological events and the impairment of left ventricular function or manifest heart failure. A close interdisciplinary collaboration between oncologists and cardiologists/angiologists as well as an increased awareness of potential cardiovascular complications could improve clinical care of cancer patients and provides a basis for an improved understanding of underlying mechanisms of cardiovascular morbidity.
Liau, Siow Yen; Mohamed Izham, M I; Hassali, M A; Shafie, A A
2010-01-01
Cardiovascular diseases, the main causes of hospitalisations and death globally, have put an enormous economic burden on the healthcare system. Several risk factors are associated with the occurrence of cardiovascular events. At the heart of efficient prevention of cardiovascular disease is the concept of risk assessment. This paper aims to review the available cardiovascular risk-assessment tools and its applicability in predicting cardiovascular risk among Asian populations. A systematic search was performed using keywords as MeSH and Boolean terms. A total of 25 risk-assessment tools were identified. Of these, only two risk-assessment tools (8%) were derived from an Asian population. These risk-assessment tools differ in various ways, including characteristics of the derivation sample, type of study, time frame of follow-up, end points, statistical analysis and risk factors included. Very few cardiovascular risk-assessment tools were developed in Asian populations. In order to accurately predict the cardiovascular risk of our population, there is a need to develop a risk-assessment tool based on local epidemiological data.
Reactive Oxygen Species in Cardiovascular Disease
Sugamura, Koichi; Keaney, John F.
2011-01-01
Based on the ‘free-radical theory’ of disease, researchers have been trying to elucidate the role of oxidative stress from free radicals in cardiovascular disease. Considerable data indicate that ROS and oxidative stress are important features of cardiovascular diseases including atherosclerosis, hypertension, and congestive heart failure. However, blanket strategies with antioxidants to ameliorate cardiovascular disease have not generally yielded favorable results. However, our understanding or reactive oxygen species has evolved to the point that we now realize these species have important roles in physiology as well as pathophysiology. Thus, it is overly simplistic to assume a general antioxidant strategy will yield specific effects on cardiovascular disease. Indeed, there are several sources of reactive oxygen species that are known to be active in the cardiovascular system. This review will address our understanding of reactive oxygen species sources in cardiovascular disease and both animal and human data defining how reactive oxygen species contribute to physiology and pathology. PMID:21627987
Aftanas, L I; Reva, N V; Pavlov, S V; Korenek, V V; Brak, I V
2014-02-01
We investigated the coupling of EEG oscillators with cognitive (experience and valence) and physiological (cardiovascular reactivity) components of emotion. Emotions of anger and joy were evoked in healthy males (n = 49) using a guided imagery method, multichannel EEG and cardiovascular reactivity (Finometer) were simultaneously recorded. Correlational analysis revealed that specially distributed EEG oscillators seem to be selectively involved into cognitive (experience and valence) and physiological (cardiovascular reactivity) components of emotional responding. We showed that low theta (4-6 Hz) activity from medial and lateral frontal cortex of the right hemisphere predominantly correlated with the anger experience, high alpha (10-12 and 12-14 Hz) and gamma (30-45 Hz) activity from central-parieto-occipital regions of the left hemisphere--with cardiovascular reactivity to anger and joy, gamma-activity (30-45 Hz) from the left hemisphere in parietal areas--with cardiovascular reactivity to joy. The findings suggest that specially distributed neuronal networks oscillating at different frequencies may be regarded as a putative neurobiological mechanism coordination dynamical balance between cognitive and physiological components of emotion as well as psycho-neuro-somatic relationships within the mind-brain-body system.
Cardiovascular Safety Pharmacology of Sibutramine.
Yun, Jaesuk; Chung, Eunyong; Choi, Ki Hwan; Cho, Dae Hyun; Song, Yun Jeong; Han, Kyoung Moon; Cha, Hey Jin; Shin, Ji Soon; Seong, Won-Keun; Kim, Young-Hoon; Kim, Hyung Soo
2015-07-01
Sibutramine is an anorectic that has been banned since 2010 due to cardiovascular safety issues. However, counterfeit drugs or slimming products that include sibutramine are still available in the market. It has been reported that illegal sibutramine-contained pharmaceutical products induce cardiovascular crisis. However, the mechanism underlying sibutramine-induced cardiovascular adverse effect has not been fully evaluated yet. In this study, we performed cardiovascular safety pharmacology studies of sibutramine systemically using by hERG channel inhibition, action potential duration, and telemetry assays. Sibutramine inhibited hERG channel current of HEK293 cells with an IC50 of 3.92 μM in patch clamp assay and increased the heart rate and blood pressure (76 Δbpm in heart rate and 51 ΔmmHg in blood pressure) in beagle dogs at a dose of 30 mg/kg (per oral), while it shortened action potential duration (at 10 μM and 30 μM, resulted in 15% and 29% decreases in APD50, and 9% and 17% decreases in APD90, respectively) in the Purkinje fibers of rabbits and had no effects on the QTc interval in beagle dogs. These results suggest that sibutramine has a considerable adverse effect on the cardiovascular system and may contribute to accurate drug safety regulation.
The Effects of Exercise on Cardiovascular Biomarkers: New Insights, Recent Data, and Applications.
Che, Lin; Li, Dong
2017-01-01
The benefit of regular exercise or physical activity with appropriate intensity on improving cardiopulmonary function and endurance has long been accepted with less controversy. The challenge remains, however, quantitatively evaluate the effect of exercise on cardiovascular health due in part to the amount and intensity of exercise varies widely plus lack of effective, robust and efficient biomarker evaluation systems. Better evaluating the overall function of biomarker and validate biomarkers utility in cardiovascular health should improve the evidence regarding the benefit or the effect of exercise or physical activity on cardiovascular health, in turn increasing the efficiency of the biomarker on individuals with mild to moderate cardiovascular risk. In this review, beyond traditional cytokines, chemokines and inflammatory factors, we systemic reviewed the latest novel biomarkers in metabolomics, genomics, proteomics, and molecular imaging mainly focus on heart health, as well as cardiovascular diseases such as atherosclerosis and ischemic heart disease. Furthermore, we highlight the state-of-the-art biomarker developing techniques and its application in the field of heart health. Finally, we discuss the clinical relevance of physical activity and exercise on key biomarkers in molecular basis and practical considerations.
Hepatitis C virus and cardiovascular: A review.
Petta, Salvatore
2017-03-01
Chronic hepatitis C virus (HCV) infection is a systemic disease that leads to increased risks of cirrhosis and its complications, as well as extrahepatic disturbances, including immune-related disorders and metabolic alterations such as insulin resistance and steatosis. Recent accumulating evidence suggests that HCV infection can increase cardiovascular risk, and that viral eradication can improve cardiovascular outcomes in the clinical setting. These data are strengthened by evidence identifying potential mechanisms (in)directly linking HCV infection to vascular damage. However, the high prevalence of both HCV infection and cardiovascular alterations, as well as the presence of contrasting results not identifying any association between HCV infection and cardiovascular dysfunction, provides uncertainty about a direct association of HCV infection with cardiovascular risk. Further studies are needed to clarify definitively the role of HCV infection in cardiovascular alterations, as well as the impact of viral eradication on cardiovascular outcomes. These features are now more attractive, considering the availability of new, safe, and very effective interferon-free antiviral agents for the treatment of HCV infection. This review aims to discuss carefully available data on the relationship between HCV infection and cardiovascular risk.
Kirkby, Nicholas S.; Lundberg, Martina H.; Harrington, Louise S.; Leadbeater, Philip D. M.; Milne, Ginger L.; Potter, Claire M. F.; Al-Yamani, Malak; Adeyemi, Oladipupo; Warner, Timothy D.; Mitchell, Jane A.
2012-01-01
Prostacyclin is an antithrombotic hormone produced by the endothelium, whose production is dependent on cyclooxygenase (COX) enzymes of which two isoforms exist. It is widely believed that COX-2 drives prostacyclin production and that this explains the cardiovascular toxicity associated with COX-2 inhibition, yet the evidence for this relies on indirect evidence from urinary metabolites. Here we have used a range of experimental approaches to explore which isoform drives the production of prostacyclin in vitro and in vivo. Our data show unequivocally that under physiological conditions it is COX-1 and not COX-2 that drives prostacyclin production in the cardiovascular system, and that urinary metabolites do not reflect prostacyclin production in the systemic circulation. With the idea that COX-2 in endothelium drives prostacyclin production in healthy individuals removed, we must seek new answers to why COX-2 inhibitors increase the risk of cardiovascular events to move forward with drug discovery and to enable more informed prescribing advice. PMID:23045674
An integrated mathematical model of the human cardiopulmonary system: model development.
Albanese, Antonio; Cheng, Limei; Ursino, Mauro; Chbat, Nicolas W
2016-04-01
Several cardiovascular and pulmonary models have been proposed in the last few decades. However, very few have addressed the interactions between these two systems. Our group has developed an integrated cardiopulmonary model (CP Model) that mathematically describes the interactions between the cardiovascular and respiratory systems, along with their main short-term control mechanisms. The model has been compared with human and animal data taken from published literature. Due to the volume of the work, the paper is divided in two parts. The present paper is on model development and normophysiology, whereas the second is on the model's validation on hypoxic and hypercapnic conditions. The CP Model incorporates cardiovascular circulation, respiratory mechanics, tissue and alveolar gas exchange, as well as short-term neural control mechanisms acting on both the cardiovascular and the respiratory functions. The model is able to simulate physiological variables typically observed in adult humans under normal and pathological conditions and to explain the underlying mechanisms and dynamics. Copyright © 2016 the American Physiological Society.
21 CFR 870.2640 - Portable leakage current alarm.
Code of Federal Regulations, 2014 CFR
2014-04-01
... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2640 Portable... the electrical leakage current between any two points of an electrical system and to sound an alarm if...
21 CFR 870.2640 - Portable leakage current alarm.
Code of Federal Regulations, 2013 CFR
2013-04-01
... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2640 Portable... the electrical leakage current between any two points of an electrical system and to sound an alarm if...
21 CFR 870.2640 - Portable leakage current alarm.
Code of Federal Regulations, 2012 CFR
2012-04-01
... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2640 Portable... the electrical leakage current between any two points of an electrical system and to sound an alarm if...
Role of antioxidants in redox regulation of diabetic cardiovascular complications.
Turan, Belma
2010-12-01
Cardiovascular dysfunction is leading cause for the mortality of diabetic individuals, in part due to a specific cardiomyopathy, and due to altered endothelial dependent/independent vascular reactivity. Cardiovascular complications result from multiple parameters including glucotoxicity, lipotoxicity, fibrosis and mitochondrial uncoupling. Oxidative stress arises from an imbalance between the production of reactive oxygen and nitrogen species (ROS and RNS) and the capability of biological system to readily detoxify reactive intermediates. Several studies have reported beneficial effects of a therapy with antioxidant agents, including trace elements and other antioxidants, against the cardiovascular system dysfunction due to the diabetes. Antioxidants act through different mechanisms to prevent oxidant-induced cell damages acting either directly or indirectly. They can reduce the generation of ROS, scavenge ROS, or interfere with ROS-induced alterations. Modulating mitochondrial activity is an important possibility to control ROS production. Hence, the use of PPARα agonist to reduce fatty acid oxidation and of trace elements such as selenium as antioxidant and other antioxidants such as vitamins E and C, contribute to the prevention of diabetes-induced cardiovascular dysfunction. The paradigm that, inhibiting the overproduction of superoxides and peroxides would prevent cardiac dysfunction in diabetes has been difficult to verify using conventional antioxidants like vitamins E and C. That led to use of catalytic antioxidants such as SOD/CAT mimetics. Hence, well-tuned, balanced and responsive antioxidant defence systems are vital for proper prevention against diabetic damage. Myocardial cell death is observed in the hearts of diabetic patients and animal models; however, its importance in the development of diabetic cardiomyopathy is not completely understood. This review aims to summarize our present knowledge on various strategies to control oxidative stress and antagonize cardiovascular dysfunction during diabetes. In here, we consider aspects of redox signaling in the cardiovascular system, focusing on the molecular basis of redox sensing by proteins and the array of post-translational oxidative modifications that can occur. In addition, we discuss studies identify redox-sensitive cardiac proteins, as well as those assessing redox signalling in cardiovascular disease.
Endocannabinoids and the Cardiovascular System in Health and Disease.
O'Sullivan, Saoirse Elizabeth
2015-01-01
The endocannabinoid system is widely distributed throughout the cardiovascular system. Endocannabinoids play a minimal role in the regulation of cardiovascular function in normal conditions, but are altered in most cardiovascular disorders. In shock, endocannabinoids released within blood mediate the associated hypotension through CB(1) activation. In hypertension, there is evidence for changes in the expression of CB(1), and CB(1) antagonism reduces blood pressure in obese hypertensive and diabetic patients. The endocannabinoid system is also upregulated in cardiac pathologies. This is likely to be cardioprotective, via CB(2) and CB(1) (lesser extent). In the vasculature, endocannabinoids cause vasorelaxation through activation of multiple target sites, inhibition of calcium channels, activation of potassium channels, NO production and the release of vasoactive substances. Changes in the expression or function of any of these pathways alter the vascular effect of endocannabinoids. Endocannabinoids have positive (CB(2)) and negative effects (CB(1)) on the progression of atherosclerosis. However, any negative effects of CB(1) may not be consequential, as chronic CB(1) antagonism in large scale human trials was not associated with significant reductions in atheroma. In neurovascular disorders such as stroke, endocannabinoids are upregulated and protective, involving activation of CB(1), CB(2), TRPV1 and PPARα. Although most of this evidence is from preclinical studies, it seems likely that cannabinoid-based therapies could be beneficial in a range of cardiovascular disorders.
[The condition of the cardiovascular prevention in Spain].
Royo-Bordonada, Miguel Ángel; Lobos, José Maria; Brotons, Carlos; Villar, Fernando; de Pablo, Carmen; Armario, Pedro; Cortés, Olga; Gil Nuñez, Antonio; Lizcano, Angel; de Santiago, Ana; Sans, Susana
2014-01-07
In Spain, where cardiovascular diseases are the leading cause of death, control of their risk factors is low. This study analyzes the implementation of cardiovascular risk (CVR) assessment in clinical practice and the existence of control objectives amongst quality care indicators and professional incentive systems. Between 2010 and 2011, data from each autonomous community were collected, by means of a specific questionnaire concerning prevalence and control of major CVR factors, CVR assessment, and implementation of control objectives amongst quality care indicators and primary care incentive systems. Fifteen out of 17 autonomous communities filled in the questionnaire. CVR was calculated through SCORE in 9 autonomous communities, REGICOR in 3 and Framingham in 3, covering 3.4 to 77.6% of target population. The resulting control of the main CVR factors was low and variable: hypertension (22.7-61.3%), dyslipidemia (11-45.1%), diabetes (18.5-84%) and smoking (20-50.5%). Most autonomous communities did not consider CVR assessment and control amongst quality care indicators or incentive systems, highlighting the lack of initiatives on lifestyles. Variability exists in cardiovascular prevention policies among autonomous communities. It is necessary to implement a common agreed cardiovascular prevention guide, to encourage physicians to implement CVR in electronic clinical history, and to promote CVR assessment and control inclusion amongst quality care indicators and professional incentive systems, focusing on lifestyles management. Copyright © 2012 Elsevier España, S.L. All rights reserved.
Nasimi, Ali; Kafami, Marzieh
2016-07-01
The bed nucleus of the stria terminalis (BST) is involved in cardiovascular regulation. The angiotensin II (Ang II) receptor (AT1), and angiotensinogen were found in the BST. In our previous study we found that microinjection of Ang II into the BST produced a pressor response. This study was performed to find the mechanisms mediating this response in anesthetized rats. Ang II was microinjected into the BST and the cardiovascular responses were re-tested after systemic injection of a blocker of autonomic or vasopressin V1 receptor. The ganglionic nicotinic receptor blocker, hexamethonium dichloride, attenuated the pressor response to Ang II, indicating that the cardiovascular sympathetic system is involved in the pressor effect of Ang II. A selective vasopressin V1 receptor antagonist greatly attenuated the pressor effect of Ang II, indicating that the Ang II increases the arterial pressure via stimulation of vasopressin release as well. In conclusion, in the BST, Ang II as a neurotransmitter increases blood pressure by exciting cardiovascular sympathetic system and directly or indirectly causing vasopressin to release into bloodstream by VPN. This is an interesting new finding that not only circulating Ang II but also brain Ang II makes vasopressin release. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.
Pourhabib, Sanam; Chessex, Caroline; Murray, Judy; Grace, Sherry L
2016-04-01
Cardiovascular rehabilitation has been designed to decrease the burden of cardiovascular disease. This study described (1) patient-health-care provider interactions regarding cardiovascular rehabilitation and (2) which discussion elements were related to patient referral. This was a prospective study of cardiovascular patients and their health-care providers. Discussion utterances were coded using the Roter Interaction Analysis System. Discussion between 26 health-care providers and 50 patients were recorded. Cardiovascular rehabilitation referral was related to greater health-care provider interactivity (odds ratio = 2.82, 95% confidence interval = 1.01-7.86) and less patient concern and worry (odds ratio = 0.64, 95% confidence interval = 0.45-0.89). Taking time for reciprocal discussion and allaying patient anxiety may promote greater referral. © The Author(s) 2014.
Mavrogeni, Sophie I; Markousis-Mavrogenis, George; Heutemann, David; van Wijk, Kees; Reiber, Hans J; Kolovou, Genovefa
2015-01-01
Cardiovascular involvement in rheumatic diseases (RD) is the result of various pathophysiologic mechanisms including inflammation, accelerated atherosclerosis, myocardial ischemia, due to micro- or macro-vascular lesions and fibrosis. Noninvasive cardiovascular imaging, including echocardiography, nuclear techniques, cardiovascular computed tomography and cardiovascular magnetic resonance, represents the main diagnostic tool for early, non-invasive diagnosis of heart disease in RD. However, in the era of multimodality imaging and financial crisis there is an imperative need for rational use of imaging techniques in order to obtain the maximum benefit at the lowest possible cost for the health insurance system. The oligo-asymptomatic cardiovascular presentation and the high cardiovascular mortality of RD necessitate a reliable and reproducible diagnostic approach to catch early cardiovascular involvement. Echocardiography remains the routine cornerstone of cardiovascular evaluation. However, a normal echocardiogram can not always exclude cardiac involvement and/or identify heart disease acuity and pathophysiology. Therefore, cardiovascular magnetic resonance is a necessary adjunct complementary to echocardiography, especially in new onset heart failure and when there are conflicting data from clinical, electrocardiographic and echocardiographic evaluation of RD patients. PMID:26413486
Regulation of sympathetic nervous system function after cardiovascular deconditioning
NASA Technical Reports Server (NTRS)
Hasser, E. M.; Moffitt, J. A.
2001-01-01
Humans subjected to prolonged periods of bed rest or microgravity undergo deconditioning of the cardiovascular system, characterized by resting tachycardia, reduced exercise capability, and a predisposition for orthostatic intolerance. These changes in cardiovascular function are likely due to a combination of factors, including changes in control of body fluid balance or cardiac alterations resulting in inadequate maintenance of stroke volume, altered arterial or venous vascular function, reduced activation of cardiovascular hormones, and diminished autonomic reflex function. There is evidence indicating a role for each of these mechanisms. Diminished reflex activation of the sympathetic nervous system and subsequent vasoconstriction appear to play an important role. Studies utilizing the hindlimb-unloaded (HU) rat, an animal model of deconditioning, evaluated the potential role of altered arterial baroreflex control of the sympathetic nervous system. These studies indicate that HU results in blunted baroreflex-mediated activation of both renal and lumbar sympathetic nerve activity in response to a hypotensive stimulus. HU rats are less able to maintain arterial pressure during hemorrhage, suggesting that diminished ability to increase sympathetic activity has functional consequences for the animal. Reflex control of vasopressin secretion appears to be enhanced following HU. Blunted baroreflex-mediated sympathoexcitation appears to involve altered central nervous system function. Baroreceptor afferent activity in response to changes in arterial pressure is unaltered in HU rats. However, increases in efferent sympathetic nerve activity for a given decrease in afferent input are blunted after HU. This altered central nervous system processing of baroreceptor inputs appears to involve an effect at the rostral ventrolateral medulla (RVLM). Specifically, it appears that tonic GABAA-mediated inhibition of the RVLM is enhanced after HU. Augmented inhibition apparently arises from sources other than the caudal ventrolateral medulla. If similar alterations in control of the sympathetic nervous system occur in humans in response to cardiovascular deconditioning, it is likely that they play an important role in the observed tendency for orthostatic intolerance. Combined with potential changes in vascular function, cardiac function, and hypovolemia, the predisposition for orthostatic intolerance following cardiovascular deconditioning would be markedly enhanced by blunted ability to reflexly activate the sympathetic nervous system.
Clase, Catherine M; Barzilay, Joshua; Gao, Peggy; Smyth, Andrew; Schmieder, Roland E; Tobe, Sheldon; Teo, Koon K; Yusuf, Salim; Mann, Johannes F E
2017-03-01
Initiation of blockade of the renin-angiotensin system may cause an acute decrease in glomerular filtration rate (GFR): the prognostic significance of this is unknown. We did a post hoc analysis of patients with, or at risk for, vascular disease, in two randomized controlled trials: Ongoing Telmisartan Alone and in combination with Ramipril Global Endpoint Trial (ONTARGET) and the Telmisartan Randomized AssessmeNt Study in ACE iNtolerant participants with cardiovascular Disease (TRANSCEND), whose median follow-up was 56 months. In 9340 patients new to renin-angiotensin system blockade, who were then randomized to renin-angiotensin system blockade, a fall in GFR of 15% or more at 2 weeks after starting renin-angiotensin system blockade was seen in 1480 participants (16%), with persistence at 8 weeks in 700 (7%). Both acute increases and decreases in GFR after initiation of renin-angiotensin system blockade were associated with tendencies, mostly not statistically significant, to increased risk of cardiovascular outcomes, which occurred in 1280 participants, and of microalbuminuria, which occurred in 864. Analyses of creatinine-based outcomes were suggestive of regression to the mean. In more than 3000 patients randomized in TRANSCEND to telmisartan or placebo, there was no interaction between acute change in GFR and renal or cardiovascular benefit from telmisartan. Thus, both increases and decreases in GFR on initiation of renin-angiotensin system blockade are common, and may be weakly associated with increased risk of cardiovascular and renal outcomes. Changes do not predict increased benefit from therapy. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Engineering studies of vectorcardiographs in blood pressure measuring systems, appendix 2
NASA Technical Reports Server (NTRS)
Mark, R. G.
1975-01-01
The development of a cardiovascular monitoring system to noninvasively monitor the blood pressure and heart rate using pulse wave velocity was described. The following topics were covered: (1) pulse wave velocity as a measure of arterial blood pressure, (2) diastolic blood pressure and pulse wave velocity in humans, (3) transducer development for blood pressure measuring device, and (4) cardiovascular monitoring system. It was found, in experiments on dogs, that the pulse wave velocity is linearly related to diastolic blood pressure over a wide range of blood pressure and in the presence of many physiological perturbations. A similar relationship was observed in normal, young human males over a moderate range of pressures. Past methods for monitoring blood pressure and a new method based on pulse wave velocity determination were described. Two systems were tested: a Doppler ultrasonic transducer and a photoelectric plethysmograph. A cardiovascular monitoring system was described, including operating instructions.
Nonlinear dynamics applied to the study of cardiovascular effects of stress
NASA Astrophysics Data System (ADS)
Anishchenko, T. G.; Igosheva, N. B.
1998-03-01
We study cardiovascular responses to emotional stresses in humans and rats using traditional physiological parameters and methods of nonlinear dynamics. We found that emotional stress results in significant changes of chaos degree of ECG and blood pressure signals, estimated using a normalized entropy. We demonstrate that the normalized entropy is a more sensitive indicator of the stress-induced changes in cardiovascular systems compared with traditional physiological parameters Using the normalized entropy we discovered the significant individual differences in cardiovascular stress-reactivity that was impossible to obtain by traditional physiological methods.
ERIC Educational Resources Information Center
Stojadinovic, Bojana; Nestorovic, Zorica; Djuric, Biljana; Tenne, Tamar; Zikich, Dragoslav; Žikic, Dejan
2017-01-01
The velocity by which a disturbance moves through the medium is the wave velocity. Pulse wave velocity is among the key parameters in hemodynamics. Investigation of wave propagation through the fluid-filled elastic tube has a great importance for the proper biophysical understanding of the nature of blood flow through the cardiovascular system.…
NASA Astrophysics Data System (ADS)
Ganiev, R. F.; Reviznikov, D. L.; Rogoza, A. N.; Slastushenskiy, Yu. V.; Ukrainskiy, L. E.
2017-03-01
A description of a complex approach to investigation of nonlinear wave processes in the human cardiovascular system based on a combination of high-precision methods of measuring a pulse wave, mathematical methods of processing the empirical data, and methods of direct numerical modeling of hemodynamic processes in an arterial tree is given.
Ichinose, Masashi; Ichinose-Kuwahara, Tomoko; Kondo, Narihiko; Nishiyasu, Takeshi
2015-11-15
Reducing blood flow to working muscles during dynamic exercise causes metabolites to accumulate within the active muscles and evokes systemic pressor responses. Whether a similar cardiovascular response is elicited with normal blood flow to exercising muscles during dynamic exercise remains unknown, however. To address that issue, we tested whether cardiovascular responses are affected by increases in blood flow to active muscles. Thirteen healthy subjects performed dynamic plantarflexion exercise for 12 min at 20%, 40%, and 60% of peak workload (EX20, EX40, and EX60) with their lower thigh enclosed in a negative pressure box. Under control conditions, the box pressure was the same as the ambient air pressure. Under negative pressure conditions, beginning 3 min after the start of the exercise, the box pressure was decreased by 20, 45, and then 70 mmHg in stepwise fashion with 3-min step durations. During EX20, the negative pressure had no effect on blood flow or the cardiovascular responses measured. However, application of negative pressure increased blood flow to the exercising leg during EX40 and EX60. This increase in blood flow had no significant effect on systemic cardiovascular responses during EX40, but it markedly attenuated the pressor responses otherwise seen during EX60. These results demonstrate that during mild exercise, normal blood flow to exercising muscle is not a factor eliciting cardiovascular responses, whereas it elicits an important pressor effect during moderate exercise. This suggests blood flow to exercising muscle is a major determinant of cardiovascular responses during dynamic exercise at higher than moderate intensity. Copyright © 2015 the American Physiological Society.
[Cardiovascular disease and systemic inflammatory diseases].
Cuende, José I; Pérez de Diego, Ignacio J; Godoy, Diego
2016-01-01
More than a century of research has shown that atherosclerosis is an inflammatory process more than an infiltrative or thrombogenic process. It has been demonstrated epidemiologically and by imaging techniques, that systemic inflammatory diseases (in particular, but not exclusively, rheumatoid arthritis and systemic lupus erythematosus) increase the atherosclerotic process, and has a demonstrated pathophysiological basis. Furthermore, treatments to control inflammatory diseases can modify the course of the atherosclerotic process. Although there are no specific scales for assessing cardiovascular risk in patients with these diseases, cardiovascular risk is high. A number of specific risk scales are being developed, that take into account specific factors such as the degree of inflammatory activity. Copyright © 2015 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.
The cardiovascular system in growth hormone excess and growth hormone deficiency.
Lombardi, G; Di Somma, C; Grasso, L F S; Savanelli, M C; Colao, A; Pivonello, R
2012-12-01
The clinical conditions associated with GH excess and GH deficiency (GHD) are known to be associated with an increased risk for the cardiovascular morbidity and mortality, suggesting that either an excess or a deficiency in GH and/or IGF-I is deleterious for cardiovascular system. In patients with acromegaly, chronic GH and IGF-I excess commonly causes a specific cardiomyopathy characterized by a concentric cardiac hypertrophy associated with diastolic dysfunction and, in later stages, with systolic dysfunction ending in heart failure if GH/IGF-I excess is not controlled. Abnormalities of cardiac rhythm and anomalies of cardiac valves can also occur. Moreover, the increased prevalence of cardiovascular risk factors, such as hypertension, diabetes mellitus, and insulin resistance, as well as dyslipidemia, confer an increased risk for vascular atherosclerosis. Successful control of the disease is accompanied by a decrease of the cardiac mass and improvement of cardiac function and an improvement in cardiovascular risk factors. In patients with hypopituitarism, GHD has been considered the under- lying factor of the increased mortality when appropriate standard replacement of the pituitary hormones deficiencies is given. Either childhood-onset or adulthood-onset GHD are characterized by a cluster of abnormalities associated with an increased cardiovascular risk, including altered body composition, unfavorable lipid profile, insulin resistance, endothelial dysfunction and vascular atherosclerosis, a decrease in cardiac mass together with an impairment of systolic function mainly after exercise. Treatment with recombinant GH in patients with GHD is followed by an improvement of the cardiovascular risk factors and an increase in cardiac mass together with an improvement in cardiac performance. In conclusion, acromegaly and GHD are associated with an increased risk for cardiovascular morbidity and mortality, but the control of GH/IGF-I secretion reverses cardiovascular abnormalities and restores the normal life expectancy.
Is cardiovascular risk in women with PCOS a real risk? Current insights.
Papadakis, Georgios; Kandaraki, Eleni; Papalou, Olga; Vryonidou, Andromachi; Diamanti-Kandarakis, Evanthia
2017-12-01
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in reproductive aged women. PCOS incorporates not only symptoms related to the reproductive system but also a clustering of systemic metabolic abnormalities that are linked with increased risk for cardiovascular disease (CVD). More specifically, metabolic aberrations such as impaired glucose and lipid metabolism, accompanied by increased low-grade inflammation as well as elevated coagulation factors appear to contribute to the increased cardiovascular risk. Even though many studies have indicated a rise in surrogate biomarkers of CVD in women with PCOS, it is still doubtful to what extent and magnitude this elevation can be translated to real cardiovascular events. Furthermore, the cardiovascular risk factors appear to vary significantly in the different phenotypes of the syndrome. Women with PCOS have the potential for early atherosclerosis, myocardial and endothelial dysfunction. Whether PCOS women are at real cardiovascular risk compared to controls remains between the verge of theoretical and real threat for the PCOS women at any age but particularly in the post-menopausal state. Interestingly, although the presence of the CVD risk factors is well documented in PCOS women, their combination on different phenotypes may play a role, which eventually results in a spectrum of clinical manifestations of CVD with variable degree of severity. The present manuscript aims to review the interaction between PCOS and the combination of several cardiovascular risk factors.
Project Super Heart--Year One.
ERIC Educational Resources Information Center
Bellardini, Harry; And Others
1980-01-01
A model cardiovascular disease prevention program for young children is described. Components include physical examinations, health education (anatomy and physiology of the cardiovascular system), nutrition instruction, first aid techniques, role modeling, and environmental engineering. (JN)
PPAR-γ in the Cardiovascular System
Duan, Sheng Zhong; Ivashchenko, Christine Y.; Usher, Michael G.; Mortensen, Richard M.
2008-01-01
Peroxisome proliferator-activated receptor-γ (PPAR-γ), an essential transcriptional mediator of adipogenesis, lipid metabolism, insulin sensitivity, and glucose homeostasis, is increasingly recognized as a key player in inflammatory cells and in cardiovascular diseases (CVD) such as hypertension, cardiac hypertrophy, congestive heart failure, and atherosclerosis. PPAR-γ agonists, the thiazolidinediones (TZDs), increase insulin sensitivity, lower blood glucose, decrease circulating free fatty acids and triglycerides, lower blood pressure, reduce inflammatory markers, and reduce atherosclerosis in insulin-resistant patients and animal models. Human genetic studies on PPAR-γ have revealed that functional changes in this nuclear receptor are associated with CVD. Recent controversial clinical studies raise the question of deleterious action of PPAR-γ agonists on the cardiovascular system. These complex interactions of metabolic responsive factors and cardiovascular disease promise to be important areas of focus for the future. PMID:18288291
[Thyroid hormones and cardiovascular system].
Límanová, Zdeňka; Jiskra, Jan
Cardiovascular system is essentially affected by thyroid hormones by way of their genomic and non-genomic effects. Untreated overt thyroid dysfunction is associated with higher cardiovascular risk. Although it has been studied more than 3 decades, in subclinical thyroid dysfunction the negative effect on cardiovascular system is much more controversial. Large meta-analyses within last 10 years have shown that subclinical hyperthyroidism is associated with higher cardiovascular risk than subclinical hypothyroidism. Conversely, in patients of age > 85 years subclinical hypothyroidism was linked with lower mortality. Therefore, subclinical hyperthyroidism should be rather treated in the elderly while subclinical hypothyroidism in the younger patients and the older may be just followed. An important problem on the border of endocrinology and cardiology is amiodarone thyroid dysfunction. Effective and safe treatment is preconditioned by distinguishing of type 1 and type 2 amiodarone induced hyperthyroidism. The type 1 should be treated with methimazol, therapeutic response is prolonged, according to recent knowledge immediate discontinuation of amiodarone is not routinely recommended and patient should be usually prepared to total thyroidectomy, or rather rarely 131I radioiodine ablation may be used if there is appropriate accumulation. In the type 2 there is a promt therapeutic response on glucocorticoids (within 1-2 weeks) with permanent remission or development of hypothyroidism. If it is not used for life-threatening arrhytmias, amiodarone may be discontinuated earlier (after several weeks). Amiodarone induced hypothyroidism is treated with levothyroxine without amiodarone interruption.Key words: amiodarone induced thyroid dysfunction - atrial fibrillation - cardiovascular risk - heart failure - hyperthyroidism - hypothyroidism - thyroid stimulating hormone.
Godoy-Gijón, Elena; Meseguer-Yebra, Carmen; Palacio-Aller, Lucía; Godoy-Rocati, Diego Vicente; Lahoz-Rallo, Carlos
2016-01-01
The increased cardiovascular risk in some dermatological diseases has been demonstrated in recent decades. Diseases such as psoriasis and systemic lupus erythematosus are currently included in the guidelines for prevention of cardiovascular disease. Other diseases such as androgenic alopecia, polycystic ovary syndrome, hidradenitis suppurativa or lichen planus have numerous studies that point to an increased risk, however, they have not been included in these guidelines. In this article we review the evidence supporting this association, in order to alert the clinician to the need for greater control in cardiovascular risk factors in these patients. Copyright © 2015 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.
Meoni, Paolo; Restani, Patrizia; Mancama, Dalu T
2013-06-01
We conducted a survey of the National Centre for Biotechnology Information (NCBI) PubMed database to identify methods most commonly used for the evaluation of the effect of plant food supplements on the cardiovascular system and their relevance to the regulatory status of these products. Particularly, our search strategy was aimed at the selection of studies concerning the clinical evaluation of the beneficial effects of the most commonly studied plant food supplements acting on the cardiovascular system. Following the screening of 3839 papers for inclusion criteria, 48 published reports were retained for this review. Most studies included in this review used a double blind controlled design, and evaluated the effect of plant food supplements on individuals affected by a disease of the cardiovascular system. The majority of the studies were found to be of low methodological quality on the Jadad scale, mainly because of inadequate reporting of adverse events and of patient withdrawals. In comparison, measures used for the evaluation of benefits included mostly cardiovascular risk factors as recommended in international guidelines and in accordance with principles laid down for the evaluation of health claims in food. The risk factors most frequently evaluated belonged to the category of "lipid function and levels", "heart function" and "blood pressure". For the absolute majority of the studies, the study period did not exceed one month. This review highlights critical factors to be considered in the design of studies evaluating the health effects of plant food supplements on the cardiovascular system. Between others, the inclusion of healthy individuals, better reporting and description of the characteristics of the product used could improve the quality and relevance of these studies.
Marjanovic, Marija; Buhlin, Kåre
2013-01-01
To investigate if patients with periodontitis attending the Dental School in Huddinge, Sweden presented with more signs of systemic diseases, such as cardiovascular disease, diabetes mellitus and respiratory diseases, compared to healthy and gingivitis patients. In this retrospective study, dental charts were examined where the periodontal diagnoses of patients were known. A total of 325 patients with severe periodontitis and 149 patients without periodontitis, born 1928 to 1968, were identified. Diagnosis regarding the systemic diseases was self-reported. Odds ratios for cardiovascular diseases, diabetes mellitus and respiratory diseases were calculated with a logistic regression model that was adjusted for age, gender and smoking. It was observed that more cases of periodontitis were found in older individuals than the controls (61.7 vs 56.2 years; P < 0.001). A total of 44.3% of patients with severe periodontitis also suffered from cardiovascular diseases, 19.1% respiratory diseases and 21.2% from diabetes mellitus. Among the controls, 30.9% had cardiovascular disease, 23.5% suffered from respiratory diseases and 6.7% had diabetes mellitus. Across both groups, hypertension was the most frequent diagnosis. There was a significant association between periodontitis and cardiovascular disease (odds ratio [OR] = 1.79, confidence interval [CI] 1.12-2.86), but not between respiratory diseases and periodontitis (OR= 0.88, CI 0.53-1.47). The risk of diabetes mellitus was greater among those patients with periodontitis (OR= 2.95, CI 1.45- 6.01). This study found that patients with periodontitis presented with more systemic diseases, such as cardiovascular disease and diabetes mellitus than control patients. However, no association was found between periodontitis and respiratory diseases. At the present time, the reasons for the associations or lack of association are unknown.
Missiles in the cardiovascular system.
Symbas, P N; Symbas, P J
1997-05-01
A missile in the cardiovascular system is a rare complication of a projectile wound. A missile in the heart should be suspected in the patient with a projectile wound of the thorax and in whom, on chest radiography, a missile is seen in the cardiac silhouette. A missile should be suspected in the patient with a projectile wound elsewhere with similar radiographic findings, no exit wound, and no missile in the area of injury. A missile in the arterial system should be suspected when no exit wound and no projectile are seen in the traumatized area. In such a case, radiography of the entire body should be done. The diagnosis of a suspected missile in the cardiovascular system is confirmed by echocardiography or angiography. Treatment should be individualized according to the clinical manifestations of the patient and the site of the missile.
Church, Kara M; Henalt, Robert; Baker, Errol; Smith, Gary L; Brennan, Michael T; Joseph, Jacob
2015-12-01
To determine if metoprolol succinate or carvedilol is more effective in delaying the time to first cardiovascular disease hospital admission in systolic heart failure patients. As a secondary objective, to determine the most effective dose of each agent in delaying first cardiovascular disease hospital admission, including but not limited to heart failure exacerbation, myocardial infarction, ischemic heart disease, cardiac arrhythmias, or death. This study was a retrospective chart review of 272 veterans at the VA Boston Healthcare System newly started on metoprolol succinate (n = 157) or carvedilol (n = 115) between January 2000 and December 2008. After an 8-week study medication titration period, subjects were subcategorized into low-, medium-, and high-dose ranging groups and followed until the first cardiovascular disease hospitalization, death, or 365 days. The main outcome measure was time to first cardiovascular hospitalization or death. The mean age (69.9 years vs. 67.9 years) and ejection fraction (26% vs. 25%) were comparable between study arms at baseline. Mean time to first cardiovascular disease hospitalization was significantly different (p = 0.001) between study groups with 330.6 days with in metoprolol succinate group vs. 282.6 days in the carvedilol groups. High-dose carvedilol significantly delayed time to first hospitalization in comparison to medium or low carvedilol doses (p = 0.015, p = 0.005). Low- and high-dose metoprolol succinate were not significantly different (p = 0.509) in time to first event, and both dosing groups fared better compared to medium dose metoprolol succinate (p = 0.046). In this veteran patient population in need of additional heart failure treatments, metoprolol succinate use resulted in a delayed time to first cardiovascular disease hospitalization or death compared to carvedilol. Both low and high doses of metoprolol succinate showed a significant delay of time to first cardiovascular hospitalization compared to medium doses of metoprolol succinate. Higher doses of carvedilol showed a significant delay of time to cardiovascular hospitalization than lower carvedilol doses. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Engineering studies of vectorcardiographs in blood pressure measuring systems
NASA Technical Reports Server (NTRS)
Mark, R. G.
1975-01-01
The following projects involving cardiovascular instrumentation were conducted: (1) the development and fabrication of a three-dimensional display measurement system for vectorcardiograms, (2) the development and fabrication of a cardiovascular monitoring system to noninvasively monitor beat-by-beat the blood pressure and heart rate using aortic pulse wave velocity, (3) the development of software for an interactive system to analyze systolic time interval data, and (4) the development of microprocessor-based physiologic instrumentation, focussing initially on EKG rhythm analysis. Brief descriptions of these projects were given.
Influences of Vestibular System on Sympathetic Nervous System. Implications for countermeasures.
NASA Astrophysics Data System (ADS)
Denise, Pr Pierre
As gravity is a direct and permanent stress on body fluids, muscles and bones, it is not surpris-ing that weightlessness has important effects on cardiovascular and musculo-skeletal systems. However, these harmful effects do not totally result from the removal of the direct stress of gravity on these organs, but are also partially and indirectly mediated by the vestibular sys-tem. Besides its well known crucial role in spatial orientation and postural equilibrium, it is now clear that the vestibular system is also involved in the regulation of other important physi-ological systems: respiratory and cardiovascular systems, circadian regulation, food intake and even bone mineralization. The neuroanatomical substrate for these vestibular-mediated reg-ulations is still poorly defined, but there is much evidence that vestibular system has strong impacts not only on brainstem autonomic centers but on many hypothalamic nuclei as well. As autonomic nervous system controls almost all body organs, bringing into play the vestibular system by hypergravity or microgravity could virtually affects all major physiological func-tions. There is experimental evidence that weightlessness as well as vestibular lesion induce sympathetic activation thus participating in space related physiological alterations. The fact that some effects of weightlessness on biological systems are mediated by the vestibular system has an important implication for using artificial gravity as a countermeasure: artificial gravity should load not only bones and the cardiovascular system but the vestibular system as well. In short-arm centrifuges, the g load at the head level is low because the head is near the axis of rotation. If the vestibular system is involved in cardiovascular deconditioning and bone loss during weightlessness, it would be more effective to significantly stimulate it and thus it would be necessary to place the head off-axis. Moreover, as the otolithic organs are non longer stimu-lated in term of gravity during space flight, and because of the plasticity of the brain, it might be possible that their inputs be progressively interpreted as resulting from translational move-ment with no gravity related activation. Therefore, on return to Earth the effect of the otoliths on cardiovascular regulation might be temporarily lost leading to orthostatic intolerance.
Statins and oxidative stress in the cardiovascular system.
Margaritis, Marios; Sanna, Fabio; Antoniades, Charalambos
2017-09-26
Statins are widely established as an important class of medications for primary and secondary prevention of cardiovascular disease. In addition to their lipid-lowering effects, mounting evidence suggests that statins exhibit non-lipid-lowering mediated effects in the cardiovascular system. These so called "pleiotropic" effects are partly due to antioxidant properties of statins. These are mediated by inhibition of the mevalonate pathway, which interferes with small GTP-ase protein prenylation. This, in turn, leads to anti-oxidant effects of statins via a plethora of mechanisms. Statins prevent the activation of the pro-oxidant enzyme NADPH-oxidase by interfering with Rac1 activation and translocation to the membrane, as well as reducing expression of crucial subunits of NADPH-oxidase. Statins also enhance the expression, enzymatic activity and coupling of endothelial nitric oxide synthase (eNOS), through mevalonate-dependent effects. The net result is a restoration of the redox balance in the cardiovascular system, with subsequent anti-atherosclerotic and cardioprotective effects. While the evidence from basic science studies and animal models is strong, more clinical trials are required to establish the relevance of these pleiotropic effects to human cardiovascular disease and potentially lead to expanded indications for statin treatment or alternative therapeutic strategies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Cardiovascular autonomic adaptation in lunar and martian gravity during parabolic flight.
Widjaja, Devy; Vandeput, Steven; Van Huffel, Sabine; Aubert, André E
2015-06-01
Weightlessness has a well-known effect on the autonomic control of the cardiovascular system. With future missions to Mars in mind, it is important to know what the effect of partial gravity is on the human body. We aim to study the autonomic response of the cardiovascular system to partial gravity levels, as present on the Moon and on Mars, during parabolic flight. ECG and blood pressure were continuously recorded during parabolic flight. A temporal analysis of blood pressure and heart rate to changing gravity was conducted to study the dynamic response. In addition, cardiovascular autonomic control was quantified by means of heart rate (HR) and blood pressure (BP) variability measures. Zero and lunar gravity presented a biphasic cardiovascular response, while a triphasic response was noted during martian gravity. Heart rate and blood pressure are positively correlated with gravity, while the general variability of HR and BP, as well as vagal indices showed negative correlations with increasing gravity. However, the increase in vagal modulation during weightlessness is not in proportion when compared to the increase during partial gravity. Correlations were found between the gravity level and modulations in the autonomic nervous system during parabolic flight. Nevertheless, with future Mars missions in mind, more studies are needed to use these findings to develop appropriate countermeasures.
The Brain Melanocortin System, Sympathetic Control, and Obesity Hypertension
do Carmo, Jussara M.; Wang, Zhen; Hall, John E.
2014-01-01
Excess weight gain is the most significant, preventable cause of increased blood pressure (BP) in patients with primary (essential) hypertension and increases the risk for cardiovascular and renal diseases. In this review, we discuss the role of the brain melanocortin system in causing increased sympathetic activity in obesity and other forms of hypertension. In addition, we highlight potential mechanisms by which the brain melanocortin system modulates metabolic and cardiovascular functions. PMID:24789984
Paschoal, Renato Soriani; Silva, Daniela Antoniali; Cardili, Renata Nahas; Souza, Cacilda da Silva
2018-01-01
Background Psoriasis has been associated with co-morbidities and elevated cardiovascular risk. Objectives To analyze the relationships among metabolic syndrome, cardiovascular risk, C-reactive protein, gender, and Psoriasis severity. Methods In this cross-sectional study, plaque Psoriasis patients (n=90), distributed equally in gender, were analyzed according to: Psoriasis Area and Severity Index, cardiovascular risk determined by the Framingham risk score and global risk assessment, C-reactive protein and metabolic syndrome criteria (NCEPT-ATP III). Results Metabolic syndrome frequency was 43.3% overall, without significance between genders (P=0.14); but women had higher risk for obesity (OR 2.56, 95%CI 1.02-6.41; P=0.04) and systemic arterial hypertension (OR 3.29, 95%CI 1.39-7.81; P=0.006). The increase in the Psoriasis Area and Severity Index also increased the risk for metabolic syndrome (OR 1.060, 95%CI 1.006-1.117; P=0.03). Absolute 10-year cardiovascular risk was higher in males (P=0.002), but after global risk assessment, 51.1% patients, 52.2% women, were re-classified as high-intermediate cardiovascular risk; without significance between genders (P=0.83). C-reactive protein level was elevated nearly six-fold overall, higher in metabolic syndrome (P=0.05), systemic arterial hypertension (P=0.004), and high-intermediate 10-year cardiovascular risk patients (P<0.001); positively correlated to: Framingham risk score (P<0.001; r=0.60), absolute 10-year cardiovascular risk (P<0.001; r=0.58), and age (P=0.001; r=0.35); but not to Psoriasis Area and Severity Index (P=0.14; r=0.16); increased the 10-year cardiovascular risk (R2=33.6; P<0.001), MetS risk (OR 1.17, 95%CI 0.99-1.37; P=0.05) and with age (P=0.001). HDL-cholesterol level was higher in normal C-reactive protein patients (t=1.98; P=0.05). Study limitations Restricted sample, hospital-based and representative of a single center and no specification of psoriatic arthritis. Conclusions Psoriasis, metabolic syndrome, systemic arterial hypertension and age share the increase in C-reactive protein, which could implicate in additional burden for increasing the cardiovascular risk and be an alert for effective interventions. PMID:29723366
Cardiotoxicity of Anticancer Drugs: The Need for Cardio-Oncology and Cardio-Oncological Prevention
Pennesi, Giuseppina; Donatelli, Francesco; Cammarota, Rosaria; De Flora, Silvio; Noonan, Douglas M.
2010-01-01
Due to the aging of the populations of developed countries and a common occurrence of risk factors, it is increasingly probable that a patient may have both cancer and cardiovascular disease. In addition, cytotoxic agents and targeted therapies used to treat cancer, including classic chemotherapeutic agents, monoclonal antibodies that target tyrosine kinase receptors, small molecule tyrosine kinase inhibitors, and even antiangiogenic drugs and chemoprevention agents such as cyclooxygenase-2 inhibitors, all affect the cardiovascular system. One of the reasons is that many agents reach targets in the microenvironment and do not affect only the tumor. Combination therapy often amplifies cardiotoxicity, and radiotherapy can also cause heart problems, particularly when combined with chemotherapy. In the past, cardiotoxic risk was less evident, but it is increasingly an issue, particularly with combination therapy and adjuvant therapy. Today's oncologists must be fully aware of cardiovascular risks to avoid or prevent adverse cardiovascular effects, and cardiologists must now be ready to assist oncologists by performing evaluations relevant to the choice of therapy. There is a need for cooperation between these two areas and for the development of a novel discipline, which could be termed cardio-oncology or onco-cardiology. Here, we summarize the potential cardiovascular toxicities for a range of cancer chemotherapeutic and chemopreventive agents and emphasize the importance of evaluating cardiovascular risk when patients enter into trials and the need to develop guidelines that include collateral effects on the cardiovascular system. We also discuss mechanistic pathways and describe several potential protective agents that could be administered to patients with occult or overt risk for cardiovascular complications. PMID:20007921
Health Effects of Secondhand Smoke
... 2014 Surgeon General’s Report 4 Secondhand Smoke Causes Cardiovascular Disease Exposure to secondhand smoke has immediate adverse effects on the cardiovascular system and can cause coronary heart disease and stroke. 2,4,5 Secondhand smoke causes ...
Cardiovascular fitness strengthening using portable device.
Alqudah, Hamzah; Kai Cao; Tao Zhang; Haddad, Azzam; Su, Steven; Celler, Branko; Nguyen, Hung T
2016-08-01
The paper describes a reliable and valid Portable Exercise Monitoring system developed using TI eZ430-Chronos watch, which can control the exercise intensity through audio stimulation in order to increase the Cardiovascular fitness strengthening.
Cappelli, M I; Macchione, M; Pulini, S; Aquilina, T; Cancanelli, G
2012-01-01
Working overseas is a reality for decades in the Oil&Gas Industry and many noxae impact on the cardiovascular system. In fitness to work evaluation the physician should consider besides the conventional risk factors, the presence of cardiovascular diseases, and prevent their evolution. A cardiovascular screening and follow up after 2 years was carried out on 42 Oil&Gas employees, over 45 of age, during medical fitness to work. The main tests were ECG, exercise tolerance test (ETT) and echocardiocolordoppler, completed with other instrumental tests. Cardiovascular diseases causing unfitness to working overseas occurred in 7%, blood hypertension in 23%. The screening permitted to diagnose and correct acute cardiovascular diseases, that caused unfitness to work, and disease that can get worse related to occupational risk. Moreover it was fundamental for evaluation of fitness and timing of health surveillance.
Physiological system integrations with emphasis on the respiratory-cardiovascular system
NASA Technical Reports Server (NTRS)
Gallagher, R. R.
1975-01-01
The integration of two types of physiological system simulations is presented. The long term model is a circulatory system model which simulates long term blood flow variations and compartmental fluid shifts. The short term models simulate transient phenomena of the respiratory, thermoregulatory, and pulsatile cardiovascular systems as they respond to stimuli such as LBNP, exercise, and environmental gaseous variations. An overview of the interfacing approach is described. Descriptions of the variable interface for long term to short term and between the three short term models are given.
Influence hypervitaminosis D3 on hemodynamic presentation of experimental copper intoxication.
Brin, V B; Mittsiev, K G; Mittsiev, A K; Kabisov, O T
2016-01-01
As a component of various enzymes, it refers to copper essential trace elements, but the excessive consumption of the metal leads to the development of the pathogenic effects of xenobiotics on the functional condition of the cardiovascular system. However, the works devoted to the study of the effectiveness of prophylactic calcium in a copper toxicity, is not in the current literature. study the effect of long-term toxicity of copper on the functional state of the cardiovascular system and its reactivity in experimental hypercalcemia. Experimental hypercalcemia model was created by forming a pilot hypervitaminosis D, by introducing «Akvadetrim» atraumatic preparation through a probe into the stomach in the dose 3000 IU (0.2 ml) / 100 g of body weight for 30 days. Chronic copper poisoning model created by intragastric administration of copper sulfate solution at a dosage of 20 mg/kg (in terms of metal) for 30 days, daily one time a day. The study of the functional state of the cardiovascular system is to determine the mean arterial pressure, specific peripheral vascular resistance, stroke index, cardiac index, the reactivity of the renin-angiotensin system and adrenoreactivity cardiovascular system. The experimental study revealed that long-term copper poisoning leads to the development of hypertension due to an increase in total peripheral vascular resistance, along with the marked decline in the pumping function of the heart. Experimental hypercalcemia simulated by intragastric administration of vitamin D promotes more pronounced toxic effects of copper sulfate on the cardiovascular system. Copper poisoning of the body is characterized by the development of hypertension and the condition of artificial hypercalcemia potentiates the cardiotoxic effects of copper.
Durheim, Michael T; Cyr, Derek D; Lopes, Renato D; Thomas, Laine E; Tsuang, Wayne M; Gersh, Bernard J; Held, Claes; Wallentin, Lars; Granger, Christopher B; Palmer, Scott M; Al-Khatib, Sana M
2016-01-01
Comorbid chronic obstructive pulmonary disease (COPD) is associated with poor outcomes among patients with cardiovascular disease. The risks of stroke and mortality associated with COPD among patients with atrial fibrillation are not well understood. We analyzed patients from ARISTOTLE, a randomized trial of 18,201 patients with atrial fibrillation comparing the effects of apixaban versus warfarin on the risk of stroke or systemic embolism. Using Cox proportional hazards models, we assessed the associations between comorbid COPD and risk of stroke or systemic embolism and of mortality, adjusting for treatment allocation, smoking history and other risk factors. COPD was present in 1950 (10.8%) of 18,134 patients with data on pulmonary disease history. After multivariable adjustment, COPD was not associated with risk of stroke or systemic embolism (adjusted HR 0.85 [95% CI 0.60, 1.21], p=0.356). However, COPD was associated with a higher risk of all-cause mortality (adjusted HR 1.60 [95% CI 1.36, 1.88], p<0.001) and both cardiovascular and non-cardiovascular mortality. The benefit of apixaban over warfarin on stroke or systemic embolism was consistent among patients with and without COPD (HR 0.92 [95% CI 0.52, 1.63] versus 0.78 [95% CI 0.65, 0.95], interaction p=0.617). COPD was independently associated with increased risk of cardiovascular and non-cardiovascular mortality among patients with atrial fibrillation, but was not associated with risk of stroke or systemic embolism. The effect of apixaban on stroke or systemic embolism in COPD patients was consistent with its effect in the overall trial population. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Dunbar-Rees, Rupert; Panch, Trishan; Dancy, Mark
2014-06-01
The last year has seen the publication of two papers which will radically shape the future organisation of healthcare in general, and cardiovascular disease in particular: Cardiovascular Outcomes Strategy (Department of Health) and The Strategy That Will Fix Healthcare (Harvard Business Review). Both publications set out a health delivery mechanism based around improvement of outcomes for groups of patients with similar needs. Instead of organising care around disease categories, it is proposed that the cardiovascular diseases are treated as a single family of diseases. We are reaching the limits of what an activity-based system organised around existing provider structures can sustainably deliver. Unless we find delivery systems which reduce costs while at the same time improving outcomes that are meaningful to patients, then we will be faced with a future of healthcare rationing. The increasing burden of chronic disease and ongoing quality concerns in delivery systems has created a 'burning platform', which must be addressed if we are to maintain a system which offers high-quality care free at the point of delivery. This paper explores what an outcomes and value-based system could look like when applied to cardiovascular disease. It explores what it means for providers and patients if we start to think about outcomes by patients with similar needs, rather than by intervention, or by clinical specialty. As a specific example, the paper explores the features of an Integrated Circulation Service, what the challenges and implications might be, and whether there is any evidence that this would deliver improved outcomes, at a lower cost to the system.
ERIC Educational Resources Information Center
Dewhurst, D. G.; Williams, A. D.
1998-01-01
Presents the results of a comparative study to evaluate the effectiveness of two interactive computer-based learning (CBL) programs, covering the cardiovascular system, as an alternative to lectures for first year undergraduate students at a United Kingdom University. Discusses results in relation to the design of evaluative studies and the future…
Social Support and Heart Failure: Differing Effects by Race
2015-05-11
responses. These compensatory physiologic responses include increased sympathetic nervous system activity, inflammation, and constriction of blood vessels... physiological differences between African Americans and Caucasians. For instance the process by which sodium is processed in the body may vary between...associated cardiovascular and inflammatory diseases (76). One important hormone at work in the cardiovascular system is aldosterone and it may have a
ERIC Educational Resources Information Center
Mikkila-Erdmann, Mirjamaija; Sodervik, Ilona; Vilppu, Henna; Kaapa, Pekka; Olkinuora, Erkki
2012-01-01
Medical students often have initial understanding concerning medical domains, such as the central cardiovascular system (CCVS), when they enter the study programme. These notions may to some extent be in conflict with scientific understanding, which can be seen as a challenge for medical teaching. Hence, the purpose of this study was to analyse…
Clinical utility of sympathetic blockade in cardiovascular disease management.
Park, Chan Soon; Lee, Hae-Young
2017-04-01
A dysregulated sympathetic nervous system is a major factor in the development and progression of cardiovascular disease; thus, understanding the mechanism and function of the sympathetic nervous system and appropriately regulating sympathetic activity to treat various cardiovascular diseases are crucial. Areas covered: This review focused on previous studies in managing hypertension, atrial fibrillation, coronary artery disease, heart failure, and perioperative management with sympathetic blockade. We reviewed both pharmacological and non-pharmacological management. Expert commentary: Chronic sympathetic nervous system activation is related to several cardiovascular diseases mediated by various pathways. Advancement in measuring sympathetic activity makes visualizing noninvasively and evaluating the activation level even in single fibers possible. Evidence suggests that sympathetic blockade still has a role in managing hypertension and controlling the heart rate in atrial fibrillation. For ischemic heart disease, beta-adrenergic receptor antagonists have been considered a milestone drug to control symptoms and prevent long-term adverse effects, although its clinical implication has become less potent in the era of successful revascularization. Owing to pathologic involvement of sympathetic nervous system activation in heart failure progression, sympathetic blockade has proved its value in improving the clinical course of patients with heart failure.
Cardiovascular health in Brazilian state capitals 1.
Matozinhos, Fernanda Penido; Felisbino-Mendes, Mariana Santos; Gomes, Crizian Saar; Jansen, Ann Kristine; Machado, Ísis Eloah; Lana, Francisco Carlos Félix; Malta, Deborah Carvalho; Velaquez-Melendez, Gustavo
2017-10-19
to estimate the prevalence of ideal cardiovascular health indicators in the Brazilian population, according to gender, age, education and region of residence. cross-sectional study that used data from 41,134 participants of the Surveillance System of Risk and Protective Factors for Chronic Diseases by Telephone Survey (Vigitel). The ideal cardiovascular health assessment considers four behavioral factors: not smoking; body mass index less than 25 kg/m2; practicing physical activity, eating fruits and vegetables five or more times per day; and two clinical factors (no diagnosis of diabetes or hypertension). The sum of factors at ideal levels results in a score ranging from zero (worse cardiovascular health) to six (ideal cardiovascular health). considering the six factors, only 3.4% of the studied population presented ideal levels of cardiovascular health, with the majority of participants (57.6%) presenting three or four ideal factors. Women had higher prevalence of ideal cardiovascular health (3.8% versus 2.9% for men) (p < 0.0001). the findings of this study are consistent with the elevated risk of mortality from cardiovascular disease, observed in the Brazilian population. This may contribute to a better understanding of the scenario of cardiovascular health in the urban population of the country.
S-Nitrosothiols and the S-Nitrosoproteome of the Cardiovascular System
Maron, Bradley A.; Tang, Shiow-Shih
2013-01-01
Abstract Significance: Since their discovery in the early 1990's, S-nitrosylated proteins have been increasingly recognized as important determinants of many biochemical processes. Specifically, S-nitrosothiols in the cardiovascular system exert many actions, including promoting vasodilation, inhibiting platelet aggregation, and regulating Ca2+ channel function that influences myocyte contractility and electrophysiologic stability. Recent Advances: Contemporary developments in liquid chromatography–mass spectrometry methods, the development of biotin- and His-tag switch assays, and the availability of cyanide dye-labeling for S-nitrosothiol detection in vitro have increased significantly the identification of a number of cardiovascular protein targets of S-nitrosylation in vivo. Critical Issues: Recent analyses using modern S-nitrosothiol detection techniques have revealed the mechanistic significance of S-nitrosylation to the pathophysiology of numerous cardiovascular diseases, including essential hypertension, pulmonary hypertension, ischemic heart disease, stroke, and congestive heart failure, among others. Future Directions: Despite enhanced insight into S-nitrosothiol biochemistry, translating these advances into beneficial pharmacotherapies for patients with cardiovascular diseases remains a primary as-yet unmet goal for investigators within the field. Antioxid. Redox Signal. 18, 270–287. PMID:22770551
HIF Activation Against CVD in CKD: Novel Treatment Opportunities.
Tanaka, Tetsuhiro; Eckardt, Kai-Uwe
2018-05-01
Cardiovascular disease is a common and serious complication in patients with chronic kidney disease (CKD). One of the fundamental functions of the cardiovascular system is oxygen delivery, therefore cardiovascular disease inherently is linked to insufficient tissue oxygenation. Advances in our knowledge of cellular oxygen sensing by a family of prolyl hydroxylases (PHDs) and their role in regulating hypoxia-inducible factors (HIFs) have led to the discovery of PHD inhibitors as HIF stabilizers. Several small-molecule PHD inhibitors are currently in clinical trials for the treatment of anemia in CKD. An additional advantage of PHD inhibition may be found in the potential impact on cardiovascular consequences associated with CKD. Several preclinical studies have suggested a potential benefit of HIF activation in myocardial infarction, cardiac remodeling, atherosclerosis, and peripheral artery disease. Ameliorating glucose and lipid metabolism and lowering blood pressure may also contribute to cardiovascular protection. On the other hand, the broad spectrum of HIF-dependent functions also may include unwanted side effects. Clinical application of PHD inhibitors therefore necessitates careful evaluation of the net systemic effect of HIF activation. Copyright © 2018 Elsevier Inc. All rights reserved.
Cardiovascular risk in operators under radiofrequency electromagnetic radiation.
Vangelova, Katia; Deyanov, Christo; Israel, Mishel
2006-03-01
The aim of the study was to assess the long-term effects of radiofrequency electromagnetic radiation (EMR) on the cardiovascular system. Two groups of exposed operators (49 broadcasting (BC) station and 61 TV station operators) and a control group of 110 radiorelay station operators, matched by sex and age, with similar job characteristics except for the radiofrequency EMR were studied. The EMR exposure was assessed and the time-weighted average (TWA) was calculated. The cardiovascular risk factors arterial pressure, lipid profile, body mass index, waist/hip ratio, smoking, and family history of cardiovascular disease were followed. The systolic and diastolic blood pressure (SBP and DBP), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) were significantly higher in the two exposed groups. It was found that the radiofrequency EMR exposure was associated with greater chance of becoming hypertensive and dyslipidemic. The stepwise multiple regression equations showed that the SBP and TWA predicted the high TC and high LDL-C, while the TC, age and abdominal obesity were predictors for high SBP and DBP. In conclusion, our data show that the radiofrequency EMR contributes to adverse effects on the cardiovascular system.
Sleep Disturbances as a Risk Factor for Stroke
Koo, Dae Lim; Nam, Hyunwoo; Thomas, Robert J.; Yun, Chang-Ho
2018-01-01
Sleep, a vital process of human being, is carefully orchestrated by the brain and consists of cyclic transitions between rapid eye movement (REM) and non-REM (NREM) sleep. Autonomic tranquility during NREM sleep is characterized by vagal dominance and stable breathing, providing an opportunity for the cardiovascular-neural axis to restore homeostasis, in response to use, distress or fatigue inflicted during wakefulness. Abrupt irregular swings in sympathovagal balance during REM sleep act as phasic loads on the resting cardiovascular system. Any causes of sleep curtailment or fragmentation such as sleep restriction, sleep apnea, insomnia, periodic limb movements during sleep, and shift work, not only impair cardiovascular restoration but also impose a stress on the cardiovascular system. Sleep disturbances have been reported to play a role in the development of stroke and other cardiovascular disorders. This review aims to provide updated information on the role of abnormal sleep in the development of stroke, to discuss the implications of recent research findings, and to help both stroke clinicians and researchers understand the importance of identification and management of sleep pathology for stroke prevention and care. PMID:29402071
Red Blood Cell Function and Dysfunction: Redox Regulation, Nitric Oxide Metabolism, Anemia
Kuhn, Viktoria; Diederich, Lukas; Keller, T.C. Stevenson; Kramer, Christian M.; Lückstädt, Wiebke; Panknin, Christina; Suvorava, Tatsiana; Isakson, Brant E.; Kelm, Malte
2017-01-01
Abstract Significance: Recent clinical evidence identified anemia to be correlated with severe complications of cardiovascular disease (CVD) such as bleeding, thromboembolic events, stroke, hypertension, arrhythmias, and inflammation, particularly in elderly patients. The underlying mechanisms of these complications are largely unidentified. Recent Advances: Previously, red blood cells (RBCs) were considered exclusively as transporters of oxygen and nutrients to the tissues. More recent experimental evidence indicates that RBCs are important interorgan communication systems with additional functions, including participation in control of systemic nitric oxide metabolism, redox regulation, blood rheology, and viscosity. In this article, we aim to revise and discuss the potential impact of these noncanonical functions of RBCs and their dysfunction in the cardiovascular system and in anemia. Critical Issues: The mechanistic links between changes of RBC functional properties and cardiovascular complications related to anemia have not been untangled so far. Future Directions: To allow a better understanding of the complications associated with anemia in CVD, basic and translational science studies should be focused on identifying the role of noncanonical functions of RBCs in the cardiovascular system and on defining intrinsic and/or systemic dysfunction of RBCs in anemia and its relationship to CVD both in animal models and clinical settings. Antioxid. Redox Signal. 26, 718–742. PMID:27889956
Interaction of Hydrogen Sulfide with Nitric Oxide in the Cardiovascular System
Nagpure, B. V.; Bian, Jin-Song
2016-01-01
Historically acknowledged as toxic gases, hydrogen sulfide (H2S) and nitric oxide (NO) are now recognized as the predominant members of a new family of signaling molecules, “gasotransmitters” in mammals. While H2S is biosynthesized by three constitutively expressed enzymes (CBS, CSE, and 3-MST) from L-cysteine and homocysteine, NO is generated endogenously from L-arginine by the action of various isoforms of NOS. Both gases have been transpired as the key and independent regulators of many physiological functions in mammalian cardiovascular, nervous, gastrointestinal, respiratory, and immune systems. The analogy between these two gasotransmitters is evident not only from their paracrine mode of signaling, but also from the identical and/or shared signaling transduction pathways. With the plethora of research in the pathophysiological role of gasotransmitters in various systems, the existence of interplay between these gases is being widely accepted. Chemical interaction between NO and H2S may generate nitroxyl (HNO), which plays a specific effective role within the cardiovascular system. In this review article, we have attempted to provide current understanding of the individual and interactive roles of H2S and NO signaling in mammalian cardiovascular system, focusing particularly on heart contractility, cardioprotection, vascular tone, angiogenesis, and oxidative stress. PMID:26640616
The Emerging Role of Outdoor and Indoor Air Pollution in Cardiovascular Disease
Uzoigwe, Jacinta C.; Prum, Thavaleak; Bresnahan, Eric; Garelnabi, Mahdi
2013-01-01
Outdoor and indoor air pollution poses a significant cardiovascular risk, and has been associated with atherosclerosis, the main underlying pathology in many cardiovascular diseases. Although, it is well known that exposure to air pollution causes pulmonary disease, recent studies have shown that cardiovascular health consequences of air pollution generally equal or exceed those due to pulmonary diseases. The objective of this article is to evaluate the current evidence on the emerging role of environmental air pollutions in cardiovascular disease, with specific focus on the types of air pollutants and mechanisms of air pollution-induced cardiotoxicity. Published literature on pollution was systematically reviewed and cited in this article. It is hoped that this review will provide a better understanding of the harmful cardiovascular effects induced by air pollution exposure. This will help to bring a better understanding on the possible preventive health measures and will also serve regulatory agencies and researchers. In addition, elucidating the biological mechanisms underlying the link between air pollution and cardiovascular disease is an essential target in developing novel pharmacological strategies aimed at decreasing adverse effects of air pollution on cardiovascular system. PMID:24083218
Small Heat Shock Proteins in Redox Metabolism: Implications for Cardiovascular Diseases
Christians, Elisabeth S.; Ishiwata, Takahiro; Benjamin, Ivor J.
2012-01-01
A timely review series on small heat shock proteins has to appropriately examine their fundamental properties and implications in the cardiovascular system since several members of this chaperone family exhibit robust expression in the myocardium and blood vessels. Due to energetic and metabolic demands, the cardiovascular system maintains a high mitochondrial activity but irreversible oxidative damage might ensue from increased production of reactive oxygen species. How equilibrium between their production and scavenging is achieved becomes paramount for physiological maintenance. For example, heat shock protein B1 (HSPB1) is implicated in maintaining this equilibrium or redox homeostasis by upholding the level of glutathione, a major redox mediator. Studies of gain or loss of function achieved by genetic manipulations have been highly informative for understanding the roles of those proteins. For example, genetic deficiency of several small heat shock proteins such as HSPB5 and HSPB2 is well-tolerated in heart cells whereas a single missense mutation causes human pathology. Such evidence highlights both the profound genetic redundancy observed among the multigene family of small heat shock proteins while underscoring the role proteotoxicity plays in driving disease pathogenesis. We will discuss the available data on small heat shock proteins in the cardiovascular system, redox metabolism and human diseases. From the medical perspective, we envision that such emerging knowledge of the multiple roles small heat shock proteins exert in the cardiovascular system will undoubtedly open new avenues for their identification and possible therapeutic targeting in humans. PMID:22710345
Human Cardiovascular Responses to Passive Heat Stress
Crandall, Craig G.; Wilson, Thad E.
2016-01-01
Heat stress increases human morbidity and mortality compared to normothermic conditions. Many occupations, disease states, as well as stages of life are especially vulnerable to the stress imposed on the cardiovascular system during exposure to hot ambient conditions. This review focuses on the cardiovascular responses to heat stress that are necessary for heat dissipation. To accomplish this regulatory feat requires complex autonomic nervous system control of the heart and various vascular beds. For example, during heat stress cardiac output increases up to twofold, by increases in heart rate and an active maintenance of stroke volume via increases in inotropy in the presence of decreases in cardiac preload. Baroreflexes retain the ability to regulate blood pressure in many, but not all, heat stress conditions. Central hypovolemia is another cardiovascular challenge brought about by heat stress, which if added to a subsequent central volumetric stress, such as hemorrhage, can be problematic and potentially dangerous, as syncope and cardiovascular collapse may ensue. These combined stresses can compromise blood flow and oxygenation to important tissues such as the brain. It is notable that this compromised condition can occur at cardiac outputs that are adequate during normothermic conditions but are inadequate in heat because of the increased systemic vascular conductance associated with cutaneous vasodilation. Understanding the mechanisms within this complex regulatory system will allow for the development of treatment recommendations and countermeasures to reduce risks during the ever-increasing frequency of severe heat events that are predicted to occur. PMID:25589263
Range of control of cardiovascular variables by the hypothalamus
NASA Technical Reports Server (NTRS)
Smith, O. A.; Stephenson, R. B.; Randall, D. C.
1974-01-01
New methodologies were utilized to study the influence of the hypothalamus on the cardiovascular system. The regulation of myocardial activity was investigated in monkeys with hypothalamic lesions that eliminate cardiovascular responses. Observations showed that a specific part of the hypothalamus regulates changes in myocardial contractility that accompanies emotion. Studies of the hypothalamus control of renal blood flow showed the powerful potential control of this organ over renal circulation.
Song, Young-Hwan; Kim, Hae Soon; Park, Hae Sook; Jung, Jo Won; Kim, Nam Su; Noh, Chung Il; Hong, Young Mi
2014-01-01
Objective Obesity in adolescence is associated with increased cardiovascular risk. The patterns of obesity and body composition differ between boys and girls. It is uncertain how body composition correlates with the cardiovascular system and whether such correlations differ by sex in adolescents. Methods Body composition (fat-free mass (FFM), adipose mass, waist circumference (WC)) and cardiovascular parameters and functions were studied in 676 healthy Korean adolescents aged 12-16 years. Partial correlation and path analyses were done. Results WC correlated with stroke volume (SV) and cardiac output (CO), systolic blood pressure (SBP) and pulse pressure (PP), cardiac diastolic function (ratio of early to late filling velocity (E/A ratio)), and vascular function (pulse wave velocity (PWV)) in boys. Adipose mass was related to SV, CO, SBP, PP, left ventricular mass (LVM), and PWV in girls – and to E/A ratio in both sexes. FFM affected SV, CO, SBP, and PP in both sexes and LVM in boys. Cardiac systolic functions had no relation with any body composition variable in either sex. Conclusion In adolescence, the interdependence of the cardiovascular system and the body composition differs between sexes. Understanding of those relations is required to control adolescent obesity and prevent adult cardiovascular disease. PMID:24820977
Ciumaşu-Rîmbu, Mălina; Popa, Livia; Vulpoi, Carmen
2012-01-01
Chronic stress may produce a decrease in central NPY expression and subjects exposed to it may prove hypersensitivity to a novel stressor with dysfunctions in the NPY system and cardiovascular maladaptation to stress, even hypertension. Upregulation of NPY expression may contribute to successful behavioral adaptation to stress by reducing cardiovascular tone and suppressing anxious behaviors. Adaptogens, a new class of metabolic regulators stimulate NPY expression and release. The aim of this study is to increase tolerance and adaptation to stress of hypersensitive to novel stressor, occupational chronic stress exposed subjects with cardiovascular maladaptation to mild new stressor using adaptogens as part of prevention protocol. 40 military personnel with known cardiostressor reactional mode and occupational chronic stress exposure were exposed to mild novel stressor: occupational medicine routine evaluation and clinically assessed for maladaptative cardiovascular response prior and before application of 30 day prevention protocol. Employees were randomly split in two groups, one receiving standard prevention protocol (lifestyle counseling) plus adaptogens in multiple dose administration, twice daily and the other receiving only standard prevention protocol. We found significant statistic differences in all cardiovascular parameters in adaptogen group and only in diastolic blood pressure in control group. Adaptogens could be an important factor in successful prevention protocols of chronic occupational stress dysfunctions involving NPY systems.
Hu, Stephen Chu-Sung; Lan, Cheng-Che E.
2017-01-01
Psoriasis is a common and chronic inflammatory disease of the skin. It may impair the physical and psychosocial function of patients and lead to decreased quality of life. Traditionally, psoriasis has been regarded as a disease affecting only the skin and joints. More recently, studies have shown that psoriasis is a systemic inflammatory disorder which can be associated with various comorbidities. In particular, psoriasis is associated with an increased risk of developing severe vascular events such as myocardial infarction and stroke. In addition, the prevalence rates of cardiovascular risk factors are increased, including hypertension, diabetes mellitus, dyslipidemia, obesity, and metabolic syndrome. Consequently, mortality rates have been found to be increased and life expectancy decreased in patients with psoriasis, as compared to the general population. Various studies have also shown that systemic treatments for psoriasis, including methotrexate and tumor necrosis factor-α inhibitors, may significantly decrease cardiovascular risk. Mechanistically, the presence of common inflammatory pathways, secretion of adipokines, insulin resistance, angiogenesis, oxidative stress, microparticles, and hypercoagulability may explain the association between psoriasis and cardiometabolic disorders. In this article, we review the evidence regarding the association between psoriasis and cardiovascular comorbidities, focusing on severe vascular events, cardiovascular risk factors and implications for treatment. PMID:29065479
Papagianni, Aikaterini
2017-09-01
Fibroblast Growth Factor (FGF)-23 increase is considered one of the earliest biochemical abnormalities in chronic kidney disease-mineral bone disorder (CKD-MBD). Furthermore, accumulating data have provided evidence of a link between increased FGF-23 levels and cardiovascular morbidity and mortality in CKD patients as well as in several other populations including cardiology patients and general population. The cellular and molecular mechanisms underlying the deleterious effect of FGF-23 on the cardiovascular system are not yet completely defined and are the focus of intense research. However, animal and human studies have demonstrated important actions of FGF-23 in the heart and vessels through which could promote the development of cardiovascular complications in uremia. Moreover, significant interactions have been reported between FGF-23 and other well recognized cardiovascular risk factors such as renin-angiotensin system and inflammation which could account, at least in part, for the observed associations between FGF-23 and adverse clinical outcomes. Further studies are needed to clarify the mechanisms responsible for the pleiotropic actions of FGF-23 and moreover to identify whether it is a modifiable risk factor and a potential target of therapeutic interventions which could probably help to reduce the unacceptably high cardiovascular morbidity and mortality of CKD patients.
The emerging role of the endocannabinoid system in cardiovascular disease
2009-01-01
Endocannabinoids are endogenous bioactive lipid mediators present both in the brain and various peripheral tissues, which exert their biological effects via interaction with specific G-protein-coupled cannabinoid receptors, the CB1 and CB2. Pathological overactivation of the endocannabinoid system (ECS) in various forms of shock and heart failure may contribute to the underlying pathology and cardiodepressive state by the activation of the cardiovascular CB1 receptors. Furthermore, tonic activation of CB1 receptors by endocannabinoids has also been implicated in the development of various cardiovascular risk factors in obesity/metabolic syndrome and diabetes, such as plasma lipid alterations, abdominal obesity, hepatic steatosis, inflammation, and insulin and leptin resistance. In contrast, activation of CB2 receptors in immune cells exerts various immunomodulatory effects, and the CB2 receptors in endothelial and inflammatory cells appear to limit the endothelial inflammatory response, chemotaxis, and inflammatory cell adhesion and activation in atherosclerosis and reperfusion injury. Here, we will overview the cardiovascular actions of endocannabinoids and the growing body of evidence implicating the dysregulation of the ECS in a variety of cardiovascular diseases. We will also discuss the therapeutic potential of the modulation of the ECS by selective agonists/antagonists in various cardiovascular disorders associated with inflammation and tissue injury, ranging from myocardial infarction and heart failure to atherosclerosis and cardiometabolic disorders. PMID:19357846
Takemoto, Yumi
2014-07-01
The sulfur-containing excitatory amino acid (EAA) L-cysteine sulfinic acid (CSA), a neurotransmitter candidate, is endogenously synthesized from L-cysteine (Cys). Exogenous Cys administration into the brain produces cardiovascular effects; these effects likely occur via synaptic stimulation of central nervous system (CNS) neurons that regulate peripheral cardiovascular function. However, the cardiovascular responses produced by CNS Cys administration could result from CSA biosynthesized in synapse. The present study examined the role of CSA in Cys-induced cardiovascular responses within the nucleus tractus solitarius (NTS) of anesthetized rats. The NTS receives input from various visceral afferents that gate autonomic reflexes, including cardiovascular reflexes. Within the NTS, both Cys and CSA microinjections produced decrease responses in arterial blood pressure and heart rate that were similar to those produced by L-glutamate. Co-injection of the ionotropic EAA receptor antagonist kynurenic acid abolished Cys-, but not CSA-, induced cardiovascular responses. This finding suggests that only Cys-induced cardiovascular responses are mediated by kynurenate-sensitive receptors. This study provides the first demonstration that Cys- and CSA-induced cardiovascular responses occur via different mechanisms in the NTS of rats. Further, this study also indicates that Cys-induced cardiovascular responses do not occur via CSA. Thus, within the NTS, endogenous Cys and/or CSA might be involved in cardiovascular regulation.
Nuttall, S L; Heaton, S; Piper, M K; Martin, U; Gordon, C
2003-06-01
Systemic lupus erythematosus (SLE) is associated with severe and premature cardiovascular disease, which is not explained by traditional risk factors alone. This study aimed to investigate markers of oxidative stress, lipid metabolism and inflammation as potential cardiovascular risk factors in women with SLE. Venous blood samples were taken from 53 female Caucasian patients with SLE and from healthy age- and sex-matched controls. Samples were analysed for markers of oxidative stress, lipid metabolism [including low-density lipoprotein (LDL) subfraction profile] and C-reactive protein (CRP). Female SLE patients had an atherogenic lipid profile characterized by raised total cholesterol and triglycerides, and the presence of small, dense LDL subfractions compared with healthy controls. These changes were associated with increased oxidative damage and a moderately raised CRP. The results provide evidence for free radical and inflammatory activity in SLE and suggest potential targets to reduce the risk of cardiovascular disease in these patients.
2017-06-26
NASA didn’t miss a (heart)beat when the opportunity arose to study the cardiovascular systems of identical twin astronauts, one aboard the International Space Station and the other on Earth. Results from the Cardio Ox investigation, part of the research of the One Year Mission of astronaut Scott Kelly, may provide a better understanding of cardiovascular disease risk that astronauts encounter during and after long-duration spaceflight. Stuart Lee, the lead scientist for the Cardiovascular and Vision Laboratory at NASA’s Johnson Space Center, explains the importance of spaceflight weightlessness research on the cardiovascular system and how results could be used to create countermeasures, preventing potential health consequences for future space travelers as well as those of us on Earth. For more on ISS science, follow us on Twitter: @ISS_research or at https://twitter.com/ISS_Research or at: https://www.nasa.gov/mission_pages/station/research/index.html
The Aging Cardiovascular System: Understanding It at the Cellular and Clinical Levels.
Paneni, Francesco; Diaz Cañestro, Candela; Libby, Peter; Lüscher, Thomas F; Camici, Giovanni G
2017-04-18
Cardiovascular disease (CVD) presents a great burden for elderly patients, their caregivers, and health systems. Structural and functional alterations of vessels accumulate throughout life, culminating in increased risk of developing CVD. The growing elderly population worldwide highlights the need to understand how aging promotes CVD in order to develop new strategies to confront this challenge. This review provides examples of some major unresolved clinical problems encountered in daily cardiovascular practice as we care for elderly patients. Next, the authors summarize the current understanding of the mechanisms implicated in cardiovascular aging, and the potential for targeting novel pathways implicated in endothelial dysfunction, mitochondrial oxidative stress, chromatin remodeling, and genomic instability. Lastly, the authors consider critical aspects of vascular repair, including autologous transplantation of bone marrow-derived stem cells in elderly patients. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Regulation of signal transduction by reactive oxygen species in the cardiovascular system.
Brown, David I; Griendling, Kathy K
2015-01-30
Oxidative stress has long been implicated in cardiovascular disease, but more recently, the role of reactive oxygen species (ROS) in normal physiological signaling has been elucidated. Signaling pathways modulated by ROS are complex and compartmentalized, and we are only beginning to identify the molecular modifications of specific targets. Here, we review the current literature on ROS signaling in the cardiovascular system, focusing on the role of ROS in normal physiology and how dysregulation of signaling circuits contributes to cardiovascular diseases, including atherosclerosis, ischemia-reperfusion injury, cardiomyopathy, and heart failure. In particular, we consider how ROS modulate signaling pathways related to phenotypic modulation, migration and adhesion, contractility, proliferation and hypertrophy, angiogenesis, endoplasmic reticulum stress, apoptosis, and senescence. Understanding the specific targets of ROS may guide the development of the next generation of ROS-modifying therapies to reduce morbidity and mortality associated with oxidative stress. © 2015 American Heart Association, Inc.
Hyperglycemia: a bad signature on the vascular system
Costantino, Sarah; Paneni, Francesco
2015-01-01
Experimental work has clearly demonstrated that hyperglycemia is able to derail molecular pathways favouring oxidative stress, inflammation and endothelial dysfunction. Consistently, pooled analyses from prospective studies provide strong evidence that glycemic markers, namely glycated haemoglobin (HbA1c), predict cardiovascular risk, with an increase of about 18% in risk for each 1% absolute increase in HbA1c concentration, regardless of classical risk factors. Although the importance of hyperglycemic burden on cardiovascular phenotype, normalization of blood glucose levels in patients with long-standing hyperglycemia does not seem to reduce macrovascular complications. These data suggest that hyperglycemia may exert long-lasting detrimental effects on the cardiovascular system. This emerging phenomenon is defined metabolic or hyperglycemic memory to indicate a long-term persistence of hyperglycemic stress, even after blood glucose normalization. Here, we discuss clinical evidence and potential molecular mechanisms implicated in metabolic memory and, hence, diabetes-related cardiovascular complications. PMID:26543827
Regulation of signal transduction by reactive oxygen species in the cardiovascular system
Brown, David I.; Griendling, Kathy K.
2015-01-01
Oxidative stress has long been implicated in cardiovascular disease, but more recently, the role of reactive oxygen species in normal physiological signaling has been elucidated. Signaling pathways modulated by reactive oxygen species (ROS) are complex and compartmentalized, and we are only beginning to identify the molecular modifications of specific targets. Here we review the current literature regarding ROS signaling in the cardiovascular system, focusing on the role of ROS in normal physiology and how dysregulation of signaling circuits contributes to cardiovascular diseases including atherosclerosis, ischemia-reperfusion injury, cardiomyopathy and heart failure. In particular, we consider how ROS modulate signaling pathways related to phenotypic modulation, migration and adhesion, contractility, proliferation and hypertrophy, angiogenesis, endoplasmic reticulum stress, apoptosis and senescence. Understanding the specific targets of ROS may guide the development of the next generation of ROS-modifying therapies to reduce morbidity and mortality associated with oxidative stress. PMID:25634975
Vitamin D and its effects on cardiovascular diseases: a comprehensive review.
Pérez-Hernández, Nonanzit; Aptilon-Duque, Gad; Nostroza-Hernández, María Cristina; Vargas-Alarcón, Gilberto; Rodríguez-Pérez, José Manuel; Blachman-Braun, Ruben
2016-11-01
Vitamin D is a molecule that is actively involved in multiple metabolic pathways. It is mostly known for its implications related to calcium metabolism. It has also been determined that it actively participates in the cardiovascular system, influencing blood pressure, coronary artery disease and other vascular diseases, such as heart failure and atrial fibrillation. Furthermore, it has been established that this vitamin is extensively involved in the regulation of both the renin angiotensin aldosterone system and the immune system. In this review, we present the different vitamin D metabolic pathways associated with the cardiovascular pathophysiology, and we include studies in animal and human models, as well as some of the controversies found in the literature. This review also incorporates an overview of the implications in the molecular biology and public health fields.
Testosterone and Cardiovascular Disease
Tambo, Amos; Roshan, Mohsin H.K.; Pace, Nikolai P.
2016-01-01
Cardiovascular disease [CVD] is a leading cause of mortality accounting for a global incidence of over 31%. Atherosclerosis is the primary pathophysiology underpinning most types of CVD. Historically, modifiable and non-modifiable risk factors were suggested to precipitate CVD. Recently, epidemiological studies have identified emerging risk factors including hypotestosteronaemia, which have been associated with CVD. Previously considered in the realms of reproductive biology, testosterone is now believed to play a critical role in the cardiovascular system in health and disease. The actions of testosterone as they relate to the cardiac vasculature and its implication in cardiovascular pathology is reviewed. PMID:27014372
Hamer, Mark; O'Donovan, Gary; Murphy, Marie
2017-01-01
Leisure time physical activity, or exercise, has been described as today's best buy in public health. Physical inactivity is responsible for around 10% of all deaths and physical inactivity costs global healthcare systems billions of dollars each year. Here, we describe the human and economic costs of cardiovascular disease. Then, we explain that physical inactivity is a major modifiable risk factor for cardiovascular disease. The evidence of the role of physical activity in the primary prevention of cardiovascular disease is reviewed and we make the case that exercise is medicine.
[Progress in research of relationship between heavy metal exposure and cardiovascular disease].
Lu, F; Zhao, F; Cai, J Y; Liu, L; Shi, X M
2018-01-10
Heavy metal is one of pollutants existed widely in the environment, its relationship with cardiovascular disease has attracted more and more attention. In this review, the concentrations of heavy metals, including lead, cadium and asenic, in the body from several national surveillance networks and the epidemiological studies on the effects of the exposure of three heavy metals on cardiovascular system were summarized. It is suggested to strengthen nationwide surveillance for body concentrations of heavy metals in general population in order to provide baseline data for quantitative evaluation of the risk of heavy metal exposure on cardiovascular disease.
The Emerging Role of IGF-1 Deficiency in Cardiovascular Aging: Recent Advances
Csiszar, Anna
2012-01-01
This review focuses on cardiovascular protective effects of insulin-like growth factor (IGF)-1, provides a landscape of molecular mechanisms involved in cardiovascular alterations in patients and animal models with congenital and adult-onset IGF-1 deficiency, and explores the link between age-related IGF-1 deficiency and the molecular, cellular, and functional changes that occur in the cardiovascular system during aging. Microvascular protection conferred by endocrine and paracrine IGF-1 signaling, its implications for the pathophysiology of cardiac failure and vascular cognitive impairment, and the role of impaired cellular stress resistance in cardiovascular aging considered here are based on emerging knowledge of the effects of IGF-1 on Nrf2-driven antioxidant response. PMID:22451468
Cardiovascular and other dynamic systems in long-term space flight
NASA Technical Reports Server (NTRS)
Tipton, David A.
1987-01-01
The paper examines the physiology of the cardiovascular system, and to a lesser extent the endocrine, renal, and hematopoietic systems. The paper highlights the aspects of these areas that are most pertinent to space manufacturing, i.e., working in space. Areas covered include the physiological costs of working in microgravity and partial gravity (e.g., the moon or Mars), countermeasures to potentially adverse physiological adaptations, and problems associated with return to earth after long periods of weightlessness.
A wave dynamics criterion for optimization of mammalian cardiovascular system.
Pahlevan, Niema M; Gharib, Morteza
2014-05-07
The cardiovascular system in mammals follows various optimization criteria covering the heart, the vascular network, and the coupling of the two. Through a simple dimensional analysis we arrived at a non-dimensional number (wave condition number) that can predict the optimum wave state in which the left ventricular (LV) pulsatile power (LV workload) is minimized in a mammalian cardiovascular system. This number is also universal among all mammals independent of animal size maintaining a value of around 0.1. By utilizing a unique in vitro model of human aorta, we tested our hypothesis against a wide range of aortic compliance (pulse wave velocity). We concluded that the optimum value of the wave condition number remains to be around 0.1 for a wide range of aorta compliance that we could simulate in our in-vitro system. Copyright © 2014 Elsevier Ltd. All rights reserved.
Osgood, Michael J.; Harrison, David G.; Sexton, Kevin W.; Hocking, Kyle M.; Voskresensky, Igor V.; Komalavilas, Padmini; Cheung-Flynn, Joyce; Guzman, Raul J.; Brophy, Colleen M.
2014-01-01
The saphenous vein remains the most widely used conduit for peripheral and coronary revascularization despite a high rate of vein graft failure. The most common cause of vein graft failure is intimal hyperplasia. No agents have been proven to be successful for the prevention of intimal hyperplasia in human subjects. The rennin–angiotensin system is essential in the regulation of vascular tone and blood pressure in physiologic conditions. However, this system mediates cardiovascular remodeling in pathophysiologic states. Angiotensin II is becoming increasingly recognized as a potential mediator of intimal hyperplasia. Drugs modulating the renin–angiotensin system include angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. These drugs are powerful inhibitors of atherosclerosis and cardiovascular remodeling, and they are first-line agents for management of several medical conditions based on class I evidence that they delay progression of cardiovascular disease and improve survival. Several experimental models have demonstrated that these agents are capable of inhibiting intimal hyperplasia. However, there are no data supporting their role in prevention of intimal hyperplasia in patients with vein grafts. This review summarizes the physiology of the rennin–angiotensin system, the role of angiotensin II in the pathogenesis of cardiovascular remodeling, the medical indications for these agents, and the experimental data supporting an important role of the rennin–angiotensin system in the pathogenesis of intimal hyperplasia. PMID:22445245
NO Signaling in the Cardiovascular System and Exercise.
Fernandes, Tiago; Gomes-Gatto, Camila V; Pereira, Noemy P; Alayafi, Yahya R; das Neves, Vander J; Oliveira, Edilamar M
2017-01-01
Nitric oxide (NO) is a small molecule implicated in multiple signal transduction pathways thus contributing to the regulation of many cellular functions. The identification of NO synthase (NOS) isoforms and the subsequent characterization of the mechanisms of cell activation of the enzymes permitted the partial understanding of both the physiological and pathological processes. NO bioavailability plays an important role in the pathophysiology of cardiovascular disease and its reduction in endothelial cells is strictly associated to endothelial dysfunction which, in turn, correlates with cardiovascular mortality. Indeed, endothelial NO synthase (eNOS) has a key role in limiting cardiac dysfunction and remodeling in heart diseases, in part by decreasing myocyte hypertrophy. Conversely, exercise training is recommended to prevent and treat cardiovascular diseases-associated disorders at least by enhanced NO synthase activity and expression, and increased production of antioxidants, which prevents premature breakdown of NO. Exercise training may cause an improvement in endothelial function for both experimental animals and humans; Studies in both healthy subjects and patients with impaired NO-related vasorelaxation remarked exercise training ability to improve vascular structure and function and endothelial homeostasis. This chapter will briefly consider the importance of NO signaling in the maintenance of cardiovascular physiology, and discuss recent insights into the effect of exercise training on the signaling pathways that modulate NO synthesis and degradation in health and cardiovascular disease. In addition, we will highlight the molecular mechanisms via which microRNAs (miRs) target NO signaling in the cardiovascular system, and NO as a candidate molecule for development of new therapies.
De Marchis, Paola; Verso, Maria Gabriella; Tramuto, Fabio; Amodio, Emanuele; Picciotto, Diego
2018-03-14
Cardiovascular disease is the first cause of morbidity and mortality worldwide. Among several known risk factors, researchers also focus their attention on the chronic exposure to air pollution. There is much evidence that exposure to air pollution, especially to ultrafine particles, can damage the endothelium and can favour cardiovascular diseases in the general population. Occupational exposition could be an additive risk factor for the cardiovascular system. This article presents a scientific review of the linkage between occupational exposure to air pollution and ischemic heart disease. A scientific review was undertaken, followed by PRISMA Statements. Observational studies were selected from several scientific databases, likesuch as Pubmed, Google Scholar, Nioshtic-2 and Reserchgate, searching for selected key words: police workers, professional drivers, mail carriers, filling station attendants, road cleaners, garage workers, motor vehicles and engine maintenance. All the key words were combined with "Boolean Operators" with the following words: cardiovascular (or cardiac) disease, cardiovascular function, cardiovascular system, ischemic heart disease, coronary disease, myocardial infarction. During the systematic research, the focus was on retrospective and prospective studies from January 1990 - December 2014. Both the retrospective and prospective studies showed an increased risk of ischemic heart disease in occupationally occupied people exposed to air pollution. Only one study presented a ly minor risk. The findings of this systematic review suggest a possible linkage between occupational exposure to urban air pollution, especially to motor exhaust and particulate, and ischemic heart disease.
Developmental cardiovascular physiology of the olive ridley sea turtle (Lepidochelys olivacea).
Crossley, Dane Alan; Crossley, Janna Lee; Smith, Camilla; Harfush, Martha; Sánchez-Sánchez, Hermilo; Garduño-Paz, Mónica Vanessa; Méndez-Sánchez, José Fernando
2017-09-01
Our understanding of reptilian cardiovascular development and regulation has increased substantially for two species the American alligator (Alligator mississippiensis) and the common snapping turtle (Chelydra serpentina) during the past two decades. However, what we know about cardiovascular maturation in many other species remains poorly understood or unknown. Embryonic sea turtles have been studied to understand the maturation of metabolic function, but these studies have not addressed the cardiovascular system. Although prior studies have been pivotal in characterizing development, and factors that influence it, the development of cardiovascular function, which supplies metabolic function, is unknown in sea turtles. During our investigation we focused on quantifying how cardiovascular morphological and functional parameters change, to provide basic knowledge of development in the olive ridley sea turtle (Lepidochelys olivacea). Embryonic mass, as well as mass of the heart, lungs, liver, kidney, and brain increased during turtle embryo development. Although heart rate was constant during this developmental period, arterial pressure approximately doubled. Further, while embryonic olive ridley sea turtles lacked cholinergic tone on heart rate, there was a pronounced beta adrenergic tone on heart rate that decreased in strength at 90% of incubation. This beta adrenergic tone may be partially originating from the sympathetic nervous system at 90% of incubation, with the majority originating from circulating catecholamines. Data indicates that olive ridley sea turtles share traits of embryonic functional cardiovascular maturation with the American alligator (Alligator mississippiensis) but not the common snapping turtle (Chelydra serpentina). Copyright © 2017 Elsevier Inc. All rights reserved.
Roles of A-Kinase Anchoring Proteins and Phosphodiesterases in the Cardiovascular System
Ercu, Maria; Klussmann, Enno
2018-01-01
A-kinase anchoring proteins (AKAPs) and cyclic nucleotide phosphodiesterases (PDEs) are essential enzymes in the cyclic adenosine 3′-5′ monophosphate (cAMP) signaling cascade. They establish local cAMP pools by controlling the intensity, duration and compartmentalization of cyclic nucleotide-dependent signaling. Various members of the AKAP and PDE families are expressed in the cardiovascular system and direct important processes maintaining homeostatic functioning of the heart and vasculature, e.g., the endothelial barrier function and excitation-contraction coupling. Dysregulation of AKAP and PDE function is associated with pathophysiological conditions in the cardiovascular system including heart failure, hypertension and atherosclerosis. A number of diseases, including autosomal dominant hypertension with brachydactyly (HTNB) and type I long-QT syndrome (LQT1), result from mutations in genes encoding for distinct members of the two classes of enzymes. This review provides an overview over the AKAPs and PDEs relevant for cAMP compartmentalization in the heart and vasculature and discusses their pathophysiological role as well as highlights the potential benefits of targeting these proteins and their protein-protein interactions for the treatment of cardiovascular diseases. PMID:29461511
Exploring the Crosstalk between Adipose Tissue and the Cardiovascular System.
Akoumianakis, Ioannis; Akawi, Nadia; Antoniades, Charalambos
2017-09-01
Obesity is a clinical entity critically involved in the development and progression of cardiovascular disease (CVD), which is characterised by variable expansion of adipose tissue (AT) mass across the body as well as by phenotypic alterations in AT. AT is able to secrete a diverse spectrum of biologically active substances called adipocytokines, which reach the cardiovascular system via both endocrine and paracrine routes, potentially regulating a variety of physiological and pathophysiological responses in the vasculature and heart. Such responses include regulation of inflammation and oxidative stress as well as cell proliferation, migration and hypertrophy. Furthermore, clinical observations such as the "obesity paradox," namely the fact that moderately obese patients with CVD have favourable clinical outcome, strongly indicate that the biological "quality" of AT may be far more crucial than its overall mass in the regulation of CVD pathogenesis. In this work, we describe the anatomical and biological diversity of AT in health and metabolic disease; we next explore its association with CVD and, importantly, novel evidence for its dynamic crosstalk with the cardiovascular system, which could regulate CVD pathogenesis.
Muka, Taulant; Vargas, Kris G; Jaspers, Loes; Wen, Ke-xin; Dhana, Klodian; Vitezova, Anna; Nano, Jana; Brahimaj, Adela; Colpani, Veronica; Bano, Arjola; Kraja, Bledar; Zaciragic, Asija; Bramer, Wichor M; van Dijk, Gaby M; Kavousi, Maryam; Franco, Oscar H
2016-04-01
Five medical databases were searched for studies that assessed the role of ERβ in the female cardiovascular system and the influence of age and menopause on ERβ functioning. Of 9472 references, 88 studies met our inclusion criteria (71 animal model experimental studies, 15 human model experimental studies and 2 population based studies). ERβ signaling was shown to possess vasodilator and antiangiogenic properties by regulating the activity of nitric oxide, altering membrane ionic permeability in vascular smooth muscle cells, inhibiting vascular smooth muscle cell migration and proliferation and by regulating adrenergic control of the arteries. Also, a possible protective effect of ERβ signaling against left ventricular hypertrophy and ischemia/reperfusion injury via genomic and non-genomic pathways was suggested in 27 studies. Moreover, 5 studies reported that the vascular effects of ERβ may be vessel specific and may differ by age and menopause status. ERβ seems to possess multiple functions in the female cardiovascular system. Further studies are needed to evaluate whether isoform-selective ERβ-ligands might contribute to cardiovascular disease prevention. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Exploring the Crosstalk between Adipose Tissue and the Cardiovascular System
2017-01-01
Obesity is a clinical entity critically involved in the development and progression of cardiovascular disease (CVD), which is characterised by variable expansion of adipose tissue (AT) mass across the body as well as by phenotypic alterations in AT. AT is able to secrete a diverse spectrum of biologically active substances called adipocytokines, which reach the cardiovascular system via both endocrine and paracrine routes, potentially regulating a variety of physiological and pathophysiological responses in the vasculature and heart. Such responses include regulation of inflammation and oxidative stress as well as cell proliferation, migration and hypertrophy. Furthermore, clinical observations such as the “obesity paradox,” namely the fact that moderately obese patients with CVD have favourable clinical outcome, strongly indicate that the biological “quality” of AT may be far more crucial than its overall mass in the regulation of CVD pathogenesis. In this work, we describe the anatomical and biological diversity of AT in health and metabolic disease; we next explore its association with CVD and, importantly, novel evidence for its dynamic crosstalk with the cardiovascular system, which could regulate CVD pathogenesis. PMID:28955384
The use of soft robotics in cardiovascular therapy.
Wamala, Isaac; Roche, Ellen T; Pigula, Frank A
2017-10-01
Robots have been employed in cardiovascular therapy as surgical tools and for automation of hospital systems. Soft robots are a new kind of robot made of soft deformable materials, that are uniquely suited for biomedical applications because they are inherently less likely to injure body tissues and more likely to adapt to biological environments. Awareness of the soft robotic systems under development will help promote clinician involvement in their successful clinical translation. Areas covered: The most advanced soft robotic systems, across the size scale from nano to macro, that have shown the most promise for clinical application in cardiovascular therapy because they offer solutions where a clear therapeutic need still exists. We discuss nano and micro scale technology that could help improve targeted therapy for cardiac regeneration in ischemic heart disease, and soft robots for mechanical circulatory support. Additionally, we suggest where the gaps in the technology currently lie. Expert commentary: Soft robotic technology has now matured from the proof-of-concept phase to successful animal testing. With further refinement in materials and clinician guided application, they will be a useful complement for cardiovascular therapy.
Are GnRH and FSH potentially damaging factors in the cardiovascular system?
Poljak, Z; Hulin, I; Maruscakova, L; Mladosievicova, B
2018-04-02
In the physiological view the human cardiomyocytes express receptors of gonadotropin-releasing hormone and follicle-stimulating hormone. The local effects of these hormones in the heart are related also to some interstitial cells, such as endothelial cells with follicle-stimulating hormone receptors and immune cells with gonadotropin-releasing hormone receptors. The administration of androgen deprivation therapy in patients with prostate cancer is associated with increased incidence of cardiovascular complications. It is suggested that negative action of this therapy on cardiovascular system is due to the loss of testosterone but also levels of gonadotropin-releasing hormone and follicle-stimulating hormone are changed by therapy. In this article we review the literature to date with an emphasis on recent investigation focused on potential role of abnormal gonadotropin-releasing hormone and follicle-stimulating hormone levels induced by gonadotropin-releasing hormone agonists on the cardiovascular risk. These facts exacerbate the complexity of specific hormone and cell relationships within heart and vessels. Androgen deprivation therapy reveals the physiological relationships between hormones and specific tissues that are not part of the endocrine system.
Cannabinoids as therapeutic agents in cardiovascular disease: a tale of passions and illusions
Mendizábal, V E; Adler-Graschinsky, E
2007-01-01
In addition to their classical known effects, such as analgesia, impairment of cognition and learning and appetite enhancement, cannabinoids have also been related to the regulation of cardiovascular responses and implicated in cardiovascular pathology. Elevated levels of endocannabinoids have been related to the extreme hypotension associated with various forms of shock as well as to the cardiovascular abnormalities that accompany cirrhosis. In contrast, cannabinoids have also been associated with beneficial effects on the cardiovascular system, such as a protective role in atherosclerosis progression and in cerebral and myocardial ischaemia. In addition, it has also been suggested that the pharmacological manipulation of the endocannabinoid system may offer a novel approach to antihypertensive therapy. During the last decades, the tremendous increase in the understanding of the molecular basis of cannabinoid activity has encouraged many pharmaceutical companies to develop more potent synthetic cannabinoid analogues and antagonists, leading to an explosion of basic research and clinical trials. Consequently. not only the synthetic THC dronabinol (Marinol) and the synthetic THC analogue nabilone (Cesamet) have been approved in the United States, but also the standardized cannabis extract (Sativex) in Canada. At least three strategies can be foreseen in the future clinical use of cannabinoid-based drugs: (a) the use of CB1 receptor antagonists, such as the recently approved rimonabant (b) the use of CB2-selective agonists, and (c) the use of inhibitors of endocannabinoid degradation. In this context, the present review examines the effects of cannabinoids and of the pharmacological manipulation of the endocannabinoid system, in cardiovascular pathophysiology. PMID:17450170
Hippo signaling pathway in cardiovascular development and diseases.
Wang, Yong-yu; Yu, Wei; Zhou, Bin
2017-07-20
Cardiovascular diseases have become the leading cause of death in the world. Understanding the development of cardiovascular system and the pathogenesis of cardiovascular diseases will promote the generation of novel preventive and therapeutic strategy. The Hippo pathway is a recently identified signaling cascade that plays a critical role in organ size control, cell proliferation, apoptosis and fate determination of stem cells. Gene knockout and transgenic mouse models have revealed that the Hippo signaling pathway is involved in heart development, cardiomyocyte proliferation, apoptosis, hypertrophy and cardiac regeneration. The Hippo signaling pathway also regulates vascular development, differentiation and various functions of vascular cells. Dysregulation of the Hippo signaling pathway leads to different kinds of cardiovascular diseases, such as myocardial infarction, cardiac hypertrophy, neointima formation and atherosclerosis. In this review, we briefly summarize current research on the roles and regulation mechanisms of the Hippo signaling pathway in cardiovascular development and diseases.
Takamoto, Shinichi; Motomura, Noboru; Miyata, Hiroaki; Tsukihara, Hiroyuki
2018-01-01
The Japan Cardiovascular Surgery Database (JCVSD) was created in 2000 with the support of the Society of Thoracic Surgeons (STS). The STS database content was translated to Japanese using the same disease criteria and in 2001, data entry for adult cardiac surgeries was initiated online using the University Hospital Medical Information Network (UMIN). In 2008, data entry for congenital heart surgeries was initiated in the congenital section of JCVSD and preoperative expected mortality (JapanSCORE) in adult cardiovascular surgeries was first calculated using the risk model of JCVSD. The Japan Surgical Board system merged with JCVSD in 2011, and all cardiovascular surgical data were registered in the JCVSD from 2012 onward. The reports resulting from the data analyses of the JCVSD will encourage further improvements in the quality of cardiovascular surgeries, patient safety, and medical care in Japan.
Objective cardiovascular assessment in the neonatal intensive care unit.
Dempsey, Eugene M; El-Khuffash, Afif Faisal
2018-01-01
Traditionally, cardiovascular well-being was essentially based on whether the mean blood pressure was above or below a certain value. However, this singular crude method of assessment provides limited insight into overall cardiovascular well-being. Echocardiography has become increasingly used and incorporated into clinical care. New objective modality assessments of cardiovascular status continue to evolve and are being evaluated and incorporated into clinical care. In this review article, we will discuss some of the recent advances in objective assessment of cardiovascular well-being, including the concept of multimodal monitoring. Sophisticated haemodynamic monitoring systems are being developed, including mechanisms of data acquisition and analysis. Their incorporation into clinical care represents an exciting next stage in the management of the infant with cardiovascular compromise. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Ratings The Cardiovascular System § 4.100 Application of the evaluation criteria for diagnostic codes 7000... medical information does not sufficiently reflect the severity of the veteran's cardiovascular disability...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Ratings The Cardiovascular System § 4.100 Application of the evaluation criteria for diagnostic codes 7000... medical information does not sufficiently reflect the severity of the veteran's cardiovascular disability...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Ratings The Cardiovascular System § 4.100 Application of the evaluation criteria for diagnostic codes 7000... medical information does not sufficiently reflect the severity of the veteran's cardiovascular disability...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Ratings The Cardiovascular System § 4.100 Application of the evaluation criteria for diagnostic codes 7000... medical information does not sufficiently reflect the severity of the veteran's cardiovascular disability...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Ratings The Cardiovascular System § 4.100 Application of the evaluation criteria for diagnostic codes 7000... medical information does not sufficiently reflect the severity of the veteran's cardiovascular disability...
Gravitational Force and the Cardiovascular System
NASA Technical Reports Server (NTRS)
Pendergast, D. R.; Olszowka, A. J.; Rokitka, M. A.; Farhi, L. E.
1991-01-01
Cardiovascular responses to changes in gravitational force are considered. Man is ideally suited to his 1-g environment. Although cardiovascular adjustments are required to accommodate to postural changes and exercise, these are fully accomplished for short periods (min). More challenging stresses are those of short-term microgravity (h) and long-term microgravity (days) and of gravitational forces greater than that of Earth. The latter can be simulated in the laboratory and quantitative studies can be conducted.
Salzano, Andrea; Arcopinto, Michele; Marra, Alberto M; Bobbio, Emanuele; Esposito, Daniela; Accardo, Giacomo; Giallauria, Francesco; Bossone, Eduardo; Vigorito, Carlo; Lenzi, Andrea; Pasquali, Daniela; Isidori, Andrea M; Cittadini, Antonio
2016-07-01
Klinefelter syndrome (KS) is the most frequently occurring sex chromosomal aberration in males, with an incidence of about 1 in 500-700 newborns. Data acquired from large registry-based studies revealed an increase in mortality rates among KS patients when compared with mortality rates among the general population. Among all causes of death, metabolic, cardiovascular, and hemostatic complication seem to play a pivotal role. KS is associated, as are other chromosomal pathologies and genetic diseases, with cardiac congenital anomalies that contribute to the increase in mortality. The aim of the current study was to systematically review the relationships between KS and the cardiovascular system and hemostatic balance. In summary, patients with KS display an increased cardiovascular risk profile, characterized by increased prevalence of metabolic abnormalities including Diabetes mellitus (DM), dyslipidemia, and alterations in biomarkers of cardiovascular disease. KS does not, however, appear to be associated with arterial hypertension. Moreover, KS patients are characterized by subclinical abnormalities in left ventricular (LV) systolic and diastolic function and endothelial function, which, when associated with chronotropic incompetence may led to reduced cardiopulmonary performance. KS patients appear to be at a higher risk for cardiovascular disease, attributing to an increased risk of thromboembolic events with a high prevalence of recurrent venous ulcers, venous insufficiency, recurrent venous and arterial thromboembolism with higher risk of deep venous thrombosis or pulmonary embolism. It appears that cardiovascular involvement in KS is mainly due to chromosomal abnormalities rather than solely on low serum testosterone levels. On the basis of evidence acquisition and authors' own experience, a flowchart addressing the management of cardiovascular function and prognosis of KS patients has been developed for clinical use. © 2016 European Society of Endocrinology.
Krajnak, Kristine M
2014-01-01
Two of the major causes of death worldwide are cardiovascular disease and Type II diabetes. Although death due to these diseases is assessed separately, the physiological process that is attributed to the development of cardiovascular disease can be linked to the development of Type II diabetes and the impact that this disease has on the cardiovascular system. Physiological, genetic, and personal factors contribute to the development of both these disorders. It has also been hypothesized that work-related stress may contribute to the development of Type II diabetes and cardiovascular disease. This review summarizes some of the studies examining the role of work-related stress on the development of these chronic disorders. Because women may be more susceptible to the physiological effects of work-related stress, the papers cited in this review focus on studies that examined the difference in responses of men or women to work-related stress or on studies that focused on the effects of stress on women alone. Based on the papers summarized, it is concluded that (1) work-related stress may directly contribute to the development of cardiovascular disease by inducing increases in blood pressure and changes in heart rate that have negative consequences on functioning of the cardiovascular system; (2) workers reporting increased levels of stress may display an increased risk of Type II diabetes because they adopt poor health habits (ie, increased level of smoking, inactivity etc), which in turn contribute to the development of cardiovascular problems; and (3) women in high demand and low-control occupations report an increased level of stress at work, and thus may be at a greater risk of negative health consequences.
Balakumar, Pitchai; Dhanaraj, Sokkalingam A
2013-09-01
Dipeptidyl peptidase 4 (DPP-4) is a serine protease enzyme expressed widely in many tissues, including the cardiovascular system. The incretin hormones such as glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are released from the small intestine into the vasculature during a meal, and these incretins have a potential to release insulin from pancreatic beta cells of islets of Langerhans, affording a glucose-lowering action. However, both incretins are hurriedly degraded by the DPP-4. Inhibitors of DPP-4, therefore, enhance the bioavailability of GLP-1 and GIP, and thus have been approved for better glycemic management in patients afflicted with type 2 diabetes mellitus (T2DM). Five different DPP-4 inhibitors, often called as 'gliptins', namely sitagliptin, vildagliptin, saxagliptin, linagliptin and alogliptin have been approved hitherto for clinical use. These drugs are used along with diet and exercise to lower blood sugar in diabetic subjects. T2DM is intricately related with an increased risk of cardiovascular disease. Growing body of evidence suggests that gliptins, in addition to their persuasive anti-diabetic action, have a beneficial pleiotropic action on the heart and vessels. In view of the fact of cardiovascular disease susceptibility of patients afflicted with T2DM, gliptins might offer additional therapeutic benefits in treating diabetic cardiovascular complications. Exploring further the cardiovascular pleiotropic potentials of gliptins might open a panorama in impeccably employing these agents for the dual management of T2DM and T2DM-associated perilous cardiovascular complications. This review will shed lights on the newly identified beneficial pleiotropic actions of gliptins on the cardiovascular system. Copyright © 2013 Elsevier Inc. All rights reserved.
Nonsteroidal anti-inflammatory drug gastropathy: new avenues for safety.
Roth, Sanford H
2011-01-01
Chronic oral or systemic nonselective nonsteroidal anti-inflammatory drug (NSAID) therapy, ubiquitously used by physicians to treat osteoarthritis-associated pain, is associated with a wide range of symptomatic adverse events, the most frequent and serious of which is gastropathy. Although cardiovascular and renal problems are a very real concern, they are significantly less frequent. These complications can be life-threatening in at-risk populations such as older adults, who are common users of long-term oral systemic NSAID therapy. Topical NSAID formulations deliver effective doses of analgesics directly to the affected joints, thereby limiting systemic exposure and potentially the risk of systemic adverse events, such as gastropathy and serious cardiovascular events. There are currently two topical NSAIDs approved by the US Food and Drug Administration for osteoarthritis-associated pain, as well as for the signs and symptoms of osteoarthritis. This review discusses the relative safety, and the gastrointestinal, cardiovascular, and renal risks of chronic oral or systemic NSAID therapy and topical NSAID formulations in patients with osteoarthritis.
Nonsteroidal anti-inflammatory drug gastropathy: new avenues for safety
Roth, Sanford H
2011-01-01
Chronic oral or systemic nonselective nonsteroidal anti-inflammatory drug (NSAID) therapy, ubiquitously used by physicians to treat osteoarthritis-associated pain, is associated with a wide range of symptomatic adverse events, the most frequent and serious of which is gastropathy. Although cardiovascular and renal problems are a very real concern, they are significantly less frequent. These complications can be life-threatening in at-risk populations such as older adults, who are common users of long-term oral systemic NSAID therapy. Topical NSAID formulations deliver effective doses of analgesics directly to the affected joints, thereby limiting systemic exposure and potentially the risk of systemic adverse events, such as gastropathy and serious cardiovascular events. There are currently two topical NSAIDs approved by the US Food and Drug Administration for osteoarthritis-associated pain, as well as for the signs and symptoms of osteoarthritis. This review discusses the relative safety, and the gastrointestinal, cardiovascular, and renal risks of chronic oral or systemic NSAID therapy and topical NSAID formulations in patients with osteoarthritis. PMID:21753867
Novel RAAS agonists and antagonists: clinical applications and controversies.
Romero, Cesar A; Orias, Marcelo; Weir, Matthew R
2015-04-01
The renin-angiotensin-aldosterone system (RAAS) regulates blood pressure homeostasis and vascular injury and repair responses. The RAAS was originally thought to be an endocrine system critically important in regulating blood pressure homeostasis. Yet, important local forms of the RAAS have been described in many tissues, which are mostly independent of the systemic RAAS. These systems have been associated with diverse physiological functions, but also with inflammation, fibrosis and target-organ damage. Pharmacological modulation of the RAAS has brought about important advances in preventing morbidity and mortality associated with cardiovascular disease. Yet, traditional RAAS blockers such as angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs) only reduce the risk of disease progression in patients with established cardiovascular or renal disease by ∼20% compared with other therapies. As more components of the RAAS are described, other potential therapeutic targets emerge, which could provide improved cardiovascular and renal protection beyond that provided by an ACE inhibitor or ARB. This Review summarizes the present and future pharmacological manipulation of this important system.
Anderson, Mark E.; Birren, Susan J.; Fukuda, Keiichi; Herring, Neil; Hoover, Donald B.; Kanazawa, Hideaki; Paterson, David J.; Ripplinger, Crystal M.
2016-01-01
Abstract The nervous system and cardiovascular system develop in concert and are functionally interconnected in both health and disease. This white paper focuses on the cellular and molecular mechanisms that underlie neural–cardiac interactions during development, during normal physiological function in the mature system, and during pathological remodelling in cardiovascular disease. The content on each subject was contributed by experts, and we hope that this will provide a useful resource for newcomers to neurocardiology as well as aficionados. PMID:27060296
NO/redox disequilibrium in the failing heart and cardiovascular system
Hare, Joshua M.; Stamler, Jonathan S.
2005-01-01
There is growing evidence that the altered production and/or spatiotemporal distribution of reactive oxygen and nitrogen species creates oxidative and/or nitrosative stresses in the failing heart and vascular tree, which contribute to the abnormal cardiac and vascular phenotypes that characterize the failing cardiovascular system. These derangements at the integrated system level can be interpreted at the cellular and molecular levels in terms of adverse effects on signaling elements in the heart, vasculature, and blood that subserve cardiac and vascular homeostasis. PMID:15765132
Maladaptive immune and inflammatory pathways lead to cardiovascular insulin resistance.
Aroor, Annayya R; McKarns, Susan; Demarco, Vincent G; Jia, Guanghong; Sowers, James R
2013-11-01
Insulin resistance is a hallmark of obesity, the cardiorenal metabolic syndrome and type 2 diabetes mellitus (T2DM). The progression of insulin resistance increases the risk for cardiovascular disease (CVD). The significance of insulin resistance is underscored by the alarming rise in the prevalence of obesity and its associated comorbidities in the Unites States and worldwide over the last 40-50 years. The incidence of obesity is also on the rise in adolescents. Furthermore, premenopausal women have lower CVD risk compared to men, but this protection is lost in the setting of obesity and insulin resistance. Although systemic and cardiovascular insulin resistance is associated with impaired insulin metabolic signaling and cardiovascular dysfunction, the mechanisms underlying insulin resistance and cardiovascular dysfunction remain poorly understood. Recent studies show that insulin resistance in obesity and diabetes is linked to a metabolic inflammatory response, a state of systemic and tissue specific chronic low grade inflammation. Evidence is also emerging that there is polarization of macrophages and lymphocytes towards a pro-inflammatory phenotype that contributes to progression of insulin resistance in obesity, cardiorenal metabolic syndrome and diabetes. In this review, we provide new insights into factors, such as, the renin-angiotensin-aldosterone system, sympathetic activation and incretin modulators (e.g., DPP-4) and immune responses that mediate this inflammatory state in obesity and other conditions characterized by insulin resistance. © 2013.
Mattson, Mark P; Wan, Ruiqian
2005-03-01
Intermittent fasting (IF; reduced meal frequency) and caloric restriction (CR) extend lifespan and increase resistance to age-related diseases in rodents and monkeys and improve the health of overweight humans. Both IF and CR enhance cardiovascular and brain functions and improve several risk factors for coronary artery disease and stroke including a reduction in blood pressure and increased insulin sensitivity. Cardiovascular stress adaptation is improved and heart rate variability is increased in rodents maintained on an IF or a CR diet. Moreover, rodents maintained on an IF regimen exhibit increased resistance of heart and brain cells to ischemic injury in experimental models of myocardial infarction and stroke. The beneficial effects of IF and CR result from at least two mechanisms--reduced oxidative damage and increased cellular stress resistance. Recent findings suggest that some of the beneficial effects of IF on both the cardiovascular system and the brain are mediated by brain-derived neurotrophic factor signaling in the brain. Interestingly, cellular and molecular effects of IF and CR on the cardiovascular system and the brain are similar to those of regular physical exercise, suggesting shared mechanisms. A better understanding of the cellular and molecular mechanisms by which IF and CR affect the blood vessels and heart and brain cells will likely lead to novel preventative and therapeutic strategies for extending health span.
Yamazaki, Toshiya; Waki, Hidefumi; Kohsaka, Akira; Nakamura, Takeshi; Cui, He; Yukawa, Kazunori; Maeda, Masanobu
2008-11-03
Systemic administration of urocortin I (Ucn I), a member of the corticotrophin-releasing factor (CRF) peptide family, modulates cardiovascular system. In the central nervous system, Ucn I is found in the nucleus tractus solitarii (NTS), which plays an important role in regulating arterial blood pressure (ABP) and heart rate (HR) in response to activation of the baroreceptor afferents. In this study, we examined the effects of Ucn I, which has a high affinity for both type 1 and type 2 CRF receptors (i.e. CRF-R1 and -R2), on cardiovascular functions at the level of the NTS. A specific agonist of CRF-R1 (i.e. CRF) and a specific agonist of CRF-R2 (i.e. Urocortin II) were also tested to identify the specific cardiovascular effects induced by individual activation of either CRF-R1 or -R2. We found that Ucn I microinjected into the rat NTS produced a significant reduction in both ABP and HR. Both agonists for CRF-R1 and -R2 microinjected into the NTS also reduced ABP and HR. Our results suggest that Ucn I in the NTS may play an important role in cardiovascular regulation and the cardiovascular effects of Ucn I may be mediated by activation of both CRF-R1 and -R2, which are known to be present in the NTS.
Energy Drinks and Their Impact on the Cardiovascular System: Potential Mechanisms.
Grasser, Erik Konrad; Miles-Chan, Jennifer Lynn; Charrière, Nathalie; Loonam, Cathríona R; Dulloo, Abdul G; Montani, Jean-Pierre
2016-09-01
Globally, the popularity of energy drinks is steadily increasing. Scientific interest in their effects on cardiovascular and cerebrovascular systems in humans is also expanding and with it comes a growing number of case reports of adverse events associated with energy drinks. The vast majority of studies carried out in the general population report effects on blood pressure and heart rate. However, inconsistencies in the current literature render it difficult to draw firm conclusions with regard to the effects of energy drinks on cardiovascular and cerebrovascular variables. These inconsistencies are due, in part, to differences in methodologies, volume of drink ingested, and duration of postconsumption measurements, as well as subject variables during the test. Recent well-controlled, randomized crossover studies that used continuous beat-to-beat measurements provide evidence that cardiovascular responses to the ingestion of energy drinks are best explained by the actions of caffeine and sugar, with little influence from other ingredients. However, a role for other active constituents, such as taurine and glucuronolactone, cannot be ruled out. This article reviews the potentially adverse hemodynamic effects of energy drinks, particularly on blood pressure and heart rate, and discusses the mechanisms by which their active ingredients may interact to adversely affect the cardiovascular system. Research areas and gaps in the literature are discussed with particular reference to the use of energy drinks among high-risk individuals. © 2016 American Society for Nutrition.
Shimokawa, Hiroaki; Satoh, Kimio
2015-05-01
Vascular-derived hydrogen peroxide (H2O2) serves as an important signaling molecule in the cardiovascular system and contributes to vascular homeostasis. H2O2 is a second messenger, transducing the oxidative signal into biological responses through posttranslational protein modification. The balance between oxidant and antioxidant systems regulates intracellular redox status, and their imbalance causes oxidative or reductive stress, leading to cellular damage in cardiovascular systems. Excessive H2O2 deteriorates vascular functions and promotes vascular disease through multiple pathways. The RhoA/Rho-kinase pathway plays an important role in various fundamental cellular functions, including production of excessive reactive oxygen species, leading to the development of cardiovascular diseases. Rho-kinase (ROCK1 and ROCK2) belongs to the family of serine/threonine kinases and is an important downstream effector of the small GTP-binding protein RhoA. Rho-kinase plays a crucial role in the pathogenesis of vasospasm, arteriosclerosis, ischemia/reperfusion injury, hypertension, pulmonary hypertension, stroke, and heart failure. Thus, Rho-kinase inhibitors may be useful for the treatment of cardiovascular diseases in humans. In this review, we will briefly discuss the roles of vascular-derived H2O2 and review the recent progress in the translational research on the therapeutic importance of the Rho-kinase pathway in cardiovascular medicine.
Ngaïdé, A A; Ly, F; Ly, K; Diao, M; Kane, Ad; Mbaye, A; Lèye, M; Aw, F; Sarr, S A; Dioum, M; Ndao, C T; Gaye, N D; Ndiaye, M B; Bodian, M; Bah, M B; Ndiaye, M; Cissé, A F; Kouamé, I; Tabane, A; Mingou, J S; Thiombiano, P; Kane, A; Bâ, S A
2016-12-01
Systemic lupus erythematosus is a non-specific inflammatory disorder of an organ of unknown cause and autoimmune origin. Visceral injuries, including those cardiovascular, determine the prognosis of this disease primarily affecting women. The objectives of this study were to determine the frequency and describe the cardiovascular manifestations in systemic lupus erythematosus in a lupus population of the Dakar region. This is a multicenter prospective study descriptive and analytical conducted in the region of Dakar (Senegal) from 14 February 2011 to 2 July 2012. Patients were either hospitalized or monitored as outpatients. Included were all patients with lupus and meeting at least four criteria of the American College of Rheumatology of lupus disease classification 1997. All patients underwent physical examination, an electrocardiogram and an echocardiogram looking for cardiovascular damage. The collected data were entered into the Epi Info version 3.5.1 and processed with SPSS 16.0 software. Quantitative variables are described in the median and the qualitative workforce, percentage and frequency. We have included 50 patients. The average age of the population was 36.18 years. A female predominance is noted with a sex ratio man/woman of 0.09. Cardiovascular functional symptoms were dominated by dyspnea stage II to IV NYHA (26%) and palpitations (22%). The physical signs we have found were mainly tachycardia (40%), spontaneous turgor of the jugular veins (29%), a muffling of the heart sounds (29%) and a infandibulopulmonairy shock (18%). The frequency of cardiovascular events was 46%. Electrical cardiac events were dominated by sinus tachycardia (40%) of repolarization disorders (16.3%) type of ischemia, injury, ischemia injury, necrosis and hypertrophy with 18% atrial and left ventricular hypertrophy each. Furthermore, one case of BAV first degree at 280 ms was recorded. We found 19 cases of pericarditis including 2 tamponade, 3 cases of dilated cardiomyopathy hyperkinesias with impaired ejection fraction less than 35% and 8 patients with mild PAH important. In systemic lupus erythematosus, cardiovascular events are worrying and may remain asymptomatic for awhile. Their research must be systematic in order to treat early.
Zhu, Shidong; Luo, Lin; Yang, Bibo; Li, Xinghui; Wang, Xiaohao
2017-12-01
Ventricular assist devices (LVADs) are increasingly recognized for supporting blood circulation in heart failure patients who are non-transplant eligible. Because of its volume, the traditional pulsatile device is not easy to implant intracorporeally. Continuous flow LVADs (CF-LVADs) reduce arterial pulsatility and only offer continuous flow, which is different from physiological flow, and may cause long-term complications in the cardiovascular system. The aim of this study was to design a new pulsatile assist device that overcomes this disadvantage, and to test this device in the cardiovascular system. Firstly, the input and output characteristics of the new device were tested in a simple cardiovascular mock system. A detailed mathematical model was established by fitting the experimental data. Secondly, the model was tested in four pathological cases, and was simulated and coupled with a fifth-order cardiovascular system and a new device model using Matlab software. Using assistance of the new device, we demonstrated that the left ventricle pressure, aortic pressure, and aortic flow of heart failure patients improved to the levels of a healthy individual. Especially, in state IV level heart failure patients, the systolic blood pressure increased from 81.34 mmHg to 132.1 mmHg, whereas the diastolic blood pressure increased from 54.28 mmHg to 78.7 mmHg. Cardiac output increased from 3.21 L/min to 5.16 L/min. The newly-developed assist device not only provided a physiological flow that was similar to healthy individuals, but also effectively improved the ability of the pathological ventricular volume. Finally, the effects of the new device on other hemodynamic parameters are discussed.
2013-01-01
Background The end-systolic pressure-volume relationship is often considered as a load-independent property of the heart and, for this reason, is widely used as an index of ventricular contractility. However, many criticisms have been expressed against this index and the underlying time-varying elastance theory: first, it does not consider the phenomena underlying contraction and second, the end-systolic pressure volume relationship has been experimentally shown to be load-dependent. Methods In place of the time-varying elastance theory, a microscopic model of sarcomere contraction is used to infer the pressure generated by the contraction of the left ventricle, considered as a spherical assembling of sarcomere units. The left ventricle model is inserted into a closed-loop model of the cardiovascular system. Finally, parameters of the modified cardiovascular system model are identified to reproduce the hemodynamics of a normal dog. Results Experiments that have proven the limitations of the time-varying elastance theory are reproduced with our model: (1) preload reductions, (2) afterload increases, (3) the same experiments with increased ventricular contractility, (4) isovolumic contractions and (5) flow-clamps. All experiments simulated with the model generate different end-systolic pressure-volume relationships, showing that this relationship is actually load-dependent. Furthermore, we show that the results of our simulations are in good agreement with experiments. Conclusions We implemented a multi-scale model of the cardiovascular system, in which ventricular contraction is described by a detailed sarcomere model. Using this model, we successfully reproduced a number of experiments that have shown the failing points of the time-varying elastance theory. In particular, the developed multi-scale model of the cardiovascular system can capture the load-dependence of the end-systolic pressure-volume relationship. PMID:23363818
Molecular mechanisms of hypertension: role of Nox family NADPH oxidases.
Sedeek, Mona; Hébert, Richard L; Kennedy, Chris R; Burns, Kevin D; Touyz, Rhian M
2009-03-01
Molecular mechanisms contributing to the pathoetiology of hypertension are complex, involving many interacting systems such as signaling through G protein-coupled receptors, the renin-angiotensin system, vascular inflammation and remodeling, vascular senescence and aging and developmental programming, as highlighted in the current issue of the journal. Common to these systems is NADPH oxidase-derived reactive oxygen species (ROS). This editorial highlights current concepts relating to the production of ROS in hypertension and focuses on the Nox family NADPH oxidases, major sources of free radicals in the cardiovascular and renal systems. ROS play a major role as intracellular signaling molecules to regulate normal biological cellular responses. In pathological conditions, loss of redox homeostasis contributes to vascular oxidative damage. Recent evidence indicates that specific enzymes, the Nox family of NADPH oxidases, have the sole function of generating ROS in a highly regulated fashion in physiological conditions, and that in disease states, hyperactivation of Noxes contributes to oxidative stress and consequent cardiovascular and renal injury. The Nox family comprises seven members, Nox1-Nox7. Nox1, Nox2 (gp91phox-containing NADPH oxidase), Nox4 and Nox5 have been identified in the cardiovascular-renal systems and have been implicated in the pathophysiology of cardiovascular and renal disease. Noxes, which are differentially regulated in hypertension, are major sources of cardiovascular and renal oxidative stress. This has evoked considerable interest because of the possibilities that therapies targeted against specific Nox isoforms to decrease ROS generation or to increase nitric oxide availability or both may be useful in minimizing vascular injury and renal dysfunction, and thereby prevent or regress target organ damage associated with hypertension.
An overview of lymphatic vessels and their emerging role in cardiovascular disease
Jones, Dennis; Min, Wang
2011-01-01
Over the past decade, molecular details of lymphatic vessels (lymphatics) have been rapidly acquired due to the identification of lymphatic endothelial-specific markers. Separate from the cardiovascular system, the lymphatic system is also an elaborate network of vessels that are important in normal physiology. Lymphatic vessels have the unique task to regulate fluid homeostasis, assist in immune surveillance, and transport dietary lipids. However, dysfunctional lymphatic vessels can cause pathology, while normal lymphatics can exacerbate pathology. This review summarizes the development and growth of lymphatic vessels in addition to highlighting their critical roles in physiology and pathology. Also, we discuss recent work that suggests a connection between lymphatic dysfunction and cardiovascular disease. PMID:22022141
The human cardiovascular system in the absence of gravity
NASA Technical Reports Server (NTRS)
Bungo, M. W.; Charles, J. B.
1985-01-01
The data collected from a Space Shuttle crew to investigate cardiovascular changes due to microgravity are presented. The experimental procedures which involved preflight, immediate postflight, and one week following postflight echocardiograms of 13 individuals are described. The immediate postflight results reveal a 20 percent decrease in stroke volume, a 16 percent decrease in left ventricular diastolic volume index (LVDVI), no change in systolic volume, blood pressure, or cardiac index, and a 24 percent increase in heart rate. One week later a 17 percent stroke volume increase, a 29 percent increase in cardiac index, and normal blood pressure, and LVDVI were observed. It is concluded that upon reexposure to gravity a readaptation process for the cardiovascular system occurs.
Cardiovascular disease and cognitive function in maintenance hemodialysis patients
USDA-ARS?s Scientific Manuscript database
Cardiovascular disease (CVD) and cognitive impairment are common in dialysis patients. Given the proposed role of microvascular disease on cognitive function, particularly cognitive domains that incorporate executive functions, we hypothesized that prevalent systemic CVD would be associated with wor...
Cardiovascular reactivity, stress, and physical activity
Huang, Chun-Jung; Webb, Heather E.; Zourdos, Michael C.; Acevedo, Edmund O.
2013-01-01
Psychological stress has been proposed as a major contributor to the progression of cardiovascular disease (CVD). Acute mental stress can activate the sympathetic-adrenal-medullary (SAM) axis, eliciting the release of catecholamines (NE and EPI) resulting in the elevation of heart rate (HR) and blood pressure (BP). Combined stress (psychological and physical) can exacerbate these cardiovascular responses, which may partially contribute to the elevated risk of CVD and increased proportionate mortality risks experienced by some occupations (e.g., firefighting and law enforcement). Studies have supported the benefits of physical activity on physiological and psychological health, including the cardiovascular response to acute stress. Aerobically trained individuals exhibit lower sympathetic nervous system (e.g., HR) reactivity and enhanced cardiovascular efficiency (e.g., lower vascular reactivity and decreased recovery time) in response to physical and/or psychological stress. In addition, resistance training has been demonstrated to attenuate cardiovascular responses and improve mental health. This review will examine stress-induced cardiovascular reactivity and plausible explanations for how exercise training and physical fitness (aerobic and resistance exercise) can attenuate cardiovascular responses to stress. This enhanced functionality may facilitate a reduction in the incidence of stroke and myocardial infarction. Finally, this review will also address the interaction of obesity and physical activity on cardiovascular reactivity and CVD. PMID:24223557
Fuster, Jose J.; Ouchi, Noriyuki; Gokce, Noyan; Walsh, Kenneth
2016-01-01
Obesity is causally linked with the development of cardiovascular disorders. Accumulating evidence indicates that cardiovascular disease is the “collateral damage” of obesity-driven adipose tissue dysfunction that promotes a chronic inflammatory state within the organism. Adipose tissues secrete bioactive substances, referred to as adipokines, which largely function as modulators of inflammation. The microenvironment of adipose tissue will affect the adipokine secretome, having actions on remote tissues. Obesity typically leads to the upregulation of pro-inflammatory adipokines and the downregulation of anti-inflammatory adipokines, thereby contributing to the pathogenesis of cardiovascular diseases. In this review, we focus on the microenvironment of adipose tissue and how it influences cardiovascular disorders, including atherosclerosis and ischemic heart diseases, through the systemic actions of adipokines. PMID:27230642
Goraca, Anna
2015-01-01
Oxidative stress is considered to be the primary cause of many cardiovascular diseases, including endothelial dysfunction in atherosclerosis and ischemic heart disease, hypertension, and heart failure. Oxidative stress increases during the aging process, resulting in either increased reactive oxygen species (ROS) production or decreased antioxidant defense. The increase in the incidence of cardiovascular disease is directly related to age. Aging is also associated with oxidative stress, which in turn leads to accelerated cellular senescence and organ dysfunction. Antioxidants may help lower the incidence of some pathologies of cardiovascular diseases and have antiaging properties. Lipoic acid (LA) is a natural antioxidant which is believed to have a beneficial effect on oxidative stress parameters in relation to diseases of the cardiovascular system. PMID:25949771
Zebrafish models of cardiovascular diseases and their applications in herbal medicine research.
Seto, Sai-Wang; Kiat, Hosen; Lee, Simon M Y; Bensoussan, Alan; Sun, Yu-Ting; Hoi, Maggie P M; Chang, Dennis
2015-12-05
The zebrafish (Danio rerio) has recently become a powerful animal model for cardiovascular research and drug discovery due to its ease of maintenance, genetic manipulability and ability for high-throughput screening. Recent advances in imaging techniques and generation of transgenic zebrafish have greatly facilitated in vivo analysis of cellular events of cardiovascular development and pathogenesis. More importantly, recent studies have demonstrated the functional similarity of drug metabolism systems between zebrafish and humans, highlighting the clinical relevance of employing zebrafish in identifying lead compounds in Chinese herbal medicine with potential beneficial cardiovascular effects. This paper seeks to summarise the scope of zebrafish models employed in cardiovascular studies and the application of these research models in Chinese herbal medicine to date. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
Forrester, Steven J; Kawai, Tatsuo; O'Brien, Shannon; Thomas, Walter; Harris, Raymond C; Eguchi, Satoru
2016-01-01
Epidermal growth factor receptor (EGFR) activation impacts the physiology and pathophysiology of the cardiovascular system, and inhibition of EGFR activity is emerging as a potential therapeutic strategy to treat diseases including hypertension, cardiac hypertrophy, renal fibrosis, and abdominal aortic aneurysm. The capacity of G protein-coupled receptor (GPCR) agonists, such as angiotensin II (AngII), to promote EGFR signaling is called transactivation and is well described, yet delineating the molecular processes and functional relevance of this crosstalk has been challenging. Moreover, these critical findings are dispersed among many different fields. The aim of our review is to highlight recent advancements in defining the signaling cascades and downstream consequences of EGFR transactivation in the cardiovascular renal system. We also focus on studies that link EGFR transactivation to animal models of the disease, and we discuss potential therapeutic applications.
Vitamin D and its effects on cardiovascular diseases: a comprehensive review
Pérez-Hernández, Nonanzit; Aptilon-Duque, Gad; Nostroza-Hernández, María Cristina; Vargas-Alarcón, Gilberto; Rodríguez-Pérez, José Manuel; Blachman-Braun, Ruben
2016-01-01
Vitamin D is a molecule that is actively involved in multiple metabolic pathways. It is mostly known for its implications related to calcium metabolism. It has also been determined that it actively participates in the cardiovascular system, influencing blood pressure, coronary artery disease and other vascular diseases, such as heart failure and atrial fibrillation. Furthermore, it has been established that this vitamin is extensively involved in the regulation of both the renin angiotensin aldosterone system and the immune system. In this review, we present the different vitamin D metabolic pathways associated with the cardiovascular pathophysiology, and we include studies in animal and human models, as well as some of the controversies found in the literature. This review also incorporates an overview of the implications in the molecular biology and public health fields. PMID:27117316
C-reactive protein and cardiovascular risk in bipolar disorder patients: A systematic review.
Marshe, Victoria S; Pira, Shamira; Mantere, Outi; Bosche, Bert; Looper, Karl J; Herrmann, Nathan; Müller, Daniel J; Rej, Soham
2017-10-03
New research is revealing a strong association between inflammatory markers with bipolar disorder (BD), potentially due to the high prevalence of cardiovascular disease and cardiovascular risk factors in BD. We aimed to synthesize the literature examining the association between the clinically most relevant inflammatory marker, C-reactive protein (CRP) and cardiovascular disease and cardiovascular risk factors in patients with BD. MEDLINE, Embase and PsychInfo were systematically searched for all relevant English language articles published prior to April 2017. Articles were included if they examined the association between CRP and cardiovascular risk factors/disease in BD. Fifteen relevant articles were retrieved. Studies were mostly cross-sectional and heterogeneous in the cardiovascular risk factors investigated. Overall, elevated CRP was associated with increased risk of metabolic syndrome, elevated body mass index, higher waist circumference, and obesity. CRP was inconsistently associated with elevated fasting glucose, insulin levels, serum triglycerides, total cholesterol levels, and low high density lipoprotein (HDL) levels. Atypical antipsychotic use may mediate some of these effects. No study examined CRP's association with actual cardiovascular disease (e.g. coronary artery disease) in BD. In BD, CRP is associated with increases in several cardiovascular risk factors, suggesting that systemic inflammation could be a shared driving force for both outcomes of BD and cardiovascular risk. Further longitudinal research is needed in this area to verify causality, including an examination of actual cardiovascular disease. Non-pharmacological and pharmacological treatments with anti-inflammatory effects should also be investigated, particularly in patients with increased CRP, for their potential to reduce cardiovascular risk in BD. Copyright © 2017 Elsevier Inc. All rights reserved.
Computational Models of the Cardiovascular System and Its Response to Microgravity
NASA Technical Reports Server (NTRS)
Kamm, Roger D.
1999-01-01
Computational models of the cardiovascular system are powerful adjuncts to ground-based and in-flight experiments. We will provide NSBRI with a model capable of simulating the short-term effects of gravity on cardiovascular function. The model from this project will: (1) provide a rational framework which quantitatively defines interactions among complex cardiovascular parameters and which supports the critical interpretation of experimental results and testing of hypotheses. (2) permit predictions of the impact of specific countermeasures in the context of various hypothetical cardiovascular abnormalities induced by microgravity. Major progress has been made during the first 18 months of the program: (1) We have developed an operational first-order computer model capable of simulating the cardiovascular response to orthostatic stress. The model consists of a lumped parameter hemodynamic model and a complete reflex control system. The latter includes cardiopulmonary and carotid sinus reflex limbs and interactions between the two. (2) We have modeled the physiologic stress of tilt table experiments and lower body negative pressure procedures (LBNP). We have verified our model's predictions by comparing them with experimental findings from the literature. (3) We have established collaborative efforts with leading investigators interested in experimental studies of orthostatic intolerance, cardiovascular control, and physiologic responses to space flight. (4) We have established a standardized method of transferring data to our laboratory from the ongoing NSBRI bedrest studies. We use this data to estimate input parameters to our model and compare our model predictions to actual data to further verify our model. (5) We are in the process of systematically simulating current hypotheses concerning the mechanism underlying orthostatic intolerance by matching our simulations to stand test data from astronauts pre- and post-flight. (6) We are in the process of developing a JAVA version of the simulator which will be distributed amongst the cardiovascular team members. Future work on this project involves modifications of the model to represent a rodent (rat) model, further evaluation of the bedrest astronaut and animal data, and systematic investigation of specific countermeasures.
Long-term moderate exercise accelerates the recovery of stress-evoked cardiovascular responses.
Hsu, Yuan-Chang; Tsai, Sheng-Feng; Yu, Lung; Chuang, Jih-Ing; Wu, Fong-Sen; Jen, Chauying J; Kuo, Yu-Min
2016-01-01
Psychological stress is an important global health problem. It is well documented that stress increases the incidences of various cardiovascular disorders. Regular exercise is known to reduce resting blood pressure (BP) and heart rate (HR). This study was designed to clarify the effects of long-term exercise on stress-evoked cardiovascular responses and to emphasize post-stress recovery effects. Male Wistar rats underwent 8 weeks of moderate treadmill training, with cardiovascular responses, autonomic nervous system activities and local Fos reactivity changes in the cardiovascular regulation center were monitored before, during and after immobilization stress. A spectral analysis of cardiovascular parameters was used to examine autonomic nervous activities. We found that long-term exercise (i) lowered resting BP, HR and sympathetic activity, but increased resting parasympathetic activity and baroreflex sensitivity (BRS); (ii) accelerated post-stress recovery of stress-evoked cardiovascular and sympathetic responses along with increased BRS and (iii) accelerated post-stress recovery of stress-evoked neuron activations in the paraventricular nucleus, but delayed it in the nucleus of the tractus solitarius. We conclude that, in rats, long-term exercise accelerated recovery of stress-evoked cardiovascular responses differentially altering hypothalamic and medullar neuron activities.
West, Christopher R; Krassioukov, Andrei V
2017-01-01
Purpose To investigate the relationship between the classification systems used in wheelchair sports and cardiovascular function in Paralympic athletes with spinal cord injury (SCI). Methods 26 wheelchair rugby (C3-C8) and 14 wheelchair basketball (T3-L1) were assessed for their International Wheelchair Rugby and Basketball Federation sports classification. Next, athletes were assessed for resting and reflex cardiovascular and autonomic function via the change (delta) in systolic blood pressure (SBP) and heart rate (HR) in response to sit-up, and sympathetic skin responses (SSRs), respectively. Results There were no differences in supine, seated, or delta SBP and HR between different sport classes in rugby or basketball (all p > 0.23). Athletes with autonomically complete injuries (SSR score 0-1) exhibited a lower supine SBP, seated SBP and delta SBP compared to those with autonomically incomplete injuries (SSR score >1; all p < 0.010), independent of sport played. There was no association between self-report OH and measured OH (χ 2 = 1.63, p = 0.20). Conclusion We provide definitive evidence that sports specific classification is not related to the degree of remaining autonomic cardiovascular control in Paralympic athletes with SCI. We suggest that testing for remaining autonomic function, which is closely related to the degree of cardiovascular control, should be incorporated into sporting classification. Implications for Rehabilitation Spinal cord injury is a debilitating condition that affects the function of almost every physiological system. It is becoming increasingly apparent that spinal cord injury induced changes in autonomic and cardiovascular function are important determinants of sports performance in athletes with spinal cord injury. This study shows that the current sports classification systems used in wheelchair rugby and basketball do not accurately reflect autonomic and cardiovascular function and thus are placing some athletes at a distinct disadvantage/advantage within their respective sport.
Practical identifiability analysis of a minimal cardiovascular system model.
Pironet, Antoine; Docherty, Paul D; Dauby, Pierre C; Chase, J Geoffrey; Desaive, Thomas
2017-01-17
Parameters of mathematical models of the cardiovascular system can be used to monitor cardiovascular state, such as total stressed blood volume status, vessel elastance and resistance. To do so, the model parameters have to be estimated from data collected at the patient's bedside. This work considers a seven-parameter model of the cardiovascular system and investigates whether these parameters can be uniquely determined using indices derived from measurements of arterial and venous pressures, and stroke volume. An error vector defined the residuals between the simulated and reference values of the seven clinically available haemodynamic indices. The sensitivity of this error vector to each model parameter was analysed, as well as the collinearity between parameters. To assess practical identifiability of the model parameters, profile-likelihood curves were constructed for each parameter. Four of the seven model parameters were found to be practically identifiable from the selected data. The remaining three parameters were practically non-identifiable. Among these non-identifiable parameters, one could be decreased as much as possible. The other two non-identifiable parameters were inversely correlated, which prevented their precise estimation. This work presented the practical identifiability analysis of a seven-parameter cardiovascular system model, from limited clinical data. The analysis showed that three of the seven parameters were practically non-identifiable, thus limiting the use of the model as a monitoring tool. Slight changes in the time-varying function modeling cardiac contraction and use of larger values for the reference range of venous pressure made the model fully practically identifiable. Copyright © 2017. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Gallagher, R. R.
1974-01-01
Exercise subroutine modifications are implemented in an exercise-respiratory system model yielding improvement of system response to exercise forcings. A more physiologically desirable respiratory ventilation rate in addition to an improved regulation of arterial gas tensions and cerebral blood flow is observed. A respiratory frequency expression is proposed which would be appropriate as an interfacing element of the respiratory-pulsatile cardiovascular system. Presentation of a circulatory-respiratory system integration scheme along with its computer program listing is given. The integrated system responds to exercise stimulation for both nonstressed and stressed physiological states. Other integration possibilities are discussed with respect to the respiratory, pulsatile cardiovascular, thermoregulatory, and the long-term circulatory systems.
Artificial Intelligence (Al) Center of Excellence at the University of Pennsylvania
1995-07-01
Approach and repel behaviors were implemented in order to study higher level behavioral simulation . Parallel algorithms for motion planning (as a...of decision-making accuracy can be specified for this graph-reduction process. We have also developed a mixed qualitative/quantitative simulation ...system, called QobiSIM. QobiSIM has been used to develop a cardiovascular simulation to be incorporated into the TraumAID system. This cardiovascular
The cardiovascular response to the AGS
NASA Technical Reports Server (NTRS)
Cardus, David; Mctaggart, Wesley G.
1993-01-01
This paper reports the preliminary results of experiments on human subjects conducted to study the cardiovascular response to various g-levels and exposure times using an artificial gravity simulator (AGS). The AGS is a short arm centrifuge consisting of a turntable, a traction system, a platform and four beds. Data collection hardware is part of the communication system. The AGS provides a steep acceleration gradient in subjects in the supine position.
Korakianitis, Theodosios; Shi, Yubing
2006-09-01
Numerical modeling of the human cardiovascular system has always been an active research direction since the 19th century. In the past, various simulation models of different complexities were proposed for different research purposes. In this paper, an improved numerical model to study the dynamic function of the human circulation system is proposed. In the development of the mathematical model, the heart chambers are described with a variable elastance model. The systemic and pulmonary loops are described based on the resistance-compliance-inertia concept by considering local effects of flow friction, elasticity of blood vessels and inertia of blood in different segments of the blood vessels. As an advancement from previous models, heart valve dynamics and atrioventricular interaction, including atrial contraction and motion of the annulus fibrosus, are specifically modeled. With these improvements the developed model can predict several important features that were missing in previous numerical models, including regurgitant flow on heart valve closure, the value of E/A velocity ratio in mitral flow, the motion of the annulus fibrosus (called the KG diaphragm pumping action), etc. These features have important clinical meaning and their changes are often related to cardiovascular diseases. Successful simulation of these features enhances the accuracy of simulations of cardiovascular dynamics, and helps in clinical studies of cardiac function.
[The design and applications of a non-invasive intelligent detector for cardiovascular functions].
Li, Feng; Xing, Wu; Chen, Ming-zhi; Shang, Huai
2006-05-01
An apparatus based on a high sensitive sensor which detects cardiovascular functions is introduced in this paper. Some intelligent detecting technologies, such as syntactic pattern recognition and a medical expert system are used in this detector. Its embedded single-chip microcomputer processes and analyzes pulse signals for gaining automatically the parameters about heart, blood vessel and blood etc., so as to get the health evaluation, correct medical diagnosis and prediction of cardiovascular diseases.
Formanowicz, Dorota; Wanic-Kossowska, Maria; Pawliczak, Elżbieta; Radom, Marcin; Formanowicz, Piotr
2015-12-16
The aim of this study was to check if serum interleukin-18 (IL-18) predicts 2-year cardiovascular mortality in patients at various stages of chronic kidney disease (CKD) and history of acute myocardial infarction (AMI) within the previous year. Diabetes mellitus was one of the key factors of exclusion. It was found that an increase in serum concentration of IL-18 above the cut-off point (1584.5 pg/mL) was characterized by 20.63-fold higher risk of cardiovascular deaths among studied patients. IL-18 serum concentration was found to be superior to the well-known cardiovascular risk parameters, like high sensitivity C-reactive protein (hsCRP), carotid intima media thickness (CIMT), glomerular filtration rate, albumins, ferritin, N-terminal prohormone of brain natriuretic peptide (NT-proBNP) in prognosis of cardiovascular mortality. The best predictive for IL-18 were 4 variables, such as CIMT, NT-proBNP, albumins and hsCRP, as they predicted its concentration at 89.5%. Concluding, IL-18 seems to be important indicator and predictor of cardiovascular death in two-year follow-up among non-diabetic patients suffering from CKD, with history of AMI in the previous year. The importance of IL-18 in the process of atherosclerotic plaque formation has been confirmed by systems analysis based on a formal model expressed in the language of Petri nets theory.
Teaching Materials and Methods.
ERIC Educational Resources Information Center
Physiologist, 1982
1982-01-01
Twelve abstracts of papers presented at the 33rd Annual Fall Meeting of the American Physiological Society are listed, focusing on teaching materials/methods. Topics, among others, include trends in physiology laboratory programs, cardiovascular system model, cardiovascular computer simulation with didactic feedback, and computer generated figures…
Cheng, Susan; Shah, Svati H; Corwin, Elizabeth J; Fiehn, Oliver; Fitzgerald, Robert L; Gerszten, Robert E; Illig, Thomas; Rhee, Eugene P; Srinivas, Pothur R; Wang, Thomas J; Jain, Mohit
2017-04-01
Through the measure of thousands of small-molecule metabolites in diverse biological systems, metabolomics now offers the potential for new insights into the factors that contribute to complex human diseases such as cardiovascular disease. Targeted metabolomics methods have already identified new molecular markers and metabolomic signatures of cardiovascular disease risk (including branched-chain amino acids, select unsaturated lipid species, and trimethylamine- N -oxide), thus in effect linking diverse exposures such as those from dietary intake and the microbiota with cardiometabolic traits. As technologies for metabolomics continue to evolve, the depth and breadth of small-molecule metabolite profiling in complex systems continue to advance rapidly, along with prospects for ongoing discovery. Current challenges facing the field of metabolomics include scaling throughput and technical capacity for metabolomics approaches, bioinformatic and chemoinformatic tools for handling large-scale metabolomics data, methods for elucidating the biochemical structure and function of novel metabolites, and strategies for determining the true clinical relevance of metabolites observed in association with cardiovascular disease outcomes. Progress made in addressing these challenges will allow metabolomics the potential to substantially affect diagnostics and therapeutics in cardiovascular medicine. © 2017 American Heart Association, Inc.
Vargas-Robles, Hilda; Rios, Amelia; Arellano-Mendoza, Monica; Escalante, Bruno A; Schnoor, Michael
2015-01-01
Obesity is a worldwide epidemic that is characterized not only by excessive fat deposition but also by systemic microinflammation, high oxidative stress, and increased cardiovascular risk factors. While diets enriched in natural antioxidants showed beneficial effects on oxidative stress, blood pressure, and serum lipid composition, diet supplementation with synthetic antioxidants showed contradictive results. Thus, we tested in C57Bl/6 mice whether a daily dosage of an antioxidative mixture consisting of vitamin C, vitamin E, L-arginine, eicosapentaenoic acid, and docosahexaenoic acid (corabion) would affect cardiovascular risk factors associated with obesity. Obese mice showed increased serum triglyceride and glucose levels and hypertension after eight weeks of being fed a high-fat diet (HFD). Importantly, corabion ameliorated all of these symptoms significantly. Oxidative stress and early signs of systemic microinflammation already developed after two weeks of high-fat diet and were significantly reduced by daily doses of corabion. Of note, the beneficial effects of corabion could not be observed when applying its single antioxidative components suggesting that a combination of various nutrients is required to counteract HFD-induced cardiovascular risk factors. Thus, daily consumption of corabion may be beneficial for the management of obesity-related cardiovascular complications.
Genomic approaches for the elucidation of genes and gene networks underlying cardiovascular traits.
Adriaens, M E; Bezzina, C R
2018-06-22
Genome-wide association studies have shed light on the association between natural genetic variation and cardiovascular traits. However, linking a cardiovascular trait associated locus to a candidate gene or set of candidate genes for prioritization for follow-up mechanistic studies is all but straightforward. Genomic technologies based on next-generation sequencing technology nowadays offer multiple opportunities to dissect gene regulatory networks underlying genetic cardiovascular trait associations, thereby aiding in the identification of candidate genes at unprecedented scale. RNA sequencing in particular becomes a powerful tool when combined with genotyping to identify loci that modulate transcript abundance, known as expression quantitative trait loci (eQTL), or loci modulating transcript splicing known as splicing quantitative trait loci (sQTL). Additionally, the allele-specific resolution of RNA-sequencing technology enables estimation of allelic imbalance, a state where the two alleles of a gene are expressed at a ratio differing from the expected 1:1 ratio. When multiple high-throughput approaches are combined with deep phenotyping in a single study, a comprehensive elucidation of the relationship between genotype and phenotype comes into view, an approach known as systems genetics. In this review, we cover key applications of systems genetics in the broad cardiovascular field.
Cardiovascular Risk in Women With PCOS
Scicchitano, Pietro; Dentamaro, Ilaria; Carbonara, Rosa; Bulzis, Gabriella; Dachille, Annamaria; Caputo, Paola; Riccardi, Roberta; Locorotondo, Manuela; Mandurino, Cosimo; Matteo Ciccone, Marco
2012-01-01
Polycystic ovary syndrome (PCOS), or Stein-Leventhal syndrome, is a common endocrine disorder defined by two of the three following features: i) oligoovulation or anovulation, ii) clinical and/or biochemical signs of hyperandrogenism, or iii) polycystic ovaries, once the related endocrinological and gynaecological disorders have been excluded. PCOS does not exclusively involve the reproductive apparatus , it has a complex number of systemic relevancy symptoms. It leads to Metabolic Syndrome, with severe consequences on the cardiovascular apparatus. Many clinical studies have underlined the connection between PCOS and the cardiovascular risk profile of such female patients, due to a lipid/glucose altered metabolism, hypertension, systemic inflammatory condition (assessable by markers such as VES, TNF-alfa, citokines and C-reactive protein (hsPCR) levels), and vascular injuries. Considering the early onset of the disease, PCOS could be considered as a real cardiovascular risk factor which affects the quality of life seriously. The current review aimed to point out the main connections between PCOS and cardiovascular risk factors according to the latest findings coming from literature data analysis, and try to depict the great influences that such a common disease can have on the patients’ health integrity. PMID:23843832
Bridging the gap between measurements and modelling: a cardiovascular functional avatar.
Casas, Belén; Lantz, Jonas; Viola, Federica; Cedersund, Gunnar; Bolger, Ann F; Carlhäll, Carl-Johan; Karlsson, Matts; Ebbers, Tino
2017-07-24
Lumped parameter models of the cardiovascular system have the potential to assist researchers and clinicians to better understand cardiovascular function. The value of such models increases when they are subject specific. However, most approaches to personalize lumped parameter models have thus far required invasive measurements or fall short of being subject specific due to a lack of the necessary clinical data. Here, we propose an approach to personalize parameters in a model of the heart and the systemic circulation using exclusively non-invasive measurements. The personalized model is created using flow data from four-dimensional magnetic resonance imaging and cuff pressure measurements in the brachial artery. We term this personalized model the cardiovascular avatar. In our proof-of-concept study, we evaluated the capability of the avatar to reproduce pressures and flows in a group of eight healthy subjects. Both quantitatively and qualitatively, the model-based results agreed well with the pressure and flow measurements obtained in vivo for each subject. This non-invasive and personalized approach can synthesize medical data into clinically relevant indicators of cardiovascular function, and estimate hemodynamic variables that cannot be assessed directly from clinical measurements.
Soh, M C; Nelson-Piercy, C; Westgren, M; McCowan, L; Pasupathy, D
2017-11-01
Cardiovascular events (CVEs) are prevalent in patients with systemic lupus erythematosus (SLE), and it is the young women who are disproportionately at risk. The risk factors for accelerated cardiovascular disease remain unclear, with multiple studies producing conflicting results. In this paper, we aim to address both traditional and SLE-specific risk factors postulated to drive the accelerated vascular disease in this cohort. We also discuss the more recent hypothesis that adverse pregnancy outcomes in the form of maternal-placental syndrome and resultant preterm delivery could potentially contribute to the CVEs seen in young women with SLE who have fewer traditional cardiovascular risk factors. The pathophysiology of how placental-mediated vascular insufficiency and hypoxia (with the secretion of placenta-like growth factor (PlGF) and soluble fms-tyrosine-like kinase-1 (sFlt-1), soluble endoglin (sEng) and other placental factors) work synergistically to damage the vascular endothelium is discussed. Adverse pregnancy outcomes ultimately are a small contributing factor to the complex pathophysiological process of cardiovascular disease in patients with SLE. Future collaborative studies between cardiologists, obstetricians, obstetric physicians and rheumatologists may pave the way for a better understanding of a likely multifactorial aetiological process.
NASA Astrophysics Data System (ADS)
Larina, Irina V.; Liebling, Michael; Dickinson, Mary E.; Larin, Kirill V.
2009-02-01
Congenital cardiovascular defects are very common, occurring in 1% of live births, and cardiovascular failures are the leading cause of birth defect-related deaths in infants. To improve diagnostics, prevention and treatment of cardiovascular abnormalities, we need to understand not only how cells form the heart and vessels but also how physical factors such as heart contraction and blood flow influence heart development and changes in the circulatory network. Mouse models are an excellent resource for studying cardiovascular development and disease because of the resemblance to humans, rapid generation time, and availability of mutants with cardiovascular defects linked to human diseases. In this work, we present results on development and application of Doppler Swept Source Optical Coherence Tomography (DSS-OCT) for imaging of cardiovascular dynamics and blood flow in the mouse embryonic heart and vessels. Our studies demonstrated that the spatial and temporal resolution of the DSS-OCT makes it possible to perform sensitive measurements of heart and vessel wall movements and to investigate how contractile waves facilitate the movement of blood through the circulatory system.
High cardiovascular risk in Spanish workers.
Sánchez Chaparro, M A; Calvo Bonacho, E; González Quintela, A; Cabrera, M; Sáinz, J C; Fernández-Labander, C; Quevedo-Aguado, L; Gelpi, J A; Fernández Meseguer, A; Brotons, C; de Teresa, E; González Santos, P; Román García, J
2011-04-01
To investigate the prevalence of high cardiovascular risk in the Spanish working population, and its distribution among different occupations and gender. Cross-sectional study of 309,955 workers (72.6% males, mean age 36.5 years, range 16-74 years), who underwent a routine medical check-up. Workers were classified as high, intermediate or low cardiovascular risk, according to the SCORE system. Workers with a relative risk greater than 4 were also considered as high-risk. The prevalence of high cardiovascular risk was 7.6% (95% CI 7.5-7.7) in males and 1.7% (95% CI 1.6-1.8) in females. After adjusting for age and gender, the prevalence of high cardiovascular risk was greater in workers from the Agriculture and Construction sectors than in those from Industry and Service sectors. The prevalence of high cardiovascular risk was higher in blue-collar than in white-collar occupations. A sizeable proportion of workers, especially blue-collar males, are at high cardiovascular risk. Knowledge of this risk for certain workers may serve as a basis for preventive strategies. Copyright © 2009. Published by Elsevier B.V.
Tobacco and e-cigarette products initiate Kupffer cell inflammatory responses.
Rubenstein, David A; Hom, Sarah; Ghebrehiwet, Berhane; Yin, Wei
2015-10-01
Kupffer cells are liver resident macrophages that are responsible for screening and clearing blood of pathogens and foreign particles. It has recently been shown that Kupffer cells interact with platelets, through an adhesion based mechanism, to aid in pathogen clearance and then these platelets re-enter the general systemic circulation. Thus, a mechanism has been identified that relates liver inflammation to possible changes in the systemic circulation. However, the role that Kupffer cells play in cardiovascular disease initiation/progression has not been elucidated. Thus, our objective was to determine whether or not Kupffer cells are responsive to a classical cardiovascular risk factor and if these changes can be transmitted into the general systemic circulation. If Kupffer cells initiate inflammatory responses after exposure to classical cardiovascular risk factors, then this provides a potential alternative/synergistic pathway for cardiovascular disease initiation. We aimed to elucidate the prevalence of this potential pathway. We hypothesized that Kupffer cells would initiate a robust inflammatory response after exposure to tobacco cigarette or e-cigarette products and that the inflammatory response would have the potential to antagonize other salient cells for cardiovascular disease progression. To test this, Kupffer cells were incubated with tobacco smoke extracts, e-cigarette vapor extracts or pure nicotine. Complement deposition onto Kupffer cells, Kupffer cell complement receptor expression, oxidative stress production, cytokine release and viability and density were assessed after the exposure. We observed a robust inflammatory response, oxidative stress production and cytokine release after Kupffer cells were exposed to tobacco or e-cigarette extracts. We also observed a marginal decrease in cell viability coupled with a significant decrease in cell density. In general, this was not a function of the extract formulation (e.g. tobacco vs. e-cigarette products or the formulation of the cigarette product). These results indicate that Kupffer cells are responsive to classical cardiovascular risk factors and that an inflammatory response is initiated that may pass into the general systemic circulation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Westphal, Saskia E; Apitzsch, Jonas C; Penzkofer, Tobias; Kuhl, Christiane K; Mahnken, Andreas H; Knüchel, Ruth
2014-09-01
Postmortem computed tomography (PMCT) is a modern tool that complements autopsy diagnostics. In clinical autopsies, a major cause of death is cardiovascular disease. To improve the performance of PMCT in cardiovascular disease, full body angiography was developed (PMCT angiography [PMCTA]). Twenty PMCTA scans generated before autopsy were compared with native PMCT and clinical autopsy. The objective of the study was to quantify the additional diagnostic value of adding angiography to native imaging and to compare PMCT and PMCTA findings to autopsy findings. The diagnosis of the cause of death was identical or overlapped in 80% of the cases that used PMCTA and 70% that used PMCT. The additional diagnostic yield given by PMCT and PMCTA in combination with autopsy was 55%. PMCT yielded additional diagnoses in the musculoskeletal system. The greatest additional diagnostic value of PMCTA was in association with cardiovascular diagnoses. The accuracy of PMCTA for cardiac causes of death was 80%, and the positive predictive value was 90%. The findings indicate that native PMCT cannot display the cardiovascular system sufficiently clearly for high-quality diagnostic assessment. However, PMCTA is a powerful tool in autopsy cases with a history of cardiovascular disease and/or a suspected cardiovascular cause of death. The combination of PMCTA and clinical autopsy enhances diagnostic quality and completeness of the autopsy report. Furthermore, in cases without consent or with a restricted consent for clinical autopsy, PMCTA has the potential to provide information on cardiovascular causes of death. Copyright © 2014 Elsevier Inc. All rights reserved.
A systematic review of 3-D printing in cardiovascular and cerebrovascular diseases
Sun, Zhonghua; Lee, Shen-Yuan
2017-01-01
Objective: The application of 3-D printing has been increasingly used in medicine, with research showing many applications in cardiovascular disease. This systematic review analyzes those studies published about the applications of 3-D printed, patient-specific models in cardiovascular and cerebrovascular diseases. Methods: A search of PubMed/Medline and Scopus databases was performed to identify studies investigating the 3-D printing in cardiovascular and cerebrovascular diseases. Only studies based on patient’s medical images were eligible for review, while reports on in vitro phantom or review articles were excluded. Results: A total of 48 studies met selection criteria for inclusion in the review. A range of patient-specific 3-D printed models of different cardiovascular and cerebrovascular diseases were generated in these studies with most of them being developed using cardiac CT and MRI data, less commonly with 3-D invasive angiographic or echocardiographic images. The review of these studies showed high accuracy of 3-D printed, patient-specific models to represent complex anatomy of the cardiovascular and cerebrovascular system and depict various abnormalities, especially congenital heart diseases and valvular pathologies. Further, 3-D printing can serve as a useful education tool for both parents and clinicians, and a valuable tool for pre-surgical planning and simulation. Conclusion: This systematic review shows that 3-D printed models based on medical imaging modalities can accurately replicate complex anatomical structures and pathologies of the cardiovascular and cerebrovascular system. 3-D printing is a useful tool for both education and surgical planning in these diseases. PMID:28430115
Cannabis Use: Signal of Increasing Risk of Serious Cardiovascular Disorders
Jouanjus, Emilie; Lapeyre‐Mestre, Maryse; Micallef, Joelle
2014-01-01
Background Cannabis is known to be associated with neuropsychiatric problems, but less is known about complications affecting other specified body systems. We report and analyze 35 recent remarkable cardiovascular complications following cannabis use. Methods and Results In France, serious cases of abuse and dependence in response to the use of psychoactive substances must be reported to the national system of the French Addictovigilance Network. We identified all spontaneous reports of cardiovascular complications related to cannabis use collected by the French Addictovigilance Network from 2006 to 2010. We described the clinical characteristics of these cases and their evolution: 1.8% of all cannabis‐related reports (35/1979) were cardiovascular complications, with patients being mostly men (85.7%) and of an average age of 34.3 years. There were 22 cardiac complications (20 acute coronary syndromes), 10 peripheral complications (lower limb or juvenile arteriopathies and Buerger‐like diseases), and 3 cerebral complications (acute cerebral angiopathy, transient cortical blindness, and spasm of cerebral artery). In 9 cases, the event led to patient death. Conclusions Increased reporting of cardiovascular complications related to cannabis and their extreme seriousness (with a death rate of 25.6%) indicate cannabis as a possible risk factor for cardiovascular disease in young adults, in line with previous findings. Given that cannabis is perceived to be harmless by the general public and that legalization of its use is debated, data concerning its danger must be widely disseminated. Practitioners should be aware that cannabis may be a potential triggering factor for cardiovascular complications in young people. PMID:24760961
Pahlevan, Niema M.; Tavallali, Peyman; Rinderknecht, Derek G.; Petrasek, Danny; Matthews, Ray V.; Hou, Thomas Y.; Gharib, Morteza
2014-01-01
The reductionist approach has dominated the fields of biology and medicine for nearly a century. Here, we present a systems science approach to the analysis of physiological waveforms in the context of a specific case, cardiovascular physiology. Our goal in this study is to introduce a methodology that allows for novel insight into cardiovascular physiology and to show proof of concept for a new index for the evaluation of the cardiovascular system through pressure wave analysis. This methodology uses a modified version of sparse time–frequency representation (STFR) to extract two dominant frequencies we refer to as intrinsic frequencies (IFs; ω1 and ω2). The IFs are the dominant frequencies of the instantaneous frequency of the coupled heart + aorta system before the closure of the aortic valve and the decoupled aorta after valve closure. In this study, we extract the IFs from a series of aortic pressure waves obtained from both clinical data and a computational model. Our results demonstrate that at the heart rate at which the left ventricular pulsatile workload is minimized the two IFs are equal (ω1 = ω2). Extracted IFs from clinical data indicate that at young ages the total frequency variation (Δω = ω1 − ω2) is close to zero and that Δω increases with age or disease (e.g. heart failure and hypertension). While the focus of this paper is the cardiovascular system, this approach can easily be extended to other physiological systems or any biological signal. PMID:25008087
Protein O-GlcNAcylation: a new signaling paradigm for the cardiovascular system
Laczy, Boglarka; Hill, Bradford G.; Wang, Kai; Paterson, Andrew J.; White, C. Roger; Xing, Dongqi; Chen, Yiu-Fai; Darley-Usmar, Victor; Oparil, Suzanne; Chatham, John C.
2009-01-01
The posttranslational modification of serine and threonine residues of nuclear and cytoplasmic proteins by the O-linked attachment of the monosaccharide β-N-acetylglucosamine (O-GlcNAc) is a highly dynamic and ubiquitous protein modification. Protein O-GlcNAcylation is rapidly emerging as a key regulator of critical biological processes including nuclear transport, translation and transcription, signal transduction, cytoskeletal reorganization, proteasomal degradation, and apoptosis. Increased levels of O-GlcNAc have been implicated as a pathogenic contributor to glucose toxicity and insulin resistance, which are both major hallmarks of diabetes mellitus and diabetes-related cardiovascular complications. Conversely, there is a growing body of data demonstrating that the acute activation of O-GlcNAc levels is an endogenous stress response designed to enhance cell survival. Reports on the effect of altered O-GlcNAc levels on the heart and cardiovascular system have been growing rapidly over the past few years and have implicated a role for O-GlcNAc in contributing to the adverse effects of diabetes on cardiovascular function as well as mediating the response to ischemic injury. Here, we summarize our present understanding of protein O-GlcNAcylation and its effect on the regulation of cardiovascular function. We examine the pathways regulating protein O-GlcNAcylation and discuss, in more detail, our understanding of the role of O-GlcNAc in both mediating the adverse effects of diabetes as well as its role in mediating cellular protective mechanisms in the cardiovascular system. In addition, we also explore the parallels between O-GlcNAc signaling and redox signaling, as an alternative paradigm for understanding the role of O-GlcNAcylation in regulating cell function. PMID:19028792
Li, Yan; Zhao, Ziqi; Cai, Jiajia; Gu, Boya; Lv, Yuanyuan; Zhao, Li
2017-01-01
A decline in cardiovascular modulation is a feature of the normal aging process and associated with cardiovascular diseases (CVDs) such as hypertension and stroke. Exercise training is known to promote cardiovascular adaptation in young animals and positive effects on motor and cognitive capabilities, as well as on brain plasticity for all ages in mice. Here, we examine the question of whether aerobic exercise interventions may impact the GABAergic neurons of the paraventricular nucleus (PVN) in aged rats which have been observed to have a decline in cardiovascular integration function. In the present study, young (2 months) and old (24 months) male Wistar rats were divided into young control (YC), old sedentary, old low frequency exercise (20 m/min, 60 min/day, 3 days/week, 12 weeks) and old high frequency exercise (20 m/min, 60 min/day, 5 days/week, 12 weeks). Exercise training indexes were obtained, including resting heart rate (HR), blood pressure (BP), plasma norepinephrine (NE), and heart weight (HW)-to-body weight (BW) ratios. The brain was removed and processed according to the immunofluorescence staining and western blot used to analyze the GABAergic terminal density, the proteins of GAD67, GABAA receptor and gephyrin in the PVN. There were significant changes in aged rats compared with those in the YC. Twelve weeks aerobic exercise training has volume-dependent ameliorated effects on cardiovascular parameters, autonomic nervous activities and GABAergic system functions. These data suggest that the density of GABAergic declines in the PVN is associated with imbalance in autonomic nervous activities in normal aging. Additionally, aerobic exercise can rescue aging-related an overactivity of the sympathetic nervous system and induces modifications the resting BP and HR to lower values via improving the GABAergic system in the PVN. PMID:28713263
Direct cardiovascular impact of SGLT2 inhibitors: mechanisms and effects.
Kaplan, Abdullah; Abidi, Emna; El-Yazbi, Ahmed; Eid, Ali; Booz, George W; Zouein, Fouad A
2018-05-01
Diabetes is a global epidemic and a leading cause of death with more than 422 million patients worldwide out of whom around 392 million alone suffer from type 2 diabetes (T2D). Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are novel and effective drugs in managing glycemia of T2D patients. These inhibitors gained recent clinical and basic research attention due to their clinically observed cardiovascular protective effects. Although interest in the study of various SGLT isoforms and the effect of their inhibition on cardiovascular function extends over the past 20 years, an explanation of the effects observed clinically based on available experimental data is not forthcoming. The remarkable reduction in cardiovascular (CV) mortality (38%), major CV events (14%), hospitalization for heart failure (35%), and death from any cause (32%) observed over a period of 2.6 years in patients with T2D and high CV risk in the EMPA-REG OUTCOME trial involving the SGLT2 inhibitor empagliflozin (Empa) have raised the possibility that potential novel, more specific mechanisms of SGLT2 inhibition synergize with the known modest systemic improvements, such as glycemic, body weight, diuresis, and blood pressure control. Multiple studies investigated the direct impact of SGLT2i on the cardiovascular system with limited findings and the pathophysiological role of SGLTs in the heart. The direct impact of SGLT2i on cardiac homeostasis remains controversial, especially that SGLT1 isoform is the only form expressed in the capillaries and myocardium of human and rodent hearts. The direct impact of SGLT2i on the cardiovascular system along with potential lines of future research is summarized in this review.
Epidemiologic studies have suggested factors in drinking water influence on the human cardiovascular system. A clear identification of the factors involved requires more invasive techniques and more strict experimental controls than can usually be applied in epidemiologic studies...
Gomes, Clarissa P C; de Gonzalo-Calvo, David; Toro, Rocio; Fernandes, Tiago; Theisen, Daniel; Wang, Da-Zhi; Devaux, Yvan
2018-05-23
There is overwhelming evidence that regular exercise training is protective against cardiovascular disease (CVD), the main cause of death worldwide. Despite the benefits of exercise, the intricacies of their underlying molecular mechanisms remain largely unknown. Non-coding RNAs (ncRNAs) have been recognized as a major regulatory network governing gene expression in several physiological processes and appeared as pivotal modulators in a myriad of cardiovascular processes under physiological and pathological conditions. However, little is known about ncRNA expression and role in response to exercise. Revealing the molecular components and mechanisms of the link between exercise and health outcomes will catalyse discoveries of new biomarkers and therapeutic targets. Here we review the current understanding of the ncRNA role in exercise-induced adaptations focused on the cardiovascular system and address their potential role in clinical applications for CVD. Finally, considerations and perspectives for future studies will be proposed. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Rollinson, Kirsty; Jones, Jenny; Scott, Norma; Megson, Ian L; Leslie, Stephen J
2016-02-01
Reflexology is a widely used complementary therapy. The effects of reflexology on the cardiovascular system are not well characterised. Arterial stiffness (compliance) is a marker of vascular health. This study aimed to evaluate the effects of reflexology on arterial compliance in healthy volunteers. 12 healthy volunteers (1 male; 11 female; mean age 44.8 ± 10.8 yrs) received 10 min of reflexology on each foot in a single-blind randomised study. The main outcome measures were measurements of cardiovascular parameters including heart rate, blood pressure and arterial compliance (augmentation index). Reflexology had no significant effect on heart rate, blood pressure or augmentation index (all p > 0.05). In healthy volunteers, there were no consistent changes in haemodynamic parameters with a single brief reflexology treatment. Thus from a cardiovascular point of view, reflexology (as delivered) would appear to have a limited (if any) effect on the cardiovascular system. Copyright © 2015 Elsevier Ltd. All rights reserved.
Understanding the impact of hypoglycemia on the cardiovascular system
Davis, Ian Charles; Ahmadizadeh, Ida; Randell, Jacqueline; Younk, Lisa; Davis, Stephen N
2017-01-01
Introduction Hypoglycemia occurs commonly in insulin requiring individuals with either Type 1 or Type 2 Diabetes. Areas Covered This article will review recent information on the pro-inflammatory and pro-atherothrombotic effects of hypoglycemia. Additionally, effects of hypoglycemia on arrhythmogenic potential and arterial endothelial dysfunction will be discussed. Effects of hypoglycemia on cardiovascular morbidity and mortality from large clinical studies in Type 1 and Type 2 DM will also be reviewed. Expert Commentary The relative and absolute risk of severe hypoglycemia leading to death and serious adverse events in both cardiovascular and other organ systems has been highlighted following the publication of recent large clinical trials focused on glucose control and outcomes. It would be helpful if future studies could develop broader end points to include minor and moderate hypoglycemia as well as more robust methods for capturing hypoglycemia contemporaneously with adverse events. In addition, perhaps consideration of including hypoglycemia as a primary outcome, may help identify the possible cause and effect of hypoglycemia on cardiovascular morbidity and mortality. PMID:29109754
Live dynamic analysis of the developing cardiovascular system in mice
NASA Astrophysics Data System (ADS)
Lopez, Andrew L.; Wang, Shang; Larin, Kirill V.; Larina, Irina V.
2017-02-01
The study of the developing cardiovascular system in mice is important for understanding human cardiogenesis and congenital heart defects. Our research focuses on imaging early development in the mouse embryo to specifically understand cardiovascular development under the regulation of dynamic factors like contractile force and blood flow using optical coherence tomography (OCT). We have previously developed an OCT based approach that combines static embryo culture and advanced image processing with computational modeling to live-image mouse embryos and obtain 4D (3D+time) cardiodynamic datasets. Here we present live 4D dynamic blood flow imaging of the early embryonic mouse heart in correlation with heart wall movement. We are using this approach to understand how specific mutations impact heart wall dynamics, and how this influences flow patterns and cardiogenesis. We perform studies in mutant embryos with cardiac phenotypes such as myosin regulatory light chain 2, atrial isoform (Mlc2a). This work is brings us closer to understanding the connections between dynamic mechanical factors and gene programs responsible for early cardiovascular development.
Kanegusuku, Hélcio; Queiroz, Andréia C; Silva, Valdo J; de Mello, Marco T; Ugrinowitsch, Carlos; Forjaz, Cláudia L
2015-07-01
The effects of high-intensity progressive resistance training (HIPRT) on cardiovascular function and autonomic neural regulation in older adults are unclear. To investigate this issue, 25 older adults were randomly divided into two groups: control (CON, N = 13, 63 ± 4 years; no training) and HIPRT (N = 12, 64 ± 4 years; 2 sessions/week, 7 exercises, 2–4 sets, 10–4 RM). Before and after four months, maximal strength, quadriceps cross-sectional area (QCSA), clinic and ambulatory blood pressures (BP), systemic hemodynamics, and cardiovascular autonomic modulation were measured. Maximal strength and QCSA increased in the HIPRT group and did not change in the CON group. Clinic and ambulatory BP, cardiac output, systemic vascular resistance, stroke volume, heart rate, and cardiac sympathovagal balance did not change in the HIPRT group or the CON group. In conclusion, HIPRT was effective at increasing muscle mass and strength without promoting changes in cardiovascular function or autonomic neural regulation.
A Comparative Anatomic and Physiologic Overview of the Porcine Heart
Lelovas, Pavlos P; Kostomitsopoulos, Nikolaos G; Xanthos, Theodoros T
2014-01-01
Despite advances during the last 2 decades in every aspect of cardiovascular research (interventional cardiology, cardiopulmonary resuscitation, and so forth), Western societies still are plagued by the consequences of cardiovascular disease. Consequently the discovery of new regimens and therapeutic interventions is of utmost importance. Research using human subjects is associated with substantial methodologic and ethical considerations, and the quest for an appropriate animal model for the human cardiovascular system has led to swine. The porcine heart bears a close resemblance to the human heart in terms of its coronary circulation and hemodynamic similarities and offers ease of implementation of methods and devices from human healthcare facilities. A thorough comprehension of the anatomy and physiology of the porcine cardiovascular system should focus on differences between swine and humans as well as similarities. Understanding these differences and similarities is essential to extrapolating data appropriately and to addressing the social demand for the ethical use of animals in biomedical research. PMID:25255064
Tsukamoto, Osamu; Kitakaze, Masafumi
2013-04-01
More than a century has passed since the renin-angiotensin-aldosterone system (RAAS) was discovered in 1897. Both circulatory and tissue RAAS have been found to be essential for regulation of the functions of the whole body, organs, tissues and cells. There is no doubt that the RAAS plays fundamental physiological roles in maintaining homeostasis, but it can also contribute to organ pathophysiology and tissue damages in some situations. Today, the usefulness of RAAS blockade is well-established in the management of a variety of cardiovascular disorders worldwide. However, the latest findings in this field are still providing us with new and unexpected insights into the pathophysiology of cardiovascular diseases. Such developments include dual blockade therapy with angiotensin I converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs), and a new class of RAAS blockers, renin inhibitors. These give us the opportunity to revisit the basic principles of the RAAS and reconsider the strategies of RAAS blockade for cardiovascular protection.
Isolated heart models: cardiovascular system studies and technological advances.
Olejnickova, Veronika; Novakova, Marie; Provaznik, Ivo
2015-07-01
Isolated heart model is a relevant tool for cardiovascular system studies. It represents a highly reproducible model for studying broad spectrum of biochemical, physiological, morphological, and pharmaceutical parameters, including analysis of intrinsic heart mechanics, metabolism, and coronary vascular response. Results obtained in this model are under no influence of other organ systems, plasma concentration of hormones or ions and influence of autonomic nervous system. The review describes various isolated heart models, the modes of heart perfusion, and advantages and limitations of various experimental setups. It reports the improvements of perfusion setup according to Langendorff introduced by the authors.
An object-oriented, knowledge-based system for cardiovascular rehabilitation--phase II.
Ryder, R. M.; Inamdar, B.
1995-01-01
The Heart Monitor is an object-oriented, knowledge-based system designed to support the clinical activities of cardiovascular (CV) rehabilitation. The original concept was developed as part of graduate research completed in 1992. This paper describes the second generation system which is being implemented in collaboration with a local heart rehabilitation program. The PC UNIX-based system supports an extensive patient database organized by clinical areas. In addition, a knowledge base is employed to monitor patient status. Rule-based automated reasoning is employed to assess risk factors contraindicative to exercise therapy and to monitor administrative and statutory requirements. PMID:8563285
Neural crest contribution to the cardiovascular system.
Brown, Christopher B; Baldwin, H Scott
2006-01-01
Normal cardiovascular development requires complex remodeling of the outflow tract and pharyngeal arch arteries to create the separate pulmonic and systemic circulations. During remodeling, the outflow tract is septated to form the ascending aorta and the pulmonary trunk. The initially symmetrical pharyngeal arch arteries are remodeled to form the aortic arch, subclavian and carotid arteries. Remodeling is mediated by a population of neural crest cells arising between the mid-otic placode and somite four called the cardiac neural crest. Cardiac neural crest cells form smooth muscle and pericytes in the great arteries, and the neurons of cardiac innervation. In addition to the physical contribution of smooth muscle to the cardiovascular system, cardiac neural crest cells also provide signals required for the maintenance and differentiation of the other cell layers in the pharyngeal apparatus. Reciprocal signaling between the cardiac neural crest cells and cardiogenic mesoderm of the secondary heart field is required for elaboration of the conotruncus and disruption in this signaling results in primary myocardial dysfunction. Cardiovascular defects attributed to the cardiac neural crest cells may reflect either cell autonomous defects in the neural crest or defects in signaling between the neural crest and adjacent cell layers.
Cardiovascular and fluid volume control in humans in space.
Norsk, Peter
2005-08-01
The human cardiovascular system and regulation of fluid volume are heavily influenced by gravity. When decreasing the effects of gravity in humans such as by anti-orthostatic posture changes or immersion into water, venous return is increased by some 25%. This leads to central blood volume expansion, which is accompanied by an increase in renal excretion rates of water and sodium. The mechanisms for the changes in renal excretory rates include a complex interaction of cardiovascular reflexes, neuroendocrine variables, and physical factors. Weightlessness is unique to obtain more information on this complex interaction, because it is the only way to completely abolish the effects of gravity over longer periods. Results from space have been unexpected, because astronauts exhibit a fluid and sodium retaining state with activation of the sympathetic nervous system, which subjects during simulations by head-down bed rest do not. Therefore, the concept as to how weightlessness affects the cardiovascular system and modulates regulation of body fluids should be revised and new simulation models developed. Knowledge as to how gravity and weightlessness modulate integrated fluid volume control is of importance for understanding pathophysiology of heart failure, where gravity plays a strong role in fluid and sodium retention.
The sex differences in nature of vascular endothelial stress: nitrergic mechanisms
NASA Astrophysics Data System (ADS)
Sindeev, Sergey; Gekaluyk, Artem; Ulanova, Maria; Agranovich, Ilana; Sharref, Ali Esmat; Semyachkina-Glushkovskaya, Oxana
2016-04-01
Here we studied the role of nitric oxide in cardiovascular regulation in male and female hypertensive rats under normal and stress conditions. We found that the severity of hypertension in females was lower than in males. Hypertensive females demonstrated more favorable pattern of cardiovascular responses to stress. Nitric oxide blockade by NG-nitro-L-arginine methyl ester (L-NAME) increased the mean arterial pressure and decreased the heart rate more effectively in females than in males. During stress, L-NAME modified the stress-induced cardiovascular responses more significantly in female compared with male groups. Our data show that hypertensive females demonstrated the more effective nitric oxide control of cardiovascular activity under normal and especially stress conditions than male groups. This sex differences may be important mechanism underlying greater in females vs. males stress-resistance of cardiovascular system and hypertension formation.
Hassani, Kamran; Navidbakhsh, Mahdi; Rostami, Mostafa
2007-01-01
Background The aortic aneurysm is a dilatation of the aortic wall which occurs in the saccular and fusiform types. The aortic aneurysms can rupture, if left untreated. The renal stenosis occurs when the flow of blood from the arteries leading to the kidneys is constricted by atherosclerotic plaque. This narrowing may lead to the renal failure. Previous works have shown that, modelling is a useful tool for understanding of cardiovascular system functioning and pathophysiology of the system. The present study is concerned with the modelling of aortic aneurysms and renal artery stenosis using the cardiovascular electronic system. Methods The geometrical models of the aortic aneurysms and renal artery stenosis, with different rates, were constructed based on the original anatomical data. The pressure drop of each section due to the aneurysms or stenosis was computed by means of computational fluid dynamics method. The compliance of each section with the aneurysms or stenosis is also calculated using the mathematical method. An electrical system representing the cardiovascular circulation was used to study the effects of these pressure drops and the compliance variations on this system. Results The results showed the decreasing of pressure along the aorta and renal arteries lengths, due to the aneurysms and stenosis, at the peak systole. The mathematical method demonstrated that compliances of the aorta sections and renal increased with the expansion rate of the aneurysms and stenosis. The results of the modelling, such as electrical pressure graphs, exhibited the features of the pathologies such as hypertension and were compared with the relevant experimental data. Conclusion We conclude from the study that the aortic aneurysms as well as renal artery stenosis may be the most important determinant of the arteries rupture and failure. Furthermore, these pathologies play important rules in increase of the cardiovascular pulse pressure which leads to the hypertension. PMID:17559685
The medical story. [Skylab program
NASA Technical Reports Server (NTRS)
Johnston, R. S.; Dietlein, L. F.; Michel, E. L.
1974-01-01
An overview of the Skylab medical program is given. All medical subsystems provided in the orbital workshop functioned satisfactorily. Major systems included the food system, the waste management system, and provisions per personal hygiene. A series of lockers in the wardroom was used to stow the inflight medical support system. Cardiovascular counter pressure garments were launched in the orbital workshop for all three crews. Life services experiments were carried out. Two experiments were conducted in the Skylab missions to study the performance of the cardiovascular system during weightless flight and return to earth and the one g environment. A series of experiments was conducted to study mineral balance and the bioassay of body fluids.
Magnesium and cardiovascular complications of chronic kidney disease.
Massy, Ziad A; Drüeke, Tilman B
2015-07-01
Cardiovascular complications are the leading cause of death in patients with chronic kidney disease (CKD). Abundant experimental evidence suggests a physiological role of magnesium in cardiovascular function, and clinical evidence suggests a role of the cation in cardiovascular disease in the general population. The role of magnesium in CKD-mineral and bone disorder, and in particular its impact on cardiovascular morbidity and mortality in patients with CKD, is however not well understood. Experimental studies have shown that magnesium inhibits vascular calcification, both by direct effects on the vessel wall and by indirect, systemic effects. Moreover, an increasing number of epidemiologic studies in patients with CKD have shown associations of serum magnesium levels with intermediate and hard outcomes, including vascular calcification, cardiovascular events and mortality. Intervention trials in these patients conducted to date have had small sample sizes and have been limited to the study of surrogate parameters, such as arterial stiffness, vascular calcification and atherosclerosis. Randomized controlled trials are clearly needed to determine the effects of magnesium supplementation on hard outcomes in patients with CKD.
Promoting cardiovascular health worldwide: strategies, challenges, and opportunities.
Castellano, José M; Narula, Jagat; Castillo, Javier; Fuster, Valentín
2014-09-01
Cardiovascular disease is the leading cause of death in the world, affecting not only industrialized but, above all, low- and middle-income countries, where it has overtaken infectious diseases as the first cause of death and its impact threatens social and economic development. The increased prevalence of cardiovascular disease in recent years together with projected mortality for the coming decades constitute an irrefutable argument for the urgent implementation of well-planned interventions to control the pandemic of cardiovascular diseases, especially in the more economically deprived countries. The combination of behavioral, social, environmental, and biological factors, and others related to health care systems, that contribute to the development of cardiovascular diseases requires a multi-sector strategy that promotes a healthy lifestyle, reduces cardiovascular risk factors, and cuts mortality and morbidity through quality health care services. These proposals should be guided by leaders in the scientific community, government, civil society, private sector, and local communities. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.
Tu, Jack V; Maclagan, Laura C; Ko, Dennis T; Atzema, Clare L; Booth, Gillian L; Johnston, Sharon; Tu, Karen; Lee, Douglas S; Bierman, Arlene; Hall, Ruth; Bhatia, R Sacha; Gershon, Andrea S; Tobe, Sheldon W; Sanmartin, Claudia; Liu, Peter; Chu, Anna
2017-04-25
High-quality ambulatory care can reduce cardiovascular disease risk, but important gaps exist in the provision of cardiovascular preventive care. We sought to develop a set of key performance indicators that can be used to measure and improve cardiovascular care in the primary care setting. As part of the Cardiovascular Health in Ambulatory Care Research Team initiative, we established a 14-member multidisciplinary expert panel to develop a set of indicators for measuring primary prevention performance in ambulatory cardiovascular care. We used a 2-stage modified Delphi panel process to rate potential indicators, which were identified from the literature and national cardiovascular organizations. The top-rated indicators were pilot tested to determine their measurement feasibility with the use of data routinely collected in the Canadian health care system. A set of 28 indicators of primary prevention performance were identified, which were grouped into 5 domains: risk factor prevalence, screening, management, intermediate outcomes and long-term outcomes. The indicators reflect the major cardiovascular risk factors including smoking, obesity, hypertension, diabetes, dyslipidemia and atrial fibrillation. All indicators were determined to be amenable to measurement with the use of population-based administrative (physician claims, hospital admission, laboratory, medication), survey or electronic medical record databases. The Cardiovascular Health in Ambulatory Care Research Team indicators of primary prevention performance provide a framework for the measurement of cardiovascular primary prevention efforts in Canada. The indicators may be used by clinicians, researchers and policy-makers interested in measuring and improving the prevention of cardiovascular disease in ambulatory care settings. Copyright 2017, Joule Inc. or its licensors.
Review: nanoparticles in delivery of cardiovascular drugs.
Arayne, M Saeed; Sultana, Najma; Qureshi, Faiza
2007-10-01
Everything in nature is built upward from the atomic level to define limits and structures to everything. Nanomedicines marked the field of medicine from nanobiotechnology, biological micro-electromechanical systems, microfluidics, biosensors, drug delivery, microarrays to tissue microengineering. Since then nanoparticles has overcome many challenges from blood brain barrier to targeting tumors. Where solid biodegradable nanoparticles were a step up liposome, targeting nanoparticles opened a whole new field for drug delivery. In this article, we attempt to discuss how the pioneered technique is serving in the drug delivery to cardiovascular system and how with the manipulation of their properties, nanoparticles can be made to fulfill desired function. Also how nanocarriers are improving molecular imaging to help improve diagnosis and treatment of cardiovascular disease is focused in this article.
Salt, Ian P; Hardie, D Grahame
2017-05-26
The AMP-activated protein kinase (AMPK) is a key regulator of cellular and whole-body energy homeostasis, which acts to restore energy homoeostasis whenever cellular energy charge is depleted. Over the last 2 decades, it has become apparent that AMPK regulates several other cellular functions and has specific roles in cardiovascular tissues, acting to regulate cardiac metabolism and contractile function, as well as promoting anticontractile, anti-inflammatory, and antiatherogenic actions in blood vessels. In this review, we discuss the role of AMPK in the cardiovascular system, including the molecular basis of mutations in AMPK that alter cardiac physiology and the proposed mechanisms by which AMPK regulates vascular function under physiological and pathophysiological conditions. © 2017 American Heart Association, Inc.
Recent findings in cardiovascular physiology with space travel.
Hughson, Richard L
2009-10-01
The cardiovascular system undergoes major changes in stress with space flight primarily related to the elimination of the head-to-foot gravitational force. A major observation has been that the central venous pressure is not elevated early in space flight yet stroke volume is increased at least early in flight. Recent observations demonstrate that heart rate remains lower during the normal daily activities of space flight compared to Earth-based conditions. Structural and functional adaptations occur in the vascular system that could result in impaired response with demands of physical exertion and return to Earth. Cardiac muscle mass is reduced after flight and contractile function may be altered. Regular and specific countermeasures are essential to maintain cardiovascular health during long-duration space flight.
Biogenic Aldehydes as Therapeutic Targets for Cardiovascular Disease
Nelson, Margaret-Ann M; Baba, Shahid P; Andersonc, Ethan J
2017-01-01
Aldehydes are continuously formed in biological systems through enzyme-dependent and spontaneous oxidation of lipids, glucose, and primary amines. These highly reactive, biogenic electrophiles can become toxic via covalent modification of proteins, lipids and DNA. Thus, agents that scavenge aldehydes through conjugation have therapeutic value for a number of major cardiovascular diseases. Several commonly-prescribed drugs (e.g., hydralazine) have been shown to have potent aldehyde-conjugating properties which may contribute to their beneficial effects. Herein, we briefly describe the major sources and toxicities of biogenic aldehydes in cardiovascular system, and provide an overview of drugs that are known to have aldehyde-conjugating effects. Some compounds of phytochemical origin, and histidyl-dipeptides with emerging therapeutic value in this area are also discussed. PMID:28528297
AT1 receptor signaling pathways in the cardiovascular system.
Kawai, Tatsuo; Forrester, Steven J; O'Brien, Shannon; Baggett, Ariele; Rizzo, Victor; Eguchi, Satoru
2017-11-01
The importance of the renin angiotensin aldosterone system in cardiovascular physiology and pathophysiology has been well described whereas the detailed molecular mechanisms remain elusive. The angiotensin II type 1 receptor (AT1 receptor) is one of the key players in the renin angiotensin aldosterone system. The AT1 receptor promotes various intracellular signaling pathways resulting in hypertension, endothelial dysfunction, vascular remodeling and end organ damage. Accumulating evidence shows the complex picture of AT1 receptor-mediated signaling; AT1 receptor-mediated heterotrimeric G protein-dependent signaling, transactivation of growth factor receptors, NADPH oxidase and ROS signaling, G protein-independent signaling, including the β-arrestin signals and interaction with several AT1 receptor interacting proteins. In addition, there is functional cross-talk between the AT1 receptor signaling pathway and other signaling pathways. In this review, we will summarize an up to date overview of essential AT1 receptor signaling events and their functional significances in the cardiovascular system. Copyright © 2017 Elsevier Ltd. All rights reserved.
SAP: structure, function, and its roles in immune-related diseases.
Xi, Dan; Luo, TianTian; Xiong, Haowei; Liu, Jichen; Lu, Hao; Li, Menghao; Hou, Yuqing; Guo, Zhigang
2015-01-01
Serum amyloid P component (SAP), also known as pentraxin-2, is a member of the pentraxin protein family with an established relationship to the immune response. In the last century, SAP has been used as a diagnostic marker in amyloidosis diagnosis and patient follow-up. SAP has been thought to have potential for treating and curing amyloidosis and fibrosis diseases. More recently, it has been shown that SAP may serve as both a diagnostic marker and a therapeutic target for many immune-related diseases, such as cardiovascular, pulmonary, nephritic, neurological and autoimmune diseases. In the cardiovascular system, SAP has been defined as the culprit in amyloidosis in the heart. SAP may also exert a protective role during the early stage of atherosclerosis and myocardial fibrosis. In noncardiovascular system diseases, SAP is being developed for the treatment of pulmonary fibrosis. In this review, we summarize SAP history, structure, and its roles in immune-related diseases in different systems with emphasis on the cardiovascular system. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Lin, Jou-Wei; Yang, Chen-Wei
2010-01-01
The objective of this study was to develop and validate an automated acquisition system to assess quality of care (QC) measures for cardiovascular diseases. This system combining searching and retrieval algorithms was designed to extract QC measures from electronic discharge notes and to estimate the attainment rates to the current standards of care. It was developed on the patients with ST-segment elevation myocardial infarction and tested on the patients with unstable angina/non-ST-segment elevation myocardial infarction, both diseases sharing almost the same QC measures. The system was able to reach a reasonable agreement (κ value) with medical experts from 0.65 (early reperfusion rate) to 0.97 (β-blockers and lipid-lowering agents before discharge) for different QC measures in the test set, and then applied to evaluate QC in the patients who underwent coronary artery bypass grafting surgery. The result has validated a new tool to reliably extract QC measures for cardiovascular diseases. PMID:20442141
NASA Technical Reports Server (NTRS)
Hooker, John C.
1990-01-01
A preliminary study of the applicability of nonlinear dynamic systems analysis techniques to low body negative pressure (LBNP) studies. In particular, the applicability of the heart rate delay map is investigated. It is suggested that the heart rate delay map has potential as a supplemental tool in the assessment of subject performance in LBNP tests and possibly in the determination of susceptibility to cardiovascular deconditioning with spaceflight.
Estrogen, Angiogenesis, Immunity and Cell Metabolism: Solving the Puzzle.
Trenti, Annalisa; Tedesco, Serena; Boscaro, Carlotta; Trevisi, Lucia; Bolego, Chiara; Cignarella, Andrea
2018-03-15
Estrogen plays an important role in the regulation of cardiovascular physiology and the immune system by inducing direct effects on multiple cell types including immune and vascular cells. Sex steroid hormones are implicated in cardiovascular protection, including endothelial healing in case of arterial injury and collateral vessel formation in ischemic tissue. Estrogen can exert potent modulation effects at all levels of the innate and adaptive immune systems. Their action is mediated by interaction with classical estrogen receptors (ERs), ERα and ERβ, as well as the more recently identified G-protein coupled receptor 30/G-protein estrogen receptor 1 (GPER1), via both genomic and non-genomic mechanisms. Emerging data from the literature suggest that estrogen deficiency in menopause is associated with an increased potential for an unresolved inflammatory status. In this review, we provide an overview through the puzzle pieces of how 17β-estradiol can influence the cardiovascular and immune systems.
Effect of overtime work on 24-hour ambulatory blood pressure.
Hayashi, T; Kobayashi, Y; Yamaoka, K; Yano, E
1996-10-01
Recently, the adverse effects of long working hours on the cardiovascular systems of workers in Japan, including "Karoshi" (death from overwork), have been the focus of social concern. However, conventional methods of health checkups are often unable to detect the early signs of such adverse effects. To evaluate the influence of overtime work on the cardiovascular system, we compared 24-hour blood pressure measurements among several groups of male white-collar workers. As a result, for those with normal blood pressure and those with mild hypertension, the 24-hour average blood pressure of the overtime groups was higher than that of the control groups; for those who periodically did overtime work, the 24-hour average blood pressure and heart rate during the busy period increased. These results indicate that the burden on the cardiovascular system of white-collar workers increases with overtime work.
Maffiodo, Daniela; De Nisco, Giuseppe; Gallo, Diego; Audenino, Alberto; Morbiducci, Umberto; Ferraresi, Carlo
2016-04-01
This work investigates the effect that the application of intermittent pneumatic compression to lower limbs has on the cardiovascular system. Intermittent pneumatic compression can be applied to subjects with reduced or null mobility and can be useful for therapeutic purposes in sports recovery, deep vein thrombosis prevention and lymphedema drainage. However, intermittent pneumatic compression performance and the effectiveness are often difficult to predict. This study presents a reduced-order numerical model of the interaction between the cardiovascular system and the intermittent pneumatic compression device. The effect that different intermittent pneumatic compression operating conditions have on the overall circulation is investigated. Our findings confirm (1) that an overall positive effect on hemodynamics can be obtained by properly applying the intermittent pneumatic compression device and (2) that using intermittent pneumatic compression for cardiocirculatory recovery is feasible in subjects affected by lower limb disease. © IMechE 2016.
EGFR transactivation: mechanisms, pathophysiology and potential therapies in cardiovascular system
Forrester, Steven J.; Kawai, Tatsuo; Elliott, Katherine J.; O’Brien, Shannon; Thomas, Walter; Harris, Raymond C.; Eguchi, Satoru
2017-01-01
Accumulating studies suggest that the epidermal growth factor receptor (EGFR) activation is associated with the physiology and pathophysiology of the cardiovascular system, and inhibition of EGFR activity is emerging as a potential therapeutic strategy to treat diseases, including hypertension, cardiac hypertrophy, renal fibrosis and abdominal aortic aneurysm. The capacity of G protein-coupled receptor (GPCR) agonists, such as angiotensin II (AngII), to promote EGFR signaling is well described – a process termed EGFR “transactivation” – yet delineating the molecular processes and functional relevance of this crosstalk has been challenging. Moreover, these critical findings are dispersed among many different fields. The aim of our review is to highlight the recent advancement of the signaling cascades and downstream consequences of EGFR transactivation within the cardiovascular renal system in vitro and in vivo. We will also focus on linking EGFR transactivation to animal models of the disease as well as the potential therapeutic applications. PMID:26566153
KATP Channels in the Cardiovascular System
Foster, Monique N.; Coetzee, William A.
2015-01-01
KATP channels are integral to the functions of many cells and tissues. The use of electrophysiological methods has allowed for a detailed characterization of KATP channels in terms of their biophysical properties, nucleotide sensitivities, and modification by pharmacological compounds. However, even though they were first described almost 25 years ago (Noma 1983, Trube and Hescheler 1984), the physiological and pathophysiological roles of these channels, and their regulation by complex biological systems, are only now emerging for many tissues. Even in tissues where their roles have been best defined, there are still many unanswered questions. This review aims to summarize the properties, molecular composition, and pharmacology of KATP channels in various cardiovascular components (atria, specialized conduction system, ventricles, smooth muscle, endothelium, and mitochondria). We will summarize the lessons learned from available genetic mouse models and address the known roles of KATP channels in cardiovascular pathologies and how genetic variation in KATP channel genes contribute to human disease. PMID:26660852
Kulhánek, Tomáš; Kofránek, Jiří; Mateják, Marek
2014-11-01
This letter introduces an alternative approach to modeling the cardiovascular system with a short-term control mechanism published in Computers in Biology and Medicine, Vol. 47 (2014), pp. 104-112. We recommend using abstract components on a distinct physical level, separating the model into hydraulic components, subsystems of the cardiovascular system and individual subsystems of the control mechanism and scenario. We recommend utilizing an acausal modeling feature of Modelica language, which allows model variables to be expressed declaratively. Furthermore, the Modelica tool identifies which are the dependent and independent variables upon compilation. An example of our approach is introduced on several elementary components representing the hydraulic resistance to fluid flow and the elastic response of the vessel, among others. The introduced model implementation can be more reusable and understandable for the general scientific community. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bonafede, Roberto; Manucha, Walter
As a prevalent cardiovascular disease, heart failure is one of the leading causes of morbidity and premature mortality. Therefore, there is a special interest in the study of efficient markers associated with risk and / or prediction of cardiovascular events. Multiple candidates are proposed, especially those involved in oxidative and inflammatory processes typical of cardiovascular disease, such as superoxide anion, nitric oxide, and peroxynitrite. There is a lack of knowledge on the potential usefulness of these systems as biomarkers. This review aims to contribute to a better understanding of these systems, as well as an improved patient profile. Furthermore, a deep knowledge of these complex systems would also allow proposing new lines of research for the development of new therapeutic tools as a promising start for new approaches to this disease. Copyright © 2018 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.
Sasaki, T; Iwasaki, K; Oka, T; Hisanaga, N
1999-10-01
A field survey of 278 engineers (20-59 years) in a machinery manufacturing company was conducted to investigate the association of working hours with biological indices related to the cardiovascular system (heart rate variability, blood pressure and serum levels of magnesium, dehydroepiandrosterone sulfate
Toxic Effects of Mercury on the Cardiovascular and Central Nervous Systems
Fernandes Azevedo, Bruna; Barros Furieri, Lorena; Peçanha, Franck Maciel; Wiggers, Giulia Alessandra; Frizera Vassallo, Paula; Ronacher Simões, Maylla; Fiorim, Jonaina; Rossi de Batista, Priscila; Fioresi, Mirian; Rossoni, Luciana; Stefanon, Ivanita; Alonso, María Jesus; Salaices, Mercedes; Valentim Vassallo, Dalton
2012-01-01
Environmental contamination has exposed humans to various metal agents, including mercury. This exposure is more common than expected, and the health consequences of such exposure remain unclear. For many years, mercury was used in a wide variety of human activities, and now, exposure to this metal from both natural and artificial sources is significantly increasing. Many studies show that high exposure to mercury induces changes in the central nervous system, potentially resulting in irritability, fatigue, behavioral changes, tremors, headaches, hearing and cognitive loss, dysarthria, incoordination, hallucinations, and death. In the cardiovascular system, mercury induces hypertension in humans and animals that has wide-ranging consequences, including alterations in endothelial function. The results described in this paper indicate that mercury exposure, even at low doses, affects endothelial and cardiovascular function. As a result, the reference values defining the limits for the absence of danger should be reduced. PMID:22811600
Review of Zero-D and 1-D Models of Blood Flow in the Cardiovascular System
2011-01-01
Background Zero-dimensional (lumped parameter) and one dimensional models, based on simplified representations of the components of the cardiovascular system, can contribute strongly to our understanding of circulatory physiology. Zero-D models provide a concise way to evaluate the haemodynamic interactions among the cardiovascular organs, whilst one-D (distributed parameter) models add the facility to represent efficiently the effects of pulse wave transmission in the arterial network at greatly reduced computational expense compared to higher dimensional computational fluid dynamics studies. There is extensive literature on both types of models. Method and Results The purpose of this review article is to summarise published 0D and 1D models of the cardiovascular system, to explore their limitations and range of application, and to provide an indication of the physiological phenomena that can be included in these representations. The review on 0D models collects together in one place a description of the range of models that have been used to describe the various characteristics of cardiovascular response, together with the factors that influence it. Such models generally feature the major components of the system, such as the heart, the heart valves and the vasculature. The models are categorised in terms of the features of the system that they are able to represent, their complexity and range of application: representations of effects including pressure-dependent vessel properties, interaction between the heart chambers, neuro-regulation and auto-regulation are explored. The examination on 1D models covers various methods for the assembly, discretisation and solution of the governing equations, in conjunction with a report of the definition and treatment of boundary conditions. Increasingly, 0D and 1D models are used in multi-scale models, in which their primary role is to provide boundary conditions for sophisticate, and often patient-specific, 2D and 3D models, and this application is also addressed. As an example of 0D cardiovascular modelling, a small selection of simple models have been represented in the CellML mark-up language and uploaded to the CellML model repository http://models.cellml.org/. They are freely available to the research and education communities. Conclusion Each published cardiovascular model has merit for particular applications. This review categorises 0D and 1D models, highlights their advantages and disadvantages, and thus provides guidance on the selection of models to assist various cardiovascular modelling studies. It also identifies directions for further development, as well as current challenges in the wider use of these models including service to represent boundary conditions for local 3D models and translation to clinical application. PMID:21521508
Bassareo, Pier Paolo; Mussap, Michele; Bassareo, Valentina; Flore, Giovanna; Mercuro, Giuseppe
2015-12-07
Atherosclerosis, in turn preceded by endothelial dysfunction, underlies a series of important cardiovascular diseases. Reduced bioavailability of endothelial nitric oxide, by increasing vascular tone and promoting platelet aggregation, leukocyte adhesion, and smooth muscle cell proliferation, plays a key role in the onset of the majority of cardiovascular diseases. In addition, high blood levels of asymmetric dimethylarginine, a potent inhibitor of nitric oxide synthesis, are associated with future development of adverse cardiovascular events and cardiac death. Recent reports have demonstrated that another methylarginine, i.e., symmetric dimethylarginine, is also involved in the onset of endothelial dysfunction and hypertension. Almost a decade ago, prematurity at birth and intrauterine growth retardation were first associated with a potential negative influence on the cardiovascular apparatus, thus constituting risk factors or leading to early onset of cardiovascular diseases. This condition is referred to as cardiovascular perinatal programming. Accordingly, cardiovascular morbidity and mortality are higher among former preterm adults than in those born at term. The aim of this paper was to undertake a comprehensive literature review focusing on cellular and biochemical mechanisms resulting in both reduced nitric oxide bioavailability and increased methylarginine levels in subjects born preterm. Evidence of the involvement of these compounds in the perinatal programming of cardiovascular risk are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Nilsson, Bengt-Olof; Olde, Björn; Leeb-Lundberg, L M Fredrik
2011-07-01
Oestrogens are important sex hormones central to health and disease in both genders that have protective effects on the cardiovascular and metabolic systems. These hormones act in complex ways via both genomic and non-genomic mechanisms. The genomic mechanisms are relatively well characterized, whereas the non-genomic ones are only beginning to be explored. Two oestrogen receptors (ER), ERα and ERβ, have been described that act as nuclear transcription factors but can also associate with the plasma membrane and influence cytosolic signalling. ERα has been shown to mediate both anti-atherogenic effects and pro-survival effects in pancreatic β-cells. In recent years, a third membrane-bound ER has emerged, G protein-coupled receptor 30 or G protein-coupled oestrogen receptor 1 (GPER1), which mediates oestrogenic responses in cardiovascular and metabolic regulation. Both GPER1 knock-out models and pharmacological agents are now available to study GPER1 function. These tools have revealed that GPER1 activation may have several beneficial effects in the cardiovascular system including vasorelaxation, inhibition of smooth muscle cell proliferation, and protection of the myocardium against ischaemia/reperfusion injury, and in the metabolic system including stimulation of insulin release and protection against pancreatic β-cell apoptosis. Thus, GPER1 is emerging as a candidate therapeutic target in both cardiovascular and metabolic disease. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.
O-GlcNAc and the Cardiovascular System
Dassanayaka, Sujith; Jones, Steven P.
2014-01-01
The cardiovascular system is capable of robust changes in response to physiologic and pathologic stimuli through intricate signaling mechanisms. The area of metabolism has witnessed a veritable renaissance in the cardiovascular system. In particular, the post-translational β-O-linkage of N-acetylglucosamine (O-GlcNAc) to cellular proteins represents one such signaling pathway that has been implicated in the pathophysiology of cardiovascular disease. This highly dynamic protein modification may induce functional changes in proteins and regulate key cellular processes including translation, transcription, and cell death. In addition, its potential interplay with phosphorylation provides an additional layer of complexity to post-translational regulation. The hexosamine biosynthetic pathway generally requires glucose to form the nucleotide sugar, UDP-GlcNAc. Accordingly, O-GlcNAcylation may be altered in response to nutrient availability and cellular stress. Recent literature supports O-GlcNAcylation as an autoprotective response in models of acute stress (hypoxia, ischemia, oxidative stress). Models of sustained stress, such as pressure overload hypertrophy, and infarct-induced heart failure, may also require protein O-GlcNAcylation as a partial compensatory mechanism. Yet, in models of Type II diabetes, O-GlcNAcylation has been implicated in the subsequent development of vascular, and even cardiac, dysfunction. This review will address this apparent paradox and discuss the potential mechanisms of O-GlcNAc-mediated cardioprotection and cardiovascular dysfunction. This discussion will also address potential targets for pharmacologic interventions and the unique considerations related to such targets. PMID:24287310
TRPM4 channels in the cardiovascular system: physiology, pathophysiology, and pharmacology.
Abriel, Hugues; Syam, Ninda; Sottas, Valentin; Amarouch, Mohamed Yassine; Rougier, Jean-Sébastien
2012-10-01
The transient receptor potential channel (TRP) family comprises at least 28 genes in the human genome. These channels are widely expressed in many different tissues, including those of the cardiovascular system. The transient receptor potential channel melastatin 4 (TRPM4) is a Ca(2+)-activated non-specific cationic channel, which is impermeable to Ca(2+). TRPM4 is expressed in many cells of the cardiovascular system, such as cardiac cells of the conduction pathway and arterial and venous smooth muscle cells. This review article summarizes the recently described roles of TRPM4 in normal physiology and in various disease states. Genetic variants in the human gene TRPM4 have been linked to several cardiac conduction disorders. TRPM4 has also been proposed to play a crucial role in secondary hemorrhage following spinal cord injuries. Spontaneously hypertensive rats with cardiac hypertrophy were shown to over-express the cardiac TRPM4 channel. Recent studies suggest that TRPM4 plays an important role in cardiovascular physiology and disease, even if most of the molecular and cellular mechanisms have yet to be elucidated. We conclude this review article with a brief overview of the compounds that have been shown to either inhibit or activate TRPM4 under experimental conditions. Based on recent findings, the TRPM4 channel can be proposed as a future target for the pharmacological treatment of cardiovascular disorders, such as hypertension and cardiac arrhythmias. Copyright © 2012 Elsevier Inc. All rights reserved.
O-GlcNAc and the cardiovascular system.
Dassanayaka, Sujith; Jones, Steven P
2014-04-01
The cardiovascular system is capable of robust changes in response to physiologic and pathologic stimuli through intricate signaling mechanisms. The area of metabolism has witnessed a veritable renaissance in the cardiovascular system. In particular, the post-translational β-O-linkage of N-acetylglucosamine (O-GlcNAc) to cellular proteins represents one such signaling pathway that has been implicated in the pathophysiology of cardiovascular disease. This highly dynamic protein modification may induce functional changes in proteins and regulate key cellular processes including translation, transcription, and cell death. In addition, its potential interplay with phosphorylation provides an additional layer of complexity to post-translational regulation. The hexosamine biosynthetic pathway generally requires glucose to form the nucleotide sugar, UDP-GlcNAc. Accordingly, O-GlcNAcylation may be altered in response to nutrient availability and cellular stress. Recent literature supports O-GlcNAcylation as an autoprotective response in models of acute stress (hypoxia, ischemia, oxidative stress). Models of sustained stress, such as pressure overload hypertrophy, and infarct-induced heart failure, may also require protein O-GlcNAcylation as a partial compensatory mechanism. Yet, in models of Type II diabetes, O-GlcNAcylation has been implicated in the subsequent development of vascular, and even cardiac, dysfunction. This review will address this apparent paradox and discuss the potential mechanisms of O-GlcNAc-mediated cardioprotection and cardiovascular dysfunction. This discussion will also address potential targets for pharmacologic interventions and the unique considerations related to such targets. Copyright © 2013 Elsevier Inc. All rights reserved.