Sample records for cargo fire verification

  1. AJ26 rocket engine test

    NASA Image and Video Library

    2010-11-10

    Fire and steam signal a successful test firing of Orbital Sciences Corporation's Aerojet AJ26 rocket engine at John C. Stennis Space Center. AJ26 engines will be used to power Orbital's Taurus II space vehicle on commercial cargo flights to the International Space Station. On Nov. 10, operators at Stennis' E-1 Test Stand conducted a 10-second test fire of the engine, the first of a series of three verification tests. Orbital has partnered with NASA to provide eight missions to the ISS by 2015.

  2. Main propulsion system test requirements for the two-engine Shuttle-C

    NASA Technical Reports Server (NTRS)

    Lynn, E. E.; Platt, G. K.

    1989-01-01

    The Shuttle-C is an unmanned cargo carrying derivative of the space shuttle with optional two or three space shuttle main engines (SSME's), whereas the shuttle has three SSME's. Design and operational differences between the Shuttle-C and shuttle were assessed to determine requirements for additional main propulsion system (MPS) verification testing. Also, reviews were made of the shuttle main propulsion test program objectives and test results and shuttle flight experience. It was concluded that, if significant MPS modifications are not made beyond those currently planned, then main propulsion system verification can be concluded with an on-pad flight readiness firing.

  3. 14 CFR 25.858 - Cargo or baggage compartment smoke or fire detection systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Cargo or baggage compartment smoke or fire... Construction Fire Protection § 25.858 Cargo or baggage compartment smoke or fire detection systems. If certification with cargo or baggage compartment smoke or fire detection provisions is requested, the following...

  4. 14 CFR 25.858 - Cargo or baggage compartment smoke or fire detection systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Cargo or baggage compartment smoke or fire... Construction Fire Protection § 25.858 Cargo or baggage compartment smoke or fire detection systems. If certification with cargo or baggage compartment smoke or fire detection provisions is requested, the following...

  5. 14 CFR 25.858 - Cargo or baggage compartment smoke or fire detection systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Cargo or baggage compartment smoke or fire... Construction Fire Protection § 25.858 Cargo or baggage compartment smoke or fire detection systems. If certification with cargo or baggage compartment smoke or fire detection provisions is requested, the following...

  6. 14 CFR 25.858 - Cargo or baggage compartment smoke or fire detection systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Cargo or baggage compartment smoke or fire... Construction Fire Protection § 25.858 Cargo or baggage compartment smoke or fire detection systems. If certification with cargo or baggage compartment smoke or fire detection provisions is requested, the following...

  7. Aircraft Cargo Compartment Fire Test Simulation Program

    NASA Technical Reports Server (NTRS)

    Blumke, R. E.

    1977-01-01

    The objective of the test was to assess fire containment and fire extinguishment in the cargo by reducing the ventilation through the cargo compartment. Parameters which were measured included ignition time, burnthrough time, and physical damage to the cargo liner, composition of selected combustible gases, temperature-time histories, heat flux, and detector response. The ignitor load was made of a typical cargo consisting of filled cardboard cartons occupying 50% of the compartment volume.

  8. 46 CFR 153.907 - Cargo information.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... exposed to the cargo. (7) A list of fire fighting procedures and extinguishing agents effective with cargo fires. (8) Shipper's name. (9) Loading point. (10) Approximate quantity of cargo. (11) Tank in which the... of these two tables. (2) The name of the cargo prescribed in the letter authorizing carriage of the...

  9. 46 CFR 153.907 - Cargo information.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... exposed to the cargo. (7) A list of fire fighting procedures and extinguishing agents effective with cargo fires. (8) Shipper's name. (9) Loading point. (10) Approximate quantity of cargo. (11) Tank in which the... of these two tables. (2) The name of the cargo prescribed in the letter authorizing carriage of the...

  10. 46 CFR 153.907 - Cargo information.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... exposed to the cargo. (7) A list of fire fighting procedures and extinguishing agents effective with cargo fires. (8) Shipper's name. (9) Loading point. (10) Approximate quantity of cargo. (11) Tank in which the... of these two tables. (2) The name of the cargo prescribed in the letter authorizing carriage of the...

  11. 14 CFR 25.858 - Cargo or baggage compartment smoke or fire detection systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... detection systems. 25.858 Section 25.858 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... Construction Fire Protection § 25.858 Cargo or baggage compartment smoke or fire detection systems. If... must be met for each cargo or baggage compartment with those provisions: (a) The detection system must...

  12. Survey of Fire Detection Technologies and System Evaluation/Certification Methodologies and Their Suitability for Aircraft Cargo Compartments

    NASA Technical Reports Server (NTRS)

    Cleary, T.; Grosshandler, W.

    1999-01-01

    As part of the National Aeronautics and Space Administration (NASA) initiated program on global civil aviation, NIST is assisting Federal Aviation Administration in its research to improve fire detection in aircraft cargo compartments. Aircraft cargo compartment detection certification methods have been reviewed. The Fire Emulator-Detector Evaluator (FE/DE) has been designed to evaluate fire detection technologies such as new sensors, multi-element detectors, and detectors that employ complex algorithms. The FE/DE is a flow tunnel that can reproduce velocity, temperature, smoke, and Combustion gas levels to which a detector might be exposed during a fire. A scientific literature survey and patent search have been conducted relating to existing and emerging fire detection technologies, and the potential use of new fire detection strategies in cargo compartment areas has been assessed. In the near term, improved detector signal processing and multi-sensor detectors based on combinations of smoke measurements, combustion gases and temperature are envisioned as significantly impacting detector system performance.

  13. 14 CFR 125.119 - Fire precautions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fire precautions. 125.119 Section 125.119....119 Fire precautions. (a) Each compartment must be designed so that, when used for storing cargo or... movement of cargo in the compartment and so that damage to or failure of the item would not create a fire...

  14. 46 CFR 95.05-10 - Fixed fire extinguishing systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... oil units, valves, or manifolds in the line between the settling tanks and the boilers. (e) Fire... approved system must be installed in all cargo compartments and tanks for combustible cargo, except for vessels engaged exclusively in the carriage of coal or grain in bulk. For cargo compartments and tanks...

  15. Fire fighting aboard ships. Volume 1: Hazard analysis and behavior of combustible materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stavitskiy, M.G.; Kortunov, M.F.; Sidoryuk, V.M.

    1983-01-01

    The volume zeros in on fire hazards on ships afloat or under construction/repair. It examines fire hazards peculiar to ships carrying particular cargoes, such as dry-cargo ships, tankers, and factory and fishing vessels. This volume examines specific features of fire-fighting equipment, along with the thermal behavior of materials used in shipbuilding.

  16. 46 CFR 52.25-15 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Each fired thermal fluid heater must be fitted with a control which prevents the heat transfer fluid from being heated above its flash point. (c) The heat transfer fluid must be chemically compatible with any cargo carried in the cargo tanks serviced by the heat transfer system. (d) Each fired thermal...

  17. 46 CFR 52.25-15 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Each fired thermal fluid heater must be fitted with a control which prevents the heat transfer fluid from being heated above its flash point. (c) The heat transfer fluid must be chemically compatible with any cargo carried in the cargo tanks serviced by the heat transfer system. (d) Each fired thermal...

  18. 46 CFR 153.975 - Preparation for cargo transfer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... system to have a fire protection system. (b) Any electrical bonding of the tankship to the transfer... plugged. (m) Smoking is limited to safe places. (n) Fire fighting and safety equipment is ready. (o) He is... or continue cargo transfer unless the following conditions are met: (a) No fires or open flames are...

  19. Detecting the Onset of Fire in an Aircraft by Employing Correlation Spectroscopy

    NASA Technical Reports Server (NTRS)

    Goswami, Kisholoy; Saxena, Indu; Egalon, Claudio; Mendoza, Edgar; Lieberman, Robert; Piltch, Nancy D.

    1999-01-01

    The cause of aircraft fire and locations of the fires are numerous. Worldwide, numerous in-flight fires have been passenger initiated, the prime location being the lavatory areas. Most in-flight fires in commercial carriers are of electrical origin and cigarettes. A cargo bay fire can be caused by a variety of reasons. The sheer number of different types of cargo makes it difficult to identify the origin, especially when the fire reaches the catastrophic level. The damage can be minimized, and fire can be suppressed effectively if a warning system for the onset of fire is available for onboard monitoring.

  20. Fluids and Combustion Facility: Combustion Integrated Rack Modal Model Correlation

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Suarez, Vicente J.; Sullivan, Timothy L.; Otten, Kim D.; Akers, James C.

    2005-01-01

    The Fluids and Combustion Facility (FCF) is a modular, multi-user, two-rack facility dedicated to combustion and fluids science in the US Laboratory Destiny on the International Space Station. FCF is a permanent facility that is capable of accommodating up to ten combustion and fluid science investigations per year. FCF research in combustion and fluid science supports NASA's Exploration of Space Initiative for on-orbit fire suppression, fire safety, and space system fluids management. The Combustion Integrated Rack (CIR) is one of two racks in the FCF. The CIR major structural elements include the International Standard Payload Rack (ISPR), Experiment Assembly (optics bench and combustion chamber), Air Thermal Control Unit (ATCU), Rack Door, and Lower Structure Assembly (Input/Output Processor and Electrical Power Control Unit). The load path through the rack structure is outlined. The CIR modal survey was conducted to validate the load path predicted by the CIR finite element model (FEM). The modal survey is done by experimentally measuring the CIR frequencies and mode shapes. The CIR model was test correlated by updating the model to represent the test mode shapes. The correlated CIR model delivery is required by NASA JSC at Launch-10.5 months. The test correlated CIR flight FEM is analytically integrated into the Shuttle for a coupled loads analysis of the launch configuration. The analysis frequency range of interest is 0-50 Hz. A coupled loads analysis is the analytical integration of the Shuttle with its cargo element, the Mini Payload Logistics Module (MPLM), in the Shuttle cargo bay. For each Shuttle launch configuration, a verification coupled loads analysis is performed to determine the loads in the cargo bay as part of the structural certification process.

  1. Fire safety evaluation of aircraft lavatory and cargo compartments

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Hilado, C. J.; Anderson, R. A.; Tustin, E.; Arnold, D. E.; Gaume, J. G.; Binding, A. T.; Mikeska, J. L.

    1975-01-01

    Large-scale aircraft lavatory and cargo compartment fire tests are described. Tests were conducted to evaluate the effectiveness of these compartments to contain fire and smoke. Two tests were conducted and are detailed. Test 1 involved a production Boeing 747 lavatory of the latest design installed in an enclosure outside the aircraft, to collect gases and expose animals to these gases. Results indicate that the interior of the lavatory was completely burned, evolving smoke and combustion products in the enclosure. Test 2 involved a simulated Douglas DC-10 cargo compartment retro-fitted with standard fiberglass liner. The fire caused excessive damage to the liner and burned through the ceiling in two areas. Test objectives, methods, materials, and results are presented and discussed.

  2. 33 CFR 104.105 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cargo vessel greater than 100 gross register tons; (3) Self-propelled U.S. cargo vessel greater than 100... verifications required by part A, Section 19.1, of the International Ship and Port Facility Security (ISPS) Code...

  3. Fire safety evaluation of aircraft lavatory and cargo compartments

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Hilado, C. J.; Anderson, R. A.; Tustin, E.; Arnold, D. B.; Gaume, J. G.; Binding, A. T.; Mikeska, J. L.

    1976-01-01

    A program of experimental fires has been carried out to assess fire containment and other fire hazards in lavatory and cargo compartments of wide-body jet aircraft by evaluation of ignition time, burn-through time, fire spread rate, smoke density, evolution of selected combustible and toxic gases, heat flux, and detector response. Two tests were conducted: one involving a standard Boeing 747 lavatory and one involving a simulated DC-10 cargo compartment. A production lavatory module was furnished with conventional materials and was installed in an enclosure. The ignition load was four polyethylene bags containing paper and plastic waste materials representive of a maximum flight cabin waste load. Standard aircraft ventilation conditions were utilized and the lavatory door was closed during the test. Lavatory wall and ceiling panels contained the fire spread during the 30-minute test. Smoke was driven into the enclosure primarily through the ventilation grille in the door and through the gaps between the bifold door and the jamb where the door distorted from the heat earlier in the test. The interior of the lavatory was almost completely destroyed by the fire.

  4. 14 CFR 25.855 - Cargo or baggage compartments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Fire Protection § 25... applicable test criteria prescribed in part I of appendix F of this part or other approved equivalent methods... movement of cargo in the compartment, and (2) Their breakage or failure will not create a fire hazard. (f...

  5. 14 CFR 25.855 - Cargo or baggage compartments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Fire Protection § 25... applicable test criteria prescribed in part I of appendix F of this part or other approved equivalent methods... movement of cargo in the compartment, and (2) Their breakage or failure will not create a fire hazard. (f...

  6. 14 CFR 25.855 - Cargo or baggage compartments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Fire Protection § 25... applicable test criteria prescribed in part I of appendix F of this part or other approved equivalent methods... movement of cargo in the compartment, and (2) Their breakage or failure will not create a fire hazard. (f...

  7. 14 CFR 25.855 - Cargo or baggage compartments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Fire Protection § 25... applicable test criteria prescribed in part I of appendix F of this part or other approved equivalent methods... movement of cargo in the compartment, and (2) Their breakage or failure will not create a fire hazard. (f...

  8. 14 CFR 25.855 - Cargo or baggage compartments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Fire Protection § 25... applicable test criteria prescribed in part I of appendix F of this part or other approved equivalent methods... movement of cargo in the compartment, and (2) Their breakage or failure will not create a fire hazard. (f...

  9. 78 FR 19090 - Airworthiness Directives; Embraer S.A. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ...We are adopting a new airworthiness directive (AD) for certain Embraer S.A. Model ERJ 170 and ERJ 190 airplanes. This AD was prompted by a report that high rate discharge (HRD) bottle explosive cartridges of a cargo compartment fire extinguisher system were swapped between the forward and aft cargo compartments. Additional investigation also revealed the possibility of swapping between the electrical connectors of the HRD and low rate discharge (LRD) bottles, and a rotated installation of the HRD bottle. Improper assembly of the fire extinguishing bottle might cause the extinguishing agent to be discharged toward the unselected cargo compartment rather than toward the cargo compartment with fire. This AD requires an inspection of the HRD bottle for correct installation and to determine if the pressure switch is in the correct position, and re-installation if necessary; an inspection of the HRD and LRD bottle discharge heads to determine the part number, and replacement if necessary; and, for certain airplanes, an inspection to identify the HRD and LRD bottle electrical connectors, and relocation if necessary. We are issuing this AD to prevent the inability of the fire extinguishing system to suppress fire.

  10. pHLIP-FIRE, a Cell Insertion-Triggered Fluorescent Probe for Imaging Tumors Demonstrates Targeted Cargo Delivery In Vivo

    PubMed Central

    2015-01-01

    We have developed an improved tool for imaging acidic tumors by reporting the insertion of a transmembrane helix: the pHLIP-Fluorescence Insertion REporter (pHLIP-FIRE). In acidic tissues, such as tumors, peptides in the pHLIP family insert as α-helices across cell membranes. The cell-inserting end of the pHLIP-FIRE peptide has a fluorophore–fluorophore or fluorophore–quencher pair. A pair member is released by disulfide cleavage after insertion into the reducing environment inside a cell, resulting in dequenching of the probe. Thus, the fluorescence of the pHLIP-FIRE probe is enhanced upon cell-insertion in the targeted tissues but is suppressed elsewhere due to quenching. Targeting studies in mice bearing breast tumors show strong signaling by pHLIP-FIRE, with a contrast index of ∼17, demonstrating (i) direct imaging of pHLIP insertion and (ii) cargo translocation in vivo. Imaging and targeted cargo delivery should each have clinical applications. PMID:25184440

  11. The Cargo Unmanned Aircraft System: A Future Battlefield Enabler for Enhanced Company Operations and SeaBasing

    DTIC Science & Technology

    2011-04-14

    surveillance, and reconnaissance (ISR) as well as fire precision hellftre rockets , against the enemy. In my opinion,.UAS’s are the future of Marine...amount of enemy fire aimed at the cargo helicopters delivering their supplies on top of the hills. During the battle ofKhe Sanh, Hill 881 S became a...and finally drastic teclmological improvements within the traditional infantry rifle company. The essence ofECO is to enhancecommand and control, fire

  12. Generic Verification Protocol for Determination of Emissions from Cleaner Outdoor Wood-Fired Hydronic Heaters

    EPA Science Inventory

    This protocol describes the Environmental Technology Verification Program's considerations and requirements for verification of emissions reduction provided by cleaner outdoor wood-fired hydronic heaters. Outdoor wood-burning units provide heat and hot water for homes and other b...

  13. PERFORMANCE VERIFICATION OF SHIP BALLAST WATER TREATMENT TECHNOLOGIES

    EPA Science Inventory

    Ships use ballast water to provide stability during voyages and during loading and unloading operations. Water is taken on at one port when cargo is unloaded and usually discharged at another port when the ship receives cargo. Because sediments and/or organisms ranging in size ...

  14. 46 CFR 181.320 - Fire hoses and nozzles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Fire hoses and nozzles. 181.320 Section 181.320 Shipping...) FIRE PROTECTION EQUIPMENT Fire Main System § 181.320 Fire hoses and nozzles. (a) A fire hose with a... cargo decks, where no protection is provided, hoses may be temporarily removed during heavy weather or...

  15. 46 CFR 181.320 - Fire hoses and nozzles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Fire hoses and nozzles. 181.320 Section 181.320 Shipping...) FIRE PROTECTION EQUIPMENT Fire Main System § 181.320 Fire hoses and nozzles. (a) A fire hose with a... cargo decks, where no protection is provided, hoses may be temporarily removed during heavy weather or...

  16. 46 CFR 181.320 - Fire hoses and nozzles.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Fire hoses and nozzles. 181.320 Section 181.320 Shipping...) FIRE PROTECTION EQUIPMENT Fire Main System § 181.320 Fire hoses and nozzles. (a) A fire hose with a... cargo decks, where no protection is provided, hoses may be temporarily removed during heavy weather or...

  17. 46 CFR 181.320 - Fire hoses and nozzles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Fire hoses and nozzles. 181.320 Section 181.320 Shipping...) FIRE PROTECTION EQUIPMENT Fire Main System § 181.320 Fire hoses and nozzles. (a) A fire hose with a... cargo decks, where no protection is provided, hoses may be temporarily removed during heavy weather or...

  18. 46 CFR 95.10-5 - Fire pumps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fire pumps. 95.10-5 Section 95.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Fire Main System, Details § 95.10-5 Fire pumps. (a) Vessels shall be equipped with independently driven fire...

  19. The Automated Logistics Element Planning System (ALEPS)

    NASA Technical Reports Server (NTRS)

    Schwaab, Douglas G.

    1992-01-01

    ALEPS, which is being developed to provide the SSF program with a computer system to automate logistics resupply/return cargo load planning and verification, is presented. ALEPS will make it possible to simultaneously optimize both the resupply flight load plan and the return flight reload plan for any of the logistics carriers. In the verification mode ALEPS will support the carrier's flight readiness reviews and control proper execution of the approved plans. It will also support the SSF inventory management system by providing electronic block updates to the inventory database on the cargo arriving at or departing the station aboard a logistics carrier. A prototype drawer packing algorithm is described which is capable of generating solutions for 3D packing of cargo items into a logistics carrier storage accommodation. It is concluded that ALEPS will provide the capability to generate and modify optimized loading plans for the logistics elements fleet.

  20. 46 CFR 97.15-7 - Verification of vessel compliance with applicable stability requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... stability requirements. 97.15-7 Section 97.15-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Tests, Drills, and Inspections § 97.15-7 Verification of vessel compliance with applicable stability requirements. (a) Except as provided in paragraph (d...

  1. 46 CFR 97.15-7 - Verification of vessel compliance with applicable stability requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... stability requirements. 97.15-7 Section 97.15-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Tests, Drills, and Inspections § 97.15-7 Verification of vessel compliance with applicable stability requirements. (a) Except as provided in paragraph (d...

  2. 46 CFR 97.15-7 - Verification of vessel compliance with applicable stability requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... stability requirements. 97.15-7 Section 97.15-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Tests, Drills, and Inspections § 97.15-7 Verification of vessel compliance with applicable stability requirements. (a) Except as provided in paragraph (d...

  3. 14 CFR 29.855 - Cargo and baggage compartments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... will not create a fire hazard. (c) The design and sealing of inaccessible compartments must be adequate...) Required crew emergency exits must be accessible under all cargo loading conditions. (3) Sources of heat...

  4. 14 CFR 29.855 - Cargo and baggage compartments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... will not create a fire hazard. (c) The design and sealing of inaccessible compartments must be adequate...) Required crew emergency exits must be accessible under all cargo loading conditions. (3) Sources of heat...

  5. 46 CFR 105.45-5 - Galley fires.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Galley fires. 105.45-5 Section 105.45-5 Shipping COAST... VESSELS DISPENSING PETROLEUM PRODUCTS Special Operating Requirements § 105.45-5 Galley fires. (a) Galley fires are normally permitted during cargo transfer operations. However, prior to transferring Grade B or...

  6. 46 CFR 95.10-10 - Fire hydrants and hose.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... brass, bronze, or other equivalent metal. Couplings shall either: (i) Use National Standard fire hose... 46 Shipping 4 2011-10-01 2011-10-01 false Fire hydrants and hose. 95.10-10 Section 95.10-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE...

  7. 46 CFR 95.10-10 - Fire hydrants and hose.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... brass, bronze, or other equivalent metal. Couplings shall either: (i) Use National Standard fire hose... 46 Shipping 4 2014-10-01 2014-10-01 false Fire hydrants and hose. 95.10-10 Section 95.10-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE...

  8. 46 CFR 95.10-10 - Fire hydrants and hose.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... brass, bronze, or other equivalent metal. Couplings shall either: (i) Use National Standard fire hose... 46 Shipping 4 2012-10-01 2012-10-01 false Fire hydrants and hose. 95.10-10 Section 95.10-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE...

  9. 46 CFR 95.10-10 - Fire hydrants and hose.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... brass, bronze, or other equivalent metal. Couplings shall either: (i) Use National Standard fire hose... 46 Shipping 4 2010-10-01 2010-10-01 false Fire hydrants and hose. 95.10-10 Section 95.10-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE...

  10. 46 CFR 95.10-10 - Fire hydrants and hose.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... brass, bronze, or other equivalent metal. Couplings shall either: (i) Use National Standard fire hose... 46 Shipping 4 2013-10-01 2013-10-01 false Fire hydrants and hose. 95.10-10 Section 95.10-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE...

  11. 75 FR 6092 - Special Conditions: Model C-27J Airplane; Class E Cargo Compartment Lavatory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    ... waste-receptacle design-and-material standards. (g) Section 25.854, lavatory smoke-detector and fire... lavatory, and the oxygen-supply system in the lavatory, in the event of a smoke-detector alarm in the cargo... system that shuts off power to the lavatory following a lavatory or cargo-compartment smoke-detector...

  12. Tackling the x-ray cargo inspection challenge using machine learning

    NASA Astrophysics Data System (ADS)

    Jaccard, Nicolas; Rogers, Thomas W.; Morton, Edward J.; Griffin, Lewis D.

    2016-05-01

    The current infrastructure for non-intrusive inspection of cargo containers cannot accommodate exploding com-merce volumes and increasingly stringent regulations. There is a pressing need to develop methods to automate parts of the inspection workflow, enabling expert operators to focus on a manageable number of high-risk images. To tackle this challenge, we developed a modular framework for automated X-ray cargo image inspection. Employing state-of-the-art machine learning approaches, including deep learning, we demonstrate high performance for empty container verification and specific threat detection. This work constitutes a significant step towards the partial automation of X-ray cargo image inspection.

  13. 33 CFR 150.435 - When are cargo transfers not allowed?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... port's vicinity; (c) During a fire at the port, at the onshore receiving terminal, or aboard a vessel... cargo transfers as defined in the port's operations manual; or (i) When prescribed by the port security...

  14. 33 CFR 150.435 - When are cargo transfers not allowed?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... port's vicinity; (c) During a fire at the port, at the onshore receiving terminal, or aboard a vessel... cargo transfers as defined in the port's operations manual; or (i) When prescribed by the port security...

  15. 33 CFR 150.435 - When are cargo transfers not allowed?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... port's vicinity; (c) During a fire at the port, at the onshore receiving terminal, or aboard a vessel... cargo transfers as defined in the port's operations manual; or (i) When prescribed by the port security...

  16. Caliver: An R package for CALIbration and VERification of forest fire gridded model outputs.

    PubMed

    Vitolo, Claudia; Di Giuseppe, Francesca; D'Andrea, Mirko

    2018-01-01

    The name caliver stands for CALIbration and VERification of forest fire gridded model outputs. This is a package developed for the R programming language and available under an APACHE-2 license from a public repository. In this paper we describe the functionalities of the package and give examples using publicly available datasets. Fire danger model outputs are taken from the modeling components of the European Forest Fire Information System (EFFIS) and observed burned areas from the Global Fire Emission Database (GFED). Complete documentation, including a vignette, is also available within the package.

  17. Caliver: An R package for CALIbration and VERification of forest fire gridded model outputs

    PubMed Central

    Di Giuseppe, Francesca; D’Andrea, Mirko

    2018-01-01

    The name caliver stands for CALIbration and VERification of forest fire gridded model outputs. This is a package developed for the R programming language and available under an APACHE-2 license from a public repository. In this paper we describe the functionalities of the package and give examples using publicly available datasets. Fire danger model outputs are taken from the modeling components of the European Forest Fire Information System (EFFIS) and observed burned areas from the Global Fire Emission Database (GFED). Complete documentation, including a vignette, is also available within the package. PMID:29293536

  18. Shuttle payload interface verification equipment study. Volume 2: Technical document, part 1

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The technical analysis is reported that was performed during the shuttle payload interface verification equipment study. It describes: (1) the background and intent of the study; (2) study approach and philosophy covering all facets of shuttle payload/cargo integration; (3)shuttle payload integration requirements; (4) preliminary design of the horizontal IVE; (5) vertical IVE concept; and (6) IVE program development plans, schedule and cost. Also included is a payload integration analysis task to identify potential uses in addition to payload interface verification.

  19. NASA helicopter helps fight brush fire at KSC

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A NASA helicopter dips its fire-fighting bucket into the river to pick up and deliver a cargo of water to a wildfire at KSC. Before being extinguished, the fire burned about 20 acres at a site near gate 2C on Kennedy Parkway North (route 3).

  20. Space transportation system payload interface verification

    NASA Technical Reports Server (NTRS)

    Everline, R. T.

    1977-01-01

    The paper considers STS payload-interface verification requirements and the capability provided by STS to support verification. The intent is to standardize as many interfaces as possible, not only through the design, development, test and evaluation (DDT and E) phase of the major payload carriers but also into the operational phase. The verification process is discussed in terms of its various elements, such as the Space Shuttle DDT and E (including the orbital flight test program) and the major payload carriers DDT and E (including the first flights). Five tools derived from the Space Shuttle DDT and E are available to support the verification process: mathematical (structural and thermal) models, the Shuttle Avionics Integration Laboratory, the Shuttle Manipulator Development Facility, and interface-verification equipment (cargo-integration test equipment).

  1. 46 CFR 95.60-10 - Location.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Location. 95.60-10 Section 95.60-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Fire Axes § 95.60-10 Location. (a) Fire axes shall be distributed throughout the spaces available to persons...

  2. 46 CFR 147.65 - Carbon dioxide and halon fire extinguishing systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Carbon dioxide and halon fire extinguishing systems. 147.65 Section 147.65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES Stowage and Other Special Requirements for Particular Materials § 147.65 Carbon dioxide and halon fire extinguishing...

  3. 46 CFR 147.65 - Carbon dioxide and halon fire extinguishing systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Carbon dioxide and halon fire extinguishing systems. 147.65 Section 147.65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES Stowage and Other Special Requirements for Particular Materials § 147.65 Carbon dioxide and halon fire extinguishing...

  4. 46 CFR 147.65 - Carbon dioxide and halon fire extinguishing systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Carbon dioxide and halon fire extinguishing systems. 147.65 Section 147.65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES Stowage and Other Special Requirements for Particular Materials § 147.65 Carbon dioxide and halon fire extinguishing...

  5. 14 CFR 25.857 - Cargo compartment classification.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... detector or fire detector system to give warning at the pilot or flight engineer station. (c) Class C. A... compartment but in which— (1) There is a separate approved smoke detector or fire detector system to give... a separate approved smoke or fire detector system to give warning at the pilot or flight engineer...

  6. 14 CFR 25.857 - Cargo compartment classification.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... detector or fire detector system to give warning at the pilot or flight engineer station. (c) Class C. A... compartment but in which— (1) There is a separate approved smoke detector or fire detector system to give... a separate approved smoke or fire detector system to give warning at the pilot or flight engineer...

  7. 14 CFR 25.857 - Cargo compartment classification.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... detector or fire detector system to give warning at the pilot or flight engineer station. (c) Class C. A... compartment but in which— (1) There is a separate approved smoke detector or fire detector system to give... a separate approved smoke or fire detector system to give warning at the pilot or flight engineer...

  8. 14 CFR 25.857 - Cargo compartment classification.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... detector or fire detector system to give warning at the pilot or flight engineer station. (c) Class C. A... compartment but in which— (1) There is a separate approved smoke detector or fire detector system to give... a separate approved smoke or fire detector system to give warning at the pilot or flight engineer...

  9. 14 CFR 25.857 - Cargo compartment classification.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... detector or fire detector system to give warning at the pilot or flight engineer station. (c) Class C. A... compartment but in which— (1) There is a separate approved smoke detector or fire detector system to give... a separate approved smoke or fire detector system to give warning at the pilot or flight engineer...

  10. Multiple-Parameter, Low-False-Alarm Fire-Detection Systems

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Greensburg, Paul; McKnight, Robert; Xu, Jennifer C.; Liu, C. C.; Dutta, Prabir; Makel, Darby; Blake, D.; Sue-Antillio, Jill

    2007-01-01

    Fire-detection systems incorporating multiple sensors that measure multiple parameters are being developed for use in storage depots, cargo bays of ships and aircraft, and other locations not amenable to frequent, direct visual inspection. These systems are intended to improve upon conventional smoke detectors, now used in such locations, that reliably detect fires but also frequently generate false alarms: for example, conventional smoke detectors based on the blockage of light by smoke particles are also affected by dust particles and water droplets and, thus, are often susceptible to false alarms. In contrast, by utilizing multiple parameters associated with fires, i.e. not only obscuration by smoke particles but also concentrations of multiple chemical species that are commonly generated in combustion, false alarms can be significantly decreased while still detecting fires as reliably as older smoke-detector systems do. The present development includes fabrication of sensors that have, variously, micrometer- or nanometer-sized features so that such multiple sensors can be integrated into arrays that have sizes, weights, and power demands smaller than those of older macroscopic sensors. The sensors include resistors, electrochemical cells, and Schottky diodes that exhibit different sensitivities to the various airborne chemicals of interest. In a system of this type, the sensor readings are digitized and processed by advanced signal-processing hardware and software to extract such chemical indications of fires as abnormally high concentrations of CO and CO2, possibly in combination with H2 and/or hydrocarbons. The system also includes a microelectromechanical systems (MEMS)-based particle detector and classifier device to increase the reliability of measurements of chemical species and particulates. In parallel research, software for modeling the evolution of a fire within an aircraft cargo bay has been developed. The model implemented in the software can describe the concentrations of chemical species and of particulate matter as functions of time. A system of the present developmental type and a conventional fire detector were tested under both fire and false-alarm conditions in a Federal Aviation Administration cargo-compartment- testing facility. Both systems consistently detected fires. However, the conventional fire detector consistently generated false alarms, whereas the developmental system did not generate any false alarms.

  11. 19 CFR 178.2 - Listing of OMB control numbers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Trade Agreement 1515-0205 § 181.72 Submission of information in connection with origin verifications... used, self-propelled vehicles, vessels and aircraft 1515-0157 § 192.14 Transportation manifest (cargo...

  12. Indianapolis Fire Department EMS Communications Center tracking truck, train HAZMAT cargoes with "Operation Respond" software

    DOT National Transportation Integrated Search

    1997-06-05

    When an accident involving the transportation of potentially dangerous materials occurs, local emergency response officials need accurate information about the material as quickly as possible. Using software donated to the Indianapolis Fire Departmen...

  13. 46 CFR 95.01-2 - Incorporation by reference.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... for the Installation of Sprinkler Systems, incorporation by reference approved for § 95.30-1. (2... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE... Specification for International Shore Connections for Marine Fire Applications, incorporation by reference...

  14. 46 CFR 95.01-2 - Incorporation by reference.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... for the Installation of Sprinkler Systems, incorporation by reference approved for § 95.30-1. (2... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE... Specification for International Shore Connections for Marine Fire Applications, incorporation by reference...

  15. Cargo Fire Hazards and Hazard Control for the Offshore Bulk Fuel Systems (OBFS).

    DTIC Science & Technology

    1980-06-01

    used to evaluate the probability of cargo fuel spills during different ship operational modes. An undesired hazardous event such as a spill of volume...occur. if a cargo release occurs due to either collision or hostile action the probability of ignition is very high . Ignition can be caused by the...Separate auxiliary burners independent from the ship propulsion system provide similar flue gas composition. However as noted previously, a low sulfur

  16. 46 CFR 127.225 - Structural fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... wheelhouses, containing accommodation, service and control spaces, facing the cargo area must be constructed of steel and comply with §§ 32.56-20, 32.56-21, and 32.56-22 of this chapter. (d) Cargo pump rooms must be separated from accommodation spaces, service spaces, and control stations by A-60 divisions. (e...

  17. KSC00pp1078

    NASA Image and Video Library

    2000-08-08

    A NASA helicopter dips its fire-fighting bucket into the river to pick up and deliver a cargo of water to a wildfire at KSC. Before being extinguished, the fire burned about 20 acres at a site near gate 2C on Kennedy Parkway North (route 3)

  18. KSC-00pp1078

    NASA Image and Video Library

    2000-08-08

    A NASA helicopter dips its fire-fighting bucket into the river to pick up and deliver a cargo of water to a wildfire at KSC. Before being extinguished, the fire burned about 20 acres at a site near gate 2C on Kennedy Parkway North (route 3)

  19. International Space Station Requirement Verification for Commercial Visiting Vehicles

    NASA Technical Reports Server (NTRS)

    Garguilo, Dan

    2017-01-01

    The COTS program demonstrated NASA could rely on commercial providers for safe, reliable, and cost-effective cargo delivery to ISS. The ISS Program has developed a streamlined process to safely integrate commercial visiting vehicles and ensure requirements are met Levy a minimum requirement set (down from 1000s to 100s) focusing on the ISS interface and safety, reducing the level of NASA oversight/insight and burden on the commercial Partner. Partners provide a detailed verification and validation plan documenting how they will show they've met NASA requirements. NASA conducts process sampling to ensure that the established verification processes is being followed. NASA participates in joint verification events and analysis for requirements that require both parties verify. Verification compliance is approved by NASA and launch readiness certified at mission readiness reviews.

  20. 48 CFR 22.1803 - Contract clause.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Contract clause. Insert the clause at 52.222-54, Employment Eligibility Verification, in all solicitations... “commercial item” at 2.101); (3) Items that would be COTS items if they were not bulk cargo; or (4) Commercial...

  1. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: AISIN SEIKI 6.0 KW NATURAL-GAS-FIRED ENGINE COGENERATION UNIT

    EPA Science Inventory

    The U.S. EPA's Office of Research and Development operates the Environmental Technology Verification (ETV) program to facilitate the deployment of innovative technologies through performance verification and information dissemination. Congress funds ETV in response to the belief ...

  2. Verification study of an emerging fire suppression system

    DOE PAGES

    Cournoyer, Michael E.; Waked, R. Ryan; Granzow, Howard N.; ...

    2016-01-01

    Self-contained fire extinguishers are a robust, reliable and minimally invasive means of fire suppression for gloveboxes. Moreover, plutonium gloveboxes present harsh environmental conditions for polymer materials; these include radiation damage and chemical exposure, both of which tend to degrade the lifetime of engineered polymer components. Several studies have been conducted to determine the robustness of selfcontained fire extinguishers in plutonium gloveboxes in a nuclear facility, verification tests must be performed. These tests include activation and mass loss calorimeter tests. In addition, compatibility issues with chemical components of the self-contained fire extinguishers need to be addressed. Our study presents activation andmore » mass loss calorimeter test results. After extensive studies, no critical areas of concern have been identified for the plutonium glovebox application of Fire Foe™, except for glovebox operations that use large quantities of bulk plutonium or uranium metal such as metal casting and pyro-chemistry operations.« less

  3. Verification study of an emerging fire suppression system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cournoyer, Michael E.; Waked, R. Ryan; Granzow, Howard N.

    Self-contained fire extinguishers are a robust, reliable and minimally invasive means of fire suppression for gloveboxes. Moreover, plutonium gloveboxes present harsh environmental conditions for polymer materials; these include radiation damage and chemical exposure, both of which tend to degrade the lifetime of engineered polymer components. Several studies have been conducted to determine the robustness of selfcontained fire extinguishers in plutonium gloveboxes in a nuclear facility, verification tests must be performed. These tests include activation and mass loss calorimeter tests. In addition, compatibility issues with chemical components of the self-contained fire extinguishers need to be addressed. Our study presents activation andmore » mass loss calorimeter test results. After extensive studies, no critical areas of concern have been identified for the plutonium glovebox application of Fire Foe™, except for glovebox operations that use large quantities of bulk plutonium or uranium metal such as metal casting and pyro-chemistry operations.« less

  4. 46 CFR 167.45-1 - Steam, carbon dioxide, and halon fire extinguishing systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... accepted in lieu of the inert gas system for the protection of cargo holds, paint lockers, and similar... to each cargo-oil deep tank, lamp locker, oil room, and like compartments, which lamp locker, oil... lamp lockers, oil rooms, and like compartments may be taken from the nearest steam supply line...

  5. 46 CFR 167.45-1 - Steam, carbon dioxide, and halon fire extinguishing systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... accepted in lieu of the inert gas system for the protection of cargo holds, paint lockers, and similar... to each cargo-oil deep tank, lamp locker, oil room, and like compartments, which lamp locker, oil... lamp lockers, oil rooms, and like compartments may be taken from the nearest steam supply line...

  6. Field procedures for verification and adjustment of fire behavior predictions

    Treesearch

    Richard C. Rothermel; George C. Rinehart

    1983-01-01

    The problem of verifying predictions of fire behavior, primarily rate of spread, is discussed in terms of the fire situation for which predictions are made, and the type of fire where data are to be collected. Procedures for collecting data and performing analysis are presented for both readily accessible fires where data should be complete, and for inaccessible fires...

  7. 46 CFR 71.65-5 - Plans and specifications required for new construction.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) [Reserved] (h) Crew's accommodations. (1) Arrangement plans showing accommodations, ventilation, escapes... Shell Plating. (13) *Arrangement of the cargo gear including a stress diagram. The principal details of... stability. Plans and calculations required by subchapter S of this chapter. (d) Fire control. (1) Fire...

  8. 46 CFR 71.65-5 - Plans and specifications required for new construction.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... apparatus. (2) [Reserved] (h) Crew's accommodations. (1) Arrangement plans showing accommodations... Shell Plating. (13) *Arrangement of the cargo gear including a stress diagram. The principal details of... stability. Plans and calculations required by subchapter S of this chapter. (d) Fire control. (1) Fire...

  9. 46 CFR 71.65-5 - Plans and specifications required for new construction.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... apparatus. (2) [Reserved] (h) Crew's accommodations. (1) Arrangement plans showing accommodations... Shell Plating. (13) *Arrangement of the cargo gear including a stress diagram. The principal details of... stability. Plans and calculations required by subchapter S of this chapter. (d) Fire control. (1) Fire...

  10. 46 CFR 71.65-5 - Plans and specifications required for new construction.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... apparatus. (2) [Reserved] (h) Crew's accommodations. (1) Arrangement plans showing accommodations... Shell Plating. (13) *Arrangement of the cargo gear including a stress diagram. The principal details of... stability. Plans and calculations required by subchapter S of this chapter. (d) Fire control. (1) Fire...

  11. An Airbus arrives at KSC with third MPLM

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An Airbus '''Beluga''' air cargo plane, The Super Transporter, lands at KSC's Shuttle Landing Facility. Its cargo, from the factory of Alenia Aerospazio in Turin, Italy, is the Italian Space Agency's Multi-Purpose Logistics Module Donatello, the third of three for the International Space Station. The module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  12. An Airbus arrives at KSC with third MPLM

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An Airbus '''Beluga''' air cargo plane, The Super Transporter, arrives at KSC's Shuttle Landing Facility from the factory of Alenia Aerospazio in Turin, Italy. Its cargo is the Italian Space Agency's Multi-Purpose Logistics Module Donatello, the third of three for the International Space Station. The module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  13. 46 CFR 126.430 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... (j) Fire-detecting and fire-extinguishing equipment. (k) Pollution-prevention equipment. (l) Sanitary condition. (m) Fire hazards. (n) Verification of validity of certificates required and issued by the Federal Communications Commission. (o) Lights and signals as required by the applicable navigational rules. (p) Tests and...

  14. An Airbus arrives at KSC with third MPLM

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An Airbus '''Beluga''' air cargo plane, The Super Transporter, taxis onto the parking apron at KSC's Shuttle Landing Facility. Its cargo, from the factory of Alenia Aerospazio in Turin, Italy, is the Italian Space Agency's Multi-Purpose Logistics Module Donatello, the third of three for the International Space Station. The module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  15. Automated X-ray image analysis for cargo security: Critical review and future promise.

    PubMed

    Rogers, Thomas W; Jaccard, Nicolas; Morton, Edward J; Griffin, Lewis D

    2017-01-01

    We review the relatively immature field of automated image analysis for X-ray cargo imagery. There is increasing demand for automated analysis methods that can assist in the inspection and selection of containers, due to the ever-growing volumes of traded cargo and the increasing concerns that customs- and security-related threats are being smuggled across borders by organised crime and terrorist networks. We split the field into the classical pipeline of image preprocessing and image understanding. Preprocessing includes: image manipulation; quality improvement; Threat Image Projection (TIP); and material discrimination and segmentation. Image understanding includes: Automated Threat Detection (ATD); and Automated Contents Verification (ACV). We identify several gaps in the literature that need to be addressed and propose ideas for future research. Where the current literature is sparse we borrow from the single-view, multi-view, and CT X-ray baggage domains, which have some characteristics in common with X-ray cargo.

  16. KSC01pp0234

    NASA Image and Video Library

    2001-02-01

    An Airbus “Beluga” air cargo plane, The Super Transporter, taxis onto the parking apron at KSC’s Shuttle Landing Facility. Its cargo, from the factory of Alenia Aerospazio in Turin, Italy, is the Italian Space Agency’s Multi-Purpose Logistics Module Donatello, the third of three for the International Space Station. The module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle’s payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo

  17. 46 CFR 91.50-1 - Inspection and testing required when making alterations, repairs, or other such operations...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., repairs, or other such operations involving riveting, welding, burning or like fire-producing actions. 91... testing required when making alterations, repairs, or other such operations involving riveting, welding..., welding, burning, or like fire-producing actions shall be made: (1) Within or on the boundaries of cargo...

  18. 46 CFR 91.50-1 - Inspection and testing required when making alterations, repairs, or other such operations...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., repairs, or other such operations involving riveting, welding, burning or like fire-producing actions. 91... testing required when making alterations, repairs, or other such operations involving riveting, welding..., welding, burning, or like fire-producing actions shall be made: (1) Within or on the boundaries of cargo...

  19. 46 CFR 91.50-1 - Inspection and testing required when making alterations, repairs, or other such operations...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., repairs, or other such operations involving riveting, welding, burning or like fire-producing actions. 91... testing required when making alterations, repairs, or other such operations involving riveting, welding..., welding, burning, or like fire-producing actions shall be made: (1) Within or on the boundaries of cargo...

  20. 46 CFR 91.50-1 - Inspection and testing required when making alterations, repairs, or other such operations...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., repairs, or other such operations involving riveting, welding, burning or like fire-producing actions. 91... testing required when making alterations, repairs, or other such operations involving riveting, welding..., welding, burning, or like fire-producing actions shall be made: (1) Within or on the boundaries of cargo...

  1. 46 CFR 91.50-1 - Inspection and testing required when making alterations, repairs, or other such operations...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., repairs, or other such operations involving riveting, welding, burning or like fire-producing actions. 91... testing required when making alterations, repairs, or other such operations involving riveting, welding..., welding, burning, or like fire-producing actions shall be made: (1) Within or on the boundaries of cargo...

  2. 78 FR 33193 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    .... In addition, BMS 8-39 fire retardant properties, which deteriorate over time, can provide a fuel... flight deck and cargo compartments), with seals made of BMS 8-39 urethane foam, a material with fire-retardant properties that deteriorate with age. This AD requires replacing certain seals made of BMS 8-39...

  3. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, (left to right) STS-96 Pilot Rick Husband and Mission Specialists Julie Payette and Ellen Ochoa work the straps on the Sequential Shunt Unit (SSU) in front of them. The STS-96 crew is at KSC for a payload Interface Verification Test (IVT) for its upcoming mission to the International Space Station . Other crew members at KSC for the IVT are Commander Kent Rominger and Mission Specialists Tamara Jernigan, Dan Barry and Valery Tokarev of Russia. The SSU is part of the cargo on Mission STS-96, which carries the SPACEHAB Logistics Double Module, with equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  4. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a payload Interface Verification Test (IVT) in the SPACEHAB Facility, STS-96 Mission Specialist Valery Tokarev of Russia (second from left) and Commander Kent Rominger learn about the Sequential Shunt Unit (SSU) in front of them from Lynn Ashby (far right), with Johnson Space Center. At the far left looking on is TTI interpreter Valentina Maydell. Other crew members at KSC for the IVT are Pilot Rick Husband and Mission Specialists Ellen Ochoa, Tamara Jernigan, Dan Barry and Julie Payette. The SSU is part of the cargo on Mission STS-96, which carries the SPACEHAB Logistics Double Module, with equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  5. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a payload Interface Verification Test (IVT) in the SPACEHAB Facility, STS-96 Mission Specialist Tamara Jernigan checks over instructions while Mission Specialist Dan Barry looks up from the Sequential Shunt Unit (SSU) in front of him to other equipment Lynn Ashby (right), with Johnson Space Center, is pointing at. Other crew members at KSC for the IVT are Commander Kent Rominger, Pilot Rick Husband, and Mission Specialists Ellen Ochoa, Julie Payette and Valery Tokarev of Russia. The SSU is part of the cargo on Mission STS-96, which carries the SPACEHAB Logistics Double Module, with equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  6. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a payload Interface Verification Test (IVT) in the SPACEHAB Facility, STS-96 Pilot Rick Husband and Mission Specialist Ellen Ochoa (on the left) and Mission Specialist Julie Payette (on the far right) listen to Khristal Parker (second from right), with Boeing, explain about the equipment in front of them. Other crew members at KSC for the IVT are Commander Kent Rominger and Mission Specialists Tamara Jernigan, Dan Barry and Valery Tokarev of Russia. The SSU is part of the cargo on Mission STS-96, which carries the SPACEHAB Logistics Double Module, with equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  7. Assessing the value of increased model resolution in forecasting fire danger

    Treesearch

    Jeanne Hoadley; Miriam Rorig; Ken Westrick; Larry Bradshaw; Sue Ferguson; Scott Goodrick; Paul Werth

    2003-01-01

    The fire season of 2000 was used as a case study to assess the value of increasing mesoscale model resolution for fire weather and fire danger forecasting. With a domain centered on Western Montana and Northern Idaho, MM5 simulations were run at 36, 12, and 4-km resolutions for a 30 day period at the height of the fire season. Verification analyses for meteorological...

  8. Fire Detection Organizing Questions

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Verified models of fire precursor transport in low and partial gravity: a. Development of models for large-scale transport in reduced gravity. b. Validated CFD simulations of transport of fire precursors. c. Evaluation of the effect of scale on transport and reduced gravity fires. Advanced fire detection system for gaseous and particulate pre-fire and fire signaturesa: a. Quantification of pre-fire pyrolysis products in microgravity. b. Suite of gas and particulate sensors. c. Reduced gravity evaluation of candidate detector technologies. d. Reduced gravity verification of advanced fire detection system. e. Validated database of fire and pre-fire signatures in low and partial gravity.

  9. MPLM Donatello is offloaded at the SLF

    NASA Technical Reports Server (NTRS)

    2001-01-01

    At the Shuttle Landing Facility, cranes help offload the Italian Space Agency's Multi-Purpose Logistics Module Donatello from the Airbus '''Beluga''' air cargo plane. The third of three for the International Space Station, the module will be moved on a transporter to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  10. Feasibility of methods and systems for reducng LNG tanker fire hazards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-08-01

    In this program concepts for reducing fire hazards that may result from LNG tanker collisions are identified and their technical feasibility evaluated. Concepts considered include modifications to the shipborne LNG containers so that in the event of a container rupture less of the contents would spill and/or the contents would spill at a reduced rate. Changes in the cargo itself, including making the LNG into a gel, solidifying it, converting it to methanol, and adding flame suppressants are also evaluated. The relative effectiveness and the costs of implementing these methods in terms of increased cost of gas at the receivingmore » terminal, are explained. The vulnerability of an LNG tanker and its crew to the thermal effects of a large pool fire caused by a collision spill is estimated and methods of protecting the crew are considered. It is shown that the protection of ship and crew so that further deterioration of a damaged ship might be ameliorated, would require the design and installation of extraordinary insulation systems and life support assistance for the crew. Methods of salvaging or disposing of cargo from a damaged and disabled ship are evaluated, and it is concluded that if the cargo cannot be transferred to another (empty) LNG tanker because of lack of availability, then the burning of the cargo at a location somewhat distant from the disabled tanker appears to be a promising approach. Finally, the likelihood of the vapors from a spill being ignited due to the frictional impact of the colliding ships was examined. It is found that the heating of metal sufficient to ignite flammable vapors would occur during a collision, but it is questionable whether flammable vapor and air will, in fact, come in contact with the hot metal surfaces.« less

  11. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT ANR PIPELINE COMPANY PARAMETRIC EMISSIONS MONITORING SYSTEM (PEMS)

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of a gaseous-emissions monitoring system for large, natural-gas-fired internal combustion engines. The device tested is the Parametric Emissions Monitoring System (PEMS) manufactured by ANR ...

  12. Average stand age from forest inventory plots does not describe historical fire regimes in ponderosa pine and mixed-conifer forests of western North America

    Treesearch

    Jens T. Stevens; Hugh D. Safford; Malcolm P. North; Jeremy S. Fried; Andrew N. Gray; Peter M. Brown; Christopher R. Dolanc; Solomon Z. Dobrowski; Donald A. Falk; Calvin A. Farris; Jerry F. Franklin; Peter Z. Fulé; R. Keala Hagmann; Eric E. Knapp; Jay D. Miller; Douglas F. Smith; Thomas W. Swetnam; Alan H. Taylor; Julia A. Jones

    2016-01-01

    Quantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests...

  13. 7 CFR 319.6 - Controlled import permits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., monitoring, or verification of plant material for plant health risks and/or the adaptability of the material... or treatment. (4) The plant material must be moved in an enclosed container or one completely...) and (c). (5) Consignments may be shipped as cargo, by mail or air freight, or hand-carried, as...

  14. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, (from left) STS-96 Mission Specialist Julie Payette, Pilot Rick Husband and Mission Specialist Ellen Ochoa learn about the Sequential Shunt Unit (SSU) in front of them from Lynn Ashby (far right), with Johnson Space Center. The STS-96 crew is at KSC for a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station . Other crew members at KSC for the IVT are Commander Kent Rominger and Mission Specialists Tamara Jernigan, Dan Barry and Valery Tokarev of Russia. The SSU is part of the cargo on Mission STS-96, which carries the SPACEHAB Logistics Double Module, with equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  15. 46 CFR 54.15-25 - Minimum relief capacities for cargo tanks containing compressed or liquefied gas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... overpressure permitted shall be in accordance with § 54.15-5. (c) The rate of discharge for heat input of fire... exposure factor for the following tank types: F=1.0 for tanks without insulation located on the open deck. F=0.5 for tanks on the open deck having insulation that has approved fire proofing, thermal...

  16. 46 CFR 54.15-25 - Minimum relief capacities for cargo tanks containing compressed or liquefied gas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... overpressure permitted shall be in accordance with § 54.15-5. (c) The rate of discharge for heat input of fire... exposure factor for the following tank types: F=1.0 for tanks without insulation located on the open deck. F=0.5 for tanks on the open deck having insulation that has approved fire proofing, thermal...

  17. 46 CFR 54.15-25 - Minimum relief capacities for cargo tanks containing compressed or liquefied gas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... overpressure permitted shall be in accordance with § 54.15-5. (c) The rate of discharge for heat input of fire... exposure factor for the following tank types: F=1.0 for tanks without insulation located on the open deck. F=0.5 for tanks on the open deck having insulation that has approved fire proofing, thermal...

  18. 46 CFR 54.15-25 - Minimum relief capacities for cargo tanks containing compressed or liquefied gas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... overpressure permitted shall be in accordance with § 54.15-5. (c) The rate of discharge for heat input of fire... exposure factor for the following tank types: F=1.0 for tanks without insulation located on the open deck. F=0.5 for tanks on the open deck having insulation that has approved fire proofing, thermal...

  19. 46 CFR 54.15-25 - Minimum relief capacities for cargo tanks containing compressed or liquefied gas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... overpressure permitted shall be in accordance with § 54.15-5. (c) The rate of discharge for heat input of fire... exposure factor for the following tank types: F=1.0 for tanks without insulation located on the open deck. F=0.5 for tanks on the open deck having insulation that has approved fire proofing, thermal...

  20. 46 CFR 148.01-7 - Permitted cargoes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... material Do. Ammonium nitrate fertilizer, formulation or mixture containing less than 60 pct ammonium with no organic filler ......do Do. Ammonium sulfate nitrate ORM-C If involved in a fire will intensify...

  1. 49 CFR 176.138 - Deck stowage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., machinery exhaust, galley uptake, locker used for combustible stores, or other potential sources of ignition. They must be clear of walkways and cargo working areas, fire hydrants, steam pipes, and means of access...

  2. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, HONEYWELL POWER SYSTEMS, INC. PARALLON 75 KW TURBOGENERATOR

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Parallon 75kW Turbogenerator manufactured by Honeywell Power Systems, Inc., formerly AlliedSignal Power Systems, Inc. The unit uses a natural-gas-fired turbine to power an electric ge...

  3. Firing Room Remote Application Software Development

    NASA Technical Reports Server (NTRS)

    Liu, Kan

    2015-01-01

    The Engineering and Technology Directorate (NE) at National Aeronautics and Space Administration (NASA) Kennedy Space Center (KSC) is designing a new command and control system for the checkout and launch of Space Launch System (SLS) and future rockets. The purposes of the semester long internship as a remote application software developer include the design, development, integration, and verification of the software and hardware in the firing rooms, in particular with the Mobile Launcher (ML) Launch Accessories (LACC) subsystem. In addition, a software test verification procedure document was created to verify and checkout LACC software for Launch Equipment Test Facility (LETF) testing.

  4. KSC-01pp0249

    NASA Image and Video Library

    2001-02-03

    An overhead crane lowers the Multi-Purpose Logistics Module Donatello onto a workstand. In the SSPF, Donatello will undergo processing by the payload test team, including integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle’s payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo. Donatello will be launched on mission STS-130, currently planned for September 2004

  5. Attached manipulator system design and concept verification for zero-g simulation

    NASA Technical Reports Server (NTRS)

    Booker, R.; Burkitt, W.; Corveleyn, P.; Cramer, P.; Duwaik, O.; Flatau, C.; Garber, P.; Grant, C.; Greeb, F.; Johnson, C.

    1973-01-01

    The attached manipulator system (AMS) is to simulate and demonstrate zero-g shuttle manipulator cargo handling operations. It is not the design or development of the shuttle attached manipulator system (SAMS); however, every effort is being made, to insure that the AMS will be functionally similar to the SAMS.

  6. ENVIRONMENTAL AND SUSTAINABLE TECHNOLOGY EVALUATION: BIOMASS CO-FIRING IN INDUSTRIAL BOILERS--UNIVERSITY OF IOWA

    EPA Science Inventory

    The U.S. EPA operates the Environmental and Sustainable Technology Evaluation (ESTE) program to facilitate the deployment of innovative technologies through performance verification and information dissemination. This ESTE project involved evaluation of co-firing common woody bio...

  7. Test and Evaluation of Commercially Available Halon 1211 Hand-Portable Fire Extinguishers for Use in Habitable and Cargo Compartments of USAF Aircraft

    DTIC Science & Technology

    1981-05-01

    an endorsement or rejection of these products by the Air Force, nor can it be used for advertising a product . SThis report has been reviewed by the... Fvii 41¢,I LIST OF TABLES TABLE TITLE PAGE 1 Baseline Data ............. ......................... .... 24 2 Post-Test Performance - Low Temperature...through its pyrolysis products , when used in the confined crew station or cargo areas of military aircraft. (b) The replacement agent should permit

  8. AJ26 engine test

    NASA Image and Video Library

    2010-12-17

    John C. Stennis Space Center engineers conduct a 55-second test fire of Aerojet's liquid-fuel AJ26 rocket engine that will power the first stage of Orbital Sciences Corporation's Taurus II space launch vehicle. The Dec. 17, 2010 test was conducted on the E-1 Test Stand at Stennis in support of NASA's Commercial Transportation Services partnerships to enable commercial cargo flights to the International Space Station. Orbital is under contract with NASA to provide eight cargo missions to the space station through 2015.

  9. MPLM Donatello is offloaded at the SLF

    NASA Technical Reports Server (NTRS)

    2001-01-01

    At the Shuttle Landing Facility, workers in cherry pickers (right) help guide offloading of the Italian Space Agency's Multi-Purpose Logistics Module Donatello from the Airbus '''Beluga''' air cargo plane that brought it from the factory of Alenia Aerospazio in Turin, Italy. The third of three for the International Space Station, the module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  10. ENVIRONMENTAL AND SUSTAINABLE TECHNOLOGY EVALUATION: BIOMASS CO-FIRING IN INDUSTRIAL BOILERS--MINNESOTA POWER'S RAPIDS ENERGY CENTER

    EPA Science Inventory

    The U.S. EPA operates the Environmental and Sustainable Technology Evaluation (ESTE) program to facilitate the deployment of innovative technologies through performance verification and information dissemination. This ESTE project involved evaluation of co-firing common woody bio...

  11. MPLM Donatello is offloaded at the SLF

    NASA Technical Reports Server (NTRS)

    2001-01-01

    At the KSC Shuttle Landing Facility, an Airbus '''Beluga''' air cargo plane opens to reveal its cargo, the Italian Space Agency's Multi- Purpose Logistics Module Donatello, from the factory of Alenia Aerospazio in Turin, Italy. The third of three for the International Space Station, the module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  12. Capability Portfolio Analysis Tool (CPAT) Verification and Validation Report

    DTIC Science & Technology

    2013-01-01

    BFSB Battlefield Surveillance Brigade BFV Bradley Fighting Vehicle BMOD Bradley Modernization C2 (H) Command and Control (HBCT) C2 (S...Fire Infantry Fighting Vehicle (IFV); Fire Integrated Support Team (FIST); Engineer (Eng); Cavalry (CAV) BFV FOV CDD Block II - 16 Apr 2010 GCV FOV

  13. 77 FR 28401 - Information Collection Activities: Legacy Data Verification Process (LDVP); Submitted for Office...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... and natural gas resources in a manner that is consistent with the need to make such resources... to prevent or minimize the likelihood of blowouts, loss of well control, fires, spillages, physical... the environment or to property, or endanger life or health.'' BSEE's Legacy Data Verification Process...

  14. Simulation analysis of operation respond in a field setting

    DOT National Transportation Integrated Search

    1997-01-01

    The Operation Respond system aims to facilitate rapid access to transportation carrier databases containing information on hazardous material cargo. As a consequence, first responders, such as police and fire department personnel, are expected to res...

  15. 46 CFR 72.05-90 - Vessels contracted for prior to May 26, 1965.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... passengers or crew while the vessel is being navigated, except cargo holds, machinery spaces, and when of fire-resisting construction, toilets, bathrooms, and spaces of similar construction. Where, in the case...

  16. 46 CFR 72.05-90 - Vessels contracted for prior to May 26, 1965.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... passengers or crew while the vessel is being navigated, except cargo holds, machinery spaces, and when of fire-resisting construction, toilets, bathrooms, and spaces of similar construction. Where, in the case...

  17. 46 CFR 72.05-90 - Vessels contracted for prior to May 26, 1965.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... passengers or crew while the vessel is being navigated, except cargo holds, machinery spaces, and when of fire-resisting construction, toilets, bathrooms, and spaces of similar construction. Where, in the case...

  18. 46 CFR 72.05-90 - Vessels contracted for prior to May 26, 1965.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... passengers or crew while the vessel is being navigated, except cargo holds, machinery spaces, and when of fire-resisting construction, toilets, bathrooms, and spaces of similar construction. Where, in the case...

  19. KENNEDY SPACE CENTER, FLA. - The red NASA engine hauls its cargo toward Titusville, Fla. The containers enclose segments of a solid rocket booster being returned to Utah for testing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.

    NASA Image and Video Library

    2004-01-30

    KENNEDY SPACE CENTER, FLA. - The red NASA engine hauls its cargo toward Titusville, Fla. The containers enclose segments of a solid rocket booster being returned to Utah for testing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.

  20. Flow Friction or Spontaneous Ignition?

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M.; Gallus, Timothy D.; Sparks, Kyle

    2012-01-01

    "Flow friction," a proposed ignition mechanism in oxygen systems, has proved elusive in attempts at experimental verification. In this paper, the literature regarding flow friction is reviewed and the experimental verification attempts are briefly discussed. Another ignition mechanism, a form of spontaneous combustion, is proposed as an explanation for at least some of the fire events that have been attributed to flow friction in the literature. In addition, the results of a failure analysis performed at NASA Johnson Space Center White Sands Test Facility are presented, and the observations indicate that spontaneous combustion was the most likely cause of the fire in this 2000 psig (14 MPa) oxygen-enriched system.

  1. Status of candidate materials for full-scale tests in the 737 fuselage

    NASA Technical Reports Server (NTRS)

    Supkis, D.

    1979-01-01

    The test program has the objectives to: (1) increase passenger evacuation time to a minimum of five minutes from commercial aircraft in case of a fire; (2) prevent an external fire from entering closed cabins for five minutes by using fire barrier materials in the exterior wall; (3) demonstrate that a closed cabin will not reach 400 F; and (4) prove that a fire near a cabin opening will not propagate through the cabin for a minimum of five minutes. The materials status is outlined for seat cushions, upholstery and associated seat materials, wall and ceiling panels, floor panels, carpet and carpet underlay, windows, cargo bay liners, insulation bagging, and thermal acoustical insulation.

  2. Validation and Verification (V and V) Testing on Midscale Flame Resistant (FR) Test Method

    DTIC Science & Technology

    2016-12-16

    Method for Evaluation of Flame Resistant Clothing for Protection against Fire Simulations Using an Instrumented Manikin. Validation and...complement (not replace) the capabilities of the ASTM F1930 Standard Test Method for Evaluation of Flame Resistant Clothing for Protection against Fire ...Engineering Center (NSRDEC) to complement the ASTM F1930 Standard Test Method for Evaluation of Flame Resistant Clothing for Protection against Fire

  3. Wet countdown demonstration and flight readiness firing

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The prelaunch tests for the Space Transportation System 1 flight are briefly described. Testing is divided into two major sections: the wet countdown demonstration test/flight readiness firing, which includes a 20 second test firing of the orbiter's three main engines, and a mission verification test, which is centered on flight and landing operations. The functions of the countdown sequence are listed and end of mission and mission abort exercises are described.

  4. Fire and worker health and safety: an introduction to the special issue.

    PubMed

    Campbell, Richard; Levenstein, Charles

    2015-02-01

    One century ago, the landmark fire at the Triangle Shirtwaist Factory in New York City claimed the lives of 146 garment workers and helped spur the adoption of fire safety measures and laws targeting dangerous working conditions. Since that time, continuing advances have been made to address the threat of fire-in workplace fire safety practices and regulations, in training and safety requirements for firefighters and first responders, and in hazard communication laws that enhance disaster planning and response. Recent high profile events, including the West, Texas fertilizer plant explosion, derailments of fuel cargo trains, and garment factory fires in Bangladesh, have brought renewed attention to fire as a workplace health and safety issue and to the unevenness of safety standards and regulatory enforcement, in the United States as well as internationally. In this article, we provide an overview of fire as a workplace health and safety hazard and an introduction to the essays included in this special issue of New Solutions on fire and work. © 2015 SAGE Publications.

  5. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the SPACEHAB Facility, STS-96 Mission Specialist Ellen Ochoa and Commander Kent Rominger pause during a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station. Other crew members at KSC for the IVT are Pilot Rick Husband and Mission Specialists Tamara Jernigan, Dan Barry, Julie Payette and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.

  6. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, STS-96 Mission Specialist Julie Payette closes a container, part of the equipment to be carried on the SPACEHAB and mission STS-96. She and other crew members Commander Kent Rominger, Pilot Rick Husband, and Mission Speciaists Ellen Ochoa, Tamara Jernigan, Dan Barry and Valery Tokarev of Russia are at KSC for a payload Interface Verification Test for the upcoming mission to the International Space Station . Mission STS-96 carries the SPACEHAB Logistics Double Module, which has equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  7. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Posing on the platform next to the SPACEHAB Logistics Double Module in the SPACEHAB Facility are the STS-96 crew (from left) Mission Specialists Dan Barry, Tamara Jernigan, Valery Tokarev of Russia, and Julie Payette; Pilot Rick Husband; Mission Specialist Ellen Ochoa; and Commander Kent Rominger. The crew is at KSC for a payload Interface Verification Test for their upcoming mission to the International Space Station. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  8. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the SPACEHAB Facility, STS-96 Mission Specialist Ellen Ochoa and Commander Kent Rominger smile for the camera during a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station. Other crew members at KSC for the IVT are Pilot Rick Husband and Mission Specialists Tamara Jernigan, Dan Barry, Julie Payette and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.

  9. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a payload Interface Verification Test (IVT) for the upcoming mission to the International Space Station , Chris Jaskolka of Boeing points out a piece of equipment in the SPACEHAB module to STS-96 Commander Kent Rominger, Mission Specialist Ellen Ochoa and Pilot Rick Husband. Other crew members visiting KSC for the IVT are Mission Specialists Tamara Jernigan, Dan Barry, Julie Payette and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.

  10. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, STS-96 Mission Specialists Dan Barry and Tamara Jernigan discuss procedures during a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station. Other STS-96 crew members at KSC for the IVT are Commander Kent Rominger, Pilot Rick Husband and Mission Specialists Ellen Ochoa, Julie Payette and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  11. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, James Behling, with Boeing, talks about equipment for mission STS-96 during a payload Interface Verification Test (IVT). Watching are (from left) Mission Specialists Ellen Ochoa, Julie Payette and Dan Berry, and Pilot Rick Husband. Other STS-96 crew members at KSC for the IVT are Commander Kent Rominger and Mission Specialists Tamara Jernigan and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  12. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station, STS-96 Mission Specialists Julie Payette, Dan Barry, and Valery Tokarev of Russia, look at a Sequential Shunt Unit in the SPACEHAB Facility. Other crew members at KSC for the IVT are Commander Kent Rominger, Pilot Rick Husband, and Mission Specialists Ellen Ochoa and Tamara Jernigan. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.

  13. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility for a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station are (left to right) Mission Specialists Valery Tokarev, Julie Payette (holding a lithium hydroxide canister) and Dan Barry. Other crew members at KSC for the IVT are Commander Kent Rominger, Pilot Rick Husband and Mission Specialists Ellen Ochoa and Tamara Jernigan. Mission STS-96 carries the SPACEHAB Logistics Double Module, which has equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  14. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, the STS-96 crew looks over equipment during a payload Interface Verification Test for the upcoming mission to the International Space Station. From left are Commander Kent Rominger, Mission Specialists Tamara Jernigan and Valery Tokarev of Russia, Pilot Rick Husband, and Mission Specialists Ellen Ochoa and Julie Payette (backs to the camera). They are listening to Chris Jaskolka of Boeing talk about the equipment. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.

  15. A Design Verification of the Parallel Pipelined Image Processings

    NASA Astrophysics Data System (ADS)

    Wasaki, Katsumi; Harai, Toshiaki

    2008-11-01

    This paper presents a case study of the design and verification of a parallel and pipe-lined image processing unit based on an extended Petri net, which is called a Logical Colored Petri net (LCPN). This is suitable for Flexible-Manufacturing System (FMS) modeling and discussion of structural properties. LCPN is another family of colored place/transition-net(CPN) with the addition of the following features: integer value assignment of marks, representation of firing conditions as marks' value based formulae, and coupling of output procedures with transition firing. Therefore, to study the behavior of a system modeled with this net, we provide a means of searching the reachability tree for markings.

  16. Microfabricated Chemical Sensors for Aerospace Fire Detection Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Neudeck, Philip G.; Fralick, Gustave; Thomas, Valarie; Makel, D.; Liu, C. C.; Ward, B.; Wu, Q. H.

    2001-01-01

    The detection of fires on-board commercial aircraft is extremely important for safety reasons. Although dependable fire detection equipment presently exists within the cabin, detection of fire within the cargo hold has been less reliable and susceptible to false alarms. A second, independent method of fire detection to complement the conventional smoke detection techniques, such as the measurement of chemical species indicative of a fire, will help reduce false alarms and improve aircraft safety. Although many chemical species are indicative of a fire, two species of particular interest are CO and CO2. This paper discusses microfabricated chemical sensor development tailored to meet the needs of fire safety applications. This development is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. The individual sensor being developed and their level of maturity will be presented.

  17. The Ares Projects: Building America's Future in Space

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.

    2009-01-01

    NASA's Constellation Program is depending on the Ares Projects to deliver the crew and cargo launch capabilities needed to send human explorers to the Moon and beyond. In 2009, the Ares Projects plan to conduct the first test flight of Ares I, Ares I-X; the first firing of a five-segment development solid rocket motor for the Ares I first stage; building the first integrated Ares I upper stage; continue component testing for the J-2X upper stage engine; and perform more-detailed design studies for the Ares V cargo launch vehicle. Ares I and V will provide the core space launch capabilities needed to continue providing crew and cargo access to the International Space Station (ISS), and to build upon the U.S. history of human spaceflight to the Moon and beyond.

  18. Color model and method for video fire flame and smoke detection using Fisher linear discriminant

    NASA Astrophysics Data System (ADS)

    Wei, Yuan; Jie, Li; Jun, Fang; Yongming, Zhang

    2013-02-01

    Video fire detection is playing an increasingly important role in our life. But recent research is often based on a traditional RGB color model used to analyze the flame, which may be not the optimal color space for fire recognition. It is worse when we research smoke simply using gray images instead of color ones. We clarify the importance of color information for fire detection. We present a fire discriminant color (FDC) model for flame or smoke recognition based on color images. The FDC models aim to unify fire color image representation and fire recognition task into one framework. With the definition of between-class scatter matrices and within-class scatter matrices of Fisher linear discriminant, the proposed models seek to obtain one color-space-transform matrix and a discriminate projection basis vector by maximizing the ratio of these two scatter matrices. First, an iterative basic algorithm is designed to get one-component color space transformed from RGB. Then, a general algorithm is extended to generate three-component color space for further improvement. Moreover, we propose a method for video fire detection based on the models using the kNN classifier. To evaluate the recognition performance, we create a database including flame, smoke, and nonfire images for training and testing. The test experiments show that the proposed model achieves a flame verification rate receiver operating characteristic (ROC I) of 97.5% at a false alarm rate (FAR) of 1.06% and a smoke verification rate (ROC II) of 91.5% at a FAR of 1.2%, and lots of fire video experiments demonstrate that our method reaches a high accuracy for fire recognition.

  19. Verification and Implementation of Operations Safety Controls for Flight Missions

    NASA Technical Reports Server (NTRS)

    Jones, Cheryl L.; Smalls, James R.; Carrier, Alicia S.

    2010-01-01

    Approximately eleven years ago, the International Space Station launched the first module from Russia, the Functional Cargo Block (FGB). Safety and Mission Assurance (S&MA) Operations (Ops) Engineers played an integral part in that endeavor by executing strict flight product verification as well as continued staffing of S&MA's console in the Mission Evaluation Room (MER) for that flight mission. How were these engineers able to conduct such a complicated task? They conducted it based on product verification that consisted of ensuring that safety requirements were adequately contained in all flight products that affected crew safety. S&MA Ops engineers apply both systems engineering and project management principles in order to gain a appropriate level of technical knowledge necessary to perform thorough reviews which cover the subsystem(s) affected. They also ensured that mission priorities were carried out with a great detail and success.

  20. Action-based verification of RTCP-nets with CADP

    NASA Astrophysics Data System (ADS)

    Biernacki, Jerzy; Biernacka, Agnieszka; Szpyrka, Marcin

    2015-12-01

    The paper presents an RTCP-nets' (real-time coloured Petri nets) coverability graphs into Aldebaran format translation algorithm. The approach provides the possibility of automatic RTCP-nets verification using model checking techniques provided by the CADP toolbox. An actual fire alarm control panel system has been modelled and several of its crucial properties have been verified to demonstrate the usability of the approach.

  1. 46 CFR 95.01-2 - Incorporation by reference.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) NFPA 13-1996, Standard for the Installation of Sprinkler Systems, incorporation by reference approved... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE... and Engineering Systems, U.S. Coast Guard Stop 7509, 2703 Martin Luther King Jr. Avenue SE...

  2. 46 CFR 95.01-2 - Incorporation by reference.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) NFPA 13-1996, Standard for the Installation of Sprinkler Systems, incorporation by reference approved... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE... and Engineering Systems, U.S. Coast Guard Stop 7509, 2703 Martin Luther King Jr. Avenue SE...

  3. Aircraft Command in Emergency Situations (ACES). Phase 1: Concept Development

    DTIC Science & Technology

    1991-04-01

    progresses through a sequence of four stages: incipient, smoldeang, flame, and heat ( ASHREA Handbook 1984 Systems, Chapter 38, Fire and Sino’.e Control...CARGO F FCARGO DETI DET 2 1D DET2 Figure 6-9. Synoptic Display Layout for Concept R SMOKE HEATt I I 110 T AFTCARGO ~HEAT VS TIME SMOKE VS TIME HEAVY 7II...Phosphate Road, Suite 110 , North Charleston, SC 29418. Reference 12 Senturia, S. D., "Fabrication and Evaluation of Polymeric Early-Warning Fire Alarm

  4. Marine Security of Hazardous Chemical Cargo

    DTIC Science & Technology

    2005-08-26

    Division 6.1 Poisonous liquids (by inhalation) Liquid pesticide 6 Division 4.2 Spont. combustible ( pyrophoric ) Barium alloys 7 Division 4.1 Flammable...25167-67-3 10,000 Fire 2.1 Carbon disulfide 75-15-0 20,000 Toxic 3 Carbon oxysulfide [Carbon oxide sulfide (COS)] 463-58-1 10,000 Fire 2.3 Chlorine...acid (conc 50% or greater) [Hydrofluoric acid] 7664-39-3 1,000 Toxic 8 Hydrogen selenide 7/5/7783 500 Toxic 2.3 Hydrogen sulfide 6/4/7783 10,000 Toxic

  5. KSC-01pp0244

    NASA Image and Video Library

    2001-02-03

    The lid is off the shipping container with the Multi-Purpose Logistics Module Donatello inside. It sits on a transporter inside the Space Station Processing Facility. In the SSPF, Donatello will undergo processing by the payload test team, including integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle’s payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo. Donatello will be launched on mission STS-130, currently planned for September 2004

  6. KSC-01pp0245

    NASA Image and Video Library

    2001-02-03

    Workers in the Space Station Processing Facility attach an overhead crane to the Multi-Purpose Logistics Module Donatello to lift it out of the shipping container. In the SSPF, Donatello will undergo processing by the payload test team, including integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle’s payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo. Donatello will be launched on mission STS-130, currently planned for September 2004

  7. KSC-01pp0246

    NASA Image and Video Library

    2001-02-03

    In the Space Station Processing Facility, workers help guide the overhead crane as it lifts the Multi-Purpose Logistics Module Donatello out of the shipping container. In the SSPF, Donatello will undergo processing by the payload test team, including integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle’s payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo. Donatello will be launched on mission STS-130, currently planned for September 2004

  8. KSC-01pp0247

    NASA Image and Video Library

    2001-02-03

    In the Space Station Processing Facility, workers help guide the Multi-Purpose Logistics Module Donatello as it moves the length of the SSPF toward a workstand. In the SSPF, Donatello will undergo processing by the payload test team, including integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle’s payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo. Donatello will be launched on mission STS-130, currently planned for September 2004

  9. KSC-01pp0248

    NASA Image and Video Library

    2001-02-03

    In the Space Station Processing Facility, workers wait for the Multi-Purpose Logistics Module Donatello, suspended by an overhead crane, to move onto a workstand. In the SSPF, Donatello will undergo processing by the payload test team, including integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle’s payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo. Donatello will be launched on mission STS-130, currently planned for September 2004

  10. Fuel and fire behavior prediction in big sagebrush

    Treesearch

    James K. Brown

    1982-01-01

    Relationships between height of big sagebrush and crown area, fuel loading, bulk density, size distribution of foliage and stemwood, and fraction dead stemwood are presented. Based upon these relationships, modeled rate-of-fire spread and fireline intensity are shown for sagebrush ranging in height from 20 to 120 em and in coverage from 10 to 40 percent. Verification...

  11. 19 CFR 149.2 - Importer security filing-requirement, time of transmission, verification of information, update...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Time of transmission. With the exception of any break bulk cargo pursuant to § 149.4(b) of this part... to CBP the reason for such withdrawal. (f) Flexible requirements. For each of the four data elements... interchange system are not yet in place or for any other reason. Notice of any such delay will be provided in...

  12. 46 CFR 92.07-10 - Construction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Construction. 92.07-10 Section 92.07-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS CONSTRUCTION AND ARRANGEMENT Structural Fire Protection § 92.07-10 Construction. (a) The hull, superstructure, structural...

  13. 46 CFR 95.30-1 - Application.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Application. 95.30-1 Section 95.30-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Automatic Sprinkler Systems, Details § 95.30-1 Application. Automatic sprinkler systems shall...

  14. 46 CFR 95.30-1 - Application.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Application. 95.30-1 Section 95.30-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Automatic Sprinkler Systems, Details § 95.30-1 Application. Automatic sprinkler systems shall...

  15. 46 CFR 95.30-1 - Application.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Application. 95.30-1 Section 95.30-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Automatic Sprinkler Systems, Details § 95.30-1 Application. Automatic sprinkler systems shall...

  16. 46 CFR 95.30-1 - Application.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Application. 95.30-1 Section 95.30-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Automatic Sprinkler Systems, Details § 95.30-1 Application. Automatic sprinkler systems shall...

  17. 46 CFR 95.30-1 - Application.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Application. 95.30-1 Section 95.30-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Automatic Sprinkler Systems, Details § 95.30-1 Application. Automatic sprinkler systems shall...

  18. KENNEDY SPACE CENTER, FLA. - The red NASA engine backs up with its cargo of containers in order to change tracks. The containers enclose segments of a solid rocket booster being returned to Utah for testing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.

    NASA Image and Video Library

    2004-01-30

    KENNEDY SPACE CENTER, FLA. - The red NASA engine backs up with its cargo of containers in order to change tracks. The containers enclose segments of a solid rocket booster being returned to Utah for testing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.

  19. KENNEDY SPACE CENTER, FLA. - The red NASA engine moves forward past the Vehicle Assembly Building with its cargo of containers enclosing segments of a solid rocket booster being returned to Utah for testing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.

    NASA Image and Video Library

    2004-01-30

    KENNEDY SPACE CENTER, FLA. - The red NASA engine moves forward past the Vehicle Assembly Building with its cargo of containers enclosing segments of a solid rocket booster being returned to Utah for testing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.

  20. 46 CFR 95.17-1 - Application.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Application. 95.17-1 Section 95.17-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 95.17-1 Application. (a) Where a foam extinguishing system...

  1. 46 CFR 95.17-1 - Application.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Application. 95.17-1 Section 95.17-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 95.17-1 Application. (a) Where a foam extinguishing system...

  2. 46 CFR 167.30-10 - Special operating requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SCHOOL SHIPS Repairs or Alterations § 167.30-10 Special operating requirements. Inspection and testing required when making alterations, repairs, or other such operations involving riveting, welding, burning..., welding, burning, or like fire-producing actions shall be made: (1) Within or on the boundaries of cargo...

  3. 46 CFR 95.15-25 - Discharge outlets.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Discharge outlets. 95.15-25 Section 95.15-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-25 Discharge outlets. (a) Discharge outlets...

  4. 46 CFR 95.15-30 - Alarms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... automatically and audibly for at least 20 seconds before carbon dioxide is discharged into the space; (2) Be..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-30 Alarms. (a) A protected space must be fitted with an...

  5. 46 CFR 95.15-25 - Discharge outlets.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Discharge outlets. 95.15-25 Section 95.15-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-25 Discharge outlets. (a) Discharge outlets...

  6. 46 CFR 95.15-25 - Discharge outlets.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Discharge outlets. 95.15-25 Section 95.15-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-25 Discharge outlets. (a) Discharge outlets...

  7. 46 CFR 91.55-5 - Plans and specifications required for new construction.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... of liferafts and buoyant apparatus. (h) Crew's accommodations. (1) Arrangement plans showing... Drains Penetrating Shell Plating. (13) *Arrangement of the cargo gear including a stress diagram. The...) Subdivision and stability. Plans and calculations as required by Subchapter S of this chapter. (d) Fire...

  8. 46 CFR 91.55-5 - Plans and specifications required for new construction.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... of liferafts and buoyant apparatus. (h) Crew's accommodations. (1) Arrangement plans showing... Drains Penetrating Shell Plating. (13) *Arrangement of the cargo gear including a stress diagram. The...) Subdivision and stability. Plans and calculations as required by Subchapter S of this chapter. (d) Fire...

  9. 46 CFR 91.55-5 - Plans and specifications required for new construction.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of liferafts and buoyant apparatus. (h) Crew's accommodations. (1) Arrangement plans showing... Drains Penetrating Shell Plating. (13) *Arrangement of the cargo gear including a stress diagram. The...) Subdivision and stability. Plans and calculations as required by Subchapter S of this chapter. (d) Fire...

  10. 46 CFR 32.57-10 - Construction-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... cases, having in mind the risk of fire. (b) Bulkheads of galleys, paint and lamp lockers, and emergency... accommodations and control stations from cargo, and machinery spaces and from galleys, main pantries and... apply within accommodation, service, and control spaces: (1) Corridor bulkheads in accommodation areas...

  11. Automatic high throughput empty ISO container verification

    NASA Astrophysics Data System (ADS)

    Chalmers, Alex

    2007-04-01

    Encouraging results are presented for the automatic analysis of radiographic images of a continuous stream of ISO containers to confirm they are truly empty. A series of image processing algorithms are described that process real-time data acquired during the actual inspection of each container and assigns each to one of the classes "empty", "not empty" or "suspect threat". This research is one step towards achieving fully automated analysis of cargo containers.

  12. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, the STS-96 crew looks at equipment as part of a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station . From left are Mission Specialist Ellen Ochoa (behind the opened storage cover ), Commander Kent Rominger, Pilot Rick Husband (holding a lithium hydroxide canister) and Mission Specialists Dan Barry, Valery Tokarev of Russia and Julie Payette. In the background is TTI interpreter Valentina Maydell. The other crew member at KSC for the IVT is Mission Specialist Tamara Jernigan. Mission STS-96 carries the SPACEHAB Logistics Double Module, which has equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  13. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, STS-96 crew members look over equipment during a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station. From left are Khristal Parker, with Boeing; Mission Specialist Dan Barry, Pilot Rick Husband, Mission Specialist Tamara Jernigan, and at the far right, Mission Specialist Julie Payette. An unidentified worker is in the background. Also at KSC for the IVT are Commander Kent Rominger and Mission Specialists Ellen Ochoa and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  14. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, STS-96 Mission Specialist Valery Tokarev of Russia (left) and Commander Kent Rominger (second from right) listen to Lynn Ashby (far right), with JSC, talking about the SPACEHAB equipment in front of them during a payload Interface Verification Test (IVT). In the background behind Tokarev is TTI interpreter Valentina Maydell. Other STS-96 crew members at KSC for the IVT are Pilot Rick Husband and Mission Specialists Dan Barry, Ellen Ochoa, Tamara Jernigan and Julie Payette. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  15. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, STS-96 Mission Specialist Valery Tokarev (in foreground) of the Russian Space Agency closes a container, part of the equipment that will be in the SPACEHAB module on mission STS-96. Behind Tokarev are Pilot Rick Husband (left) and Mission Specialist Dan Barry (right). Other crew members at KSC for a payload Interface Verification Test for the upcoming mission to the International Space Station are Commander Kent Rominger and Mission Specialists Ellen Ochoa, Tamara Jernigan and Julie Payette. Mission STS-96 carries the SPACEHAB Logistics Double Module, which has equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  16. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility for a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station are (kneeling) STS-96 Mission Specialists Julie Payette and Ellen Ochoa, Pilot Rick Husband, and (standing at right) Mission Specialist Dan Barry. At the left is James Behling, with Boeing, explaining some of the equipment that will be on board STS-96. Other STS-96 crew members at KSC for the IVT are Commander Kent Rominger and Mission Specialists Tamara Jernigan and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  17. A wireless sensor network deployment for rural and forest fire detection and verification.

    PubMed

    Lloret, Jaime; Garcia, Miguel; Bri, Diana; Sendra, Sandra

    2009-01-01

    Forest and rural fires are one of the main causes of environmental degradation in Mediterranean countries. Existing fire detection systems only focus on detection, but not on the verification of the fire. However, almost all of them are just simulations, and very few implementations can be found. Besides, the systems in the literature lack scalability. In this paper we show all the steps followed to perform the design, research and development of a wireless multisensor network which mixes sensors with IP cameras in a wireless network in order to detect and verify fire in rural and forest areas of Spain. We have studied how many cameras, sensors and access points are needed to cover a rural or forest area, and the scalability of the system. We have developed a multisensor and when it detects a fire, it sends a sensor alarm through the wireless network to a central server. The central server selects the closest wireless cameras to the multisensor, based on a software application, which are rotated to the sensor that raised the alarm, and sends them a message in order to receive real-time images from the zone. The camera lets the fire fighters corroborate the existence of a fire and avoid false alarms. In this paper, we show the test performance given by a test bench formed by four wireless IP cameras in several situations and the energy consumed when they are transmitting. Moreover, we study the energy consumed by each device when the system is set up. The wireless sensor network could be connected to Internet through a gateway and the images of the cameras could be seen from any part of the world.

  18. A Wireless Sensor Network Deployment for Rural and Forest Fire Detection and Verification

    PubMed Central

    Lloret, Jaime; Garcia, Miguel; Bri, Diana; Sendra, Sandra

    2009-01-01

    Forest and rural fires are one of the main causes of environmental degradation in Mediterranean countries. Existing fire detection systems only focus on detection, but not on the verification of the fire. However, almost all of them are just simulations, and very few implementations can be found. Besides, the systems in the literature lack scalability. In this paper we show all the steps followed to perform the design, research and development of a wireless multisensor network which mixes sensors with IP cameras in a wireless network in order to detect and verify fire in rural and forest areas of Spain. We have studied how many cameras, sensors and access points are needed to cover a rural or forest area, and the scalability of the system. We have developed a multisensor and when it detects a fire, it sends a sensor alarm through the wireless network to a central server. The central server selects the closest wireless cameras to the multisensor, based on a software application, which are rotated to the sensor that raised the alarm, and sends them a message in order to receive real-time images from the zone. The camera lets the fire fighters corroborate the existence of a fire and avoid false alarms. In this paper, we show the test performance given by a test bench formed by four wireless IP cameras in several situations and the energy consumed when they are transmitting. Moreover, we study the energy consumed by each device when the system is set up. The wireless sensor network could be connected to Internet through a gateway and the images of the cameras could be seen from any part of the world. PMID:22291533

  19. 46 CFR 95.17-15 - Piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Piping. 95.17-15 Section 95.17-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 95.17-15 Piping. (a) All piping, valves, and fittings shall meet the applicable...

  20. 46 CFR 95.17-20 - Discharge outlets.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Discharge outlets. 95.17-20 Section 95.17-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 95.17-20 Discharge outlets. (a) Discharge outlets shall be...

  1. 46 CFR 95.17-20 - Discharge outlets.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Discharge outlets. 95.17-20 Section 95.17-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 95.17-20 Discharge outlets. (a) Discharge outlets shall be...

  2. 46 CFR 95.17-15 - Piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Piping. 95.17-15 Section 95.17-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Foam Extinguishing Systems, Details § 95.17-15 Piping. (a) All piping, valves, and fittings shall meet the applicable...

  3. 46 CFR 91.55-5 - Plans and specifications required for new construction.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... (ii) Arrangement of davits. (iii) Location and stowage of liferafts and buoyant apparatus. (h) Crew's... Drains Penetrating Shell Plating. (13) *Arrangement of the cargo gear including a stress diagram. The...) Subdivision and stability. Plans and calculations as required by Subchapter S of this chapter. (d) Fire...

  4. 46 CFR 92.05-10 - Lamp room construction.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Lamp room construction. 92.05-10 Section 92.05-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS CONSTRUCTION AND ARRANGEMENT General Fire Protection § 92.05-10 Lamp room construction. (a) Lamp, paint, and...

  5. 46 CFR 92.05-10 - Lamp room construction.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Lamp room construction. 92.05-10 Section 92.05-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS CONSTRUCTION AND ARRANGEMENT General Fire Protection § 92.05-10 Lamp room construction. (a) Lamp, paint, and...

  6. 46 CFR 92.05-10 - Lamp room construction.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Lamp room construction. 92.05-10 Section 92.05-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS CONSTRUCTION AND ARRANGEMENT General Fire Protection § 92.05-10 Lamp room construction. (a) Lamp, paint, and...

  7. 46 CFR 92.05-10 - Lamp room construction.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Lamp room construction. 92.05-10 Section 92.05-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS CONSTRUCTION AND ARRANGEMENT General Fire Protection § 92.05-10 Lamp room construction. (a) Lamp, paint, and...

  8. 46 CFR 92.05-10 - Lamp room construction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Lamp room construction. 92.05-10 Section 92.05-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS CONSTRUCTION AND ARRANGEMENT General Fire Protection § 92.05-10 Lamp room construction. (a) Lamp, paint, and...

  9. AJ26 engine test

    NASA Image and Video Library

    2011-11-17

    A team of engineers at Stennis Space Center conducted a test firing of an Aerojet AJ26 flight engine Nov. 17, providing continued support to Orbital Sciences Corporation as it prepares to launch commercial cargo missions to the International Space Station. AJ26 engines will power Orbital's Taurus II rocket on the missions.

  10. 46 CFR 97.37-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide warning signs. 97.37-11 Section 97.37-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-11 Carbon dioxide warning signs. Each...

  11. 46 CFR 97.37-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide warning signs. 97.37-11 Section 97.37-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-11 Carbon dioxide warning signs. Each...

  12. 46 CFR 97.37-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide warning signs. 97.37-11 Section 97.37-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-11 Carbon dioxide warning signs. Each...

  13. 46 CFR 98.30-37 - Firefighting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Portable Tanks § 98.30-37... a dry chemical type are— (1) Located to protect the deck area 10 feet in any horizontal direction..., there are 2 or more dry chemical fire extinguishers of 300 pounds or more total capacity of...

  14. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a...

  15. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a...

  16. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a...

  17. 14 CFR 91.513 - Emergency equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Must clearly indicate its method of operation; and (4) When carried in a compartment or container, must have that compartment or container marked as to contents and date of last inspection. (c) Hand fire extinguishers must be provided for use in crew, passenger, and cargo compartments in accordance with the...

  18. 14 CFR 91.513 - Emergency equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Must clearly indicate its method of operation; and (4) When carried in a compartment or container, must have that compartment or container marked as to contents and date of last inspection. (c) Hand fire extinguishers must be provided for use in crew, passenger, and cargo compartments in accordance with the...

  19. 14 CFR 91.513 - Emergency equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Must clearly indicate its method of operation; and (4) When carried in a compartment or container, must have that compartment or container marked as to contents and date of last inspection. (c) Hand fire extinguishers must be provided for use in crew, passenger, and cargo compartments in accordance with the...

  20. 14 CFR 91.513 - Emergency equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Must clearly indicate its method of operation; and (4) When carried in a compartment or container, must have that compartment or container marked as to contents and date of last inspection. (c) Hand fire extinguishers must be provided for use in crew, passenger, and cargo compartments in accordance with the...

  1. 46 CFR 97.37-3 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false General. 97.37-3 Section 97.37-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Markings for Fire and... Charge, Marine Inspection, that the prescribed markings are unnecessary for the guidance of the persons...

  2. 46 CFR 97.37-3 - General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false General. 97.37-3 Section 97.37-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Markings for Fire and... Charge, Marine Inspection, that the prescribed markings are unnecessary for the guidance of the persons...

  3. 46 CFR 97.37-3 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false General. 97.37-3 Section 97.37-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Markings for Fire and... Charge, Marine Inspection, that the prescribed markings are unnecessary for the guidance of the persons...

  4. 46 CFR 97.37-3 - General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false General. 97.37-3 Section 97.37-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Markings for Fire and... Charge, Marine Inspection, that the prescribed markings are unnecessary for the guidance of the persons...

  5. 46 CFR 97.37-3 - General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false General. 97.37-3 Section 97.37-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Markings for Fire and... Charge, Marine Inspection, that the prescribed markings are unnecessary for the guidance of the persons...

  6. 46 CFR 97.37-25 - Emergency lights.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Emergency lights. 97.37-25 Section 97.37-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-25 Emergency lights. (a) All emergency lights shall...

  7. 46 CFR 97.37-25 - Emergency lights.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Emergency lights. 97.37-25 Section 97.37-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-25 Emergency lights. (a) All emergency lights shall...

  8. 46 CFR 97.37-25 - Emergency lights.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Emergency lights. 97.37-25 Section 97.37-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-25 Emergency lights. (a) All emergency lights shall...

  9. 46 CFR 97.37-25 - Emergency lights.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Emergency lights. 97.37-25 Section 97.37-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-25 Emergency lights. (a) All emergency lights shall...

  10. 46 CFR 97.37-25 - Emergency lights.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Emergency lights. 97.37-25 Section 97.37-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-25 Emergency lights. (a) All emergency lights shall...

  11. International Space Station Environmental Control and Life Support Emergency Response Verification for Node 1

    NASA Technical Reports Server (NTRS)

    Williams, David E.

    2008-01-01

    The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the Node 1 Emergency Response capability, which includes nominal and off-nominal FDS operation, off nominal ACS operation, and off-nominal THC operation. These subsystems provide the capability to help aid the crew members during an emergency cabin depressurization, a toxic spill, or a fire. The paper will also provide a discussion of the detailed Node 1 ECLS Element Verification methodologies for operation of the Node 1 Emergency Response hardware operations utilized during the Qualification phase.

  12. MPLM Donatello is offloaded at the SLF

    NASA Technical Reports Server (NTRS)

    2001-01-01

    At the KSC Shuttle Landing Facility, the Italian Space Agency's Multi- Purpose Logistics Module Donatello begins rolling out of the Airbus '''Beluga''' air cargo plane that brought it from the factory of Alenia Aerospazio in Turin, Italy. The third of three for the International Space Station, the module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  13. MPLM Donatello is offloaded at the SLF

    NASA Technical Reports Server (NTRS)

    2001-01-01

    At the KSC Shuttle Landing Facility, the Italian Space Agency's Multi- Purpose Logistics Module Donatello rolls out of the Airbus '''Beluga''' air cargo plane that brought it from the factory of Alenia Aerospazio in Turin, Italy. The third of three for the International Space Station, the module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  14. Detection of weapons of mass destruction

    NASA Astrophysics Data System (ADS)

    Bjorkholm, Paul J.

    2003-07-01

    High Energy X-ray cargo screening is a mature technology that has proven its value in the detection of contraband material hidden within cargo including fully loaded sea containers. To date high energy screening has been largely applied to manifest verification and to drug detection. However, the dramatic change in world terrorism has altered the application. Now it is essential that weapons of mass destruction (WMD"s) be interdicted with incredibly high accuracy. The implication of a missed detection has gone from loss of revenue or the lowering of the street price of drugs to potentially stopping, at least for some significant time, most world commerce. Screening containers with high energy x-rays (~250+ mm of steel penetration) is capable of detecting all nuclear threats at a fraction of the strategically important mass. The screening operation can be automated so that no human decisions are required with very low false alarms. Finally, the goal of 100% inspection of cargo inbound to the United States from the twenty largest international ports is an achievable goal with hardware costs in the area of that already spent on airport security.

  15. Analysis of Waves in Space Plasma (WISP) near field simulation and experiment

    NASA Technical Reports Server (NTRS)

    Richie, James E.

    1992-01-01

    The WISP payload scheduler for a 1995 space transportation system (shuttle flight) will include a large power transmitter on board at a wide range of frequencies. The levels of electromagnetic interference/electromagnetic compatibility (EMI/EMC) must be addressed to insure the safety of the shuttle crew. This report is concerned with the simulation and experimental verification of EMI/EMC for the WISP payload in the shuttle cargo bay. The simulations have been carried out using the method of moments for both thin wires and patches to stimulate closed solids. Data obtained from simulation is compared with experimental results. An investigation of the accuracy of the modeling approach is also included. The report begins with a description of the WISP experiment. A description of the model used to simulate the cargo bay follows. The results of the simulation are compared to experimental data on the input impedance of the WISP antenna with the cargo bay present. A discussion of the methods used to verify the accuracy of the model is shown to illustrate appropriate methods for obtaining this information. Finally, suggestions for future work are provided.

  16. Design verification test matrix development for the STME thrust chamber assembly

    NASA Technical Reports Server (NTRS)

    Dexter, Carol E.; Elam, Sandra K.; Sparks, David L.

    1993-01-01

    This report presents the results of the test matrix development for design verification at the component level for the National Launch System (NLS) space transportation main engine (STME) thrust chamber assembly (TCA) components including the following: injector, combustion chamber, and nozzle. A systematic approach was used in the development of the minimum recommended TCA matrix resulting in a minimum number of hardware units and a minimum number of hot fire tests.

  17. AJ26 engine test

    NASA Image and Video Library

    2011-12-15

    Stennis Space Center test-fired Aerojet AJ26 flight engine No. 8 on Dec. 15, continuing a commercial partnership with Orbital Services Corporation. Orbital has partnered with NASA to provide commercial cargo flights to the International Space Station. The AJ26 engines tested at Stennis will power the company's Taurus II space launch vehicle on the flights.

  18. 46 CFR 167.45-1 - Steam, carbon dioxide, Halon 1301, and clean agent fire extinguishing systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... holds, paint lockers, and similar spaces. However, although existing steam smothering systems may be... to each cargo-oil deep tank, lamp locker, oil room, and like compartments, which lamp locker, oil... lamp lockers, oil rooms, and like compartments may be taken from the nearest steam supply line...

  19. 46 CFR 167.45-1 - Steam, carbon dioxide, Halon 1301, and clean agent fire extinguishing systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... holds, paint lockers, and similar spaces. However, although existing steam smothering systems may be... to each cargo-oil deep tank, lamp locker, oil room, and like compartments, which lamp locker, oil... lamp lockers, oil rooms, and like compartments may be taken from the nearest steam supply line...

  20. 46 CFR 167.45-1 - Steam, carbon dioxide, Halon 1301, and clean agent fire extinguishing systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... holds, paint lockers, and similar spaces. However, although existing steam smothering systems may be... to each cargo-oil deep tank, lamp locker, oil room, and like compartments, which lamp locker, oil... lamp lockers, oil rooms, and like compartments may be taken from the nearest steam supply line...

  1. 46 CFR 38.10-15 - Safety relief valves-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... plus the maximum flow rate of the cargo filling pipes or, (2) The vapors generated under fire exposure..., constructed and flow tested for capacity in conformance with subpart 162.017 or 162.018 of subchapter Q... excessive external pressure. (f) Void spaces between the primary and secondary barriers of nonpressure...

  2. 46 CFR 38.10-15 - Safety relief valves-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... plus the maximum flow rate of the cargo filling pipes or, (2) The vapors generated under fire exposure..., constructed and flow tested for capacity in conformance with subpart 162.017 or 162.018 of subchapter Q... excessive external pressure. (f) Void spaces between the primary and secondary barriers of nonpressure...

  3. 46 CFR 38.10-15 - Safety relief valves-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... plus the maximum flow rate of the cargo filling pipes or, (2) The vapors generated under fire exposure..., constructed and flow tested for capacity in conformance with subpart 162.017 or 162.018 of subchapter Q... excessive external pressure. (f) Void spaces between the primary and secondary barriers of nonpressure...

  4. 46 CFR 38.10-15 - Safety relief valves-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... plus the maximum flow rate of the cargo filling pipes or, (2) The vapors generated under fire exposure..., constructed and flow tested for capacity in conformance with subpart 162.017 or 162.018 of subchapter Q... excessive external pressure. (f) Void spaces between the primary and secondary barriers of nonpressure...

  5. 77 FR 9916 - California State Motor Vehicle and Nonroad Engine Pollution Control Standards; Mobile Cargo...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ... safety factors (including the potential increased risk of burn or fire) associated with compliance with... that improper sizing of VDECS with engines may be occurring. This coupled with a lack of concrete... available, etc.). Based on the lack of concrete evidence from the commenters that it has incurred...

  6. 46 CFR 148.115 - Report of incidents.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Report of incidents. 148.115 Section 148.115 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES CARRIAGE OF BULK SOLID MATERIALS THAT REQUIRE SPECIAL HANDLING Minimum Transportation Requirements § 148.115 Report of incidents. (a) When a fire or other hazardous condition...

  7. 46 CFR 95.05-10 - Fixed fire extinguishing systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... in special cases: (1) A fixed foam system may be used in cargo tanks. (2) A water sprinkling system.... Alternately, the Commandant may permit the installation of an approved water sprinkler system or other... is contracted for on or after November 19, 1952, a fixed carbon dioxide, foam, or water spray system...

  8. 46 CFR 95.05-10 - Fixed fire extinguishing systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... in special cases: (1) A fixed foam system may be used in cargo tanks. (2) A water sprinkling system.... Alternately, the Commandant may permit the installation of an approved water sprinkler system or other... is contracted for on or after November 19, 1952, a fixed carbon dioxide, foam, or water spray system...

  9. 46 CFR 95.05-10 - Fixed fire extinguishing systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... in special cases: (1) A fixed foam system may be used in cargo tanks. (2) A water sprinkling system.... Alternately, the Commandant may permit the installation of an approved water sprinkler system or other... is contracted for on or after November 19, 1952, a fixed carbon dioxide, foam, or water spray system...

  10. 46 CFR 34.05-5 - Fire-extinguishing systems-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Officer in Charge, Marine Inspection. (1) Dry cargo compartments. A carbon dioxide or water spray system... subparagraph. (3) Lamp and paint lockers and similar spaces. A carbon dioxide or water spray system must be..., inert gas, foam or water spray system must be installed for the protection of all pumprooms. (5...

  11. 46 CFR 95.05-10 - Fixed fire extinguishing systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... in special cases: (1) A fixed foam system may be used in cargo tanks. (2) A water sprinkling system.... Alternately, the Commandant may permit the installation of an approved water sprinkler system or other... is contracted for on or after November 19, 1952, a fixed carbon dioxide, foam, or water spray system...

  12. 46 CFR 34.05-5 - Fire-extinguishing systems-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Officer in Charge, Marine Inspection. (1) Dry cargo compartments. A carbon dioxide or water spray system... subparagraph. (3) Lamp and paint lockers and similar spaces. A carbon dioxide or water spray system must be..., inert gas, foam or water spray system must be installed for the protection of all pumprooms. (5...

  13. 29 CFR 783.47 - Off-duty periods.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... required to perform and does not perform work of any kind but is free to utilize his time for his own..., crew, or cargo or for participation in life boat or fire drills will not render such off-duty periods..., however, as well as the performance of work in response thereto constitute compensable work time. For...

  14. Wildland Fire Forecasting: Predicting Wildfire Behavior, Growth, and Feedbacks on Weather

    NASA Astrophysics Data System (ADS)

    Coen, J. L.

    2005-12-01

    Recent developments in wildland fire research models have represented more complex of fire behavior. The cost has been to increase the computational requirements. When operational constraints are included, such as the need to produce such forecasts faster than real time, the challenge becomes a balance of how much complexity (with corresponding gains in realism) and accuracy can be achieved in producing the quantities of interest while meeting the specified operational constraints. Current field tools are calculator or Palm-Pilot based algorithms such as BEHAVE and BEHAVE Plus that produce timely estimates of instantaneous fire spread rates, flame length, and fire intensity at a point using readily estimated inputs of fuel model, terrain slope, and atmospheric wind speed at a point. At the cost of requiring a PC and slower calculation, FARSITE represents two-dimensional fire spread and adds capabilities including a parameterized representation of crown fire ignition, This work describes how a coupled atmosphere-fire model previously used as a research tool has been adapted for production of real-time forecasts of fire growth and its interactions with weather over a domain focusing on Colorado during summer 2004. The coupled atmosphere-wildland fire-environment (CAWFE) model composed of a 3-dimensional atmospheric prediction model that has been two-way coupled with an empirical fire spread model. The models are connected in that atmospheric conditions (and fuel conditions influenced by the atmosphere) affect the rate and direction of fire propagation, which releases sensible and latent heat (i.e. thermal and water vapor fluxes) to the atmosphere that in turn alter the winds and atmospheric structure around the fire. Thus, it can represent time and spatially-varying weather and the fire feedbacks on the atmospheric which are at the heart of sudden changes in fire behavior and examples of extreme fire behavior such as blow ups, which are now not predictable with current tools. Thus, although this work shows that is it possible to perform more detailed simulations in real time, fire behavior forecasting remains a challenging problem. This is due to challenges in weather prediction, particularly at fine spatial and temporal scales considered "nowcasting" (0-6 hrs), uncertainties in fire behavior even with known meteorological conditions, limitations in quantitative datasets on fuel properties such as fuel loading, and verification. This work describes efforts to advance these capabilities with input from remote sensing data on fuel characteristics and dynamic steering and object-based verification with remotely sensed fire perimeters.

  15. Fire debris analysis for forensic fire investigation using laser induced breakdown spectroscopy (LIBS)

    NASA Astrophysics Data System (ADS)

    Choi, Soojin; Yoh, Jack J.

    2017-08-01

    The possibility verification of the first attempt to apply LIBS to arson investigation was performed. LIBS has capabilities for real time in-situ analysis and depth profiling. It can provide valuable information about the fire debris that are complementary to the classification of original sample components and combustion residues. In this study, fire debris was analyzed to determine the ignition source and existence of a fire accelerant using LIBS spectra and depth profiling analysis. Fire debris chemical composition and carbon layer thickness determines the possible ignition source while the carbon layer thickness of combusted samples represents the degree of sample carbonization. When a sample is combusted with fire accelerants, a thicker carbon layer is formed because the burning rate is increased. Therefore, depth profiling can confirm the existence of combustion accelerants, which is evidence of arson. Also investigation of fire debris by depth profiling is still possible when a fire is extinguished with water from fire hose. Such data analysis and in-situ detection of forensic signals via the LIBS may assist fire investigation at crime scenes.

  16. Transportable Pumps Could Save Oil Cargoes

    NASA Technical Reports Server (NTRS)

    Burns, R.

    1984-01-01

    Transportable pumps designed for firefighting used to salvage crude oil from tankships leaking, burning, or grounded. Pump incorporated into self-contained transportable module along with engine and controls. Module carried by helicopter, boat, or van to site of fire provides large quantities of water at high pressure in firefighting mode or pump oil into barge in salvage mode.

  17. 46 CFR 72.05-35 - Hatch covers and shifting boards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Hatch covers and shifting boards. 72.05-35 Section 72.05... AND ARRANGEMENT Structural Fire Protection § 72.05-35 Hatch covers and shifting boards. (a) Wood hatch covers may be used between cargo spaces. Hatch covers in other locations shall meet the requirements for...

  18. 46 CFR 72.05-35 - Hatch covers and shifting boards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Hatch covers and shifting boards. 72.05-35 Section 72.05... AND ARRANGEMENT Structural Fire Protection § 72.05-35 Hatch covers and shifting boards. (a) Wood hatch covers may be used between cargo spaces. Hatch covers in other locations shall meet the requirements for...

  19. 46 CFR 72.05-35 - Hatch covers and shifting boards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Hatch covers and shifting boards. 72.05-35 Section 72.05... AND ARRANGEMENT Structural Fire Protection § 72.05-35 Hatch covers and shifting boards. (a) Wood hatch covers may be used between cargo spaces. Hatch covers in other locations shall meet the requirements for...

  20. 46 CFR 72.05-35 - Hatch covers and shifting boards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Hatch covers and shifting boards. 72.05-35 Section 72.05... AND ARRANGEMENT Structural Fire Protection § 72.05-35 Hatch covers and shifting boards. (a) Wood hatch covers may be used between cargo spaces. Hatch covers in other locations shall meet the requirements for...

  1. 46 CFR 97.37-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide alarm. 97.37-9 Section 97.37-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN...

  2. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a) Except as provided in paragraph (b) of this...

  3. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a) Except as provided in paragraph (b) of this...

  4. 46 CFR 34.05-5 - Fire extinguishing systems-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Officer in Charge, Marine Inspection. (1) Dry cargo compartments. A carbon dioxide or water spray system... described in 46 CFR subpart 95.16 or a water spray system must be installed in all lamp and paint lockers... 46 CFR subpart 95.16, a foam spray system, or a water spray system must be installed for the...

  5. 46 CFR 34.05-5 - Fire extinguishing systems-T/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Officer in Charge, Marine Inspection. (1) Dry cargo compartments. A carbon dioxide or water spray system... described in 46 CFR subpart 95.16 or a water spray system must be installed in all lamp and paint lockers... 46 CFR subpart 95.16, a foam spray system, or a water spray system must be installed for the...

  6. 46 CFR 34.05-5 - Fire extinguishing systems-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Officer in Charge, Marine Inspection. (1) Dry cargo compartments. A carbon dioxide or water spray system... described in 46 CFR subpart 95.16 or a water spray system must be installed in all lamp and paint lockers... 46 CFR subpart 95.16, a foam spray system, or a water spray system must be installed for the...

  7. Building and Leading the Next Generation of Exploration Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.; Vanhooser, Teresa

    2010-01-01

    NASA s Constellation Program is depending on the Ares Projects to deliver the crew and cargo launch capabilities needed to send human explorers to the Moon and beyond. Ares I and V will provide the core space launch capabilities needed to continue providing crew and cargo access to the International Space Station (ISS), and to build upon the U.S. history of human spaceflight to the Moon and beyond. Since 2005, Ares has made substantial progress on designing, developing, and testing the Ares I crew launch vehicle and has continued its in-depth studies of the Ares V cargo launch vehicle. In 2009, the Ares Projects plan to: conduct the first flight test of Ares I, test-fire the Ares I first stage solid rocket motor; build the first integrated Ares I upper stage; continue testing hardware for the J-2X upper stage engine, and continue refining the design of the Ares V cargo launch vehicle. These efforts come with serious challenges for the project leadership team as it continues to foster a culture of ownership and accountability, operate with limited funding, and works to maintain effective internal and external communications under intense external scrutiny.

  8. International Space Station Atmosphere Control and Supply, Atmosphere Revitalization, and Water Recovery and Management Subsystem - Verification for Node 1

    NASA Technical Reports Server (NTRS)

    Williams, David E.

    2007-01-01

    The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the nominal operation of the Node 1 ACS, AR, and WRM design and detailed Element Verification methodologies utilized during the Qualification phase for Node 1.

  9. Cryogenic Fluid Management Facility

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Bailey, W. J.; Symons, E. P.; Kroeger, E. W.

    1984-01-01

    The Cryogenic Fluid Management Facility (CFMF) is a reusable test bed which is designed to be carried into space in the Shuttle cargo bay to investigate systems and technologies required to efficiently and effectively manage cryogens in space. The facility hardware is configured to provide low-g verification of fluid and thermal models of cryogenic storage, transfer concepts and processes. Significant design data and criteria for future subcritical cryogenic storage and transfer systems will be obtained. Future applications include space-based and ground-based orbit transfer vehicles (OTV), space station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, space-based weapon systems and space-based orbit maneuvering vehicles (OMV). This paper describes the facility and discusses the cryogenic fluid management technology to be investigated. A brief discussion of the integration issues involved in loading and transporting liquid hydrogen within the Shuttle cargo bay is also included.

  10. MPLM Donatello is offloaded at the SLF

    NASA Technical Reports Server (NTRS)

    2001-01-01

    At the Shuttle Landing Facility, workers in cherry pickers (left and right) help direct the offloading of the Italian Space Agency's Multi- Purpose Logistics Module Donatello from the Airbus '''Beluga''' air cargo plane that brought it from the factory of Alenia Aerospazio in Turin, Italy. The third of three for the International Space Station, the module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  11. MPLM Donatello is offloaded at the SLF

    NASA Technical Reports Server (NTRS)

    2001-01-01

    At the Shuttle Landing Facility, cranes are poised to help offload the Italian Space Agency's Multi- Purpose Logistics Module Donatello from the Airbus '''Beluga''' air cargo plane that brought it from the factory of Alenia Aerospazio in Turin, Italy. The third of three for the International Space Station, the module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  12. Continuing Issues (FY 1979) Regarding DoD Use of the Space Transportation System.

    DTIC Science & Technology

    1979-12-01

    estimates) to the cost of launching experimental payloads In the sortie mode is the analytical verification of compatibility ("Integrsaton") of the experiment...with the Shuttle; the Integration cost mya be reduced by the Air Force by treir proposed "class cargo" generalized integra- tion analysis that, once...camactness and light weight (for a given experimental weight) rather than on intrinsic cost , to minmize lazc costa as couted by the NASA volume and weight

  13. NEW DEVELOPMENTS AND APPLICATIONS OF SUPERHEATED EMULSIONS: WARHEAD VERIFICATION AND SPECIAL NUCLEAR MATERIAL INTERDICTION.

    PubMed

    d'Errico, F; Chierici, A; Gattas-Sethi, M; Philippe, S; Goldston, R; Glaser, A

    2018-04-25

    In recent years, neutron detection with superheated emulsions has received renewed attention thanks to improved detector manufacturing and read-out techniques, and thanks to successful applications in warhead verification and special nuclear material (SNM) interdiction. Detectors are currently manufactured with methods allowing high uniformity of the drop sizes, which in turn allows the use of optical read-out techniques based on dynamic light scattering. Small detector cartridges arranged in 2D matrices are developed for the verification of a declared warhead without revealing its design. For this application, the enabling features of the emulsions are that bubbles formed at different times cannot be distinguished from each other, while the passive nature of the detectors avoids the susceptibility to electronic snooping and tampering. Large modules of emulsions are developed to detect the presence of shielded special nuclear materials hidden in cargo containers 'interrogated' with high energy X-rays. In this case, the enabling features of the emulsions are photon discrimination, a neutron detection threshold close to 3 MeV and a rate-insensitive read-out.

  14. TETAM Model Verification Study. Volume I. Representation of Intervisibility, Initial Comparisons

    DTIC Science & Technology

    1976-02-01

    simulation models in terms of firings, engagements, and losses between tank and antitank as compared with the field data collected during the free play battles of Field Experiment 11.8 are found in Volume III. (Author)

  15. 46 CFR 97.37-9 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide and clean agent alarms. 97.37-9 Section 97.37-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide and clean agent alarms. Each carbon dioxide or clean agent...

  16. 46 CFR 97.37-9 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide and clean agent alarms. 97.37-9 Section 97.37-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide and clean agent alarms. Each carbon dioxide or clean agent...

  17. 46 CFR 97.37-9 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide and clean agent alarms. 97.37-9 Section 97.37-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide and clean agent alarms. Each carbon dioxide or clean agent...

  18. Development of infrared goggles and prototype

    NASA Astrophysics Data System (ADS)

    Tsuchimoto, Kouzou; Komatsubara, Shigeyuki; Fujikawa, Masaru; Otsuka, Toshiaki; Kan, Moriyasu; Matsumura, Norihide

    2006-05-01

    We aimed at developing a hands free type practical wearable thermography which will not hinder walking or working of the person wearing the equipment. We installed a small format camera core module, which was recently developed, into the fire fighter's helmet and incorporated image transmission function over radio to the equipment. We combined this thermography with a see-through type head mount display, and called it "Infrared Goggles". A prototype was developed for verification test of lifesaving support system in fire fighting activities.

  19. International Space Station Temperature and Humidity Control Subsystem Verification for Node 1

    NASA Technical Reports Server (NTRS)

    Williams, David E.

    2007-01-01

    The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the nominal operation of the Node 1 THC subsystem design. The paper will also provide a discussion of the detailed Element Verification methodologies for nominal operation of the Node 1 THC subsystem operations utilized during the Qualification phase.

  20. STS-102 Onboard Photograph Inside Multipurpose Logistics Module, Leonardo

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Pilot James M. Kelly (left) and Commander James D. Wetherbee for the STS-102 mission, participate in the movement of supplies inside Leonardo, the Italian Space Agency built Multipurpose Logistics Module (MPLM). In this particular photograph, the two are handling a film magazine for the IMAX cargo bay camera. The primary cargo of the STS-102 mission, the Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth station assembly flight, the STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  1. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-01

    Pilot James M. Kelly (left) and Commander James D. Wetherbee for the STS-102 mission, participate in the movement of supplies inside Leonardo, the Italian Space Agency built Multipurpose Logistics Module (MPLM). In this particular photograph, the two are handling a film magazine for the IMAX cargo bay camera. The primary cargo of the STS-102 mission, the Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth station assembly flight, the STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  2. Spacecraft servicing demonstration plan

    NASA Technical Reports Server (NTRS)

    Bergonz, F. H.; Bulboaca, M. A.; Derocher, W. L., Jr.

    1984-01-01

    A preliminary spacecraft servicing demonstration plan is prepared which leads to a fully verified operational on-orbit servicing system based on the module exchange, refueling, and resupply technologies. The resulting system can be applied at the space station, in low Earth orbit with an orbital maneuvering vehicle (OMV), or be carried with an OMV to geosynchronous orbit by an orbital transfer vehicle. The three phase plan includes ground demonstrations, cargo bay demonstrations, and free flight verifications. The plan emphasizes the exchange of multimission modular spacecraft (MMS) modules which involves space repairable satellites. Three servicer mechanism configurations are the engineering test unit, a protoflight quality unit, and two fully operational units that have been qualified and documented for use in free flight verification activity. The plan balances costs and risks by overlapping study phases, utilizing existing equipment for ground demonstrations, maximizing use of existing MMS equipment, and rental of a spacecraft bus.

  3. Cargo-cult training

    NASA Astrophysics Data System (ADS)

    Magueijo, João

    2009-12-01

    Richard Feynman, in one of his famous rants, evoked as a metaphor what he called "cargo-cult science". During the Second World War, the indigenous people of the South Pacific became accustomed to US Air Force planes landing on their islands, invariably bringing a profusion of desirable goods and tasty foods. When the war ended, they were distressed by the discontinuation of this popular service. So, they decided to take action. They cleared elongated patches of land to make them look like runways. They lit wood fires where they had seen electric floodlights guiding in the planes. They built a wooden shack and made a man sit inside with two halves of a coconut on each ear and bamboo bars sticking out like antennas: he was the "air controller". And they waited for the planes to return.

  4. Multipurpose Logistics Module, Leonardo, Rests in Discovery's Payload Bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This in-orbit close up shows the Italian Space Agency-built multipurpose Logistics Module (MPLM), Leonardo, the primary cargo of the STS-102 mission, resting in the payload bay of the Space Shuttle Orbiter Discovery. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth station assembly flight and NASA's 103rd overall flight, STS-102 launched March 8, 2001 for an almost 13 day mission.

  5. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-10

    This in-orbit close up shows the Italian Space Agency-built multipurpose Logistics Module (MPLM), Leonardo, the primary cargo of the STS-102 mission, resting in the payload bay of the Space Shuttle Orbiter Discovery. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth station assembly flight and NASA's 103rd overall flight, STS-102 launched March 8, 2001 for an almost 13 day mission.

  6. KSC-99pd0214

    NASA Image and Video Library

    1999-02-11

    KENNEDY SPACE CENTER, FLA. -- During a payload Interface Verification Test (IVT) in the SPACEHAB Facility, STS-96 Mission Specialist Valery Tokarev of Russia (second from left) and Commander Kent Rominger learn about the Sequential Shunt Unit (SSU) in front of them from Lynn Ashby (far right), with Johnson Space Center. At the far left looking on is TTI interpreter Valentina Maydell. Other crew members at KSC for the IVT are Pilot Rick Husband and Mission Specialists Ellen Ochoa, Tamara Jernigan, Dan Barry and Julie Payette. The SSU is part of the cargo on Mission STS-96, which carries the SPACEHAB Logistics Double Module, with equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m

  7. Experimental Verification and Revision of the Venting Rate Model of the Hazard Assessment Computer System and the Vulnerability Model.

    DTIC Science & Technology

    1980-11-01

    discharge of a nonvolatile liquid can be ob- tained by standard Bernoulli -type relations; it is: WLo = CDA LoPL (2[PT - P-/PL + - ZLh) 1/ (1110) In all...cargo outflow momentum is low (i.e., when the net positive pressure differ- ence across the puncture is near zero). The tests showed that the water...34Benedict-Webb- Rubin Ecuation of State for Methane at Cryogenic Condi- tions," Advances -in Crvccenic ’Encineerinc., 14, po. 49-54, Plen=m Press, 1969

  8. Analysis on ventilation pressure of fire area in longitudinal ventilation of underground tunnel

    NASA Astrophysics Data System (ADS)

    Li, Jiaxin; Li, Yanfeng; Feng, Xiao; Li, Junmei

    2018-03-01

    In order to solve the problem of ventilation pressure loss in the fire area under the fire condition, the wind pressure loss model of the fire area is established based on the thermodynamic equilibrium relation. The semi-empirical calculation formula is obtained by using the model experiment and CFD simulation. The validity of the formula is verified. The results show that the ventilation pressure loss in the fire zone is proportional to the convective heat release rate at the critical velocity, which is inversely proportional to the upstream ventilation velocity and the tunnel cross-sectional area. The proposed formula is consistent with the law of the tunnel fire test fitting formula that results are close, in contrast, the advantage lies in a clear theoretical basis and ventilation velocity values. The resistance of road tunnel ventilation system is calculated accurately and reliably, and then an effective emergency ventilation operation program is developed. It is necessary to consider the fire zone ventilation pressure loss. The proposed ventilation pressure loss formula can be used for design calculation after thorough verification.

  9. Verification of the naval oceanic vertical aerosol model during FIRE

    NASA Technical Reports Server (NTRS)

    Davidson, K. L.; Deleeuw, G.; Gathman, S. G.; Jensen, D. R.

    1990-01-01

    The value of Naval Oceanic Vertical Aerosol Model (NOVAM) is illustrated for estimating the non-uniform and non-logarithmic extinction profiles, based on a severe test involving conditions close to and beyond the limits of applicability of NOVAM. A more comprehensive evaluation of NOVAM from the FIRE data is presented, which includes a clear-air case. For further evaluation more data are required on the vertical structure of the extinction in the marine atmospheric boundary layer (MABL), preferably for different meteorological conditions and in different geographic areas (e.g., ASTEX).

  10. Temperature of aircraft cargo flame exposure during accidents involving fuel spills

    NASA Astrophysics Data System (ADS)

    Mansfield, J. A.

    1993-01-01

    This report describes an evaluation of flame exposure temperatures of weapons contained in alert (parked) bombers due to accidents that involve aircraft fuel fires. The evaluation includes two types of accident: collisions into an alert aircraft by an aircraft that is on landing or take-off; and engine start accidents. Both the B-1B and B-52 alert aircraft are included in the evaluation.

  11. Temperature of aircraft cargo flame exposure during accidents involving fuel spills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mansfield, J.A.

    1993-01-01

    This report describes an evaluation of flame exposure temperatures of weapons contained in alert (parked) bombers due to accidents that involve aircraft fuel fires. The evaluation includes two types of accident, collisions into an alert aircraft by an aircraft that is on landing or take-off, and engine start accidents. Both the B-1B and B-52 alert aircraft are included in the evaluation.

  12. The Guardian. Volume 9, Number 2, Fall 2007

    DTIC Science & Technology

    2007-01-01

    Working Group, the National Institute of Occupational Safety and Health , the National Institute of Justice, the National Fire Protection Association...protection under the SAFETY Act. The CEO refused to resubmit the bid without the caveat. He stated, “I can’t bet my corporation on the possibility...guide drivers to the inspection site, which can include under -vehicle screening and cargo inspection systems. Vehicle occupants will be directed to

  13. VERIFICATION OF SIMPLIFIED PROCEDURES FOR SITE- SPECIFIC SO2 AND NOX CONTROL COST ESTIMATES

    EPA Science Inventory

    The report documents results of an evaluation to verify the accuracy of simplified procedures for estimating sulfur dioxide (S02) and nitrogen oxides (NOx) retrofit control costs and performance for 200 502-emitting coal-fired power plants in the 31-state eastern region. nitially...

  14. AERIAL PHOTOGRAPHY AND GROUND VERIFICATION AT POWER PLANT SITES: WISCONSIN POWER PLANT IMPACT STUDY

    EPA Science Inventory

    This study demonstrated and evaluated nine methods for monitoring the deterioration of a large wetland on the site of a newly-constructed coal-fired power plant in Columbia, County, Wisconsin. Four of the nine methods used data from ground sampling; two were remote sensing method...

  15. Verification Results of Jet Resonance-enhanced Multiphoton Ionization as a Real-time PCDD/F Emission Monitor

    EPA Science Inventory

    The Jet REMPI (Resonance Enhanced Multiphoton Ionization) monitor was tested on a hazardous waste firing boiler for its ability to determine concentrations of polychlorinated dibenzodioxins and dibenzofurans (PCDDs/Fs). Jet REMPI is a real time instrument capable of highly selec...

  16. Unmanned Vehicle Material Flammability Test

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Ruff, Gary A.; Minster, Olivier; Toth, Balazs; Fernandez-Pello, A. Carlos; Tien, James S.; Torero, Jose L.; Cowlard, Adam J.; Legros, Guillaume; Eigenbrod, Christian; hide

    2012-01-01

    Microgravity fire behaviour remains poorly understood and a significant risk for spaceflight An experiment is under development that will provide the first real opportunity to examine this issue focussing on two objectives: a) Flame Spread. b) Material Flammability. This experiment has been shown to be feasible on both ESA's ATV and Orbital Science's Cygnus vehicles with the Cygnus as the current base-line carrier. An international topical team has been formed to develop concepts for that experiment and support its implementation: a) Pressure Rise prediction. b) Sample Material Selection. This experiment would be a landmark for spacecraft fire safety with the data and subsequent analysis providing much needed verification of spacecraft fire safety protocols for the crews of future exploration vehicles and habitats.

  17. SpaceX_CRS14_Release_2018_125_1300_649273

    NASA Image and Video Library

    2018-05-07

    U.S. COMMERCIAL CARGO SHIP DEPARTS THE INTERNATIONAL SPACE STATION The upiloted SpaceX Dragon cargo craft departed the International Space Station May 5 after a four-week delivery run in which thousands of pounds of supplies and science experiments arrived at the orbiting laboratory. Robotic ground controllers sent commands to release Dragon from the grasp of the Canadarm2 robotic arm, after which several firings of the Dragon’s engine sent the vehicle to a safe distance from the station. Later in the day, SpaceX flight controllers conducted a deorbit burn for Dragon, enabling it to return to Earth for a splashdown in the Pacific some 400 miles southwest of Long Beach, California. Dragon returned some two tons of vital science experiments for researchers and other critical components from the station for refurbishment.

  18. Near noise field characteristics of Nike rocket motors for application to space vehicle payload acoustic qualification

    NASA Technical Reports Server (NTRS)

    Hilton, D. A.; Bruton, D.

    1977-01-01

    Results of a series of noise measurements that were made under controlled conditions during the static firing of two Nike solid propellant rocket motors are presented. The usefulness of these motors as sources for general spacecraft noise testing was assessed, and the noise expected in the cargo bay of the orbiter was reproduced. Brief descriptions of the Nike motor, the general procedures utilized for the noise tests, and representative noise data including overall sound pressure levels, one third octave band spectra, and octave band spectra were reviewed. Data are presented on two motors of different ages in order to show the similarity between noise measurements made on motors having different loading dates. The measured noise from these tests is then compared to that estimated for the space shuttle orbiter cargo bay.

  19. Exploring Model Error through Post-processing and an Ensemble Kalman Filter on Fire Weather Days

    NASA Astrophysics Data System (ADS)

    Erickson, Michael J.

    The proliferation of coupling atmospheric ensemble data to models in other related fields requires a priori knowledge of atmospheric ensemble biases specific to the desired application. In that spirit, this dissertation focuses on elucidating atmospheric ensemble model bias and error through a variety of different methods specific to fire weather days (FWDs) over the Northeast United States (NEUS). Other than a handful of studies that use models to predict fire indices for single fire seasons (Molders 2008, Simpson et al. 2014), an extensive exploration of model performance specific to FWDs has not been attempted. Two unique definitions for FWDs are proposed; one that uses pre-existing fire indices (FWD1) and another from a new statistical fire weather index (FWD2) relating fire occurrence and near-surface meteorological observations. Ensemble model verification reveals FWDs to have warmer (> 1 K), moister (~ 0.4 g kg-1) and less windy (~ 1 m s-1) biases than the climatological average for both FWD1 and FWD2. These biases are not restricted to the near surface but exist through the entirety of the planetary boundary layer (PBL). Furthermore, post-processing methods are more effective when previous FWDs are incorporated into the statistical training, suggesting that model bias could be related to the synoptic flow pattern. An Ensemble Kalman Filter (EnKF) is used to explore the effectiveness of data assimilation during a period of extensive FWDs in April 2012. Model biases develop rapidly on FWDs, consistent with the FWD1 and FWD2 verification. However, the EnKF is effective at removing most biases for temperature, wind speed and specific humidity. Potential sources of error in the parameterized physics of the PBL are explored by rerunning the EnKF with simultaneous state and parameter estimation (SSPE) for two relevant parameters within the ACM2 PBL scheme. SSPE helps to reduce the cool temperature bias near the surface on FWDs, with the variability in parameter estimates exhibiting some relationship to model bias for temperature. This suggests the potential for structural model error within the ACM2 PBL scheme and could lead toward the future development of improved PBL parameterizations.

  20. Elsevier's maritime dictionary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakr, M.

    1987-01-01

    This is a dictionary for terms relating to maritime activities, and provides the terminology in three international languages. It also provides maritime terminology in Arabic. The dictionary covers the most recent terms used in satellite navigation and telecommunication. Its other topics include: acoustics, insurance, containers, cargo, bulk chemicals, carriage of dangerous goods, chemistry, radiocommunication, economics, electricity, environment, finance, fire protection, fishing vessels, hydrography, legal matters, meteorology, navigation, optics, pollution, radars, satellites, shipbuilding, stability, mechanics, and life-saving appliances.

  1. A Review of International Space Station Habitable Element Equipment Offgassing Characteristics

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.

    2010-01-01

    Crewed spacecraft trace contaminant control employs both passive and active methods to achieve acceptable cabin atmospheric quality. Passive methods include carefully selecting materials of construction, employing clean manufacturing practices, and minimizing systems and payload operational impacts to the cabin environment. Materials selection and manufacturing processes constitute the first level of equipment offgassing control. An element-level equipment offgassing test provides preflight verification that passive controls have been successful. Offgassing test results from multiple International Space Station (ISS) habitable elements and cargo vehicles are summarized and implications for active contamination control equipment design are discussed

  2. STS-102 Onboard Photograph-Multi-Purpose Logistics Module, Leonardo

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A crewmember of Expedition One, cosmonaut Yuri P. Gidzenko, is dwarfed by transient hardware aboard Leonardo, the Italian Space Agency-built Multi-Purpose Logistics Module (MPLM), a primary cargo of the STS-102 mission. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS's) moving vans, carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo into 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth Shuttle mission to visit the ISS, the STS-102 mission served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  3. M/V Elias explosion and fire at Fort Mifflin, Pa. , on 9 April 1974 with loss of life. Marine casualty report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-09-09

    At approximately 10 P.M. on 9 April 1974 while the M/V ELIAS was in the process of completing the discharge of a full cargo of Bachaquero crude oil at the Atlantic Richfield Oil (ARCO) Terminal, Fort Mifflin, Pennsylvania on the Delaware River the vessel sustained a series of three massive explosions, burned and sank. Nine members of the crew and four visitors (relatives of the master) perished or are missing. The M/V ELIAS was a total loss and the SS EDWARD L. STEINGER and the ARCO Terminal sustained extensive damages. The report contains the U.S. Coast Guard Marine Board ofmore » Investigation report and the Action taken by the Commandant to determine the probable cause of the casualty and the recommendations to prevent recurrence. The Commandant concurred with the Marine Board that source, and location of the initial explosion cannot be determined. Evidence of internal explosion in the after pump room, the cofferdam in the number 3 starboard cargo tanks, and in several of the cargo tanks indicate a varied path of the explosions.« less

  4. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-01

    A crewmember of Expedition One, cosmonaut Yuri P. Gidzenko, is dwarfed by transient hardware aboard Leonardo, the Italian Space Agency-built Multi-Purpose Logistics Module (MPLM), a primary cargo of the STS-102 mission. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS's) moving vans, carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo into 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth Shuttle mission to visit the ISS, the STS-102 mission served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  5. Intensity-Modulated Advanced X-ray Source (IMAXS) for Homeland Security Applications

    NASA Astrophysics Data System (ADS)

    Langeveld, Willem G. J.; Johnson, William A.; Owen, Roger D.; Schonberg, Russell G.

    2009-03-01

    X-ray cargo inspection systems for the detection and verification of threats and contraband require high x-ray energy and high x-ray intensity to penetrate dense cargo. On the other hand, low intensity is desirable to minimize the radiation footprint. A collaboration between HESCO/PTSE Inc., Schonberg Research Corporation and Rapiscan Laboratories, Inc. has been formed in order to design and build an Intensity-Modulated Advanced X-ray Source (IMAXS). Such a source would allow cargo inspection systems to achieve up to two inches greater imaging penetration capability, while retaining the same average radiation footprint as present fixed-intensity sources. Alternatively, the same penetration capability can be obtained as with conventional sources with a reduction of the average radiation footprint by about a factor of three. The key idea is to change the intensity of the source for each x-ray pulse based on the signal strengths in the inspection system detector array during the previous pulse. In this paper we describe methods to accomplish pulse-to-pulse intensity modulation in both S-band (2998 MHz) and X-band (9303 MHz) linac sources, with diode or triode (gridded) electron guns. The feasibility of these methods has been demonstrated. Additionally, we describe a study of a shielding design that would allow a 6 MV X-band source to be used in mobile applications.

  6. Firing Room Remote Application Software Development

    NASA Technical Reports Server (NTRS)

    Liu, Kan

    2014-01-01

    The Engineering and Technology Directorate (NE) at National Aeronautics and Space Administration (NASA) Kennedy Space Center (KSC) is designing a new command and control system for the checkout and launch of Space Launch System (SLS) and future rockets. The purposes of the semester long internship as a remote application software developer include the design, development, integration, and verification of the software and hardware in the firing rooms, in particular with the Mobile Launcher (ML) Launch Accessories subsystem. In addition, a Conversion Fusion project was created to show specific approved checkout and launch engineering data for public-friendly display purposes.

  7. Verification of CFD model of plane jet used for smoke free zone separation in case of fire

    NASA Astrophysics Data System (ADS)

    Krajewski, Grzegorz; Suchy, Przemysław

    2018-01-01

    This paper presents the basic information about the use of air curtains in fire safety, as a barrier for heat and smoke. Mathematical model of an air curtain presented hereallows estimation of velocity of air in various points of space, including the velocity of air from an angled air curtain. Presented equations show how various parameters influence the performance of air curtain. Further, authors present results of their air curtain performance. Authors of that article have done tests in a real scale model. Tests results were used to verify chosen turbulence model and boundary conditions. Results of new studies are presented with regards to the performance of air curtain in case of fire, and final remarks on its design are given.

  8. Fire safety experiments on MIR Orbital Station

    NASA Technical Reports Server (NTRS)

    Egorov, S. D.; Belayev, A. YU.; Klimin, L. P.; Voiteshonok, V. S.; Ivanov, A. V.; Semenov, A. V.; Zaitsev, E. N.; Balashov, E. V.; Andreeva, T. V.

    1995-01-01

    The process of heterogeneous combustion of most materials under zero-g without forced motion of air is practically impossible. However, ventilation is required to support astronauts' life and cool equipment. The presence of ventilation flows in station compartments at accidental ignition can cause a fire. An additional, but exceedingly important parameter of the fire risk of solid materials under zero-g is the minimum air gas velocity at which the extinction of materials occurs. Therefore, the conception of fire safety can be based on temporarily lowering the intensity of ventilation and even turning it off. The information on the limiting conditions of combustion under natural conditions is needed from both scientific and practical points of view. It will enable us to judge the reliability of results of ground-based investigations and develop a conception of fire safety of inhabited sealed compartments of space stations to by provided be means of nontraditional and highly-effective methods without both employing large quantities of fire-extinguishing compounds and hard restrictions on use of polymers. In this connection, an experimental installation was created to study the process of heterogeneous combustion of solid non-metals and to determine the conditions of its extinction under microgravity. This installation was delivered to the orbital station 'Mir' and the cosmonauts Viktorenko and Kondakova performed initial experiments on it in late 1994. The experimental installation consists of a combustion chamber with an electrical systems for ignition of samples, a device for cleaning air from combustion products, an air suction unit, air pipes and a control panel. The whole experiment is controlled by telemetry and recorded with two video cameras located at two different places. Besides the picture, parameters are recorded to determine the velocity of the air flow incoming to the samples, the time points of switching on/off the devices, etc. The combustion chamber temperature is also controlled. The main objectives of experiments of this series were as follows: (1) verification of the reliability of the installation in orbital flight; (2) verification of the experimental procedure; and (3) investigation of combustion of two types of materials under microgravity at various velocities of the incoming air flow.

  9. Analysis of the GOES 6.7 micrometer channel observations during FIRE 2

    NASA Technical Reports Server (NTRS)

    Soden, B. J.; Ackerman, S. A.; Starr, David

    1993-01-01

    Clouds form in moist environments. FIRE Phase II Cirrus Implementation Plan (August, 1990) noted the need for mesoscale measurements of upper tropospheric water vapor content. These measurements are needed for initializing and verifying numerical weather prediction models and for describing the environment in which cirrus clouds develop and dissipate. Various instruments where deployed to measure the water vapor amounts of the upper troposphere during FIRE II (e.g. Raman lidar, CLASS sonds and new cryogenic frost hygrometer on-board aircraft). The formation, maintenance and dissipation of cirrus clouds involve the time variation of the water budget of the upper troposphere. The GOES 6.7 mu m radiance observations are sensitive to the upper tropospheric relative humidity, and therefore proved extremely valuable in planning aircraft missions during the field phase of FIRE II. Warm 6.7 mu m equivalent black body temperatures indicate a relatively dry upper troposphere and were associated with regions generally free of cirrus clouds. Regions that were colder, implying more moisture was available may or may not have had cirrus clouds present. Animation of a time sequence of 6.7 mu m images was particularly useful in planning various FIRE missions. The 6.7 mu m observations can also be very valuable in the verification of model simulations and describing the upper tropospheric synoptic conditions. A quantitative analysis of the 6.7 mu m measurement is required to successfully incorporate these satellite observations into describing the upper tropospheric water vapor budget. Recently, Soden and Bretherton (1993) have proposed a method of deriving an upper tropospheric humidity based on observations from the GOES 6.7 mu m observations. The method is summarized in the next section. In their paper they compare their retrieval method to radiance simulations. Observations were also compared to ECMWF model output to assess the model performance. The FIRE experiment provides a unique opportunity to further verify the GOES upper tropospheric relative humidity retrieval scheme by providing (1) aircraft observations to cross-validate the calibration of the GOES 6.7 mu m channel, (2) accurate upper tropospheric water vapor concentrations for verification, and (3) veritical variability of upper tropospheric water vapor.

  10. Verification of the WFAS Lightning Efficiency Map

    Treesearch

    Paul Sopko; Don Latham; Isaac Grenfell

    2007-01-01

    A Lightning Ignition Efficiency map was added to the suite of daily maps offered by the Wildland Fire Assessment System (WFAS) in 1999. This map computes a lightning probability of ignition (POI) based on the estimated fuel type, fuel depth, and 100-hour fuel moisture interpolated from the Remote Automated Weather Station (RAWS) network. An attempt to verify the...

  11. Environmental and Sustainable Technology Evaluations (ESTE): Verification of Fuel Characteristics and Emissions from Biomass-fired Boilers 09/2008

    EPA Science Inventory

    This is an ESTE project summary brief. With increasing concern about climate change and fossil fuel energy supplies, there continues to be an interest in biomass as a renewable and sustainable energy source. EPA’s Office of Air Quality Planning and Standards has expressed an int...

  12. Marine Casualty Report. Tankship Puerto Rican O.N. 535000, Explosion and Fire in the Pacific Ocean, on 31 October 1984 with Loss of Life.

    DTIC Science & Technology

    1985-06-15

    Guard has "S " initiated a regulatory project which will clarify the intent of the regulations at 33 CFR 157.11(a) regarding fixed piping systems for...transferring cargo residues. Recommendation 6. This recommendation is concurred with. The Chief of the Survival Systems Branch has written the San...Francisco Bar Pilots Association * requesting information on their man overboard recovery system . Upon receipt of this information, the Coast Guard will

  13. KSC-04PD-0139

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. The red NASA engine backs up with its cargo of containers in order to change tracks. The containers enclose segments of a solid rocket booster being returned to Utah for testing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.

  14. United States Seaport Security: Protection Against a Nuclear Device Attack Delivered in a Shipping Cargo Container

    DTIC Science & Technology

    2014-06-13

    exploded due to an initial fire discovered at the pier warehouse. Fragments from the blast were sent as far as Galveston ten miles away. Approximately...the 2009 attempt on Christmas Day involving Umar Farouk Abdulmutallab (the “ underwear bomber”) led to the installation of full-body scanners in nearly...States, such as the Christmas Day 2009 “ underwear bomber” and the 2010 plot to send explosive packages utilizing printer ink cartridges. Acting DHS

  15. Satellite Analyses of Cirrus Cloud Properties During the FIRE Phase 2 Cirrus Intensive Field Observations over Kansas

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Young, David F.; Heck, Patrick W.; Liou, Kuo-Nan; Takano, Yoshihide

    1992-01-01

    The First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment (FIRE) Phase II Intensive Field Observations (IFO) were taken over southeastern Kansas between November 13 and December 7,1991, to determine cirrus cloud properties. The observations include in situ microphysical data; surface, aircraft, and satellite remote sensing; and measurements of divergence over meso- and smaller-scale areas using wind profilers. Satellite remote sensing of cloud characteristics is an essential aspect for understanding and predicting the role of clouds in climate variations. The objectives of the satellite cloud analysis during FIRE are to validate cloud property retrievals, develop advanced methods for extracting cloud information from satellite-measured radiances, and provide multiscale cloud data for cloud process studies and for verification of cloud generation models. This paper presents the initial results of cloud property analyses during FIRE-II using Geostationary Operational Environmental Satellite (GOES) data and NOAA Advanced Very High Resolution Radiometer (AVHRR) radiances.

  16. A reliability as an independent variable (RAIV) methodology for optimizing test planning for liquid rocket engines

    NASA Astrophysics Data System (ADS)

    Strunz, Richard; Herrmann, Jeffrey W.

    2011-12-01

    The hot fire test strategy for liquid rocket engines has always been a concern of space industry and agency alike because no recognized standard exists. Previous hot fire test plans focused on the verification of performance requirements but did not explicitly include reliability as a dimensioning variable. The stakeholders are, however, concerned about a hot fire test strategy that balances reliability, schedule, and affordability. A multiple criteria test planning model is presented that provides a framework to optimize the hot fire test strategy with respect to stakeholder concerns. The Staged Combustion Rocket Engine Demonstrator, a program of the European Space Agency, is used as example to provide the quantitative answer to the claim that a reduced thrust scale demonstrator is cost beneficial for a subsequent flight engine development. Scalability aspects of major subsystems are considered in the prior information definition inside the Bayesian framework. The model is also applied to assess the impact of an increase of the demonstrated reliability level on schedule and affordability.

  17. Research on energy efficiency design index for sea-going LNG carriers

    NASA Astrophysics Data System (ADS)

    Lin, Yan; Yu, Yanyun; Guan, Guan

    2014-12-01

    This paper describes the characteristics of liquefied natural gas (LNG) carriers briefly. The LNG carrier includes power plant selection, vapor treatment, liquid cargo tank type, etc. Two parameters—fuel substitution rate and recovery of boil of gas (BOG) volume to energy efficiency design index (EEDI) formula are added, and EEDI formula of LNG carriers is established based on ship EEDI formula. Then, based on steam turbine propulsion device of LNG carriers, mathematical models of LNG carriers' reference line value are established in this paper. By verification, the EEDI formula of LNG carriers described in this paper can provide a reference for LNG carrier EEDI calculation and green shipbuilding.

  18. International Space Station (ISS)

    NASA Image and Video Library

    2003-03-08

    The Space Shuttle Discovery, STS-102 mission, clears launch pad 39B at the Kennedy Space Center as the sun peers over the Atlantic Ocean on March 8, 2001. STS-102's primary cargo was the Leonardo, the Italian Space Agency built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall flight and the eighth assembly flight, STS-102 was also the first flight involved with Expedition Crew rotation. The Expedition Two crew was delivered to the station while Expedition One was returned home to Earth.

  19. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-08

    STS-102 astronaut and mission specialist, Andrew S.W. Thomas, gazes through an aft window of the Space Shuttle Orbiter Discovery as it approaches the docking bay of the International Space Station (ISS). Launched March 8, 2001, STS-102's primary cargo was the Leonardo, the Italian Space Agency-built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS's moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  20. Cargo Commercial Orbital Transportation Services Environmental Control and Life Support Integration

    NASA Technical Reports Server (NTRS)

    Duchesne, Stephanie; Thacker, Karen; Williams, Dave

    2012-01-01

    The International Space Station s (ISS) largest crew and cargo resupply vehicle, the Space Shuttle, retired in 2011. To help augment ISS resupply and return capability, NASA announced a project to promote the development of Commercial Orbital Transportation Services (COTS) for the ISS in January of 2006. By December of 2008, NASA entered into space act agreements with SpaceX and Orbital Sciences Corporation for COTS development and ISS Commercial Resupply Services (CRS). The intent of CRS is to fly multiple resupply missions each year to ISS with SpaceX s Dragon vehicle providing resupply and return capabilities and Orbital Science Corporation s Cygnus vehicle providing resupply capability to ISS. The ISS program launched an integration effort to ensure that these new commercial vehicles met the requirements of the ISS vehicle and ISS program needs. The Environmental Control and Life Support System (ECLSS) requirements cover basic cargo vehicle needs including maintaining atmosphere, providing atmosphere circulation, and fire detection and suppression. The ISS-COTS integration effort brought unique challenges combining NASA s established processes and design knowledge with the commercial companies new initiatives and limited experience with human space flight. This paper will discuss the ISS ECLS COTS integration effort including challenges, successes, and lessons learned.

  1. Commercial Orbital Transportation Cargo Services Environmental Control and Life Support Integration

    NASA Technical Reports Server (NTRS)

    Duchesne, Stephanie; Williams, Dave; Orozco, Nicole; Philistine, Cynthia

    2010-01-01

    The International Space Station s (ISS) largest crew and cargo resupply vehicle, the Space Shuttle, will retire in 2011. To help augment ISS resupply and return capability, NASA announced a project to promote the development of Commercial Orbital Transportation Services (COTS) for the ISS in January of 2006. By December of 2008, NASA entered into space act agreements with SpaceX and Orbital Sciences Corporation for COTS development and ISS Commercial Resupply Services (CRS). The intent of CRS is to fly multiple resupply missions each year to ISS with SpaceX s Dragon vehicle providing resupply and return capabilities and Orbital Science Corporation s Cygnus vehicle providing resupply capability to ISS. The ISS program launched an integration effort to ensure that these new commercial vehicles met the requirements of the ISS vehicle and ISS program needs. The Environmental Control and Life Support System (ECLSS) requirements cover basic cargo vehicle needs including maintaining atmosphere, providing atmosphere circulation, and fire detection and suppression. The ISS-COTS integration effort brought unique challenges combining NASA s established processes and design knowledge with the commercial companies new initiatives and limited experience with human space flight. This paper will discuss the ISS ECLS COTS integration effort including challenges, successes, and lessons learned.

  2. 1958 NASA/USAF Space Probes (ABLE-1). Volume 3; Vehicles, Trajectories, and Flight Histories

    NASA Technical Reports Server (NTRS)

    1959-01-01

    The three NASA/USAF lunar probes of August 17, October 13, and November 8, 1958 are described. Details of the program, the vehicles, the payloads, the firings, the tracking, and the results are presented. Principal result was the first experimental verification of a confined radiation zone of the type postulated by Van Allen and others.

  3. SpaceX Dragon Air Circulation System

    NASA Technical Reports Server (NTRS)

    Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro

    2011-01-01

    The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.

  4. In-Space Engine (ISE-100) Development - Design Verification Test

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Popp, Chris; Bullard, Brad

    2017-01-01

    In the past decade, NASA has formulated science mission concepts with an anticipation of landing spacecraft on the lunar surface, meteoroids, and other planets. Advancing thruster technology for spacecraft propulsion systems has been considered for maximizing science payload. Starting in 2010, development of In-Space Engine (designated as ISE-100) has been carried out. ISE-100 thruster is designed based on heritage Missile Defense Agency (MDA) technology aimed for a lightweight and efficient system in terms volume and packaging. It runs with a hypergolic bi-propellant system: MON-25 (nitrogen tetroxide, N2O4, with 25% of nitric oxide, NO) and MMH (monomethylhydrazine, CH6N2) for NASA spacecraft applications. The utilization of this propellant system will provide a propulsion system capable of operating at wide range of temperatures, from 50 C (122 F) down to -30 C (-22 F) to drastically reduce heater power. The thruster is designed to deliver 100 lb(sub f) of thrust with the capability of a pulse mode operation for a wide range of mission duty cycles (MDCs). Two thrusters were fabricated. As part of the engine development, this test campaign is dedicated for the design verification of the thruster. This presentation will report the efforts of the design verification hot-fire test program of the ISE-100 thruster in collaboration between NASA Marshall Space Flight Center (MSFC) and Aerojet Rocketdyne (AR) test teams. The hot-fire tests were conducted at Advance Mobile Propulsion Test (AMPT) facility in Durango, Colorado, from May 13 to June 10, 2016. This presentation will also provide a summary of key points from the test results.

  5. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-01-01

    In this photograph, the Chandra X-Ray Observatory (CXO) was installed and mated to the Inertial Upper Stage (IUS) inside the Shuttle Columbia's cargo bay at the Kennedy Space Center. The CXO will help astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. X-ray astronomy can only be done from space because Earth's atmosphere blocks x-rays from reaching the surface. The Observatory provides images that are 50 times more detailed than previous x-ray missions. At more than 45 feet in length and weighing more than 5 tons, the CXO was carried into low-Earth orbit by the Space Shuttle Columbia (STS-93 mission) on July 22, 1999. The Observatory was deployed from the Shuttle's cargo bay at 155 miles above the Earth. Two firings of an attached IUS rocket, and several firings of its own onboard rocket motors, after separating from the IUS, placed the Observatory into its working orbit. The IUS is a solid rocket used to place spacecraft into orbit or boost them away from the Earth on interplanetary missions. Since its first use by NASA in 1983, the IUS has supported a variety of important missions, such as the Tracking and Data Relay Satellite, Galileo spacecraft, Magellan spacecraft, and Ulysses spacecraft. The IUS was built by the Boeing Aerospace Co., at Seattle, Washington and managed by the Marshall Space Flight Center.

  6. A Scala DSL for RETE-Based Runtime Verification

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus

    2013-01-01

    Runtime verification (RV) consists in part of checking execution traces against formalized specifications. Several systems have emerged, most of which support specification notations based on state machines, regular expressions, temporal logic, or grammars. The field of Artificial Intelligence (AI) has for an even longer period of time studied rule-based production systems, which at a closer look appear to be relevant for RV, although seemingly focused on slightly different application domains, such as for example business processes and expert systems. The core algorithm in many of these systems is the Rete algorithm. We have implemented a Rete-based runtime verification system, named LogFire (originally intended for offline log analysis but also applicable to online analysis), as an internal DSL in the Scala programming language, using Scala's support for defining DSLs. This combination appears attractive from a practical point of view. Our contribution is in part conceptual in arguing that such rule-based frameworks originating from AI may be suited for RV.

  7. Status on the Verification of Combustion Stability for the J-2X Engine Thrust Chamber Assembly

    NASA Technical Reports Server (NTRS)

    Casiano, Matthew; Hinerman, Tim; Kenny, R. Jeremy; Hulka, Jim; Barnett, Greg; Dodd, Fred; Martin, Tom

    2013-01-01

    Development is underway of the J -2X engine, a liquid oxygen/liquid hydrogen rocket engine for use on the Space Launch System. The Engine E10001 began hot fire testing in June 2011 and testing will continue with subsequent engines. The J -2X engine main combustion chamber contains both acoustic cavities and baffles. These stability aids are intended to dampen the acoustics in the main combustion chamber. Verification of the engine thrust chamber stability is determined primarily by examining experimental data using a dynamic stability rating technique; however, additional requirements were included to guard against any spontaneous instability or rough combustion. Startup and shutdown chug oscillations are also characterized for this engine. This paper details the stability requirements and verification including low and high frequency dynamics, a discussion on sensor selection and sensor port dynamics, and the process developed to assess combustion stability. A status on the stability results is also provided and discussed.

  8. Forest Fire Danger Rating (FFDR) Prediction over the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Song, B.; Won, M.; Jang, K.; Yoon, S.; Lim, J.

    2016-12-01

    Approximately five hundred forest fires occur and inflict the losses of both life and property each year in Korea during the forest fire seasons in the spring and autumn. Thus, an accurate prediction of forest fire is essential for effective forest fire prevention. The meteorology is one of important factors to predict and understand the fire occurrence as well as its behaviors and spread. In this study, we present the Forest Fire Danger Rating Systems (FFDRS) on the Korean Peninsula based on the Daily Weather Index (DWI) which represents the meteorological characteristics related to forest fire. The thematic maps including temperature, humidity, and wind speed produced from Korea Meteorology Administration (KMA) were applied to the forest fire occurrence probability model by logistic regression to analyze the DWI over the Korean Peninsula. The regional data assimilation and prediction system (RDAPS) and the improved digital forecast model were used to verify the sensitivity of DWI. The result of verification test revealed that the improved digital forecast model dataset showed better agreements with the real-time weather data. The forest fire danger rating index (FFDRI) calculated by the improved digital forecast model dataset showed a good agreement with the real-time weather dataset at the 233 administrative districts (R2=0.854). In addition, FFDRI were compared with observation-based FFDRI at 76 national weather stations. The mean difference was 0.5 at the site-level. The results produced in this study indicate that the improved digital forecast model dataset can be useful to predict the FFDRI in the Korean Peninsula successfully.

  9. Demonstration of Spacecraft Fire Safety Technology

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.; Urban, David L.

    2012-01-01

    During the Constellation Program, the development of spacecraft fire safety technologies were focused on the immediate questions related to the atmosphere of the habitable volume and implementation of fire detection, suppression, and postfire clean-up systems into the vehicle architectures. One of the difficulties encountered during the trade studies for these systems was the frequent lack of data regarding the performance of a technology, such as a water mist fire suppression system or an optically-based combustion product monitor. Even though a spacecraft fire safety technology development project was being funded, there was insufficient time and funding to address all the issues as they were identified. At the conclusion of the Constellation Program, these knowledge gaps formed the basis for a project proposed to the Advanced Exploration Systems (AES) Program. This project, subsequently funded by the AES Program and in operation since October 2011, has as its cornerstone the development of an experiment to be conducted on an ISS resupply vehicle, such as the European Space Agency (ESA) Automated Transfer Vehicle (ATV) or Orbital Science s Cygnus vehicle after it leaves the ISS and before it enters the atmosphere. The technology development efforts being conducted in this project include continued quantification of low- and partial-gravity maximum oxygen concentrations of spacecraft-relevant materials, development and verification of sensors for fire detection and post-fire monitoring, development of standards for sizing and selecting spacecraft fire suppression systems, and demonstration of post-fire cleanup strategies. The major technology development efforts are identified in this paper but its primary purpose is to describe the spacecraft fire safety demonstration being planned for the reentry vehicle.

  10. Unmanned Vehicle Material Flammability Test

    NASA Technical Reports Server (NTRS)

    Urban, David; Ruff, Gary A.; Fernandez-Pello, A. Carlos; T’ien, James S.; Torero, Jose L.; Cowlard, Adam; Rouvreau, Sebastian; Minster, Olivier; Toth, Balazs; Legros, Guillaume; hide

    2013-01-01

    Microgravity combustion phenomena have been an active area of research for the past 3 decades however, there have been very few experiments directly studying spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample and environment sizes typical of those expected in a spacecraft fire. All previous experiments have been limited to samples of the order of 10 cm in length and width or smaller. Terrestrial fire safety standards for all other habitable volumes on earth, e.g. mines, buildings, airplanes, ships, etc., are based upon testing conducted with full-scale fires. Given the large differences between fire behavior in normal and reduced gravity, this lack of an experimental data base at relevant length scales forces spacecraft designers to base their designs using 1-g understanding. To address this question a large scale spacecraft fire experiment has been proposed by an international team of investigators. This poster presents the objectives, status and concept of this collaborative international project to examine spacecraft material flammability at realistic scales. The concept behind this project is to utilize an unmanned spacecraft such as Orbital Cygnus vehicle after it has completed its delivery of cargo to the ISS and it has begun its return journey to earth. This experiment will consist of a flame spread test involving a meter scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. A computer modeling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the examination of fire behavior on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This will be the first opportunity to examine microgravity flame behavior at scales approximating a spacecraft fire.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferguson, D.W.; Tompkins, T.A.; Pratapas, J.M.

    The Coal Quality Impact Model (CQIM{trademark}) was used to evaluate the economic and performance impacts of gas co-firing at Mississippi Power Company`s Plant Watson. One of the most important benefits of gas co-firing considered was the ability to burn lower quality, less expensive fuels. Four coals and petroleum coke were evaluated at 0, 5, 10, 20, and 30 percent gas co-firing. These fuels vary widely in their geographic source, heating value, moisture, volatile matter, and sulfur contents. Performance and economic evaluations were conducted at individual load points of 100, 75, 50, 40, 30, and 20 percent of full load. Additionalmore » analyses were made for seasonal load-demand curves and for an average annual load-demand curve. Operating cost in $/MWh, net plant heat rate in Btu/kWh, and break-even gas price in $/MBtu are presented as a function of load and percent gas co-firing. Results illustrate that with the Illinois Basin Coal currently burned at Plant Watson, gas co-firing can be economically justified over a range of gas market prices on either an annual or seasonal basis. Other findings indicate that petroleum coke and South American coal co-fired with natural gas offer significant fuel cost savings and are attractive candidate fuels for combustion verification testing.« less

  12. Radiated noise characteristics of a modern cargo ship

    PubMed

    Arveson; Vendittis

    2000-01-01

    Extensive measurements were made of the radiated noise of M/V OVERSEAS HARRIETTE, a bulk cargo ship (length 173 m, displacement 25 515 tons) powered by a direct-drive low-speed diesel engine-a design representative of many modern merchant ships. The radiated noise data show high-level tonal frequencies from the ship's service diesel generator, main engine firing rate, and blade rate harmonics due to propeller cavitation. Radiated noise directionality measurements indicate that the radiation is generally dipole in form at lower frequencies, as expected. There are some departures from this pattern that may indicate hull interactions. Blade rate source level (174 dB re 1 microPa/m at 9 Hz, 16 knots) agrees reasonably well with a model of fundamental blade rate radiation previously reported by Gray and Greeley, but agreement for blade rate harmonics is not as good. Noise from merchant ships elevates the natural ambient by 20-30 dB in many areas; the effects of this noise on the biological environment have not been widely investigated.

  13. Integrating remotely sensed fires for predicting deforestation for REDD.

    PubMed

    Armenteras, Dolors; Gibbes, Cerian; Anaya, Jesús A; Dávalos, Liliana M

    2017-06-01

    Fire is an important tool in tropical forest management, as it alters forest composition, structure, and the carbon budget. The United Nations program on Reducing Emissions from Deforestation and Forest Degradation (REDD+) aims to sustainably manage forests, as well as to conserve and enhance their carbon stocks. Despite the crucial role of fire management, decision-making on REDD+ interventions fails to systematically include fires. Here, we address this critical knowledge gap in two ways. First, we review REDD+ projects and programs to assess the inclusion of fires in monitoring, reporting, and verification (MRV) systems. Second, we model the relationship between fire and forest for a pilot site in Colombia using near-real-time (NRT) fire monitoring data derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). The literature review revealed fire remains to be incorporated as a key component of MRV systems. Spatially explicit modeling of land use change showed the probability of deforestation declined sharply with increasing distance to the nearest fire the preceding year (multi-year model area under the curve [AUC] 0.82). Deforestation predictions based on the model performed better than the official REDD early-warning system. The model AUC for 2013 and 2014 was 0.81, compared to 0.52 for the early-warning system in 2013 and 0.68 in 2014. This demonstrates NRT fire monitoring is a powerful tool to predict sites of forest deforestation. Applying new, publicly available, and open-access NRT fire data should be an essential element of early-warning systems to detect and prevent deforestation. Our results provide tools for improving both the current MRV systems, and the deforestation early-warning system in Colombia. © 2017 by the Ecological Society of America.

  14. M/V ELIAS Explosion and Fire at Fort Mifflin, PA., on 9 April 1974 with Loss of Life.

    DTIC Science & Technology

    1977-09-09

    above crude oilin acaro tak my beignted t alowr tepertur tha themeaure flash point of a sample of the same cargo. The reason for this anomaly is as...of 72 hours. William CALAFATY Security Guard 715 E. Allegheny Ave . Philadelphia, Pa. 4. The weather at the time of casualty was overcast with good...recess. Ladder steps on the inside of the Imer boundaries of the recesseswere seveiely wasted to a feather edqe at each sten. BEST AV A1ABIE COPY’ 25 g

  15. New Suits for Commercial Crew Astronauts on This Week @NASA – January 27, 2017

    NASA Image and Video Library

    2017-01-27

    When NASA’s Commercial Crew Astronauts make their first trip to the International Space Station aboard Boeing’s Starliner spacecraft, they’ll be outfitted in new custom-designed spacesuits. Astronauts Eric Boe and Suni Williams tried on the new suits, which were unveiled Jan. 25. In addition to meeting NASA’s requirements for safety and functionality, the new design weighs less and is more comfortable than earlier versions. Also, Expedition 52/53 News Conference, Cargo Ship Departs the ISS, 50th Anniversary of Apollo 1 Fire and more!

  16. Risk assessment of technologies for detecting illicit drugs in containers

    NASA Astrophysics Data System (ADS)

    Brandenstein, Albert E.

    1995-03-01

    This paper provides the highlights of the role risk assessment plays in the United States technology program for nonintrusive inspection of cargo containers for illicit drugs. The Counterdrug Technology Assessment Center is coordinating the national effort to develop prototype technologies for an advanced generation, nonintrusive cargo inspection system. In the future, the U.S. Customs Service could configure advanced technologies for finding not only drugs and other contraband hidden in cargo, but for a wide variety of commodities for customs duty verification purposes. The overall nonintrusive inspection system is envisioned to consist primarily of two classes of subsystems: (1) shipment document examination subsystems to prescreen exporter and importer documents; and (2) chemical and physics-based subsystems to detect and characterize illicit substances. The document examination subsystems would use software algorithms, artificial intelligence, and neural net technology to perform an initial prescreening of the information on the shipping manifest for suspicious patterns. This would be accomplished by creating a `profile' from the shipping information and matching it to trends known to be used by traffickers. The chemical and physics-based subsystems would apply nuclear physics, x-ray, gas chromatography and spectrometry technologies to locate and identify contraband in containers and other conveyances without the need for manual searches. The approach taken includes using technology testbeds to assist in evaluating technology prototypes and testing system concepts in a fully instrumented but realistic operational environment. This approach coupled with a substance signature phenomenology program to characterize those detectable elements of benign, as well as target substances lends itself particularly well to the topics of risk assessment and elemental characterization of substances. A technology testbed established in Tacoma, Washington provides a national facility for testing and evaluating existing and emerging prototype systems in an operational environment. The results of initial tests using the advanced x-ray subsystem installed at the testbed are given in this paper. A description of typical cargo contents and those characteristics applicable to nuclear interrogation techniques are provided in the appendix.

  17. KSC-99pp0208

    NASA Image and Video Library

    1999-02-11

    KENNEDY SPACE CENTER, FLA. -- In the SPACEHAB Facility for a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station are (left to right) Mission Specialists Valery Tokarev, Julie Payette (holding a lithium hydroxide canister) and Dan Barry. Other crew members at KSC for the IVT are Commander Kent Rominger, Pilot Rick Husband and Mission Specialists Ellen Ochoa and Tamara Jernigan. Mission STS-96 carries the SPACEHAB Logistics Double Module, which has equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m

  18. Evaluation of MPLM Design and Mission 6A Coupled Loads Analyses

    NASA Technical Reports Server (NTRS)

    Bookout, Paul S.; Ricks, Ed

    1999-01-01

    Through the development of a space shuttle payload, there are usually several coupled loads analyses (CLA) performed: preliminary design, critical design, final design and verification loads analysis (VLA). A final design CLA is the last analysis conducted prior to model delivery to the shuttle program for the VLA. The finite element models used in the final design CLA and the VLA are test verified dynamic math models. Mission 6A is the first of many flights of the Multi-Purpose Logistics Module (MPLM). The MPLM was developed by Alenia Spazio S.p.A. (an Italian aerospace company) and houses the International Standard Payload Racks (ISPR) for transportation to the space station in the shuttle. Marshall Space Flight Center (MSFC), the payload integrator of the MPLM for Mission 6A, performed the final design CLA using the M6.OZC shuttle data for liftoff and landing conditions using the proper shuttle cargo manifest. Alenia performed the preliminary and critical design CLAs for the development of the MPLM. However, these CLAs did not use the current Mission 6A cargo manifest. An evaluation of the preliminary and critical design performed by Alenia and the final design performed by MSFC is presented.

  19. Trial by Fire

    NASA Technical Reports Server (NTRS)

    Covault, Craig

    2005-01-01

    Boeing is preparing a range of Delta IV Heavy launcher options for NASA Crew Exploration Vehicle (CEV) and unmanned cargo transportation architectures to the Moon and Mars, now that the massive new rocket has been flight tested. The December 21 launch of the 232-ft. vehicle on 2 million lb. thrust marked the largest all-liquid expendable booster flown since the last Saturn V in 1973. A second Delta IV Heavy mission is scheduled for this summer carrying a U.S. Air Force missile warning satellite. The first launch carried a dummy payload. Boeing wants NASA to consider the Delta IV Heavy for manned CEV missions, but is also pushing the Heavy for unmanned exploration launch roles. One Delta IV Medium version could also be a CEV player. Boeing says even modest upgrades could double the Delta Heavy's Earth orbit capability to more than 50 metric tons, including being able to fire up to 20 metric tons on escape trajectories to Mars.

  20. Application of the Haines Index in the fire warning system

    NASA Astrophysics Data System (ADS)

    Kalin, Lovro; Marija, Mokoric; Tomislav, Kozaric

    2016-04-01

    Croatia, as all Mediterranean countries, is strongly affected by large wildfires, particularly in the coastal region. In the last two decades the number and intensity of fires has been significantly increased, which is unanimously associated with climate change, e.g. global warming. More extreme fires are observed, and the fire-fighting season has been expanded to June and September. The meteorological support for fire protection and planning is therefore even more important. At the Meteorological and Hydrological Service of Croatia a comprehensive monitoring and warning system has been established. It includes standard components, such as short term forecast of Fire Weather Index (FWI), but long range forecast as well. However, due to more frequent hot and dry seasons, FWI index often does not provide additional information of extremely high fire danger, since it regularly takes the highest values for long periods. Therefore the additional tools have been investigated. One of widely used meteorological products is the Haines index (HI). It provides information of potential fire growth, taking into account only the vertical instability of the atmosphere, and not the state of the fuel. Several analyses and studies carried out at the Service confirmed the correlation of high HI values with large and extreme fires. The Haines index forecast has been used at the Service for several years, employing European Centre for Medium Range Weather Forecast (ECMWF) global prediction model, as well as the limited-area Aladin model. The verification results show that these forecast are reliable, when compared to radiosonde measurements. All these results provided the introduction of the additional fire warnings, that are issued by the Service's Forecast Department.

  1. Verification of National Weather Service spot forecasts using surface observations

    NASA Astrophysics Data System (ADS)

    Lammers, Matthew Robert

    Software has been developed to evaluate National Weather Service spot forecasts issued to support prescribed burns and early-stage wildfires. Fire management officials request spot forecasts from National Weather Service Weather Forecast Offices to provide detailed guidance as to atmospheric conditions in the vicinity of planned prescribed burns as well as wildfires that do not have incident meteorologists on site. This open source software with online display capabilities is used to examine an extensive set of spot forecasts of maximum temperature, minimum relative humidity, and maximum wind speed from April 2009 through November 2013 nationwide. The forecast values are compared to the closest available surface observations at stations installed primarily for fire weather and aviation applications. The accuracy of the spot forecasts is compared to those available from the National Digital Forecast Database (NDFD). Spot forecasts for selected prescribed burns and wildfires are used to illustrate issues associated with the verification procedures. Cumulative statistics for National Weather Service County Warning Areas and for the nation are presented. Basic error and accuracy metrics for all available spot forecasts and the entire nation indicate that the skill of the spot forecasts is higher than that available from the NDFD, with the greatest improvement for maximum temperature and the least improvement for maximum wind speed.

  2. Validation of the AVM Blast Computational Modeling and Simulation Tool Set

    DTIC Science & Technology

    2015-08-04

    by-construction" methodology is powerful and would not be possible without high -level design languages to support validation and verification. [1,4...to enable the making of informed design decisions.  Enable rapid exploration of the design trade-space for high -fidelity requirements tradeoffs...live-fire tests, the jump height of the target structure is recorded by using either high speed cameras or a string pot. A simple projectile motion

  3. Finding of No Significant Impact (FONSI) Finding of No Practicable Alternative (FONPA): Construct of a New Fire Station, Demolition of Buildings 530 and 606 and Relocation of the Hazardous Cargo Area at Grand Forks Air Force Base, North Dakota

    DTIC Science & Technology

    2009-09-18

    area. In wetland areas, predominant species include Typha sp., smartweed, wild millet, cord grass, bulrushes, sedges and reeds. These habitats for...meeting AF standard mandatory response times, and it does not straddle the airfield flight line fence. This location will require wetland ...mitigation for 0.03 wetlands determined to be jurisdictional by the USACE, from access driveways crossing the stormwater ditch on the east and on the south of

  4. Construction of a New Fire Station, Demolition of Buildings 530 and 606 and Relocation of the Hazardous Cargo Area at Grand Forks Air Force Base, North Dakota. Finding of No Significant Impact (FOSNI). Finding of No Practical Alternative(FONPA)

    DTIC Science & Technology

    2009-09-23

    hawthorn, buffaloberry and snowberry also are found in the area. In wetland areas, predominant species include Typha sp., smartweed, wild millet, cord...does not straddle the airfield flight line fence. This location will require wetland mitigation for 0.03 wetlands determined to be jurisdictional by... wetlands construction or restoration at either a wetland mitigation bank or a suitable location on base. A formal mitigation plan will be developed

  5. Space shuttle safety - A hybrid vehicle breeds new problems.

    NASA Technical Reports Server (NTRS)

    Pinkel, I. I.

    1971-01-01

    Discussion of a few novel problems raised by the design and flight plan of the space shuttle and by the dangerous cargos it might carry. Among the problems cited are those connected with the inspection of the bearings of the propellant turbopumps, particularly those of the hydrogen pump, for evidence of spalling, as well as problems arising in the inspection of the high-temperature parts of the combustor and turbine section of the airbreathing turbofan for shuttle booster and orbiter, and problems resulting from the possibility of fire hazard due to spontaneous ignition of fuel vapor in the fuel tank vapor space.

  6. Average Stand Age from Forest Inventory Plots Does Not Describe Historical Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America.

    PubMed

    Stevens, Jens T; Safford, Hugh D; North, Malcolm P; Fried, Jeremy S; Gray, Andrew N; Brown, Peter M; Dolanc, Christopher R; Dobrowski, Solomon Z; Falk, Donald A; Farris, Calvin A; Franklin, Jerry F; Fulé, Peter Z; Hagmann, R Keala; Knapp, Eric E; Miller, Jay D; Smith, Douglas F; Swetnam, Thomas W; Taylor, Alan H

    Quantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests of western North America have assumed that the "stand age" variable from the US Forest Service Forest Inventory and Analysis (FIA) program reflects the timing of historical high-severity (i.e. stand-replacing) fire in ponderosa pine and mixed-conifer forests. To test this assumption, we re-analyze the dataset used in a previous analysis, and compare information from fire history records with information from co-located FIA plots. We demonstrate that 1) the FIA stand age variable does not reflect the large range of individual tree ages in the FIA plots: older trees comprised more than 10% of pre-stand age basal area in 58% of plots analyzed and more than 30% of pre-stand age basal area in 32% of plots, and 2) recruitment events are not necessarily related to high-severity fire occurrence. Because the FIA stand age variable is estimated from a sample of tree ages within the tree size class containing a plurality of canopy trees in the plot, it does not necessarily include the oldest trees, especially in uneven-aged stands. Thus, the FIA stand age variable does not indicate whether the trees in the predominant size class established in response to severe fire, or established during the absence of fire. FIA stand age was not designed to measure the time since a stand-replacing disturbance. Quantification of historical "mixed-severity" fire regimes must be explicit about the spatial scale of high-severity fire effects, which is not possible using FIA stand age data.

  7. Average Stand Age from Forest Inventory Plots Does Not Describe Historical Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America

    PubMed Central

    Stevens, Jens T.; Safford, Hugh D.; North, Malcolm P.; Fried, Jeremy S.; Gray, Andrew N.; Brown, Peter M.; Dolanc, Christopher R.; Dobrowski, Solomon Z.; Falk, Donald A.; Farris, Calvin A.; Franklin, Jerry F.; Fulé, Peter Z.; Hagmann, R. Keala; Knapp, Eric E.; Miller, Jay D.; Smith, Douglas F.; Swetnam, Thomas W.; Taylor, Alan H.

    2016-01-01

    Quantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests of western North America have assumed that the “stand age” variable from the US Forest Service Forest Inventory and Analysis (FIA) program reflects the timing of historical high-severity (i.e. stand-replacing) fire in ponderosa pine and mixed-conifer forests. To test this assumption, we re-analyze the dataset used in a previous analysis, and compare information from fire history records with information from co-located FIA plots. We demonstrate that 1) the FIA stand age variable does not reflect the large range of individual tree ages in the FIA plots: older trees comprised more than 10% of pre-stand age basal area in 58% of plots analyzed and more than 30% of pre-stand age basal area in 32% of plots, and 2) recruitment events are not necessarily related to high-severity fire occurrence. Because the FIA stand age variable is estimated from a sample of tree ages within the tree size class containing a plurality of canopy trees in the plot, it does not necessarily include the oldest trees, especially in uneven-aged stands. Thus, the FIA stand age variable does not indicate whether the trees in the predominant size class established in response to severe fire, or established during the absence of fire. FIA stand age was not designed to measure the time since a stand-replacing disturbance. Quantification of historical “mixed-severity” fire regimes must be explicit about the spatial scale of high-severity fire effects, which is not possible using FIA stand age data. PMID:27196621

  8. Health and safety plan for the removal action at the former YS-860 Firing Ranges, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-04-28

    This health and safety plan sets forth the requirements and procedures to protect the personnel involved in the Lead Source Removal Project at the Former YS-86O Firing Ranges. This project will be conducted in a manner that ensures the protection of the safety and health of workers, the public, and the environment. The purpose of this removal action is to address lead contaminated soil and reduce a potential risk to human health and the environment. This site is an operable unit within the Upper East Fork Poplar Creek watershed. The removal action will contribute to early source actions within themore » watershed. The project will accomplish this through the removal of lead-contaminated soil in the target areas of the two small arms firing ranges. This plan covers the removal actions at the Former YS-86O Firing Ranges. These actions involve the excavation of lead-contaminated soils, the removal of the concrete trench and macadam (asphalt) paths, verification/confirmation sampling, grading and revegetation. The primary hazards include temperature extremes, equipment operation, noise, potential lead exposure, uneven and slippery working surfaces, and insects.« less

  9. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-13

    Astronaut Paul W. Richards, STS-102 mission specialist, works in the cargo bay of the Space Shuttle Discovery during the second of two scheduled space walks. Richards, along with astronaut Andy Thomas, spent 6.5 hours outside the International Space Station (ISS), continuing work to outfit the station and prepare for delivery of its robotic arm. STS-102 delivered the first Multipurpose Logistics Modules (MPLM) named Leonardo, which was filled with equipment and supplies to outfit the U.S. Destiny Laboratory Module. The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS' moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  10. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-10

    STS-102 mission astronauts James S. Voss and James D. Weatherbee share a congratulatory handshake as the Space Shuttle Orbiter Discovery successfully docks with the International Space Station (ISS). Photographed from left to right are: Astronauts Susan J. Helms, mission specialist; James S. Voss, Expedition 2 crew member; James D. Weatherbee, mission commander; Andrew S.W. Thomas, mission specialist; and nearly out of frame is James M. Kelley, Pilot. Launched March 8, 2001, STS-102's primary cargo was the Leonardo, the Italian Space Agency-built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as ISS' moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  11. STS-102 Astronaut Paul Richards Participates in Space Walk

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Astronaut Paul W. Richards, STS-102 mission specialist, works in the cargo bay of the Space Shuttle Discovery during the second of two scheduled space walks. Richards, along with astronaut Andy Thomas, spent 6.5 hours outside the International Space Station (ISS), continuing work to outfit the station and prepare for delivery of its robotic arm. STS-102 delivered the first Multipurpose Logistics Modules (MPLM) named Leonardo, which was filled with equipment and supplies to outfit the U.S. Destiny Laboratory Module. The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS' moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  12. Modal Testing of Seven Shuttle Cargo Elements for Space Station

    NASA Technical Reports Server (NTRS)

    Kappus, Kathy O.; Driskill, Timothy C.; Parks, Russel A.; Patterson, Alan (Technical Monitor)

    2001-01-01

    From December 1996 to May 2001, the Modal and Control Dynamics Team at NASA's Marshall Space Flight Center (MSFC) conducted modal tests on seven large elements of the International Space Station. Each of these elements has been or will be launched as a Space Shuttle payload for transport to the International Space Station (ISS). Like other Shuttle payloads, modal testing of these elements was required for verification of the finite element models used in coupled loads analyses for launch and landing. The seven modal tests included three modules - Node, Laboratory, and Airlock, and four truss segments - P6, P3/P4, S1/P1, and P5. Each element was installed and tested in the Shuttle Payload Modal Test Bed at MSFC. This unique facility can accommodate any Shuttle cargo element for modal test qualification. Flexure assemblies were utilized at each Shuttle-to-payload interface to simulate a constrained boundary in the load carrying degrees of freedom. For each element, multiple-input, multiple-output burst random modal testing was the primary approach with controlled input sine sweeps for linearity assessments. The accelerometer channel counts ranged from 252 channels to 1251 channels. An overview of these tests, as well as some lessons learned, will be provided in this paper.

  13. KSC-99pd0209

    NASA Image and Video Library

    1999-02-11

    KENNEDY SPACE CENTER, FLA. -- In the SPACEHAB Facility, the STS-96 crew looks at equipment as part of a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station . From left are Mission Specialist Ellen Ochoa (behind the opened storage cover ), Commander Kent Rominger, Pilot Rick Husband (holding a lithium hydroxide canister) and Mission Specialists Dan Barry, Valery Tokarev of Russia and Julie Payette. In the background is TTI interpreter Valentina Maydell. The other crew member at KSC for the IVT is Mission Specialist Tamara Jernigan. Mission STS-96 carries the SPACEHAB Logistics Double Module, which has equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m

  14. KSC-99pp0201

    NASA Image and Video Library

    1999-02-11

    KENNEDY SPACE CENTER, FLA. -- In the SPACEHAB Facility, STS-96 Mission Specialist Valery Tokarev of Russia (left) and Commander Kent Rominger (second from right) listen to Lynn Ashby (far right), with JSC, talking about the SPACEHAB equipment in front of them during a payload Interface Verification Test (IVT). In the background behind Tokarev is TTI interpreter Valentina Maydell. Other STS-96 crew members at KSC for the IVT are Pilot Rick Husband and Mission Specialists Dan Barry, Ellen Ochoa, Tamara Jernigan and Julie Payette. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m

  15. Design and analysis of the federal aviation administration next generation fire test burner

    NASA Astrophysics Data System (ADS)

    Ochs, Robert Ian

    The United States Federal Aviation Administration makes use of threat-based fire test methods for the certification of aircraft cabin materials to enhance the level of safety in the event of an in-flight or post-crash fire on a transport airplane. The global nature of the aviation industry results in these test methods being performed at hundreds of laboratories around the world; in some cases testing identical materials at multiple labs but yielding different results. Maintenance of this standard for an elevated level of safety requires that the test methods be as well defined as possible, necessitating a comprehensive understanding of critical test method parameters. The tests have evolved from simple Bunsen burner material tests to larger, more complicated apparatuses, requiring greater understanding of the device for proper application. The FAA specifies a modified home heating oil burner to simulate the effects of large, intense fires for testing of aircraft seat cushions, cargo compartment liners, power plant components, and thermal acoustic insulation. Recently, the FAA has developed a Next Generation (NexGen) Fire Test burner to replace the original oil burner that has become commercially unavailable. The NexGen burner design is based on the original oil burner but with more precise control of the air and fuel flow rates with the addition of a sonic nozzle and a pressurized fuel system. Knowledge of the fundamental flow properties created by various burner configurations is desired to develop an updated and standardized burner configuration for use around the world for aircraft materials fire testing and airplane certification. To that end, the NexGen fire test burner was analyzed with Particle Image Velocimetry (PIV) to resolve the non-reacting exit flow field and determine the influence of the configuration of burner components. The correlation between the measured flow fields and the standard burner performance metrics of flame temperature and burnthrough time was studied. Potential design improvements were also evaluated that could simplify burner set up and operation.

  16. The response of smoke detectors to pyrolysis and combustion products from aircraft interior materials

    NASA Technical Reports Server (NTRS)

    Mckee, R. G.; Alvares, N. J.

    1976-01-01

    The following projects were completed as part of the effort to develop and test economically feasible fire-resistant materials for interior furnishings of aircraft as well as detectors of incipient fires in passenger and cargo compartments: (1) determination of the sensitivity of various contemporary gas and smoke detectors to pyrolysis and combustion products from materials commonly used in aircraft interiors and from materials that may be used in the future, (2) assessment of the environmental limitations to detector sensitivity and reliability. The tests were conducted on three groups of materials by exposure to the following three sources of exposure: radiant and Meeker burner flame, heated coil, and radiant source only. The first test series used radiant heat and flame exposures on easily obtainable test materials. Next, four materials were selected from the first group and exposed to an incandescent coil to provide the conditions for smoldering combustion. Finally, radiant heat exposures were used on advanced materials that are not readily available.

  17. KSC-2013-4198

    NASA Image and Video Library

    2013-11-20

    VAN HORN, Texas – Blue Origin test fires a powerful new hydrogen- and oxygen-fueled American rocket engine at the company's West Texas facility. During the test, the BE-3 engine fired at full power for more than two minutes to simulate a launch, then paused for about four minutes, mimicking a coast through space before it re-ignited for a brief final burn. The last phase of the test covered the work the engine could perform in landing the booster back softly on Earth. Blue Origin, a partner of NASA’s Commercial Crew Program, or CCP, is developing its Orbital Launch Vehicle, which could eventually be used to launch the company's Space Vehicle into orbit to transport crew and cargo to low-Earth orbit. CCP is aiding in the innovation and development of American-led commercial capabilities for crew transportation and rescue services to and from the station and other low-Earth orbit destinations by the end of 2017. For information about CCP, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Lauren Harnett

  18. KSC-2013-4124

    NASA Image and Video Library

    2013-11-20

    VAN HORN, Texas – Blue Origin test fires a powerful new hydrogen- and oxygen-fueled American rocket engine at the company's West Texas facility. During the test, the BE-3 engine fired at full power for more than two minutes to simulate a launch, then paused for about four minutes, mimicking a coast through space before it re-ignited for a brief final burn. The last phase of the test covered the work the engine could perform in landing the booster back softly on Earth. Blue Origin, a partner of NASA’s Commercial Crew Program, or CCP, is developing its Orbital Launch Vehicle, which could eventually be used to launch the company's Space Vehicle into orbit to transport crew and cargo to low-Earth orbit. CCP is aiding in the innovation and development of American-led commercial capabilities for crew transportation and rescue services to and from the station and other low-Earth orbit destinations by the end of 2017. For information about CCP, visit www.nasa.gov/commercialcrew. Photo credit: Blue Origin

  19. Onboard Inert Gas Generation System/Onboard Oxygen Gas Generation System (OBIGGS/OBOGS) Study. Part 1; Aircraft System Requirements

    NASA Technical Reports Server (NTRS)

    Reynolds, Thomas L.; Bailey, Delbert B.; Lewinski, Daniel F.; Roseburg, Conrad M.; Palaszewski, Bryan (Technical Monitor)

    2001-01-01

    The purpose of this technology assessment is to define a multiphase research study program investigating Onboard Inert Gas Generation Systems (OBIGGS) and Onboard Oxygen Generation Systems (OBOGS) that would identify current airplane systems design and certification requirements (Subtask 1); explore state-of-the-art technology (Subtask 2); develop systems specifications (Subtask 3); and develop an initial system design (Subtask 4). If feasible, consideration may be given to the development of a prototype laboratory test system that could potentially be used in commercial transport aircraft (Subtask 5). These systems should be capable of providing inert nitrogen gas for improved fire cargo compartment fire suppression and fuel tank inerting and emergency oxygen for crew and passenger use. Subtask I of this research study, presented herein, defines current production aircraft certification requirements and design objectives necessary to meet mandatory FAA certification requirements and Boeing design and performance specifications. These requirements will be utilized for baseline comparisons for subsequent OBIGGS/OBOGS application evaluations and assessments.

  20. Large-Scale Spacecraft Fire Safety Tests

    NASA Technical Reports Server (NTRS)

    Urban, David; Ruff, Gary A.; Ferkul, Paul V.; Olson, Sandra; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier; hide

    2014-01-01

    An international collaborative program is underway to address open issues in spacecraft fire safety. Because of limited access to long-term low-gravity conditions and the small volume generally allotted for these experiments, there have been relatively few experiments that directly study spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample sizes and environment conditions typical of those expected in a spacecraft fire. The major constraint has been the size of the sample, with prior experiments limited to samples of the order of 10 cm in length and width or smaller. This lack of experimental data forces spacecraft designers to base their designs and safety precautions on 1-g understanding of flame spread, fire detection, and suppression. However, low-gravity combustion research has demonstrated substantial differences in flame behavior in low-gravity. This, combined with the differences caused by the confined spacecraft environment, necessitates practical scale spacecraft fire safety research to mitigate risks for future space missions. To address this issue, a large-scale spacecraft fire experiment is under development by NASA and an international team of investigators. This poster presents the objectives, status, and concept of this collaborative international project (Saffire). The project plan is to conduct fire safety experiments on three sequential flights of an unmanned ISS re-supply spacecraft (the Orbital Cygnus vehicle) after they have completed their delivery of cargo to the ISS and have begun their return journeys to earth. On two flights (Saffire-1 and Saffire-3), the experiment will consist of a flame spread test involving a meter-scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. On one of the flights (Saffire-2), 9 smaller (5 x 30 cm) samples will be tested to evaluate NASAs material flammability screening tests. The first flight (Saffire-1) is scheduled for July 2015 with the other two following at six-month intervals. A computer modeling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the first examination of fire behavior on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation.

  1. Understanding Fire Through Improved Technology

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Aztec(TradeMark) is the commercial name for Southwest Sciences laser. The laser has coarse tuning ranges of 10 nanometers (nm) to 30 nm at wavelengths ranging from 630 nm to 2,300 nm, making it the only commercially available external cavity diode laser with wavelengths beyond 1,650 nm. The laser's high-speed tuning in both coarse and fine wavelength regimes allows for increased trace gas detection. With the automated coarse tuning option, the Aztec sweeps through its wavelength range in less than 1 millisecond. While some diode lasers can only detect one type, or species, of a trace gas, the Aztec's broad wavelength tuning provides access to multiple trace gas species. The Aztec has a wide range of applications for both NASA and commercial users, from protecting astronauts in space to improving combustion processes on Earth. It may serve as a new tool for planetary exploration, as it can detect a wide range of multiple gas species in planetary atmospheres. The laser could optically detect gaseous indicators of incipient fires on the International Space Station and Space Shuttle, as well as detect low concentrations of potentially toxic gases in spacecraft crew habitats. The laser could also provide more accurate fire detection in aircraft cargo compartments. Since the Aztec can detect several gases that only evolve during an actual fire, its implementation could reduce the large number of commercial aircraft landings that currently occur due to false alarms. Other applications include environmental and industrial process monitoring.

  2. Programs for Testing an SSME-Monitoring System

    NASA Technical Reports Server (NTRS)

    Lang, Andre; Cecil, Jimmie; Heusinger, Ralph; Freestone, Kathleen; Blue, Lisa; Wilkerson, DeLisa; McMahon, Leigh Anne; Hall, Richard B.; Varnavas, Kosta; Smith, Keary; hide

    2007-01-01

    A suite of computer programs has been developed for special test equipment (STE) that is used in verification testing of the Health Management Computer Integrated Rack Assembly (HMCIRA), a ground-based system of analog and digital electronic hardware and software for "flight-like" testing for development of components of an advanced health-management system for the space shuttle main engine (SSME). The STE software enables the STE to simulate the analog input and the data flow of an SSME test firing from start to finish.

  3. [Study on discrimination of varieties of fire resistive coating for steel structure based on near-infrared spectroscopy].

    PubMed

    Xue, Gang; Song, Wen-qi; Li, Shu-chao

    2015-01-01

    In order to achieve the rapid identification of fire resistive coating for steel structure of different brands in circulating, a new method for the fast discrimination of varieties of fire resistive coating for steel structure by means of near infrared spectroscopy was proposed. The raster scanning near infrared spectroscopy instrument and near infrared diffuse reflectance spectroscopy were applied to collect the spectral curve of different brands of fire resistive coating for steel structure and the spectral data were preprocessed with standard normal variate transformation(standard normal variate transformation, SNV) and Norris second derivative. The principal component analysis (principal component analysis, PCA)was used to near infrared spectra for cluster analysis. The analysis results showed that the cumulate reliabilities of PC1 to PC5 were 99. 791%. The 3-dimentional plot was drawn with the scores of PC1, PC2 and PC3 X 10, which appeared to provide the best clustering of the varieties of fire resistive coating for steel structure. A total of 150 fire resistive coating samples were divided into calibration set and validation set randomly, the calibration set had 125 samples with 25 samples of each variety, and the validation set had 25 samples with 5 samples of each variety. According to the principal component scores of unknown samples, Mahalanobis distance values between each variety and unknown samples were calculated to realize the discrimination of different varieties. The qualitative analysis model for external verification of unknown samples is a 10% recognition ration. The results demonstrated that this identification method can be used as a rapid, accurate method to identify the classification of fire resistive coating for steel structure and provide technical reference for market regulation.

  4. FireBird - a small satellite fire monitoring mission: Status and first results

    NASA Astrophysics Data System (ADS)

    Lorenz, Eckehard; Rücker, Gernot; Terzibaschian, Thomas; Klein, Doris; Tiemann, Joachim

    2014-05-01

    The scientific mission FireBird is operated by the German Aerospace Center (DLR) and consists of two small satellites. The first satellite - TET-1 - was successfully launched from Baikonur, Russia in July 2012. Its first year in orbit was dedicated to a number of experiments within the framework of the DLR On Orbit Verification (OOV) program which is dedicated to technology testing in space. After successful completion of its OOV phase, TET-1 was handed over to the DLR FireBird mission and is now a dedicated Earth Observation mission. Its primary goal is sensing of hot phenomena such as wildfires, volcanoes, gas flares and industrial hotspots. The second satellite, BiROS is scheduled for launch in the second or third quarter of 2015. The satellite builds on the heritage of the DLR BIRD (BIspectral Infrared Detection) mission and delivers quantitative information (such as Fire Radiative Power, FRP) at a spatial resolution of 350 m, superior to any current fire enabled satellite system such as NPP VIIRS, MODIS or Meteosat SEVIRI. The satellite is undergoing a four month validation phase during which satellite operations are adapted to the new mission goals of FireBIRD and processing capacities are established to guarantee swift processing and delivery of high quality data. The validation phase started with an informal Operational Readiness Review and will be completed with a formal review, covering all aspects of the space and ground segments. The satellite is equipped with a camera with a 42 m ground pixel size in the red, green and near infrared spectral range, and a 370 m ground pixel size camera in the mid and thermal infrared with a swath of 185 km. The satellite can be pointed towards a target in order to enhance observation frequency. First results of the FireBird mission include a ground validation experiment and acquisitions over fires across the world. Once the validation phase is finished the data will be made available to a wide scientific community.

  5. Free microparticles—An inducing mechanism of pre-firing in high pressure gas switches for fast linear transformer drivers

    NASA Astrophysics Data System (ADS)

    Li, Xiaoang; Pei, Zhehao; Wu, Zhicheng; Zhang, Yuzhao; Liu, Xuandong; Li, Yongdong; Zhang, Qiaogen

    2018-03-01

    Microparticle initiated pre-firing of high pressure gas switches for fast linear transformer drivers (FLTDs) is experimentally and theoretically verified. First, a dual-electrode gas switch equipped with poly-methyl methacrylate baffles is used to capture and collect the microparticles. By analyzing the electrode surfaces and the collecting baffles by a laser scanning confocal microscope, microparticles ranging in size from tens of micrometers to over 100 μm are observed under the typical working conditions of FLTDs. The charging and movement of free microparticles in switch cavity are studied, and the strong DC electric field drives the microparticles to bounce off the electrode. Three different modes of free microparticle motion appear to be responsible for switch pre-firing. (i) Microparticles adhere to the electrode surface and act as a fixed protrusion which distorts the local electric field and initiates the breakdown in the gap. (ii) One particle escapes toward the opposite electrode and causes a near-electrode microdischarge, inducing the breakdown of the residual gap. (iii) Multiple moving microparticles are occasionally in cascade, leading to pre-firing. Finally, as experimental verification, repetitive discharges at ±90 kV are conducted in a three-electrode field-distortion gas switch, with two 8 mm gaps and pressurized with nitrogen. An ultrasonic probe is employed to monitor the bounce signals. In pre-firing incidents, the bounce is detected shortly before the collapse of the voltage waveform, which demonstrates that free microparticles contribute significantly to the mechanism that induces pre-firing in FLTD gas switches.

  6. Free microparticles-An inducing mechanism of pre-firing in high pressure gas switches for fast linear transformer drivers.

    PubMed

    Li, Xiaoang; Pei, Zhehao; Wu, Zhicheng; Zhang, Yuzhao; Liu, Xuandong; Li, Yongdong; Zhang, Qiaogen

    2018-03-01

    Microparticle initiated pre-firing of high pressure gas switches for fast linear transformer drivers (FLTDs) is experimentally and theoretically verified. First, a dual-electrode gas switch equipped with poly-methyl methacrylate baffles is used to capture and collect the microparticles. By analyzing the electrode surfaces and the collecting baffles by a laser scanning confocal microscope, microparticles ranging in size from tens of micrometers to over 100 μm are observed under the typical working conditions of FLTDs. The charging and movement of free microparticles in switch cavity are studied, and the strong DC electric field drives the microparticles to bounce off the electrode. Three different modes of free microparticle motion appear to be responsible for switch pre-firing. (i) Microparticles adhere to the electrode surface and act as a fixed protrusion which distorts the local electric field and initiates the breakdown in the gap. (ii) One particle escapes toward the opposite electrode and causes a near-electrode microdischarge, inducing the breakdown of the residual gap. (iii) Multiple moving microparticles are occasionally in cascade, leading to pre-firing. Finally, as experimental verification, repetitive discharges at ±90 kV are conducted in a three-electrode field-distortion gas switch, with two 8 mm gaps and pressurized with nitrogen. An ultrasonic probe is employed to monitor the bounce signals. In pre-firing incidents, the bounce is detected shortly before the collapse of the voltage waveform, which demonstrates that free microparticles contribute significantly to the mechanism that induces pre-firing in FLTD gas switches.

  7. History of Fire Events in the U.S. Commercial Nuclear Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bijan Najafi; Joglar-Biloch, Francisco; Kassawara, Robert P.

    2002-07-01

    Over the past decade, interest in performance-based fire protection has increased within the nuclear industry. In support of this growing interest, in 1997 the Electric Power Research Institute (EPRI) developed a long-range plan to develop/improve data and tools needed to support Risk-Informed/Performance-Based fire protection. This plan calls for continued improvement in collection and use of information obtained from fire events at nuclear plants. The data collection process has the objectives of improving the insights gained from such data and reducing the uncertainty in fire risk and fire modeling methods in order to make them a more reliable basis for performancemore » based fire protection programs. In keeping with these objectives, EPRI continues to collect, review and analyze fire events in support of the nuclear industry. EPRI collects these records in cooperation with the Nuclear Electric Insurance Limited (NEIL), by compiling public fire event reports and by direct solicitation of U.S. nuclear facilities. EPRI fire data collection project is based on the principle that the understanding of history is one of the cornerstones of improving fire protection technology and practice. Therefore, the goal has been to develop and maintain a comprehensive database of fire events with flexibility to support various aspects of fire protection engineering. With more than 1850 fire records over a period of three decades and 2400 reactor years, this is the most comprehensive database of nuclear power industry fire events in existence today. In general, the frequency of fires in the U.S. commercial nuclear industry remains constant. In few cases, e.g., transient fires and fires in BWR offgas/recombiner systems, where either increasing or decreasing trends are observed, these trends tend to slow after 1980. The key issues in improving quality of the data remain to be consistency of the recording and reporting of fire events and difficulties in collection of records. EPRI has made significant progress towards improving the quality of the fire events data through use of multiple collection methods as well as its review and verification. To date EPRI has used this data to develop a generic fire ignition frequency model for U.S. nuclear power industry (Ref. 1, 4 and 5) as well as to support other models in support of EPRI Fire Risk Methods such as a cable fire manual suppression model. EPRI will continue its effort to collect and analyze operating data to support risk informed/performance based fire safety engineering, including collection and analysis of impairment data for fire protection systems and features. This paper provides details on the collection and application of fire events to risk informed/performance based fire protection. The paper also provides valuable insights into improving both collection and use of fire events data. (authors)« less

  8. Indication of Horizontal DNA Gene Transfer by Extracellular Vesicles

    PubMed Central

    Speiseder, Thomas; Badbaran, Anita; Reimer, Rudolph; Indenbirken, Daniela; Grundhoff, Adam; Brunswig-Spickenheier, Bärbel; Alawi, Malik; Lange, Claudia

    2016-01-01

    The biological relevance of extracellular vesicles (EV) in intercellular communication has been well established. Thus far, proteins and RNA were described as main cargo. Here, we show that EV released from human bone marrow derived mesenchymal stromal cells (BM-hMSC) also carry high-molecular DNA in addition. Extensive EV characterization revealed this DNA mainly associated with the outer EV membrane and to a smaller degree also inside the EV. Our EV purification protocol secured that DNA is not derived from apoptotic or necrotic cells. To analyze the relevance of EV-associated DNA we lentivirally transduced Arabidopsis thaliana-DNA (A.t.-DNA) as indicator into BM-hMSC and generated EV. Using quantitative polymerase chain reaction (qPCR) techniques we detected high copy numbers of A.t.-DNA in EV. In recipient hMSC incubated with tagged EV for two weeks we identified A.t.-DNA transferred to recipient cells. Investigation of recipient cell DNA using quantitative PCR and verification of PCR-products by sequencing suggested stable integration of A.t.-DNA. In conclusion, for the first time our proof-of-principle experiments point to horizontal DNA transfer into recipient cells via EV. Based on our results we assume that eukaryotic cells are able to exchange genetic information in form of DNA extending the known cargo of EV by genomic DNA. This mechanism might be of relevance in cancer but also during cell evolution and development. PMID:27684368

  9. Indication of Horizontal DNA Gene Transfer by Extracellular Vesicles.

    PubMed

    Fischer, Stefanie; Cornils, Kerstin; Speiseder, Thomas; Badbaran, Anita; Reimer, Rudolph; Indenbirken, Daniela; Grundhoff, Adam; Brunswig-Spickenheier, Bärbel; Alawi, Malik; Lange, Claudia

    The biological relevance of extracellular vesicles (EV) in intercellular communication has been well established. Thus far, proteins and RNA were described as main cargo. Here, we show that EV released from human bone marrow derived mesenchymal stromal cells (BM-hMSC) also carry high-molecular DNA in addition. Extensive EV characterization revealed this DNA mainly associated with the outer EV membrane and to a smaller degree also inside the EV. Our EV purification protocol secured that DNA is not derived from apoptotic or necrotic cells. To analyze the relevance of EV-associated DNA we lentivirally transduced Arabidopsis thaliana-DNA (A.t.-DNA) as indicator into BM-hMSC and generated EV. Using quantitative polymerase chain reaction (qPCR) techniques we detected high copy numbers of A.t.-DNA in EV. In recipient hMSC incubated with tagged EV for two weeks we identified A.t.-DNA transferred to recipient cells. Investigation of recipient cell DNA using quantitative PCR and verification of PCR-products by sequencing suggested stable integration of A.t.-DNA. In conclusion, for the first time our proof-of-principle experiments point to horizontal DNA transfer into recipient cells via EV. Based on our results we assume that eukaryotic cells are able to exchange genetic information in form of DNA extending the known cargo of EV by genomic DNA. This mechanism might be of relevance in cancer but also during cell evolution and development.

  10. A robust scientific workflow for assessing fire danger levels using open-source software

    NASA Astrophysics Data System (ADS)

    Vitolo, Claudia; Di Giuseppe, Francesca; Smith, Paul

    2017-04-01

    Modelling forest fires is theoretically and computationally challenging because it involves the use of a wide variety of information, in large volumes and affected by high uncertainties. In-situ observations of wildfire, for instance, are highly sparse and need to be complemented by remotely sensed data measuring biomass burning to achieve homogeneous coverage at global scale. Fire models use weather reanalysis products to measure energy release and rate of spread but can only assess the potential predictability of fire danger as the actual ignition is due to human behaviour and, therefore, very unpredictable. Lastly, fire forecasting systems rely on weather forecasts to extend the advance warning but are currently calibrated using fire danger thresholds that are defined at global scale and do not take into account the spatial variability of fuel availability. As a consequence, uncertainties sharply increase cascading from the observational to the modelling stage and they might be further inflated by non-reproducible analyses. Although uncertainties in observations will only decrease with technological advances over the next decades, the other uncertainties (i.e. generated during modelling and post-processing) can already be addressed by developing transparent and reproducible analysis workflows, even more if implemented within open-source initiatives. This is because reproducible workflows aim to streamline the processing task as they present ready-made solutions to handle and manipulate complex and heterogeneous datasets. Also, opening the code to the scrutiny of other experts increases the chances to implement more robust solutions and avoids duplication of efforts. In this work we present our contribution to the forest fire modelling community: an open-source tool called "caliver" for the calibration and verification of forest fire model results. This tool is developed in the R programming language and publicly available under an open license. We will present the caliver R package, illustrate the main functionalities and show the results of our preliminary experiments calculating fire danger thresholds for various regions on Earth. We will compare these with the existing global thresholds and, lastly, demonstrate how these newly-calculated regional thresholds can lead to improved calibration of fire forecast models in an operational setting.

  11. The development of enhanced ripple-fire identification methods using high frequency data from Pinedale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, D.; Garbin, H.D.

    1996-01-01

    A technique called ripple fire used in quarry blasts produces modulations in the spectra of these events. The Deployable Seismic Verification System (DSVS) was installed at the Pinedale Seismic Research Facility in Wyoming, an area with a lot of mining activity. DSVS records at frequencies up to 50 Hz and these data provides us with a unique opportunity to determine how well we can discriminate quarry blasts and if there are operational benefits from using high frequency (>20 Hz) data. We have collected a database of 646 events consisting of known earthquakes, known quarry blasts and unknown signals. We havemore » started to calculate preliminary spectrograms if we get the time-independent banding from the quarry blasts, and at what frequencies the banning occurs. We also detail what we hope to accomplish in FY 1996.« less

  12. Analysis, Simulation, and Verification of Knowledge-Based, Rule-Based, and Expert Systems

    NASA Technical Reports Server (NTRS)

    Hinchey, Mike; Rash, James; Erickson, John; Gracanin, Denis; Rouff, Chris

    2010-01-01

    Mathematically sound techniques are used to view a knowledge-based system (KBS) as a set of processes executing in parallel and being enabled in response to specific rules being fired. The set of processes can be manipulated, examined, analyzed, and used in a simulation. The tool that embodies this technology may warn developers of errors in their rules, but may also highlight rules (or sets of rules) in the system that are underspecified (or overspecified) and need to be corrected for the KBS to operate as intended. The rules embodied in a KBS specify the allowed situations, events, and/or results of the system they describe. In that sense, they provide a very abstract specification of a system. The system is implemented through the combination of the system specification together with an appropriate inference engine, independent of the algorithm used in that inference engine. Viewing the rule base as a major component of the specification, and choosing an appropriate specification notation to represent it, reveals how additional power can be derived from an approach to the knowledge-base system that involves analysis, simulation, and verification. This innovative approach requires no special knowledge of the rules, and allows a general approach where standardized analysis, verification, simulation, and model checking techniques can be applied to the KBS.

  13. KSC-2013-4164

    NASA Image and Video Library

    2013-11-20

    VAN HORN, Texas – Blue Origin’s test stand, back right, is framed by a wind mill at the company’s West Texas facility. The company used this test stand to fire its powerful new hydrogen- and oxygen-fueled American rocket engine, the BE-3. The engine fired at full power for more than two minutes to simulate a launch, then paused for about four minutes, mimicking a coast through space before it re-ignited for a brief final burn. The last phase of the test covered the work the engine could perform in landing the booster back softly on Earth. Blue Origin, a partner of NASA’s Commercial Crew Program, or CCP, is developing its Orbital Launch Vehicle, which could eventually be used to launch the company's Space Vehicle into orbit to transport crew and cargo to low-Earth orbit. CCP is aiding in the innovation and development of American-led commercial capabilities for crew transportation and rescue services to and from the station and other low-Earth orbit destinations by the end of 2017. For information about CCP, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Lauren Harnett

  14. KSC-2013-4197

    NASA Image and Video Library

    2013-11-20

    VAN HORN, Texas – The sun sets over a test stand at Blue Origin’s West Texas facility. The company used this test stand to fire its powerful new hydrogen- and oxygen-fueled American rocket engine, the BE-3, on Nov. 20. The BE-3 fired at full power for more than two minutes to simulate a launch, then paused for about four minutes, mimicking a coast through space before it re-ignited for a brief final burn. The last phase of the test covered the work the engine could perform in landing the booster back softly on Earth. Blue Origin, a partner of NASA’s Commercial Crew Program, or CCP, is developing its Orbital Launch Vehicle, which could eventually be used to launch the company's Space Vehicle into orbit to transport crew and cargo to low-Earth orbit. CCP is aiding in the innovation and development of American-led commercial capabilities for crew transportation and rescue services to and from the station and other low-Earth orbit destinations by the end of 2017. For information about CCP, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Lauren Harnett

  15. Where There's Smoke: Using Satellites to Monitor Impact of Human Activities on Agriculture and Glaciers in the Andes and Himalayas

    NASA Astrophysics Data System (ADS)

    McCarty, J. L.; Banach, D. M.

    2017-12-01

    Burning of agricultural fields are important sources of black carbon deposition on mountain glaciers in the Andes and Himalayas. Fire is commonly used to support agricultural and pasture management, specifically to remove excess crop residue and other agricultural waste, but these fires can spread into wildland areas during the dry season. Occasionally, agricultural burning causes extreme air pollution events, like occurred in New Delhi, India in October 2016. Satellite data provides a monitoring method of human-caused fire near glaciers that is open-source, easily replicable, and free- to low-cost. We will be able to determine if the climate-smart intervention strategies have reduced or eliminated open burning in these glacier-adjacent agricultural regions. Historic fire and fire emission records have been constructed for the Andean and Himalayan regions, with finer-scale assessments of the regions where farm-level training for conservation agriculture and no-burn techniques are taking place, going back to 2003. Present-day and future (2017-2020) fires and emissions will be mapped and recorded to compare to the historical record, providing an independent assessment and monitoring of how effective the no-burn climate-smart agriculture intervention strategies are at the farm-, village-, region-, and country-level. We can then compare this with our ground-based observations from regional partners for further verification. Using geospatial and geoscience data and methods is important for the success of this project and allows for full transparency of the effectiveness of climate-smart agricultural interventions to improve crop yields for farmers in South America and South Asia while also slowing the melt of the Third Pole.

  16. Lessons learned from an emergency medical services fire safety intervention.

    PubMed

    Pirrallo, Ronald G; Cady, Charles E

    2004-01-01

    The authors conducted a pilot study, finding that many households that experienced fires had received prior emergency medical services (EMS) visits, but few had operational smoke alarms. The study hypothesis is that dwellings that received smoke alarms and/or batteries during an EMS call were more likely to have an operational alarm, less property dollar loss, and decreased morbidity and mortality at the time of a subsequent fire. Smoke detectors and batteries were provided to an urban fire department for placement in unprotected homes at the time of an EMS call from March 1, 1999, through January 31, 2001. After addressing the reason for the 911 EMS call, verification or installation of an operational smoke alarm was performed. The authors examined records for dwellings that had a subsequent fire for outcomes of smoke alarm status, estimated property dollar loss, and number of injuries and fatalities. This program placed 1,335 smoke detectors. Of these, 99 dwellings were found to have a fire or smoke condition with 20 exclusions. Our final number was 79; 28 (35%) still had an operating smoke alarm. In homes with operational alarms, the mean dollar loss was 2,870 dollars (U.S. 2001) (95% confidence interval [CI], 143-5,596). In homes without operational alarms, mean loss was 10,468 dollars (U.S. 2001) (95% CI, 5,875-15,061). No injuries or fatalities occurred in either group. This program was successful in placing 1,335 smoke alarms in at-risk dwellings and reaffirmed that an operational smoke alarm significantly decreases property dollar loss. However, if the goal is to have all homes protected by smoke alarms, this program has long-term effectiveness limitations.

  17. Investigation of air cleaning system response to accident conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrae, R.W.; Bolstad, J.W.; Foster, R.D.

    1980-01-01

    Air cleaning system response to the stress of accident conditions are being investigated. A program overview and hghlight recent results of our investigation are presented. The program includes both analytical and experimental investigations. Computer codes for predicting effects of tornados, explosions, fires, and material transport are described. The test facilities used to obtain supportive experimental data to define structural integrity and confinement effectiveness of ventilation system components are described. Examples of experimental results for code verification, blower response to tornado transients, and filter response to tornado and explosion transients are reported.

  18. Tiger Team Assessment of the Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-11-01

    The purpose of the safety and health assessment was to determine the effectiveness of representative safety and health programs at the Los Alamos National Laboratory (LANL). Within the safety and health programs at LANL, performance was assessed in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Explosives Safety, Natural Phenomena, and Medical Services.

  19. Full-Scale Incineration System Demonstration Verification Test Burns at the Naval Battalion Construction Center, Gulfport, Mississippi. Volume 3. Treatability Tests. Part 2

    DTIC Science & Technology

    1991-07-01

    1525 C1:y: daho Falls State: r Zip: 83413 Telephoue Hunber: (2 16) 65-1763 4. Facilities Location: Number & Steet: Naval Construction Bat.tallcn...ed into the POTW: (a) Pollutants which create a fire or explosion hazard in the POTW; (b) Pollutants which will cause corrosive structural damage to...Haylon Located in the laboratory (1) 15-1b C02 Located in the trailer 482 / 4.3.8 Maximum Hypothetical Accident ( Explosion ) The maximum hypothetical

  20. Constellation Training Facility Support

    NASA Technical Reports Server (NTRS)

    Flores, Jose M.

    2008-01-01

    The National Aeronautics and Space Administration is developing the next set of vehicles that will take men back to the moon under the Constellation Program. The Constellation Training Facility (CxTF) is a project in development that will be used to train astronauts, instructors, and flight controllers on the operation of Constellation Program vehicles. It will also be used for procedure verification and validation of flight software and console tools. The CxTF will have simulations for the Crew Exploration Vehicle (CEV), Crew Module (CM), CEV Service Module (SM), Launch Abort System (LAS), Spacecraft Adapter (SA), Crew Launch Vehicle (CLV), Pressurized Cargo Variant CM, Pressurized Cargo Variant SM, Cargo Launch Vehicle, Earth Departure Stage (EDS), and the Lunar Surface Access Module (LSAM). The Facility will consist of part-task and full-task trainers, each with a specific set of mission training capabilities. Part task trainers will be used for focused training on a single vehicle system or set of related systems. Full task trainers will be used for training on complete vehicles and all of its subsystems. Support was provided in both software development and project planning areas of the CxTF project. Simulation software was developed for the hydraulic system of the Thrust Vector Control (TVC) of the ARES I launch vehicle. The TVC system is in charge of the actuation of the nozzle gimbals for navigation control of the upper stage of the ARES I rocket. Also, software was developed using C standards to send and receive data to and from hand controllers to be used in CxTF cockpit simulations. The hand controllers provided movement in all six rotational and translational axes. Under Project Planning & Control, support was provided to the development and maintenance of integrated schedules for both the Constellation Training Facility and Missions Operations Facilities Division. These schedules maintain communication between projects in different levels. The CxTF support provided is one that requires continuous maintenance since the project is still on initial development phases.

  1. Carbon Dioxide Dispersion in the Combustion Integrated Rack Simulated Numerically

    NASA Technical Reports Server (NTRS)

    Wu, Ming-Shin; Ruff, Gary A.

    2004-01-01

    When discharged into an International Space Station (ISS) payload rack, a carbon dioxide (CO2) portable fire extinguisher (PFE) must extinguish a fire by decreasing the oxygen in the rack by 50 percent within 60 sec. The length of time needed for this oxygen reduction throughout the rack and the length of time that the CO2 concentration remains high enough to prevent the fire from reigniting is important when determining the effectiveness of the response and postfire procedures. Furthermore, in the absence of gravity, the local flow velocity can make the difference between a fire that spreads rapidly and one that self-extinguishes after ignition. A numerical simulation of the discharge of CO2 from PFE into the Combustion Integrated Rack (CIR) in microgravity was performed to obtain the local velocity and CO2 concentration. The complicated flow field around the PFE nozzle exits was modeled by sources of equivalent mass and momentum flux at a location downstream of the nozzle. The time for the concentration of CO2 to reach a level that would extinguish a fire anywhere in the rack was determined using the Fire Dynamics Simulator (FDS), a computational fluid dynamics code developed by the National Institute of Standards and Technology specifically to evaluate the development of a fire and smoke transport. The simulation shows that CO2, as well as any smoke and combustion gases produced by a fire, would be discharged into the ISS cabin through the resource utility panel at the bottom of the rack. These simulations will be validated by comparing the results with velocity and CO2 concentration measurements obtained during the fire suppression system verification tests conducted on the CIR in March 2003. Once these numerical simulations are validated, portions of the ISS labs and living areas will be modeled to determine the local flow conditions before, during, and after a fire event. These simulations can yield specific information about how long it takes for smoke and combustion gases produced by a fire to reach a detector location, how large the fire would be when the detector alarms, and the behavior of the fire until it has been extinguished. This new capability could then be used to optimize the location of fire detectors and fire-suppression ports as well as to evaluate the effectiveness of fire suppressants and response strategies. Numerical data collected from these simulations could also be used to develop a virtual reality fire event for crew training and fire safety awareness. This work is funded by NASA's Bioastronautics Initiative, which has the objective of ensuring and enhancing the health, safety, and performance of humans in space. As part of this initiative, the Microgravity Combustion Science Branch at the NASA Glenn Research Center is conducting spacecraft fire safety research to significantly improve fire safety on inhabited spacecraft.

  2. Coupled numerical simulation of fire in tunnel

    NASA Astrophysics Data System (ADS)

    Pesavento, F.; Pachera, M.; Schrefler, B. A.; Gawin, D.; Witek, A.

    2018-01-01

    In this work, a coupling strategy for the analysis of a tunnel under fire is presented. This strategy consists in a "one-way" coupling between a tool considering the computational fluid dynamics and radiation with a model treating concrete as a multiphase porous material exposed to high temperature. This global approach allows for taking into account in a realistic manner the behavior of the "system tunnel", composed of the fluid and the solid domain (i.e. the concrete structures), from the fire onset, its development and propagation to the response of the structure. The thermal loads as well as the moisture exchange between the structure surface and the environment are calculated by means of computational fluid dynamics. These set of data are passed in an automatic way to the numerical tool implementing a model based on Multiphase Porous Media Mechanics. Thanks to this strategy the structural verification is no longer based on the standard fire curves commonly used in the engineering practice, but it is directly related to a realistic fire scenario. To show the capability of this strategy some numerical simulations of a fire in the Brenner Base Tunnel, under construction between Italy and Austria, is presented. The numerical simulations show the effects of a more realistic distribution of the thermal loads with respect to the ones obtained by using the standard fire curves. Moreover, it is possible to highlight how the localized thermal load generates a non-uniform pressure rise in the material, which results in an increase of the structure stress state and of the spalling risk. Spalling is likely the most dangerous collapse mechanism for a concrete structure. This coupling approach still represents a "one way" strategy, i.e. realized without considering explicitly the mass and energy exchange from the structure to the fluid through the interface. This results in an approximation, but from physical point of view the current form of the solid-fluid coupling is considered sufficiently accurate in this first phase of the research.

  3. 46 CFR 154.315 - Cargo pump and cargo compressor rooms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo pump and cargo compressor rooms. 154.315 Section... CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Ship Arrangements § 154.315 Cargo pump and cargo compressor rooms. (a) Cargo pump rooms and cargo...

  4. Next generation fire suppressants

    NASA Technical Reports Server (NTRS)

    Brown, Jerry A.

    1995-01-01

    Spectrex, Inc., located in Cedar Grove, NJ is a manufacturer of fire detection and suppression equipment. Spectrex is one of the original pioneers in high speed fire detection and suppression systems for combat vehicles. Spectrex has installed fire suppressions systems in thousands of combat vehicles and ships throughout the world. Additionally, they manufacture flame explosion detectors, ship damage control systems, and optical gas and vapor detectors. The culmination of several years of research and development has recently produced an innovative electro-optical continuous monitoring systems called SharpEye 20/20I IR(sup 3) and SAFEYE that provide fast and reliable gas, vapor, aerosol, flame, and explosion detection. SharpEye 20/20I IR(sup 3) is a self-contained triple spectrum flame detector which scans for oscillating IR radiation (1 to 10 Hz) in the spectral bands ranging from 4.0 to 5.0 microns and uses programmed algorithms to check the ratio and correlation of data received by the three sensors to make the system highly immune to false alarms. It is extremely sensitive as it can detect a 1 x 1 square foot gasoline pan fire at 200 feet in less than 3 seconds. The sensitivity is user programmable, offering 4 ranges of detection. SAFEYE is comprised of a selected number of multispectral ban microprocessors controlled detectors which are in communication with one or more radiation sources that is projected along a 600 feet optical path. The signals from the selected narrow bands are processed and analyzed by highly sophisticated algorithms. It is ideal for high risk, remote, large areas such as petroleum and chemical manufacturing sites, waste dumps, aircraft cargo bays, and ship compartments. The SAFEYE will perform direct readings of the presence or rate of rise of concentrations of gases, vapors, or aerosols at the range of parts per million and provide alarms at various set points at different levels of concentrations.

  5. 46 CFR 154.534 - Cargo pumps and cargo compressors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo pumps and cargo compressors. 154.534 Section 154... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo and Process Piping Systems § 154.534 Cargo pumps and cargo compressors. Cargo pumps and...

  6. Verification of a Finite Element Model for Pyrolyzing Ablative Materials

    NASA Technical Reports Server (NTRS)

    Risch, Timothy K.

    2017-01-01

    Ablating thermal protection system (TPS) materials have been used in many reentering spacecraft and in other applications such as rocket nozzle linings, fire protection materials, and as countermeasures for directed energy weapons. The introduction of the finite element model to the analysis of ablation has arguably resulted in improved computational capabilities due the flexibility and extended applicability of the method, especially to complex geometries. Commercial finite element codes often provide enhanced capability compared to custom, specially written programs based on versatility, usability, pre- and post-processing, grid generation, total life-cycle costs, and speed.

  7. Fire danger assessment using ECMWF weather prediction system

    NASA Astrophysics Data System (ADS)

    Di Giuseppe, Francesca; Pappemberger, Florian; Wetterhall, Fredrik

    2015-04-01

    Weather plays a major role in the birth, growth and death of a wildfire wherever there is availability of combustible vegetation and suitable terrain topography. Prolonged dry periods creates favourable conditions for ignitions, wind can then increase the fire spread, while higher relative humidity, and precipitation (rain or snow) may decrease or extinguish it altogether. The European Forest Fire Information System (EFFIS), started in 2011 under the lead of the European Joint Research Centre (JRC) to monitor and forecast fire danger and fire behaviour in Europe. In 2012 a collaboration with the European Centre for Medium range Weather Forecast (ECMWF) was established to explore the potential of using state of the art weather forecast systems as driving forcing for the calculations of fire risk indices. From this collaboration in 2013 the EC-fire system was born. It implements the three most commonly used fire danger rating systems (NFDRS, FWI and MARK-5) and it is both initialised and forced by gridded atmospheric fields provided either by ECMWF re-analysis or ECMWF ensemble prediction systems. For consistency invariant fields (i.e fuel maps, vegetation cover, topogarphy) and real-time weather information are all provided on the same grid. Similarly global climatological vegetation stage conditions for each day of the year are provided by remote satellite observations. These climatological static maps substitute the traditional man judgement in an effort to create an automated procedure that can work in places where local observations are not available. The system has been in operation for the last year providing an ensemble of daily forecasts for fire indices with lead-times up to 10 days over Europe and Globally. An important part of the system is provided by its (re)-analysis dataset obtained by using the (re)-analysis forcings as drivers to calculate the fire risk indices. This is a crucial part of the whole chain since these fields are used to establish the initial conditions from which the forecast is subsequently run. The reanalysis dataset goes back to year 1980 (the starting year of ERA-Interim integrations) and is updated in quasi real time. In addition of providing the staring point for the operational forecasts it is a very useful dataset for the scope of calibration and verification of the system. Assuming reanalysis fields are good proxies for observations then, by comparison with fire events which really occurred, this dataset can be used to assess the potential predictability of fire risk indices. In this work we will introduce the EC-fire system. Then the reanalysis dataset will be used to identify regions of high fire risk predictability and where the system might be in need of further refinement.

  8. Mars Exploration Rover Terminal Descent Mission Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Raiszadeh, Behzad; Queen, Eric M.

    2004-01-01

    Because of NASA's added reliance on simulation for successful interplanetary missions, the MER mission has developed a detailed EDL trajectory modeling and simulation. This paper summarizes how the MER EDL sequence of events are modeled, verification of the methods used, and the inputs. This simulation is built upon a multibody parachute trajectory simulation tool that has been developed in POST I1 that accurately simulates the trajectory of multiple vehicles in flight with interacting forces. In this model the parachute and the suspended bodies are treated as 6 Degree-of-Freedom (6 DOF) bodies. The terminal descent phase of the mission consists of several Entry, Descent, Landing (EDL) events, such as parachute deployment, heatshield separation, deployment of the lander from the backshell, deployment of the airbags, RAD firings, TIRS firings, etc. For an accurate, reliable simulation these events need to be modeled seamlessly and robustly so that the simulations will remain numerically stable during Monte-Carlo simulations. This paper also summarizes how the events have been modeled, the numerical issues, and modeling challenges.

  9. Chemical fields during Southeast Nexus (SENEX) field experiment and design of verification metrics for efficacy of capturing wild fire emissions

    NASA Astrophysics Data System (ADS)

    Lee, P.

    2016-12-01

    Wildfires are commonplace in North America. Air pollution resulted from wildfires pose a significant risk for human health and crop damage. The pollutants alter the vertical distribution of many atmospheric constituents including O3 and many fine particulate (PM) species. Compared to anthropogenic emissions of air pollutants, emissions from wildfires are largely uncontrolled and unpredictable. Therefore, quantitatively describing wildfire emissions and their contributions to air pollution remains a substantial challenge for atmospheric modeler and air quality forecasters. In this study, we investigated the modification and redistribution of atmospheric composition within the Conterminous U.S (CONUS) by wild fire plumes originated within and outside of the CONUS. We used the National Air Quality Forecasting Capability (NAQFC) to conduct the investigation. NAQFC uses dynamic lateral chemical boundary conditions derived from the National Weather Service experimental global aerosol tracer model accounting for intrusion of fire-associated aerosol species. Within CONUS, the NAQFC derives both gaseous and aerosol wildfire associated species from the National Environmental Satellite, Data, and Information Service (NESDIS) hazard mapping system (HMS) hot-spot detection, and US Forestry Service Blue-sky protocol for quantifying fire characteristics, and the US EPA Sparse Matrix Object Kernel Emission (SMOKE) calculation for plume rise. Attributions of both of these wildfire influences inherently reflect the aged plumes intruded into the CONUS through the model boundaries as well as the fresher emissions from sources within the CONUS. Both emission sources contribute significantly to the vertical structure modification of the atmosphere. We conducted case studies within the fire active seasons to demonstrate some possible impacts on the vertical structures of O3 and PM species by the wildfire activities.

  10. 46 CFR 111.106-13 - Cargo handling devices or cargo pump rooms handling flammable or combustible cargoes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... pierced by fixed lights, drive shafts, and pump-engine control rods, provided that the shafts and rods are... 46 Shipping 4 2014-10-01 2014-10-01 false Cargo handling devices or cargo pump rooms handling... OSVs § 111.106-13 Cargo handling devices or cargo pump rooms handling flammable or combustible cargoes...

  11. 46 CFR 280.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... For purposes of this part only: (a) Commercial cargo means cargo other than military cargo and civilian preference cargo. (b) Military cargo means that cargo required to be carried on a U.S.-flag vessel... by law to be carried on a U.S.-flag vessel, including, but not limited to, cargo required to be...

  12. Report of the oversight assessment of the operational readiness review of the Savannah River Site Defense Waste Processing Facility Cold Chemical Runs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, B.

    1993-03-01

    This report presents the results of an oversight assessment (OA) conducted by the US Department of Energy's (DOE) Office of Environment, Safety and Health (EH) of the operational readiness review (ORR) activities for the Cold Chemical Runs (CCRs) at the Defense Waste Processing Facility (DWPF) located at Savannah River Site (SRS). The EH OA of this facility took place concurrently with an ORR performed by the DOE Office of Environmental Restoration and Waste Management (EM). The EM ORR was conducted from September 28, 1992, through October 9, 1992, although portions of the EM ORR were extended beyond this period. Themore » EH OA evaluated the comprehensiveness and effectiveness of the EM ORR. The EH OA was designed to ascertain whether the EM ORR was thorough and demonstrated sufficient inquisitiveness to verify that the implementation of programs and procedures is adequate to assure the protection of worker safety and health. The EH OA was carried out in accordance with the protocol and procedures of the EH Program for Oversight Assessment of Operational Readiness Evaluations for Startups and Restarts,'' dated September 15, 1992. Based on its OA and verification of the resolution of EH OA findings, the EH OA Team believes that the startup of the CCRs may be safely begun, pending satisfactory completion and verification of the prestart findings identified by the EM ORR. The EH OA was based primarily on an evaluation of the comprehensiveness and effectiveness of the EM ORR and addressed the following areas: industrial safety, industrial hygiene, and respiratory protection; fire protection; and chemical safety. The EH OA conducted independent vertical-slice'' reviews to confirm EM ORR results in the areas of confined-space entry, respiratory protection, fire protection, and chemical safety.« less

  13. Evaluating aerosol impacts on Numerical Weather Prediction in two extreme dust and biomass-burning events

    NASA Astrophysics Data System (ADS)

    Remy, Samuel; Benedetti, Angela; Jones, Luke; Razinger, Miha; Haiden, Thomas

    2014-05-01

    The WMO-sponsored Working Group on Numerical Experimentation (WGNE) set up a project aimed at understanding the importance of aerosols for numerical weather prediction (NWP). Three cases are being investigated by several NWP centres with aerosol capabilities: a severe dust case that affected Southern Europe in April 2012, a biomass burning case in South America in September 2012, and an extreme pollution event in Beijing (China) which took place in January 2013. At ECMWF these cases are being studied using the MACC-II system with radiatively interactive aerosols. Some preliminary results related to the dust and the fire event will be presented here. A preliminary verification of the impact of the aerosol-radiation direct interaction on surface meteorological parameters such as 2m Temperature and surface winds over the region of interest will be presented. Aerosol optical depth (AOD) verification using AERONET data will also be discussed. For the biomass burning case, the impact of using injection heights estimated by a Plume Rise Model (PRM) for the biomass burning emissions will be presented.

  14. 46 CFR 150.130 - Loading a cargo on vessels carrying cargoes with which it is incompatible.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Loading a cargo on vessels carrying cargoes with which it is incompatible. 150.130 Section 150.130 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.130 Loading a cargo on vessels...

  15. 46 CFR 150.130 - Loading a cargo on vessels carrying cargoes with which it is incompatible.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Loading a cargo on vessels carrying cargoes with which it is incompatible. 150.130 Section 150.130 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.130 Loading a cargo on vessels...

  16. 46 CFR 150.130 - Loading a cargo on vessels carrying cargoes with which it is incompatible.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Loading a cargo on vessels carrying cargoes with which it is incompatible. 150.130 Section 150.130 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.130 Loading a cargo on vessels...

  17. 46 CFR 150.130 - Loading a cargo on vessels carrying cargoes with which it is incompatible.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Loading a cargo on vessels carrying cargoes with which it is incompatible. 150.130 Section 150.130 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.130 Loading a cargo on vessels...

  18. 46 CFR 97.12-1 - Bulk ores and similar cargoes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Bulk ores and similar cargoes. 97.12-1 Section 97.12-1... OPERATIONS Cargo Stowage § 97.12-1 Bulk ores and similar cargoes. (a) The owners or operators of general cargo vessels which carry bulk cargoes such as ore, ore concentrates, and similar cargoes shall furnish...

  19. 49 CFR 1544.228 - Access to cargo and cargo screening: Security threat assessments for cargo personnel in the...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... cargo enters an airport Security Identification Display Area or is transferred to another TSA-regulated... program accepts the cargo until the cargo— (A) Enters an airport Security Identification Display Area; (B... 49 Transportation 9 2012-10-01 2012-10-01 false Access to cargo and cargo screening: Security...

  20. 49 CFR 1544.228 - Access to cargo and cargo screening: Security threat assessments for cargo personnel in the...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cargo enters an airport Security Identification Display Area or is transferred to another TSA-regulated... program accepts the cargo until the cargo— (A) Enters an airport Security Identification Display Area; (B... 49 Transportation 9 2014-10-01 2014-10-01 false Access to cargo and cargo screening: Security...

  1. 49 CFR 1544.228 - Access to cargo and cargo screening: Security threat assessments for cargo personnel in the...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cargo enters an airport Security Identification Display Area or is transferred to another TSA-regulated... program accepts the cargo until the cargo— (A) Enters an airport Security Identification Display Area; (B... 49 Transportation 9 2013-10-01 2013-10-01 false Access to cargo and cargo screening: Security...

  2. 49 CFR 1544.228 - Access to cargo and cargo screening: Security threat assessments for cargo personnel in the...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... cargo enters an airport Security Identification Display Area or is transferred to another TSA-regulated... program accepts the cargo until the cargo— (A) Enters an airport Security Identification Display Area; (B... 49 Transportation 9 2011-10-01 2011-10-01 false Access to cargo and cargo screening: Security...

  3. A systematic approach to pair secretory cargo receptors with their cargo suggests a mechanism for cargo selection by Erv14.

    PubMed

    Herzig, Yonatan; Sharpe, Hayley J; Elbaz, Yael; Munro, Sean; Schuldiner, Maya

    2012-01-01

    The endoplasmic reticulum (ER) is the site of synthesis of secreted and membrane proteins. To exit the ER, proteins are packaged into COPII vesicles through direct interaction with the COPII coat or aided by specific cargo receptors. Despite the fundamental role of such cargo receptors in protein traffic, only a few have been identified; their cargo spectrum is unknown and the signals they recognize remain poorly understood. We present here an approach we term "PAIRS" (pairing analysis of cargo receptors), which combines systematic genetic manipulations of yeast with automated microscopy screening, to map the spectrum of cargo for a known receptor or to uncover a novel receptor for a particular cargo. Using PAIRS we followed the fate of ∼150 cargos on the background of mutations in nine putative cargo receptors and identified novel cargo for most of these receptors. Deletion of the Erv14 cargo receptor affected the widest range of cargo. Erv14 substrates have a wide array of functions and structures; however, they are all membrane-spanning proteins of the late secretory pathway or plasma membrane. Proteins residing in these organelles have longer transmembrane domains (TMDs). Detailed examination of one cargo supported the hypothesis that Erv14 dependency reflects the length rather than the sequence of the TMD. The PAIRS approach allowed us to uncover new cargo for known cargo receptors and to obtain an unbiased look at specificity in cargo selection. Obtaining the spectrum of cargo for a cargo receptor allows a novel perspective on its mode of action. The rules that appear to guide Erv14 substrate recognition suggest that sorting of membrane proteins at multiple points in the secretory pathway could depend on the physical properties of TMDs. Such a mechanism would allow diverse proteins to utilize a few receptors without the constraints of evolving location-specific sorting motifs.

  4. Cargo-shell and cargo-cargo couplings govern the mechanics of artificially loaded virus-derived cages

    NASA Astrophysics Data System (ADS)

    Llauró, Aida; Luque, Daniel; Edwards, Ethan; Trus, Benes L.; Avera, John; Reguera, David; Douglas, Trevor; Pablo, Pedro J. De; Castón, José R.

    2016-04-01

    Nucleic acids are the natural cargo of viruses and key determinants that affect viral shell stability. In some cases the genome structurally reinforces the shell, whereas in others genome packaging causes internal pressure that can induce destabilization. Although it is possible to pack heterologous cargoes inside virus-derived shells, little is known about the physical determinants of these artificial nanocontainers' stability. Atomic force and three-dimensional cryo-electron microscopy provided mechanical and structural information about the physical mechanisms of viral cage stabilization beyond the mere presence/absence of cargos. We analyzed the effects of cargo-shell and cargo-cargo interactions on shell stability after encapsulating two types of proteinaceous payloads. While bound cargo to the inner capsid surface mechanically reinforced the capsid in a structural manner, unbound cargo diffusing freely within the shell cavity pressurized the cages up to ~30 atm due to steric effects. Strong cargo-cargo coupling reduces the resilience of these nanocompartments in ~20% when bound to the shell. Understanding the stability of artificially loaded nanocages will help to design more robust and durable molecular nanocontainers.Nucleic acids are the natural cargo of viruses and key determinants that affect viral shell stability. In some cases the genome structurally reinforces the shell, whereas in others genome packaging causes internal pressure that can induce destabilization. Although it is possible to pack heterologous cargoes inside virus-derived shells, little is known about the physical determinants of these artificial nanocontainers' stability. Atomic force and three-dimensional cryo-electron microscopy provided mechanical and structural information about the physical mechanisms of viral cage stabilization beyond the mere presence/absence of cargos. We analyzed the effects of cargo-shell and cargo-cargo interactions on shell stability after encapsulating two types of proteinaceous payloads. While bound cargo to the inner capsid surface mechanically reinforced the capsid in a structural manner, unbound cargo diffusing freely within the shell cavity pressurized the cages up to ~30 atm due to steric effects. Strong cargo-cargo coupling reduces the resilience of these nanocompartments in ~20% when bound to the shell. Understanding the stability of artificially loaded nanocages will help to design more robust and durable molecular nanocontainers. Electronic supplementary information (ESI) available: 6 figures, 3 tables and theory. See DOI: 10.1039/c6nr01007e

  5. [Mass maritime casualty incidents in German waters: structures and resources].

    PubMed

    Castan, J; Paschen, H-R; Wirtz, S; Dörges, V; Wenderoth, S; Peters, J; Blunk, Y; Bielstein, A; Kerner, T

    2012-07-01

    The Central Command for Maritime Emergencies was founded in Germany in 2003 triggered by the fire on board of the cargo ship "Pallas" in 1998. Its mission is to coordinate and direct measures at or above state level in maritime emergency situations in the North Sea and the Baltic Sea. A special task in this case is to provide firefighting and medical care. To face these challenges at sea emergency doctors and firemen have been specially trained. This form of organization provides a concept to counter mass casualty incidents and peril situations at sea. Since the foundation of the Central Command for Maritime Emergencies there have been 5 operations for firefighting units and 4 for medical response teams. Assignments and structure of the Central Command for Maritime Emergencies are unique in Europe.

  6. Thermal Analysis on the Shipment of Russian Plutonium Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Or, Chuen T; Skrabek, Emanuel A; Carpenter, Robert T

    Paper presented at the 12th Symposium on Space Nuclear Power and Propulsion in Albuquerque, NM in January 1995. The Mound 9516 shipping package was designed for the shipment of Plutonium-238 fuel. One of the shipping configurations is the Russian Pu-238 powder can. Computer models using SINDA were created to predict the temperatures of the package under normal conditions of transport (NCT: 38oC ambient temperature), under hypothetical accident conditions (HAC: engulfed in fire for 30 minutes), and inside a standard cargo container. Pressure increases inside the package due to the expansion of the trapped gases and helium gas generation from isotopemore » decay were also analyzed. There is a duplicate copy and also a copy in the ESD Files.« less

  7. Second Shuttle Join NASA's STS Fleet: Challenger Launches First New Tracking Satellite

    NASA Technical Reports Server (NTRS)

    1983-01-01

    NASA made a major stride in readying a second delivery vehicle for its Space Transportation System (STS) fleet with the perfect landing of Shuttle Orbiter Challenger at Edwards Air Force Base, California, April 9, 1983. Besides being the first flight test of Challenger's performance, the mission marked the orbiting of the first spacecraft in NASA's new Tracking and Data Relay Satellite System (TDRSS). The new family of orbiting space communications platforms is essential to serve future Shuttle missions. Although the Inertial Upper Stage (IUS) second stage engine firing failed to place TDRS in its final 35,888 kilometer (22,300 mile) geosynchronous orbit, its release from the orbiter cargo bay went as planned. Launch officials were confident they can achieve its planned orbit in a matter of weeks.

  8. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-11

    STS-102 mission astronaut Susan J. Helms translates along the longerons of the Space Shuttle Discovery during the first of two space walks. During this walk, the Pressurized Mating Adapter 3 was prepared for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo multipurpose Logistics Module (MPLM), supplied by the Italian Space Agency. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  9. STS-102 Astronaut Susan Helms Participates in Space Walk

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-102 mission astronaut Susan J. Helms translates along the longerons of the Space Shuttle Discovery during the first of two space walks. During this walk, the Pressurized Mating Adapter 3 was prepared for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo multipurpose Logistics Module (MPLM), supplied by the Italian Space Agency. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  10. 46 CFR 151.13-1 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... HAZARDOUS MATERIAL CARGOES Cargo Segregation § 151.13-1 General. This subpart prescribes the requirements for cargo segregation for cargo tanks. These requirements are based on considerations of cargo...

  11. 46 CFR 151.13-1 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... HAZARDOUS MATERIAL CARGOES Cargo Segregation § 151.13-1 General. This subpart prescribes the requirements for cargo segregation for cargo tanks. These requirements are based on considerations of cargo...

  12. Internal Cargo Integration

    NASA Technical Reports Server (NTRS)

    Hart, Angela

    2006-01-01

    A description of internal cargo integration is presented. The topics include: 1) Typical Cargo for Launch/Disposal; 2) Cargo Delivery Requirements; 3) Cargo Return Requirements; and 4) Vehicle On-Orbit Stay Time.

  13. 46 CFR 150.120 - Definition of incompatible cargoes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Definition of incompatible cargoes. 150.120 Section 150.120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.120 Definition of incompatible cargoes. Except as described in § 150.150, a cargo...

  14. 46 CFR 150.120 - Definition of incompatible cargoes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Definition of incompatible cargoes. 150.120 Section 150.120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.120 Definition of incompatible cargoes. Except as described in § 150.150, a cargo...

  15. 46 CFR 150.120 - Definition of incompatible cargoes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Definition of incompatible cargoes. 150.120 Section 150.120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.120 Definition of incompatible cargoes. Except as described in § 150.150, a cargo...

  16. 46 CFR 150.120 - Definition of incompatible cargoes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Definition of incompatible cargoes. 150.120 Section 150.120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.120 Definition of incompatible cargoes. Except as described in § 150.150, a cargo...

  17. 46 CFR 150.120 - Definition of incompatible cargoes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Definition of incompatible cargoes. 150.120 Section 150.120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.120 Definition of incompatible cargoes. Except as described in § 150.150, a cargo...

  18. 46 CFR 151.13-5 - Cargo segregation-tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Cargo Segregation § 151.13-5 Cargo segregation—tanks. (a... through design. (2) Segregation of cargo space from machinery spaces and other spaces which have or could... Grade E Liquid (if compatible with cargo) is satisfactory. (b) [Reserved] (c) If a cofferdam is required...

  19. 46 CFR 151.13-5 - Cargo segregation-tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Cargo Segregation § 151.13-5 Cargo segregation—tanks. (a... through design. (2) Segregation of cargo space from machinery spaces and other spaces which have or could... Grade E Liquid (if compatible with cargo) is satisfactory. (b) [Reserved] (c) If a cofferdam is required...

  20. 49 CFR 392.9 - Inspection of cargo, cargo securement devices and systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS DRIVING OF COMMERCIAL MOTOR VEHICLES General § 392.9 Inspection of cargo, cargo securement devices... drives that commercial motor vehicle; (2) Inspect the cargo and the devices used to secure the cargo...

  1. 33 CFR 105.265 - Security measures for handling cargo.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., containers, or other cargo transport units entering the facility match the delivery note or equivalent cargo..., containers or other cargo transport units, and cargo storage areas within the facility for evidence of... cargo. 105.265 Section 105.265 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...

  2. 33 CFR 105.265 - Security measures for handling cargo.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., containers, or other cargo transport units entering the facility match the delivery note or equivalent cargo..., containers or other cargo transport units, and cargo storage areas within the facility for evidence of... cargo. 105.265 Section 105.265 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...

  3. 33 CFR 105.265 - Security measures for handling cargo.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., containers, or other cargo transport units entering the facility match the delivery note or equivalent cargo..., containers or other cargo transport units, and cargo storage areas within the facility for evidence of... cargo. 105.265 Section 105.265 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...

  4. 33 CFR 105.265 - Security measures for handling cargo.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., containers, or other cargo transport units entering the facility match the delivery note or equivalent cargo..., containers or other cargo transport units, and cargo storage areas within the facility for evidence of... cargo. 105.265 Section 105.265 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...

  5. 33 CFR 105.265 - Security measures for handling cargo.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., containers, or other cargo transport units entering the facility match the delivery note or equivalent cargo..., containers or other cargo transport units, and cargo storage areas within the facility for evidence of... cargo. 105.265 Section 105.265 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...

  6. 46 CFR 154.235 - Cargo tank location.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo tank location. 154.235 Section 154.235 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Survival Capability and Cargo Tank Location § 154.235 Cargo tank location. (a) For type IG hulls, cargo...

  7. Measuring Fluctuating Pressure Levels and Vibration Response in a Jet Plume

    NASA Technical Reports Server (NTRS)

    Osterholt, Douglas J.; Knox, Douglas M.

    2011-01-01

    The characterization of loads due to solid rocket motor plume impingement allows for moreaccurate analyses of components subjected to such an environment. Typically, test verification of predicted loads due to these conditions is widely overlooked or unsuccessful. ATA Engineering, Inc., performed testing during a solid rocket motor firing to obtain acceleration and pressure responses in the hydrodynamic field surrounding the jet plume. The test environment necessitated a robust design to facilitate measurements being made in close proximity to the jet plume. This paper presents the process of designing a test fixture and an instrumentation package that could withstand the solid rocket plume environment and protect the required instrumentation.

  8. Preclinical Evaluation of Robotic-Assisted Sentinel Lymph Node Fluorescence Imaging

    PubMed Central

    Liss, Michael A.; Farshchi-Heydari, Salman; Qin, Zhengtao; Hickey, Sean A.; Hall, David J.; Kane, Christopher J.; Vera, David R.

    2015-01-01

    An ideal substance to provide convenient and accurate targeting for sentinel lymph node (SLN) mapping during robotic-assisted surgery has yet to be found. We used an animal model to determine the ability of the FireFly camera system to detect fluorescent SLNs after administration of a dual-labeled molecular imaging agent. Methods We injected the footpads of New Zealand White rabbits with 1.7 or 8.4 nmol of tilmanocept labeled with 99mTc and a near-infrared fluorophore, IRDye800CW. One and 36 h after injection, popliteal lymph nodes, representing the SLNs, were dissected with the assistance of the FireFly camera system, a fluorescence-capable endoscopic imaging system. After excision of the paraaortic lymph nodes, which represented non-SLNs, we assayed all lymph nodes for radioactivity and fluorescence intensity. Results Fluorescence within all popliteal lymph nodes was easily detected by the FireFly camera system. Fluorescence within the lymph channel could be imaged during the 1-h studies. When compared with the paraaortic lymph nodes, the popliteal lymph nodes retain greater than 95% of the radioactivity at both 1 and 36 h after injection. At both doses (1.7 and 8.4 nmol), the popliteal nodes had higher (P < 0.050) optical fluorescence intensity than the paraaortic nodes at the 1- and 36-h time points. Conclusion The FireFly camera system can easily detect tilmanocept labeled with a near-infrared fluorophore at least 36 h after administration. This ability will permit image acquisition and subsequent verification of fluorescence-labeled SLNs during robotic-assisted surgery. PMID:25024425

  9. Preclinical evaluation of robotic-assisted sentinel lymph node fluorescence imaging.

    PubMed

    Liss, Michael A; Farshchi-Heydari, Salman; Qin, Zhengtao; Hickey, Sean A; Hall, David J; Kane, Christopher J; Vera, David R

    2014-09-01

    An ideal substance to provide convenient and accurate targeting for sentinel lymph node (SLN) mapping during robotic-assisted surgery has yet to be found. We used an animal model to determine the ability of the FireFly camera system to detect fluorescent SLNs after administration of a dual-labeled molecular imaging agent. We injected the footpads of New Zealand White rabbits with 1.7 or 8.4 nmol of tilmanocept labeled with (99m)Tc and a near-infrared fluorophore, IRDye800CW. One and 36 h after injection, popliteal lymph nodes, representing the SLNs, were dissected with the assistance of the FireFly camera system, a fluorescence-capable endoscopic imaging system. After excision of the paraaortic lymph nodes, which represented non-SLNs, we assayed all lymph nodes for radioactivity and fluorescence intensity. Fluorescence within all popliteal lymph nodes was easily detected by the FireFly camera system. Fluorescence within the lymph channel could be imaged during the 1-h studies. When compared with the paraaortic lymph nodes, the popliteal lymph nodes retain greater than 95% of the radioactivity at both 1 and 36 h after injection. At both doses (1.7 and 8.4 nmol), the popliteal nodes had higher (P < 0.050) optical fluorescence intensity than the paraaortic nodes at the 1- and 36-h time points. The FireFly camera system can easily detect tilmanocept labeled with a near-infrared fluorophore at least 36 h after administration. This ability will permit image acquisition and subsequent verification of fluorescence-labeled SLNs during robotic-assisted surgery. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  10. 46 CFR 154.476 - Cargo transfer devices and means.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of cargo transfer, such as another pump or gas pressurization. (b) If cargo is transferred by gas... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Support System § 154.476 Cargo transfer devices and means. (a) If a cargo pump in a cargo tank is...

  11. 49 CFR 1544.228 - Access to cargo and cargo screening: Security threat assessments for cargo personnel in the...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... threat assessments for cargo personnel in the United States. 1544.228 Section 1544.228 Transportation... COMMERCIAL OPERATORS Operations § 1544.228 Access to cargo and cargo screening: Security threat assessments... paragraph (b) of this section— (1) Each individual must successfully complete a security threat assessment...

  12. 46 CFR 154.1200 - Mechanical ventilation system: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Each cargo compressor room, pump room, gas-dangerous cargo control station, and space that contains... motors for cargo handling equipment. (2) Each gas-safe cargo control station in the cargo area. (3) Each...

  13. 46 CFR 154.1200 - Mechanical ventilation system: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Each cargo compressor room, pump room, gas-dangerous cargo control station, and space that contains... motors for cargo handling equipment. (2) Each gas-safe cargo control station in the cargo area. (3) Each...

  14. 46 CFR 154.1200 - Mechanical ventilation system: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Each cargo compressor room, pump room, gas-dangerous cargo control station, and space that contains... motors for cargo handling equipment. (2) Each gas-safe cargo control station in the cargo area. (3) Each...

  15. 46 CFR 151.20-15 - Cargo hose if carried on the barge.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Cargo Transfer § 151.20-15 Cargo hose if carried on the barge. (a) Liquid and vapor line hose used for cargo transfer shall be of suitable material... subjected and shall be acceptable to the Commandant. (b) Hose subject to tank pressure, or the discharge...

  16. 46 CFR 151.20-15 - Cargo hose if carried on the barge.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Cargo Transfer § 151.20-15 Cargo hose if carried on the barge. (a) Liquid and vapor line hose used for cargo transfer shall be of suitable material... subjected and shall be acceptable to the Commandant. (b) Hose subject to tank pressure, or the discharge...

  17. 46 CFR 151.20-15 - Cargo hose if carried on the barge.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Cargo Transfer § 151.20-15 Cargo hose if carried on the barge. (a) Liquid and vapor line hose used for cargo transfer shall be of suitable material... subjected and shall be acceptable to the Commandant. (b) Hose subject to tank pressure, or the discharge...

  18. 46 CFR 151.20-15 - Cargo hose if carried on the barge.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Cargo Transfer § 151.20-15 Cargo hose if carried on the barge. (a) Liquid and vapor line hose used for cargo transfer shall be of suitable material... subjected and shall be acceptable to the Commandant. (b) Hose subject to tank pressure, or the discharge...

  19. 46 CFR 151.05-2 - Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... benzene and benzene containing cargoes, or butyl acrylate cargoes. 151.05-2 Section 151.05-2 Shipping... Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or butyl acrylate cargoes. A tank barge certificated to carry benzene and benzene containing cargoes or butyl...

  20. 46 CFR 151.05-2 - Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... benzene and benzene containing cargoes, or butyl acrylate cargoes. 151.05-2 Section 151.05-2 Shipping... Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or butyl acrylate cargoes. A tank barge certificated to carry benzene and benzene containing cargoes or butyl...

  1. 46 CFR 151.05-2 - Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... benzene and benzene containing cargoes, or butyl acrylate cargoes. 151.05-2 Section 151.05-2 Shipping... Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or butyl acrylate cargoes. A tank barge certificated to carry benzene and benzene containing cargoes or butyl...

  2. 46 CFR 151.05-2 - Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... benzene and benzene containing cargoes, or butyl acrylate cargoes. 151.05-2 Section 151.05-2 Shipping... Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or butyl acrylate cargoes. A tank barge certificated to carry benzene and benzene containing cargoes or butyl...

  3. 46 CFR 151.05-2 - Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... benzene and benzene containing cargoes, or butyl acrylate cargoes. 151.05-2 Section 151.05-2 Shipping... Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or butyl acrylate cargoes. A tank barge certificated to carry benzene and benzene containing cargoes or butyl...

  4. 46 CFR 153.908 - Cargo viscosity and melting point information; measuring cargo temperature during discharge...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo viscosity and melting point information; measuring... Cargo viscosity and melting point information; measuring cargo temperature during discharge: Categories... lading, a written statement of the following: (1) For Category A or B NLS, the cargo's viscosity at 20 °C...

  5. 46 CFR 153.908 - Cargo viscosity and melting point information; measuring cargo temperature during discharge...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo viscosity and melting point information; measuring... Cargo viscosity and melting point information; measuring cargo temperature during discharge: Categories... lading, a written statement of the following: (1) For Category A or B NLS, the cargo's viscosity at 20 °C...

  6. 46 CFR 153.908 - Cargo viscosity and melting point information; measuring cargo temperature during discharge...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo viscosity and melting point information; measuring... Cargo viscosity and melting point information; measuring cargo temperature during discharge: Categories... lading, a written statement of the following: (1) For Category A or B NLS, the cargo's viscosity at 20 °C...

  7. 14 CFR 121.583 - Carriage of persons without compliance with the passenger-carrying requirements of this part.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... confidential cargo; (v) The preservation of fragile or perishable cargo; (vi) Experiments on, or testing of, cargo containers or cargo handling devices; (vii) The operation of special equipment for loading or unloading cargo; and (viii) The loading or unloading of outsize cargo. (5) A person described in paragraph...

  8. 14 CFR 121.583 - Carriage of persons without compliance with the passenger-carrying requirements of this part.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... confidential cargo; (v) The preservation of fragile or perishable cargo; (vi) Experiments on, or testing of, cargo containers or cargo handling devices; (vii) The operation of special equipment for loading or unloading cargo; and (viii) The loading or unloading of outsize cargo. (5) A person described in paragraph...

  9. A Small Diameter Rosette for Sampling Ice Covered Waters

    NASA Astrophysics Data System (ADS)

    Chayes, D. N.; Smethie, W. M.; Perry, R. S.; Schlosser, P.; Friedrich, R.

    2011-12-01

    A gas tight, small diameter, lightweight rosette, supporting equipment and an effective operational protocol has been developed for aircraft supported sampling of sea water across the Lincoln Sea. The system incorporates a commercial off the shelf CTD electronics (SBE19+ sensor package and SBE33 deck unit) to provide real-time measurement data at the surface. We designed and developed modular water sample units and custom electronics to decode the bottle firing commands and close the sample bottles. For a typical station, we land a ski-equipped deHaviland Twin Otter (DHC-6) aircraft on a suitable piece of sea-ice, drill a 12" diameter hole through the ice next to the cargo door and set up a tent to provide a reasonable working environment over the hole. A small winch with 0.1" diameter single conductor cable is mounted in the aircraft by the cargo door and a tripod supports a sheave above the hole. The CTD module is connected to the end of the wire and the water sampling modules are stacked on top as the system is lowered. For most stations, three sample modules are used to provide 12 four (4) liter sample bottles. Data collected during the down-cast is used to formulate the sampling plan which is executed on the up-cast. The system is powered by a 3,700 Watt, 120VAC gasoline generator. After collection, the sample modules are stored in passively temperature stabilized ice chests during the flight back to the logistics facility at Alert where a broad range of samples are drawn and stored for future analysis. The transport mechanism has a good track record of maintaining water samples within about two degrees of the original collection temperature which minimizes out-gassing. The system has been successfully deployed during a field program each spring starting in 2004 along a transect between the north end of Ellesmere Island (Alert, Nunavut) and the North Pole. During the eight field programs we have taken 48 stations with twelve bottles at most stations (eight at some shallow stations) and with a miss-fire rate within two percent of those achieved with traditional over-the-side CTD/rosette systems.

  10. 46 CFR 232.5 - Income Statement Accounts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... as terminal operations, cargo equipment, fleet operations, cargo pooling agreements, container... revenue from pooling agreements, terminal services provided to others, and cargo handling services performed for others; cargo equipment rentals, and repairs to cargo equipment belonging to others; agency...

  11. 46 CFR 232.5 - Income Statement Accounts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... as terminal operations, cargo equipment, fleet operations, cargo pooling agreements, container... revenue from pooling agreements, terminal services provided to others, and cargo handling services performed for others; cargo equipment rentals, and repairs to cargo equipment belonging to others; agency...

  12. 46 CFR 232.5 - Income Statement Accounts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... as terminal operations, cargo equipment, fleet operations, cargo pooling agreements, container... revenue from pooling agreements, terminal services provided to others, and cargo handling services performed for others; cargo equipment rentals, and repairs to cargo equipment belonging to others; agency...

  13. 46 CFR 232.5 - Income Statement Accounts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... as terminal operations, cargo equipment, fleet operations, cargo pooling agreements, container... revenue from pooling agreements, terminal services provided to others, and cargo handling services performed for others; cargo equipment rentals, and repairs to cargo equipment belonging to others; agency...

  14. 46 CFR 150.140 - Cargoes not listed in Table I or II.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargoes not listed in Table I or II. 150.140 Section 150.140 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.140 Cargoes not listed in Table I or II. A cargo of hazardous material not listed...

  15. 46 CFR 150.140 - Cargoes not listed in Table I or II.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cargoes not listed in Table I or II. 150.140 Section 150.140 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.140 Cargoes not listed in Table I or II. A cargo of hazardous material not listed...

  16. 46 CFR 150.140 - Cargoes not listed in Table I or II.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargoes not listed in Table I or II. 150.140 Section 150.140 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.140 Cargoes not listed in Table I or II. A cargo of hazardous material not listed...

  17. 46 CFR 150.140 - Cargoes not listed in Table I or II.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargoes not listed in Table I or II. 150.140 Section 150.140 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.140 Cargoes not listed in Table I or II. A cargo of hazardous material not listed...

  18. 46 CFR 150.140 - Cargoes not listed in Table I or II.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Cargoes not listed in Table I or II. 150.140 Section 150.140 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.140 Cargoes not listed in Table I or II. A cargo of hazardous material not listed...

  19. Aviation System Analysis Capability Air Carrier Investment Model-Cargo

    NASA Technical Reports Server (NTRS)

    Johnson, Jesse; Santmire, Tara

    1999-01-01

    The purpose of the Aviation System Analysis Capability (ASAC) Air Cargo Investment Model-Cargo (ACIMC), is to examine the economic effects of technology investment on the air cargo market, particularly the market for new cargo aircraft. To do so, we have built an econometrically based model designed to operate like the ACIM. Two main drivers account for virtually all of the demand: the growth rate of the Gross Domestic Product (GDP) and changes in the fare yield (which is a proxy of the price charged or fare). These differences arise from a combination of the nature of air cargo demand and the peculiarities of the air cargo market. The net effect of these two factors are that sales of new cargo aircraft are much less sensitive to either increases in GDP or changes in the costs of labor, capital, fuel, materials, and energy associated with the production of new cargo aircraft than the sales of new passenger aircraft. This in conjunction with the relatively small size of the cargo aircraft market means technology improvements to the cargo aircraft will do relatively very little to spur increased sales of new cargo aircraft.

  20. Cryogenic Fluid Management Facility

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Bailey, W. J.

    1985-01-01

    The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).

  1. Shuttle to space station transfer of the materials exposure facility

    NASA Technical Reports Server (NTRS)

    Shannon, David T., Jr.; Klich, Phillip J.

    1995-01-01

    The Materials Exposure Facility (MEF) is being proposed by LaRC as the first long-term space materials exposure facility with real-time interaction with materials experiments in actual conditions of orbital space flight. The MEF is proposed as a Space Station external payload dedicated to technology advancement in spacecraft materials and coatings research. This paper will define a set of potential logistics for removing the MEF from the Shuttle cargo bay and the process required for transferring the MEF to a specific external payload site on Space Station Freedom (SSF). The SSF UF-2 configuration is used for this study. The kinematics and ability to successfully perform the appropriate MEF maneuvers required were verified. During completion of this work, the Space Station was redesigned and the International Space Station Alpha (ISSA) configuration evolved. The transfer procedure for SSF was valid for ISSA; however, a verification of kinematics and clearances was essential. Also, SSF and ISSA robotic interfaces with the Orbiter were different.

  2. Maritime industry : cargo preference laws--estimated costs and effects

    DOT National Transportation Integrated Search

    1994-11-30

    Cargo preference laws require that certain government-owned or government-financed cargo shipped internationally (between a U.S. port and a foreign port) be carried on U.S.-flag vessels. Cargo subject to these laws is known as preference cargo. This ...

  3. Characterizing Complexity of Containerized Cargo X-ray Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Guangxing; Martz, Harry; Glenn, Steven

    X-ray imaging can be used to inspect cargos imported into the United States. In order to better understand the performance of X-ray inspection systems, the X-ray characteristics (density, complexity) of cargo need to be quantified. In this project, an image complexity measure called integrated power spectral density (IPSD) was studied using both DNDO engineered cargos and stream-of-commerce (SOC) cargos. A joint distribution of cargo density and complexity was obtained. A support vector machine was used to classify the SOC cargos into four categories to estimate the relative fractions.

  4. A3 Subscale Rocket Hot Fire Testing

    NASA Technical Reports Server (NTRS)

    Saunders, G. P.; Yen, J.

    2009-01-01

    This paper gives a description of the methodology and results of J2-X Subscale Simulator (JSS) hot fire testing supporting the A3 Subscale Diffuser Test (SDT) project at the E3 test facility at Stennis Space Center, MS (SSC). The A3 subscale diffuser is a geometrically accurate scale model of the A3 altitude simulating rocket test facility. This paper focuses on the methods used to operate the facility and obtain the data to support the aerodynamic verification of the A3 rocket diffuser design and experimental data quantifying the heat flux throughout the facility. The JSS was operated at both 80% and 100% power levels and at gimbal angle from 0 to 7 degrees to verify the simulated altitude produced by the rocket-rocket diffuser combination. This was done with various secondary GN purge loads to quantify the pumping performance of the rocket diffuser. Also, special tests were conducted to obtain detailed heat flux measurements in the rocket diffuser at various gimbal angles and in the facility elbow where the flow turns from vertical to horizontal upstream of the 2nd stage steam ejector.

  5. Reconstituting the motility of isolated intracellular cargoes.

    PubMed

    Hendricks, Adam G; Goldman, Yale E; Holzbaur, Erika L F

    2014-01-01

    Kinesin, dynein, and myosin transport intracellular cargoes including organelles, membrane-bound vesicles, and mRNA along the cytoskeleton. These motor proteins work collectively in teams to transport cargoes over long distances and navigate around obstacles in the cell. In addition, several types of motors often interact on the same cargo to allow bidirectional transport and switching between the actin and microtubule networks. To examine transport of native cargoes in a simplified in vitro system, techniques have been developed to isolate endogenous cargoes and reconstitute their motility. Isolated cargoes can be tracked and manipulated with high precision using total internal reflection fluorescence microscopy and optical trapping. Through use of native cargoes, we can examine vesicular transport in a minimal system while retaining endogenous motor stoichiometry and the biochemical and mechanical characteristics of both motor and cargo. © 2014 Elsevier Inc. All rights reserved.

  6. Fate of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX) on soil following accelerant-based fire and liquid decontamination.

    PubMed

    Gravett, M R; Hopkins, F B; Self, A J; Webb, A J; Timperley, C M; Riches, J R

    2014-08-01

    In the event of alleged use of organophosphorus nerve agents, all kinds of environmental samples can be received for analysis. These might include decontaminated and charred matter collected from the site of a suspected chemical attack. In other scenarios, such matter might be sampled to confirm the site of a chemical weapon test or clandestine laboratory decontaminated and burned to prevent discovery. To provide an analytical capability for these contingencies, we present a preliminary investigation of the effect of accelerant-based fire and liquid decontamination on soil contaminated with the nerve agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX). The objectives were (a) to determine if VX or its degradation products were detectable in soil after an accelerant-based fire promoted by aviation fuel, including following decontamination with Decontamination Solution 2 (DS2) or aqueous sodium hypochlorite, (b) to develop analytical methods to support forensic analysis of accelerant-soaked, decontaminated and charred soil and (c) to inform the design of future experiments of this type to improve analytical fidelity. Our results show for the first time that modern analytical techniques can be used to identify residual VX and its degradation products in contaminated soil after an accelerant-based fire and after chemical decontamination and then fire. Comparison of the gas chromatography-mass spectrometry (GC-MS) profiles of VX and its impurities/degradation products from contaminated burnt soil, and burnt soil spiked with VX, indicated that the fire resulted in the production of diethyl methylphosphonate and O,S-diethyl methylphosphonothiolate (by an unknown mechanism). Other products identified were indicative of chemical decontamination, and some of these provided evidence of the decontaminant used, for example, ethyl 2-methoxyethyl methylphosphonate and bis(2-methoxyethyl) methylphosphonate following decontamination with DS2. Sample preparation procedures and analytical methods suitable for investigating accelerant and decontaminant-soaked soil samples are presented. VX and its degradation products and/or impurities were detected under all the conditions studied, demonstrating that accelerant-based fire and liquid-based decontamination and then fire are unlikely to prevent the retrieval of evidence of chemical warfare agent (CWA) testing. This is the first published study of the effects of an accelerant-based fire on a CWA in environmental samples. The results will inform defence and security-based organisations worldwide and support the verification activities of the Organisation for the Prohibition of Chemical Weapons (OPCW), winner of the 2013 Nobel Peace Prize for its extensive efforts to eliminate chemical weapons.

  7. 33 CFR 126.17 - Permits required for handling designated dangerous cargo.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... designated dangerous cargo. 126.17 Section 126.17 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.17 Permits required for handling designated dangerous cargo. Designated dangerous cargo may be...

  8. 46 CFR 148.72 - Dangerous cargo manifest; exceptions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Dangerous cargo manifest; exceptions. 148.72 Section 148.72 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES CARRIAGE OF... Dangerous cargo manifest; exceptions. (a) No dangerous cargo manifest is required for— (1) Shipments by...

  9. 33 CFR 126.17 - Permits required for handling designated dangerous cargo.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... designated dangerous cargo. 126.17 Section 126.17 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.17 Permits required for handling designated dangerous cargo. Designated dangerous cargo may be...

  10. 46 CFR 148.72 - Dangerous cargo manifest; exceptions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Dangerous cargo manifest; exceptions. 148.72 Section 148.72 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES CARRIAGE OF... Dangerous cargo manifest; exceptions. (a) No dangerous cargo manifest is required for— (1) Shipments by...

  11. 46 CFR 148.72 - Dangerous cargo manifest; exceptions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Dangerous cargo manifest; exceptions. 148.72 Section 148.72 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES CARRIAGE OF... Dangerous cargo manifest; exceptions. (a) No dangerous cargo manifest is required for— (1) Shipments by...

  12. 33 CFR 126.17 - Permits required for handling designated dangerous cargo.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... designated dangerous cargo. 126.17 Section 126.17 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.17 Permits required for handling designated dangerous cargo. Designated dangerous cargo may be...

  13. 33 CFR 126.17 - Permits required for handling designated dangerous cargo.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... designated dangerous cargo. 126.17 Section 126.17 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.17 Permits required for handling designated dangerous cargo. Designated dangerous cargo may be...

  14. 46 CFR 148.72 - Dangerous cargo manifest; exceptions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Dangerous cargo manifest; exceptions. 148.72 Section 148.72 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES CARRIAGE OF... Dangerous cargo manifest; exceptions. (a) No dangerous cargo manifest is required for— (1) Shipments by...

  15. 33 CFR 126.17 - Permits required for handling designated dangerous cargo.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... designated dangerous cargo. 126.17 Section 126.17 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.17 Permits required for handling designated dangerous cargo. Designated dangerous cargo may be...

  16. 46 CFR 153.235 - Exceptions to cargo piping location restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Exceptions to cargo piping location restrictions. 153... DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Containment Systems § 153.235 Exceptions to cargo piping location restrictions...

  17. 46 CFR 153.235 - Exceptions to cargo piping location restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Exceptions to cargo piping location restrictions. 153... DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Containment Systems § 153.235 Exceptions to cargo piping location restrictions...

  18. Onboard Inert Gas Generation System/Onboard Oxygen Gas Generation System (OBIGGS/OBOGS) Study. Part 2; Gas Separation Technology--State of the Art

    NASA Technical Reports Server (NTRS)

    Reynolds, Thomas L.; Eklund, Thor I.; Haack, Gregory A.

    2001-01-01

    This purpose of this contract study task was to investigate the State of the Art in Gas Separation Technologies utilized for separating air into both nitrogen and oxygen gases for potential applications on commercial aircraft. The intended applications included: nitrogen gas for fuel tank inerting, cargo compartment fire protection, and emergency oxygen for passenger and crew use in the event of loss of cabin pressure. The approach was to investigate three principle methods of gas separation: Hollow Fiber Membrane (HFM), Ceramic Membrane (CM), and liquefaction: Total Atmospheric Liquefaction of Oxygen and Nitrogen (TALON). Additional data on the performance of molecular sieve pressure swing adsorption (PSA) systems was also collected and discussed. Performance comparisons of these technologies are contained in the body of the report.

  19. 46 CFR 151.01-15 - Dangerous cargoes not specifically named.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Dangerous cargoes not specifically named. 151.01-15 Section 151.01-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES General § 151.01-15 Dangerous cargoes not...

  20. 46 CFR 151.01-15 - Dangerous cargoes not specifically named.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Dangerous cargoes not specifically named. 151.01-15 Section 151.01-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES General § 151.01-15 Dangerous cargoes not...

  1. 46 CFR 151.01-15 - Dangerous cargoes not specifically named.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Dangerous cargoes not specifically named. 151.01-15 Section 151.01-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES General § 151.01-15 Dangerous cargoes not...

  2. 46 CFR 151.01-15 - Dangerous cargoes not specifically named.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Dangerous cargoes not specifically named. 151.01-15 Section 151.01-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES General § 151.01-15 Dangerous cargoes not...

  3. 46 CFR 151.01-15 - Dangerous cargoes not specifically named.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Dangerous cargoes not specifically named. 151.01-15 Section 151.01-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES General § 151.01-15 Dangerous cargoes not...

  4. 46 CFR 105.20-3 - Cargo tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Cargo tanks. 105.20-3 Section 105.20-3 Shipping COAST... VESSELS DISPENSING PETROLEUM PRODUCTS Specific Requirements-Cargo Tanks § 105.20-3 Cargo tanks. (a) Construction and Materials. (1) The cargo tanks must be constructed of iron, steel, copper, nickel alloy...

  5. 46 CFR 105.20-3 - Cargo tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Cargo tanks. 105.20-3 Section 105.20-3 Shipping COAST... VESSELS DISPENSING PETROLEUM PRODUCTS Specific Requirements-Cargo Tanks § 105.20-3 Cargo tanks. (a) Construction and Materials. (1) The cargo tanks must be constructed of iron, steel, copper, nickel alloy...

  6. 46 CFR 105.20-3 - Cargo tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Cargo tanks. 105.20-3 Section 105.20-3 Shipping COAST... VESSELS DISPENSING PETROLEUM PRODUCTS Specific Requirements-Cargo Tanks § 105.20-3 Cargo tanks. (a) Construction and Materials. (1) The cargo tanks must be constructed of iron, steel, copper, nickel alloy...

  7. 46 CFR 105.20-3 - Cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Cargo tanks. 105.20-3 Section 105.20-3 Shipping COAST... VESSELS DISPENSING PETROLEUM PRODUCTS Specific Requirements-Cargo Tanks § 105.20-3 Cargo tanks. (a) Construction and Materials. (1) The cargo tanks must be constructed of iron, steel, copper, nickel alloy...

  8. 46 CFR 153.285 - Valving for cargo pump manifolds.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Valving for cargo pump manifolds. 153.285 Section 153... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Piping Systems and Cargo Handling Equipment § 153.285 Valving for cargo pump manifolds. (a) When cargo...

  9. 46 CFR 153.438 - Cargo pressure or temperature alarms required.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo pressure or temperature alarms required. 153.438... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Temperature Control Systems § 153.438 Cargo pressure or temperature alarms required. (a...

  10. 46 CFR 153.438 - Cargo pressure or temperature alarms required.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo pressure or temperature alarms required. 153.438... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Temperature Control Systems § 153.438 Cargo pressure or temperature alarms required. (a...

  11. 46 CFR 153.438 - Cargo pressure or temperature alarms required.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo pressure or temperature alarms required. 153.438... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Temperature Control Systems § 153.438 Cargo pressure or temperature alarms required. (a...

  12. 46 CFR 153.438 - Cargo pressure or temperature alarms required.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo pressure or temperature alarms required. 153.438... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Temperature Control Systems § 153.438 Cargo pressure or temperature alarms required. (a...

  13. 46 CFR 153.438 - Cargo pressure or temperature alarms required.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo pressure or temperature alarms required. 153.438... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Temperature Control Systems § 153.438 Cargo pressure or temperature alarms required. (a...

  14. 29 CFR 1918.87 - Ship's cargo elevators.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Ship's cargo elevators. 1918.87 Section 1918.87 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR LONGSHORING Handling Cargo § 1918.87 Ship's cargo elevators. (a) Safe working load. The safe working loads of ship's cargo elevators shall be determined and followed...

  15. 46 CFR 153.977 - Supervision of cargo transfer.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Supervision of cargo transfer. 153.977 Section 153.977 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS... Procedures § 153.977 Supervision of cargo transfer. The person in charge of cargo transfer shall: (a...

  16. 46 CFR 153.977 - Supervision of cargo transfer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Supervision of cargo transfer. 153.977 Section 153.977 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS... Procedures § 153.977 Supervision of cargo transfer. The person in charge of cargo transfer shall: (a...

  17. 46 CFR 153.977 - Supervision of cargo transfer.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Supervision of cargo transfer. 153.977 Section 153.977 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS... Procedures § 153.977 Supervision of cargo transfer. The person in charge of cargo transfer shall: (a...

  18. 46 CFR 153.977 - Supervision of cargo transfer.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Supervision of cargo transfer. 153.977 Section 153.977 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS... Procedures § 153.977 Supervision of cargo transfer. The person in charge of cargo transfer shall: (a...

  19. 46 CFR 153.977 - Supervision of cargo transfer.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Supervision of cargo transfer. 153.977 Section 153.977 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS... Procedures § 153.977 Supervision of cargo transfer. The person in charge of cargo transfer shall: (a...

  20. 29 CFR 1918.87 - Ship's cargo elevators.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Ship's cargo elevators. 1918.87 Section 1918.87 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR LONGSHORING Handling Cargo § 1918.87 Ship's cargo elevators. (a) Safe working load. The safe working loads of ship's cargo elevators shall be determined and followed...

Top