Science.gov

Sample records for carica inhibits osteoclast

  1. Lipocalin-2 inhibits osteoclast formation by suppressing the proliferation and differentiation of osteoclast lineage cells

    SciTech Connect

    Kim, Hyun-Ju; Yoon, Hye-Jin; Yoon, Kyung-Ae; Gwon, Mi-Ri; Jin Seong, Sook; Suk, Kyoungho; Kim, Shin-Yoon; Yoon, Young-Ran

    2015-06-10

    Lipocalin-2 (LCN2) is a member of the lipocalin superfamily and plays a critical role in the regulation of various physiological processes, such as inflammation and obesity. In this study, we report that LCN2 negatively modulates the proliferation and differentiation of osteoclast precursors, resulting in impaired osteoclast formation. The overexpression of LCN2 in bone marrow-derived macrophages or the addition of recombinant LCN2 protein inhibits the formation of multinuclear osteoclasts. LCN2 suppresses macrophage colony-stimulating factor (M-CSF)-induced proliferation of osteoclast precursor cells without affecting their apoptotic cell death. Interestingly, LCN2 decreases the expression of the M-CSF receptor, c-Fms, and subsequently blocks its downstream signaling cascades. In addition, LCN2 inhibits RANKL-induced osteoclast differentiation and attenuates the expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1), which are important modulators in osteoclastogenesis. Mechanistically, LCN2 inhibits NF-κB signaling pathways, as demonstrated by the suppression of IκBα phosphorylation, nuclear translocation of p65, and NF-κB transcriptional activity. Thus, LCN2 is an anti-osteoclastogenic molecule that exerts its effects by retarding the proliferation and differentiation of osteoclast lineage cells. - Highlights: • LCN2 expression is regulated during osteoclast development. • LCN2 suppresses M-CSF-mediated osteoclast precursor proliferation. • LCN2 inhibits RANKL-induced osteoclast differentiation.

  2. Mechanical vibration inhibits osteoclast formation by reducing DC-STAMP receptor expression in osteoclast precursor cells.

    PubMed

    Kulkarni, Rishikesh N; Voglewede, Philip A; Liu, Dawei

    2013-12-01

    It is well known that physical inactivity leads to loss of muscle mass, but it also causes bone loss. Mechanistically, osteoclastogenesis and bone resorption have recently been shown to be regulated by vibration. However, the underlying mechanism behind the inhibition of osteoclast formation is yet unknown. Therefore, we investigated whether mechanical vibration of osteoclast precursor cells affects osteoclast formation by the involvement of fusion-related molecules such as dendritic cell-specific transmembrane protein (DC-STAMP) and P2X7 receptor (P2X7R). RAW264.7 (a murine osteoclastic-like cell line) cells were treated with 20ng/ml receptor activator of NF-κB ligand (RANKL). For 3 consecutive days, the cells were subjected to 1h of mechanical vibration with 20μm displacement at a frequency of 4Hz and compared to the control cells that were treated under the same condition but without the vibration. After 5days of culture, osteoclast formation was determined. Gene expression of DC-STAMP and P2X7R by RAW264.7 cells was determined after 1h of mechanical vibration, while protein production of the DC-STAMP was determined after 6h of postincubation after vibration. As a result, mechanical vibration of RAW264.7 cells inhibited the formation of osteoclasts. Vibration down-regulated DC-STAMP gene expression by 1.6-fold in the presence of RANKL and by 1.4-fold in the absence of RANKL. Additionally, DC-STAMP protein production was also down-regulated by 1.4-fold in the presence of RANKL and by 1.2-fold in the absence of RANKL in RAW264.7 cells in response to mechanical vibration. However, vibration did not affect P2X7R gene expression. Mouse anti-DC-STAMP antibody inhibited osteoclast formation in the absence of vibration. Our results suggest that mechanical vibration of osteoclast precursor cells reduces DC-STAMP expression in osteoclast precursor cells leading to the inhibition of osteoclast formation.

  3. Wogonin inhibits osteoclast differentiation by inhibiting NFATc1 translocation into the nucleus

    PubMed Central

    GENG, XIAOLIN; YANG, LIBIN; ZHANG, CHAO; QIN, HUA; LIANG, QIUDONG

    2015-01-01

    The aim of the present study was to identify a natural product with the ability to inhibit nuclear factor of activated T cells c1 (NFATc1) translocation from the cytoplasm to the nucleus by high-throughput screening, and to investigate the effect of the natural product upon osteoclast differentiation and its underlying mechanism. An NFATc1 antagonist redistribution assay was performed in U2OS-NFATc1 cells against a natural product library, and Wogonin was found to have the ability to inhibit the NFATc1 translocation from the cytoplasm to the nucleus. The effect of Wogonin on NFATc1 transcription activation was further determined by luciferase assay. An osteoclast differentiation assay was executed to evaluate the effect of Wogonin on osteoclast differentiation. The effect of Wogonin upon the vital genes in osteoclast differentiation was investigated using fluorescent quantitative polymerase chain reaction analysis. The natural product Wogonin significantly inhibited the translocation of NFATc1 from the cytoplasm to the nucleus and its transcriptional activation activity. Wogonin also significantly inhibited osteoclast differentiation and decreased the transcription of osteoclast-associated immunoglobulin-like receptor, tartrate-resistant acid phosphatase and calcitonin receptor. In conclusion, the natural product Wogonin inhibited osteoclast differentiation through the inhibition of NFATc1 translocation from the cytoplasm to the nucleus, and thus the downregulation of genes associated with osteoclast differentiation, which marked Wogonin as a potential treatment for osteoporosis. PMID:26622440

  4. Inhibition of osteoclast formation by 3-methylcholanthrene, a ligand for arylhydrocarbon receptor: suppression of osteoclast differentiation factor in osteogenic cells.

    PubMed

    Naruse, M; Otsuka, E; Naruse, M; Ishihara, Y; Miyagawa-Tomita, S; Hagiwara, H

    2004-01-01

    We investigated the effects of 3-methylcholanthrene (3MC), a ligand for arylhydrocarbon receptor (AhR), on osteoclastogenesis. Osteoclast-like cells, in cocultures with mouse spleen cells and clonal osteogenic stromal ST2 cells, are formed from spleen cells by a combination of the receptor activator of nuclear factor-kappaB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) produced by ST2 cells in response to 1alpha,25(OH)(2) Vitamin D(3). 3MC dose-dependently inhibited the formation of mono- and multinuclear osteoclast-like cells. However, 3MC did not inhibit the formation of osteoclast-like cells from mouse spleen cells which was supported by the exogenous soluble RANKL and M-CSF. 3MC did not affect the formation of an actin ring and pits on slices of dentine by osteoclast-like cells, both of which are typical indices of osteoclast activity. These results suggest that 3MC affects osteoclast-supporting cells such as ST2 cells but not osteoclast precursor cells and mature osteoclastic cells. When we measured the expression levels of RANKL mRNA in ST2 cells, 3MC dose-dependently decreased the level of this mRNA. However, 3MC did not affect levels of mRNAs for osteoprotegerin (OPG), M-CSF, and the receptor of 1alpha,25(OH)(2) Vitamin D(3) in ST2 cells. Furthermore, soluble RANKL was able to counteract the inhibitory effect of 3MC on the formation of osteoclast-like cells. Our findings indicate that 3MC inhibits osteoclastogenesis via the inhibition of RANKL expression in osteoblastic cells.

  5. Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation

    PubMed Central

    Li, Defang; Liu, Jin; Guo, Baosheng; Liang, Chao; Dang, Lei; Lu, Cheng; He, Xiaojuan; Cheung, Hilda Yeuk-Siu; Xu, Liang; Lu, Changwei; He, Bing; Liu, Biao; Shaikh, Atik Badshah; Li, Fangfei; Wang, Luyao; Yang, Zhijun; Au, Doris Wai-Ting; Peng, Songlin; Zhang, Zongkang; Zhang, Bao-Ting; Pan, Xiaohua; Qian, Airong; Shang, Peng; Xiao, Lianbo; Jiang, Baohong; Wong, Chris Kong-Chu; Xu, Jiake; Bian, Zhaoxiang; Liang, Zicai; Guo, De-an; Zhu, Hailong; Tan, Weihong; Lu, Aiping; Zhang, Ge

    2016-01-01

    Emerging evidence indicates that osteoclasts direct osteoblastic bone formation. MicroRNAs (miRNAs) have a crucial role in regulating osteoclast and osteoblast function. However, whether miRNAs mediate osteoclast-directed osteoblastic bone formation is mostly unknown. Here, we show that increased osteoclastic miR-214-3p associates with both elevated serum exosomal miR-214-3p and reduced bone formation in elderly women with fractures and in ovariectomized (OVX) mice. Osteoclast-specific miR-214-3p knock-in mice have elevated serum exosomal miR-214-3p and reduced bone formation that is rescued by osteoclast-targeted antagomir-214-3p treatment. We further demonstrate that osteoclast-derived exosomal miR-214-3p is transferred to osteoblasts to inhibit osteoblast activity in vitro and reduce bone formation in vivo. Moreover, osteoclast-targeted miR-214-3p inhibition promotes bone formation in ageing OVX mice. Collectively, our results suggest that osteoclast-derived exosomal miR-214-3p transfers to osteoblasts to inhibit bone formation. Inhibition of miR-214-3p in osteoclasts may be a strategy for treating skeletal disorders involving a reduction in bone formation. PMID:26947250

  6. Ginsenoside Re Inhibits Osteoclast Differentiation in Mouse Bone Marrow-Derived Macrophages and Zebrafish Scale Model

    PubMed Central

    Park, Chan-Mi; Kim, Hye-Min; Kim, Dong Hyun; Han, Ho-Jin; Noh, Haneul; Jang, Jae-Hyuk; Park, Soo-Hyun; Chae, Han-Jung; Chae, Soo-Wan; Ryu, Eun Kyoung; Lee, Sangku; Liu, Kangdong; Liu, Haidan; Ahn, Jong-Seog; Kim, Young Ock; Kim, Bo-Yeon; Soung, Nak-Kyun

    2016-01-01

    Ginsenosides, which are the active materials of ginseng, have biological functions that include anti-osteoporotic effects. Aqueous ginseng extract inhibits osteoclast differentiation induced by receptor activator of NF-κB ligand (RANKL). Aqueous ginseng extract produces chromatography peaks characteristic of ginsenosides. Among these peaks, ginsenoside Re is a major component. However, the preventive effects of ginsenoside Re against osteoclast differentiation are not known. We studied the effect of ginsenoside Re on osteoclast differentiation, RANKL-induced tartrate-resistant acid phosphatase (TRAP) activity, and formation of multinucleated osteoclasts in vitro. Ginsenoside Re hampered osteoclast differentiation in a dose-dependent manner. In an in vivo zebrafish model, aqueous ginseng extract and ginsenoside Re had anti-osteoclastogenesis effects. These findings suggest that both aqueous ginseng extract and ginsenoside Re prevent bone resorption by inhibiting osteoclast differentiation. Ginsenoside Re could be important for promoting bone health. PMID:27927007

  7. Inhibition of the classical NF-kappaB pathway prevents osteoclast bone-resorbing activity.

    PubMed

    Soysa, Niroshani S; Alles, Neil; Shimokawa, Hitoyata; Jimi, Eijiro; Aoki, Kazuhiro; Ohya, Keiichi

    2009-01-01

    The classical NF-kappaB pathway plays an important role in osteoclast formation and differentiation; however, the role of NF-kappaB in osteoclast bone-resorbing activity is not well understood. To elucidate whether NF-kappaB is important for osteoclast bone-resorbing activity, we used a selective peptide inhibitor of the classical NF-kappaB pathway named the NBD peptide. Osteoclasts were generated using bone marrow macrophages in the presence of M-CSF and RANKL. The NBD peptide dose-dependently blocked the bone-resorbing activity of osteoclasts by reducing area, volume (p < 0.001) and depths (p < 0.05) of pits. The reduced resorption by the peptide was due to reduced osteoclast bone-resorbing activity, but not reduced differentiation as the number of osteoclasts was similar in all groups. The peptide inhibited bone resorption by reducing TRAP activity, disrupting actin rings and preventing osteoclast migration. Gene expressions of a panel of bone resorption markers were significantly reduced. The NBD peptide dose-dependently reduced the RANKL-induced c-Src kinase activity, which is important for actin ring formation and osteoclast bone resorption. Therefore, these data suggest that the classical NF-kappaB pathway plays a pivotal role in osteoclast bone-resorbing activity.

  8. Dioscin inhibits osteoclast differentiation and bone resorption though down-regulating the Akt signaling cascades

    SciTech Connect

    Qu, Xinhua; Zhai, Zanjing; Liu, Xuqiang; Li, Haowei; Ouyang, Zhengxiao; Wu, Chuanlong; Liu, Guangwang; Fan, Qiming; Tang, Tingting; Qin, An; Dai, Kerong

    2014-01-10

    Highlights: •A natural-derived compound, dioscin, suppresses osteoclast formation and bone resorption. •Dioscin inhibits osteolytic bone loss in vivo. •Dioscin impairs the Akt signaling cascades pathways during osteoclastogenesis. •Dioscin have therapeutic value in treating osteoclast-related diseases. -- Abstract: Bone resorption is the unique function of osteoclasts (OCs) and is critical for both bone homeostasis and pathologic bone diseases including osteoporosis, rheumatoid arthritis and tumor bone metastasis. Thus, searching for natural compounds that may suppress osteoclast formation and/or function is promising for the treatment of osteoclast-related diseases. In this study, we for the first time demonstrated that dioscin suppressed RANKL-mediated osteoclast differentiation and bone resorption in vitro in a dose-dependent manner. The suppressive effect of dioscin is supported by the reduced expression of osteoclast-specific markers. Further molecular analysis revealed that dioscin abrogated AKT phosphorylation, which subsequently impaired RANKL-induced nuclear factor-kappaB (NF-κB) signaling pathway and inhibited NFATc1 transcriptional activity. Moreover, in vivo studies further verified the bone protection activity of dioscin in osteolytic animal model. Together our data demonstrate that dioscin suppressed RANKL-induced osteoclast formation and function through Akt signaling cascades. Therefore, dioscin is a potential natural agent for the treatment of osteoclast-related diseases.

  9. Zap70 Inhibits Syk-mediated Osteoclast Function

    PubMed Central

    Zou, Wei; Croke, Monica; Fukunaga, Tomohiro; Broekelmann, Thomas J.; Mecham, Robert P.; Teitelbaum, Steven L.

    2014-01-01

    The αvβ3 integrin stimulates the resorptive capacity of the differentiated osteoclast (OC) by organizing its cytoskeleton via the tyrosine kinase, Syk. Thus, Syk-deficient OCs fail to spread or form actin rings, in vitro and in vivo. The Syk family of tyrosine kinases consists of Syk itself and Zap70 which are expressed by different cell types. Because of their structural similarity, and its compensatory properties in other cells, we asked if Zap70 can substitute for absence of Syk in OCs. While expression of Syk, as expected, normalizes the cytoskeletal abnormalities of Syk-/- OCs, Zap70 fails do so. In keeping with this observation, Syk, but not Zap70, rescues αvβ3 integrin-induced SLP76 phosphorylation in Syk-/- OCs. Furthermore the kinase sequence of Syk partially rescues the Syk-/- phenotype but full normalization also requires its SH2 domains. Surprisingly, expression of Zap70 inhibits WT OC spreading, actin ring formation and bone resorptive activity, but not differentiation. In keeping with arrested cytoskeletal organization, Zap70 blocks integrin-activated endogenous Syk and Vav3, SLP76 phosphorylation. Such inhibition requires Zap70 kinase activity, as it is abolished by mutation of the Zap70 kinase domain. Thus, while the kinase domain of Syk is uniquely required for OC function, that of Zap70 inhibits it. PMID:23494777

  10. Protein-tyrosine phosphatase activity regulates osteoclast formation and function: inhibition by alendronate.

    PubMed Central

    Schmidt, A; Rutledge, S J; Endo, N; Opas, E E; Tanaka, H; Wesolowski, G; Leu, C T; Huang, Z; Ramachandaran, C; Rodan, S B; Rodan, G A

    1996-01-01

    Alendronate (ALN), an aminobisphosphonate used in the treatment of osteoporosis, is a potent inhibitor of bone resorption. Its molecular target is still unknown. This study examines the effects of ALN on the activity of osteoclast protein-tyrosine phosphatase (PTP; protein-tyrosine-phosphate phosphohydrolase, EC 3.1.3.48), called PTPepsilon. Using osteoclast-like cells generated by coculturing mouse bone marrow cells with mouse calvaria osteoblasts, we found by molecular cloning and RNA blot hybridization that PTPepsilon is highly expressed in osteoclastic cells. A purified fusion protein of PTPepsilon expressed in bacteria was inhibited by ALN with an IC50 of 2 microM. Other PTP inhibitors--orthovanadate and phenylarsine oxide (PAO)-inhibited PTPepsilon with IC50 values of 0.3 microM and 18 microM, respectively. ALN and another bisphosphonate, etidronate, also inhibited the activities of other bacterially expressed PTPs such as PTPsigma and CD45 (also called leukocyte common antigen). The PTP inhibitors ALN, orthovanadate, and PAO suppressed in vitro formation of multinucleated osteoclasts from osteoclast precursors and in vitro bone resorption by isolated rat osteoclasts (pit formation) with estimated IC50 values of 10 microM, 3 microM, and 0.05 microM, respectively. These findings suggest that tyrosine phosphatase activity plays an important role in osteoclast formation and function and is a putative molecular target of bisphosphonate action. Images Fig. 2 Fig. 3 PMID:8610169

  11. Inhibition of osteoclast differentiation by polycyclic aryl hydrocarbons is dependent on cell density and RANKL concentration.

    PubMed

    Voronov, I; Heersche, J N M; Casper, R F; Tenenbaum, H C; Manolson, M F

    2005-07-15

    We investigated the effect of representative polycyclic aryl hydrocarbons (PAHs), benzo[a]pyrene (BaP), and 7,12-dimethylbenz[a]anthracene (DMBA) on osteoclast differentiation and function by using dispersed cancellous bone derived rabbit osteoclasts and the RAW264.7 cells. These cells differentiate into osteoclasts when exposed to receptor activator of NF-kappaB ligand (RANKL). The rabbit osteoclasts were exposed to 10(-6) to 10(-9)M BaP or DMBA and the tartrate-resistant acid phosphatase (TRAP)-positive cells were counted. The effect of PAHs on osteoclast differentiation in dispersed rabbit osteoclast-containing stromal cell populations was cell density dependent, suggesting that the cell density of stromal cells, osteoclast precursors, and/or mature osteoclasts are factors regulating the effect of PAHs. To investigate the direct effect of BaP on osteoclast differentiation, RAW264.7 cells were exposed to 10(-5) to 10(-6) M BaP. Treatment of RAW264.7 cells cultured with 25 ng/ml soluble RANKL and 10(-5)M BaP for 5 days decreased osteoclast differentiation, TRAP activity levels, and resorption of bone-like substrata. The inhibition was prevented by 10(-6) to 10(-7) M resveratrol, an aryl hydrocarbon receptor (AhR) antagonist, and by higher concentrations of RANKL. To investigate the ability of RANKL to reverse BaP-mediated inhibition, gene expression was determined by RT-PCR. Cytochrome P450 1B1 (CYP1B1) mRNA, one of the genes activated by BaP, was present only in the groups exposed to BaP; the levels of CYP1B1 mRNA decreased in the presence of increasing concentrations of RANKL. These results suggest that the inhibitory effects of PAHs on osteoclastogenesis are direct and likely involve interaction of the RANKL and PAH signaling pathways.

  12. Carvacrol Inhibits Osteoclastogenesis and Negatively Regulates the Survival of Mature Osteoclasts.

    PubMed

    Deepak, Vishwa; Kasonga, Abe; Kruger, Marlena Cathorina; Coetzee, Magdalena

    2016-07-01

    Bone is a dynamic tissue that undergoes continuous remodeling coupled with the action of osteoblasts and osteoclasts. Osteoclast activity is elevated during osteoporosis and periodontitis resulting in excessive loss of trabecular and alveolar bone. Osteoclasts are formed in an inflammatory response to cytokine production receptor activator of nuclear factor-kappaB (NF-κB) ligand (RANKL) and bacterial challenge lipopolysaccharide (LPS). Carvacrol, a monoterpenic phenol present in Origanum vulgare and Thymus vulgaris, is a natural compound with known medicinal properties. We investigated the effects of carvacrol on osteoclast formation induced by RANKL and LPS. Carvacrol suppressed RANKL-induced formation of tartrate resistant acid phosphatase (TRAP)-positive multinucleated cells in RAW264.7 macrophages and human CD14(+) monocytes. Furthermore, carvacrol inhibited LPS-induced osteoclast formation in RAW264.7 macrophages. Investigation of the underlying molecular mechanisms revealed that carvacrol downregulated RANKL-induced NF-κB activation in a dose-dependent manner. Furthermore, the suppression of NF-κB activation correlated with inhibition of inhibitor of kappaB (IκB) kinase (IKK) activation and attenuation of inhibitor of NF-κB (IκBa) degradation. Carvacrol potentiated apoptosis in mature osteoclasts by caspase-3 activation and DNA fragmentation. Moreover, carvacrol did not affect the viability of proliferating MC3T3-E1 osteoblast-like cells. Collectively, these results demonstrate that carvacrol mitigates osteoclastogenesis by impairing the NF-κB pathway and induction of apoptosis in mature osteoclasts.

  13. Potentiation of osteoclast bone-resorption activity by inhibition of nitric oxide synthase.

    PubMed Central

    Kasten, T P; Collin-Osdoby, P; Patel, N; Osdoby, P; Krukowski, M; Misko, T P; Settle, S L; Currie, M G; Nickols, G A

    1994-01-01

    We have examined the effects of modulating nitric oxide (NO) levels on osteoclast-mediated bone resorption in vitro and the effects of nitric oxide synthase (NOS) inhibitors on bone mineral density in vivo. Diaphorase-based histochemical staining for NOS activity of bone sections or highly enriched osteoclast cultures suggested that osteoclasts exhibit substantial NOS activity that may account for basal NO production. Chicken osteoclasts were cultured for 36 hr on bovine bone slices in the presence or absence of the NO-generating agent sodium nitroprusside or the NOS inhibitors N-nitro-L-arginine methyl ester and aminoguanidine. Nitroprusside markedly decreased the number of bone pits and the average pit area in comparison with control cultures. On the other hand, NOS inhibition by N-nitro-L-arginine methyl ester or aminoguanidine dramatically increased the number of bone pits and the average resorption area per pit. In a model of osteoporosis, aminoguanidine potentiated the loss of bone mineral density in ovariectomized rats. Aminoguanidine also caused a loss of bone mineral density in the sham-operated rats. Inhibition of NOS activity in vitro and in vivo resulted in an apparent potentiation of osteoclast activity. These findings suggest that endogenous NO production in osteoclast cultures may regulate resorption activity. The modulation of NOS and NO levels by cells within the bone microenvironment may be a sensitive mechanism for local control of osteoclast bone resorption. Images PMID:7513424

  14. IL-4 inhibits TNF-α-mediated osteoclast formation by inhibition of RANKL expression in TNF-α-activated stromal cells and direct inhibition of TNF-α-activated osteoclast precursors via a T-cell-independent mechanism in vivo.

    PubMed

    Fujii, Toshiya; Kitaura, Hideki; Kimura, Keisuke; Hakami, Zaki Weli; Takano-Yamamoto, Teruko

    2012-10-01

    It has been reported that osteoclastogenesis is induced by tumor necrosis factor (TNF)-α. Interleukin (IL)-4 is the most important cytokine involved in humoral immunity. However, no studies have investigated the effect of IL-4 on TNF-α-mediated osteoclast formation in vivo. In this study, we investigated the effect of IL-4 on TNF-α-mediated osteoclast formation in vivo. TNF-α was administered with and without IL-4 into the supracalvariae of mice. The number of osteoclasts and the levels of mRNA for cathepsin K and tartrate-resistant acid phosphate, both osteoclast markers, in mice administered TNF-α and IL-4 were lower than those in mice administered TNF-α alone. The level of tartrate-resistant acid phosphatase form 5b (TRACP5b) as a marker of bone resorption in mice administered both TNF-α and IL-4 was also lower. We showed that IL-4 inhibited TNF-α-mediated osteoclast formation in osteoclast precursors in vitro. Expression of receptor activator of NF-κB ligand (RANKL) in TNF-α-activated stromal cells was also inhibited. Furthermore, we investigated whether IL-4 had effects on both stromal cells and osteoclast precursors in TNF-α-mediated osteoclast formation in vivo. Using mice whose stromal cells and osteoclast precursors were chimeric for the presence of TNF receptors, IL-4 inhibited TNF-α-mediated osteoclast formation in the presence of TNF-α-responsive stromal cells, and TNF-α-responsive osteoclast precursors in vivo. IL-4 also inhibited TNF-α-induced RANKL expression in the presence of TNF-α-responsive stromal cells in vivo. This event is dependent on p38 inhibition in vitro. Additionally, IL-4 inhibited TNF-α-mediated osteoclast formation in T cell-depleted mice. In summary, we conclude that IL-4 inhibited TNF-α-mediated osteoclast formation by inhibiting expression of RANKL in TNF-α-activated stromal cells, and directly inhibited TNF-α-activated osteoclast precursors in vivo via a T cell-independent mechanism.

  15. Alpha-1 antitrypsin inhibits RANKL-induced osteoclast formation and functions.

    PubMed

    Akbar, Mohammad Ahsanul; Nardo, David; Chen, Mong-Jen; Elshikha, Ahmed S; Ahamed, Rubina; Elsayed, Eslam M; Bigot, Claire; Holliday, Lexie Shannon; Song, Sihong

    2017-03-21

    Osteoporosis is a global public health problem affecting more than 200 million people worldwide. We previously showed that treatment with alpha-1 antitrypsin (AAT), a multifunctional protein with anti-inflammatory properties, mitigated bone loss in an ovariectomized mouse model. However, the underlying mechanisms of the protective effect of AAT on bone tissue are largely unknown. In this study, we investigated the effect of AAT on osteoclast formation and function in vitro. Our results showed that AAT dose-dependently inhibited the formation of RANKL (receptor activator of nuclear factor κB ligand) induced osteoclasts derived from mouse bone marrow macrophages/monocyte (BMM) lineage cells and the murine macrophage cell line, RAW 264.7 cells. In order to elucidate the possible mechanisms underlying this inhibition, we tested the effect of AAT on the gene expression of cell surface molecules, transcription factors, and cytokines associated with osteoclast formation. We showed that AAT inhibited M-CSF (macrophage colony-stimulating factor) induced cell surface RANK expression in osteoclast precursor cells. In addition, AAT inhibited RANKL-induced TNF-α production, cell surface CD9 expression, and dendritic cell-specific transmembrane protein (DC-STAMP) gene expression. Importantly, AAT treatment significantly inhibited osteoclast-associated mineral resorption. Together, these results uncovered new mechanisms for the protective effects of AAT and strongly support the notion that AAT has therapeutic potential for the treatment of osteoporosis.

  16. Endostatin inhibits VEGF-A induced osteoclastic bone resorption in vitro

    PubMed Central

    Sipola, Annina; Nelo, Katri; Hautala, Timo; Ilvesaro, Joanna; Tuukkanen, Juha

    2006-01-01

    Background Endostatin is a C-terminal fragment of collagen XVIII which is a component of basement membranes with the structural properties of both collagens and proteoglycans. Endostatin has a major role in angiogenesis which is intimately associated with bone development and remodeling. Signaling between the endothelial cells and the bone cells, for example, may have a role in recruitment of osteoclastic precursor cells. Our study aims at exploring a possibility that endostatin, either as a part of basement membrane or as a soluble molecule, may control osteoclastogenesis and osteoclastic bone resorption in vitro. Methods Rat pit formation assay was employed in order to examine the effect of endostatin alone or in combination with vascular endothelial growth factor-A (VEGF-A) on bone resorption in vitro. Effect of these agents on osteoclast differentiation in vitro was also tested. Osteoclastogenesis and the number of osteoclasts were followed by tartrate resistant acid phosphatase (TRACP) staining and resorption was evaluated by measuring the area of excavated pits. Results Endostatin inhibited the VEGF-A stimulated osteoclastic bone resorption, whereas endostatin alone had no effect on the basal resorption level in the absence of VEGF-A. In addition, endostatin could inhibit osteoclast differentiation in vitro independent of VEGF-A. Conclusion Our in vitro data indicate that collagen XVIII/endostatin can suppress VEGF-A induced osteoclastic bone resorption to the basal level. Osteoclastogenesis is also inhibited by endostatin. The regulatory effect of endostatin, however, is not critical since endostatin alone does not modify the basal bone resorption. PMID:16839420

  17. ABD56 causes osteoclast apoptosis by inhibiting the NF{kappa}B and ERK pathways

    SciTech Connect

    Idris, Aymen; Mrak, Emanuela; Greig, Iain; Guidobono, Francesca; Ralston, Stuart H.; Hof, Rob van 't

    2008-06-20

    We have previously shown that the biphenylcarboxylic acid butanediol ester (ABD56) inhibits osteoclast formation and activity in vitro and in vivo. However, the mechanism of action of this compound is unknown. ABD56 inhibited osteoclast formation and caused osteoclast apoptosis, but had no effects on osteoblasts or macrophages. As the NF{kappa}B and MAPK pathways are essential for osteoclast formation and survival, we studied the effects of ABD56 on these pathways. ABD56 caused phosphorylation of p38, JNK and nuclear translocation of c-jun in osteoclasts. ABD56-induced apoptosis was prevented by the caspase inhibitor zVAD-fmk but was not prevented by the p38- or JNK-inhibitors. ABD56 completely abolished RANKL-induced I{kappa}B and ERK1/2 phosphorylation. Increasing the amount of RANKL partially rescued ABD56-induced apoptosis, indicating that the apoptosis is most probably due to the inhibition of survival signals such as ERK and NF{kappa}B, rather than activation of the p38 or Jnk MAPK pathways.

  18. TRPV1 deletion impaired fracture healing and inhibited osteoclast and osteoblast differentiation

    PubMed Central

    He, Lin-Hai; Liu, Meng; He, Yang; Xiao, E.; Zhao, Lu; Zhang, Ting; Yang, Hua-Qian; Zhang, Yi

    2017-01-01

    Fracture healing, in which osteoclasts and osteoblasts play important roles, has drawn much clinical attention. Osteoclast deficiency or decreased osteoblast activity will impair fracture healing. TRPV1 is a member of the Ca2+ permeable cation channel subfamily, and pharmacological inhibition of TRPV1 prevents ovariectomy-induced bone loss, which makes TRPV1 a potential target for osteoporosis. However, whether long term TRPV1 inhibition or TRPV1 deletion will affect the fracture healing process is unclear. In this study, we found that the wild-type mice showed a well-remodeled fracture callus, whereas TRPV1 knockout mice still had an obvious fracture gap with unresorbed soft-callus 4 weeks post-fracture. The number of osteoclasts was reduced in the TRPV1 knockout fracture callus, and osteoclast formation and resorption activity were also impaired in vitro. TRPV1 deletion decreased the calcium oscillation frequency and peak cytoplasmic concentration in osteoclast precursors, subsequently reducing the expression and nuclear translocation of NFATc1 and downregulating DC-stamp, cathepsin K, and ATP6V. In addition, TRPV1 deletion caused reduced mRNA and protein expression of Runx2 and ALP in bone marrow stromal cells (BMSCs) and reduced calcium deposition in vitro. Our results suggest that TRPV1 deletion impairs fracture healing, and inhibited osteoclastogenesis and osteogenesis. PMID:28225019

  19. TRPV1 deletion impaired fracture healing and inhibited osteoclast and osteoblast differentiation.

    PubMed

    He, Lin-Hai; Liu, Meng; He, Yang; Xiao, E; Zhao, Lu; Zhang, Ting; Yang, Hua-Qian; Zhang, Yi

    2017-02-22

    Fracture healing, in which osteoclasts and osteoblasts play important roles, has drawn much clinical attention. Osteoclast deficiency or decreased osteoblast activity will impair fracture healing. TRPV1 is a member of the Ca(2+) permeable cation channel subfamily, and pharmacological inhibition of TRPV1 prevents ovariectomy-induced bone loss, which makes TRPV1 a potential target for osteoporosis. However, whether long term TRPV1 inhibition or TRPV1 deletion will affect the fracture healing process is unclear. In this study, we found that the wild-type mice showed a well-remodeled fracture callus, whereas TRPV1 knockout mice still had an obvious fracture gap with unresorbed soft-callus 4 weeks post-fracture. The number of osteoclasts was reduced in the TRPV1 knockout fracture callus, and osteoclast formation and resorption activity were also impaired in vitro. TRPV1 deletion decreased the calcium oscillation frequency and peak cytoplasmic concentration in osteoclast precursors, subsequently reducing the expression and nuclear translocation of NFATc1 and downregulating DC-stamp, cathepsin K, and ATP6V. In addition, TRPV1 deletion caused reduced mRNA and protein expression of Runx2 and ALP in bone marrow stromal cells (BMSCs) and reduced calcium deposition in vitro. Our results suggest that TRPV1 deletion impairs fracture healing, and inhibited osteoclastogenesis and osteogenesis.

  20. Inhibition of differentiation and function of osteoclasts by dimethyl sulfoxide (DMSO).

    PubMed

    Yang, Chunxi; Madhu, Vedavathi; Thomas, Candace; Yang, Xinlin; Du, Xeujun; Dighe, Abhijit S; Cui, Quanjun

    2015-12-01

    Dimethyl sulfoxide (DMSO) is an FDA-approved organosulfur solvent that is reported to have therapeutic value in osteoarthritis and osteopenia. DMSO is used as a cryoprotectant for the cryopreservation of bone grafts and mesenchymal stem cells which are later used for bone repair. It is also used as a solvent in the preparation of various scaffolds used for bone tissue engineering purposes. DMSO has been reported to inhibit osteoclast formation in vitro but the mechanism involved has remained elusive. We investigated the effect of DMSO on osteoclast differentiation and function using a conventional model system of RAW 264.7 cells. The differentiation of RAW 264.7 cells was induced by adding 50 ng/ml RANKL and the effect of DMSO (0.01 and 1% v/v) on RANKL-induced osteoclastogenesis was investigated. Addition of 1% DMSO significantly inhibited RANKL-induced formation of TRAP+, multinucleated, mature osteoclasts and osteoclast late-stage precursors (c-Kit(-) c-Fms(+) Mac-1(+) RANK(+)). While DMSO did not inhibit proliferation per se, it did inhibit the effect of RANKL on proliferation of RAW 264.7 cells. Key genes related to osteoclast function (TRAP, Integrin αVβ3, Cathepsin K and MMP9) were significantly down-regulated by DMSO. RANKL-induced expression of RANK gene was significantly reduced in the presence of DMSO. Our data, and reports from other investigators, that DMSO enhances osteoblastic differentiation of mesenchymal stem cells and also prevents bone loss in ovarietcomized rats, suggest that DMSO has tremendous potential in the treatment of osteoporosis and bone diseases arising from uncontrolled activities of the osteoclasts.

  1. Inhibition of osteoclast bone resorption activity through osteoprotegerin-induced damage of the sealing zone.

    PubMed

    Song, Ruilong; Gu, Jianhong; Liu, Xuezhong; Zhu, Jiaqiao; Wang, Qichao; Gao, Qian; Zhang, Jiaming; Cheng, Laiyang; Tong, Xishuai; Qi, Xinyi; Yuan, Yan; Liu, Zongping

    2014-09-01

    Bone remodeling is dependent on the dynamic equilibrium between osteoclast-mediated bone resorption and osteoblast-mediated osteogenesis. The sealing zone is an osteoclast-specific cytoskeletal structure, the integrity of which is critical for osteoclast-mediated bone resorption. To date, studies have focused mainly on the osteoprotegerin (OPG)‑induced inhibition of osteoclast differentiation through the OPG/receptor activator of the nuclear factor kappa-B ligand (RANKL)/RANK system, which affects the bone resorption of osteoclasts. However, the effects of OPG on the sealing zone have not been reported to date. In this study, the formation of the sealing zone was observed by Hoffman modulation contrast (HMC) microscopy and confocal laser scanning microscopy. The effects of OPG on the existing sealing zone and osteoclast-mediated bone resorption activity, as well as the regulatory role of genes involved in the formation of the sealing zone were examined by immunofluorescence staining, HMC microscopy, quantitative reverse transcription polymerase chain reaction (RT-qPCR), western blot analysis and scanning electron microscopy. The sealing zone was formed on day 5, with belt-like protuberances at the cell edge and scattered distribution of cell nuclei, but no filopodia. The sealing zone was intact in the untreated control group. However, defects in the sealing zone were observed in the OPG-treated group (20 ng/ml) and the structure was absent in the groups treated with 40 and 80 ng/ml OPG. The podosomes showed a scattered or clustered distribution between the basal surface of the osteoclasts and the well surface. Furthermore, resorption lacunae were not detected in the 20 ng/ml OPG-treated group, indicating the loss of osteoclast-mediated bone resorption activity. Treatment with OPG resulted in a significant decrease in the expression of Arhgef8/Net1 and DOCK5 Rho guanine nucleotide exchange factors (RhoGEFs), 10 of 18 RhoGTPases (RhoA, RhoB, cdc42v1, cdc42v2

  2. Interleukin-3 plays dual roles in osteoclastogenesis by promoting the development of osteoclast progenitors but inhibiting the osteoclastogenic process

    SciTech Connect

    Hong, Huixian; Shi, Zhenqi; Qiao, Ping; Li, Hui; McCoy, Erin M.; Mao, Ping; Xu, Hui; Feng, Xu; Wang, Shunqing

    2013-11-01

    Highlights: •IL-3 treatment of bone marrow cells generates a population of hematopoietic cells. •IL-3-dependent hematopoietic cells are capable of differentiating into osteoclasts. •Osteoclasts derived from IL-3-dependent hematopoietic cells are functional. •IL-3 promotes the development of osteoclast progenitors. •IL-3 inhibits the osteoclastogenic process. -- Abstract: Interleukin (IL)-3, a multilineage hematopoietic growth factor, is implicated in the regulation of osteoclastogenesis. However, the role of IL-3 in osteoclastogenesis remains controversial; whereas early studies showed that IL-3 stimulates osteoclastogenesis, recent investigations demonstrated that IL-3 inhibits osteoclast formation. The objective of this work is to further address the role of IL-3 in osteoclastogenesis. We found that IL-3 treatment of bone marrow cells generated a population of cells capable of differentiating into osteoclasts in tissue culture dishes in response to the stimulation of the monocyte/macrophage-colony stimulating factor (M-CSF) and the receptor activator of nuclear factor kappa B ligand (RANKL). The IL-3-dependent hematopoietic cells were able to further proliferate and differentiate in response to M-CSF stimulation and the resulting cells were also capable of forming osteoclasts with M-CSF and RANKL treatment. Interestingly, IL-3 inhibits M-CSF-/RANKL-induced differentiation of the IL-3-dependent hematopoietic cells into osteoclasts. The flow cytometry analysis indicates that while IL-3 treatment of bone marrow cells slightly affected the percentage of osteoclast precursors in the surviving populations, it considerably increased the percentage of osteoclast precursors in the populations after subsequent M-CSF treatment. Moreover, osteoclasts derived from IL-3-dependent hematopoietic cells were fully functional. Thus, we conclude that IL-3 plays dual roles in osteoclastogenesis by promoting the development of osteoclast progenitors but inhibiting the

  3. Unfractionated Heparin Promotes Osteoclast Formation in Vitro by Inhibiting Osteoprotegerin Activity.

    PubMed

    Li, Binghan; Lu, Dan; Chen, Yuqing; Zhao, Minghui; Zuo, Li

    2016-04-22

    Heparin has been proven to enhance bone resorption and induce bone loss. Since osteoclasts play a pivotal role in bone resorption, the effect of heparin on osteoclastogenesis needs to be clarified. Since osteocytes are the key modulator during osteoclastogenesis, we evaluated heparin's effect on osteoclastogenesis in vitro by co-culturing an osteocyte cell line (MLO-Y4) and pre-osteoclasts (RAW264.7). In this co-culture system, heparin enhanced osteoclastogenesis and osteoclastic bone resorption while having no influence on the production of RANKL (receptor activator of NFκB ligand), M-CSF (macrophage colony-stimulating factor), and OPG (osteoprotegerin), which are three main regulatory factors derived from osteocytes. According to previous studies, heparin could bind specifically to OPG and inhibit its activity, so we hypothesized that this might be a possible mechanism of heparin activity. To test this hypothesis, osteoclastogenesis was induced using recombinant RANKL or MLO-Y4 supernatant. We found that heparin has no effect on RANKL-induced osteoclastogenesis (contains no OPG). However, after incubation with OPG, the capacity of MLO-Y4 supernatant for supporting osteoclast formation was increased. This effect disappeared after OPG was neutralized and reappeared after OPG was replenished. These results strongly suggest that heparin promotes osteocyte-modulated osteoclastogenesis in vitro, at least partially, through inhibiting OPG activity.

  4. Rosmarinic acid and arbutin suppress osteoclast differentiation by inhibiting superoxide and NFATc1 downregulation in RAW 264.7 cells

    PubMed Central

    OMORI, AKINA; YOSHIMURA, YOSHITAKA; DEYAMA, YOSHIAKI; SUZUKI, KUNIAKI

    2015-01-01

    The present study investigated the effect of the natural polyphenols, rosmarinic acid and arbutin, on osteoclast differentiation in RAW 264.7 cells. Rosmarinic acid and arbutin suppressed osteoclast differentiation and had no cytotoxic effect on osteoclast precursor cells. Rosmarinic acid and arbutin inhibited superoxide production in a dose-dependent manner. mRNA expression of the master regulator of osteoclastogenesis, nuclear factor of activated T cells cytoplasmic 1 (NFATc1) and the osteoclast marker genes, matrix metalloproteinase-9, tartrate-resistant acid phosphatase and cathepsin-K, decreased following treatments with rosmarinic acid and arbutin. Furthermore, resorption activity decreased with the number of osteoclasts. These results suggest that rosmarinic acid and arbutin may be useful for the prevention and treatment of bone diseases, such as osteoporosis, through mechanisms involving inhibition of superoxide and downregulation of NFATc1. PMID:26171153

  5. Dihydroartemisinin prevents breast cancer-induced osteolysis via inhibiting both breast caner cells and osteoclasts.

    PubMed

    Feng, Ming-Xuan; Hong, Jian-Xin; Wang, Qiang; Fan, Yong-Yong; Yuan, Chi-Ting; Lei, Xin-Huan; Zhu, Min; Qin, An; Chen, Hai-Xiao; Hong, Dun

    2016-01-08

    Bone is the most common site of distant relapse in breast cancer, leading to severe complications which dramatically affect the patients' quality of life. It is believed that the crosstalk between metastatic breast cancer cells and osteoclasts is critical for breast cancer-induced osteolysis. In this study, the effects of dihydroartemisinin (DHA) on osteoclast formation, bone resorption, osteoblast differentiation and mineralization were initially assessed in vitro, followed by further investigation in a titanium-particle-induced osteolysis model in vivo. Based on the proved inhibitory effect of DHA on osteolysis, DHA was further applied to MDA-MB-231 breast cancer-induced mouse osteolysis model, with the underlying molecular mechanisms further investigated. Here, we verified for the first time that DHA suppressed osteoclast differentiation, F-actin ring formation and bone resorption through suppressing AKT/SRC pathways, leading to the preventive effect of DHA on titanium-particle-induced osteolysis without affecting osteoblast function. More importantly, we demonstrated that DHA inhibited breast tumor-induced osteolysis through inhibiting the proliferation, migration and invasion of MDA-MB-231 cells via modulating AKT signaling pathway. In conclusion, DHA effectively inhibited osteoclastogenesis and prevented breast cancer-induced osteolysis.

  6. Strontium inhibits titanium particle-induced osteoclast activation and chronic inflammation via suppression of NF-κB pathway

    PubMed Central

    Zhu, Shijun; Hu, Xuanyang; Tao, Yunxia; Ping, Zichuan; Wang, Liangliang; Shi, Jiawei; Wu, Xiexing; Zhang, Wen; Yang, Huilin; Nie, Zhikui; Xu, Yaozeng; Wang, Zhirong; Geng, Dechun

    2016-01-01

    Wear-particle-induced chronic inflammation and osteoclastogenesis have been identified as critical factors of aseptic loosening. Although strontium is known to be involved in osteoclast differentiation, its effect on particle-induced inflammatory osteolysis remains unclear. In this study, we investigate the potential impact and underling mechanism of strontium on particle-induced osteoclast activation and chronic inflammation in vivo and in vitro. As expected, strontium significantly inhibited titanium particle-induced inflammatory infiltration and prevented bone loss in a murine calvarial osteolysis model. Interestingly, the number of mature osteoclasts decreased after treatment with strontium in vivo, suggesting osteoclast formation might be inhibited by strontium. Additionally, low receptor activator of nuclear factor-κB ligand (RANKL), tumor necrosis factor-α, interleukin-1β, interleukin-6 and p65 immunochemistry staining were observed in strontium-treatment groups. In vitro, strontium obviously decreased osteoclast formation, osteoclastogenesis-related gene expression, osteoclastic bone resorption and pro-inflammatory cytokine expression in bone-marrow-derived macrophages in a dose-dependent manner. Furthermore, we demonstrated that strontium impaired osteoclastogenesis by blocking RANKL-induced activation of NF-κB pathway. In conclusion, our study demonstrated that strontium can significantly inhibit particle-induced osteoclast activation and inflammatory bone loss by disturbing the NF-κB pathway, and is an effective therapeutic agent for the treatment of wear particle-induced aseptic loosening. PMID:27796351

  7. Secretory clusterin inhibits osteoclastogenesis by attenuating M-CSF-dependent osteoclast precursor cell proliferation

    SciTech Connect

    Choi, Bongkun; Kang, Soon-Suk; Kang, Sang-Wook; Min, Bon-Hong; Lee, Eun-Jin; Song, Da-Hyun; Kim, Sang-Min; Song, Youngsup; Yoon, Seung-Yong; Chang, Eun-Ju

    2014-07-18

    Highlights: • We describe the expression and secretion of clusterin in osteoclasts. • Endogenous clusterin deficiency does not affect osteoclast formation. • Exogenous treatment with secretory clusterin decreases osteoclast differentiation. • Secretory clusterin attenuates osteoclast precursor cell proliferation by inhibiting M-CSF-mediated ERK activation. - Abstract: Secretory clusterin (sCLU)/apolipoprotein J is a multifunctional glycoprotein that is ubiquitously expressed in various tissues. Reduced sCLU in the joints of patients with bone erosive disease is associated with disease activity; however, its exact role has yet to be elucidated. Here, we report that CLU is expressed and secreted during osteoclastogenesis in mouse bone marrow-derived macrophages (BMMs) that are treated with receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). CLU-deficient BMMs obtained from CLU{sup −/−} mice exhibited no significant alterations in OC differentiation in comparison with BMMs obtained from wild-type mice. In contrast, exogenous sCLU treatment significantly inhibited OC formation in both BMMs and OC precursor cultures. The inhibitory effect of sCLU was more prominent in BMMs than OC precursor cultures. Interestingly, treating BMMs with sCLU decreased the proliferative effects elicited by M-CSF and suppressed M-CSF-induced ERK activation of OC precursor cells without causing apoptotic cell death. This study provides the first evidence that sCLU reduces OC formation by inhibiting the actions of M-CSF, thereby suggesting its protective role in bone erosion.

  8. (-)-Epigallocatechin gallate inhibition of osteoclastic differentiation via NF-{kappa}B

    SciTech Connect

    Lin, R.-W.; Chen, C.-H.; Wang, Y.-H.; Ho, M.-L.; Hung, S.-H.; Chen, I.-S. Wang, G.-J.

    2009-02-20

    People who regularly drink tea have been found to have a higher bone mineral density (BMD) and to be at less risk of hip fractures than those who do not drink it. Green tea catechins such as (-)-epigallocatechin gallate (EGCG) have been reported to increase osteogenic functioning in mesenchymal stem cells. However, its effect on osteoclastogenesis remains unclear. In this study, we investigated the effect of EGCG on RANKL-activation osteoclastogenesis and NF-{kappa}B in RAW 264.7, a murine preosteoclast cell line. EGCG (10-100 {mu}M) significantly suppressed the RANKL-induced differentiation of osteoclasts and the formation of pits in murine RAW 264.7 cells and bone marrow macrophages (BMMs). EGCG appeared to target osteoclastic differentiation at an early stage but had no cytotoxic effect on osteoclast precursors. In addition, it significantly inhibited RANKL-induced NF-{kappa}B transcriptional activity and nuclear translocation. We conclude that EGCG inhibits osteoclastogenesis through its activation of NF-{kappa}B.

  9. Apolipoprotein E inhibits osteoclast differentiation via regulation of c-Fos, NFATc1 and NF-κB

    SciTech Connect

    Kim, Woo-Shin; Kim, Hyung Joon; Lee, Zang Hee; Lee, Youngkyun; Kim, Hong-Hee

    2013-02-15

    Apolipoprotein E (ApoE) plays a major role in the transport and metabolism of lipid. Other functions of ApoE include modulation of innate and adaptive immune responses. The expression of ApoE in osteoblasts and its relevance with bone formation have also been reported. However, the effect of ApoE on osteoclasts has not yet been examined. Here, we investigated the role of ApoE in osteoclast differentiation using bone marrow-derived macrophages (BMMs) and RAW264.7 cells. We found a down-regulation of ApoE gene expression during osteoclastic differentiation of those cells. Overexpression of ApoE in BMMs and RAW264.7 cells significantly blocked the induction of c-Fos and nuclear factor of activated T cell c1 (NFATc1), transcription factors critical for expression of osteoclast marker genes, by receptor activator of nuclear factor κB ligand (RANKL), the osteoclast differentiation factor. ApoE inhibited osteoclast differentiation, as measured by decreased number of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells (MNCs). In addition, ApoE reduced the expression of dendritic cell-specific transmembrane protein (DC-STAMP) and ATPase, H{sup +} transporting, lysosomal 38 kDa, V0 subunit d2 (ATP6v0d2), genes involved in cell–cell fusion during osteoclastogenesis. Knock-down of ApoE using a specific siRNA promoted the RANKL-mediated induction of osteoclast differentiation. While ApoE did not affect the activation of ERK, JNK, and p38 MAPK signaling pathways by RANKL, the phosphorylation of p65 trans-activation domain on serine 536 and transcription activity of NF-κB were reduced by ApoE overexpression. These findings suggest that ApoE plays an inhibitory role in osteoclast differentiation via the suppression of RANKL-dependent activation of NF-κB and induction of c-Fos and NFATc1. - Highlights: ► Apolipoprotein E (ApoE) significantly inhibited osteoclast differentiation and activation of NF-κB. ► ApoE decreased the induction of osteoclast marker

  10. Inhibition of CaMKK2 Stimulates Osteoblast Formation and Inhibits Osteoclast Differentiation

    PubMed Central

    Cary, Rachel L.; Waddell, Seid; Racioppi, Luigi; Long, Fanxin; Novack, Deborah V.; Voor, Michael J.; Sankar, Uma

    2013-01-01

    Bone remodeling, a physiological process characterized by bone formation by osteoblasts (OB) and resorption of pre-existing bone matrix by osteoclasts (OC), is vital for the maintenance of healthy bone tissue in adult humans. Imbalances in this vital process result in pathological conditions including osteoporosis. Owing to its initial asymptomatic nature, osteoporosis is often detected only after the patient has sustained significant bone loss or a fracture. Hence, anabolic therapeutics that stimulates bone accrual is in high clinical demand. Here we identify Ca2+/calmodulin (CaM)-dependent protein kinase kinase 2 (CaMKK2) as a potential target for such therapeutics, as its inhibition enhances OB differentiation and bone growth and suppresses OC differentiation. Mice null for CaMKK2 possess higher trabecular bone mass in their long bones, along with significantly more OBs and fewer multinuclear OCs. Whereas Camkk2−/− MSCs yield significantly higher numbers of OBs, bone marrow cells from Camkk2−/− mice produce fewer multinuclear OCs, in vitro. Acute inhibition of CaMKK2 by its selective, cell-permeable pharmacological inhibitor STO-609 also results in increased OB and diminished OC formation. Further, we find phospho-protein kinase A (PKA) and Ser133 phosphorylated form of cyclic adenosine monophosphate (cAMP) response element binding protein (pCREB) to be markedly elevated in OB progenitors deficient in CaMKK2. On the other hand, genetic ablation of CaMKK2 or its pharmacological inhibition in OC progenitors results in reduced pCREB as well as significantly reduced levels of its transcriptional target, nuclear factor of activated T cells c1 (NFATc1). Moreover, in vivo administration of STO-609 results in increased OBs and diminished OCs, conferring significant protection from ovariectomy (OVX)-induced osteoporosis in adult mice. Overall, our findings reveal a novel function for CaMKK2 in bone remodeling and highlight the potential for its therapeutic

  11. Inhibited osteoclastic bone resorption through alendronate treatment in rats reduces severe osteoarthritis progression.

    PubMed

    Siebelt, M; Waarsing, J H; Groen, H C; Müller, C; Koelewijn, S J; de Blois, E; Verhaar, J A N; de Jong, M; Weinans, H

    2014-09-01

    Osteoarthritis (OA) is a non-rheumatoid joint disease characterized by progressive degeneration of extra-cellular cartilage matrix (ECM), enhanced subchondral bone remodeling, osteophyte formation and synovial thickening. Alendronate (ALN) is a potent inhibitor of osteoclastic bone resorption and results in reduced bone remodeling. This study investigated the effects of pre-emptive use of ALN on OA related osteoclastic subchondral bone resorption in an in vivo rat model for severe OA. Using multi-modality imaging we measured effects of ALN treatment within cartilage and synovium. Severe osteoarthritis was induced in left rat knees using papain injections in combination with a moderate running protocol. Twenty rats were treated with subcutaneous ALN injections and compared to twenty untreated controls. Animals were longitudinally monitored for 12weeks with in vivo μCT to measure subchondral bone changes and SPECT/CT to determine synovial macrophage activation using a folate-based radiotracer. Articular cartilage was analyzed at 6 and 12weeks with ex vivo contrast enhanced μCT and histology to measure sulfated-glycosaminoglycan (sGAG) content and cartilage thickness. ALN treatment successfully inhibited subchondral bone remodeling. As a result we found less subchondral plate porosity and reduced osteophytosis. ALN treatment did not reduce subchondral sclerosis. However, after the OA induction phase, ALN treatment protected cartilage ECM from degradation and reduced synovial macrophage activation. Surprisingly, ALN treatment also improved sGAG content of tibia cartilage in healthy joints. Our data was consistent with the hypothesis that osteoclastic bone resorption might play an important role in OA and may be a driving force for progression of the disease. However, our study suggest that this effect might not solely be effects on osteoclastic activity, since ALN treatment also influenced macrophage functioning. Additionally, ALN treatment and physical activity

  12. Tributyltin and triphenyltin inhibit osteoclast differentiation through a retinoic acid receptor-dependent signaling pathway

    SciTech Connect

    Yonezawa, Takayuki; Hasegawa, Shin-ichi; Ahn, Jae-Yong; Cha, Byung-Yoon; Teruya, Toshiaki; Hagiwara, Hiromi; Nagai, Kazuo; Woo, Je-Tae; E-mail: jwoo@isc.chubu.ac.jp

    2007-03-30

    Organotin compounds, such as tributyltin (TBT) and triphenyltin (TPT), have been widely used in agriculture and industry. Although these compounds are known to have many toxic effects, including endocrine-disrupting effects, their effects on bone resorption are unknown. In this study, we investigated the effects of organotin compounds, such as monobutyltin (MBT), dibutyltin (DBT), TBT, and TPT, on osteoclast differentiation using mouse monocytic RAW264.7 cells. MBT and DBT had no effects, whereas TBT and TPT dose-dependently inhibited osteoclast differentiation at concentrations of 3-30 nM. Treatment with a retinoic acid receptor (RAR)-specific antagonist, Ro41-5253, restored the inhibition of osteoclastogenesis by TBT and TPT. TBT and TPT reduced receptor activator of nuclear factor-{kappa}B ligand (RANKL) induced nuclear factor of activated T cells (NFAT) c1 expression, and the reduction in NFATc1 expression was recovered by Ro41-5253. Our results suggest that TBT and TPT suppress osteoclastogenesis by inhibiting RANKL-induced NFATc1 expression via an RAR-dependent signaling pathway.

  13. Regulation of ITAM adaptor molecules and their receptors by inhibition of calcineurin-NFAT signalling during late stage osteoclast differentiation

    SciTech Connect

    Zawawi, M.S.F.; Dharmapatni, A.A.S.S.K.; Cantley, M.D.; McHugh, K.P.; Haynes, D.R.; Crotti, T.N.

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Calcineurin/NFAT inhibitors FK506 and VIVIT treated human PBMC derived osteoclasts in vitro. Black-Right-Pointing-Pointer Differential regulation of ITAM receptors and adaptor molecules by calcineurin/NFAT inhibitors. Black-Right-Pointing-Pointer FK506 and VIVIT suppress ITAM factors during late phase osteoclast differentiation. -- Abstract: Osteoclasts are specialised bone resorptive cells responsible for both physiological and pathological bone loss. Osteoclast differentiation and activity is dependent upon receptor activator NF-kappa-B ligand (RANKL) interacting with its receptor RANK to induce the transcription factor, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). The immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway has been identified as a co-stimulatory pathway in osteoclasts. Osteoclast-associated receptor (OSCAR) and triggering receptor expressed in myeloid cells (TREM2) are essential receptors that pair with adaptor molecules Fc receptor common gamma chain (FcR{gamma}) and DNAX-activating protein 12 kDa (DAP12) respectively to induce calcium signalling. Treatment with calcineurin-NFAT inhibitors, Tacrolimus (FK506) and the 11R-VIVIT (VIVIT) peptide, reduces NFATc1 expression consistent with a reduction in osteoclast differentiation and activity. This study aimed to investigate the effects of inhibiting calcineurin-NFAT signalling on the expression of ITAM factors and late stage osteoclast genes including cathepsin K (CathK), Beta 3 integrin ({beta}3) and Annexin VIII (AnnVIII). Human peripheral blood mononuclear cells (PBMCs) were differentiated with RANKL and macrophage-colony stimulating factor (M-CSF) over 10 days in the presence or absence of FK506 or VIVIT. Osteoclast formation (as assessed by tartrate resistant acid phosphatase (TRAP)) and activity (assessed by dentine pit resorption) were significantly reduced with treatment. Quantitative real

  14. IL-33 inhibits RANKL-induced osteoclast formation through the regulation of Blimp-1 and IRF-8 expression

    SciTech Connect

    Kiyomiya, Hiroyasu; Ariyoshi, Wataru; Okinaga, Toshinori; Kaneuji, Takeshi; Mitsugi, Sho; Sakurai, Takuma; Habu, Manabu; Yoshioka, Izumi; Tominaga, Kazuhiro; and others

    2015-05-01

    Interleukin (IL)-33 is a recently discovered proinflammatory cytokine that belongs to the IL-1 family. Several studies have reported that IL-33 inhibits osteoclast differentiation. However, the mechanism of IL-33 regulation of osteoclastogenesis remains unclear. In the present study, we examined the effect of IL-33 on osteoclast formation in vitro. IL-33 suppressed osteoclast formation in both mouse bone marrow cells and monocyte/macrophage cell line RAW264.7 cells induced by receptor activator of NF-κB ligand (RANKL) and/or macrophage stimulating factor (M-CSF). IL-33 also inhibited the expression of RANKL-induced nuclear factor of activated T-cell cytoplasmic 1 (NFATc1), thereby decreasing the expression of osteoclastogenesis-related marker genes, including Cathepsin K, Osteoclast stimulatory transmembrane protein (Oc-stamp) and Tartrate-resistant acid phosphatase (Trap). Blockage of IL-33-ST2 binding suppressed the IL-33-mediated inhibition of NFATc1. RANKL-induced B-lymphocyte-induced maturation protein-1 (Blimp-1) expression was also suppressed by IL-33, which was followed by the stimulation of anti-osteoclastic genes such as interferon regulatory factor-8 (IRF-8). These results suggest that IL-33-ST2 interactions down-regulate both RANKL-induced NFATc1 activation and osteoclast differentiation via the regulation of Blimp-1 and IRF-8 expression. - Highlights: • IL-33 inhibits RANKL-induced osteoclast formation. • IL-33 has inhibitory effect on the RANKL-induced NFATc1 expression. • IL-33-induced NFATc1 suppression depends on the regulation of Blimp-1 and IRF-8.

  15. Imatinib mesylate suppresses bone metastases of breast cancer by inhibiting osteoclasts through the blockade of c-Fms signals.

    PubMed

    Hiraga, Toru; Nakamura, Hiroaki

    2009-01-01

    Imatinib mesylate (imatinib) is a potent and selective inhibitor of the tyrosine kinases, Bcr-Abl, c-Kit and platelet-derived growth factor receptors (PDGFRs). Recently, it has been reported that imatinib also targets the macrophage colony-stimulating factor (M-CSF) receptor c-Fms. M-CSF signals are essential for the differentiation of osteoclasts. Bone metastases of breast cancer are frequently associated with osteoclastic bone destruction. Furthermore, several lines of evidence suggest that osteoclasts play central roles in the development and progression of bone metastases. Thus, in the present study, we examined the effects of imatinib on bone metastases of breast cancer. Coimmunoprecipitation assays showed that imatinib inhibited the M-CSF-induced phosphorylation of c-Fms in osteoclast precursor cells as well as the PDGF-induced PDGFR phosphorylation in MDA-MB-231 human breast cancer cells. Imatinib also markedly reduced osteoclast formation in vitro. In contrast, those concentrations of imatinib did not affect osteoblast differentiation. We then examined the effects of imatinib on bone metastases of MDA-MB-231 cells in a nude mouse model. Radiographic and histomorphometric analyses demonstrated that imatinib significantly decreased bone metastases associated with the reduced number of osteoclasts. In support of the notion that the inhibition of c-Fms acts to suppress the development of bone metastases, we found that a specific inhibitor of c-Fms Ki20227 also decreased bone metastases. In conclusion, these results collectively suggest that imatinib reduced bone metastases, at least in part, by inhibiting osteoclastic bone destruction through the blockade of c-Fms signals. Our results also suggest that imatinib may have a protective effect against cancer treatment-induced bone loss.

  16. Rebamipide, an Amino Acid Analog of 2(1H)-Quinolinone, Inhibits the Formation of Human Osteoclasts

    PubMed Central

    Kobashigawa, Tsuyoshi

    2016-01-01

    Objectives. Drug repositioning or drug reprofiling (DR) has recently been growing in importance. DR has a significant advantage over traditional drug development because the repositioned drug has already passed toxicity tests; its safety is known, and the risk of adverse toxicology is reduced. In the current study, we investigated the role of rebamipide, a mucosa-protecting agent, with recently reported anti-inflammatory function, in human osteoclastogenesis. Methods. Peripheral blood mononuclear cells (PBMCs) were cultured in the presence of M-CSF and sRANKL. Osteoclast formation was evaluated by immunohistological staining for CD51/61 (vitronectin receptors). Osteoclast formation, in the presence or absence of rebamipide (0, 1, and 3 mM), was observed by time-lapse photography and actin ring formation. The number of absorption sites and area of absorption were calculated using Osteologic™ plates. Pit formation was studied by 3D-SEM. Results. Rebamipide inhibited human osteoclast formation at 3 mM, a pharmacological concentration, and inhibited resorbing activity dose-dependently. Rebamipide induced the degradation of actin rings in mature osteoclasts. This mechanism may involve inhibiting the osteoclast fusion pathway through reducing the expression of DC-specific transmembrane protein (DC-STAMP). Conclusions. The present study suggests that rebamipide would be useful as a novel agent for osteoporosis and rheumatoid arthritis. PMID:27965978

  17. miR-21 deficiency inhibits osteoclast function and prevents bone loss in mice

    PubMed Central

    Hu, Cheng-Hu; Sui, Bing-Dong; Du, Fang-Ying; Shuai, Yi; Zheng, Chen-Xi; Zhao, Pan; Yu, Xiao-Rui; Jin, Yan

    2017-01-01

    MicroRNAs emerge as critical post-transcriptional regulators in bone metabolism. We have previously reported in vitro that miR-21 promotes osteogenesis, while studies have also revealed miR-21 as a regulator of osteoclastogenesis and a promoter of osteoclast differentiation in vitro. However, in vivo data are still lacking in identifying skeletal function of miR-21, particularly its effects on osteoporosis. Here, using miR-21 knockout (miR-21−/−) mice, we investigated effects of miR-21 on bone development, bone remodeling and bone loss. Unexpectedly, miR-21−/− mice demonstrated normal skeletal phenotype in development and maintained osteoblastogenesis in vivo. Besides, miR-21−/− mice showed increased receptor activator of nuclear factor κB ligand (RANKL) and decreased osteoprotegerin (OPG) through miR-21 targeting Sprouty 1 (Spry1). Nevertheless, interestingly, miR-21 deficiency promoted trabecular bone mass accrual physiologically. Furthermore, in pathological states, the protection of bone mass was prominent in miR-21−/− mice. These skeletal effects were attributed to inhibition of bone resorption and osteoclast function by miR-21 deficiency through miR-21 targeting programmed cell death 4 (PDCD4), despite the existence of RANKL. As far as we know, this is the first in vivo evidence of a pro-osteoclastic microRNA. Together, these findings clarified function of miR-21 in bone metabolism, particularly uncovering osteo-protective potential of miR-21 inactivation in osteoporosis. PMID:28240263

  18. α-Tocotrienol inhibits osteoclastic bone resorption by suppressing RANKL expression and signaling and bone resorbing activity.

    PubMed

    Ha, Hyunil; Lee, Jong-Ho; Kim, Ha-Neui; Lee, Zang Hee

    2011-03-25

    Vitamin E, an essential nutrient with powerful antioxidant activity, is the mixture of two classes of compounds, tocopherols (TPs) and tocotrienols (TTs). Although TTs exhibit better bone protective activity than α-TP, the underlying mechanism is poorly understood. In this study, we investigated whether α-TT and α-TP can modulate osteoclastic bone resorption. We found that α-TT but not α-TP inhibits osteoclastogenesis in coculture of osteoblasts and bone marrow cells induced by either IL-1 or combined treatment with 1α,25(OH)(2) vitamin D(3) and prostaglandin E(2). In accordance with this, only α-TT inhibited receptor activator of NF-κB ligand (RANKL) expression in osteoblasts. In addition, α-TT but not α-TP inhibited RANKL-induced osteoclast differentiation from precursors by suppression of c-Fos expression, possibly through inhibiting ERK and NF-κB activation. This anti-osteoclastogenic effect was reversed when c-Fos or an active form of NFATc1, a critical downstream of c-Fos during osteoclastogenesis, was overexpressed. Furthermore, only α-TT reduced bone resorbing activity of mature osteoclasts without affecting their survival. Overall, our results demonstrate that α-TT but not α-TP has anti-bone resorptive properties by inhibiting osteoclast differentiation and activation, suggesting that α-TT may have therapeutic value for treating and preventing bone diseases characterized by excessive bone destruction.

  19. Regulation of ITAM adaptor molecules and their receptors by inhibition of calcineurin-NFAT signalling during late stage osteoclast differentiation.

    PubMed

    Zawawi, M S F; Dharmapatni, A A S S K; Cantley, M D; McHugh, K P; Haynes, D R; Crotti, T N

    2012-10-19

    Osteoclasts are specialised bone resorptive cells responsible for both physiological and pathological bone loss. Osteoclast differentiation and activity is dependent upon receptor activator NF-kappa-B ligand (RANKL) interacting with its receptor RANK to induce the transcription factor, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). The immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway has been identified as a co-stimulatory pathway in osteoclasts. Osteoclast-associated receptor (OSCAR) and triggering receptor expressed in myeloid cells (TREM2) are essential receptors that pair with adaptor molecules Fc receptor common gamma chain (FcRγ) and DNAX-activating protein 12kDa (DAP12) respectively to induce calcium signalling. Treatment with calcineurin-NFAT inhibitors, Tacrolimus (FK506) and the 11R-VIVIT (VIVIT) peptide, reduces NFATc1 expression consistent with a reduction in osteoclast differentiation and activity. This study aimed to investigate the effects of inhibiting calcineurin-NFAT signalling on the expression of ITAM factors and late stage osteoclast genes including cathepsin K (CathK), Beta 3 integrin (β3) and Annexin VIII (AnnVIII). Human peripheral blood mononuclear cells (PBMCs) were differentiated with RANKL and macrophage-colony stimulating factor (M-CSF) over 10days in the presence or absence of FK506 or VIVIT. Osteoclast formation (as assessed by tartrate resistant acid phosphatase (TRAP)) and activity (assessed by dentine pit resorption) were significantly reduced with treatment. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrated that FK506 treatment significantly (p<0.05) reduced the expression of NFATc1, CathK, OSCAR, FcRγ, TREM2 and DAP12 during the terminal stage of osteoclast formation. VIVIT treatment significantly (p<0.05) decreased CathK, OSCAR, FcRγ, and AnnVIII, gene expression. This data suggest FK506 and VIVIT act differently in targeting the

  20. Sodium hydrogen sulfide inhibits nicotine and lipopolysaccharide-induced osteoclastic differentiation and reversed osteoblastic differentiation in human periodontal ligament cells.

    PubMed

    Lee, Sun-Kyung; Chung, Jong-Hyuk; Choi, Sung-Chul; Auh, Q-Schick; Lee, Young-Man; Lee, Sang-Im; Kim, Eun-Cheol

    2013-05-01

    Although previous studies have demonstrated that hydrogen sulfide (H(2)S) stimulated or inhibited osteoclastic differentiation, little is known about the effects of H(2)S on the differentiation of osteoblasts and osteoclasts. To determine the possible bioactivities of H(2)S on bone metabolism, we investigated the in vitro effects of H(2)S on cytotoxicity, osteoblastic, and osteoclastic differentiation as well as the underlying mechanism in lipopolysaccharide (LPS) and nicotine-stimulated human periodontal ligament cells (hPDLCs). The H(2)S donor, NaHS, protected hPDLCs from nicotine and LPS-induced cytotoxicity and recovered nicotine- and LPS-downregulated osteoblastic differentiation, such as alkaline phosphatase (ALP) activity, mRNA expression of osteoblasts, including ALP, osteopontin (OPN), and osteocalcin (OCN), and mineralized nodule formation. Concomitantly, NaHS inhibited the differentiation of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts in mouse bone marrow cells and blocked nicotine- and LPS-induced osteoclastogenesis regulatory molecules, such as RANKL, OPG, M-CSF, MMP-9, TRAP, and cathepsin K mRNA. NaHS blocked nicotine and LPS-induced activation of p38, ERK, MKP-1, PI3K, PKC, and PKC isoenzymes, and NF-κB. The effects of H(2)S on nicotine- and LPS-induced osteoblastic and osteoclastic differentiation were remarkably reversed by MKP-1 enzyme inhibitor (vanadate) and expression inhibitor (triptolide). Taken together, we report for the first time that H(2)S inhibited cytotoxicity and osteoclastic differentiation and recovered osteoblastic differentiation in a nicotine- and periodontopathogen-stimulated hPDLCs model, which has potential therapeutic value for treatment of periodontal and inflammatory bone diseases.

  1. The Type II Collagen N-propeptide, PIIBNP, inhibits cell survival and bone resorption of osteoclasts via integrin-mediated signaling

    PubMed Central

    Hayashi, Shinya; Wang, Zhepeng; Bryan, Jennifer; Kobayashi, Chikashi; Faccio, Roberta; Sandell, Linda J.

    2011-01-01

    Objective Type IIB procollagen is characteristic of cartilage, comprising 50% of the extracellular matrix. The NH2-propeptide of type IIB collagen, PIIBNP, can kill tumor cells via binding to integrins αVβ3 and αVβ5. As osteoclasts rely on αVβ3 integrins for function in bone erosion, we sought to determine whether PIIBNP could inhibit osteoclast function. Methods We undertook in vitro and in vivo experiments to evaluate both osteoblast and osteoclast function in the presence of recombinant PIIBNP. Adhesion of osteoclasts to PIIBNP was analyzed by staining of attached cells with crystal violet. PIIBNP-induced cell death was evaluated by cell counting Trypan Blue stained cells. The mechanism of cell death was evaluated by DNA fragmentation, TUNEL staining and western blotting to detect cleaved caspases. To determine the role of αVβ3 integrin, osteoclasts were pretreated with αV or β3 integrin specific siRNA before the treatment with PIIBNP. To explore PIIBNP function in vivo, a lipopolysaccharide-induced mouse calvaria lysis model was employed. Results Osteoclasts adhered to PIIBNP via an RGD-mediated mechanism. When osteoclasts were plated on extracellular matrix proteins, PIIBNP induced apoptosis of osteoclasts via caspase 3/8 activation. Osteoblasts and macrophages were not killed. Reduction of αV or β3 integrin levels on osteoclasts by siRNA reduced cell death in a dose-dependent manner. In vivo, PIIBNP could inhibit bone resorption. Conclusion We conclude that PIIBNP can inhibit osteoclast survival and bone resorption via signal transduction through the αVβ3 integrins. Because of this property and the cell specificity, we propose that PIIBNP may play a role in vivo in protecting cartilage from osteoclast invasion and also could be a new therapeutic strategy for decreasing bone loss. PMID:21708300

  2. Interleukin 18 inhibits osteoclast formation via T cell production of granulocyte macrophage colony-stimulating factor.

    PubMed Central

    Horwood, N J; Udagawa, N; Elliott, J; Grail, D; Okamura, H; Kurimoto, M; Dunn, A R; Martin, T; Gillespie, M T

    1998-01-01

    IL-18 inhibits osteoclast (OCL) formation in vitro independent of IFN-gamma production, and this was abolished by the addition of neutralizing antibodies to GM-CSF. We now establish that IL-18 was unable to inhibit OCL formation in cocultures using GM-CSF-deficient mice (GM-CSF -/-). Reciprocal cocultures using either wild-type osteoblasts with GM-CSF -/- spleen cells or GM-CSF -/- osteoblasts with wild-type spleen cells were examined. Wild-type spleen cells were required to elicit a response to IL-18 indicating that cells of splenic origin were the IL-18 target. As T cells comprise a large proportion of the spleen cell population, the role of T cells in osteoclastogenesis was examined. Total T cells were removed and repleted in various combinations. Addition of wild-type T cells to a GM-CSF -/- coculture restored IL-18 inhibition of osteoclastogenesis. Major subsets of T cells, CD4+ and CD8+, were also individually depleted. Addition of either CD4+ or CD8+ wild-type T cells restored IL-18 action in a GM-CSF -/- background, while IL-18 was ineffective when either CD4+ or CD8+ GM-CSF -/- T cells were added to a wild-type coculture. These results highlight the involvement of T cells in IL-18-induced OCL inhibition and provide evidence for a new OCL inhibitory pathway whereby IL-18 inhibits OCL formation due to action upon T cells promoting the release of GM-CSF, which in turn acts upon OCL precursors. PMID:9449693

  3. Arctigenin inhibits osteoclast differentiation and function by suppressing both calcineurin-dependent and osteoblastic cell-dependent NFATc1 pathways.

    PubMed

    Yamashita, Teruhito; Uehara, Shunsuke; Udagawa, Nobuyuki; Li, Feng; Kadota, Shigetoshi; Esumi, Hiroyasu; Kobayashi, Yasuhiro; Takahashi, Naoyuki

    2014-01-01

    Arctigenin, a lignan-derived compound, is a constituent of the seeds of Arctium lappa. Arctigenin was previously shown to inhibit osteoclastogenesis; however, this inhibitory mechanism has yet to be elucidated. Here, we showed that arctigenin inhibited the action of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a key transcription factor for osteoclastogenesis. NFATc1 in osteoclast precursors was activated through two distinct pathways: the calcineurin-dependent and osteoblastic cell-dependent pathways. Among the several lignan-derived compounds examined, arctigenin most strongly inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast-like cell formation in mouse bone marrow macrophage (BMM) cultures, in which the calcineurin-dependent NFATc1 pathway was activated. Arctigenin suppressed neither the activation of nuclear factor κB and mitogen-activated protein kinases nor the up-regulation of c-Fos expression in BMMs treated with RANKL. However, arctigenin suppressed RANKL-induced NFATc1 expression. Interestingly, the treatment of osteoclast-like cells with arctigenin converted NFATc1 into a lower molecular weight species, which was translocated into the nucleus even in the absence of RANKL. Nevertheless, arctigenin as well as cyclosporin A (CsA), a calcineurin inhibitor, suppressed the NFAT-luciferase reporter activity induced by ionomycin and phorbol 12-myristate 13-acetate in BMMs. Chromatin immunoprecipitation analysis confirmed that arctigenin inhibited the recruitment of NFATc1 to the promoter region of the NFATc1 target gene. Arctigenin, but not CsA suppressed osteoclast-like cell formation in co-cultures of osteoblastic cells and bone marrow cells, in which the osteoblastic cell-dependent NFATc1 pathway was activated. The forced expression of constitutively active NFATc1 rescued osteoclastogenesis in BMM cultures treated with CsA, but not that treated with arctigenin. Arctigenin also suppressed the pit

  4. Rhus javanica Gall Extract Inhibits the Differentiation of Bone Marrow-Derived Osteoclasts and Ovariectomy-Induced Bone Loss

    PubMed Central

    Kim, Tae-Ho; Park, Eui Kyun; Huh, Man-Il; Kim, Hong Kyun; Kim, Shin-Yoon; Lee, Sang-Han

    2016-01-01

    Inhibition of osteoclast differentiation and bone resorption is a therapeutic strategy for the management of postmenopausal bone loss. This study investigated the effects of Rhus javanica (R. javanica) extracts on bone marrow cultures to develop agents from natural sources that may prevent osteoclastogenesis. Extracts of R. javanica (eGr) cocoons spun by Rhus javanica (Bell.) Baker inhibited the osteoclast differentiation and bone resorption. The effects of aqueous extract (aeGr) or 100% ethanolic extract (eeGr) on ovariectomy- (OVX-) induced bone loss were investigated by various biochemical assays. Furthermore, microcomputed tomography (µCT) was performed to study bone remodeling. Oral administration of eGr (30 mg or 100 mg/kg/day for 6 weeks) augmented the inhibition of femoral bone mineral density (BMD), bone mineral content (BMC), and other factors involved in bone remodeling when compared to OVX controls. Additionally, eGr slightly decreased bone turnover markers that were increased by OVX. Therefore, it may be suggested that the protective effects of eGr could have originated from the suppression of OVX-induced increase in bone turnover. Collectively, the findings of this study indicate that eGr has potential to activate bone remodeling by inhibiting osteoclast differentiation and bone loss. PMID:27313644

  5. A novel PPAR{gamma} agonist, KR62776, suppresses RANKL-induced osteoclast differentiation and activity by inhibiting MAP kinase pathways

    SciTech Connect

    Park, Ju-Young; Bae, Myung-Ae; Cheon, Hyae Gyeong; Kim, Sung Soo; Hong, Jung-Min; Kim, Tae-Ho; Choi, Je-Yong; Kim, Sang-Hyun; Lim, Jiwon; Choi, Chang-Hyuk; Shin, Hong-In; Kim, Shin-Yoon Park, Eui Kyun

    2009-01-16

    We investigated the effects of a novel peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonist, KR62776, on osteoclast differentiation and function, and on the underlying signaling pathways. KR62776 markedly suppressed differentiation into osteoclasts in various osteoclast model systems, including bone marrow mononuclear (BMM) cells and a co-culture of calvarial osteoblasts and BMM cells. KR62776 suppressed the activation of tartrate-resistant acid phosphatase (TRAP) and the expression of genes associated with osteoclast differentiation, such as TRAP, dendritic cell-specific transmembrane protein (DC-STAMP), and osteoclast-associated receptor (OSCAR). Furthermore, KR62776 reduced resorption pit formation in osteoclasts, and down-regulated genes essential for osteoclast activity, such as Src and {alpha}v{beta}3 integrin. An analysis of a signaling pathway showed that KR62776 inhibited the receptor activator of nuclear factor-{kappa}B ligand (RANKL)-induced activation of p38 mitogen-activated protein kinase (p38MAPK), extracellular regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and nuclear factor-{kappa}B (NF-{kappa}B). Together, these results demonstrate that KR62776 negatively affects osteoclast differentiation and activity by inhibiting the RANKL-induced activation of MAP kinases and NF-{kappa}B.

  6. Interleukin-15-activated natural killer cells kill autologous osteoclasts via LFA-1, DNAM-1 and TRAIL, and inhibit osteoclast-mediated bone erosion in vitro.

    PubMed

    Feng, Shan; Madsen, Suzi H; Viller, Natasja N; Neutzsky-Wulff, Anita V; Geisler, Carsten; Karlsson, Lars; Söderström, Kalle

    2015-07-01

    Osteoclasts reside on bone and are the main bone resorbing cells playing an important role in bone homeostasis, while natural killer (NK) cells are bone-marrow-derived cells known to play a crucial role in immune defence against viral infections. Although mature NK cells traffic through bone marrow as well as to inflammatory sites associated with enhanced bone erosion, including the joints of patients with rheumatoid arthritis, little is known about the impact NK cells may have on mature osteoclasts and bone erosion. We studied the interaction between human NK cells and autologous monocyte-derived osteoclasts from healthy donors in vitro. We show that osteoclasts express numerous ligands for receptors present on activated NK cells. Co-culture experiments revealed that interleukin-15-activated, but not resting, NK cells trigger osteoclast apoptosis in a dose-dependent manner, resulting in drastically decreased bone erosion. Suppression of bone erosion requires contact between NK cells and osteoclasts, but soluble factors also play a minor role. Antibodies masking leucocyte function-associated antigen-1, DNAX accessory molecule-1 or tumour necrosis factor-related apoptosis-inducing ligand enhance osteoclast survival when co-cultured with activated NK cells and restore the capacity of osteoclasts to erode bone. These results suggest that interleukin-15-activated NK cells may directly affect bone erosion under physiological and pathological conditions.

  7. Estrogen inhibits RANKL-stimulated osteoclastic differentiation of human monocytes through estrogen and RANKL-regulated interaction of estrogen receptor-{alpha} with BCAR1 and Traf6

    SciTech Connect

    Robinson, Lisa J.; Yaroslavskiy, Beatrice B.; Griswold, Reed D.; Zadorozny, Eva V.; Guo, Lida; Tourkova, Irina L.; Blair, Harry C.

    2009-04-15

    The effects of estrogen on osteoclast survival and differentiation were studied using CD14-selected mononuclear osteoclast precursors from peripheral blood. Estradiol at {approx} 1 nM reduced RANKL-dependent osteoclast differentiation by 40-50%. Osteoclast differentiation was suppressed 14 days after addition of RANKL even when estradiol was withdrawn after 18 h. In CD14+ cells apoptosis was rare and was not augmented by RANKL or by 17-{beta}-estradiol. Estrogen receptor-{alpha} (ER{alpha}) expression was strongly down-regulated by RANKL, whether or not estradiol was present. Mature human osteoclasts thus cannot respond to estrogen via ER{alpha}. However, ER{alpha} was present in CD14+ osteoclast progenitors, and a scaffolding protein, BCAR1, which binds ER{alpha} in the presence of estrogen, was abundant. Immunoprecipitation showed rapid ({approx} 5 min) estrogen-dependent formation of ER{alpha}-BCAR1 complexes, which were increased by RANKL co-treatment. The RANKL-signaling intermediate Traf6, which regulates NF-{kappa}B activity, precipitated with this complex. Reduction of NF-{kappa}B nuclear localization occurred within 30 min of RANKL stimulation, and estradiol inhibited the phosphorylation of I{kappa}B in response to RANKL. Inhibition by estradiol was abolished by siRNA knockdown of BCAR1. We conclude that estrogen directly, but only partially, curtails human osteoclast formation. This effect requires BCAR1 and involves a non-genomic interaction with ER{alpha}.

  8. A medium-chain fatty acid, capric acid, inhibits RANKL-induced osteoclast differentiation via the suppression of NF-κB signaling and blocks cytoskeletal organization and survival in mature osteoclasts.

    PubMed

    Kim, Hyun-Ju; Yoon, Hye-Jin; Kim, Shin-Yoon; Yoon, Young-Ran

    2014-08-01

    Fatty acids, important components of a normal diet, have been reported to play a role in bone metabolism. Osteoclasts are bone-resorbing cells that are responsible for many bone-destructive diseases such as osteoporosis. In this study, we investigated the impact of a medium-chain fatty acid, capric acid, on the osteoclast differentiation, function, and survival induced by receptor activator of NF-κB ligand (RANKL) and macrophage colony-stimulating factor (MCSF). Capric acid inhibited RANKL-mediated osteoclastogenesis in bone marrow-derived macrophages and suppressed RANKL-induced IκBα phosphorylation, p65 nuclear translocation, and NF-κB transcriptional activity. Capric acid further blocked the RANKL-stimulated activation of ERK without affecting JNK or p38. The induction of NFATc1 in response to RANKL was also attenuated by capric acid. In addition, capric acid abrogated M-CSF and RANKL-mediated cytoskeleton reorganization, which is crucial for the efficient bone resorption of osteoclasts. Capric acid also increased apoptosis in mature osteoclasts through the induction of Bim expression and the suppression of ERK activation by M-CSF. Together, our results reveal that capric acid has inhibitory effects on osteoclast development. We therefore suggest that capric acid may have potential therapeutic implications for the treatment of bone resorption-associated disorders.

  9. Characterization of vacuolar-ATPase and selective inhibition of vacuolar-H(+)-ATPase in osteoclasts

    SciTech Connect

    Yao, GuanFeng; Feng, HaoTian; Cai, YanLing; Qi, WeiLi; Kong, KangMei . E-mail: kangmeikong@21cn.com

    2007-06-15

    V-ATPase plays important roles in controlling the extra- and intra-cellular pH in eukaryotic cell, which is most crucial for cellular processes. V-ATPases are composed of a peripheral V{sub 1} domain responsible for ATP hydrolysis and integral V{sub 0} domain responsible for proton translocation. Osteoclasts are multinucleated cells responsible for bone resorption and relate to many common lytic bone disorders such as osteoporosis, bone aseptic loosening, and tumor-induced bone loss. This review summarizes the structure and function of V-ATPase and its subunit, the role of V-ATPase subunits in osteoclast function, V-ATPase inhibitors for osteoclast function, and highlights the importance of V-ATPase as a potential prime target for anti-resorptive agents.

  10. Inhibition of Platelet Aggregation by the Leaf Extract of Carica papaya During Dengue Infection: An In Vitro Study.

    PubMed

    Chinnappan, Shobia; Ramachandrappa, Vijayakumar Shettikothanuru; Tamilarasu, Kadhiravan; Krishnan, Uma Maheswari; Pillai, Agiesh Kumar Balakrishna; Rajendiran, Soundravally

    2016-04-01

    Dengue cases were reported to undergo platelet activation and thrombocytopenia by a poorly understood mechanism. Recent studies suggested that Carica papaya leaf extract could recover the platelet count in dengue cases. However, no studies have attempted to unravel the mechanism of the plant extract in platelet recovery. Since there are no available drugs to treat dengue and considering the significance of C. papaya in dengue treatment, the current study aimed to evaluate two research questions: First one is to study if the C. papaya leaf extract exerts its action directly on platelets and second one is to understand if the extract can specifically inhibit the platelet aggregation during dengue viral infection. Sixty subjects with dengue positive and 60 healthy subjects were recruited in the study. Platelet-rich plasma (PRP) and platelet-poor plasma were prepared from both the dengue-infected and healthy control blood samples. Effect of the leaf extract obtained from C. papaya leaves was assessed on plasma obtained as well as platelets collected from both healthy and dengue-infected individuals. Platelet aggregation was significantly reduced when leaf extract preincubated with dengue plasma was added into control PRP, whereas no change in aggregation when leaf extract incubated-control plasma was added into control PRP. Upon direct addition of C. papaya leaf extract, both dengue PRP and control PRP showed a significant reduction in platelet aggregation. Within the dengue group, PRP from severe and nonsevere cases showed a significant decrease in aggregation without any difference between them. From the study, it is evident that C. papaya leaf extract can directly act on platelet. The present study, the first of its kind, found that the leaf extract possesses a dengue-specific neutralizing effect on dengue viral-infected plasma that may exert a protective role on platelets.

  11. Inhibition of Ca²⁺/calmodulin-dependent protein kinase kinase 2 stimulates osteoblast formation and inhibits osteoclast differentiation.

    PubMed

    Cary, Rachel L; Waddell, Seid; Racioppi, Luigi; Long, Fanxin; Novack, Deborah V; Voor, Michael J; Sankar, Uma

    2013-07-01

    Bone remodeling, a physiological process characterized by bone formation by osteoblasts (OBs) and resorption of preexisting bone matrix by osteoclasts (OCs), is vital for the maintenance of healthy bone tissue in adult humans. Imbalances in this vital process result in pathological conditions including osteoporosis. Owing to its initial asymptomatic nature, osteoporosis is often detected only after the patient has sustained significant bone loss or a fracture. Hence, anabolic therapeutics that stimulate bone accrual is in high clinical demand. Here we identify Ca²⁺/calmodulin (CaM)-dependent protein kinase kinase 2 (CaMKK2) as a potential target for such therapeutics because its inhibition enhances OB differentiation and bone growth and suppresses OC differentiation. Mice null for CaMKK2 possess higher trabecular bone mass in their long bones, along with significantly more OBs and fewer multinuclear OCs. In vitro, although Camkk2⁻/⁻ mesenchymal stem cells (MSCs) yield significantly higher numbers of OBs, bone marrow cells from Camkk2⁻/⁻ mice produce fewer multinuclear OCs. Acute inhibition of CaMKK2 by its selective, cell-permeable pharmacological inhibitor STO-609 also results in increased OB and diminished OC formation. Further, we find phospho-protein kinase A (PKA) and Ser¹³³ phosphorylated form of cyclic adenosine monophosphate (cAMP) response element binding protein (pCREB) to be markedly elevated in OB progenitors deficient in CaMKK2. On the other hand, genetic ablation of CaMKK2 or its pharmacological inhibition in OC progenitors results in reduced pCREB as well as significantly reduced levels of its transcriptional target, nuclear factor of activated T cells, cytoplasmic (NFATc1). Moreover, in vivo administration of STO-609 results in increased OBs and diminished OCs, conferring significant protection from ovariectomy (OVX)-induced osteoporosis in adult mice. Overall, our findings reveal a novel function for CaMKK2 in bone remodeling and

  12. Commercial Honeybush (Cyclopia spp.) Tea Extract Inhibits Osteoclast Formation and Bone Resorption in RAW264.7 Murine Macrophages—An in vitro Study

    PubMed Central

    Visagie, Amcois; Kasonga, Abe; Deepak, Vishwa; Moosa, Shaakirah; Marais, Sumari; Kruger, Marlena C.; Coetzee, Magdalena

    2015-01-01

    Honeybush tea, a sweet tasting caffeine-free tea that is indigenous to South Africa, is rich in bioactive compounds that may have beneficial health effects. Bone remodeling is a physiological process that involves the synthesis of bone matrix by osteoblasts and resorption of bone by osteoclasts. When resorption exceeds formation, bone remodeling can be disrupted resulting in bone diseases such as osteoporosis. Osteoclasts are multinucleated cells derived from hematopoietic precursors of monocytic lineage. These precursors fuse and differentiate into mature osteoclasts in the presence of receptor activator of NF-kB ligand (RANKL), produced by osteoblasts. In this study, the in vitro effects of an aqueous extract of fermented honeybush tea were examined on osteoclast formation and bone resorption in RAW264.7 murine macrophages. We found that commercial honeybush tea extract inhibited osteoclast formation and TRAP activity which was accompanied by reduced bone resorption and disruption of characteristic cytoskeletal elements of mature osteoclasts without cytotoxicity. Furthermore, honeybush tea extract decreased expression of key osteoclast specific genes, matrix metalloproteinase-9 (MMP-9), tartrate resistant acid phosphatase (TRAP) and cathepsin K. This study demonstrates for the first time that honeybush tea may have potential anti-osteoclastogenic effects and therefore should be further explored for its beneficial effects on bone. PMID:26516894

  13. Effect of heparin and alendronate coating on titanium surfaces on inhibition of osteoclast and enhancement of osteoblast function

    SciTech Connect

    Moon, Ho-Jin; Yun, Young-Pil; Han, Choong-Wan; Kim, Min Sung; Kim, Sung Eun; Bae, Min Soo; Kim, Gyu-Tae; Choi, Yong-Suk; Hwang, Eui-Hwan; Lee, Joon Woo; Lee, Jin-Moo; Lee, Chang-Hoon; Kim, Duck-Su; Kwon, Il Keun

    2011-09-23

    Highlights: {yields} We examine bone metabolism of engineered alendronate attached to Ti surfaces. {yields} Alendronate-immobilized Ti enhances activation of osteoblast differentiation. {yields} Alendronate-immobilized Ti inhibits osteoclast differentiation. {yields} Alendronate-immobilized Ti may be a bioactive implant with dual functions. -- Abstract: The failure of orthopedic and dental implants has been attributed mainly to loosening of the implant from host bone, which may be due to weak bonding of the implant material to bone tissue. Titanium (Ti) is used in the field of orthopedic and dental implants because of its excellent biocompatibility and outstanding mechanical properties. Therefore, in the field of materials science and tissue engineering, there has been extensive research to immobilize bioactive molecules on the surface of implant materials in order to provide the implants with improved adhesion to the host bone tissue. In this study, chemically active functional groups were introduced on the surface of Ti by a grafting reaction with heparin and then the Ti was functionalized by immobilizing alendronate onto the heparin-grafted surface. In the MC3T3-E1 cell osteogenic differentiation study, the alendronate-immobilized Ti substrates significantly enhanced alkaline phosphatase activity (ALP) and calcium content. Additionally, nuclear factor kappa B ligand (RANKL)-induced osteoclast differentiation of RAW264.7 cells was inhibited with the alendronate-immobilized Ti as confirmed by TRAP analysis. Real time PCR analysis showed that mRNA expressions of osteocalcin and osteopontin, which are markers for osteogenesis, were upregulated in MC3T3-E1 cells cultured on alendronate-immobilized Ti. The mRNA expressions of TRAP and Cathepsin K, markers for osteoclastogenesis, in RAW264.7 cells cultured on alendronate-immobilized Ti were down-regulated. Our study suggests that alendronate-immobilized Ti may be a bioactive implant with dual functions to enhance

  14. The controlled release of simvastatin from TiO2 nanotubes to promote osteoblast differentiation and inhibit osteoclast resorption

    NASA Astrophysics Data System (ADS)

    Lai, Min; Jin, Ziyang; Yang, Xinyi; Wang, Huaying; Xu, Kui

    2017-02-01

    The aim of this study was to fabricate a novel drug-releasing bioactive platform that has excellent potential for improving osteoblast differentiation and inhibiting osteoclast resorption. TiO2 nanotubes (TNTs) with an outer diameter of around 70 nm were prepared by an anodization method. TNTs were filled with simvastatin (SV) and then coated using chitosan/gelatin multilayers (TNT-SV-LBL). The successful fabrication of TNT-SV-LBL substrates was confirmed by field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurement, respectively. The in vitro release behavior of simvastatin from TNT-SV-LBL substrates showed a sustained release as compared to the uncoated group. Osteoblasts adhering to TNT-SV-LBL substrates attached well and displayed significantly higher (p < 0.01) cell viability compared with the other substrates. More importantly, osteoblasts grown on TNT-SV-LBL substrates displayed a statistically significant (p < 0.01 or p < 0.05) increase in protein production levels of alkaline phosphatase (ALP), osteocalcin (OC) and mRNA expression of runt related transcription factor 2 (Runx2), ALP, collagen type I (Col I), osteopontin (OPN), OC and osteoprotegerin (OPG) compared to the other groups after 4, 7 and 14 days of culture, respectively. Additionally, multinuclear osteoclastic differentiation of RAW264.7 cells grown on TNT-SV-LBL substrates was inhibited as confirmed by tartrate-resistant acid phosphatase (TRAP) analysis. These results demonstrated that bio-functionalized substrates with SV and chitosan/gelatin multilayers have great potential for improving osteoblast differentiation, as well as inhibiting osteoclast formation. Therefore, these advanced surface and chemical capabilities make this substrate well suited for the development of a drug-releasing Ti implant for bone regeneration.

  15. The pathobiology of the osteoclast.

    PubMed Central

    Chambers, T J

    1985-01-01

    This article reviews recent information concerning the origin of osteoclasts and the local and systemic regulation of their activity. It appears that much of the environmental responsiveness of osteoclasts is mediated by cells of the osteoblastic lineage, which exert a major influence on the localisation, induction, stimulation, and inhibition of osteoclastic bone resorption. Some of the mechanisms by which osteoclast function may be disturbed by inflammatory and neoplastic diseases are discussed, and it is suggested that many pathological disturbances of osteoclastic bone resorption may be explicable as mimicry of physiological regulatory mechanisms by local hormones introduced into bone as the local regulators of the diseased tissue. Images PMID:2982920

  16. Inhibition of osteoclast differentiation and bone resorption by rotenone, through down-regulation of RANKL-induced c-Fos and NFATc1 expression.

    PubMed

    Kwak, Han Bok; Lee, Byeong Ki; Oh, Jaemin; Yeon, Jeong-Tae; Choi, Sik-Won; Cho, Hae Joong; Lee, Myeung Su; Kim, Jeong-Joong; Bae, Ji-Myung; Kim, Seong Hwan; Kim, Hun Soo

    2010-03-01

    Osteoclasts are responsible for bone erosion in diseases as diverse as osteoporosis, periodontitis, and rheumatoid arthritis. Natural plant-derived products have received recent attention as potential therapeutic and preventative drugs in human disease. The effect of rotenone in RANKL-induced osteoclast differentiation was examined in this study. Rotenone inhibited RANKL-mediated osteoclast differentiation in bone marrow macrophages (BMMs) in a dose-dependent manner without any evidence of cytotoxicity. The mRNA expression of c-Fos, NFATc1, TRAP, and OSCAR in RANKL-treated BMMs was inhibited by rotenone treatment. Rotenone strongly inhibited p38 and ERK phosphorylation and I-kappaB degradation in RANKL-stimulated BMMs, and did not inhibit JNK phosphorylation. Further, RANKL-induced c-Fos and NFATc1 protein expression was suppressed by rotenone. Rotenone additionally inhibited the bone resorptive activity of differentiated osteoclasts. A lipopolysaccharide (LPS)-induced bone erosion study was also performed to assess the effects of rotenone in vivo. Mice treated with rotenone demonstrated marked attenuation of bone erosion based on Micro CT and histologic analysis of femurs. These results collectively suggested that rotenone demonstrated inhibitory effects on osteoclast differentiation in vitro and suppressed inflammatory bone loss in vivo. Rotenone may therefore serve as a useful drug in the prevention of bone loss.

  17. Stimulation of Osteoclast Formation by RANKL Requires Interferon Regulatory Factor-4 and Is Inhibited by Simvastatin in a Mouse Model of Bone Loss

    PubMed Central

    Nakashima, Yoshiki; Haneji, Tatsuji

    2013-01-01

    Diseases of bone loss are a major public health problem. Here, we report the novel therapeutic action of simvastatin in osteoclastogenesis and osteoprotection, demonstrated by the ability of simvastatin to suppress osteoclast formation in vitro and in vivo. We found that in vitro, IRF4 expression is upregulated during osteoclast differentiation induced by RANKL (receptor activator of nuclear factor-κB ligand), while simvastatin blocks RANKL-induced osteoclastogenesis and decreases expression of NFATc1 (nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1), IRF4 and osteoclast markers. We also show that IRF4 acts in cooperation with NFATc2 and NF-κB on the promoter region of NFATc1 to accelerate its initial transcription during the early stage of osteoclastogenesis. Moreover, our study using IRF4 siRNA knockdown directly demonstrates the requirement for IRF4 in NFATc1 mRNA transcription and its necessity in RANKL-induced osteoclast differentiation. Our results suggest that the reduction in osteoclastogenesis is partly due to the inhibition of IRF4 production in RANKL-induced osteoclast differentiation. To investigate the in vivo effects of simvastatin in RANKL-treated mice, we examined the bone mineral density (BMD) of a mouse model of bone loss, and found that simvastatin significantly reduced bone loss by suppressing osteoclast numbers in vivo, even in the presence of high concentrations of RANKL. These results suggest that the depletion of osteoclasts is not due to the reduction in RANKL produced by osteoblasts in vivo. The results are consistent with the hypothesis that simvastatin blocks RANKL-induced IRF4 expression in osteoclastogenesis. We propose that the expression of IRF4 by osteoclasts could be a promising new therapeutic target in bone-loss diseases. PMID:24039733

  18. Aconine inhibits RANKL-induced osteoclast differentiation in RAW264.7 cells by suppressing NF-κB and NFATc1 activation and DC-STAMP expression

    PubMed Central

    Zeng, Xiang-zhou; He, Long-gang; Wang, Song; Wang, Keng; Zhang, Yue-yang; Tao, Lei; Li, Xiao-juan; Liu, Shu-wen

    2016-01-01

    Aim: Aconiti Lateralis Radix Preparata is a traditional Chinese medicine used to treat chronic arthritis and is highly effective against rheumatoid arthritis. However, the effects of aconine, a derivative of aconitum alkaloids, on osteoclasts, which can absorb bone, remain unknown. Here, we investigated the effects of aconine on osteoclast differentiation and bone resorption in vitro. Methods: The viability of mouse leukemic monocyte/macrophage cell line RAW264.7 was measured using CCK-8 assays. Osteoclast differentiation was induced by incubation of RAW264.7 cells in the presence of RANKL, and assessed with TRAP staining assay. Bone resorption was examined with bone resorption pits assay. The expression of relevant genes and proteins was analyzed using RT-PCR and Western blots. The activation of NF-κB and nuclear factor of activated T-cells (NFAT) was examined using stable NF-κB and NFATc1 luciferase reporter gene systems, RT-PCR and Western blot analysis. Results: Aconine (0.125, 0.25 μmol/L) did not affect the viability of RAW264.7 cells, but dose-dependently inhibited RANKL-induced osteoclast formation and bone resorptive activity. Furthermore, aconine dose-dependently inhibited the RANKL-induced activation of NF-κB and NFATc1 in RAW264.7 cells, and subsequently reduced the expression of osteoclast-specific genes (c-Src, β3-Integrin, cathepsin K and MMP-9) and the expression of dendritic cell-specific transmembrane protein (DC-STAMP), which played an important role in cell-cell fusion. Conclusion: These findings suggest that aconine inhibits RANKL-induced osteoclast differentiation in RAW264.7 cells by suppressing the activation of NF-κB and NFATc1 and the expression of the cell-cell fusion molecule DC-STAMP. PMID:26592521

  19. The study of mechanisms of protective effect of Rg1 against arthritis by inhibiting osteoclast differentiation and maturation in CIA mice.

    PubMed

    Gu, Yanqing; Fan, Weimin; Yin, Guoyong

    2014-01-01

    Ginsenoside Rg1 is a natural product extracted from Panax ginseng C.A. Although Rg1 protects tissue structure and functions by inhibiting local inflammatory reaction, the mechanism remains poorly understood. In vitro, Rg1 dose-dependently inhibited TRAP activity in receptor activator of nuclear factor-κB ligand- (RANKL-) induced osteoclasts and decreased the number of osteoclasts and osteoclast resorption area. Rg1 also significantly inhibited the RANK signaling pathway, including suppressing the expression of Trap, cathepsin K, matrix metalloproteinase 9 (MMP9), and calcitonin receptor (CTR). In vivo, Rg1 dramatically decreased arthritis scores in CIA mice and effectively controlled symptoms of inflammatory arthritis. Pathologic analysis demonstrated that Rg1 significantly attenuated pathological changes in CIA mice. Pronounced reduction in synovial hyperplasia and inflammatory cell invasion were observed in CIA mice after Rg1 therapy. Alcian blue staining results illustrated that mice treated with Rg1 had significantly reduced destruction in the articular cartilage. TRAP and cathepsin K staining results demonstrated a significant reduction of numbers of OCs in the articular cartilage in proximal interphalangeal joints and ankle joints in Rg1-treated mice. In summary, this study revealed that Rg1 reduced the inflammatory destruction of periarticular bone by inhibiting differentiation and maturation of osteoclasts in CIA mice.

  20. Pyrroloquinoline quinone prevents testosterone deficiency-induced osteoporosis by stimulating osteoblastic bone formation and inhibiting osteoclastic bone resorption

    PubMed Central

    Wu, Xuan; Li, Jie; Zhang, Hengwei; Wang, Hui; Yin, Guoyong; Miao, Dengshun

    2017-01-01

    Accumulating evidences suggest that oxidative stress caused and deteriorated the aging related osteoporosis and pyrroloquinoline quinone (PQQ) is a powerful antioxidant. However, it is unclear whether PQQ can prevent testosterone deficiency-induced osteoporosis. In this study, the orchidectomized (ORX) mice were supplemented in diet with/without PQQ for 48 weeks, and compared with each other and with sham mice. Results showed that bone mineral density, trabecular bone volume, collagen deposition and osteoblast number were decreased significantly in ORX mice compared with shame mice, whereas PQQ supplementation largely prevented these alterations. In contrast, osteoclast surface and ratio of RANKL and OPG mRNA relative expression levels were increased significantly in ORX mice compared with shame mice, but were decreased significantly by PQQ supplementation. Furthermore, we found that CFU-f and ALP positive CFU-f forming efficiency and the proliferation of mesenchymal stem cells were reduced significantly in ORX mice compared with shame mice, but were increased significantly by PQQ supplementation. Reactive oxygen species (ROS) levels in thymus were increased, antioxidant enzymes SOD-1, SOD-2, Prdx I and Prdx IV protein expression levels in bony tissue were down-regulated, whereas the protein expression levels of DNA damage response related molecules including γ-H2AX, p53, Chk2 and NFκB-p65 in bony tissue were up-regulated significantly in ORX mice compared with shame mice, whereas PQQ supplementation largely rescued these alterations observed in ORX mice. Our results indicate that PQQ supplementation can prevent testosterone deficiency-induced osteoporosis by inhibiting oxidative stress and DNA damage, stimulating osteoblastic bone formation and inhibiting osteoclastic bone resorption. PMID:28386349

  1. The natural flavonoid galangin inhibits osteoclastic bone destruction and osteoclastogenesis by suppressing NF-κB in collagen-induced arthritis and bone marrow-derived macrophages.

    PubMed

    Huh, Jeong-Eun; Jung, In-Tae; Choi, Junyoung; Baek, Yong-Hyeon; Lee, Jae-Dong; Park, Dong-Suk; Choi, Do-Young

    2013-01-05

    We investigated the effect of galangin, a natural flavonoid, on osteoclastic bone destruction in collagen-induced arthritis and examined the molecular mechanisms by which galangin affects osteoclastogenesis in bone marrow derived macrophages. In mice with collagen-induced arthritis, administration of galangin significantly reduced the arthritis clinical score, edema and severity of disease without toxicity. Interestingly, galangin treatment during a later stage of collagen-induced arthritis, using mice with a higher clinical arthritis score, still significantly slowed the progression of the disease. Extensive cartilage and bone erosive changes as well as synovial inflammation, synovial hyperplasia and pannus formation were dramatically inhibited in arthritic mice treated with galangin. Furthermore, galangin-treated arthritic mice showed a significant reduction in the concentrations of IL-1β, TNF-α and IL-17. We found that galangin inhibited osteoclastogenic factors and osteoclast formation in bone marrow-derived macrophages and osteoblast co-cultured cells, and increased osteoprotegerin (OPG) levels in osteoblasts. Galangin and NF-κB siRNA suppressed RANKL-induced phosphorylation of the c-jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), but not AKT and extracellular signal-regulated kinase 1/2 (ERK1/2). Also, the JNK inhibitor SP600125 and p38 inhibitor SB203580 reduced RANKL-induced expressions of phospho-c-Jun, c-fos and NFATc1 genes during osteoclast development. In addition, galangin suppressed RANKL-induced phosphorylation of NF-κB, phospho-IκBα, inflammatory cytokines and osteoclast formation in bone marrow-derived macrophages. Our data suggest that galangin prevented osteoclastic bone destruction and osteoclastogenesis in osteoclast precursors as well as in collagen-induced arthritis mice without toxicity via attenuation of RANKL-induced activation of JNK, p38 and NF-κB pathways.

  2. Celastrol attenuates bone erosion in collagen-Induced arthritis mice and inhibits osteoclast differentiation and function in RANKL-induced RAW264.7.

    PubMed

    Gan, Ke; Xu, Lingxiao; Feng, Xiaoke; Zhang, Qiande; Wang, Fang; Zhang, Miaojia; Tan, Wenfeng

    2015-02-01

    Recently, the traditional Chinese medicine Tripterygium wilfordii Hook f (TwHF) of the Celastraceae family has attracted increasing attention for its potential therapeutic application in patients with rheumatoid arthritis (RA). It is well accepted that TwHF exerts the antirheumatic activity and mainly depends on its potent anti-inflammatory property. To further explore the therapeutic potential of the well-defined TwHF-derived single compound - celastrol in RA, we study the therapeutic efficacy of celastrol on bone erosion in collagen-induced arthritis (CIA) mice and delineate its effects on osteoclast differentiation and functions in RANKL-induced osteoclast precursors RAW264.7 cell line. In CIA mice, daily injection of celastrol (beginning on day 28 after arthritis induction) markedly suppressed arthritis, and reduced bone damage in the joints as demonstrated by histology and bone micro-computed tomography (CT). The effects were accompanied by reductions of osteoclast cells in joints, serum tartrate-resistant acid phosphatase (TRAP) 5b, and expression of osteoclastic genes (Trap, Ctsk, Ctr, Mmp-9) and transcriptional factors (c-Fos, c-Jun and NFATc1). When RAW264.7 cells were treated with RANKL, celastrol inhibited the formation of TRAP+ multinucleated cells and the bone-resorbing activity in dose-dependent manners. Furthermore, celastrol reduced the RANKL-induced expression of osteoclastic genes and transcriptional factors, as well as phosphorylation of NF-kB and mitogen-activated protein kinases (MAPK). These findings show that celastrol could directly inhibit osteoclast formation and function, suggesting a novel therapeutic strategy of celastrol for managing RA, especially in preventing bone destruction.

  3. Inhibition of Osteoclast Differentiation and Bone Resorption by Bisphosphonate-conjugated Gold Nanoparticles

    PubMed Central

    Lee, Donghyun; Heo, Dong Nyoung; Kim, Han-Jun; Ko, Wan-Kyu; Lee, Sang Jin; Heo, Min; Bang, Jae Beum; Lee, Jung Bok; Hwang, Deok-Sang; Do, Sun Hee; Kwon, Il Keun

    2016-01-01

    In recent years, gold nanoparticles (GNPs) have been reported to affect the regeneration of bone tissue. The goal of this study was to improve bone tissue regeneration by using targeted GNPs. We fabricated a functionalized GNPs conjugated with alendronate (ALD), of the bisphosphonate group. Subsequently, the ALD, GNPs, and ALD conjugated GNPs (GNPs-ALD) were analyzed by ultraviolet-visible absorbance (UV-vis) spectrophotometer, Attenuated total reflectance Fourier transform infrared spectrometer (ATR-FTIR), and thermo gravimetric analysis (TGA). The prepared GNPs-ALD were used to investigate their inhibitory effects on the receptor activator of nuclear factor- κb ligand (RANKL)-induced osteoclastogenesis in bone marrow-derived macrophages (BMMs). Additionally, the GNPs-ALD were applied to ovariectomy (OVX)-induced osteoporotic mice and the experiments were evaluated. ALD was found to be successfully conjugated to the GNPs surface, and it displayed significant adhesion onto the bone surface. The in-vitro study indicated that the GNPs, ALD and GNPs-ALD suppressed osteoclast formation in a dose-dependent manner. Furthermore, in the OVX mouse model, the mice treated GNPs-ALD had higher bone density as compared to other OVX mice groups. The results from these tests indicated that GNPs-ALD can be useful agents for preventing and treating osteoporosis. PMID:27251863

  4. NRROS Negatively Regulates Osteoclast Differentiation by Inhibiting RANKL-Mediated NF-κB and Reactive Oxygen Species Pathways

    PubMed Central

    Kim, Jung Ha; Kim, Kabsun; Kim, Inyoung; Seong, Semun; Kim, Nacksung

    2015-01-01

    Negative regulator of reactive oxygen species (NRROS) is known to repress ROS generation in phagocytes. In this study, we examined the roles of NRROS in both osteoclasts and osteoblasts. Our results demonstrate that NRROS negatively regulates the differentiation of osteoclasts, but not osteoblasts. Further, overexpression of NRROS in osteoclast precursor cells attenuates RANKL-induced osteoclast differentiation. Conversely, osteoclast differentiation is enhanced upon siRNA-mediated knockdown of NRROS. Additionally, NRROS attenuates RANKL-induced NF-κB activation, as well as degradation of the NOX1 and NOX2 proteins, which are required for ROS generation. Based on our observations, we present NRROS as a novel negative regulator of RANKL-induced osteoclastogenesis. PMID:26442864

  5. Inhibition of matrix metalloproteinase-9 activity by doxycycline ameliorates RANK ligand-induced osteoclast differentiation in vitro and in vivo

    SciTech Connect

    Franco, Gilson C.N.; Nakanishi, Tadashi; Ohta, Kouji; Rosalen, Pedro L.; Groppo, Francisco C.; Bartlett, John D.; Stashenko, Philip; Taubman, Martin A.; Kawai, Toshihisa

    2011-06-10

    Tetracycline antibiotics, including doxycycli/e (DOX), have been used to treat bone resorptive diseases, partially because of their activity to suppress osteoclastogenesis induced by receptor activator of nuclear factor kappa B ligand (RANKL). However, their precise inhibitory mechanism remains unclear. Therefore, the present study examined the effect of Dox on osteoclastogenesis signaling induced by RANKL, both in vitro and in vivo. Although Dox inhibited RANKL-induced osteoclastogenesis and down-modulated the mRNA expression of functional osteoclast markers, including tartrate-resistant acid phosphatase (TRAP) and cathepsin K, Dox neither affected RANKL-induced MAPKs phosphorylation nor NFATc1 gene expression in RAW264.7 murine monocytic cells. Gelatin zymography and Western blot analyses showed that Dox down-regulated the enzyme activity of RANKL-induced MMP-9, but without affecting its protein expression. Furthermore, MMP-9 enzyme inhibitor also attenuated both RANKL-induced osteoclastogenesis and up-regulation of TRAP and cathepsin K mRNA expression, indicating that MMP-9 enzyme action is engaged in the promotion of RANKL-induced osteoclastogenesis. Finally, Dox treatment abrogated RANKL-induced osteoclastogenesis and TRAP activity in mouse calvaria along with the suppression of MMP9 enzyme activity, again without affecting the expression of MMP9 protein. These findings suggested that Dox inhibits RANKL-induced osteoclastogenesis by its inhibitory effect on MMP-9 enzyme activity independent of the MAPK-NFATc1 signaling cascade.

  6. Melittin inhibits osteoclast formation through the downregulation of the RANKL-RANK signaling pathway and the inhibition of interleukin-1β in murine macrophages.

    PubMed

    Choe, Jung-Yoon; Kim, Seong-Kyu

    2017-03-01

    Melittin is a major toxic component of bee venom (Apis mellifera). It is not known whether melittin is involved in bone metabolism and osteoclastogenesis. The aim of this study was to determine the role of melittin in the regulation of osteoclastogenesis. In vitro osteoclastogenesis assays were performed using mouse RAW 264.7 cells and bone marrow-derived macrophages (BMMs) treated with receptor activator of nuclear factor-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). Morphologic and functional analyses for osteoclast-like multinucleated cells (MNCs) were performed by tartrate-resistant acid phosphatase (TRAP) staining, F-actin staining and pit formation methods. The gene expression of TRAP, cathepsin K, matrix metalloproteinase-9 (MMP-9) and carbonic anhydrase II was measured by reverse transcription-quantitative PCR. The protein expression levels of mitogen-activated protein kinases (MAPKs), the p65 subunit of nuclear factor-κB (NF-κB), c-Fos, c-Jun, nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), TNF receptor-associated factor-6 (TRAF6), and interleukin-1β (IL-1β) were assessed by western blot analysis. Melittin inhibited the mRNA expression of TRAP, cathepsin K, MMP-9 and carbonic anhydrase II in RANKL-stimulated RAW 264.7 cells. The increased protein expression of TRAF6, p-extracellular signal-regulated kinase (ERK), p-JNK, p-p65, p-c-Fos and NFATc1 induced by RANKL was significantly suppressed in the RAW 264.7 cells treated with melittin. A synergistic effect of IL-1β on the formation of RANKL-induced osteoclast-like MNCs was found in two experimental cells. The increased expression of IL-1β following the stimulation of RAW 264.7 cells with RANKL activated TRAF6, p-ERK, p-JNK, p-p65, p-c-Fos and NFATc1. These effects were attenuated by the downregulation of IL-1β using siRNA against IL-1β, and also by treatment with melittin. On the whole, the findings of this study demonstrate that melittin

  7. Melittin inhibits osteoclast formation through the downregulation of the RANKL-RANK signaling pathway and the inhibition of interleukin-1β in murine macrophages

    PubMed Central

    Choe, Jung-Yoon; Kim, Seong-Kyu

    2017-01-01

    Melittin is a major toxic component of bee venom (Apis mellifera). It is not known whether melittin is involved in bone metabolism and osteoclastogenesis. The aim of this study was to determine the role of melittin in the regulation of osteoclastogenesis. In vitro osteoclastogenesis assays were performed using mouse RAW 264.7 cells and bone marrow-derived macrophages (BMMs) treated with receptor activator of nuclear factor-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). Morphologic and functional analyses for osteoclast-like multinucleated cells (MNCs) were performed by tartrate-resistant acid phosphatase (TRAP) staining, F-actin staining and pit formation methods. The gene expression of TRAP, cathepsin K, matrix metalloproteinase-9 (MMP-9) and carbonic anhydrase II was measured by reverse transcription-quantitative PCR. The protein expression levels of mitogen-activated protein kinases (MAPKs), the p65 subunit of nuclear factor-κB (NF-κB), c-Fos, c-Jun, nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), TNF receptor-associated factor-6 (TRAF6), and interleukin-1β (IL-1β) were assessed by western blot analysis. Melittin inhibited the mRNA expression of TRAP, cathepsin K, MMP-9 and carbonic anhydrase II in RANKL-stimulated RAW 264.7 cells. The increased protein expression of TRAF6, p-extracellular signal-regulated kinase (ERK), p-JNK, p-p65, p-c-Fos and NFATc1 induced by RANKL was significantly suppressed in the RAW 264.7 cells treated with melittin. A synergistic effect of IL-1β on the formation of RANKL-induced osteoclast-like MNCs was found in two experimental cells. The increased expression of IL-1β following the stimulation of RAW 264.7 cells with RANKL activated TRAF6, p-ERK, p-JNK, p-p65, p-c-Fos and NFATc1. These effects were attenuated by the downregulation of IL-1β using siRNA against IL-1β, and also by treatment with melittin. On the whole, the findings of this study demonstrate that melittin inhibits the formation

  8. Inhibition of inducible nitric oxide synthase and osteoclastic differentiation by Atractylodis Rhizoma Alba extract

    PubMed Central

    Choi, Sung-Ho; Kim, Sung-Jin

    2014-01-01

    Background: Atractylodis Rhizoma Alba (ARA) has been used in Korean folk medicine for constipation, dizziness, and anticancer agent. In the present study, we performed to test whether the methanolic extract of ARA has antioxidant and antiosteoclastogenesis activity in RAW 264.7 macrophage cells. Materials and Methods: Antioxidant capacities were tested by measuring free radical scavenging activity, nitric oxide (NO) levels, reducing power, and inducible nitric oxide synthase (iNOS) expression in response to lipopolysaccharides (LPS). Antiosteoclastogenesis activity was evaluated by performing tartrate-resistant acid phosphatase assay in RAW 264.7 macrophage cells. Results: The extract exerted significant 1,1-diphenyl-2-picrylhydrazyl and NO radical scavenging activity, and it exerted dramatic reducing power. Induction of iNOS and NO by LPS in RAW 264.7 cells was significantly inhibited by the extract, suggesting that the ARA extract inhibits NO production by suppressing iNOS expression. Strikingly, the ARA extracts substantially inhibited the receptor activator of NF-κB ligand-induced osteclastic differentiation of LPS-activated RAW 264.7 cells. The ARA extract contains a significant amount of antioxidant components, including phenolics, flavonoids and anthocyanins. Conclusion: These results suggest that the methanolic extract of ARA exerts significant antioxidant activities potentially via inhibiting free radicals and iNOS induction, thereby leading to the inhibition of osteoclastogenesis. PMID:25298665

  9. Serum Calcium-decreasing Factor, Caldecrin, Inhibits Receptor Activator of NF-κB Ligand (RANKL)-mediated Ca2+ Signaling and Actin Ring Formation in Mature Osteoclasts via Suppression of Src Signaling Pathway*

    PubMed Central

    Tomomura, Mineko; Hasegawa, Hiroya; Suda, Naoto; Sakagami, Hiroshi; Tomomura, Akito

    2012-01-01

    Osteoclasts are essential for bone dynamics and calcium homeostasis. Recently, we reported that serum calcium-decreasing factor, caldecrin, which is a secretory-type serine protease isolated from the pancreas, inhibits osteoclast differentiation by suppression of NFATc1 activity regardless of its own protease activity (Hasegawa, H., Kido, S., Tomomura, M., Fujimoto, K., Ohi, M., Kiyomura, M., Kanegae, H., Inaba, A., Sakagami, H., and Tomomura, A. (2010) Serum calcium-decreasing factor, caldecrin, inhibits osteoclast differentiation by suppression of NFATc1 activity. J. Biol. Chem. 285, 25448–25457). Here, we investigated the effects of caldecrin on the function of mature osteoclasts by treatment with receptor activator of NF-κB ligand (RANKL). Caldecrin inhibited the RANKL-stimulated bone resorptive activity of mature osteoclasts. Furthermore, caldecrin inhibited RANKL-mediated sealing actin ring formation, which is associated with RANKL-evoked Ca2+ entry through transient receptor potential vanilloid channel 4. The inhibitors of phospholipase Cγ, Syk, and c-Src suppressed RANKL-evoked Ca2+ entry and actin ring formation of mature osteoclasts. Interestingly, caldecrin significantly inhibited RANKL-stimulated phosphorylation of c-Src, Syk, phospholipase Cγ1 and Cγ2, SLP-76, and Pyk2 but not that of ERK, JNK, or Akt. Caldecrin inhibited RANKL-stimulated c-Src kinase activity and c-Src·Syk association. These results suggest that caldecrin inhibits RANKL-stimulated calcium signaling activation and cytoskeletal organization by suppression of the c-Src·Syk pathway, which may in turn reduce the bone resorptive activity of mature osteoclasts. Thus, caldecrin is capable of acting as a negative regulator of osteoclastogenesis and osteoclast function of bone resorption. PMID:22461633

  10. In vitro antioxidant, collagenase inhibition, and in vivo anti-wrinkle effects of combined formulation containing Punica granatum, Ginkgo biloba, Ficus carica, and Morus alba fruits extract

    PubMed Central

    Ghimeray, Amal Kumar; Jung, Un Sun; Lee, Ha Youn; Kim, Young Hoon; Ryu, Eun Kyung; Chang, Moon Sik

    2015-01-01

    Background In phytotherapy, the therapeutic potential is based on the combined action of different herbal drugs. Our objective was to evaluate the antioxidant, anti-collagenase (in vitro), and anti-wrinkle (in vivo) effect of combined formulation containing Ginkgo biloba, Punica granatum, Ficus carica, and Morus alba fruits extract. Methods Antioxidant evaluation was based on the scavenging activity of free radicals (1,1-diphenyl-2-picrylhydrazyl, H2O2, and O2−) and the anti-collagenase activity was based on the reduction of collagenase enzyme in vitro. In an in vivo study, 21 female subjects were examined in a placebo-controlled trail. Facial wrinkle, especially the crow’s feet region of eyes, was treated with topical formulated 2% cream for 56 days and compared with the placebo. Results In the in vitro study, the combination of fruits extract showed a higher antioxidant activity which was comparable with the positive standard (ascorbic acid, butylated hydroxyanisole, and Trolox). The data also showed a dose-dependent inhibition of collagenase. In the in vivo study, treatment with 2% formulated cream for 56 days significantly reduced the percentage of wrinkle depth, length, and area with 11.5, 10.07, and 29.55, respectively. Conclusion The combined formulation of fruit extracts showed excellent antioxidative and anti-collagenase activity as well as a significant effect on anti-wrinkle activity on human skin. PMID:26203268

  11. A possible new role for vitamin D-binding protein in osteoclast control: inhibition of extracellular Ca2+ sensing at low physiological concentrations.

    PubMed

    Adebanjo, O A; Moonga, B S; Haddad, J G; Huang, C L; Zaidi, M

    1998-08-28

    Upon removal of its sialic acid or galactose residue, vitamin D-binding protein (DBP) becomes a potent macrophage-activating factor, DBP-MAF. Here we document a new function of DBP-MAF and its parent molecule, DBP, in osteoclast control. We show that all DBPs potently inhibit extracellular Ca2+ (cation) sensing at low nanomolar concentrations with the following rank order of potency: native DBP = sialidase-treated DBP > beta-galactosidase-treated DBP. This attenuation remains unaffected despite co-incubation either with the native DBP ligand, 1,25-dihydroxyvitamin D3, or with an asialoglycoprotein receptor modulator, asialoorosomucoid. Taken together, the results suggest that circulating DBP may play a role in the systemic control of osteoclastic bone resorption, a hitherto unrecognized action of the protein.

  12. Methanol Extract of Croton Pycnanthus Benth. Inhibits Osteoclast Differentiation by Suppressing the MAPK and NF-κB Signaling Pathways

    PubMed Central

    Lee, Jiyeon

    2014-01-01

    Background Osteoclasts are differentiated from monocytes/macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL). Croton pycnanthus Benth. (CPB) is a herbal plant that belongs to Euphorbiaceae family. The aim of this study was to investigate the effects of CPB on osteoclastogenesis and RANKL-dependent signaling pathways. Methods Methanol extract of CPB was obtained from International Biological Material Research Center. Osteoclast differentiation was achieved by culturing mouse bone marrow-derived macrophages (BMMs) with M-CSF and RANKL. Osteoclast numbers were evaluated by counting multinuclear cells positive for tartrate-resistant acid phosphatase (TRAP). mRNA and protein levels were analyzed by real-time polymerase chain reaction (PCR) and Western blotting, respectively. The activation of signaling molecules were assessed after acute stimulation of cells with high dose of RANKL by Western blotting with phospho-specific antibodies. Results CPB reduced the generation of TRAP-positive multinucleated cells and the activation of mitogen-activated protein kinase (MAPK) and NF-κB signaling pathways. The induction of the expression of c-Fos, nuclear factor-activated T cells c1 (NFATc1) and dendritic cell-specific transmembrane protein (DC-STAMP) by RANKL was also suppressed. Conclusions CPB exerts negative effects on osteoclast differentiation in response to the RANKL. The inhibitory mechanism involves the suppression of MAPK and NF-κB signaling pathways and subsequently the down-regulation of c-Fos and NFATc1 transcription factors. PMID:25489576

  13. Silicate modulates the cross-talk between osteoblasts (SaOS-2) and osteoclasts (RAW 264.7 cells): inhibition of osteoclast growth and differentiation.

    PubMed

    Schröder, H C; Wang, X H; Wiens, M; Diehl-Seifert, B; Kropf, K; Schloßmacher, U; Müller, W E G

    2012-10-01

    It has been shown that inorganic monomeric and polymeric silica/silicate, in the presence of the biomineralization cocktail, increases the expression of osteoprotegerin (OPG) in osteogenic SaOS-2 sarcoma cells in vitro. In contrast, silicate does not affect the steady-state gene expression level of the osteoclastogenic ligand receptor activator of NF-κB ligand (RANKL). In turn it can be expected that the concentration ratio of the mediators OPG/RANKL increases in the presence of silicate. In addition, silicate enhances the growth potential of SaOS-2 cells in vitro, while it causes no effect on RAW 264.7 cells within a concentration range of 10-100 µM. Applying a co-cultivation assay system, using SaOS-2 cells and RAW 264.7 cells, it is shown that in the presence of 10 µM silicate the number of RAW 264.7 cells in general, and the number of TRAP(+) RAW 264.7 cells in particular markedly decreases. The SaOS-2 cells retain their capacity of differential gene expression of OPG and RANKL in favor of OPG after exposure to silicate. It is concluded that after exposure of the cells to silicate a factor(s) is released from SaOS-2 cells that causes a significant inhibition of osteoclastogenesis of RAW 264.7 cells. It is assumed that it is an increased secretion of the cytokine OPG that is primarily involved in the reduction of the osteoclastogenesis of the RAW 264.7 cells. It is proposed that silicate might have the potential to stimulate osteogenesis in vivo and perhaps to ameliorate osteoporotic disorders.

  14. Antioxidant alpha-lipoic acid inhibits osteoclast differentiation by reducing nuclear factor-kappaB DNA binding and prevents in vivo bone resorption induced by receptor activator of nuclear factor-kappaB ligand and tumor necrosis factor-alpha.

    PubMed

    Kim, Hyon Jong; Chang, Eun-Ju; Kim, Hyun-Man; Lee, Seung Bok; Kim, Hyun-Duck; Su Kim, Ghi; Kim, Hong-Hee

    2006-05-01

    The relationship between oxidative stress and bone mineral density or osteoporosis has recently been reported. As bone loss occurring in osteoporosis and inflammatory diseases is primarily due to increases in osteoclast number, reactive oxygen species (ROS) may be relevant to osteoclast differentiation, which requires receptor activator of nuclear factor-kappaB ligand (RANKL). Tumor necrosis factor-alpha (TNF-alpha) frequently present in inflammatory conditions has a profound synergy with RANKL in osteoclastogenesis. In this study, we investigated the effects of alpha-lipoic acid (alpha-LA), a strong antioxidant clinically used for some time, on osteoclast differentiation and bone resorption. At concentrations showing no growth inhibition, alpha-LA potently suppressed osteoclastogenesis from bone marrow-derived precursor cells driven either by a high-dose RANKL alone or by a low-dose RANKL plus TNF-alpha (RANKL/TNF-alpha). alpha-LA abolished ROS elevation by RANKL or RANKL/TNF-alpha and inhibited NF-kappaB activation in osteoclast precursor cells. Specifically, alpha-LA reduced DNA binding of NF-kappaB but did not inhibit IKK activation. Furthermore, alpha-LA greatly suppressed in vivo bone loss induced by RANKL or TNF-alpha in a calvarial remodeling model. Therefore, our data provide evidence that ROS plays an important role in osteoclast differentiation through NF-kappaB regulation and the antioxidant alpha-lipoic acid has a therapeutic potential for bone erosive diseases.

  15. Chlorogenic acid inhibits osteoclast differentiation and bone resorption by down-regulation of receptor activator of nuclear factor kappa-B ligand-induced nuclear factor of activated T cells c1 expression.

    PubMed

    Kwak, Sung Chul; Lee, Cheol; Kim, Ju-Young; Oh, Hyun Mee; So, Hong-Seob; Lee, Myeung Su; Rho, Mun Chual; Oh, Jaemin

    2013-01-01

    Excessive osteoclastic bone resorption plays a critical role in inflammation-induced bone loss such as rheumatoid arthritis and periodontal bone erosion. Therefore, identification of osteoclast targeted-agents may be a therapeutic approach to the treatment of pathological bone loss. In this study, we isolated chlorogenic acid (CGA) from fructus of Gardenia jasminoides to discover anti-bone resorptive agents. CGA is a polyphenol with anti-inflammatory and anti-oxidant activities, however, its effects on osteoclast differentiation is unknown. Thus, we investigated the effect of CGA in receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL)-induced osteoclast differentiation and RANKL signaling. CGA dose-dependently inhibited RANKL-mediated osteoclast differentiation in bone marrow macrophages (BMMs) without any evidence of cytotoxicity. CGA inhibited the phosphorylation of p38, Akt, extracellular signal-regulated kinase (ERK), and inhibitor of nuclear factor-kappa B (IκB), and IκB degradation by RANKL treatment. CGA suppressed the mRNA expression of nuclear factor of activated T cells c1 (NFATc1), TRAP and OSCAR in RANKL-treated bone marrow macrophages (BMMs). Also, overexpression of NFATc1 in BMMs blocked the inhibitory effect of CGA on RANKL-mediated osteoclast differentiation. Furthermore, to evaluate the effects of CGA in vivo, lipopolysaccharide (LPS)-induced bone erosion study was carried out. CGA remarkably attenuated LPS-induced bone loss based on micro-computed tomography and histologic analysis of femurs. Taken together, our findings suggest that CGA may be a potential treatment option for osteoclast-related diseases with inflammatory bone destruction.

  16. Glucocorticoids suppress bone formation via the osteoclast.

    PubMed

    Kim, Hyun-Ju; Zhao, Haibo; Kitaura, Hideki; Bhattacharyya, Sandip; Brewer, Judson A; Muglia, Louis J; Ross, F Patrick; Teitelbaum, Steven L

    2006-08-01

    The pathogenesis of glucocorticoid-induced (GC-induced) bone loss is unclear. For example, osteoblast apoptosis is enhanced by GCs in vivo, but they stimulate bone formation in vitro. This conundrum suggests that an intermediary cell transmits a component of the bone-suppressive effects of GCs to osteoblasts in the intact animal. Bone remodeling is characterized by tethering of the activities of osteoclasts and osteoblasts. Hence, the osteoclast is a potential modulator of the effect of GCs on osteoblasts. To define the direct impact of GCs on bone-resorptive cells, we compared the effects of dexamethasone (DEX) on WT osteoclasts with those derived from mice with disruption of the GC receptor in osteoclast lineage cells (GRoc-/- mice). While the steroid prolonged longevity of osteoclasts, their bone-degrading capacity was suppressed. The inhibitory effect of DEX on bone resorption reflects failure of osteoclasts to organize their cytoskeleton in response to M-CSF. DEX specifically arrested M-CSF activation of RhoA, Rac, and Vav3, each of which regulate the osteoclast cytoskeleton. In all circumstances GRoc-/- mice were spared the impact of DEX on osteoclasts and their precursors. Consistent with osteoclasts modulating the osteoblast-suppressive effect of DEX, GRoc-/- mice are protected from the steroid's inhibition of bone formation.

  17. Triterpenoid Saponin W3 from Anemone flaccida Suppresses Osteoclast Differentiation through Inhibiting Activation of MAPKs and NF-κB Pathways

    PubMed Central

    Kong, Xiangying; Yang, Yue; Wu, Wenbin; Wan, Hongye; Li, Xiaomin; Zhong, Michun; Su, Xiaohui; Jia, Shiwei; Lin, Na

    2015-01-01

    Excessive bone resorption by osteoclasts within inflamed joints is the most specific hallmark of rheumatoid arthritis. A. flaccida has long been used for the treatment of arthritis in folk medicine of China; however, the active ingredients responsible for the anti-arthritis effects of A. flaccida are still elusive. In this study, W3, a saponin isolated from the extract of A. flaccida was identified as the major active ingredient by using an osteoclast formation model induced by receptor activator of nuclear factor kappa-B ligand (RANKL). W3 dose-dependently suppressed the actin ring formation and lacunar resorption. Mechanistic investigation revealed that W3 inhibited the RANKL-induced TRAF6 expression, decreased phosphorylation of mitogen-activated protein kinases (MAPKs) and IκB-α, and suppressed NF-κB p65 DNA binding activity. Furthermore, W3 almost abrogated the expression of c-Fos and nuclear factor of activated T cells (NFATc1). Therefore, our results suggest that W3 is a potential agent for treating lytic bone diseases although further evaluation in vivo and in clinical trials is needed. PMID:26327814

  18. The Free Fatty Acid Receptor G Protein-coupled Receptor 40 (GPR40) Protects from Bone Loss through Inhibition of Osteoclast Differentiation*

    PubMed Central

    Wauquier, Fabien; Philippe, Claire; Léotoing, Laurent; Mercier, Sylvie; Davicco, Marie-Jeanne; Lebecque, Patrice; Guicheux, Jérôme; Pilet, Paul; Miot-Noirault, Elisabeth; Poitout, Vincent; Alquier, Thierry; Coxam, Véronique; Wittrant, Yohann

    2013-01-01

    The mechanisms linking fat intake to bone loss remain unclear. By demonstrating the expression of the free fatty acid receptor G-coupled protein receptor 40 (GPR40) in bone cells, we hypothesized that this receptor may play a role in mediating the effects of fatty acids on bone remodeling. Using micro-CT analysis, we showed that GPR40−/− mice exhibit osteoporotic features suggesting a positive role of GPR40 on bone density. In primary cultures of bone marrow, we showed that GW9508, a GRP40 agonist, abolished bone-resorbing cell differentiation. This alteration of the receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation occurred via the inhibition of the nuclear factor κB (NF-κB) signaling pathway as demonstrated by decrease in gene reporter activity, inhibitor of κB kinase (IKKα/β) activation, inhibitor of κB (IkBα) phosphorylation, and nuclear factor of activated T cells 1 (NFATc1) expression. The GPR40-dependent effect of GW9508 was confirmed using shRNA interference in osteoclast precursors and GPR40−/− primary cell cultures. In addition, in vivo administration of GW9508 counteracted ovariectomy-induced bone loss in wild-type but not GPR40−/− mice, enlightening the obligatory role of the GPR40 receptor. Then, in a context of growing prevalence of metabolic and age-related bone disorders, our results demonstrate for the first time in translational approaches that GPR40 is a relevant target for the design of new nutritional and therapeutic strategies to counter bone complications. PMID:23335512

  19. The genetic ablation or pharmacological inhibition of TRPV1 signalling is beneficial for the restoration of quiescent osteoclast activity in ovariectomized mice

    PubMed Central

    Rossi, F; Bellini, G; Torella, M; Tortora, C; Manzo, I; Giordano, C; Guida, F; Luongo, L; Papale, F; Rosso, F; Nobili, B; Maione, S

    2014-01-01

    Background and Purpose Osteoporosis is a condition characterized by a decrease in bone density, which decreases its strength and results in fragile bones. The endocannabinoid/endovanilloid system has been shown to be involved in the regulation of skeletal remodelling. The aim of this study was to investigate the possible modulation of bone mass mediated by the transient receptor potential vanilloid type 1 channel (TRPV1) in vivo and in vitro. Experimental Approach A multidisciplinary approach, including biomolecular, biochemical and morphological analysis, was used to investigate the involvement of TRPV1 in changes in bone density in vivo and osteoclast activity in vitro, in wild-type and Trpv1−/− mice, that had undergone ovariectomy or had a sham operation. Key Results Genetic deletion of Trpv1 as well as pharmacological inhibition/desensitization of TRPV1 signalling dramatically reduced the osteoclast activity in vitro and prevented the ovariectomy-induced bone loss in vivo, whereas the expression of cannabinoid type 2 (CB2) receptors was increased. Conclusions and Implications These findings highlight the pivotal role TRPV1 channels play in bone resorption and suggest a possible cross-talk between TRPV1 and CB2 receptors. Based on these results, hybrid compounds acting on both TRPV1 and CB2 receptors in an opposite manner could provide a future pharmacological tool for the treatment of diseases associated with disturbances in the bone remodelling process. Linked Articles This article is part of a themed section on the pharmacology of TRP channels. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-10 PMID:24308803

  20. Treatment with hydrogen molecules prevents RANKL-induced osteoclast differentiation associated with inhibition of ROS formation and inactivation of MAPK, AKT and NF-kappa B pathways in murine RAW264.7 cells.

    PubMed

    Li, Dong-Zhu; Zhang, Qing-Xiang; Dong, Xiao-Xian; Li, Huai-Dong; Ma, Xin

    2014-09-01

    The bone protective effects of the hydrogen molecule (H2) have been demonstrated in several osteoporosis models while the underlying molecular mechanism has remained unclear. Osteoclast differentiation is an important factor related to the pathogenesis of bone-loss related diseases. In this work, we evaluated the effects of incubation with H2 on receptor activator of NFκB ligand (RANKL)-induced osteoclast differentiation. We found that treatment with H2 prevented RANKL-induced osteoclast differentiation in RAW264.7 cells and BMMs. Treatment with H2 inhibits the ability to form resorption pits of BMMs stimulated by RANKL. Treatment with H2 reduced mRNA levels of osteoclast-specific markers including tartrate resistant acid phosphatase, calcitonin receptor, cathepsin K, metalloproteinase-9, carbonic anhydrase typeII, and vacuolar-type H(+)-ATPase. Treatment with H2 decreased intracellular reactive oxygen species (ROS) formation, suppressed NADPH oxidase activity, down-regulated Rac1 activity and Nox1 expression, reduced mitochondrial ROS formation, and enhanced nuclear factor E2-related factor 2 nuclear translocation and heme oxygenase-1 activity. In addition, treatment with H2 suppressed RANKL-induced expression of nuclear factor of activated T cells c1 and c-Fos. Furthermore, treatment with H2 suppressed NF-κB activation and reduced phosphorylation of p38, extracellular signal-regulated kinase, c-Jun-N-terminal kinase, and protein kinases B (AKT) stimulated with RANKL. In conclusion, hydrogen molecules prevented RANKL-induced osteoclast differentiation associated with inhibition of reactive oxygen species formation and inactivation of NF-κB, mitogen-activated protein kinase and AKT pathways.

  1. Reactive oxygen species are required for zoledronic acid-induced apoptosis in osteoclast precursors and mature osteoclast-like cells

    PubMed Central

    Tai, Ta-Wei; Chen, Ching-Yu; Su, Fong-Chin; Tu, Yuan-Kun; Tsai, Tsung-Ting; Lin, Chiou-Feng; Jou, I.-Ming

    2017-01-01

    Inhibiting osteoclasts and osteoclast precursors to reduce bone resorption is an important strategy to treat osteoclast-related diseases, such as osteoporosis, inflammatory bone loss, and malignant bone metastasis. However, the mechanism by which apoptosis is induced in the osteoclasts and their precursors are not completely understood. Here, we used nitrogen-containing bisphosphonate zoledronic acid (ZA) to induce cell apoptosis in human and murine osteoclast precursors and mature osteoclast-like cells. Caspase-3-mediated cell apoptosis occurred following the ZA (100 μM) treatment. Reactive oxygen species (ROS) were also generated in a time-dependent manner. Following knock-down of the p47phox expression, which is required for ROS activation, or co-treatment with the ROS inhibitor, N-acetyl-L-cysteine, ZA-induced apoptosis was significantly suppressed in both osteoclast precursors and mature osteoclast-like cells. The ROS-activated mitogen-activated protein kinases pathways did not trigger cell apoptosis. However, a ROS-regulated Mcl-1 decrease simultaneously with glycogen synthase kinase (GSK)-3β promoted cell apoptosis. These findings show that ZA induces apoptosis in osteoclast precursors and mature osteoclast-like cells by triggering ROS- and GSK-3β-mediated Mcl-1 down-regulation. PMID:28281643

  2. Notch signaling promotes osteoclast maturation and resorptive activity

    PubMed Central

    Ashley, Jason W; Ahn, Jaimo; Hankenson, Kurt D

    2015-01-01

    The role of Notch signaling in osteoclast differentiation is controversial with conflicting experimental evidence indicating both stimulatory and inhibitory roles. Differences in experimental protocols and in vivo versus in vitro models may explain the discrepancies between studies. In this study, we investigated cell autonomous roles of Notch signaling in osteoclast differentiation and function by altering Notch signaling during osteoclast differentiation using stimulation with immobilized ligands Jagged1 or Delta-like1 or by suppression with γ-secretase inhibitor DAPT or transcriptional inhibitor SAHM1. Stimulation of Notch signaling in committed osteoclast precursors resulted in larger osteoclasts with a greater number of nuclei and resorptive activity whereas suppression resulted in smaller osteoclasts with fewer nuclei and suppressed resorptive activity. Conversely, stimulation of Notch signaling in osteoclast precursors prior to induction of osteoclastogenesis resulted in fewer osteoclasts. Our data support a mechanism of context-specific Notch signaling effects wherein Notch stimulation inhibits commitment to osteoclast differentiation, but enhances the maturation and function of committed precursors. PMID:25914241

  3. Methyl Gallate Inhibits Osteoclast Formation and Function by Suppressing Akt and Btk-PLCγ2-Ca2+ Signaling and Prevents Lipopolysaccharide-Induced Bone Loss

    PubMed Central

    Baek, Jong Min; Kim, Ju-Young; Lee, Chang Hoon; Yoon, Kwon-Ha; Lee, Myeung Su

    2017-01-01

    In the field of bone research, various natural derivatives have emerged as candidates for osteoporosis treatment by targeting abnormally elevated osteoclastic activity. Methyl gallate, a plant-derived phenolic compound, is known to have numerous pharmacological effects against inflammation, oxidation, and cancer. Our purpose was to explore the relation between methyl gallate and bone metabolism. Herein, we performed screening using methyl gallate by tartrate resistant acid phosphatase (TRAP) staining and revealed intracellular mechanisms responsible for methyl gallate-mediated regulation of osteoclastogenesis by Western blotting and quantitative reverse transcription polymerase chain reaction (RT-PCR). Furthermore, we assessed the effects of methyl gallate on the characteristics of mature osteoclasts. We found that methyl gallate significantly suppressed osteoclast formation through Akt and Btk-PLCγ2-Ca2+ signaling. The blockade of these pathways was confirmed through transduction of cells with a CA-Akt retrovirus and evaluation of Ca2+ influx intensity (staining with Fluo-3/AM). Indeed, methyl gallate downregulated the formation of actin ring-positive osteoclasts and resorption pit areas. In agreement with in vitro results, we found that administration of methyl gallate restored osteoporotic phenotype stimulated by acute systemic injection of lipopolysaccharide in vivo according to micro-computed tomography and histological analysis. Our data strongly indicate that methyl gallate may be useful for the development of a plant-based antiosteoporotic agent. PMID:28272351

  4. Suppression of T cell-induced osteoclast formation

    SciTech Connect

    Karieb, Sahar; Fox, Simon W.

    2013-07-12

    Highlights: •Genistein and coumestrol prevent activated T cell induced osteoclast formation. •Anti-TNF neutralising antibodies prevent the pro-osteoclastic effect of activated T cells. •Phytoestrogens inhibit T cell derived TNF alpha and inflammatory cytokine production. •Phytoestrogens have a broader range of anti-osteoclastic actions than other anti-resorptives. -- Abstract: Inhibition of T cell derived cytokine production could help suppress osteoclast differentiation in inflammatory skeletal disorders. Bisphosphonates are typically prescribed to prevent inflammatory bone loss but are not tolerated by all patients and are associated with an increased risk of osteonecrosis of the jaw. In light of this other anti-resorptives such as phytoestrogens are being considered. However the effect of phytoestrogens on T cell-induced osteoclast formation is unclear. The effect of genistein and coumestrol on activated T cell-induced osteoclastogenesis and cytokine production was therefore examined. Concentrations of genistein and coumestrol (10{sup −7} M) previously shown to directly inhibit osteoclast formation also suppressed the formation of TRAP positive osteoclast induced by con A activated T cells, which was dependent on inhibition of T cell derived TNF-α. While both reduced osteoclast formation their mechanism of action differed. The anti-osteoclastic effect of coumestrol was associated with a dual effect on con A induced T cell proliferation and activation; 10{sup −7} M coumestrol significantly reducing T cell number (0.36) and TNF-α (0.47), IL-1β (0.23) and IL-6 (0.35) expression, whereas genistein (10{sup −7} M) had no effect on T cell number but a more pronounced effect on T cell differentiation reducing expression of TNF-α (0.49), IL-1β (0.52), IL-6 (0.71) and RANKL (0.71). Phytoestrogens therefore prevent the pro-osteoclastic action of T cells suggesting they may have a role in the control of inflammatory bone loss.

  5. Regulation of RANKL-induced osteoclastic differentiation by vascular cells.

    PubMed

    Tintut, Yin; Abedin, Moeen; Cho, John; Choe, Andrea; Lim, Jina; Demer, Linda L

    2005-08-01

    Vascular calcification is a regulated process of biomineralization resembling osteogenesis. Many bone-related factors, including resorptive osteoclast-like cells, although in low abundance, have been found in calcified atherosclerotic lesions. The regulatory mechanisms governing them in the vasculature, however, are not clear. Previously, we found that calcifying vascular cells (CVC), a subpopulation of bovine aortic smooth muscle cells (BASMC), undergo osteoblastic differentiation and form mineralized nodules. Since osteoblasts and marrow stromal preosteoblasts regulate osteoclastic differentiation in bone, we hypothesized that vascular cells also regulate differentiation of osteoclastic precursors in the artery wall. Peripheral blood monocytes, which are osteoclast precursors, were co-cultured with CVC or BASMC. Results showed that monocytes co-cultured with both of the vascular cells yielded fewer resorption pits than monocytes cultured alone. Furthermore, monocytes co-cultured with CVC had fewer resorption pits than those co-cultured with BASMC. Conditioned media from the vascular cells also inhibited resorptive activity of monocytes suggesting that the inhibitory effect was mediated in part by soluble factors. Compared with BASMC, CVC had lower mRNA expression for osteopontin, which promotes osteoclast attachment, but greater mRNA expression for the soluble inhibitory cytokine, IL-18. Increased osteoclastic differentiation was observed when neutralizing antibody to IL-18 receptor was added to the cultures of preosteoclasts with CVC conditioned media. Osteoprotegerin, another osteoclast inhibitory cytokine, was expressed at similar levels in both cultures. These results suggest that vascular cells inhibit osteoclastic differentiation, and that CVC have greater inhibitory effects than BASMC.

  6. Retinoid X receptors orchestrate osteoclast differentiation and postnatal bone remodeling

    PubMed Central

    Menéndez-Gutiérrez, María P.; Rőszer, Tamás; Fuentes, Lucía; Núñez, Vanessa; Escolano, Amelia; Redondo, Juan Miguel; De Clerck, Nora; Metzger, Daniel; Valledor, Annabel F.; Ricote, Mercedes

    2015-01-01

    Osteoclasts are bone-resorbing cells that are important for maintenance of bone remodeling and mineral homeostasis. Regulation of osteoclast differentiation and activity is important for the pathogenesis and treatment of diseases associated with bone loss. Here, we demonstrate that retinoid X receptors (RXRs) are key elements of the transcriptional program of differentiating osteoclasts. Loss of RXR function in hematopoietic cells resulted in formation of giant, nonresorbing osteoclasts and increased bone mass in male mice and protected female mice from bone loss following ovariectomy, which induces osteoporosis in WT females. The increase in bone mass associated with RXR deficiency was due to lack of expression of the RXR-dependent transcription factor v-maf musculoaponeurotic fibrosarcoma oncogene family, protein B (MAFB) in osteoclast progenitors. Evaluation of osteoclast progenitor cells revealed that RXR homodimers directly target and bind to the Mafb promoter, and this interaction is required for proper osteoclast proliferation, differentiation, and activity. Pharmacological activation of RXRs inhibited osteoclast differentiation due to the formation of RXR/liver X receptor (LXR) heterodimers, which induced expression of sterol regulatory element binding protein-1c (SREBP-1c), resulting in indirect MAFB upregulation. Our study reveals that RXR signaling mediates bone homeostasis and suggests that RXRs have potential as targets for the treatment of bone pathologies such as osteoporosis. PMID:25574839

  7. Augmented LPS Responsiveness in Type 1 Diabetes-Derived Osteoclasts

    PubMed Central

    Catalfamo, Dana L.; Calderon, Nadia L.; Harden, Scott W.; Sorenson, Heather L.; Neiva, Kathleen G.; Wallet, Shannon M.

    2012-01-01

    Bone abnormalities are frequent co-morbidities of type 1 diabetes [T1D] and are principally mediated by osteoblasts and osteoclasts which in turn are regulated by immunologic mediators. While decreased skeletal health in T1D involves alterations in osteoblast maturation and function, the affect of altered immune function on osteoclasts in T1D-associated bone and joint pathologies is less understood. Here T1D-associated osteoclast-specific differentiation and function in the presence and absence of inflammatory mediators was characterized utilizing bone marrow-derived osteoclasts [BM-OCs] isolated from non-obese diabetic [NOD] mice, a model for spontaneous autoimmune diabetes with pathology similar to individuals with T1D. Differentiation and osteoclast-mediated bone resorption were evaluated along with cathepsin K, MMP-9, and immune soluble mediator expression. The affect of LPS, a pro-inflammatory cytokine cocktail, and NOD-derived conditioned supernatants on BM-OC function was also determined. Although NOD BM-OCs cultures contained smaller osteoclasts, they resorbed more bone concomitant with increased cathepsin K, MMP-9 and pro-osteoclastogenic mediator expression. NOD BM-OCs also displayed an inhibition of LPS-induced deactivation that was not a result of soluble mediators produced by NOD BM-OCs, although a pro-inflammatory milieu did enhance NOD BM-OCs bone resorption. Together these data indicate that osteoclasts from a T1D mouse model hyper-respond to RANK-L resulting in excessive bone degradation via enhanced cathepsin K and MMP-9 secretion concomitant with an increased expression of pro-osteoclastic soluble mediators. Our data also suggest that inhibition of LPS-induced deactivation in NOD-derived BM-OC cultures is most likely due to NOD osteoclast responsiveness rather than LPS-induced expression of soluble mediators. PMID:22718269

  8. Enhancing Osteoclastic Resorption for the Prevention and Treatment of Heterotopic Ossification

    DTIC Science & Technology

    2015-03-01

    titration of OPG for inhibition of RANKL-induced osteoclast formation by RAW264.7 cells. TRAP stain (violet) for osteoclast formation. Multinuclear...caALK2 HO model (Figures 2A & B and Figures 3A & B). We have adopted a sensitive passive range-of-motion assay based on one presented by Paul Yu2...orthotopic bone), were stained for the osteoclast marker tartrate-resistant acid phosphatase (TRAP) (Figure 4

  9. Implications of osteoblast-osteoclast interactions in the management of osteoporosis by antiresorptive agents denosumab and odanacatib.

    PubMed

    Sims, Natalie A; Ng, Kong Wah

    2014-03-01

    Antiresorptive agents, used in the treatment of osteoporosis, inhibit either osteoclast formation or function. However, with these approaches, osteoblast activity is also reduced because of the loss of osteoclast-derived coupling factors that serve to stimulate bone formation. This review discusses how osteoclast inhibition influences osteoblast function, comparing the actions of an inhibitor of osteoclast formation [anti-RANKL/Denosumab (DMAB)] with that of a specific inhibitor of osteoclastic cathepsin K activity [Odanacatib (ODN)]. Denosumab rapidly and profoundly, but reversibly, reduces bone formation. In contrast, preclinical studies and clinical trials of ODN showed that bone formation at some skeletal sites was preserved although resorption was reduced. This preservation of bone formation appears to be due to effects of coupling factors, secreted by osteoclasts and released from demineralized bone matrix. This indicates that bone resorptive activities of osteoclasts are separable from their coupling activities.

  10. Granulocyte Colony-Stimulating Factor Induces Osteoblast Inhibition by B Lymphocytes and Osteoclast Activation by T Lymphocytes during Hematopoietic Stem/Progenitor Cell Mobilization.

    PubMed

    Li, Sidan; Li, Tianshou; Chen, Yongbing; Nie, Yinchao; Li, Changhong; Liu, Lanting; Li, Qiaochuan; Qiu, Lugui

    2015-08-01

    In the bone marrow (BM), hematopoietic stem and progenitor cells (HSPCs) reside in specialized niches near osteoblast cells at the endosteum. HSPCs that egress to peripheral blood are widely used for transplant, and mobilization is most commonly performed with recombinant human granulocyte colony-stimulating factor (G-CSF). However, the cellular targets of G-CSF that initiate the mobilization cascade and bone remodeling are not completely understood. Here, we examined whether T and B lymphocytes modulate the bone niche and influence HSPC mobilization. We used T and B defective mice to show that G-CSF-induced mobilization of HSPCs correlated with B lymphocytes but poorly with T lymphocytes. In addition, we found that defective B lymphocytes prevent G-CSF-mediated osteoblast disruption, and further study showed BM osteoblasts were reduced coincident with mobilization, induced by elevated expression of dickkopf1 of BM B lymphocytes. BM T cells were also involved in G-CSF-induced osteoclast activation by regulating the Receptor Activator of Nuclear Factor-κ B Ligand/Osteoprotegerin (RANKL/OPG) axis. These data provide evidence that BM B and T lymphocytes play a role in G-CSF-induced HSPC mobilization by regulating bone remodeling.

  11. Inhibitor of DASH proteases affects expression of adhesion molecules in osteoclasts and reduces myeloma growth and bone disease.

    PubMed

    Pennisi, Angela; Li, Xin; Ling, Wen; Khan, Sharmin; Gaddy, Dana; Suva, Larry J; Barlogie, Bart; Shaughnessy, John D; Aziz, Nazneen; Yaccoby, Shmuel

    2009-06-01

    Dipeptidyl peptidase (DPP) IV activity and/or structure homologues (DASH) are serine proteases implicated in tumourigenesis. We previously found that a DASH protease, fibroblast activation protein (FAP), was involved in osteoclast-induced myeloma growth. Here we further demonstrated expression of various adhesion molecules in osteoclasts cultured alone or cocultured with myeloma cells, and tested the effects of DASH inhibitor, PT-100, on myeloma cell growth, bone disease, osteoclast differentiation and activity, and expression of adhesion molecules in osteoclasts. PT-100 had no direct effects on viability of myeloma cells or mature osteoclasts, but significantly reduced survival of myeloma cells cocultured with osteoclasts. Real-time PCR array for 85 adhesion molecules revealed upregulation of 17 genes in osteoclasts after coculture with myeloma cells. Treatment of myeloma/osteoclast cocultures with PT-100 significantly downregulated 18 of 85 tested genes in osteoclasts, some of which are known to play roles in tumourigenesis and osteoclastogenesis. PT-100 also inhibited osteoclast differentiation and subsequent pit formation. Resorption activity of mature osteoclasts and differentiation of osteoblasts were not affected by PT-100. In primary myelomatous severe combined immunodeficient (SCID)-hu mice PT-100 reduced osteoclast activity, bone resorption and tumour burden. These data demonstrated that DASH proteases are involved in myeloma bone disease and tumour growth.

  12. Osteoclast Inhibitory Peptide-1 Therapy for Paget’s Disease

    DTIC Science & Technology

    2010-08-01

    precursor growth in methyl - cellulose cultures as described (3). Consistent with our previous findings that OIP-1 treatment inhibits CFU-GM colony...cells were cultured with hGM-CSF (10 ng/ml) in 1.2% methyl cellulose to form CFU-GM colonies. At the end of a 7-d culture period, CFU-GM colonies...inhibits osteoclast differentiation. Confocal microscopy revealed colocalization of OIP-1 with FcRIIB in osteoclasts, and we observed that OIP-1 carboxy

  13. Lutein, a carotenoid, suppresses osteoclastic bone resorption and stimulates bone formation in cultures.

    PubMed

    Tominari, Tsukasa; Matsumoto, Chiho; Watanabe, Kenta; Hirata, Michiko; Grundler, Florian M W; Inada, Masaki; Miyaura, Chisato

    2017-02-01

    Lutein, a member of the xanthophyll family of carotenoids, suppressed IL-1-induced osteoclast differentiation and bone resorption. The survival of mature osteoclasts was also suppressed by lutein in cultures. When lutein was added to the cultures of osteoblasts, lutein enhanced the formation of mineralized bone nodules by elevating BMP2 expression and inhibiting sclerostin expression. Lutein may be beneficial for bone health.

  14. Cytokine expression in feline osteoclastic resorptive lesions.

    PubMed

    DeLaurier, A; Allen, S; deFlandre, C; Horton, M A; Price, J S

    2002-01-01

    Feline osteoclastic resorptive lesions (FORL) of the teeth are common in cats, and lead to pain, destruction of the periodontal ligament, and tooth loss. The expression of interleukin (IL)-1 beta and IL-6 mRNA was higher in teeth with FORL than in normal teeth (P<0.01 and P<0.001, respectively), but no such differences were found between pathological and normal gingival tissue samples. There were no differences between teeth affected with FORL and normal teeth in respect of the expression of receptor activator of NF kappa B ligand (RANKL) mRNA or osteoprotegerin (OPG) mRNA. However, OPG mRNA expression was higher in gingival tissue associated with teeth affected with FORL than in normal gingival tissue (P<0.05), whereas the reverse was true of RANKL mRNA expression (P<0.05). OPG mRNA expression was significantly higher in teeth than in femoral and alveolar bone (P<0.001). RANKL and OPG mRNAs were detected in all tissues examined. The data suggest that the elevated expression of IL-l beta and IL-6 mRNA plays a role in the mediation of osteoclast activity in advanced FORL. In contrast, OPG and RANKL do not appear to regulate osteoclasts in advanced disease. The results also suggest that OPG and RANKL mRNA play a role in mediating inflammatory responses in gingival cells, and that OPG has an inhibiting effect on tooth resorption.

  15. Selective Estrogen Receptor Modulators Suppress Hif1α Protein Accumulation in Mouse Osteoclasts

    PubMed Central

    Iwasaki, Ryotaro; Kobayashi, Tami; Watanabe, Ryuichi; Oike, Takatsugu; Toyama, Yoshiaki; Matsumoto, Morio; Nakamura, Masaya; Kawana, Hiromasa; Nakagawa, Taneaki; Miyamoto, Takeshi

    2016-01-01

    Anti-bone resorptive drugs such as bisphosphonates, the anti-RANKL antibody (denosumab), or selective estrogen receptor modulators (SERMs) have been developed to treat osteoporosis. Mechanisms underlying activity of bisphosphonates or denosumab in this context are understood, while it is less clear how SERMs like tamoxifen, raloxifene, or bazedoxifene inhibit bone resorption. Recently, accumulation of hypoxia inducible factor 1 alpha (Hif1α) in osteoclasts was shown to be suppressed by estrogen in normal cells. In addition, osteoclast activation and decreased bone mass seen in estrogen-deficient conditions was found to require Hif1α. Here, we used western blot analysis of cultured osteoclast precursor cells to show that tamoxifen, raloxifene, or bazedoxifene all suppress Hif1α protein accumulation. The effects of each SERM on osteoclast differentiation differed in vitro. Our results suggest that interventions such as the SERMs evaluated here could be useful to inhibit Hif1α and osteoclast activity under estrogen-deficient conditions. PMID:27802325

  16. RIP140 in monocytes/macrophages regulates osteoclast differentiation and bone homeostasis

    PubMed Central

    Lee, Bomi; Iwaniec, Urszula T.; Turner, Russell T.; Lin, Yi-Wei; Clarke, Bart L.; Gingery, Anne

    2017-01-01

    Osteolytic bone diseases, such as osteoporosis, are characterized by diminished bone quality and increased fracture risk. The therapeutic challenge remains to maintain bone homeostasis with a balance between osteoclast-mediated resorption and osteoblast-mediated formation. Osteoclasts are formed by the fusion of monocyte/macrophage-derived precursors. Here we report, to our knowledge for the first time, that receptor-interacting protein 140 (RIP140) expression in osteoclast precursors and its protein regulation are crucial for osteoclast differentiation, activity, and coupled bone formation. In mice, monocyte/macrophage–specific knockdown of RIP140 (mϕRIP140KD) resulted in a cancellous osteopenic phenotype with significantly increased bone resorption and reduced bone formation. Osteoclast precursors isolated from mϕRIP140KD mice had significantly increased differentiation potential. Furthermore, conditioned media from mϕRIP140KD primary osteoclast cultures significantly suppressed osteoblast differentiation. This suppressive activity was effectively and rapidly terminated by specific Syk-stimulated RIP140 protein degradation. Mechanistic analysis revealed that RIP140 functions primarily by inhibiting osteoclast differentiation through forming a transcription-suppressor complex with testicular receptor 4 (TR4) to repress osteoclastogenic genes. These data reveal that monocyte/macrophage RIP140/TR4 complexes may serve as a critical transcription regulatory complex maintaining homeostasis of osteoclast differentiation, activity, and coupling with osteoblast formation. Accordingly, we propose a potentially novel therapeutic strategy, specifically targeting osteoclast precursor RIP140 protein in osteolytic bone diseases.

  17. Paxillin Contracts the Osteoclast Cytoskeleton

    PubMed Central

    Zou, Wei; DeSelm, Carl J.; Broekelmann, Thomas J.; Mecham, Robert P.; Pol, Scott Vande; Choi, Kyunghee; Teitelbaum, Steven L.

    2012-01-01

    Osteoclastic bone resorption depends upon the cell’s ability to organize its cytoskeleton via the αvβ3 integrin and osteoclastogenic cytokines. Since paxillin associates with αvβ3, we asked if it participates in skeletal degradation. Unlike deletion of other αvβ3-associated cytoskeleton-regulating molecules, which impairs the cell’s ability to spread, paxillin-deficient (Pax−/−) osteoclasts, generated from embryonic stem cells, “superspread” in response to RANK ligand (RANKL) and form large, albeit dynamically atypical, actin bands. Despite their increased size, Pax−/− osteoclasts resorb bone poorly, excavating pits approximately 1/3 normal depth. Ligand-occupied αvβ3 or RANKL promotes paxillin serine and tyrosine phosphorylation, the latter via c-Src. The abnormal Pax−/− phenotype is rescued by WT paxillin but not that lacking its LD4 domain. In keeping with the appearance of mutant osteoclasts, WT paxillin, overexpressed in WT cells, contracts the cytoskeleton. Most importantly, the abnormal phenotype of Pax−/− osteoclasts likely represents failed RANKL-mediated delivery of myosin IIA to the actin cytoskeleton via the paxillin LD4 domain but is independent of tyrosine phosphorylation. Thus, in response to RANKL, paxillin associates with myosin IIA to contract the osteoclast cytoskeleton thereby promoting its bone-degrading capacity. PMID:22807029

  18. Estrogens maintain bone mass by regulating expression of genes controlling function and life span in mature osteoclasts.

    PubMed

    Imai, Yuuki; Youn, Ming-Young; Kondoh, Shino; Nakamura, Takashi; Kouzmenko, Alexander; Matsumoto, Takahiro; Takada, Ichiro; Takaoka, Kunio; Kato, Shigeaki

    2009-09-01

    Estrogens play a key role in regulation of bone mass and strength by controlling activity of bone-forming osteoblasts and bone-resorbing osteoclasts. Cellular effects of estrogens are mediated predominantly by the action of estrogen receptor alpha (ERalpha). In earlier studies, ablation of the ERalpha gene in mice did not result in osteoporotic phenotypes due to systemic endocrine disturbance and compensatory effects of elevated levels of testosterone. Despite the relatively well-established effects in osteoblasts, little is known about the direct action of estrogen in osteoclasts. Development in the last decade of more sophisticated genetic manipulation approaches opened new possibilities to explore cell-specific roles of nuclear receptors in bone tissue. Recently, we have generated osteoclast-specific ERalpha gene knockout mice and shown that in vivo estrogens directly regulate the life span of mature osteoclasts by inducing the expression of pro-apoptotic Fas ligand (FasL). Inhibitory effects of estrogens on osteoclast function were further studied in vitro. We observed sufficiently detectable ERalpha expression in osteoclasts differentiating from primary bone marrow cells or RAW264 cells, although levels of ERalpha were decreasing during progression of the differentiation into mature osteoclasts. Treatment with estrogens led to reduction in expression of osteoclast-specific genes controlling bone resorption activity. However, estrogens did not affect the size of multinucleated osteoclasts or number of nuclei in a mature osteoclast. In conclusion, in osteoclasts, estrogens function to inhibit bone resorption activity and vitality rather than differentiation.

  19. In vitro antimicrobial activity of four Ficus carica latex fractions against resistant human pathogens (antimicrobial activity of Ficus carica latex).

    PubMed

    Aref, Houda Lazreg; Salah, Karima Bel Hadj; Chaumont, Jean Pierre; Fekih, Abdelwaheb; Aouni, Mahjoub; Said, Khaled

    2010-01-01

    Methanolic, hexanoïc, chloroformic and ethyl acetate extracts of Ficus carica latex were investigated for their in vitro antimicrobial proprieties against five bacteria species and seven strains of fungi. The green fruit latex was collected from Chott Mariam Souse, Middle East coast of Tunisia. The antimicrobial activity of the extracts was evaluated and based respectively on the inhibition zone using the disc-diffusion assay, minimal inhibition concentration (MIC) for bacterial testing and the method by calculating inhibition percentage (I%) for fungi-inhibiting activities. The methanolic extract had no effect against bacteria except for Proteus mirabilis while the ethyl acetate extract had inhibition effect on the multiplication of five bacteria species (Enterococcus fecalis, Citobacter freundei, Pseudomonas aeruginosa, Echerchia coli and Proteus mirabilis). For the opportunist pathogenic yeasts, ethyl acetate and chlorophormic fractions showed a very strong inhibition (100%); methanolic fraction had a total inhibition against Candida albicans (100%) at a concentration of 500 microg/ml and a negative effect against Cryptococcus neoformans. Microsporum canis was strongly inhibited with methanolic extract (75%) and totally with ethyl acetate extract at a concentration of 750 microg/ml. Hexanoïc extract showed medium results.

  20. Hyperglycemia Induced and Intrinsic Alterations in Type 2 Diabetes-Derived Osteoclast Function

    PubMed Central

    Catalfamo, Dana L.; Britten, Todd M.; Storch, Douglas I.; Calderon, Nadia L.; Sorenson, Heather L.; Wallet, Shannon M.

    2012-01-01

    Periodontal disease-associated alveolar bone loss is a co-morbidity of type-2-diabetes, where the roles of osteoclasts are poorly understood. Objective To evaluate osteoclast differentiation and function in the context of type-2-diabetes. Materials/Methods Bone marrow-derived osteoclasts from db/db mice, a model of type-2-diabetes, as well as human osteoclasts derived from peripheral blood of individuals with type-2-diabetes were evaluated for differentiation, resorption, and soluble mediator expression. Results While db/db mice were hyperglycemic at time of cell harvest, human participants were glycemically controlled. Although db/db cultures resulted in a higher number of larger osteoclasts, individual cell RANKL-mediated bone resorption was similar to that observed in diabetes-free OCs. Osteoclasts derived from individuals with type-2-diabetes differentiated similarly to controls with again no difference in bone resorbing capacity. Murine and human type-2-diabetes cultures both displayed inhibition of LPS-induced deactivation and increased pro-osteoclastogenic mediator expression. Conclusions Hyperglycemia plays a role in aberrant osteoclast differentiation leading to an increased capacity for bone resorption. Osteoclasts derived from murine models of and individuals with type-2-diabetes are unable to be inhibited by LPS, again leading to increased capacity for bone resorption. Here environmental and intrinsic mechanisms associated with the increased alveolar bone loss observed in periodontal patients with type-2-diabetes are described. PMID:24079914

  1. The effect of the degree of sulfation of glycosaminoglycans on osteoclast function and signaling pathways.

    PubMed

    Salbach, Juliane; Kliemt, Stefanie; Rauner, Martina; Rachner, Tilman D; Goettsch, Claudia; Kalkhof, Stefan; von Bergen, Martin; Möller, Stephanie; Schnabelrauch, Matthias; Hintze, Vera; Scharnweber, Dieter; Hofbauer, Lorenz C

    2012-11-01

    To meet the growing need for bone replacement of our aging population, development of new adaptive biomaterials is essential. Collagen and glycosaminoglycans (GAGs) such as hyaluronan (HA) and chondroitin sulfate (CS) are major components of the extracellular matrix (ECM) in bone. We manufactured native and sulfate-modified GAG matrices, evaluated how these components modulate different functions of osteoclasts, the cells that resorb bone, and analyzed the underlying mechanisms. GAGs were tested for their effects on osteoclast adhesion, viability, differentiation, morphology, and resorption as well as proteome alterations using murine RAW264.7 cells and primary human osteoclasts. Native and sulfated GAGs were stable and largely non-cytotoxic. Sulfation of GAGs led to a significant inhibition of osteoclast differentiation and resorption, which was largely dependent on the degree of sulfation of GAGs rather than the monosaccharide composition. Sulfation significantly reduced resorptive function by 14% (CS) and 43% (HA). Highly sulfated GAGs dose-dependently suppressed osteoclast differentiation, osteoclast-specific expression of TRAP, cathepsin K, SWAP-70, and OSCAR by 63-95%, and inhibited proteins involved in cytoskeletal rearrangement. In conclusion, highly sulfated GAGs significantly inhibit various functions of bone-resorbing osteoclasts. Whether these properties locally contribute to improved fracture or bone defect healing needs to be validated in vivo.

  2. Sympathetic Neurotransmitters Modulate Osteoclastogenesis and Osteoclast Activity in the Context of Collagen-Induced Arthritis

    PubMed Central

    Muschter, Dominique; Schäfer, Nicole; Stangl, Hubert; Straub, Rainer H.; Grässel, Susanne

    2015-01-01

    Excessive synovial osteoclastogenesis is a hallmark of rheumatoid arthritis (RA). Concomitantly, local synovial changes comprise neuronal components of the peripheral sympathetic nervous system. Here, we wanted to analyze if collagen-induced arthritis (CIA) alters bone marrow-derived macrophage (BMM) osteoclastogenesis and osteoclast activity, and how sympathetic neurotransmitters participate in this process. Therefore, BMMs from Dark Agouti rats at different CIA stages were differentiated into osteoclasts in vitro and osteoclast number, cathepsin K activity, matrix resorption and apoptosis were analyzed in the presence of acetylcholine (ACh), noradrenaline (NA) vasoactive intestinal peptide (VIP) and assay-dependent, adenylyl cyclase activator NKH477. We observed modulation of neurotransmitter receptor mRNA expression in CIA osteoclasts without affecting protein level. CIA stage-dependently altered marker gene expression associated with osteoclast differentiation and activity without affecting osteoclast number or activity. Neurotransmitter stimulation modulated osteoclast differentiation, apoptosis and activity. VIP, NA and adenylyl cyclase activator NKH477 inhibited cathepsin K activity and osteoclastogenesis (NKH477, 10-6M NA) whereas ACh mostly acted pro-osteoclastogenic. We conclude that CIA alone does not affect metabolism of in vitro generated osteoclasts whereas stimulation with NA, VIP plus specific activation of adenylyl cyclase induced anti-resorptive effects probably mediated via cAMP signaling. Contrary, we suggest pro-osteoclastogenic and pro-resorptive properties of ACh mediated via muscarinic receptors. PMID:26431344

  3. Ficus carica L.: Metabolic and biological screening.

    PubMed

    Oliveira, Andreia P; Valentão, Patrícia; Pereira, José A; Silva, Branca M; Tavares, Fernando; Andrade, Paula B

    2009-11-01

    Ficus carica L. is one of the earliest cultivated fruit trees. In this work, metabolite profiling was performed on the leaves, pulps and peels of two Portuguese white varieties of F. carica (Pingo de Mel and Branca Tradicional). Phenolics and organic acids profiles were determined by HPLC/DAD and HPLC/UV, respectively. All samples presented a similar phenolic profile composed by 3-O- and 5-O-caffeoylquinic acids, ferulic acid, quercetin-3-O-glucoside, quercetin-3-O-rutinoside, psoralen and bergapten. 3-O-Caffeoylquinic acid and quercetin-3-O-glucoside are described for the first time in this species. Leaves' organic acids profile presented oxalic, citric, malic, quinic, shikimic and fumaric acids, while in pulps and peels quinic acid was absent. The antioxidant potential of the different plant parts was checked. All materials exhibited activity against DPPH and nitric oxide radicals in a concentration-dependent way. However, only the leaves presented capacity to scavenge superoxide radical. Leaves were always the most effective part, which seems to be related with phenolics compounds. Additionally, acetylcholinesterase inhibitory capacity was evaluated, but no effect was observed. Antimicrobial potential was also assessed against several bacterial species, although no activity was noticed. This is the first study comparing the chemical composition and biological potential of F. carica pulps, peels and leaves.

  4. Schisantherin A suppresses osteoclast formation and wear particle-induced osteolysis via modulating RANKL signaling pathways

    SciTech Connect

    He, Yi; Zhang, Qing; Shen, Yi; Chen, Xia; Zhou, Feng; Peng, Dan

    2014-07-04

    Highlights: • Schisantherin A suppresses osteoclasts formation and function in vitro. • Schisantherin A impairs RANKL signaling pathway. • Schisantherin A suppresses osteolysis in vivo. • Schisantherin A may be used for treating osteoclast related diseases. - Abstract: Receptor activator of NF-κB ligand (RANKL) plays critical role in osteoclastogenesis. Targeting RANKL signaling pathways has been a promising strategy for treating osteoclast related bone diseases such as osteoporosis and aseptic prosthetic loosening. Schisantherin A (SA), a dibenzocyclooctadiene lignan isolated from the fruit of Schisandra sphenanthera, has been used as an antitussive, tonic, and sedative agent, but its effect on osteoclasts has been hitherto unknown. In the present study, SA was found to inhibit RANKL-induced osteoclast formation and bone resorption. The osteoclastic specific marker genes induced by RANKL including c-Src, SA inhibited OSCAR, cathepsin K and TRAP in a dose dependent manner. Further signal transduction studies revealed that SA down-regulate RANKL-induced nuclear factor-kappaB (NF-κB) signaling activation by suppressing the phosphorylation and degradation of IκBα, and subsequently preventing the NF-κB transcriptional activity. Moreover, SA also decreased the RANKL-induced MAPKs signaling pathway, including JNK and ERK1/2 posphorylation while had no obvious effects on p38 activation. Finally, SA suppressed the NF-κB and MAPKs subsequent gene expression of NFATc1 and c-Fos. In vivo studies, SA inhibited osteoclast function and exhibited bone protection effect in wear-particle-induced bone erosion model. Taken together, SA could attenuate osteoclast formation and wear particle-induced osteolysis by mediating RANKL signaling pathways. These data indicated that SA is a promising therapeutic natural compound for the treatment of osteoclast-related prosthesis loosening.

  5. Berberine Sulfate Attenuates Osteoclast Differentiation through RANKL Induced NF-κB and NFAT Pathways.

    PubMed

    Zhou, Lin; Song, Fangming; Liu, Qian; Yang, Mingli; Zhao, Jinmin; Tan, Renxiang; Xu, Jun; Zhang, Ge; Quinn, Julian M W; Tickner, Jennifer; Xu, Jiake

    2015-11-13

    Osteoporosis, a metabolic bone disease, is characterized by an excessive formation and activation of osteoclasts. Anti-catabolic treatment using natural compounds has been proposed as a potential therapeutic strategy against the osteoclast related osteolytic diseases. In this study, the activity of berberine sulfate (an orally available form of berberine) on osteoclast differentiation and its underlying molecular mechanisms of action were investigated. Using bone marrow macrophages (BMMs) derived osteoclast culture system, we showed that berberine sulfate at the dose of 0.25, 0.5 and 1 μM significantly inhibited the formation of osteoclasts. Notably, berberine sulfate at these doses did not affect the BMM viability. In addition, we observed that berberine sulfate inhibited the expression of osteoclast marker genes, including cathepsin K (Ctsk), nuclear factor of activated T cells cytoplasmic 1 (NFATc1), tartrate resistant acid phosphatase (TRAcP, Acp5) and Vacuolar-type H+-ATPase V0 subunit D2 (V-ATPase d2). Luciferase reporter gene assay and Western blot analysis further revealed that berberine sulfate inhibits receptor for activation of nuclear factor ligand (RANKL)-induced NF-κB and NFAT activity. Taken together, our results suggest that berberine sulfate is a natural compound potentially useful for the treatment of osteoporosis.

  6. Fatty acids, coumarins and polyphenolic compounds of Ficus carica L. cv. Dottato: variation of bioactive compounds and biological activity of aerial parts.

    PubMed

    Marrelli, Mariangela; Statti, Giancarlo A; Tundis, Rosa; Menichini, Francesco; Conforti, Filomena

    2014-01-01

    Leaves, bark and woody part of Ficus carica L. cultivar Dottato collected in different months were examined to assess their chemical composition, antioxidant activity and phototoxicity on C32 human melanoma cells after UVA irradiation. The phytochemical investigation revealed different composition in the coumarin, fatty acid, polyphenol and flavonoid content. The second harvest of leaves and the first harvest of the bark possessed the highest antiradical activity with IC50 values of 64.00 ± 0.59 and 67.00 ± 1.09 μg/mL, respectively. Harvest III of leaves showed the best inhibition of lipid peroxidation (IC50 = 1.48 ± 0.04 μg/mL). Leaf samples of F. carica showed also the best antiproliferative activity in comparison with bark and woody part of F. carica.

  7. Osteoclast spreading kinetics are correlated with an oscillatory activation of a calcium-dependent potassium current.

    PubMed

    Espinosa, Leon; Paret, Laurent; Ojeda, Carlos; Tourneur, Yves; Delmas, Pierre D; Chenu, Chantal

    2002-10-01

    Cell movement and spreading involve calcium-dependent processes and ionic channel activation. During bone resorption, osteoclasts alternate between spread, motile and resorptive phases. We investigated whether the electrical membrane properties of osteoclasts were linked to their membrane morphological changes. Rabbit osteoclasts were recorded by time-lapse videomicroscopy performed simultaneously with patch-clamp whole cell and single channel recordings. Original image analysis methods were developed and used to demonstrate for the first time an oscillatory activation of a spontaneous membrane current in osteoclasts, which is directly correlated to the membrane movement rate. This current was identified as a calcium-dependent potassium current (IK(Ca)) that is sensitive to both charybdotoxin and apamin and was generated by a channel with unitary conductance of approximately 25+/-2 pS. Blockade of this current also decreased osteoclast spreading and inhibited bone resorption in vitro, demonstrating a physiological role for this current in osteoclast activity. These results establish for the first time a temporal correlation between lamellipodia formation kinetics and spontaneous peaks of IK(Ca), which are both involved in the control of osteoclast spreading and bone resorption.

  8. Sinomenine induces apoptosis in RAW 264.7 cell-derived osteoclasts in vitro via caspase-3 activation

    PubMed Central

    He, Long-gang; Li, Xiang-lian; Zeng, Xiang-zhou; Duan, Heng; Wang, Song; Lei, Lin-sheng; Li, Xiao-juan; Liu, Shu-wen

    2014-01-01

    Aim: Sinomenine (SIN) is an alkaloid found in the roots and stems of Sinomenium acutum, which has been used to treat rheumatic arthritis in China and Japan. In this study we investigated the effects of SIN on osteoclast survival in vitro and the mechanisms of the actions. Methods: Mature osteoclasts were differentiated from murine monocyte/macrophage cell line RAW264.7 through incubation in the presence of receptor activator of NF-κB ligand (RANKL, 100 ng/mL) for 4 d. The cell viability was detected using the CCK-8 method. The survival and actin ring construction of the osteoclasts were scored using TRACP staining and phalloidin-FITC staining, respectively. The apoptosis of the osteoclasts was detected by DNA fragmentation and Hoechst 33258 staining, and the cell necrosis was indicated by LDH activity. The activation of caspase-3 in osteoclasts was measured using Western blotting and the caspase-3 activity colorimetric method. Results: SIN (0.25–2 mmol/L) inhibited the viability of mature osteoclasts in dose-dependent and time-dependent manners, but did not affect that of RAW264.7 cells. Consistently, SIN dose-dependently suppressed the survival of mature osteoclasts. The formation of actin ring, a marker associated with actively resorbing osteoclasts, was also impaired by the alkaloid. SIN (0.5 mmol/L) induced the apoptosis of mature osteoclasts, which was significantly attenuated in the presence of the caspase-3 inhibitor Ac-DEVD-CHO. SIN increased the cleavage of caspase-3 in mature osteoclasts in dose-dependent and time-dependent manners. Furthermore, SIN dose-dependently enhanced caspase-3 activity, which was blocked in the presence of Ac-DEVD-CHO. Conclusion: Sinomenine inhibits osteoclast survival in vitro through caspase-3-mediated apoptosis, thus it is a potential agent for treating excessive bone resorption diseases. PMID:24362325

  9. PKCβII-mediated cross-talk of TRPV1/CB2 modulates the glucocorticoid-induced osteoclast overactivity.

    PubMed

    Bellini, Giulia; Torella, Marco; Manzo, Iolanda; Tortora, Chiara; Luongo, Livio; Punzo, Francesca; Colacurci, Nicola; Nobili, Bruno; Maione, Sabatino; Rossi, Francesca

    2017-01-01

    In this study, we investigated the role of the endovanilloid/endocannabinoid system in the glucocorticoid-induced osteoclast overactivity. Receptorial and enzymatic component of the endovanilloid/endocannabinoid system are expressed in bone cells, and dysregulated when bone mass is reduced. Moreover, blockade or desensitization of vanilloid receptor 1 (TRPV1) and/or stimulation of cannabinoid receptor 2 (CB2) are beneficial for reducing number and activity of the bone cells modulating resorption, the osteoclasts. We have treated in vitro healthy woman derived osteoclasts with methylprednisolone in presence or not of CB2 or TRPV1 agonists/antagonists, analysing the effect on osteoclast function and morphology through a multidisciplinary approach. Moreover, a treatment with a protein kinase C inhibitor to evaluate osteoclast activity and endovanilloid/endocannabinoid component expression levels was performed in osteoclasts derived from healthy subjects in presence of not of methylprednisolone. Our results show, for the first time, that the endovanilloid/endocannabinoid system is dysregulated by the treatment with methylprednisolone, that the osteoclast activity is increased and that pharmacological compounds stimulating CB2 or inhibiting TRPV1 might reduce, possible inhibiting protein kinase C beta II, the methylprednisolone-induced osteoclast over-activation, suggesting their therapeutic use for protecting from the glucocorticoid-induced bone mass loss.

  10. Inhibitory regulation of osteoclast differentiation by interleukin-3 via regulation of c-Fos and Id protein expression.

    PubMed

    Oh, Jaemin; Lee, Myeung Su; Yeon, Jeong-Tae; Choi, Sik-Won; Kim, Hun Soo; Shim, Hyeok; Lee, Sam Youn; Youn, Byung Soo; Yokota, Yoshifumi; Kim, Jung Ha; Kwak, Han Bok

    2012-05-01

    Interleukin-3 (IL-3) is produced under various pathological conditions and is thought to be involved in the pathogenesis of inflammatory diseases; however, its function in bone homeostasis under normal conditions or nature of the downstream molecular targets remains unknown. Here we examined the effect of IL-3 on osteoclast differentiation from mouse and human bone marrow-derived macrophages (BMMs). Although IL-3 can induce osteoclast differentiation of multiple myeloma bone marrow cells, IL-3 greatly inhibited osteoclast differentiation of human BMMs isolated from healthy donors. These inhibitory effects of IL-3 were only observed at early time points (days 0 and 1). IL-3 inhibited the expression of c-Fos and NFATc1 in BMMs treated with RANKL. However, IL-3-mediated inhibition of osteoclast differentiation was not completely reversed by ectopic expression of c-Fos or NFATc1. Importantly, IL-3 induced inhibitor of DNA binding/differentiation (Id)1 in hBMMs, while Id2 were sustained during osteoclast differentiation of mBMMs treated with IL-3. Ectopic expression of NFATc1 in Id2-deficient BMMs completely reversed the inhibitory effect of IL-3 on osteoclast differentiation. Furthermore, inflammation-induced bone erosion was markedly inhibited by IL-3 administration. Taken together, our results suggest that IL-3 plays an inhibitory role in osteoclast differentiation by regulating c-Fos and Ids, and also exerts anti-bone erosion effects.

  11. Pressure regulates osteoclast formation and MCSF expression in marrow culture.

    PubMed

    Rubin, J; Biskobing, D; Fan, X; Rubin, C; McLeod, K; Taylor, W R

    1997-01-01

    One of the forces generated during skeletal loading is hydrostatic pressure. In the work presented here, the ability of increased pressure to influence recruitment of osteoclasts was evaluated. Murine marrow cultures, with pO2 and pCO2 kept constant, were subjected to either control (1.0 atm) or elevated (1.37 or 2.0 atm) hydrostatic pressure. As compared to control, cultures pressurized for 6 days at 1.37 atm formed less osteoclast-like cells (OCLC) (71 +/- 6% of control, P < 0.0001). A similar degree of inhibition occurred in cultures exposed to pressure during days 2-4 only (62 +/- 6%), while treatment during days 5-7 failed to inhibit the OCLC number relative to control (99 +/- 5%). Delivery of 2.0 atm pressure on days 2-4 generated 52 +/- 4% OCLC compared to control. Since macrophage colony stimulating factor (MCSF)-dependent proliferation of osteoclast precursors occurs during the pressure-sensitive period, semiquantitative RT-PCR for MCSF mRNA was performed after 3 days in 1.37 atm (days 2-4). As compared to controls, pressure caused a decrease in mRNA coding for the membrane bound form of MCSF (71.2 +/- 4% (n = 25, P < or = 0.05), while the MCSF RT-PCR product representing the secreted form showed no consistent change. This lack of response of the soluble MCSF RT-PCR product was expected, as levels of bioassayable MCSF were not altered by pressure. Extrapolating these data to in vivo conditions suggests that load-bearing will inhibit the formation of osteoclasts.

  12. Herba epimedii flavonoids suppress osteoclastic differentiation and bone resorption by inducing G2/M arrest and apoptosis.

    PubMed

    Zhang, Dawei; Zhang, Jinchao; Fong, Chichun; Yao, Xinsheng; Yang, Mengsu

    2012-12-01

    Accumulating evidences suggest that Herba epimedii has the potential benefits against osteoporosis. However, previous studies were focused on the crude extract, total flavonoids (TF) and icariin (ICA), and the detailed molecular mechanisms of action and structure-activity relationship (SAR) remain unclear. Herein we aimed to systematically investigate the effects of Herba epimedii flavonoids (HEF) on the activity of osteoclasts, and explore the potential SAR. Both ICA and baohuoside-1 (BS) significantly inhibited the proliferation of RAW 264.7 cells (IC(50) 25 μM and 67 μM, respectively). Treatment of ICA resulted in G2/M arrest and apoptosis in RAW 264.7 cells as early as 12 h. Besides, HEF remarkably suppressed vitamin D-induced differentiation of osteoclasts in rabbit bone marrow cells and the bone resorption of rabbit mature osteoclasts in vitro. It is notable that the inhibitory effect of 100 μM ICA and BS on osteoclast formation is almost 90%; and the inhibition rate on bone resorption is 50% and 80%, respectively. Besides, RANKL-induced osteoclast formation from RAW 264.7 cells and the expression of TRAP, CA II, CTSK and MMP-9 was significantly reduced by the treatment of 25 μM HEF and 17β-estradiol (ES), and the inhibitory strength increases in the order TF < ES < ICA < BS, which was blocked by ICI182780 suggesting that the regulation of osteoclast activity might be ER dependent. Furthermore, the free hydroxyl group at C-7 of BS played an important role in the SAR for anti-osteoclast action. To conclude, HEF could regulate the formation and activity of osteoclasts by inhibiting the proliferation and differentiation, inducing apoptosis and cell cycle arrest and suppressing bone resorption of osteoclasts. Changes in osteoclast activity are probably mediated predominantly by interaction with nuclear estrogen receptors and via mitochondrial pathway. HEF, especially BS, has great potential for the prevention and treatment of osteoporosis.

  13. CD147 promotes the formation of functional osteoclasts through NFATc1 signalling.

    PubMed

    Nishioku, Tsuyoshi; Terasawa, Mariko; Baba, Misaki; Yamauchi, Atsushi; Kataoka, Yasufumi

    2016-04-29

    CD147, a membrane glycoprotein of the immunoglobulin superfamily, is highly upregulated during dynamic cellular events including tissue remodelling. Elevated CD147 expression is present in the joint of rheumatoid arthritis patients. However, the role of CD147 in bone destruction remains unclear. To determine whether CD147 is involved in osteoclastogenesis, we studied its expression in mouse osteoclasts and its role in osteoclast differentiation and function. CD147 expression was markedly upregulated during osteoclast differentiation. To investigate the role of CD147 in receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis and bone resorption activity, osteoclast precursor cells were transfected with CD147 siRNA. Decreased CD147 expression inhibited osteoclast formation and bone resorption, inhibited RANKL-induced nuclear translocation of the nuclear factor of activated T cells (NFAT) c1 and decreased the expression of the d2 isoform of vacuolar ATPase Vo domain and cathepsin K. Therefore, CD147 plays a critical role in the differentiation and function of osteoclasts by upregulating NFATc1 through the autoamplification of its expression in osteoclastogenesis.

  14. Disturbed MEK/ERK signaling increases osteoclast activity via the Hedgehog-Gli pathway in postmenopausal osteoporosis.

    PubMed

    Li, Xiaojie; Jie, Qiang; Zhang, Hongyang; Zhao, Yantao; Lin, Yangjing; Du, Junjie; Shi, Jun; Wang, Long; Guo, Kai; Li, Yong; Wang, Chunhui; Gao, Bo; Huang, Qiang; Liu, Jian; Yang, Liu; Luo, Zhuojing

    2016-11-01

    Postmenopausal osteoporosis is a worldwide health problem and is characterized by increased and activated osteoclasts. However, the mechanism by which osteoclasts are dysregulated in postmenopausal osteoporosis is not fully understood. In this study, we found that the Hedgehog-Gli pathway was upregulated in postmenopausal osteoporotic osteoclasts and that 17β-estradiol both inhibited osteoclastogenesis and induced osteoclast apoptosis by downregulating Hedgehog-Gli signaling. Furthermore, we demonstrated that the Hedgehog-Gli pathway was negatively regulated by MEK/ERK signaling and that this effect was Sonic Hedgehog (SHH)-dependent and was partially blocked by an anti-SHH antibody. Moreover, we found that the stimulatory effect of Hedgehog signaling on osteoclastogenesis and the inhibitory effect on osteoclast apoptosis were dependent on the Gli family of transcription factors. The pathways and molecules that contribute to the regulation of osteoclastogenesis and apoptosis represent potential new strategies for designing molecular drugs for the treatment of postmenopausal osteoporosis.

  15. Antiulcerogenic activity of Carica papaya seed in rats.

    PubMed

    Pinto, Lorraine Aparecida; Cordeiro, Kátia Wolff; Carrasco, Viviane; Carollo, Carlos Alexandre; Cardoso, Cláudia Andréa Lima; Argadoña, Eliana Janet Sanjinez; Freitas, Karine de Cássia

    2015-03-01

    The purpose of the present study was to evaluate the gastroprotective and healing effects of the methanolic extract of the seed of the papaya Carica papaya L. (MECP) in rats. Models of acute gastric ulcer induction by ethanol and indomethacin and of chronic ulcer by acetic acid were used. The gastric juice and mucus parameters were evaluated using the pylorus ligation model, and the involvement of sulfhydryl compounds (GSH) and nitric oxide in the gastroprotective effect was analyzed using the ethanol model. The toxicity was assessed through toxicity tests. No signs of toxicity were observed when the rats received a single dose of 2000 mg/kg of extract. The MECP in doses of 125, 250, and 500 mg/kg significantly reduced the gastric lesion with 56, 76, and 82 % inhibition, respectively, and a dose of 30 mg/kg lansoprazole showed 79 % inhibition in the ethanol model. MECP (125, 250, 500 mg/kg) and cimetidine (200 mg/kg) reduced the gastric lesion in the indomethacin model, with 62, 67, 81, and 85 % inhibition, respectively. The MECP (500 mg/kg) and cimetidine (200 mg/kg) treatments showed a reduction in ulcerative symptoms induced by acetic acid by 84 and 73 %, respectively. The antiulcerogenic activity seems to involve GSH because the inhibition dropped from 72 to 13 % in the presence of a GSH inhibitor. Moreover, the MECP showed systemic action, increasing the mucus production and decreasing gastric acidity. Treatments with MECP induce gastroprotection without signs of toxicity. This effect seems to involve sulfhydryl compounds, increased mucus, and reduced gastric acidity.

  16. Siglec-15, a member of the sialic acid-binding lectin, is a novel regulator for osteoclast differentiation

    SciTech Connect

    Hiruma, Yoshiharu; Hirai, Takehiro; Tsuda, Eisuke

    2011-06-10

    Highlights: {yields} Siglec-15 was identified as a gene overexpressed in giant cell tumor. {yields} Siglec-15 mRNA expression increased in association with osteoclast differentiation. {yields} Polyclonal antibody to Siglec-15 inhibited osteoclast differentiation in vitro. -- Abstract: Osteoclasts are tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells derived from monocyte/macrophage-lineage precursors and are critically responsible for bone resorption. In giant cell tumor of bone (GCT), numerous TRAP-positive multinucleated giant cells emerge and severe osteolytic bone destruction occurs, implying that the emerged giant cells are biologically similar to osteoclasts. To identify novel genes involved in osteoclastogenesis, we searched genes whose expression pattern was significantly different in GCT from normal and other bone tumor tissues. By screening a human gene expression database, we identified sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) as one of the genes markedly overexpressed in GCT. The mRNA expression level of Siglec-15 increased in association with osteoclast differentiation in cultures of mouse primary unfractionated bone marrow cells (UBMC), RAW264.7 cells of the mouse macrophage cell line and human osteoclast precursors (OCP). Treatment with polyclonal antibody to mouse Siglec-15 markedly inhibited osteoclast differentiation in primary mouse bone marrow monocyte/macrophage (BMM) cells stimulated with receptor activator of nuclear factor {kappa}B ligand (RANKL) or tumor necrosis factor (TNF)-{alpha}. The antibody also inhibited osteoclast differentiation in cultures of mouse UBMC and RAW264.7 cells stimulated with active vitamin D{sub 3} and RANKL, respectively. Finally, treatment with polyclonal antibody to human Siglec-15 inhibited RANKL-induced TRAP-positive multinuclear cell formation in a human OCP culture. These results suggest that Siglec-15 plays an important role in osteoclast differentiation.

  17. Distinctive and selective route of PI3K/PKCα-PKCδ/RhoA-Rac1 signaling in osteoclastic cell migration.

    PubMed

    Kim, Jin-Man; Kim, Mi Yeong; Lee, Kyunghee; Jeong, Daewon

    2016-12-05

    Cell migration during specialized stages of osteoclast precursors, mononuclear preosteoclasts, and multinucleated mature osteoclasts remain uncertain. M-CSF- and osteopontin-induced osteoclastic cell migration was inhibited by function-blocking monoclonal antibodies specific to the integrin αv and β3 subunits, suggesting that integrin αvβ3 mediates migratory signaling induced by M-CSF and osteopontin. M-CSF and osteopontin stimulation was shown to regulate two branched signaling processes, PI3K/PKCα/RhoA axis and PI3K/PKCδ/Rac1 axis. Interestingly, inactivation of RhoA or Rac1 blocked preosteoclast and mature osteoclast migration but not osteoclast precursor migration in a transwell-based cell migration assay. Moreover, the inhibitory effect on preosteoclast and mature osteoclast migration induced by Rac1 inactivation was more effective than that by RhoA inactivation. Collectively, our findings suggest that osteoclast precursor migration depends on PI3K/PKCα-PKCδ signaling mediated via integrin αvβ3 bypassing RhoA and Rac1, whereas preosteoclast and mature osteoclast migration relies on PI3K/PKCα-PKCδ/RhoA-Rac1 axis signaling mediated via integrin αvβ3 with increased dependency on PKCδ/Rac1 signaling route as differentiation progresses.

  18. The origin of the non-recombining region of sex chromosomes in Carica and Vasconcellea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carica and Vasconcellea are two closely related sister genera in the family Caricaceae, and were once classified as two sections under Carica. After the section Vasconcellea with 21 species was reinstated as a separate genus based on molecular marker data, papaya became the sole species in Carica. S...

  19. Curcumol suppresses RANKL-induced osteoclast formation by attenuating the JNK signaling pathway

    SciTech Connect

    Yu, Mingxiang; Chen, Xianying; Lv, Chaoyang; Yi, Xilu; Zhang, Yao; Xue, Mengjuan; He, Shunmei; Zhu, Guoying; Wang, Hongfu

    2014-05-02

    Highlights: • Curcumol suppresses osteoclasts differentiation in vitro. • Curcumol impairs JNK/AP-1 signaling pathway. • Curcumol may be used for treating osteoclast related diseases. - Abstract: Osteoclasts, derived from hemopoietic progenitors of the monocyte/macrophage lineage, have a unique role in bone resorption, and are considered a potential therapeutic target in the treatment of such pathologic bone diseases as osteoporosis, rheumatoid arthritis, and periodontitis. In the present study, we demonstrate that curcumol, one of the major components of the essential oil of Rhizoma Curcumae, exhibits an inhibitory effect on receptor activator of nuclear factor kappaB ligand (RANKL)-induced osteoclast differentiation with both bone marrow-derived macrophages and RAW264.7 cells in a dose-dependent manner. In addition, RANKL-induced mRNA expression of osteoclast-specific genes, such as tartrate-resistant acid phosphatase, calcitonin receptor, and cathepsin K, is prominently reduced in the presence of curcumol. Furthermore, the molecular mechanism of action was investigated, and curcumol inhibited osteoclastogenesis by specifically impairing RANKL-induced c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) signaling, which was further identified in rescue studies by means of anisomycin, a JNK signaling-specific activator. Taken together, these findings suggest that curcumol suppresses RANKL-induced osteoclast differentiation through the JNK/AP-1 signaling pathway, and may be useful as a therapeutic treatment for bone resorption-associated diseases.

  20. Decursin from Angelica gigas suppresses RANKL-induced osteoclast formation and bone loss.

    PubMed

    Wang, Xin; Zheng, Ting; Kang, Ju-Hee; Li, Hua; Cho, Hyewon; Jeon, Raok; Ryu, Jae-Ha; Yim, Mijung

    2016-03-05

    Osteoclasts are the only cells capable of breaking down bone matrix, and excessive activation of osteoclasts is responsible for bone-destructive diseases. In this study, we investigated the effects of decursin from extract of Angelica gigas root on receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclast formation using mouse bone marrow-derived macrophages (BMMs). Decursin inhibited RANKL-induced osteoclast formation without cytotoxicity. In particular, decursin maintains the characteristics of macrophages by blocking osteoclast differentiation by RANKL. Furthermore, the RANKL-stimulated bone resorption was diminished by decursin. Mechanistically, decursin blocked the RANKL-triggered ERK mitogen-activated protein kinases (MAPK) phosphorylation, which results in suppression of c-Fos and the nuclear factor of activated T cells (NFATc1) expression. In accordance with the in vitro study, decursin reduced lipopolysaccharide (LPS)- or ovariectomy (OVX)-induced bone loss in vivo. Therefore, decursin exerted an inhibitory effect on osteoclast formation and bone loss in vitro and in vivo. Decursin could be useful for the treatment of bone diseases associated with excessive bone resorption.

  1. Plasma membrane calcium ATPase regulates bone mass by fine-tuning osteoclast differentiation and survival.

    PubMed

    Kim, Hyung Joon; Prasad, Vikram; Hyung, Seok-Won; Lee, Zang Hee; Lee, Sang-Won; Bhargava, Aditi; Pearce, David; Lee, Youngkyun; Kim, Hong-Hee

    2012-12-24

    The precise regulation of Ca(2+) dynamics is crucial for proper differentiation and function of osteoclasts. Here we show the involvement of plasma membrane Ca(2+) ATPase (PMCA) isoforms 1 and 4 in osteoclastogenesis. In immature/undifferentiated cells, PMCAs inhibited receptor activator of NF-κB ligand-induced Ca(2+) oscillations and osteoclast differentiation in vitro. Interestingly, nuclear factor of activated T cell c1 (NFATc1) directly stimulated PMCA transcription, whereas the PMCA-mediated Ca(2+) efflux prevented NFATc1 activation, forming a negative regulatory loop. PMCA4 also had an anti-osteoclastogenic effect by reducing NO, which facilitates preosteoclast fusion. In addition to their role in immature cells, increased expression of PMCAs in mature osteoclasts prevented osteoclast apoptosis both in vitro and in vivo. Mice heterozygous for PMCA1 or null for PMCA4 showed an osteopenic phenotype with more osteoclasts on bone surface. Furthermore, PMCA4 expression levels correlated with peak bone mass in premenopausal women. Thus, our results suggest that PMCAs play important roles for the regulation of bone homeostasis in both mice and humans by modulating Ca(2+) signaling in osteoclasts.

  2. Anther culture of papaya (Carica papaya L.).

    PubMed

    Tsay, H S; Su, C Y

    1985-02-01

    Papaya (Carica papaya L.) anther containing microspores in tetrad to early-binucleate stages were successfully cultured on 1/2 strength MS salts and vitamins with full strength Na-Fe-EDTA supplemented with 2 mg/l NAA, 1 mg/l BA and 6% sucrose for callus initiation and formation. Highest frequencies of callus induction were obtained when anthers at the uninucleate stage were cultured in the dark. Haploid plantlets and pollen-derived embryoids were obtained from anthers cultured at the uninucleate stage on solidified MS medium containing 3% sucrose without any growth regulators under a low light intensity (1,500 lux). Large quantities of embryoids were obtained when the original embryoids were transferred to MS medium with 3% sucrose and no growth regulators. Cytology of root tips of embryoid-derived plants confirmed the haploid chromosome number of 9 indicating that the embryoids originated from pollen.

  3. Anticancer activity of Carica papaya: a review.

    PubMed

    Nguyen, Thao T T; Shaw, Paul N; Parat, Marie-Odile; Hewavitharana, Amitha K

    2013-01-01

    Carica papaya is widely cultivated in tropical and subtropical countries and is used as food as well as traditional medicine to treat a range of diseases. Increasing anecdotal reports of its effects in cancer treatment and prevention, with many successful cases, have warranted that these pharmacological properties be scientifically validated. A bibliographic search was conducted using the key words "papaya", "anticancer", and "antitumor" along with cross-referencing. No clinical or animal cancer studies were identified and only seven in vitro cell-culture-based studies were reported; these indicate that C. papaya extracts may alter the growth of several types of cancer cell lines. However, many studies focused on specific compounds in papaya and reported bioactivity including anticancer effects. This review summarizes the results of extract-based or specific compound-based investigations and emphasizes the aspects that warrant future research to explore the bioactives in C. papaya for their anticancer activities.

  4. The inhibitory effect of vitamin K on RANKL-induced osteoclast differentiation and bone resorption.

    PubMed

    Wu, Wei-Jie; Kim, Min Seuk; Ahn, Byung-Yong

    2015-10-01

    To further understand the correlation between vitamin K and bone metabolism, the effects of vitamins K1, menaquinone-4 (MK-4), and menaquinone-7 (MK-7) on RANKL-induced osteoclast differentiation and bone resorption were comparatively investigated. Vitamin K2 groups (MK-4 and MK-7) were found to significantly inhibit RANKL-medicated osteoclast cell formation of bone marrow macrophages (BMMs) in a dose-dependent manner, without any evidence of cytotoxicity. The mRNA expression of specific osteoclast differentiation markers, such as c-Fos, NFATc1, OSCAR, and TRAP, as well as NFATc1 protein expression and TRAP activity in RANKL-treated BMMs were inhibited by vitamin K2, although MK-4 exhibited a significantly greater efficiency compared to MK-7. In contrast, the same dose of vitamin K1 had no inhibitory effect on RANKL-induced osteoclast cell formation, but increased the expression of major osteoclastogenic genes. Interestingly, vitamins K1, MK-4 and MK-7 all strongly inhibited osteoclastic bone resorption (p < 0.01) in a dose dependent manner. These results suggest that vitamins K1, MK-4 and MK-7 have anti-osteoporotic properties, while their regulation effects on osteoclastogenesis are somewhat different.

  5. TRAF family member-associated NF-κB activator (TANK) induced by RANKL negatively regulates osteoclasts survival and function.

    PubMed

    Wu, Mengrui; Wang, Yiping; Deng, Lianfu; Chen, Wei; Li, Yi-Ping

    2012-01-01

    Osteoclasts are the principle bone-resorbing cells. Precise control of balanced osteoclast activity is indispensable for bone homeostasis. Osteoclast activation mediated by RANK-TRAF6 axis has been clearly identified. However, a negative regulation-machinery in osteoclast remains unclear. TRAF family member-associated NF-κB activator (TANK) is induced by about 10 folds during osteoclastogenesis, according to a genome-wide analysis of gene expression before and after osteoclast maturation, and confirmed by western blot and quantitative RT-PCR. Bone marrow macrophages (BMMs) transduced with lentivirus carrying tank-shRNA were induced to form osteoclast in the presence of RANKL and M-CSF. Tank expression was downregulated by 90% by Tank-shRNA, which is confirmed by western blot. Compared with wild-type (WT) cells, osteoclastogenesis of Tank-silenced BMMs was increased, according to tartrate-resistant acid phosphatase (TRAP) stain on day 5 and day 7. Number of bone resorption pits by Tank-silenced osteoclasts was increased by 176% compared with WT cells, as shown by wheat germ agglutinin (WGA) stain and scanning electronic microscope (SEM) analysis. Survival rate of Tank-silenced mature osteoclast is also increased. However, acid production of Tank-knockdown cells was not changed compared with control cells. IκBα phosphorylation is increased in tank-silenced cells, indicating that TANK may negatively regulate NF-κB activity in osteoclast. In conclusion, Tank, whose expression is increased during osteoclastogenesis, inhibits osteoclast formation, activity and survival, by regulating NF-κB activity and c-FLIP expression. Tank enrolls itself in a negative feedback loop in bone resorption. These results may provide means for therapeutic intervention in diseases of excessive bone resorption.

  6. Comparison of direct and indirect radiation effects on osteoclast formation from progenitor cells derived from different hemopoietic sources

    SciTech Connect

    Scheven, B.A.; Wassenaar, A.M.; Kawilarang-de Haas, E.W.; Nijweide, P.J.

    1987-07-01

    Hemopoietic stem and progenitor cells from different sources differ in radiosensitivity. Recently, we have demonstrated that the multinucleated cell responsible for bone resorption and marrow cavity formation, the osteoclast, is in fact of hemopoietic lineage. In this investigation we have studied the radiosensitivity of osteoclast formation from two different hemopoietic tissues: fetal liver and adult bone marrow. Development of osteoclasts from hemopoietic progenitors was induced by coculture of hemopoietic cell populations with fetal mouse long bones depleted of their own osteoclast precursor pool. During culture, osteoclasts developed from the exogenous cell population and invaded the calcified hypertrophic cartilage of the long bone model, thereby giving rise to the formation of a primitive marrow cavity. To analyze the radiosensitivity of osteoclast formation, either the hemopoietic cells or the bone rudiments were irradiated before coculture. Fetal liver cells were found to be less radiosensitive than bone marrow cells. The D0, Dq values and extrapolation numbers were 1.69 Gy, 5.30 Gy, and 24.40 for fetal liver cells and 1.01 Gy, 1.85 Gy, and 6.02 for bone marrow cells. Irradiation of the (pre)osteoclast-free long bone rudiments instead of the hemopoietic sources resulted in a significant inhibition of osteoclast formation at doses of 4 Gy or more. This indirect effect appeared to be more prominent in the cocultures with fetal than with adult hemopoietic cells. Furthermore, radiation doses of 8.0-10.0 Gy indirectly affected the appearance of other cell types (e.g., granulocytes) in the newly formed but underdeveloped marrow cavity. The results indicate that osteoclast progenitors from different hemopoietic sources exhibit a distinct sensitivity to ionizing irradiation. Radiation injury to long bone rudiments disturbs the osteoclast-forming capacity as well as the hemopoietic microenvironment.

  7. Strategies of leaf expansion in Ficus carica under semiarid conditions.

    PubMed

    González-Rodríguez, A M; Peters, J

    2010-05-01

    Leaf area expansion, thickness and inclination, gas exchange parameters and relative chlorophyll content were analysed in field-grown fig (Ficus carica L.) leaves over time, from emergence until after full leaf expansion (FLE). Ficus carica leaves showed a subtle change in shape during the early stages of development, and FLE was reached within ca. 30 days after emergence. Changes in leaf thickness and inclination after FLE demonstrated good adaptation to environmental conditions during summer in areas with a Mediterranean climate. Changes in gas exchange parameters and relative chlorophyll content showed that F. carica is a delayed-greening species, reaching maximum values 20 days after FLE. Correlation analysis of datasets collected during leaf expansion, confirmed dependence among structural and functional traits in F. carica. Pn was directly correlated with stomatal conductance (Gs), transpiration (E), leaf area (LA) and relative chlorophyll content up to FLE. The effect of pruning on leaf expansion, a cultural technique commonly applied in this fruit tree, was also evaluated. Although leaf development in pruned branches gave a significantly higher relative leaf area growth rate (RGR(l)) and higher LA than non-pruned branches, no significant differences were found in other morphological and physiological traits, indicating no pruning effect on leaf development. All studied morphological and physiological characteristics indicate that F. carica is well adapted to semiarid conditions. The delayed greening strategy of this species is discussed.

  8. In Vitro and In Vivo Effects of Gracilaria verrucosa Extracts on Osteoclast Differentiation

    PubMed Central

    Kim, Kwang-Jin; Lee, Yong-Jin; Hwang, Yun-Ho; Kang, Kyung-Yun; Yee, Sung-Tae; Son, Young-Jin

    2017-01-01

    Bone remodeling, a physiological process characterized by bone formation by osteoblasts and bone resorption by osteoclasts, is important for the maintenance of healthy bone in adult humans. Osteoclasts play a critical role in bone erosion and osteoporosis and are bone-specific multinucleated cells generated through differentiation of monocyte/macrophage lineage precursors. Receptor activator of NF-κB ligand (RANKL) has been reported to induce osteoclast differentiation. In this study, we explored whether Gracilaria verrucosa extracts (GE) could affect RANKL-mediated osteoclast differentiation. GE significantly inhibited RANKL-activated osteoclast differentiation by inhibiting protein expression of c-fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), vital factors in RANKL-mediated osteoclastogenesis. In addition, GE attenuated ovariectomy-induced bone loss in mice. In summary, GE can prevent osteoclastogenesis and hormone-related bone loss via blockage of c-fos-NFATc1 signaling. Our results suggest that GE may have therapeutic potential in the treatment of postmenopausal osteoporosis. PMID:28335442

  9. Clodronate acts on human osteoclastic cell proliferation, differentiation and function in a bioreversible manner

    PubMed Central

    Recenti, Raffaella; Leone, Giuseppe; Simi, Lisa; Orfei, Marco; Pinzani, Pamela; Pieraccini, Giuseppe; Moneti, Gloriano; Carossino, Anna Maria; Franchi, Alessandro; Bartolucci, Gianluca; Carbonell Sala, Silvia; Ginanneschi, Mauro; Tanini, Annalisa; Brandi, Maria Luisa

    2007-01-01

    Background. Clodronate is used in high bone resorption diseases. Its action was defined as “cytotoxic” based on the induced cellular ATP loss, without any experimental verification of reversibility. In the present report the reversibility of clodronate action was tested on cultured human osteoclastic cell cultures. As “in vitro” bioeffects of clodronate are reversible, this compound should not be defined as “cytotoxic”. Introduction. Bisphosphonates are pyrophosphate analogs able to inhibit osteoclast-mediated bone resorption widely used in the treatment of diseases with high bone turnover. Several evidences have shown that bisphosphonates can be divided into two groups with distinct molecular mechanisms of action depending on the nature of the R2side chain. The nitrogen-containing bisphosphonates act on osteoclasts by preventing protein prenylation, while non-nitrogen-containing bisphosphonates, like clodronate, are metabolized intracellularly to a β-γ-methylene analog of ATP that induces inhibition of the ADP/ATP translocase. Materials and Methods. In order to evaluate clodronate effects on osteoclastic cells and the bioreversibility of its action, we have used a human preosteoclastic (FLG 29.1) cell line and primary cultures of human osteoclast-like (HOC) cells. Functional and differentiative modifications were evaluated with immunocytochemical tartrate-resistant acid phosphatase activity (TRAcP) assay and with rapid quantitative detection of the complex “matrix metalloproteinase 9/tissue inhibitor of metalloproteinase” (MMP9/TIMP1) by RT-PCR analysis based on “TaqMan” technology. The apoptosis phenomenon were detected by DNA ladder analysis and quantified by counting apoptotic cells with Transmission Electron Microscopy (TEM) analysis. Adenosine-5’-[ β - γ -dichloromethylene] triphosphate (AppCCl2p) was detected and identified in cell extract by HPLC-ESI-MS-MS Mass Spectrometry. Intracellular ATP modulation in the presence of

  10. Incorporation of RANKL promotes osteoclast formation and osteoclast activity on β-TCP ceramics.

    PubMed

    Choy, John; Albers, Christoph E; Siebenrock, Klaus A; Dolder, Silvia; Hofstetter, Wilhelm; Klenke, Frank M

    2014-12-01

    β-Tricalcium phosphate (β-TCP) ceramics are approved for the repair of osseous defects. In large defects, however, the substitution of the material by authentic bone is inadequate to provide sufficient long-term mechanical stability. We aimed to develop composites of β-TCP ceramics and receptor activator of nuclear factor κ-B ligand (RANKL) to enhance the formation of osteoclasts and promote cell mediated calcium phosphate resorption. RANKL was adsorbed superficially onto β-TCP ceramics or incorporated into a crystalline layer of calcium phosphate by the use of a co-precipitation technique. Murine osteoclast precursors were seeded onto the ceramics. After 15 days, the formation of osteoclasts was quantified cytologically and colorimetrically with tartrate-resistant acidic phosphatase (TRAP) staining and TRAP activity measurements, respectively. Additionally, the expression of transcripts encoding the osteoclast gene products cathepsin K, calcitonin receptor, and of the sodium/hydrogen exchanger NHA2 were quantified by real-time PCR. The activity of newly formed osteoclasts was evaluated by means of a calcium phosphate resorption assay. Superficially adsorbed RANKL did not induce the formation of osteoclasts on β-TCP ceramics. When co-precipitated onto β-TCP ceramics RANKL supported the formation of mature osteoclasts. The development of osteoclast lineage cells was further confirmed by the increased expression of cathepsin K, calcitonin receptor, and NHA2. Incorporated RANKL stimulated the cells to resorb crystalline calcium phosphate. Our in vitro study shows that RANKL incorporated into β-TCP ceramics induces the formation of active, resorbing osteoclasts on the material surface. Once formed, osteoclasts mediate the release of RANKL thereby perpetuating their differentiation and activation. In vivo, the stimulation of osteoclast-mediated resorption may contribute to a coordinated sequence of material resorption and bone formation. Further in vivo studies

  11. Antifungal Activity in Ethanolic Extracts of Carica papaya L. cv. Maradol Leaves and Seeds.

    PubMed

    Chávez-Quintal, Pedro; González-Flores, Tania; Rodríguez-Buenfil, Ingrid; Gallegos-Tintoré, Santiago

    2011-01-01

    Bioactive compounds from vegetal sources are a potential source of natural antifungic. An ethanol extraction was used to obtain bioactive compounds from Carica papaya L. cv. Maradol leaves and seeds of discarded ripe and unripe fruit. Both, extraction time and the papaya tissue flour:organic solvent ratio significantly affected yield, with the longest time and highest flour:solvent ratio producing the highest yield. The effect of time on extraction efficiency was confirmed by qualitative identification of the compounds present in the lowest and highest yield extracts. Analysis of the leaf extract with phytochemical tests showed the presence of alkaloids, flavonoids and terpenes. Antifungal effectiveness was determined by challenging the extracts (LE, SRE, SUE) from the best extraction treatment against three phytopathogenic fungi: Rhizopus stolonifer, Fusarium spp. and Colletotrichum gloeosporioides. The leaf extract exhibited the broadest action spectrum. The MIC(50) for the leaf extract was 0.625 mg ml(-1) for Fusarium spp. and >10 mg ml(-1) for C. gloeosporioides, both equal to approximately 20% mycelial growth inhibition. Ethanolic extracts from Carica papaya L. cv. Maradol leaves are a potential source of secondary metabolites with antifungal properties.

  12. Inhibitory effect of menaquinone-7 (vitamin K2) on osteoclast-like cell formation and osteoclastic bone resorption in rat bone tissues in vitro.

    PubMed

    Yamaguchi, M; Ma, Z J

    2001-12-01

    The effect of menaquinone-7 (MK-7; vitamin K2) on osteoclast-like cell formation and osteoclastic bone resorption in rat femoral tissues in vitro was investigated. The bone marrow cells were cultured for 7 days in a a-minimal essential medium (alpha-MEM) containing a well-known bone resorbing agent [parathyroid hormone (1-34) (PTH) or prostaglandin E2 (PGE2)] with an effective concentration. Osteoclast-like cells were estimated by staining for tartrate-resistant acid phosphatase (TRACP), a marker enzyme of osteoclasts. The presence of PTH (10(-8) M) or PGE2 (10(-6) M) induced a remarkable increase in osteoclast-like multinucleated cells. These increases were significantly inhibited by MK-7 (10(-8) - 10(-5) M). MK-7 (10(-7) and 10(-6) M) significantly inhibited phorbol 12-myristate 13-acetate-induced osteoclast-like cell formation, whereas MK-7 did not inhibit dibutyryl cyclic adenosine monophosphate (DcAMP) (10(-5) M)-induced osteoclast-like cell formation. These results suggest that the inhibitory action of MK-7 is partly involved in protein kinase C signaling. The bone cells isolated from rat femoral tissues were cultured for 48 h in an alpha-MEM containing either vehicle or MK-7 (10(-8) - 10(-5) M). The presence of MK-7 (10(-6) and 10(-5) M) caused a significant decrease in the number of mature osteoclasts. Such a decrease was also seen in the presence of calcitonin (10(-10) - 10(-8) M), DcAMP (10(-6) and 10(-5) M), or calcium chloride (10(-4) and 10(-3) M). The effect of MK-7 (10(-6) M) in decreasing the number of osteoclasts was not further enhanced in the presence of calcitonin (10(-8) M), DcAMP (10(-5) M), or calcium chloride (10(-3) M), and was completely abolished by the presence of dibucaine (10(-6) M) or staurosporine (10(-7) M), which are inhibitors of Ca2+-dependent protein kinases. These results suggested that MK-7 has a suppressive effect on osteoclasts. Moreover, the femoral-metaphyseal tissues obtained from rats were cultured for 48 h in Dulbecco

  13. Osteoclastic miR-214 targets TRAF3 to contribute to osteolytic bone metastasis of breast cancer

    PubMed Central

    Liu, Jin; Li, Defang; Dang, Lei; Liang, Chao; Guo, Baosheng; Lu, Cheng; He, Xiaojuan; Cheung, Hilda Y. S.; He, Bing; Liu, Biao; Li, Fangfei; Lu, Jun; Wang, Luyao; Shaikh, Atik Badshah; Jiang, Feng; Lu, Changwei; Peng, Songlin; Zhang, Zongkang; Zhang, Bao-Ting; Pan, Xiaohua; Xiao, Lianbo; Lu, Aiping; Zhang, Ge

    2017-01-01

    The role of osteoclastic miRNAs in regulating osteolytic bone metastasis (OBM) of breast cancer is still underexplored. Here, we examined the expression profiles of osteoclastogenic miRNAs in human bone specimens and identified that miR-214-3p was significantly upregulated in breast cancer patients with OBM. Consistently, we found increased miR-214-3p within osteoclasts, which was associated with the elevated bone resorption, during the development of OBM in human breast cancer xenografted nude mice (BCX). Furthermore, genetic ablation of osteoclastic miR-214-3p in nude mice prevent the development of OBM. Conditioned medium from MDA-MB-231 cells dramatically stimulated miR-214-3p expression to promote osteoclast differentiation. Mechanistically, a series of in vitro study showed that miR-214-3p directly targeted Traf3 to promote osteoclast activity and bone-resorbing activity. In addition, osteoclast-specific miR-214-3p knock-in mice showed remarkably increased bone resorption when compared to the littermate controls, which was attenuated after osteoclast-targeted treatment with Traf3 3′UTR-containing plasmid. In BCX nude mice, osteoclast-targeted antagomir-214-3p delivery could recover the TRAF3 protein expression and attenuate the development of OBM, respectively. Collectively, inhibition of osteoclastic miR-214-3p may be a potential therapeutic strategy for breast cancer patients with OBM. Meanwhile, the intraosseous TRAF3 could be a promising biomarker for evaluation of the treatment response of antagomir-214-3p. PMID:28071724

  14. Relationship between fluoride exposure and osteoclast markers during RANKL-induced osteoclast differentiation.

    PubMed

    Junrui, Pei; Bingyun, Li; Yanhui, Gao; Xu, Jiaxun; Darko, Gottfried M; Dianjun, Sun

    2016-09-01

    Skeletal fluorosis is a metabolic bone disease caused by excessive accumulation of fluoride. Although the cause of this disease is known, the mechanism by which fluoride accumulates on the bone has not been clearly defined, thus there are no markers that can be used for screening skeletal fluorosis in epidemiology. In this study, osteoclasts were formed from bone marrow cells of C57BL/6 mice-treated with macrophage colony stimulating factor and receptor activator of nuclear factor kappa-B ligand. The mRNA expression of tartrate-resistant acid phosphatase 5b (TRAP5b), osteoclast-associated receptor (OSCAR), calcitonin receptor (CTR), matrix metalloproteinase 9 (MMP9) and cathepsin K (CK) were detected using real-time PCR (RT-PCR). Results showed that fluoride between 0.5 and 8mg/l had no effect on osteoclast formation. However fluoride at 0.5mg/l level significantly decreased the activity of osteoclast bone resorption. Fluoride concentration was negatively correlated with the activity of osteoclast bone resorption. On day 5 of osteoclast differentiation maturity, MMP9 and CK mRNA expression were not only negatively correlated with fluoride concentration, but directly correlated with the activity of osteoclast bone resorption. TRAP5b, CTR and OSCAR mRNA expression were positively correlated with the number of osteoclast and they had no correlation with the activity of osteoclast bone resorption. Thus, it can be seen that MMP9 and CK may reflect the change of activity of bone resorption as well the degree of fluoride exposure. TRAP5b, CTR and OSCAR can represent the change of number of osteoclast formed.

  15. Beta-glycerophosphate accelerates RANKL-induced osteoclast formation in the presence of ascorbic acid.

    PubMed

    Noh, A Long Sae Mi; Yim, Mijung

    2011-03-01

    Despite numerous reports of the synergistic effects of beta-glycerophosphate and ascorbic acid in inducing the differentiation of osteoblasts, little is known about their roles in osteoclastic differentiation. Therefore, we investigated the effect of beta-glycerophosphate on osteoclastogenesis in the presence of ascorbic acid using primary mouse bone marrow cultures treated with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-kappaB ligand (RANKL). Beta-Glycerophosphate dose-dependently increased RANKL-induced osteoclast formation in the presence of ascorbic acid. This stimulatory effect was apparent when beta-glycerophosphate and ascorbic acid were only added during the late stages of the culture period, indicating that they influence later events in osteoclastic differentiation. While the combination of beta-glycerophosphate and ascorbic acid inhibited RANKL-stimulated activation of ERK and p38, and degradation of IkappaB, it increased the induction of c-Fos and NFATc1. In addition, beta-glycerophosphate and ascorbic acid together enhanced the induction of COX-2 following RANKL stimulation. Taken together, our data suggest that beta-glycerophosphate and ascorbic acid have synergistic effects on osteoclast formation, increasing RANKL-mediated induction of c-Fos, NFATc1 and COX-2 in osteoclast precursors.

  16. Inhibitory effects of eugenol on RANKL-induced osteoclast formation via attenuation of NF-κB and MAPK pathways.

    PubMed

    Deepak, Vishwa; Kasonga, Abe; Kruger, Marlena C; Coetzee, Magdalena

    2015-06-01

    Bone loss diseases are often associated with increased receptor activator of NF-κB ligand (RANKL)-induced osteoclast formation. Compounds that can attenuate RANKL-mediated osteoclast formation are of great biomedical interest. Eugenol, a phenolic constituent of clove oil possesses medicinal properties; however, its anti-osteoclastogenic potential is unexplored hitherto. Here, we found that eugenol dose-dependently inhibited the RANKL-induced multinucleated osteoclast formation and TRAP activity in RAW264.7 macrophages. The underlying molecular mechanisms included the attenuation of RANKL-mediated degradation of IκBα and subsequent activation of NF-κB pathway. Furthermore, increase in phosphorylation and activation of RANKL-induced mitogen-activated protein kinase pathways (MAPK) was perturbed by eugenol. RANKL-induced expression of osteoclast-specific marker genes such as TRAP, cathepsin K (CtsK) and matrix metalloproteinase-9 (MMP-9) was remarkably downregulated by eugenol. These findings provide the first line of evidence that eugenol mediated attenuation of RANKL-induced NF-κB and MAPK pathways could synergistically contribute to the inhibition of osteoclast formation. Eugenol could be developed as therapeutic agent against diseases with excessive osteoclast activity.

  17. Are Osteoclasts Needed for the Bone Anabolic Response to Parathyroid Hormone?

    PubMed Central

    Pierroz, Dominique D.; Bonnet, Nicolas; Baldock, Paul A.; Ominsky, Michael S.; Stolina, Marina; Kostenuik, Paul J.; Ferrari, Serge L.

    2010-01-01

    PTH stimulates osteoblastic cells to form new bone and to produce osteoblast-osteoclast coupling factors such as RANKL. Whether osteoclasts or their activity are needed for PTH anabolism remains uncertain. We treated ovariectomized huRANKL knock-in mice with a human RANKL inhibitor denosumab (DMAb), alendronate (Aln), or vehicle for 4 weeks, followed by co-treatment with intermittent PTH for 4 weeks. Loss of bone mass and microarchitecture was prevented by Aln and further significantly improved by DMAb. PTH improved bone mass, microstructure, and strength, and was additive to Aln but not to DMAb. Aln inhibited biochemical and histomorphometrical indices of bone turnover, -i.e. osteocalcin and bone formation rate (BFR) on cancellous bone surfaces-, and Dmab inhibited them further. However Aln increased whereas Dmab suppressed osteoclast number and surfaces. PTH significantly increased osteocalcin and bone formation indices, in the absence or presence of either antiresorptive, although BFR remained lower in presence of Dmab. To further evaluate PTH effects in the complete absence of osteoclasts, high dose PTH was administered to RANK−/− mice. PTH increased osteocalcin similarly in RANK−/− and WT mice. It also increased BMD in RANK−/− mice, although less than in WT. These results further indicate that osteoclasts are not strictly required for PTH anabolism, which presumably still occurs via stimulation of modeling-based bone formation. However the magnitude of PTH anabolic effects on the skeleton, in particular its additive effects with antiresorptives, depends on the extent of the remodeling space, as determined by the number and activity of osteoclasts on bone surfaces. PMID:20558734

  18. [Separation of osteoclasts by lectin affinity chromatography].

    PubMed

    Itokazu, M; Tan, A; Tanaka, S

    1991-09-01

    Newborn rat calvaria bone cells obtained by digestion were fractionated on columns of wheat-germ agglutinin (WGA) sepharose 6MB for osteoclast isolation. The initial nonspecific binding cells which were passed through the WGA sepharose column by a buffer acquired a high enzyme activity of alkaline phosphatase, but not that of acid phosphatase. However, elution of cells using a buffer with the addition of N-acetyl-D-glucosamine resulted in a high acid phosphatase activity but no alkaline phosphatase activity. The former WGA binding negative fraction enriched osteoblasts averaging 30 microns in size. The latter WGA binding positive fraction enriched osteoclasts ranging from 20 microns to 60 microns in size. The electron-microscope clearly demonstrated the cellular details of osteoclasts. Isolated cell counts showed a ratio of six to four. These results indicate that our method of osteoclast isolation is simple and useful in lectin affinity chromatography because all cells have sugar moieties on their surface and the binding of osteoclasts can be reversed by the addition of specific lectin-binding sugars to the eluting buffer.

  19. Post-irradiation identification of papaya ( Carica papaya L.) fruit

    NASA Astrophysics Data System (ADS)

    Chatterjee, Suchandra; Variyar, Prasad S.; Sharma, Arun

    2012-03-01

    Impact of radiation processing on the volatile essential oil profile of papaya ( Carica papaya) was investigated. Gamma-radiation processing resulted in the appearance of a new peak in the GLC profile that was identified as phenol. The observed dose dependent increase in phenol content suggested possible use of this compound as a marker for radiation processed papaya.

  20. Complementary interplay between matrix metalloproteinase-9, vascular endothelial growth factor and osteoclast function drives endochondral bone formation

    PubMed Central

    Ortega, Nathalie; Wang, Ke; Ferrara, Napoleone; Werb, Zena; Vu, Thiennu H.

    2010-01-01

    SUMMARY Long bone development depends on endochondral bone formation, a complex process requiring exquisite balance between hypertrophic cartilage (HC) formation and its ossification. Dysregulation of this process may result in skeletal dysplasias and heterotopic ossification. Endochondral ossification requires the precise orchestration of HC vascularization, extracellular matrix remodeling, and the recruitment of osteoclasts and osteoblasts. Matrix metalloproteinase-9 (MMP-9), vascular endothelial growth factor (VEGF) and osteoclasts have all been shown to regulate endochondral ossification, but how their function interrelates is not known. We have investigated the functional relationship among these regulators of endochondral ossification, demonstrating that they have complementary but non-overlapping functions. MMP-9, VEGF and osteoclast deficiency all cause impaired growth plate ossification resulting in the accumulation of HC. VEGF mRNA and protein expression are increased at the MMP-9−/− growth plate, and VEGF activity contributes to endochondral ossification since sequestration of VEGF by soluble receptors results in further inhibition of growth plate vascularization and ossification. However, VEGF bioavailability is still limited in MMP-9 deficiency, as exogenous VEGF is able to rescue the MMP-9−/− phenotype, demonstrating that MMP-9 may partially, but not fully, regulate VEGF bioavailability. The organization of the HC extracellular matrix at the MMP-9−/− growth plate is altered, supporting a role for MMP-9 in HC remodeling. Inhibition of VEGF impairs osteoclast recruitment, whereas MMP-9 deficiency leads to an accumulation of osteoclasts at the chondro-osseous junction. Growth plate ossification in osteoclast-deficient mice is impaired in the presence of normal MMP-9 expression, indicating that other osteoclastic functions are also necessary. Our data delineate the complementary interplay between MMP-9, VEGF and osteoclast function that is

  1. Osteoclast cytosolic calcium, regulated by voltage-gated calcium channels and extracellular calcium, controls podosome assembly and bone resorption

    NASA Technical Reports Server (NTRS)

    Miyauchi, A.; Hruska, K. A.; Greenfield, E. M.; Duncan, R.; Alvarez, J.; Barattolo, R.; Colucci, S.; Zambonin-Zallone, A.; Teitelbaum, S. L.; Teti, A.

    1990-01-01

    The mechanisms of Ca2+ entry and their effects on cell function were investigated in cultured chicken osteoclasts and putative osteoclasts produced by fusion of mononuclear cell precursors. Voltage-gated Ca2+ channels (VGCC) were detected by the effects of membrane depolarization with K+, BAY K 8644, and dihydropyridine antagonists. K+ produced dose-dependent increases of cytosolic calcium ([Ca2+]i) in osteoclasts on glass coverslips. Half-maximal effects were achieved at 70 mM K+. The effects of K+ were completely inhibited by dihydropyridine derivative Ca2+ channel blocking agents. BAY K 8644 (5 X 10(-6) M), a VGCC agonist, stimulated Ca2+ entry which was inhibited by nicardipine. VGCCs were inactivated by the attachment of osteoclasts to bone, indicating a rapid phenotypic change in Ca2+ entry mechanisms associated with adhesion of osteoclasts to their resorption substrate. Increasing extracellular Ca2+ ([Ca2+]e) induced Ca2+ release from intracellular stores and Ca2+ influx. The Ca2+ release was blocked by dantrolene (10(-5) M), and the influx by La3+. The effects of [Ca2+]e on [Ca2+]i suggests the presence of a Ca2+ receptor on the osteoclast cell membrane that could be coupled to mechanisms regulating cell function. Expression of the [Ca2+]e effect on [Ca2+]i was similar in the presence or absence of bone matrix substrate. Each of the mechanisms producing increases in [Ca2+]i, (membrane depolarization, BAY K 8644, and [Ca2+]e) reduced expression of the osteoclast-specific adhesion structure, the podosome. The decrease in podosome expression was mirrored by a 50% decrease in bone resorptive activity. Thus, stimulated increases of osteoclast [Ca2+]i lead to cytoskeletal changes affecting cell adhesion and decreasing bone resorptive activity.

  2. Esculetin attenuates receptor activator of nuclear factor kappa-B ligand-mediated osteoclast differentiation through c-Fos/nuclear factor of activated T-cells c1 signaling pathway

    SciTech Connect

    Baek, Jong Min; Park, Sun-Hyang; Cheon, Yoon-Hee; Ahn, Sung-Jun; Lee, Myeung Su; Oh, Jaemin; Kim, Ju-Young

    2015-05-29

    Esculetin exerts various biological effects on anti-oxidation, anti-tumors, and anti-inflammation. However, the involvement of esculetin in the bone metabolism process, particularly osteoclast differentiation has not yet been investigated. In the present study, we first confirmed the inhibitory effect of esculetin on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. We then revealed the relationship between esculetin and the expression of osteoclast-specific molecules to elucidate its underlying mechanisms. Esculetin interfered with the expression of c-Fos and nuclear factor of activated T cell c1 (NFATc1) both at the mRNA and protein level with no involvement in osteoclast-associated early signaling pathways, suppressing the expression of various transcription factors exclusively expressed in osteoclasts such as tartrate-resistant acid phosphatase (Trap), osteoclast-associated receptor (Oscar), dendritic cell-specific transmembrane protein (Dcstamp), osteoclast stimulatory transmembrane protein (Ocstamp), cathepsin K, αvβ3 integrin, and calcitonin receptor (Ctr). Additionally, esculetin inhibited the formation of filamentous actin (F-actin) ring-positive osteoclasts during osteoclast differentiation. However, the development of F-actin structures and subsequent bone resorbing activity of mature osteoclasts, which are observed in osteoclast/osteoblast co-culture systems were not affected by esculetin. Taken together, our results indicate for the first time that esculetin inhibits RANKL-mediated osteoclastogenesis via direct suppression of c-Fos and NFATc1 expression and exerts an inhibitory effect on actin ring formation during osteoclastogenesis. - Highlights: • We first investigated the effects of esculetin on osteoclast differentiation and function. • Our data demonstrate for the first time that esculetin can suppress osteoclastogenesis in vitro. • Esculetin acts as an inhibitor of c-Fos and NFATc1 activation.

  3. The Foreign Body Giant Cell Cannot Resorb Bone, But Dissolves Hydroxyapatite Like Osteoclasts

    PubMed Central

    ten Harkel, Bas; Schoenmaker, Ton; Picavet, Daisy I.; Davison, Noel L.; de Vries, Teun J.; Everts, Vincent

    2015-01-01

    cathepsin K, which was hardly expressed by FBGCs. Functionally, the latter cells were able to dissolve a biomimetic hydroxyapatite coating in vitro, which was blocked by inhibiting v-ATPase enzyme activity. These results show that FBGCs have the capacity to dissolve the mineral phase of bone, similar to osteoclasts. However, they are not able to digest the matrix fraction of bone, likely due to the lack of a ruffled border and cathepsin K. PMID:26426806

  4. Bisphosphonate-induced differential modulation of immune cell function in gingiva and bone marrow in vivo: role in osteoclast-mediated NK cell activation.

    PubMed

    Tseng, Han-Ching; Kanayama, Keiichi; Kaur, Kawaljit; Park, So-Hyun; Park, Sil; Kozlowska, Anna; Sun, Shuting; McKenna, Charles E; Nishimura, Ichiro; Jewett, Anahid

    2015-08-21

    The aim of this study is to establish osteoclasts as key immune effectors capable of activating the function of Natural Killer (NK) cells, and expanding their numbers, and to determine in vivo and in vitro effect of bisphosphonates (BPs) during NK cell interaction with osteoclasts and on systemic and local immune function. The profiles of 27 cytokines, chemokines and growth factors released from osteoclasts were found to be different from dendritic cells and M1 macrophages but resembling to untreated monocytes and M2 macrophages. Nitrogen-containing BPs Zoledronate (ZOL) and Alendronate (ALN), but not non-nitrogen-containing BPs Etidronate (ETI), triggered increased release of pro-inflammatory mediators from osteoclasts while all three BPs decreased pit formation by osteoclasts. ZOL and ALN mediated significant release of IL-6, TNF-` and IL-1β, whereas they inhibited IL-10 secretion by osteoclasts. Treatment of osteoclasts with ZOL inhibited NK cell mediated cytotoxicity whereas it induced significant secretion of cytokines and chemokines. NK cells lysed osteoclasts much more than their precursor cells monocytes, and this correlated with the decreased expression of MHC class I expression on osteoclasts. Intravenous injection of ZOL in mice induced pro-inflammatory microenvironment in bone marrow and demonstrated significant immune activation. By contrast, tooth extraction wound of gingival tissues exhibited profound immune suppressive microenvironment associated with dysregulated wound healing to the effect of ZOL which could potentially be responsible for the pathogenesis of Osteonecrosis of the Jaw (ONJ). Finally, based on the data obtained in this paper we demonstrate that osteoclasts can be used as targets for the expansion of NK cells with superior function for immunotherapy of cancer.

  5. Methanolic Extract of Ficus carica Linn. Leaves Exerts Antiangiogenesis Effects Based on the Rat Air Pouch Model of Inflammation

    PubMed Central

    Eteraf-Oskouei, Tahereh; Allahyari, Saeideh; Akbarzadeh-Atashkhosrow, Arezu; Delazar, Abbas; Pashaii, Mahdiyeh; Gan, Siew Hua; Najafi, Moslem

    2015-01-01

    The antiangiogenesis effect of Ficus carica leaves extract in an air pouch model of inflammation was investigated in rat. Inflammation was induced by injection of carrageenan into pouches. After antioxidant capacity and total phenolic content (TPC) investigations, the extract was administered at 5, 25, and 50 mg/pouch, and then the volume of exudates, the cell number, TNFα, PGE2, and VEGF levels were measured. Angiogenesis of granulation tissues was determined by measuring hemoglobin content. Based on the DPPH assay, the extract had significant antioxidant activity with TPC of 11.70 mg GAE/100 g dry sample. In addition, leukocyte accumulation and volume of exudate were significantly inhibited by the extract. Moreover, it significantly decreased the production of TNFα, PGE2, and VEGF, while angiogenesis was significantly inhibited by all administered doses. Interestingly, attenuation of angiogenesis and inflammatory parameters (except leukocyte accumulation) by the extract was similar to that shown by diclofenac. The extract has anti-inflammatory effects and ameliorated cell influx and exudation to the site of the inflammatory response which may be related to the local inhibition of TNFα, PGE2, and VEGF levels as similarly shown by diclofenac. The antiangiogenesis and anti-VEGF effects of Ficus carica may be correlated with its significant antioxidant potentials. PMID:25977699

  6. Regulation of osteoclast homeostasis and inflammatory bone loss by MFG-E81

    PubMed Central

    Abe, Toshiharu; Shin, Jieun; Hosur, Kavita; Udey, Mark C.; Chavakis, Triantafyllos; Hajishengallis, George

    2014-01-01

    The glycoprotein milk fat globule-EGF factor 8 (MFG-E8) is expressed in several tissues and mediates diverse homeostatic functions. However, whether MFG-E8 plays a role in bone homeostasis has not been established. Here we show for the first time that osteoclasts express and are regulated by MFG-E8. Bone marrow-derived osteoclast precursors (OCPs) from MFG-E8–deficient (Mfge8−/−) mice underwent increased RANKL-induced osteoclastogenesis leading to enhanced resorption pit formation as compared with wild-type controls. Consistently, exogenously added MFG-E8 inhibited RANKL-induced osteoclastogenesis from mouse or human OCPs. Upon induction of experimental periodontitis, an oral inflammatory disease characterized by loss of bone support of the dentition, Mfge8−/− mice exhibited higher numbers of osteoclasts and more bone loss than wild-type controls. Accordingly, local microinjection of anti-MFG-E8 mAb exacerbated periodontal bone loss in wild-type mice. Conversely, microinjection of MFG-E8 inhibited bone loss in experimental mouse periodontitis. In comparison to wild-type controls, Mfge8−/− mice also experienced >60% more naturally occurring chronic periodontal bone loss. In conclusion, MFG-E8 is a novel homeostatic regulator of osteoclasts and could be exploited therapeutically to treat periodontitis and perhaps other immunological disorders associated with inflammatory bone loss. PMID:24958900

  7. Nitidine chloride prevents OVX-induced bone loss via suppressing NFATc1-mediated osteoclast differentiation

    PubMed Central

    Liu, Qian; Wang, Tao; Zhou, Lin; Song, Fangming; Qin, An; Feng, Hao Tian; Lin, Xi Xi; Lin, Zhen; Yuan, Jin Bo; Tickner, Jennifer; Liu, Hua Gang; Zheng, Ming Hao; Xu, Jiake; Zhao, Jin Min

    2016-01-01

    Nitidine chloride (NC), a bioactive alkaloid isolated from Zanthoxylum nitidum, has been used as a herbal ingredient in toothpaste that prevents cavities for decades. It also displays potential antitumor and anti-inflammation properties. However, its anticatabolic effect on bone is not known. We investigated the effect of NC on osteoclastogenesis, bone resorption and RANKL-induced NF-κB and NFATc1 signalling. In mouse-derived bone marrow monocytes (BMMs), NC suppressed RANKL-induced multinucleated tartrate-resistant acid phosphatase (TRAP)-positive osteoclast formation and bone resorption in a dose dependent manner. NC attenuated the expression of osteoclast marker genes including cathepsin K, D2, calcitonin receptor, NFATc1, and TRAP. Further, NC inhibited RANKL-activated NF-κB and NFATc1 signalling pathways. In vivo study revealed that NC abrogated oestrogen deficiency-induced bone loss in ovariectomized mice. Histological analysis showed that the number of osteoclasts was significantly lower in NC-treated groups. Collectively, our data demonstrate that NC suppressed osteoclastogenesis and prevented OVX-induced bone loss by inhibiting RANKL-induced NF-κB and NFATc1 signalling pathways. NC may be a natural and novel treatment for osteoclast-related bone lytic diseases. PMID:27821837

  8. Arctigenin suppresses receptor activator of nuclear factor κB ligand (RANKL)-mediated osteoclast differentiation in bone marrow-derived macrophages.

    PubMed

    Kim, A-Ram; Kim, Hyuk Soon; Lee, Jeong Min; Choi, Jung Ho; Kim, Se Na; Kim, Do Kyun; Kim, Ji Hyung; Mun, Se Hwan; Kim, Jie Wan; Jeon, Hyun Soo; Kim, Young Mi; Choi, Wahn Soo

    2012-05-05

    Osteoclasts, multinucleated bone-resorbing cells, are closely associated with bone diseases such as rheumatoid arthritis and osteoporosis. Osteoclasts are derived from hematopoietic precursor cells, and their differentiation is mediated by two cytokines, including macrophage colony stimulating factor and receptor activator of nuclear factor κB ligand (RANKL). Previous studies have shown that arctigenin exhibits an anti-inflammatory effect. However, the effect of arctigenin on osteoclast differentiation is yet to be elucidated. In this study, we found that arctigenin inhibited RANKL-mediated osteoclast differentiation in bone marrow macrophages in a dose-dependent manner and suppressed RANKL-mediated bone resorption. Additionally, the expression of typical marker proteins, such as NFATc1, c-Fos, TRAF6, c-Src, and cathepsin K, were significantly inhibited. Arctigenin inhibited the phosphorylation of Erk1/2, but not p38 and JNK, in a dose-dependent manner. Arctigenin also dramatically suppressed immunoreceptor tyrosine-based activation motif-mediated costimulatory signaling molecules, including Syk and PLCγ2, and Gab2. Notably, arctigenin inhibited the activation of Syk through RANKL stimulation. Furthermore, arctigenin prevented osteoclast differentiation in the calvarial bone of mice following stimulation with lipopolysaccharide. Our results show that arctigenin inhibits osteoclast differentiation in vitro and in vivo. Therefore, arctigenin may be useful for treating rheumatoid arthritis and osteoporosis.

  9. Nano-topography sensing by osteoclasts

    PubMed Central

    Geblinger, Dafna; Addadi, Lia; Geiger, Benjamin

    2010-01-01

    Bone resorption by osteoclasts depends on the assembly of a specialized, actin-rich adhesive ‘sealing zone’ that delimits the area designed for degradation. In this study, we show that the level of roughness of the underlying adhesive surface has a profound effect on the formation and stability of the sealing zone and the associated F-actin. As our primary model substrate, we use ‘smooth’ and ‘rough’ calcite crystals with average topography values of 12 nm and 530 nm, respectively. We show that the smooth surfaces induce the formation of small and unstable actin rings with a typical lifespan of ~8 minutes, whereas the sealing zones formed on the rough calcite surfaces are considerably larger, and remain stable for more than 6 hours. It was further observed that steps or sub-micrometer cracks on the smooth surface stimulate local ring formation, raising the possibility that similar imperfections on bone surfaces may stimulate local osteoclast resorptive activity. The mechanisms whereby the physical properties of the substrate influence osteoclast behavior and their involvement in osteoclast function are discussed. PMID:20375065

  10. Conditional abrogation of Atm in osteoclasts extends osteoclast lifespan and results in reduced bone mass

    PubMed Central

    Hirozane, Toru; Tohmonda, Takahide; Yoda, Masaki; Shimoda, Masayuki; Kanai, Yae; Matsumoto, Morio; Morioka, Hideo; Nakamura, Masaya; Horiuchi, Keisuke

    2016-01-01

    Ataxia-telangiectasia mutated (ATM) kinase is a central component involved in the signal transduction of the DNA damage response (DDR) and thus plays a critical role in the maintenance of genomic integrity. Although the primary functions of ATM are associated with the DDR, emerging data suggest that ATM has many additional roles that are not directly related to the DDR, including the regulation of oxidative stress signaling, insulin sensitivity, mitochondrial homeostasis, and lymphocyte development. Patients and mice lacking ATM exhibit growth retardation and lower bone mass; however, the mechanisms underlying the skeletal defects are not fully understood. In the present study, we generated mutant mice in which ATM is specifically inactivated in osteoclasts. The mutant mice did not exhibit apparent developmental defects but showed reduced bone mass due to increased osteoclastic bone resorption. Osteoclasts lacking ATM were more resistant to apoptosis and showed a prolonged lifespan compared to the controls. Notably, the inactivation of ATM in osteoclasts resulted in enhanced NF-κB signaling and an increase in the expression of NF-κB-targeted genes. The present study reveals a novel function for ATM in regulating bone metabolism by suppressing the lifespan of osteoclasts and osteoclast-mediated bone resorption. PMID:27677594

  11. Conditional abrogation of Atm in osteoclasts extends osteoclast lifespan and results in reduced bone mass.

    PubMed

    Hirozane, Toru; Tohmonda, Takahide; Yoda, Masaki; Shimoda, Masayuki; Kanai, Yae; Matsumoto, Morio; Morioka, Hideo; Nakamura, Masaya; Horiuchi, Keisuke

    2016-09-28

    Ataxia-telangiectasia mutated (ATM) kinase is a central component involved in the signal transduction of the DNA damage response (DDR) and thus plays a critical role in the maintenance of genomic integrity. Although the primary functions of ATM are associated with the DDR, emerging data suggest that ATM has many additional roles that are not directly related to the DDR, including the regulation of oxidative stress signaling, insulin sensitivity, mitochondrial homeostasis, and lymphocyte development. Patients and mice lacking ATM exhibit growth retardation and lower bone mass; however, the mechanisms underlying the skeletal defects are not fully understood. In the present study, we generated mutant mice in which ATM is specifically inactivated in osteoclasts. The mutant mice did not exhibit apparent developmental defects but showed reduced bone mass due to increased osteoclastic bone resorption. Osteoclasts lacking ATM were more resistant to apoptosis and showed a prolonged lifespan compared to the controls. Notably, the inactivation of ATM in osteoclasts resulted in enhanced NF-κB signaling and an increase in the expression of NF-κB-targeted genes. The present study reveals a novel function for ATM in regulating bone metabolism by suppressing the lifespan of osteoclasts and osteoclast-mediated bone resorption.

  12. WHI-131 Promotes Osteoblast Differentiation and Prevents Osteoclast Formation and Resorption in Mice.

    PubMed

    Cheon, Yoon-Hee; Kim, Ju-Young; Baek, Jong Min; Ahn, Sung-Jun; Jun, Hong Young; Erkhembaatar, Munkhsoyol; Kim, Min Seuk; Lee, Myeung Su; Oh, Jaemin

    2016-02-01

    The small molecule WHI-131 is a potent therapeutic agent with anti-inflammatory, antiallergic, and antileukemic potential. However, the regulatory effects of WHI-131 on osteoblast and osteoclast activity are unclear. We examined the effects of WHI-131 on osteoblast and osteoclast differentiation with respect to bone remodeling. The production of receptor activator of nuclear factor kappa-B ligand (RANKL) by osteoblasts in response to interleukin (IL)-1 or IL-6 stimulation decreased by 56.8% or 50.58%, respectively, in the presence of WHI-131. WHI-131 also abrogated the formation of mature osteoclasts induced by IL-1 or IL-6 stimulation. Moreover, WHI-131 treatment decreased RANKL-induced osteoclast differentiation of bone marrow-derived macrophages, and reduced the resorbing activity of mature osteoclasts. WHI-131 further decreased the mRNA and protein expression levels of c-Fos and nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) by almost twofold, and significantly downregulated the mRNA expression of the following genes: tartrate-resistant acid phosphatase (TRAP), osteoclast-associated receptor (OSCAR), DC-STAMP, OC-STAMP, ATP6v0d2, and cathepsin K (CtsK) compared with the control group. WHI-131 further suppressed the phosphorylation of protein kinase B (Akt) and degradation of inhibitor of kappa B (IκB); Ca(2+) oscillation was also affected, and phosphorylation of the C-terminal Src kinase (c-Src)-Bruton agammaglobulinemia tyrosine kinase (Btk)-phospholipase C gamma 2 (PLCγ2) (c-Src-Btk-PLCg2 calcium signaling pathway) was inhibited following WHI-131 treatment. The Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway was activated by WHI-131, accompanied by phosphorylation of STAT3 Ser727 and dephosphorylation of STAT6. In osteoblasts, WHI-131 caused an approximately fourfold increase in alkaline phosphatase activity and Alizarin Red staining intensity. Treatment with WHI-131 increased the mRNA expression

  13. CHIP Regulates Osteoclast Formation through Promoting TRAF6 Protein Degradation

    PubMed Central

    Li, Shan; Shu, Bing; Zhang, Yanquan; Li, Jia; Guo, Junwei; Wang, Yinyin; Ren, Fangli; Xiao, Guozhi; Chang, Zhijie; Chen, Di

    2014-01-01

    Objective Carboxyl terminus of Hsp70-interacting protein (CHIP or STUB1) is an E3 ligase and regulates the stability of several proteins which are involved in tumor growth and metastasis. However, the role of CHIP in bone growth and bone remodeling in vivo has not been reported. The objective of this study is to investigate the role and mechanism of CHIP in regulation of bone mass and bone remodeling. Methods The bone phenotype of Chip−/− mice was examined by histology, histomorphometry and micro-CT analyses. The regulatory mechanism of CHIP on the degradation of TRAF6 and the inhibition of NF-κB signaling was examined by immunoprecipitation (IP), western blotting and luciferase reporter assays. Results In this study, we found that deletion of the Chip gene leads to osteopenic phenotype and increased osteoclast formation. We further found that TRAF6, as a novel substrate of CHIP, is up-regulated in Chip−/− osteoclasts. TRAF6 is critical for RANKL-induced osteoclastogenesis. TRAF6 is an adaptor protein which functions as an E3 ligase to regulate the activation of TAK1 and the I-κB kinase (IKK) and is a key regulator of NF-κB signaling. CHIP interacts with TRAF6 to promote TRAF6 ubiquitination and proteasome degradation. CHIP inhibits p65 nuclear translocation, leading to the repression of the TRAF6-mediated NF-κB transcription. Conclusion CHIP inhibits NF-κB signaling via promoting TRAF6 degradation and plays an important role in osteoclastogenesis and bone remodeling, suggesting that it may be a novel therapeutic target for the treatment of bone loss associated diseases. PMID:24578159

  14. High throughput, quantitative analysis of human osteoclast differentiation and activity.

    PubMed

    Diepenhorst, Natalie A; Nowell, Cameron J; Rueda, Patricia; Henriksen, Kim; Pierce, Tracie; Cook, Anna E; Pastoureau, Philippe; Sabatini, Massimo; Charman, William N; Christopoulos, Arthur; Summers, Roger J; Sexton, Patrick M; Langmead, Christopher J

    2017-02-15

    Osteoclasts are multinuclear cells that degrade bone under both physiological and pathophysiological conditions. Osteoclasts are therefore a major target of osteoporosis therapeutics aimed at preserving bone. Consequently, analytical methods for osteoclast activity are useful for the development of novel biomarkers and/or pharmacological agents for the treatment of osteoporosis. The nucleation state of an osteoclast is indicative of its maturation and activity. To date, activity is routinely measured at the population level with only approximate consideration of the nucleation state (an 'osteoclast population' is typically defined as cells with ≥3 nuclei). Using a fluorescent substrate for tartrate-resistant acid phosphatase (TRAP), a routinely used marker of osteoclast activity, we developed a multi-labelled imaging method for quantitative measurement of osteoclast TRAP activity at the single cell level. Automated image analysis enables interrogation of large osteoclast populations in a high throughput manner using open source software. Using this methodology, we investigated the effects of receptor activator of nuclear factor kappa-B ligand (RANK-L) on osteoclast maturation and activity and demonstrated that TRAP activity directly correlates with osteoclast maturity (i.e. nuclei number). This method can be applied to high throughput screening of osteoclast-targeting compounds to determine changes in maturation and activity.

  15. Direct microsensor measurement of nitric oxide production by the osteoclast.

    PubMed

    Silverton, S F; Adebanjo, O A; Moonga, B S; Awumey, E M; Malinski, T; Zaidi, M

    1999-05-27

    Nitric oxide (NO) triggers marked osteoclast retraction which closely resembles that due to Ca2+. The effect of Ca2+ has been attributed to a stimulated release of NO. Here, we show for the first time, by direct measurement with a microsensor, that osteoclasts do indeed produce NO and that this production is enhanced by a high Ca2+. We also show that the Ca2+ ionophore, A23187, mimics the latter. Furthermore, osteoclasts on dentine produce more NO than osteoclasts on glass and NO release from dentine-plated osteoclasts is much less sensitive to stimulation by Ca2+. Finally, the microsomal Ca2+ store-depleting agent, thapsigargin, attenuates NO release only from osteoclasts on glass, suggesting that stored Ca2+ has the dominant effect in modulating NO release from non-resorbing cells. NO is a powerful inhibitor of bone resorption: a direct demonstration of its production is therefore strong evidence for a role in modulating osteoclast function.

  16. The role of microRNAs in osteoclasts and osteoporosis.

    PubMed

    Tang, Peifu; Xiong, Qi; Ge, Wei; Zhang, Lihai

    2014-01-01

    Osteoclasts are the exclusive cells of bone resorption. Abnormally activating osteoclasts can lead to low bone mineral density, which will cause osteopenia, osteoporosis, and other bone disorders. To date, the mechanism of how osteoclast precursors differentiate into mature osteoclasts remains elusive. MicroRNAs (miRNAs) are novel regulatory factors that play an important role in numerous cellular processes, including cell differentiation and apoptosis, by post-transcriptional regulation of genes. Recently, a number of studies have revealed that miRNAs participate in bone homeostasis, including osteoclastic bone resorption, which sheds light on the mechanisms underlying osteoclast differentiation. In this review, we highlight the miRNAs involved in regulating osteoclast differentiation and bone resorption, and their roles in osteoporosis.

  17. Osteoblasts of calvaria induce higher numbers of osteoclasts than osteoblasts from long bone.

    PubMed

    Wan, Qilong; Schoenmaker, Ton; Jansen, Ineke D C; Bian, Zhuan; de Vries, Teun J; Everts, Vincent

    2016-05-01

    Several studies have demonstrated the existence of functional differences between osteoclasts harbored in different bones. The mechanisms involved in the occurrence of such a heterogeneity are not yet understood. Since cells of the osteoblast lineage play a critical role in osteoclastogenesis, osteoclast heterogeneity may be due to osteoblasts that differ at the different bone sites. In the present study we evaluated possible differences in the capacity of calvaria and long bone osteoblasts to induce osteoclastogenesis. Osteoblasts were isolated from calvaria and long bone of mice and co-cultured with osteoclast precursors obtained from bone marrow of both types of bone, spleen and peripheral blood. Irrespective of the source of the precursors, a significantly higher number of TRACP-positive multinucleated cells were formed with calvaria osteoblasts. The expression of osteoclastogenesis related genes was analyzed by qPCR. OPG was significantly higher expressed by long bone osteoblasts. The RANKL/OPG ratio and TNF-α gene expression were significantly higher in calvaria osteoblast cultures. OPG added to the culture system inhibited osteoclastogenesis in both groups. Blocking TNF-α had no effect on osteoclastogenesis. Calvaria and long bone osteoblasts were pre-stimulated with VitD3 for 5days. Subsequently, osteoclast precursors were added to these cultures. After a co-culture of 6days, it was shown that VitD3 pre-stimulation of long bone osteoblasts strongly improved their capacity to induce osteoclast formation. This coincided with an increased ratio of RANKL/OPG. Taken together, the data demonstrated differences in the capacity of calvaria and long bone osteoblasts to induce osteoclastogenesis. This appeared to be due to differences in the expression of RANKL and OPG. VitD3 pre-stimulation improved the ability of long bone osteoblasts to induce osteoclast formation. Our findings demonstrate bone-site specific differences in osteoblast-mediated formation of

  18. Vitamin D receptor expression in human bone tissue and dose-dependent activation in resorbing osteoclasts

    PubMed Central

    Zarei, Allahdad; Morovat, Alireza; Javaid, Kassim; Brown, Cameron P

    2016-01-01

    The effects of vitamin D on osteoblast mineralization are well documented. Reports of the effects of vitamin D on osteoclasts, however, are conflicting, showing both inhibition and stimulation. Finding that resorbing osteoclasts in human bone express vitamin D receptor (VDR), we examined their response to different concentrations of 25-hydroxy vitamin D3 [25(OH)D3] (100 or 500 nmol·L−1) and 1,25-dihydroxy vitamin D3 [1,25(OH)2D3] (0.1 or 0.5 nmol·L−1) metabolites in cell cultures. Specifically, CD14+ monocytes were cultured in charcoal-stripped serum in the presence of receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). Tartrate-resistant acid phosphatase (TRAP) histochemical staining assays and dentine resorption analysis were used to identify the size and number of osteoclast cells, number of nuclei per cell and resorption activity. The expression of VDR was detected in human bone tissue (ex vivo) by immunohistochemistry and in vitro cell cultures by western blotting. Quantitative reverse transcription-PCR (qRT-PCR) was used to determine the level of expression of vitamin D-related genes in response to vitamin D metabolites. VDR-related genes during osteoclastogenesis, shown by qRT-PCR, was stimulated in response to 500 nmol·L−1 of 25(OH)D3 and 0.1–0.5 nmol·L−1 of 1,25(OH)2D3, upregulating cytochrome P450 family 27 subfamily B member 1 (CYP27B1) and cytochrome P450 family 24 subfamily A member 1 (CYP24A1). Osteoclast fusion transcripts transmembrane 7 subfamily member 4 (tm7sf4) and nuclear factor of activated T-cell cytoplasmic 1 (nfatc1) where downregulated in response to vitamin D metabolites. Osteoclast number and resorption activity were also increased. Both 25(OH)D3 and 1,25(OH)2D3 reduced osteoclast size and number when co-treated with RANKL and M-CSF. The evidence for VDR expression in resorbing osteoclasts in vivo and low-dose effects of 1,25(OH)2D3 on osteoclasts in vitro

  19. Lysophosphatidic Acid Receptor Type 1 (LPA1) Plays a Functional Role in Osteoclast Differentiation and Bone Resorption Activity*

    PubMed Central

    David, Marion; Machuca-Gayet, Irma; Kikuta, Junichi; Ottewell, Penelope; Mima, Fuka; Leblanc, Raphael; Bonnelye, Edith; Ribeiro, Johnny; Holen, Ingunn; Vales, Rùben Lopez; Jurdic, Pierre; Chun, Jerold; Clézardin, Philippe; Ishii, Masaru; Peyruchaud, Olivier

    2014-01-01

    Lysophosphatidic acid (LPA) is a natural bioactive lipid that acts through six different G protein-coupled receptors (LPA1–6) with pleiotropic activities on multiple cell types. We have previously demonstrated that LPA is necessary for successful in vitro osteoclastogenesis of bone marrow cells. Bone cells controlling bone remodeling (i.e. osteoblasts, osteoclasts, and osteocytes) express LPA1, but delineating the role of this receptor in bone remodeling is still pending. Despite Lpar1−/− mice displaying a low bone mass phenotype, we demonstrated that bone marrow cell-induced osteoclastogenesis was reduced in Lpar1−/− mice but not in Lpar2−/− and Lpar3−/− animals. Expression of LPA1 was up-regulated during osteoclastogenesis, and LPA1 antagonists (Ki16425, Debio0719, and VPC12249) inhibited osteoclast differentiation. Blocking LPA1 activity with Ki16425 inhibited expression of nuclear factor of activated T-cell cytoplasmic 1 (NFATc1) and dendritic cell-specific transmembrane protein and interfered with the fusion but not the proliferation of osteoclast precursors. Similar to wild type osteoclasts treated with Ki16425, mature Lpar1−/− osteoclasts had reduced podosome belt and sealing zone resulting in reduced mineralized matrix resorption. Additionally, LPA1 expression markedly increased in the bone of ovariectomized mice, which was blocked by bisphosphonate treatment. Conversely, systemic treatment with Debio0719 prevented ovariectomy-induced cancellous bone loss. Moreover, intravital multiphoton microscopy revealed that Debio0719 reduced the retention of CX3CR1-EGFP+ osteoclast precursors in bone by increasing their mobility in the bone marrow cavity. Overall, our results demonstrate that LPA1 is essential for in vitro and in vivo osteoclast activities. Therefore, LPA1 emerges as a new target for the treatment of diseases associated with excess bone loss. PMID:24429286

  20. Ficus carica L. (Moraceae): Phytochemistry, Traditional Uses and Biological Activities

    PubMed Central

    Mawa, Shukranul; Husain, Khairana; Jantan, Ibrahim

    2013-01-01

    This paper describes the botanical features of Ficus carica L. (Moraceae), its wide variety of chemical constituents, its use in traditional medicine as remedies for many health problems, and its biological activities. The plant has been used traditionally to treat various ailments such as gastric problems, inflammation, and cancer. Phytochemical studies on the leaves and fruits of the plant have shown that they are rich in phenolics, organic acids, and volatile compounds. However, there is little information on the phytochemicals present in the stem and root. Reports on the biological activities of the plant are mainly on its crude extracts which have been proven to possess many biological activities. Some of the most interesting therapeutic effects include anticancer, hepatoprotective, hypoglycemic, hypolipidemic, and antimicrobial activities. Thus, studies related to identification of the bioactive compounds and correlating them to their biological activities are very useful for further research to explore the potential of F. carica as a source of therapeutic agents. PMID:24159359

  1. Effects of cyclic tension stress on the apoptosis of osteoclasts in vitro

    PubMed Central

    LI, FENGBO; SUN, XIAOLEI; ZHAO, BIN; MA, JIANXIONG; ZHANG, YANG; LI, SHUANG; LI, YANJUN; MA, XINLONG

    2015-01-01

    The aim of the present study was to investigate the effect of cyclic tension stress on osteoclast apoptosis in vitro using murine RAW264.7 cells treated with receptor activator of nuclear factor-κB. Using the EF3200 mechanical testing instrument with BioDynamic bioreactor system, cultured osteoclasts which were seeded in a silicone rubber membrane load carrier, were loaded with periodic cyclic stretch microstrain. The induced osteoclasts were subjected to 0, 5, 10 and 15% stretch microstrain for 1 h daily for three days. The number of tartrate-resistant acid phosphatase-positive osteoclasts and the resorption area were assessed. Osteoclast apoptosis was detected by the Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide binding assay. The mRNA expression of Bcl-2, Bax, caspase-3 and cytochrome c was detected following force loading using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. Compared with the cells under no cyclic tension stress, the number of osteoclasts and the resorption area were increased in the cells under 10 and 15% stretch microstrain. The Annexin V binding assay showed that the early apoptosis rate of the 5, 10 and 15% stretch microstrain groups was decreased compared with that of the control group. RT-qPCR results showed that the Bcl-2/Bax ratio was significantly increased in the cells subjected to 5, 10 and 15% stretch microstrain compared with that in the control cells (P<0.05), while the expression of cytochrome c in the 10 and 15% stretch microstrain groups was decreased significantly (P<0.05). No significant difference was observed between the cytochrome c expression of the 5% stretch microstrain group and that of the control group (P>0.05). The expression of caspase-3 in the 5, 10 and 15% stretch microstrain groups was decreased significantly compared with that in the control group (P<0.05). These data suggest that cyclic tension stress can inhibit apoptosis in osteoclasts, possibly by increasing

  2. Cell fusion in osteoclasts plays a critical role in controlling bone mass and osteoblastic activity

    SciTech Connect

    Iwasaki, Ryotaro; Ninomiya, Ken; Miyamoto, Kana; Suzuki, Toru; Sato, Yuiko

    2008-12-19

    The balance between osteoclast and osteoblast activity is central for maintaining the integrity of bone homeostasis. Here we show that mice lacking dendritic cell specific transmembrane protein (DC-STAMP), an essential molecule for osteoclast cell-cell fusion, exhibited impaired bone resorption and upregulation of bone formation by osteoblasts, which do not express DC-STAMP, which led to increased bone mass. On the contrary, DC-STAMP over-expressing transgenic (DC-STAMP-Tg) mice under the control of an actin promoter showed significantly accelerated cell-cell fusion of osteoclasts and bone resorption, with decreased osteoblastic activity and bone mass. Bone resorption and formation are known to be regulated in a coupled manner, whereas DC-STAMP regulates bone homeostasis in an un-coupled manner. Thus our results indicate that inhibition of a single molecule provides both decreased osteoclast activity and increased bone formation by osteoblasts, thereby increasing bone mass in an un-coupled and a tissue specific manner.

  3. Osteopontin regulates macrophage activation and osteoclast formation in hypertensive patients with vascular calcification

    PubMed Central

    Ge, Qian; Ruan, Cheng-Chao; Ma, Yu; Tang, Xiao-Feng; Wu, Qi-Hong; Wang, Ji-Guang; Zhu, Ding-Liang; Gao, Ping-Jin

    2017-01-01

    Vascular calcification (VC) is a highly regulated ectopic mineral deposition process involving immune cell infiltration in the vasculatures, which has been recognized to be promoted by hypertension. The matricellular glycoprotein osteopontin (OPN) is strongly induced in myeloid cells as a potential inflammatory mediator of vascular injury. This study aims to examine whether OPN is involved in the regulation of macrophage activation and osteoclast formation in hypertensive subjects with VC. We firstly found an increased proportion of CD11c+CD163- pro-inflammatory peripheral monocytes in hypertensive subjects with VC compared to those without VC by flow cytometric analysis. Primary cultured macrophages from hypertensive subjects with VC also showed altered expression profile of inflammatory factors and higher serum OPN level. Exogenous OPN promoted the differentiation of peripheral monocytes into an alternative, anti-inflammatory phenotype, and inhibited macrophage-to-osteoclast differentiation from these VC patients. In addition, calcified vessels showed increased osteoclasts accumulation accompanied with decreased macrophages infiltration in the of hypertensive subjects. Taken together, these demonstrated that OPN exerts an important role in the monocytes/macrophage phenotypic differentiation from hypertensive patients with VC, which includes reducing inflammatory factor expression and attenuating osteoclast formation. PMID:28091516

  4. PSTPIP2 deficiency in mice causes osteopenia and increased differentiation of multipotent myeloid precursors into osteoclasts

    PubMed Central

    Nacu, Viorel; Charles, Julia F.; Henne, William M.; McMahon, Harvey T.; Nandi, Sayan; Ketchum, Halley; Harris, Renee; Nakamura, Mary C.

    2012-01-01

    Missense mutations that reduce or abrogate myeloid cell expression of the F-BAR domain protein, proline serine threonine phosphatase-interacting protein 2 (PSTPIP2), lead to autoinflammatory disease involving extramedullary hematopoiesis, skin and bone lesions. However, little is known about how PSTPIP2 regulates osteoclast development. Here we examined how PSTPIP2 deficiency causes osteopenia and bone lesions, using the mouse PSTPIP2 mutations, cmo, which fails to express PSTPIP2 and Lupo, in which PSTPIP2 is dysfunctional. In both models, serum levels of the pro-osteoclastogenic factor, MIP-1α, were elevated and CSF-1 receptor (CSF-1R)–dependent production of MIP-1α by macrophages was increased. Treatment of cmo mice with a dual specificity CSF-1R and c-Kit inhibitor, PLX3397, decreased circulating MIP-1α and ameliorated the extramedullary hematopoiesis, inflammation, and osteopenia, demonstrating that aberrant myelopoiesis drives disease. Purified osteoclast precursors from PSTPIP2-deficient mice exhibit increased osteoclastogenesis in vitro and were used to probe the structural requirements for PSTPIP2 suppression of osteoclast development. PSTPIP2 tyrosine phosphorylation and a functional F-BAR domain were essential for PSTPIP2 inhibition of TRAP expression and osteoclast precursor fusion, whereas interaction with PEST-type phosphatases was only required for suppression of TRAP expression. Thus, PSTPIP2 acts as a negative feedback regulator of CSF-1R signaling to suppress inflammation and osteoclastogenesis. PMID:22923495

  5. The small molecule harmine regulates NFATc1 and Id2 expression in osteoclast progenitor cells.

    PubMed

    Egusa, Hiroshi; Doi, Masanori; Saeki, Makio; Fukuyasu, Sho; Akashi, Yoshihiro; Yokota, Yoshifumi; Yatani, Hirofumi; Kamisaki, Yoshinori

    2011-08-01

    Small molecule compounds that potently affect osteoclastogenesis could be useful as chemical probes for elucidating the mechanisms of various biological phenomena and as effective therapeutic strategies against bone resorption. An osteoclast progenitor cell-based high-throughput screening system was designed to target activation of NFAT, which is a key event for osteoclastogenesis. Orphan ligand library screening using this system identified the β-carboline derivative harmine, which is a highly potent inhibitor of dual-specificity tyrosine-phosphorylation regulated kinase 1A (DYRK1A), to be an NFAT regulator in osteoclasts. RAW264.7 cells highly expressed DYRK1A protein, and in vitro phosphorylation assay demonstrated that harmine directly inhibited the DYRK1A-mediated phosphorylation (in-activation) of NFATc1. Harmine promoted the dephosphorylation (activation) of NFATc1 in RAW264.7 cells within 24h, and it significantly increased the expression of NFATc1 in RAW264.7 cells and mouse primary bone marrow macrophages (BMMs) both in the presence and absence of RANKL stimulation. Although harmine promoted NFATc1 expression and stimulated target genes for osteoclastogenesis, cell-cell fusion and the formation of TRAP-positive multinucleated osteoclasts from RAW264.7 cells and BMMs was significantly inhibited by harmine treatment. Meanwhile, harmine remarkably promoted the expression of inhibitor of DNA binding/differentiation-2 (Id2), which is a negative regulator for osteoclastogenesis, in RAW264.7 cells and BMMs. An Id2-null-mutant showed slightly increased osteoclast formation from BMMs, and the harmine-mediated inhibition of osteoclast formation was abolished in the BMMs of Id2-null-mutant mice. These results suggest that harmine is a potent activator of NFATc1 that interferes with the function of DYRK1A in osteoclast precursors and also up-regulates Id2 protein, which may dominantly inhibit expression pathways associated with cell-cell fusion, thereby leading to

  6. ADAM8 Enhances Osteoclast Precursor Fusion and Osteoclast Formation In Vitro and In Vivo

    PubMed Central

    Ishizuka, Hisako; García-Palacios, Verónica; Lu, Ganwei; Subler, Mark A; Zhang, Heju; Boykin, Christina S; Choi, Sun Jin; Zhao, Liena; Patrene, Kenneth; Galson, Deborah L; Blair, Harry C; Hadi, Tamer M; Windle, Jolene J; Kurihara, Noriyoshi; Roodman, G David

    2011-01-01

    ADAM8 expression is increased in the interface tissue around a loosened hip prosthesis and in the pannus and synovium of patients with rheumatoid arthritis, but its potential role in these processes is unclear. ADAM8 stimulates osteoclast (OCL) formation, but the effects of overexpression or loss of expression of ADAM8 in vivo and the mechanisms responsible for the effects of ADAM8 on osteoclastogenesis are unknown. Therefore, to determine the effects of modulating ADAM expression, we generated tartrate-resistant acid phosphatase (TRAP)–ADAM8 transgenic mice that overexpress ADAM8 in the OCL lineage and ADAM8 knockout (ADAM8 KO) mice. TRAP-ADAM8 mice developed osteopenia and had increased numbers of OCL precursors that formed hypermultinucleated OCLs with an increased bone-resorbing capacity per OCL. They also had an enhanced differentiation capacity, increased TRAF6 expression, and increased NF-κB, Erk, and Akt signaling compared with wild-type (WT) littermates. This increased bone-resorbing capacity per OCL was associated with increased levels of p-Pyk2 and p-Src activation. In contrast, ADAM8 KO mice did not display a bone phenotype in vivo, but unlike WT littermates, they did not increase RANKL production, OCL formation, or calvarial fibrosis in response to tumor necrosis factor α (TNF-α) in vivo. Since loss of ADAM8 does not inhibit basal bone remodeling but only blocks the enhanced OCL formation in response to TNF-α, these results suggest that ADAM8 may be an attractive therapeutic target for preventing bone destruction associated with inflammatory disease. © 2011 American Society for Bone and Mineral Research. PMID:20683884

  7. Polarity and membrane transport in osteoclasts.

    PubMed

    Baron, R

    1989-01-01

    The osteoclast is a highly polarized non-epithelial cell. The apical pole of the cell is determined by the cell's attachment to the extracellular matrix. This attachment forms the sealing zone, delimiting the subosteoclastic bone resorbing compartment. The apical membrane of the cell forms the ruffled-border, which contains some specific membrane proteins and a proton pump ATPase, which acidifies the apical compartment. Newly synthesized lysosomal enzymes are vectorially transported into this apical compartment bound to mannose-6-phosphate receptors. The basolateral membrane is highly enriched in sodium pumps with beta and alpha 1 subunits. Associated with the acidification process is the carbonic anhydrase found in the cytoplasm and membrane-associated and a bicarbonate-chloride exchanger in the membrane.2 These features put the osteoclast in the same functional category as the kidney tubule intercalated cell and the gastric oxyntic cell, both of epithelial origin, which secrete acid in a polarized fashion.

  8. Advances in osteoclast biology reveal potential new drug targets and new roles for osteoclasts.

    PubMed

    Boyce, Brendan F

    2013-04-01

    Osteoclasts are multinucleated myeloid lineage cells formed in response to macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL) by fusion of bone marrow-derived precursors that circulate in the blood and are attracted to sites of bone resorption in response to factors, such as sphingosine-1 phosphate signaling. Major advances in understanding of the molecular mechanisms regulating osteoclast functions have been made in the past 20 years, mainly from mouse and human genetic studies. These have revealed that osteoclasts express and respond to proinflammatory and anti-inflammatory cytokines. Some of these cytokines activate NF-κB and nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) signaling to induce osteoclast formation and activity and also regulate communication with neighboring cells through signaling proteins, including ephrins and semaphorins. Osteoclasts also positively and negatively regulate immune responses and osteoblastic bone formation. These advances have led to development of new inhibitors of bone resorption that are in clinical use or in clinical trials; and more should follow, based on these advances. This article reviews current understanding of how bone resorption is regulated both positively and negatively in normal and pathologic states.

  9. Enhancing Osteoclastic Resorption for the Prevention and Treatment of Heterotopic Ossification

    DTIC Science & Technology

    2012-12-01

    Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions...searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send...key osteoclast formation cytokine. A second approach is by antibody inhibition of OPG, the natural antagonist of RANKL. Results from the second

  10. Scoparone attenuates RANKL-induced osteoclastic differentiation through controlling reactive oxygen species production and scavenging

    SciTech Connect

    Lee, Sang-Hyun; Jang, Hae-Dong

    2015-02-15

    Scoparone, one of the bioactive components of Artemisia capillaris Thunb, has various biological properties including immunosuppressive, hepatoprotective, anti-allergic, anti-inflammatory, and antioxidant effects. This study aims at evaluating the anti-osteoporotic effect of scoparone and its underlying mechanism in vitro. Scoparone demonstrated potent cellular antioxidant capacity. It was also found that scoparone inhibited the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation and suppressed cathepsin K and tartrate-resistant acid phosphatase (TRAP) expression via c-jun N-terminal kinase (JNK)/extracellular signal-regulated kinase (ERK)/p38-mediated c-Fos–nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) signaling pathway. During osteoclast differentiation, the production of general reactive oxygen species (ROS) and superoxide anions was dose-dependently attenuated by scoparone. In addition, scoparone diminished NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 1 (Nox1) expression and activation via the tumor necrosis factor receptor-associated factor 6 (TRAF6)–cSrc–phosphatidylinositol 3-kinase (PI3k) signaling pathway and prevented the disruption of mitochondrial electron transport chain system. Furthermore, scoparone augmented the expression of superoxide dismutase 1 (SOD1) and catalase (CAT). The overall results indicate that the inhibitory effect of scoparone on RANKL-induced osteoclast differentiation is attributed to the suppressive effect on ROS and superoxide anion production by inhibiting Nox1 expression and activation and protecting the mitochondrial electron transport chain system and the scavenging effect of ROS resulting from elevated SOD1 and CAT expression. - Highlights: • Scoparone dose-dependently inhibited RANKL-induced osteoclast differentiation. • Scoparone diminished general ROS and superoxide anions in a dose-dependent manner. • Scoparone inhibited Nox1 expression and

  11. Bisphosphonate action. Alendronate localization in rat bone and effects on osteoclast ultrastructure.

    PubMed Central

    Sato, M; Grasser, W; Endo, N; Akins, R; Simmons, H; Thompson, D D; Golub, E; Rodan, G A

    1991-01-01

    Studies of the mode of action of the bisphosphonate alendronate showed that 1 d after the injection of 0.4 mg/kg [3H]alendronate to newborn rats, 72% of the osteoclastic surface, 2% of the bone forming, and 13% of all other surfaces were densely labeled. Silver grains were seen above the osteoclasts and no other cells. 6 d later the label was 600-1,000 microns away from the epiphyseal plate and buried inside the bone, indicating normal growth and matrix deposition on top of alendronate-containing bone. Osteoclasts from adult animals, infused with parathyroid hormone-related peptide (1-34) and treated with 0.4 mg/kg alendronate subcutaneously for 2 d, all lacked ruffled border but not clear zone. In vitro alendronate bound to bone particles with a Kd of approximately 1 mM and a capacity of 100 nmol/mg at pH 7. At pH 3.5 binding was reduced by 50%. Alendronate inhibited bone resorption by isolated chicken or rat osteoclasts when the amount on the bone surface was around 1.3 x 10(-3) fmol/microns 2, which would produce a concentration of 0.1-1 mM in the resorption space if 50% were released. At these concentrations membrane leakiness to calcium was observed. These findings suggest that alendronate binds to resorption surfaces, is locally released during acidification, the rise in concentration stops resorption and membrane ruffling, without destroying the osteoclasts. Images PMID:1661297

  12. Reduced RANKL expression impedes osteoclast activation and tooth eruption in alendronate-treated rats.

    PubMed

    Bradaschia-Correa, Vivian; Moreira, Mariana M; Arana-Chavez, Victor E

    2013-07-01

    The creation of the eruption pathway requires the resorption of the occlusal alveolar bone by osteoclasts and signaling events between bone and dental follicle are necessary. The aim of the present study has been to evaluate the effect of alendronate on osteoclastogenesis and the expression of the regulator proteins of osteoclast activation, namely RANK, RANKL and OPG, in the bone that covers the first molar germ. Newborn Wistar rats were treated daily with 2.5 mg/kg alendronate for 4, 8, 14, 21 and 28 days, whereas controls received sterile saline solution. At the time points cited, maxillae were fixed, decalcified and processed for light and electron microscopic analysis. TRAP histochemistry was performed on semi-serial sections and the osteoclasts in the occlusal half of the bony crypt surface were counted. TUNEL analysis was carried out on paraffin sections. The occlusal bone that covers the upper first molar was removed in additional 4- and 8-day-old alendronate-treated and control rats in which the expression of RANK, RANKL and OPG was analyzed by SDS-polyacrylamide gel electrophoresis and Western blotting. TRAP-positive osteoclasts were more numerous in the alendronate group at all time points, despite their unactivated phenotype and the presence of apoptotic cells. RANKL expression in the alendronate specimens was inhibited at all time points, unlike in controls. Our findings indicate that the expression of RANKL in the occlusal portion of the bony crypt is unrelated to osteoclast recruitment and differentiation but is crucial to their activation during the creation of the eruption pathway.

  13. Positive regulation of osteoclastic differentiation by growth differentiation factor 15 upregulated in osteocytic cells under hypoxia.

    PubMed

    Hinoi, Eiichi; Ochi, Hiroki; Takarada, Takeshi; Nakatani, Eri; Iezaki, Takashi; Nakajima, Hiroko; Fujita, Hiroyuki; Takahata, Yoshifumi; Hidano, Shinya; Kobayashi, Takashi; Takeda, Shu; Yoneda, Yukio

    2012-04-01

    Osteocytes are thought to play a role as a mechanical sensor through their communication network in bone. Although osteocytes are the most abundant cells in bone, little attention has been paid to their physiological and pathological functions in skeletogenesis. Here, we have attempted to delineate the pivotal functional role of osteocytes in regulation of bone remodeling under pathological conditions. We first found markedly increased osteoclastic differentiation by conditioned media (CM) from osteocytic MLO-Y4 cells previously exposed to hypoxia in vitro. Using microarray and real-time PCR analyses, we identified growth differentiation factor 15 (GDF15) as a key candidate factor secreted from osteocytes under hypoxia. Recombinant GDF15 significantly promoted osteoclastic differentiation in a concentration-dependent manner, with concomitant facilitation of phosphorylation of both p65 and inhibitory-κB in the presence of receptor activator of nuclear factor-κB ligand. To examine the possible functional significance of GDF15 in vivo, mice were subjected to ligation of the right femoral artery as a hypoxic model. A significant increase in GDF15 expression was specifically observed in tibias of the ligated limb but not in tibias of the normally perfused limb. Under these experimental conditions, in cancellous bone of proximal tibias in the ligated limb, a significant reduction was observed in bone volume, whereas a significant increase was seen in the extent of osteoclast surface/bone surface when determined by bone histomorphometric analysis. Finally, the anti-GDF15 antibody prevented bone loss through inhibiting osteoclastic activation in tibias from mice with femoral artery ligation in vivo, in addition to suppressing osteoclastic activity enhanced by CM from osteocytes exposed to hypoxia in vitro. These findings suggest that GDF15 could play a pivotal role in the pathogenesis of bone loss relevant to hypoxia through promotion of osteoclastogenesis after

  14. In vitro cytotoxic and antiviral activities of Ficus carica latex extracts.

    PubMed

    Lazreg Aref, Houda; Gaaliche, Badii; Fekih, Abdelwaheb; Mars, Massoud; Aouni, Mahjoub; Pierre Chaumon, Jean; Said, Khaled

    2011-02-01

    The latex of fig fruit (Ficus carica) is used in traditional medicine for the treatment of skin infections such as warts and also diseases of possible viral origin. Five extracts (methanolic, hexanic, ethyl acetate, hexane-ethyl acetate (v/v) and chloroformic) of this species were investigated in vitro for their antiviral potential activity against herpes simplex type 1 (HSV-1), echovirus type 11 (ECV-11) and adenovirus (ADV). To evaluate the capacity of the extracts to inhibit the replication of viruses, the following assays were performed: adsorption and penetration, intracellular inhibition and virucidal activity. Observation of cytopathic effects was used to determine the antiviral action. The hexanic and hexane-ethyl acetate (v/v) extracts inhibited multiplication of viruses by tested techniques at concentrations of 78 µg mL(-1). These two extracts were possible candidates as herbal medicines for herpes virus, echovirus and adenovirus infectious diseases. All extracts had no cytotoxic effect on Vero cells at all tested concentrations.

  15. Osteoclast Inhibitory Peptide-1 Therapy for Paget’s Disease

    DTIC Science & Technology

    2012-08-01

    1 (SQSTM1/p62) gene have been widely identified in PDB patients. We previously detected expression of measles virus nucleocapsid (MVNP) transcripts...high bone turnover in PDB. 15. SUBJECT TERMS Paget’s Disease, measles virus nucleocapsid, sequestosome1 , osteoclast, osteoclast inhibitory peptide...detected expression of measles virus nucleocapsid (MVNP) transcripts in osteoclasts from patients with PDB. Also, we have shown that MVNP gene

  16. A Comprehensive Review of Immunoreceptor Regulation of Osteoclasts.

    PubMed

    Humphrey, Mary Beth; Nakamura, Mary C

    2016-08-01

    Osteoclasts require coordinated co-stimulation by several signaling pathways to initiate and regulate their cellular differentiation. Receptor activator for NF-κB ligand (RANKL or TNFSF11), a tumor necrosis factor (TNF) superfamily member, is the master cytokine required for osteoclastogenesis with essential co-stimulatory signals mediated by immunoreceptor tyrosine-based activation motif (ITAM)-signaling adaptors, DNAX-associated protein 12 kDa size (DAP12) and FcεRI gamma chain (FcRγ). The ITAM-signaling adaptors do not have an extracellular ligand-binding domain and, therefore, must pair with ligand-binding immunoreceptors to interact with their extracellular environment. DAP12 pairs with a number of different immunoreceptors including triggering receptor expressed on myeloid cells 2 (TREM2), myeloid DAP12-associated lectin (MDL-1), and sialic acid-binding immunoglobulin-type lectin 15 (Siglec-15); while FcRγ pairs with a different set of receptors including osteoclast-specific activating receptor (OSCAR), paired immunoglobulin receptor A (PIR-A), and Fc receptors. The ligands for many of these receptors in the bone microenvironment remain unknown. Here, we will review immunoreceptors known to pair with either DAP12 or FcRγ that have been shown to regulate osteoclastogenesis. Co-stimulation and the effects of ITAM-signaling have turned out to be complex, and now include paradoxical findings that ITAM-signaling adaptor-associated receptors can inhibit osteoclastogenesis and immunoreceptor tyrosine-based inhibitory motif (ITIM) receptors can promote osteoclastogenesis. Thus, co-stimulation of osteoclastogenesis continues to reveal additional complexities that are important in the regulatory mechanisms that seek to maintain bone homeostasis.

  17. Osteoclast precursor interaction with bone matrix induces osteoclast formation directly by an interleukin-1-mediated autocrine mechanism.

    PubMed

    Yao, Zhenqiang; Xing, Lianping; Qin, Chunlin; Schwarz, Edward M; Boyce, Brendan F

    2008-04-11

    Interleukin-1 (IL-1) and tumor necrosis factor (TNF) mediate bone resorption in a variety of diseases affecting bone. Like TNF, IL-1 is secreted by osteoclast precursors (OCPs), but unlike TNF, it does not induce osteoclast formation directly from OCPs in vitro. TNF induces IL-1 expression and activates c-Fos, a transcription factor required in OCPs for osteoclast formation. Here, we examined whether IL-1 can induce osteoclast formation directly from OCPs overexpressing c-Fos and whether interaction with bone matrix affects OCP cytokine expression. We infected OCPs with c-Fos or green fluorescent protein retrovirus, cultured them with macrophage colony-stimulating factor and IL-1 on bone slices or plastic dishes, and assessed osteoclast and resorption pit formation and expression of IL-1 by OCPs. We used a Transwell assay to determine whether OCPs secrete IL-1 when they interact with bone matrix. IL-1 induced osteoclast formation directly from c-Fos-expressing OCPs on plastic. c-Fos-expressing OCPs formed osteoclasts spontaneously on bone slices without addition of cytokines. OCPs on bone secreted IL-1, which induced osteoclast formation from c-Fos-expressing OCPs in the lower Transwell dishes. The bone matrix proteins dentin sialoprotein and osteopontin, but not transforming growth factor-beta, stimulated OCP expression of IL-1 and induced c-Fos-expressing OCP differentiation into osteoclasts. Osteoclasts eroding inflamed joints have higher c-Fos expression compared with osteoclasts inside bone. We conclude that OCPs expressing c-Fos may induce their differentiation directly into osteoclasts by an autocrine mechanism in which they produce IL-1 through interaction with bone matrix. TNF could induce c-Fos expression in OCPs at sites of inflammation in bone to promote this autocrine mechanism and thus amplify bone loss.

  18. Multi-walled carbon nanotubes induce apoptosis in RAW 264.7 cell-derived osteoclasts through mitochondria-mediated death pathway.

    PubMed

    Ye, Shefang; Jiang, Yuanqin; Zhang, Honggang; Wang, Yifang; Wu, Yihui; Hou, Zhenqing; Zhang, Qiqing

    2012-03-01

    Carbon nanotubes (CNTs) have attracted great interest with respect to biomaterials, particularly for use as an implant material in bone-tissue engineering. Accordingly, the bone-tissue compatibility of CNTs and their influence on new bone formation are important issues. In the present study, we examined the effects of multi-wall carbon nanotubes (MWCNTs) on the receptor activator of nuclear factor kappaB ligand (RANKL)-supported osteoclastogenesis using a murine monocytic cell line RAW 264.7. MWCNTs significantly suppressed the differentiation of RAW 264.7 cells into osteoclasts. Treatment with MWCNTs induced apoptosis in osteoclasts as characterized by nuclear condensation, DNA fragmentation, caspase-3 activation and poly(ADP-ribose) polymerase (PARP) cleavage, but did not decrease the cell viability of the osteoblast-like cell line MC3T3-E1. MWCNTs also induced loss of the mitochondrial membrane potential (deltapsim) by regulating expression of Bcl-2 family proteins and caused release of cytochrome c from mitochondria to cytosol. MWCNTs-induced apoptosis in osteoclasts was inhibited both by cyclosporin A, a blocker of the mitochondrial permeability transition pore, and by DEVD-CHO, a cell-permeable inhibitor of caspase-3. The present study suggests that MWCNTs suppresse osteoclastogenesis via the inhibition of osteoclast differentiation and the induction of apoptosis in osteoclasts, rendering them promising candidate for the treatment of osteoclast-related diseases.

  19. Further insight into the latex metabolite profile of Ficus carica.

    PubMed

    Oliveira, Andreia P; Silva, Luís R; Andrade, Paula B; Valentão, Patrícia; Silva, Branca M; Gonçalves, Rui F; Pereira, José A; Guedes de Pinho, Paula

    2010-10-27

    Latex is a sticky emulsion that exudes upon damage from specialized canals from several plants. It contains several biologically active compounds, such as phytosterols, fatty acids, and amino acids. In plants, these compounds are involved in the interaction between plants, insects, and the environment. Despite its chemical, biological, and ecological importance, Ficus carica latex is still poorly studied. To improve the knowledge on the metabolite profile of this matrix, a targeted metabolite analysis was performed in a representative sample from F. carica latex. Seven phytosterols were determined by gas chromatography-ion trap mass spectrometry (GC-ITMS) and high-performance liquid chromatography coupled to diode array detection (HPLC-DAD), with β-sitosterol and lupeol being the compounds present in higher concentrations (ca. 54 and 14%, respectively). A total of 18 fatty acids were characterized by GC-ITMS, being essentially represented by saturated fatty acids (ca. 86.4% of total fatty acids). A total of 13 free amino acids were also identified by high-performance liquid chromatography coupled to ultraviolet-visible spectroscopy (HPLC/UV-vis), and cysteine and tyrosine were the major ones (ca. 38.7 and 31.4%, respectively). In humans, phytosterols and some polyunsaturated fatty acids, such as linoleic acid, are known for their anticarcinogenic properties. With regard to amino acids, some of them, such as glycine, are neurotransmitters. Our results reveal the presence of a wide diversity of compounds, from distinct classes, in F. carica latex, possessing various potential pharmacological activities; thus, its biological potential appears to be worth further exploring.

  20. Plant lipases: partial purification of Carica papaya lipase.

    PubMed

    Rivera, Ivanna; Mateos-Díaz, Juan Carlos; Sandoval, Georgina

    2012-01-01

    Lipases from plants have very interesting features for application in different fields. This chapter provides an overview on some of the most important aspects of plant lipases, such as sources, applications, physiological functions, and specificities. Lipases from laticifers and particularly Carica papaya lipase (CPL) have emerged as a versatile autoimmobilized biocatalyst. However, to get a better understanding of CPL biocatalytic properties, the isolation and purification of individual C. papaya lipolytic enzymes become necessary. In this chapter, a practical protocol for partial purification of the latex-associated lipolytic activity from C. papaya is given.

  1. Effect of wine inhibitors on the proteolytic activity of papain from Carica papaya L. latex.

    PubMed

    Benucci, Ilaria; Esti, Marco; Liburdi, Katia

    2015-01-01

    The influence of potential inhibitors naturally present in wine on the proteolytic activity of papain from Carica papaya latex was investigated to evaluate its applicability in white wine protein haze stabilization. Enzymatic activity was tested against a synthetic tripeptide chromogenic substrate in wine-like acidic medium that consisted of tartaric buffer (pH 3.2) supplemented with ethanol, free sulfur dioxide (SO2 ), grape skin and seed tannins within the average ranges of concentrations that are typical in wine. The diagnosis of inhibition type, performed with the graphical method, demonstrated that all of tested wine constituents were reversible inhibitors of papain. The strongest inhibition was exerted by free SO2 , which acted as a mixed-type inhibitor, similar to grape skin and seed tannins. Finally, when tested in table white wines, the catalytic activity of papain, even when if it was ascribable to the hyperbolic behavior of Michaelis-Menten equation, was determined to be strongly affected by free SO2 and total phenol level.

  2. New methodology for evaluating osteoclastic activity induced by orthodontic load

    PubMed Central

    ARAÚJO, Adriele Silveira; FERNANDES, Alline Birra Nolasco; MACIEL, José Vinicius Bolognesi; NETTO, Juliana de Noronha Santos; BOLOGNESE, Ana Maria

    2015-01-01

    Orthodontic tooth movement (OTM) is a dynamic process of bone modeling involving osteoclast-driven resorption on the compression side. Consequently, to estimate the influence of various situations on tooth movement, experimental studies need to analyze this cell. Objectives The aim of this study was to test and validate a new method for evaluating osteoclastic activity stimulated by mechanical loading based on the fractal analysis of the periodontal ligament (PDL)-bone interface. Material and Methods The mandibular right first molars of 14 rabbits were tipped mesially by a coil spring exerting a constant force of 85 cN. To evaluate the actual influence of osteoclasts on fractal dimension of bone surface, alendronate (3 mg/Kg) was injected weekly in seven of those rabbits. After 21 days, the animals were killed and their jaws were processed for histological evaluation. Osteoclast counts and fractal analysis (by the box counting method) of the PDL-bone interface were performed in histological sections of the right and left sides of the mandible. Results An increase in the number of osteoclasts and in fractal dimension after OTM only happened when alendronate was not administered. Strong correlation was found between the number of osteoclasts and fractal dimension. Conclusions Our results suggest that osteoclastic activity leads to an increase in bone surface irregularity, which can be quantified by its fractal dimension. This makes fractal analysis by the box counting method a potential tool for the assessment of osteoclastic activity on bone surfaces in microscopic examination. PMID:25760264

  3. Matrix metalloproteinase-driven endochondral fracture union proceeds independently of osteoclast activity.

    PubMed

    McDonald, Michelle M; Morse, Alyson; Mikulec, Kathy; Peacock, Lauren; Baldock, Paul A; Kostenuik, Paul J; Little, David G

    2013-07-01

    As new insights into the complexities of endochondral fracture repair emerge, the temporal role of osteoclast activity remains ambiguous. With numerous antiresorptive agents available to treat bone disease, understanding their impact on bone repair is vital. Further, in light of recent work suggesting osteoclast activity may not be necessary during early endochondral fracture union, we hypothesize instead a pivotal role of matrix metalloproteinase (MMP) secreting cells in driving this process. Although the role of MMPs in fracture healing has been examined, no directly comparative experiments exist. We examined a number of antiresorptive treatments to either block osteoclast activity, including the potent bisphosphonates zoledronic acid (ZA) and clodronate (CLOD), which work via differing mechanisms, or antagonize osteoclastogenesis with recombinant OPG (HuOPG-Fc), comparing these directly to an inhibitor of MMP activity (MMI270). Endochondral ossification to union occurred normally in all antiresorptive groups. In contrast, MMP inhibition greatly impaired endochondral union, significantly delaying cartilage callus removal. MMP inhibition also produced smaller, denser hard calluses. Hard callus remodeling was, as expected, delayed with ZA, CLOD, and OPG treatment at 4 and 6 weeks, resulting in larger, more mineralized calluses at 6 weeks. As a result of reduced hard callus turnover, bone formation was reduced with antiresorptive agents at these time points. These results confirm that the achievement of endochondral fracture union occurs independently of osteoclast activity. Alternatively, MMP secretion by invading cells is obligatory to endochondral union. This study provides new insight into cellular contributions to bone repair and may abate concerns regarding antiresorptive therapies impeding initial fracture union.

  4. Osteoclastic resorption of biomimetic calcium phosphate coatings in vitro.

    PubMed

    Leeuwenburgh, S; Layrolle, P; Barrère, F; de Bruijn, J; Schoonman, J; van Blitterswijk, C A; de Groot, K

    2001-08-01

    A new biomimetic method for coating metal implants enables the fast formation of dense and homogeneous calcium phosphate coatings. Titanium alloy (Ti6Al4V) disks were coated with a thin, carbonated, amorphous calcium phosphate (ACP) by immersion in a saturated solution of calcium, phosphate, magnesium, and carbonate. The ACP-coated disks then were processed further by incubation in calcium phosphate solutions to produce either crystalline carbonated apatite (CA) or octacalcium phosphate (OCP). The resorption behavior of these three biomimetic coatings was studied using osteoclast-enriched mouse bone-marrow cell cultures for 7 days. Cell-mediated degradation was observed for both carbonated apatite and octacalcium phosphate coatings. Numerous resorption lacunae characteristic of osteoclastic resorption were found on carbonated apatite after cell culture. The results showed that carbonated apatite coatings are resorbed by osteoclasts in a manner consistent with normal osteoclastic resorption. Osteoclasts also degraded the octacalcium phosphate coatings but not by classical pit formation.

  5. RANKL, osteopontin, and osteoclast homeostasis in a hyperocclusion mouse model

    SciTech Connect

    Walker, Cameron G.; Ito, Yoshihiro; Dangaria, Smit; Luan, Xianghong; Diekwisch, Thomas G.H.

    2009-10-21

    The biological mechanisms that maintain the position of teeth in their sockets establish a dynamic equilibrium between bone resorption and apposition. In order to reveal some of the dynamics involved in the tissue responses towards occlusal forces on periodontal ligament (PDL) and alveolar bone homeostasis, we developed the first mouse model of hyperocclusion. Swiss-Webster mice were kept in hyperocclusion for 0, 3, 6, and 9 d. Morphological and histological changes in the periodontium were assessed using micro-computed tomography (micro-CT) and ground sections with fluorescent detection of vital dye labels. Sections were stained for tartrate-resistant acid phosphatase, and the expression of receptor activator of nuclear factor-{kappa}B ligand (RANKL) and osteopontin (OPN) was analyzed by immunohistochemistry and real-time polymerase chain reaction (PCR). Traumatic occlusion resulted in enamel surface abrasion, inhibition of alveolar bone apposition, significant formation of osteoclasts at 3, 6 and 9 d, and upregulation of OPN and RANKL. Data from this study suggest that both OPN and RANKL contribute to the stimulation of bone resorption in the hyperocclusive state. In addition, we propose that the inhibition of alveolar bone apposition by occlusal forces is an important mechanism for the control of occlusal height that might work in synergy with RANKL-induced bone resorption to maintain normal occlusion.

  6. Dengue fever treatment with Carica papaya leaves extracts

    PubMed Central

    Ahmad, Nisar; Fazal, Hina; Ayaz, Muhammad; Abbasi, Bilal Haider; Mohammad, Ijaz; Fazal, Lubna

    2011-01-01

    The main objective of the current study is to investigate the potential of Carica papaya leaves extracts against Dengue fever in 45 year old patient bitten by carrier mosquitoes. For the treatment of Dengue fever the extract was prepared in water. 25 mL of aqueous extract of C. papaya leaves was administered to patient infected with Dengue fever twice daily i.e. morning and evening for five consecutive days. Before the extract administration the blood samples from patient were analyzed. Platelets count (PLT), White Blood Cells (WBC) and Neutrophils (NEUT) decreased from 176×103/µL, 8.10×103/µL, 84.0% to 55×103/µL, 3.7×103/µL and 46.0%. Subsequently, the blood samples were rechecked after the administration of leaves extract. It was observed that the PLT count increased from 55×103/µL to 168×103/µL, WBC from 3.7×103/µL to 7.7×103/µL and NEUT from 46.0% to 78.3%. From the patient feelings and blood reports it showed that Carica papaya leaves aqueous extract exhibited potential activity against Dengue fever. Furthermore, the different parts of this valuable specie can be further used as a strong natural candidate against viral diseases. PMID:23569787

  7. Dengue fever treatment with Carica papaya leaves extracts.

    PubMed

    Ahmad, Nisar; Fazal, Hina; Ayaz, Muhammad; Abbasi, Bilal Haider; Mohammad, Ijaz; Fazal, Lubna

    2011-08-01

    The main objective of the current study is to investigate the potential of Carica papaya leaves extracts against Dengue fever in 45 year old patient bitten by carrier mosquitoes. For the treatment of Dengue fever the extract was prepared in water. 25 mL of aqueous extract of C. papaya leaves was administered to patient infected with Dengue fever twice daily i.e. morning and evening for five consecutive days. Before the extract administration the blood samples from patient were analyzed. Platelets count (PLT), White Blood Cells (WBC) and Neutrophils (NEUT) decreased from 176×10(3)/µL, 8.10×10(3)/µL, 84.0% to 55×10(3)/µL, 3.7×10(3)/µL and 46.0%. Subsequently, the blood samples were rechecked after the administration of leaves extract. It was observed that the PLT count increased from 55×10(3)/µL to 168×10(3)/µL, WBC from 3.7×10(3)/µL to 7.7×10(3)/µL and NEUT from 46.0% to 78.3%. From the patient feelings and blood reports it showed that Carica papaya leaves aqueous extract exhibited potential activity against Dengue fever. Furthermore, the different parts of this valuable specie can be further used as a strong natural candidate against viral diseases.

  8. Inhibitory effects of French pine bark extract, Pycnogenol®, on alveolar bone resorption and on the osteoclast differentiation.

    PubMed

    Sugimoto, Hideki; Watanabe, Kiyoko; Toyama, Toshizo; Takahashi, Shun-suke; Sugiyama, Shuta; Lee, Masaichi-Chang-il; Hamada, Nobushiro

    2015-02-01

    Pycnogenol(®) (PYC) is a standardized bark extract from French maritime pine (Pinus pinaster Aiton). We examined the inhibitory effects of PYC on alveolar bone resorption, which is a characteristic feature of periodontitis, induced by Porphyromonas gingivalis (P. gingivalis) and osteoclast differentiation. In rat periodontitis model, rats were divided into four groups: group A served as the non-infected control, group B was infected orally with P. gingivalis ATCC 33277, group C was administered PYC in the diet (0.025%: w/w), and group D was infected with P. gingivalis and administered PYC. Administration of PYC along with P. gingivalis infection significantly reduced alveolar bone resorption. Treatment of P. gingivalis with 1 µg/ml PYC reduced the number of viable bacterial cells. Addition of PYC to epithelial cells inhibited adhesion and invasion by P. gingivalis. The effect of PYC on osteoclast formation was confirmed by tartrate-resistant acid phosphatase staining. PYC treatment significantly inhibited osteoclast formation. Addition of PYC (1-100 µg/ml) to purified osteoclasts culture induced cell apoptosis. These results suggest that PYC may prevent alveolar bone resorption through its antibacterial activity against P. gingivalis and by suppressing osteoclastogenesis. Therefore, PYC may be useful as a therapeutic and preventative agent for bone diseases such as periodontitis.

  9. 5-Azacytidine-induced Protein 2 (AZI2) Regulates Bone Mass by Fine-tuning Osteoclast Survival*

    PubMed Central

    Maruyama, Kenta; Fukasaka, Masahiro; Uematsu, Satoshi; Takeuchi, Osamu; Kondo, Takeshi; Saitoh, Tatsuya; Martino, Mikaël M.; Akira, Shizuo

    2015-01-01

    5-Azacytidine-induced protein 2 (AZI2) is a TNF receptor (TNFR)-associated factor family member-associated NF-κB activator-binding kinase 1-binding protein that regulates the production of IFNs. A previous in vitro study showed that AZI2 is involved in dendritic cell differentiation. However, the roles of AZI2 in immunity and its pleiotropic functions are unknown in vivo. Here we report that AZI2 knock-out mice exhibit normal dendritic cell differentiation in vivo. However, we found that adult AZI2 knock-out mice have severe osteoporosis due to increased osteoclast longevity. We revealed that the higher longevity of AZI2-deficient osteoclasts is due to an augmented activation of proto-oncogene tyrosine-protein kinase Src (c-Src), which is a critical player in osteoclast survival. We found that AZI2 inhibits c-Src activity by regulating the activation of heat shock protein 90 (Hsp90), a chaperone involved in c-Src dephosphorylation. Furthermore, we demonstrated that AZI2 indirectly inhibits c-Src by interacting with the Hsp90 co-chaperone Cdc37. Strikingly, administration of a c-Src inhibitor markedly prevented bone loss in AZI2 knock-out mice. Together, these findings indicate that AZI2 regulates bone mass by fine-tuning osteoclast survival. PMID:25691576

  10. Glycosaminoglycan-Mediated Loss of Cathepsin K Collagenolytic Activity in MPS I Contributes to Osteoclast and Growth Plate Abnormalities

    PubMed Central

    Wilson, Susan; Hashamiyan, Saadat; Clarke, Lorne; Saftig, Paul; Mort, John; Dejica, Valeria M.; Brömme, Dieter

    2009-01-01

    Mucopolysaccharidoses are a group of lysosomal storage diseases characterized by the build-up of glycosaminoglycans (GAGs) and severe skeletal abnormalities. As GAGs can regulate the collagenolytic activity of the major osteoclastic protease cathepsin K, we investigated the presence and activity of cathepsin K and its co-localization with GAGs in mucopolysaccharidosis (MPS) type I bone. The most dramatic difference between MPS I and wild-type mice was an increase in the amount of cartilage in the growth plates in MPS I bones. Though the number of cathepsin K-expressing osteoclasts was increased in MPS I mice, these mice revealed a significant reduction in cathepsin K-mediated cartilage degradation. As excess heparan and dermatan sulfates inhibit type II collagen degradation by cathepsin K and the spatial overlap between cathepsin K and heparan sulfate strongly increased in MPS I mice, the build up of subepiphyseal cartilage is speculated to be a direct consequence of cathepsin K inhibition by MPS I-associated GAGs. Moreover, isolated MPS I and Ctsk−/− osteoclasts displayed fewer actin rings and formed fewer resorption pits on dentine disks, as compared with wild-type cells. These results suggest that the accumulation of GAGs in murine MPS I bone has an inhibitory effect on cathepsin K activity, resulting in impaired osteoclast activity and decreased cartilage resorption, which may contribute to the bone pathology seen in MPS diseases. PMID:19834056

  11. The effects of Lycii Radicis Cortex on RANKL-induced osteoclast differentiation and activation in RAW 264.7 cells

    PubMed Central

    KIM, JAE-HYUN; KIM, EUN-YOUNG; LEE, BINA; MIN, JU-HEE; SONG, DEA-UK; LIM, JEONG-MIN; EOM, JI WHAN; YEOM, MIJUNG; JUNG, HYUK-SANG; SOHN, YOUNGJOO

    2016-01-01

    Post-menopausal osteoporosis is a serious age-related disease. After the menopause, estrogen deficiency is common, and excessive osteoclast activity causes osteoporosis. Osteoclasts are multinucleated cells generated from the differentiation of monocyte/macrophage precursor cells such as RAW 264.7 cells. The water extract of Lycii Radicis Cortex (LRC) is made from the dried root bark of Lycium chinense Mill. and is termed 'Jigolpi' in Korea. Its effects on osteoclastogenesis and post-menopausal osteoporosis had not previously been tested. In the present study, the effect of LRC on receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast differentiation was demonstrated using a tartrate-resistant acid phosphatase (TRAP) assay and pit formation assay. Moreover, in order to analyze molecular mechanisms, we studied osteoclastogenesis-related markers such as nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), c-Fos, receptor activator of NF-κB (RANK), TRAP, cathepsin K (CTK), matrix metallopeptidase-9 (MMP-9), calcitonin receptor (CTR) and carbonic anhydrase II (CAII) using RT-qPCR and western blot analysis. Additionally, we also determined the effect of LRC on an ovariectomized (OVX) rat model. We noted that LRC inhibited RANKL-induced osteoclast differentiation via suppressing osteoclastogenesis-related markers. It also inhibited osteoporosis in the OVX rat model by decreasing loss of bone density and trabecular area. These results suggest that LRC exerts a positive effect on menopausal osteoporosis. PMID:26848104

  12. Transforming Growth Factor β1/Smad4 Signaling Affects Osteoclast Differentiation via Regulation of miR-155 Expression

    PubMed Central

    Zhao, Hongying; Zhang, Jun; Shao, Haiyu; Liu, Jianwen; Jin, Mengran; Chen, Jinping; Huang, Yazeng

    2017-01-01

    Transforming growth factor β1 (TGFβ1)/Smad4 signaling plays a pivotal role in maintenance of the dynamic balance between bone formation and resorption. The microRNA miR-155 has been reported to exert a significant role in the differentiation of macrophage and dendritic cells. The goal of this study was to determine whether miR-155 regulates osteoclast differentiation through TGFβ1/Smad4 signaling. Here, we present that TGFβ1 elevated miR-155 levels during osteoclast differentiation through the stimulation of M-CSF and RANKL. Additionally, we found that silencing Smad4 attenuated the upregulation of miR-155 induced by TGFβ1. The results of luciferase reporter experiments and ChIP assays demonstrated that TGFβ1 promoted the binding of Smad4 to the miR-155 promoter at a site located in 454 bp from the transcription start site in vivo, further verifying that miR-155 is a transcriptional target of the TGFβ1/Smad4 pathway. Subsequently, TRAP staining and qRT-PCR analysis revealed that silencing Smad4 impaired the TGFβ1-mediated inhibition on osteoclast differentiation. Finally, we found that miR-155 may target SOCS1 and MITF to suppress osteoclast differentiation. Taken together, we provide the first evidence that TGFβ1/Smad4 signaling affects osteoclast differentiation by regulation of miR-155 expression and the use of miR-155 as a potential therapeutic target for osteoclast-related diseases shows great promise. PMID:28359146

  13. Bajijiasu Abrogates Osteoclast Differentiation via the Suppression of RANKL Signaling Pathways through NF-κB and NFAT

    PubMed Central

    Hong, Guoju; Zhou, Lin; Shi, Xuguang; He, Wei; Wang, Haibin; Wei, Qiushi; Chen, Peng; Qi, Longkai; Tickner, Jennifer; Lin, Li; Xu, Jiake

    2017-01-01

    Pathological osteolysis is commonly associated with osteoporosis, bone tumors, osteonecrosis, and chronic inflammation. It involves excessive resorption of bone matrix by activated osteoclasts. Suppressing receptor activator of NF-κB ligand (RANKL) signaling pathways has been proposed to be a good target for inhibiting osteoclast differentiation and bone resorption. Bajijiasu—a natural compound derived from Morinda officinalis F. C. How—has previously been shown to have anti-oxidative stress property; however, its effect and molecular mechanism of action on osteoclastogenesis and bone resorption remains unclear. In the present study, we found that Bajijiasu dose-dependently inhibited RANKL-induced osteoclast formation and bone resorption from 0.1 mM, and reached half maximal inhibitory effects (IC50) at 0.4 mM without toxicity. Expression of RANKL-induced osteoclast specific marker genes including cathepsin K (Ctsk), nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), tartrate resistant acid phosphatase (TRAcP), vacuolar-type H+-ATPase V0 subunit D2 (V-ATPase d2), and (matrix metalloproteinase-2 (MMP2) was inhibited by Bajijiasu treatment. Luciferase reporter gene studies showed that Bajijiasu could significantly reduce the expression and transcriptional activity of NFAT as well as RANKL-induced NF-κB activation in a dose-dependent manner. Further, Bajijiasu was found to decrease the RANKL-induced phosphorylation of extracellular signal-regulated kinases (ERK), inhibitor of κB-α (IκB-α), NFAT, and V-ATPase d2. Taken together, this study revealed Bajijiasu could attenuate osteoclast formation and bone resorption by mediating RANKL signaling pathways, indicative of a potential effect of Bajijiasu on osteolytic bone diseases. PMID:28106828

  14. Glucocorticoids mediate circadian timing in peripheral osteoclasts resulting in the circadian expression rhythm of osteoclast-related genes.

    PubMed

    Fujihara, Yuko; Kondo, Hisataka; Noguchi, Toshihide; Togari, Akifumi

    2014-04-01

    Circadian rhythms are prevalent in bone metabolism. However, the molecular mechanisms involved are poorly understood. Recently, we suggested that output signals from the suprachiasmatic nucleus (SCN) are transmitted from the master circadian rhythm to peripheral osteoblasts through β-adrenergic and glucocorticoid signaling. In this study, we examined how the master circadian rhythm is transmitted to peripheral osteoclasts and the role of clock gene in osteoclast. Mice were maintained under 12-hour light/dark periods and sacrificed at Zeitgeber times 0, 4, 8, 12, 16 and 20. mRNA was extracted from femur (cancellous bone) and analyzed for the expression of osteoclast-related genes and clock genes. Osteoclast-related genes such as cathepsin K (CTSK) and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) showed circadian rhythmicity like clock genes such as period 1 (PER1), PER2 and brain and muscle Arnt-like protein 1 (BMAL1). In an in vitro study, not β-agonist but glucocorticoid treatment remarkably synchronized clock and osteoclast-related genes in cultured osteoclasts. Chromatin immunoprecipitation (ChIP) assay showed the interaction between BMAL1 proteins and promoter region of CTSK and NFATc1. To examine whether endogenous glucocorticoids influence the osteoclast circadian rhythms, mice were adrenalectomized (ADX) and maintained under 12-hour light/dark periods at least two weeks before glucocorticoid injection. A glucocorticoid injection restarted the circadian expression of CTSK and NFATc1 in ADX mice. These results suggest that glucocorticoids mediate circadian timing to peripheral osteoclasts and osteoclast clock contributes to the circadian expression of osteoclast-related genes such as CTSK and NFATc1.

  15. Effect of Tumor Necrosis Factor Inhibitor Therapy on Osteoclasts Precursors in Rheumatoid Arthritis

    PubMed Central

    Rodrigues, Ana Maria; Campanilho-Marques, Raquel; Ponte, Cristina; Canhão, Helena; Ainola, Mari

    2017-01-01

    Objective. Tumor necrosis factor (TNF) increases circulating osteoclast (OC) precursors numbers by promoting their proliferation and differentiation. The aim of this study was to assess the effect of TNF inhibitors (TNFi) on the differentiation and activity of OC in rheumatoid arthritis (RA) patients. Methods. Seventeen RA patients treated with TNFi were analyzed at baseline and after a minimum follow-up period of 6 months. Blood samples were collected to assess receptor activator of nuclear factor kappa-B ligand (RANKL) surface expression on circulating leukocytes and frequency and phenotype of monocyte subpopulations. Quantification of serum levels of bone turnover markers, in vitro OC differentiation assays, and qRT-PCR for OC specific genes was performed. Results. After TNFi therapy, patients had reduced RANKL surface expression in B-lymphocytes and the frequency of circulating classical CD14brightCD16− monocytes was decreased. Serum levels of sRANKL, sRANKL/OPG ratio, and CTX-I were reduced in RA patients after TNFi treatment. Moreover, after exposure to TNFi, osteoclast differentiation and activity were decreased, as well as the expression of TRAF6 and cathepsin K. Conclusion. We propose that TNFi arrests bone loss and erosion, through two pathways: direct reduction of osteoclast precursor numbers and inhibition of intracellular signaling pathways acting through TRAF6. PMID:28286757

  16. Inhibitory effect of bisphosphonate on osteoclast function contributes to improved skeletal pain in ovariectomized mice.

    PubMed

    Abe, Yasuhisa; Iba, Kousuke; Sasaki, Koichi; Chiba, Hironori; Kanaya, Kumiko; Kawamata, Tomoyuki; Oda, Kimimitsu; Amizuka, Norio; Sasaki, Muneteru; Yamashita, Toshihiko

    2015-03-01

    The aim of this study was to evaluate skeletal pain associated with osteoporosis and to examine the inhibitory effect of bisphosphonate (BP) on pain in an ovariectomized (OVX) mouse model. We evaluated skeletal pain in OVX mice through an examination of pain-like behavior as well as immunohistochemical findings. In addition, we assessed the effects of alendronate (ALN), a potent osteoclast inhibitor, on those parameters. The OVX mice showed a decrease in the pain threshold value, and an increase in the number of c-Fos immunoreactive neurons in laminae I-II of the dorsal horn of the spinal cord. Alendronate caused an increase in the pain threshold value and inhibited c-Fos expression. The serum level of tartrate-resistant acid phosphatase 5b, a marker of osteoclast activity, was significantly negatively correlated with the pain threshold value. Furthermore, we found that an antagonist of the transient receptor potential channel vanilloid subfamily member 1, which is an acid-sensing nociceptor, improved pain-like behavior in OVX mice. These results indicated that the inhibitory effect of BP on osteoclast function might contribute to an improvement in skeletal pain in osteoporosis patients.

  17. Glucosamines Attenuate Bone Loss Due to Menopause by Regulating Osteoclast Function in Ovariectomized Mice.

    PubMed

    Asai, Hironobu; Nakatani, Sachie; Kato, Takuya; Shimizu, Tatsuo; Mano, Hiroshi; Kobata, Kenji; Wada, Masahiro

    2016-01-01

    The effect of glucosamine (GlcN) and N-acetylglucosamine (GlcNAc) on bone metabolism in ovariectomized (OVX) mice was studied. After 12 weeks of feeding with 0.2% GlcN and 0.2% GlcNAc, the femoral bone mineral density in OVX mice was significantly increased compared with that in OVX mice fed the control diet. Histomorphometric analysis of the tibia indicated that the rates of osteogenesis and bone resorption were reduced due to the GlcN diet. The erosion depth of osteoclasts on the tibia in GlcN- and GlcNAc-fed OVX mice was significantly lower than that in the control OVX mice. The number of tartrate-resistant acid phosphatase-positive osteoclasts induced from bone marrow stem cells isolated from GlcN-fed OVX mice was significantly lower than that from control OVX mice. A loss of uterine weight and higher serum calcium concentration in the GlcN- and GlcNAc-fed OVX mice were observed. The results suggest that the intake of GlcN suppresses bone loss by inhibiting osteoclast differentiation and activity in a nonestrogenic manner.

  18. The Effect of Everolimus in an In Vitro Model of Triple Negative Breast Cancer and Osteoclasts

    PubMed Central

    Mercatali, Laura; Spadazzi, Chiara; Miserocchi, Giacomo; Liverani, Chiara; De Vita, Alessandro; Bongiovanni, Alberto; Recine, Federica; Amadori, Dino; Ibrahim, Toni

    2016-01-01

    Metastatic bone disease has a major impact on morbidity of breast cancer (BC) patients. Alterations in mTOR signaling are involved both in cancer progression and in osteoclast differentiation. The purpose of this study was to assess the role of mTOR inhibitor Everolimus (Eve) on osteoclastogenesis induced by triple negative BC cells. To this aim, we developed an in vitro human model of osteoclastogenesis from peripheral blood monocytes co-cultured with the triple negative SCP2 and the hormonal receptor positive MCF7 cell lines. Osteoclastogenesis was evaluated by TRAP staining, evaluation of F actin rings and Calcitonin Receptor expression. Eve significantly reduced differentiation induced by cancer cells and resulted more effective when evaluated in combination with Denosumab and Zoledronic Acid (Zol). Combination with Zol showed a total abrogation of osteoclast differentiation induced by the triple negative cell line, not by MCF7. Finally, we observed that Eve was active in the inhibition of the crosstalk between cancer cells and osteoclasts reproduced by our model, highlighting a new therapeutic choice for the subsetting of triple negative BC patients. We observed a difference in the response to bone-targeted therapy with respect to BC subtypes. Our model may represent a valid platform for preclinical trials on bone-targeted drugs and for the study of the interplay of BC with bone stromal cells. PMID:27809291

  19. Generation of avian cells resembling osteoclasts from mononuclear phagocytes

    NASA Technical Reports Server (NTRS)

    Alvarez, J. I.; Teitelbaum, S. L.; Blair, H. C.; Greenfield, E. M.; Athanasou, N. A.; Ross, F. P.

    1991-01-01

    Several lines of indirect evidence suggest that a monocyte family precursor gives rise to the osteoclast, although this hypothesis is controversial. Starting with a uniform population of nonspecific esterase positive, tartrate-sensitive, acid phosphatase-producing, mannose receptor-bearing mononuclear cells, prepared from dispersed marrow of calcium-deprived laying hens by cell density separation and selective cellular adherence, we generated multinucleated cells in vitro. When cultured with devitalized bone, these cells show, by electron microscopy, the characteristic osteoclast morphology in that they are mitochondria-rich, multinucleated, and, most importantly, develop characteristic ruffled membranes at the matrix attachment site. Moreover, as documented by scanning electron microscopy, these cells pit bone slices in a manner identical to freshly isolated osteoclasts. In addition, isoenzymes of acid phosphatase from generated osteoclasts, separated by 7.5% polyacrylamide gel electrophoresis at pH 4, are identical to those of mature osteoclasts in migration pattern and tartrate resistance, although the precursor cells from which the osteoclasts are generated produce an entirely different isoenzyme, which is tartrate-sensitive and migrates less rapidly at pH 4. The fused cells also exhibit a cAMP response to prostaglandin E2. Therefore, osteoclast-like cells can be derived by in vitro culture of a marrow-derived monocyte cell population.

  20. Extracts of marine algae show inhibitory activity against osteoclast differentiation.

    PubMed

    Koyama, Tomoyuki

    2011-01-01

    Osteoclasts are multinucleated cells that play a crucial role in bone resorption. The imbalance between bone resorption and bone formation results in osteoporosis. Therefore, substances that can suppress osteoclast formation are potential candidate materials for drug development or functional foods. There have been reports that extracts or purified compounds from marine micro- and macroalgae can suppress osteoclast differentiation. Symbioimine, isolated from the cultured dinoflagellate Symbiodinium sp., had suppressive effects against osteoclast differentiation in osteoclast-like cells. Norzoanthamine, isolated from the colonial zoanthid Zoanthas sp., has been shown to have antiosteoporosis activity in ovariectomized mice. With regard to marine extracts, the fucoxanthin-rich component from brown algae has been shown to have suppressive effects against osteoclast differentiation. An extract of Sargassum fusiforme has recently been shown to have antiosteoporosis activity. This extract suppressed both osteoclast differentiation and accelerated osteoblast formation in separate in vitro experiments. It also showed antiosteoporosis activity in ovariectomized mice by regulating the balance between bone resorption and bone formation. These marine algae and their extracts may be sources of marine medicinal foods for the prevention of osteoporosis.

  1. Reduction of hydrogen peroxide-induced erythrocyte damage by Carica papaya leaf extract

    PubMed Central

    Okoko, Tebekeme; Ere, Diepreye

    2012-01-01

    Objective To investigate the in vitro antioxidant potential of Carica papaya (C. papaya) leaf extract and its effect on hydrogen peroxide-induced erythrocyte damage assessed by haemolysis and lipid peroxidation. Methods Hydroxyl radical scavenging activities, hydrogen ion scavenging activity, metal chelating activity, and the ferrous ion reducing ability were assessed as antioxidant indices. In the other experiment, human erythrocytes were treated with hydrogen peroxide to induce erythrocyte damage. The extract (at various concentrations) was subsequently incubated with the erythrocytes and later analysed for haemolysis and lipid peroxidation as indices for erythrocyte damage. Results Preliminary investigation of the extract showed that the leaf possessed significant antioxidant and free radical scavenging abilities using in vitro models in a concentration dependent manner (P<0.05). The extract also reduced hydrogen peroxide induced erythrocyte haemolysis and lipid peroxidation significantly when compared with ascorbic acid (P<0.05). The IC50 values were 7.33 mg/mL and 1.58 mg/mL for inhibition of haemolysis and lipid peroxidation, respectively. In all cases, ascorbic acid (the reference antioxidant) possessed higher activity than the extract. Conclusions The findings show that C. papaya leaves possess significant bioactive potential which is attributed to the phytochemicals which act in synergy. Thus, the leaves can be exploited for pharmaceutical and nutritional purposes. PMID:23569948

  2. Chemical composition and antifungal activity of Carica papaya Linn. seed essential oil against Candida spp.

    PubMed

    He, X; Ma, Y; Yi, G; Wu, J; Zhou, L; Guo, H

    2017-05-01

    In recent years, the incidence of clinical yeast infections has increased dramatically. Due to the extensive use of broad-spectrum antifungal agents, there has been a notable increase in drug resistance among infections yeast species. As one of the most popular natural antimicrobial agents, essential oils (EOs) have attracted a lot of attention from the scientific community. The aim of this study was to analyse the chemical composition and examine the antifungal activity of the EO extracted from the seeds of Carica papaya Linn. The papaya seed EO was analysed by gas chromatography-mass spectrometry. The major constituent is benzyl isothiocyanate (99·36%). The filter paper disc diffusion method and broth dilution method were employed. The EO showed inhibitory effect against all the tested Candida strains including C. albicans, C. glabrata, C. krusei, C. parapsilosis and C. tropical with inhibition zone diameters in the range of 14·2-33·2 mm, the minimal inhibitory concentrations (MICs) in the range of 4·0-16·0 μg ml(-1) and the minimum fungicidal concentrations (MFCs) in the range of 16·0-64·0 μg ml(-1) . Here, we found that the papaya seed EO has promising anticandida activity and identify C. papaya L. as a potential natural source of antifungal agents.

  3. Acid-inducible proton influx currents in the plasma membrane of murine osteoclast-like cells.

    PubMed

    Kuno, Miyuki; Li, Guangshuai; Moriura, Yoshie; Hino, Yoshiko; Kawawaki, Junko; Sakai, Hiromu

    2016-05-01

    Acidification of the resorption pits, which is essential for dissolving bone, is produced by secretion of protons through vacuolar H(+)-ATPases in the plasma membrane of bone-resorbing cells, osteoclasts. Consequently, osteoclasts face highly acidic extracellular environments, where the pH gradient across the plasma membrane could generate a force driving protons into the cells. Proton influx mechanisms during the acid exposure are largely unknown, however. In this study, we investigated extracellular-acid-inducible proton influx currents in osteoclast-like cells derived from a macrophage cell line (RAW264). Decreasing extracellular pH to <5.5 induced non-ohmic inward currents. The reversal potentials depended on the pH gradients across the membrane and were independent of concentrations of Na(+), Cl(-), and HCO3 (-), suggesting that they were carried largely by protons. The acid-inducible proton influx currents were not inhibited by amiloride, a widely used blocker for cation channels/transporters, or by 4,4'-diisothiocyanato-2,2'-stilbenesulfonate(DIDS) which blocks anion channels/transporters. Additionally, the currents were not significantly affected by V-ATPase inhibitors, bafilomycin A1 and N,N'-dicyclohexylcarbodiimide. Extracellular Ca(2+) (10 mM) did not affect the currents, but 1 mM ZnCl2 decreased the currents partially. The intracellular pH in the vicinity of the plasma membrane was dropped by the acid-inducible H(+) influx currents, which caused overshoot of the voltage-gated H(+) channels after removal of acids. The H(+) influx currents were smaller in undifferentiated, mononuclear RAW cells and were negligible in COS7 cells. These data suggest that the acid-inducible H(+) influx (H(+) leak) pathway may be an additional mechanism modifying the pH environments of osteoclasts upon exposure to strong acids.

  4. Alteration of Homeostasis in Pre-osteoclasts Induced by Aggregatibacter actinomycetemcomitans CDT.

    PubMed

    Kawamoto, Dione; Ando-Suguimoto, Ellen S; Bueno-Silva, Bruno; DiRienzo, Joseph M; Mayer, Marcia P A

    2016-01-01

    The dysbiotic microbiota associated with aggressive periodontitis includes Aggregatibacter actinomycetemcomitans, the only oral species known to produce a cytolethal distending toxin (AaCDT). Give that CDT alters the cytokine profile in monocytic cells, we aimed to test the hypothesis that CDT plays a role in bone homeostasis by affecting the differentiation of precursor cells into osteoclasts. Recombinant AaCDT was added to murine bone marrow monocytes (BMMC) in the presence or absence of RANKL and the cell viability and cytokine profile of osteoclast precursor cells were determined. Multinucleated TRAP(+) cell numbers, and relative transcription of genes related to osteoclastogenesis were also evaluated. The addition of AaCDT did not lead to loss in cell viability but promoted an increase in the average number of TRAP(+) cells with 1-2 nuclei in the absence or presence of RANKL (Tukey, p < 0.05). This increase was also observed for TRAP(+) cells with ≥3nuclei, although this difference was not significant. Levels of TGF-β, TNF-α, and IL-6, in the supernatant fraction of cells, were higher when in AaCDT exposed cells, whereas levels of IL-1β and IL-10 were lower than controls under the same conditions. After interaction with AaCDT, transcription of the rank (encoding the receptor RANK), nfatc1 (transcription factor), and ctpK (encoding cathepsin K) genes was downregulated in pre-osteoclastic cells. The data indicated that despite the presence of RANKL and M-CSF, AaCDT may inhibit osteoclast differentiation by altering cytokine profiles and repressing transcription of genes involved in osteoclastogenesis. Therefore, the CDT may impair host defense mechanisms in periodontitis.

  5. Alteration of Homeostasis in Pre-osteoclasts Induced by Aggregatibacter actinomycetemcomitans CDT

    PubMed Central

    Kawamoto, Dione; Ando-Suguimoto, Ellen S.; Bueno-Silva, Bruno; DiRienzo, Joseph M.; Mayer, Marcia P. A.

    2016-01-01

    The dysbiotic microbiota associated with aggressive periodontitis includes Aggregatibacter actinomycetemcomitans, the only oral species known to produce a cytolethal distending toxin (AaCDT). Give that CDT alters the cytokine profile in monocytic cells, we aimed to test the hypothesis that CDT plays a role in bone homeostasis by affecting the differentiation of precursor cells into osteoclasts. Recombinant AaCDT was added to murine bone marrow monocytes (BMMC) in the presence or absence of RANKL and the cell viability and cytokine profile of osteoclast precursor cells were determined. Multinucleated TRAP+ cell numbers, and relative transcription of genes related to osteoclastogenesis were also evaluated. The addition of AaCDT did not lead to loss in cell viability but promoted an increase in the average number of TRAP+ cells with 1-2 nuclei in the absence or presence of RANKL (Tukey, p < 0.05). This increase was also observed for TRAP+ cells with ≥3nuclei, although this difference was not significant. Levels of TGF-β, TNF-α, and IL-6, in the supernatant fraction of cells, were higher when in AaCDT exposed cells, whereas levels of IL-1β and IL-10 were lower than controls under the same conditions. After interaction with AaCDT, transcription of the rank (encoding the receptor RANK), nfatc1 (transcription factor), and ctpK (encoding cathepsin K) genes was downregulated in pre-osteoclastic cells. The data indicated that despite the presence of RANKL and M-CSF, AaCDT may inhibit osteoclast differentiation by altering cytokine profiles and repressing transcription of genes involved in osteoclastogenesis. Therefore, the CDT may impair host defense mechanisms in periodontitis. PMID:27064424

  6. ATPase pumps in osteoclasts and osteoblasts.

    PubMed

    Francis, Martin J O; Lees, Rita L; Trujillo, Elisa; Martín-Vasallo, Pablo; Heersche, Johan N M; Mobasheri, Ali

    2002-05-01

    Osteoblasts, osteocytes and osteoclasts are specialised cells of bone that play crucial roles in the formation, maintenance and resorption of bone matrix. Bone formation and resorption critically depend on optimal intracellular calcium and phosphate homeostasis and on the expression and activity of plasma membrane transport systems in all three cell types. Osteotropic agents, mechanical stimulation and intracellular pH are important parameters that determine the fate of bone matrix and influence the activity, expression, regulation and cell surface abundance of plasma membrane transport systems. In this paper the role of ATPase pumps is reviewed in the context of their expression in bone cells, their contribution to ion homeostasis and their relation to other transport systems regulating bone turnover.

  7. Osteoblast protects osteoclast devoid of sodium-dependent vitamin C transporters from oxidative cytotoxicity of ascorbic acid.

    PubMed

    Takarada, Takeshi; Hinoi, Eiichi; Kambe, Yuki; Sahara, Koichi; Kurokawa, Shintaro; Takahata, Yoshifumi; Yoneda, Yukio

    2007-12-01

    The view that ascorbic acid indirectly benefits osteoclastogenesis through expression of receptor activator of nuclear factor-kappaB (NF-kappaB) ligand (RANKL) by osteoblasts is prevailing. In this study, we have examined the direct effect of ascorbic acid on osteoclastogenesis in cultured mouse osteoclasts differentiated from bone marrow precursors. The absence of alkaline phosphatase and osteoblastic marker genes validated the usefulness of isolation procedures. Sustained exposure to ascorbic acid, but not to dehydroascorbic acid, significantly reduced the number of multinucleated cells positive to tartrate-resistant acid phosphatase (TRAP) staining. In cultured osteoclasts, mRNA expression was seen for glucose transporter-1 involved in membrane transport of dehydroascorbic acid, but not for sodium-dependent vitamin C transporters-1 and -2 that are both responsible for the transport of ascorbic acid. The inhibition by ascorbic acid was completely prevented by catalase, while ascorbic acid or hydrogen peroxide drastically increased the number of cells stained with propidium iodide and the generation of reactive oxygen species, in addition to inducing mitochondrial membrane depolarization in cultured osteoclasts. In pre-osteoclastic cell line RAW264.7 cells, ascorbic acid similarly inhibited the formation of TRAP-positive multinucleated cells, with a significant decrease in RANKL-induced NF-kappaB transactivation. Moreover, co-culture with osteoblastic MC3T3-E1 cells significantly prevented the ascorbic acid-induced decrease in the number of TRAP-positive multinucleated cells in RAW264.7 cells. These results suggest that ascorbic acid may play a dual repulsive role in osteoclastogenesis toward bone remodeling through the direct cytotoxicity mediated by oxidative stress to osteoclasts, in addition to the indirect trophism mediated by RANKL from osteoblasts.

  8. Identification of phenylpropanoids in fig (Ficus carica L.) leaves.

    PubMed

    Takahashi, Toru; Okiura, Aya; Saito, Keita; Kohno, Masahiro

    2014-10-15

    In this study, the phenylpropanoid composition and antioxidant activity of identified components in fig (Ficus carica L.) leaves were examined. Known polyphenols rutin, isoschaftoside, isoquercetin, and chlorogenic acid were identified. Furthermore, caffeoylmalic acid (CMA) was the most abundant polyphenol and was identified for the first time. CMA exhibited antioxidant activity similar to that of vitamin C or catechin. Psoralen and bergapten were identified as known furanocoumarins, with psoralen being the most abundant. Moreover, psoralic acid glucoside (PAG) was identified for the first time. As a precursor of psoralen, PAG content was equivalent to the psoralen content in moles. Notably, the content of these compounds varied between the five fig varieties, and the furanocoumarin and PAG contents varied more than that of the polyphenols. Further investigations concerning the influence of CMA and PAG on human health are necessary to elucidate functionalities of fig leaves.

  9. Anti-inflammatory and immunomodulatory properties of Carica papaya.

    PubMed

    Pandey, Saurabh; Cabot, Peter J; Shaw, P Nicholas; Hewavitharana, Amitha K

    2016-07-01

    Chronic inflammation is linked with the generation and progression of various diseases such as cancer, diabetes and atherosclerosis, and anti-inflammatory drugs therefore have the potential to assist in the treatment of these conditions. Carica papaya is a tropical plant that is traditionally used in the treatment of various ailments including inflammatory conditions. A literature search was conducted by using the keywords "papaya", "anti-inflammatory and inflammation" and "immunomodulation and immune" along with cross-referencing. Both in vitro and in vivo investigation studies were included. This is a review of all studies published since 2000 on the anti-inflammatory activity of papaya extracts and their effects on various immune-inflammatory mediators. Studies on the anti-inflammatory activities of recognized phytochemicals present in papaya are also included. Although in vitro and in vivo studies have shown that papaya extracts and papaya-associated phytochemicals possess anti-inflammatory and immunomodulatory properties, clinical studies are lacking.

  10. Podosome organization drives osteoclast-mediated bone resorption

    PubMed Central

    Georgess, Dan; Machuca-Gayet, Irma; Blangy, Anne; Jurdic, Pierre

    2014-01-01

    Osteoclasts are the cells responsible for physiological bone resorption. A specific organization of their most prominent cytoskeletal structures, podosomes, is crucial for the degradation of mineralized bone matrix. Each podosome is constituted of an F-actin-enriched central core surrounded by a loose F-actin network, called the podosome cloud. In addition to intrinsic actin dynamics, podosomes are defined by their adhesion to the extracellular matrix, mainly via core-linking CD44 and cloud-linking integrins. These properties allow podosomes to collectively evolve into different patterns implicated in migration and bone resorption. Indeed, to resorb bone, osteoclasts polarize, actively secrete protons, and proteases into the resorption pit where these molecules are confined by a podosome-containing sealing zone. Here, we review recent advancements on podosome structure and regulatory pathways in osteoclasts. We also discuss the distinct functions of different podosome patterns during the lifespan of a single osteoclast. PMID:24714644

  11. Minireview: Nuclear Receptor Regulation of Osteoclast and Bone Remodeling

    PubMed Central

    Jin, Zixue; Li, Xiaoxiao

    2015-01-01

    Osteoclasts are bone-resorbing cells essential for skeletal remodeling and regeneration. However, excessive osteoclasts often contribute to prevalent bone degenerative diseases such as osteoporosis, arthritis, and cancer bone metastasis. Osteoclast dysregulation is also associated with rare disorders such as osteopetrosis, pycnodysostosis, Paget's disease, and Gorham-Stout syndrome. The nuclear receptor (NR) family of transcription factors functions as metabolic sensors that control a variety of physiological processes including skeletal homeostasis and serves as attractive therapeutic targets for many diseases. In this review, we highlight recent findings on the new players and the new mechanisms for how NRs regulate osteoclast differentiation and bone resorption. An enhanced understanding of NR functions in osteoclastogenesis will facilitate the development of not only novel osteoprotective medicine but also prudent strategies to minimize the adverse skeletal effects of certain NR-targeting drugs for a better treatment of cancer and metabolic diseases. PMID:25549044

  12. Bovine dentine organic matrix down-regulates osteoclast activity.

    PubMed

    Sriarj, Wantida; Aoki, Kazuhiro; Ohya, Keiichi; Takagi, Yuzo; Shimokawa, Hitoyata

    2009-01-01

    Physiological root resorption is a phenomenon that normally takes place in deciduous teeth; root resorption of permanent teeth occurs only under pathological conditions. The molecular mechanisms underlying these processes are still unclear. Our previous study showed that osteoclasts cultured on deciduous dentine exhibited a higher degree of resorption and higher levels of cathepsin K and MMP-9 mRNA than osteoclasts cultured on permanent dentine. These results could be because of different susceptibilities to acid and the different organic matrices between deciduous and permanent dentine. Thus, the purpose of this study was to investigate the effect of dentine extracts from bovine deciduous and permanent dentine on osteoclast activity. Osteoclasts, obtained from mouse bone marrow cells co-cultured with an osteoblast-rich fraction in the presence of 1,25-(OH)(2)-vitamin D3 and PGE2, were incubated with or without 0.6 M HCl extracts from bovine deciduous or permanent dentine for 48 h. TRAP positive cell number, TRAP activity, the areas of resorption pits, and mRNA levels of TRAP, v-ATPase, calcitonin receptor, cathepsin K, and MMP-9 were examined. The results illustrated that TRAP activity, the resorbed area, and the mRNA levels of osteoclast marker genes seemed to be suppressed by both deciduous and permanent dentine extracts. These findings indicate that some factors that suppress osteoclast activity are contained in both deciduous and permanent dentine extracts. Although there was no significant difference in osteoclast activity between deciduous and permanent dentine extracts, osteoclasts incubated with permanent dentine extracts tend to exhibit less resorption activity than those incubated with deciduous dentine extracts. However, we could not clearly explain the causes of this.

  13. Engineered Osteoclasts for the Treatment and Prevention of Heterotopic Ossification

    DTIC Science & Technology

    2015-10-01

    may have traumatized the soft tissue . We hypothesize that injecting a lower number of engineered RAW iRANK cells at each time point or performing...AWARD NUMBER: W81XWH-13-1-0434 TITLE: Engineered osteoclasts for the treatment and prevention of heterotopic ossification PRINCIPAL...4. TITLE AND SUBTITLE Engineered Osteoclasts for the Treatment and Prevention of Heterotopic Ossification 5a. CONTRACT NUMBER W81XWH-13-1-0434 5b

  14. Engineered Osteoclasts for the Treatment and Prevention of Heterotopic Ossification

    DTIC Science & Technology

    2015-10-01

    multinucleated cells were observed in tissues from mice that received cells in collagen gels + CID, demonstrating that engineered RAW iRANK cells can...AWARD NUMBER: W81XWH-13-1-0435 TITLE: Engineered Osteoclasts for the Treatment and Prevention of Heterotopic Ossification PRINCIPAL...REPORT TYPE Annual 3. DATES COVERED 09/30/2014 – 09/29/2015 4. TITLE AND SUBTITLE Engineered Osteoclasts for the Treatment and Prevention of

  15. Biosynthesis of AgNPs using Carica Papaya peel extract and evaluation of its antioxidant and antimicrobial activities.

    PubMed

    Kokila, T; Ramesh, P S; Geetha, D

    2016-12-01

    Waste fruit peel mediated synthesis of silver nanoparticles (AgNPs) is a green chemistry approach that links nanotechnology and biotechnology. Using biological medium such as peel extract for the biosynthesis of nanoparticles is an ecofriendly and emerging scientific trend. With this back drop the present study focused on the biosynthesis of AgNPs using Carica Papaya peel extract (CPPE) and evaluation of its antimicrobial potentials of the nanoparticles against different human pathogens and to investigate the free radical scavenging activity. Water soluble antioxidant constituents present in Carica Papaya peel extract were mainly responsible for the reduction of silver ions to nanosized Ag particles. UV-vis spectral analysis shows surface plasmon resonance band at 430nm. The presence of active proteins and phenolic groups present in the biomass before and after reduction was identified by Fourier transform infrared spectroscopy. X-ray diffraction study shows the average size of the silver nanoparticles is in the range of 28nm, as well as revealed their face centered cubic structure. Atomic force microscope image gives the 3D topological characteristic of silver nanoparticles and the particle size ranges from 10 to 30nm. The average particle size distribution of silver nanoparticles is 161nm (Dynamic light scattering) and the corresponding average zeta potential value is -20.5mV, suggesting higher stability of silver nanoparticles. Biologically synthesized nanoparticles efficiently inhibited pathogenic organisms both gram-positive and gram-negative bacteria. The biosynthesized nanoparticles might serve as a potent antioxidant as revealed by DPPH and ABT(S+)assay.

  16. Measles Virus Nucleocapsid (MJVNP) Gene Expression and RANK Receptor Signaling in Osteoclast Precursors. Osteoclast Inhibitors Peptide Therapy for Pagets Disease

    DTIC Science & Technology

    2005-10-31

    Determine the sensitivity of MVNP transduced osteoclast precursors to RANK Ligand (RANKL) and TNF- alpha stimulation to form pagetic osteoclasts. -- Paget’s...herpesvirus (CLONTECH) (pVP16- hVDR) (13). To examine the interaction of TAFII-17 and VDR, 0.5 g of pM-TAFII-17, 0.5 g of pVP -16-hVDR, and 0.5 g of

  17. RANK ligand signaling modulates the matrix metalloproteinase-9 gene expression during osteoclast differentiation

    SciTech Connect

    Sundaram, Kumaran; Nishimura, Riko; Senn, Joseph; Youssef, Rimon F.; London, Steven D.; Reddy, Sakamuri V. . E-mail: reddysv@musc.edu

    2007-01-01

    Osteoclast differentiation is tightly regulated by receptor activator of NF-{kappa}B ligand (RANKL) signaling. Matrix metalloproteinase-9 (MMP-9), a type IV collagenase is highly expressed in osteoclast cells and plays an important role in degradation of extracellular matrix; however, the molecular mechanisms that regulate MMP-9 gene expression are unknown. In this study, we demonstrate that RANKL signaling induces MMP-9 gene expression in osteoclast precursor cells. We further show that RANKL regulates MMP-9 gene expression through TRAF6 but not TRAF2. Interestingly, blockade of p38 MAPK activity by pharmacological inhibitor, SB203580 increases MMP-9 activity whereas ERK1/2 inhibitor, PD98059 decreases RANKL induced MMP-9 activity in RAW264.7 cells. These data suggest that RANKL differentially regulates MMP-9 expression through p38 and ERK signaling pathways during osteoclast differentiation. Transient expression of MMP-9 gene (+ 1 to - 1174 bp relative to ATG start codon) promoter-luciferase reporter plasmids in RAW264.7 cells and RANKL stimulation showed significant increase (20-fold) of MMP-9 gene promoter activity; however, there is no significant change with respect to + 1 bp to - 446 bp promoter region and empty vector transfected cells. These results indicated that MMP-9 promoter sequence from - 446 bp to - 1174 bp relative to start codon is responsive to RANKL stimulation. Sequence analysis of the mouse MMP-9 gene promoter region further identified the presence of binding motif (- 1123 bp to - 1153 bp) for the nuclear factor of activated T cells 1 (NFATc1) transcription factor. Inhibition of NFATc1 using siRNA and VIVIT peptide inhibitor significantly decreased RANKL stimulation of MMP-9 activity. We further confirm by oligonucleotide pull-down assay that RANKL stimuli enhanced NFATc1 binding to MMP-9 gene promoter element. In addition, over-expression of constitutively active NFAT in RAW264.7 cells markedly increased (5-fold) MMP-9 gene promoter activity

  18. Effect of low-magnitude, high-frequency vibration on osteocytes in the regulation of osteoclasts.

    PubMed

    Lau, Esther; Al-Dujaili, Saja; Guenther, Axel; Liu, Dawei; Wang, Liyun; You, Lidan

    2010-06-01

    soluble factors that inhibit osteoclast formation.

  19. Xanthohumol modulates the expression of osteoclast-specific genes during osteoclastogenesis in RAW264.7 cells.

    PubMed

    Suh, Kwang Sik; Rhee, Sang Youl; Kim, Young Seol; Lee, Young Soon; Choi, Eun Mi

    2013-12-01

    RANKL has been shown to play a critical role in osteoclast formation and bone resorption. Thus, agents that suppress RANKL signaling have a potential to suppress bone loss. In this study, we examined the ability of xanthohumol, a structurally simple prenylated chalcone, to suppress RANKL signaling during osteoclastogenesis in RAW264.7 cells. Xanthohumol markedly inhibited RANKL-induced TRAP activity, multinucleated osteoclasts formation, and resorption-pit formation. In experiments to elucidate its mechanism of action, xanthohumol was found to suppress RANKL-induced expression of TRAF6, GAB2, ERK, c-Src, PI3K, and Akt genes. Moreover, RANKL-induced expressions of c-Fos and NFATc1, which are crucial transcription factors for osteoclastogenesis, were reduced by treatment with xanthohumol. Xanthohumol also inhibited RANKL-induced expression of bone-resorption related osteoclast-specific genes (carbonic anhydrase II, TCIRG, CLCN7, OSTM1, cathepsin K, and MMP-9). These data demonstrate that xanthohumol inhibits osteoclastogenesis by modulating RANKL signaling and may be useful for the prevention of bone-destructive diseases such as osteoporosis, arthritis and periodontitis.

  20. Thyroid-stimulating hormone maintains bone mass and strength by suppressing osteoclast differentiation.

    PubMed

    Zhang, Wenwen; Zhang, Yanling; Liu, Yuantao; Wang, Jie; Gao, Ling; Yu, Chunxiao; Yan, Huili; Zhao, Jiajun; Xu, Jin

    2014-04-11

    It has been suggested that pituitary hormone might be associated with bone metabolism. To investigate the role of thyroid-stimulating hormone (TSH) in bone metabolism, we designed the present study as follows. After weaning, TSH receptor (TSHR) null mice (Tshr(-/-)) were randomly divided into a thyroxine treatment group (n=10) or non-treatment group (n=10); the treatment group received a dose of desiccated thyroid extract at 100 ppm daily for 5 weeks. Age-matched wild-type (Tshr(+/+), n=10) and heterozygote mice (Tshr(+/-), n=10) served as controls. After 5 weeks, the animals were sacrificed, and the femurs were collected for histomorphometrical and biomechanical analyses. In addition, the effect of TSH on osteoclastogenesis was examined in the RAW264.7 osteoclast cell line. We found that compared with Tshr(+/+) mice, Tshr(-/-) and Tshr(+/-) mice had lower bone strength. The histomorphometric results showed that trabecular bone volume, osteoid surface, osteoid thickness and osteoblast surface were significantly decreased, whereas the osteoclast surface was significantly increased in both Tshr(-/-) and Tshr(+/-) mice compared with Tshr(+/+) mice. Bone resorption and formation in Tshr(-/-) mice were further enhanced by thyroxine replacement. bTSH inhibited osteoclast differentiation in vitro, as demonstrated by reduced development of TRAP-positive cells and down-regulation of differentiation markers, including tartrate-resistant acid phosphatase, matrix metallo-proteinase-9 and cathepsin K in RAW264.7 cells. Our results confirm that TSH increased bone volume and improved bone microarchitecture and strength at least partly by inhibiting osteoclastogenesis.

  1. Fibrodysplasia Ossificans Progressiva-related Activated Activin-like Kinase Signaling Enhances Osteoclast Formation during Heterotopic Ossification in Muscle Tissues*

    PubMed Central

    Yano, Masato; Kawao, Naoyuki; Okumoto, Katsumi; Tamura, Yukinori; Okada, Kiyotaka; Kaji, Hiroshi

    2014-01-01

    Fibrodysplasia ossificans progressiva is characterized by extensive ossification within muscle tissues, and its molecular pathogenesis is responsible for the constitutively activating mutation (R206H) of the bone morphogenetic protein type 1 receptor, activin-like kinase 2 (ALK2). In this study, we investigated the effects of implanting ALK2 (R206H)-transfected myoblastic C2C12 cells into nude mice on osteoclast formation during heterotopic ossification in muscle and subcutaneous tissues. The implantation of ALK2 (R206H)-transfected C2C12 cells with BMP-2 in nude mice induced robust heterotopic ossification with an increase in the formation of osteoclasts in muscle tissues but not in subcutaneous tissues. The implantation of ALK2 (R206H)-transfected C2C12 cells in muscle induced heterotopic ossification more effectively than that of empty vector-transfected cells. A co-culture of ALK2 (R206H)-transfected C2C12 cells as well as the conditioned medium from ALK2 (R206H)-transfected C2C12 cells enhanced osteoclast formation in Raw264.7 cells more effectively than those with empty vector-transfected cells. The transfection of ALK2 (R206H) into C2C12 cells elevated the expression of transforming growth factor (TGF)-β, whereas the inhibition of TGF-β signaling suppressed the enhanced formation of osteoclasts in the co-culture with ALK2 (R206H)-transfected C2C12 cells and their conditioned medium. In conclusion, this study demonstrated that the causal mutation transfection of fibrodysplasia ossificans progressiva in myoblasts enhanced the formation of osteoclasts from its precursor through TGF-β in muscle tissues. PMID:24798338

  2. Large osteoclasts in pediatric osteogenesis imperfecta patients receiving intravenous pamidronate.

    PubMed

    Cheung, Moira S; Glorieux, Francis H; Rauch, Frank

    2009-04-01

    Intravenous pamidronate is widely used to treat children with moderate to severe osteogenesis imperfecta (OI). Changes in the appearance of osteoclasts have previously been noted in children receiving pamidronate and have been interpreted as signs of toxicity. In this study, we analyzed osteoclast parameters in paired iliac bone specimens before and after 2-4 yr of cyclical intravenous pamidronate therapy in 44 pediatric OI patients (age range: 1.4-17.5 yr; 21 girls). During pamidronate treatment, average osteoclast diameter and the mean number of nuclei present per osteoclast increased by 18% (p = 0.02) and 43% (p < 0.001), respectively. The number of samples containing large osteoclasts (LOcs, diameter > 50 mum) increased from 6 (14%) before treatment to 23 (52%) after pamidronate therapy (p < 0.001 by chi(2) test). Post-treatment samples containing LOcs had a greater core width (p = 0.04) and a higher cancellous bone volume per tissue volume (p < 0.001), because cancellous bone volume had increased more during pamidronate treatment (p < 0.001). Osteoclast number and surface were higher in samples with LOcs, but there was no difference in cancellous bone formation parameters. The presence of LOcs was independent of OI type, type of collagen type I mutation, lumbar spine BMD, and other clinical or biochemical measures. In conclusion, this study did not show any indication that LOcs during pamidronate treatment are indicative of toxicity. It seems more likely that the observed abnormalities in osteoclast morphology are part of the mechanism of action of this drug.

  3. Simultaneous delivery of BMP-2 factor and anti-osteoporotic drugs using hyaluronan-assembled nanocomposite for synergistic regulation on the behaviors of osteoblasts and osteoclasts in vitro.

    PubMed

    Zhang, Yarong; Hu, Yan; Luo, Zhong; Shen, Xinkun; Mu, Caiyun; Cai, Kaiyong

    2015-01-01

    To treat the osteoporosis and regulate the biological behaviors of both osteoblasts and osteoclasts, we prepared a natural polysaccharide-derived nanocomposite, containing alendronate-grafted hyaluronate (HA-Aln) and bone morphogenetic protein 2 (BMP-2) and investigated its synergistic regulation on the behaviors of osteoblasts and osteoclasts in vitro. The HA-Aln/BMP-2 nanocomposite was fabricated through the electrostatic interactions between the HA-Aln molecule and BMP-2 molecule. Here, BMP-2 was used to improve the osteoblast-mediated bone formation. Alendronate (Aln), a targeting ligand to bone matrix, was used to inhibit the osteoclast-mediated bone resorption. In vitro results showed that HA-Aln/BMP-2 nanocomposite could effectively maintain the bioactivity of loaded drugs. The osteoblasts that treated with the HA-Aln/BMP-2 nanocomposite presented a higher level of cell motility, alkaline phosphatase (ALP) activity, mineralization capacity, and osteoblast-related gene expressions (runt-related transcription factor 2, osterix, ALP, collagen type I, osteocalcin, and osteopontin), as compared to that of control group. Besides, the RAW264.7 cells that were treated with HA-Aln/BMP-2 nanocomposite showed a lower level of osteoclastic differentiation. Overall, the HA-Aln/BMP-2 nanocomposite exhibits promising potential as an efficient carrier for co-delivery of anti-osteoporotic drug and growth factors to promote osteoblastic differentiation and bone formation while suppressing osteoclastic activity.

  4. Anti-inflammatory and antioxidant activity of Ficus carica Linn. leaves.

    PubMed

    Ali, B; Mujeeb, M; Aeri, V; Mir, S R; Faiyazuddin, M; Shakeel, F

    2012-01-01

    Ficus carica Linn. (Moraceae) is commonly known as edible fig. The leaves, roots, fruits and latex of the plant are medicinally used in different diseases. The leaves are claimed to be effective in various inflammatory conditions like painful or swollen piles, insect sting and bites. However, there has been no report on anti-inflammatory and antioxidant activity of F. carica leaves. Therefore the aim of this study was to evaluate the anti-inflammatory and antioxidant activity of F. carica leaves. Our study validated the traditional claim with pharmacological data. Anti-inflammatory and antioxidant activity of the drug could be due to the presence of steroids and flavanoids, respectively, which are reported to be present in the drug. Furthermore, the anti-inflammatory activity of the drug could be due to its free radical scavenging activity. Further work is also required to isolate and characterise the active constituents responsible for the anti-inflammatory activities.

  5. Effects of Cream Containing Ficus carica L. Fruit Extract on Skin Parameters: In vivo Evaluation

    PubMed Central

    Khan, H.; Akhtar, N.; Ali, A.

    2014-01-01

    This study was aimed to investigate the effects of cream containing Ficus carica L. fruit (Fig) extract on various skin parameters such as skin melanin, erythema, moisture content, trans-epidermal water loss and sebum. For this purpose, formulation with 4% concentrated extract of F. carica fruit and base without extract were developed. Base served as a control. Both base and formulation were applied to the cheeks of human volunteers for 8 weeks to investigate the effects on different skin parameters using non-invasive bioengineering instruments. Formulation decreased the skin melanin, trans-epidermal water loss and skin sebum significantly. Formulation increased the skin hydration significantly and insignificant effects on skin erythema. We concluded that a stable topical cream (w/o emulsion) containing F. carica fruit extract have effects on skin melanin, trans-epidermal loss, hydration values and sebum content and possibly could be used against for hyper pigmentation, acne, freckles and wrinkle. PMID:25593393

  6. Sinomenine Suppresses Osteoclast Formation and Mycobacterium tuberculosis H37Ra-Induced Bone Loss by Modulating RANKL Signaling Pathways

    PubMed Central

    Li, Xiaojuan; He, Longgang; Hu, Yiping; Duan, Heng; Li, Xianglian; Tan, Suiyi; Zou, Min; Gu, Chunping; Zeng, Xiangzhou; Yu, Le; Xu, Jiake; Liu, Shuwen

    2013-01-01

    Receptor activator of NF-κB ligand (RANKL) is essential for osteoclastogenesis. Targeting RANKL signaling pathways has been an encouraging strategy for treating lytic bone diseases such as osteoporosis and rheumatoid arthritis (RA). Sinomenine (SIN), derived from Chinese medicinal plant Sinomenioumacutum, is an active compound to treat RA, but its effect on osteoclasts has been hitherto unknown. In the present study, SIN was found to ameliorate M. tuberculosis H37Ra (Mt)-induced bone loss in rats with a decreased serum level of TRACP5b and RANKL, and an increased level of osteoprotegerin (OPG). In vitro study also showed that SIN could inhibit RANKL-induced osteoclast formation and bone resorption. The osteoclastic specific marker genes induced by RANKL including c-Src, MMP-9, TRACP were inhibited by SIN in a dose dependent manner. Signal transduction studies showed that SIN could obviously reduce the expression of RANK adaptor molecule TRAF6 and down-regulate RANKL-induced NF-κB activation. It decreased the RANKL-induced p38, JNK posphorylation but not ERK1/2 posphorylation. SIN could also reduce RANKL-mediated calcium influx which is associated with TRAF6/c-Src complex. Finally, SIN suppressed RANKL induced AP-1 and NFAT transcription, as well as the gene expression of NFATc1 and AP-1 components (Fra-1, Fra-2, c-Fos). The protein expression of c-Fos and TRAF6 were also inhibited by SIN after RANKL stimulation. Taken together, SIN could attenuate osteoclast formation and Mt-induced bone loss by mediating RANKL signaling pathways. PMID:24066131

  7. MiR-7b directly targets DC-STAMP causing suppression of NFATc1 and c-Fos signaling during osteoclast fusion and differentiation.

    PubMed

    Dou, Ce; Zhang, Chengcheng; Kang, Fei; Yang, Xiaochao; Jiang, Hong; Bai, Yan; Xiang, Junyu; Xu, Jianzhong; Dong, Shiwu

    2014-11-01

    DC-STAMP is a key regulating molecule of osteoclastogenesis and osteoclast precursor (OCP) fusion. Emerging lines of evidence showed that microRNAs play crucial roles in bone metabolism and osteoclast differentiation, but no microRNA has yet been reported to be directly related to OCPs fusion. Through a microarray, we found that the expression of miR-7b in RAW264.7 cells was significantly decreased after induction with M-CSF and RANKL. The overexpression of miR-7b in RAW264.7 cells attenuated the number of TRAP-positive cells number and the formation of multinucleated cells, whereas the inhibition of miR-7b enhanced osteoclastogenesis. Through a dual luciferase reporter assay, we confirmed that miR-7b directly targets DC-STAMP. Other fusogenic molecules, such as CD47, ATP6v0d2, and OC-STAMP, were detected to be down-regulated in accordance with the inhibition of DC-STAMP. Because DC-STAMP also participates in osteoclast differentiation through the ITAM-ITIM network, multiple osteoclast-specific genes in the ITAM-ITIM network were detected to identify how DC-STAMP is involved in this process. The results showed that molecules associated with the ITAM-ITIM network, such as NFATc1 and OSCAR, which are crucial in osteoclastogenesis, were consistently altered due to DC-STAMP inhibition. These findings suggest that miR-7b inhibits osteoclastogenesis and cell-cell fusion by directly targeting DC-STAMP. In addition, the inhibition of DC-STAMP and its downstream signals changed the expression of other fusogenic genes and key regulating genes, such as Nfatc1, c-fos, Akt, Irf8, Mapk1, and Traf6. In conclusion, our findings indicate that miR-7b may be a potential therapeutic target for the treatment of osteoclast-related bone disorders.

  8. Synergistic toxicity of gentamicin- and nanosilver-doped polymethylmethacrylate bone cement on primary human osteoclasts.

    PubMed

    Pauksch, Linda; Franke, Jörg; Schnettler, Reinhard; Lips, Katrin S

    2014-01-01

    Bacterial colonization of implant surfaces is a feared complication in surgery and orthopedics. Due to the increasing number of periprosthetic infections caused by multidrug-resistant microorganisms, new antibacterial coatings for biomaterials must be developed. The excellent antibacterial properties of silver nanoparticles (AgNPs) against multidrug-resistant bacteria, for example, have been repeatedly described. For this reason, we tested a nanosilver-doped polymethylmethacrylate (PMMA) bone cement and a nanosilver-coated titanium alloy regarding their influence on osteoclastogenesis of primary human peripheral blood mononuclear cells. Both implant variants did not inhibit osteoclast differentiation. Excellent cell attachment and unaltered podosomal structures were confirmed. Additionally, no induction of oxidative or endoplasmic reticulum stress could be observed. However, PMMA loaded with gentamicin and nanosilver inhibited preosteoclast fusion and further osteoclastogenesis. The material also led to decreased clathrin-dependent endocytosis as well as decreased levels of endoplasmic reticulum stress. Therefore, biomaterial functionalization with AgNPs did not disturb osteoclastogenesis, while addition of gentamicin reduced the cytocompatibility of nanosilver-doped materials towards human osteoclasts.

  9. Proline/arginine-rich end leucine-rich repeat protein N-terminus is a novel osteoclast antagonist that counteracts bone loss.

    PubMed

    Rucci, Nadia; Capulli, Mattia; Ventura, Luca; Angelucci, Adriano; Peruzzi, Barbara; Tillgren, Viveka; Muraca, Maurizio; Heinegård, Dick; Teti, Anna

    2013-09-01

    (hbd) PRELP is a peptide corresponding to the N-terminal heparin binding domain of the matrix protein proline/arginine-rich end leucine-rich repeat protein (PRELP). (hbd) PRELP inhibits osteoclastogenesis entering pre-fusion osteoclasts through a chondroitin sulfate- and annexin 2-dependent mechanism and reducing the nuclear factor-κB transcription factor activity. In this work, we hypothesized that (hbd) PRELP could have a pharmacological relevance, counteracting bone loss in a variety of in vivo models of bone diseases induced by exacerbated osteoclast activity. In healthy mice, we demonstrated that the peptide targeted the bone and increased trabecular bone mass over basal level. In mice treated with retinoic acid to induce an acute increase of osteoclast formation, the peptide consistently antagonized osteoclastogenesis and prevented the increase of the serum levels of the osteoclast-specific marker tartrate-resistant acid phosphatase. In ovariectomized mice, in which osteoclast activity was chronically enhanced by estrogen deficiency, (hbd) PRELP counteracted exacerbated osteoclast activity and bone loss. In mice carrying osteolytic bone metastases, in which osteoclastogenesis and bone resorption were enhanced by tumor cell-derived factors, (hbd) PRELP reduced the incidence of osteolytic lesions, both preventively and curatively, with mechanisms involving impaired tumor cell homing to bone and tumor growth in the bone microenvironment. Interestingly, in tumor-bearing mice, (hbd) PRELP also inhibited breast tumor growth in orthotopic sites and development of metastatic disease in visceral organs, reducing cachexia and improving survival especially when administered preventively. (hbd) PRELP was retained in the tumor tissue and appeared to affect tumor growth by interacting with the microenvironment rather than by directly affecting the tumor cells. Because safety studies and high-dose treatments revealed no adverse effects, (hbd) PRELP could be employed as a

  10. Minodronic acid induces morphological changes in osteoclasts at bone resorption sites and reaches a level required for antagonism of purinergic P2X2/3 receptors.

    PubMed

    Tanaka, Makoto; Hosoya, Akihiro; Mori, Hiroshi; Kayasuga, Ryoji; Nakamura, Hiroaki; Ozawa, Hidehiro

    2017-02-27

    Minodronic acid is an aminobisphosphonate that is an antagonist of purinergic P2X2/3 receptors involved in pain. The aim of this study was to investigate the action and distribution of minodronic acid and the potential for P2X2/3 receptor antagonism based on the estimated concentration of minodronic acid. Microlocalization of radiolabeled minodronic acid was examined in the femur of neonatal rats. The bone-binding characteristics of minodronic acid and morphological changes in osteoclasts were analyzed in vitro. The minodronic acid concentration around bone resorption lacunae was predicted based on bone binding and the shape of lacunae. In microautoradiography, radioactive silver grains were abundant in bone-attached osteoclasts and were detected in calcified and ossification zones and in the cytoplasm of osteoclasts but not in the hypertrophic cartilage zone. In an osteoclast culture with 1 µM minodronic acid, 65% of minodronic acid was bound to bone, and C-terminal cross-linking telopeptide release was inhibited by 96%. Cultured osteoclasts without minodronic acid treatment formed ruffled borders and bone resorption lacunae and had rich cytoplasm, whereas those treated with 1 µM minodronic acid were not multinucleated, stained densely with toluidine blue, and were detached from the bone surface. In the 1 µM culture, the estimated minodronic acid concentration in resorption lacunae was 880 µM, which is higher than the IC50 for minodronic acid antagonism of P2X2/3 receptors. Thus, inhibition of P2X2/3 receptors around osteoclasts may contribute to the analgesic effect of minodronic acid.

  11. Ficus carica L. (Moraceae): an ancient source of food and health.

    PubMed

    Barolo, Melisa I; Ruiz Mostacero, Nathalie; López, Silvia N

    2014-12-01

    Since early in the man history, common fig was appreciated as food and for its medicinal properties. This review explores some aspects about the importance of Ficus carica L., an amazing and ancient source of medicines and food. Topics regarding chemistry, biological activity, ethno-pharmacological uses, and its nutritional value are discussed, as well as the potential of the species as a source of new and different chemical scaffolds. Very important in the past, appreciated in our time and extremely promising in the future, F. carica represents an interesting example of healthy foods and bioproducts.

  12. Administration Dependent Antioxidant Effect of Carica papaya Seeds Water Extract.

    PubMed

    Panzarini, Elisa; Dwikat, Majdi; Mariano, Stefania; Vergallo, Cristian; Dini, Luciana

    2014-01-01

    Carica papaya is widely used in folk medicine as herbal remedy to prevent, protect against, and cure several diseases. These curative properties are based on the presence in different parts of the plant of phytochemical nutrients with antioxidant effect. Seeds are the less exploited part; thus this study is aimed at assessing the antioxidant activities of the C. papaya seeds water extract against hydrogen peroxide (H2O2) oxidative stress in human skin Detroit 550 fibroblasts. C. papaya seeds water extract is not toxic and acts as a potent free radical scavenger, providing protection to Detroit 550 fibroblasts that underwent H2O2 oxidative stress. Data show that (i) the maximum protective effect is achieved by the simultaneous administration of the extract with 1 mM H2O2; (ii) the extract in presence of an oxidative stress does not increase catalase activity and prevents the release of cytochrome C and the inner mitochondrial transmembrane potential (Δψ m ) loss; (iii) the extract is more efficient than vitamin C to hamper the oxidative damage; (iv) the purified subfractions of the seeds water extract exert the same antioxidant effect of whole extract. In conclusion, C. papaya seeds water extract is potentially useful for protection against oxidative stress.

  13. Identification of a new phospholipase D in Carica papaya latex.

    PubMed

    Abdelkafi, Slim; Abousalham, Abdelkarim; Fendri, Imen; Ogata, Hiroyuki; Barouh, Nathalie; Fouquet, Benjamin; Scheirlinckx, Frantz; Villeneuve, Pierre; Carrière, Frédéric

    2012-05-15

    Phospholipase D (PLD) is a lipolytic enzyme involved in signal transduction, vesicle trafficking and membrane metabolism. It catalyzes the hydrolysis and transphosphatidylation of glycerophospholipids at the terminal phosphodiester bond. The presence of a PLD in the latex of Carica papaya (CpPLD1) was demonstrated by transphosphatidylation of phosphatidylcholine (PtdCho) in the presence of 2% ethanol. Although the protein could not be purified to homogeneity due to its presence in high molecular mass aggregates, a protein band was separated by SDS-PAGE after SDS/chloroform-methanol/TCA-acetone extraction of the latex insoluble fraction. This material was digested with trypsin and the amino acid sequences of the tryptic peptides were determined by micro-LC/ESI/MS/MS. These sequences were used to identify a partial cDNA (723 bp) from expressed sequence tags (ESTs) of C. papaya. Based upon EST sequences, a full-length gene was identified in the genome of C. papaya, with an open reading frame of 2424 bp encoding a protein of 808 amino acid residues, with a theoretical molecular mass of 92.05 kDa. From sequence analysis, CpPLD1 was identified as a PLD belonging to the plant phosphatidylcholine phosphatidohydrolase family.

  14. A polymorphic pseudoautosomal boundary in the Carica papaya sex chromosomes.

    PubMed

    Lappin, Fiona M; Medert, Charles M; Hawkins, Kevin K; Mardonovich, Sandra; Wu, Meng; Moore, Richard C

    2015-08-01

    Sex chromosomes are defined by a non-recombining sex-determining region (SDR) flanked by one or two pseudoautosomal regions (PARs). The genetic composition and evolutionary dynamics of the PAR is also influenced by its linkage to the differentiated non-recombining SDR; however, understanding the effects of this linkage requires a precise definition of the PAR boundary. Here, we took a molecular population genetic approach to further refine the location of the PAR boundary of the evolutionary young sex chromosomes of the tropical plant, Carica papaya. We were able to map the position of the papaya PAR boundary A to a 100-kb region between two genetic loci approximately 2 Mb upstream of the previously genetically identified PAR boundary. Furthermore, this boundary is polymorphic within natural populations of papaya, with an approximately 100-130 kb expansion of the non-recombining SDR found in 16 % of individuals surveyed. The expansion of the PAR boundary in one Y haplotype includes at least one additional gene. Homologs of this gene are involved in male gametophyte and pollen development in other plant species.

  15. Mechanical regulation of osteoclastic genes in human osteoblasts

    SciTech Connect

    Kreja, Ludwika Liedert, Astrid; Hasni, Sofia; Claes, Lutz; Ignatius, Anita

    2008-04-11

    Bone adaptation to mechanical load is accompanied by changes in gene expression of bone-forming cells. Less is known about mechanical effects on factors controlling bone resorption by osteoclasts. Therefore, we studied the influence of mechanical loading on several key genes modulating osteoclastogenesis. Human osteoblasts were subjected to various cell stretching protocols. Quantitative RT-PCR was used to evaluate gene expression. Cell stretching resulted in a significant up-regulation of receptor activator of nuclear factor-{kappa}B ligand (RANKL) immediate after intermittent loading (3 x 3 h, 3 x 6 h, magnitude 1%). Continuous loading, however, had no effect on RANKL expression. The expression of osteoprotegerin (OPG), macrophage-colony stimulating factor (M-CSF), and osteoclast inhibitory lectin (OCIL) was not significantly altered. The data suggested that mechanical loading could influence osteoclasts recruitment by modulating RANKL expression in human osteoblasts and that the effects might be strictly dependent on the quality of loading.

  16. Substance P stimulates bone marrow stromal cell osteogenic activity, osteoclast differentiation, and resorption activity in vitro

    PubMed Central

    Wang, Liping; Zhao, Rong; Shi, Xiaoyou; Wei, Tzuping; Halloran, Bernard P.; Clark, David J.; Jacobs, Christopher R.; Kingery, Wade S.

    2009-01-01

    Introduction SP is a neuropeptide distributed in the sensory nerve fibers that innervate the medullar tissues of bone, as well as the periosteum. Previously we demonstrated that inhibition of neuropeptide signaling after capsaicin treatment resulted in a loss of bone mass and we hypothesized that SP contributes to bone integrity by stimulating osteogenesis. Materials and Methods Osteoblast precursors (bone marrow stromal cells, BMSCs) and osteoclast precursors (bone marrow macrophages, BMMs) derived from C57BL/6 mice were cultured. Expression of the SP receptor (NK1) was detected by using immunocytochemical staining and PCR. Effects of SP on proliferation and differentiation of BMSCs were studied by measuring BrdU incorporation, gene expression, alkaline phosphatase activity, and osteocalcin and Runx2 protein levels with EIA and western blot assays, respectively. Effects of SP on BMMs were determined using a BrdU assay, counting multinucleated cells staining positive for tartrate-resistant acid phosphatase (TRAP+), measuring pit erosion area, and evaluating RANKL protein production and NF-κB activity with ELISA and western blot. Results The NK1 receptor was expressed in both BMSCs and BMMs. SP stimulated the proliferation of BMSCs in a concentration-dependent manner. Low concentrations (10−12 M) of SP stimulated alkaline phosphatase and osteocalcin expression, increased alkaline phosphatase activity, and up-regulated Runx2 protein levels, and higher concentrations of SP (10−8 M) enhanced mineralization in differentiated BMSCs. SP also stimulated BMSCs to produce RANKL, but at concentrations too low to evoke osteoclastogenesis in co-culture with macrophages in the presence of SP. SP also activated NF-κB in BMMs and directly facilitate RANKL induced macrophage osteoclastogenesis and bone resorption activity. Conclusions NK1 receptors are expressed by osteoblast and osteoclast precursors and SP stimulates osteoblast and osteoclast differentiation and function in

  17. The component of Carica papaya seed toxic to A. aegypti and the identification of tegupain, the enzyme that generates it.

    PubMed

    Nunes, Natalia N dos S; Santana, Lucimeire A; Sampaio, Misako U; Lemos, Francisco J A; Oliva, Maria Luiza

    2013-07-01

    As Aedes aegypti transmits the etiologic agents of both yellow and dengue fever; vector control is considered essential to minimise their incidence. The aim of this work was to identify the component of Carica papaya seed toxic to A. aegypti, and the identification of tegupain, the enzyme that generates it. Aqueous extracts (1%, w/v) of the seed tegument and cotyledon of C. papaya are not larvicidal isolately. However, a mixture of 17μgmL(-1) tegument extract and 27μgmL(-1) cotyledon extract caused 100% larval mortality in a bioassay. The mixture was no longer larvicidal after the tegument extract was pre-treated at 100°C for 10min. The enzyme tegupain efficiently hydrolysed the substrate Z-Phe-Arg-pNan (Km 58.8μM, Kcat 28020s(-1), Kcat/Km 5×10(8)M(-1) s(-1)), and its activity increased with 2mM dithiothreitol (DTT), at 37°C, pH 5.0. The chelating agent EDTA did not modify the enzyme activity. Inhibition of tegupain by cystatin (Kiapp 2.43nM), E64 (3.64nM, 83% inhibition), and the propeptide N-terminal sequence indicate that the toxic activity is due to a novel cysteine proteinase-like enzyme, rendered active upon the hydrolysis of a cotyledon component of C. papaya seeds.

  18. The micromorphology and protein characterization of rubber particles in Ficus carica, Ficus benghalensis and Hevea brasiliensis.

    PubMed

    Singh, Adya P; Wi, Seung Gon; Chung, Gap Chae; Kim, Yoon Soo; Kang, Hunseung

    2003-03-01

    Rubber biosynthesis takes place on the surface of rubber particles. These particles are surrounded by a monolayer membrane in which the rubber transferase is anchored. In order to gain better insight into whether rubber particles from different plant species share common structural characteristics, the micromorphology of rubber particles from Ficus carica, Ficus benghalensis, and Hevea brasiliensis was examined by electron microscopy. Rubber particles of all three species were spherical in shape, and the size of rubber particles of H. brasiliensis was much smaller than those of F. carica and F. benghalensis. In addition, investigations were undertaken to compare the cross-reactivity of the antibody raised against either the H. brasiliensis small rubber particle protein (SRPP) which is suggested to be involved in rubber biosynthesis, or the cis-prenyltransferase (CPT) which has an activity similar to rubber transferase. Both western analysis and TEM-immunogold labelling studies showed that rubber particles of F. carica and F. benghalensis do not contain the SRPP. None of the rubber particles in F. carica, F. benghalensis and H. brasiliensis contained the CPT, suggesting that the CPT itself could not catalyse the formation of high molecular weight rubber. These results indicate that rubber particles in the three different plant species investigated share some degree of similarity in architecture, and that the SRPP and CPT themselves are not the core proteins necessary for rubber biosynthesis.

  19. Designing and characterizing of tramadol hydrochloride transdermal patches prepared with Ficus carica fruit mucilage and povidone.

    PubMed

    Ahad, Hindustan Abdul; Ishaq, Beludari Mohammed; Shaik, Muneer; Bandagisa, Faheem

    2016-05-01

    The purpose of this investigation was to prepare matrix type transdermal patches of Tramadol HCl using various ratios of Ficus carica fruit mucilage and Povidone. The matrix type transdermal patches were prepared using Tramadol HCl with Ficus carica fruit mucilage and Povidone. The interactions between Tramadol HCl with F. carica fruit mucilage and Povidone were performed by Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared spectroscopy (FTIR). The prepared patches were examined for physicochemical characterization and in vitro drug permeation studies (using a Keshary-Chien diffusion cell across hairless Albino rat skin), skin irritation studies and accelerated stability studies. The drug was found to be free from negligible interactions with the polymers used. The formulated patches possessed satisfactory physicochemical properties, in vitro drug permeation and devoid of serious skin irritation. The selected formulation (F-5) was retains the characteristics even after the accelerated environmental conditions. The study concludes that F. carica fruit mucilage with Povidone is a good combination for preparing transdermal patches.

  20. Central nervous system activity of an aqueous acetonic extract of Ficus carica L. in mice

    PubMed Central

    Bhanushali, Mittal M.; Makhija, Dinesh T.; Joshi, Yadunath M.

    2014-01-01

    Background: Ficus carica Linn. is reported to possess variety of activities, but its potential in CNS disorders is still to be explored. Objective: The present study was carried out to evaluate the CNS depressant activity of aqueous acetonic extract of Ficus carica Linn on different models in mice. Materials and Methods: The aerial parts of the plant Ficus carica L. were extracted with aqueous acetone and the solvent was removed by rotary vacuum evaporator under reduced pressure. A crude extract was given orally and its effects were tested on ketamine-induced sleeping time, muscle-coordination, anxiety (elevated-plus maze and Staircase test), convulsions [maximal electroshock (MES) and pentylenetetrazole (PTZ)-induced seizures], and nociception. In addition, we determined the levels of neurotransmitters, norepinephrine (NE) and 5-hydroxytryptamine (5-HT). Results: Results from the experimental models tested showed: (1) a delay on onset and prolongation of sleep of ketamine-induced sleeping time; (2) significant muscle relaxant activity; (3) a significant attenuation in the anxiety-response (4) a delay in the onset of seizures and reduction in duration of seizures and mortality induced by MES and PTZ; (5) a reduction in the licking time in nociception test and (6) increased levels of NE and 5-HT. Conclusion: This suggests that Ficus carica L. exerts its CNS depressive effect by modulating the neurotransmitters NE and 5-HT in the brain. PMID:24948859

  1. Antiosteoclastogenesis activity of a CO2 laser antagonizing receptor activator for nuclear factor kappaB ligand-induced osteoclast differentiation of murine macrophages

    NASA Astrophysics Data System (ADS)

    Kuo, Chun-Liang; Kao, Chia-Tze; Fang, Hsin-Yuan; Huang, Tsui-Hsien; Chen, Yi-Wen; Shie, Ming-You

    2015-03-01

    Macrophage cells are the important effector cells in the immune reaction which are indispensable for osteoclastogenesis; their heterogeneity and plasticity renders macrophages a primer target for immune system modulation. In recent years, there have been very few studies about the effects of macrophage cells on laser treatment-regulated osteoclastogenesis. In this study, RAW 264.7 macrophage cells were treated with RANKL to regulate osteoclastogenesis. We used a CO2 laser as a model biostimulation to investigate the role of osteoclastogenic. We also evaluated cell viability, cell death and cathepsin K expression. The CO2 laser inhibited a receptor activator of the NF-ĸB ligand (RANKL)-induced formation of osteoclasts during the osteoclast differentiation process. It was also found that irradiation for two times reduced RANKL-enhanced TRAP activity in a dose-dependent manner. Furthermore, CO2 laser-treatment diminished the expression and secretion of cathepsin K elevated by RANKL and was concurrent with the inhibition of TRAF6 induction and NF-ĸB activation. The current report demonstrates that CO2 laser abrogated RANKL-induced osteoclastogenesis by retarding osteoclast differentiation. The CO2 laser can modulate every cell through dose-dependent in vitro RANKL-mediated osteoclastogenesis, such as the proliferation and fusion of preosteoclasts and the maturation of osteoclasts. Therefore, the current results serve as an improved explanation of the cellular roles of macrophage cell populations in osteoclastogenesis as well as in alveolar bone remodeling by CO2 laser-treatment.

  2. Receptor activator of nuclear factor-kappaB ligand-induced mouse osteoclast differentiation is associated with switching between NADPH oxidase homologues.

    PubMed

    Sasaki, Hideyuki; Yamamoto, Hironori; Tominaga, Kumiko; Masuda, Kiyoshi; Kawai, Tomoko; Teshima-Kondo, Shigetada; Matsuno, Kuniharu; Yabe-Nishimura, Chihiro; Rokutan, Kazuhito

    2009-07-15

    Reactive oxygen species (ROS) have been suggested to regulate receptor activator of nuclear factor-kappaB ligand (RANKL)-stimulated osteoclast differentiation. Stimulation of wild-type mouse bone marrow monocyte/macrophage lineage (BMM) cells by RANKL down-regulated NADPH oxidase 2 (Nox2) mRNA expression by half. RANKL reciprocally increased Nox1 mRNA levels and newly induced Nox4 transcript expression. BMM cells from Nox1 knockout (Nox1(-/-)) as well as Nox2(-/-) mice generated ROS in response to RANKL and differentiated into osteoclasts in the same way as wild-type BMM cells, which was assessed by the appearance of tartrate-resistant acid phosphatase-positive, multinucleated cells having the ability to form resorption pits and by the expression of osteoclast marker genes. A small interfering RNA (siRNA) targeting Nox1 or Nox2 failed to inhibit the RANKL-stimulated ROS generation and osteoclast formation in wild-type cells, whereas Nox1 and Nox2 siRNAs significantly suppressed the ROS generation and osteoclast formation in Nox2(-/-) and Nox1(-/-) cells, respectively. We also confirmed that Nox4 siRNA did not affect the RANKL-dependent events in Nox2(-/-) cells, whereas p22(phox) siRNA suppressed the events in both wild-type and Nox1(-/-) cells. Collectively, our results suggest that there may be a flexible compensatory mechanism between Nox1 and Nox2 for RANKL-stimulated ROS generation to facilitate osteoclast differentiation.

  3. Vascular expression of the chemokine CX3CL1 promotes osteoclast recruitment and exacerbates bone resorption in an irradiated murine model.

    PubMed

    Han, Ki Hoon; Ryu, Jae Won; Lim, Kyung-Eun; Lee, Soo-Han; Kim, Yuna; Hwang, Chang Sun; Choi, Je-Yong; Han, Ki Ok

    2014-04-01

    Circulating osteoclast precursor cells highly express CX3C chemokine receptor 1 (CX3CR1), which is the only receptor for the unique CX3C membrane-anchored chemokine, fractalkine (CX3CL1). An irradiated murine model was used to evaluate the role of the CX3CL1-CX3CR1 axis in osteoclast recruitment and osteoclastogenesis. Ionizing radiation (IR) promoted the migration of circulating CD11b+ cells to irradiated bones and dose-dependently increased the number of differentiated osteoclasts in irradiated bones. Notably, CX3CL1 was dramatically upregulated in the vascular endothelium after IR. IR-induced production of CX3CL1 by skeletal vascular endothelium promoted chemoattraction of circulating CX3CR1+/CD11b+ cells and triggered homing of these osteoclast precursor cells toward the bone remodeling surface, a specific site for osteoclast differentiation. CX3CL1 also increased the endothelium-derived expression of other chemokines including stromal cell-derived factor-1 (CXCL12) and macrophage inflammatory protein-2 (CXCL2) by activating the hypoxia-inducible factor-1 α pathway. These effects may further enhance osteoclastogenesis. A series of in vivo experiments confirmed that knockout of CX3CR1 in bone marrow-derived cells and functional inhibition of CX3CL1 using a specific neutralizing antibody significantly ameliorated osteoclastogenesis and prevented bone loss after IR. These results demonstrate that the de novo CX3CL1-CX3CR1 axis plays a pivotal role in osteoclast recruitment and subsequent bone resorption, and verify its therapeutic potential as a new target for anti-resorptive treatment.

  4. Artemisia capillaris Alleviates Bone Loss by Stimulating Osteoblast Mineralization and Suppressing Osteoclast Differentiation and Bone Resorption.

    PubMed

    Lee, Chung-Jo; Shim, Ki-Shuk; Ma, Jin Yeul

    2016-01-01

    Artemisia capillaris has been used to treat jaundice and relieve high liver-heat in traditional medicine. In this study, we found that the administration of a water extract from A. capillaris (WEAC) to the receptor activator of nuclear factor kappa-B ligand (RANKL)-induced bone loss model significantly prevents osteoporotic bone loss, increasing bone volume/trabecular volume by 22% and trabecular number by 24%, and decreasing trabecular separation by 29%. WEAC stimulated in vitro osteoblast mineralization from primary osteoblasts in association with increasing expression of osterix, nuclear factor of activated T cells cytoplasmic 1, and activator protein-1, as well as phosphorylation of extracellular signal-regulated kinase. In contrast to the anabolic effect of WEAC, WEAC significantly suppressed in vitro osteoclast formation from bone marrow macrophages by inhibiting the RANKL signaling pathways and bone resorption by downregulating the expression of resorption markers. Therefore, this study demonstrated that WEAC has a beneficial effect on bone loss through the regulation of osteoblast mineralization, as well as osteoclast formation and bone resorption. These results suggest that A. capillaris may be a promising herbal candidate for therapeutic agents to treat or prevent osteoporotic bone diseases.

  5. Evening primrose oil effects on osteoclasts during tooth movement.

    PubMed

    Taweechaisupapong, Suwimol; Srisuk, Nitipavee; Nimitpornsuko, Chawalit; Vattraphoudes, Thepharith; Rattanayatikul, Charunee; Godfrey, Keith

    2005-05-01

    This study was conducted to investigate the influence of supplemented evening primrose oil (EPO) on osteoclast expression during experimental tooth movement in rats. Forty-eight 10-week-old male Sprague-Dawley rats were divided into experimental and control groups. Animals in the experiment group were fed a 7.25 g/kg daily dose of EPO orally by gastric intubation for 20 days before orthodontic tooth movement. The animals in the control group received an equivalent volume of distilled water by the same method. On day 21, a 40-g mesial tipping force was applied to the maxillary right first molar of each rat. After loading, six animals in each group were sacrificed on days 0, 3, 7, and 14 with the appliance in situ. On day 3, the number of osteoclasts on the appliance side of the experimental group was significantly increased compared with the control group (P < .05). On day 7, the number of osteoclasts on the non-appliance side of the experimental group was significantly increased compared with the control group (P < .05). This study indicates that oral administration of EPO can increase the number of osteoclasts and may accelerate orthodontic tooth movement.

  6. STAT5 is a key transcription factor for IL-3-mediated inhibition of RANKL-induced osteoclastogenesis

    PubMed Central

    Lee, Jongwon; Seong, Semun; Kim, Jung Ha; Kim, Kabsun; Kim, Inyoung; Jeong, Byung-chul; Nam, Kwang-Il; Kim, Kyung Keun; Hennighausen, Lothar; Kim, Nacksung

    2016-01-01

    Among the diverse cytokines involved in osteoclast differentiation, interleukin (IL)-3 inhibits RANKL-induced osteoclastogenesis. However, the mechanism underlying IL-3-mediated inhibition of osteoclast differentiation is not fully understood. Here we demonstrate that the activation of signal transducers and activators of transcription 5 (STAT5) by IL-3 inhibits RANKL-induced osteoclastogenesis through the induction of the expression of Id genes. We found that STAT5 overexpression inhibited RANKL-induced osteoclastogenesis. However, RANKL did not regulate the expression or activation of STAT5 during osteoclast differentiation. STAT5 deficiency prevented IL-3-mediated inhibition of osteoclastogenesis, suggesting a key role of STAT5 in IL-3-mediated inhibition of osteoclast differentiation. In addition, IL-3-induced STAT5 activation upregulated the expression of Id1 and Id2, which are negative regulators of osteoclastogenesis. Overexpression of ID1 or ID2 in STAT5-deficient cells reversed osteoclast development recovered from IL-3-mediated inhibition. Importantly, microcomputed tomography and histomorphometric analysis revealed that STAT5 conditional knockout mice showed reduced bone mass, with an increased number of osteoclasts. Furthermore, IL-3 inhibited RANKL-induced osteoclast differentiation less effectively in the STAT5 conditional knockout mice than in the wild-type mice after RANKL injection. Taken together, our findings indicate that STAT5 contributes to the remarkable IL-3-mediated inhibition of RANKL-induced osteoclastogenesis by activating Id genes and their associated pathways. PMID:27485735

  7. Transcriptional Modulator Ifrd1 Regulates Osteoclast Differentiation through Enhancing the NF-κB/NFATc1 Pathway

    PubMed Central

    Iezaki, Takashi; Fukasawa, Kazuya; Park, Gyujin; Horie, Tetsuhiro; Kanayama, Takashi; Ozaki, Kakeru; Onishi, Yuki; Takahata, Yoshifumi; Nakamura, Yukari; Takarada, Takeshi; Yoneda, Yukio; Nakamura, Takashi; Vacher, Jean

    2016-01-01

    Bone homeostasis is maintained by the synergistic actions of bone-resorbing osteoclasts and bone-forming osteoblasts. Here, we show that the transcriptional coactivator/repressor interferon-related developmental regulator 1 (Ifrd1) is expressed in osteoclast lineages and represents a component of the machinery that regulates bone homeostasis. Ifrd1 expression was transcriptionally regulated in preosteoclasts by receptor activator of nuclear factor κB (NF-κB) ligand (RANKL) through activator protein 1. Global deletion of murine Ifrd1 increased bone formation and decreased bone resorption, leading to a higher bone mass. Deletion of Ifrd1 in osteoclast precursors prevented RANKL-induced bone loss, although no bone loss was observed under normal physiological conditions. RANKL-dependent osteoclastogenesis was impaired in vitro in Ifrd1-deleted bone marrow macrophages (BMMs). Ifrd1 deficiency increased the acetylation of p65 at residues K122 and K123 via the inhibition of histone deacetylase-dependent deacetylation in BMMs. This repressed the NF-κB-dependent transcription of nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), an essential regulator of osteoclastogenesis. These findings suggest that an Ifrd1/NF-κB/NFATc1 axis plays a pivotal role in bone remodeling in vivo and represents a therapeutic target for bone diseases. PMID:27381458

  8. The natural polyamines spermidine and spermine prevent bone loss through preferential disruption of osteoclastic activation in ovariectomized mice

    PubMed Central

    Yamamoto, Tomomi; Hinoi, Eiichi; Fujita, Hiroyuki; Iezaki, Takashi; Takahata, Yoshifumi; Takamori, Misa; Yoneda, Yukio

    2012-01-01

    BACKGROUND AND PURPOSE Although naturally occurring polyamines are indispensable for a variety of cellular events in eukaryotic cells, little attention has been paid to their physiological and pathological significance in bone remodelling to date. In this study, we evaluated the pharmacological properties of several natural polyamines on the functionality and integrity of bone in both in vitro and in vivo experiments. EXPERIMENTAL APPROACH Mice were subjected to ovariectomy (OVX) and subsequent oral supplementation with either spermidine or spermine for determination of the bone volume together with different parameters regarding bone formation and resorption by histomorphometric analyses in vivo. Pre-osteoclasts were cultured with receptor activator of NF-κB ligand (RANKL), with or without spermidine and spermine to determine cellular maturation by tartrate-resistant acid phosphatase (TRAP) staining and cellular viability by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide reduction in vitro. KEY RESULTS Spermidine or spermine, given in drinking water for 28 days, significantly prevented the increased osteoclast surface/bone surface ratio and the reduced bone volume following OVX in mice. Either spermidine or spermine significantly inhibited the increased number of multinucleated TRAP-positive cells in osteoclasts cultured with RANKL in a concentration-dependent manner without affecting cell survival. CONCLUSIONS AND IMPLICATIONS The natural polyamines spermidine and spermine prevented OVX-induced bone loss through the disruption of differentiation and maturation of osteoclasts, rather than affecting osteoblasts. The supplementation with these natural polyamines could be beneficial for the prophylaxis as well as therapy of metabolic bone diseases such as post-menopausal osteoporosis. PMID:22250848

  9. Inhibition of Osteoclastogenesis and Bone Resorption in vitro and in vivo by a prenylflavonoid xanthohumol from hops.

    PubMed

    Li, Jing; Zeng, Li; Xie, Juan; Yue, Zhiying; Deng, Huayun; Ma, Xueyun; Zheng, Chunbing; Wu, Xiushan; Luo, Jian; Liu, Mingyao

    2015-12-01

    Excessive RANKL signaling leads to superfluous osteoclast formation and bone resorption, is widespread in the pathologic bone loss and destruction. Therefore, targeting RANKL or its signaling pathway has been a promising and successful strategy for this osteoclast-related diseases. In this study, we examined the effects of xanthohumol (XN), an abundant prenylflavonoid from hops plant, on osteoclastogenesis, osteoclast resorption, and RANKL-induced signaling pathway using both in vitro and in vivo assay systems. In mouse and human, XN inhibited osteoclast differentiation and osteoclast formation at the early stage. Furthermore, XN inhibited osteoclast actin-ring formation and bone resorption in a dose-dependent manner. In ovariectomized-induced bone loss mouse model and RANKL-injection-induced bone resorption model, we found that administration of XN markedly inhibited bone loss and resorption by suppressing osteoclast activity. At the molecular level, XN disrupted the association of RANK and TRAF6, resulted in the inhibition of NF-κB and Ca(2+)/NFATc1 signaling pathway during osteoclastogenesis. As a results, XN suppressed the expression of osteoclastogenesis-related marker genes, including CtsK, Nfatc1, Trap, Ctr. Therefore, our data demonstrated that XN inhibits osteoclastogenesis and bone resorption through RANK/TRAF6 signaling pathways. XN could be a promising drug candidate in the treatment of osteoclast-related diseases such as postmenopausal osteoporosis.

  10. Inhibition of Osteoclastogenesis and Bone Resorption in vitro and in vivo by a prenylflavonoid xanthohumol from hops

    PubMed Central

    Li, Jing; Zeng, Li; Xie, Juan; Yue, Zhiying; Deng, Huayun; Ma, Xueyun; Zheng, Chunbing; Wu, Xiushan; Luo, Jian; Liu, Mingyao

    2015-01-01

    Excessive RANKL signaling leads to superfluous osteoclast formation and bone resorption, is widespread in the pathologic bone loss and destruction. Therefore, targeting RANKL or its signaling pathway has been a promising and successful strategy for this osteoclast-related diseases. In this study, we examined the effects of xanthohumol (XN), an abundant prenylflavonoid from hops plant, on osteoclastogenesis, osteoclast resorption, and RANKL-induced signaling pathway using both in vitro and in vivo assay systems. In mouse and human, XN inhibited osteoclast differentiation and osteoclast formation at the early stage. Furthermore, XN inhibited osteoclast actin-ring formation and bone resorption in a dose-dependent manner. In ovariectomized-induced bone loss mouse model and RANKL-injection-induced bone resorption model, we found that administration of XN markedly inhibited bone loss and resorption by suppressing osteoclast activity. At the molecular level, XN disrupted the association of RANK and TRAF6, resulted in the inhibition of NF-κB and Ca2+/NFATc1 signaling pathway during osteoclastogenesis. As a results, XN suppressed the expression of osteoclastogenesis-related marker genes, including CtsK, Nfatc1, Trap, Ctr. Therefore, our data demonstrated that XN inhibits osteoclastogenesis and bone resorption through RANK/TRAF6 signaling pathways. XN could be a promising drug candidate in the treatment of osteoclast-related diseases such as postmenopausal osteoporosis. PMID:26620037

  11. Identification, purification and characterization of a novel collagenolytic serine protease from fig (Ficus carica var. Brown Turkey) latex.

    PubMed

    Raskovic, Brankica; Bozovic, Olga; Prodanovic, Radivoje; Niketic, Vesna; Polovic, Natalija

    2014-12-01

    A novel collagenolytic serine protease was identified and then purified (along with ficin) to apparent homogeneity from the latex of fig (Ficus carica, var. Brown Turkey) by two step chromatographic procedure using gel and covalent chromatography. The enzyme is a monomeric protein of molecular mass of 41 ± 9 kDa as estimated by analytical gel filtration chromatography. It is an acidic protein with a pI value of approximately 5 and optimal activity at pH 8.0-8.5 and temperature 60°C. The enzymatic activity was strongly inhibited by PMSF and Pefabloc SC, indicating that the enzyme is a serine protease. The enzyme showed specificity towards gelatin and collagen (215 GDU/mg and 24.8 CDU/mg, respectively) and non-specific protease activity (0.18 U/mg against casein). The enzyme was stable and retained full activity over a broad range of pH and temperature. The fig latex collagenolytic protease is potentially useful as a non-microbial enzyme with collagenolytic activity for various applications in the fields of biochemistry, biotechnology and medicine.

  12. An Arg-Gly-Asp peptide stimulates Ca2+ efflux from osteoclast precursors through a novel mechanism

    NASA Technical Reports Server (NTRS)

    Yamakawa, K.; Duncan, R.; Hruska, K. A.

    1994-01-01

    We examined the effect of a peptide containing the Arg-Gly-Asp (RGD) sequence on 45Ca2+ efflux from osteoclast precursors. 45Ca(2+)-loaded osteoclast precursors were treated with GRGDSP (170 microM) for 10 min after 30 min of basal perfusion with a bicarbonate-containing buffer. GRGDSP significantly increased fractional efflux of Ca2+ from treated cells compared with vehicle-treated cells (P < 0.01) or cells treated with up to 200 micrograms/ml of a control peptide containing GRGESP. The effect of RGD was sustained for 15 min after the peptide was removed from the perfusate, but control levels of Ca2+ efflux returned by 1 h. The Ca2+ efflux effect of GRGDSP was most likely due to activation of the plasma membrane Ca(2+)-adenosinetriphosphatase (Ca(2+)-ATPase) pump, as indicated by its inhibition with vanadate and a calmodulin antagonist, N-(4-aminobutyl)-5-chloro-2-naphthalenesulfonamide, and the absence of an effect of Na+/Ca2+ exchange inhibition. An inhibitor of cyclic nucleotide-dependent protein kinases, N-[2-(methylamino)ethyl]-5-isoquinoline-sulfonamide (0.1 mM), failed to inhibit GRGDSP-stimulated Ca2+ efflux. However, genistein and herbimycin A, inhibitors of protein-tyrosine kinases, blocked Ca2+ efflux stimulated by GRGDSP. The results indicate that RGD sequences of matrix proteins may stimulate Ca2+ efflux from osteoclasts through activation of protein-tyrosine kinases and suggest that GRGDSP-stimulated Ca2+ efflux is mediated via the plasma membrane Ca(2+)-ATPase.

  13. Resorption-cycle-dependent polarization of mRNAs for different subunits of V-ATPase in bone-resorbing osteoclasts.

    PubMed Central

    Laitala-Leinonen, T; Howell, M L; Dean, G E; Väänänen, H K

    1996-01-01

    Protein sorting in eukaryotic cells is mainly done by specific targeting of polypeptides. The present evidence from oocytes, neurons, and some other polarized cells suggests that protein sorting can be further facilitated by concentrating mRNAs to their corresponding subcellular areas. However, very little is known about the mechanism(s) involved in mRNA targeting, or how widespread and dynamic such mRNA sorting might be. In this study, we have used an in vitro cell culture system, where large multinucleated osteoclasts undergo continuous structural and functional changes from polarized (resorbing) to a nonpolarized (resting) stage. We demonstrate here, using a nonradioactive in situ hybridization technique and confocal microscopy, that mRNAs for several vacuolar H(+)-ATPase subunits change their localization and polarity in osteoclasts according to the resorption cycle, whereas mRNA for cytoplasmic carbonic anhydrase II is found diffusely located throughout the osteoclast during the whole resorption cycle. Antisense RNA against the 16-kDa or 60-kDa V-ATPase subunit inhibits polarization of the osteoclasts, as determined by cytoskeleton staining. Antisense RNA against carbonic anhydrase II, however, has no such effect. Images PMID:8741845

  14. Structural basis of collagen recognition by human osteoclast-associated receptor and design of osteoclastogenesis inhibitors.

    PubMed

    Haywood, Joel; Qi, Jianxun; Chen, Chun-Chi; Lu, Guangwen; Liu, Yingxia; Yan, Jinghua; Shi, Yi; Gao, George F

    2016-01-26

    Human osteoclast-associated receptor (OSCAR) is an immunoglobulin (Ig)-like collagen receptor that is up-regulated on osteoclasts during osteoclastogenesis and is expressed in a range of myeloid cells. As a member of the leukocyte receptor complex family of proteins, OSCAR shares a high degree of sequence and structural homology with other collagen receptors of this family, including glycoprotein VI, leukocyte-associated Ig-like receptor-1, and leukocyte Ig-like receptor B4, but recognizes a unique collagen sequence. Here, we present the crystal structures of OSCAR in its free form and in complex with a triple-helical collagen-like peptide (CLP). These structures reveal that the CLP peptide binds only one of the two Ig-like domains, the membrane-proximal domain (domain 2) of OSCAR, with the middle and trailing chain burying a total of 661 Å(2) of solvent-accessible collagen surface. This binding mode is facilitated by the unusual topography of the OSCAR protein, which displays an obtuse interdomain angle and a rotation of domain 2 relative to the membrane-distal domain 1. Moreover, the binding of the CLP to OSCAR appears to be mediated largely by tyrosine residues and conformational changes at a shallow Phe pocket. Furthermore, we investigated CLP peptides as inhibitors of osteoclastogenesis and found that a peptide length of 40 amino acids is required to ensure adequate inhibition of osteoclastogenesis in vitro. These findings provide valuable structural insights into the mode of collagen recognition by OSCAR and into the use of synthetic peptide matrikines for osteoclastogenesis inhibition.

  15. TULA-2, a novel histidine phosphatase regulates bone remodeling by modulating osteoclast function

    PubMed Central

    Back, Steven H.; Adapala, Naga Suresh; Barbe, Mary F.; Carpino, Nick C.; Tsygankov, Alexander Y.; Sanjay, Archana

    2013-01-01

    Bone is a dynamic tissue that depends on the intricate relationship between protein tyrosine kinases (PTK) and protein tyrosine phosphatases (PTP) for maintaining homeostasis. PTKs and PTPs act like molecular on and off switches and help modulate differentiation and the attachment of osteoclasts to bone matrix regulating bone resorption. The novel protein T-cell Ubiquitin Ligand-2 (TULA-2), which is abundantly expressed in osteoclasts, is a novel histidine phosphatase. Our results show that of the two family members only TULA-2 is expressed in osteoclasts and that its expression is sustained throughout the course of osteoclast differentiation suggesting that TULA-2 may play a role during early as well late stages of osteoclast differentiation. Skeletal analysis of mice that do not express TULA or TULA-2 proteins (DKO Mice) revealed that there was a decrease in bone volume due to increased osteoclast numbers and function. Furthermore, in vitro experiments indicated that bone marrow precursor cells from DKO mice have an increased potential to form osteoclasts. At the molecular level, the absence of TULA-2 in osteoclasts results in increased Syk phosphorylation at the Y352 and Y525/526 residues and activation of phospholipase C gamma 2 (PLCγ2) upon engagement of Immune-receptor-Tyrosine-based-Activation-Motif (ITAM)–mediated signaling. Furthermore, expression of a phosphatase-dead TULA-2 leads to increased osteoclast function. Taken together, these results suggest that TULA-2 negatively regulates osteoclast differentiation and function. PMID:23149425

  16. Increased apoptosis in osteoclasts and decreased RANKL immunoexpression in periodontium of cimetidine-treated rats.

    PubMed

    Longhini, Renata; de Oliveira, Priscila Aparecida; de Souza Faloni, Ana Paula; Sasso-Cerri, Estela; Cerri, Paulo Sérgio

    2013-02-01

    It has been demonstrated that histamine interferes with the recruitment, formation and activity of osteoclasts via H(1)- and H(2)-receptors. Cimetidine is a H(2)-receptor antagonist used for treatment of gastric ulcers that seems to prevent bone resorption. In this study, a possible cimetidine interference was investigated in the number of alveolar bone osteoclasts. The incidence of osteoclast apoptosis and immunoexpression of RANKL (receptor activator of nuclear factor κB ligand) was also evaluated. Adult male rats were treated with 100 mg kg(-1) of cimetidine for 50 days (CimG); the sham group (SG) received saline. Maxillary fragments containing the first molars and alveolar bone were fixed, decalcified and embedded in paraffin. The sections were stained by H&E or submitted to tartrate-resistant acid phosphatase (TRAP) method. TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling) method and immunohistochemical reactions for detecting caspase-3 and RANKL were performed. The number of TRAP-positive osteoclasts, the frequency of apoptotic osteoclasts and the numerical density of RANKL-positive cells were obtained. Osteoclast death by apoptosis was confirmed by transmission electron microscopy (TEM). In CimG, TRAP-positive osteoclasts with TUNEL-positive nuclei and caspase-3-immunolabeled osteoclasts were found. A significant reduction in the number of TRAP-positive osteoclasts and a high frequency of apoptotic osteoclasts were observed in CimG. Under TEM, detached osteoclasts from the bone surface showed typical features of apoptosis. Moreover, a significant reduction in the numerical density of RANKL-positive cells was observed in CimG. The significant reduction in the number of osteoclasts may be due to cimetidine-induced osteoclast apoptosis. However, RANKL immunoexpression reduction also suggests a possible interference of cimetidine treatment in the osteoclastogenesis.

  17. Osteoclast-like cells in soft tissue leiomyosarcomas.

    PubMed

    Gibbons, C L M H; Sun, S G; Vlychou, M; Kliskey, K; Lau, Y S; Sabokbar, A; Athanasou, N A

    2010-03-01

    Giant cell-rich leiomyosarcoma of soft tissues is an unusual variant of malignant smooth muscle tumor characterized by the presence of numerous multinucleated giant cells (MNGCs). The nature of MNGCs and the cellular mechanisms underlying their accumulation in this tumor are poorly understood. Analysis of the expression of osteoclast, macrophage, and smooth muscle markers in two cases of giant cell-rich leiomyosarcoma revealed that the MNGCs in giant cell-rich leiomyosarcoma were negative for smooth muscle markers and that these cells expressed an osteoclast-like phenotype, being positive for CD45, CD68, tartrate-resistant acid phosphatase, and CD51 but negative for CD14 and HLA-DR. Scattered tumor-associated macrophages (TAMs) also expressed this phenotype. Leiomyosarcoma tumor cells strongly reacted for CD51 but were negative for CD14, CD45, and CD68. An analysis of 25 conventional (nongiant cell-containing) leiomyosarcomas found isolated CD68(+) MNGCs in three cases (12%), all of which were grade II/III leiomyosarcomas containing a prominent TAM infiltrate. Leiomyosarcoma-derived TAMs in the presence of receptor activator for nuclear factor kappa B ligand (RANKL) and macrophage colony-stimulating factor were capable of differentiating into osteoclast-like cells capable of resorbing bone. Reverse transcription polymerase chain reaction studies showed that RANKL, osteoprotegerin, and TNF-related apoptosis-inducing ligand were expressed by leiomyosarcoma cells. Our findings indicate that the giant cells found in leiomyosarcomas are osteoclast-like and that they are formed from TAMs by a RANKL-dependent mechanism.

  18. Engineered Osteoclasts for the Treatment and Prevention of Heterotopic Ossification

    DTIC Science & Technology

    2014-10-01

    stereotaxic microinjection protocol that will allow us to induce HO lesions in the calf midbelly in a highly reproducible manner. The stereotaxic... protocol for the collection and storage of human HO specimens. During the next year we will begin collecting human HO samples. HO samples will be fixed...treated with AP20187 or 0.1% EtOH for 5 days. Cells were then fixed and stained for TRAP. Validation of osteoclast differentiation protocol for

  19. Engineered Osteoclasts for the Treatment and Prevention of Heterotopic Ossification

    DTIC Science & Technology

    2014-10-01

    stereotaxic microinjection protocol that will allow us to induce HO lesions in the calf midbelly in a highly reproducible manner. The stereotaxic...traumatic bone injuries. Subtask 1: Collection of human HO samples (PI: Sangeorzan, Harborview) We have currently established a protocol for...with AP20187 or 0.1% EtOH for 5 days. Cells were then fixed and stained for TRAP. Validation of osteoclast differentiation protocol for human iPS

  20. Anti-inflammatory activities of ethanolic extract of Carica papaya leaves.

    PubMed

    Owoyele, Bamidele V; Adebukola, Olubori M; Funmilayo, Adeoye A; Soladoye, Ayodele O

    2008-08-01

    The anti-inflammatory activity of an ethanolic extract of Carica papaya leaves was investigated in rats using carrageenan induced paw oedema, cotton pellet granuloma and formaldehyde induced arthritis models. Experimental animals received 25-200 mg/Kg (orally) of the extracts or saline (control group) and the reference group received 5 mg/ Kg of indomethacin. The ulcerogenic activity of the extract was also investigated. The results show that the extracts significantly (p <0.05) reduced paw oedema in the carrageenan test. Likewise the extract produced significant reduction in the amount of granuloma formed from 0.58 +/-0.07 to 0.22 +/-0.03 g. In the formaldehyde arthritis model, the extracts significantly reduced the persistent oedema from the 4th day to the 10th day of the investigation. The extracts also produced slight mucosal irritation at high doses. The study establishes the anti-inflammatory activity of Carica papaya leaves.

  1. Antiplasmodial Properties and Bioassay-Guided Fractionation of Ethyl Acetate Extracts from Carica papaya Leaves.

    PubMed

    Melariri, Paula; Campbell, William; Etusim, Paschal; Smith, Peter

    2011-01-01

    We investigated the antiplasmodial properties of crude extracts from Carica papaya leaves to trace the activity through bioassay-guided fractionation. The greatest antiplasmodial activity was observed in the ethyl acetate crude extract. C. papaya showed a high selectivity for P. falciparum against CHO cells with a selectivity index of 249.25 and 185.37 in the chloroquine-sensitive D10 and chloroquine-resistant DD2 strains, respectively. Carica papaya ethyl acetate extract was subjected to bioassay-guided fractionation to ascertain the most active fraction, which was purified and identified using high-pressure liquid chromatography (HPLC) and GC-MS (Gas chromatography-Mass spectrometry) methods. Linoleic and linolenic acids identified from the ethyl acetate fraction showed IC(50) of 6.88 μg/ml and 3.58 μg/ml, respectively. The study demonstrated greater antiplasmodial activity of the crude ethyl acetate extract of Carica papaya leaves with an IC(50) of 2.96 ± 0.14 μg/ml when compared to the activity of the fractions and isolated compounds.

  2. High Glucose Alters the Secretome of Mechanically Stimulated Osteocyte-like Cells Affecting Osteoclast Precursor Recruitment and Differentiation.

    PubMed

    Maycas, Marta; Portolés, María Teresa; Matesanz, María Concepción; Buendía, Irene; Linares, Javier; Feito, María José; Arcos, Daniel; Vallet-Regí, María; Plotkin, Lilian; Esbrit, Pedro; Gortázar, Arancha R

    2017-01-31

    Diabetes mellitus (DM) induces bone deterioration, while mechanical stimulation promotes osteocyte-driven bone formation. We aimed to evaluate the interaction of acute exposure (24h) to high glucose (HG) with both the pro-survival effect conferred to osteocytic MLO-Y4 cells and osteoblastic MC3T3-E1 cells by mechanical stimulation and the interaction of these cells with osteoclast precursor RAW264.7 cells. We found that 24h of HG (25 mM) pre-exposure prevented both cell survival and ERK and β-catenin nuclear translocation upon mechanical stimulation by fluid flow (FF) (10 min) in both MLO-Y4 and MC3T3-E1 cells. However, migration of RAW 264.7 cells was inhibited by MLO-Y4 cell-conditioned medium (CM), but not by MC3T3-E1 cell-CM, with HG or FF. This inhibitory effect was associated with consistent changes in VEGF, RANTES, MIP-1α, MIP-1β MCP-1 and GM-CSF in MLO-Y4 cell-CM. RAW264.7 proliferation was inhibited by MLO-Y4 CM under static or HG conditions, but itincreased by FF-CM with or without HG. In addition, both FF and HG abrogated the capacity of RAW 264.7 cells to differentiate into osteoclasts, but in a different manner. Thus, HG-CM in static condition allowed formation of osteoclast-like cells, which were unable to resorb hydroxyapatite. In contrast, FF-CM prevented osteoclastogenesis even in HG condition. Moreover, HG did not affect basal RANKL or IL-6 secretion or their inhibition induced by FF in MLO-Y4 cells. In conclusion, this in vitro study demonstrates that HG exerts disparate effects on osteocyte mechanotransduction, and provides a novel mechanism by which DM disturbs skeletal metabolism through altered osteocyte-osteoclast communication. This article is protected by copyright. All rights reserved.

  3. Attenuation of RANKL-induced Osteoclast Formation via p38-mediated NFATc1 Signaling Pathways by Extract of Euphorbia Lathyris L

    PubMed Central

    Kang, Ju-Hee; Lim, Hyojung; Jeong, Ji-Eun

    2016-01-01

    Background Osteoclasts are the only cell type capable of breaking down bone matrix, and its excessive activation is responsible for the development of bone-destructive diseases. Euphorbia lathyris L. (ELL) is an herbal plant that belongs to the Euphorbiaceae family. This study investigated the effects of the methanol extract of the aerial part of ELL on receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclast formation and signaling pathways. Methods Osteoclasts were formed by co-culturing mouse bone marrow with osteoblasts or by culturing mouse bone marrow-derived macrophages (BMMs) with macrophage colony-stimulating factor (M-CSF) and RANKL. Bone resorption assays were performed using dentine slices. The expression level of mRNA was analyzed by real-time polymerase chain reaction (PCR) or reverse transcription (RT)-PCR. Western blotting assays were performed to detect the expression or activation level of proteins. Results ELL inhibited RANKL-induced osteoclast formation without cytotoxicity. Furthermore, the RANKL-stimulated bone resorption was diminished by ELL. Mechanistically, ELL blocked the RANKL-triggered p38 mitogen-activated protein kinase (MAPK) phosphorylation, which resulted in the suppression of the expression of c-Fos and nuclear factor of activated T cells (NFATc1). In osteoblasts, ELL had little effect on the mRNA expression of RANKL and osteoprotegerin (OPG). Conclusions The present data suggest that ELL has an inhibitory effect on osteoclast differentiation and function via downregulation of the p38/c-Fos/NFATc1 signaling pathways. Thus, ELL could be useful for the treatment of bone diseases associated with excessive bone resorption. PMID:27965942

  4. Stochastic differentiation into an osteoclast lineage from cloned macrophage-like cells

    SciTech Connect

    Hayashi, Shin-Ichi; Murata, Akihiko; Okuyama, Kazuki; Shimoda, Yuhki; Hikosaka, Mari; Yasuda, Hisataka; Yoshino, Miya

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer The frequency of C7 differentiation into osteoclast was low and constant. Black-Right-Pointing-Pointer Only extended C7 cell cultures exponentially increased osteoclast+ cultures. Black-Right-Pointing-Pointer C7 cell differentiation into committed osteoclast precursors is on 'autopilot'. Black-Right-Pointing-Pointer The system may maintain the stem cell self-renewal and differentiation. -- Abstract: Differentiation into osteoclasts is induced by a macrophage colony-stimulating factor and receptor activator of nuclear-factor {kappa}B ligand. The macrophage-like cell line, C7 has the potential to differentiate into osteoclasts when it is cultured with both factors for 6 days. Although C7 is an established cell line, the frequency of differentiation into this lineage was less than 10%, and the ratio was maintained at a constant level, even after repeated cloning. In this study, to increase the differentiation of C7 cells to osteoclasts, C7 derivative treatments with several activators and/or inhibitors were performed for 3 days prior to setting osteoclast induction analysis; however, a reagent to significantly up-regulate the frequency of differentiation was not found. Only extended cultures for osteoclastogenesis exponentially increased the frequency of osteoclast precursors. It is likely that C7 cell differentiation into committed osteoclast precursors is on 'autopilot' rather than requiring specific signals to drive this process.

  5. Genetic modification of ER-Hoxb8 osteoclast precursors using CRISPR/Cas9 as a novel way to allow studies on osteoclast biology.

    PubMed

    Di Ceglie, Irene; van den Akker, Guus G H; Ascone, Giuliana; Ten Harkel, Bas; Häcker, Hans; van de Loo, Fons A J; Koenders, Marije I; van der Kraan, Peter M; de Vries, Teun J; Vogl, Thomas; Roth, Johannes; van Lent, Peter L E M

    2016-12-05

    Osteoclasts are cells specialized in bone resorption. Currently, studies on murine osteoclasts are primarily performed on bone marrow-derived cells with the use of many animals and limited cells available. ER-Hoxb8 cells are conditionally immortalized monocyte/macrophage murine progenitor cells, recently described to be able to differentiate toward functional osteoclasts. Here, we produced an ER-Hoxb8 clonal cell line from C57BL/6 bone marrow cells that strongly resembles phenotype and function of the conventional bone marrow-derived osteoclasts. We then used CRISPR/Cas9 technology to specifically inactivate genes by biallelic mutation. The CRISPR/Cas9 system is an adaptive immune system in Bacteria and Archaea and uses small RNAs and Cas nucleases to degrade foreign nucleic acids. Through specific-guide RNAs, the nuclease Cas9 can be redirected toward any genomic location to genetically modify eukaryotic cells. We genetically modified ER-Hoxb8 cells with success, generating NFATc1(-/-) and DC-STAMP(-/-) ER-Hoxb8 cells that lack the ability to differentiate into osteoclasts or to fuse into multinucleated osteoclasts, respectively. In conclusion, this method represents a markedly easy highly specific and efficient system for generating potentially unlimited numbers of genetically modified osteoclast precursors.

  6. Are osteoclasts needed for the bone anabolic response to parathyroid hormone? A study of intermittent parathyroid hormone with denosumab or alendronate in knock-in mice expressing humanized RANKL.

    PubMed

    Pierroz, Dominique D; Bonnet, Nicolas; Baldock, Paul A; Ominsky, Michael S; Stolina, Marina; Kostenuik, Paul J; Ferrari, Serge L

    2010-09-03

    PTH stimulates osteoblastic cells to form new bone and to produce osteoblast-osteoclast coupling factors such as RANKL. Whether osteoclasts or their activity are needed for PTH anabolism remains uncertain. We treated ovariectomized huRANKL knock-in mice with a human RANKL inhibitor denosumab (DMAb), alendronate (Aln), or vehicle for 4 weeks, followed by co-treatment with intermittent PTH for 4 weeks. Loss of bone mass and microarchitecture was prevented by Aln and further significantly improved by DMAb. PTH improved bone mass, microstructure, and strength, and was additive to Aln but not to DMAb. Aln inhibited biochemical and histomorphometrical indices of bone turnover,--i.e. osteocalcin and bone formation rate (BFR) on cancellous bone surfaces-, and Dmab inhibited them further. However Aln increased whereas Dmab suppressed osteoclast number and surfaces. PTH significantly increased osteocalcin and bone formation indices, in the absence or presence of either antiresorptive, although BFR remained lower in presence of Dmab. To further evaluate PTH effects in the complete absence of osteoclasts, high dose PTH was administered to RANK(-/-) mice. PTH increased osteocalcin similarly in RANK(-/-) and WT mice. It also increased BMD in RANK(-/-) mice, although less than in WT. These results further indicate that osteoclasts are not strictly required for PTH anabolism, which presumably still occurs via stimulation of modeling-based bone formation. However the magnitude of PTH anabolic effects on the skeleton, in particular its additive effects with antiresorptives, depends on the extent of the remodeling space, as determined by the number and activity of osteoclasts on bone surfaces.

  7. Versatile Roles of V-ATPases Accessory Subunit Ac45 in Osteoclast Formation and Function

    PubMed Central

    Lin, Zhen; Pavlos, Nathan J.; Jiang, Qing; Xu, Jiake; Dai, Ke R.; Zheng, Ming H.

    2011-01-01

    Vacuolar-type H+-ATPases (V-ATPases) are macromolecular proton pumps that acidify intracellular cargos and deliver protons across the plasma membrane of a variety of specialized cells, including bone-resorbing osteoclasts. Extracellular acidification is crucial for osteoclastic bone resorption, a process that initiates the dissolution of mineralized bone matrix. While the importance of V-ATPases in osteoclastic resorptive function is well-defined, whether V-ATPases facilitate additional aspects of osteoclast function and/or formation remains largely obscure. Here we report that the V-ATPase accessory subunit Ac45 participates in both osteoclast formation and function. Using a siRNA-based approach, we show that targeted suppression of Ac45 impairs intracellular acidification and endocytosis, both are prerequisite for osteoclastic bone resorptive function in vitro. Interestingly, we find that knockdown of Ac45 also attenuates osteoclastogenesis owing to a reduced fusion capacity of osteoclastic precursor cells. Finally, in an effort to gain more detailed insights into the functional role of Ac45 in osteoclasts, we attempted to generate osteoclast-specific Ac45 conditional knockout mice using a Cathepsin K-Cre-LoxP system. Surprisingly, however, insertion of the neomycin cassette in the Ac45-FloxNeo mice resulted in marked disturbances in CNS development and ensuing embryonic lethality thus precluding functional assessment of Ac45 in osteoclasts and peripheral bone tissues. Based on these unexpected findings we propose that, in addition to its canonical function in V-ATPase-mediated acidification, Ac45 plays versatile roles during osteoclast formation and function. PMID:22087256

  8. High bone mass in mice lacking Cx37 because of defective osteoclast differentiation.

    PubMed

    Pacheco-Costa, Rafael; Hassan, Iraj; Reginato, Rejane D; Davis, Hannah M; Bruzzaniti, Angela; Allen, Matthew R; Plotkin, Lilian I

    2014-03-21

    Connexin (Cx) proteins are essential for cell differentiation, function, and survival in all tissues with Cx43 being the most studied in bone. We now report that Cx37, another member of the connexin family of proteins, is expressed in osteoclasts, osteoblasts, and osteocytes. Mice with global deletion of Cx37 (Cx37(-/-)) exhibit higher bone mineral density, cancellous bone volume, and mechanical strength compared with wild type littermates. Osteoclast number and surface are significantly lower in bone of Cx37(-/-) mice. In contrast, osteoblast number and surface and bone formation rate in bones from Cx37(-/-) mice are unchanged. Moreover, markers of osteoblast activity ex vivo and in vivo are similar to those of Cx37(+/+) littermates. sRANKL/M-CSF treatment of nonadherent Cx37(-/-) bone marrow cells rendered a 5-fold lower level of osteoclast differentiation compared with Cx37(+/+) cell cultures. Further, Cx37(-/-) osteoclasts are smaller and have fewer nuclei per cell. Expression of RANK, TRAP, cathepsin K, calcitonin receptor, matrix metalloproteinase 9, NFATc1, DC-STAMP, ATP6v0d1, and CD44, markers of osteoclast number, fusion, or activity, is lower in Cx37(-/-) osteoclasts compared with controls. In addition, nonadherent bone marrow cells from Cx37(-/-) mice exhibit higher levels of markers for osteoclast precursors, suggesting altered osteoclast differentiation. The reduction of osteoclast differentiation is associated with activation of Notch signaling. We conclude that Cx37 is required for osteoclast differentiation and fusion, and its absence leads to arrested osteoclast maturation and high bone mass in mice. These findings demonstrate a previously unrecognized role of Cx37 in bone homeostasis that is not compensated for by Cx43 in vivo.

  9. Novel immunostimulatory effects of osteoclasts and macrophages on human γδ T cells

    PubMed Central

    Pappalardo, Angela; Thompson, Keith

    2015-01-01

    It has been widely reported that T cells are capable of influencing osteoclast formation and bone remodelling, yet relatively little is known of the reciprocal effects of osteoclasts for affecting T cell function and/or activity. In this study we investigated the effects of human osteoclasts on the function of γδ T cells, a subset of non-CD4+ T cells implicated in a variety of inflammatory disease states. γδ T cells and CD4+ T cells were isolated from peripheral blood of healthy volunteers and were co-cultured with autologous mature osteoclasts (generated by treatment with M-CSF and RANKL) before phenotypical and functional changes in the T cell populations were assessed. Macrophages, osteoclasts, and conditioned medium derived from macrophages or osteoclasts induced activation of γδ T cells, as determined by the expression of the early activation marker CD69. TNFα was a major mediator of this stimulatory effect on γδ T cells. Consistent with this stimulatory effect, osteoclasts augmented proliferation of IL-2-stimulated γδ T cells and also supported the survival of unstimulated γδ and CD4+ T cells, although these effects required co-culture with osteoclasts. Co-culture with osteoclasts also increased the proportion of γδ T cells producing IFNγ, but did not modulate IFNγ or IL-17 production by CD4+ T cells. We provide new insights into the in vitro interactions between human γδ T cells and osteoclasts/macrophages, and demonstrate that osteoclasts or their precursors are capable of influencing γδ T function both via the release of soluble factors and also through direct cell–cell interactions. PMID:25445456

  10. Novel immunostimulatory effects of osteoclasts and macrophages on human γδ T cells.

    PubMed

    Pappalardo, Angela; Thompson, Keith

    2015-02-01

    It has been widely reported that T cells are capable of influencing osteoclast formation and bone remodelling, yet relatively little is known of the reciprocal effects of osteoclasts for affecting T cell function and/or activity. In this study we investigated the effects of human osteoclasts on the function of γδ T cells, a subset of non-CD4(+) T cells implicated in a variety of inflammatory disease states. γδ T cells and CD4(+) T cells were isolated from peripheral blood of healthy volunteers and were co-cultured with autologous mature osteoclasts (generated by treatment with M-CSF and RANKL) before phenotypical and functional changes in the T cell populations were assessed. Macrophages, osteoclasts, and conditioned medium derived from macrophages or osteoclasts induced activation of γδ T cells, as determined by the expression of the early activation marker CD69. TNFα was a major mediator of this stimulatory effect on γδ T cells. Consistent with this stimulatory effect, osteoclasts augmented proliferation of IL-2-stimulated γδ T cells and also supported the survival of unstimulated γδ and CD4(+) T cells, although these effects required co-culture with osteoclasts. Co-culture with osteoclasts also increased the proportion of γδ T cells producing IFNγ, but did not modulate IFNγ or IL-17 production by CD4(+) T cells. We provide new insights into the in vitro interactions between human γδ T cells and osteoclasts/macrophages, and demonstrate that osteoclasts or their precursors are capable of influencing γδ T function both via the release of soluble factors and also through direct cell-cell interactions.

  11. Inhibition of bone resorption by Tanshinone VI isolated from Salvia miltiorrhiza Bunge

    PubMed Central

    Nicolin, V.; Dal Piaz, F.; Nori, SL.; Narducci, P.; De Tommasi, N.

    2010-01-01

    During the last decade, a more detailed knowledge of molecular mechanisms involved in osteoclastogenesis has driven research efforts in the development and screening of compound libraries of several small molecules that specifically inhibit the pathway involved in the commitment of the osteoclast precursor cells. Natural compounds that suppress osteoclast differentiation may have therapeutic value in treating osteoporosis and other bone erosive diseases such as rheumatoid arthritis or metastasis associated with bone loss. In ongoing investigation into anti-osteoporotic compounds from natural products we have analyzed the effect of Tanshinone VI on osteoclasts differentiation, using a physiologic three-dimensional osteoblast/bone marrow model of cell co-culture. Tanshinone VI is an abietane diterpene extracted from the root of Salvia miltiorrhiza Bunge (Labiatae), a Chinese traditional crude drug, “Tan-Shen”. Tashinone has been widely used in clinical practice for the prevention of cardiac diseases, arthritis and other inflammation-related disorders based on its pharmacological actions in multiple tissues. Although Tanshinone VI A has been used as a medicinal agent in the treatment of many diseases, its role in osteoclast-related bone diseases remains unknown. We showed previously that Tanshinone VI greatly inhibits osteoclast differentiation and suppresses bone resorption through disruption of the actin ring; subsequently, we intended to examine the precise inhibitory mechanism of Tanshinone VI on osteoclast differentiating factor. This study shows, for the first time, that Tanshinone VI prevents osteoclast differentiation by inhibiting RANKL expression and NFkB induction. PMID:20558342

  12. Gastrodin inhibits osteoclastogenesis via down-regulating the NFATc1 signaling pathway and stimulates osseointegration in vitro.

    PubMed

    Zhou, Feng; Shen, Yi; Liu, Bo; Chen, Xia; Wan, Lu; Peng, Dan

    2017-03-18

    Bone is a rigid yet dynamic organ, and this dynamism is mediated by the delicate balance between osteoclastic bone resorption and osteoblastic bone formation. However, excessive activation of osteoclasts is responsible for many bone diseases such as osteoporosis, Paget disease, and tumor bone metastasis. Agents that could inhibit osteoclast formation or function are regarded as promising alternatives to treat osteoclast-related diseases. Recently, traditional Chinese medicine has attracted attention because of its multiple activities in bone metabolism. Among them, gastrodin has been reported as an anti-osteoporosis agent that reduces reactive oxygen species. However, the direct action of gastrodin on osteoclast differentiation and bone resorption, and its underlying molecular mechanism, remain unknown. In this study, we investigated the effects of gastrodin on receptor activator NF-κB ligand (RANKL)-activated osteoclasts formation and bone resorption. Our results showed that gastrodin retarded RANKL-induced osteoclast differentiation efficiently by downregulating transcriptional and translational expression of nuclear factor of activated T cells cl (NFATc1), a major factor in RANKL-mediated osteoclastogenesis. Meanwhile, gastrodin prevented osteoclast maturation and migration by inhibiting the gene expression of dendrocyte expressed seven transmembrane protein (DC-STAMP), an osteoclastic-specific gene that controls cells fusion and movement. And gastrodin prevented RANKL-induced osteoclastic bone erosion in vitro. In addition, gastrodin also stimulated bone mesenchymal stem cell (BMSC) spreading and osseointegration in titanium plate. In summary, gastrodin could prevent osteoclasts formation and bone resorption via blockage of NFATc1 activity, and stimulate osseointegration in vitro. Gastrodin could be developed as a potent phytochemical candidate to treat osteolytic diseases.

  13. Structure-based design of an osteoclast-selective, nonpeptide Src homology 2 inhibitor with in vivo antiresorptive activity

    PubMed Central

    Shakespeare, William; Yang, Michael; Bohacek, Regine; Cerasoli, Franklin; Stebbins, Karin; Sundaramoorthi, Raji; Azimioara, Mihai; Vu, Chi; Pradeepan, Selvi; Metcalf, Chester; Haraldson, Chad; Merry, Taylor; Dalgarno, David; Narula, Surinder; Hatada, Marcos; Lu, Xiaode; van Schravendijk, Marie Rose; Adams, Susan; Violette, Shelia; Smith, Jeremy; Guan, Wei; Bartlett, Catherine; Herson, Jay; Iuliucci, John; Weigele, Manfred; Sawyer, Tomi

    2000-01-01

    Targeted disruption of the pp60src (Src) gene has implicated this tyrosine kinase in osteoclast-mediated bone resorption and as a therapeutic target for the treatment of osteoporosis and other bone-related diseases. Herein we describe the discovery of a nonpeptide inhibitor (AP22408) of Src that demonstrates in vivo antiresorptive activity. Based on a cocrystal structure of the noncatalytic Src homology 2 (SH2) domain of Src complexed with citrate [in the phosphotyrosine (pTyr) binding pocket], we designed 3′,4′-diphosphonophenylalanine (Dpp) as a pTyr mimic. In addition to its design to bind Src SH2, the Dpp moiety exhibits bone-targeting properties that confer osteoclast selectivity, hence minimizing possible undesired effects on other cells that have Src-dependent activities. The chemical structure AP22408 also illustrates a bicyclic template to replace the post-pTyr sequence of cognate Src SH2 phosphopeptides such as Ac-pTyr-Glu-Glu-Ile (1). An x-ray structure of AP22408 complexed with Lck (S164C) SH2 confirmed molecular interactions of both the Dpp and bicyclic template of AP22408 as predicted from molecular modeling. Relative to the cognate phosphopeptide, AP22408 exhibits significantly increased Src SH2 binding affinity (IC50 = 0.30 μM for AP22408 and 5.5 μM for 1). Furthermore, AP22408 inhibits rabbit osteoclast-mediated resorption of dentine in a cellular assay, exhibits bone-targeting properties based on a hydroxyapatite adsorption assay, and demonstrates in vivo antiresorptive activity in a parathyroid hormone-induced rat model. PMID:10944210

  14. Age-Related Effects of Advanced Glycation End Products (Ages) in Bone Matrix on Osteoclastic Resorption.

    PubMed

    Yang, Xiao; Gandhi, Chintan; Rahman, Md Mizanur; Appleford, Mark; Sun, Lian-Wen; Wang, Xiaodu

    2015-12-01

    Advanced glycation end products (AGEs) accumulate in bone extracellular matrix as people age. Previous studies have shown controversial results regarding the role of in situ AGEs accumulation in osteoclastic resorption. To address this issue, this study cultured human osteoclast cells directly on human cadaveric bone slices from different age groups (young and elderly) to warrant its relevance to in vivo conditions. The cell culture was terminated on the 3rd, 7th, and 10th day, respectively, to assess temporal changes in the number of differentiated osteoclasts, the number and size of osteoclastic resorption pits, the amount of bone resorbed, as well as the amount of matrix AGEs released in the medium by resorption. In addition, the in situ concentration of matrix AGEs at each resorption pit was also estimated based on its AGEs autofluorescent intensity. The results indicated that (1) osteoclastic resorption activities were significantly correlated with the donor age, showing larger but shallower resorption pits on the elderly bone substrates than on the younger ones; (2) osteoclast resorption activities were not significantly dependent on the in situ AGEs concentration in bone matrix, and (3) a correlation was observed between osteoclast activities and the concentration of AGEs released by the resorption. These results suggest that osteoclasts tend to migrate away from initial anchoring sites on elderly bone substrate during resorption compared to younger bone substrates. However, such behavior is not directly related to the in situ concentration of AGEs in bone matrix at the resorption sites.

  15. The phase state of NiTi implant material affects osteoclastic attachment.

    PubMed

    Muhonen, V; Heikkinen, R; Danilov, A; Jämsä, T; Ilvesaro, J; Tuukkanen, J

    2005-12-01

    In the present work, the responses of mature osteoclasts cultured on austenite and martensite phases of NiTi shape memory implant material were studied. We used the sensitivity of osteoclasts to the underlying substrate and actin ring formation as an indicator of the adequacy of the implant surface. The results showed osteoclasts with actin ring on both NiTi phases. However, significantly more osteoclasts were present on the austenitic NiTi than on the martensitic NiTi. We also analyzed the surface free energy of the samples but found no significant difference between austenite and martensite phases. The results revealed that osteoclasts tolerated well the austenite phase of NiTi. The chemically identical martensitic NiTi was not as well tolerated by osteoclasts (e.g., indicated by diminished actin ring formation). This leads to the conclusion that certain physical properties specific to the martensitic NiTi have an adverse effect to the surviving of osteoclasts on this NiTi phase. These results confirm that mature, authentic osteoclasts can act as cell probes in experiments concerning aspects of biocompatibility of bone implant materials.

  16. Defective co-activator recruitment in osteoclasts from microphthalmia-oak ridge mutant mice.

    PubMed

    Sharma, Sudarshana M; Sif, Said; Ostrowski, Michael C; Sankar, Uma

    2009-07-01

    The three basic DNA-binding domain mutations of the microphthalmia-associated transcription factor (Mitf), Mitf(mi/mi), Mitf(or/or), and Mitf(wh/wh) affect osteoclast differentiation with variable penetrance while completely impairing melanocyte development. Mitf(or/or) mice exhibit osteopetrosis that improves with age and their osteoclasts form functional multinuclear osteoclasts, raising the question as to why the Mitf(or/or) mutation results in osteopetrosis. Here we show that Mitf(or/or) osteoclasts express normal levels of acid phosphatase 5 (Acp5) mRNA and significantly lower levels of Cathepsin K (Ctsk) mRNA during receptor activator of nuclear factor kappa B (NFkappaB) ligand (RANKL)-mediated differentiation. Studies using chromatin immunoprecipitation (ChIP) analysis indicate that low levels of Mitf(or/or) protein are recruited to the Ctsk promoter. However, enrichment of Mitf-transcriptional co-activators PU.1 and Brahma-related gene 1 (Brg1) are severely impaired at the Ctsk promoter of Mitf(or/or) osteoclast precursors, indicating that defective recruitment of co-activators by the mutant Mitf(or/or) results in impaired Ctsk expression in osteoclasts. Cathepsin K may thus represent a unique class of Mitf-regulated osteoclast-specific genes that are important for osteoclast function.

  17. Morphological study of bone marrow to assess the effects of lead acetate on haemopoiesis and aplasia and the ameliorating role of Carica papaya extract.

    PubMed

    Tham, Ching S; Chakravarthi, Srikumar; Haleagrahara, Nagaraja; DE Alwis, Ranjit

    2013-02-01

    Lead causes damage to the body by inducing oxidative stress. The sites of damage include the bone marrow, where marrow hypoplasia and osteosclerosis may be observed. Leaves of Carica papaya, which have antioxidant and haemopoietic properties, were tested against the effect of lead acetate in experimental rats. The rats were divided into 8 groups; control, lead acetate only, Carica papaya (50 mg and 200 mg), post-treatment with Carica papaya (50 mg and 200 mg) following lead acetate administration and pre-treatment with Carica papaya (50 mg and 200 mg) followed by lead acetate administration. The substances were administered for 14 days. The effects were evaluated by measuring protein carbonyl content (PCC) and glutathione content (GC) in the bone marrow. Histological changes in the bone marrow were also observed. The results showed that Carica papaya induced a significant reduction in the PCC activity and significantly increased the GC in the bone marrow. Carica papaya also improved the histology of the bone marrow compared with that of the lead acetate-treated group. In summary, Carica papaya was effective against the oxidative damage caused by lead acetate in the bone marrow and had a stimulatory effect on haemopoiesis.

  18. RANKL, Osteopontin, and Osteoclast Homeostasis in a Hyper-Occlusion Mouse Model

    SciTech Connect

    Walker, Cameron G.; Ito, Yoshihiro; Dangaria, Smit; Luan, Xianghong; Diekwisch, Thomas G.H.

    2010-11-15

    The biological mechanisms that maintain the position of teeth in their sockets establish a dynamic equilibrium between bone resorption and apposition. In order to reveal some of the dynamics involved in the tissue responses towards occlusal forces on periodontal ligament (PDL) and alveolar bone homeostasis, we developed the first mouse model of hyperocclusion. Swiss-Webster mice were kept in hyperocclusion for 0, 3, 6, and 9 d. Morphological and histological changes in the periodontium were assessed using micro-computed tomography (micro-CT) and ground sections with fluorescent detection of vital dye labels. Sections were stained for tartrate-resistant acid phosphatase, and the expression of receptor activator of nuclear factor-{kappa}B ligand (RANKL) and osteopontin (OPN) was analyzed by immunohistochemistry and real-time polymerase chain reaction (PCR). Traumatic occlusion resulted in enamel surface abrasion, inhibition of alveolar bone apposition, significant formation of osteoclasts at 3, 6 and 9 d, and upregulation of OPN and RANKL. Data from this study suggest that both OPN and RANKL contribute to the stimulation of bone resorption in the hyperocclusive state. In addition, we propose that the inhibition of alveolar bone apposition by occlusal forces is an important mechanism for the control of occlusal height that might work in synergy with RANKL-induced bone resorption to maintain normal occlusion.

  19. Kinetics of osteoclasts and their nuclei in evolving secondary Haversian systems.

    PubMed Central

    Jaworski, Z F; Duck, B; Sekaly, G

    1981-01-01

    A study of osteoclast and osteoclast nuclear population kinetics within evolving secondary osteons was undertaken in young adult Beagle dogs. Autoradiographs of serial longitudinal rib biopsy sections taken from 1 hour to 15 days after tritiated thymidine injection were analysed as to the time and the rate of appearance of the labelled nuclei within the osteoclasts and their nuclei. Such systems contained an average of nine osteoclasts, each containing an average of nine nuclei. Labelled osteoclast nuclei first appeared within 24 hours, peaked at 10% at 4 days, and declined to 1% or less after 11.5 days more. Thus, the entry rate of new nuclei into (and their exit from) the population of osteoclast nuclei under steady state conditions approximates 8% per day. Therefore, the total mononuclear osteoclast population may be viewed as divided into functional units, i.e. osteoclasts. From the ratio of the osteoclast nuclei in the cutting cone to the number of osteoblasts in the closing cone (as well as from their rates of resorption and formation), it was deduced that the osteoclast per nucleus is approximately 20-40 times more efficient than the osteoblast. Because of the intrinsically different efficiencies and life spans of these two cell types, the rates of resorption and formation within evolving Haversian systems and the amounts of bone ultimately resorbed and formed by the system, are determined by the rate and duration of the respective precursor cell proliferation. It is at this level that factors which control the bone remodelling and balance must operate. Images Fig. 1 Fig. 3 PMID:7328046

  20. Osteoblast and osteoclast behaviors in the turnover of attachment bones during medaka tooth replacement.

    PubMed

    Mantoku, Akiko; Chatani, Masahiro; Aono, Kazushi; Inohaya, Keiji; Kudo, Akira

    2016-01-15

    Tooth replacement in polyphyodont is a well-organized system for maintenance of homeostasis of teeth, containing the dynamic structural change in skeletal tissues such as the attachment bone, which is the supporting element of teeth. Histological analyses have revealed the character of tooth replacement, however, the cellular mechanism of how skeletal tissues are modified during tooth replacement is largely unknown. Here, we showed the important role of osteoblasts for controlling osteoclasts to modify the attachment bone during tooth replacement in medaka pharyngeal teeth, coupled with an osterix-DsRed/TRAP-GFP transgenic line to visualize osteoblasts and osteoclasts. In the turnover of the row of attachment bones, these bones were resorbed at the posterior side where most developed functional teeth were located, and generated at the anterior side where teeth were newly erupted, which caused continuous tooth replacement. In the cellular analysis, osteoclasts and osteoblasts were located at attachment bones separately, since mature osteoclasts were localized at the resorbing side and osteoblasts gathered at the generating side. To demonstrate the role of osteoclasts in tooth replacement, we established medaka made deficient in c-fms-a by TALEN. c-fms-a deficient medaka showed hyperplasia of attachment bones along with reduced bone resorption accompanied by a low number of TRAP-positive osteoclasts, indicating an important role of osteoclasts in the turnover of attachment bones. Furthermore, nitroreductase-mediated osteoblast-specific ablation induced disappearance of osteoclasts, indicating that osteoblasts were essential for maintenance of osteoclasts for the proper turnover. Taken together, our results suggested that the medaka attachment bone provides the model to understand the cellular mechanism for tooth replacement, and that osteoblasts act in the coordination of bone morphology by supporting osteoclasts.

  1. Netrin-1 Is a Critical Autocrine/Paracrine Factor for Osteoclast Differentiation

    PubMed Central

    Mediero, Aránzazu; Ramkhelawon, Bhama; Perez-Aso, Miguel; Moore, Kathryn J; Cronstein, Bruce N

    2015-01-01

    Bone metabolism is a vital process that involves resorption by osteoclasts and formation by osteoblasts, which is closely regulated by immune cells. The neuronal guidance protein Netrin-1 regulates immune cell migration and inflammatory reactions, but its role in bone metabolism is unknown. During osteoclast differentiation, osteoclast precursors increase expression of Netrin-1 and its receptor Unc5b. Netrin-1 binds, in an autocrine and paracrine manner, to Unc5b to promote osteoclast differentiation in vitro, and absence of Netrin-1 or antibody-mediated blockade of Netrin-1 or Unc5b prevents osteoclast differentiation of both murine and human precursors. We confirmed the functional relationship of Netrin-1 in osteoclast differentiation in vivo using Netrin-1-deficient (Ntn1−/−) or wild-type (WT) bone marrow transplanted mice. Notably, Ntn1−/− chimeras have markedly diminished osteoclasts, as well as increased cortical and trabecular bone density and volume compared with WT mice. Mechanistic studies revealed that Netrin-1 regulates osteoclast differentiation by altering cytoskeletal assembly. Netrin-1 increases regulator of Rho-GEF subfamily (LARG) and repulsive guidance molecule (RGMa) association with Unc5b, which increases expression and activation of cytoskeletal regulators RhoA and focal adhesion kinase (FAK). Netrin-1 and its receptor Unc5b likely play a role in fusion of osteoclast precursors because Netrin-1 and DC-STAMP are tightly linked. These results identify Netrin-1 as a key regulator of osteoclast differentiation that may be a new target for bone therapies. PMID:25483983

  2. The Inhibitory Effect of Angelica tenuissima Water Extract on Receptor Activator of Nuclear Factor-Kappa-B Ligand-Induced Osteoclast Differentiation and Bone Resorbing Activity of Mature Osteoclasts.

    PubMed

    Ahn, Sung-Jun; Baek, Jong Min; Cheon, Yoon-Hee; Park, Sun-Hyang; Lee, Myeung Su; Oh, Jaemin; Kim, Ju-Young

    2015-01-01

    Angelica tenuissima has been traditionally used in oriental medicine for its therapeutic effects in headache, toothache, and flu symptoms. It also exerts anti-inflammatory activity via the inhibition of the expression of cyclooxygenase-2 (COX-2). However, the effect of Angelica tenuissima on osteoclast differentiation has not been identified until recently. In this study, we first confirmed that Angelica tenuissima water extract (ATWE) significantly interrupted the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells (MNCs) in a dose-dependent manner without any cytotoxicity. Next, we clarified the underlying mechanisms linking the suppression effects of ATWE on the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis. At the molecular level, ATWE induced the dephosphorylation of c-Jun N-terminal kinase (JNK) and Akt and decreased the degradation of IκB in RANKL-dependent early signaling pathways. Subsequently, ATWE caused impaired activation of the protein and mRNA levels of c-Fos and nuclear factor of activated T cell c1 (NFATc1). Moreover, the disassembly of filamentous actin (F-actin) ring and anti-resorptive activity of mature osteoclasts were triggered by ATWE treatment. Although ATWE did not enhance osteogenesis in primary osteoblasts, our results showed that ATWE is a potential candidate for anti-resorptive agent in osteoporosis, a common metabolic bone disorder.

  3. Cancer Cell Expression of Autotaxin Controls Bone Metastasis Formation in Mouse through Lysophosphatidic Acid-Dependent Activation of Osteoclasts

    PubMed Central

    David, Marion; Wannecq, Estelle; Descotes, Françoise; Jansen, Silvia; Deux, Blandine; Ribeiro, Johnny; Serre, Claire-Marie; Grès, Sandra; Bendriss-Vermare, Nathalie; Bollen, Mathieu; Saez, Simone; Aoki, Junken; Saulnier-Blache, Jean-Sébastien; Clézardin, Philippe; Peyruchaud, Olivier

    2010-01-01

    Background Bone metastases are highly frequent complications of breast cancers. Current bone metastasis treatments using powerful anti-resorbtive agents are only palliative indicating that factors independent of bone resorption control bone metastasis progression. Autotaxin (ATX/NPP2) is a secreted protein with both oncogenic and pro-metastatic properties. Through its lysosphospholipase D (lysoPLD) activity, ATX controls the level of lysophosphatidic acid (LPA) in the blood. Platelet-derived LPA promotes the progression of osteolytic bone metastases of breast cancer cells. We asked whether ATX was involved in the bone metastasis process. We characterized the role of ATX in osteolytic bone metastasis formation by using genetically modified breast cancer cells exploited on different osteolytic bone metastasis mouse models. Methodology/Principal Findings Intravenous injection of human breast cancer MDA-B02 cells with forced expression of ATX (MDA-B02/ATX) to inmmunodeficiency BALB/C nude mice enhanced osteolytic bone metastasis formation, as judged by increased bone loss, tumor burden, and a higher number of active osteoclasts at the metastatic site. Mouse breast cancer 4T1 cells induced the formation of osteolytic bone metastases after intracardiac injection in immunocompetent BALB/C mice. These cells expressed active ATX and silencing ATX expression inhibited the extent of osteolytic bone lesions and decreased the number of active osteoclasts at the bone metastatic site. In vitro, osteoclast differentiation was enhanced in presence of MDA-B02/ATX cell conditioned media or recombinant autotaxin that was blocked by the autotaxin inhibitor vpc8a202. In vitro, addition of LPA to active charcoal-treated serum restored the capacity of the serum to support RANK-L/MCSF-induced osteoclastogenesis. Conclusion/Significance Expression of autotaxin by cancer cells controls osteolytic bone metastasis formation. This work demonstrates a new role for LPA as a factor that stimulates

  4. Complete degradation of type X collagen requires the combined action of interstitial collagenase and osteoclast-derived cathepsin-B.

    PubMed Central

    Sires, U I; Schmid, T M; Fliszar, C J; Wang, Z Q; Gluck, S L; Welgus, H G

    1995-01-01

    We have studied the degradation of type X collagen by metalloproteinases, cathepsin B, and osteoclast-derived lysates. We had previously shown (Welgus, H. G., C. J. Fliszar, J. L. Seltzer, T. M. Schmid, and J. J. Jeffrey. 1990. J. Biol. Chem. 265:13521-13527) that interstitial collagenase rapidly attacks the native 59-kD type X molecule at two sites, rendering a final product of 32 kD. This 32-kD fragment, however, has a Tm of 43 degrees C due to a very high amino acid content, and thus remains helical at physiologic core temperature. We now report that the 32-kD product resists any further attack by several matrix metalloproteinases including interstitial collagenase, 92-kD gelatinase, and matrilysin. However, this collagenase-generated fragment can be readily degraded to completion by cathepsin B at 37 degrees C and pH 4.4. Interestingly, even under acidic conditions, cathepsin B cannot effectively attack the whole 59-kD type X molecule at 37 degrees C, but only the 32-kD collagenase-generated fragment. Most importantly, the 32-kD fragment was also degraded at acid pH by cell lysates isolated from murine osteoclasts. Degradation of the 32-kD type X collagen fragment by osteoclast lysates exhibited the following properties: (a) cleavage occurred only at acidic pH (4.4) and not at neutral pH; (b) the cysteine proteinase inhibitors E64 and leupeptin completely blocked degradation; and (c) specific antibody to cathepsin B was able to inhibit much of the lysate-derived activity. Based upon these data, we postulate that during in vivo endochondral bone formation type X collagen is first degraded at neutral pH by interstitial collagenase secreted by resorbing cartilage-derived cells. The resulting 32-kD fragment is stable at core temperature and further degradation requires osteoclast-derived cathepsin B supplied by invading bone. Images PMID:7738176

  5. Development of molecular tools for characterization and genetic diversity analysis in Tunisian fig (Ficus carica) cultivars.

    PubMed

    Chatti, Khaled; Baraket, Ghada; Ben Abdelkrim, Ahmed; Saddoud, Olfa; Mars, Messaoud; Trifi, Mokhtar; Salhi Hannachi, Amel

    2010-10-01

    Fig, Ficus carica L., is a useful genetic resource for commercial cultivation. In this study, RAPD (60), ISSR (48), RAMPO (63), and SSR (34) markers were compared to detect polymorphism and to establish genetic relationships among Tunisian fig tree cultivars. The statistical procedures conducted on the combined data show considerable genetic diversity, and the tested markers discriminated all fig genotypes studied. The identification key established on the basis of SSR permitted the unambiguous discrimination of cultivars and confirmed the reliability of SSR for fingerprinting fig genotypes. The study findings are discussed in relation to the establishment of a national reference collection that will aid in the conservation of Tunisian fig resources.

  6. Imaging of Bacterial and Fungal Cells Using Fluorescent Carbon Dots Prepared from Carica papaya Juice.

    PubMed

    Kasibabu, Betha Saineelima B; D'souza, Stephanie L; Jha, Sanjay; Kailasa, Suresh Kumar

    2015-07-01

    In this paper, we have described a simple hydrothermal method for preparation of fluorescent carbon dots (C-dots) using Carica papaya juice as a precursor. The synthesized C-dots show emission peak at 461 nm with a quantum yield of 7.0 %. The biocompatible nature of C-dots was confirmed by a cytotoxicity assay on E. coli. The C-dots were used as fluorescent probes for imaging of bacterial (Bacillus subtilis) and fungal (Aspergillus aculeatus) cells and emitted green and red colors under different excitation wavelengths, which indicates that the C-dots can be used as a promising material for cell imaging.

  7. Characterization of MCSF-induced proliferation and subsequent osteoclast formation in murine marrow culture.

    PubMed

    Biskobing, D M; Fan, X; Rubin, J

    1995-07-01

    To clarify events involved in 1,25(OH)2D3-stimulated osteoclast-like cell (OCLC) formation in primary murine marrow culture, we have characterized kinetics of precursor proliferation and fusion and their dependence on macrophage colony-stimulating factor (MCSF). 3H-thymidine nuclear incorporation in tartrate-resistant acid phosphatase positive multinucleated cells (TRAP+ MNCs) was assessed: 3H-thymidine incorporation was greatest when tracer was added during day 4 or 5, with labeled nuclei in 81% (day 4) and 90% (day 5) of the TRAP+ MNCs counted at the end of day 7. The percentage of total nuclei labeled was highest when 3H-thymidine was dosed on day 4 (58%), decreasing to 2% by day 7. Final TRAP+ MNC numbers were depleted by 80% when treated for 24 h with hydroxyurea on either day 3 or 4; this inhibition dropped to 57% and 12% when hydroxyurea was pulsed during days 5 or 6, respectively. The absence of 1,25(OH)2D3 during days 1-4 caused 70% attenuation of TRAP+ MNC formation; however, exposure to 3H-thymidine during day 4 in this experiment resulted in subsequent labeling of 81% of the TRAP+ MNCs formed, indicating that precursor proliferation occurred in the absence of 1,25(OH)2D3. To demonstrate that proliferation required MCSF, cultures were exposed to a monoclonal anti-MCSF antibody during days 3, 4, 5, 6, or 7. Inhibition of TRAP+ MNC formation was 85% when antibody was added during day 3. Antibody treatment after day 5 had little effect on the OCLC number. Fusion of precursors showed steady progression with OCLCs containing 4.8 +/- 0.3 nuclei at the end of day 4, 8.3 +/- 0.5 nuclei after day 5, 12.0 +/- 1.3 after day 6, and 13.7 +/- 1.5 at the end of day 7. This steady accretion of nuclei was unaffected by doses of MCSF antibody which blocked proliferation. In conclusion, we have shown that OCLCs arise from an MCSF-dependent expansion of the precursor pool occurring during days 3 and 4. Fusion of these precursors, which begins as proliferation diminishes, is

  8. Purification and characterization of a papaya (Carica papaya L.) pectin methylesterase isolated from a commercial papain preparation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We purified a single stable pectin methylesterase (CpL-PME; EC 3.1.1.11) from a commercial papain preparation, which is isolated from Carica papaya (L.) fruit latex. This CpL-PME was separated from the abundant cysteine endopeptidases activities using sequential hydrophobic interaction and cation-ex...

  9. Myeloid-derived suppressor cells function as novel osteoclast progenitors enhancing bone loss in breast cancer

    PubMed Central

    Sawant, Anandi; Deshane, Jessy; Jules, Joel; Lee, Carnella M.; Harris, Brittney A.; Feng, Xu; Ponnazhagan, Selvarangan

    2012-01-01

    Enhanced bone destruction is a hallmark of various carcinomas such as breast cancer, where osteolytic bone metastasis is associated with increased morbidity and mortality. Immune cells contribute to osteolysis in cancer growth but the factors contributing to aggressive bone destruction are not well understood. In this study, we demonstrate the importance of myeloid-derived suppressor cells (MDSC) in this process at bone metastatic sites. Since MDSC originate from the same myeloid lineage as macrophages, which are osteoclast precursors, we hypothesized that MDSC may undergo osteoclast differentiation and contribute to enhanced bone destruction and tumor growth. Using an immunocompetent mouse model of breast cancer bone metastasis, we confirmed that MDSC isolated from the tumor-bone microenvironment differentiated into functional osteoclasts both in vitro and in vivo. Mechanistic investigations revealed that nitric oxide signaling was critical for differentiation of MDSC into osteoclasts. Remarkably, osteoclast differentiation did not occur in MDSC isolated from control or tumor-bearing mice that lacked bone metastasis, signifying the essential cross-talk between tumor cells and myeloid progenitors in the bone microenvironment as a requirement for osteoclast differentiation of MDSC. Overall, our results identify a wholly new facet to the multifunctionality of MDSC in driving tumor progression, in this case as a novel osteoclast progenitor that specifically drives bone metastasis during cancer progression. PMID:23243021

  10. Bacterial lipopolysaccharide induces osteoclast formation in RAW 264.7 macrophage cells

    SciTech Connect

    Islam, Shamima; Hassan, Ferdaus; Tumurkhuu, Gantsetseg; Dagvadorj, Jargalsaikhan; Koide, Naoki; Naiki, Yoshikazu; Mori, Isamu; Yoshida, Tomoaki; Yokochi, Takashi . E-mail: yokochi@aichi-med-u.ac.jp

    2007-08-24

    Lipopolysaccharide (LPS) is a potent bone resorbing factor. The effect of LPS on osteoclast formation was examined by using murine RAW 264.7 macrophage cells. LPS-induced the formation of multinucleated giant cells (MGC) in RAW 264.7 cells 3 days after the exposure. MGCs were positive for tartrate-resistant acid phosphatase (TRAP) activity. Further, MGC formed resorption pits on calcium-phosphate thin film that is a substrate for osteoclasts. Therefore, LPS was suggested to induce osteoclast formation in RAW 264.7 cells. LPS-induced osteoclast formation was abolished by anti-tumor necrosis factor (TNF)-{alpha} antibody, but not antibodies to macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-{kappa}B ligand (RANKL). TNF-{alpha} might play a critical role in LPS-induced osteoclast formation in RAW 264.7 cells. Inhibitors of NF-{kappa}B and stress activated protein kinase (SAPK/JNK) prevented the LPS-induced osteoclast formation. The detailed mechanism of LPS-induced osteoclast formation is discussed.

  11. 3BP2-deficient mice are osteoporotic with impaired osteoblast and osteoclast functions

    PubMed Central

    Levaot, Noam; Simoncic, Paul D.; Dimitriou, Ioannis D.; Scotter, Andrew; La Rose, Jose; Ng, Adeline H.M.; Willett, Thomas L.; Wang, Chiachien J.; Janmohamed, Salima; Grynpas, Marc; Reichenberger, Ernst; Rottapel, Robert

    2011-01-01

    A fine balance between bone resorption by osteoclasts and bone formation by osteoblasts maintains bone homeostasis. In patients with cherubism, gain-of-function mutations in 3BP2, which is encoded by SH3-domain binding protein 2 (SH3BP2), cause cystic lesions with activated osteoclasts that lead to craniofacial abnormalities. However, little is known about the function of wild-type 3BP2 in regulating bone homeostasis. Here we have shown that 3BP2 is required for the normal function of both osteoblasts and osteoclasts. Initial analysis showed that Sh3bp2–/–mice developed osteoporosis as a result of reduced bone formation despite the fact that bone resorption was impaired. We demonstrated using reciprocal bone marrow chimeras, a cell-intrinsic defect of the osteoblast and osteoclast compartments in vivo. Further, Sh3bp2–/– osteoblasts failed to mature and form mineralized nodules in vitro, while Sh3bp2–/– osteoclasts spread poorly and were unable to effectively degrade dentine matrix in vitro. Finally, we showed that 3BP2 was required for Abl activation in osteoblasts and Src activation in osteoclasts, and demonstrated that the in vitro defect of each cell type was restored by the respective expression of activated forms of these kinases. These findings reveal an unanticipated role for the 3BP2 adapter protein in osteoblast function and in coordinating bone homeostatic signals in both osteoclast and osteoblast lineages. PMID:21765218

  12. Baicalin positively regulates osteoclast function by activating MAPK/Mitf signalling.

    PubMed

    Lu, Li; Rao, Li; Jia, Huanhuan; Chen, Jun; Lu, Xingyan; Yang, Guozhu; Li, Qingnan; Lee, Kenneth Ka Ho; Yang, Li

    2017-02-03

    Activation of osteoblasts in bone formation and osteoclasts in bone resorption is important during the bone fracture healing process. There has been a long interest in identifying and developing a natural therapy for bone fracture healing. In this study, we investigated the regulation of osteoclast differentiation by baicalin, which is a natural molecule extracted from Eucommiaulmoides (small tree native to China). It was determined that baicalin enhanced osteoclast maturation and bone resorption activity in a dose-dependent manner. Moreover, this involves the activation of MAPK, increased Mitf nuclear translocation and up-regulation of downstream osteoclast-related target genes expression. The baicalin-induced effect on osteoclast differentiation can be mimicked by specific inhibitors of p-ERK (U0126) and the Mitf-specific siRNA, respectively. Protein-ligand docking prediction identified that baicalin might bind to RANK, which is the upstream receptor of p-ERK/Mitf signalling in osteoclasts. This indicated that RANK might be the binding target of baicalin. In sum, our findings revealed baicalin increased osteoclast maturation and function via p-ERK/Mitf signalling. In addition, the results suggest that baicalin can potentially be used as a natural product for the treatment of bone fracture.

  13. Characterization of Functional Reprogramming during Osteoclast Development Using Quantitative Proteomics and mRNA Profiling*

    PubMed Central

    An, Eunkyung; Narayanan, Manikandan; Manes, Nathan P.; Nita-Lazar, Aleksandra

    2014-01-01

    In addition to forming macrophages and dendritic cells, monocytes in adult peripheral blood retain the ability to develop into osteoclasts, mature bone-resorbing cells. The extensive morphological and functional transformations that occur during osteoclast differentiation require substantial reprogramming of gene and protein expression. Here we employ -omic-scale technologies to examine in detail the molecular changes at discrete developmental stages in this process (precursor cells, intermediate osteoclasts, and multinuclear osteoclasts), quantitatively comparing their transcriptomes and proteomes. The data have been deposited to the ProteomeXchange with identifier PXD000471. Our analysis identified mitochondrial changes, along with several alterations in signaling pathways, as central to the development of mature osteoclasts, while also confirming changes in pathways previously implicated in osteoclast biology. In particular, changes in the expression of proteins involved in metabolism and redirection of energy flow from basic cellular function toward bone resorption appeared to play a key role in the switch from monocytic immune system function to specialized bone-turnover function. These findings provide new insight into the differentiation program involved in the generation of functional osteoclasts. PMID:25044017

  14. Mice lacking β3 integrins are osteosclerotic because of dysfunctional osteoclasts

    PubMed Central

    McHugh, Kevin P.; Hodivala-Dilke, Kairbaan; Zheng, Ming-Hao; Namba, Noriyuki; Lam, Jonathan; Novack, Deborah; Feng, Xu; Ross, F. Patrick; Hynes, Richard O.; Teitelbaum, Steven L.

    2000-01-01

    Osteoclasts express the αvβ3 integrin, an adhesion receptor that has been implicated in bone resorption and that is therefore a potential therapeutic target. To assess the role of this heterodimer in skeletal development in vivo, we engineered mice in which the gene for the β3 integrin subunit was deleted. Bone marrow macrophages derived from these mutants differentiate in vitro into numerous osteoclasts, thus establishing that αvβ3 is not necessary for osteoclast recruitment. Furthermore, the closely related integrin, αvβ5, does not substitute for αvβ3 during cytokine stimulation or authentic osteoclastogenesis. β3 knockout mice, but not their heterozygous littermates, develop histologically and radiographically evident osteosclerosis with age. Despite their increased bone mass, β3-null mice contain 3.5-fold more osteoclasts than do heterozygotes. These mutant osteoclasts are, however, dysfunctional, as evidenced by their reduced ability to resorb whale dentin in vitro and the significant hypocalcemia seen in the knockout mice. The resorptive defect in β3-deficient osteoclasts may reflect absence of matrix-derived intracellular signals, since their cytoskeleton is distinctly abnormal and they fail to spread in vitro, to form actin rings ex vivo, or to form normal ruffled membranes in vivo. Thus, although it is not required for osteoclastogenesis, the integrin αvβ3 is essential for normal osteoclast function. PMID:10683372

  15. Calmodulin interacts with Rab3D and modulates osteoclastic bone resorption

    PubMed Central

    Zhu, Sipin; Chim, Shek Man; Cheng, Taksum; Ang, Estabelle; Ng, Benjamin; Lim, Baysie; Chen, Kai; Qiu, Heng; Tickner, Jennifer; Xu, Huazi; Pavlos, Nathan; Xu, Jiake

    2016-01-01

    Calmodulin is a highly versatile protein that regulates intracellular calcium homeostasis and is involved in a variety of cellular functions including cardiac excitability, synaptic plasticity and signaling transduction. During osteoclastic bone resorption, calmodulin has been reported to concentrate at the ruffled border membrane of osteoclasts where it is thought to modulate bone resorption activity in response to calcium. Here we report an interaction between calmodulin and Rab3D, a small exocytic GTPase and established regulator osteoclastic bone resorption. Using yeast two-hybrid screening together with a series of protein-protein interaction studies, we show that calmodulin interacts with Rab3D in a calcium dependent manner. Consistently, expression of a calcium insensitive form of calmodulin (i.e. CaM1234) perturbs calmodulin-Rab3D interaction as monitored by bioluminescence resonance energy transfer (BRET) assays. In osteoclasts, calmodulin and Rab3D are constitutively co-expressed during RANKL-induced osteoclast differentiation, co-occupy plasma membrane fractions by differential gradient sedimentation assay and colocalise in the ruffled border as revealed by confocal microscopy. Further, functional blockade of calmodulin-Rab3D interaction by calmidazolium chloride coincides with an attenuation of osteoclastic bone resorption. Our data imply that calmodulin- Rab3D interaction is required for efficient bone resorption by osteoclasts in vitro. PMID:27897225

  16. Effects and mechanisms of 8-prenylnaringenin on osteoblast MC3T3-E1 and osteoclast-like cells RAW264.7

    PubMed Central

    Luo, Dan; Kang, Lumei; Ma, Yuhui; Chen, Hongping; Kuang, Haibin; Huang, Qiren; He, Ming; Peng, Weijie

    2014-01-01

    8-Prenylnaringenin (8-PN) is a phytoestrogen with the highest estrogenic activity. The objective of the present study was to confirm the superiority of 8-PN on bone metabolisms and the estrogen receptor (ER) subtype mediating effects of 8-PN. The osteoblast MC3T3-E1 and osteoclast-like cell line RAW264.7 were treated with 17β-estradiol (10−8 mol/L), genistein (10−5 mol/L), daidzein (10−5 mol/L), 8-PN (10−5 mol/L) alone or in the presence of ERα antagonist MPP (10−7 mol/L) and ERβ antagonist PTHPP (1.5 × 10−7 mol/L). It has been found that 8-PN did not affect osteoblast proliferation, and that 8-PN increased alkaline phosphatase (ALP) activity, osteocalcin (OCN) concentrations, and the mineralized nodules. 8-PN inhibited RAW264.7 differentiating into osteoclasts and reduced the pit area of bone resorption. 8-PN could also inhibit the protein and mRNA expression of receptor activator of nuclear factor-κB ligand (RANKL) in osteoblasts, and conversely promote the expression of osteoprotegerin (OPG). These effects of 8-PN were mainly inhibited not by PTHPP but by MPP and they were weaker than estrogen's effects but stronger than those of genistein and daidzein. In conclusion, the effects of 8-PN on promoting osteoblastic bone formation and inhibiting osteoclastic bone resorption were mediated by ERα instead of ERβ and the efficacy was more potent than that of the two classic phytoestrogens: genistein and daidzein. PMID:25473491

  17. The transient appearance of zipper-like actin superstructures during the fusion of osteoclasts.

    PubMed

    Takito, Jiro; Nakamura, Masanori; Yoda, Masaki; Tohmonda, Takahide; Uchikawa, Shinichi; Horiuchi, Keisuke; Toyama, Yoshiaki; Chiba, Kazuhiro

    2012-02-01

    Multinucleated osteoclasts are responsible for bone resorption. Hypermultinucleated osteoclasts are often observed in some bone-related diseases such as Paget's disease and cherubism. The cellular mechanics controlling the size of osteoclasts is poorly understood. We introduced EGFP-actin into RAW 264.7 cells to monitor actin dynamics during osteoclast differentiation. Before their terminal differentiation into osteoclasts, syncytia displayed two main types of actin assembly, podosome clusters and clusters of zipper-like structures. The zipper-like structures morphologically resembled the adhesion zippers found at the initial stage of cell-cell adhesion in keratinocytes. In the zipper-like structure, Arp3 and cortactin overlapped with the distribution of dense F-actin, whereas integrin β3, paxillin and vinculin were localized to the periphery of the structure. The structure was negative for WGA-lectin staining and biotin labeling. The zipper-like structure broke down and transformed into a large actin ring, called a podosome belt. Syncytia containing clusters of zipper-like structures had more nuclei than those with podosome clusters. Differentiated osteoclasts with a podosome belt also formed the zipper-like structure at the cell contact site during cell fusion. The breakdown of the cell contact site resulted in the fusion of the podosome belts following plasma membrane fusion. Additionally, osteoclasts in mouse calvariae formed the zipper-like structure in the sealing zone. Therefore, we propose that the zipper-like actin superstructures might be involved in cell-cell interaction to achieve efficient multinucleation of osteoclasts. Understanding of the zipper-like structure might lead to selective therapeutics for bone diseases caused by hypermultinucleated osteoclasts.

  18. Diamagnetic levitation promotes osteoclast differentiation from RAW264.7 cells.

    PubMed

    Sun, Yu-Long; Chen, Zhi-Hao; Chen, Xiao-Hu; Yin, Chong; Li, Di-Jie; Ma, Xiao-Li; Zhao, Fan; Zhang, Ge; Shang, Peng; Qian, Ai-Rong

    2015-03-01

    The superconducting magnet with a high magnetic force field can levitate diamagnetic materials. In this study, a specially designed superconducting magnet with large gradient high magnetic field (LGHMF), which provides three apparent gravity levels (μg, 1 g, and 2 g), was used to study its influence on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation from preosteoclast cell line RAW264.7. The effects of LGHMF on the viability, nitric oxide (NO) production, morphology in RAW264.7 cells were detected by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method, the Griess method, and the immunofluorescence staining, respectively. The changes induced by LGHMF in osteoclast formation, mRNA expression, and bone resorption were determined by tartrate-resistant acid phosphatase staining, semiquantity PCR, and bone resorption test, respectively. The results showed that: 1) LGHMF had no lethal effect on osteoclast precursors but attenuated NO release in RAW264.7 cells. 2) Diamagnetic levitation (μg) enhanced both the formation and bone resorption capacity of osteoclast. Moreover, diamagnetic levitation up-regulated mRNA expression of RANK, Cathepsin K, MMP-9, and NFATc1, while down-regulated RunX2 in comparison with controls. Furthermore, diamagnetic levitation induced obvious morphological alterations in osteoclast, including active cytoplasmic peripheral pseudopodial expansion, formation of pedosome belt, and aggregation of actin ring. 3) Magnetic field produced by LGHMF attenuated osteoclast resorption activity. Collectively, LGHMF with combined effects has multiple effects on osteoclast, which attenuated osteoclast resorption with magnetic field, whereas promoted osteoclast differentiation with diamagnetic levitation. Therefore, these findings indicate that diamagnetic levitation could be used as a novel ground-based microgravity simulator, which facilitates bone cell research of weightlessness condition.

  19. In vitro antiviral activity of Ficus carica latex against caprine herpesvirus-1.

    PubMed

    Camero, Michele; Marinaro, Mariarosaria; Lovero, Angela; Elia, Gabriella; Losurdo, Michele; Buonavoglia, Canio; Tempesta, Maria

    2014-01-01

    The latex of Ficus carica Linn. (Moraceae) has been shown to possess antiviral properties against some human viruses. To determine the ability of F. carica latex (F-latex) to interfere with the infection of caprine herpesvirus-1 (CpHV-1) in vitro, F-latex was resuspended in culture media containing 1% ethanol and was tested for potential antiviral effects against CpHV-1. Titration of CpHV-1 in the presence or in the absence of F-latex was performed on monolayers of Madin Darby Bovine Kidney (MDBK) cells. Simultaneous addition of F-latex and CpHV-1 to monolayers of MDBK cells resulted in a significant reduction of CpHV-1 titres 3 days post-infection and this effect was comparable to that induced by acyclovir. The study suggests that the F-latex is able to interfere with the replication of CpHV-1 in vitro on MDBK cells and future studies will determine the mechanisms responsible for the observed antiviral activity.

  20. Characterization of fig achenes' oil of Ficus carica grown in Tunisia.

    PubMed

    Soltana, Hala; Tekaya, Meriem; Amri, Zahra; El-Gharbi, Sinda; Nakbi, Amel; Harzallah, Arij; Mechri, Beligh; Hammami, Mohamed

    2016-04-01

    This work investigated the composition of the oil extract from achenes of "Kholi" variety of Ficus carica, grown in Tunisia. Fatty acid and sterol compositions were analyzed by gas chromatography (GC) coupled to flame ionization detector (FID). Furthermore, the antioxidant capacity in fig achenes' oil was assessed by employing two different in vitro assays such as DPPH, ABTS(+) radical scavenging capacities. Our results indicated that the fig achenes' oil is a rich source of bioactive molecules. The soxhlet n-hexane extraction of these achenes produced a total oil yield of 16.24%. The predominant fatty acid was linolenic acid. Concerning phytosterols, the total amount reached 1061.45 mg/100 g with a predominance of Δ(5,23)-stigmastadienol (73.78%). Regarding antioxidant activities, the half maximal inhibitory concentration (IC50) was 215.86 μg/ml and Trolox equivalent antioxidant capacity (TEAC) was 95.25 mM. These data indicate that fig achenes oil of F. carica could be potentially useful in food and pharmaceutical applications.

  1. Production of fatty acid butyl esters using the low cost naturally immobilized Carica papaya lipase.

    PubMed

    Su, Erzheng; Wei, Dongzhi

    2014-07-09

    In this work, the low cost naturally immobilized Carica papaya lipase (CPL) was investigated for production of fatty acid butyl esters (FABE) to fulfill the aim of reducing the lipase cost in the enzymatic butyl-biodiesel process. The CPL showed specificities to different alcohol acyl acceptors. Alcohols with more than three carbon atoms did not have negative effects on the CPL activity. The CPL catalyzed butanolysis for FABE production was systematically investigated. The reaction solvent, alcohol/oil molar ratio, enzyme amount, reaction temperature, and water activity all affected the butanolysis process. Under the optimized conditions, the highest conversion of 96% could be attained in 24 h. These optimal conditions were further applied to CPL catalyzed butanolysis of other vegetable oils. All of them showed very high conversion. The CPL packed-bed reactor was further developed, and could be operated continuously for more than 150 h. All of these results showed that the low cost Carica papaya lipase can be used as a promising lipase for biodiesel production.

  2. Chemical Characterization and in Vitro Cytotoxicity on Squamous Cell Carcinoma Cells of Carica papaya Leaf Extracts.

    PubMed

    Nguyen, Thao T; Parat, Marie-Odile; Hodson, Mark P; Pan, Jenny; Shaw, Paul N; Hewavitharana, Amitha K

    2015-12-24

    In traditional medicine, Carica papaya leaf has been used for a wide range of therapeutic applications including skin diseases and cancer. In this study, we investigated the in vitro cytotoxicity of aqueous and ethanolic extracts of Carica papaya leaves on the human oral squamous cell carcinoma SCC25 cell line in parallel with non-cancerous human keratinocyte HaCaT cells. Two out of four extracts showed a significantly selective effect towards the cancer cells and were found to contain high levels of phenolic and flavonoid compounds. The chromatographic and mass spectrometric profiles of the extracts obtained with Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry were used to tentatively identify the bioactive compounds using comparative analysis. The principal compounds identified were flavonoids or flavonoid glycosides, particularly compounds from the kaempferol and quercetin families, of which several have previously been reported to possess anticancer activities. These results confirm that papaya leaf is a potential source of anticancer compounds and warrant further scientific investigation to validate the traditional use of papaya leaf to treat cancer.

  3. Chemical Characterization and in Vitro Cytotoxicity on Squamous Cell Carcinoma Cells of Carica Papaya Leaf Extracts

    PubMed Central

    Nguyen, Thao T.; Parat, Marie-Odile; Hodson, Mark P.; Pan, Jenny; Shaw, Paul N.; Hewavitharana, Amitha K.

    2015-01-01

    In traditional medicine, Carica papaya leaf has been used for a wide range of therapeutic applications including skin diseases and cancer. In this study, we investigated the in vitro cytotoxicity of aqueous and ethanolic extracts of Carica papaya leaves on the human oral squamous cell carcinoma SCC25 cell line in parallel with non-cancerous human keratinocyte HaCaT cells. Two out of four extracts showed a significantly selective effect towards the cancer cells and were found to contain high levels of phenolic and flavonoid compounds. The chromatographic and mass spectrometric profiles of the extracts obtained with Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry were used to tentatively identify the bioactive compounds using comparative analysis. The principal compounds identified were flavonoids or flavonoid glycosides, particularly compounds from the kaempferol and quercetin families, of which several have previously been reported to possess anticancer activities. These results confirm that papaya leaf is a potential source of anticancer compounds and warrant further scientific investigation to validate the traditional use of papaya leaf to treat cancer. PMID:26712788

  4. Changes in the numbers of osteoclasts in newts under conditions of microgravity

    NASA Astrophysics Data System (ADS)

    Berezovska, O. P.; Rodionova, N. V.; Grigoryan, E. N.; Mitashov, V. I.

    Intensity of osteoclastic resorption and calcium content were investigated in intact limb bones of the newts flown on board of a biosatellite Cosmos-2229 after amputation of their forelimbs and tail. Using X-ray microanalysis it was shown an increase in calcium content in the bones on 20^th day after operation. Histological study revealed an activation of osteoclastic resorption on endosteal surface of long bones. The newts exposed after surgery on a biosatellite had the same level of bone mineralisation as operated ground control ones, but the increase in number of polynuclear osteoclasts was lower.

  5. Multiple myeloma–derived MMP-13 mediates osteoclast fusogenesis and osteolytic disease

    PubMed Central

    Li, Shirong; Feng, Rentian; Ma, Huihui; Sabeh, Farideh; Roodman, G. David; Wang, Ji; Robinson, Samuel; Guo, X. Edward; Lund, Thomas; Normolle, Daniel; Mapara, Markus Y.; Weiss, Stephen J.

    2016-01-01

    Multiple myeloma (MM) cells secrete osteoclastogenic factors that promote osteolytic lesions; however, the identity of these factors is largely unknown. Here, we performed a screen of human myeloma cells to identify pro-osteoclastogenic agents that could potentially serve as therapeutic targets for ameliorating MM-associated bone disease. We found that myeloma cells express high levels of the matrix metalloproteinase MMP-13 and determined that MMP-13 directly enhances osteoclast multinucleation and bone-resorptive activity by triggering upregulation of the cell fusogen DC-STAMP. Moreover, this effect was independent of the proteolytic activity of the enzyme. Further, in mouse xenograft models, silencing MMP-13 expression in myeloma cells inhibited the development of osteolytic lesions. In patient cohorts, MMP-13 expression was localized to BM-associated myeloma cells, while elevated MMP-13 serum levels were able to correctly predict the presence of active bone disease. Together, these data demonstrate that MMP-13 is critical for the development of osteolytic lesions in MM and that targeting the MMP-13 protein — rather than its catalytic activity — constitutes a potential approach to mitigating bone disease in affected patients. PMID:27043283

  6. Microgravity Induction of TRAIL Expression in Preosteoclast Cells Enhances Osteoclast Differentiation.

    PubMed

    Sambandam, Yuvaraj; Baird, Kelsey L; Stroebel, Maxwell; Kowal, Emily; Balasubramanian, Sundaravadivel; Reddy, Sakamuri V

    2016-05-04

    Evidence indicates that astronauts experience significant bone loss in space. We previously showed that simulated microgravity (μXg) using the NASA developed rotary cell culture system (RCCS) enhanced bone resorbing osteoclast (OCL) differentiation. However, the mechanism by which μXg increases OCL formation is unclear. RANK/RANKL signaling pathway is critical for OCL differentiation. Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) has been shown to increase osteoclastogenesis. We hypothesize that TRAIL may play an important role in μXg enhanced OCL differentiation. In this study, we identified by RT profiler PCR array screening that μXg induces high levels of TRAIL expression in murine preosteoclast cells in the absence of RANKL stimulation compared to ground based (Xg) cultures. We further identified that μXg elevated the adaptor protein TRAF-6 and fusion genes OC-STAMP and DC-STAMP expression in preosteoclast cells. Interestingly, neutralizing antibody against TRAIL significantly reduced μXg induced OCL formation. We further identified that over-expression of pTRAIL in RAW 264.7 cells enhanced OCL differentiation. These results indicate that TRAIL signaling plays an important role in the μXg increased OCL differentiation. Therefore, inhibition of TRAIL expression could be an effective countermeasure for μXg induced bone loss.

  7. Microgravity Induction of TRAIL Expression in Preosteoclast Cells Enhances Osteoclast Differentiation

    PubMed Central

    Sambandam, Yuvaraj; Baird, Kelsey L.; Stroebel, Maxwell; Kowal, Emily; Balasubramanian, Sundaravadivel; Reddy, Sakamuri V.

    2016-01-01

    Evidence indicates that astronauts experience significant bone loss in space. We previously showed that simulated microgravity (μXg) using the NASA developed rotary cell culture system (RCCS) enhanced bone resorbing osteoclast (OCL) differentiation. However, the mechanism by which μXg increases OCL formation is unclear. RANK/RANKL signaling pathway is critical for OCL differentiation. Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) has been shown to increase osteoclastogenesis. We hypothesize that TRAIL may play an important role in μXg enhanced OCL differentiation. In this study, we identified by RT profiler PCR array screening that μXg induces high levels of TRAIL expression in murine preosteoclast cells in the absence of RANKL stimulation compared to ground based (Xg) cultures. We further identified that μXg elevated the adaptor protein TRAF-6 and fusion genes OC-STAMP and DC-STAMP expression in preosteoclast cells. Interestingly, neutralizing antibody against TRAIL significantly reduced μXg induced OCL formation. We further identified that over-expression of pTRAIL in RAW 264.7 cells enhanced OCL differentiation. These results indicate that TRAIL signaling plays an important role in the μXg increased OCL differentiation. Therefore, inhibition of TRAIL expression could be an effective countermeasure for μXg induced bone loss. PMID:27142480

  8. Microgravity Induction of TRAIL Expression in Preosteoclast Cells Enhances Osteoclast Differentiation

    NASA Astrophysics Data System (ADS)

    Sambandam, Yuvaraj; Baird, Kelsey L.; Stroebel, Maxwell; Kowal, Emily; Balasubramanian, Sundaravadivel; Reddy, Sakamuri V.

    2016-05-01

    Evidence indicates that astronauts experience significant bone loss in space. We previously showed that simulated microgravity (μXg) using the NASA developed rotary cell culture system (RCCS) enhanced bone resorbing osteoclast (OCL) differentiation. However, the mechanism by which μXg increases OCL formation is unclear. RANK/RANKL signaling pathway is critical for OCL differentiation. Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) has been shown to increase osteoclastogenesis. We hypothesize that TRAIL may play an important role in μXg enhanced OCL differentiation. In this study, we identified by RT profiler PCR array screening that μXg induces high levels of TRAIL expression in murine preosteoclast cells in the absence of RANKL stimulation compared to ground based (Xg) cultures. We further identified that μXg elevated the adaptor protein TRAF-6 and fusion genes OC-STAMP and DC-STAMP expression in preosteoclast cells. Interestingly, neutralizing antibody against TRAIL significantly reduced μXg induced OCL formation. We further identified that over-expression of pTRAIL in RAW 264.7 cells enhanced OCL differentiation. These results indicate that TRAIL signaling plays an important role in the μXg increased OCL differentiation. Therefore, inhibition of TRAIL expression could be an effective countermeasure for μXg induced bone loss.

  9. Denosumab in patients with cancer-a surgical strike against the osteoclast.

    PubMed

    Brown, Janet E; Coleman, Robert E

    2012-01-10

    Elucidation of the molecular pathways underlying bone turnover has revealed potential therapeutic targets, including receptor activator of nuclear factor-κB ligand (RANKL), which is a mediator of osteoclast formation, function and survival. Denosumab is a fully human monoclonal antibody that binds to and inhibits RANKL. This agent has been developed for use in patients with early-stage and advanced-stage cancer, as well as for the treatment of osteoporosis, and can prevent bone loss and reduce fragility fractures in both types of disease. In the bone metastasis setting, several large phase III studies have shown that denosumab is more effective than bisphosphonates, namely zoledronic acid, in reducing skeletal morbidity arising from a wide range of tumors. In addition, a remarkable activity of denosumab has been demonstrated in giant-cell tumors of the bone. Subsequent studies of denosumab have demonstrated that it can delay bone metastasis in patients with castration-resistant prostate cancer; adjuvant studies in patients with breast cancer are in progress. This Review critically explores the emerging role of denosumab in maintaining bone health in the oncology setting, and discusses the factors that are likely to influence the choice between bisphosphonates and denosumab in clinical practice.

  10. Recombinant VSV G proteins reveal a novel raft-dependent endocytic pathway in resorbing osteoclasts

    SciTech Connect

    Mulari, Mika T.K. Nars, Martin; Laitala-Leinonen, Tiina; Kaisto, Tuula; Metsikkoe, Kalervo; Sun Yi; Vaeaenaenen, H. Kalervo

    2008-05-01

    Transcytotic membrane flow delivers degraded bone fragments from the ruffled border to the functional secretory domain, FSD, in bone resorbing osteoclasts. Here we show that there is also a FSD-to-ruffled border trafficking pathway that compensates for the membrane loss during the matrix uptake process and that rafts are essential for this ruffled border-targeted endosomal pathway. Replacing the cytoplasmic tail of the vesicular stomatitis virus G protein with that of CD4 resulted in partial insolubility in Triton X-100 and retargeting from the peripheral non-bone facing plasma membrane to the FSD. Recombinant G proteins were subsequently endosytosed and delivered from the FSD to the peripheral fusion zone of the ruffled border, which were both rich in lipid rafts as suggested by viral protein transport analysis and visualizing the rafts with fluorescent recombinant cholera toxin. Cholesterol depletion by methyl-{beta}-cyclodextrin impaired the ruffled border-targeted vesicle trafficking pathway and inhibited bone resorption dose-dependently as quantified by measuring the CTX and TRACP 5b secreted to the culture medium and by measuring the resorbed area visualized with a bi-phasic labeling method using sulpho-NHS-biotin and WGA-lectin. Thus, rafts are vital for membrane recycling from the FSD to the late endosomal/lysosomal ruffled border and bone resorption.

  11. Smad4 is required to inhibit osteoclastogenesis and maintain bone mass

    PubMed Central

    Morita, Mayu; Yoshida, Shigeyuki; Iwasaki, Ryotaro; Yasui, Tetsuro; Sato, Yuiko; Kobayashi, Tami; Watanabe, Ryuichi; Oike, Takatsugu; Miyamoto, Kana; Takami, Masamichi; Ozato, Keiko; Deng, Chu-Xia; Aburatani, Hiroyuki; Tanaka, Sakae; Yoshimura, Akihiko; Toyama, Yoshiaki; Matsumoto, Morio; Nakamura, Masaya; Kawana, Hiromasa; Nakagawa, Taneaki; Miyamoto, Takeshi

    2016-01-01

    Bone homeostasis is maintained as a delicate balance between bone-resorption and bone-formation, which are coupled to maintain appropriate bone mass. A critical question is how bone-resorption is terminated to allow bone-formation to occur. Here, we show that TGFβs inhibit osteoclastogenesis and maintain bone-mass through Smad4 activity in osteoclasts. We found that latent-TGFβ1 was activated by osteoclasts to inhibit osteoclastogenesis. Osteoclast-specific Smad4 conditional knockout mice (Smad4-cKO) exhibited significantly reduced bone-mass and elevated osteoclast formation relative to controls. TGFβ1-activation induced expression of Irf8 and Bcl6, both of which encode factors inhibiting osteoclastogenesis, by blocking their negative regulator, Prdm1, in osteoclasts in a Smad4-dependent manner. Reduced bone-mass and accelerated osteoclastogenesis seen in Smad4-cKO were abrogated by Prdm1 deletion. Administration of latent-TGFβ1-Fc to wild-type mice antagonized LPS-induced bone destruction in a model of activated osteoclast-mediated bone destruction. Thus, latent-TGFβ1-Fc could serve as a promising new therapeutic agent in bone diseases marked by excessive resorption. PMID:27731422

  12. Microgravity promotes osteoclast activity in medaka fish reared at the international space station.

    PubMed

    Chatani, Masahiro; Mantoku, Akiko; Takeyama, Kazuhiro; Abduweli, Dawud; Sugamori, Yasutaka; Aoki, Kazuhiro; Ohya, Keiichi; Suzuki, Hiromi; Uchida, Satoko; Sakimura, Toru; Kono, Yasushi; Tanigaki, Fumiaki; Shirakawa, Masaki; Takano, Yoshiro; Kudo, Akira

    2015-09-21

    The bone mineral density (BMD) of astronauts decreases specifically in the weight-bearing sites during spaceflight. It seems that osteoclasts would be affected by a change in gravity; however, the molecular mechanism involved remains unclear. Here, we show that the mineral density of the pharyngeal bone and teeth region of TRAP-GFP/Osterix-DsRed double transgenic medaka fish was decreased and that osteoclasts were activated when the fish were reared for 56 days at the international space station. In addition, electron microscopy observation revealed a low degree of roundness of mitochondria in osteoclasts. In the whole transcriptome analysis, fkbp5 and ddit4 genes were strongly up-regulated in the flight group. The fish were filmed for abnormal behavior; and, interestingly, the medaka tended to become motionless in the late stage of exposure. These results reveal impaired physiological function with a change in mechanical force under microgravity, which impairment was accompanied by osteoclast activation.

  13. Microgravity promotes osteoclast activity in medaka fish reared at the international space station

    PubMed Central

    Chatani, Masahiro; Mantoku, Akiko; Takeyama, Kazuhiro; Abduweli, Dawud; Sugamori, Yasutaka; Aoki, Kazuhiro; Ohya, Keiichi; Suzuki, Hiromi; Uchida, Satoko; Sakimura, Toru; Kono, Yasushi; Tanigaki, Fumiaki; Shirakawa, Masaki; Takano, Yoshiro; Kudo, Akira

    2015-01-01

    The bone mineral density (BMD) of astronauts decreases specifically in the weight-bearing sites during spaceflight. It seems that osteoclasts would be affected by a change in gravity; however, the molecular mechanism involved remains unclear. Here, we show that the mineral density of the pharyngeal bone and teeth region of TRAP-GFP/Osterix-DsRed double transgenic medaka fish was decreased and that osteoclasts were activated when the fish were reared for 56 days at the international space station. In addition, electron microscopy observation revealed a low degree of roundness of mitochondria in osteoclasts. In the whole transcriptome analysis, fkbp5 and ddit4 genes were strongly up-regulated in the flight group. The fish were filmed for abnormal behavior; and, interestingly, the medaka tended to become motionless in the late stage of exposure. These results reveal impaired physiological function with a change in mechanical force under microgravity, which impairment was accompanied by osteoclast activation. PMID:26387549

  14. The 19S proteasomal lid subunit POH1 enhances the transcriptional activation by Mitf in osteoclasts.

    PubMed

    Schwarz, Toni; Sohn, Chee; Kaiser, Bria; Jensen, Eric D; Mansky, Kim C

    2010-04-01

    The microphthalmia-associated transcription factor (Mitf) regulates gene expression required for osteoclast differentiation. Genes regulated by Mitf have been previously identified. However, proteins that interact and regulate Mitf's activity in osteoclasts are not well known. Here, we report that POH1, a subunit of the 19S proteasome lid is a regulator of Mitf. We show that POH1 and Mitf interact in osteoclasts and that this interaction is dependent on RANKL signaling. Overexpression of POH1 increased Mitf's activation of 5XGal4-TK and Acp5 promoters. The amino terminus of POH1 mediates the binding to Mitf and is sufficient to increase Mitf's transcriptional activity. Finally, we show that mutations in the JAMM motif of POH1 reduced Mitf activation of promoters. In summary, our results identify a novel mechanism of Mitf regulation in osteoclasts by POH1.

  15. Microbicidal effect of medicinal plant extracts (Psidium guajava Linn. and Carica papaya Linn.) upon bacteria isolated from fish muscle and known to induce diarrhea in children.

    PubMed

    Vieira, R H; Rodrigues, D P; Gonçalves, F A; Menezes, F G; Aragão, J S; Sousa, O V

    2001-01-01

    Out of the twenty-four samples of shrimp and fish muscle used for this study, twelve were collected near a large marine sewer for waste disposal, 3 km off the coast of Fortaleza (Brazil) and used for the isolation of E. coli. Other twelve were collected at the Mucuripe fresh fish market (Fortaleza, Brazil) and used for the isolation of Staphylococcus aureus. Ethanol, water and acetone-diluted extracts of guava and papaya leaf sprouts were tested on the bacteria in order to verify their microbicidal potential. The E. coli strains used in the trials were rated LT positive. The papaya leaf extracts (Carica papaya Linn) showed no microbicidal activity while the guava sprout extracts (Psidium guajava Linn) displayed halos exceeding 13 mm for both species, an effect considered to be inhibitory by the method employed. Guava sprout extracts by 50% diluted ethanol most effectively inhibited E. coli (EPEC), while those in 50% acetone were less effective. It may be concluded that guava sprout extracts constitute a feasible treatment option for diarrhea caused by E. coli or by S. aureus-produced toxins, due to their quick curative action, easy availability in tropical countries and low cost to the consumer.

  16. Green synthesis and characterization of Carica papaya leaf extract coated silver nanoparticles through X-ray diffraction, electron microscopy and evaluation of bactericidal properties.

    PubMed

    Banala, Rajkiran Reddy; Nagati, Veera Babu; Karnati, Pratap Reddy

    2015-09-01

    The evolution of nanotechnology and the production of nanomedicine from various sources had proven to be of intense value in the field of biomedicine. The smaller size of nanoparticles is gaining importance in research for the treatment of various diseases. Moreover the production of nanoparticles is eco-friendly and cost effective. In the present study silver nanoparticles were synthesized from Carica papaya leaf extract (CPL) and characterized for their size and shape using scanning electron microscopy and transmission electron microscopy, respectively. Fourier transform infrared spectroscopy (FTIR), Energy dispersive X-ray spectroscopy (EDS/EDX) and X-ray diffraction spectroscopy (XRD) were conducted to determine the concentration of metal ions, the shape of molecules. The bactericidal activity was evaluated using Luria Bertani broth cultures and the minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) were estimated using turbidimetry. The data analysis showed size of 50-250 nm spherical shaped nanoparticles. The turbidimetry analysis showed MIC and MBC was >25 μg/mL against both Gram positive and Gram negative bacteria in Luria Bertani broth cultures. In summary the synthesized silver nanoparticles from CPL showed acceptable size and shape of nanoparticles and effective bactericidal activity.

  17. Macrophage-osteoclast differentiation and bone resorption in osteoarthrotic subchondral acetabular cysts.

    PubMed

    Sabokbar, A; Crawford, R; Murray, D W; Athanasou, N A

    2000-06-01

    A macrophage infiltrate is commonly found in enlarging subchondral cysts in osteoarthrosis (OA) and the surrounding bone. To determine whether osteoclast differentiation by these cells contributes to the increase in the number of osteoclasts and bone resorption that accompanies OA cyst enlargement, we isolated macrophages from the wall of OA cysts and co-cultured them with osteoblast-like UMR106 cells in the presence or absence of 1,25(OH)2D3 and M-CSE After 14 days of incubation, co-cultures of UMR106 cells and cyst-derived macrophages showed evidence of osteoclast differentiation by expression of TRAP, VNR and formation of numerous lacunar pits. We found that, unlike osteoclast precursors in monocyte and other tissue macrophage populations, the addition of M-CSF to medium is not required for osteoclast differentiation. Our findings suggest that macrophage-osteoclast differentiation is one means whereby the osteolysis associated with the enlargement of OA cysts could be effected.

  18. Mice lacking JunB are osteopenic due to cell-autonomous osteoblast and osteoclast defects.

    PubMed

    Kenner, Lukas; Hoebertz, Astrid; Beil, F Timo; Beil, Timo; Keon, Niamh; Karreth, Florian; Eferl, Robert; Scheuch, Harald; Szremska, Agnieszka; Amling, Michael; Schorpp-Kistner, Marina; Angel, Peter; Wagner, Erwin F

    2004-02-16

    Because JunB is an essential gene for placentation, it was conditionally deleted in the embryo proper. JunBDelta/Delta mice are born viable, but develop severe low turnover osteopenia caused by apparent cell-autonomous osteoblast and osteoclast defects before a chronic myeloid leukemia-like disease. Although JunB was reported to be a negative regulator of cell proliferation, junBDelta/Delta osteoclast precursors and osteoblasts show reduced proliferation along with a differentiation defect in vivo and in vitro. Mutant osteoblasts express elevated p16(INK4a) levels, but exhibit decreased cyclin D1 and cyclin A expression. Runx2 is transiently increased during osteoblast differentiation in vitro, whereas mature osteoblast markers such as osteocalcin and bone sialoprotein are strongly reduced. To support a cell-autonomous function of JunB in osteoclasts, junB was inactivated specifically in the macrophage-osteoclast lineage. Mutant mice develop an osteopetrosis-like phenotype with increased bone mass and reduced numbers of osteoclasts. Thus, these data reveal a novel function of JunB as a positive regulator controlling primarily osteoblast as well as osteoclast activity.

  19. HIF1α is required for osteoclast activation by estrogen deficiency in postmenopausal osteoporosis.

    PubMed

    Miyauchi, Yoshiteru; Sato, Yuiko; Kobayashi, Tami; Yoshida, Shigeyuki; Mori, Tomoaki; Kanagawa, Hiroya; Katsuyama, Eri; Fujie, Atsuhiro; Hao, Wu; Miyamoto, Kana; Tando, Toshimi; Morioka, Hideo; Matsumoto, Morio; Chambon, Pierre; Johnson, Randall S; Kato, Shigeaki; Toyama, Yoshiaki; Miyamoto, Takeshi

    2013-10-08

    In women, estrogen deficiency after menopause frequently accelerates osteoclastic bone resorption, leading to osteoporosis, the most common skeletal disorder. However, mechanisms underlying osteoporosis resulting from estrogen deficiency remain largely unknown. Here we show that in bone-resorbing osteoclasts, estrogen-dependent destabilization of hypoxia-inducible factor 1 alpha (HIF1α), which is unstable in the presence of oxygen, plays a pivotal role in promoting bone loss in estrogen-deficient conditions. In vitro, HIF1α was destabilized by estrogen treatment even in hypoxic conditions, and estrogen loss in ovariectomized (Ovx) mice stabilized HIF1α in osteoclasts and promoted their activation and subsequent bone loss in vivo. Osteoclast-specific HIF1α inactivation antagonized bone loss in Ovx mice and osteoclast-specific estrogen receptor alpha deficient mice, both models of estrogen-deficient osteoporosis. Oral administration of a HIF1α inhibitor protected Ovx mice from osteoclast activation and bone loss. Thus, HIF1α represents a promising therapeutic target in osteoporosis.

  20. FSH-Receptor Isoforms and FSH-dependent Gene Transcription in Human Monocytes and Osteoclasts

    PubMed Central

    Robinson, Lisa J; Tourkova, Irina; Wang, Yujuan; Sharrow, Allison C; Landau, Michael S; Yaroslavskiy, Beatrice B; Li, Sun; Zaidi, Mone; Blair, Harry C

    2010-01-01

    Cells of the monocyte series respond to follicle stimulating hormone (FSH) by poorly characterized mechanisms. We studied FSH-receptors (FSH-R) and FSH response in nontransformed human monocytes and in osteoclasts differentiated from these cells. Western blot and PCR confirmed FSH-R expression on monocytes or osteoclasts, although at low levels relative to ovarian controls. Monocyte and osteoclast FSH-Rs differed from FSH-R from ovarian cells, reflecting variable splicing in exons 8–10. Monocytes produced no cAMP, the major signal in ovarian cells, in response to FSH. However, monocytes or osteoclasts transcribed TNFα in response to the FSH. No relation of expression of osteoclast FSH-R to the sex of cell donors or to exposure to sex hormones was apparent. Controls for FSH purity and endotoxin contamination were negative. Unamplified cRNA screening in adherent CD14 cells after 2 hours in 25 ng/ml FSH showed increased transcription of RANKL signalling proteins. Transcription of key proteins that stimulate bone turnover, TNFα and TSG-6, increased 2–3 fold after FSH treatment. Smaller but significant changes occurred in transcripts of selected signalling, adhesion, and cytoskeletal proteins. We conclude that monocyte and osteoclast FSH response diverges from that of ovarian cells, reflecting, at least in part, varying FSH-R isoforms. PMID:20171950

  1. Bisphosphonate-functionalized hyaluronic acid showing selective affinity for osteoclasts as a potential treatment for osteoporosis.

    PubMed

    Kootala, Sujit; Ossipov, Dmitri; van den Beucken, Jeroen J J P; Leeuwenburgh, Sander; Hilborn, Jöns

    2015-08-01

    Current treatments for osteoporosis involve the administration of high doses of bisphosphonates (BPs) over a number of years. However, the efficiency of the absorption of these drugs and specificity towards targeted osteoclastic cells is still suboptimal. In this study, we have exploited the natural affinity of high (H) and low (L) molecular-weight hyaluronic acid (HA) towards a cluster of differentiation 44 (CD44) receptors on osteoclasts to use it as a biodegradable targeting vehicle. We covalently bonded BP to functionalised HA (HA-BP) and found that HA-BP conjugates were highly specific to osteoclastic cells and reduced mature osteoclast numbers significantly more than free BP. To study the uptake of HA-BP, we fluorescently derivatised the polymer-drug with fluorescein B isothiocyanate (FITC) and found that L-HA-BP could seamlessly enter osteoclastic cells. Alternatively, we tested polyvinyl alcohol (PVA) as a synthetic polymer delivery vehicle using similar chemistry to link BP and found that osteoclast numbers did not reduce in the same way. These findings could pave the way for biodegradable polymers to be used as vehicles for targeted delivery of anti-osteoporotic drugs.

  2. Stochastic differentiation into an osteoclast lineage from cloned macrophage-like cells.

    PubMed

    Hayashi, Shin-Ichi; Murata, Akihiko; Okuyama, Kazuki; Shimoda, Yuhki; Hikosaka, Mari; Yasuda, Hisataka; Yoshino, Miya

    2012-11-16

    Differentiation into osteoclasts is induced by a macrophage colony-stimulating factor and receptor activator of nuclear-factor κB ligand. The macrophage-like cell line, C7 has the potential to differentiate into osteoclasts when it is cultured with both factors for 6 days. Although C7 is an established cell line, the frequency of differentiation into this lineage was less than 10%, and the ratio was maintained at a constant level, even after repeated cloning. In this study, to increase the differentiation of C7 cells to osteoclasts, C7 derivative treatments with several activators and/or inhibitors were performed for 3 days prior to setting osteoclast induction analysis; however, a reagent to significantly up-regulate the frequency of differentiation was not found. Only extended cultures for osteoclastogenesis exponentially increased the frequency of osteoclast precursors. It is likely that C7 cell differentiation into committed osteoclast precursors is on 'autopilot' rather than requiring specific signals to drive this process.

  3. Osteoclast derived matrix metalloproteinase-9 directly impacts angiogenesis in the prostate tumor-bone microenvironment

    PubMed Central

    Bruni-Cardoso, Alexandre; Johnson, Lindsay C.; Vessella, Robert L.; Peterson, Todd E.; Lynch, Conor C.

    2010-01-01

    In human prostate to bone metastases and in a novel rodent model that recapitulates prostate tumor induced-osteolytic and osteogenic responses, we found that osteoclasts are a major source of the proteinase, MMP-9. Since MMPs are important mediators of tumor-host communication, we tested the impact of host derived MMP-9 on prostate tumor progression in bone. To this end, immunocompromised mice that were wild type or null for MMP-9 received transplants of osteolytic/osteogenic inducing prostate adenocarcinoma tumor tissue to the calvaria. Surprisingly, we found that that host MMP-9 significantly contributed to prostate tumor growth without impacting prostate tumor induced osteolytic or osteogenic change as determined by μCT, μSPECT and histomorphometry. Subsequent studies aimed at delineating the mechanism of MMP-9 action on tumor growth focused on angiogenesis since MMP-9 and osteoclasts have been implicated in this process. We observed; 1) significantly fewer and smaller blood vessels in the MMP-9 null group by CD-31 immunohistochemistry; 2) MMP-9 null osteoclasts had significantly lower levels of bioavailable VEGF-A164 and; 3) using an aorta sprouting assay, conditioned media derived from wild type osteoclasts was significantly more angiogenic than conditioned media derived from MMP-9 null osteoclasts. In conclusion, these studies demonstrate that osteoclast derived MMP-9 impacts prostate tumor growth in the bone microenvironment by contributing to angiogenesis without altering prostate tumor induced osteolytic or osteogenic changes. PMID:20332212

  4. Plumbagin attenuates cancer cell growth and osteoclast formation in the bone microenvironment of mice

    PubMed Central

    Yan, Wei; Wang, Ting-yu; Fan, Qi-ming; Du, Lin; Xu, Jia-ke; Zhai, Zan-jing; Li, Hao-wei; Tang, Ting-ting

    2014-01-01

    Aim: To investigate the effects of plumbagin, a naphthoquinone derived from the medicinal plant Plumbago zeylanica, on human breast cancer cell growth and the cancer cell-induced osteolysis in the bone microenvironment of mice. Methods: Human breast cancer cell subline MDA-MB-231SA with the ability to spread and grow in the bone was tested. The cell proliferation was determined using the CCK-8 assay. Apoptosis was detected with Annexin V/PI double-labeled flow cytometry. Red fluorescent protein-labeled MDA-MB-231SArfp cells were injected into the right tibia of female BALB/c-nu/nu mice. Three days after the inoculation, the mice were injected with plumbagin (2, 4, or 6 mg/kg, ip) 5 times per week for 7 weeks. The growth of the tumor cells was monitored using an in vivo imaging system. After the mice were sacrificed, the hind limbs were removed for radiographic and histological analyses. Results: Plumbagin (2.5–20 μmol/L) concentration-dependently inhibited the cell viability and induced apoptosis of MDA-MB-231SA cells in vitro (the IC50 value of inhibition of cell viability was 14.7 μmol/L). Administration of plumbagin to breast cancer bearing mice delayed the tumor growth by 2–3 weeks and reduced the tumor volume by 44%–74%. The in vivo imaging study showed that plumbagin dose-dependently inhibited MDA-MB-231SArfp cell growth in bone microenvironment. Furthermore, X-ray images and micro-CT study demonstrated that plumbagin reduced bone erosion area and prevented a decrease in bone tissue volume. Histological studies showed that plumbagin dose-dependently inhibited the breast cancer cell growth, enhanced the cell apoptosis and reduced the number of TRAcP-positive osteoclasts. Conclusion: Plumbagin inhibits the cell growth and induces apoptosis in human breast cancer cells in mice bone microenvironment, leading to significant reduction in osteolytic lesions caused by the tumor cells. PMID:24384612

  5. Crystallization and preliminary X-ray analysis of four cysteine proteases from Ficus carica latex.

    PubMed

    Haesaerts, Sarah; Rodriguez Buitrago, John Alexander; Loris, Remy; Baeyens-Volant, Danielle; Azarkan, Mohamed

    2015-04-01

    The latex of the common fig (Ficus carica) contains a mixture of at least five cysteine proteases commonly known as ficins (EC 3.4.22.3). Four of these proteases were purified to homogeneity and crystals were obtained in a variety of conditions. The four ficin (iso)forms appear in ten different crystal forms. All diffracted to better than 2.10 Å resolution and for each form at least one crystal form diffracted to 1.60 Å resolution or higher. Ficin (iso)forms B and C share a common crystal form, suggesting close sequence and structural similarity. The latter diffracted to a resolution of 1.20 Å and belonged to space group P3₁21 or P3₂21, with unit-cell parameters a = b = 88.9, c = 55.9 Å.

  6. Chemical assessment and in vitro antioxidant capacity of Ficus carica latex.

    PubMed

    Oliveira, Andreia P; Silva, Luís R; Ferreres, Federico; Guedes de Pinho, Paula; Valentão, Patrícia; Silva, Branca M; Pereira, José A; Andrade, Paula B

    2010-03-24

    Ficus species possess latex-like material within their vasculatures, affording protection and self-healing from physical attacks. In this work, metabolite profiling was performed on Ficus carica latex. Volatiles profile was determined by HS-SPME/GC-IT-MS, with 34 compounds being identified, distributed by distinct chemical classes: 5 aldehydes, 7 alcohols, 1 ketone, 9 monoterpenes, 9 sesquiterpenes and 3 other compounds. Sesquiterpenes constituted the most abundant class in latex (ca. 91% of total identified compounds). Organic acids composition was also characterized, by HPLC-UV, and oxalic, citric, malic, quinic, shikimic and fumaric acids were determined. Malic and shikimic acids were present in higher amounts (ca. 26%, each). The antioxidant potential of this material was checked by distinct in vitro chemical assays. A concentration-dependent activity was noticed against DPPH, nitric oxide and superoxide radicals. Additionally, acetylcholinesterase inhibitory capacity was evaluated, but a weak effect was found.

  7. Enantioselective esterification of (R,S)-2-methylalkanoic acid with Carica papaya lipase in organic solvents.

    PubMed

    Chang, Chun-Sheng; Ho, Ssu-Ching

    2011-11-01

    Isooctane was the best reaction medium for the enantioselective esterification of (R,S)-2-methylalkanoic acid with n-butanol using Carica papaya lipase as catalyst. Increasing linear alkyl-chain length of racemic 2-methylalkanoic acids from ethyl to hexyl increased the enantioselectivity (E) from 2.1 to 98.2 for the esterification of racemic 2-methylalkanoic acids with n-butanol at 35°C. Decreasing reaction temperature from 40 to 20°C increased the enantioselectivity (E) from 14 to 33 for the esterification of racemic 2-methylhexanoic acids with n-butanol. We obtained a maximum enantioselectivity, of E = 24.3, for the enantioselective esterification of racemic 2-methylhexanoic acids with n-butanol in isooctane at water activity 0.33, and at 35°C.

  8. Sodium tetrathionate effect on papain purification from different Carica papaya latex crude extracts.

    PubMed

    Llerena-Suster, Carlos R; Priolo, Nora S; Morcelle, Susana R

    2011-01-01

    Papain from latex of Carica papaya was purified up to matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry homogeneity by salt precipitation from two different crude extract sources: a refined preparation obtained in our laboratory and a commercial one. Sodium tetrathionate was tested in the purification process to preserve the enzymatic activity of the peptidase. Purification was checked by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE) and cation exchange chromatography, using commercial pure papain as standard for a rapid comparison. The best purification yields (3.4%) were obtained in presence of 30 mM sodium tetrathionate for the crude extract prepared in our laboratory. The described purification method proved to be robust and reliable to obtain pure papain on a preparative scale.

  9. Crystallization and preliminary X-ray analysis of four cysteine proteases from Ficus carica latex

    PubMed Central

    Haesaerts, Sarah; Rodriguez Buitrago, John Alexander; Loris, Remy; Baeyens-Volant, Danielle; Azarkan, Mohamed

    2015-01-01

    The latex of the common fig (Ficus carica) contains a mixture of at least five cysteine proteases commonly known as ficins (EC 3.4.22.3). Four of these proteases were purified to homogeneity and crystals were obtained in a variety of conditions. The four ficin (iso)forms appear in ten different crystal forms. All diffracted to better than 2.10 Å resolution and for each form at least one crystal form diffracted to 1.60 Å resolution or higher. Ficin (iso)forms B and C share a common crystal form, suggesting close sequence and structural similarity. The latter diffracted to a resolution of 1.20 Å and belonged to space group P3121 or P3221, with unit-cell parameters a = b = 88.9, c = 55.9 Å. PMID:25849510

  10. Complete nucleotide sequence of a monopartite Begomovirus and associated satellites infecting Carica papaya in Nepal.

    PubMed

    Shahid, M S; Yoshida, S; Khatri-Chhetri, G B; Briddon, R W; Natsuaki, K T

    2013-06-01

    Carica papaya (papaya) is a fruit crop that is cultivated mostly in kitchen gardens throughout Nepal. Leaf samples of C. papaya plants with leaf curling, vein darkening, vein thickening, and a reduction in leaf size were collected from a garden in Darai village, Rampur, Nepal in 2010. Full-length clones of a monopartite Begomovirus, a betasatellite and an alphasatellite were isolated. The complete nucleotide sequence of the Begomovirus showed the arrangement of genes typical of Old World begomoviruses with the highest nucleotide sequence identity (>99 %) to an isolate of Ageratum yellow vein virus (AYVV), confirming it as an isolate of AYVV. The complete nucleotide sequence of betasatellite showed greater than 89 % nucleotide sequence identity to an isolate of Tomato leaf curl Java betasatellite originating from Indonesian. The sequence of the alphasatellite displayed 92 % nucleotide sequence identity to Sida yellow vein China alphasatellite. This is the first identification of these components in Nepal and the first time they have been identified in papaya.

  11. Quantification of the antiplasmodial alkaloid carpaine in papaya (Carica papaya) leaves.

    PubMed

    Julianti, Tasqiah; Oufir, Mouhssin; Hamburger, Matthias

    2014-08-01

    Daily consumption of papaya (Carica papaya) leaves as greens and an herbal infusion is common in some parts of Indonesia as a means for preventing malaria. Antiplasmodial activity of the leaf extracts and of the main alkaloid carpaine were recently confirmed. A quantitative assay for determination of carpaine in papaya leaves was developed and validated. The assay involved pressurized liquid extraction and quantification with the aid of ultrahigh-performance liquid chromatography-tandem mass spectroscopy. Extraction conditions were optimized with respect to solvent, temperature, and number of extraction cycles. The ultrahigh-performance liquid chromatography-tandem mass spectroscopy assay was validated over a range of 20-5000 ng/mL (R(2) of 0.9908). A total of 29 papaya leaf samples were analyzed, and carpaine concentration in dry leaves was found to range from 0.02 to 0.31%. No obvious dependence on geographic origin and leaf maturity was observed.

  12. Erwinia mallotivora sp., a new pathogen of papaya (Carica papaya) in Peninsular Malaysia.

    PubMed

    Amin, Noriha Mat; Bunawan, Hamidun; Redzuan, Rohaiza Ahmad; Jaganath, Indu Bala S

    2010-12-24

    Erwinia mallotivora was isolated from papaya infected with dieback disease showing the typical symptoms of greasy, water-soaked lesions and spots on leaves. Phylogenetic analysis of 16S rRNA gene sequences showed that the strain belonged to the genus Erwinia and was united in a monophyletic group with E. mallotivora DSM 4565 (AJ233414). Earlier studies had indicated that the causal agent for this disease was E. papayae. However, our current studies, through Koch's postulate, have confirmed that papaya dieback disease is caused by E. mallotivora. To our knowledge, this is the first new discovery of E. mallotivora as a causal agent of papaya dieback disease in Peninsular Malaysia. Previous reports have suggested that E. mallotivora causes leaf spot in Mallotus japonicus. However, this research confirms it also to be pathogenic to Carica papaya.

  13. Antioxidant activities and phenolics profiling of different parts of Carica papaya by LCMS-MS.

    PubMed

    Zunjar, V; Mammen, D; Trivedi, B M

    2015-01-01

    This article deals with the comparison of the antioxidant activity of aqueous extracts of various parts of Carica papaya L. The evaluation of total phenolic content and total flavonoid content revealed high antioxidant potential of the seeds and fruits. The free radical-scavenging potential of the aqueous extracts indicated the seeds to have better DPPH-scavenging activity than fruits. The results were augmented by the FRAP activity as well. The phenolics present in the extracts were separated and identified as 5-hydroxy feruloyl quinic acid, acetyl p-coumaryl quinic acid, quercetin-3-O-rhamnoside, syringic acid hexoside, 5-hydroxy caffeic quinic acid, peonidin-3-O-glucoside, sinapic acid-O-hexoside, cyaniding-3-O-glucose and methyl feruloyl glycoside by LCMS-MS technique.

  14. A study of osteoclasts on calvaria of normal and osteopetrotic (mi/mi) mice by vital staining with acridine orange.

    PubMed Central

    Green, P. M.; Marshall, M. J.; Nisbet, N. W.

    1986-01-01

    A novel staining procedure for enumerating osteoclasts on neonatal mouse calvaria with the vital fluorescent dye acridine orange is described. It has the advantage over Barnicot's neutral-red method in that the nuclei and cytoplasm of the osteoclast are stained differentially. The osteopetrotic calvarium (mi/mi) has fewer multinucleate osteoclasts than its normal counterpart (mi/+) and they are differently distributed. The osteopetrotic calvarium has more mononucleate cells which stain like osteoclasts with acridine orange than the normal calvarium and these cells also are differently distributed. These mononuclear cells may be mononuclear osteoclasts or their precursors. These observations suggest that the defect resulting in this osteopetrosis lies with osteoclast differentiation. Images Fig. 1 p[88]-a PMID:2418863

  15. Non-Invasive Optical Detection of Cathepsin K-Mediated Fluorescence Reveals Osteoclast Activity In Vitro and In Vivo

    PubMed Central

    Kozloff, Kenneth M.; Quinti, Luisa; Patntirapong, Somying; Hauschka, Peter V.; Tung, Ching-Hsuan; Weissleder, Ralph; Mahmood, Umar

    2009-01-01

    Osteoclasts degrade bone matrix by demineralization followed by degradation of type I collagen through secretion of the cysteine protease, cathepsin K. Current imaging modalities are insufficient for sensitive observation of osteoclast activity, and in vivo live imaging of osteoclast resorption of bone has yet to be demonstrated. Here, we describe a near-infrared fluorescence reporter probe whose activation by cathepsin K is shown in live osteoclast cells and in mouse models of development and osteoclast upregulation. Cathepsin K probe activity was monitored in live osteoclast cultures and correlates with cathepsin K gene expression. In ovariectomized mice, cathepsin K probe upregulation precedes detection of bone loss by micro-computed tomography. These results are the first to demonstrate non-invasive visualization of bone degrading enzymes in models of accelerated bone loss, and may provide a means for early diagnosis of upregulated resorption and rapid feedback on efficacy of treatment protocols prior to significant loss of bone in the patient. PMID:19007918

  16. Substrate Recognition by Osteoclast Precursors Induces C-src/Microtubule Association

    PubMed Central

    Abu-Amer, Yousef; Ross, F. Patrick; Schlesinger, Paul; Tondravi, M. Mehrdad; Teitelbaum, Steven L.

    1997-01-01

    The osteoclast is distinguished from other macrophage polykaryons by its polarization, a feature induced by substrate recognition. The most striking component of the polarized osteoclast is its ruffled membrane, probably reflecting insertion of intracellular vesicles into the bone apposed plasmalemma. The failure of osteoclasts in c-src−/− osteopetrotic mice to form ruffled membranes indicates pp60c-src (c-src) is essential to osteoclast polarization. Interestingly, c-src itself is a vesicular protein that targets the ruffled membrane. This being the case, we hypothesized that matrix recognition by osteoclasts, and their precursors, induces c-src to associate with microtubules that traffic proteins to the cell surface. We find abundant c-src associates with tubulin immunoprecipitated from avian marrow macrophages (osteoclast precursors) maintained in the adherent, but not nonadherent, state. Since the two proteins colocalize only within adherent avian osteoclast-like cells examined by double antibody immunoconfocal microscopy, c-src/tubulin association reflects an authentic intracellular event. C-src/tubulin association is evident within 90 min of cell-substrate recognition, and the event does not reflect increased expression of either protein. In vitro kinase assay demonstrates tubulin-associated c-src is enzymatically active, phosphorylating itself as well as exogenous substrate. The increase in microtubule-associated kinase activity attending adhesion mirrors tubulin-bound c-src and does not reflect enhanced specific activity. The fact that microtubule-dissociating drugs, as well as cold, prevent adherence-induced c-src/tubulin association indicates the protooncogene complexes primarily, if not exclusively, with polymerized tubulin. Association of the two proteins does not depend upon protein tyrosine phosphorylation and is substrate specific, as it is induced by vitronectin and fibronectin but not type 1 collagen. Finally, consistent with cotransport of c

  17. Biomechanical, biochemical, and morphological mechanisms of heat shock-mediated germination in Carica papaya seed

    PubMed Central

    Webster, Rachel E.; Waterworth, Wanda M.; Stuppy, Wolfgang; West, Christopher E.; Ennos, Roland; Bray, Clifford M.; Pritchard, Hugh W.

    2016-01-01

    Carica papaya (papaya) seed germinate readily fresh from the fruit, but desiccation induces a dormant state. Dormancy can be released by exposure of the hydrated seed to a pulse of elevated temperature, typical of that encountered in its tropical habitat. Carica papaya is one of only a few species known to germinate in response to heat shock (HS) and we know little of the mechanisms that control germination in tropical ecosystems. Here we investigate the mechanisms that mediate HS-induced stimulation of germination in pre-dried and re-imbibed papaya seed. Exogenous gibberellic acid (GA3 ≥250 µM) overcame the requirement for HS to initiate germination. However, HS did not sensitise seeds to GA3, indicative that it may act independently of GA biosynthesis. Seed coat removal also overcame desiccation-imposed dormancy, indicative that resistance to radicle emergence is coat-imposed. Morphological and biomechanical studies identified that neither desiccation nor HS alter the physical structure or the mechanical strength of the seed coat. However, cycloheximide prevented both seed coat weakening and germination, implicating a requirement for de novo protein synthesis in both processes. The germination antagonist abscisic acid prevented radicle emergence but had no effect on papaya seed coat weakening. Desiccation therefore appears to reduce embryo growth potential, which is reversed by HS, without physically altering the mechanical properties of the seed coat. The ability to germinate in response to a HS may confer a competitive advantage to C. papaya, an opportunistic pioneer species, through detection of canopy removal in tropical forests. PMID:27811004

  18. Biomechanical, biochemical, and morphological mechanisms of heat shock-mediated germination in Carica papaya seed.

    PubMed

    Webster, Rachel E; Waterworth, Wanda M; Stuppy, Wolfgang; West, Christopher E; Ennos, Roland; Bray, Clifford M; Pritchard, Hugh W

    2016-12-01

    Carica papaya (papaya) seed germinate readily fresh from the fruit, but desiccation induces a dormant state. Dormancy can be released by exposure of the hydrated seed to a pulse of elevated temperature, typical of that encountered in its tropical habitat. Carica papaya is one of only a few species known to germinate in response to heat shock (HS) and we know little of the mechanisms that control germination in tropical ecosystems. Here we investigate the mechanisms that mediate HS-induced stimulation of germination in pre-dried and re-imbibed papaya seed. Exogenous gibberellic acid (GA3 ≥250 µM) overcame the requirement for HS to initiate germination. However, HS did not sensitise seeds to GA3, indicative that it may act independently of GA biosynthesis. Seed coat removal also overcame desiccation-imposed dormancy, indicative that resistance to radicle emergence is coat-imposed. Morphological and biomechanical studies identified that neither desiccation nor HS alter the physical structure or the mechanical strength of the seed coat. However, cycloheximide prevented both seed coat weakening and germination, implicating a requirement for de novo protein synthesis in both processes. The germination antagonist abscisic acid prevented radicle emergence but had no effect on papaya seed coat weakening. Desiccation therefore appears to reduce embryo growth potential, which is reversed by HS, without physically altering the mechanical properties of the seed coat. The ability to germinate in response to a HS may confer a competitive advantage to C. papaya, an opportunistic pioneer species, through detection of canopy removal in tropical forests.

  19. Pit- and trench-forming osteoclasts: a distinction that matters.

    PubMed

    Merrild, Ditte Mh; Pirapaharan, Dinisha C; Andreasen, Christina M; Kjærsgaard-Andersen, Per; Møller, Anaïs Mj; Ding, Ming; Delaissé, Jean-Marie; Søe, Kent

    2015-01-01

    Osteoclasts (OCs) seeded on bone slices either drill round pits or dig long trenches. Whereas pits correspond to intermittent resorption, trenches correspond to continuous and faster resorption and require a distinct assembly of the resorption apparatus. It is unknown whether the distinction between pits and trenches has any biological relevance. Using OCs prepared from different blood donors, we found that female OCs achieved increased resorption mainly through pit formation, whereas male OCs did so through trench formation. Trench formation went along with high collagenolytic activity and high cathepsin K (CatK) expression, thereby allowing deeper demineralization. A specific CatK inhibitor abrogated the generation of trenches, while still allowing the generation of pits. OCs obtained from bone marrow were more prone to generate trenches than those obtained from blood. Scanning electron microscopy of bone surfaces eroded in vivo showed trenches and pits of similar size as those made by OCs in culture. We conclude that the distinction between trench- and pit-forming OCs is relevant to the differences among OCs from different skeletal sites, different individuals, including gender, and results from differences in collagenolytic power. This indicates a biological relevance and highlights the importance of discriminating between pits and trenches when assessing resorption.

  20. Pit- and trench-forming osteoclasts: a distinction that matters

    PubMed Central

    Merrild, Ditte MH; Pirapaharan, Dinisha C; Andreasen, Christina M; Kjærsgaard-Andersen, Per; Møller, Anaïs MJ; Ding, Ming; Delaissé, Jean-Marie; Søe, Kent

    2015-01-01

    Osteoclasts (OCs) seeded on bone slices either drill round pits or dig long trenches. Whereas pits correspond to intermittent resorption, trenches correspond to continuous and faster resorption and require a distinct assembly of the resorption apparatus. It is unknown whether the distinction between pits and trenches has any biological relevance. Using OCs prepared from different blood donors, we found that female OCs achieved increased resorption mainly through pit formation, whereas male OCs did so through trench formation. Trench formation went along with high collagenolytic activity and high cathepsin K (CatK) expression, thereby allowing deeper demineralization. A specific CatK inhibitor abrogated the generation of trenches, while still allowing the generation of pits. OCs obtained from bone marrow were more prone to generate trenches than those obtained from blood. Scanning electron microscopy of bone surfaces eroded in vivo showed trenches and pits of similar size as those made by OCs in culture. We conclude that the distinction between trench- and pit-forming OCs is relevant to the differences among OCs from different skeletal sites, different individuals, including gender, and results from differences in collagenolytic power. This indicates a biological relevance and highlights the importance of discriminating between pits and trenches when assessing resorption. PMID:26664853

  1. Sulfated glycosaminoglycans support osteoblast functions and concurrently suppress osteoclasts.

    PubMed

    Salbach-Hirsch, Juliane; Ziegler, Nicole; Thiele, Sylvia; Moeller, Stephanie; Schnabelrauch, Matthias; Hintze, Vera; Scharnweber, Dieter; Rauner, Martina; Hofbauer, Lorenz C

    2014-06-01

    In order to improve bone regeneration, development and evaluation of new adaptive biomaterials is warranted. Glycosaminoglycans (GAGs) such as hyaluronan (HA) and chondroitin sulfate (CS) are major extracellular matrix (ECM) components of bone, and display osteogenic properties that are potentially useful for biomaterial applications. Using native and synthetic sulfate-modified GAGs, we manufactured artificial collagen/GAG ECM (aECMs) coatings, and evaluated how the presence of GAGs and their degree of sulfation affects the differentiation of murine mesenchymal stem cells to osteoblasts (OB) cultivated on these aECMs. GAG sulfation regulated osteogenesis at all key steps of OB development. Adhesion, but not migration, was diminished by 50% (P < 0.001). Proliferation and metabolic activity were slightly (P < 0.05) and cell death events strongly (P < 0.001) down-regulated due to a switch from proliferative to matrix synthesis state. When exposed to sulfated GAGs, OB marker genes, such as alkaline phosphatase, osteoprotegerin (OPG), and osteocalcin increased by up to 28-fold (P < 0.05) and calcium deposition up to 4-fold (P < 0.05). Furthermore, GAG treatment of OBs suppressed their ability to support osteoclast (OC) differentiation and resorption. In conclusion, GAG sulfation controls bone cell homeostasis by concurrently promoting osteogenesis and suppressing their paracrine support of OC functions, thus displaying a favorable profile on bone remodeling. Whether these cellular properties translate into improved bone regeneration needs to be validated in vivo.

  2. Dynamics of the sealing zone in cultured osteoclasts

    PubMed Central

    Batsir, Sarit; Kam, Zvi

    2017-01-01

    Abstract Bone resorption by osteoclasts (OCs) depends on the formation and stability of the sealing zone (SZ), a peripheral belt of actin and integrin‐based podosomes. Recent studies demonstrated that the SZ is a highly dynamic structure, undergoing cycles of assembly and disassembly. In this study, we explored the mechanisms underlying the regulation of SZ stability and reorganization in OCs cultured on glass slides, and forming an SZ‐like podosome belt (SZL). By monitoring this belt in cultured RAW264.7 cells expressing GFP‐tagged actin, we show here that SZL stability is usually locally regulated, and its dissociation, occurring mostly in concave segments, is manifested in the loss of both podosome coherence, and actin belt continuity. Double labeling of cells for actin and tubulin indicated that microtubules (MTs) are mostly confined by the inner aspect of the stable SZL‐associated actin belt. However, in unstable regions of the SZL, MTs tend to extend radially, across the SZL, toward the cell edge. Disruption of MTs by nocodazole induces SZ disassembly, without affecting individual podosome stability. Inspection of the MT network indicates that it is enriched along stable SZL regions, while bypassing disorganized regions. These results suggest that the SZL is stabilized by MTs flanking its inner aspect, while disruption or misalignment of MTs leads to SZL destabilization. We further demonstrate that the MT‐associated protein dynamin2 is involved in the regulation of SZL stability, and dynamin2 knockdown or inactivation cause SZL destabilization. PMID:27997747

  3. Osteoactivin inhibition of osteoclastogenesis is mediated through CD44-ERK signaling

    PubMed Central

    Sondag, Gregory R; Mbimba, Thomas S; Moussa, Fouad M; Novak, Kimberly; Yu, Bing; Jaber, Fatima A; Abdelmagid, Samir M; Geldenhuys, Werner J; Safadi, Fayez F

    2016-01-01

    Osteoactivin is a heavily glycosylated protein shown to have a role in bone remodeling. Previous studies from our lab have shown that mutation in Osteoactivin enhances osteoclast differentiation but inhibits their function. To date, a classical receptor and a signaling pathway for Osteoactivin-mediated osteoclast inhibition has not yet been characterized. In this study, we examined the role of Osteoactivin treatment on osteoclastogenesis using bone marrow-derived osteoclast progenitor cells and identify a signaling pathway relating to Osteoactivin function. We reveal that recombinant Osteoactivin treatment inhibited osteoclast differentiation in a dose-dependent manner shown by qPCR, TRAP staining, activity and count. Using several approaches, we show that Osteoactivin binds CD44 in osteoclasts. Furthermore, recombinant Osteoactivin treatment inhibited ERK phosphorylation in a CD44-dependent manner. Finally, we examined the role of Osteoactivin on receptor activator of nuclear factor-κ B ligand (RANKL)-induced osteolysis in vivo. Our data indicate that recombinant Osteoactivin inhibits RANKL-induced osteolysis in vivo and this effect is CD44-dependent. Overall, our data indicate that Osteoactivin is a negative regulator of osteoclastogenesis in vitro and in vivo and that this process is regulated through CD44 and ERK activation. PMID:27585719

  4. A bisphosphonate that does not affect osteoclasts prevents osteoblast and osteocyte apoptosis and the loss of bone strength induced by glucocorticoids in mice.

    PubMed

    Plotkin, L I; Bivi, Nicoletta; Bellido, T

    2011-07-01

    Although a major effect of bisphosphonates on bone is inhibition of resorption resulting from their ability to interfere with osteoclast function, these agents also prevent osteoblast and osteocyte apoptosis in vitro and in vivo. However, the contribution of the latter property to the overall beneficial effects of the drugs on bone remains unknown. We compared herein the action on glucocorticoid-induced bone disease of the classical bisphosphonate alendronate with that of IG9402, a bisphosphonate analog that preserves osteoblast and osteocyte viability but does not induce osteoclast apoptosis in vitro. The bisphosphonates were injected daily (2.3 μmol/kg) to 5-month-old Swiss Webster mice (6-11 per group), starting 3 days before implantation of pellets releasing the glucocorticoid prednisolone (2.1 mg/kg/day). IG9402 did not affect levels of circulating C-telopeptide or osteocalcin, markers of resorption and formation, respectively, nor did it decrease mRNA levels of osteocalcin or collagen 1a1 in bone. On the other hand, alendronate decreased all these parameters. Moreover, IG9402 did not reduce cancellous mineralizing surface, mineral apposition rate, or bone formation rate, whereas alendronate induced a decrease in each of these bone formation measures. These findings demonstrate that, in contrast to alendronate, IG9402 does not inhibit bone turnover. Both alendronate and IG9402, on the other hand, activated survival kinase signaling in vivo, as evidenced by induction of ERK phosphorylation in bone. Furthermore, both bisphosphonates prevented the increase in osteoblast and osteocyte apoptosis as well as the decrease in vertebral bone mass and strength induced by glucocorticoids. We conclude that a bisphosphonate that does not affect osteoclasts prevents osteoblast and osteocyte apoptosis and the loss of bone strength induced by glucocorticoids in mice.

  5. Integrin αvβ3 as a PET Imaging Biomarker for Osteoclast Number in Mouse Models of Negative and Positive Osteoclast Regulation

    PubMed Central

    Zheleznyak, Alexander; Wadas, Thaddeus J.; Sherman, Christopher D.; Wilson, Jessica M.; Kostenuik, Paul J.; Weilbaecher, Katherine N.; Anderson, Carolyn J.

    2014-01-01

    Purpose The goal of this study was to determine the specificity of 64Cu-CB-TE2A-c(RGDyK) (64Cu-RGD) for osteoclast-related diseases, such as Paget's disease or rheumatoid arthritis. Procedures C57BL/6 mice were treated systemically with osteoprotegerin (OPG) for 15 days or RANKL for 11 days to suppress and stimulate osteoclastogenesis, respectively. The mice were then imaged by positron emission tomography/computed tomography using 64Cu-RGD, followed by determination of serum TRAP5b and bone histology. Standard uptake values were determined to quantify 64Cu-RGD in bones and other tissues. Results Mice treated with OPG showed decreased bone uptake of 64Cu-RGD at 1, 2, and 24 h post-injection of the tracer (p<0.01 for all time points) compared to vehicle controls, which correlated with a post-treatment decrease in serum TRAP5b. In contrast, mice treated with RANKL showed significantly increased bone uptake at 2 h post-injection of 64Cu-RGD (p<0.05) compared to the vehicle control group, corresponding to increased serum TRAP5b and OC numbers as determined by bone histology. Conclusions These data demonstrate that 64Cu-RGD localizes to areas in bone with increased osteoclast numbers and support the use of 64Cu-RGD as an imaging biomarker for osteoclast number that could be used to monitor osteoclast-related pathologies and their treatments. PMID:21853370

  6. Anti-Osteoclastic Activity of Artemisia capillaris Thunb. Extract Depends upon Attenuation of Osteoclast Differentiation and Bone Resorption-Associated Acidification Due to Chlorogenic Acid, Hyperoside, and Scoparone

    PubMed Central

    Lee, Sang-Hyun; Lee, Jung-Yun; Kwon, Young-In; Jang, Hae-Dong

    2017-01-01

    The present study attempts to elucidate the anti-osteoporotic activity of Artemisia capillaris Thunb. in the form of anti-osteoclastic effect and responsible bioactive compounds. The contents of chlorogenic acid, caffeic acid, hyperoside, isoquercitrin, isochlorogenic acid A, and scoparone in Artemisia capillaris hydroethanolic extract (ACHE) were 38.53, 0.52, 4.07, 3.03, 13.90, and 6.59 mg/g, respectively. ACHE diminished osteoclast differentiation and bone resorption due to chlorogenic acid, hyperoside, and scoparone. In addition, ACHE attenuated acidification as well as reducing tumor necrosis factor receptor-associated factor 6 (TRAF6) expression and its association with vacuolar H+-adenosine triphosphatase (V-ATPase). Furthermore, chlorogenic acid, hyperoside, and scoparone from A. capillaris abrogated the association of V-ATPase with TRAF6, suggesting that the blockage of bone resorption by A. capillaris was partially mediated by reducing acidification through down-regulating interaction of V-ATPase with TRAF6 due to scoparone as well as chlorogenic acid and hyperoside. These results imply that the anti-osteoclastic effect of A. capillaris through down-regulating osteoclast differentiation and bone resorption may contribute to its anti-osteoporotic effect. PMID:28165389

  7. Two newly introduced tropical bark and ambrosia beetles (Coleoptera: Curculionidae, Scolytinae) damaging figs (Ficus carica) in southern Italy.

    PubMed

    Faccoli, Massimo; Campo, Giuseppe; Perrotta, Giancarlo; Rassati, Davide

    2016-07-14

    In summer 2014, the bark beetle Hypocryphalus scabricollis (Eichhoff) and the ambrosia beetle Xyleborus bispinatus Eichhoff, species new to Italy and Europe, respectively, were found for the first time in south-eastern Sicily (Italy). Large infestations of the two species were recorded in many plantations of common fig (Ficus carica L.) both in 2014 and 2015. Data concerning insect characteristics, taxonomy, and distribution are briefly reported.

  8. Rab13 Is Upregulated During Osteoclast Differentiation and Associates with Small Vesicles Revealing Polarized Distribution in Resorbing Cells

    PubMed Central

    Mulari, Mika T. K.; Büki, Kálmán G.; Vihko, Pirkko; Härkönen, Pirkko L.; Väänänen, H. Kalervo

    2012-01-01

    Osteoclasts are bone-resorbing multinucleated cells that undergo drastic changes in their polarization due to heavy vesicular trafficking during the resorption cycle. These events require the precise orchestration of membrane traffic in order to maintain the unique characteristics of the different membrane domains in osteoclasts. Rab proteins are small GTPases involved in regulation of most, if not all, steps of vesicle trafficking. The investigators studied RAB genes in human osteoclasts and found that at least 26 RABs were expressed in osteoclasts. Out of these, RAB13 gene expression was highly upregulated during differentiation of human peripheral blood monocytic cells into osteoclasts. To study its possible function in osteoclasts, the investigators performed immunolocalization studies for Rab13 and various known markers of osteoclast vesicular trafficking. Rab13 localized to small vesicular structures at the superior parts of the osteoclast between the trans-Golgi network and basolateral membrane domain. Rab13 localization suggests that it is not involved in endocytosis or transcytosis of bone degradation products. In addition, Rab13 did not associate with early endosomes or recycling endosomes labeled with EEA1 or TRITC-conjugated transferrin, respectively. Its involvement in glucose transporter traffic was excluded as well. It is suggested that Rab13 is associated with a putative secretory function in osteoclasts. PMID:22562557

  9. Amyloid β Peptide Enhances RANKL-Induced Osteoclast Activation through NF-κB, ERK, and Calcium Oscillation Signaling

    PubMed Central

    Li, Shangfu; Yang, Bu; Teguh, Dian; Zhou, Lin; Xu, Jiake; Rong, Limin

    2016-01-01

    Osteoporosis and Alzheimer’s disease (AD) are common chronic degenerative disorders which are strongly associated with advanced age. We have previously demonstrated that amyloid beta peptide (Aβ), one of the pathological hallmarks of AD, accumulated abnormally in osteoporotic bone specimens in addition to having an activation effect on osteoclast (Bone 2014,61:164-75). However, the underlying molecular mechanisms remain unclear. Activation of NF-κB, extracellular signal-regulated kinase (ERK) phosphorylates, and calcium oscillation signaling pathways by receptor activator NF-κB ligand (RANKL) plays a pivotal role in osteoclast activation. Targeting this signaling to modulate osteoclast function has been a promising strategy for osteoclast-related diseases. In this study, we investigated the effects of Aβ on RANKL-induced osteoclast signaling pathways in vitro. In mouse bone marrow monocytes (BMMs), Aβ exerted no effect on RANKL-induced osteoclastogenesis but promoted osteoclastic bone resorption. In molecular levels, Aβ enhanced NF-κB activity and IκB-α degradation, activated ERK phosphorylation and stimulated calcium oscillation, thus leading to upregulation of NFAT-c1 expression during osteoclast activation. Taken together, our data demonstrate that Aβ enhances RANKL-induced osteoclast activation through IκB-α degradation, ERK phosphorylation, and calcium oscillation signaling pathways and that Aβ may be a promising agent in the treatment of osteoclast-related disease such as osteoporosis. PMID:27735865

  10. The generation of osteoclasts from RAW 264.7 precursors in defined, serum-free conditions.

    PubMed

    Vincent, Cristina; Kogawa, Masakazu; Findlay, David M; Atkins, Gerald J

    2009-01-01

    Osteoclasts are the unique cell type capable of resorbing bone. The discovery of the TNF-ligand family member, RANKL, has allowed more reliable study of these important cells. The mouse monocytic cell line, RAW 264.7, has been shown to readily differentiate into osteoclasts upon exposure to recombinant RANKL. Unlike primary osteoclast precursors, there is no requirement for the addition of macrophage colony stimulating factor (M-CSF). However, to date, their differentiation has always been studied in the context of added foetal calf serum (FCS). FCS is a complex and largely undefined mixture of growth factors and matrix proteins, and varies between batches. For this reason, osteoclastogenesis would ideally be studied in the context of a defined, serum-free medium. RAW 264.7 cells were cultured in serum-replete alpha-MEM or serum-deprived medium (SDM) shown previously to support the growth of human osteoclasts in a co-culture with normal osteoblasts. In SDM, in the presence of recombinant RANKL, RAW 264.7 cells readily differentiated into tartrate resistant acid phosphatase (TRAP) positive multinucleated osteoclast-like cells, a process that was enhanced with the addition of 1alpha,25-dihydroxyvitamin D(3) (1,25D). While the osteoclasts grown in SDM were smaller in size compared with those derived in serum-replete media, their resorptive capacity was significantly increased as indicated by a twofold increase in average resorption pit size. In conclusion, we describe a defined model for studying osteoclast differentiation and activity in the absence of serum, which will be ideal for studying the role of agonistic and antagonistic molecules in this process.

  11. The protocol for the isolation and cryopreservation of osteoclast precursors from mouse bone marrow and spleen.

    PubMed

    Boraschi-Diaz, Iris; Komarova, Svetlana V

    2016-01-01

    Osteoclasts are responsible for physiological bone remodeling as well as pathological bone destruction in osteoporosis, periodontitis and rheumatoid arthritis, and thus represent a pharmacological target for drug development. We aimed to characterize and compare the cytokine-induced osteoclastogenesis of bone marrow and spleen precursors. Established protocols used to generate osteoclasts from bone marrow were modified to examine osteoclastogenesis of the spleen cells of healthy mice. Osteoclast formation was successfully induced from spleen precursors using receptor activator of nuclear factor κB ligand (50 ng/ml) and macrophage colony stimulating factor (50 ng/ml). Compared to bone marrow cultures, differentiation from spleen required a longer cultivation time (9 days for spleen, as compared to 5 days for marrow cultures) and a higher plating density of non-adherent cells (75,000/cm(2) for spleen, as compared to 50,000/cm(2) for bone marrow). Osteoclasts generated from spleen precursors expressed osteoclast marker genes calcitonin receptor, cathepsin K and matrix metalloproteinase 9 and were capable of resorbing hydroxyapatite. The differentiation capacity of spleen and bone marrow precursors was comparable for BALB/c, C57BL/6 and FVB mice. We also developed and tested a cryopreservation protocol for the osteoclast precursors. While 70-80 % of cells were lost during the first week of freezing, during the subsequent 5 weeks the losses were within 2-5 % per week. Osteoclastogenesis from the recovered bone marrow precursors was successful up to 5 weeks after freezing. Spleen precursors retained their osteoclastogenic capacity for 1 week after freezing, but not thereafter. The described protocol is useful for the studies of genetically modified animals as well as for screening new osteoclast-targeting therapeutics.

  12. Osteoclast differentiation from human blood precursors on biomimetic calcium-phosphate substrates.

    PubMed

    Ciapetti, Gabriela; Di Pompo, Gemma; Avnet, Sofia; Martini, Desirée; Diez-Escudero, Anna; Montufar, Edgar B; Ginebra, Maria-Pau; Baldini, Nicola

    2017-03-01

    The design of synthetic bone grafts to foster bone formation is a challenge in regenerative medicine. Understanding the interaction of bone substitutes with osteoclasts is essential, since osteoclasts not only drive a timely resorption of the biomaterial, but also trigger osteoblast activity. In this study, the adhesion and differentiation of human blood-derived osteoclast precursors (OCP) on two different micro-nanostructured biomimetic hydroxyapatite materials consisting in coarse (HA-C) and fine HA (HA-F) crystals, in comparison with sintered stoichiometric HA (sin-HA, reference material), were investigated. Osteoclasts were induced to differentiate by RANKL-containing supernatant using cell/substrate direct and indirect contact systems, and calcium (Ca(++)) and phosphorus (P(5+)) in culture medium were measured. We observed that OCP adhered to the experimental surfaces, and that osteoclast-like cells formed at a rate influenced by the micro- and nano-structure of HA, which also modulate extracellular Ca(++). Qualitative differences were found between OCP on biomimetic HA-C and HA-F and their counterparts on plastic and sin-HA. On HA-C and HA-F cells shared typical features of mature osteoclasts, i.e. podosomes, multinuclearity, tartrate acid phosphatase (TRAP)-positive staining, and TRAP5b-enzyme release. However, cells were less in number compared to those on plastic or on sin-HA, and they did not express some specific osteoclast markers. In conclusion, blood-derived OCP are able to attach to biomimetic and sintered HA substrates, but their subsequent fusion and resorptive activity are hampered by surface micro-nano-structure. Indirect cultures suggest that fusion of OCP is sensitive to topography and to extracellular calcium.

  13. Follicle-Stimulating Hormone Increases the Risk of Postmenopausal Osteoporosis by Stimulating Osteoclast Differentiation

    PubMed Central

    Yu, Chunxiao; Zhang, Xu; Zhang, Haiqing; Guan, Qingbo; Zhao, Jiajun; Xu, Jin

    2015-01-01

    Objective The objectives of this study were to observe the changes in follicle-stimulating hormone (FSH) and bone mineral density (BMD) in postmenopausal women, to research the relationship between FSH and postmenopausal osteoporosis, and to observe the effects of FSH on osteoclast differentiation in RAW264.7 cells. Methods We analyzed 248 postmenopausal women with normal bone metabolism. A radioimmunoassay (RIA) was used to detect serum FSH, luteinizing hormone (LH), and estradiol (E2). Dual-energy X-ray absorptiometry was used to measure forearm BMD. Then, we analyzed the age-related changes in serum FSH, LH and E2. Additionally, FSH serum concentrations were compared between a group of postmenopausal women with osteoporosis and a control group. Osteoclasts were induced from RAW264.7 cells in vitro by receptor activator of nuclear factor kappa B ligand (RANKL), and these cells were treated with 0, 5, 10, and 20 ng/ml FSH. After the osteoclasts matured, tartrate-resistant acid phosphatase (TRAP) staining was used to identify osteoclasts, and the mRNA expression levels of genes involved in osteoclastic phenotypes and function, such as receptor activator of NF-κB (Rank), Trap, matrix metalloproteinase-9 (Mmp-9) and Cathepsin K, were detected in different groups using real-time PCR (polymerase chain reaction). Results 1. FSH serum concentrations in postmenopausal women with osteoporosis increased notably compared with the control group. 2. RANKL induced RAW264.7 cell differentiation into mature osteoclasts in vitro. 3. FSH increased mRNA expression of genes involved in osteoclastic phenotypes and function, such as Rank, Trap, Mmp-9 and Cathepsin K, in a dose-dependent manner. Conclusions The circulating concentration of FSH may play an important role in the acceleration of bone loss in postmenopausal women. FSH increases osteoclastogenesis in vitro. PMID:26241313

  14. Osteoclasts on bone and dentin in vitro: mechanism of trail formation and comparison of resorption behavior.

    PubMed

    Rumpler, M; Würger, T; Roschger, P; Zwettler, E; Sturmlechner, I; Altmann, P; Fratzl, P; Rogers, M J; Klaushofer, K

    2013-12-01

    The main function of osteoclasts in vivo is the resorption of bone matrix, leaving behind typical resorption traces consisting of pits and trails. The mechanism of pit formation is well described, but less is known about trail formation. Pit-forming osteoclasts possess round actin rings. In this study we show that trail-forming osteoclasts have crescent-shaped actin rings and provide a model that describes the detailed mechanism. To generate a trail, the actin ring of the resorption organelle attaches with one side outside the existing trail margin. The other side of the ring attaches to the wall inside the trail, thus sealing that narrow part to be resorbed next (3–21 lm). This 3D configuration allows vertical resorption layer-by-layer from the surface to a depth in combination with horizontal cell movement. Thus, trails are not just traces of a horizontal translation of osteoclasts during resorption. Additionally, we compared osteoclastic resorption on bone and dentin since the latter is the most frequently used in vitro model and data are extrapolated to bone. Histomorphometric analyses revealed a material-dependent effect reflected by an 11-fold higher resorption area and a sevenfold higher number of pits per square centimeter on dentin compared to bone. An important material-independent aspect was reflected by comparable mean pit area (μm²) and podosome patterns. Hence, dentin promotes the generation of resorbing osteoclasts, but once resorption has started, it proceeds independently of material properties. Thus, dentin is a suitable model substrate for data acquisition as long as osteoclast generation is not part of the analyses.

  15. Preparation and physicochemical evaluation of emulsified virgin coconut oil (VCO)-carica papaya extract concoction using Tween80

    NASA Astrophysics Data System (ADS)

    Omar, Hazreen; Zubairi, Saiful Irwan; Fadhilah, Mohd Faizulhelmi; Omar, Dzolkhifli; Asib, Norhayu

    2016-11-01

    Carica papaya is a member of the Caricaceae. Its leaves have been used in folk medicine for centuries. Recent studies have shown its beneficial effects as an anti-inflammatory agent (Owoyele et al 2008) and anti-tumour15 as well as antioxidant and wound healing properties7. The study has shown that the effect of carica papaya leaves juice intake also can accelerate the rate of increase in platelet count among the patients infected with dengue fever and dengue haemorrhagic fever18. With all the goodness of carica papaya leaves, a formulation with addition of virgin coconut oil (VCO) is produced to give an enhanced supplement beverage to market nowadays. Virgin coconut oil is well known as anti-oxidant4. The combination of these two substances gives a balance combination in healthy supplement. In recent years the application of emulsion is rapidly increasing in many fields such as cosmetics and paints. Emulsions are dispersions of droplets of one liquid in another, immiscible, liquid in which the droplets are of colloidal or near-colloidal sizes. The combination of water and oil (VCO) with addition of non-ionic surfactant Tween80 was constructed using ternary phase diagram. By considering the Hydrophilic-Lipophilic Balance (HLB) value of each substance will help in producing a stable emulsion.

  16. Adoptive transfer of osteoclast-expanded natural killer cells for immunotherapy targeting cancer stem-like cells in humanized mice.

    PubMed

    Kozlowska, Anna K; Kaur, Kawaljit; Topchyan, Paytsar; Jewett, Anahid

    2016-07-01

    Based on data obtained from oral, pancreatic and lung cancers, glioblastoma, and melanoma, we have established that natural killer (NK) cells target cancer stem-like cells (CSCs). CSCs displaying low MHC class I, CD54, and PD-L1 are killed by cytotoxic NK cells and are differentiated by split anergized NK cells through both membrane bound and secreted forms of TNF-α and IFN-γ. NK cells select and differentiate both healthy and transformed stem-like cells, resulting in target cell maturation and shaping of their microenvironment. In our recent studies, we have observed that oral, pancreatic, and melanoma CSCs were capable of forming large tumors in humanized bone marrow, liver, thymus (hu-BLT) mice with fully reconstituted human immune system. In addition, major human immune subsets including NK cells, T cells, B cells, and monocytes were present in the spleen, bone marrow, peripheral blood, and tumor microenvironment. Similar to our previously published in vitro data, CSCs differentiated with split anergized NK cells prior to implantation in mice formed smaller tumors. Intravenous injection of functionally potent osteoclast-expanded NK cells inhibited tumor growth through differentiation of CSCs in humanized mice. In this review, we present current approaches, advances, and existing limitations in studying interactions of the immune system with the tumor, in particular NK cells with CSCs, using in vivo preclinical hu-BLT mouse model. In addition, we discuss the use of osteoclast-expanded NK cells in targeting cancer stem-like tumors in humanized mice-a strategy that provides a much-needed platform to develop effective cancer immunotherapies.

  17. Deteriorating effect on bone metabolism and microstructure by passive cigarette smoking through dual actions on osteoblast and osteoclast.

    PubMed

    Ko, Chun Hay; Chan, Ruby Lok Yi; Siu, Wing Sum; Shum, Wai Ting; Leung, Ping Chung; Zhang, Lin; Cho, Chi Hin

    2015-05-01

    There is no clear evidence to show the direct causal relationship between passive cigarette smoking and osteoporosis. Furthermore, the underlying mechanism is unknown. The objective of this study is to demonstrate the effects of long-term passive cigarette smoking on bone metabolism and microstructure by a mouse model and cell culture systems. BALB/c mice were exposed to 2 or 4 % cigarette smoke for 14 weeks. The bone turnover biochemical markers in urine and serum and also the bone micro-architecture by micro-CT were compared with the control group exposed to normal ambient air. In the cell culture experiments, mouse MC3T3-E1 and RAW264.7 cell lines to be employed as osteoblast and osteoclast, respectively, were treated with the sera obtained from 4 % smoking or control mice. Their actions on cell viability, differentiation, and function on these bone cells were assessed. The urinary mineral and deoxypyridinoline (DPD) levels, and also the serum alkaline phosphatase activity, were significantly higher in the 4 % smoking group when compared with the control group, indicating an elevated bone metabolism after cigarette smoking. In addition, femoral osteopenic condition was observed in the 4 % smoking group, as shown by the decrease of relative bone volume and trabecular thickness. In isolated cell studies, osteoblast differentiation and bone formation were inhibited while osteoclast differentiation was increased. The current mouse smoking model and the isolated cell studies demonstrate that passive cigarette smoke could induce osteopenia by exerting a direct detrimental effect on bone cells differentiation and further on bone remodeling process.

  18. Immobilization induces a very rapid increase in osteoclast activity

    NASA Astrophysics Data System (ADS)

    Heer, Martina; Baecker, Natalie; Mika, Claudia; Boese, Andrea; Gerzer, Rupert

    2005-07-01

    We studied in a randomized, strictly controlled cross-over design, the effects of 6 days 6° head-down tilt bed rest (HDT) in eight male healthy subjects in our metabolic ward. The study consisted of two periods (phases) of 11 days each in order to allow for the test subjects being their own controls. Both study phases were identical with respect to environmental conditions, study protocol and diet. Two days before arriving in the metabolic ward the subjects started with a diet. The diet was continued in the metabolic ward. The metabolic ward period (1l days) was divided into three parts: 4 ambulatory days, 6 days either HDT or control and 1 recovery day. Continuous urine collection started on the first day in the metabolic ward to analyze calcium excretion and bone resorption markers. On the 2nd ambulatory day in the metabolic ward and on the 5th day in HDT or control blood was drawn to analyze serum calcium, parathyroid hormone, and bone formation markers. Urinary calcium excretion was, as early as the first day in immobilization, increased (p<0.01). CTX- and NTX-excretion stayed unchanged in the first 24 h in HDT compared to the control. But already on the 2nd day of immobilization, both bone resorption markers significantly increased. We conclude from these results—pronounced rise of bone resorption markers—that already 24 h of immobilization induce a significant rise in osteoclast activity in healthy subjects. Thus, it appears possible to use short-term bed rest studies as a first step for the development of countermeasures to immobilization.

  19. Cloning and analysis of rat osteoclast inhibitory lectin gene promoter.

    PubMed

    Quan, Jin-Xing; Zheng, Fang; Li, Xiao-Xia; Hu, Li-Ling; Sun, Zi-Yang; Jiao, Yan-Li; Wang, Bao-Li

    2009-03-01

    Osteoclast inhibitory lectin (OCIL) is a novel regulator of bone remodeling, however, little is known concerning how OCIL is regulated to date. In this study, approximately 4.4 kb of the 5'-flanking sequence of rat OCIL gene was cloned into the promoter-less reporter vector pGL3-basic and transiently transfected into three different cell lines. The differences in the levels of luciferase activity paralleled well with the levels of OCIL mRNA expression in these cells, suggesting that the regulation of rat OCIL gene expression occurs mainly at the transcriptional level. Additional luciferase assays using a series of constructs containing unidirectionally deleted fragments showed that the construct-1819/pGL3 (-1819 to +118) exhibited the highest luciferase activity, suggesting the presence of functional promoter in this region. The region from -4370 to -2805 might contain negative regulatory elements, while the region from -1819 to -1336 might have important positive regulatory elements that enhance OCIL transcription. Sequence analysis of the promoter revealed the absence of both TATA and CAAT boxes. However, in the proximal promoter region (-81 to +118), several potential transcription factor binding sites that may be responsible for the basal transcriptional activity of rat OCIL promoter were observed. The promoter contains several potential Sp1 binding sites, and cotransfection of a shRNA expression plasmid that knockdowns Sp1 significantly reduced OCIL promoter activity and endogenous gene expression and moreover, overexpressing Sp7, a Sp1 family member that also binds to Sp1 binding sequence, increased OCIL promoter activity and gene expression, suggesting a role of Sp1 family proteins in regulation of OCIL transcription.

  20. Extracellular protons acidify osteoclasts, reduce cytosolic calcium, and promote expression of cell-matrix attachment structures.

    PubMed Central

    Teti, A; Blair, H C; Schlesinger, P; Grano, M; Zambonin-Zallone, A; Kahn, A J; Teitelbaum, S L; Hruska, K A

    1989-01-01

    Because metabolic acids stimulate bone resorption in vitro and in vivo, we focused on the cellular events produced by acidosis that might be associated with stimulation of bone remodeling. To this end, we exposed isolated chicken osteoclasts to a metabolic (butyric) acid and observed a fall in both intracellular pH and cytosolic calcium [( Ca2+]i). These phenomena were recapitulated when bone resorptive cells, alkalinized by HCO3 loading, were transferred to a bicarbonate-free environment. The acid-induced decline in osteoclast [Ca2+]i was blocked by either NaCN or Na3VO4, in a Na+-independent fashion, despite the failure of each inhibitor to alter stimulated intracellular acidification. Moreover, K+-induced membrane depolarization also reduced cytosolic calcium in a manner additive to the effect of protons. These findings suggest that osteoclasts adherent to bone lack functional voltage-operated Ca2+ channels, and they reduced [Ca2+]i in response to protons via a membrane residing Ca-ATPase. Most importantly, acidosis enhances formation of podosomes, the contact areas of the osteoclast clear zone, indicating increased adhesion to substrate, an early step in bone resorption. Thus, extracellular acidification of osteoclasts leads to decrements in intracellular pH and calcium, and appears to promote cell-matrix attachment. Images PMID:2547838

  1. Approximating bone ECM: Crosslinking directs individual and coupled osteoblast/osteoclast behavior.

    PubMed

    Hwang, Mintai P; Subbiah, Ramesh; Kim, In Gul; Lee, Kyung Eun; Park, Jimin; Kim, Sang Heon; Park, Kwideok

    2016-10-01

    Osteoblast and osteoclast communication (i.e. osteocoupling) is an intricate process, in which the biophysical profile of bone ECM is an aggregate product of their activities. While the effect of microenvironmental cues on osteoblast and osteoclast maturation has been resolved into individual variables (e.g. stiffness or topography), a single cue can be limited with regards to reflecting the full biophysical scope of natural bone ECM. Additionally, the natural modulation of bone ECM, which involves collagenous fibril and elastin crosslinking via lysyl oxidase, has yet to be reflected in current synthetic platforms. Here, we move beyond traditional substrates and use cell-derived ECM to examine individual and coupled osteoblast and osteoclast behavior on a physiological platform. Specifically, preosteoblast-derived ECM is crosslinked with genipin, a biocompatible crosslinker, to emulate physiological lysyl oxidase-mediated ECM crosslinking. We demonstrate that different concentrations of genipin yield changes to ECM density, stiffness, and roughness while retaining biocompatibility. By approximating various bone ECM profiles, we examine how individual and coupled osteoblast and osteoclast behavior are affected. Ultimately, we demonstrate an increase in osteoblast and osteoclast differentiation on compact and loose ECM, respectively, and identify ECM crosslinking density as an underlying force in osteocoupling behavior.

  2. Effects of surface microtopography on the assembly of the osteoclast resorption apparatus.

    PubMed

    Geblinger, Dafna; Zink, Christian; Spencer, Nicholas D; Addadi, Lia; Geiger, Benjamin

    2012-07-07

    Bone degradation by osteoclasts depends on the formation of a sealing zone, composed of an interlinked network of podosomes, which delimits the degradation lacuna into which osteoclasts secrete acid and proteolytic enzymes. For resorption to occur, the sealing zone must be coherent and stable for extended periods of time. Using titanium roughness gradients ranging from 1 to 4.5 µm R(a) as substrates for osteoclast adhesion, we show that microtopographic obstacles of a length scale well beyond the range of the 'footprint' of an individual podosome can slow down sealing-zone expansion. A clear inverse correlation was found between ring stability, structural integrity and sealing-zone translocation rate. Direct live-cell microscopy indicated that the expansion of the sealing zone is locally arrested by steep, three-dimensional 'ridge-like barriers', running parallel to its perimeter. It was, however, also evident that the sealing zone can bypass such obstacles, if pulled by neighbouring regions, extending through flanking, obstacle-free areas. We propose that sealing-zone dynamics, while being locally regulated by surface roughness, are globally integrated via the associated actin cytoskeleton. The effect of substrate roughness on osteoclast behaviour is significant in relation to osteoclast function under physiological and pathological conditions, and may constitute an important consideration in the design of advanced bone replacements.

  3. Inhibition of osteoporosis by the αvβ3 integrin antagonist of rhodostomin variants.

    PubMed

    Lin, Tzu-Hung; Yang, Rong-Sen; Tu, Huang-Ju; Liou, Houng-Chi; Lin, Yen-Ming; Chuang, Woie-Jer; Fu, Wen-Mei

    2017-03-14

    Integrins are heterodimeric cell surface receptors that mediate cell-cell and cell-matrix interaction. The vitronectin and osteopontin receptor αvβ3 integrin has increased expression levels and is implicated in the adhesion, activation, and migration of osteoclasts on the bone surface as well as osteoclast polarization. αvβ3 integrin plays an important role in osteoclast differentiation and resorption. In addition, Arg-Gly-Asp (RGD)-containing peptides, small molecular inhibitors, and antibodies to αvβ3 integrin have been shown to inhibit bone resorption in vitro and in vivo. Here we examined the effects of a disintegrin HSA-ARLDDL a genetically modified mutant of rhodostomin conjugated with human serum albumin, which is highly selective of αvβ3, on RANKL-induced osteoclastogenesis and ovariectomy (OVX)-induced osteoporosis. In RANKL-induced osteoclastogenesis, HSA-ARLDDL significantly inhibited osteoclast formation, and IC50 was at nM range. Post-treatment HSA-ARLDDL also inhibits osteoclast formation. Furthermore, weekly administration of HSA-ARLDDL significantly inhibits the increase in serum bone resorption marker levels and decrease in cancellous bone loss in tibia and femur induced by OVX. On the other hand, HSA-ARLDDL did not affect the differentiation and calcium deposition of osteoblasts. These results indicate that the highly selective and long-acting αvβ3 integrin antagonists could be developed as effective drugs for postmenopausal osteoporosis.

  4. Cadmium stimulates osteoclast-like multinucleated cell formation in mouse bone marrow cell cultures

    SciTech Connect

    Miyahara, Tatsuro; Takata, Masakazu; Miyata, Masaki; Nagai, Miyuki; Sugure, Akemi; Kozuka, Hiroshi; Kuze, Shougo )

    1991-08-01

    Most of cadmium (Cd)-treated animals have been reported to show osteoporosis-like changes in bones. This suggests that Cd may promote bone loss by a direct action on bone. It was found that Cd stimulated prostaglandin E{sub 2}(PGE{sub 2}) production in the osteoblast-like cell, MC3T3-E1. Therefore, Cd stimulates bone resorption by increasing PGE{sub 2} production. Recently, several bone marrow cell culture systems have been developed for examining the formation of osteoclast-like multinucleated cells in vitro. As osteoblasts produce PGE{sub 2} by Cd-induced cyclooxygenase and may play an important role in osteoclast formation, the present study was undertaken to clarify the possibility that Cd might stimulate osteoclast formation in a mouse bone marrow culture system.

  5. An unusual infiltrative basal cell carcinoma with osteoclastic stromal changes mimicking carcinosarcoma: a case report.

    PubMed

    Gamsizkan, Mehmet; Naujokas, Agne; Simsek, Hasan Aktug; McCalmont, Timothy H

    2015-01-01

    A 91-year-old man presented with an ulcerated nodule on his left lower eyelid. The tumor showed an epithelial component composed of basaloid and clear cells and a stroma that contained many osteoclastic giant cells. Strong, diffuse expression for cytokeratin 17 and p63 was noted in the epithelial component, whereas no staining was present in the sarcomatoid stroma, suggesting that the osteoclast-rich stromal component represented an unusual benign stromal reaction to the carcinoma rather than a manifestation of carcinosarcoma. Further supporting this interpretation was the absence of mitotic figures and low Ki-67 proliferation index (of approximately 1%) in the stromal cells. We herein reported a case of unusual infiltrative basal cell carcinoma, accompanied by a clear cell carcinomatous features and concurrent benign osteoclastic stromal changes.

  6. Extracellular phosphates enhance activities of voltage-gated proton channels and production of reactive oxygen species in murine osteoclast-like cells.

    PubMed

    Li, Guangshuai; Miura, Katsuyuki; Kuno, Miyuki

    2017-02-01

    Osteoclasts are highly differentiated bone-resorbing cells and play a significant role in bone remodelling. In the resorption pit, inorganic phosphate (Pi) concentrations increase because of degradation of hydroxyapatite. We studied effects of extracellular Pi on voltage-gated H(+) channels in osteoclast-like cells derived from a macrophage cell line (RAW264). Extracellular Pi (1.25-20 mM) increased the H(+) channel currents dose dependently and reversibly. The Pi-induced increases were attenuated by removal of extracellular Na(+) and by phosphonoformic acid, a blocker of Na(+)-dependent Pi transporters. Pi increased the maximal conductance, decreased activation time constant, increased deactivation time constant, and shifted the conductance-voltage relationship to more negative voltages. The most marked change was enhanced gating which was mainly caused by elevation of intracellular Pi levels. The Pi-induced enhanced gating was partially inhibited by protein kinase C (PKC) inhibitors, GF109203X and staurosporine, indicating that PKC-mediated phosphorylation was involved in part. The increase in the maximal conductance was mainly due to accompanying decrease in intracellular pH. These effects of Pi were not affected by intracellular Mg(2+), bafilomycin A1 (V-ATPase inhibitor) and removal of intracellular ATP. Extracellular Pi also upregulated reactive oxygen species (ROS). Diphenyleneiodonium chloride, an inhibitor of NADPH oxidases, decreased ROS production and partially attenuated the enhanced gating. In the cells during later passages where osteoclastogenesis declined, H(+) channel activities and ROS production were both modest. These results suggest that, in osteoclasts, ambient Pi is a common enhancer for H(+) channels and ROS production and that potentiation of H(+) channels may help ROS production.

  7. Gene expression profiling of osteoclast differentiation by combined suppression subtractive hybridization (SSH) and cDNA microarray analysis.

    PubMed

    Rho, Jaerang; Altmann, Curtis R; Socci, Nicholas D; Merkov, Lubomir; Kim, Nacksung; So, Hongseob; Lee, Okbok; Takami, Masamichi; Brivanlou, Ali H; Choi, Yongwon

    2002-08-01

    Bone homeostasis is maintained by the balanced action of bone-forming osteoblasts and bone-resorbing osteoclasts. Multinucleated, mature osteoclasts develop from hematopoietic stem cells via the monocyte-macrophage lineage, which also give rise to macrophages and dendritic cells. Despite their distinct physiologic roles in bone and the immune system, these cell types share many molecular and biochemical features. To provide insights into how osteoclasts differentiate and function to control bone metabolism, we employed a systematic approach to profile patterns of osteoclast-specific gene expression by combining suppression subtractive hybridization (SSH) and cDNA microarray analysis. Here we examined how gene expression profiles of mature osteoclast differ from macrophage or dendritic cells, how gene expression profiles change during osteoclast differentiation, and how Mitf, a transcription factor critical for osteoclast maturation, affects the gene expression profile. This approach revealed a set of genes coordinately regulated for osteoclast function, some of which have previously been implicated in several bone diseases in humans.

  8. Characterization of acid flux in osteoclasts from patients harboring a G215R mutation in ClC-7

    SciTech Connect

    Henriksen, Kim Gram, Jeppe Neutzsky-Wulff, Anita Vibsig Jensen, Vicki Kaiser Dziegiel, Morten H. Bollerslev, Jens Karsdal, Morten A.

    2009-01-23

    The chloride-proton antiporter ClC-7 has been speculated to be involved in acidification of the lysosomes and the resorption lacunae in osteoclasts; however, neither direct measurements of chloride transport nor acidification have been performed. Human osteoclasts harboring a dominant negative mutation in ClC-7 (G215R) were isolated, and used these to investigate bone resorption measured by CTX-I, calcium release and pit scoring. The actin cytoskeleton of the osteoclasts was also investigated. ClC-7 enriched membranes from the osteoclasts were isolated, and used to test acidification rates in the presence of a V-ATPase and a chloride channel inhibitor, using a H{sup +} and Cl{sup -} driven approach. Finally, acidification rates in ClC-7 enriched membranes from ADOII osteoclasts and their corresponding controls were compared. Resorption by the G215R osteoclasts was reduced by 60% when measured by both CTX-I, calcium release, and pit area when comparing to age and sex matched controls. In addition, the ADOII osteoclasts showed no differences in actin ring formation. Finally, V-ATPase and chloride channel inhibitors completely abrogated the H{sup +} and Cl{sup -} driven acidification. Finally, the acid influx was reduced by maximally 50% in the ClC-7 deficient membrane fractions when comparing to controls. These data demonstrate that ClC-7 is essential for bone resorption, via its role in acidification of the lysosomes and resorption lacunae in osteoclasts.

  9. NADPH oxidase gp91phox contributes to RANKL-induced osteoclast differentiation by upregulating NFATc1

    PubMed Central

    Kang, In Soon; Kim, Chaekyun

    2016-01-01

    Bone-marrow derived monocyte-macrophages (BMMs) differentiate into osteoclasts by M-CSF along subsequent RANKL stimulation possibly in collaboration with many other unknown cytokines released by pre- or mature osteoblasts. The differentiation process requires receptor activator of nuclear factor kappa-B ligand (RANKL)/RANK signaling and reactive oxygen species (ROS) such as superoxide anion (O2•−). Gp91phox, a plasma membrane subunit of NADPH oxidase (Nox), is constitutively expressed in BMMs and plays a major role in superoxide anion production. In this study, we found that mice deficient in gp91phox (gp91phox−/−) showed defects in osteoclast differentiation. Femurs of these mice produced osteoclasts at about 70% of the levels seen in femurs from wild-type mice, and accordingly exhibited excessive bone density. This abnormal bone growth in the femurs of gp91phox−/− mice resulted from impaired osteoclast differentiation. In addition, gp91phox−/− mice were defective for RANKL-induced expression of nuclear factor of activated T cells c1 (NFATc1). However, H2O2 treatment compensated for gp91phox deficiency in BMMs, almost completely rescuing osteoclast differentiation. Treating wild-type BMMs with antioxidants and superoxide inhibitors resulted in a differentiation defect resembling the phenotype of gp91phox−/− BMMs. Therefore, our results demonstrate that gp91phox-derived superoxide is important for promoting efficient osteoclast differentiation by inducing NFATc1 as a downstream signaling mediator of RANK. PMID:27897222

  10. Ly49Q, an ITIM-bearing NK receptor, positively regulates osteoclast differentiation

    SciTech Connect

    Hayashi, Mikihito; Nakashima, Tomoki; Kodama, Tatsuhiko; Makrigiannis, Andrew P.; Toyama-Sorimachi, Noriko; Takayanagi, Hiroshi

    2010-03-12

    Osteoclasts, multinucleated cells that resorb bone, play a key role in bone remodeling. Although immunoreceptor tyrosine-based activation motif (ITAM)-mediated signaling is critical for osteoclast differentiation, the significance of immunoreceptor tyrosine-based inhibitory motif (ITIM) has not been well understood. Here we report the function of Ly49Q, an Ly49 family member possessing an ITIM motif, in osteoclastogenesis. Ly49Q is selectively induced by receptor activator of nuclear factor-{kappa}B (NF-{kappa}B) ligand (RANKL) stimulation in bone marrow-derived monocyte/macrophage precursor cells (BMMs) among the Ly49 family of NK receptors. The knockdown of Ly49Q resulted in a significant reduction in the RANKL-induced formation of tartrate-resistance acid phosphatase (TRAP)-positive multinucleated cells, accompanied by a decreased expression of osteoclast-specific genes such as Nfatc1, Tm7sf4, Oscar, Ctsk, and Acp5. Osteoclastogenesis was also significantly impaired in Ly49Q-deficient cells in vitro. The inhibitory effect of Ly49Q-deficiency may be explained by the finding that Ly49Q competed for the association of Src-homology domain-2 phosphatase-1 (SHP-1) with paired immunoglobulin-like receptor-B (PIR-B), an ITIM-bearing receptor which negatively regulates osteoclast differentiation. Unexpectedly, Ly49Q deficiency did not lead to impaired osteoclast formation in vivo, suggesting the existence of a compensatory mechanism. This study provides an example in which an ITIM-bearing receptor functions as a positive regulator of osteoclast differentiation.

  11. The responses of osteoblasts, osteoclasts and endothelial cells to zirconium modified calcium-silicate-based ceramic.

    PubMed

    Ramaswamy, Yogambha; Wu, Chengtie; Van Hummel, Annika; Combes, Valery; Grau, Georges; Zreiqat, Hala

    2008-11-01

    In this study we have developed Ca(3)ZrSi(2)O(9) (Baghdadite) ceramics by incorporating Zirconium in Ca-Si system and determined their biological properties. Ca(3)ZrSi(2)O(9) ceramics possess apatite-formation ability in simulated body fluid, indicating their potential bioactivity. The response of human osteoblast like cells (HOB), osteoclast and endothelial cells when cultured on Ca(3)ZrSi(2)O(9) ceramics was investigated. Scanning electron microscopy and immunofluorescence studies demonstrated that this material supports HOB cell attachment with organized cytoskeleton structure. Compared to CaSiO(3), Ca(3)ZrSi(2)O(9) ceramics induced increased HOB proliferation and differentiation as shown by increased methyltetrazidium salt (MTS), alkaline phosphatase activity, and mRNA expression levels of bone-related genes (Collagen type I, alkaline phosphatase, Bone Sialoprotein, receptor activator of NF-kappaB ligand and osteoprotegerin). Ca(3)ZrSi(2)O(9) ceramics supported the fusion of monocytes to form functional osteoclasts with their characteristic features of f-actin ring structures and the expression of alpha(v)beta(3) integrin consistent with functional activity. Osteoclasts cultured on Ca(3)ZrSi(2)O(9) expressed increased levels of osteoclast-related genes; Cathepsin K, Carbonic Anhydrase II, Matrix metalloproteinase-9, receptor activator of NF-kappaB and Calcitonin Receptor, consistent with the formation of functional osteoclasts. In addition to HOB and osteoclasts, Ca(3)ZrSi(2)O(9) supported the attachment of endothelial cells, which expressed the endothelial cell markers; ZO-1 and VE-Cadherin. Results presented here indicate that Ca(3)ZrSi(2)O(9) ceramics have the potential for applications in bone tissue regeneration.

  12. Evaluation of the composition of Carica papaya L. seed oil extracted with supercritical CO2.

    PubMed

    Barroso, Pedro T W; de Carvalho, Pedro P; Rocha, Thiago B; Pessoa, Fernando L P; Azevedo, Debora A; Mendes, Marisa F

    2016-09-01

    Among the most important tropical fruit grown in the world today and in Brazil, papaya occupies a prominent place. Native to tropical America, papaya has spread to several regions of the world, and Brazil accounts for 12.74% of the world production, followed by Mexico, Nigeria and India. The culture reached a harvested area of 441,042 ha and production of 12,420,585 t worldwide. The largest interest in this fruit relies on its main constituent compounds, like vitamins A, B and C, alkaloids (carpaine and pseudocarpaine), proteolytic enzymes (papain and quimiopapain) and benzyl isothiocyanate, more known as BITC, which has anthelmintic activity. Because of that, the present work has as objective the evaluation of the efficiency and composition of the oil extracted from Carica papaya L. seeds with supercritical carbon dioxide. The experiments were performed in a unit containing mainly a high-pressure pump and a stainless steel extractor with 42 mL of volume. The sampling was performed at each 20 min until the saturation of the process. About 6.5 g of sample were fed for each experiment done at 40, 60 and 80 °C under the pressures of 100, 150 and 200 bar. Samples of the Carica papaya L. fruit were acquired in a popular market and free for personal use intended for the study. After collection, the seeds were crushed with the help of a pestle, and dried at 60 °C for 60 min. For each operational condition, the extraction curves were constructed relating cumulative mass of oil extracted in function of the operational time. The better efficiencies were found at 40 °C and 200 bar (1.33%) followed by 80 °C and 200 bar (2.56%). Gas chromatography and NMR analysis could identify an insecticide component (BITC) that enables new applications of this residue in pharmaceutical and chemical industries.

  13. Osteoclasts and osteoblasts migrate in opposite directions in response to a constant electrical field

    SciTech Connect

    Ferrier, J.; Ross, S.M.; Kanehisa, J.; Aubin, J.E.

    1986-12-01

    The authors have investigated in vitro the effects of the electrical field produced by constant current on freshly isolated rabbit osteoclasts and on well characterized clonal rat osteoblastlike cells. At field strengths of 0.1 and 1 V/mm, the osteoclasts migrated rapidly toward the positive electrode, whereas the osteoblastlike cells migrated in the opposite direction, toward the negative electrode. Thus, different cell types from the same tissue can respond differently to the same electrical signal. These results have important implications for hypotheses concerning the cellular mechanism of galvanotaxis, and may also clarify the cellular basis of the clinical application of electrical stimulation of bone healing.

  14. Magnetic resonance imaging findings of undifferentiated carcinoma with osteoclast-like giant cells of pancreas.

    PubMed

    Yang, Kyung Yoon; Choi, Joon-Il; Choi, Moon Hyung; Park, Michael Yong; Rha, Sung Eun; Byun, Jae Young; Jung, Eun Sun; Lall, Chandana

    2016-01-01

    Undifferentiated carcinoma with osteoclast-like giant cells is a rare pancreatic and periampullary neoplasm with less than 50 cases reported in the literature. Pathologically, this tumor mimics a giant cell tumor in bones. We report a case of undifferentiated carcinoma with osteoclast-like giant cells in a 55-year-old man presenting as a pancreatic mass with associated regional and distant lymphadenopathy. On T1- and T2-weighted images, the mass shows dark signal intensity which was atypical for a pancreatic adenocarcinoma.

  15. Hyaluronan–CD44 interaction hampers migration of osteoclast-like cells by down-regulating MMP-9

    PubMed Central

    Spessotto, Paola; Rossi, Francesca Maria; Degan, Massimo; Di Francia, Raffaele; Perris, Roberto; Colombatti, Alfonso; Gattei, Valter

    2002-01-01

    Osteoclast (OC) precursors migrate to putative sites of bone resorption to form functionally active, multinucleated cells. The preOC FLG 29.1 cells, known to be capable of irreversibly differentiating into multinucleated OC-like cells, displayed several features of primary OCs, including expression of specific integrins and the hyaluronan (HA) receptor CD44. OC-like FLG 29.1 cells adhered to and extensively migrated through membranes coated with fibronectin, vitronectin, and laminins, but, although strongly binding to HA, totally failed to move on this substrate. Moreover, soluble HA strongly inhibited OC-like FLG 29.1 cell migration on the permissive matrix substrates, and this behavior was dependent on its engagement with CD44, as it was fully restored by function-blocking anti-CD44 antibodies. HA did not modulate the cell–substrate binding affinity/avidity nor the expression levels of the corresponding integrins. MMP-9 was the major secreted metalloproteinase used by OC-like FLG 29.1 cells for migration, because this process was strongly inhibited by both TIMP-1 and GM6001, as well as by MMP-9–specific antisense oligonucleotides. After HA binding to CD44, a strong down-regulation of MMP-9 mRNA and protein was detected. These findings highlight a novel role of the HA–CD44 interaction in the context of OC-like cell motility, suggesting that it may act as a stop signal for bone-resorbing cells. PMID:12235127

  16. The polyphenol fisetin protects bone by repressing NF-κB and MKP-1-dependent signaling pathways in osteoclasts.

    PubMed

    Léotoing, Laurent; Wauquier, Fabien; Guicheux, Jérôme; Miot-Noirault, Elisabeth; Wittrant, Yohann; Coxam, Véronique

    2013-01-01

    Osteoporosis is a bone pathology leading to increase fractures risk and challenging quality of life. Since current treatments could exhibit deleterious side effects, the use of food compounds derived from plants represents a promising innovative alternative due to their potential therapeutic and preventive activities against human diseases. In this study, we investigated the ability of the polyphenol fisetin to counter osteoporosis and analyzed the cellular and molecular mechanisms involved. In vivo, fisetin consumption significantly prevented bone loss in estrogen deficiency and inflammation mice osteoporosis models. Indeed, bone mineral density, micro-architecture parameters and bone markers were positively modulated by fisetin. Consistent with in vivo results, we showed that fisetin represses RANKL-induced osteoclast differentiation and activity as demonstrated by an inhibition of multinucleated cells formation, TRAP activity and differentiation genes expression. The signaling pathways NF-κB, p38 MAPK, JNK and the key transcription factors c-Fos and NFATc1 expressions induced by RANKL, were negatively regulated by fisetin. We further showed that fisetin inhibits the constitutive proteasomal degradation of MKP-1, the phosphatase that deactivates p38 and JNK. Consistently, using shRNA stable cell lines, we demonstrated that impairment of MKP-1 decreases fisetin potency. Taken together, these results strongly support that fisetin should be further considered as a bone protective agent.

  17. Mechanisms involved in regulation of osteoclastic differentiation by mechanical stress-loaded osteoblasts

    SciTech Connect

    Kaneuji, Takeshi; Ariyoshi, Wataru; Okinaga, Toshinori; Toshinaga, Akihiro; Takahashi, Tetsu; Nishihara, Tatsuji

    2011-04-29

    Highlights: {yields} Effect of compressive force on osteoblasts were examined. {yields} Compressive force induced OPG expression and suppressed osteoclastogenesis. {yields} This enhancement of OPG is dependent on Wnt/Ca2+ signal pathway. -- Abstract: Mechanical stress is known to be important for regulation of bone turnover, though the detailed mechanisms are not fully understood. In the present study, we examined the effect of mechanical stress on osteoblasts using a novel compression model. Mouse osteoblastic MC3T3-E1 cells were embedded in three-dimensional (3D) gels and cultured with continuous compressive force (0-10.0 g/cm{sup 2}) for 48 h, and the conditioned medium were collected. RAW264.7 cells were then incubated with the conditioned medium for various times in the presence of receptor activator of nuclear factor-{kappa}B ligand (RANKL). Conditioned medium was found to inhibit the differentiation of RAW264.7 cells into osteoclasts induced by RANKL via down-regulation of the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6), phosphorylation of I{kappa}B{alpha}, and nuclear translocation of p50 and p65. Interestingly, the conditioned medium also had a high level of binding activity to RANKL and blocked the binding of RANK to RANKL. Furthermore, the binding activity of conditioned medium to RANKL was reduced when the 3D gel was supplemented with KN-93, an inhibitor of non-canonical Wnt/Ca{sup 2+} pathway. In addition, expression level of osteoprotegerin (OPG) mRNA was increased in time- and force-dependent manners, and remarkably suppressed by KN-93. These results indicate that osteoblastic cells subjected to mechanical stress produce OPG, which binds to RANKL. Furthermore, this binding activity strongly inhibited osteoclastogenesis through suppression of TRAF6 and the nuclear factor-kappa B (NF-{kappa}B) signaling pathway, suggesting that enhancement of OPG expression induced by mechanical stress is dependent on non-canonical Wnt

  18. Disruption of the dynein-dynactin complex unveils motor-specific functions in osteoclast formation and bone resorption.

    PubMed

    Ng, Pei Ying; Cheng, Tak Sum; Zhao, Haibo; Ye, Shiqiao; Sm Ang, Estabelle; Khor, Ee Cheng; Feng, Hao-Tian; Xu, Jiake; Zheng, Ming H; Pavlos, Nathan J

    2013-01-01

    Osteoclastic bone resorption requires strict interplay between acidified carrier vesicles, motor proteins, and the underlying cytoskeleton in order to sustain the specialized structural and functional polarization of the ruffled border. Cytoplasmic dynein, a large processive mechanochemical motor comprising heavy, intermediate, and light chains coupled to the dynactin cofactor complex, powers unilateral motility of diverse cargos to microtubule minus-ends. We have recently shown that regulators of the dynein motor complex constitute critical components of the osteoclastic bone resorptive machinery. Here, by selectively modulating endogenous dynein activity, we show that the integrity of the dynein-dynactin motor complex is an essential requirement for both osteoclast formation and function. Systematic dissection of the osteoclast dynein-dynactin complex revealed that it is differentially localized throughout RANKL-induced osteoclast formation and activation, undergoing microtubule-coupled reorganization upon the establishment of cellular polarization. In osteoclasts actively resorbing bone, dynein-dynactin intimately co-localizes with the CAP-Gly domain-containing microtubule plus-end protein CLIP-170 at the resorptive front, thus orientating the ruffled border as a microtubule plus-end domain. Unexpectedly, disruption of the dynein-dynactin complex by exogenous p50/dynamitin expression retards osteoclast formation in vitro, owing largely to prolonged mitotic stasis of osteoclast progenitor cells. More importantly, loss of osteoclastic dynein activity results in a drastic redistribution of key intracellular organelles, including the Golgi and lysosomes, an effect that coincides with impaired cathepsin K secretion and diminished bone resorptive function. Collectively, these data unveil a previously unrecognized role for the dynein-dynactin motor complex in osteoclast formation and function, serving not only to regulate their timely maturation but also the delivery

  19. Avenanthramides Prevent Osteoblast and Osteocyte Apoptosis and Induce Osteoclast Apoptosis in Vitro in an Nrf2-Independent Manner

    PubMed Central

    Pellegrini, Gretel G.; Morales, Cynthya C.; Wallace, Taylor C.; Plotkin, Lilian I.; Bellido, Teresita

    2016-01-01

    Oats contain unique bioactive compounds known as avenanthramides (AVAs) with antioxidant properties. AVAs might enhance the endogenous antioxidant cellular response by activation of the transcription factor Nrf2. Accumulation of reactive oxygen species plays a critical role in many chronic and degenerative diseases, including osteoporosis. In this disease, there is an imbalance between bone formation by osteoblasts and bone resorption by osteoclasts, which is accompanied by increased osteoblast/osteocyte apoptosis and decreased osteoclast apoptosis. We investigated the ability of the synthethic AVAs 2c, 2f and 2p, to 1-regulate gene expression in bone cells, 2-affect the viability of osteoblasts, osteocytes and osteoclasts, and the generation of osteoclasts from their precursors, and 3-examine the potential involvement of the transcription factor Nrf2 in these actions. All doses of AVA 2c and 1 and 5 µM dose of 2p up-regulated collagen 1A expression. Lower doses of AVAs up-regulated OPG (osteoprotegerin) in OB-6 osteoblastic cells, whereas 100 μM dose of 2f and all concentrations of 2c down-regulated RANKL gene expression in MLO-Y4 osteocytic cells. AVAs did not affect apoptosis of OB-6 osteoblastic cells or MLO-Y4 osteocytic cells; however, they prevented apoptosis induced by the DNA topoisomerase inhibitor etoposide, the glucocorticoid dexamethasone, and hydrogen peroxide. AVAs prevented apoptosis of both wild type (WT) and Nrf2 Knockout (KO) osteoblasts, demonstrating that AVAs-induced survival does not require Nrf2 expression. Further, KO osteoclast precursors produced more mature osteoclasts than WT; and KO cultures exhibited less apoptotic osteoclasts than WT cultures. Although AVAs did not affect WT osteoclasts, AVA 2p reversed the low apoptosis of KO osteoclasts. These in vitro results demonstrate that AVAs regulate, in part, the function of osteoblasts and osteocytes and prevent osteoblast/osteocyte apoptosis and increase osteoclast apoptosis; further

  20. Origin of osteoclasts: Mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells

    SciTech Connect

    Udagawa, Nobuyuki; Takahashi, Naoyuki; Akatsu, Takuhiko; Tanaka, Hirofumi; Sasaki, Takahisa; Suda, Tatsuo ); Nishihara, Tatsuji; Koga, Toshihiko ); Martin, T.J. )

    1990-09-01

    The authors previously reported that osteoclast-like cells were formed in cocultures of a mouse marrow-derived stromal cell line (ST2) with mouse spleen cells in the presence of 1{alpha},25-dihydroxyvitamin D{sub 3} and dexamethasone. In this study, they developed a new coculture system to determine the origin of osteoclasts. When relatively small numbers of mononuclear cells obtained from mouse bone marrow, spleen, thymus, or peripheral blood were cultured for 12 days on the ST2 cell layers, they formed colonies with a linear relationship between the number of colonies formed and the number of hemopoietic cells inoculated. Tartrate-resistant acid phosphatase (TRAPase)-positive monoculear and multinucleated cells appeared in the colonies (TRAPase-positive colonies) in response to 1{alpha},25-dihydroxyvitamin D{sub 3} and dexamethasone. When hemopoietic cells suspended in a collagen-gel solution were cultured on the ST2 cell layers to prevent their movement, TRAPase-positive colonies were similarly formed, indicating that each colony originated from a single cell. Salmon {sup 125}I-labeled calcitonin specifically bound to the TRAPase-positive cells. Resorption lacunae were formed on dentine slices on which cocultures were performed. These results indicate that osteoclasts are also derived from the mature monocytes and macrophages when a suitable microenvironment is provided by bone marrow-derived stromal cells.

  1. Selective and reversible thiol-pegylation, an effective approach for purification and characterization of five fully active ficin (iso)forms from Ficus carica latex.

    PubMed

    Azarkan, Mohamed; Matagne, André; Wattiez, Ruddy; Bolle, Laetitia; Vandenameele, Julie; Baeyens-Volant, Danielle

    2011-10-01

    The latex of Ficus carica constitutes an important source of many proteolytic components known under the general term of ficin (EC 3.4.22.3) which belongs to the cysteine proteases of the papain family. So far, no data on the purification and characterization of individual forms of these proteases are available. An effective strategy was used to fractionate and purify to homogeneity five ficin forms, designated A, B, C, D1 and D2 according to their sequence of elution from a cation-exchange chromatographic support. Following rapid fractionation on a SP-Sepharose Fast Flow column, the different ficin forms were chemically modified by a specific and reversible monomethoxypolyethylene glycol (mPEG) reagent. In comparison with their un-derivatized counterparts, the mPEG-protein derivatives behaved differently on the ion-exchanger, allowing us for the first time to obtain five highly purified ficin molecular species titrating 1mol of thiol group per mole of enzyme. The purified ficins were characterized by de novo peptide sequencing and peptide mass fingerprinting analyzes, using mass spectrometry. Circular dichroism measurements indicated that all five ficins were highly structured, both in term of secondary and tertiary structure. Furthermore, analysis of far-UV CD spectra allowed calculation of their secondary structural content. Both these data and the molecular masses determined by MS reinforce the view that the enzymes belong to the family of papain-like proteases. The five ficin forms also displayed different specific amidase activities against small synthetic substrates like dl-BAPNA and Boc-Ala-Ala-Gly-pNA, suggesting some differences in their active site organization. Enzymatic activity of the five ficin forms was completely inhibited by specific cysteine and cysteine/serine proteases inhibitors but was unaffected by specific serine, aspartic and metallo proteases inhibitors.

  2. Sperm characteristics and ultrastructure of testes of rats after long-term treatment with the methanol subfraction of Carica papaya seeds

    PubMed Central

    Manivannan, Boomi; Mittal, Ruchi; Goyal, Shipra; Ansari, Abdul S.; Lohiya, Nirmal K.

    2009-01-01

    The contraceptive efficacy of Carica papaya seeds after short-term evaluation has been well established. We have examined the safety and mechanism of contraception in rats after long-term treatment with the methanol subfraction (MSF) of C. papaya seeds. The test substance was administered orally to the male albino rats (n = 40) at 50 mg per kg body weight each day for 360 days. Control animals (n = 40) received olive oil as a vehicle. Recovery was assessed up to 120 days after treatment withdrawal. Sperm parameters, serum testosterone levels, fertility, histology and ultrastructure of the testis, haematology and serum clinical chemistry were evaluated to establish the safety and efficacy of the test substance. Safety of long-term treatment was evidenced by unaltered health status, organ weight, haematology and clinical chemistry, and by an increase in body weight. The mechanism of contraception was shown by reduction in nuclear and cytoplasmic volume, normal nuclear characteristics and vacuolization in the cytoplasmic organelles of the Sertoli cells, as well as nuclear degeneration in spermatocytes and spermatids indicating disturbed spermatogenesis. Leydig cells were normal. Initial effects were observed in Sertoli cells at 60 days of treatment. Spermatocytes and spermatids were affected after 120–240 days of treatment. A significant decline in sperm count and viability, total inhibition of sperm motility, increased numbers of sperm abnormalities, normal serum testosterone levels and 100% sterility were evident after 60 days of treatment. All the altered parameters, including percent fertility, were restored to control level 120 days after treatment withdrawal. It is concluded that the MSF is safe for long-term treatment and the mechanism of contraception is shown by its effect on spermatid differentiation in the testis, possibly mediated by the Sertoli cell factors. PMID:19648937

  3. Antimalarial Potential of Carica papaya and Vernonia amygdalina in Mice Infected with Plasmodium berghei

    PubMed Central

    Habila, Nathan; Ikwebe, Joseph; Upev, Vincent A.; Isaac, Omiagocho T.

    2016-01-01

    The study determined if administration of Vernonia amygdalina and Carica papaya plants provides synergistic effects in ameliorating plasmodium infection in mice. Thirty mice (17.88–25.3 g) were divided into 6 groups of 5 mice each. Group 1 was normal control, while groups 2–6 were intraperitoneally inoculated 2.5 × 107 Plasmodium berghei parasitized red blood cell, followed by daily administration of 350 mg/kg aqueous leaf extracts after establishment of infection. Group 2 was disease control, while group 6 was treated with standard drug for four consecutive days. The results showed significant (P < 0.05) reduction in percentage of parasite load between the infected treatment groups and disease control group at day 3 after infection, which remained consistent until the end of the experiment. All infected treated groups showed significant (P < 0.05) increases in RBC and PCV recovery compared to the disease control, with the exception of WBC. There was insignificant (P > 0.05) change in mean body weight of all treated groups except in disease control group. Histological studies of the infected mice indicate recovery of hepatic cells from congested black pigmentation. The reduction in parasite load and recovery of hepatic cell damage/hematological parameters were induced by these plant extracts. This highlighted the important usage of the plant in traditional remedy of malaria infection. PMID:28042299

  4. Multiscale hierarchical assembly strategy and mechanical prowess in conch shells (Busycon carica).

    PubMed

    Li, Haoze; Xu, Zhi-Hui; Li, Xiaodong

    2013-12-01

    Seashells are natural body armors with superior mechanical strength and ultra-high toughness compared with their major constituent counterparts. What building blocks and architecture render seashells such mechanical prowess? In this study, micro/nanoscale structural and mechanical characterization of conch shells (Busycon carica) has been carried out. Here we show direct evidence that the previously claimed single-crystal third-order lamellae--the basic building blocks in conch shells are essentially assembled with aragonite nanoparticles of the size ranging from 20 to 45 nm. The nanoparticle-constructed third-order lamellae are not brittle, but ductile. The three-order crossed-lamellar architecture interlocks cracks via crack deflection along the interfaces in a three-dimensional manner, thus confining the damage in a small region. The findings advance the understanding of the mystery of conch shell's mechanical robustness, provide additional design guidelines for developing bioinspired nanomaterials, and lay a constitutive foundation for modeling the deformation behavior of seashells.

  5. Ficus carica latex-mediated synthesis of silver nanoparticles and its application as a chemophotoprotective agent.

    PubMed

    Borase, Hemant P; Patil, Chandrashekhar D; Suryawanshi, Rahul K; Patil, Satish V

    2013-10-01

    The present work provides scientific support on the use of latex of Ficus carica to synthesize stable silver nanoparticles (AgNPs). AgNPs synthesized immediately after the addition of latex to silver nitrate solution at room temperature. Synthesized nanoparticles were of spherical shape with average size of 163.7 nm. Fourier transform infrared spectroscopy analysis revealed capping of proteins and phenolic compound on AgNPs, while X-ray diffraction analysis confirmed the fcc nature of AgNPs. Particles formed were stable for a long time (6 months). It was found that incorporation of AgNPs with 2 and 4% concentration exhibits synergistic increase in sun protection factor of commercial sunscreen and natural extracts ranging from 01 to 12,175% than control. Further characterization of latex and AgNPs revealed total phenolic content of 98.75 and 94.88 μg/ml. The ferric ion reduction potentials of latex and AgNPs were 79.69 and 18.79%. Reduction potential of ascorbic acid was synergistically increased after cumulative preparation of ascorbic acid with latex and AgNPs and found to be 106.76 and 101.50% for ascorbic acid + latex and ascorbic acid + AgNPs, respectively.

  6. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus).

    PubMed

    Ming, Ray; Hou, Shaobin; Feng, Yun; Yu, Qingyi; Dionne-Laporte, Alexandre; Saw, Jimmy H; Senin, Pavel; Wang, Wei; Ly, Benjamin V; Lewis, Kanako L T; Salzberg, Steven L; Feng, Lu; Jones, Meghan R; Skelton, Rachel L; Murray, Jan E; Chen, Cuixia; Qian, Wubin; Shen, Junguo; Du, Peng; Eustice, Moriah; Tong, Eric; Tang, Haibao; Lyons, Eric; Paull, Robert E; Michael, Todd P; Wall, Kerr; Rice, Danny W; Albert, Henrik; Wang, Ming-Li; Zhu, Yun J; Schatz, Michael; Nagarajan, Niranjan; Acob, Ricelle A; Guan, Peizhu; Blas, Andrea; Wai, Ching Man; Ackerman, Christine M; Ren, Yan; Liu, Chao; Wang, Jianmei; Wang, Jianping; Na, Jong-Kuk; Shakirov, Eugene V; Haas, Brian; Thimmapuram, Jyothi; Nelson, David; Wang, Xiyin; Bowers, John E; Gschwend, Andrea R; Delcher, Arthur L; Singh, Ratnesh; Suzuki, Jon Y; Tripathi, Savarni; Neupane, Kabi; Wei, Hairong; Irikura, Beth; Paidi, Maya; Jiang, Ning; Zhang, Wenli; Presting, Gernot; Windsor, Aaron; Navajas-Pérez, Rafael; Torres, Manuel J; Feltus, F Alex; Porter, Brad; Li, Yingjun; Burroughs, A Max; Luo, Ming-Cheng; Liu, Lei; Christopher, David A; Mount, Stephen M; Moore, Paul H; Sugimura, Tak; Jiang, Jiming; Schuler, Mary A; Friedman, Vikki; Mitchell-Olds, Thomas; Shippen, Dorothy E; dePamphilis, Claude W; Palmer, Jeffrey D; Freeling, Michael; Paterson, Andrew H; Gonsalves, Dennis; Wang, Lei; Alam, Maqsudul

    2008-04-24

    Papaya, a fruit crop cultivated in tropical and subtropical regions, is known for its nutritional benefits and medicinal applications. Here we report a 3x draft genome sequence of 'SunUp' papaya, the first commercial virus-resistant transgenic fruit tree to be sequenced. The papaya genome is three times the size of the Arabidopsis genome, but contains fewer genes, including significantly fewer disease-resistance gene analogues. Comparison of the five sequenced genomes suggests a minimal angiosperm gene set of 13,311. A lack of recent genome duplication, atypical of other angiosperm genomes sequenced so far, may account for the smaller papaya gene number in most functional groups. Nonetheless, striking amplifications in gene number within particular functional groups suggest roles in the evolution of tree-like habit, deposition and remobilization of starch reserves, attraction of seed dispersal agents, and adaptation to tropical daylengths. Transgenesis at three locations is closely associated with chloroplast insertions into the nuclear genome, and with topoisomerase I recognition sites. Papaya offers numerous advantages as a system for fruit-tree functional genomics, and this draft genome sequence provides the foundation for revealing the basis of Carica's distinguishing morpho-physiological, medicinal and nutritional properties.

  7. Age and growth of the knobbed whelk Busycon carica (Gmelin 1791) in South Carolina subtidal waters

    USGS Publications Warehouse

    Eversole, A.G.; Anderson, W.D.; Isely, J.J.

    2008-01-01

    Knobbed whelk, Busycon carica (Gmelin, 1791), age and growth were estimated using tagged and recaptured individuals (n = 396) from areas off South Carolina coastal islands. Recaptured whelks were at large an average of 298 d (4-2,640 d). Growth, an increase in shell length (SL), was evident in 24% of the recaptured whelks, whereas 29% of recaptured individuals were the same size as when released and 47% were smaller than the released size. Mean growth rate was <0.001 mm SL/d and 0.022 mm SL/d if decreases in SL were assumed to be zero. Smaller whelks (???90 mm SL) at large for over one year grew seven times faster than larger whelks. The von Bertalanffy growth model: SL1 = 159.5(1 - e-0.0765(t+0.4162)), was developed from the mark - recapture whelks exhibiting growth. Based on a South Carolina minimum legal size of 102 mm SL, whelks recruit into the fishery at 13 y of age. The longevity, large size at maturity and slow growth suggest the potential for over harvest of knobbed whelk. Future whelk management plans may wish to consider whether economically viable commercial harvest can be sustainable.

  8. Antimalarial Potential of Carica papaya and Vernonia amygdalina in Mice Infected with Plasmodium berghei.

    PubMed

    Okpe, Oche; Habila, Nathan; Ikwebe, Joseph; Upev, Vincent A; Okoduwa, Stanley I R; Isaac, Omiagocho T

    2016-01-01

    The study determined if administration of Vernonia amygdalina and Carica papaya plants provides synergistic effects in ameliorating plasmodium infection in mice. Thirty mice (17.88-25.3 g) were divided into 6 groups of 5 mice each. Group 1 was normal control, while groups 2-6 were intraperitoneally inoculated 2.5 × 10(7)Plasmodium berghei parasitized red blood cell, followed by daily administration of 350 mg/kg aqueous leaf extracts after establishment of infection. Group 2 was disease control, while group 6 was treated with standard drug for four consecutive days. The results showed significant (P < 0.05) reduction in percentage of parasite load between the infected treatment groups and disease control group at day 3 after infection, which remained consistent until the end of the experiment. All infected treated groups showed significant (P < 0.05) increases in RBC and PCV recovery compared to the disease control, with the exception of WBC. There was insignificant (P > 0.05) change in mean body weight of all treated groups except in disease control group. Histological studies of the infected mice indicate recovery of hepatic cells from congested black pigmentation. The reduction in parasite load and recovery of hepatic cell damage/hematological parameters were induced by these plant extracts. This highlighted the important usage of the plant in traditional remedy of malaria infection.

  9. Proteomic analysis of papaya (Carica papaya L.) displaying typical sticky disease symptoms.

    PubMed

    Rodrigues, Silas P; Ventura, José A; Aguilar, Clemente; Nakayasu, Ernesto S; Almeida, Igor C; Fernandes, Patricia M B; Zingali, Russolina B

    2011-07-01

    Papaya (Carica papaya L.) hosts the only described laticifer-infecting virus (Papaya meleira virus, PMeV), which is the causal agent of papaya sticky disease. To understand the systemic effects of PMeV in papaya, we conducted a comprehensive proteomic analysis of leaf samples from healthy and diseased plants grown under field conditions. First, a reference 2-DE map was established for proteins from healthy samples. A total of 486 reproducible spots were identified, and MALDI-TOF-MS/MS data identified 275 proteins accounting for 159 distinct proteins from 231 spots that were annotated. Second, the differential expression of proteins from healthy and diseased leaves was determined through parallel experiments, using 2-DE and DIGE followed by MALDI-TOF-MS/MS and LC-IonTrap-MS/MS, respectively. Conventional 2-DE analysis revealed 75 differentially expressed proteins. Of those, 48 proteins were identified, with 26 being upregulated (U) and 22 downregulated (D). In general, metabolism-related proteins were downregulated, and stress-responsive proteins were upregulated. This expression pattern was corroborated by the results of the DIGE analysis, which identified 79 differentially expressed proteins, with 23 identified (17 U and 6 D). Calreticulin and the proteasome subunits 20S and RPT5a were shown to be upregulated during infection by both 2-DE and DIGE analyses. These data may help shed light on plant responses against stresses and viral infections.

  10. Identification of miRNAs and miRNA-mediated regulatory pathways in Carica papaya.

    PubMed

    Liang, Gang; Li, Yang; He, Hua; Wang, Fang; Yu, Diqiu

    2013-10-01

    Plant microRNAs (miRNAs) post-transcriptionally regulate target gene expression to modulate growth and development and biotic and abiotic stress responses. By analyzing small RNA deep sequencing data in combination with the genome sequence, we identified 75 conserved miRNAs and 11 novel miRNAs. Their target genes were also predicted. For most conserved miRNAs, the miRNA-target pairs were conserved across plant species. In addition to these conserved miRNA-target pairs, we also identified some papaya-specific miRNA-target regulatory pathways. Both miR168 and miR530 target the Argonaute 1 gene, indicating a second autoregulatory mechanism for miRNA regulation. A non-conserved miRNA was mapped within an intron of Dicer-like 1 (DCL1), suggesting a conserved homeostatic autoregulatory mechanism for DCL1 expression. A 21-nt miRNA triggers secondary siRNA production from its target genes, nucleotide-binding site leucine-rich repeat protein genes. Certain phased-miRNAs were processed from their conserved miRNA precursors, indicating a putative miRNA evolution mechanism. In addition, we identified a Carica papaya-specific miRNA that targets an ethylene receptor gene, implying its function in the ethylene signaling pathway. This work will also advance our understanding of miRNA functions and evolution in plants.

  11. Contrasting patterns of X/Y polymorphism distinguish Carica papaya from other sex chromosome systems.

    PubMed

    Weingartner, Laura A; Moore, Richard C

    2012-12-01

    The sex chromosomes of the tropical crop papaya (Carica papaya) are evolutionarily young and consequently allow for the examination of evolutionary mechanisms that drive early sex chromosome divergence. We conducted a molecular population genetic analysis of four X/Y gene pairs from a collection of 45 wild papaya accessions. These population genetic analyses reveal striking differences in the patterns of polymorphism between the X and Y chromosomes that distinguish them from other sex chromosome systems. In most sex chromosome systems, the Y chromosome displays significantly reduced polymorphism levels, whereas the X chromosome maintains a level of polymorphism that is comparable to autosomal loci. However, the four papaya sex-linked loci that we examined display diversity patterns that are opposite this trend: the papaya X alleles exhibit significantly reduced polymorphism levels, whereas the papaya Y alleles maintain greater than expected levels of diversity. Our analyses suggest that selective sweeps in the regions of the X have contributed to this pattern while also revealing geographically restricted haplogroups on the Y. We discuss the possible role sexual selection and/or genomic conflict have played in shaping the contrasting patterns of polymorphism found for the papaya X and Y chromosomes.

  12. Digital transcriptome analysis of putative sex-determination genes in papaya (Carica papaya).

    PubMed

    Urasaki, Naoya; Tarora, Kazuhiko; Shudo, Ayano; Ueno, Hiroki; Tamaki, Moritoshi; Miyagi, Norimichi; Adaniya, Shinichi; Matsumura, Hideo

    2012-01-01

    Papaya (Carica papaya) is a trioecious plant species that has male, female and hermaphrodite flowers on different plants. The primitive sex chromosomes genetically determine the sex of the papaya. Although draft sequences of the papaya genome are already available, the genes for sex determination have not been identified, likely due to the complicated structure of its sex-chromosome sequences. To identify the candidate genes for sex determination, we conducted a transcriptome analysis of flower samples from male, female and hermaphrodite plants using high-throughput SuperSAGE for digital gene expression analysis. Among the short sequence tags obtained from the transcripts, 312 unique tags were specifically mapped to the primitive sex chromosome (X or Y(h)) sequences. An annotation analysis revealed that retroelements are the most abundant sequences observed in the genes corresponding to these tags. The majority of tags on the sex chromosomes were located on the X chromosome, and only 30 tags were commonly mapped to both the X and Y(h) chromosome, implying a loss of many genes on the Y(h) chromosome. Nevertheless, candidate Y(h) chromosome-specific female determination genes, including a MADS-box gene, were identified. Information on these sex chromosome-specific expressed genes will help elucidating sex determination in the papaya.

  13. Characterization of chromoplasts and carotenoids of red- and yellow-fleshed papaya (Carica papaya L.).

    PubMed

    Schweiggert, Ralf M; Steingass, Christof B; Heller, Annerose; Esquivel, Patricia; Carle, Reinhold

    2011-11-01

    Chromoplast morphology and ultrastructure of red- and yellow-fleshed papaya (Carica papaya L.) were investigated by light and transmission electron microscopy. Carotenoid analyses by LC-MS revealed striking similarity of nutritionally relevant carotenoid profiles in both the red and yellow varieties. However, while yellow fruits contained only trace amounts of lycopene, the latter was found to be predominant in red papaya (51% of total carotenoids). Comparison of the pigment-loaded chromoplast ultrastructures disclosed tubular plastids to be abundant in yellow papaya, whereas larger crystalloid substructures characterized most frequent red papaya chromoplasts. Exclusively existent in red papaya, such crystalloid structures were associated with lycopene accumulation. Non-globular carotenoid deposition was derived from simple solubility calculations based on carotenoid and lipid contents of the differently colored fruit pulps. Since the physical state of carotenoid deposition may be decisive regarding their bioavailability, chromoplasts from lycopene-rich tomato fruit (Lycopersicon esculentum L.) were also assessed and compared to red papaya. Besides interesting analogies, various distinctions were ascertained resulting in the prediction of enhanced lycopene bioavailability from red papaya. In addition, the developmental pathway of red papaya chromoplasts was investigated during fruit ripening and carotenogenesis. In the early maturation stage of white-fleshed papaya, undifferentiated proplastids and globular plastids were predominant, corresponding to incipient carotenoid biosynthesis. Since intermediate plastids, e.g., amyloplasts or chloroplasts, were absent, chromoplasts are likely to emerge directly from proplastids.

  14. Assessment of the anti-protozoal activity of crude Carica papaya seed extract against Trypanosoma cruzi.

    PubMed

    Jiménez-Coello, Matilde; Guzman-Marín, Eugenia; Ortega-Pacheco, Antonio; Perez-Gutiérrez, Salud; Acosta-Viana, Karla Y

    2013-10-11

    In order to determine the in vivo activity against the protozoan Trypanosoma cruzi, two doses (50 and 75 mg/kg) of a chloroform extract of Carica papaya seeds were evaluated compared with a control group of allopurinol. The activity of a mixture of the three main compounds (oleic, palmitic and stearic acids in a proportion of 45.9% of oleic acid, 24.1% of palmitic and 8.52% of stearic acid previously identified in the crude extract of C. papaya was evaluated at doses of 100, 200 and 300 mg/kg. Both doses of the extracts were orally administered for 28 days. A significant reduction (p < 0.05) in the number of blood trypomastigotes was observed in animals treated with the evaluated doses of the C. papaya extract in comparison with the positive control group (allopurinol 8.5 mg/kg). Parasitemia in animals treated with the fatty acids mixture was also significantly reduced (p < 0.05), compared to negative control animals. These results demonstrate that the fatty acids identified in the seed extracts of C. papaya (from ripe fruit) are able to reduce the number of parasites from both parasite stages, blood trypomastigote and amastigote (intracellular stage).

  15. Bioseparation of papain from Carica papaya latex by precipitation of papain-poly (vinyl sulfonate) complexes.

    PubMed

    Braia, Mauricio; Ferrero, Maximiliano; Rocha, María Victoria; Loureiro, Dana; Tubio, Gisela; Romanini, Diana

    2013-09-01

    The formation of insoluble complexes between enzymes and polyelectrolytes is a suitable technique for isolating these biomolecules from natural sources, because it is a simple and rapid technique that allows the concentration of the protein. This technique can be used in most purification protocols at the beginning of the downstream process. The aim of this investigation is to isolate papain from Carica papaya latex by precipitation of insoluble complexes between this enzyme and poly (vinyl sulfonate). The papain-poly (vinyl sulfonate) complex was insoluble at pH lower than 6, with a PVS/PAP stoichiometric ratio of 1:279. Ionic strength affected the complex formation. The presence of the polymer increased the enzymatic activity and protected the enzyme from autodegradation. The optimal conditions for the formation of insoluble papain-polyelectrolyte complex formation were applied to C. papaya latex and a high recovery was obtained (around 86%) and a purification factor around 2. This method can be applied as an isolation method of papain from C. papaya latex or as a first step in a larger purification strategy.

  16. Crystallization and preliminary X-ray diffraction studies of the glutaminyl cyclase from Carica papaya latex

    SciTech Connect

    Azarkan, Mohamed; Clantin, Bernard; Bompard, Coralie; Belrhali, Hassan; Baeyens-Volant, Danielle; Looze, Yvan; Wintjens, René

    2005-01-01

    The glutaminyl cyclase isolated from C. papaya latex has been crystallized using the hanging-drop method. Diffraction data have been collected at ESRF beamline BM14 and processed to 1.7 Å resolution. In living systems, the intramolecular cyclization of N-terminal glutamine residues is accomplished by glutaminyl cyclase enzymes (EC 2.3.2.5). While in mammals these enzymes are involved in the synthesis of hormonal and neurotransmitter peptides, the physiological role played by the corresponding plant enzymes still remains to be unravelled. Papaya glutaminyl cyclase (PQC), a 33 kDa enzyme found in the latex of the tropical tree Carica papaya, displays an exceptional resistance to chemical and thermal denaturation as well as to proteolysis. In order to elucidate its enzymatic mechanism and to gain insights into the structural determinants underlying its remarkable stability, PQC was isolated from papaya latex, purified and crystallized by the hanging-drop vapour-diffusion method. The crystals belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 62.82, b = 81.23, c = 108.17 Å and two molecules per asymmetric unit. Diffraction data have been collected at ESRF beamline BM14 and processed to a resolution of 1.7 Å.

  17. Influence of ripening stages on antioxidant properties of papaya fruit (Carica papaya L.)

    NASA Astrophysics Data System (ADS)

    Addai, Zuhair Radhi; Abdullah, Aminah; Mutalib, Sahilah Abd.

    2013-11-01

    Papaya (Carica papaya L. cv Eksotika) is one of the most commonly consumed tropical fruits by humans, especially Malaysians. The objective of this study was to determine the phenolic compounds and antioxidants activity in different ripening stages of papaya fruit. The fruits were harvested at five different, stages RS1, RS2, RS3, RS4, and RS5 corresponding to 12, 14, 16, 18, and 20 weeks after anthesis, respectively. Papayas fruit at five different stage of ripening were obtained from farms at Pusat Flora Cheras, JabatanPertanian and Hulu Langat Semenyih, Selangor, Malaysia. The antioxidants activity were analyzed using the total phenolic content (TPC), total flavonoid content (TFC), ferric reducing antioxidant Power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH). The analyses were conducted in triplicate and the data were subjected to statistical analysis using SPSS. The results showed significant differences (P< 0.05) were found at different stages of ripening. The total phenol content TPC, TFC, FRAP and DPPH values increased significantly (P<0.05) with the ripening process. The results showed the important role of the ripening stage in increasing the antioxidant content of papaya fruits.

  18. Wound-healing potential of an ethanol extract of Carica papaya (Caricaceae) seeds.

    PubMed

    Nayak, Bijoor Shivananda; Ramdeen, Ria; Adogwa, Andrew; Ramsubhag, Adash; Marshall, Julien Rhodney

    2012-12-01

    Carica papaya L. (Linn) (Caricaceae) is traditionally used to treat various skin disorders, including wounds. It is widely used in developing countries as an effective and readily available treatment for various wounds, particularly burns. This study evaluated the wound-healing and antimicrobial activity of C. papaya seed extract. Ethanol extract of C. papaya seed (50 mg/kg/day) was evaluated for its wound-healing activity in Sprague-Dawley rats using excision wound model. Animals were randomly divided into four groups of six each (group 1 served as control, group 2 treated with papaya seed extract, group 3 treated with a standard drug mupirocin and papaya seed extract (1:1 ratio) and group 4 treated with a mupirocin ointment. Rate of wound contraction and hydroxyproline content were determined to assess the wound-healing activity of the seed extract. The group 2 animals showed a significant decrease in wound area of 89% over 13 days when compared with groups 1 (82%), 3 (86%) and 4 (84%) respectively. The hydroxyproline content was significantly higher with the granulation tissue obtained from group 2 animals which were treated with C. papaya seed extract. Histological analysis of granulation tissue of the group 2 animals showed the deposition of well-organized collagen. The extract exhibited antimicrobial activity against Salmonella choleraesuis and Staphylococcus aureus. Our results suggest that C. papaya promotes significant wound healing in rats and further evaluation for this activity in humans is suggested.

  19. Effects of JSOG-6 on protection against bone loss in ovariectomized mice through regulation of osteoblast differentiation and osteoclast formation

    PubMed Central

    2014-01-01

    Background JSOG-6 is used as a traditional medicine to relieve the symptoms associated with inflammation, rheumatism, and osteoporosis in Korea. In the present study, we investigated the effects of JSOG-6 on bone loss prevention both in in vitro and in vivo as well as its underlying mechanism of action. Methods Protection against bone loss was assessed in an ovariectomized (OVX) mouse model. Bone microarchitecture was measured using a micro-computed tomography to detect the parameters of three-dimensional structure of a trabecular bone. Serum biomarkers were also evaluated in an OVX-induced model. Osteoclasts derived from mouse bone marrow cells (BMCs) and osteoblastic MC3T3-E1 cells were also employed to investigate the mechanism of action. Results Oral administration of JSOG-6 significantly increased the bone mineral density (BMD) of the femur in OVX mice in vivo. Especially, the reduced Tb.No (trabecular bone number) in the OVX group was significantly recovered by JSOG-6 treatment. The serum levels of alkaline phosphatase (ALP), osteocalcin, C-terminal telopeptide, and tartrate-resistant acid phosphatase, biomarkers of bone resorption, were significantly elevated in OVX mice, but JSOG-6 effectively inhibited the increase in OVX mice. JSOG-6 was also found to enhance the osteoblastic differentiation and maturation with the increase of the density and ALP activity, a marker of osteoblastic differentiation, as well as calcium deposition, a marker of osteoblastic maturation in MC3T3-E1 cells. The effects of JSOG-6 on osteoblastic differentiation were also associated in part with the increase of ALP and OPN mRNA expressions and the decrease of RANKL mRNA expression in MC3T3-E1 cells. Conclusions The findings demonstrate that JSOG-6 induced protection against bone loss in OVX mice, and its anti-osteoporotic property might be, in part, a function of the stimulation of osteoblast differentiation and the inhibition of osteoclast formation. These findings suggest that

  20. BAR Proteins PSTPIP1/2 Regulate Podosome Dynamics and the Resorption Activity of Osteoclasts

    PubMed Central

    Sztacho, Martin; Segeletz, Sandra; Sanchez-Fernandez, Maria Arantzazu; Czupalla, Cornelia; Niehage, Christian; Hoflack, Bernard

    2016-01-01

    Bone resorption in vertebrates relies on the ability of osteoclasts to assemble F-actin-rich podosomes that condense into podosomal belts, forming sealing zones. Sealing zones segregate bone-facing ruffled membranes from other membrane domains, and disassemble when osteoclasts migrate to new areas. How podosome/sealing zone dynamics is regulated remains unknown. We illustrate the essential role of the membrane scaffolding F-BAR-Proline-Serine-Threonine Phosphatase Interacting Proteins (PSTPIP) 1 and 2 in this process. Whereas PSTPIP2 regulates podosome assembly, PSTPIP1 regulates their disassembly. PSTPIP1 recruits, through its F-BAR domain, the protein tyrosine phosphatase non-receptor type 6 (PTPN6) that de-phosphophorylates the phosphatidylinositol 5-phosphatases SHIP1/2 bound to the SH3 domain of PSTPIP1. Depletion of any component of this complex prevents sealing zone disassembly and increases osteoclast activity. Thus, our results illustrate the importance of BAR domain proteins in podosome structure and dynamics, and identify a new PSTPIP1/PTPN6/SHIP1/2-dependent negative feedback mechanism that counterbalances Src and PI(3,4,5)P3 signalling to control osteoclast cell polarity and activity during bone resorption. PMID:27760174

  1. [Topics for basic research(osteoclast and bone resorption)in ASBMR 2016.

    PubMed

    Udagawa, Nobuyuki

    This is a brief report summarizing topics in ASBMR 2016 held at Georgia World Congress Center in Atlanta on September 16-19th. In this paper, I report some topics from presentation of basic research(especially osteoclast and bone resorption)in ASBMR 2016.

  2. Effect of amorphous silica nanoparticles on in vitro RANKL-induced osteoclast differentiation in murine macrophages

    PubMed Central

    2011-01-01

    Amorphous silica nanoparticles (nSP) have been used as a polishing agent and/or as a remineralization promoter for teeth in the oral care field. The present study investigates the effects of nSP on osteoclast differentiation and the relationship between particle size and these effects. Our results revealed that nSP exerted higher cytotoxicity in macrophage cells compared with submicron-sized silica particles. However, tartrate-resistant acid phosphatase (TRAP) activity and the number of osteoclast cells (TRAP-positive multinucleated cells) were not changed by nSP treatment in the presence of receptor activator of nuclear factor κB ligand (RANKL) at doses that did not induce cytotoxicity by silica particles. These results indicated that nSP did not cause differentiation of osteoclasts. Collectively, the results suggested that nanosilica exerts no effect on RANKL-induced osteoclast differentiation of RAW264.7 cells, although a detailed mechanistic examination of the nSP70-mediated cytotoxic effect is needed. PMID:21777482

  3. Impairment of osteoclastic bone resorption in rapidly growing female p47phox knockout mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bone formation is dependent on the activity and differentiation of osteoblasts; whereas resorption of preexisting mineralized bone matrix by osteoclasts is necessary not only for bone development but also for regeneration and remodeling. Bone remodeling is a process in which osteoblasts and osteocla...

  4. Force-Induced H2S by PDLSCs Modifies Osteoclastic Activity during Tooth Movement.

    PubMed

    Liu, F; Wen, F; He, D; Liu, D; Yang, R; Wang, X; Yan, Y; Liu, Y; Kou, X; Zhou, Y

    2017-02-01

    Hydrogen sulfide (H2S), a gasotransmitter, has been recently linked to mesenchymal stem cell (MSC) function and bone homeostasis. Periodontal ligament stem cells (PDLSCs) are the main MSCs in PDL, which respond to mechanical force to induce physiological activities during orthodontic tooth movement (OTM). However, it is unknown whether mechanical force might induce endogenous H2S production by PDLSCs to regulate alveolar bone homeostasis. Here, we used a mouse OTM model to demonstrate that orthodontic force-induced endogenous H2S production in PDL tissue was associated with macrophage accumulation and osteoclastic activity in alveolar bone. Then, we showed that mechanical force application induced cystathionine β-synthase (CBS) expression and endogenous H2S production by PDLSCs. Moreover, blocking endogenous H2S or systemically increasing H2S levels could decrease or enhance force-induced osteoclastic activities to control tooth movement. We further revealed how force-induced H2S production by PDLSCs contributed to the secretion of monocyte chemoattractant protein-1 (MCP-1) and the expression of receptor activator of nuclear factor-κB ligand/osteoprotegerin (RANKL/OPG) system by PDLSCs. The secretion and expression of these factors controlled macrophage migration and osteoclast differentiation. This study demonstrated that PDLSCs produced H2S to respond to and transduce force signals. Force-induced gasotransmitter H2S production in PDLSCs therefore regulated osteoclastic activities in alveolar bone and controlled the OTM process through the MCP-1 secretion and RANKL/OPG system.

  5. Early reversal cells in adult human bone remodeling: osteoblastic nature, catabolic functions and interactions with osteoclasts.

    PubMed

    Abdelgawad, Mohamed Essameldin; Delaisse, Jean-Marie; Hinge, Maja; Jensen, Pia Rosgaard; Alnaimi, Ragad Walid; Rolighed, Lars; Engelholm, Lars H; Marcussen, Niels; Andersen, Thomas Levin

    2016-06-01

    The mechanism coupling bone resorption and formation is a burning question that remains incompletely answered through the current investigations on osteoclasts and osteoblasts. An attractive hypothesis is that the reversal cells are likely mediators of this coupling. Their nature is a big matter of debate. The present study performed on human cancellous bone is the first one combining in situ hybridization and immunohistochemistry to demonstrate their osteoblastic nature. It shows that the Runx2 and CD56 immunoreactive reversal cells appear to take up TRAcP released by neighboring osteoclasts. Earlier preclinical studies indicate that reversal cells degrade the organic matrix left behind by the osteoclasts and that this degradation is crucial for the initiation of the subsequent bone formation. To our knowledge, this study is the first addressing these catabolic activities in adult human bone through electron microscopy and analysis of molecular markers. Periosteoclastic reversal cells show direct contacts with the osteoclasts and with the demineralized resorption debris. These early reversal cells show (1) ¾-collagen fragments typically generated by extracellular collagenases of the MMP family, (2) MMP-13 (collagenase-3) and (3) the endocytic collagen receptor uPARAP/Endo180. The prevalence of these markers was lower in the later reversal cells, which are located near the osteoid surfaces and morphologically resemble mature bone-forming osteoblasts. In conclusion, this study demonstrates that reversal cells colonizing bone surfaces right after resorption are osteoblast-lineage cells, and extends to adult human bone remodeling their role in rendering eroded surfaces osteogenic.

  6. Comparison between sample disruption methods and solid-liquid extraction (SLE) to extract phenolic compounds from Ficus carica leaves.

    PubMed

    Teixeira, D Martins; Patão, R Ferreira; Coelho, A Varela; da Costa, C Teixeira

    2006-01-20

    Sea sand disruption method (SSDM) and matrix solid phase disruption (MSPD) were compared to solid-liquid extraction (SLE) for extraction of phenolic compounds from the Ficus carica leaves. Statistical treatment, ANOVA-single factor, was used to compare the extraction yields obtained by these methods, and for the majority of the extracted compounds, significantly higher yields were obtained by the solid disruption methods. Both solid disruption methods are faster and ecologically friendly, but the sea sand method was more reproducible (RSD < 5% for most compounds), and was also the least expensive method. Recoveries above 85% were obtained for chlorogenic acid, rutin, and psoralen using the sea sand extraction method.

  7. Traditional Aboriginal Preparation Alters the Chemical Profile of Carica papaya Leaves and Impacts on Cytotoxicity towards Human Squamous Cell Carcinoma.

    PubMed

    Nguyen, Thao T; Parat, Marie-Odile; Shaw, Paul N; Hewavitharana, Amitha K; Hodson, Mark P

    2016-01-01

    Carica papaya leaf decoction, an Australian Aboriginal remedy, has been used widely for its healing capabilities against cancer, with numerous anecdotal reports. In this study we investigated its in vitro cytotoxicity on human squamous cell carcinoma cells followed by metabolomic profiling of Carica papaya leaf decoction and leaf juice/brewed leaf juice to determine the effects imparted by the long heating process typical of the Aboriginal remedy preparation. MTT assay results showed that in comparison with the decoction, the leaf juice not only exhibited a stronger cytotoxic effect on SCC25 cancer cells, but also produced a significant cancer-selective effect as shown by tests on non-cancerous human keratinocyte HaCaT cells. Furthermore, evidence from testing brewed leaf juice on these two cell lines suggested that the brewing process markedly reduced the selective effect of Carica papaya leaf on SCC25 cancer cells. To tentatively identify the compounds that contribute to the distinct selective anticancer activity of leaf juice, an untargeted metabolomic approach employing Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry followed by multivariate data analysis was applied. Some 90 and 104 peaks in positive and negative mode respectively were selected as discriminatory features from the chemical profile of leaf juice and >1500 putative compound IDs were obtained via database searching. Direct comparison of chromatographic and tandem mass spectral data to available reference compounds confirmed one feature as a match with its proposed authentic standard, namely pheophorbide A. However, despite pheophorbide A exhibiting cytotoxic activity on SCC25 cancer cells, it did not prove to be the compound contributing principally to the selective activity of leaf juice. With promising results suggesting stronger and more selective anticancer effects when compared to the Aboriginal remedy, Carica papaya leaf juice warrants further study

  8. Zebrafish scales respond differently to in vitro dynamic and static acceleration: analysis of interaction between osteoblasts and osteoclasts.

    PubMed

    Kitamura, Kei-ichiro; Takahira, Koh; Inari, Masato; Satoh, Yusuke; Hayakawa, Kazuichi; Tabuchi, Yoshiaki; Ogai, Kazuhiro; Nishiuchi, Takumi; Kondo, Takashi; Mikuni-Takagaki, Yuko; Chen, Wenxi; Hattori, Atsuhiko; Suzuki, Nobuo

    2013-09-01

    Zebrafish scales consist of bone-forming osteoblasts, bone-resorbing osteoclasts, and calcified bone matrix. To elucidate the underlying molecular mechanism of the effects induced by dynamic and static acceleration, we investigated the scale osteoblast- and osteoclast-specific marker gene expression involving osteoblast-osteoclast communication molecules. Osteoblasts express RANKL, which binds to the osteoclast surface receptor, RANK, and stimulates bone resorption. OPG, on the other hand, is secreted by osteoblast as a decoy receptor for RANKL, prevents RANKL from binding to RANK and thus prevents bone resorption. Therefore, the RANK-RANKL-OPG pathway contributes to the regulation of osteoclastogenesis by osteoblasts. Semaphorin 4D, in contrast, is expressed on osteoclasts, and binding to its receptor Plexin-B1 on osteoblasts results in suppression of bone formation. In the present study, we found that both dynamic and static acceleration at 3.0×g decreased RANKL/OPG ratio and increased osteoblast-specific functional mRNA such as alkaline phosphatase, while static acceleration increased and dynamic acceleration decreased osteoclast-specific mRNA such as cathepsin K. Static acceleration increased semaphorin 4D mRNA expression, while dynamic acceleration had no effect. The results of the present study indicated that osteoclasts have predominant control over bone metabolism via semaphorin 4D expression induced by static acceleration at 3.0×g.

  9. Inhibition of Neutral red photolysis with different antioxidants.

    PubMed

    Rimpapa, Zlatan; Sofić, Emin; Sapcanin, Aida; Toromanović, Jasmin; Tahirović, Ismet

    2007-02-01

    Neutral red is a dye the azine structure which has been used as an acido-base indicator and a dye in histochemistry. In 1960 Goldhaber introduced Neutral red into the medium of resorbing bone cultures to localize the osteoclast in the living cultures. Using time-lapse microcinematography in order to follow the osteoclasts, he reported excellent contrast could be obtained with Neutral red due to the avidity of osteoclasts for this dye. Unfortunately, however, the photodynamic effect resulting from subsequent exposure of these cultures to light precluded this approach, and again in 1963. it was observed that the death of the osteoclasts was probably due to a photodynamic effect related to the dye in the cell, the presence of oxygen and the frequent exposure of light by our time-lapse photography. VIS and UV irradiation induced photolysis of Neutral red, and from Neutral red cation produced with photons a Neutral red radical. This Neutral red radical can be inhibited with action of an antioxidant, such as melatonin, glutathione, ascorbic acid, E vitamin, etc. We developed an assay with Neutral red photolysis which utilizes a VIS and UV irradiation technique for quantification the inhibition of photolysis with action of an antioxidant. In this method Neutral red acts double, as a free radical generator and as a photosensitizer.

  10. Serotype b of Aggregatibacter actinomycetemcomitans increases osteoclast and memory T-lymphocyte activation.

    PubMed

    Melgar-Rodríguez, S; Díaz-Zúñiga, J; Alvarez, C; Rojas, L; Monasterio, G; Carvajal, P; Escobar, A; Sanz, M; Vernal, R

    2016-04-01

    During periodontitis, alveolar bone resorption is associated with activation of T helper type 17 (Th17) lymphocytes and receptor activator of nuclear factor-κB ligand (RANKL) -induced osteoclasts. We previously reported that serotype b of Aggregatibacter actinomycetemcomitans has a higher capacity to trigger Th17-type differentiation and function in activated T lymphocytes and its lipopolysaccharide is a more potent immunogen compared with the other serotypes. This study aimed to investigate whether serotype b of A. actinomycetemcomitans induces higher Th17-associated RANKL production, RANKL-induced osteoclast activation, and antigen-specific memory T lymphocyte proliferation. On naive CD4(+) T lymphocytes stimulated with autologous dendritic cells primed with different A. actinomycetemcomitans serotypes, RANKL production, T-bet, GATA-3, RORC2 and Foxp3 expression, RORC2/RANKL intracellular double-expression, TRAP(+) osteoclast activation, and bone resorption were quantified. The frequency of proliferating memory T lymphocytes in response to A. actinomycetemcomitans serotypes was determined in periodontitis and healthy subjects. Naive CD4(+) T lymphocytes stimulated by serotype b-primed dendritic cells elicited higher levels of RANKL, RORC2, TRAP(+) osteoclasts, and bone resorption than the same cells stimulated with the other serotypes. RANKL positively correlated and co-expressed with RORC2. Memory T lymphocytes responding to serotype b were more frequently detected in periodontitis patients than healthy subjects. These results indicate that serotype b of A. actinomycetemcomitans is associated with higher production of RANKL and these increased levels are associated with Th17 lymphocyte induction, osteoclast activation, and bone resorption.

  11. Osteopenia Due to Enhanced Cathepsin K Release by BK Channel Ablation in Osteoclasts

    PubMed Central

    Missbach-Guentner, Jeannine; Kabagema, Clement; Flockerzie, Katarina; Kuscher, Gerd Marten; Stuehmer, Walter; Neuhuber, Winfried; Ruth, Peter; Alves, Frauke; Sausbier, Matthias

    2011-01-01

    Background The process of bone resorption by osteoclasts is regulated by Cathepsin K, the lysosomal collagenase responsible for the degradation of the organic bone matrix during bone remodeling. Recently, Cathepsin K was regarded as a potential target for therapeutic intervention of osteoporosis. However, mechanisms leading to osteopenia, which is much more common in young female population and often appears to be the clinical pre-stage of idiopathic osteoporosis, still remain to be elucidated, and molecular targets need to be identified. Methodology/Principal Findings We found, that in juvenile bone the large conductance, voltage and Ca2+-activated (BK) K+ channel, which links membrane depolarization and local increases in cytosolic calcium to hyperpolarizing K+ outward currents, is exclusively expressed in osteoclasts. In juvenile BK-deficient (BK−/−) female mice, plasma Cathepsin K levels were elevated two-fold when compared to wild-type littermates. This increase was linked to an osteopenic phenotype with reduced bone mineral density in long bones and enhanced porosity of trabecular meshwork in BK−/− vertebrae as demonstrated by high-resolution flat-panel volume computed tomography and micro-CT. However, plasma levels of sRANKL, osteoprotegerin, estrogene, Ca2+ and triiodthyronine as well as osteoclastogenesis were not altered in BK−/− females. Conclusion/Significance Our findings suggest that the BK channel controls resorptive osteoclast activity by regulating Cathepsin K release. Targeted deletion of BK channel in mice resulted in an osteoclast-autonomous osteopenia, becoming apparent in juvenile females. Thus, the BK−/− mouse-line represents a new model for juvenile osteopenia, and revealed the BK channel as putative new target for therapeutic controlling of osteoclast activity. PMID:21695131

  12. Ablation of Y1 receptor impairs osteoclast bone-resorbing activity

    PubMed Central

    Sousa, Daniela M.; Conceição, Francisco; Silva, Diana I.; Leitão, Luís; Neto, Estrela; Alves, Cecília J.; Alencastre, Inês S.; Herzog, Herbert; Aguiar, Paulo; Lamghari, Meriem

    2016-01-01

    Y1 receptor (Y1R)-signalling pathway plays a pivotal role in the regulation of bone metabolism. The lack of Y1R-signalling stimulates bone mass accretion that has been mainly attributed to Y1R disruption from bone-forming cells. Still, the involvement of Y1R-signalling in the control of bone-resorbing cells remained to be explored. Therefore, in this study we assessed the role of Y1R deficiency in osteoclast formation and resorption activity. Here we demonstrate that Y1R germline deletion (Y1R−/−) led to increased formation of highly multinucleated (n > 8) osteoclasts and enhanced surface area, possibly due to monocyte chemoattractant protein-1 (MCP-1) overexpression regulated by RANKL-signalling. Interestingly, functional studies revealed that these giant Y1R−/− multinucleated cells produce poorly demineralized eroded pits, which were associated to reduce expression of osteoclast matrix degradation markers, such as tartrate-resistant acid phosphatase-5b (TRAcP5b), matrix metalloproteinase-9 (MMP-9) and cathepsin-K (CTSK). Tridimensional (3D) morphologic analyses of resorption pits, using an in-house developed quantitative computational tool (BonePit), showed that Y1R−/− resorption pits displayed a marked reduction in surface area, volume and depth. Together, these data demonstrates that the lack of Y1Rs stimulates the formation of larger multinucleated osteoclasts in vitro with reduced bone-resorbing activity, unveiling a novel therapeutic option for osteoclastic bone diseases based on Y1R-signalling ablation. PMID:27646989

  13. The Rho-GEF Kalirin regulates bone mass and the function of osteoblasts and osteoclasts.

    PubMed

    Huang, Su; Eleniste, Pierre P; Wayakanon, Kornchanok; Mandela, Prashant; Eipper, Betty A; Mains, Richard E; Allen, Matthew R; Bruzzaniti, Angela

    2014-03-01

    Bone homeostasis is maintained by the balance between bone resorption by osteoclasts and bone formation by osteoblasts. Dysregulation in the activity of the bone cells can lead to osteoporosis, a disease characterized by low bone mass and an increase in bone fragility and risk of fracture. Kalirin is a novel GTP-exchange factor protein that has been shown to play a role in cytoskeletal remodeling and dendritic spine formation in neurons. We examined Kalirin expression in skeletal tissue and found that it was expressed in osteoclasts and osteoblasts. Furthermore, micro-CT analyses of the distal femur of global Kalirin knockout (Kal-KO) mice revealed significantly reduced trabecular and cortical bone parameters in Kal-KO mice, compared to WT mice, with significantly reduced bone mass in 8, 14 and 36week-old female Kal-KO mice. Male mice also exhibited a decrease in bone parameters but not to the level seen in female mice. Histomorphometric analyses also revealed decreased bone formation rate in 14week-old female Kal-KO mice, as well as decreased osteoblast number/bone surface and increased osteoclast surface/bone surface. Consistent with our in vivo findings, the bone resorbing activity and differentiation of Kal-KO osteoclasts was increased in vitro. Although alkaline phosphatase activity by Kal-KO osteoblasts was increased in vitro, Kal-KO osteoblasts showed decreased mineralizing activity, as well as decreased secretion of OPG, which was inversely correlated with ERK activity. Taken together, our findings suggest that deletion of Kalirin directly affects osteoclast and osteoblast activity, leading to decreased OPG secretion by osteoblasts which is likely to alter the RANKL/OPG ratio and promote osteoclastogenesis. Therefore, Kalirin may play a role in paracrine and/or endocrine signaling events that control skeletal bone remodeling and the maintenance of bone mass.

  14. Clathrin sheets on the protoplasmic surface of ventral membranes of osteoclasts in culture.

    PubMed

    Akisaka, Toshitaka; Yoshida, Hisaho; Suzuki, Reiko; Shimizu, Kouichi; Takama, Keiko

    2003-01-01

    Physical cell-shearing resulted in various degrees of disruption of the basolateral (upper) membranes, cytoskeletons or cell organelles and exposed the protoplasmic surface of ventral (adhesion) membranes of osteoclasts that were attached to the underlying substratum, such as coverslips, mica or synthetic apatite plates. Freeze-dried replicas of the ventral membranes left behind on the substratum after cell-shearing provided three-dimensional information on the ultrastructure of the protoplasmic membrane surface of cultured osteoclasts. An extensive area of the protoplasmic surface and various amounts of cytoskeletal structures attached to the adherent ventral surface of the plasma membrane were visible. In particular, the most characteristic finding of the present study is that numerous clathrin sheets displaying various sizes, shapes and curvature were revealed on the ventral membrane. The polygon substructures of the clathrin lattices appeared to be composed of hexagons with a few pentagons interspersed. They were seen at the peripheral membranes where they were situated at the sites of close contact with the underlying substratum. In addition, clathrin lattices were never observed on the basolateral (upper) membranes. In favourable stereo views, most cytoskeletons were not in direct contact with the clathrin sheets. However, a few observations indicated possible remnants of cytoskeletons attached to clathrin lattices. Podosomes did not have a direct structural relationship to clathrin lattices. Although it is generally accepted that cytoskeletal podosomes in motile cells, such as osteoclasts, play a major role in cell adhesion, the present study indicates that membrane-associated clathrin might also function during attachment to the substrate. In this regard, clathrin is thought to be required for receptor-mediated endocytosis, but whether it might also function in cell attachment is still a matter for debate. This type of clathrin-related adhesion appears to

  15. Osteoinductive LIM Mineralization Protein-1 Suppresses Activation of NF-κB and Selectively Regulates MAPK Pathways in Pre-osteoclasts

    PubMed Central

    Liu, Hui; Bargouti, Maggie; Zughaier, Susu; Zheng, Zhaomin; Liu, Yunshan; Sangadala, Sreedhara; Boden, Scott D.; Titus, Louisa

    2009-01-01

    LIM Mineralization Protein-1 (LMP-1) is an intracellular regulator of bone formation and has been shown to be osteoinductive in vitro and in vivo. The effect of LMP-1 on other aspects of bone homeostasis has not been previously studied. In a pilot study we observed that LMP-1 decreased nitric oxide (NO) production in pre-osteoclasts. Here we report a new anti-inflammatory effect of LMP-1 and define its mechanism of action in lipopolysaccharide (LPS)-stimulated RAW 264.7 pre-osteoclasts. We found that LMP-1 significantly inhibited LPS-induced NO production. LMP-1 also effectively inhibited the expression of inducible Nitric Oxide Synthase (iNOS), potently suppressed the transcriptional activity and nuclear translocation of nuclear factor kappa B (NF-κB), and prevented the phosphorylation of inhibitor of kappa B (IκB). Interestingly, LMP-1 had no effect on Receptor-Activator of Nuclear Factor B Ligand (RANKL)-induced activation of NF-κB. Furthermore, LMP-1 had no effect on the LPS-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), whereas it did attenuate the phosphorylation of c-Jun NH2-terminal kinase (JNK) while enhancing phosphorylation of p38 mitogen-activated protein kinases (p38 MAPK). These results suggest that LMP-1 has an anti-inflammatory effect, and this effect is, at least in part, due to the inhibition of NO production by the suppression of NF-κB activation and selective regulation of mitogen-activated protein kinase (MAPK) pathways. PMID:19931434

  16. Osteoinductive LIM mineralization protein-1 suppresses activation of NF-kappaB and selectively regulates MAPK pathways in pre-osteoclasts.

    PubMed

    Liu, Hui; Bargouti, Maggie; Zughaier, Susu; Zheng, Zhaomin; Liu, Yunshan; Sangadala, Sreedhara; Boden, Scott D; Titus, Louisa

    2010-05-01

    LIM mineralization protein-1 (LMP-1) is an intracellular regulator of bone formation and has been shown to be osteoinductive in vitro and in vivo. The effect of LMP-1 on other aspects of bone homeostasis has not been previously studied. In a pilot study we observed that LMP-1 decreased nitric oxide (NO) production in pre-osteoclasts. Here we report a new anti-inflammatory effect of LMP-1 and define its mechanism of action in lipopolysaccharide (LPS)-stimulated RAW 264.7 pre-osteoclasts. We found that LMP-1 significantly inhibited LPS-induced NO production. LMP-1 also effectively inhibited the expression of inducible nitric oxide synthase (iNOS), potently suppressed the transcriptional activity and nuclear translocation of nuclear factor kappa B (NF-kappaB), and prevented the phosphorylation of inhibitor of kappa B (IkappaB). Interestingly, LMP-1 had no effect on Receptor-Activator of Nuclear Factor B Ligand (RANKL)-induced activation of NF-kappaB. Furthermore, LMP-1 had no effect on the LPS-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), whereas it did attenuate the phosphorylation of c-Jun NH2-terminal kinase (JNK) while enhancing phosphorylation of p38 mitogen-activated protein kinases (p38 MAPK). These results suggest that LMP-1 has an anti-inflammatory effect, and this effect is, at least in part, due to the inhibition of NO production by the suppression of NF-kappaB activation and selective regulation of mitogen-activated protein kinase (MAPK) pathways.

  17. Evidence for the presence of a proton pump of the vacuolar H(+)-ATPase type in the ruffled borders of osteoclasts

    PubMed Central

    1990-01-01

    Microsomal membrane vesicles prepared either from chicken medullary bone or isolated osteoclasts were shown to have ATP-dependent H(+)- transport activity. This activity was N-ethylmaleimide-sensitive but resistant to oligomycin and orthovanadate, suggesting a vacuolar-type ATPase. Furthermore, immunological cross-reactivity of 60- and 70-kD osteoclast membrane antigens with Neurospora crassa vacuolar ATPase was observed when analyzed by immunoblotting. Same antibodies labeled only osteoclasts in chicken and rat bone in immunohistochemistry. Immunoelectronmicroscopy localized these antigens in apical membranes of rat osteoclasts and kidney intercalated cells of inner stripe of outer medulla. Pretreatment of animals with parathyroid hormone enhanced the immunoreaction in the apical membranes of osteoclasts. No immunoreaction was seen in osteoclasts when antibodies against gastric H+,K(+)-ATPase were used. These results suggest that osteoclast resorbs bone by secreting protons through vacuolar H(+)-ATPase. PMID:2144003

  18. Macrophage Migration Inhibitory Factor (MIF) Supports Homing of Osteoclast Precursors to Peripheral Osteolytic Lesions.

    PubMed

    Movila, Alexandru; Ishii, Takenobu; Albassam, Abdullah; Wisitrasameewong, Wichaya; Howait, Mohammed; Yamaguchi, Tsuguno; Ruiz-Torruella, Montserrat; Bahammam, Laila; Nishimura, Kazuaki; Van Dyke, Thomas; Kawai, Toshihisa

    2016-09-01

    By binding to its chemokine receptor CXCR4 on osteoclast precursor cells (OCPs), it is well known that stromal cell-derived factor-1 (SDF-1) promotes the chemotactic recruitment of circulating OCPs to the homeostatic bone remodeling site. However, the engagement of circulating OCPs in pathogenic bone resorption remains to be elucidated. The present study investigated a possible chemoattractant role of macrophage migration inhibitory factor (MIF), another ligand for C-X-C chemokine receptor type 4 (CXCR4), in the recruitment of circulating OCPs to the bone lytic lesion. To accomplish this, we used Csf1r-eGFP-knock-in (KI) mice to establish an animal model of polymethylmethacrylate (PMMA) particle-induced calvarial osteolysis. In the circulating Csf1r-eGFP+ cells of healthy Csf1r-eGFP-KI mice, Csf1r+/CD11b+ cells showed a greater degree of RANKL-induced osteoclastogenesis compared to a subset of Csf1r+/RANK+ cells in vitro. Therefore, Csf1r-eGFP+/CD11b+ cells were targeted as functionally relevant OCPs in the present study. Although expression of the two cognate receptors for MIF, CXCR2 and CXCR4, was elevated on Csf1r+/CD11b+ cells, transmigration of OCPs toward recombinant MIF in vitro was facilitated by ligation with CXCR4, but not CXCR2. Meanwhile, the level of PMMA-induced bone resorption in calvaria was markedly greater in wild-type (WT) mice compared to that detected in MIF-knockout (KO) mice. Interestingly, in contrast to the elevated MIF, diminished SDF-1 was detected in a particle-induced bone lytic lesion of WT mice in conjunction with an increased number of infiltrating CXCR4+ OCPs. However, such diminished SDF-1 was not found in the PMMA-injected calvaria of MIF-KO mice. Furthermore, stimulation of osteoblasts with MIF in vitro suppressed their production of SDF-1, suggesting that MIF can downmodulate SDF-1 production in bone tissue. Systemically administered anti-MIF neutralizing monoclonal antibody (mAb) inhibited the homing of CXCR4+ OCPs, as well as

  19. DC-STAMP Is an Osteoclast Fusogen Engaged in Periodontal Bone Resorption.

    PubMed

    Wisitrasameewong, W; Kajiya, M; Movila, A; Rittling, S; Ishii, T; Suzuki, M; Matsuda, S; Mazda, Y; Torruella, M R; Azuma, M M; Egashira, K; Freire, M O; Sasaki, H; Wang, C Y; Han, X; Taubman, M A; Kawai, T

    2017-02-01

    Dendritic cell-specific transmembrane protein (DC-STAMP) plays a key role in the induction of osteoclast (OC) cell fusion, as well as DC-mediated immune regulation. While DC-STAMP gene expression is upregulated in the gingival tissue with periodontitis, its pathophysiological roles in periodontitis remain unclear. To evaluate the effects of DC-STAMP in periodontitis, anti-DC-STAMP-monoclonal antibody (mAb) was tested in a mouse model of ligature-induced periodontitis ( n = 6-7/group) where Pasteurella pneumotropica ( Pp)-reactive immune response activated T cells to produce receptor activator of nuclear factor kappa-B ligand (RANKL), which, in turn, promotes the periodontal bone loss via upregulation of osteoclastogenesis. DC-STAMP was expressed on the cell surface of mature multinuclear OCs, as well as immature mononuclear OCs, in primary cultures of RANKL-stimulated bone marrow cells. Anti-DC-STAMP-mAb suppressed the emergence of large, but not small, multinuclear OCs, suggesting that DC-STAMP is engaged in the late stage of cell fusion. Anti-DC-STAMP-mAb also inhibited pit formation caused by RANKL-stimulated bone marrow cells. Attachment of ligature to a second maxillary molar induced DC-STAMP messenger RNA and protein, along with elevated tartrate-resistant acid phosphatase-positive (TRAP+) OCs and alveolar bone loss. As we expected, systemic administration of anti-DC-STAMP-mAb downregulated the ligature-induced alveolar bone loss. Importantly, local injection of anti-DC-STAMP-mAb also suppressed alveolar bone loss and reduced the total number of multinucleated TRAP+ cells in mice that received ligature attachment. Attachment of ligature induced significantly elevated tumor necrosis factor-α, interleukin-1β, and RANKL in the gingival tissue compared with the control site without ligature ( P < 0.05), which was unaffected by local injection with either anti-DC-STAMP-mAb or control-mAb. Neither in vivo anti- Pp IgG antibody nor in vitro anti- Pp T

  20. Alliin Attenuated RANKL-Induced Osteoclastogenesis by Scavenging Reactive Oxygen Species through Inhibiting Nox1

    PubMed Central

    Chen, Yueqi; Sun, Jingjing; Dou, Ce; Li, Nan; Kang, Fei; Wang, Yuan; Cao, Zhen; Yang, Xiaochao; Dong, Shiwu

    2016-01-01

    The healthy skeleton requires a perfect coordination of the formation and degradation of bone. Metabolic bone disease like osteoporosis is resulted from the imbalance of bone formation and/or bone resorption. Osteoporosis also reflects lower level of bone matrix, which is contributed by up-regulated osteoclast-mediated bone resorption. It is reported that monocytes/macrophage progenitor cells or either hematopoietic stem cells (HSCs) gave rise to multinucleated osteoclasts. Thus, inhibition of osteoclastic bone resorption generally seems to be a predominant therapy for treating osteoporosis. Recently, more and more natural compounds have been discovered, which have the ability of inhibiting osteoclast differentiation and fusion. Alliin (S-allyl-l-cysteine sulfoxides, SACSO) is the major component of aged garlic extract (AGE), bearing broad-spectrum natural antioxidant properties. However, its effects on bone health have not yet been explored. Hence, we designed the current study to explore its effects and role in receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast fusion and differentiation. It was revealed that alliin had an inhibitory effect in osteoclasteogenesis with a dose-dependent manner via blocking the c-Fos-NFATc1 signaling pathway. In addition, alliin decreased the generation of reactive oxygen species (ROS) and down-regulated the expression of NADPH oxidase 1 (Nox1). The overall results revealed that alliin could be a potential therapeutic agent in the treatment of osteoporosis. PMID:27657047

  1. Comparative transcriptomics reveals RhoE as a novel regulator of actin dynamics in bone-resorbing osteoclasts.

    PubMed

    Georgess, Dan; Mazzorana, Marlène; Terrado, José; Delprat, Christine; Chamot, Christophe; Guasch, Rosa M; Pérez-Roger, Ignacio; Jurdic, Pierre; Machuca-Gayet, Irma

    2014-02-01

    The function of osteoclasts (OCs), multinucleated giant cells (MGCs) of the monocytic lineage, is bone resorption. To resorb bone, OCs form podosomes. These are actin-rich adhesive structures that pattern into rings that drive OC migration and into "sealing-zones" (SZs) that confine the resorption lacuna. Although changes in actin dynamics during podosome patterning have been documented, the mechanisms that regulate these changes are largely unknown. From human monocytic precursors, we differentiated MGCs that express OC degradation enzymes but are unable to resorb the mineral matrix. We demonstrated that, despite exhibiting bona fide podosomes, these cells presented dysfunctional SZs. We then performed two-step differential transcriptomic profiling of bone-resorbing OCs versus nonresorbing MGCs to generate a list of genes implicated in bone resorption. From this list of candidate genes, we investigated the role of Rho/Rnd3. Using primary RhoE-deficient OCs, we demonstrated that RhoE is indispensable for OC migration and bone resorption by maintaining fast actin turnover in podosomes. We further showed that RhoE activates podosome component cofilin by inhibiting its Rock-mediated phosphorylation. We conclude that the RhoE-Rock-cofilin pathway, by promoting podosome dynamics and patterning, is central for OC migration, SZ formation, and, ultimately, bone resorption.

  2. Comparative transcriptomics reveals RhoE as a novel regulator of actin dynamics in bone-resorbing osteoclasts

    PubMed Central

    Georgess, Dan; Mazzorana, Marlène; Terrado, José; Delprat, Christine; Chamot, Christophe; Guasch, Rosa M.; Pérez-Roger, Ignacio; Jurdic, Pierre; Machuca-Gayet, Irma

    2014-01-01

    The function of osteoclasts (OCs), multinucleated giant cells (MGCs) of the monocytic lineage, is bone resorption. To resorb bone, OCs form podosomes. These are actin-rich adhesive structures that pattern into rings that drive OC migration and into “sealing-zones” (SZs) that confine the resorption lacuna. Although changes in actin dynamics during podosome patterning have been documented, the mechanisms that regulate these changes are largely unknown. From human monocytic precursors, we differentiated MGCs that express OC degradation enzymes but are unable to resorb the mineral matrix. We demonstrated that, despite exhibiting bona fide podosomes, these cells presented dysfunctional SZs. We then performed two-step differential transcriptomic profiling of bone-resorbing OCs versus nonresorbing MGCs to generate a list of genes implicated in bone resorption. From this list of candidate genes, we investigated the role of Rho/Rnd3. Using primary RhoE-deficient OCs, we demonstrated that RhoE is indispensable for OC migration and bone resorption by maintaining fast actin turnover in podosomes. We further showed that RhoE activates podosome component cofilin by inhibiting its Rock-mediated phosphorylation. We conclude that the RhoE-Rock-cofilin pathway, by promoting podosome dynamics and patterning, is central for OC migration, SZ formation, and, ultimately, bone resorption. PMID:24284899

  3. Ficus carica latex prevents invasion through induction of let-7d expression in GBM cell lines.

    PubMed

    Tezcan, Gulcin; Tunca, Berrin; Bekar, Ahmet; Yalcin, Murat; Sahin, Saliha; Budak, Ferah; Cecener, Gulsah; Egeli, Unal; Demir, Cevdet; Guvenc, Gokcen; Yilmaz, Gozde; Erkan, Leman Gizem; Malyer, Hulusi; Taskapilioglu, Mevlut Ozgur; Evrensel, Turkkan; Bilir, Ayhan

    2015-03-01

    Glioblastoma multiforme (GBM) is one of the deadliest human malignancies. A cure for GBM remains elusive, and the overall survival time is less than 1 year. Thus, the development of more efficient therapeutic approaches for the treatment of these patients is required. Induction of tumor cell death by certain phytochemicals derived from medicinal herbs and dietary plants has become a new frontier for cancer therapy research. Although the cancer suppressive effect of Ficus carica (fig) latex (FCL) has been determined in a few cancer types, the effect of this latex on GBM tumors has not been investigated. Therefore, in the current study, the anti-proliferative activity of FCL and the effect of the FCL-temozolomide (TMZ) combination were tested in the T98G, U-138 MG, and U-87 MG GBM cell lines using the WST-1 assay. The mechanism of cell death was analyzed using Annexin-V/FITC and TUNEL assays, and the effect of FCL on invasion was tested using the chick chorioallantoic membrane assay. To determine the effect of FCL on GBM progression, the expression levels of 40 GBM associated miRNAs were analyzed in T98G cells using RT-qPCR. According to the obtained data, FCL causes cell death in GBM cells with different responses to TMZ, and this effect is synergistically increased in combination with TMZ. In addition, the current study is the first to demonstrate the effect of FCL on modulation of let-7d expression, which may be an important underlying mechanism of the anti-invasive effect of this extract.

  4. Characterization and expression analysis of genes encoding ubiquitin conjugating domain-containing enzymes in Carica papaya

    PubMed Central

    Jue, Dengwei; Sang, Xuelian; Shu, Bo; Liu, Liqin; Wang, Yicheng; Jia, Zhiwei; Zou, Yu; Shi, Shengyou

    2017-01-01

    Background Ripening affects the quality and nutritional contents of fleshy fruits and is a crucial process of fruit development. Although several studies have suggested that ubiquitin-conjugating enzyme (E2s or UBC enzymes) are involved in the regulation of fruit ripening, little is known about the function of E2s in papaya (Carica papaya). Methodology/Principal findings In the present study, we searched the papaya genome and identified 34 putative UBC genes, which were clustered into 17 phylogenetic subgroups. We also analyzed the nucleotide sequences of the papaya UBC (CpUBC) genes and found that both exon-intron junctions and sequence motifs were highly conserved among the phylogenetic subgroups. Using real-time PCR analysis, we also found that all the CpUBC genes were expressed in roots, stems, leaves, male and female flowers, and mature fruit, although the expression of some of the genes was increased or decreased in one or several specific organs. We also found that the expression of 13 and two CpUBC genes were incresesd or decreased during one and two ripening stages, respectively. Expression analyses indicates possible E2s playing a more significant role in fruit ripening for further studies. Conclusions To the best of our knowledge, this is the first reported genome-wide analysis of the papaya UBC gene family, and the results will facilitate further investigation of the roles of UBC genes in fruit ripening and will aide in the functional validation of UBC genes in papaya. PMID:28231288

  5. Assessment study on the use of Pawpaw; Carica papaya seeds to control Oreochromis niloticus breeding.

    PubMed

    Abbas, Hossam H; Abbas, Wafaa T

    2011-12-15

    This study was carried out to assess the ability of using pawpaw (Carica papaya) seeds as a natural reproduction inhibitor for tilapia fish (Oreochromis niloticus) culture to control its breeding. Biochemical, physiological and histopathological effects ofpawpaw seeds on male tilapia fish were also determined. Mature male tilapia were stocked for 4 weeks and treated with low dose (3 g/kg/day) and high dose (6 g/kg/day) of ground dried pawpaw seeds mixed with their feed. The obtained results showed that the pawpaw seeds induced permanent sterility in the high dose treated fish while the low dose treatment showed reversible results. The results also demonstrated that fish treated with high dose of pawpaw exhibited higher biochemical and physiological effects as: low meat quality, a progressive fall in erythrocyte (RBCs) count, hemoglobin (Hb) content and haematocrit values. Also the high dose revealed a significant increase in the leukocytes (WBCs) count, serum glucose, total protein, aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine and uric acid levels. Moreover, serum total lipids revealed a significant decrease compared to control group. On the other hand, the low dose treatment revealed lower biochemical and physiological changes. Histological sections of testis showed disintegration of sperm cells and focal necrosis of seminefrous tubules in the high dose treated fish, hepato-pancreas and posterior kidney tissues also showed severe changes in high dose treated fish. Milder degenerative changes in some necrotic foci and slight changes in hepato-pancreas and posterior kidney were observed in the low dose treated fish. The study concluded that pawpaw seeds which are cheap and easy to obtain, can be incorporated into fish feeds with adjusted amount and be used to control breeding of tilapia fish in growing ponds instead of unfavorable and expensive hormonal use.

  6. Comparative proteomic analysis of somatic embryo maturation in Carica papaya L.

    PubMed Central

    2014-01-01

    Background Somatic embryogenesis is a complex process regulated by numerous factors. The identification of proteins that are differentially expressed during plant development could result in the development of molecular markers of plant metabolism and provide information contributing to the monitoring and understanding of different biological responses. In addition, the identification of molecular markers could lead to the optimization of protocols allowing the use of biotechnology for papaya propagation and reproduction. This work aimed to investigate the effects of polyethylene glycol (PEG) on somatic embryo development and the protein expression profile during somatic embryo maturation in papaya (Carica papaya L.). Results The maturation treatment supplemented with 6% PEG (PEG6) resulted in the greatest number of somatic embryos and induced differential protein expression compared with cultures grown under the control treatment. Among 135 spots selected for MS/MS analysis, 76 spots were successfully identified, 38 of which were common to both treatments, while 14 spots were unique to the control treatment, and 24 spots were unique to the PEG6 treatment. The identified proteins were assigned to seven categories or were unclassified. The most representative class of proteins observed in the control treatment was associated with the stress response (25.8%), while those under PEG6 treatment were carbohydrate and energy metabolism (18.4%) and the stress response (18.4%). Conclusions The differential expression of three proteins (enolase, esterase and ADH3) induced by PEG6 treatment could play an important role in maturation, and these proteins could be characterized as candidate biomarkers of somatic embryogenesis in papaya. PMID:25076862

  7. Antihypertensive effect of Carica papaya via a reduction in ACE activity and improved baroreflex.

    PubMed

    Brasil, Girlandia Alexandre; Ronchi, Silas Nascimento; do Nascimento, Andrews Marques; de Lima, Ewelyne Miranda; Romão, Wanderson; da Costa, Helber Barcellos; Scherer, Rodrigo; Ventura, José Aires; Lenz, Dominik; Bissoli, Nazaré Souza; Endringer, Denise Coutinho; de Andrade, Tadeu Uggere

    2014-11-01

    The aims of this study were to evaluate the antihypertensive effects of the standardised methanolic extract of Carica papaya, its angiotensin converting enzyme inhibitory effects in vivo, its effect on the baroreflex and serum angiotensin converting enzyme activity, and its chemical composition. The chemical composition of the methanolic extract of C. papaya was evaluated by liquid chromatography-mass/mass and mass/mass spectrometry. The angiotensin converting enzyme inhibitory effect was evaluated in vivo by Ang I administration. The antihypertensive assay was performed in spontaneously hypertensive rats and Wistar rats that were treated with enalapril (10 mg/kg), the methanolic extract of C. papaya (100 mg/kg; twice a day), or vehicle for 30 days. The baroreflex was evaluated through the use of sodium nitroprusside and phenylephrine. Angiotensin converting enzyme activity was measured by ELISA, and cardiac hypertrophy was evaluated by morphometric analysis. The methanolic extract of C. papaya was standardised in ferulic acid (203.41 ± 0.02 µg/g), caffeic acid (172.60 ± 0.02 µg/g), gallic acid (145.70 ± 0.02 µg/g), and quercetin (47.11 ± 0.03 µg/g). The flavonoids quercetin, rutin, nicotiflorin, clitorin, and manghaslin were identified in a fraction of the extract. The methanolic extract of C. papaya elicited angiotensin converting enzyme inhibitory activity. The antihypertensive effects elicited by the methanolic extract of C. papaya were similar to those of enalapril, and the baroreflex sensitivity was normalised in treated spontaneously hypertensive rats. Plasma angiotensin converting enzyme activity and cardiac hypertrophy were also reduced to levels comparable to the enalapril-treated group. These results may be associated with the chemical composition of the methanolic extract of C. papaya, and are the first step into the development of a new phytotherapic product which could be used in the treatment of hypertension.

  8. Habitat fragmentation threatens wild populations of Carica papaya (Caricaceae) in a lowland rainforest.

    PubMed

    Chávez-Pesqueira, Mariana; Suárez-Montes, Pilar; Castillo, Guillermo; Núñez-Farfán, Juan

    2014-07-01

    • Premise of the study: Wild populations of domesticated species constitute a genetic reservoir and are fundamental to the evolutionary potential of species. Wild papaya (Carica papaya) is a rare, short-lived, gap-colonizing, dioecious tree that persists in the forest by continuous dispersal. Theoretically, these life-history characteristics render wild papaya highly susceptible to habitat fragmentation, with anticipated negative effects on its gene pool. Further, species dioecy may cause founder effects to generate local biases in sex ratio, decreasing effective population size.• Methods: We contrasted the genetic diversity and structure of C. papaya between wild populations from rainforest fragments and continuous forest at Los Tuxtlas, Mexico. We evaluated recent migration rates among populations as well as landscape resistance to gene flow. Finally, we calculated the sex ratio of the populations in both habitats.• Key results: Populations of wild papaya in rainforest fragments showed lower genetic diversity and higher population differentiation than populations in continuous rainforest. Estimates of recent migration rates showed a higher percentage of migrants moving from the continuous forest to the forest fragments than in the opposite direction. Agricultural land and cattle pasture were found to be the most resistant matrices to gene flow. Finally, biased sex ratios were seen to affect the effective population size in both habitats.• Conclusions: The mating system, rarity, and short life cycle of C. papaya are exacerbating the effects of rainforest fragmentation on its genetic diversity, threatening the persistence of its natural populations in the proposed place of origin as well as its genetic reservoir.

  9. Cloning and expression analysis of phytoene desaturase and ζ-carotene desaturase genes in Carica papaya.

    PubMed

    Yan, P; Gao, X Z; Shen, W T; Zhou, P

    2011-02-01

    The fruit flesh color of papaya is an important nutritional quality trait and is due to the accumulation of carotenoid. To elucidate the carotenoid biosynthesis pathway in Carica papaya, the phytoene desaturase (PDS) and the ζ-carotene desaturase (ZDS) genes were isolated from papaya (named CpPDS and CpZDS) using the rapid amplification of cDNA ends (RACE) approach, and their expression levels were investigated in red- and yellow-fleshed papaya varieties. CpPDS contains a 1749 bp open reading frame coding for 583 amino acids, while CpZDS contains a 1716 bp open reading frame coding for 572 amino acids. The deduced CpPDS and CpZDS proteins contain a conserved dinucleotide-binding site at the N-terminus and a carotenoid-binding domain at the C-terminus. Papaya genome sequence analysis revealed that CpPDS and CpZDS are single copy; the CpPDS was mapped to papaya chromosome LG6, and the CpZDS was mapped to chromosome LG3. Quantitative PCR showed that both CpPDS and CpZDS were expressed in all tissues examined with the highest expression in maturing fruits, and that the expression of CpPDS and CpZDS were higher in red-fleshed fruits than in yellow-fleshed fruits. These results indicated that the differential accumulation of carotenoids in red- and yellow-fleshed papaya varieties might be partly explained by the transcriptional level of CpPDS and CpZDS.

  10. Lactogenic Activity of an Enzymatic Hydrolysate from Octopus vulgaris and Carica papaya in SD Rats.

    PubMed

    Cai, Bingna; Chen, Hua; Sun, Han; Sun, Huili; Wan, Peng; Chen, Deke; Pan, Jianyu

    2015-11-01

    The traditional Chinese medicine theory believes that octopus papaya soup can stimulate milk production in lactating women. The objective of this study was to determine whether dietary supplementation with an enzymatic hydrolysate of Octopus vulgaris and Carica papaya (EHOC) could increase milk production and nutritional indexes in Sprague Dawley (SD) rats. Female SD rats (n = 24) were fed a control diet (n = 8), EHOC-supplemented diet, or a positive control diet (Shengruzhi) from day 10 of pregnancy to day 10 of lactation. Maternal serum, mammary gland (day 10 of lactation), milk, and pup weight (daily) were collected for analysis. Results showed that the EHOC diet obviously elevated daily milk yield and pup weight compared to the control group (P < .05). The EHOC diet was found to increase the concentration of prolactin (PRL), progesterone (P), estradiol (E2), and growth hormone (GH) significantly in the circulation and mammary gland. Mammary glands of EHOC-treated dams showed clear lobuloalveolar development and proliferation of myoepithelial cells, but no striking variations were observed among the groups. Furthermore, the nutrition content and immune globulin concentration in the milk of EHOC-supplemented dams were higher than those of the control group, especially the cholesterol, glucose, and IgG were higher by 44.98% (P < .001), 42.76% (P < .01), and 42.23% (P < .01), respectively. In conclusion, this article demonstrates that EHOC administration has beneficial effects on milk production in the dams and on performance of the dam and pup. These results indicate that EHOC could be explored as a potentially lactogenic nutriment for lactating women.

  11. Protective Role of Ficus carica Stem Extract against Hepatic Oxidative Damage Induced by Methanol in Male Wistar Rats

    PubMed Central

    Saoudi, Mongi; El Feki, Abdelfattah

    2012-01-01

    The present study was aimed to investigate the antioxidant activity of Ficus carica stem extract (FE) in methanol-induced hepatotoxicity in male Wistar rats. The rats were divided into two batches: 16 control rats (C) drinking tap water and 16 treated rats drinking Ficus carica stem extract for six weeks. Then, each group was divided into two subgroups, and one of them was intraperitoneally injected (i.p.) daily methanol at a dose of 2.37 g/kg body weight i.p. for 30 days, for four weeks. The results showed that FE was found to contain large amounts of polyphenols and carotenoids. The treatment with methanol exhibited a significant increase of serum hepatic biochemical parameters (ALT, AST, ALP, and LDH) and hepatic lipid peroxidation. Hepatic antioxidant enzymes, namely, SOD, CAT, and GSH-Px, were significantly decreased in methanol-treated animals. FE treatment prior to methanol intoxication has significant role in protecting animals from methanol-induced hepatic oxidative damage. PMID:22203864

  12. High-performance thin layer chromatographic quantification of bioactive psoralen and daidzein in leaves of Ficus carica L.

    PubMed

    Ali, B; Mujeeb, M; Aeri, V; Mir, S R; Ahmad, S; Siddique, N A; Faiyazuddin, M; Shakeel, F

    2011-10-01

    This study was undertaken to quantify psoralen and daidzein by high-performance thin layer chromatography (HPTLC). The methanolic extract of 10 mg mL(-1) concentration solution was prepared for HPTLC quantification of psoralen and daidzein. HPTLC aluminium-backed plates coated with 0.2 mm layers of silica gel 60 F(254) were used as the stationary phase. The working standard solution of psoralen and daidzein was applied along with the test sample solution by means of Camag Linomat IV sample applicator. R (f) values of psoralen and daidzein were found to be 0.60 and 0.88, whilst as their percentage values in methanolic extract were found to be 3.02% and 5.64% (w/w), respectively. A simple quantitative estimation method of psoralen and daidzein by HPTLC is reported that can be used for the quality control of marketed preparations containing Ficus carica. However, further study is warranted to isolate and quantify active constituents present in the leaves of F. carica by sophisticated techniques.

  13. Purification and characterization of a papaya (Carica papaya L.) pectin methylesterase isolated from a commercial papain preparation.