Quantification of carious pathogens in the interdental microbiota of young caries-free adults.
Bourgeois, Denis; David, Alexandra; Inquimbert, Camille; Tramini, Paul; Molinari, Nicolas; Carrouel, Florence
2017-01-01
The majority of caries lesions in adults occur on the proximal tooth surfaces of the posterior teeth. A comprehensive study of the composition of the oral microbiota is fundamental for a better understanding of the etiology of interdental caries. Twenty-five caries-free subjects (20-35 years old) were enrolled in the study. The interdental biofilm of four interdental sites were collected. The real-time polymerase chain reaction (PCR) methodology were used to quantify (i) the following bacteria: Streptococcus spp., Streptococcus mutans, Lactobacillus spp., Enterococcus spp., and Enterococcus faecalis; (ii) the fungus Candida albicans; and (iii) total bacteria. Streptococcus spp. was the most abundant species, followed by Lactobacillus spp. and Enterococcus spp. Streptococcus spp. and Lactobacillus spp. were detected at all tested sites and Enterococcus spp. at 99% of sites. S. mutans was detected at only 28% of the tested sites and C. albicans was detected at 11% of sites. E. faecalis was never detected. In 54.5% of the biofilm inhabited by C. albicans, S. mutans was present. Moreover, 28% of the ID sites co-expressed S. mutans and Lactobacillus spp. The studied pathogens were organized into two correlated groups of species. Strikingly, the fungus C. albicans and the bacteria Enterococcus spp. cluster together, whereas Streptococcus spp., S. mutans and Lactobacillus spp. form one distinct cluster. The interdental biofilm of young caries-free adults is comprised of pathogens that are able to induce interproximal caries. That several of these pathogens are implicated in heart disease or other systemic diseases is an argument for the disruption of interdental biofilms using daily oral hygiene.
Quantification of carious pathogens in the interdental microbiota of young caries-free adults
Inquimbert, Camille; Tramini, Paul; Molinari, Nicolas; Carrouel, Florence
2017-01-01
Background The majority of caries lesions in adults occur on the proximal tooth surfaces of the posterior teeth. A comprehensive study of the composition of the oral microbiota is fundamental for a better understanding of the etiology of interdental caries. Methods Twenty-five caries-free subjects (20–35 years old) were enrolled in the study. The interdental biofilm of four interdental sites were collected. The real-time polymerase chain reaction (PCR) methodology were used to quantify (i) the following bacteria: Streptococcus spp., Streptococcus mutans, Lactobacillus spp., Enterococcus spp., and Enterococcus faecalis; (ii) the fungus Candida albicans; and (iii) total bacteria. Results Streptococcus spp. was the most abundant species, followed by Lactobacillus spp. and Enterococcus spp. Streptococcus spp. and Lactobacillus spp. were detected at all tested sites and Enterococcus spp. at 99% of sites. S. mutans was detected at only 28% of the tested sites and C. albicans was detected at 11% of sites. E. faecalis was never detected. In 54.5% of the biofilm inhabited by C. albicans, S. mutans was present. Moreover, 28% of the ID sites co-expressed S. mutans and Lactobacillus spp. The studied pathogens were organized into two correlated groups of species. Strikingly, the fungus C. albicans and the bacteria Enterococcus spp. cluster together, whereas Streptococcus spp., S. mutans and Lactobacillus spp. form one distinct cluster. Conclusion The interdental biofilm of young caries-free adults is comprised of pathogens that are able to induce interproximal caries. That several of these pathogens are implicated in heart disease or other systemic diseases is an argument for the disruption of interdental biofilms using daily oral hygiene. PMID:29016613
Streptococcus sanguinis biofilm formation & interaction with oral pathogens.
Zhu, Bin; Macleod, Lorna C; Kitten, Todd; Xu, Ping
2018-06-08
Caries and periodontitis are the two most common human dental diseases and are caused by dysbiosis of oral flora. Although commensal microorganisms have been demonstrated to protect against pathogens and promote oral health, most previous studies have addressed pathogenesis rather than commensalism. Streptococcus sanguinis is a commensal bacterium that is abundant in the oral biofilm and whose presence is correlated with health. Here, we focus on the mechanism of biofilm formation in S. sanguinis and the interaction of S. sanguinis with caries- and periodontitis-associated pathogens. In addition, since S. sanguinis is well known as a cause of infective endocarditis, we discuss the relationship between S. sanguinis biofilm formation and its pathogenicity in endocarditis.
A Highly Arginolytic Streptococcus Species That Potently Antagonizes Streptococcus mutans
Huang, Xuelian; Palmer, Sara R.; Ahn, Sang-Joon; Richards, Vincent P.; Williams, Matthew L.; Nascimento, Marcelle M.
2016-01-01
The ability of certain oral biofilm bacteria to moderate pH through arginine metabolism by the arginine deiminase system (ADS) is a deterrent to the development of dental caries. Here, we characterize a novel Streptococcus strain, designated strain A12, isolated from supragingival dental plaque of a caries-free individual. A12 not only expressed the ADS pathway at high levels under a variety of conditions but also effectively inhibited growth and two intercellular signaling pathways of the dental caries pathogen Streptococcus mutans. A12 produced copious amounts of H2O2 via the pyruvate oxidase enzyme that were sufficient to arrest the growth of S. mutans. A12 also produced a protease similar to challisin (Sgc) of Streptococcus gordonii that was able to block the competence-stimulating peptide (CSP)–ComDE signaling system, which is essential for bacteriocin production by S. mutans. Wild-type A12, but not an sgc mutant derivative, could protect the sensitive indicator strain Streptococcus sanguinis SK150 from killing by the bacteriocins of S. mutans. A12, but not S. gordonii, could also block the XIP (comX-inducing peptide) signaling pathway, which is the proximal regulator of genetic competence in S. mutans, but Sgc was not required for this activity. The complete genome sequence of A12 was determined, and phylogenomic analyses compared A12 to streptococcal reference genomes. A12 was most similar to Streptococcus australis and Streptococcus parasanguinis but sufficiently different that it may represent a new species. A12-like organisms may play crucial roles in the promotion of stable, health-associated oral biofilm communities by moderating plaque pH and interfering with the growth and virulence of caries pathogens. PMID:26826230
A Highly Arginolytic Streptococcus Species That Potently Antagonizes Streptococcus mutans.
Huang, Xuelian; Palmer, Sara R; Ahn, Sang-Joon; Richards, Vincent P; Williams, Matthew L; Nascimento, Marcelle M; Burne, Robert A
2016-01-29
The ability of certain oral biofilm bacteria to moderate pH through arginine metabolism by the arginine deiminase system (ADS) is a deterrent to the development of dental caries. Here, we characterize a novel Streptococcus strain, designated strain A12, isolated from supragingival dental plaque of a caries-free individual. A12 not only expressed the ADS pathway at high levels under a variety of conditions but also effectively inhibited growth and two intercellular signaling pathways of the dental caries pathogen Streptococcus mutans. A12 produced copious amounts of H2O2 via the pyruvate oxidase enzyme that were sufficient to arrest the growth of S. mutans. A12 also produced a protease similar to challisin (Sgc) of Streptococcus gordonii that was able to block the competence-stimulating peptide (CSP)-ComDE signaling system, which is essential for bacteriocin production by S. mutans. Wild-type A12, but not an sgc mutant derivative, could protect the sensitive indicator strain Streptococcus sanguinis SK150 from killing by the bacteriocins of S. mutans. A12, but not S. gordonii, could also block the XIP (comX-inducing peptide) signaling pathway, which is the proximal regulator of genetic competence in S. mutans, but Sgc was not required for this activity. The complete genome sequence of A12 was determined, and phylogenomic analyses compared A12 to streptococcal reference genomes. A12 was most similar to Streptococcus australis and Streptococcus parasanguinis but sufficiently different that it may represent a new species. A12-like organisms may play crucial roles in the promotion of stable, health-associated oral biofilm communities by moderating plaque pH and interfering with the growth and virulence of caries pathogens. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
The Microbiome in Populations with a Low and High Prevalence of Caries.
Johansson, I; Witkowska, E; Kaveh, B; Lif Holgerson, P; Tanner, A C R
2016-01-01
The oral microbiota was compared between Romanian adolescents with a high prevalence of caries and no dental care and Swedish caries-active and caries-free adolescents in caries prevention programs and with a low prevalence of caries. Biofilm samples were analyzed by FLX+ pyrosequencing of the V1 to V4 hypervariable regions of the 16S rRNA gene and polymerase chain reaction (PCR)/quantitative PCR (qPCR) for Streptococcus mutans and Streptococcus sobrinus. Sequences obtained blasted to 9 phyla, 66 genera, and 401 human oral taxa (HOT) in the 16S rRNA Human Oral Microbiome Database, of which 295 were represented by ≥20 sequences. The Romanian adolescents had more sequences in Firmicutes and fewer in Actinobacteria phyla and more sequences in the genera Bacteroidetes [G-3], Porphyromonas, Abiotrophia, Filifactor, Peptostreptococcaceae [11][G-4], Pseudoramibacter, Streptococcus, and Neisseria and fewer in Actinomyces, Selenomonas, Veillonella, Campylobacter, and TM7 [G-1] than the Swedish groups. Multivariate modeling employing HOT, S. sobrinus and S. mutans (PCR/qPCR), and sugar snacks separated Romanian from Swedish adolescents. The Romanian adolescents' microbiota was characterized by a panel of streptococci, including S. mutans, S. sobrinus, and Streptococcus australis, and Alloprevotella, Leptotrichia, Neisseria, Porphyromonas, and Prevotella. The Swedish adolescents were characterized by sweet snacks, and those with caries activity were also characterized by Prevotella, Actinomyces, and Capnocytophaga species and those free of caries by Actinomyces, Prevotella, Selenomonas, Streptococcus, and Mycoplasma. Eight species including Streptococcus mitis and Streptococcus species HOT070 were prevalent in Romanian and Swedish caries-active subjects but not caries-free subjects. In conclusion, S. mutans and S. sobrinus correlated with Romanian adolescents with caries and with limited access to dental care, whereas S. mutans and S. sobrinus were detected infrequently in Swedish adolescents in dental care programs. Swedish caries-active adolescents were typically colonized by Actinomyces, Selenomonas, Prevotella, and Capnocytophaga. Hence, the role of mutans streptococci as a primary caries pathogen appears less pronounced in populations with prevention programs compared to populations lacking caries treatment and prevention strategies. © International & American Associations for Dental Research 2015.
Gross, Erin L.; Beall, Clifford J.; Kutsch, Stacey R.; Firestone, Noah D.; Leys, Eugene J.; Griffen, Ann L.
2012-01-01
Dental caries in very young children may be severe, result in serious infection, and require general anesthesia for treatment. Dental caries results from a shift within the biofilm community specific to the tooth surface, and acidogenic species are responsible for caries. Streptococcus mutans, the most common acid producer in caries, is not always present and occurs as part of a complex microbial community. Understanding the degree to which multiple acidogenic species provide functional redundancy and resilience to caries-associated communities will be important for developing biologic interventions. In addition, microbial community interactions in health and caries pathogenesis are not well understood. The purpose of this study was to investigate bacterial community profiles associated with the onset of caries in the primary dentition. In a combination cross-sectional and longitudinal design, bacterial community profiles at progressive stages of caries and over time were examined and compared to those of health. 16S rRNA gene sequencing was used for bacterial community analysis. Streptococcus mutans was the dominant species in many, but not all, subjects with caries. Elevated levels of S. salivarius, S. sobrinus, and S. parasanguinis were also associated with caries, especially in subjects with no or low levels of S. mutans, suggesting these species are alternative pathogens, and that multiple species may need to be targeted for interventions. Veillonella, which metabolizes lactate, was associated with caries and was highly correlated with total acid producing species. Among children without previous history of caries, Veillonella, but not S. mutans or other acid-producing species, predicted future caries. Bacterial community diversity was reduced in caries as compared to health, as many species appeared to occur at lower levels or be lost as caries advanced, including the Streptococcus mitis group, Neisseria, and Streptococcus sanguinis. This may have implications for bacterial community resilience and the restoration of oral health. PMID:23091642
Shetty, Sapna B.; Mahin-Syed-Ismail, Prabu; Varghese, Shaji; Thomas-George, Bibin; Kandathil- Thajuraj, Pathinettam; Baby, Deepak; Haleem, Shaista; Sreedhar, Sreeja
2016-01-01
Background Ethnomedicine is gaining admiration since years but still there is abundant medicinal flora which is unrevealed through research. The study was conducted to assess the in vitro antimicrobial potential and also determine the minimum inhibitory concentration (MIC) of Citrus sinensis peel extracts with a view of searching a novel extract as a remedy for dental caries pathogens. Material and Methods Aqueous and ethanol (cold and hot) extracts prepared from peel of Citrus sinensis were screened for in vitro antimicrobial activity against Streptococcus mutans and Lactobacillus acidophilus, using agar well diffusion method. The lowest concentration of every extract considered as the minimal inhibitory concentration (MIC) values were determined for both test organisms. One way ANOVA with Post Hoc Bonferroni test was applied for statistical analysis. Confidence level and level of significance were set at 95% and 5% respectively. Results Dental caries pathogens were inhibited most by hot ethanolic extract of Citrus sinensispeel followed by cold ethanolic extract. Aqueous extracts were effective at very high concentrations. Minimum inhibitory concentration of hot and cold ethanolic extracts of Citrus sinensis peel ranged between 12-15 mg/ml against both the dental caries pathogens. Conclusions Citrus sinensispeels extract was found to be effective against dental caries pathogens and contain compounds with therapeutic potential. Nevertheless, clinical trials on the effect of these plants are essential before advocating large-scale therapy. Key words:Agar well diffusion, antimicrobial activity, dental caries, Streptococcus mutans, Lactobacillus acidophilus. PMID:26855710
spaP gene of Streptococcus mutans in dental plaque and its relationship with early childhood caries.
Durán-Contreras, G L; Torre-Martínez, H H; de la Rosa, E I; Hernández, R M; de la Garza Ramos, M
2011-12-01
Streptococcus mutans and Streptococcus sobrinus are the main pathogens associated with the development of dental caries in humans. Recently, the real-time polymerase chain reaction (qPCR-TR) has been used for fast and exact quantification of these bacteria species. This molecular biology method has made the detection of these bacteria in saliva and dental plaque possible; additionally, it aids the development of illness risk prediction. The purpose of this prospective, analytic, transversal, observational and unicenter study was to quantify the spaP gene of the Streptococcus mutans and its correlation with caries in a group of children using isolated DNA from plaque samples processed through qPCR-TR, using specific oligonucleotides for this gene detection. The cariogenic potential of Streptococcus mutans in the dental plaque was analysed in a group of patients aged 12 to 46 months. A descriptive statistical analysis was performed. The Spearman's correlation coefficient was used to establish the correlation between caries (dmft) index (decayed/missing/filled primary teeth), spaP gene and age group. The Wilcoxon test was used to compare MSB cultivation technique and qPCR-TR. In the molecular trials, a close association between caries prevalence in childhood and the presence and high proportion of the spaP gene of S. mutans was found. The average caries prevalence was 3.71, and it increased as age range increased. The highest caries prevalence was observed in female patients and in the oldest age range studied (40 46 months) which contrasts with the 12-18 months age that had a caries (dmft) index of zero. The amplification using as initiator the gene spaP of the nucleic acids extracted from the S. mutans resulted positive in 91.3% of the cases. Every child with caries was positive for the spaP and only 8.75% were negative, this group included children without caries. In conclusion, there was a correlation with infant caries prevalence and S. mutans.
[Recent achievements in the microbiological etiology of dental caries].
Jing, Chen; Lei, Cheng; Xuedong, Zhou; Xian, Peng
2018-02-01
Dental caries is the most common chronic infectious disease of the oral cavity. The bacterium Streptococcus mutans is the sole pathogen that causes this disease. However, substantial evidence suggests that prevention and treatment strategies developed from traditional "cariogenic pathogen theory" are inefficient in reducing the prevalence of dental caries. An increasing number of individuals adopt the ecological view of the microbiota in the pathogenesis of dental caries. Recent technological improvements have enabled the detection and analysis of oral microorganisms, and many studies have focused on this area. The core microbiota is defined as a cluster of microbes playing critical roles in the initial and development phases of dental caries and may provide future direction for microorganism-related etiological studies.
Garcia, S S; Blackledge, M S; Michalek, S; Su, L; Ptacek, T; Eipers, P; Morrow, C; Lefkowitz, E J; Melander, C; Wu, H
2017-07-01
Dental caries is a costly and prevalent disease characterized by the demineralization of the tooth's enamel. Disease outcome is influenced by host factors, dietary intake, cariogenic bacteria, and other microbes. The cariogenic bacterial species Streptococcus mutans metabolizes sucrose to initiate biofilm formation on the tooth surface and consequently produces lactic acid to degrade the tooth's enamel. Persistence of S. mutans biofilms in the oral cavity can lead to tooth decay. To date, no anticaries therapies that specifically target S. mutans biofilms but do not disturb the overall oral microbiome are available. We screened a library of 2-aminoimidazole antibiofilm compounds with a biofilm dispersion assay and identified a small molecule that specifically targets S. mutans biofilms. At 5 µM, the small molecule annotated 3F1 dispersed 50% of the established S. mutans biofilm but did not disperse biofilms formed by the commensal species Streptococcus sanguinis or Streptococcus gordonii. 3F1 dispersed S. mutans biofilms independently of biofilm-related factors such as antigen I/II and glucosyltransferases. 3F1 treatment effectively prevented dental caries by controlling S. mutans in a rat caries model without perturbing the oral microbiota. Our study demonstrates that selective targeting of S. mutans biofilms by 3F1 was able to effectively reduce dental caries in vivo without affecting the overall oral microbiota shaped by the intake of dietary sugars, suggesting that the pathogenic biofilm-specific treatment is a viable strategy for disease prevention.
Bacterial biofilm composition in caries and caries-free subjects.
Wolff, D; Frese, C; Maier-Kraus, T; Krueger, T; Wolff, B
2013-01-01
Certain major pathogens such as Streptococcus mutans, Lactobacillus spp. and others have been reported to be involved in caries initiation and progression. Yet, in addition to those leading pathogens, microbial communities seem to be much more diverse and individually differing. The aim of this study, therefore, was to analyze the bacterial composition of carious dentin and the plaque of caries-free patients by using a custom-made, real-time quantitative polymerase chain reaction assay (RQ-PCR). The study included 26 patients with caries and 28 caries-free controls. Decayed tooth substance and plaque samples were harvested. Bacterial DNA was extracted and tested for the presence of 43 bacterial species or species groups using RQ-PCR. Relative quantification revealed that Propionibacterium acidifaciens was significantly more abundant in caries samples than were other microorganisms (fold change 169.12, p = 0.023). In the caries-free samples, typical health-associated species were significantly more prevalent. Unsupervised hierarchical cluster analysis showed a high abundance of P. acidifaciens in caries subjects and distinct but individually differing bacterial clusters in the caries-free subjects. The distribution of 11 bacteria allowed full discrimination between caries and caries-free subjects. Within the investigated cohort, P. acidifaciens was the only pathogen significantly more abundant in caries subjects. Cluster analysis yielded a diverse flora in caries-free subjects, whereas it was narrowed down to a small range of a few outcompeting members in caries subjects. Copyright © 2012 S. Karger AG, Basel.
Argimón, Silvia; Konganti, Kranti; Chen, Hao; Alekseyenko, Alexander V.; Brown, Stuart; Caufield, Page W.
2014-01-01
Comparative genomics is a popular method for the identification of microbial virulence determinants, especially since the sequencing of a large number of whole bacterial genomes from pathogenic and non-pathogenic strains has become relatively inexpensive. The bioinformatics pipelines for comparative genomics usually include gene prediction and annotation and can require significant computer power. To circumvent this, we developed a rapid method for genome-scale in silico subtractive hybridization, based on blastn and independent of feature identification and annotation. Whole genome comparisons by in silico genome subtraction were performed to identify genetic loci specific to Streptococcus mutans strains associated with severe early childhood caries (S-ECC), compared to strains isolated from caries-free (CF) children. The genome similarity of the 20 S. mutans strains included in this study, calculated by Simrank k-mer sharing, ranged from 79.5 to 90.9%, confirming this is a genetically heterogeneous group of strains. We identified strain-specific genetic elements in 19 strains, with sizes ranging from 200 bp to 39 kb. These elements contained protein-coding regions with functions mostly associated with mobile DNA. We did not, however, identify any genetic loci consistently associated with dental caries, i.e., shared by all the S-ECC strains and absent in the CF strains. Conversely, we did not identify any genetic loci specific with the healthy group. Comparison of previously published genomes from pathogenic and carriage strains of Neisseria meningitidis with our in silico genome subtraction yielded the same set of genes specific to the pathogenic strains, thus validating our method. Our results suggest that S. mutans strains derived from caries active or caries free dentitions cannot be differentiated based on the presence or absence of specific genetic elements. Our in silico genome subtraction method is available as the Microbial Genome Comparison (MGC) tool, with a user-friendly JAVA graphical interface. PMID:24291226
NASA Astrophysics Data System (ADS)
Soekanto, Sri Angky; Bachtiar, Endang W.; Jiwanakusuma, Pramodanti; Gladea, Zahara; Sahlan, Muhamad
2018-02-01
This study was to evaluate the effect of Propolis Honey candy on Streptococcus mutans prevalence in caries and caries-free subject. The subject of this research was caries and caries-free subjects. The Streptococcus mutans colony was counted in saliva samples before and after a 7-day period of consuming Propolis Honey candy, Honey candy, and "X" candy. The Streptococcus mutans was proliferated in a TYS20B gelatin medium for 48 hours. The number of Streptococcus mutans colonies was expressed in CFU/ml. Compared with the pre-treatment group, the number of Streptococcus mutans colonies in the treatment group tends to show a statistically significant reduction (p<0.05). The amount of Streptococcus mutans after consuming Propolis honey candy were lower (5.8×106 CFU/ml) than before (2.4×1010 CFU/ml) in caries-free subject. In caries subject, the result of Propolis honey candy were also lower (2.2×107 CFU/ml) than before (5.8×109 CFU/ml). The study showed a decrease in the number of Streptococcus mutans colonies from caries and caries-free subjects after propolis honey candy consumption.
Hamada, S; Ooshima, T; Torii, M; Imanishi, H; Masuda, N; Sobue, S; Kotani, S
1978-01-01
Oral implantation and the cariogenic activity of clinical strains of Streptococcus mutans which had been isolated from Japanese children and labeled with streptomycin-resistance were examined in specific pathogen-free Sprague-Dawley rats. All the seven strains tested were easily implanted and persisted during the experimental period. Extensive carious lesions were produced in rats inoculated with clinical strains of S. mutans belonging to serotypes c, d, e, and f, and maintained on caries-inducing diet no. 2000. Noninfected rats did not develop dental caries when fed diet no. 2000. Type d S. mutans preferentially induced smooth surface caries in the rats. Strains of other serotypes primarily developed caries of pit and fissure origin. Caries also developed in rats inoculated with reference S. mutans strains BHTR and FAIR (type b) that had been maintained in the laboratories for many years. However, the cariogenicity of the laboratory strains was found to have decreased markedly. All three S. sanguis strains could be implanted, but only one strain induced definite fissure caries. Two S. salivarius strains could not be implanted well in the rats and therefore they were not cariogenic. Four different species of lactobacilli also failed to induce dental caries in rats subjected to similar caries test regimen on diet no. 200. S. mutans strain MT6R (type c) also induce caries in golden hamsters and ICR mice, but of variable degrees.
Ecological Effect of Arginine on Oral Microbiota.
Zheng, Xin; He, Jinzhi; Wang, Lin; Zhou, Shuangshuang; Peng, Xian; Huang, Shi; Zheng, Liwei; Cheng, Lei; Hao, Yuqing; Li, Jiyao; Xu, Jian; Xu, Xin; Zhou, Xuedong
2017-08-03
Dental caries is closely associated with the microbial dybiosis between acidogenic/aciduric pathogens and alkali-generating commensal bacteria colonized in the oral cavity. Our recent studies have shown that arginine may represent a promising anti-caries agent by modulating microbial composition in an in vitro consortium. However, the effect of arginine on the oral microbiota has yet to be comprehensively delineated in either clinical cohort or in vitro biofilm models that better represent the microbial diversity of oral cavity. Here, by employing a clinical cohort and a saliva-derived biofilm model, we demonstrated that arginine treatment could favorably modulate the oral microbiota of caries-active individuals. Specifically, treatment with arginine-containing dentifrice normalized the oral microbiota of caries-active individuals similar to that of caries-free controls in terms of microbial structure, abundance of typical species, enzymatic activities of glycolysis and alkali-generation related enzymes and their corresponding transcripts. Moreover, we found that combinatory use of arginine with fluoride could better enrich alkali-generating Streptococcus sanguinis and suppress acidogenic/aciduric Streptococcus mutans, and thus significantly retard the demineralizing capability of saliva-derived oral biofilm. Hence, we propose that fluoride and arginine have a potential synergistic effect in maintaining an eco-friendly oral microbial equilibrium in favor of better caries management.
Martinez-Martinez, Rita E; Fujiwara, Taku; Patiño-Marin, Nuria; Hoshino, Tomonori; Wilson, Michael; Loyola-Rodríguez, Juan P
2012-01-01
Interaction of oral streptococci biofilm is the main etiological factor for dental caries. The aim of the study was to compare oral streptococci (OS) distribution in the biofilm of primary dentition from caries-free and caries-affected preschool Mexican children. This cross-sectional study involved 40 caries-free and 40 caries-affected children with primary dentition. Each child was examined using the dmfs index, DNA was extracted from saliva and presence of OS was determined by PCR. Data obtained showed no statistical difference regarding age and gender (P > 0.05). Streptococcus mutans (Smut), Streptococcus sobrinus (Ssob) and their combination showed significant statistical differences between groups (P < 0.05). Smut, Streptococcus sanguinis and Streptococcus gordonii had an inverse relation with dmfs index and Ssob had a direct relation similar to combined with Smut. Smut-Ssob combined with other OS showed statistical differences (P < 0.05). In free-caries group Streptococcus gordonii was more frequently identified than Smut. The ratio Smut/Streptococcus sanguinis could represent a high risk of dental caries development; this ratio was higher in the caries-affected (1.18) than in the caries-free group (0.32). In conclusion, OS play an important role in dental caries predisposition and severity, not only the presence of Smut and Srob, but also the complexity and distribution of OS in the biofilm.
Fueling the caries process: carbohydrate metabolism and gene regulation by Streptococcus mutans
Moye, Zachary D.; Zeng, Lin; Burne, Robert A.
2014-01-01
The nature of the oral cavity and host behaviors has mandated that the oral microbiota evolve mechanisms for coping with environmental fluctuations, especially changes in the type and availability of carbohydrates. In the case of human dental caries, the presence of excess carbohydrates is often responsible for altering the local environment to be more favorable for species associated with the initiation and progression of disease, including Streptococcus mutans. Some of the earliest endeavors to understand how cariogenic species respond to environmental perturbations were carried out using chemostat cultivation, which provides fine control over culture conditions and bacterial behaviors. The development of genome-scale methodologies has allowed for the combination of sophisticated cultivation technologies with genome-level analysis to more thoroughly probe how bacterial pathogens respond to environmental stimuli. Recent investigations in S. mutans and other closely related streptococci have begun to reveal that carbohydrate metabolism can drastically impact pathogenic potential and highlight the important influence that nutrient acquisition has on the success of pathogens; inside and outside of the oral cavity. Collectively, research into pathogenic streptococci, which have evolved in close association with the human host, has begun to unveil the essential nature of careful orchestration of carbohydrate acquisition and catabolism to allow the organisms to persist and, when conditions allow, initiate or worsen disease. PMID:25317251
Dedeoglu, Nurcan; De Luca, Viviana; Isik, Semra; Yildirim, Hatice; Kockar, Feray; Capasso, Clemente; Supuran, Claudiu T
2015-07-01
The oral pathogenic bacterium involved in human dental caries formation Streptococcus mutans, encodes for two carbonic anhydrase (CA, EC 4.2.1.1) one belonging to the α- and the other one to the β-class. This last enzyme (SmuCA) has been cloned, characterized and investigated for its inhibition profile with a major class of CA inhibitors, the inorganic anions. Here we show that SmuCA has a good catalytic activity for the CO2 hydration reaction, with kcat 4.2×10(5)s(-1) and kcat/Km of 5.8×10(7)M(-1)×s(-1), being inhibited by cyanate, carbonate, stannate, divannadate and diethyldithiocarbamate in the submillimolar range (KIs of 0.30-0.64mM) and more efficiently by sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid (KIs of 15-46μM). The anion inhibition profile of the S. mutans enzyme is very different from other α- and β-CAs investigated earlier. Identification of effective inhibitors of this new enzyme may lead to pharmacological tools useful for understanding the role of S. mutans CAs in dental caries formation, and eventually the development of pharmacological agents with a new mechanism of antibacterial action. Copyright © 2015 Elsevier Ltd. All rights reserved.
St Michael, Frank; Yang, Qingling; Cairns, Chantelle; Vinogradov, Evgeny; Fleming, Perry; Hayes, Alexander C; Aubry, Annie; Cox, Andrew D
2018-02-01
Dental caries remains a major health issue and the Gram-positive bacterium Streptococcus mutans is considered as the major pathogen causing caries. More recently, S. mutans has been recognised as a cause of endocarditis, ulcerative colitis and fatty acid liver disease along with the likelihood of increased cerebral hemorrhage following a stroke if S. mutans is present systemically. We initiated this study to examine the vaccine candidacy of the serotype specific polysaccharides elaborated by S. mutans. We have confirmed the carbohydrate structures for the serotype specific rhamnan containing polysaccharides from serotypes c, f and k. We have prepared glycoconjugate vaccines using the rhamnan containing polymers from serotypes f and k and immunised mice and rabbits. We consistently obtained a robust immune response to the glycoconjugates with cross-reactivity consistent with the structural similarities of the polymers from the different serotypes. We developed an opsonophagocytic assay which illustrated the ability of the post-immune sera to facilitate opsonophagocytic killing of the homologous and heterologous serotypes at titers consistent with the structural homologies. We conclude that glycoconjugates of the rhamnan polymers of S. mutans are a potential vaccine candidate to target dental caries and other sequelae following the escape of S. mutans from the oral cavity.
[Analysis of causes and whole microbial structure in a case of rampant caries].
Hu, Xiao-Yu; Yao, Yu-Fei; Cui, Bo-Miao; Lv, Jun; Shen, Xin; Ren, Biao; Li, Ming-Yun; Guo, Qiang; Huang, Rui-Jie; Li, Yan
2016-10-20
To analyze the whole microbial structure in a case of rampant caries to provide evidence for its prevention and treatment. Clinical samples including blood, supragingival plaque, plaque in the caries cavity, saliva, and mucosal swabs were collected with the patient's consent. The blood sample was sent for routine immune test, and the others samples were stained using Gram method and cultured for identifying colonies and 16S rRNA sequencing. DNA was extracted from the samples and tested for the main cariogenic bacterium (Streptococcus mutans) with qPCR, and the whole microbial structure was analyzed using DGGE. The patient had a high levels of IgE and segmented neutrophils in his blood. Streptococci with extremely long chains were found in the saliva samples under microscope. Culture of the samples revealed the highest bacterial concentration in the saliva. The relative content of hemolytic bacterium was detected in the samples, the highest in the caries cavity; C. albicans was the highest in the dental plaque. In addition, 33 bacterial colonies were identified by VITEK system and 16S rDNA sequence phylogenetic analysis, and among them streptococci and Leptotrichia wade were enriched in the dental plaque sample, Streptococcus mutans, Fusobacterium nucleatum, and Streptococcus tigurinus in the caries cavity, and Lactobacillus in the saliva. S. mutans was significantly abundant in the mucosal swabs, saliva and plaque samples of the caries cavity as shown by qPCR. Compared to samples collected from a healthy individual and another two patients with rampant caries, the samples from this case showed a decreased bacterial diversity and increased bacterial abundance shown by PCR-DGGE profiling, and multiple Leptotrichia sp. were detected by gel sequencing. The outgrowth of such pathogenic microorganisms as S. mutans and Leptotrichia sp., and dysbiosis of oral microbial community might contribute to the pathogenesis of rampant caries in this case.
Cultivable Anaerobic Microbiota of Severe Early Childhood Caries▿¶
Tanner, A. C. R.; Mathney, J. M. J.; Kent, R. L.; Chalmers, N. I.; Hughes, C. V.; Loo, C. Y.; Pradhan, N.; Kanasi, E.; Hwang, J.; Dahlan, M. A.; Papadopolou, E.; Dewhirst, F. E.
2011-01-01
Severe early childhood caries (ECC), while strongly associated with Streptococcus mutans using selective detection (culture, PCR), has also been associated with a widely diverse microbiota using molecular cloning approaches. The aim of this study was to evaluate the microbiota of severe ECC using anaerobic culture. The microbial composition of dental plaque from 42 severe ECC children was compared with that of 40 caries-free children. Bacterial samples were cultured anaerobically on blood and acid (pH 5) agars. Isolates were purified, and partial sequences for the 16S rRNA gene were obtained from 5,608 isolates. Sequence-based analysis of the 16S rRNA isolate libraries from blood and acid agars of severe ECC and caries-free children had >90% population coverage, with greater diversity occurring in the blood isolate library. Isolate sequences were compared with taxon sequences in the Human Oral Microbiome Database (HOMD), and 198 HOMD taxa were identified, including 45 previously uncultivated taxa, 29 extended HOMD taxa, and 45 potential novel groups. The major species associated with severe ECC included Streptococcus mutans, Scardovia wiggsiae, Veillonella parvula, Streptococcus cristatus, and Actinomyces gerensceriae. S. wiggsiae was significantly associated with severe ECC children in the presence and absence of S. mutans detection. We conclude that anaerobic culture detected as wide a diversity of species in ECC as that observed using cloning approaches. Culture coupled with 16S rRNA identification identified over 74 isolates for human oral taxa without previously cultivated representatives. The major caries-associated species were S. mutans and S. wiggsiae, the latter of which is a candidate as a newly recognized caries pathogen. PMID:21289150
Misaki, Taro; Naka, Shuhei; Hatakeyama, Rina; Fukunaga, Akiko; Nomura, Ryota; Isozaki, Taisuke; Nakano, Kazuhiko
2016-01-01
Streptococcus mutans is a major pathogen of human dental caries. Strains harbouring the cnm gene, which encodes Cnm, a collagen-binding protein, contribute to the development of several systemic diseases. In this study, we analysed S. mutans strains isolated from the oral cavity of immunoglobulin (Ig)A nephropathy (IgAN) patients to determine potential relationships between cnm and caries status as well as IgAN conditions. Saliva specimens were collected from 109 IgAN patients and the cnm status of isolated S. mutans strains was determined using PCR. In addition, the dental caries status (decayed, missing or filled teeth [DMFT] index) in patients who agreed to dental consultation (n = 49) was evaluated. The DMFT index and urinary protein levels in the cnm-positive group were significantly higher than those in the cnm-negative group (p < 0.05). Moreover, the urinary protein levels in the high DMFT (≥15) group were significantly higher than those in the low DMFT (<15) group (p < 0.05). Our results show that isolation of cnm-positive S. mutans strains from the oral cavity may be associated with urinary protein levels in IgAN patients, especially those with a high dental caries status. PMID:27811984
A, Deepti; Jeevarathan, J; Muthu, Ms; Prabhu V, Rathna; Chamundeswari
2008-09-01
The aim of this study was to estimate the count of Streptococcus mutans in saliva of caries free children using Dentocult SM strip mutans and to evaluate the effect of fluoride varnish on the Streptococcus mutans count in saliva of these caries free children. Thirty caries free children were selected for the study based on the information obtained from a questionnaire prepared. They were randomly assigned into the control group and the study group consisting of ten and twenty children respectively. Samples of saliva were collected using the saliva strips from the Dentocult SM kit and after incubation the presence of the Streptococcus mutans was evaluated using the manufacturers' chart. The study group was subjected to Fluor Protector fluoride varnish application after 24 hours following which the samples were collected again. The average Streptococcus mutans count in primary dentition of caries free children was in the range of 10(4) to 10(5) colony forming units/ml. The average Streptococcus mutans count in primary dentition of caries free children after Fluor Protector fluoride varnish application was below 10(4) colony forming units/ml. Fluor Protector fluoride varnish application showed a statistically significant reduction in the Streptococcus mutans count in saliva of the caries free children in the study group.
Latifi-Xhemajli, B; Véronneau, J; Begzati, A; Bytyci, A; Kutllovci, T; Rexhepi, A
2016-03-01
Understanding factors in mothers associated with high and low salivary levels of Streptococcus mutans and Lactobacilli is an important strategy for early childhood caries prevention. Aim of the study was to identify the association between salivary levels of Streptococcus mutans/Lactobacillus and potential caries risk factors in mothers. Cross-sectional design used a voluntary sample of 300 mothers of young children. Close-ended questions and observations were used to identify mothers' potential caries risk factors. The presence of Streptococcus mutans and Lactobacilli was determined using the CRT bacteria test (Ivoclar Vivadent). All collected information was converted into frequency and proportion describing the prevalence factor in correlation with Streptococcus mutans and Lactobacilli cariogenic bacteria levels of infection. Results Sample participants showed a high caries risk based on socioeconomic, behavioural and clinical factors. also showed high levels (>105) of Streptococcus mutans and Lactobacilli infections among 28% of mothers. Three factors were significantly associated with Streptococcus mutans infection: level of education, past caries experiences, and observable dental plaque, whereas, a fourth factor, frequency of daily tooth brushing, was associated to Lactobacilli infection. This study showed that easily collectible informations such as maternal level of education, frequency of daily tooth brushing and past clinical factors tend to be associated with high level of Streptococcus mutans and Lactobacilli infections in caregivers.
Miller, James H.; Avilés-Reyes, Alejandro; Scott-Anne, Kathy; Gregoire, Stacy; Watson, Gene E.; Sampson, Edith; Progulske-Fox, Ann; Koo, Hyun; Bowen, William H.; Lemos, José A.
2015-01-01
Streptococcus mutans is the etiological agent of dental caries and one of the many bacterial species implicated in infective endocarditis. The expression of the collagen-binding protein Cnm by S. mutans has been associated with extraoral infections, but its relevance for dental caries has only been theorized to date. Due to the collagenous composition of dentinal and root tissues, we hypothesized that Cnm may facilitate the colonization of these surfaces, thereby enhancing the pathogenic potential of S. mutans in advancing carious lesions. As shown for extraoral endothelial cell lines, Cnm mediates the invasion of oral keratinocytes and fibroblasts by S. mutans. In this study, we show that in the Cnm+ native strain, OMZ175, Cnm mediates stringent adhesion to dentinal and root tissues as well as collagen-coated surfaces and promotes both cariogenicity and carriage in vivo. In vitro, ex vivo, and in vivo experiments revealed that while Cnm is not universally required for S. mutans cariogenicity, it contributes to (i) the invasion of the oral epithelium, (ii) enhanced binding on collagenous surfaces, (iii) implantation of oral biofilms, and (IV) the severity of caries due to a native Cnm+ isolate. Taken together, our findings reveal that Cnm is a colonization factor that contributes to the pathogenicity of certain S. mutans strains in their native habitat, the oral cavity. PMID:25733523
Advanced Caries Microbiota in Teeth with Irreversible Pulpitis.
Rôças, Isabela N; Lima, Kenio C; Assunção, Isauremi V; Gomes, Patrícia N; Bracks, Igor V; Siqueira, José F
2015-09-01
Bacterial taxa in the forefront of caries biofilms are candidate pathogens for irreversible pulpitis and are possibly the first ones to invade the pulp and initiate endodontic infection. This study examined the microbiota of the most advanced layers of dentinal caries in teeth with irreversible pulpitis. DNA extracted from samples taken from deep dentinal caries associated with pulp exposures was analyzed for the presence and relative levels of 33 oral bacterial taxa by using reverse-capture checkerboard hybridization assay. Quantification of total bacteria, streptococci, and lactobacilli was also performed by using real-time quantitative polymerase chain reaction. Associations between the target bacterial taxa and clinical signs/symptoms were also evaluated. The most frequently detected taxa in the checkerboard assay were Atopobium genomospecies C1 (53%), Pseudoramibacter alactolyticus (37%), Streptococcus species (33%), Streptococcus mutans (33%), Parvimonas micra (13%), Fusobacterium nucleatum (13%), and Veillonella species (13%). Streptococcus species, Dialister invisus, and P. micra were significantly associated with throbbing pain, S. mutans with pain to percussion, and Lactobacillus with continuous pain (P < .05). Quantitative polymerase chain reaction revealed a mean total bacterial load of 1 × 10(8) (range, 2.05 × 10(5) to 4.5 × 10(8)) cell equivalents per milligram (wet weight) of dentin. Streptococci and lactobacilli were very prevalent but comprised only 0.09% and 2% of the whole bacterial population, respectively. Several bacterial taxa were found in advanced caries lesions in teeth with exposed pulps, and some of them were significantly associated with symptoms. A role for these taxa in the etiology of irreversible pulpitis is suspected. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Oral Microbiota of Children in a School-based Dental Clinic
Soncini, Jennifer A; Kanasi, Eleni; Lu, Shulin C.; Nunn, Martha E.; Henshaw, Michelle M; Tanner, Anne CR
2010-01-01
Objectives Dental caries disproportionately affects disadvantaged subjects. This study hypothesized that there were greater caries extent and higher levels of caries-associated and anaerobic subgingival bacterial species in oral samples of Hispanic and immigrant children compared with non-Hispanic and US born children. Methods Children from a school-based dental clinic serving a community with a large Hispanic component were examined, and the extent of caries was recorded. Microbial samples were taken from teeth and the tongues of children. Samples were analyzed using DNA probes to 18 oral bacterial species. Results Seventy five children were examined. Extent of caries increased with child age in immigrant, but not in US born or Hispanic children. There were no differences in the microbiota based on ethnicity or whether the child was born in US or not. There was a higher species detection frequency from teeth than tongue samples. Levels of Streptococcus mutans and other Streptococcus species increased with caries extent. Prevotella intermedia, Tannerella forsythia and Selenomonas species were detected at low levels in these children. Conclusions We conclude that, while there was a high rate of dental caries in disadvantaged school children, there were no differences in the caries-associated microbiota, including S. mutans, based on ethnicity or immigration status. Furthermore, while anaerobic subgingival, periodontal pathogens were also detected in children, there was no difference in species detection based on ethnicity or immigration status. Increased levels of streptococci, including S. mutans, however, were detected with high caries levels. This suggested that while it is beneficial to target preventive and treatment programs to disadvantaged populations, there is likely no additional benefit to focus on subgroups within a population already at high risk for dental disease. PMID:19879369
Oral microbiota of children in a school-based dental clinic.
Soncini, Jennifer A; Kanasi, Eleni; Lu, Shulin C; Nunn, Martha E; Henshaw, Michelle M; Tanner, Anne C R
2010-06-01
Dental caries disproportionately affects disadvantaged subjects. This study hypothesized that there were greater caries extent and higher levels of caries-associated and anaerobic subgingival bacterial species in oral samples of Hispanic and immigrant children compared with non-Hispanic and US born children. Children from a school-based dental clinic serving a community with a large Hispanic component were examined, and the extent of caries was recorded. Microbial samples were taken from teeth and the tongues of children. Samples were analyzed using DNA probes to 18 oral bacterial species. Seventy five children were examined. Extent of caries increased with child age in immigrant, but not in US born or Hispanic children. There were no differences in the microbiota based on ethnicity or whether the child was born in US or not. There was a higher species detection frequency from teeth than tongue samples. Levels of Streptococcus mutans and other Streptococcus spp increased with caries extent. Prevotella intermedia, Tannerella forsythia and Selenomonas spp were detected at low levels in these children. We conclude that, while there was a high rate of dental caries in disadvantaged school children, there were no differences in the caries-associated microbiota, including S. mutans, based on ethnicity or immigration status. Furthermore, while anaerobic subgingival, periodontal pathogens were also detected in children, there was no difference in species detection based on ethnicity or immigration status. Increased levels of streptococci, including S. mutans, however, were detected with high caries levels. This suggested that while it is beneficial to target preventive and treatment programs to disadvantaged populations, there is likely no additional benefit to focus on subgroups within a population already at high risk for dental disease. 2009 Elsevier Ltd. All rights reserved.
Aguilera Galaviz, Luis Alejandro; Aceves Medina, Ma del Carmen; Estrada García, Iris C
2002-01-01
Streptococcus mutans is a pathogen related to the occurrence of human dental caries. The determination of total amounts of mutans streptococci, as well as the proportion related to other oral bacteria, is of interest when assessing the risk of developing caries. In this context, it is better to use a sensitive, specific and non-time consuming method such as the polymerase chain reaction (PCR), than to use culture and biochemical identification methods. In this work we identified potentially cariogenic strains of S. mutans and assessed the relationship with the dmft, DMFT or dmft/DMFT index. Using DNA isolated from dental plaque, a 192 bp sequence was identified and amplified from the spaP gene and a 722 bp sequence from the dexA gene. The results suggest that it is important to evaluate the presence of cariogenic S. mutans strains in plaque content rather than the accumulation of plaque itself However, other factors like diet, hygiene, genetic background, the flow rate of saliva and the presence of specific antibodies, also play a key role in the development of caries.
The oral microbiome and the immunobiology of periodontal disease and caries
Costalonga, Massimo; Herzberg, Mark C.
2015-01-01
The composition of the oral microbiome differs from one intraoral site to another, reflecting in part the host response and immune capacity at each site. By focusing on two major oral infections, periodontal disease and caries, new principles of disease emerge. Periodontal disease affects the soft tissues and bone that support the teeth. Caries is a unique infection of the dental hard tissues. The initiation of both diseases is marked by an increase in the complexity of the microbiome. In periodontitis, pathobionts and keystone pathogens such as Porphyromonas gingivalis appear in greater proportion than in health. As a keystone pathogen, P. gingivalis impairs host immune responses and appears necessary but not sufficient to cause periodontitis. Historically, dental caries had been causally linked to Streptococcus mutans. Contemporary microbiome studies now indicate that singular pathogens are not obvious in either caries or periodontitis. Both diseases appear to result from a perturbation among relatively minor constituents in local microbial communities resulting in dysbiosis. Emergent consortia of the minor members of the respective microbiomes act synergistically to stress the ability of the host to respond and protect. In periodontal disease, host protection first occurs at the level of innate gingival epithelial immunity. Secretory IgA antibody and other salivary antimicrobial systems also act against periodontopathic and cariogenic consortia. When the gingival immune response is impaired, periodontal tissue pathology results when matrix metalloproteinases are released from neutrophils and T cells mediate alveolar bone loss. In caries, several species are acidogenic and aciduric and appear to work synergistically to promote demineralization of the enamel and dentin. Whereas technically possible, particularly for caries, vaccines are unlikely to be commercialized in the near future because of the low morbidity of caries and periodontitis. PMID:25447398
The oral microbiome and the immunobiology of periodontal disease and caries.
Costalonga, Massimo; Herzberg, Mark C
2014-12-01
The composition of the oral microbiome differs from one intraoral site to another, reflecting in part the host response and immune capacity at each site. By focusing on two major oral infections, periodontal disease and caries, new principles of disease emerge. Periodontal disease affects the soft tissues and bone that support the teeth. Caries is a unique infection of the dental hard tissues. The initiation of both diseases is marked by an increase in the complexity of the microbiome. In periodontitis, pathobionts and keystone pathogens such as Porphyromonas gingivalis appear in greater proportion than in health. As a keystone pathogen, P. gingivalis impairs host immune responses and appears necessary but not sufficient to cause periodontitis. Historically, dental caries had been causally linked to Streptococcus mutans. Contemporary microbiome studies now indicate that singular pathogens are not obvious in either caries or periodontitis. Both diseases appear to result from a perturbation among relatively minor constituents in local microbial communities resulting in dysbiosis. Emergent consortia of the minor members of the respective microbiomes act synergistically to stress the ability of the host to respond and protect. In periodontal disease, host protection first occurs at the level of innate gingival epithelial immunity. Secretory IgA antibody and other salivary antimicrobial systems also act against periodontopathic and cariogenic consortia. When the gingival immune response is impaired, periodontal tissue pathology results when matrix metalloproteinases are released from neutrophils and T cells mediate alveolar bone loss. In caries, several species are acidogenic and aciduric and appear to work synergistically to promote demineralization of the enamel and dentin. Whereas technically possible, particularly for caries, vaccines are unlikely to be commercialized in the near future because of the low morbidity of caries and periodontitis. Copyright © 2014. Published by Elsevier B.V.
Besra, Mamta; Kumar, Vipin
2018-05-01
The study aimed to evaluate the antimicrobial activity of medicinal plant extracts against the bacterial pathogens prominent in dental caries. A total of 20 plant species (herbs, shrubs and trees) belonging to 18 genera and 15 families were documented for dental caries. Antimicrobial activity of solvent extracts and essential oil from plants were determined by zone of inhibition on the growth of Streptococcus mutans (MTCC 497) and Lactobacillus acidophilus (MTCC 10307) using the agar well diffusion method. The results of in vitro antimicrobial assay prove that methanol is more successful in the extraction of phytochemicals from plant samples than aqueous solvent, as methanol extracts show higher antimicrobial activity than aqueous extracts against both the test pathogens. Methanol extracts of Nigella sativa, Psidium guajava and Syzygium aromaticum were the most effective among all 20 plant samples and have potent inhibitory activity against both dental caries pathogens with minimum inhibitory concentration of 0.2 mg mL - 1 . N. sativa seed methanol extract was more effective with 22.3 mm zone of inhibition at 0.2 mg mL - 1 against S. mutans (MTCC 497), while L. acidophilus (MTCC 10307) was more sensitive to S. aromaticum bud methanol extract at 11.3 mm zone of inhibition at concentration 0.1 mg mL - 1 . Essential oil extracted from plants also possesses strong antimicrobial activity for both test pathogens, with a minimum inhibitory concentration range of 0.05-0.16 mg mL - 1 . Syzygium aromaticum bud essential oil at 0.05 mg mL - 1 was most active against S. mutans (MTCC 497). Plant extracts viewing antimicrobial activity with minimum inhibitory concentration show the efficacy of the plant products that could be considered as a good indicator of prospective plants for discovering new antimicrobial agents against dental caries pathogens. The findings of this study provide a lead to further polyherbal formulations for the treatment of dental caries malaise.
Fekrazad, Reza; Seraj, Bahman; Chiniforush, Nasim; Rokouei, Mehrak; Mousavi, Niloofar; Ghadimi, Sara
2017-06-01
Antimicrobial photodynamic therapy (aPDT) is a novel technique for reduction of pathogenic microorganisms in dentistry. The aim of this study was to evaluate the effects of aPDT on Streptococcus mutans reduction in children with severe early childhood caries. Twenty-two children with severe early childhood caries aged 3-6 years were treated with toluoidine blue O (TBO) for 1min and irradiated by a Light Emitting Diode (LED; FotoSan, CMS Dental, Denmark) with the exposure time of 150s. Saliva samples were collected at baseline, 1h and 7 days after treatment. S. mutans counts were determined using the Dentocult SM Strip mutans. The counts of S. mutans in saliva decreased significantly after 1h (P<0.001). However, the difference in reduction of S. mutans counts in saliva was not significant between the baseline and 7 days after treatment (P>0.05). aPDT seems to be efficient to reduce salivary S. mutans immediately after treatment in children with severe early childhood caries. However, further research is needed to evaluate different doses and frequency of irradiation in combination with restoring carious teeth to find more durable results. Copyright © 2017 Elsevier B.V. All rights reserved.
Clancy, K. Anne; Pearson, Sylvia; Bowen, William H.; Burne, Robert A.
2000-01-01
Dental caries results from prolonged plaque acidification that leads to the establishment of a cariogenic microflora and demineralization of the tooth. Urease enzymes of oral bacteria hydrolyze urea to ammonia, which can neutralize plaque acids. To begin to examine the relationship between plaque ureolytic activity and the incidence of dental caries, recombinant, ureolytic strains of Streptococcus mutans were constructed. Specifically, the ureABCEFGD operon from Streptococcus salivarius 57.I was integrated into the S. mutans chromosome in such a way that the operon was transcribed from a weak, cognate promoter in S. mutans ACUS4 or a stronger promoter in S. mutans ACUS6. Both strains expressed NiCl2-dependent urease activity, but the maximal urease levels in ACUS6 were threefold higher than those in ACUS4. In vitro pH drop experiments demonstrated that the ability of the recombinant S. mutans strains to moderate a decrease in pH during the simultaneous metabolism of glucose and urea increased proportionately with the level of urease activity expressed. Specific-pathogen-free rats that were infected with ACUS6 and fed a cariogenic diet with drinking water containing 25 mM urea and 50 μM NiCl2 had relatively high levels of oral urease activity, as well as dramatic decreases in the prevalence of smooth-surface caries and the severity of sulcal caries, relative to controls. Urease activity appears to influence plaque biochemistry and metabolism in a manner that reduces cariogenicity, suggesting that recombinant, ureolytic bacteria may be useful to promote dental health. PMID:10768953
2014-01-01
Background Streptococcus mutans is known to be a primary etiological factor of dental caries, a widespread and growing disease in Polish children. Recognition of novel features determining the pathogenicity of this pathogen may contribute to understanding the mechanisms of bacterial infections. The goal of the study was to determine the activity of prephenate dehydrogenase (PHD) and to illuminate the role of the enzyme in S. mutans pathogenicity. The strains were biotyped based on STREPTOtest 24 biochemical identification tests and the usefulness of biotyping in the determination of S. mutans pathogenicity determinants was examined. Results Out of ninety strains isolated from children with deciduous teeth fifty three were classified as S. mutans species. PDH activity was higher (21.69 U/mg on average) in the experimental group compared to the control group (5.74 U/mg on average) (P <0.001). Moreover, it was demonstrated that biotype I, established basing on the biochemical characterization of the strain, was predominant (58.5%) in oral cavity streptococcosis. Its dominance was determined by higher PDH activity compared to biotypes II and III (P = 0.0019). Conclusions The usefulness of biotyping in the determination of Streptococcus mutans pathogenicity determinants was demonstrated. The obtained results allow for better differentiation of S. mutans species and thus may contribute to recognition of pathogenic bacteria transmission mechanisms and facilitate treatment. PMID:25096795
Ahn, Ki Bum; Kim, A Reum; Kum, Kee-Yeon; Yun, Cheol-Heui; Han, Seung Hyun
2017-10-01
Streptococcus mutans is a major etiologic agent of human dental caries that forms biofilms on hard tissues in the human oral cavity, such as tooth and dentinal surfaces. Human β-defensin-3 (HBD3) is a 45-amino-acid natural antimicrobial peptide that has broad spectrum antimicrobial activity against bacteria and fungi. A synthetic peptide consisting of the C-terminal 15 amino acids of HBD3 (HBD3-C15) was recently shown to be sufficient for its antimicrobial activity. Thus, clinical applications of this peptide have garnered attention. In this study, we investigated whether HBD3-C15 inhibits the growth of the representative cariogenic pathogen Streptococcus mutans and its biofilm formation. HBD3-C15 inhibited bacterial growth, exhibited bactericidal activity, and attenuated bacterial biofilm formation in a dose-dependent manner. HBD3-C15 potentiated the bactericidal and anti-biofilm activity of calcium hydroxide (CH) and chlorhexidine digluconate (CHX), which are representative disinfectants used in dental clinics, against S. mutans. Moreover, HBD3-C15 showed antimicrobial activity by inhibiting biofilm formation by S. mutans and other dentinophilic bacteria such as Enterococcus faecalis and Streptococcus gordonii, which are associated with dental caries and endodontic infection, on human dentin slices. These effects were observed for HBD3-C15 alone and for HBD3-C15 in combination with CH or CHX. Therefore, we suggest that HBD3-C15 is a potential alternative or additive disinfectant that can be used for the treatment of oral infectious diseases, including dental caries and endodontic infections.
Aciduric Microbiota and Mutans Streptococci in Severe and Recurrent Severe Early Childhood Caries
Hughes, Christopher V.; Dahlan, Mohammed; Papadopolou, Eleftheria; Kent, Ralph L.; Loo, Cheen Y.; Pradhan, Nooruddin S.; Lu, Shulin C.; Bravoco, Alexandra; Mathney, Jennifer M.J.; Tanner, Anne C.R.
2011-01-01
Purpose Severe early childhood caries (ECC) results from bacterial acid production in an acidic environment. The current study determined Streptococcus mutans, Streptococcus sobrinus and acid-tolerant counts in severe-ECC. Methods Children (2–6 years) with severe-ECC (n=77) or who were caries-free (n=40) were examined. Plaque samples from teeth and the tongue were cultured anaerobically on blood, acid and S. mutans selective agars. Severe-ECC children were monitored post-treatment for recurrent caries. Results Severe-ECC and caries-free children were balanced by household income and education level. Carious lesions were observed in 75% maxillary incisors and >80% molars in severe-ECC. At baseline, Streptococcus mutans, and Streptococcus sobrinus counts and proportions of S. mutans were higher in severe-ECC than caries-free children. Acid and blood counts were elevated only in anterior samples of severe-ECC children. Baseline counts of S. sobrinus, but not S. mutans, were higher in children with recurrent compared with no recurrent caries. S. mutans counts were lower post treatment than pre-treatment, particularly for children without caries recurrence. Other counts did not differ between before and after therapy. Conclusions We conclude that severe and recurrent ECC were better explained by mutans streptococci than the aciduric microbiota. S. mutans did not predict children with recurrent caries. PMID:22583872
Kaur, Gurmeet; Balamurugan, P; Uma Maheswari, C; Anitha, A; Princy, S Adline
2016-01-01
Dental caries occur as a result of disequilibrium between acid producing pathogenic bacteria and alkali generating commensal bacteria within a dental biofilm (dental plaque). Streptococcus mutans has been reported as a primary cariogenic pathogen associated with dental caries. Emergence of multidrug resistant as well as fluoride resistant strains of S. mutans due to over use of various antibiotics are a rising problem and prompted the researchers worldwide to search for alternative therapies. In this perspective, the present study was aimed to screen selective inhibitors against ComA, a bacteriocin associated ABC transporter, involved in the quorum sensing of S. mutans. In light of our present in silico findings, 1,3-disubstituted urea derivatives which had better affinity to ComA were chemically synthesized in the present study for in vitro evaluation of S. mutans biofilm inhibition. The results revealed that 1,3-disubstituted urea derivatives showed good biofilm inhibition. In addition, synthesized compounds exhibited potent synergy with a very low concentration of fluoride (31.25-62.5 ppm) in inhibiting the biofilm formation of S. mutans without affecting the bacterial growth. Further, the results were supported by confocal laser scanning microscopy. On the whole, from our experimental results we conclude that the combinatorial application of fluoride and disubstituted ureas has a potential synergistic effect which has a promising approach in combating multidrug resistant and fluoride resistant S. mutans in dental caries management.
A novel antimicrobial peptide against dental-caries-associated bacteria.
Chen, Long; Jia, Lili; Zhang, Qiang; Zhou, Xirui; Liu, Zhuqing; Li, Bingjie; Zhu, Zhentai; Wang, Fenwei; Yu, Changyuan; Zhang, Qian; Chen, Feng; Luo, Shi-Zhong
2017-10-01
Dental caries, a highly prevalent oral disease, is primarily caused by pathogenic bacteria infection, and most of them are anaerobic. Herein, we investigated the activity of a designed antimicrobial peptide ZXR-2, and found it showed broad-spectrum activity against a variety of Gram-positive and Gram-negative oral bacteria, particularly the caries-related taxa Streptococcus mutans. Time-course killing assays indicated that ZXR-2 killed most bacterial cells within 5 min at 4 × MIC. The mechanism of ZXR-2 involved disruption of cell membranes, as observed by scanning electron microscopy. Moreover, ZXR-2 inhibited the formation of S. mutans biofilm, but showed limited hemolytic effect. Based on its potent antimicrobial activity, rapid killing, and inhibition of S. mutans biofilm formation, ZXR-2 represents a potential therapeutic for the prevention and treatment of dental caries. Copyright © 2017 Elsevier Ltd. All rights reserved.
Protection of rats against dental caries by passive immunization with hen-egg-yolk antibody (IgY).
Otake, S; Nishihara, Y; Makimura, M; Hatta, H; Kim, M; Yamamoto, T; Hirasawa, M
1991-03-01
Hen-egg-yolk antibody (IgY) was prepared against Streptococcus mutans MT8148 serotype c that was cultivated in medium containing sucrose, and it was used in passive caries-immunity studies. Specific pathogen-free rats infected with S. mutans MT8148 (c) and fed with a cariogenic diet containing more than 2% immune yolk powder developed significantly lower caries scores than did the ones infected with the same strain and fed with a diet containing only control yolk powder obtained from non-immunized hens. Similar results were obtained in an experiment with rats infected with S. mutans JC-2 (c) strain. Rats provided a diet supplemented with 0.5% immune water-soluble protein fraction containing S. mutans-specific IgY and challenged with S. mutans MT8148 exhibited significantly fewer caries lesions, compared with control rats on the normal diet.
A probiotic approach to caries management.
Anderson, M H; Shi, W
2006-01-01
The surgical approach has been the predominate mode of caries management for the past 150 years. Dentistry has, however, in recent years moved toward an antibiotic/antimicrobial model of disease management. This approach, however, raises serious questions: (1) do the antibiotic/antimicrobial agents (chlorhexidine, povidone iodine, fluoride, etc) kill all offending organisms?; (2) if so, do the agents preclude the re-entry of the same organisms from external sources?; and (3) if the agents do kill all the offending organisms, do any remaining pathogenic organisms have selective advantage in repopulating the tooth surfaces? To overcome the problems inherent in an antibiotic/antimicrobial approach, probiotic methods are currently under study as means of caries management. This paper discusses probiotic approaches, such as genetically modified Streptococcus mutans and targeted antimicrobials in the management of dental caries. Implications for this approach in the management of other diseases are also presented.
The Problem of Occlusal Surface Pit and Fissure Dental Caries in Naval Recruits.
1980-06-01
research investigates specific methods which are pertinent to the biology of the dental caries process (2). Streptococcus mutans has been extensively...caries. NDRI-PR 80-05, May 1980. 4. Catalanotto, r. A., Shklair, I. L. and Keene, H. 3. Prevalence and localization of Streptococcus mutans in infants...and children. J. An. Dent. Assoc. 91:606-609, 1975. 5. Shklair, 1. L., Keene, H. 3. and Cullen, P. The distribution of Streptococcus mutans on the
Belstrøm, Daniel; Constancias, Florentin; Liu, Yang; Yang, Liang; Drautz-Moses, Daniela I; Schuster, Stephan C; Kohli, Gurjeet Singh; Jakobsen, Tim Holm; Holmstrup, Palle; Givskov, Michael
2017-01-01
The taxonomic composition of the salivary microbiota has been reported to differentiate between oral health and disease. However, information on bacterial activity and gene expression of the salivary microbiota is limited. The purpose of this study was to perform metagenomic and metatranscriptomic characterization of the salivary microbiota and test the hypothesis that salivary microbial presence and activity could be an indicator of the oral health status. Stimulated saliva samples were collected from 30 individuals (periodontitis: n = 10, dental caries: n = 10, oral health: n = 10). Salivary microbiota was characterized using metagenomics and metatranscriptomics in order to compare community composition and the gene expression between the three groups. Streptococcus was the predominant bacterial genus constituting approx. 25 and 50% of all DNA and RNA reads, respectively. A significant disease-associated higher relative abundance of traditional periodontal pathogens such as Porphyromonas gingivalis and Filifactor alocis and salivary microbial activity of F . alocis was associated with periodontitis. Significantly higher relative abundance of caries-associated bacteria such as Streptococcus mutans and Lactobacillus fermentum was identified in saliva from patients with dental caries. Multiple genes involved in carbohydrate metabolism were significantly more expressed in healthy controls compared to periodontitis patients. Using metagenomics and metatranscriptomics we show that relative abundance of specific oral bacterial species and bacterial gene expression in saliva associates with periodontitis and dental caries. Further longitudinal studies are warranted to evaluate if screening of salivary microbial activity of specific oral bacterial species and metabolic gene expression can identify periodontitis and dental caries at preclinical stages.
Analysis of oral microbiota in children with dental caries by PCR-DGGE and barcoded pyrosequencing.
Ling, Zongxin; Kong, Jianming; Jia, Peng; Wei, Chaochun; Wang, Yuezhu; Pan, Zhiwen; Huang, Wujing; Li, Lanjuan; Chen, Hui; Xiang, Charlie
2010-10-01
Oral microbiota plays a vital role in maintaining the homeostasis of oral cavity. Dental caries are among the most common oral diseases in children and pathogenic bacteria contribute to the development of the disease. However, the overall structure of bacterial communities in the oral cavity from children with dental caries has not been explored deeply heretofore. We used high-throughput barcoded pyrosequencing and PCR-denaturing gradient gel electrophoresis (DGGE) to examine bacterial diversity of oral microbiota in saliva and supragingival plaques from 60 children aged 3 to 6 years old with and without dental caries from China. The multiplex barcoded pyrosequencing was performed in a single run, with multiple samples tagged uniquely by multiplex identifiers. As PCR-DGGE analysis is a conventional molecular ecological approach, this analysis was also performed on the same samples and the results of both approaches were compared. A total of 186,787 high-quality sequences were obtained for evaluating bacterial diversity and 41,905 unique sequences represented all phylotypes. We found that the oral microbiota in children was far more diverse than previous studies reported, and more than 200 genera belonging to ten phyla were found in the oral cavity. The phylotypes in saliva and supragingival plaques were significantly different and could be divided into two distinct clusters (p < 0.05). The bacterial diversity in oral microbiome analyzed by PCR-DGGE and barcoded pyrosequencing was employed to cross validate the data sets. The genera of Streptococcus, Veillonella, Actinomyces, Granulicatella, Leptotrichia, and Thiomonas in plaques were significantly associated with dental caries (p < 0.05). The results showed that there was no one specific pathogen but rather pathogenic populations in plaque that significantly correlated with dental caries. The enormous diversity of oral microbiota allowed for a better understanding of oral microecosystem, and these pathogenic populations in plaque provide new insights into the etiology of dental caries and suggest new targets for interventions of the disease.
Sentila, R; Gandhimathi, A; Karthika, S; Suryalakshmi, R; Michael, A
2011-06-01
Dental caries is the destruction of enamel, dentin, or cementum of teeth due to bacterial activities, which if left untreated can cause considerable pain, discomfort, and treatment costs are very high. Of the oral bacteria, Streptococcus mutans is considered to be causative agent of dental caries in humans. This study aims at screening the antibacterial potential of available oral hygiene products against S. mutans, the primary etiological agent. A selective number of toothpaste and mouth rinse available in the nearby local market was subjected to the study. The experiments were designed in a way to determine which one of these products had the greatest anti-S.mutans activity. Antibiotic sensitivity tests against the pathogenic strains were also conducted. Pathogenic strains of S.mutans were isolated from clinical dental specimen and identified using MTCC standard strain No. 890. Of the 86.66% samples which showed positive for S.mutans growth, almost 96% conferred sensitivity to 0.08 mg/ml of penicillin. Among the toothpastes used, A showed the maximum inhibitory activity against S.mutans inhibiting its growth even at a very low concentration of 0.0156 g/ml. Similar results were seen in the case of the mouth rinses used for the study, which showed that N had the most effective activity against S.mutans even at 1:8 dilution. The oral hygiene products containing triclosan proved to be the most effective followed by those containing fluoride. Herbal products showed comparatively lesser activity in inhibiting the growth of S. mutans. Even though there are so many products available to curb the progression of dental caries in the population targeted, there is still an undoubted prevalence and incidence of caries among the general public. The need for a better alternative to help control dental caries is on the rise even today.
Ma, Chen; Chen, Feng; Zhang, Yifei; Sun, Xiangyu; Tong, Peiyuan; Si, Yan; Zheng, Shuguo
2015-01-01
Early childhood caries (ECC) has become a prevalent public health problem among Chinese preschool children. The bacterial microflora is considered to be an important factor in the formation and progress of dental caries. However, high-throughput and large-scale studies of the primary dentition are lacking. The present study aimed to compare oral microbial profiles between children with severe ECC (SECC) and caries-free children. Both saliva and supragingival plaque samples were obtained from children with SECC (n = 20) and caries-free children (n = 20) aged 3 to 4 years. The samples were assayed using the Human Oral Microbe Identification Microarray (HOMIM). A total of 379 bacterial species were detected in both the saliva and supragingival plaque samples from all children. Thirteen (including Streptococcus) and two (Streptococcus and Actinomyces) bacterial species in supragingival plaque and saliva, respectively, showed significant differences in prevalence between the two groups. Of these, the frequency of Streptococcus mutans detection was significantly higher in both saliva (p = 0.026) and plaque (p = 0.006) samples from the SECC group than in those from the caries-free group. The findings of our study revealed differences in the oral microbiota between the SECC and caries-free groups Several genera, including Streptococcus, Porphyromonas, and Actinomyces, are strongly associated with SECC and can be potential biomarkers of dental caries in the primary dentition.
Antibacterial activity of triterpene acids and semi-synthetic derivatives against oral pathogens
Scalon Cunha, Luis C; Andrade e Silva, Márcio L; Cardoso Furtado, Niege A J; Vinhólis, Adriana H C; Martins, Carlos H; da Silva Filho, Ademar A; Cunha, Wilson R
2007-01-01
Triterpene acids (ursolic, oleanoic, gypsogenic, and sumaresinolic acids) isolated from Miconia species, along with a mixture of ursolic and oleanolic acids and a mixture of maslinic and 2-a-hydroxyursolic acids, as well as ursolic acid derivatives were evaluated against the following microorganisms: Streptococcus mutans, Streptococcus mitis, Streptococcus sanguinis, Streptococcus salivarius, Streptococcus sobrinus, and Enterococcus faecalis, which are potentially responsible for the formation of dental caries in humans. The microdilution method was used for the determination of the minimum inhibitory concentration (MIC) during the evaluation of the antibacterial activity. All the isolated compounds, mixtures, and semi-synthetic derivatives displayed activity against all the tested bacteria, showing that they are promising antiplaque and anticaries agents. Ursolic and oleanolic acids displayed the most intense antibacterial effect, with MIC values ranging from 30 microg/mL to 80 microg/mL. The MIC values of ursolic acid derivatives, as well as those obtained for the mixture of ursolic and oleanolic acids showed that these compounds do not have higher antibacterial activity when compared with the activity observed with either ursolic acid or oleanolic acid alone. With regard to the structure-activity relationship of triterpene acids and derivatives, it is suggested that both hydroxy and carboxy groups present in the triterpenes are important for their antibacterial activity against oral pathogens.
Nakano, Kazuhiko; Nemoto, Hirotoshi; Nomura, Ryota; Homma, Hiromi; Yoshioka, Hideo; Shudo, Yasuhiro; Hata, Hiroki; Toda, Koichi; Taniguchi, Kazuhiro; Amano, Atsuo; Ooshima, Takashi
2007-04-01
The involvement of oral bacteria in the pathogenesis of cardiovascular disease has been studied, with Streptococcus mutans, a pathogen of dental caries, detected in cardiovascular lesions at a high frequency. However, no information is available regarding the properties of S. mutans detected in those lesions. Heart valve specimens were collected from 52 patients and atheromatous plaque specimens from 50 patients, all of whom underwent cardiovascular operations, and dental plaque specimens were taken from 41 of those subjects prior to surgery. Furthermore, saliva samples were taken from 73 sets of healthy mothers (n=73) and their healthy children (n=78). Bacterial DNA was extracted from all specimens, then analysed by PCR with S. mutans-specific and serotype-specific primer sets. The detection rates of S. mutans in the heart valve and atheromatous plaque specimens were 63 and 64 %, respectively. Non-c serotypes were identified with a significantly higher frequency in both cardiovascular and dental plaque samples from the subjects who underwent surgery as compared to serotype c, which was detected in 70-75 % of the samples from the healthy subjects. The serotype distribution in cardiovascular patients was significantly different from that in healthy subjects, suggesting that S. mutans serotype may be related to cardiovascular disease.
Anaerobic culture to detect periodontal and caries pathogens
Tanner, Anne C. R.
2014-01-01
Background Anaerobic culture has been critical in our understanding of the oral microbiotas. Highlight Studies in advanced periodontitis in the 1970’s revealed microbial complexes that associated with different clinical presentations. Taxonomy studies identified species newly-observed in periodontitis as Aggregatibacter (Actinobacillus) actinomycetemcomitans, Campylobacter (Wolinella) rectus and other Campylobacter species, and Tannerella (Bacteroides) forsythia. Anaerobic culture of initial periodontitis showed overlap in the microbiota with gingivitis, and added Selenomonas noxia and Filifactor alocis as putative periodontal pathogens. Porphyromonas gingivalis and T. forsythia were found to be associated with initial periodontitis in adults. The dominant microbiota of dental caries differs from that of periodontitis. The major cariogenic species are acidogenic and acid tolerant species particularly Streptococcus mutans, and Lactobacillus and Bifidobacterium species. Anaerobic culture of severe early childhood caries revealed a widely diverse microbiota, comparable to that observed using cloning and sequencing. The PCR-based cloning approach, however, underestimated Actinobacteria compared with culture. Only a subset of the caries-associated microbiota was acid tolerant, with different segments of the microbiota cultured on blood agar compared to a low pH acid agar. While the major caries-associated species was S. mutans, a new species, Scardovia wiggsiae, was significantly associated with early childhood caries. Higher counts of S. wiggsiae were also observed in initial white spot carious lesions in adolescents. Conclusion In periodontitis and dental caries, anaerobic culture studies of advanced disease provided a comprehensive analysis of the microbiota of these infections. Anaerobic culture highlighted the limitation of PCR with standard primers that underestimate detection of Actinobacteria. PMID:25678835
Cariogenic properties of Streptococcus mutans clinical isolates with sortase defects.
Lapirattanakul, Jinthana; Takashima, Yukiko; Tantivitayakul, Pornpen; Maudcheingka, Thaniya; Leelataweewud, Pattarawadee; Nakano, Kazuhiko; Matsumoto-Nakano, Michiyo
2017-09-01
In Streptococcus mutans, a Gram-positive pathogen of dental caries, several surface proteins are anchored by the activity of sortase enzyme. Although various reports have shown that constructed S. mutans mutants deficient of sortase as well as laboratory reference strains with a sortase gene mutation have low cariogenic potential, no known studies have investigated clinical isolates with sortase defects. Here, we examined the cariogenic properties of S. mutans clinical isolates with sortase defects as well as caries status in humans harboring such defective isolates. Sortase-defective clinical isolates were evaluated for biofilm formation, sucrose-dependent adhesion, stress-induced dextran-dependent aggregation, acid production, and acid tolerance. Additionally, caries indices of subjects possessing such defective isolates were determined. Our in vitro results indicated that biofilm with a lower quantity was formed by sortase-defective as compared to non-defective isolates. Moreover, impairments of sucrose-dependent adhesion and stress-induced dextran-dependent aggregation were found among the isolates with defects, whereas no alterations were seen in regard to acid production or tolerance. Furthermore, glucan-binding protein C, a surface protein anchored by sortase activity, was predominantly detected in culture supernatants of all sortase-defective S. mutans isolates. Although the sortase-defective isolates showed lower cariogenic potential because of a reduction in some cariogenic properties, deft/DMFT indices revealed that all subjects harboring those isolates had caries experience. Our findings suggest the impairment of cariogenic properties in S. mutans clinical isolates with sortase defects, though the detection of these defective isolates seemed not to imply low caries risk in the subjects harboring them. Copyright © 2017 Elsevier Ltd. All rights reserved.
Detection of Streptococcus mutans Genomic DNA in Human DNA Samples Extracted from Saliva and Blood
Vieira, Alexandre R.; Deeley, Kathleen B.; Callahan, Nicholas F.; Noel, Jacqueline B.; Anjomshoaa, Ida; Carricato, Wendy M.; Schulhof, Louise P.; DeSensi, Rebecca S.; Gandhi, Pooja; Resick, Judith M.; Brandon, Carla A.; Rozhon, Christopher; Patir, Asli; Yildirim, Mine; Poletta, Fernando A.; Mereb, Juan C.; Letra, Ariadne; Menezes, Renato; Wendell, Steven; Lopez-Camelo, Jorge S.; Castilla, Eduardo E.; Orioli, Iêda M.; Seymen, Figen; Weyant, Robert J.; Crout, Richard; McNeil, Daniel W.; Modesto, Adriana; Marazita, Mary L.
2011-01-01
Caries is a multifactorial disease, and studies aiming to unravel the factors modulating its etiology must consider all known predisposing factors. One major factor is bacterial colonization, and Streptococcus mutans is the main microorganism associated with the initiation of the disease. In our studies, we have access to DNA samples extracted from human saliva and blood. In this report, we tested a real-time PCR assay developed to detect copies of genomic DNA from Streptococcus mutans in 1,424 DNA samples from humans. Our results suggest that we can determine the presence of genomic DNA copies of Streptococcus mutans in both DNA samples from caries-free and caries-affected individuals. However, we were not able to detect the presence of genomic DNA copies of Streptococcus mutans in any DNA samples extracted from peripheral blood, which suggests the assay may not be sensitive enough for this goal. Values of the threshold cycle of the real-time PCR reaction correlate with higher levels of caries experience in children, but this correlation could not be detected for adults. PMID:21731912
Sundaram, Meenakshi; Nayak, Ullal Anand; Ramalingam, Krishnakumar; Reddy, Venugopal; Rao, Arun Prasad; Mathian, Mahesh
2013-01-01
Aims: The aim of this study is to find out whether Oratest can be used as a diagnostic tool in assessing the caries activity by evaluating its relationship to the existing caries status and the salivary streptococcus mutans level. Materials and Methods: The study sample consists of 90 students divided into two groups. Group I (test group) and Group II (control group) consisting of 30 children for control group and 60 children for test group. The sampling of unstimulated saliva for the estimation of streptococcus mutans was done as per the method suggested by Kohler and Bratthall. The plates were then incubated. Rough surface colonies were identified as streptococcus mutans on a pre-determined area of the tip (approximately 1.5 cm2) were counted for each side of spatula pressed against mitis salivarius bacitracin agar using digital colony counter. The results were expressed in colony forming units (CFU). Oratest was carried out in the same patients after the collection of salivary sample for the microbiological method to evaluate the relationship between the two tests. Statistical Analysis Used: The tests used were ANOVA, Pearson Chi-square test, Pearson′s correlation analysis, Mann-Whitney U test and Student′s independent t-test. Results: In the control group and test group, when the streptococcus mutans count (CFU) and Oratest time (minutes) were correlated using Pearson′s correlation analysis, the streptococcus mutans counts was found to be in a statistically significant negative linear relationship with the Oratest time. When the caries status of the children, participated in the test group were correlated with mutans count (CFU) and Oratest time, caries status were found to be in a statistically significant positive linear relationship with streptococcus mutans count and in a significant negative linear relationship with Oratest time. Conclusions: The test proved to be a simple, inexpensive and rapid technique for assessing caries activity since a significant relationship exists clinically with caries status and microbiologically with the streptococcus mutans count of the individual. PMID:23946577
Genomewide Identification of Essential Genes and Fitness Determinants of Streptococcus mutans UA159
Zeng, Lin; Culp, David J.
2018-01-01
ABSTRACT Transposon mutagenesis coupled with next-generation DNA sequencing (Tn-seq) is a powerful tool for discovering regions of the genome that are required for the survival of bacteria in different environments. We adapted this technique to the dental caries pathogen Streptococcus mutans UA159 and identified 11% of the genome as essential, with many genes encoding products required for replication, translation, lipid metabolism, and cell wall biogenesis. Comparison of the essential genome of S. mutans UA159 with those of selected other streptococci for which such information is available revealed several metabolic pathways and genes that are required in S. mutans, but not in some Streptococcus spp. We further identified genes that are essential for sustained growth in rich or defined medium, as well as for persistence in vivo in a rodent model of oral infection. Collectively, our results provide a novel and comprehensive view of the genes required for essential processes of S. mutans, many of which could represent potential targets for therapeutics. IMPORTANCE Tooth decay (dental caries) is a common cause of pain, impaired quality of life, and tooth loss in children and adults. It begins because of a compositional change in the microorganisms that colonize the tooth surface driven by repeated and sustained carbohydrate intake. Although several bacterial species are associated with tooth decay, Streptococcus mutans is the most common cause. Therefore, it is important to identify biological processes that contribute to the survival of S. mutans in the human mouth, with the aim of disrupting the processes with antimicrobial agents. We successfully applied Tn-seq to S. mutans, discovering genes that are required for survival, growth, and persistence, both in laboratory environments and in a mouse model of tooth decay. This work highlights new avenues for the control of an important human pathogen. PMID:29435491
Lactobacillus plantarum lipoteichoic acid inhibits biofilm formation of Streptococcus mutans
Ahn, Ki Bum; Baik, Jung Eun; Park, Ok-Jin; Yun, Cheol-Heui
2018-01-01
Dental caries is a biofilm-dependent oral disease and Streptococcus mutans is the known primary etiologic agent of dental caries that initiates biofilm formation on tooth surfaces. Although some Lactobacillus strains inhibit biofilm formation of oral pathogenic bacteria, the molecular mechanisms by which lactobacilli inhibit bacterial biofilm formation are not clearly understood. In this study, we demonstrated that Lactobacillus plantarum lipoteichoic acid (Lp.LTA) inhibited the biofilm formation of S. mutans on polystyrene plates, hydroxyapatite discs, and dentin slices without affecting the bacterial growth. Lp.LTA interferes with sucrose decomposition of S. mutans required for the production of exopolysaccharide, which is a main component of biofilm. Lp.LTA also attenuated the biding of fluorescein isothiocyanate-conjugated dextran to S. mutans, which is known to have a high affinity to exopolysaccharide on S. mutans. Dealanylated Lp.LTA did not inhibit biofilm formation of S. mutans implying that D-alanine moieties in the Lp.LTA structure were crucial for inhibition. Collectively, these results suggest that Lp.LTA attenuates S. mutans biofilm formation and could be used to develop effective anticaries agents. PMID:29420616
Voelker, Marsha A; Simmer-Beck, Melanie; Cole, Molly; Keeven, Erin; Tira, Daniel
2013-02-01
The purpose of this preliminary study was to examine the relationship of caries risk, salivary buffering capacity, salivary pH, salivary quality (flow, consistency) and levels of Streptococcus mutans in relation to cigarette smoking. This clinical trial consisted of 53 volunteer patients receiving care in a university based dental hygiene clinic. Participants completed a questionnaire specific to their social history in regards to tobacco use, oral health and dietary history. Measurements of unstimulated saliva were collected followed by collection of stimulated saliva samples. These samples were used to measure salivary pH, buffering capacity and Streptococcus mutans levels. The subject's smoking status was significantly associated with caries risk (p= 0.001), with 25% of the variability of caries risk attributed to smoking. The smoking status was significantly associated with buffering capacity (p=0.025), with 9% of the variability of buffering status attributed to the smoking. Associations between smoking status and salivary pH were not statistically significant. The subject's caries risk was significantly associated with buffering capacity (p= 0.001), with 25% of the variability of caries risk attributed to the buffering capacity. The subject's caries risk was significantly associated with salivary pH (p= 0.031), with 9% of the variability of caries risk attributed to the salivary pH. The Streptococcus mutans test showed no statistical significance (p>0.05) possibly due to the number and low variance in the subjects. A relationship between caries risk and smoking, buffering capacity and smoking, and stimulated salivary pH and smoking were concluded. No significance difference (p>0.05) between caries risk and salivary pH, salivary quality and smoking, S. mutans and smoking were noted from the preliminary results.
SCALIONI, Flávia; CARRADA, Camila; MACHADO, Fernanda; Karina, DEVITO; RIBEIRO, Luiz Cláudio; CESAR, Dionéia; RIBEIRO, Rosangela
2017-01-01
Abstract Streptococcus mutans and Streptococcus sobrinus are strongly associated with dental caries. However, the relationship between oral streptococci and dental caries in children with Down syndrome is not well characterized. Objective To assess and compare dental caries experience and salivary S. mutans, S. sobrinus, and streptococci counts between groups of Down syndrome and non-Down syndrome children and adolescents. Material and Methods This study included a sample of 30 Down syndrome children and adolescents (G-DS) and 30 age- and sex-matched non-Down syndrome subjects (G-ND). Dental caries experience was estimated by the number of decayed, missing, and filled teeth in the primary dentition and the permanent dentition. Unstimulated whole saliva samples were collected from all participants. The fluorescence in situ hybridization technique was used to identify the presence and counts of the bacteria. The statistical analysis included chi-square, Student’s t-test and Spearman’s correlation. Results The G-DS exhibited a significantly higher caries-free rate (p<0.001) and a lower S. mutans salivary density (p<0.001). No significant differences were found in the salivary densities of S. sobrinus or streptococci between the groups (p=0.09 and p=0.21, respectively). The salivary S. mutans or S. sobrinus densities were not associated with dental caries experience in neither group. Conclusion The reduced dental caries experience observed in this group of Down syndrome children and adolescents cannot be attributed to lower salivary S. mutans densities, as determined with the fluorescence in situ hybridization technique. PMID:28678943
Clonal Analysis of the Microbiota of Severe Early Childhood Caries
Kanasi, E.; Dewhirst, F.E.; Chalmers, N.I.; Kent, R.; Moore, A.; Hughes, C.V.; Pradhan, N.; Loo, C.Y.; Tanner, A.C.R.
2010-01-01
Background/Aims Severe early childhood caries is a microbial infection that severely compromises the dentition of young children. The aim of this study was to characterize the microbiota of severe early childhood caries. Methods Dental plaque samples from 2- to 6-year-old children were analyzed using 16S rRNA gene cloning and sequencing, and by specific PCR amplification for Streptococcus mutans and Bifidobacteriaceae species. Results Children with severe caries (n = 39) had more dental plaque and gingival inflammation than caries-free children (n = 41). Analysis of phylotypes from operational taxonomic unit analysis of 16S rRNA clonal metalibraries from severe caries and caries-free children indicated that while libraries differed significantly (p < 0.0001), there was increased diversity than detected in this clonal analysis. Using the Human Oral Microbiome Database, 139 different taxa were identified. Within the limits of this study, caries-associated taxa included Granulicatella elegans (p < 0.01) and Veillonella sp. HOT-780 (p < 0.01). The species associated with caries-free children included Capnocytophaga gingivalis (p < 0.01), Abiotrophia defectiva (p < 0.01), Lachnospiraceae sp. HOT-100 (p < 0.05), Streptococcus sanguinis (p < 0.05) and Streptococcus cristatus (p < 0.05). By specific PCR, S. mutans (p < 0.005) and Bifidobacteriaceae spp. (p < 0.0001) were significantly associated with severe caries. Conclusion Clonal analysis of 80 children identified a diverse microbiota that differed between severe caries and caries-free children, but the association of S. mutans with caries was from specific PCR analysis, not from clonal analysis, of samples. PMID:20861633
Prashant, G M; Chandu, G N; Murulikrishna, K S; Shafiulla, M D
2007-01-01
Chewing twigs of the mango or neem tree is a common way of cleaning the teeth in the rural and semi-urban population. These twigs are also believed to possess medicinal properties. The present study was conducted to evaluate the antimicrobial effects of these chewing sticks on the microorganisms Streptococcus mutans , Streptococcus salivarius , Streptococcus mitis , and Streptococcus sanguis which are involved in the development of dental caries. An additional objective was to identify an inexpensive, simple, and effective method of preventing and controlling dental caries. The sticks were sun dried, ground into a coarse powder, and weighed into 5 gm, 10 gm, and 50 gm amounts. These were added to 100 ml of deionized distilled water. After soaking for 48 h at 4 degrees C, the water was filtered. The filtrate was inoculated onto blood agar plates containing individual species of microorganisms and incubated at 37 degrees C for 48 h. Mango extract, at 50% concentration, showed maximum zone of inhibition on Streptococcus mitis . Neem extract produced the maximum zone of inhibition on Streptococcus mutans at 50% concentration. Even at 5% concentration neem extract showed some inhibition of growth for all the four species of organisms. A combination of neem and mango chewing sticks may provide the maximum benefit. We recommend the use of both the chewing sticks.
Oda, Yuki; Hayashi, Fumiko; Wakita, Atsuko; Nagatani, Yukiko; Okada, Mitsugi
2017-03-31
Streptococcus mutans (S. mutans) and Streptococcus sobrinus (S. sobrinus) are important etiologic agents in human dental caries. Using quantitative real-time polymerase chain reaction assays for the presence of those strains, we examined 145 outpatients with intellectual disability (ID), calculated the proportion of each of these strains to total bacteria, and compared dental caries incidence over 5 years. Plaque samples were collected from all erupted tooth sites, and dental examinations were performed annually to determine numbers of decayed, missing, and filled teeth (DMFT score; World Health Organization caries diagnostic criteria). Elevated DMFT scores were calculated as ∆DMFT, and sites of newly affected caries (∆SNAC) were identified. Sixty-six patients had both strains. The proportion of S. mutans to total bacteria was moderately correlated with DMFT in year 2, ∆DMFT in years 2 and 5, and ∆SNAC in years 2 and 5 (correlation coefficient = 0.470, P < 0.001), while the proportion of S. sobrinus to total bacteria was moderately correlated with DMFT in years 2 and 5, ∆DMFT in years 1, 2, and 5, and ∆SNAC in years 2 and 5 (correlation coefficient = 0.695, P < 0.001). Individuals with ID who harbored both bacterial strains had a higher risk of dental caries and a significantly higher proportion of S. sobrinus to total bacteria.
Liu, Shan Shan; Zhu, Wen Hui; Zhi, Qing Hui; Liu, Jia; Wang, Yan; Lin, Huan Cai
2017-07-01
Streptococcus mutans (S. mutans) is the major pathogen contributing to dental caries. Sucrose is an important carbohydrate source for S. mutans and is crucial for dental caries. Small RNAs (sRNAs) are key post-transcriptional regulators of stress adaptation and virulence in bacteria. Here, for the first time, we created three replicate RNA libraries exposed to either 1 or 5% sucrose. The expression levels of sRNAs and target genes (gtfB, gtfC, and spaP) related to virulence were assessed. In addition, some phenotypic traits were evaluated. We obtained 2125 sRNA candidates with at least 100 average reads in 1% sucrose or 5% sucrose. Of these candidates, 2 were upregulated and 20 were downregulated in 1% sucrose. Six of these 22 differentially expressed sRNAs were validated by qRT-PCR. The expression level of target gene gtfB was higher in 1% sucrose. The adherence ratio of S. mutans was higher in 1% sucrose than in 5% sucrose. The synthesis of water-insoluble glucans (WIGs) was significantly higher in 5% sucrose than in 1% sucrose. These data suggest that a series of sRNAs can be induced in response to sucrose, and that some sRNAs might be involved in the regulation of phenotypes, providing new insight into the prevention of caries.
Health-Associated Niche Inhabitants as Oral Probiotics: The Case of Streptococcus dentisani
López-López, Arantxa; Camelo-Castillo, Anny; Ferrer, María D.; Simon-Soro, Áurea; Mira, Alex
2017-01-01
Oral diseases, including dental caries and periodontitis, are among the most prevalent diseases worldwide and develop as a consequence of a microbial dysbiosis. Several bacterial strains are being tested as potential oral health-promoting organisms, but usually they are species isolated from niches other than the site where they must exert its probiotic action, typically from fecal samples. We hypothesize that oral inhabitants associated to health conditions will be more effective than traditional, gut-associated probiotic species in key aspects such as colonization of the oral site where disease takes place or the possession of oral health promoting functions, as well as more practical issues like safety and toxicity, and establishing proper doses for administration. As an example of these active colonizers, we describe the case of Streptococcus dentisani, a new streptococcal species isolated from dental plaque of caries-free individuals. We have detected it in 98% of dental plaque samples from healthy individuals and, as expected, it does not produce any toxic secondary metabolite and does not survive a simulated stomach digestion, preventing potential secondary effects. Besides, this species has a double probiotic action, as it inhibits the growth of major oral pathogens through the production of bacteriocins, and also buffers acidic pH (the primary cause of dental caries) through an arginolytic pathway. We propose the use of S. dentisani as a promising probiotic against tooth decay. PMID:28344574
Combinatorial Effects of Arginine and Fluoride on Oral Bacteria
Zheng, X.; Cheng, X.; Wang, L.; Qiu, W.; Wang, S.; Zhou, Y.; Li, M.; Li, Y.; Cheng, L.; Li, J.; Zhou, X.
2015-01-01
Dental caries is closely associated with the microbial disequilibrium between acidogenic/aciduric pathogens and alkali-generating commensal residents within the dental plaque. Fluoride is a widely used anticaries agent, which promotes tooth hard-tissue remineralization and suppresses bacterial activities. Recent clinical trials have shown that oral hygiene products containing both fluoride and arginine possess a greater anticaries effect compared with those containing fluoride alone, indicating synergy between fluoride and arginine in caries management. Here, we hypothesize that arginine may augment the ecological benefit of fluoride by enriching alkali-generating bacteria in the plaque biofilm and thus synergizes with fluoride in controlling dental caries. Specifically, we assessed the combinatory effects of NaF/arginine on planktonic and biofilm cultures of Streptococcus mutans, Streptococcus sanguinis, and Porphyromonas gingivalis with checkerboard microdilution assays. The optimal NaF/arginine combinations were selected, and their combinatory effects on microbial composition were further examined in single-, dual-, and 3-species biofilm using bacterial species–specific fluorescence in situ hybridization and quantitative polymerase chain reaction. We found that arginine synergized with fluoride in suppressing acidogenic S. mutans in both planktonic and biofilm cultures. In addition, the NaF/arginine combination synergistically reduced S. mutans but enriched S. sanguinis within the multispecies biofilms. More importantly, the optimal combination of NaF/arginine maintained a “streptococcal pressure” against the potential growth of oral anaerobe P. gingivalis within the alkalized biofilm. Taken together, we conclude that the combinatory application of fluoride and arginine has a potential synergistic effect in maintaining a healthy oral microbial equilibrium and thus represents a promising ecological approach to caries management. PMID:25477312
Kantorski, Karla Zanini; de Souza, Daniela Martins; Yujra, Verônica Quispe; Junqueira, Juliana Campos; Jorge, Antonio Olavo Cardoso; da Rocha, Rosilene Fernandes
2007-01-01
The objective of this study was to evaluate the effects of an alcohol diet on Streptococcus of the mutans group and on dental caries in the oral cavity of rats. Forty animals were divided into 3 groups according to the following liquid diets: 20% ethanol solution (Alcohol Group, AG), 27% sucrose solution (Isocaloric Group, IG), and water (Control Group, CG). After 56 days, samples were collected and plated on Mitis Salivarius Bacitracin agar to assess the number of colony forming units (CFU/mL) of Streptococcus of the mutans group. The animals were sacrificed and the jaws were removed in order to assess the occurrence of dental caries on the smooth and occlusal surfaces using stereomicroscopy. The data were submitted to ANOVA and Tukey test. The average numbers of CFU/mL (10(3)) were: 8.17 (AG), 9.78 (IG), and 5.63 (CG). There was no significant difference among the groups for the occurrence of occlusal caries. Regarding smooth surface caries, in the upper jaw, the caries number in the IG (1.58) was similar to that in the AG (2.06) and in the CG (1.14), and the number of caries in the AG was higher than in the CG; in the lower jaw there was significant difference among the 3 groups: AG (1.14), IG (2.00) and CG (0.43). The diets with the alcohol and sucrose solutions presented a tendency of increasing the colonization by Streptococcus of the mutans group and of increasing the occurrence of smooth surface dental caries in rat molars when compared to the control diet.
2018-01-01
ABSTRACT Background: Streptococcus mutans and Streptococcus sobrinus are major causative bacterial pathogens of dental caries. Objective: We investigated the applicability of three Lactobacillus strains (L. kefiranofaciens DD2, DD5, and DD6) isolated from kefir and three commercial Lactobacillus strains (L. plantarum ATCC 10,012, L. johnsonii JCM 1022, and L. rhamnosus ATCC 7469) as potential oral probiotics with respect to their survivability in an experimental oral environment, antimicrobial activity, and anti-biofilm formation activity against S. mutans and S. sobrinus. Results: Strains DD2, ATCC 10012, ATCC 7469, and JCM 1022 had the best oral survivability, including aerotolerance and enzymatic resistance, and inhibited the growth and biofilm formation of S. mutans and S. sobrinus. In particular, DD2 suppressed all three classes of biofilm formation-associated genes: those associated with carbohydrate metabolism and those encoding regulatory biofilm and adhesion proteins. Conclusions: These results indicate that the novel kefir isolate L. kefiranofaciens DD2 effectively and directly inhibits S. mutans and S. sobrinus. PMID:29868163
Jeong, Dana; Kim, Dong-Hyeon; Song, Kwang-Young; Seo, Kun-Ho
2018-01-01
Background : Streptococcus mutans and Streptococcus sobrinus are major causative bacterial pathogens of dental caries. Objective : We investigated the applicability of three Lactobacillus strains ( L. kefiranofaciens DD2, DD5, and DD6) isolated from kefir and three commercial Lactobacillus strains ( L. plantarum ATCC 10,012, L. johnsonii JCM 1022, and L. rhamnosus ATCC 7469) as potential oral probiotics with respect to their survivability in an experimental oral environment, antimicrobial activity, and anti-biofilm formation activity against S. mutans and S. sobrinus . Results : Strains DD2, ATCC 10012, ATCC 7469, and JCM 1022 had the best oral survivability, including aerotolerance and enzymatic resistance, and inhibited the growth and biofilm formation of S. mutans and S. sobrinus . In particular, DD2 suppressed all three classes of biofilm formation-associated genes: those associated with carbohydrate metabolism and those encoding regulatory biofilm and adhesion proteins. Conclusions : These results indicate that the novel kefir isolate L. kefiranofaciens DD2 effectively and directly inhibits S. mutans and S. sobrinus .
Microbial Risk Markers for Childhood Caries in Pediatricians’ Offices
Kanasi, E.; Johansson, I.; Lu, S.C.; Kressin, N.R.; Nunn, M.E.; Kent, R.; Tanner, A.C.R.
2010-01-01
Dental caries in pre-school children has significant public health and health disparity implications. To determine microbial risk markers for this infection, this study aimed to compare the microbiota of children with early childhood caries with that of caries-free children. Plaque samples from incisors, molars, and the tongue from 195 children attending pediatricians’ offices were assayed by 74 DNA probes and by PCR to Streptococcus mutans. Caries-associated factors included visible plaque, child age, race, and snacking habits. Species were detected more frequently from tooth than tongue samples. Lactobacillus gasseri (p < 0.01), Lactobacillus fermentum, Lactobacillus vaginalis, and S. mutans with Streptococcus sobrinus (all p < 0.05) were positively associated with caries. By multifactorial analysis, the probiotic Lactobacillus acidophilus was negatively associated with caries. Prevotella nigrescens was the only species (p < 0.05) significantly associated with caries by the ‘false discovery’ rate. Analysis of the data suggests that selected Lactobacillus species, in addition to mutans streptococci, are risk markers for early childhood caries. PMID:20164496
Shenoy Panchmal, Ganesh; Kumar, Vijaya; Jodalli, Praveen S.; Sonde, Laxminarayan
2017-01-01
To assess and compare the effect of herbal and fluoride mouth rinses on Streptococcus mutans count and glucan synthesis by Streptococcus mutans and dental caries, a parallel group placebo controlled randomized trial was conducted among 240 schoolchildren (12–15 years old). Participants were randomly divided and allocated into Group I (0.2% fluoride group), Group II (herbal group), and Group III (placebo group). All received 10 ml of respective mouth rinses every fortnight for a period of one year. Intergroup and intragroup comparison were done for Streptococcus mutans count and glucan synthesis by Streptococcus mutans and dental caries. Streptococcus mutans count showed a statistically significant difference between Group I and Group III (p = 0.035) and also between Group II and Group III (p = 0.039). Glucan concentration levels showed a statistically significant difference (p = 0.024) between Group II and Group III at 12th month. Mean DMF scores showed no statistical difference between the three groups (p = 0.139). No difference in the level of significance was seen in the intention-to-treat and per-protocol analysis. The present study showed that both herbal and fluoride mouth rinses, when used fortnightly, were equally effective and could be recommended for use in school-based health education program to control dental caries. Trial registration number is CTRI/2015/08/006070. PMID:28352285
Maturation of Oral Microbiota in Children with or without Dental Caries.
Lif Holgerson, Pernilla; Öhman, Carina; Rönnlund, Agneta; Johansson, Ingegerd
2015-01-01
The aim of this longitudinal study was to evaluate the oral microbiota in children from age 3 months to 3 years, and to determine the association of the presence of caries at 3 years of age. Oral biofilms and saliva were sampled from children at 3 months (n = 207) and 3 years (n = 155) of age, and dental caries was scored at 3 years of age. Oral microbiota was assessed by culturing of total lactobacilli and mutans streptococci, PCR detection of Streptococcus mutans and Streptococcus sobrinus, 454 pyrosequencing and HOMIM (Human Oral Microbe Identification Microarray) microarray detection of more then 300 species/ phylotypes. Species richness and taxa diversity significantly increased from 3 months to 3 years. Three bacterial genera, present in all the 3-month-old infants, persisted at 3 years of age, whereas three other genera had disappeared by this age. A large number of new taxa were also observed in the 3-year-olds. The microbiota at 3 months of age, except for lactobacilli, was unrelated to caries development at a later age. In contrast, several taxa in the oral biofilms of the 3-year-olds were linked with the presence or absence of caries. The main species/phylotypes associated with caries in 3-year-olds belonged to the Actinobaculum, Atopobium, Aggregatibacter, and Streptococcus genera, whereas those influencing the absence of caries belonged to the Actinomyces, Bergeyella, Campylobacter, Granulicatella, Kingella, Leptotrichia, and Streptococcus genera. Thus, during the first years of life, species richness and taxa diversity in the mouth increase significantly. Besides the more prevalent colonization of lactobacilli, the composition of the overall microbiota at 3 months of age was unrelated to caries development at a later age. Several taxa within the oral biofilms of the 3-year-olds could be linked to the presence or absence of caries.
Maturation of Oral Microbiota in Children with or without Dental Caries
Lif Holgerson, Pernilla; Öhman, Carina; Rönnlund, Agneta; Johansson, Ingegerd
2015-01-01
Background The aim of this longitudinal study was to evaluate the oral microbiota in children from age 3 months to 3 years, and to determine the association of the presence of caries at 3 years of age. Methods and findings Oral biofilms and saliva were sampled from children at 3 months (n = 207) and 3 years (n = 155) of age, and dental caries was scored at 3 years of age. Oral microbiota was assessed by culturing of total lactobacilli and mutans streptococci, PCR detection of Streptococcus mutans and Streptococcus sobrinus, 454 pyrosequencing and HOMIM (Human Oral Microbe Identification Microarray) microarray detection of more then 300 species/ phylotypes. Species richness and taxa diversity significantly increased from 3 months to 3 years. Three bacterial genera, present in all the 3-month-old infants, persisted at 3 years of age, whereas three other genera had disappeared by this age. A large number of new taxa were also observed in the 3-year-olds. The microbiota at 3 months of age, except for lactobacilli, was unrelated to caries development at a later age. In contrast, several taxa in the oral biofilms of the 3-year-olds were linked with the presence or absence of caries. The main species/phylotypes associated with caries in 3-year-olds belonged to the Actinobaculum, Atopobium, Aggregatibacter, and Streptococcus genera, whereas those influencing the absence of caries belonged to the Actinomyces, Bergeyella, Campylobacter, Granulicatella, Kingella, Leptotrichia, and Streptococcus genera. Conclusions Thus, during the first years of life, species richness and taxa diversity in the mouth increase significantly. Besides the more prevalent colonization of lactobacilli, the composition of the overall microbiota at 3 months of age was unrelated to caries development at a later age. Several taxa within the oral biofilms of the 3-year-olds could be linked to the presence or absence of caries. PMID:26020247
A tissue-dependent hypothesis of dental caries.
Simón-Soro, A; Belda-Ferre, P; Cabrera-Rubio, R; Alcaraz, L D; Mira, A
2013-01-01
Current understanding of dental caries considers this disease a demineralization of the tooth tissues due to the acid produced by sugar-fermenting microorganisms. Thus, caries is considered a diet- and pH-dependent process. We present here the first metagenomic analysis of the bacterial communities present at different stages of caries development, with the aim of determining whether the bacterial composition and biochemical profile are specific to the tissue affected. The data show that microbial composition at the initial, enamel-affecting stage of caries is significantly different from that found at subsequent stages, as well as from dental plaque of sound tooth surfaces. Although the relative proportion of Streptococcus mutans increased from 0.12% in dental plaque to 0.72% in enamel caries, Streptococcus mitis and Streptococcus sanguinis were the dominant streptococci in these lesions. The functional profile of caries-associated bacterial communities indicates that genes involved in acid stress tolerance and dietary sugar fermentation are overrepresented only at the initial stage (enamel caries), whereas other genes coding for osmotic stress tolerance as well as collagenases and other proteases enabling dentin degradation are significantly overrepresented in dentin cavities. The results support a scenario in which pH and diet are determinants of the disease during the degradation of enamel, but in dentin caries lesions not only acidogenic but also proteolytic bacteria are involved. We propose that caries disease is a process of varying etiology, in which acid-producing bacteria are the vehicle to penetrate enamel and allow dentin degrading microorganisms to expand the cavity. © 2013 S. Karger AG, Basel.
Nicotine Enhances Interspecies Relationship between Streptococcus mutans and Candida albicans.
Liu, Shiyu; Qiu, Wei; Zhang, Keke; Zhou, Xuedong; Ren, Biao; He, Jinzhi; Xu, Xin; Cheng, Lei; Li, Mingyun
2017-01-01
Streptococcus mutans and Candida albicans are common microorganisms in the human oral cavity. The synergistic relationship between these two species has been deeply explored in many studies. In the present study, the effect of alkaloid nicotine on the interspecies between S. mutans and C. albicans is explored. We developed a dual-species biofilm model and studied biofilm biomass, biofilm structure, synthesis of extracellular polysaccharides (EPS), and expression of glucosyltransferases (Gtfs). Biofilm formation and bacterial and fungal cell numbers in dual-species biofilms increased in the presence of nicotine. More C. albicans cells were present in the dual-species biofilms in the nicotine-treated groups as determined by scanning electron microscopy. The synthesis of EPS was increased by 1 mg/ml of nicotine as detected by confocal laser scanning microscopy. The result of qRT-PCR showed gtfs expression was upregulated when 1 mg/ml of nicotine was used. We speculate that nicotine promoted the growth of S. mutans , and more S. mutans cells attracted more C. albicans cells due to the interaction between two species. Since S. mutans and C. albicans are putative pathogens for dental caries, the enhancement of the synergistic relationship by nicotine may contribute to caries development in smokers.
Giacaman, Rodrigo A; Torres, Sebastián; Gómez, Yenifer; Muñoz-Sandoval, Cecilia; Kreth, Jens
2015-01-01
This study was conducted to estimate oral colonization by Streptococcus mutans and Streptococcus sanguinis in adults with high and without any caries experience. Furthermore, differences in the amount of hydrogen peroxide (H2O2) produced by S. sanguinis isolated from both groups were assessed. Forty adults were divided into: (i) carious lesion-free, without any carious lesion, assessed by the International Caries Detection and Assessment System (ICDAS), or restoration, (CF) and (ii) high caries experience (HC). Saliva samples were collected and seeded on respective agar-plates for enumeration of total streptococci, S. mutans and S. sanguinis (CFU/mL) and compared between groups. Additionally, S. sanguinis colonies obtained from both groups were inoculated on Prussian blue agar for H2O2 detection. Production of H2O2 was quantified and compared between the two groups. S. sanguinis counts were significantly higher in CF than HC individuals (p<0.05). Conversely, S. mutans showed significantly higher levels in HC than CF subjects (p<0.001). S. sanguinis colonies from CF individuals produced significantly larger H2O2 halos compared with HC subjects. S. sanguinis predominates over S. mutans in saliva of adults without caries experience. In those people, S. sanguinis produces more H2O2ex vivo. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fragkou, S; Balasouli, C; Tsuzukibashi, O; Argyropoulou, A; Menexes, G; Kotsanos, N; Kalfas, S
2016-10-01
This was to examine the occurrence of S. mutans, S. sobrinus and C. albicans in dental plaque and saliva from caries-free and caries-active Greek children. Saliva and dental plaque samples from 46 caries-free and 51 caries-active 3-to-13-year-old children were examined using selective media for the three microbes. Identification of isolated mutans streptococci (S. mutans and S. sobrinus) was performed with biochemical test and specific DNA probes. The salivary levels of mutans streptococci were additionally determined by a chair-side test (Dentocult ® SM strips). The isolation frequencies of S. mutans, S. sobrinus and C. albicans were 66, 11 and 18 %, respectively. Caries-active children harboured more frequently and at significantly higher numbers the specific microbes than caries-free children. A similar pattern was observed with the Dentocult ® SM strip scores. No correlation was found between the presence of these microbes and the age or gender of the children. Caries experience was statistically significantly related to the presence of all three microbes under study, both in dental plaque and saliva.
Combinatorial effects of arginine and fluoride on oral bacteria.
Zheng, X; Cheng, X; Wang, L; Qiu, W; Wang, S; Zhou, Y; Li, M; Li, Y; Cheng, L; Li, J; Zhou, X; Xu, X
2015-02-01
Dental caries is closely associated with the microbial disequilibrium between acidogenic/aciduric pathogens and alkali-generating commensal residents within the dental plaque. Fluoride is a widely used anticaries agent, which promotes tooth hard-tissue remineralization and suppresses bacterial activities. Recent clinical trials have shown that oral hygiene products containing both fluoride and arginine possess a greater anticaries effect compared with those containing fluoride alone, indicating synergy between fluoride and arginine in caries management. Here, we hypothesize that arginine may augment the ecological benefit of fluoride by enriching alkali-generating bacteria in the plaque biofilm and thus synergizes with fluoride in controlling dental caries. Specifically, we assessed the combinatory effects of NaF/arginine on planktonic and biofilm cultures of Streptococcus mutans, Streptococcus sanguinis, and Porphyromonas gingivalis with checkerboard microdilution assays. The optimal NaF/arginine combinations were selected, and their combinatory effects on microbial composition were further examined in single-, dual-, and 3-species biofilm using bacterial species-specific fluorescence in situ hybridization and quantitative polymerase chain reaction. We found that arginine synergized with fluoride in suppressing acidogenic S. mutans in both planktonic and biofilm cultures. In addition, the NaF/arginine combination synergistically reduced S. mutans but enriched S. sanguinis within the multispecies biofilms. More importantly, the optimal combination of NaF/arginine maintained a "streptococcal pressure" against the potential growth of oral anaerobe P. gingivalis within the alkalized biofilm. Taken together, we conclude that the combinatory application of fluoride and arginine has a potential synergistic effect in maintaining a healthy oral microbial equilibrium and thus represents a promising ecological approach to caries management. © International & American Associations for Dental Research 2014.
Nanda, Jasmine; Sachdev, Vinod; Sandhu, Meera; Deep-Singh-Nanda, Kanwar
2015-02-01
Determination of the relative amounts of mutans streptococcus in both saliva and plaque and to study its correlation with dental caries in children. The study comprised of 60 children aged 3-8 years divided into 2 groups (30 children in each): Group A- Children with more than 4 carious teeth and Group B- Children without caries. Saliva and plaque was collected from children of both the groups with the help of Dentocult SM strip test kit (Orion Diagnostic). Following incubation, mutans streptococcus scores (from 0 to 3) in each individual was evaluated and compared between both the groups. On comparing the two groups, mean ± SD of saliva score and plaque score was 2.40 ± 0.675 and 2.40 ± 0.621 respectively in group A, whereas it was 0.60 ± 0.498 and 0.83 ± 0.531 in children of group B showing a significant correlation (p = < 0.001) between mutans streptococci scores in both saliva and plaque and dental caries experience. There is a direct and strong co-relation between the salivary and plaque mutans streptococcus counts and caries activity in children aged 3-8 years. Key words:Mutans streptococci, dentocult, dental caries.
Microbiomes of Site-Specific Dental Plaques from Children with Different Caries Status.
Richards, Vincent P; Alvarez, Andres J; Luce, Amy R; Bedenbaugh, Molly; Mitchell, Mary Lyn; Burne, Robert A; Nascimento, Marcelle M
2017-08-01
The oral microbiota associated with the initiation and progression of dental caries has yet to be fully characterized. The Human Oral Microbe Identification Using Next-Generation Sequencing (HOMI NGS ) approach was used to analyze the microbiomes of site-specific supragingival dental plaques from children with different caries status. Fifty-five children (2 to 7 years of age) were assessed at baseline and at 12 months and grouped as caries free (CF), caries active with enamel lesions (CAE), and caries active with dentin carious lesions (CA). Plaque samples from caries-free tooth surfaces (PF) and from enamel carious lesions (PE) and dentin carious lesions (PD) were collected. 16S community profiles were obtained by HOMI NGS , and 408 bacterial species and 84 genus probes were assigned. Plaque bacterial communities showed temporal stability, as there was no significant difference in beta diversity values between the baseline and 12-month samples. Irrespective of collection time points, the microbiomes of healthy tooth surfaces differed substantially from those found during caries activity. All pairwise comparisons of beta diversity values between groups were significantly different ( P < 0.05), except for comparisons between the CA-PF, CAE-PE, and CA-PE groups. Streptococcus genus probe 4 and Neisseria genus probe 2 were the most frequently detected taxa across the plaque groups, followed by Streptococcus sanguinis , which was highly abundant in CF-PF. Well-known acidogenic/aciduric species such as Streptococcus mutans , Scardovia wiggsiae , Parascardovia denticolens , and Lactobacillus salivarius were found almost exclusively in CA-PD. The microbiomes of supragingival dental plaque differ substantially among tooth surfaces and children of different caries activities. In support of the ecological nature of caries etiology, a steady transition in community species composition was observed with disease progression. Copyright © 2017 American Society for Microbiology.
Microbiomes of Site-Specific Dental Plaques from Children with Different Caries Status
Alvarez, Andres J.; Luce, Amy R.; Bedenbaugh, Molly; Mitchell, Mary Lyn
2017-01-01
ABSTRACT The oral microbiota associated with the initiation and progression of dental caries has yet to be fully characterized. The Human Oral Microbe Identification Using Next-Generation Sequencing (HOMINGS) approach was used to analyze the microbiomes of site-specific supragingival dental plaques from children with different caries status. Fifty-five children (2 to 7 years of age) were assessed at baseline and at 12 months and grouped as caries free (CF), caries active with enamel lesions (CAE), and caries active with dentin carious lesions (CA). Plaque samples from caries-free tooth surfaces (PF) and from enamel carious lesions (PE) and dentin carious lesions (PD) were collected. 16S community profiles were obtained by HOMINGS, and 408 bacterial species and 84 genus probes were assigned. Plaque bacterial communities showed temporal stability, as there was no significant difference in beta diversity values between the baseline and 12-month samples. Irrespective of collection time points, the microbiomes of healthy tooth surfaces differed substantially from those found during caries activity. All pairwise comparisons of beta diversity values between groups were significantly different (P < 0.05), except for comparisons between the CA-PF, CAE-PE, and CA-PE groups. Streptococcus genus probe 4 and Neisseria genus probe 2 were the most frequently detected taxa across the plaque groups, followed by Streptococcus sanguinis, which was highly abundant in CF-PF. Well-known acidogenic/aciduric species such as Streptococcus mutans, Scardovia wiggsiae, Parascardovia denticolens, and Lactobacillus salivarius were found almost exclusively in CA-PD. The microbiomes of supragingival dental plaque differ substantially among tooth surfaces and children of different caries activities. In support of the ecological nature of caries etiology, a steady transition in community species composition was observed with disease progression. PMID:28507066
Antimicrobial Traits of Tea- and Cranberry-Derived Polyphenols against Streptococcus mutans
Yoo, S.; Murata, R.M.; Duarte, S.
2011-01-01
There are over 750 species of bacteria that inhabit the human oral cavity, but only a small fraction of those are attributed to causing plaque-related diseases such as caries. Streptococcus mutans is accepted as the main cariogenic agent and there is substantial knowledge regarding the specific virulence factors that render the organism a pathogen. There has been rising interest in alternative, target-specific treatment options as opposed to nonspecific mechanical plaque removal or application of broad-spectrum antibacterials that are currently in use. The impact of diet on oral health is undeniable, and this is directly observable in populations that consume high quantities of polyphenol-rich foods or beverages. Such populations have low caries incidence and better overall oral health. Camellia sinensis, the plant from which various forms of tea are derived, and Vaccinium macrocarpon (American cranberry fruit) have received notable attention both for their prevalence in the human diet as well as for their unique composition of polyphenols. The biologically active constituents of these plants have demonstrated potent enzyme-inhibitory properties without being bactericidal, a key quality that is important in developing therapies that will not cause microorganisms to develop resistance. The aim of this review is to consider studies that have investigated the feasibility of tea, cranberry, and other select plant derivatives as a potential basis for alternative therapeutic agents against Streptococcus mutans and to evaluate their current and future clinical relevance. PMID:21720161
The Role of Genetic Factors in the Outbreak Mechanism of Dental Caries.
Shimomura-Kuroki, Junko; Nashida, Tomoko; Miyagawa, Yukio; Sekimoto, Tsuneo
The aim of the present study was to investigate the relationships between cariogenic bacterial infection and single nucleotide polymorphisms (SNPs) in candidate genes associated with dental caries, and to explore the factors related to caries in children. Children aged 3 to 11 years were selected. Detection of cariogenic bacteria (Streptococcus mutans, Streptococcus oralis, Streptococcus sobrinus and Lactobacillus) from the plaque of each patient, and SNP analyses of five candidate genes (MBL2, TAS2R38, GLUT2, MMP13 and CA6) were performed using DNA isolated from buccal mucosal cells. The dental caries experience in primary and permanent teeth was determined using the decayed, missing and filled teeth (DMFT) index, and the effects of the observed factors on the DMFT value were analyzed by multiple regression analysis. The results of the multiple regression analysis showed that the DMFT value significantly increased in the presence of S. mutans or S. sobrinus (p < 0.001), while the dmft/DMFT value decreased in the presence of nucleobase C in MBL2 (p < 0.05). These results suggest that the MBL2 gene is related to the pathogenesis of dental caries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, L.R.; O'Neill, P.A.; Dreizen, S.
1979-07-01
The relationship between specific agglutination (Ag) and caries activity during 30 month post radiation was assessed in 36 head and neck cancer patients. Ag titers in 444 saliva and 481 serum samples from these patients and 16 noncancer controls were determined against formalinized cellular antigens of Streptococcus mutans (Sm), Streptococcus sanguis (Ss), Streptococcus mitis, Lactobacillus fermenti (Lf), and Lactobacillus casei. Saliva IgA and IgG levels and Ag titers were significantly higher in cancer patients than in noncancer controls. Post radiation-induced xerostomic changes in saliva IgA reflected changes in specific Ag against oral microbes, particularly Sm serotype c. Patients with highmore » saliva IgA levels had significantly higher saliva Ag titers to Sm, Ss and Lf, lower plaque Sm counts and lower caries activity than patients with low saliva IgA levels. Serum Ag titers, however, showed no significant relationship with either serum Ig levels, microbial counts or caries activity. Chromatographic separation of Ig classes showed that Ag activity in saliva stemmed mainly from secretory IgA. Most serum Ag activity was found in regions corresponding to IgG and 7S IgA.« less
Herrera G, Christian L; Pantoja F, Patricio; De la M, Tomás de La Maza; Sanhueza C, Antonio; Salazar N, Luis A
2007-08-01
Dental caries is a transmissible infectious disease in which Streptococcus mutans is a principal protagonist. Although it is widely believed that pregnancy is harmful to teeth, the effect of pregnancy on the development of caries is not clear. Considering this situation, the aim of the present study was to evaluate the levels of infection and to differentiate bacterial species with cariogenic potential in pregnant women from the Araucania region in Chile, by bacteriological and molecular analysis. In this work, we evaluated 51 pregnant women aged 15 to 40 years. The results show that 100% of women are infected by mutans streptococci Group, and 70.6% exhibited high levels of infection (> 500.000 cfu/mL). The molecular analysis shows that Streptococcus mutans and Streptococcus sobrinus frequencies were 92.1% and 1.9%, respectively. In conclusion, our data suggest that pregnant women are a high risk group for caries development.
Quorum Sensing Regulation of Competence and Bacteriocins in Streptococcus pneumoniae and mutans
Shanker, Erin; Federle, Michael J.
2017-01-01
The human pathogens Streptococcus pneumoniae and Streptococcus mutans have both evolved complex quorum sensing (QS) systems that regulate the production of bacteriocins and the entry into the competent state, a requirement for natural transformation. Natural transformation provides bacteria with a mechanism to repair damaged genes or as a source of new advantageous traits. In S. pneumoniae, the competence pathway is controlled by the two-component signal transduction pathway ComCDE, which directly regulates SigX, the alternative sigma factor required for the initiation into competence. Over the past two decades, effectors of cellular killing (i.e., fratricides) have been recognized as important targets of the pneumococcal competence QS pathway. Recently, direct interactions between the ComCDE and the paralogous BlpRH pathway, regulating bacteriocin production, were identified, further strengthening the interconnections between these two QS systems. Interestingly, a similar theme is being revealed in S. mutans, the primary etiological agent of dental caries. This review compares the relationship between the bacteriocin and the competence QS pathways in both S. pneumoniae and S. mutans, and hopes to provide clues to regulatory pathways across the genus Streptococcus as a potential tool to efficiently investigate putative competence pathways in nontransformable streptococci. PMID:28067778
Diet and caries-associated bacteria in severe early childhood caries.
Palmer, C A; Kent, R; Loo, C Y; Hughes, C V; Stutius, E; Pradhan, N; Dahlan, M; Kanasi, E; Arevalo Vasquez, S S; Tanner, A C R
2010-11-01
Frequent consumption of cariogenic foods and bacterial infection are risk factors for early childhood caries (ECC). This study hypothesized that a short diet survey focused on frequency of foods, categorized by putative cariogenicity, would differentiate severe ECC (S-ECC) from caries-free children. Children's diets were obtained by survey and plaque bacteria detected by PCR from 72 S-ECC and 38 caries-free children. S-ECC children had higher scores for between-meal juice (p < 0.01), solid-retentive foods (p < 0.001), eating frequency (p < 0.005), and estimated food cariogenicity (p < 0.0001) than caries-free children. S-ECC children with lesion recurrence ate fewer putative caries-protective foods than children without new lesions. Streptococcus mutans (p < 0.005), Streptococcus sobrinus (p < 0.005), and Bifidobacteria (p < 0.0001) were associated with S-ECC, and S. mutans with S. sobrinus was associated with lesion recurrence (p < 0.05). S. mutans-positive children had higher food cariogenicity scores. Food frequency, putative cariogenicity, and S. mutans were associated with S-ECC individually and in combination.
Diet and Caries-associated Bacteria in Severe Early Childhood Caries
Palmer, C.A.; Kent, R.; Loo, C.Y.; Hughes, C.V.; Stutius, E.; Pradhan, N.; Dahlan, M.; Kanasi, E.; Arevalo Vasquez, S.S.; Tanner, A.C.R.
2010-01-01
Frequent consumption of cariogenic foods and bacterial infection are risk factors for early childhood caries (ECC). This study hypothesized that a short diet survey focused on frequency of foods, categorized by putative cariogenicity, would differentiate severe ECC (S-ECC) from caries-free children. Children’s diets were obtained by survey and plaque bacteria detected by PCR from 72 S-ECC and 38 caries-free children. S-ECC children had higher scores for between-meal juice (p < 0.01), solid-retentive foods (p < 0.001), eating frequency (p < 0.005), and estimated food cariogenicity (p < 0.0001) than caries-free children. S-ECC children with lesion recurrence ate fewer putative caries-protective foods than children without new lesions. Streptococcus mutans (p < 0.005), Streptococcus sobrinus (p < 0.005), and Bifidobacteria (p < 0.0001) were associated with S-ECC, and S. mutans with S. sobrinus was associated with lesion recurrence (p < 0.05). S. mutans-positive children had higher food cariogenicity scores. Food frequency, putative cariogenicity, and S. mutans were associated with S-ECC individually and in combination. PMID:20858780
Kamate, Wasim Ismail; Vibhute, Nupura Aniket; Baad, Rajendra Krishna
2017-04-01
Pregnancy, a period from conception till birth, causes changes in the functioning of the human body as a whole and specifically in the oral cavity that may favour the emergence of dental caries. Many studies have shown pregnant women at increased risk for dental caries, however, specific salivary caries risk factors and the particular period of pregnancy at heightened risk for dental caries are yet to be explored and give a scope of further research in this area. The aim of the present study was to assess the severity of dental caries in pregnant women compared to non-pregnant women by evaluating parameters like Decayed, Missing, Filled Teeth (DMFT) index, salivary Streptococcus mutans count, flow rate, pH and total calcium content. A total of 50 first time pregnant women in the first trimester were followed during their second trimester, third trimester and postpartum period for the evaluation of DMFT by World Health Organization (WHO) scoring criteria, salivary flow rate by drooling method, salivary pH by pH meter, salivary total calcium content by bioassay test kit and salivary Streptococcus mutans count by semiautomatic counting of colonies grown on Mitis Salivarius (MS) agar supplemented by 0.2U/ml of bacitracin and 10% sucrose. The observations of pregnant women were then compared with same parameters evaluated in the 50 non-pregnant women. Paired t-test and Wilcoxon sign rank test were performed to assess the association between the study parameters. Evaluation of different caries risk factors between pregnant and non-pregnant women clearly showed that pregnant women were at a higher risk for dental caries. Comparison of caries risk parameters during the three trimesters and postpartum period showed that the salivary Streptococcus mutans count had significantly increased in the second trimester , third trimester and postpartum period while the mean pH and mean salivary total calcium content decreased in the third trimester and postpartum period. These changes reflected on the DMFT score which increased in the third trimester and postpartum period. The results of this study suggest that there is a definite correlation between pregnancy and dental caries. We conclude that the third trimester and postpartum period of pregnancy are the periods during which the pregnant women are at a higher risk for development of dental caries.
Baca-Castañón, Magda Lorena; De la Garza-Ramos, Myriam Angélica; Alcázar-Pizaña, Andrea Guadalupe; Grondin, Yohann; Coronado-Mendoza, Anahí; Sánchez-Najera, Rosa Isela; Cárdenas-Estrada, Eloy; Medina-De la Garza, Carlos Eduardo; Escamilla-García, Erandi
2015-03-01
Lactic acid bacteria (LAB) are well known for their beneficial effects on human health in the intestine and immune system; however, there are few studies on the impact they can generate in oral health. The aim of this study was to test and compare in vitro antimicrobial activity of L. reuteri on pathogenic bacteria involved in the formation of dental caries: S. mutans, S. gordonii, and periodontal disease: A. naeslundii and T. forsythia. Also, we determined the growth kinetics of each bacterium involved in this study. Before determining the antimicrobial action of L. reuteri on cariogenic bacteria and periodontal disease, the behavior and cell development time of each pathogenic bacterium were studied. Once the conditions for good cell growth of each of selected pathogens were established according to their metabolic requirements, maximum exponential growth was determined, this being the reference point for analyzing the development or inhibition by LAB using the Kirby Bauer method. Chlorhexidine 0.12% was positive control. L. reuteri was shown to have an inhibitory effect against S. mutans, followed by T. forsythia and S. gordonii, and a less significant effect against A. naeslundii. Regarding the effect shown by L. reuteri on the two major pathogens, we consider its potential use as a possible functional food in the prevention or treatment of oral diseases.
Acidogenicity of dual-species biofilms of bifidobacteria and Streptococcus mutans.
de Matos, Bruno Mello; Brighenti, Fernanda Lourenção; Do, Thuy; Beighton, David; Koga-Ito, Cristiane Yumi
2017-06-01
The aim of this study was to evaluate the acidogenicity of dual-species biofilms of bifidobacteria and Streptococcus mutans. The following strains were tested: Bifidobacterium dentium DSM20436, Parascardovia denticolens DSM10105, and Scardovia inopinata DSM10107. Streptococcus mutans UA159 and Lactobacillus acidophilus ATCC4356 were used as control. Bifidobacteria were studied planktonically as they were not able to form monospecies biofilm, they were grown in biofilms associated with S. mutans. Endogenous polysaccharide reserves of cultures at log phase were depleted. Standardized suspensions of the microorganisms were incubated in growth media supplemented with 10 mM glucose, lactose, raffinose, glucose, or xylitol. S. mutans biofilms were grown on glass cover slips for 24 h to which bifidobacteria were added. After 24 h, the dual-species biofilms were exposed to the same carbon sources, and after 3 h, the pH of spent culture media and concentrations of organic acids were measured. Statistical analyses were carried out using ANOVA and Tukey's test (α = 0.05). A higher pH drop was observed when S. mutans was associated with P. denticolens or S. inopinata, in either planktonic or biofilm cultures, than with S. mutans alone. Bifidobacteria showed a higher pH drop in the presence of raffinose than S. mutans or L. acidophilus. Dual-species biofilms of bifidobacteria and S. mutans produced more acid and greater pH drops than biofilms of S. mutans alone. New insights on the complex process of caries pathogenicity contribute to the establishment of preventive and therapeutic measures, in particular in specific cases, such as in early childhood caries.
Protein antigen in serotype k Streptococcus mutans clinical isolates.
Nakano, K; Nomura, R; Nemoto, H; Lapirattanakul, J; Taniguchi, N; Grönroos, L; Alaluusua, S; Ooshima, T
2008-10-01
Streptococcus mutans, a major pathogen of dental caries and infective endocarditis, is classified into serotypes c, e, f, and k, with serotype k strains recently reported to be frequently detected in persons with infective endocarditis. Thus, we hypothesized that common properties associated with infective endocarditis are present in those strains. Fifty-six oral S. mutans strains, including 11 serotype k strains, were analyzed. Western blotting analysis revealed expression of the 3 types of glucosyltransferases in all strains, while expression of the approximately 190-kDa cell-surface protein (PA) was absent in 12 strains, among which the prevalence of serotype k (7/12) was significantly high. Furthermore, cellular hydrophobicity and phagocytosis susceptibility were lower in the group of serotype k strains. These results indicate that the absence of PA expression, low cellular hydrophobicity, and phagocytosis susceptibility are common bacterial properties associated with serotype k strains, which may be associated with virulence for infective endocarditis.
Castillo Pedraza, Midian C; Novais, Tatiana F; Faustoferri, Roberta C; Quivey, Robert G; Terekhov, Anton; Hamaker, Bruce R; Klein, Marlise I
2017-10-01
Streptococcus mutans-derived exopolysaccharides are virulence determinants in the matrix of biofilms that cause caries. Extracellular DNA (eDNA) and lipoteichoic acid (LTA) are found in cariogenic biofilms, but their functions are unclear. Therefore, strains of S. mutans carrying single deletions that would modulate matrix components were used: eDNA - ∆lytS and ∆lytT; LTA - ∆dltA and ∆dltD; and insoluble exopolysaccharide - ΔgtfB. Single-species (parental strain S. mutans UA159 or individual mutant strains) and mixed-species (UA159 or mutant strain, Actinomyces naeslundii and Streptococcus gordonii) biofilms were evaluated. Distinct amounts of matrix components were detected, depending on the inactivated gene. eDNA was found to be cooperative with exopolysaccharide in early phases, while LTA played a larger role in the later phases of biofilm development. The architecture of mutant strains biofilms was distinct (vs UA159), demonstrating that eDNA and LTA influence exopolysaccharide distribution and microcolony organization. Thus, eDNA and LTA may shape exopolysaccharide structure, affecting strategies for controlling pathogenic biofilms.
Castillo Pedraza, Midian C.; Novais, Tatiana F.; Faustoferri, Roberta C.; Quivey, Robert G.; Terekhov, Anton; Hamaker, Bruce R.; Klein, Marlise I.
2018-01-01
Streptococcus mutans -derived exopolysaccharides are virulence determinants in the matrix of biofilms that cause caries. Extracellular DNA (eDNA) and lipoteichoic acid (LTA) are found in cariogenic biofilms, but their functions are unclear. Therefore, strains of S. mutans carrying single deletions that would modulate matrix components were used: eDNA – ΔlytS and ΔlytT; LTA – ΔdltA and ΔdltD; and insoluble exopolysaccharide – ΔgtfB. Single-species (parental strain S. mutans UA159 or individual mutant strains) and mixed-species (UA159 or mutant strain, Actinomyces naeslundii and Streptococcus gordonii) biofilms were evaluated. Distinct amounts of matrix components were detected, depending on the inactivated gene. eDNA was found to be cooperative with exopolysaccharide in early phases, while LTA played a larger role in the later phases of biofilm development. The architecture of mutant strains biofilms was distinct (vs UA159), demonstrating that eDNA and LTA influence exopolysaccharide distribution and microcolony organization. Thus, eDNA and LTA may shape exopolysaccharide structure, affecting strategies for controlling pathogenic biofilms. PMID:28946780
Zeng, Z; Shaffer, J R; Wang, X; Feingold, E; Weeks, D E; Lee, M; Cuenco, K T; Wendell, S K; Weyant, R J; Crout, R; McNeil, D W; Marazita, M L
2013-05-01
While genetics clearly influences dental caries risk, few caries genes have been discovered and validated. Recent studies have suggested differential genetic factors for primary dentition caries and permanent dentition caries, as well as for pit-and-fissure- (PF) and smooth- (SM) surface caries. We performed separate GWAS for caries in permanent-dentition PF surfaces (1,017 participants, adjusted for age, sex, and the presence of Streptococcus mutans) and SM surfaces (1,004 participants, adjusted for age, education group, and the presence of Streptococcus mutans) in self-reported whites (ages 14 to 56 yrs). Caries scores were derived based on visual assessment of each surface of each tooth; more than 1.2 million SNPs were either successfully genotyped or imputed and were tested for association. Two homologous genes were suggestively associated: BCOR (Xp11.4) in PF-surface caries (p value = 1.8E-7), and BCORL1 (Xq26.1) in SM-surface caries (p value = 1.0E-5). BCOR mutations cause oculofaciocardiodental syndrome, a Mendelian disease involving multiple dental anomalies. Associations of other plausible cariogenesis genes were also observed for PF-surface caries (e.g., INHBA, p value = 6.5E-6) and for SM-surface caries (e.g., CXCR1 and CXCR2, p value = 1.9E-6). This study supports the notion that genes differentially affect cariogenesis across the surfaces of the permanent dentition, and nominates several novel genes for investigation.
Genome-wide Association Studies of Pit-and-Fissure- and Smooth-surface Caries in Permanent Dentition
Zeng, Z.; Shaffer, J.R.; Wang, X.; Feingold, E.; Weeks, D.E.; Lee, M.; Cuenco, K.T.; Wendell, S.K.; Weyant, R.J.; Crout, R.; McNeil, D.W.; Marazita, M.L.
2013-01-01
While genetics clearly influences dental caries risk, few caries genes have been discovered and validated. Recent studies have suggested differential genetic factors for primary dentition caries and permanent dentition caries, as well as for pit-and-fissure- (PF) and smooth- (SM) surface caries. We performed separate GWAS for caries in permanent-dentition PF surfaces (1,017 participants, adjusted for age, sex, and the presence of Streptococcus mutans) and SM surfaces (1,004 participants, adjusted for age, education group, and the presence of Streptococcus mutans) in self-reported whites (ages 14 to 56 yrs). Caries scores were derived based on visual assessment of each surface of each tooth; more than 1.2 million SNPs were either successfully genotyped or imputed and were tested for association. Two homologous genes were suggestively associated: BCOR (Xp11.4) in PF-surface caries (p value = 1.8E-7), and BCORL1 (Xq26.1) in SM-surface caries (p value = 1.0E-5). BCOR mutations cause oculofaciocardiodental syndrome, a Mendelian disease involving multiple dental anomalies. Associations of other plausible cariogenesis genes were also observed for PF-surface caries (e.g., INHBA, p value = 6.5E-6) and for SM-surface caries (e.g., CXCR1 and CXCR2, p value = 1.9E-6). This study supports the notion that genes differentially affect cariogenesis across the surfaces of the permanent dentition, and nominates several novel genes for investigation. PMID:23470693
Antimicrobial effects of herbal extracts on Streptococcus mutans and normal oral streptococci.
Lee, Sung-Hoon
2013-08-01
Streptococcus mutans is associated with dental caries. A cariogenic biofilm, in particular, has been studied extensively for its role in the formation of dental caries. Herbal extracts such as Cudrania tricuspidata, Sophora flavescens, Ginkgo biloba, and Betula Schmidtii have been used as a folk remedy for treating diseases. The purpose of this study was to evaluate and compare the antibacterial activity of herbal extracts against normal oral streptococci, planktonic and biofilm of S. mutans. Streptococcus gordonii, Streptococcus oralis, Streptococcus salivarius, Streptococcus sanguinis, and S. mutans were cultivated with brain heart infusion broth and susceptibility assay for the herbal extracts was performed according to the protocol of Clinical and Laboratory Standard Institute. Also, S. mutans biofilm was formed on a polystyrene 12-well plate and 8-well chamber glass slip using BHI broth containing 2% sucrose and 1% mannose after conditioning the plate and the glass slip with unstimulated saliva. The biofilm was treated with the herbal extracts in various concentrations and inoculated on Mitis-Salivarius bacitracin agar plate for enumeration of viable S. mutans by counting colony forming units. Planktonic S. mutans showed susceptibility to all of the extracts and S. mutans biofilm exhibited the highest level of sensitivity for the extracts of S. flavescens. The normal oral streptococci exhibited a weak susceptibility in comparison to S. mutans. S. oralis, however, was resistant to all of the extracts. In conclusion, the extract of S. flavescens may be a potential candidate for prevention and management of dental caries.
Jyothi, K. S.; Seshagiri, M.
2012-01-01
Objective: Dental caries, periodontitis and other mucosal diseases are caused by a complex community of microorganisms. This study aimed to investigate the antimicrobial properties of saponins of four important oil yielding medicinal plant extracts on selected oral pathogens that are involved in such diseases. Materials and Methods: Saponins were extracted from Bauhinia purpurea, Madhuca longifolia, Celastrus paniculatus and Semecarpus anacardium and purified. Antimicrobial properties of these saponins against Streptococcus mutans, Streptococcus mitis, Streptococcus salivarius, Staphylococcus aureus and Lactobacillus acidophilus were determined using well diffusion method. The minimum inhibitory concentration (MIC) was determined as the lowest concentration of saponins inhibiting bacterial growth after 14 h of incubation at 37°C. The bactericidal activity was evaluated using the viable cell count method. Results: The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Madhuca longifolia saponin on Streptococcus mutans MTCC 890, Streptococcus mitis and Staphylococcus aureus was 18.3 ± 0.15/34.4 ± 0.24 μg/ml, 19.0 ± 0.05/32.2 ± 0.0 μg/ml and 21.2 ± 0.35/39.0 ± 0.30 μg/ml, respectively and Bauhinia purpurea saponin on Streptococcus mutans MTCC 890, Staphylococcus aureus and Lactobacillus acidophilus was 26.4 ± 0.20/43.0 ± 0.40 μg/ml, 29.0 ± 0.30/39.6 ± 0.12 μg/ml and 20.2 ± 0.05/36.8 ± 0.23 μg/ml, respectively. Conclusion: The strong antimicrobial activity of Madhuca longifolia and Bauhinia purpurea may be due to the presence of complex triterpenoid saponins, oleanane type triterpenoid glycosides or atypical pentacyclic triterpenoid saponin. Hence, these extracted saponins may be used in food and oral products to prevent and control oral diseases. PMID:23323183
Microbiome Associated with Severe Caries in Canadian First Nations Children.
Agnello, M; Marques, J; Cen, L; Mittermuller, B; Huang, A; Chaichanasakul Tran, N; Shi, W; He, X; Schroth, R J
2017-11-01
Young Indigenous children in North America suffer from a higher degree of severe early childhood caries (S-ECC) than the general population, leading to speculation that the etiology and characteristics of the disease may be distinct in this population. To address this knowledge gap, we conducted the first microbiome analysis of an Indigenous population using modern molecular techniques. We investigated the caries-associated microbiome among Canadian First Nations children with S-ECC. Thirty First Nations children <72 mo of age with S-ECC and 20 caries-free children were recruited in Winnipeg, Canada. Parents or caregivers completed a questionnaire on general and dental health, diet, and demographics. The plaque microbiome was investigated by sequencing the 16S rRNA gene. Sequences were clustered into operational taxonomic units and taxonomy assigned via the Human Oral Microbiome Database, then analyzed at the community level with alpha and beta diversity measures. Compared with those who were caries free, children with S-ECC came from households with lower income; they were more likely to live in First Nations communities and were more likely to be bottle-fed; and they were weaned from the bottle at a later age. The microbial communities of the S-ECC and caries-free groups did not differ in terms of species richness or phylogenetic diversity. Beta diversity analysis showed that the samples significantly clustered into groups based on caries status. Twenty-eight species-level operational taxonomic units were significantly different between the groups, including Veillonella HOT 780 and Porphyromonas HOT 284, which were 4.6- and 9-fold higher, respectively, in the S-ECC group, and Streptococcus gordonii and Streptococcus sanguinis, which were 5- and 2-fold higher, respectively, in the caries-free group. Extremely high levels of Streptococcus mutans were detected in the S-ECC group. Overall, First Nations children with S-ECC have a significantly different plaque microbiome than their caries-free counterparts, with the S-ECC group containing higher levels of known cariogenic organisms.
Streptococcus mutans levels and caries prevalence in low-income schoolchildren.
Seibert, Wilda; Farmer-Dixon, Cherae; Bolden, Theodore; Stewart, James H
2002-01-01
Previous studies have shown that persons having high Streptococcus mutans levels in the saliva are "at risk" for dental caries. Most investigators agree, that if high levels of S. mutans were identified early in the life of at-risk children, dental decay could be reduced or eliminated through intervention. The purpose of this study is to show an association between S. mutans levels and caries prevalence in a sample of elementary school children. The study group consisted of 242 school children, ages 5-13 years. The subjects were divided into two age groups, 5-8 years and 9-13 years. Approximately 59 percent were African Americans. The sample of 242 children were equally females and males, 50 percent in each group. The Dentocult SM Test was used to make S. mutans determinations. The df-t index was used to determine the number of decayed and filled teeth of children ages 5-8 years; the DMF-T Index estimated the number of decayed, missing or filled teeth of children ages 9-13 years. Dental caries were found in 58 percent of the children (mean = 2.67, and range of 1-11). Approximately 47 percent of the children with caries had high S. mutans levels (100K-1M). Females had higher S. mutans levels than males in the 9-13 age group, p < .05. Analysis of Variance Test indicated that S. mutans levels for older females (ages 9-13) were significantly higher than those observed in males the same age (p < .01). This trend was not observed in younger children, ages 5-8 years. In addition, no significant difference or interaction was noted by sex for S. mutans levels and decayed or filled teeth (df-t) for younger children. We conclude that high levels of Streptococcus mutans are related to increased number of decayed teeth and conversely, low Streptococcus mutans levels are related to fewer dental caries. This study was supported in part by Colgate-Palmolive Company and the National Dental Association Foundation, Inc.
Childers, Noel K; Momeni, Stephanie S; Whiddon, Jennifer; Cheon, Kyounga; Cutter, Gary R; Wiener, Howard W; Ghazal, Tariq S; Ruby, John D; Moser, Stephen A
2017-03-15
The purpose of this study was to evaluate Streptococcus mutans genotypes (GT) between mother and child (M-C) in a high caries risk cohort to explore the association with early childhood caries (ECC). Sixty-nine infants (each approximately one year old) had periodic oral examinations (dmfs) and microbial samples collected from dental plaque, saliva, and other oral surfaces. Their mothers had an examination and plaque collected. S mutans isolates were genotyped using repetitive extragenic palindromic-PCR (rep-PCR). Statistical analyses were conducted for associations of S mutans in M-C dyads with caries outcomes. Twenty-seven S mutans genotypes (GT) from 3,414 isolates were identified. M-C were categorized as GT match (n equals 40) or no-match (n equals 29). When modeling the severity of ECC at 36 months (approximately four years old), the estimated dmfs in the match group was 2.61 times that of the no-match group (P=.014). Colonization of children with Streptococcus mutans genotypes that matched with mothers was shown to be highly associated with early childhood caries. Although the data suggest vertical transmission of S mutans in 40 of 69 children that shared GT with their mother, it is possible that other individuals transmitted the S mutans. Nonetheless, these findings support the importance of the mother's oral microbial status as a contributing influence to their children's oral health.
Sztajer, Helena; Szafranski, Szymon P; Tomasch, Jürgen; Reck, Michael; Nimtz, Manfred; Rohde, Manfred; Wagner-Döbler, Irene
2014-01-01
Polymicrobial biofilms are of large medical importance, but relatively little is known about the role of interspecies interactions for their physiology and virulence. Here, we studied two human pathogens co-occuring in the oral cavity, the opportunistic fungus Candida albicans and the caries-promoting bacterium Streptococcus mutans. Dual-species biofilms reached higher biomass and cell numbers than mono-species biofilms, and the production of extracellular polymeric substances (EPSs) by S. mutans was strongly suppressed, which was confirmed by scanning electron microscopy, gas chromatography–mass spectrometry and transcriptome analysis. To detect interkingdom communication, C. albicans was co-cultivated with a strain of S. mutans carrying a transcriptional fusion between a green fluorescent protein-encoding gene and the promoter for sigX, the alternative sigma factor of S. mutans, which is induced by quorum sensing signals. Strong induction of sigX was observed in dual-species biofilms, but not in single-species biofilms. Conditioned media from mixed biofilms but not from C. albicans or S. mutans cultivated alone activated sigX in the reporter strain. Deletion of comS encoding the synthesis of the sigX-inducing peptide precursor abolished this activity, whereas deletion of comC encoding the competence-stimulating peptide precursor had no effect. Transcriptome analysis of S. mutans confirmed induction of comS, sigX, bacteriocins and the downstream late competence genes, including fratricins, in dual-species biofilms. We show here for the first time the stimulation of the complete quorum sensing system of S. mutans by a species from another kingdom, namely the fungus C. albicans, resulting in fundamentally changed virulence properties of the caries pathogen. PMID:24824668
Culp, David J.; Robinson, Bently; Parkkila, Seppo; Pan, Pei-wen; Cash, Melanie N.; Truong, Helen N.; Hussey, Thomas W.; Gullett, Sarah L.
2011-01-01
Carbonic anhydrase VI (CA VI), encoded by type A transcripts of the gene Car6, is a secretory product of salivary glands and is found in the enamel pellicle. Because higher caries prevalence is associated with lower salivary concentrations of CA VI in humans, we tested whether CA VI protects enamel surfaces from caries induced by Streptococcus mutans, using Car6−/− mice, in which salivary CA VI expression is absent. We detected aberrant Car6 type A transcripts in Car6−/− mice, likely targets for nonsense-mediated mRNA decay. Expression of the intracellular stress-induced isoform of CA VI encoded by type B transcripts was restricted to parotid and submandibular glands of wild type mice. The salivary function of Car6−/− mice was normal as assessed by the histology and protein/glycoprotein profiles of glands, salivary flow rates and protein/glycoprotein compositions of saliva. Surprisingly, total smooth surface caries and sulcal caries in Car6−/− mice were more than 6-fold and 2-fold lower than in wild type mice after infection with S. mutans strain UA159. Recoveries of S. mutans and total microbiota from molars were also lower in Car6−/− mice. To explore possible mechanisms for increased caries susceptibility, we found no differences in S. mutans adherence to salivary pellicles, in vitro. Interestingly, higher levels of Lactobacillus murinus and an unidentified Streptococcus species were cultivated from the oral microbiota of Car6−/− mice. Collective results suggest salivary CA VI may promote caries by modulating the oral microbiota to favor S. mutans colonization and/or by the enzymatic production of acid within plaque. PMID:21945428
Culp, David J; Robinson, Bently; Parkkila, Seppo; Pan, Pei-Wen; Cash, Melanie N; Truong, Helen N; Hussey, Thomas W; Gullett, Sarah L
2011-12-01
Carbonic anhydrase VI (CA VI), encoded by type A transcripts of the gene Car6, is a secretory product of salivary glands and is found in the enamel pellicle. Because higher caries prevalence is associated with lower salivary concentrations of CA VI in humans, we tested whether CA VI protects enamel surfaces from caries induced by Streptococcus mutans, using Car6(-/-) mice, in which salivary CA VI expression is absent. We detected aberrant Car6 type A transcripts in Car6(-/-) mice, likely targets for nonsense-mediated mRNA decay. Expression of the intracellular stress-induced isoform of CA VI encoded by type B transcripts was restricted to parotid and submandibular glands of wild type mice. The salivary function of Car6(-/-) mice was normal as assessed by the histology and protein/glycoprotein profiles of glands, salivary flow rates and protein/glycoprotein compositions of saliva. Surprisingly, total smooth surface caries and sulcal caries in Car6(-/-) mice were more than 6-fold and 2-fold lower than in wild type mice after infection with S. mutans strain UA159. Recoveries of S. mutans and total microbiota from molars were also lower in Car6(-/-) mice. To explore possible mechanisms for increased caries susceptibility, we found no differences in S. mutans adherence to salivary pellicles, in vitro. Interestingly, higher levels of Lactobacillus murinus and an unidentified Streptococcus species were cultivated from the oral microbiota of Car6(-/-) mice. Collective results suggest salivary CA VI may promote caries by modulating the oral microbiota to favor S. mutans colonization and/or by the enzymatic production of acid within plaque. Copyright © 2011 Elsevier B.V. All rights reserved.
Vibhute, Nupura Aniket; Baad, Rajendra Krishna
2017-01-01
Introduction Pregnancy, a period from conception till birth, causes changes in the functioning of the human body as a whole and specifically in the oral cavity that may favour the emergence of dental caries. Many studies have shown pregnant women at increased risk for dental caries, however, specific salivary caries risk factors and the particular period of pregnancy at heightened risk for dental caries are yet to be explored and give a scope of further research in this area. Aim The aim of the present study was to assess the severity of dental caries in pregnant women compared to non-pregnant women by evaluating parameters like Decayed, Missing, Filled Teeth (DMFT) index, salivary Streptococcus mutans count, flow rate, pH and total calcium content. Materials and Methods A total of 50 first time pregnant women in the first trimester were followed during their second trimester, third trimester and postpartum period for the evaluation of DMFT by World Health Organization (WHO) scoring criteria, salivary flow rate by drooling method, salivary pH by pH meter, salivary total calcium content by bioassay test kit and salivary Streptococcus mutans count by semiautomatic counting of colonies grown on Mitis Salivarius (MS) agar supplemented by 0.2U/ml of bacitracin and 10% sucrose. The observations of pregnant women were then compared with same parameters evaluated in the 50 non-pregnant women. Paired t-test and Wilcoxon sign rank test were performed to assess the association between the study parameters. Results Evaluation of different caries risk factors between pregnant and non-pregnant women clearly showed that pregnant women were at a higher risk for dental caries. Comparison of caries risk parameters during the three trimesters and postpartum period showed that the salivary Streptococcus mutans count had significantly increased in the second trimester, third trimester and postpartum period while the mean pH and mean salivary total calcium content decreased in the third trimester and postpartum period. These changes reflected on the DMFT score which increased in the third trimester and postpartum period. Conclusion The results of this study suggest that there is a definite correlation between pregnancy and dental caries. We conclude that the third trimester and postpartum period of pregnancy are the periods during which the pregnant women are at a higher risk for development of dental caries. PMID:28571283
Comparative analysis of prophages in Streptococcus mutans genomes
Fu, Tiwei; Fan, Xiangyu; Long, Quanxin; Deng, Wanyan; Song, Jinlin
2017-01-01
Prophages have been considered genetic units that have an intimate association with novel phenotypic properties of bacterial hosts, such as pathogenicity and genomic variation. Little is known about the genetic information of prophages in the genome of Streptococcus mutans, a major pathogen of human dental caries. In this study, we identified 35 prophage-like elements in S. mutans genomes and performed a comparative genomic analysis. Comparative genomic and phylogenetic analyses of prophage sequences revealed that the prophages could be classified into three main large clusters: Cluster A, Cluster B, and Cluster C. The S. mutans prophages in each cluster were compared. The genomic sequences of phismuN66-1, phismuNLML9-1, and phismu24-1 all shared similarities with the previously reported S. mutans phages M102, M102AD, and ϕAPCM01. The genomes were organized into seven major gene clusters according to the putative functions of the predicted open reading frames: packaging and structural modules, integrase, host lysis modules, DNA replication/recombination modules, transcriptional regulatory modules, other protein modules, and hypothetical protein modules. Moreover, an integrase gene was only identified in phismuNLML9-1 prophages. PMID:29158986
XU, JING-SHU; LI, YAO; CAO, XUE; CUI, YUN
2013-01-01
Eugenol has been widely used in medicine due to its antibacterial, anti-inflammatory, antioxidant, anticancer and analgesic properties. The present study was designed to investigate the effects of eugenol on the cariogenic properties of Streptococcus mutans and dental caries development in rats. Eugenol demonstrated significant inhibitory effects against acid production by S. mutans. The synthesis of water-insoluble glucans by glucosyltransferases was reduced by eugenol. Eugenol also markedly suppressed the adherence of S. mutans to saliva-coated hydroxyapatite beads. Furthermore, topical application of eugenol reduced the incidence and severity of carious lesions in rats. These results suggest that the natural compound eugenol may be a useful therapeutic agent for dental caries. PMID:23837051
Falsetta, Megan L.; Klein, Marlise I.; Colonne, Punsiri M.; Scott-Anne, Kathleen; Gregoire, Stacy; Pai, Chia-Hua; Gonzalez-Begne, Mireya; Watson, Gene; Krysan, Damian J.; Bowen, William H.
2014-01-01
Streptococcus mutans is often cited as the main bacterial pathogen in dental caries, particularly in early-childhood caries (ECC). S. mutans may not act alone; Candida albicans cells are frequently detected along with heavy infection by S. mutans in plaque biofilms from ECC-affected children. It remains to be elucidated whether this association is involved in the enhancement of biofilm virulence. We showed that the ability of these organisms together to form biofilms is enhanced in vitro and in vivo. The presence of C. albicans augments the production of exopolysaccharides (EPS), such that cospecies biofilms accrue more biomass and harbor more viable S. mutans cells than single-species biofilms. The resulting 3-dimensional biofilm architecture displays sizeable S. mutans microcolonies surrounded by fungal cells, which are enmeshed in a dense EPS-rich matrix. Using a rodent model, we explored the implications of this cross-kingdom interaction for the pathogenesis of dental caries. Coinfected animals displayed higher levels of infection and microbial carriage within plaque biofilms than animals infected with either species alone. Furthermore, coinfection synergistically enhanced biofilm virulence, leading to aggressive onset of the disease with rampant carious lesions. Our in vitro data also revealed that glucosyltransferase-derived EPS is a key mediator of cospecies biofilm development and that coexistence with C. albicans induces the expression of virulence genes in S. mutans (e.g., gtfB, fabM). We also found that Candida-derived β1,3-glucans contribute to the EPS matrix structure, while fungal mannan and β-glucan provide sites for GtfB binding and activity. Altogether, we demonstrate a novel mutualistic bacterium-fungus relationship that occurs at a clinically relevant site to amplify the severity of a ubiquitous infectious disease. PMID:24566629
Promotion of enamel caries remineralization by an amelogenin-derived peptide in a rat model.
Han, Sili; Fan, Yingying; Zhou, Zhengli; Tu, Huanxin; Li, Danxue; Lv, Xueping; Ding, Longjiang; Zhang, Linglin
2017-01-01
An amelogenin-derived peptide has been shown to promote remineralization of demineralized enamel in an in vitro model of initial caries induced by pH cycling. The present study examines whether the peptide exerts similar effects within the complex oral environment in vivo. Specific pathogen-free Sprague-Dawley rats (n=36) were infected with Streptococcus mutans, given ad libitum access to Diet 2000 and drinking water supplemented with sucrose (10%, w/v), and then randomly divided into three groups treated with 25μM peptide solution, 1g/L NaF or deionized water. Molar teeth were swabbed twice daily with the respective solutions for 24days. Then animals were killed, their jaws were removed and caries lesions were analyzed using the quantitative light-induced fluorescence-digital (QLF-D) technique to measure changes in mineral content. To verify QLF-D results, caries were scored for lesion depth and size using the Keyes method, and analyzed using polarized light microscopy (PLM). Mineral gain was significantly higher in teeth treated with peptide or NaF than in teeth treated with water (p<0.05), based on the QLF-D results (ΔF and ΔQ). Incidence of smooth-surface and sulcal caries based on Keyes scores was similar in rats treated with peptide or NaF, and significantly lower in these groups than in rats treated with water (p<0.05). Lesions on teeth treated with peptide or NaF were shallower, based on PLM. No significant differences were observed between molar enamel caries treated with peptide or NaF. This amelogenin-derived peptide can promote remineralization in a rat caries model, indicating strong potential for clinical use. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Analysis of community composition in dental plaque of elder people with root caries].
Ma, Shan-fen; Liang, Jing-ping; Jiang, Yun-tao; Zhu, Cai-lian
2011-10-01
To analyze the community in dental plaque of elder people with root caries. Total DNAs were extracted from the root caries dental plaques of nine elders over 60 years of age. Polymerase chaid reaction-based denaturing gradient gel electrophoresis (PCR-DGGE) was used to analyze the microbial composition, DGGE bands were excised from the gels for sequencing and identification. The dominant genus in root caries dental plaque of elder people were: Acinetobacte [0.9% (1/114)], Actinobaculum [1.8% (2/114)], Actinomyces [15.8% (18/114)], Aggregatibacter [0.9% (1/114)], Capnocytophaga [14.0% (16/114)], Corynebacterium [0.9% (1/114)], Haemophilus [0.9% (1/114)], Mobiluncus [0.9% (1/114)], Naxibacter [0.9% (1/114)], Neisseriaceae [10.5% (12/114)], Porphyromonas [0.9% (1/114)], Prevotella [12.3% (14/114)], Selenomonas [6.1% (7/114)], Staphylococcus [1.8% (2/114)], Oralis streptococcus [6.1% (7/114)], Mutans streptococcu [7.9% (9/114)], Tannerella [0.9% (1/114)], Treponema [1.8% (2/114)], Veillonella [10.5% (12/114)] and two uncultured unknown genus [1.8% (2/114)]. Uncultred genotypes accounted for 19.30% of the total. Gram-positive bacteria genotype accounted for 31.6% (36/114), and Gram-negative bacteria genotype accounted for 66.7% (76/114). There were many bacteria genotypes in root caries dental plaque in the elderly, which were widely distributed. Gram-negative bacteria accounted for the majority. Genotype-specific pathogenic bacteria were not found.
Kaur, Gurmeet; Balamurugan, P.; Princy, S. Adline
2017-01-01
Dental caries occurs as a result of dysbiosis among commensal and pathogenic bacteria leading to demineralization of enamel within a dental biofilm (plaque) as a consequence of lower pH in the oral cavity. In our previous study, we have reported 1,3-disubstituted ureas particularly, 1,3-di-m-tolylurea (DMTU) could inhibit the biofilm formation along with lower concentrations of fluoride (31.25 ppm) without affecting bacterial growth. In the present study, RT-qPCR analysis showed the target specific molecular mechanism of DMTU. In vivo treatment with DMTU, alone or in combination with fluoride, resulted in inhibition of caries (biofilm development of Streptococcus mutans) using a Wistar rat model for dental caries. The histopathological analysis reported the development of lesions on dentine in infected subjects whereas the dentines of treated rodents were found to be intact and healthy. Reduction in inflammatory markers in rodents' blood and liver samples was observed when treated with DMTU. Collectively, data speculate that DMTU is an effective anti-biofilm and anti-inflammatory agent, which may improve the cariostatic properties of fluoride. PMID:28748175
Kaur, Gurmeet; Balamurugan, P; Princy, S Adline
2017-01-01
Dental caries occurs as a result of dysbiosis among commensal and pathogenic bacteria leading to demineralization of enamel within a dental biofilm (plaque) as a consequence of lower pH in the oral cavity. In our previous study, we have reported 1,3-disubstituted ureas particularly, 1,3-di-m-tolylurea (DMTU) could inhibit the biofilm formation along with lower concentrations of fluoride (31.25 ppm) without affecting bacterial growth. In the present study, RT-qPCR analysis showed the target specific molecular mechanism of DMTU. In vivo treatment with DMTU, alone or in combination with fluoride, resulted in inhibition of caries (biofilm development of Streptococcus mutans ) using a Wistar rat model for dental caries. The histopathological analysis reported the development of lesions on dentine in infected subjects whereas the dentines of treated rodents were found to be intact and healthy. Reduction in inflammatory markers in rodents' blood and liver samples was observed when treated with DMTU. Collectively, data speculate that DMTU is an effective anti-biofilm and anti-inflammatory agent, which may improve the cariostatic properties of fluoride.
Effects of Caesalpinia sappan on pathogenic bacteria causing dental caries and gingivitis.
Puttipan, Rinrampai; Wanachantararak, Penpicha; Khongkhunthian, Sakornrat; Okonogi, Siriporn
2017-01-01
The present study explores antimicrobial activities of Caesalpinia sappan extracts against three strains of oral pathogenic bacteria; Streptococcus mutans DMST9567 (Smu9), Streptococcus mutans DMST41283 (Smu4), and Streptococcus intermedius DMST42700 (Si). Ethanol crude extract of C. sappan (Cs-EtOH) was firstly compared to that of other medicinal plants using disc diffusion method. Cs-EtOH showed significantly higher effective inhibition against all tested strains than other extracts and 0.12% chlorhexidine with the inhibition zone of 17.5 ± 0.5, 18.5 ± 0.0, and 17.0 ± 0.0 mm against Smu9, Smu4, and Si, respectively. Three fractionated extracts of C. sappan using hexane, ethyl acetate, and ethanol, respectively, were further investigated. The fractionated extract from ethanol (F-EtOH) presented the strongest activities with the minimum bactericidal concentration (MBC) of 125-250 µg/mL. Killing kinetics of F-EtOH was depended on the bacterial species and the concentration of F-EtOH. Two-fold MBC of F-EtOH could kill all tested strains within 12 h whereas its 4-fold MBC showed killing effect against Si within 6 h. Separation of F-EtOH by column chromatography using chloroform/methanol mixture as an eluent yielded 11 fractions (F1-F11). The fingerprints of these fractions by high-performance liquid chromatography at 280 nm revealed that F-EtOH consisted of at least 5 compounds. F6 possessed the significantly highest antimicrobial activity among 11 fractions, however less than F-EtOH. It is considered that F-EtOH is the promising extract of C. sappan for inhibiting oral pathogenic bacteria and appropriate as natural antiseptic for further develop of oral hygiene products.
Effect of mixed mutans streptococci colonization on caries development.
Seki, M; Yamashita, Y; Shibata, Y; Torigoe, H; Tsuda, H; Maeno, M
2006-02-01
To evaluate the clinical importance of mixed mutans streptococci colonization in predicting caries in preschool children. Caries prevalence was examined twice, with a 6-month interval, in 410 preschool children aged 3-4 years at baseline. A commercial strip method was used to evaluate the mutans streptococci score in plaque collected from eight selected interdental spaces and in saliva. Mutans streptococci typing polymerase chain reaction (PCR) assays (Streptococcus sobrinus and Streptococcus mutans, including serotypes c, e, and f) were performed using colonies on the strips as template. Twenty variables were examined in a univariate analysis to predict caries development: questionnaire variables, results of clinical examination, mutans streptococci scores, and PCR detection of S. sobrinus and S. mutans (including serotypes c, e, and f). Sixteen variables showed statistically significant associations (P < 0.04) in the univariate analysis. However, when entered into a logistic regression, only five variables remained significant (P < 0.05): caries experience at baseline; mixed colonization of S. sobrinus and S. mutans including S. mutans serotypes; high plaque mutans streptococci score; habitual use of sweet drinks; and nonuse of fluoride toothpaste. 'Mixed mutans streptococci colonization' is a novel measure correlated with caries development in their primary dentition.
Ferreira, E L; Batista, M T; Cavalcante, R C M; Pegos, V R; Passos, H M; Silva, D A; Balan, A; Ferreira, L C S; Ferreira, R C C
2016-10-01
Bacterial ATP-binding cassette (ABC) transporters play a crucial role in the physiology and pathogenicity of different bacterial species. Components of ABC transporters have also been tested as target antigens for the development of vaccines against different bacterial species, such as those belonging to the Streptococcus genus. Streptococcus mutans is the etiological agent of dental caries, and previous studies have demonstrated that deletion of the gene encoding PstS, the substrate-binding component of the phosphate uptake system (Pst), reduced the adherence of the bacteria to abiotic surfaces. In the current study, we generated a recombinant form of the S. mutans PstS protein (rPstS) with preserved structural features, and we evaluated the induction of antibody responses in mice after sublingual mucosal immunization with a formulation containing the recombinant protein and an adjuvant derived from the heat-labile toxin from enterotoxigenic Escherichia coli strains. Mice immunized with rPstS exhibited systemic and secreted antibody responses, measured by the number of immunoglobulin A-secreting cells in draining lymph nodes. Serum antibodies raised in mice immunized with rPstS interfered with the adhesion of bacteria to the oral cavity of naive mice challenged with S. mutans. Similarly, mice actively immunized with rPstS were partially protected from oral colonization after challenge with the S. mutans NG8 strain. Therefore, our results indicate that S. mutans PstS is a potential target antigen capable of inducing specific and protective antibody responses after sublingual administration. Overall, these observations raise interesting perspectives for the development of vaccines to prevent dental caries. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Effects of simulated microgravity on Streptococcus mutans physiology and biofilm structure.
Cheng, Xingqun; Xu, Xin; Chen, Jing; Zhou, Xuedong; Cheng, Lei; Li, Mingyun; Li, Jiyao; Wang, Renke; Jia, Wenxiang; Li, Yu-Qing
2014-10-01
Long-term spaceflights will eventually become an inevitable occurrence. Previous studies have indicated that oral infectious diseases, including dental caries, were more prevalent in astronauts due to the effect of microgravity. However, the impact of the space environment, especially the microgravity environment, on the virulence factors of Streptococcus mutans, a major caries-associated bacterium, is yet to be explored. In the present study, we investigated the impact of simulated microgravity on the physiology and biofilm structure of S. mutans. We also explored the dual-species interaction between S. mutans and Streptococcus sanguinis under a simulated microgravity condition. Results indicated that the simulated microgravity condition can enhance the acid tolerance ability, modify the biofilm architecture and extracellular polysaccharide distribution of S. mutans, and increase the proportion of S. mutans within a dual-species biofilm, probably through the regulation of various gene expressions. We hypothesize that the enhanced competitiveness of S. mutans under simulated microgravity may cause a multispecies micro-ecological imbalance, which would result in the initiation of dental caries. Our current findings are consistent with previous studies, which revealed a higher astronaut-associated incidence of caries. Further research is required to explore the detailed mechanisms. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Sudhir, R; Praveen, P; Anantharaj, A; Venkataraghavan, Karthik
2012-07-01
Antimicrobial methods of controlling dental caries that include probiotic agents can play a valuable role in establishing caries control in children at moderate to high risk for developing dental caries. Several studies have demonstrated the beneficial effects of use of various Probiotic products including curd. The objective of this study was to compare the effect of short-term consumption of probiotic curd containing Lactobacillus acidophilus and normal curd on salivary Streptococcus Mutans counts, as well as salivary pH. Forty, caries-free, 10-12 years old children were selected and randomly allocated to two groups. Test Group consisted of 20 children who consumed 200ml of probiotic curd daily for 30 days. Control Group consisted of 20 children who were given 200ml of regular curd for 30 days. Salivary pH and salivary Streptococcus Mutans counts were recorded at baseline and after 30 days and statistically compared using the Student's t-test. Consumption of probiotic curd resulted in a statistically significant reduction in S. Mutans colony counts (P<0.001) as compared to regular curd. However, there was a slight reduction in pH (P>0.05) in both the groups. Short-term consumption of probiotic curds can reduce oral S. Mutans counts. However, this caused a slight reduction in salivary pH.
Raman Spectroscopy of Xylitol Uptake and Metabolism in Gram-Positive and Gram-Negative Bacteria▿
Palchaudhuri, Sunil; Rehse, Steven J.; Hamasha, Khozima; Syed, Talha; Kurtovic, Eldar; Kurtovic, Emir; Stenger, James
2011-01-01
Visible-wavelength Raman spectroscopy was used to investigate the uptake and metabolism of the five-carbon sugar alcohol xylitol by Gram-positive viridans group streptococcus and the two extensively used strains of Gram-negative Escherichia coli, E. coli C and E. coli K-12. E. coli C, but not E. coli K-12, contains a complete xylitol operon, and the viridans group streptococcus contains an incomplete xylitol operon used to metabolize the xylitol. Raman spectra from xylitol-exposed viridans group streptococcus exhibited significant changes that persisted even in progeny grown from the xylitol-exposed mother cells in a xylitol-free medium for 24 h. This behavior was not observed in the E. coli K-12. In both viridans group streptococcus and the E. coli C derivative HF4714, the metabolic intermediates are stably formed to create an anomaly in bacterial normal survival. The uptake of xylitol by Gram-positive and Gram-negative pathogens occurs even in the presence of other high-calorie sugars, and its stable integration within the bacterial cell wall may discontinue bacterial multiplication. This could be a contributing factor for the known efficacy of xylitol when taken as a prophylactic measure to prevent or reduce occurrences of persistent infection. Specifically, these bacteria are causative agents for several important diseases of children such as pneumonia, otitis media, meningitis, and dental caries. If properly explored, such an inexpensive and harmless sugar-alcohol, alone or used in conjunction with fluoride, would pave the way to an alternative preventive therapy for these childhood diseases when the causative pathogens have become resistant to modern medicines such as antibiotics and vaccine immunotherapy. PMID:21037297
Summaries of Research, Fiscal Year 1980.
1980-10-01
separated from its subunits. The 1, 3- glucanse did not exhibit any dextranase or amylase activity when induced on a "limit- glucan " substrate. The greatest...by Surface Active Compounds." SHKLAIR, I. L. presented " Glucan Synthesis of S. mutans from Caries-Active and Caries-Free Naval Recruits." WIRTHLIN, M...I. L. presented "Relationship of Glucan Formation by S. mutans and Dental Caries Activity." WALTER, R. G. presented "Streptococcus mutans in Caries
Characteristics of Streptococcus mutans genotypes and dental caries in children
Cheon, Kyounga; Moser, Stephen A.; Wiener, Howard W.; Whiddon, Jennifer; Momeni, Stephanie S.; Ruby, John D.; Cutter, Gary R.; Childers, Noel K.
2013-01-01
This longitudinal cohort study evaluated the diversity, commonality, and stability of Streptococcus mutans genotypes associated with dental caries history. Sixty-seven 5 and 6 yr-old children, considered being at high caries risk, had plaque collected from baseline through 36 months for S. mutans isolation and genotyping with repetitive extragenic palindromic-PCR (4,392 total isolates). Decayed, missing, filled surfaces (dmfs/DMFS) for each child were recorded at baseline. At baseline, 18 distinct genotypes were found among 911 S. mutans isolates from 67 children (diversity) and 13 genotypes were shared by at least 2 children (commonality). The number of genotypes per individual was positively associated with the proportion of decayed surfaces (p-ds) at baseline. Twenty-four of the 39 children who were available at follow-up visits maintained a predominant genotype for the follow-up periods (stability) and was negatively associated with p-ds. The observed diversity, commonality, and stability of S. mutans genotypes represent a pattern of dental caries epidemiology in this high caries risk community, which suggest fewer decayed surfaces are significantly associated with lower diversity and stability of S. mutans genotypes. PMID:23659236
Hirasawa, M; Takada, K
2003-01-01
A new selective medium (MS-MUT) was developed for the isolation of Streptococcus mutans from clinical specimens. The average growth recovery of S. mutans on MS-MUT medium was 72.4% of that on MS medium. Growth of Streptococcus sobrinus was significantly inhibited on the medium with an average recovery of 0.034%. In 103 subjects, S. MUTANS was detected at 58.3, 75.0 and 95.7% in the dental plaque of caries-free (CF), caries-inactive (CI) and caries-active (CA) subjects, respectively. S. sobrinus was detected in 8.3, 13.6 and 38.3% of CF, CI and CA subjects, respectively. S. sobrinus alone was detected in only 4.3% of CA subjects. The subjects in whom neither S. mutans nor S. sobrinus were detected were 41.6% in CF and 25.0% in CI. The most predominant serotype was C with a 67% detection rate. S. sobrinus, serotypes D or G were usually found together with S. mutans. Copyright 2003 S. Karger AG, Basel
Emerging science in the dietary control and prevention of dental caries.
Al-Dajani, Mahmoud; Limeback, Hardy
2012-10-01
The key environmental factor involved in caries incidence is fermentable carbohydrates. Because of the high costs of caries treatment, researchers continue to explore dietary control as a promising preventive method. While dietary change has been demonstrated to reduce Streptococcus mutans, a preventive role is expected for "functional foods" and dietary habit alterations. The authors consider how recent advances in the understanding of caries pathology can reveal dietary control as a valuable method in promoting a healthy dentition.
Diet and the microbial aetiology of dental caries: new paradigms.
Bradshaw, David J; Lynch, Richard J M
2013-12-01
The microbial and dietary factors that drive caries have been studied scientifically for 120 years. Frequent and/or excessive sugar (especially sucrose) consumption has been ascribed a central role in caries causation, while Streptococcus mutans appeared to play the key role in metabolising sucrose to produce lactic acid, which can demineralise enamel. Many authors described caries as a transmissible infectious disease. However, more recent data have shifted these paradigms. Streptococcus mutans does not fulfil Koch's postulates - presence of the organism leading to disease, and absence of the organism precluding disease. Furthermore, molecular microbiological methods have shown that, even with a sugar-rich diet, a much broader spectrum of acidogenic microbes is found in dental plaque. While simple sugars can be cariogenic, cooked starches are also now recognised to be a caries threat, especially because such starches, while not 'sticky in the hand', can be highly retentive in the mouth. Metabolism of starch particles can yield a prolonged acidic challenge, especially at retentive, caries-prone sites. These changes in the paradigms of caries aetiology have important implications for caries control strategies. Preventing the transmission of S. mutans will likely be inadequate to prevent caries if a sufficiently carbohydrate-rich diet continues. Similarly, restriction of sucrose intake, although welcome, would be unlikely to be a panacea for caries, especially if frequent starch intake persisted. Instead, approaches to optimise fluoride delivery, to target plaque acidogenicity or acidogenic microbes, to promote plaque alkali generation, to increase salivary flow or replace fermentable carbohydrates with non-fermentable alternatives may be more promising. © 2013 FDI World Dental Federation.
Efflux inhibitor suppresses Streptococcus mutans virulence properties.
Zeng, Huihui; Liu, Jia; Ling, Junqi
2017-04-01
It is well established that efflux pumps play important roles in bacterial pathogenicity and efflux inhibitors (EIs) have been proved to be effective in suppressing bacterial virulence properties. However, little is known regarding the EI of Streptococcus mutans, a well-known caries-inducing bacterium. In this study, we identified the EI of S. mutans through ethidium bromide efflux assay and investigated how EI affected S. mutans virulence regarding the cariogenicity and stress response. Results indicated that reserpine, the identified EI, suppressed acid tolerance, mutacin production and transformation efficiency of S. mutans, and modified biofilm architecture and extracellular polysaccharide distribution. Suppressed glycosyltransferase activity was also noted after reserpine exposure. The data from quantitative real-time-PCR demonstrated that reserpine significantly altered the expression profile of quorum-sensing and virulence-associated genes. These findings suggest that reserpine represents a promising adjunct anticariogenic agent in that it suppresses virulence properties of S. mutans. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Kojima, Ayuchi; Nakano, Kazuhiko; Wada, Koichiro; Takahashi, Hirokazu; Katayama, Kazufumi; Yoneda, Masato; Higurashi, Takuma; Nomura, Ryota; Hokamura, Kazuya; Muranaka, Yoshinori; Matsuhashi, Nobuyuki; Umemura, Kazuo; Kamisaki, Yoshinori; Nakajima, Atsushi; Ooshima, Takashi
2012-01-01
Although oral bacteria-associated systemic diseases have been reported, association between Streptococcus mutans, pathogen of dental caries, and ulcerative colitis (UC) has not been reported. We investigated the effect of various S. mutans strains on dextran sodium sulfate (DSS)-induced mouse colitis. Administration of TW295, the specific strain of S. mutans, caused aggravation of colitis; the standard strain, MT8148 did not. Localization of TW295 in hepatocytes in liver was observed. Increased expression of interferon-γ in liver was also noted, indicating that the liver is target organ for the specific strain of S. mutans-mediated aggravation of colitis. The detection frequency of the specific strains in UC patients was significantly higher than in healthy subjects. Administration of the specific strains of S. mutans isolated from patients caused aggravation of colitis. Infection with highly-virulent specific types of S. mutans might be a potential risk factor in the aggravation of UC. PMID:22451861
Serotype classification of Streptococcus mutans and its detection outside the oral cavity.
Nakano, Kazuhiko; Ooshima, Takashi
2009-09-01
Streptococcus mutans, generally known as a major pathogen of dental caries, is also a possible causative agent of bacteremia and infective endocarditis. S. mutans is classified into serotypes c, e, f and k based on the chemical composition of serotype-specific polysaccharides, with approximately 70-80% of strains found in the oral cavity classified as serotype c, followed by e (approximately 20%), and f and k (less than 5% each). Serotype k was recently designated as a novel serotype and shown to possess unique features, the most prominent being a defect of the glucose side chain in serotype-specific rhamnose-glucose polymers, which is related to a higher incidence of detection in cardiovascular specimens, owing to phagocytosis resistance. Molecular analyses of cardiovascular specimens showed a high detection frequency for S. mutans DNA, among which the detection rate for serotype k was quite high. These findings suggest that serotype k S. mutans possibly has a high level of virulence for systemic diseases.
Bucci, Andreia R; Marcelino, Larissa; Mendes, Renata K; Etchegaray, Augusto
2018-06-06
The oral pathogen Streptococcus mutans is involved in tooth decay by a process that initiates with biofilm adhesion and caries development. The presence of other microbes such as Candida albicans may worsen the demineralization process. Since both microbes are virulent to the host and will proliferate under specific host immune deficiencies and systemic diseases, it is important to study antimicrobial substances and their effects on both pathogens. There are several antiseptic agents used to reduce plaque biofilm and its outcome (dental caries and/or periodontal disease). However, some of these have undesired effects. In the current study we investigated the antimicrobial and anti-adhesion properties of micellar solutions of surfactants and the plant natural product terpinen-4-ol (TP). The results revealed an increase in antimicrobial properties of the synthetic surfactants, cetylpyridinium chloride (CPC) and cetyltrimethylammonium bromide (CTAB), when mixed with TP. In addition, although surfactin, a biosurfactant, has little antimicrobial activity, it was demonstrated that it enhanced the effect of TP both as antimicrobial and anti-adhesion compound. Surfactin and the synthetic surfactants promote the antimicrobial activity of TP against S. mutans, the causal agent of tooth decay, suggesting specificity for membrane interactions that may be facilitated by surfactants. This is the first report on the successful use of surfactin in association with TP to inhibit the growth and adhesion of microbial pathogens. Surfactin has other beneficial properties besides being biodegradable, it has antiviral and anti-mycoplasma activities in addition to adjuvant properties and encapsulating capacity at low concentration.
Farivar, Tanaz; Burne, Robert A.
2016-01-01
ABSTRACT Biochemical and genetic aspects of the metabolism of the amino sugars N-acetylglucosamine (GlcNAc) and glucosamine (GlcN) by commensal oral streptococci and the effects of these sugars on interspecies competition with the dental caries pathogen Streptococcus mutans were explored. Multiple S. mutans wild-type isolates displayed long lag phases when transferred from glucose-containing medium to medium with GlcNAc as the primary carbohydrate source, but commensal streptococci did not. Competition in liquid coculture or dual-species biofilms between S. mutans and Streptococcus gordonii showed that S. gordonii was particularly dominant when the primary carbohydrate was GlcN or GlcNAc. Transcriptional and enzymatic assays showed that the catabolic pathway for GlcNAc was less highly induced in S. mutans than in S. gordonii. Exposure to H2O2, which is produced by S. gordonii and antagonizes the growth of S. mutans, led to reduced mRNA levels of nagA and nagB in S. mutans. When the gene for the transcriptional regulatory NagR was deleted in S. gordonii, the strain produced constitutively high levels of nagA (GlcNAc-6-P deacetylase), nagB (GlcN-6-P deaminase), and glmS (GlcN-6-P synthase) mRNA. Similar to NagR of S. mutans (NagRSm), the S. gordonii NagR protein (NagRSg) could bind to consensus binding sites (dre) in the nagA, nagB, and glmS promoter regions of S. gordonii. Notably, NagRSg binding was inhibited by GlcN-6-P, but G-6-P had no effect, unlike for NagRSm. This study expands the understanding of amino sugar metabolism and NagR-dependent gene regulation in streptococci and highlights the potential for therapeutic applications of amino sugars to prevent dental caries. IMPORTANCE Amino sugars are abundant in the biosphere, so the relative efficiency of particular bacteria in a given microbiota to metabolize these sources of carbon and nitrogen might have a profound impact on the ecology of the community. Our investigation reveals that several oral commensal bacteria have a much greater capacity to utilize amino sugars than the dental pathogen Streptococcus mutans and that the ability of the model commensal Streptococcus gordonii to compete against S. mutans is substantively enhanced by the presence of amino sugars commonly found in the oral cavity. The mechanisms underlying the greater capacity and competitive enhancements of the commensal are shown to depend on how the genes for the catabolic enzymes are regulated, the role of the allosteric modulators affecting such regulation, and the ability of amino sugars to enhance certain activities of the commensal that are antagonistic to S. mutans. PMID:27084009
Zeng, Lin; Farivar, Tanaz; Burne, Robert A
2016-06-15
Biochemical and genetic aspects of the metabolism of the amino sugars N-acetylglucosamine (GlcNAc) and glucosamine (GlcN) by commensal oral streptococci and the effects of these sugars on interspecies competition with the dental caries pathogen Streptococcus mutans were explored. Multiple S. mutans wild-type isolates displayed long lag phases when transferred from glucose-containing medium to medium with GlcNAc as the primary carbohydrate source, but commensal streptococci did not. Competition in liquid coculture or dual-species biofilms between S. mutans and Streptococcus gordonii showed that S. gordonii was particularly dominant when the primary carbohydrate was GlcN or GlcNAc. Transcriptional and enzymatic assays showed that the catabolic pathway for GlcNAc was less highly induced in S. mutans than in S. gordonii Exposure to H2O2, which is produced by S. gordonii and antagonizes the growth of S. mutans, led to reduced mRNA levels of nagA and nagB in S. mutans When the gene for the transcriptional regulatory NagR was deleted in S. gordonii, the strain produced constitutively high levels of nagA (GlcNAc-6-P deacetylase), nagB (GlcN-6-P deaminase), and glmS (GlcN-6-P synthase) mRNA. Similar to NagR of S. mutans (NagRSm), the S. gordonii NagR protein (NagRSg) could bind to consensus binding sites (dre) in the nagA, nagB, and glmS promoter regions of S. gordonii Notably, NagRSg binding was inhibited by GlcN-6-P, but G-6-P had no effect, unlike for NagRSm This study expands the understanding of amino sugar metabolism and NagR-dependent gene regulation in streptococci and highlights the potential for therapeutic applications of amino sugars to prevent dental caries. Amino sugars are abundant in the biosphere, so the relative efficiency of particular bacteria in a given microbiota to metabolize these sources of carbon and nitrogen might have a profound impact on the ecology of the community. Our investigation reveals that several oral commensal bacteria have a much greater capacity to utilize amino sugars than the dental pathogen Streptococcus mutans and that the ability of the model commensal Streptococcus gordonii to compete against S. mutans is substantively enhanced by the presence of amino sugars commonly found in the oral cavity. The mechanisms underlying the greater capacity and competitive enhancements of the commensal are shown to depend on how the genes for the catabolic enzymes are regulated, the role of the allosteric modulators affecting such regulation, and the ability of amino sugars to enhance certain activities of the commensal that are antagonistic to S. mutans. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
[[Streptococcus mutans Acquisition and Dental Caries Development in First-Born Children].
Noce, Erica; Rubira, Cassia Maria Fischer; da Silva Rosa, Odila Pereira; da Silva, Salete Moura Bonifácio; Bretz, Walter Antonio
2008-01-01
OBJECTIVE: To evaluate the moment of streptococcus mutans (SM) acquisition, caries development and their associate variables along 23 months, in first-born children of low socioeconomic status families, starting at 7 months of age. METHOD: The sample was chosen based on highly SM-colonized mothers, including all members of 14 families living in the same houses. The study included 14 mothers, 14 fathers and 14 first-borns and 8 relatives (mostly grandparents). Initial clinical examinations and radiographs determined the caries indices and periodontal conditions of the adults. SM count in all adults was made in the first 2 visits. The children were examined for SM count, number of teeth and number of carious lesions, in 4 visits. RESULTS: SM prevalence was high in the adults, being absent in only one of the parents. SM was found in 1, 2, 3 and 10 children in the first, second, third and fourth visits. Dental caries was detected in only 3 children in the last visit (at 30 months), who presented significantly higher SM scores than the children without caries in the same visit. CONCLUSION: A low income social condition and mothers highly colonized by SM do not mean necessarily early SM colonization and high caries activity in children with oral homecare. Caries development is significantly associated with high SM scores in the children.
Scalioni, Flávia; Carrada, Camila; Machado, Fernanda; Devito, Karina; Ribeiro, Luiz Cláudio; Cesar, Dionéia; Ribeiro, Rosangela
2017-01-01
To assess and compare dental caries experience and salivary S. mutans, S. sobrinus, and streptococci counts between groups of Down syndrome and non-Down syndrome children and adolescents. This study included a sample of 30 Down syndrome children and adolescents (G-DS) and 30 age- and sex-matched non-Down syndrome subjects (G-ND). Dental caries experience was estimated by the number of decayed, missing, and filled teeth in the primary dentition and the permanent dentition. Unstimulated whole saliva samples were collected from all participants. The fluorescence in situ hybridization technique was used to identify the presence and counts of the bacteria. The statistical analysis included chi-square, Student's t-test and Spearman's correlation. The G-DS exhibited a significantly higher caries-free rate (p<0.001) and a lower S. mutans salivary density (p<0.001). No significant differences were found in the salivary densities of S. sobrinus or streptococci between the groups (p=0.09 and p=0.21, respectively). The salivary S. mutans or S. sobrinus densities were not associated with dental caries experience in neither group. The reduced dental caries experience observed in this group of Down syndrome children and adolescents cannot be attributed to lower salivary S. mutans densities, as determined with the fluorescence in situ hybridization technique.
Salivary proteins and microbiota as biomarkers for early childhood caries risk assessment
Hemadi, Abdullah S; Huang, Ruijie; Zhou, Yuan; Zou, Jing
2017-01-01
Early childhood caries (ECC) is a term used to describe dental caries in children aged 6 years or younger. Oral streptococci, such as Streptococcus mutans and Streptococcus sorbrinus, are considered to be the main etiological agents of tooth decay in children. Other bacteria, such as Prevotella spp. and Lactobacillus spp., and fungus, that is, Candida albicans, are related to the development and progression of ECC. Biomolecules in saliva, mainly proteins, affect the survival of oral microorganisms by multiple innate defensive mechanisms, thus modulating the oral microflora. Therefore, the protein composition of saliva can be a sensitive indicator for dental health. Resistance or susceptibility to caries may be significantly correlated with alterations in salivary protein components. Some oral microorganisms and saliva proteins may serve as useful biomarkers in predicting the risk and prognosis of caries. Current research has generated abundant information that contributes to a better understanding of the roles of microorganisms and salivary proteins in ECC occurrence and prevention. This review summarizes the microorganisms that cause caries and tooth-protective salivary proteins with their potential as functional biomarkers for ECC risk assessment. The identification of biomarkers for children at high risk of ECC is not only critical for early diagnosis but also important for preventing and treating the disease. PMID:29125139
Xu, He; Hao, Wenjing; Zhou, Qiong; Wang, Wenhong; Xia, Zhongkui; Liu, Chuan; Chen, Xiaochi; Qin, Man; Chen, Feng
2014-01-01
Our primary objective is to phylogenetically characterize the supragingival plaque bacterial microbiome of children prior to eruption of second primary molars by pyrosequencing method for studying etiology of early childhood caries. Supragingival plaque samples were collected from 10 caries children and 9 caries-free children. Plaque DNA was extracted, used to generate DNA amplicons of the V1-V3 hypervariable region of the bacterial 16S rRNA gene, and subjected to 454-pyrosequencing. On average, over 22,000 sequences per sample were generated. High bacterial diversity was noted in the plaque of children with caries [170 operational taxonomical units (OTU) at 3% divergence] and caries-free children (201 OTU at 3% divergence) with no significant difference. A total of 8 phyla, 15 classes, 21 orders, 30 families, 41 genera and 99 species were represented. In addition, five predominant phyla (Firmicute, Fusobacteria, Proteobacteria, Bacteroidetes and Actinobacteria) and seven genera (Leptotrichia, Streptococcus, Actinomyces, Prevotella, Porphyromonas, Neisseria, and Veillonella) constituted a majority of contents of the total microbiota, independent of the presence or absence of caries. Principal Component Analysis (PCA) presented that caries-related genera included Streptococcus and Veillonella; while Leptotrichia, Selenomonas, Fusobacterium, Capnocytophaga and Porphyromonas were more related to the caries-free samples. Neisseria and Prevotella presented approximately in between. In both groups, the degree of shared organism lineages (as defined by species-level OTUs) among individual supragingival plaque microbiomes was minimal. Our study represented for the first time using pyrosequencing to elucidate and monitor supragingival plaque bacterial diversity at such young age with second primary molar unerrupted. Distinctions were revealed between caries and caries-free microbiomes in terms of microbial community structure. We observed differences in abundance for several microbial groups between the caries and caries-free host populations, which were consistent with the ecological plaque hypothesis. Our approach and findings could be extended to correlating microbiomic changes after occlusion establishment and caries treatment.
Botelho, M A; Nogueira, N A P; Bastos, G M; Fonseca, S G C; Lemos, T L G; Matos, F J A; Montenegro, D; Heukelbach, J; Rao, V S; Brito, G A C
2007-03-01
Dental caries and periodontal disease are associated with oral pathogens. Several plant derivatives have been evaluated with respect to their antimicrobial effects against such pathogenic microorganisms. Lippia sidoides Cham (Verbenaceae), popularly known as "Alecrim-pimenta" is a typical shrub commonly found in the Northeast of Brazil. Many plant species belonging to the genus Lippia yield very fragrant essential oils of potential economic value which are used by the industry for the commercial production of perfumes, creams, lotions, and deodorants. Since the leaves of L. sidoides are also extensively used in popular medicine for the treatment of skin wounds and cuts, the objective of the present study was to evaluate the composition and antimicrobial activity of L. sidoides essential oil. The essential oil was obtained by hydro-distillation and analyzed by GC-MS. Twelve compounds were characterized, having as major constituents thymol (56.7%) and carvacrol (16.7%). The antimicrobial activity of the oil and the major components was tested against cariogenic bacterial species of the genus Streptococcus as well as Candida albicans using the broth dilution and disk diffusion assays. The essential oil and its major components thymol and carvacrol exhibited potent antimicrobial activity against the organisms tested with minimum inhibitory concentrations ranging from 0.625 to 10.0 mg/mL. The most sensitive microorganisms were C. albicans and Streptococcus mutans. The essential oil of L. sidoides and its major components exert promising antimicrobial effects against oral pathogens and suggest its likely usefulness to combat oral microbial growth.
Betulin inhibits cariogenic properties of Streptococcus mutans by targeting vicRK and gtf genes.
Viszwapriya, Dharmaprakash; Subramenium, Ganapathy Ashwinkumar; Radhika, Solai; Pandian, Shunmugiah Karutha
2017-01-01
Streptococcus mutans, a multivirulent pathogen is considered the primary etiological agent in dental caries. Development of antibiotic resistance in the pathogen has created a need for novel antagonistic agents which can control the virulence of the organism and reduce resistance development. The present study demonstrates the in vitro anti-virulence potential of betulin (lup-20(29)-ene-3β,28-diol), an abundantly available plant triterpenoid against S. mutans UA159. Betulin exhibited significant dose dependent antibiofilm activity without affecting bacterial viability. At 240 µg/ml (biofilm inhibitory concentration), betulin inhibited biofilm formation and adherence to smooth glass surfaces by 93 and 71 % respectively. It reduced water insoluble glucan synthesis by 89 %, in conjunction with down regulation of gtfBC genes. Microscopic analysis confirmed the disruption in biofilm architecture and decreased exopolysaccharide production. Acidogenicity and aciduricity, key virulence factors responsible for carious lesions, were also notably affected. The induced auto-aggregation of cells upon treatment could be due to the down regulation of vicK. Results of gene expression analysis demonstrated significant down-regulation of virulence genes upon betulin treatment. Furthermore, the nontoxic effect of betulin on peripheral blood mononuclear cells even after 72 h treatment makes it a strong candidate for assessing its suitability to be used as a therapeutic agent.
Photodynamic therapy on bacterial reduction in dental caries: in vivo study
NASA Astrophysics Data System (ADS)
Baptista, Alessandra; Araujo Prates, Renato; Kato, Ilka Tiemy; Amaral, Marcello Magri; Zanardi de Freitas, Anderson; Simões Ribeiro, Martha
2010-04-01
The reduction of pathogenic microorganisms in supragingival plaque is one of the principal factors in caries prevention and control. A large number of microorganisms have been reported to be inactivated in vitro by photodynamic therapy (PDT). The purpose of this study was to develop a rat model to investigate the effects of PDT on bacterial reduction in induced dental caries. Twenty four rats were orally inoculated with Streptococcus mutans cells (ATCC 25175) for three consecutive days. The animals were fed with a cariogenic diet and water with 10% of sucrose ad libitum, during all experimental period. Caries lesion formation was confirmed by Optical Coherence Tomography (OCT) 5 days after the beginning of the experiment. Then, the animals were randomly divided into two groups: Control Group: twelve animals were untreated by either light or photosensitizer; and PDT Group: twelve animals were treated with 100μM of methylene blue for 5min and irradiated by a Light Emitting Diode (LED) at λ = 640+/-30nm, fluence of 172J/cm2, output power of 240mW, and exposure time of 3min. Microbiological samples were collected before, immediately after, 3, 7 and 10 days after treatment and the number of total microaerophiles was counted. OCT images showed areas of enamel demineralization on rat molars. Microbiological analysis showed a significant bacterial reduction after PDT. Furthermore, the number of total microaerophiles in PDT group remained lower than control group until 10 days posttreatment. These findings suggest that PDT could be an alternative approach to reduce bacteria in dental caries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Epstein, J.B.; McBride, B.C.; Stevenson-Moore, P.
Xerostomia may develop in patients with cancer who receive radiotherapy that includes the salivary glands in the field. These patients are at high risk of rampant dental caries. Streptococcus mutans and Lactobacillus species have been associated with dental caries. Quantitative counts of these organisms demonstrated high caries risk due to streptococci in 66% and due to lactobacilli in 100% of patients studied. Use of chlorhexidine rinse was shown to reduce S. mutans counts 1.1 logs and lactobacilli 1.1 logs. The use of chlorhexidine gel resulted in a reduction of S. mutans 1.2 logs and lactobacilli 2.2 logs. In the subjectsmore » using the rinse, caries risk due to streptococci was reduced to low levels in 44% and due to lactobacilli in only one subject, with reduction to moderate risk in one third and no change in risk in the remaining patients. The use of chlorhexidine gel was found to reduce the caries risk associated with streptococci to low levels in all patients, and the risk associated with lactobacilli to low and moderate risk in two thirds of patients.« less
Kaffir lime leaves extract inhibits biofilm formation by Streptococcus mutans.
Kooltheat, Nateelak; Kamuthachad, Ludthawun; Anthapanya, Methinee; Samakchan, Natthapon; Sranujit, Rungnapa Pankla; Potup, Pachuen; Ferrante, Antonio; Usuwanthim, Kanchana
2016-04-01
Although kaffir lime has been reported to exhibit antioxidant and antileukemic activity, little is known about the antimicrobial effect of kaffir lime extract. Because Streptococcus mutans has been known to cause biofilm formation, it has been considered the most important causative pathogen of dental caries. Thus, the effective control of its effects on the oral biofilm is the key to the prevention of dental caries. The aims of the present study were to investigate the effect of kaffir lime leaves extract on biofilm formation and its antibacterial activity on S. mutans. We examined the effect of kaffir lime leaves extract on growth and biofilm formation of S. mutans. For the investigation we used a kaffir lime extract with high phenolic content. The minimum inhibitory concentration of the extract was determined by broth microdilution assay. The inhibitory effect of the test substances on biofilm formation was also investigated by biofilm formation assay and qRT-PCR of biofilm formation-associated genes. Kaffir lime leaves extract inhibits the growth of S. mutans, corresponding to the activity of an antibiotic, ampicillin. Formation of biofilm by S. mutans was also inhibited by the extract. These results were confirmed by the down-regulation of genes associated with the biofilm formation. The findings highlight the ability of kaffir lime leaves extract to inhibit S. mutans activity, which may be beneficial in the prevention of biofilm formation on dental surface, reducing dental plaque and decreasing the chance of dental carries. Copyright © 2016 Elsevier Inc. All rights reserved.
Ribeiro, Apoena Aguiar; Azcarate-Peril, Maria Andrea; Cadenas, Maria Belen; Butz, Natasha; Paster, Bruce J; Chen, Tsute; Bair, Eric; Arnold, Roland R
2017-01-01
Dental caries is the most prevalent disease in humans globally. Efforts to control it have been invigorated by an increasing knowledge of the oral microbiome composition. This study aimed to evaluate the bacterial diversity in occlusal biofilms and its relationship with clinical surface diagnosis and dietary habits. Anamneses were recorded from thirteen 12-year-old children. Biofilm samples collected from occlusal surfaces of 46 permanent second molars were analyzed by 16S rRNA amplicon sequencing combined with the BLASTN-based search algorithm for species identification. The overall mean decayed, missing and filled surfaces modified index [DMFSm Index, including active white spot lesions (AWSL)] value was 8.77±7.47. Biofilm communities were highly polymicrobial collectively, representing 10 bacterial phyla, 25 classes, 29 orders, 58 families, 107 genera, 723 species. Streptococcus sp_Oral_Taxon_065, Corynebacterium matruchotii, Actinomyces viscosus, Actinomyces sp_Oral_Taxon_175, Actinomyces sp_Oral_Taxon_178, Actinomyces sp_Oral_Taxon_877, Prevotella nigrescens, Dialister micraerophilus, Eubacterium_XI G 1 infirmum were more abundant among surfaces with AWSL, and Streptococcus gordonii, Streptococcus sp._Oral_Taxon_058, Enterobacter sp._str._638 Streptococcus australis, Yersinia mollaretii, Enterobacter cloacae, Streptococcus sp._Oral_Taxon_71, Streptococcus sp._Oral_Taxon_F11, Centipeda sp._Oral_Taxon_D18 were more abundant among sound surfaces. Streptococcus mutans was detected on all surfaces in all patients, while Streptococcus sobrinus was detected only in three patients (mean relative abundances 7.1% and 0.6%, respectively). Neither species differentiated healthy from diseased sites. Diets of nine of the subjects were scored as high in fermentable carbohydrates (≧2X/day between meals). A direct association between relative abundances of bacteria and carbohydrate consumption was observed among 18 species. High consumption of fermentable carbohydrates and sound surfaces were associated with a reduction in bacterial diversity. PCoA plots displayed differences in bacterial community profiles between sound and diseased surfaces. Our study showed that, in addition to mutans streptococci, other species may be associated with the initiation of dental caries on occlusal surfaces, and that biofilm diversity of tooth surfaces is influenced by carbohydrate consumption and a surface's health status.
Azcarate-Peril, Maria Andrea; Cadenas, Maria Belen; Butz, Natasha; Paster, Bruce J.; Chen, Tsute; Bair, Eric
2017-01-01
Dental caries is the most prevalent disease in humans globally. Efforts to control it have been invigorated by an increasing knowledge of the oral microbiome composition. This study aimed to evaluate the bacterial diversity in occlusal biofilms and its relationship with clinical surface diagnosis and dietary habits. Anamneses were recorded from thirteen 12-year-old children. Biofilm samples collected from occlusal surfaces of 46 permanent second molars were analyzed by 16S rRNA amplicon sequencing combined with the BLASTN-based search algorithm for species identification. The overall mean decayed, missing and filled surfaces modified index [DMFSm Index, including active white spot lesions (AWSL)] value was 8.77±7.47. Biofilm communities were highly polymicrobial collectively, representing 10 bacterial phyla, 25 classes, 29 orders, 58 families, 107 genera, 723 species. Streptococcus sp_Oral_Taxon_065, Corynebacterium matruchotii, Actinomyces viscosus, Actinomyces sp_Oral_Taxon_175, Actinomyces sp_Oral_Taxon_178, Actinomyces sp_Oral_Taxon_877, Prevotella nigrescens, Dialister micraerophilus, Eubacterium_XI G 1 infirmum were more abundant among surfaces with AWSL, and Streptococcus gordonii, Streptococcus sp._Oral_Taxon_058, Enterobacter sp._str._638 Streptococcus australis, Yersinia mollaretii, Enterobacter cloacae, Streptococcus sp._Oral_Taxon_71, Streptococcus sp._Oral_Taxon_F11, Centipeda sp._Oral_Taxon_D18 were more abundant among sound surfaces. Streptococcus mutans was detected on all surfaces in all patients, while Streptococcus sobrinus was detected only in three patients (mean relative abundances 7.1% and 0.6%, respectively). Neither species differentiated healthy from diseased sites. Diets of nine of the subjects were scored as high in fermentable carbohydrates (≧2X/day between meals). A direct association between relative abundances of bacteria and carbohydrate consumption was observed among 18 species. High consumption of fermentable carbohydrates and sound surfaces were associated with a reduction in bacterial diversity. PCoA plots displayed differences in bacterial community profiles between sound and diseased surfaces. Our study showed that, in addition to mutans streptococci, other species may be associated with the initiation of dental caries on occlusal surfaces, and that biofilm diversity of tooth surfaces is influenced by carbohydrate consumption and a surface’s health status. PMID:28678838
Hata, S; Hata, H; Miyasawa-Hori, H; Kudo, A; Mayanagi, H
2006-02-01
To detect quantitatively the total bacteria and Streptococcus mutans in dental plaque by real-time PCR with prbac, Sm and GTF-B primers, and to compare their presence with the prevalence of dental caries in Japanese preschool children. Human dental plaque samples were collected from the labial surfaces of the upper primary central incisors of 107 children. The dental status was recorded as dft by WHO caries diagnostic criteria. Positive dt and dft scores by the Sm or GTF-B primer were significantly higher than negative scores (P < 0.01). The proportions of Strep. mutans to the total bacteria from sound, and sound and/or filled upper primary incisors were significantly lower than those from decayed or filled, and decayed incisors, respectively (P < 0.01). The ratios of Strep. mutans to total bacteria in plaque detected by real-time PCR with Sm and GTF-B primers were closely associated with the prevalence of dental caries in Japanese preschool children. These assays may be useful for the assessment of an individual's risk of dental caries.
Field Applicable Method to Reduce Dental Emergencies.
1983-09-01
against m irutians. If Materials & Methods M.I cron I m an e R~um A streptomycin-resistant mutant of Streptococcus mutans NCTC 10449, known to adhere to...antimicrobial properties. There is presently no evidence to suggest that these antimicrobial properties would affect Streptococcus mutans and lactobac Ill...of Streptococcus mutan per ml saliva. When the number of L. muta.n Is decreased, the caries incidence Is reduced. Even though It has been suggested
Di Lorenzo, Arianna; Bloise, Nora; Meneghini, Silvia; Sureda, Antoni; Tenore, Gian Carlo; Visai, Livia; Arciola, Carla Renata; Daglia, Maria
2016-01-01
Biomaterials releasing bactericides have currently become tools for thwarting medical device-associated infections. The ideal anti-infective biomaterial must counteract infection while safeguarding eukaryotic cell integrity. Red wine is a widely consumed beverage to which many biological properties are ascribed, including protective effects against oral infections and related bone (osteoarthritis, osteomyelitis, periprosthetic joint infections) and cardiovascular diseases. In this study, fifteen red wine samples derived from grapes native to the Oltrepò Pavese region (Italy), obtained from the winemaking processes of “Bonarda dell’Oltrepò Pavese” red wine, were analyzed alongside three samples obtained from marc pressing. Total polyphenol and monomeric anthocyanin contents were determined and metabolite profiling was conducted by means of a chromatographic analysis. Antibacterial activity of wine samples was evaluated against Streptococcus mutans, responsible for dental caries, Streptococcus salivarius, and Streptococcus pyogenes, two oral bacterial pathogens. Results highlighted the winemaking stages in which samples exhibit the highest content of polyphenols and the greatest antibacterial activity. Considering the global need for new weapons against bacterial infections and alternatives to conventional antibiotics, as well as the favorable bioactivities of polyphenols, results point to red wine as a source of antibacterial substances for developing new anti-infective biomaterials and coatings for biomedical devices. PMID:28773444
Mieher, Joshua L; Larson, Matthew R; Schormann, Norbert; Purushotham, Sangeetha; Wu, Ren; Rajashankar, Kanagalaghatta R; Wu, Hui; Deivanayagam, Champion
2018-07-01
The high-resolution structure of glucan binding protein C (GbpC) at 1.14 Å, a sucrose-dependent virulence factor of the dental caries pathogen Streptococcus mutans , has been determined. GbpC shares not only structural similarities with the V regions of AgI/II and SspB but also functional adherence to salivary agglutinin (SAG) and its scavenger receptor cysteine-rich domains (SRCRs). This is not only a newly identified function for GbpC but also an additional fail-safe binding mechanism for S. mutans Despite the structural similarities with S. mutans antigen I/II (AgI/II) and SspB of Streptococcus gordonii , GbpC remains unique among these surface proteins in its propensity to adhere to dextran/glucans. The complex crystal structure of GbpC with dextrose (β-d-glucose; Protein Data Bank ligand BGC) highlights exclusive structural features that facilitate this interaction with dextran. Targeted deletion mutant studies on GbpC's divergent loop region in the vicinity of a highly conserved calcium binding site confirm its role in biofilm formation. Finally, we present a model for adherence to dextran. The structure of GbpC highlights how artfully microbes have engineered the lectin-like folds to broaden their functional adherence repertoire. Copyright © 2018 American Society for Microbiology.
Zeng, Lin; Chakraborty, Brinta; Farivar, Tanaz
2017-01-01
ABSTRACT The glucose/mannose-phosphotransferase system (PTS) permease EIIMan encoded by manLMN in the dental caries pathogen Streptococcus mutans has a dominant influence on sugar-specific, CcpA-independent catabolite repression (CR). Mutations in manL affect energy metabolism and virulence-associated traits, including biofilm formation, acid tolerance, and competence. Using promoter::reporter fusions, expression of the manLMN and the fruRKI operons, encoding a transcriptional regulator, a fructose-1-phosphate kinase and a fructose-PTS permease EIIFru, respectively, was monitored in response to carbohydrate source and in mutants lacking CcpA, FruR, and components of EIIMan. Expression of genes for EIIMan and EIIFru was directly regulated by CcpA and CR, as evinced by in vivo and in vitro methods. Unexpectedly, not only was the fruRKI operon negatively regulated by FruR, but also so was manLMN. Carbohydrate transport by EIIMan had a negative influence on expression of manLMN but not fruRKI. In agreement with the proposed role of FruR in regulating these PTS operons, loss of fruR or fruK substantially altered growth on a number of carbohydrates, including fructose. RNA deep sequencing revealed profound changes in gene regulation caused by deletion of fruK or fruR. Collectively, these findings demonstrate intimate interconnection of the regulation of two major PTS permeases in S. mutans and reveal novel and important contributions of fructose metabolism to global regulation of gene expression. IMPORTANCE The ability of Streptococcus mutans and other streptococcal pathogens to survive and cause human diseases is directly dependent upon their capacity to metabolize a variety of carbohydrates, including glucose and fructose. Our research reveals that metabolism of fructose has broad influences on the regulation of utilization of glucose and other sugars, and mutants with changes in certain genes involved in fructose metabolism display profoundly different abilities to grow and express virulence-related traits. Mutants lacking the FruR regulator or a particular phosphofructokinase, FruK, display changes in expression of a large number of genes encoding transcriptional regulators, enzymes required for energy metabolism, biofilm development, biosynthetic and degradative processes, and tolerance of a spectrum of environmental stressors. Since fructose is a major component of the modern human diet, the results have substantial significance in the context of oral health and the development of dental caries. PMID:28821551
Krzyściak, Wirginia; Kościelniak, Dorota; Papież, Monika; Vyhouskaya, Palina; Zagórska-Świeży, Katarzyna; Kołodziej, Iwona; Bystrowska, Beata; Jurczak, Anna
2017-11-14
The aim of the study was to evaluate the anti-cariogenic effects of Lactobacillus salivarius by reducing pathogenic species and biofilm mass in a double-species biofilm model. Coexistence of S. mutans with C. albicans can cause dental caries progression or recurrence of the disease in the future. Fifty-nine children with diagnosed early childhood caries (ECC) were recruited onto the study. The condition of the children's dentition was defined according to the World Health Organization guidelines. The participants were divided into children with initial enamel demineralization and children showing dentin damage. The study was performed on the S. mutans and C. albicans clinical strains, isolated from dental plaque of patients with ECC. The effect of a probiotic containing Lactobacillus salivarius on the ability of S. mutans and C. albicans to produce a double-species biofilm was investigated in an in vitro model. The biomass of the formed/non-degraded biofilm was analyzed on the basis of its crystal violet staining. The number of colonies of S. mutans and C. albicans (CFU/mL, colony forming units/mL) forming the biofilm was determined. Microorganism morphology in the biofilm was evaluated using a scanning electron microscope (SEM). In vitro analysis demonstrated that the presence of S. mutans increased the number of C. albicans colonies (CFU/mL); the double-species biofilm mass and hyphal forms produced in it by the yeast. L. salivarius inhibited the cariogenic biofilm formation of C. albicans and S. mutans . Under the influence of the probiotic; the biofilm mass and the number of S. mutans ; C. albicans and S. mutans with C. albicans colonies in the biofilm was decreased. Moreover; it can be noted that after the addition of the probiotic; fungi did not form hyphae or germ tubes of pathogenic potential. These results suggest that L. salivarius can secrete intermediates capable of inhibiting the formation of cariogenic S. mutans and C. albicans biofilm; and may inhibit fungal morphological transformation and thereby reduce the pathogenicity of C. albicans ; weakening its pathogenic potential. Further research is required to prove or disprove the long-term effects of the preparation and to achieve preventive methods.
Wasfi, Reham; Abd El-Rahman, Ola A; Zafer, Mai M; Ashour, Hossam M
2018-03-01
Streptococcus mutans contributes significantly to dental caries, which arises from homoeostasic imbalance between host and microbiota. We hypothesized that Lactobacillus sp. inhibits growth, biofilm formation and gene expression of Streptococcus mutans. Antibacterial (agar diffusion method) and antibiofilm (crystal violet assay) characteristics of probiotic Lactobacillus sp. against Streptococcus mutans (ATCC 25175) were evaluated. We investigated whether Lactobacillus casei (ATCC 393), Lactobacillus reuteri (ATCC 23272), Lactobacillus plantarum (ATCC 14917) or Lactobacillus salivarius (ATCC 11741) inhibit expression of Streptococcus mutans genes involved in biofilm formation, quorum sensing or stress survival using quantitative real-time polymerase chain reaction (qPCR). Growth changes (OD600) in the presence of pH-neutralized, catalase-treated or trypsin-treated Lactobacillus sp. supernatants were assessed to identify roles of organic acids, peroxides and bacteriocin. Susceptibility testing indicated antibacterial (pH-dependent) and antibiofilm activities of Lactobacillus sp. against Streptococcus mutans. Scanning electron microscopy revealed reduction in microcolony formation and exopolysaccharide structural changes. Of the oral normal flora, L. salivarius exhibited the highest antibiofilm and peroxide-dependent antimicrobial activities. All biofilm-forming cells treated with Lactobacillus sp. supernatants showed reduced expression of genes involved in exopolysaccharide production, acid tolerance and quorum sensing. Thus, Lactobacillus sp. can inhibit tooth decay by limiting growth and virulence properties of Streptococcus mutans. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Psoter, Walter J; Ge, Yao; Russell, Stefanie L; Chen, Zhou; Katz, Ralph V; Jean-Charles, Germain; Li, Yihong
2011-08-01
Streptococcus mutans and Aggregatibacter actinomycetemcomitans are oral pathogens associated with dental caries and periodontitis, respectively. The aim of this study was to determine the colonization of these two microorganisms in the dental plaque of a group of Haitian adolescents using two different polymerase chain reaction (PCR) methods, standard PCR, and quantitative real-time PCR (qPCR) assays. Fifty-four pooled supra-gingival plaque samples and 98 pooled sub-gingival plaque samples were obtained from 104 12- to19-year-old rural-dwelling Haitians. The total genomic DNA of bacteria was isolated from these samples, and all participants also received caries and periodontal examinations. Caries prevalence was 42.2%, and the mean decayed, missing, and filled surface (DMFS) was 2.67 ± 5.3. More than half of the adolescents (53.3%) experienced periodontal pockets (Community Periodontal Index score ≥3). S. mutans was detected in 67.3% by qPCR and 38.8% by PCR of the supra-gingival plaque samples (p < 0.01), and 36.6% by qPCR and 8.1% by PCR of the sub-gingival samples (p < 0.01). A. actinomycetemcomitans was detected in 85.1% by qPCR and 44.0% by PCR of the sub-gingival samples (p < 0.01), but the prevalence was similar, 67.3% by qPCR and 59.2% by PCR, in the supra-gingival plaque samples. Neither age nor gender was significantly correlated to the bacterial colonization. The results demonstrated a moderate-to-high prevalence of S. mutans and A. actinomycetemcomitans in the Haitian adolescent population, and qPCR is more sensitive than standard PCR in field conditions. These findings suggest that qPCR should be considered for field oral epidemiologic studies and may be necessary in investigations having major logistic challenges.
Corbett, John; Cornacchione, Louis; Daly, William; Galan, Diego; Wysota, Michael; Tivnan, Patrick; Collins, Justin; Nye, Dillon; Levitz, Talya; Breyer, Wendy A.; Glasfeld, Arthur
2015-01-01
ABSTRACT Streptococcus mutans is the causative agent of dental caries, a significant concern for human health, and therefore an attractive target for therapeutics development. Previous work in our laboratory has identified a homodimeric, manganese-dependent repressor protein, SloR, as an important regulator of cariogenesis and has used site-directed mutagenesis to map functions to specific regions of the protein. Here we extend those studies to better understand the structural interaction between SloR and its operator and its effector metal ions. The results of DNase I assays indicate that SloR protects a 42-bp region of DNA that overlaps the sloABC promoter on the S. mutans UA159 chromosome, while electrophoretic mobility shift and solution binding assays indicate that each of two SloR dimers binds to this region. Real-time semiquantitative reverse transcriptase PCR (real-time semi-qRT-PCR) experiments were used to determine the individual base pairs that contribute to SloR-DNA binding specificity. Solution studies indicate that Mn2+ is better than Zn2+ at specifically activating SloR to bind DNA, and yet the 2.8-Å resolved crystal structure of SloR bound to Zn2+ provides insight into the means by which selective activation by Mn2+ may be achieved and into how SloR may form specific interactions with its operator. Taken together, these experimental observations are significant because they can inform rational drug design aimed at alleviating and/or preventing S. mutans-induced caries formation. IMPORTANCE This report focuses on investigating the SloR protein as a regulator of essential metal ion transport and virulence gene expression in the oral pathogen Streptococcus mutans and on revealing the details of SloR binding to its metal ion effectors and binding to DNA that together facilitate this expression. We used molecular and biochemical approaches to characterize the interaction of SloR with Mn2+ and with its SloR recognition element to gain a clearer picture of the regulatory networks that optimize SloR-mediated metal ion homeostasis and virulence gene expression in S. mutans. These experiments can have a significant impact on caries treatment and/or prevention by revealing the S. mutans SloR-DNA binding interface as an appropriate target for the development of novel therapeutic interventions. PMID:26350131
Oral Microbiome Metabolism: From "Who Are They?" to "What Are They Doing?".
Takahashi, N
2015-12-01
Recent advances in molecular biology have facilitated analyses of the oral microbiome ("Who are they?"); however, its functions (e.g., metabolic activities) are poorly understood ("What are they doing?"). This review aims to summarize our current understanding of the metabolism of the oral microbiome. Saccharolytic bacteria-including Streptococcus, Actinomyces, and Lactobacillus species-degrade carbohydrates into organic acids via the Embden-Meyerhof-Parnas pathway and several of its branch pathways, resulting in dental caries, while alkalization and acid neutralization via the arginine deiminase system, urease, and so on, counteract acidification. Proteolytic/amino acid-degrading bacteria, including Prevotella and Porphyromonas species, break down proteins and peptides into amino acids and degrade them further via specific pathways to produce short-chain fatty acids, ammonia, sulfur compounds, and indole/skatole, which act as virulent and modifying factors in periodontitis and oral malodor. Furthermore, it is suggested that ethanol-derived acetaldehyde can cause oral cancer, while nitrate-derived nitrite can aid caries prevention and systemic health. Microbial metabolic activity is influenced by the oral environment; however, it can also modify the oral environment, enhance the pathogenicity of bacteria, and induce microbial selection to create more pathogenic microbiome. Taking a metabolomic approach to analyzing the oral microbiome is crucial to improving our understanding of the functions of the oral microbiome. © International & American Associations for Dental Research 2015.
Liu, Jia; Zhang, Jianying; Guo, Lihong; Zhao, Wei; Hu, Xiaoli; Wei, Xi
2017-07-01
Efflux pumps are a mechanism associated with biofilm formation and resistance. There is limited information regarding efflux pumps in Streptococcus mutans, a major pathogen in dental caries. The aim of this study was to investigate potential roles of a putative efflux pump (LmrB) in S. mutans biofilm formation and susceptibility. Upon lmrB inactivation and antimicrobial exposure, the biofilm structure and expression of other efflux pumps were examined using confocal laser scanning microscopy (CLSM) and qRT-PCR. lmrB inactivation resulted in biofilm structural changes, increased EPS formation and EPS-related gene transcription (p < 0.05), but no improvement in susceptibility was observed. The expression of most efflux pump genes increased upon lmrB inactivation when exposed to antimicrobials (p < 0.05), suggesting a feedback mechanism that activated the transcription of other efflux pumps to compensate for the loss of lmrB. These observations imply that sole inactivation of lmrB is not an effective solution to control biofilms.
The Collagen Binding Proteins of Streptococcus mutans and Related Streptococci
Avilés-Reyes, Alejandro; Miller, James H.; Lemos, José A.; Abranches, Jacqueline
2016-01-01
Summary The ability of Streptococcus mutans to interact with collagen through the expression of collagen-binding proteins (CBPs) bestows this oral pathogen with an alternative to the sucrose-dependent mechanism of colonization classically attributed to caries development. Based on the abundance and distribution of collagen throughout the human body, stringent adherence to this molecule grants S. mutans with the opportunity to establish infection at different host sites. Surface proteins, such as SpaP, WapA, Cnm and Cbm, have been shown to bind collagen in vitro, and it has been suggested that these molecules play a role in colonization of oral and extra-oral tissues. However, robust collagen binding is not achieved by all strains of S. mutans, particularly those that lack Cnm or Cbm. These observations merit careful dissection of the contribution from these different CBPs towards tissue colonization and virulence. In this review, we will discuss the current understanding of mechanisms utilized by S. mutans and related streptococci to colonize collagenous tissues, and the possible contribution of CBPs to infections in different sites of the host. PMID:26991416
Novel Synthetic Antimicrobial Peptides against Streptococcus mutans▿
He, Jian; Eckert, Randal; Pharm, Thanh; Simanian, Maurice D.; Hu, Chuhong; Yarbrough, Daniel K.; Qi, Fengxia; Anderson, Maxwell H.; Shi, Wenyuan
2007-01-01
Streptococcus mutans, a common oral pathogen and the causative agent of dental caries, has persisted and even thrived on the tooth surface despite constant removal and eradication efforts. In this study, we generated a number of synthetic antimicrobial peptides against this bacterium via construction and screening of several structurally diverse peptide libraries where the hydrophobicity and charge within each library was varied incrementally in order to generate a collection of peptides with different biochemical characteristics. From these libraries, we identified multiple peptides with robust killing activity against S. mutans. To further improve their effectiveness, the most bactericidal peptides from each library were synthesized together as one molecule, in various combinations, with and without a flexible peptide linker between each antimicrobial region. Many of these “fusion” peptides had enhanced killing activities in comparison with those of the original nonconjoined molecules. The results presented here illustrate that small libraries of biochemically constrained peptides can be used to generate antimicrobial peptides against S. mutans, several of which may be likely candidates for the development of anticaries agents. PMID:17296741
Hussain, Haitham; Branny, Pavel; Allan, Elaine
2006-01-01
We report an operon encoding a eukaryotic-type serine/threonine protein kinase (STPK) and its cognate phosphatase (STPP) in Streptococcus mutans. Mutation of the gene encoding the STPK produced defects in biofilm formation, genetic competence, and acid resistance, determinants important in caries pathogenesis. PMID:16452447
Colombo, Natália Helena; Pereira, Jesse Augusto; da Silva, Márjully Eduardo Rodrigues; Ribas, Laís Fernanda Fonseca; Parisotto, Thaís Manzano; Mattos-Graner, Renata de Oliveira; Smith, Daniel J; Duque, Cristiane
2016-07-01
Explore the associations between the severity of dental caries in childhood, mutans streptococci (MS) levels and IgA antibody response against Streptococcus mutans GbpB. Moreover, other caries-related etiological factors were also investigated. 36-60 month-old children were grouped into Caries-Free (CF, n=19), Early Childhood Caries (ECC, n=17) and Severe Early Childhood Caries (S-ECC, n=21). Data from socio-economic-cultural status, oral hygiene habits and dietary patterns were obtained from a questionnaire and a food-frequency diary filled out by parents. Saliva was collected from children for microbiological analysis and detection of salivary IgA antibody reactive with S. mutans GbpB in western blot. S-ECC children had reduced family income compared to those with ECC and CF. There was difference between CF and caries groups (ECC and S-ECC) in MS counts. Positive correlations between salivary IgA antibody response against GbpB and MS counts were found when the entire population was evaluated. When children with high MS counts were compared, S-ECC group showed significantly lower IgA antibody levels to GbpB compared to CF group. This finding was not observed for the ECC group. This study suggests that children with S-ECC have reduced salivary IgA immune responses to S. mutans GbpB, potentially compromising their ability to modify MS infection and its cariogenic potential. Furthermore, a reduced family income and high levels of MS were also associated with S-ECC. Copyright © 2016 Elsevier Ltd. All rights reserved.
Streptococcus iniae and Streptococcus agalactiae
USDA-ARS?s Scientific Manuscript database
Streptococcus iniae and S. agalactiae are economically important Gram positive bacterial pathogens of cultured and wild fish with a worldwide distribution. Both bacteria are potential zoonotic pathogens and have been associated most often with infections in immunocompromised people. Streptococcus in...
SCHMIDT, Julia Caroline; BUX, Miriam; FILIPUZZI-JENNY, Elisabeth; KULIK, Eva Maria; WALTIMO, Tuomas; WEIGER, Roland; WALTER, Clemens
2014-01-01
Objectives The intraoral transmission of cariogenic and periodontopathogenic species seems to be facilitated by contaminated toothbrushes and other oral hygiene devices. The aim of this investigation was to analyze the in vitro retention and survival rate of Streptococcus mutans and Streptococcus sanguinis on different toothbrushes. The impacts of human saliva and antimicrobial toothpaste on these parameters were further evaluated. Material and Methods Part I: Four toothbrushes (Colgate 360°, Curaprox CS5460 ultra soft, elmex InterX, Trisa Flexible Head3) were contaminated by S. mutans DSM 20523 or S. sanguinis DSM 20068 suspensions for three minutes. Bacteria were removed from the toothbrushes after either three minutes (T0) or 24 hours (T24) of dry storage and grown on Columbia blood agar plates for the quantification of colony-forming units (CFUs). Part II: The effects of saliva from a caries-active or a caries-inactive person and of toothpaste containing 0.12% chlorhexidine digluconate were also tested. Results Part I: After three minutes of dry storage, approximately one percent of the bacteria were still detectable on the toothbrushes. After 24 hours, S. sanguinis exhibited a more pronounced decrease in viable cell numbers compared with S. mutans but the differences were not significant (Kruskal-Wallis test, p>0.05). Part II: The addition of human saliva from a caries-active or caries-inactive person slightly increased the retention of both streptococcal species at T0. The use of toothpaste had no influence on the amount of viable streptococci at T0, but it reduced the microbial load after 24 hours of storage. There were only slight nonsignificant differences (p>0.05) between the four toothbrushes. Conclusions In vitro bacterial retention and survival of S. sanguinis and S. mutans on different toothbrushes occurred. Within the limitations of this study, the use of human saliva or an antimicrobial toothpaste did not lead to significant differences in the microbial load on toothbrushes. PMID:25025554
Caries and salivary status in young adults with type 1 diabetes.
Edblad, E; Lundin, S A; Sjödin, B; Aman, J
2001-01-01
The aim of this study was to evaluate the salivary status, prevalence of caries and the status of primary dentition, when primary teeth were exfoliated, in 41 patients, 18-24 years of age, with type 1 diabetes since childhood in comparison with age- and sex-matched non-diabetic controls. The blood glucose and glycosylated haemoglobin concentration (HbA1c), dosage of daily insulin and retinal fundus photography was recorded for the diabetic group. According to the concentration of HbA1c, the diabetic patients were divided into well and poorly controlled groups. The study was based on three intra-oral photos, dental examination including intra-oral radiographs, flow rate and buffering capacity of the saliva and amount of Streptococcus mutans and Lactobacilli. Retrospective data regarding the primary dentition was found in the dental files of each patient, and are based on the last registration for respective tooth before exfoliation. The patients with type 1 diabetes, without any relationship to metabolic control, displayed more initial buccal caries compared to healthy controls (p<0.01). No significant differences concerning the status of saliva (neither flow rate, buffering capacity nor amount of Streptococcus mutans and Lactobacilli), manifest caries or the status of the primary dentition were seen. We conclude that initial, but not manifest caries seems to be overrepresented in young adults with type 1 diabetes. These patients, thus, need more intense efforts regarding dental health care to prevent the development from initial to manifest caries.
Matsumoto-Nakano, M; Nagayama, K; Kitagori, H; Fujita, K; Inagaki, S; Takashima, Y; Tamesada, M; Kawabata, S; Ooshima, T
2011-01-01
Oenothera biennis (evening primrose) seed extract (OBSE) is known to contain polyphenols, which may possess antioxidant activities. Polyphenols extracted from several plants are reported to exhibit cariostatic activities by inhibiting mutans streptococcus growth and glucosyltransferase activities. The purpose of the present study was to examine the inhibitory effects of OBSE on the development of dental caries, both in vitro and in vivo. OBSE was investigated for its inhibitory effects on cellular aggregation, hydrophobicity, sucrose-dependent adherence and insoluble glucan synthesis. Furthermore, biofilm formation was examined in the presence of OBSE, using confocal microscopic imaging. An animal experiment was also performed to examine the in vivo effects. OBSE induced a strong aggregation of Streptococcus mutans MT8148 cells, while cell surface hydrophobicity was decreased by approximately 90% at a concentration of 0.25 mg/ml. The sucrose-dependent adherence of the MT8148 cells was also reduced by addition of OBSE, with a reduction rate of 73% seen at a concentration of 1.00 mg/ml. Additionally, confocal microscopic observations revealed the biofilm development phase to be remarkably changed in the presence of OBSE. Furthermore, insoluble glucan synthesis was significantly reduced when OBSE was present at concentrations greater than 0.03 mg/ml. In an animal experiment, the caries scores in rats given OBSE (0.05 mg/ml in drinking water) were significantly lower than those in rats given water without OBSE. Our results indicate that OBSE has inhibitory activity on dental caries. 2011 S. Karger AG, Basel.
Molecular detection of bacteria associated to caries activity in dentinal lesions.
Neves, Beatriz Gonçalves; Stipp, Rafael Nóbrega; da Silva Bezerra, Daniela; de Figueiredo Guedes, Sarah Florindo; Rodrigues, Lidiany Karla Azevedo
2017-07-01
This study aimed at identifying and quantifying Actinomyces naeslundii, Bifidobacterium spp., Streptococcus mitis group, Lactobacillus acidophilus, Lactobacillus casei group, Streptococcus gordonii, and Streptococcus mutans in active and inactive carious dentine lesions of children with early childhood caries by using quantitative polymerase chain reaction. Fifty-six dentin lesion samples, classified as active (n = 39) or inactive (n = 17), were collected from children aged from 2 to 5 years old. Dentinal-cavitated lesions were evaluated by Nyvad criteria for the assessment of caries lesion activity. Relative quantification revealed that Bifidobacterium spp. and the L. casei group were significantly more abundant in active dentin lesions (p < 0.05). Concentrations of A. naeslundii, S. mitis group, and S. gordonii were not significantly different when comparing dentin lesion activity. The relative proportion of S. mutans was significantly greater in inactive than in active lesions (p < 0.05). Bifidobacterium spp. and L. casei group demonstrated a positive correlation (p = 0.001) in active lesions. The positive detection of L. acidophilus (odds ratio = 15.1) and S. gordonii (odds ratio = 7.7) was significantly associated to the active lesions. The data indicate that higher detection levels of Bifidobacterium spp. and the L. casei group may be linked to dentin lesion activity. Additionally, the presence of L. acidophilus and S. gordonii was associated with lesion activity. Considering that information about the oral microbiota related to dentin caries activity status is relevant, this study provides insights to better understand the differences in the microbiotas between active and arrested dentin cavities.
Enhanced adhesion of Streptococcus mutans to hydroxyapatite after exposure to saliva.
Spengler, Christian; Thewes, Nicolas; Nolle, Friederike; Faidt, Thomas; Umanskaya, Natalia; Hannig, Matthias; Bischoff, Markus; Jacobs, Karin
2017-07-01
Streptococcus mutans cells form robust biofilms on human teeth and are strongly related to caries incidents. Hence, understanding the adhesion of S. mutans in the human oral cavity is of major interest for preventive dentistry. In this study, we report on atomic force microscopy-based single-cell force spectroscopy measurements of S. mutans cells to hydroxyapatite surfaces. We observe for almost all measurements a significant difference in adhesion strength for S. mutans as well as for Staphylococcus carnosus cells. However, the increase in adhesion strength after saliva exposure is much higher for S. mutans cells compared to S. carnosus cells. Our results demonstrate that S. mutans cells are well adapted to their natural environment, the oral cavity. This ability promotes the biofilm-forming capability of that species and hence the production of caries-provoking acids. In consequence, understanding the fundamentals of this mechanism may pave a way towards more effective caries-reducing techniques. Copyright © 2017 John Wiley & Sons, Ltd.
Choi, Eun-Jung; Lee, Sung-Hoon; Kim, Young-Jae
2009-03-01
Streptococcus mutans and Streptococcus sobrinus are closely associated with the development of early childhood caries (ECC). Recently, quantitative real-time polymerase chain reaction (qRT-PCR) has been used for rapid and accurate quantification of these bacterial species. This study aims to detect quantitatively the levels of S. mutans and S. sobrinus in plaque samples by qRT-PCR, and to assess their association with the prevalence of ECC in Korean preschool children. One hundred and five children (71 months old or younger) were examined and classified into three groups (caries-free, ECC, severe ECC). Dental plaque samples were collected and qRT-PCR was conducted using oligonucleotide primers specific for glucosyltransferase gene (S. mutans-gtfB, S. sobrinus-gtfU) and universal primer. Pearson's correlation test was conducted to evaluate the relationship between the dmfs (decayed, missing, or filled surfaces primary teeth) scores and the microbiological findings. There was a significant difference between the levels of S. mutans and S. sobrinus in the plaque samples of the three groups (P < 0.05). The proportion of S. sobrinus to S. mutans showed strong correlation to the dmfs scores (r = 0.748, P < 0.05). The qRT-PCR results of this study showed that children with ECC had higher level of S. mutans and S. sobrinus in their dental plaque samples. The children with higher ratio of S. sobrinus to S. mutans in their dental plaque showed higher incidence of ECC.
Anumula, Lavanya; Kumar, Kv Suneel; Krishna, Chnv Murali; Lakshmi, K Sree
2017-07-01
Dental caries is one of the most common causes of morbidity of the tooth. Attempts have been made to reduce the pathogen population size i.e., Mutans Streptococci (MS) to demote the incidence of caries and increase the resistance of the tooth to cariogenic attack. To evaluate the antibacterial efficacy of freshly prepared ozonated water, in proposing it as an alternative mouth rinse on MS in comparison to Chlorhexidine (CHX). Subjects with high caries incidence and MS counts more than 105 Colony Forming Unit (CFU) were selected and divided by block randomization into two groups of 23 subjects each. The subjects were advised to use the respective mouth rinses under the operator surveillance, consecutively for 14 days. Stimulated salivary samples were collected from the subjects on the first day, 7 th and 14 th day to analyse the changes in MS counts during the course of use of oral rinses. The obtained data was tabulated and statistically analysed. Freshly prepared ozonated water showed a statistically significant reduction in MS counts after an interval of 7 days and 14 days when compared to CHX. Ozonated water when consecutively used as a mouth rinse resulted in a significant reduction of MS counts. Hence, it can be used as an alternative to chlorhexidine.
Beena, M S; Peedikayil, Faizal C; GufranAfmed, M B; Chandru, T P; Soni, K; Dhanesh, N
2017-01-01
Early childhood caries (ECC) is characterized by the presence of one or more decayed, missing (due to caries), or filled teeth surfaces in any primary tooth, in a child below 6 years of age. Although ECC is primarily associated with high levels of maternal Streptococcus mutans, there has been an increased interest in finding the relationship between oral fungal flora and dental caries. The aim of the study is to identify and characterize the Candida species and to compare the candidal isolates in children with ECC and without ECC. The study was conducted on children below 6 years of age, who were categorized into ECC and non-ECC groups of fifty children each. Samples were collected using sterile cotton swabs and were inoculated on Sabouraud's Dextrose Agar and incubated at 37°C for 24 h. Candidal colonies were isolated, species identified and virulence factors tested for both ECC and non-ECC groups. The candidal carriage among the ECC children was found to be 84%, which was significantly higher than the non-ECC group of 24%. Candida albicans and non-albicans Candida (NAC) were isolated in both ECC and non-ECC groups. Phospholipase production was significantly high in ECC group whereas hemolysin production and germ tube formation showed no significant difference between the two groups. A significant correlation was found between the presence of Candida and ECC. NAC also plays an important role in the development of ECC. The virulence factors such as phospholipase may be responsible for the pathogenicity of Candida in the development of ECC.
Sañudo, Ana I; Luque, Roberto; Díaz-Ropero, Mª Paz; Fonollá, Juristo; Bañuelos, Óscar
2017-12-01
Defining the etiology of dental caries is a complex problem. The microbiological approach has included Streptococcus mutans as one of the bacterial species involved in this disease. This research investigates the inhibitory effects of heat-inactivated Lactobacillus salivarius CECT 5713 against S. mutans using in vitro and in vivo assays. On the one hand, the effect of non-viable L. salivarius CECT 5713 on the in vitro adhesion of S. mutans to hydroxyapatite discs was evaluated. On the other hand, levels of Streptococcus mutans, amount of salivary flow and salivary pH before and after taking the rinse with the non-viable L. salivarius CECT 5713 in healthy volunteers were assessed (self-controlled open-label pilot study). The levels of S. mutans seemed to decrease in the in vitro and in vivo assays (p<0.05). The in vitro effect of non-viable L. salivarius was maintained until 36 months of storage. In addition, the reduction of S. mutans salivary concentration in the volunteers was statistically significant from the third day until two weeks of treatment. Heat-inactivated L. salivarius CECT 5713 prevents S. mutans adhesion to hydroxyapatite and could be used as a strategy to reduce the salivary concentration of this oral pathogen. Copyright © 2017 Elsevier Ltd. All rights reserved.
Han, Qi; Li, Bolei; Zhou, Xuedong; Ge, Yang; Wang, Suping; Li, Mingyun; Ren, Biao; Wang, Haohao; Zhang, Keke; Xu, Hockin H. K.; Peng, Xian; Feng, Mingye; Weir, Michael D.; Chen, Yu; Cheng, Lei
2017-01-01
The objectives of this study were to investigate the effects of dental adhesives containing quaternary ammonium methacrylates (QAMs) with different alkyl chain lengths (CL) on ecological caries prevention in vitro. Five QAMs were synthesized with a CL = 3, 6, 9, 12, and 16 and incorporated into adhesives. Micro-tensile bond strength and surface charge density were used to measure the physical properties of the adhesives. The proportion change in three-species biofilms consisting of Streptococcus mutans, Streptococcus sanguinis, and Streptococcus gordonii was tested using the TaqMan real-time polymerase chain reaction. Lactic acid assay, MTT [3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, exopolysaccharide staining, live/dead staining, scanning electron microscopy (SEM), and transverse microradiography (TMR) were performed to study the anti-biofilm and anti-demineralization effects of the dental adhesives. The results showed that incorporating QAMs with different alkyl chain lengths into the adhesives had no obvious effect on the dentin bond strength. The adhesives containing QAMs with a longer alkyl chain developed healthier biofilms. The surface charge density, anti-biofilm, and anti-demineralization effects of the adhesives increased with a CL of the QAMs from 3 to 12, but decreased slightly with a CL from 12 to 16. In conclusion, adhesives containing QAMs with a tailored chain length are promising for preventing secondary caries in an “ecological way”. PMID:28773004
Chen, Jing; Li, Tiancheng; Zhou, Xuedong; Cheng, Lei; Huo, Yuanyuan; Zou, Jing; Li, Yuqing
2017-11-01
The aim of this study was to analyze the characteristics of the clustered regularly interspaced short palindromic repeats (CRISPR) sites in 45 clinical Streptococcus mutans strains and their relationship to the clinical manifestations of early childhood caries (ECC). Forty-five S. mutans strains were isolated from the plaque samples taken from sixty-three children. CRISPR sites were sequenced and BLAST was used to compare these sites to those in the CRISPRTarget database. The association between the distribution of CRISPR sites and the manifestation of caries was analyzed by Chi-Square test. Further, biofilm formation (by crystal violet staining) and the synthesis of polysaccharide (by anthrone-sulfuric method) of all clinical isolated S. mutans strains with both CRISPR sites and no CRISPR site were comapared. Finally, acidogenicity and acidurity of two typical strains were determined using pH drop and acid tolerance assays. Biofilm formation and EPS synthesis by two typical strains were compared by 3D CLSM (Confocal Laser Scanning Microscope) assays and the expression of gtf genes were evaluated using qPCR. We found that most of the spacers in the clinical S. mutans strains were derived from Streptococcus phages APCM01 and M102. The number of CRISPR sites in these strains was associated with the clinical manifestations of ECC. Moreover, we found that the biofilm formation and EPS synthesis ability of the S. mutans strains with both CRISPR sites was significant improved. An association was found between the distribution of CRISPR sites and the clinical manifestations of caries. The CRISPR sites might contribute to the cariogenic potential of S. mutans. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bao, Xudong; de Soet, Johannes Jacob; Tong, Huichun; Gao, Xuejun; He, Libang; van Loveren, Cor; Deng, Dong Mei
2015-01-01
Homeostasis of oral microbiota can be maintained through microbial interactions. Previous studies showed that Streptococcus oligofermentans, a non-mutans streptococci frequently isolated from caries-free subjects, inhibited the cariogenic Streptococcus mutans by the production of hydrogen peroxide (HP). Since pH is a critical factor in caries formation, we aimed to study the influence of pH on the competition between S. oligofermentans and S. mutans in biofilms. To this end, S. mutans and S. oligofermentans were inoculated alone or mixed at 1:1 ratio in buffered biofilm medium in a 96-well active attachment model. The single- and dual-species biofilms were grown under either constantly neutral pH or pH-cycling conditions. The latter includes two cycles of 8 h neutral pH and 16 h pH 5.5, used to mimic cariogenic condition. The 48 h biofilms were analysed for the viable cell counts, lactate and HP production. The last two measurements were carried out after incubating the 48 h biofilms in buffers supplemented with 1% glucose (pH 7.0) for 4 h. The results showed that S. oligofermentans inhibited the growth of S. mutans in dual-species biofilms under both tested pH conditions. The lactic acid production of dual-species biofilms was significantly lower than that of single-species S. mutans biofilms. Moreover, dual-species and single-species S. oligofermentans biofilms grown under pH-cycling conditions (with a 16 h low pH period) produced a significantly higher amount of HP than those grown under constantly neutral pH. In conclusion, S. oligofermentans inhibited S. mutans in biofilms not only under neutral pH, but also under pH-cycling conditions, likely through HP production. S. oligofermentans may be a compelling probiotic candidate against caries.
Shankar, Manoharan; Hossain, Mohammad S; Biswas, Indranil
2017-04-15
Streptococcus mutans , an oral pathogen associated with dental caries, colonizes tooth surfaces as polymicrobial biofilms known as dental plaque. S. mutans expresses several virulence factors that allow the organism to tolerate environmental fluctuations and compete with other microorganisms. We recently identified a small hypothetical protein (90 amino acids) essential for the normal growth of the bacterium. Inactivation of the gene, SMU.2137, encoding this protein caused a significant growth defect and loss of various virulence-associated functions. An S. mutans strain lacking this gene was more sensitive to acid, temperature, osmotic, oxidative, and DNA damage-inducing stresses. In addition, we observed an altered protein profile and defects in biofilm formation, bacteriocin production, and natural competence development, possibly due to the fitness defect associated with SMU.2137 deletion. Transcriptome sequencing revealed that nearly 20% of the S. mutans genes were differentially expressed upon SMU.2137 deletion, thereby suggesting a pleiotropic effect. Therefore, we have renamed this hitherto uncharacterized gene as sprV ( s treptococcal p leiotropic r egulator of v irulence). The transcript levels of several relevant genes in the sprV mutant corroborated the phenotypes observed upon sprV deletion. Owing to its highly conserved nature, inactivation of the sprV ortholog in Streptococcus gordonii also resulted in poor growth and defective UV tolerance and competence development as in the case of S. mutans Our experiments suggest that SprV is functionally distinct from its homologs identified by structure and sequence homology. Nonetheless, our current work is aimed at understanding the importance of SprV in the S. mutans biology. IMPORTANCE Streptococcus mutans employs several virulence factors and stress resistance mechanisms to colonize tooth surfaces and cause dental caries. Bacterial pathogenesis is generally controlled by regulators of fitness that are critical for successful disease establishment. Sometimes these regulators, which are potential targets for antimicrobials, are lost in the genomic context due to the lack of annotated homologs. This work outlines the regulatory impact of a small, highly conserved hypothetical protein, SprV, encoded by S. mutans We show that SprV affects the transcript levels of various virulence factors required for normal growth, biofilm formation, stress tolerance, genetic competence, and bacteriocin production. Copyright © 2017 American Society for Microbiology.
Shankar, Manoharan; Hossain, Mohammad S.
2017-01-01
ABSTRACT Streptococcus mutans, an oral pathogen associated with dental caries, colonizes tooth surfaces as polymicrobial biofilms known as dental plaque. S. mutans expresses several virulence factors that allow the organism to tolerate environmental fluctuations and compete with other microorganisms. We recently identified a small hypothetical protein (90 amino acids) essential for the normal growth of the bacterium. Inactivation of the gene, SMU.2137, encoding this protein caused a significant growth defect and loss of various virulence-associated functions. An S. mutans strain lacking this gene was more sensitive to acid, temperature, osmotic, oxidative, and DNA damage-inducing stresses. In addition, we observed an altered protein profile and defects in biofilm formation, bacteriocin production, and natural competence development, possibly due to the fitness defect associated with SMU.2137 deletion. Transcriptome sequencing revealed that nearly 20% of the S. mutans genes were differentially expressed upon SMU.2137 deletion, thereby suggesting a pleiotropic effect. Therefore, we have renamed this hitherto uncharacterized gene as sprV (streptococcal pleiotropic regulator of virulence). The transcript levels of several relevant genes in the sprV mutant corroborated the phenotypes observed upon sprV deletion. Owing to its highly conserved nature, inactivation of the sprV ortholog in Streptococcus gordonii also resulted in poor growth and defective UV tolerance and competence development as in the case of S. mutans. Our experiments suggest that SprV is functionally distinct from its homologs identified by structure and sequence homology. Nonetheless, our current work is aimed at understanding the importance of SprV in the S. mutans biology. IMPORTANCE Streptococcus mutans employs several virulence factors and stress resistance mechanisms to colonize tooth surfaces and cause dental caries. Bacterial pathogenesis is generally controlled by regulators of fitness that are critical for successful disease establishment. Sometimes these regulators, which are potential targets for antimicrobials, are lost in the genomic context due to the lack of annotated homologs. This work outlines the regulatory impact of a small, highly conserved hypothetical protein, SprV, encoded by S. mutans. We show that SprV affects the transcript levels of various virulence factors required for normal growth, biofilm formation, stress tolerance, genetic competence, and bacteriocin production. PMID:28167518
Argimón, Silvia; Caufield, Page W.
2011-01-01
Streptococcus mutans, a member of the human oral flora, is a widely recognized etiological agent of dental caries. The cariogenic potential of S. mutans is related to its ability to metabolize a wide variety of sugars, form a robust biofilm, produce copious amounts of lactic acid, and thrive in the acid environment that it generates. The remarkable genetic variability present within the species is reflected at the phenotypic level, notably in the differences in the cariogenic potential between strains. However, the genetic basis of these differences is yet to be elucidated. In this study, we surveyed by PCR and DNA hybridization the distribution of putative virulence genes, genomic islands, and insertion sequences across a collection of 33 strains isolated from either children with severe early childhood caries (S-ECC) or those who were caries free (CF). We found this genetically diverse group of isolates to be remarkably homogeneous with regard to the distribution of the putative virulence genes and genetic elements analyzed. Our findings point to the role of other factors in the pathogenesis of S-ECC, such as uncharacterized virulence genes, differences in gene expression and/or enzymatic activity, cooperation between S. mutans strains or with other members of the oral biota, and host factors. PMID:21209168
Childers, Noel K.; Momeni, Stephanie S.; Whiddon, Jennifer; Cheon, Kyounga; Cutter, Gary R.; Wiener, Howard W.; Ghazal, Tariq S.; Ruby, John D.; Moser, Stephen A.
2016-01-01
Purpose This study evaluated Streptococcus mutans (Sm) genotypes (GT) between mother and child (M-C) in a high caries risk cohort to explore the association with early childhood caries (ECC). Methods Sixty-nine infants (~1 year-old) had periodic oral examination (dmfs) and collection of microbial samples from dental plaque, saliva and oral other surfaces. Their mothers had an examination and plaque collected. Sm isolates were genotyped using repetitive extragenic palindromic-PCR (rep-PCR). Statistical analyses were conducted for associations of Sm in M-C dyads with caries outcomes. Results Twenty-seven Sm genotypes (GT) from 3,414 isolates were identified. M-C were categorized as GT Match (N=40) or no-Match (N=29). When modeling the severity of ECC at 36-months (~4 years old), the estimated dmfs in the Match group was 2.61 times that in the no-Match group (P=.014). Conclusions Colonization of children with Sm GT that matched with mothers was shown to be highly associated with ECC. Although the data suggest vertical transmission of Sm in 40 of 69 children that shared GT with their mother, it is possible that other individuals transmitted the Sm. Nonetheless, these findings support the importance of the mother's oral microbial status as a contributing influence to their children's oral health. PMID:28390463
Effects of 7-Epiclusianone on Streptococcus mutans and Caries Development in Rats
Branco-de-Almeida, Luciana Salles; Murata, Ramiro Mendonça; Franco, Eliane Melo; dos Santos, Marcelo Henrique; de Alencar, Severino Matias; Koo, Hyun; Rosalen, Pedro Luiz
2011-01-01
The aim of this study was to evaluate the effects of 7-epiclusianone (7-epi) on specific virulence attributes of Streptococcus mutans in vitro and on development of dental caries in vivo. 7-Epi was obtained and purified from fruits of Rheedia brasiliensis. We investigated its influence on surface-adsorbed glucosyltransferase (Gtf) B activity, acid production, and viability of S. mutans in biofilms, as well as on caries development using a rodent model. 7-Epi (100 μg/mL) significantly reduced the activity of surface-adsorbed GtfB (up to 48.0 ± 1.8 of inhibition at 100 μg/mL) and glycolytic pH-drop by S. mutans in biofilms (125 and 250 μg/mL) (vs. vehicle control, p < 0.05). In contrast, the test compound did not significantly affect the bacterial viability when compared to vehicle control (15% ethanol, p > 0.05). Wistar rats treated topically with 7-epi (twice daily, 60-s exposure) showed significantly smaller number of and less severe smooth- and sulcal-surface carious lesions (p < 0.05), without reducing the S. mutans viable population from the animals’ dental biofilms. In conclusion, the natural compound 7-epiclusianone may be a potentially novel pharmacological agent to prevent and control dental caries disease. PMID:20665370
Isolation and identification of bacterial pathogen from mastitis milk in Central Java Indonesia
NASA Astrophysics Data System (ADS)
Harjanti, D. W.; Ciptaningtyas, R.; Wahyono, F.; Setiatin, ET
2018-01-01
Mastitis is a multi-etiologic disease of the mammary gland characterized mainly by reduction in milk production and milk quality due to intramammary infection by pathogenic bacteria. Nearly 83% of lactating dairy cows in Indonesia are infected with mastitis in various inflammation degrees. This study was conducted to isolate and identify the pathogen in milk collected from mastitis-infected dairy cows. The study was carried out in ten smallholder dairy farms in Central Java Indonesia based on animal examination, California mastitis test, isolation bacterial pathogens, Gram staining, Catalase and Coagulase test, and identification of bacteria species using Vitek. Bacteriological examination of milk samples revealed 15 isolates where Streptococcus was predominant species (73.3%) and the coagulase negative Staphylococcus species was identified at the least bacteria (26.7%). The Streptococcus bacteria found were Streptococcus uberis (2 isolates), Streptococcus sanguinis(6 isolates), Streptococcus dysgalactiaessp dysgalactiae(1 isolate) , Streptococcus mitis (1 isolate) and Streptococcus agalactiae (1 isolate). The Staphylococcus isolates comprising of Staphylococcus simulans (1 isolate) and Staphylococcus chromogens (3 isolates). Contamination of raw milkwith pathogenic bacteria can cause outbreaks of human disease (milk borne disease). Thus, proper milk processing method that couldinhibit the growth or kill these pathogenic bacteria is important to ensure the safety of milk and milk products.
Prevalence of Bovine Mastitis Pathogens in Bulk Tank Milk in China
Wang, Ya Jing; Qin, Yun; Guix Vallverdú, Roger; Maldonado García, Jaime; Sun, Wei; Li, Shengli; Cao, Zhijun
2016-01-01
The objectives of this study were to estimate the herd prevalence of major mastitis pathogens in bulk tank milk (BTM) in China dairy herds, to determine the relationship between the presence of mastitis pathogens and bulk tank milk somatic cell counts (BTSCC), and to investigate the impact of different dairy cattle farming modes and region on bacterial species. BTM samples collected from 894 dairy herds in China were examined for the presence of mastitis pathogens. The Flinders Technology Associates (FTA) cards were used for BTM sample collection, storage, and transportation and bacterial DNA amplification by real-time PCR. Among contagious pathogens, Staphylococcus aureus, Streptococcus agalactiae, and Streptococcus dysgalactiae were detected in 50.1, 92.2, and 72.3% of the 894 BTM samples, respectively. Among environmental pathogens, E. coli, Streptococcus uberis, Enterococcus spp., Klebsiella spp., Serratia marcescens, Corynebacterium bovis, and Arcanobacterium pyogenes were detected in 28.6, 8.9, 35.7, 20.0, 1.3, 17.0, and 67.2% of the BTM samples, respectively. Staphylococcal β-lactamase gene was detected in 61.7% of the BTM samples. The presence of Staphylococcus aureus and Arcanobacterium pyogenes were significantly associated with high BTSCC, respectively. Significant differences were found in presence of Staphylococcus aureus, Streptococcus agalactiae, and Streptococcus dysgalactiae in BTM sampled from the small household farms, dairy-farming communities, and large-scaled dairy farms. There were significant differences in the presence of Streptococcus agalactiae, Streptococcus dysgalactiae, Arcanobacterium pyogenes, staphylococcal β-lactamase gene, Staphylococcus spp., Klebsiella spp., Enterococcus spp., and Streptococcus uberis in BTM among Inner Mongolia, Heilongjiang, and Hebei province. In conclusion, contagious mammary pathogens are predominated among pathogens in BTM samples in China. PMID:27187065
Zeng, Lin; Chakraborty, Brinta; Farivar, Tanaz; Burne, Robert A
2017-11-01
The glucose/mannose-phosphotransferase system (PTS) permease EII Man encoded by manLMN in the dental caries pathogen Streptococcus mutans has a dominant influence on sugar-specific, CcpA-independent catabolite repression (CR). Mutations in manL affect energy metabolism and virulence-associated traits, including biofilm formation, acid tolerance, and competence. Using promoter::reporter fusions, expression of the manLMN and the fruRKI operons, encoding a transcriptional regulator, a fructose-1-phosphate kinase and a fructose-PTS permease EII Fru , respectively, was monitored in response to carbohydrate source and in mutants lacking CcpA, FruR, and components of EII Man Expression of genes for EII Man and EII Fru was directly regulated by CcpA and CR, as evinced by in vivo and in vitro methods. Unexpectedly, not only was the fruRKI operon negatively regulated by FruR, but also so was manLMN Carbohydrate transport by EII Man had a negative influence on expression of manLMN but not fruRKI In agreement with the proposed role of FruR in regulating these PTS operons, loss of fruR or fruK substantially altered growth on a number of carbohydrates, including fructose. RNA deep sequencing revealed profound changes in gene regulation caused by deletion of fruK or fruR Collectively, these findings demonstrate intimate interconnection of the regulation of two major PTS permeases in S. mutans and reveal novel and important contributions of fructose metabolism to global regulation of gene expression. IMPORTANCE The ability of Streptococcus mutans and other streptococcal pathogens to survive and cause human diseases is directly dependent upon their capacity to metabolize a variety of carbohydrates, including glucose and fructose. Our research reveals that metabolism of fructose has broad influences on the regulation of utilization of glucose and other sugars, and mutants with changes in certain genes involved in fructose metabolism display profoundly different abilities to grow and express virulence-related traits. Mutants lacking the FruR regulator or a particular phosphofructokinase, FruK, display changes in expression of a large number of genes encoding transcriptional regulators, enzymes required for energy metabolism, biofilm development, biosynthetic and degradative processes, and tolerance of a spectrum of environmental stressors. Since fructose is a major component of the modern human diet, the results have substantial significance in the context of oral health and the development of dental caries. Copyright © 2017 American Society for Microbiology.
Effects of Carbohydrate Source on Genetic Competence in Streptococcus mutans.
Moye, Zachary D; Son, Minjun; Rosa-Alberty, Ariana E; Zeng, Lin; Ahn, Sang-Joon; Hagen, Stephen J; Burne, Robert A
2016-08-01
The capacity to internalize and catabolize carbohydrates is essential for dental caries pathogens to persist and cause disease. The expression of many virulence-related attributes by Streptococcus mutans, an organism strongly associated with human dental caries, is influenced by the peptide signaling pathways that control genetic competence. Here, we demonstrate a relationship between the efficiency of competence signaling and carbohydrate source. A significant increase in the activity of the promoters for comX, comS, and comYA after exposure to competence-stimulating peptide (CSP) was observed in cells growing on fructose, maltose, sucrose, or trehalose as the primary carbohydrate source, compared to cells growing on glucose. However, only cells grown in the presence of trehalose or sucrose displayed a significant increase in transformation frequency. Notably, even low concentrations of these carbohydrates in the presence of excess glucose could enhance the expression of comX, encoding a sigma factor needed for competence, and the effects on competence were dependent on the cognate sugar:phosphotransferase permease for each carbohydrate. Using green fluorescent protein (GFP) reporter fusions, we observed that growth in fructose or trehalose resulted in a greater proportion of the population activating expression of comX and comS, encoding the precursor of comX-inducing peptide (XIP), after addition of CSP, than growth in glucose. Thus, the source of carbohydrate significantly impacts the stochastic behaviors that regulate subpopulation responses to CSP, which can induce competence in S. mutans The signaling pathways that regulate development of genetic competence in Streptococcus mutans are intimately intertwined with the pathogenic potential of the organism, impacting biofilm formation, stress tolerance, and expression of known virulence determinants. Induction of the gene for the master regulator of competence, ComX, by competence-stimulating peptide (CSP) occurs in a subpopulation of cells. Here, we show that certain carbohydrates that are common in the human diet enhance the ability of CSP to activate transcription of comX and that a subset of these carbohydrates stimulates progression to the competent state. The cognate sugar:phosphotransferase permeases for each sugar are needed for these effects. Interestingly, single-cell analysis shows that the carbohydrates that increase com gene expression do so by enhancing the proportion of cells that respond to CSP. A mathematical model is developed to explain how carbohydrates modulate bistable behavior in the system via the ComRS pathway and ComX stability. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Effects of Carbohydrate Source on Genetic Competence in Streptococcus mutans
Moye, Zachary D.; Son, Minjun; Rosa-Alberty, Ariana E.; Zeng, Lin; Ahn, Sang-Joon
2016-01-01
ABSTRACT The capacity to internalize and catabolize carbohydrates is essential for dental caries pathogens to persist and cause disease. The expression of many virulence-related attributes by Streptococcus mutans, an organism strongly associated with human dental caries, is influenced by the peptide signaling pathways that control genetic competence. Here, we demonstrate a relationship between the efficiency of competence signaling and carbohydrate source. A significant increase in the activity of the promoters for comX, comS, and comYA after exposure to competence-stimulating peptide (CSP) was observed in cells growing on fructose, maltose, sucrose, or trehalose as the primary carbohydrate source, compared to cells growing on glucose. However, only cells grown in the presence of trehalose or sucrose displayed a significant increase in transformation frequency. Notably, even low concentrations of these carbohydrates in the presence of excess glucose could enhance the expression of comX, encoding a sigma factor needed for competence, and the effects on competence were dependent on the cognate sugar:phosphotransferase permease for each carbohydrate. Using green fluorescent protein (GFP) reporter fusions, we observed that growth in fructose or trehalose resulted in a greater proportion of the population activating expression of comX and comS, encoding the precursor of comX-inducing peptide (XIP), after addition of CSP, than growth in glucose. Thus, the source of carbohydrate significantly impacts the stochastic behaviors that regulate subpopulation responses to CSP, which can induce competence in S. mutans. IMPORTANCE The signaling pathways that regulate development of genetic competence in Streptococcus mutans are intimately intertwined with the pathogenic potential of the organism, impacting biofilm formation, stress tolerance, and expression of known virulence determinants. Induction of the gene for the master regulator of competence, ComX, by competence-stimulating peptide (CSP) occurs in a subpopulation of cells. Here, we show that certain carbohydrates that are common in the human diet enhance the ability of CSP to activate transcription of comX and that a subset of these carbohydrates stimulates progression to the competent state. The cognate sugar:phosphotransferase permeases for each sugar are needed for these effects. Interestingly, single-cell analysis shows that the carbohydrates that increase com gene expression do so by enhancing the proportion of cells that respond to CSP. A mathematical model is developed to explain how carbohydrates modulate bistable behavior in the system via the ComRS pathway and ComX stability. PMID:27260355
He, Jinzhi; Hwang, Geelsu; Liu, Yuan; Gao, Lizeng; Kilpatrick-Liverman, LaTonya; Santarpia, Peter; Zhou, Xuedong
2016-01-01
ABSTRACT l-Arginine, a ubiquitous amino acid in human saliva, serves as a substrate for alkali production by arginolytic bacteria. Recently, exogenous l-arginine has been shown to enhance the alkalinogenic potential of oral biofilm and destabilize its microbial community, which might help control dental caries. However, l-arginine exposure may inflict additional changes in the biofilm milieu when bacteria are growing under cariogenic conditions. Here, we investigated how exogenous l-arginine modulates biofilm development using a mixed-species model containing both cariogenic (Streptococcus mutans) and arginolytic (Streptococcus gordonii) bacteria in the presence of sucrose. We observed that 1.5% (wt/vol) l-arginine (also a clinically effective concentration) exposure suppressed the outgrowth of S. mutans, favored S. gordonii dominance, and maintained Actinomyces naeslundii growth within biofilms (versus vehicle control). In parallel, topical l-arginine treatments substantially reduced the amounts of insoluble exopolysaccharides (EPS) by >3-fold, which significantly altered the three-dimensional (3D) architecture of the biofilm. Intriguingly, l-arginine repressed S. mutans genes associated with insoluble EPS (gtfB) and bacteriocin (SMU.150) production, while spxB expression (H2O2 production) by S. gordonii increased sharply during biofilm development, which resulted in higher H2O2 levels in arginine-treated biofilms. These modifications resulted in a markedly defective EPS matrix and areas devoid of any bacterial clusters (microcolonies) on the apatitic surface, while the in situ pH values at the biofilm-apatite interface were nearly one unit higher in arginine-treated biofilms (versus the vehicle control). Our data reveal new biological properties of l-arginine that impact biofilm matrix assembly and the dynamic microbial interactions associated with pathogenic biofilm development, indicating the multiaction potency of this promising biofilm disruptor. IMPORTANCE Dental caries is one of the most prevalent and costly infectious diseases worldwide, caused by a biofilm formed on tooth surfaces. Novel strategies that compromise the ability of virulent species to assemble and maintain pathogenic biofilms could be an effective alternative to conventional antimicrobials that indiscriminately kill other oral species, including commensal bacteria. l-Arginine at 1.5% has been shown to be clinically effective in modulating cariogenic biofilms via alkali production by arginolytic bacteria. Using a mixed-species ecological model, we show new mechanisms by which l-arginine disrupts the process of biofilm matrix assembly and the dynamic microbial interactions that are associated with cariogenic biofilm development, without impacting the bacterial viability. These results may aid in the development of enhanced methods to control biofilms using l-arginine. PMID:27161116
Otsugu, Masatoshi; Matayoshi, Saaya; Teramoto, Noboru; Nakano, Kazuhiko
2017-01-01
ABSTRACT Streptococcus mutans, a major pathogen of dental caries, is considered one of the causative agents of infective endocarditis (IE). Recently, bacterial DNA encoding 120-kDa cell surface collagen-binding proteins (CBPs) has frequently been detected from S. mutans-positive IE patients. In addition, some of the CBP-positive S. mutans strains lacked a 190-kDa protein antigen (PA), whose absence strengthened the adhesion to and invasion of endothelial cells. The interaction between pathogenic bacteria and serum or plasma is considered an important virulence factor in developing systemic diseases; thus, we decided to analyze the pathogenesis of IE induced by S. mutans strains with different patterns of CBP and PA expression by focusing on the interaction with serum or plasma. CBP-positive (CBP+)/PA-negative (PA−) strains showed prominent aggregation in the presence of human serum or plasma, which was significantly greater than that with CBP+/PA-positive (PA+) and CBP-negative (CBP−)/PA+ strains. Aggregation of CBP+/PA− strains was also observed in the presence of a high concentration of type IV collagen, a major extracellular matrix protein in serum. In addition, aggregation of CBP+/PA− strains was drastically reduced when serum complement was inactivated. Furthermore, an ex vivo adherence model and an in vivo rat model of IE showed that extirpated heart valves infected with CBP+/PA− strains displayed prominent bacterial mass formation, which was not observed following infection with CBP+/PA+ and CBP−/PA+ strains. These results suggest that CBP+/PA− S. mutans strains utilize serum to contribute to their pathogenicity in IE. PMID:28947650
Otsugu, Masatoshi; Nomura, Ryota; Matayoshi, Saaya; Teramoto, Noboru; Nakano, Kazuhiko
2017-12-01
Streptococcus mutans , a major pathogen of dental caries, is considered one of the causative agents of infective endocarditis (IE). Recently, bacterial DNA encoding 120-kDa cell surface collagen-binding proteins (CBPs) has frequently been detected from S. mutans -positive IE patients. In addition, some of the CBP-positive S. mutans strains lacked a 190-kDa protein antigen (PA), whose absence strengthened the adhesion to and invasion of endothelial cells. The interaction between pathogenic bacteria and serum or plasma is considered an important virulence factor in developing systemic diseases; thus, we decided to analyze the pathogenesis of IE induced by S. mutans strains with different patterns of CBP and PA expression by focusing on the interaction with serum or plasma. CBP-positive (CBP + )/PA-negative (PA - ) strains showed prominent aggregation in the presence of human serum or plasma, which was significantly greater than that with CBP + /PA-positive (PA + ) and CBP-negative (CBP - )/PA+ strains. Aggregation of CBP + /PA - strains was also observed in the presence of a high concentration of type IV collagen, a major extracellular matrix protein in serum. In addition, aggregation of CBP + /PA - strains was drastically reduced when serum complement was inactivated. Furthermore, an ex vivo adherence model and an in vivo rat model of IE showed that extirpated heart valves infected with CBP + /PA - strains displayed prominent bacterial mass formation, which was not observed following infection with CBP + /PA + and CBP - /PA + strains. These results suggest that CBP + /PA - S. mutans strains utilize serum to contribute to their pathogenicity in IE. Copyright © 2017 American Society for Microbiology.
Conti, Stefania; Magliani, Walter; Arseni, Simona; Frazzi, Raffaele; Salati, Antonella; Ravanetti, Lara; Polonelli, Luciano
2002-06-01
Monoclonal (KTmAb) and recombinant (KTscFv) anti-idiotypic antibodies, representing the internal image of a yeast killer toxin, proved to be microbicidal in vitro against important eukaryotic and prokaryotic pathogens such as Candida albicans, Pneumocystis carinii, Mycobacterium tuberculosis, Staphylococcus aureus, S. haemolyticus, Enterococcus faecalis, E. faecium, and Streptococcus pneumoniae, including multidrug-resistant strains. KTmAb and KTscFv exerted a strong therapeutic effect in well-established animal models of candidiasis and pneumocystosis. Streptococcus mutans is the most important etiologic agent of dental caries that might result from the metabolic end products of dental plaque. Effective strategies to reduce the disease potential of dental plaque have considered the possibility of using antibiotics or antibodies against oral streptococci in general and S. mutans in particular. In this study, the activity of KTmAb and KTscFv against S. mutans and the inhibition and reduction by KTmAb of dental colonization by S. mutans and other oral streptococci in an ex vivo model of human teeth were investigated. KTscFv and KTmAb were used in a conventional colony forming unit (CFU) assay against a serotype C strain of S. mutans, and other oral streptococci (S. intermedius, S. mitis, S. oralis, S. salivarius). An ex vivo model of human teeth submerged in saliva was used to establish KTmAb potential of inhibiting or reducing the adhesion to dental surfaces by S. mutans and other oral streptococci. KTmAb and KTscFv kill in vitro S. mutans and other oral streptococci. KTmAb inhibit colonization of dental surfaces by S. mutans and oral streptococci in the ex vivo model. Killer antibodies with antibiotic activity or their engineered derivatives may have a potential in the prevention of dental caries in vivo.
Analysis of Small RNAs in Streptococcus mutans under Acid Stress-A New Insight for Caries Research.
Liu, Shanshan; Tao, Ye; Yu, Lixia; Zhuang, Peilin; Zhi, Qinghui; Zhou, Yan; Lin, Huancai
2016-09-14
Streptococcus mutans (S. mutans) is the major clinical pathogen responsible for dental caries. Its acid tolerance has been identified as a significant virulence factor for its survival and cariogenicity in acidic conditions. Small RNAs (sRNAs) are recognized as key regulators of virulence and stress adaptation. Here, we constructed three libraries of sRNAs with small size exposed to acidic conditions for the first time, followed by verification using qRT-PCR. The levels of two sRNAs and target genes predicted to be bioinformatically related to acid tolerance were further evaluated under different acid stress conditions (pH 7.5, 6.5, 5.5, and 4.5) at three time points (0.5, 1, and 2 h). Meanwhile, bacterial growth characteristics and vitality were assessed. We obtained 1879 sRNAs with read counts of at least 100. One hundred and ten sRNAs were perfectly mapped to reported msRNAs in S. mutans. Ten out of 18 sRNAs were validated by qRT-PCR. The survival of bacteria declined as the acid was increased from pH 7.5 to 4.5 at each time point. The bacteria can proliferate under each pH except pH 4.5 with time. The levels of sRNAs gradually decreased from pH 7.5 to 5.5, and slightly increased in pH 4.5; however, the expression levels of target mRNAs were up-regulated in acidic conditions than in pH 7.5. These results indicate that some sRNAs are specially induced at acid stress conditions, involving acid adaptation, and provide a new insight into exploring the complex acid tolerance for S. mutans.
D-Tagatose inhibits the growth and biofilm formation of Streptococcus mutans
Hasibul, Khaleque; Nakayama-Imaohji, Haruyuki; Hashimoto, Masahito; Yamasaki, Hisashi; Ogawa, Takaaki; Waki, Junpei; Tada, Ayano; Yoneda, Saori; Tokuda, Masaaki; Miyake, Minoru; Kuwahara, Tomomi
2018-01-01
Dental caries is an important global health concern and Streptococcus mutans has been established as a major cariogenic bacterial species. Reports indicate that a rare sugar, D-tagatose, is not easily catabolized by pathogenic bacteria. In the present study, the inhibitory effects of D-tagatose on the growth and biofilm formation of S. mutans GS-5 were examined. Monitoring S. mutans growth over a 24 h period revealed that D-tagatose prolonged the lag phase without interfering with the final cell yield. This growth retardation was also observed in the presence of 1% sucrose, although it was abolished by the addition of D-fructose. S. mutans biofilm formation was significantly inhibited by growth in sucrose media supplemented with 1 and 4% D-tagatose compared with that in a culture containing sucrose alone, while S. mutans formed granular biofilms in the presence of this rare sugar. The inhibitory effect of D-tagatose on S. mutans biofilm formation was significantly more evident than that of xylitol. Growth in sucrose media supplemented with D-tagatose significantly decreased the expression of glucosyltransferase, exo-β-fructosidase and D-fructose-specific phosphotransferase genes but not the expression of fructosyltransferase compared with the culture containing sucrose only. The activity of cell-associated glucosyltransferase in S. mutans was inhibited by 4% D-tagatose. These results indicate that D-tagatose reduces water-insoluble glucan production from sucrose by inhibiting glucosyltransferase activities, which limits access to the free D-fructose released during this process and retards the growth of S. mutans. Therefore, foods and oral care products containing D-tagatose are anticipated to reduce the risk of caries by inhibiting S. mutans biofilm formation. PMID:29115611
Kankariya, Amit R; Patel, Alok R; Kunte, Sanket S
2016-01-01
Despite advances in the development of anticaries chemotherapy, the newer agents are unable to control the initiation of dental caries. Research and development of natural antibacterial agents that are safe for the host as well as specific for oral pathogens is awaited. Neem tree extracts have been used for thousands of years for maintaining overall well-being. Chewing neem sticks in the morning is the most common indigenous method of cleaning the mouth in rural population. This has generated the interest of the dentists for the use of neem for controlling dental diseases. This study aims to evaluate the quantitative and qualitative effect of different concentrations of water soluble azadirachtin (neem metabolite) on Streptococcus mutans (S. mutans) against chlorhexidine. Plaque was collected from 30 children aged 8-12 years reporting to the Department of Pediatric and Preventive Dentistry, Bharti Vidyapeeth Dental College, Pune and transported to the laboratory. After incubation of the plates the inhibitory zones were noted and the diameter of the zone of inhibition was measured and recorded to check the inhibition of growth of S. mutans. For testing the bacterial survival, the biofilms were prepared and colony forming units (CFU) was enumerated using a digital colony counter. Two-way analysis of variance (ANOVA) and Tukey's test. The results show that there was no statistically significant difference in the inhibition of S. mutans between 40% concentration of water soluble azadirachtin and chlorhexidine. This study concluded that 40% water soluble azadirachtin is as effective as 0.2% chlorhexidine mouthrinse in reducing the S. mutans count in dental plaque. Hence, a water soluble formulation of azadirachtin may provide the maximum benefit to mankind to prevent dental caries.
Prunus mume extract exhibits antimicrobial activity against pathogenic oral bacteria.
Seneviratne, Chamida J; Wong, Ricky W K; Hägg, Urban; Chen, Yong; Herath, Thanuja D K; Samaranayake, P Lakshman; Kao, Richard
2011-07-01
Prunus mume is a common fruit in Asia, which has been used in traditional Chinese medicine. In this study, we focused on the antimicrobial properties of Prunus mume extract against oral pathogens related to dental caries and periodontal diseases. A total of 15 oral pathogens including Streptococcus mutans, S. sobrinus, S. mitis, S. sanguinis, Lactobacillus acidophilus, P. gingivalis, Aggregatibacter actinomycetemcomitans, and Candida species were included in the study. Initially, agar diffusion assay was performed to screen the antimicrobial activities of Prunus mume extract. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were then determined for sensitive species. Effect of Prunus mume extract on human oral keratinocytes (HOK) viability was also tested. In the agar diffusion assay, drug suspension of 2 g/mL was able to inhibit all the bacterial species tested, but not the fungal species. MIC and MBC range of Prunus mume extract against the oral bacteria was 0.15625-0.0003 g/mL and P. gingivalis being the most susceptible species. Prune extract did not cause any detrimental effect on HOK. Prunus mume extract may be a potential candidate for developing an oral antimicrobial agent to control or prevent dental diseases associated with oral pathogenic bacteria. © 2011 The Authors. International Journal of Paediatric Dentistry © 2011 BSPD, IAPD and Blackwell Publishing Ltd.
Horizontal transmission of streptococcus mutans in schoolchildren
Castillo, Ana M.; Liébana, Maria J.; Castillo, Francisca; Martín-Platero, Antonio; Liébana, José
2012-01-01
Objetive: The aim of this study was to analyze possible horizontal transmission patterns of S. mutans among 6-7-yr-old schoolchildren from the same class, identifying genotypes and their diversity and relationship with caries disease status. Study Design: Caries indexes and saliva mutans streptococci and lactobacilli counts were recorded in 42 schoolchildren. Mutans streptococci colonies were identified by means of biochemical tests and all S. mutans strains were genotyped by arbitrarily primed polymerase chain reaction. A child was considered free of S. mutans when it could not be isolated in 3 samples at 1-week intervals. Results: S. mutans was isolated in 30 schoolchildren: 20 having one genotype and 10 two genotypes. Higher mutans streptococci and caries index values were found in those with two genotypes. Five genotypes were isolated in more than 1 schoolchild and one of these was isolated in 3 schoolchildren. Our results suggest that horizontal transmission may take place. Conclusion: Schoolchildren aged 6-7 yrs may be the source of mutual transmission of S. mutans. Key words:Streptococcus mutans, Horizontal transmission, AP-PCR, genotyping PMID:22143733
Wang, Bing-Yan; Kuramitsu, Howard K
2005-01-01
Streptococcus mutans has been recognized as an important etiological agent in human dental caries. Some strains of S. mutans also produce bacteriocins. In this study, we sought to demonstrate that bacteriocin production by S. mutans strains GS5 and BM71 was mediated by quorum sensing, which is dependent on a competence-stimulating peptide (CSP) signaling system encoded by the com genes. We also demonstrated that interactions with some other oral streptococci interfered with S. mutans bacteriocin production both in broth and in biofilms. The inhibition of S. mutans bacteriocin production by oral bacteria was stronger in biofilms than in broth. Using transposon Tn916 mutagenesis, we identified a gene (sgc; named for Streptococcus gordonii challisin) responsible for the inhibition of S. mutans bacteriocin production by S. gordonii Challis. Interruption of the sgc gene in S. gordonii Challis resulted in attenuated inhibition of S. mutans bacteriocin production. The supernatant fluids from the sgc mutant did not inactivate the exogenous S. mutans CSP as did those from the parent strain Challis. S. gordonii Challis did not inactivate bacteriocin produced by S. mutans GS5. Because S. mutans uses quorum sensing to regulate virulence, strategies designed to interfere with these signaling systems may have broad applicability for biological control of this caries-causing organism.
Moradian, Hamid; Bazargani, Abdollah; Rafiee, Azade; Nazarialam, Ali
2013-09-01
Dental caries is still remained as a major health problem. This problem has created a new interest to search for new antimicrobial agents from various sources including medicinal plants. Since limited data is available so far regarding the antibacterial effect of Coriandrum sativum seed and Dentol Drop against Streptococcus mutans, this study aims to assess this activity. This experimental study was conducted in Shiraz University of Medical Sciences. In vitro comparison of antimicrobial activity of aqueous decoction of Coriandrum sativum seed and Dentol drop with chlorhexidine against Streptococcus mutans was evaluated using disk diffusion and broth microdilution assays. Positive and negative controls were considered. The data was statistically analyzed by applying Kruskal-Wallis and Tukey post-hoc test to compare the groups using SPSS software (version 17). Dentol drop showed a remarkable antibacterial activity, in comparison with chlorhexidine, against S. mutans in the disk diffusion (p value = 0.005), and broth microdilution assays (p value = 0.0001). Based on the results of this study, Coriandrum sativum seed did not posses any antibacterial property. Coriandrum sativum seed showed no anti-Streptococcus mutans activity. Dentol drop exhibited a remarkable antibacterial activity against S. mutans when tested in vitro. Dentol drop can be further studied as a preventive measure for dental caries.
Guo, Lihong; McLean, Jeffrey S.; Lux, Renate; He, Xuesong; Shi, Wenyuan
2015-01-01
Streptococcus mutans is considered the principal cariogenic bacterium for dental caries. Despite the recognition of their importance for cariogenesis, the possible coordination among S. mutans’ main virulence factors, including glucan production, acidogenicity and aciduricity, has been less well studied. In the present study, using S. mutans strains with surface-displayed pH-sensitive pHluorin, we revealed sucrose availability- and Gtf functionality-dependent proton accumulation on S. mutans surface. Consistent with this, using a pH-sensitive dye, we demonstrated that both in vivo cell-produced and in vitro enzymatically synthesized insoluble glucans displayed proton-concentrating ability. Global transcriptomics revealed proton accumulation triggers the up-regulation of genes encoding functions involved in acid tolerance response in a glucan-dependent manner. Our data suggested that this proton enrichment around S. mutans could pre-condition the bacterium for acid-stress. Consistent with this hypothesis, we found S. mutans strains defective in glucan production were more acid sensitive. Our study revealed for the first time that insoluble glucans is likely an essential factor linking acidogenicity with aciduricity. The coordination of these key virulence factors could provide new insights on how S. mutans may have become a major cariogenic pathogen. PMID:26657939
Collagen-binding proteins of Streptococcus mutans and related streptococci.
Avilés-Reyes, A; Miller, J H; Lemos, J A; Abranches, J
2017-04-01
The ability of Streptococcus mutans to interact with collagen through the expression of collagen-binding proteins (CBPs) bestows this oral pathogen with an alternative to the sucrose-dependent mechanism of colonization classically attributed to caries development. Based on the abundance and distribution of collagen throughout the human body, stringent adherence to this molecule grants S. mutans with the opportunity to establish infection at different host sites. Surface proteins, such as SpaP, WapA, Cnm and Cbm, have been shown to bind collagen in vitro, and it has been suggested that these molecules play a role in colonization of oral and extra-oral tissues. However, robust collagen binding is not achieved by all strains of S. mutans, particularly those that lack Cnm or Cbm. These observations merit careful dissection of the contribution from these different CBPs towards tissue colonization and virulence. In this review, we will discuss the current understanding of mechanisms used by S. mutans and related streptococci to colonize collagenous tissues, and the possible contribution of CBPs to infections in different sites of the host. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Moreira, Monique Rodrigues; Souza, Ariana Borges; Soares, Sandra; Bianchi, Thamires Chiquini; de Souza Eugênio, Daniele; Lemes, Danieli Cristina; Martins, Carlos Henrique Gomes; da Silva Moraes, Thaís; Tavares, Denise Crispim; Ferreira, Natália Helen; Ambrósio, Sergio Ricardo; Veneziani, Rodrigo Cassio Sola
2016-07-01
Many studies have reported that medicinal plant extracts can inhibit oral pathogen growth or adhesion to surfaces and therefore reduce dental caries formation. The addition of these extracts to oral products like mouthwashes and dentifrices is considered an important strategy in caries control. In this sense, we have developed a Mikania glomerata extract with high ent-kaurenoic acid content (KAMg). So, this work describes the preparation of such extract and the development of a validated HPLC-DAD method to determine its ent-kaurenoic acid (KA) content. Herein it is also described the KAMg in vitro antibacterial evaluation against several cariogenic bacteria in comparison with KA and the investigation of further aspects of the KAMg activity. Toxicological aspects of the developed extract were evaluated by assessing its cytotoxicity and genotoxicity. KA and a KA-rich extract like KAMg showed to inhibit the growth of microorganisms responsible for dental caries at relatively low MIC (Minimum inhibitory concentration) values, albeit not as low as the MIC value obtained for chlorhexidine digluconate (CHD), the golden anticariogenic standard approved by the American Dental Association Council on Dental Therapeutics. However, KAMg was more effective to inhibit the formation of a Streptococcus mutans biofilm with four times lower MICB50 (minimum inhibitory concentration that reduces 50% of the biofilm) value as compared with CHD. Taking into account all these data and considering the absence of genotoxic and cytotoxic activity under the tested conditions, it is suggested that KAMg is a natural product to be considered as active ingredient in oral care products. Copyright © 2016 Elsevier B.V. All rights reserved.
Identification of the Microbiota in Carious Dentin Lesions Using 16S rRNA Gene Sequencing
Obata, Junko; Takeshita, Toru; Shibata, Yukie; Yamanaka, Wataru; Unemori, Masako; Akamine, Akifumi; Yamashita, Yoshihisa
2014-01-01
While mutans streptococci have long been assumed to be the specific pathogen responsible for human dental caries, the concept of a complex dental caries-associated microbiota has received significant attention in recent years. Molecular analyses revealed the complexity of the microbiota with the predominance of Lactobacillus and Prevotella in carious dentine lesions. However, characterization of the dentin caries-associated microbiota has not been extensively explored in different ethnicities and races. In the present study, the bacterial communities in the carious dentin of Japanese subjects were analyzed comprehensively with molecular approaches using the16S rRNA gene. Carious dentin lesion samples were collected from 32 subjects aged 4–76 years, and the 16S rRNA genes, amplified from the extracted DNA with universal primers, were sequenced with a pyrosequencer. The bacterial composition was classified into clusters I, II, and III according to the relative abundance (high, middle, low) of Lactobacillus. The bacterial composition in cluster II was composed of relatively high proportions of Olsenella and Propionibacterium or subdominated by heterogeneous genera. The bacterial communities in cluster III were characterized by the predominance of Atopobium, Prevotella, or Propionibacterium with Streptococcus or Actinomyces. Some samples in clusters II and III, mainly related to Atopobium and Propionibacterium, were novel combinations of microbiota in carious dentin lesions and may be characteristic of the Japanese population. Clone library analysis revealed that Atopobium sp. HOT-416 and P. acidifaciens were specific species associated with dentinal caries among these genera in a Japanese population. We summarized the bacterial composition of dentinal carious lesions in a Japanese population using next-generation sequencing and found typical Japanese types with Atopobium or Propionibacterium predominating. PMID:25083880
Identification of the microbiota in carious dentin lesions using 16S rRNA gene sequencing.
Obata, Junko; Takeshita, Toru; Shibata, Yukie; Yamanaka, Wataru; Unemori, Masako; Akamine, Akifumi; Yamashita, Yoshihisa
2014-01-01
While mutans streptococci have long been assumed to be the specific pathogen responsible for human dental caries, the concept of a complex dental caries-associated microbiota has received significant attention in recent years. Molecular analyses revealed the complexity of the microbiota with the predominance of Lactobacillus and Prevotella in carious dentine lesions. However, characterization of the dentin caries-associated microbiota has not been extensively explored in different ethnicities and races. In the present study, the bacterial communities in the carious dentin of Japanese subjects were analyzed comprehensively with molecular approaches using the16S rRNA gene. Carious dentin lesion samples were collected from 32 subjects aged 4-76 years, and the 16S rRNA genes, amplified from the extracted DNA with universal primers, were sequenced with a pyrosequencer. The bacterial composition was classified into clusters I, II, and III according to the relative abundance (high, middle, low) of Lactobacillus. The bacterial composition in cluster II was composed of relatively high proportions of Olsenella and Propionibacterium or subdominated by heterogeneous genera. The bacterial communities in cluster III were characterized by the predominance of Atopobium, Prevotella, or Propionibacterium with Streptococcus or Actinomyces. Some samples in clusters II and III, mainly related to Atopobium and Propionibacterium, were novel combinations of microbiota in carious dentin lesions and may be characteristic of the Japanese population. Clone library analysis revealed that Atopobium sp. HOT-416 and P. acidifaciens were specific species associated with dentinal caries among these genera in a Japanese population. We summarized the bacterial composition of dentinal carious lesions in a Japanese population using next-generation sequencing and found typical Japanese types with Atopobium or Propionibacterium predominating.
Rao, Arun Prasad; Austin, Ravi David
2014-01-01
Background: The development of dental caries has been associated with the oral prevalence of Streptococcus mutans. Four serotypes of S. mutans have been reported, namely serotype c, e, f, and k that are classified based on the composition and linkages of cell wall polysaccharides, response to physiological reactions, sero-specificity and 16s rRNA homology. Although the oral prevalence of S. mutans serotype c in Indian subjects with or without caries is known, the prevalence of the other three serotypes, e, f, and k are not known. Hence in this study, we have investigated the occurrence of the e, f, and k serotypes in children with or without caries within the age group of 6-12 years. Materials and Methods: Genomic DNA isolated from whole saliva of caries active (CA) and caries free (CF) groups were first screened for the presence of S. mutans by strain specific polymerase chain reaction (PCR). Those samples that tested positive for the presence of S. mutans were further analyzed by serotype specific PCR to identify the prevalence of the serotypes. Results: Strain specific PCR indicated a higher prevalence of S. mutans in CA group (80%) relative to CF group (43%). Further analysis of the S. mutans positive samples in both groups indicated a higher prevalence of serotype k and e, followed by serotype f in CA group. Conclusion: The present data clearly establishes a novel S. mutans serotype prevalence hierarchy in children from this region, compared with those that have been reported elsewhere. Besides, the data are also clinically significant as the occurrence of serotype k has been associated with infective endocarditis. PMID:25191062
Cao, Xi-Xi; Fan, Jian; Chen, Jiang; Li, Yu-Hong; Fan, Ming-Wen
2016-06-01
The levels of Streptococcus (S.) mutans infections in saliva were evaluated and a comparison for specific antibody levels among children with different levels of S. mutans infection was made. The promising epitopic regions of antigen AgI/II (PAc) and glucosyltransferase (GTF) for potential vaccine targets related to S. mutans adherence were screened. A total of 94 children aged 3-4 years were randomly selected, including 53 caries-negative and 41 caries-positive children. The values of S. mutans and those of salivary total secretory immunoglobulin A (sIgA), anti-PAc and anti-Glucan binding domain (anti-GLU) were compared to determine the correlation among them. It was found the level of s-IgA against specific antigens did not increase with increasing severity of S. mutans infection, and the complete amino acid sequence of PAc and GTFB was analyzed using the DNAStar Protean system for developing specific anti-caries vaccines related to S. mutans adherence. A significantly positive correlation between the amount of S. mutans and children decayed, missing, and filled teeth index was observed. No significant difference was detected in specific sIgA against PAc or GLU between any two groups. No significant correlation was found between such specific sIgA and caries index. A total of 16 peptides from PAc as well as 13 peptides from GTFB were chosen for further investigation. S. mutans colonization contributed to early children caries as an important etiological factor. The level of sIgA against specific antigens did not increase with increasing severity of S. mutans infection in children. The epitopes of PAc and GTF have been screened to develop the peptide-based or protein-based anti-caries vaccines.
Rao, Arun Prasad; Austin, Ravi David
2014-07-01
The development of dental caries has been associated with the oral prevalence of Streptococcus mutans. Four serotypes of S. mutans have been reported, namely serotype c, e, f, and k that are classified based on the composition and linkages of cell wall polysaccharides, response to physiological reactions, sero-specificity and 16s rRNA homology. Although the oral prevalence of S. mutans serotype c in Indian subjects with or without caries is known, the prevalence of the other three serotypes, e, f, and k are not known. Hence in this study, we have investigated the occurrence of the e, f, and k serotypes in children with or without caries within the age group of 6-12 years. Genomic DNA isolated from whole saliva of caries active (CA) and caries free (CF) groups were first screened for the presence of S. mutans by strain specific polymerase chain reaction (PCR). Those samples that tested positive for the presence of S. mutans were further analyzed by serotype specific PCR to identify the prevalence of the serotypes. Strain specific PCR indicated a higher prevalence of S. mutans in CA group (80%) relative to CF group (43%). Further analysis of the S. mutans positive samples in both groups indicated a higher prevalence of serotype k and e, followed by serotype f in CA group. The present data clearly establishes a novel S. mutans serotype prevalence hierarchy in children from this region, compared with those that have been reported elsewhere. Besides, the data are also clinically significant as the occurrence of serotype k has been associated with infective endocarditis.
Salivary Microbiome Diversity in Caries-Free and Caries-Affected Children.
Jiang, Shan; Gao, Xiaoli; Jin, Lijian; Lo, Edward C M
2016-11-25
Dental caries (tooth decay) is an infectious disease. Its etiology is not fully understood from the microbiological perspective. This study characterizes the diversity of microbial flora in the saliva of children with and without dental caries. Children (3-4 years old) with caries ( n = 20) and without caries ( n = 20) were recruited. Unstimulated saliva (2 mL) was collected from each child and the total microbial genomic DNA was extracted. DNA amplicons of the V3-V4 hypervariable region of the bacterial 16S rRNA gene were generated and subjected to Illumina Miseq sequencing. A total of 17 phyla, 26 classes, 40 orders, 80 families, 151 genera, and 310 bacterial species were represented in the saliva samples. There was no significant difference in the microbiome diversity between caries-affected and caries-free children ( p > 0.05). The relative abundance of several species ( Rothia dentocariosa , Actinomyces graevenitzii , Veillonella sp. oral taxon 780 , Prevotella salivae , and Streptococcus mutans ) was higher in the caries-affected group than in the caries-free group ( p < 0.05). Fusobacterium periodonticum and Leptotrichia sp. oral clone FP036 were more abundant in caries-free children than in caries-affected children ( p < 0.05). The salivary microbiome profiles of caries-free and caries-affected children were similar. Salivary counts of certain bacteria such as R. dentocariosa and F. periodonticum may be useful for screening/assessing children's risk of developing caries.
Kim, Bong-Soo; Han, Dong-Hun; Lee, Ho; Oh, Bumjo
2018-03-28
Salivary microbiota alterations can correlate with dental caries development in children, and mechanisms mediating this association need to be studied in further detail. Our study explored salivary microbiota shifts in children and their association with the incidence of dental caries with dentine involvement. Salivary samples were collected from children with caries and their subsequently matched caries-free controls before and after caries development. The microbiota was analyzed by 16S rRNA gene-based high-throughput sequencing. The salivary microbiota was more diverse in caries-free subjects than in those with dental caries with dentine involvement (DC). Although both groups exhibited similar shifts in microbiota composition, an association with caries was found by function prediction. Analysis of potential microbiome functions revealed that Granulicatella, Streptococcus, Bulleidia , and Staphylococcus in the DC group could be associated with the bacterial invasion of epithelial cells, phosphotransferase system, and D -alanine metabolism, whereas Neisseria, Lautropia , and Leptotrichia in caries-free subjects could be associated with bacterial motility protein genes, linoleic acid metabolism, and flavonoid biosynthesis, suggesting that functional differences in the salivary microbiota may be associated with caries formation. These results expand the current understanding of the functional significance of the salivary microbiome in caries development, and may facilitate the identification of novel biomarkers and treatment targets.
Complete genome sequence of Streptococcus mutans GS-5, a serotype c strain.
Biswas, Saswati; Biswas, Indranil
2012-09-01
Streptococcus mutans, a principal causative agent of dental caries, is considered to be the most cariogenic among all oral streptococci. Of the four S. mutans serotypes (c, e, f, and k), serotype c strains predominate in the oral cavity. Here, we present the complete genome sequence of S. mutans GS-5, a serotype c strain originally isolated from human carious lesions, which is extensively used as a laboratory strain worldwide.
Shimotoyodome, A; Kobayashi, H; Tokimitsu, I; Hase, T; Inoue, T; Matsukubo, T; Takaesu, Y
2007-01-01
Colonization of enamel surfaces by Streptococcus mutans is thought to be initiated by the attachment of bacteria to a saliva-derived conditioning film (acquired pellicle). However, the clinical relevance of the contribution of saliva-promoted S. mutans adhesion in biofilm formation has not yet been fully elucidated. The aim of this study was to correlate saliva-promoted S. mutans adhesion with biofilm formation in humans. We correlated all measurements of salivary factors and dental plaque formation in 70 healthy subjects. Dental plaque development after thorough professional teeth cleaning correlated positively with S. mutans adhesion onto saliva-coated hydroxyapatite pellets and the glycoprotein content of either parotid or whole saliva. Saliva-promoted S. mutans adhesion and glycoprotein content were also positively correlated with each other in parotid and whole saliva. By contrast, neither salivary mutans streptococci, Lactobacillus nor Candida correlated with biofilm formation. Parotid saliva-mediated S. mutans adhesion was significantly higher in 12 caries-experienced (CE) subjects than in 9 caries-inexperienced (CI) subjects. Salivary S. mutans adhesion was significantly less (p < 0.01) in the CI group than in the CE group. In conclusion, the present findings suggest the initial S. mutans adhesion, modulated by salivary protein adsorption onto the enamel surface, as a possible correlate of susceptibility to dental plaque and caries. Copyright 2007 S. Karger AG, Basel.
Loyola Rodriguez, J P; Galvan Torres, L J; Martinez Martinez, R E; Abud Mendoza, C; Medina Solis, C E; Ramos Coronel, S; Garcia Cortes, J O; Domínguez Pérez, R A
2016-10-01
The objective of this study was to determine dental caries frequency and to analyze salivary and bacterial factors associated with active and inactive systemic lupus erythematous (SLE) patients. Also, a proposal to identify dental caries by a surface, teeth, and the patient was developed. A cross-sectional, blinded study that included 60 SLE patients divided into two groups of 30 subjects each, according to the Activity Index for Diagnosis of Systemic Lupus Erythematous (SLEDAI). The decayed, missing, and filled teeth (DMFT) index and Integrative Dental Caries Index (IDCI) were used for analyzing dental caries. The saliva variables recorded were: flow, pH, and buffer capacity. The DNA copies of Streptococcus mutans and Streptococcus sobrinus were estimated by real-time PCR. The caries frequency was 85% for SLE subjects (73.3% for inactive systemic lupus erythematous (ISLE) and 100% for active systemic lupus erythematous (ASLE)); DMFT for the SLE group was 12.6 ± 5.7 and the IDCI was (9.8 ± 5.9). The ASLE group showed a salivary flow of 0.65 compared with 0.97 ml/1 min from the ISLE group; all variables mentioned above showed a statistical difference (p < 0.05). The salivary pH was 4.6 (6.06 for ISLE and 3.9 for ASLE). The DNA copies of S. mutans and S. sobrinus were high; all variables mentioned above show a significant statistical difference (p < 0.05) between groups. SLE patients had high DMFT and IDCI scores that were associated with a decrease in salivary flow, pH, and buffer capacity. There were high counts of S. sobrinus and S. mutans species, and IDCI is a useful tool to provide more detail about dental caries in epidemiological studies. © The Author(s) 2016.
Dental health of 6-year-old children in Alpes Maritimes, France.
Joseph, C; Velley, A M; Pierre, A; Bourgeois, D; Muller-Bolla, M
2011-10-01
To describe the dental health status of 6-year-old children using the ICDAS-II advanced method and to evaluate the association between the known caries risk factors with the cavitated caries lesion (WHO basic method) or with both non-cavitated and cavitated caries lesion caries (ICDAS II). In this cross-sectional study, a questionnaire was used to evaluate oral health and dietary habits of children. A clinical examination and a Cario analysis test (Pierre Fabre Oral care) were performed. Logistic regression analyses were used to assess the association between caries and daily tooth-brushing, dietary habits, visible plaque and salivary factors. There were 341 children (52% female and 6.25+/-0.46 years of age) in this study. Using the ICDAS-II advanced method, 39% of the children were caries-free. This proportion was larger (67.2%) using the WHO method. In multivariate models, visible dental plaque and Streptococcus mutans count were associated with caries experience registered as ICDAS-II codes 1-6 or codes 3-6. The absence of daily tooth-brushing with fluoridated toothpaste was associated only with caries experience ICDAS-II codes 3-6. The use of WHO or ICDAS-II method changed the proportion of caries-free children but not the clinical caries risk factors associated with caries experience.
Krzyściak, Wirginia; Papież, Monika; Jurczak, Anna; Kościelniak, Dorota; Vyhouskaya, Palina; Zagórska-Świeży, Katarzyna; Skalniak, Anna
2017-01-01
Streptococcus mutans (MS) and its biotype I are the strains most frequently found in dental plaque of young children. Our results indicate that in children pyruvate kinase (PK) activity increases significantly in dental plaque, and this corresponds with caries progression. The MS strains isolated in this study or their main glycolytic metabolism connected with PK enzymes might be useful risk factors for studying the pathogenesis and target points of novel therapies for dental caries. The relationship between PK activity, cariogenic biofilm formation and selected biotypes occurrence was studied. S. mutans dental plaque samples were collected from supragingival plaque of individual deciduous molars in 143 subjects. PK activity was measured at different time points during biofilm formation. Patients were divided into two groups: initial stage decay, and extensive decay. Non-parametric analysis of variance and analysis of covariance were used to determine the connections between S. mutans levels, PK activity and dental caries biotypes. A total of 143 strains were derived from subjects with caries. Biotyping data showed that 62, 23, 50, and 8 strains were classified as biotypes I, II, III, IV, respectively. PK activity in biotypes I, II, and IV was significantly higher in comparison to that in biotype III. The correlation between the level of S. mutans in dental plaque and PK activity was both statistically significant (p < 0.05) and positive. The greater the level of S. mutans in the biofilm (colony count and total biomass), the higher the PK activity; similarly, a low bacterial count correlated with low PK activity. PMID:28559883
Dental caries and associated factors in twins with Down syndrome: a case report.
Moreira, Maurício José Santos; Schwertner, Carolina; Dall'Onder, Ana Paula; Klaus, Natália Mincato; Parolo, Clarissa Cavalcanti Fatturi; Hashizume, Lina Naomi
2017-03-01
Down syndrome (DS) is the most common genetic disorder in humans, but its incidence in monozygotic twins is extremely rare. The aim of this study was to determine the factors associated with dental caries in a pair of monozygotic twin girls with DS, where one had caries experience and the other did not. Clinical examination, salivary Streptococcus mutans (S. mutans) levels and their genotypic diversity, the biochemical composition of the dental biofilm, the frequency of sucrose consumption, and toothbrushing habits were assessed from the twin girls. Twin with caries experience showed higher levels of S. mutans in the saliva and lower concentrations of calcium, phosphate, and fluoride and higher concentrations of extracellular polysaccharides in the biofilm compared to her sister. Genotypic diversity of S. mutans was also higher in the twin with caries experience. Dental biofilm composition showed different patterns of cariogenicity between the two sisters, which may also by itself explain the difference in the dental caries between them. © 2016 Special Care Dentistry Association and Wiley Periodicals, Inc.
Binepal, Gursonika; Gill, Kamal; Crowley, Paula; Cordova, Martha; Brady, L. Jeannine; Senadheera, Dilani B.
2016-01-01
ABSTRACT Potassium (K+) is the most abundant cation in the fluids of dental biofilm. The biochemical and biophysical functions of K+ and a variety of K+ transport systems have been studied for most pathogenic bacteria but not for oral pathogens. In this study, we establish the modes of K+ acquisition in Streptococcus mutans and the importance of K+ homeostasis for its virulence attributes. The S. mutans genome harbors four putative K+ transport systems that included two Trk-like transporters (designated Trk1 and Trk2), one glutamate/K+ cotransporter (GlnQHMP), and a channel-like K+ transport system (Kch). Mutants lacking Trk2 had significantly impaired growth, acidogenicity, aciduricity, and biofilm formation. [K+] less than 5 mM eliminated biofilm formation in S. mutans. The functionality of the Trk2 system was confirmed by complementing an Escherichia coli TK2420 mutant strain, which resulted in significant K+ accumulation, improved growth, and survival under stress. Taken together, these results suggest that Trk2 is the main facet of the K+-dependent cellular response of S. mutans to environment stresses. IMPORTANCE Biofilm formation and stress tolerance are important virulence properties of caries-causing Streptococcus mutans. To limit these properties of this bacterium, it is imperative to understand its survival mechanisms. Potassium is the most abundant cation in dental plaque, the natural environment of S. mutans. K+ is known to function in stress tolerance, and bacteria have specialized mechanisms for its uptake. However, there are no reports to identify or characterize specific K+ transporters in S. mutans. We identified the most important system for K+ homeostasis and its role in the biofilm formation, stress tolerance, and growth. We also show the requirement of environmental K+ for the activity of biofilm-forming enzymes, which explains why such high levels of K+ would favor biofilm formation. PMID:26811321
Moradian, Hamid; Bazargani, Abdollah; Rafiee, Azade; Nazarialam, Ali
2013-01-01
Background and objectives Dental caries is still remained as a major health problem. This problem has created a new interest to search for new antimicrobial agents from various sources including medicinal plants. Since limited data is available so far regarding the antibacterial effect of Coriandrum sativum seed and Dentol Drop against Streptococcus mutans, this study aims to assess this activity. Materials and Methods This experimental study was conducted in Shiraz University of Medical Sciences. In vitro comparison of antimicrobial activity of aqueous decoction of Coriandrum sativum seed and Dentol drop with chlorhexidine against Streptococcus mutans was evaluated using disk diffusion and broth microdilution assays. Positive and negative controls were considered. The data was statistically analyzed by applying Kruskal-Wallis and Tukey post-hoc test to compare the groups using SPSS software (version 17). Results Dentol drop showed a remarkable antibacterial activity, in comparison with chlorhexidine, against S. mutans in the disk diffusion (p value = 0.005), and broth microdilution assays (p value = 0.0001). Based on the results of this study, Coriandrum sativum seed did not posses any antibacterial property. Conclusion Coriandrum sativum seed showed no anti-Streptococcus mutans activity. Dentol drop exhibited a remarkable antibacterial activity against S. mutans when tested in vitro. Dentol drop can be further studied as a preventive measure for dental caries. PMID:24475330
Pyrosequencing analysis of oral microbiota in children with severe early childhood dental caries.
Jiang, Wen; Zhang, Jie; Chen, Hui
2013-11-01
Severe early childhood caries are a prevalent public health problem among preschool children throughout the world. However, little is known about the microbiota found in association with severe early childhood caries. Our study aimed to explore the bacterial microbiota of dental plaques to study the etiology of severe early childhood caries through pyrosequencing analysis based on 16S rRNA gene V1-V3 hypervariable regions. Forty participants were enrolled in the study, and we obtained twenty samples of supragingival plaque from caries-free subjects and twenty samples from subjects with severe early childhood caries. A total of 175,918 reads met the quality control standards, and the bacteria found belonged to fourteen phyla and sixty-three genera. Our results show the overall structure and microbial composition of oral bacterial communities, and they suggest that these bacteria may present a core microbiome in the dental plaque microbiota. Three genera, Streptococcus, Granulicatella, and Actinomyces, were increased significantly in children with severe dental cavities. These data may facilitate improvements in the prevention and treatment of severe early childhood caries.
Salivary Microbiome Diversity in Caries-Free and Caries-Affected Children
Jiang, Shan; Gao, Xiaoli; Jin, Lijian; Lo, Edward C. M.
2016-01-01
Dental caries (tooth decay) is an infectious disease. Its etiology is not fully understood from the microbiological perspective. This study characterizes the diversity of microbial flora in the saliva of children with and without dental caries. Children (3–4 years old) with caries (n = 20) and without caries (n = 20) were recruited. Unstimulated saliva (2 mL) was collected from each child and the total microbial genomic DNA was extracted. DNA amplicons of the V3-V4 hypervariable region of the bacterial 16S rRNA gene were generated and subjected to Illumina Miseq sequencing. A total of 17 phyla, 26 classes, 40 orders, 80 families, 151 genera, and 310 bacterial species were represented in the saliva samples. There was no significant difference in the microbiome diversity between caries-affected and caries-free children (p > 0.05). The relative abundance of several species (Rothia dentocariosa, Actinomyces graevenitzii, Veillonella sp. oral taxon 780, Prevotella salivae, and Streptococcus mutans) was higher in the caries-affected group than in the caries-free group (p < 0.05). Fusobacterium periodonticum and Leptotrichia sp. oral clone FP036 were more abundant in caries-free children than in caries-affected children (p < 0.05). The salivary microbiome profiles of caries-free and caries-affected children were similar. Salivary counts of certain bacteria such as R. dentocariosa and F. periodonticum may be useful for screening/assessing children’s risk of developing caries. PMID:27898021
Virulence properties of cariogenic bacteria
Kuramitsu, Howard K; Wang, Bing-Yan
2006-01-01
The importance of Streptococcus mutans in the etiology of dental caries has been well documented. However, there is growing recognition that the cariogenic potential of dental plaque may be determined by the composite interactions of the total plaque bacteria rather than solely the virulence properties of a single organism. This study will examine how the interactions of S. mutans with other biofilm constituents may influence the cariogenicity of plaque samples. In order to begin to investigate the effects of nonmutans streptococci on the cariogenic potential of S. mutans, we have examined the effects of Streptococcus gordonii on the virulence properties of the former organisms. These studies have indicated that S.gordonii can attenuate several potential virulence properties of S. mutans including bacteriocin production, genetic transformation, and biofilm formation. Therefore, modulation of the interactions between plaque bacteria might be a novel approach for attenuating dental caries initiation. PMID:16934112
Kuramitsu, Howard K; Wang, Bing-Yan
2011-06-01
It has been well established that dental caries results from the accumulation of dental plaque on tooth surfaces. Several decades of in vitro and as well as clinical studies have identified Streptococcus mutans as an important etiological agent in carious lesion formation. In addition, a variety of approaches have suggested that interactions between the bacterial components of biofilms can influence the properties of such polymicrobial structures. Therefore, it is likely that the mere presence of S. mutans in dental plaque does not alone account for the cariogenic potential of such biofilms. Recent studies have indicated that several bacteria commonly found in dental plaque can influence either the viability and/or virulence properties of S. mutans. This review will summarize some of the more recent findings in this regard as well as their implications for the development of novel anti-caries strategies.
[Relationship between dental status and salivary microbiology in adolescents].
Gábris, K; Nagy, G; Madléna, M; Dénes, Z; Márton, S; Keszthelyi, G; Bánóczy, J
1998-12-01
The authors studied caries prevalence in connection with salivary caries related findings, in 349, 14-16 years old Hungarian adolescents, living in two different cities. DMF.T, DMF-S means, stimulated salivary flow, buffer capacity, Streptococcus mutans, Lactobacillus and Candida albicans counts in saliva were determined. The ratio of cariesfrre adolescents was 4.6% in the total population sample, DMF-T mean values were 7.24 +/- 4.86, DMF-S means 10.50 +/- 8.35. Mean secretion rate of stimulated saliva was 0.84 +/- 0.50, a low buffer capacity was found in 6.3% of the examined children. Ratio of carriers of Streptococcus mutans, Lactobacilli and yeasts in saliva was 89.7%, 73.9% and 47.7% respectively. DMF-T and DMF-S values, as well as S. mutans counts were lower in the capital than in the other city. Statistically significant correlations were found between DMF-S, DMF mean values and salivary microbiological counts.
Longitudinal survey of the distribution of various serotypes of Streptococcus mutans in infants.
Masuda, N; Tsutsumi, N; Sobue, S; Hamada, S
1979-10-01
The establishment of various serotypes of Streptococcus mutans was studied serologically in plaque samples collected from label surfaces of upper primary incisors of 22 infants (starting age, 5 to 13 months) over a period fo 30 months. Clinical examinations were also performed. No clear-cut association between the initiation of dental caries and previous detection of S. mutans was noted. However, all 12 of the infants with caries had S. mutans isolated at some time during the course of this study. The most common serotype isolated at the initial establishment of S. mutans on the tooth surfaces was serotype c, whereas types d, e, and g became established in a few cases. During the test period, changes in the distribution of serotypes of S. mutans were observed in some cases. The initiation of carious lesions could be found in a few cases even when S. mutans comprised about 1% or less of the total streptococcal count of the specimen from the tooth surfaces. Serotype d/g strains tended to develop carious lesions on smooth surfaces, although serotype c was isolated from almost all individuals who developed caries.
Wang, Deguo; Liu, Yanhong
2015-05-26
Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae are the three main pathogens causing bovine mastitis, with great losses to the dairy industry. Rapid and specific loop-mediated isothermal amplification methods (LAMP) for identification and differentiation of these three pathogens are not available. With the 16S rRNA gene and 16S-23S rRNA intergenic spacers as targets, four sets of LAMP primers were designed for identification and differentiation of S. dysgalactiae, S. uberis and S. agalactiae. The detection limit of all four LAMP primer sets were 0.1 pg DNA template per reaction, the LAMP method with 16S rRNA gene and 16S-23S rRNA intergenic spacers as the targets can differentiate the three pathogens, which is potentially useful in epidemiological studies.
Generation of diversity in Streptococcus mutans genes demonstrated by MLST.
Do, Thuy; Gilbert, Steven C; Clark, Douglas; Ali, Farida; Fatturi Parolo, Clarissa C; Maltz, Marisa; Russell, Roy R; Holbrook, Peter; Wade, William G; Beighton, David
2010-02-05
Streptococcus mutans, consisting of serotypes c, e, f and k, is an oral aciduric organism associated with the initiation and progression of dental caries. A total of 135 independent Streptococcus mutans strains from caries-free and caries-active subjects isolated from various geographical locations were examined in two versions of an MLST scheme consisting of either 6 housekeeping genes [accC (acetyl-CoA carboxylase biotin carboxylase subunit), gki (glucokinase), lepA (GTP-binding protein), recP (transketolase), sodA (superoxide dismutase), and tyrS (tyrosyl-tRNA synthetase)] or the housekeeping genes supplemented with 2 extracellular putative virulence genes [gtfB (glucosyltransferase B) and spaP (surface protein antigen I/II)] to increase sequence type diversity. The number of alleles found varied between 20 (lepA) and 37 (spaP). Overall, 121 sequence types (STs) were defined using the housekeeping genes alone and 122 with all genes. However pi, nucleotide diversity per site, was low for all loci being in the range 0.019-0.007. The virulence genes exhibited the greatest nucleotide diversity and the recombination/mutation ratio was 0.67 [95% confidence interval 0.3-1.15] compared to 8.3 [95% confidence interval 5.0-14.5] for the 6 concatenated housekeeping genes alone. The ML trees generated for individual MLST loci were significantly incongruent and not significantly different from random trees. Analysis using ClonalFrame indicated that the majority of isolates were singletons and no evidence for a clonal structure or evidence to support serotype c strains as the ancestral S. mutans strain was apparent. There was also no evidence of a geographical distribution of individual isolates or that particular isolate clusters were associated with caries. The overall low sequence diversity suggests that S. mutans is a newly emerged species which has not accumulated large numbers of mutations but those that have occurred have been shuffled as a consequence of intra-species recombination generating genotypes which can be readily distinguished by sequence analysis.
Cationic Antimicrobial Peptide Resistance Mechanisms of Streptococcal Pathogens
LaRock, Christopher N.; Nizet, Victor
2015-01-01
Cationic antimicrobial peptides (CAMPs) are critical front line contributors to host defense against invasive bacterial infection. These immune factors have direct killing activity toward microbes, but many pathogens are able to resist their effects. Group A Streptococcus, group B Streptococcus and Streptococcus pneumoniae are among the most common pathogens of humans and display a variety of phenotypic adaptations to resist CAMPs. Common themes of CAMP resistance mechanisms among the pathogenic streptococci are repulsion, sequestration, export, and destruction. Each pathogen has a different array of CAMP-resistant mechanisms, with invasive disease potential reflecting the utilization of several mechanisms that may act in synergy. Here we discuss recent progress in identifying the sources of CAMP resistance in the medically important Streptococcus genus. Further study of these mechanisms can contribute to our understanding of streptococcal pathogenesis, and may provide new therapeutic targets for therapy and disease prevention. PMID:25701232
NASA Astrophysics Data System (ADS)
Isjwara, F. R. G.; Hasanah, S. N.; Utami, Sri; Suniarti, D. F.
2017-08-01
Streptococcus biofilm on tooth surfaces can decrease mouth environment pH, thus causing enamel demineralization that can lead to dental caries. Java Turmeric extract has excellent antibacterial effects and can maintain S. mutans biofilm pH at neutral levels for 4 hours. To analyze the effect of Java Turmeric extract on tooth enamel micro-hardness, the Java Turmeric extract was added on enamel tooth samples with Streptococcus dual species biofilm (S. sanguinis and S. mutans). The micro-hardness of enamel was measured by Knoop Hardness Tester. Results showed that Curcuma xanthorrhiza Roxb. could not maintain tooth enamel surface micro-hardness. It is concluded that Java Turmeric extract ethanol could not inhibit the hardness of enamel with Streptococcus dual species biofilm.
Comment: low dental caries rate in Neandertals: the result of diet or the oral flora composition?
Sołtysiak, Arkadiusz
2012-04-01
Dental caries is an infectious disease caused by oral acidophilic bacteria feeding on fermentable sugars, e.g. Streptococcus mutans. The frequency of dental caries in Neandertals was very low. This was usually explained as the result of a low-sugar diet. Recent research, however, revealed some regional differences between European and Near Eastern Neandertals, with the latter consuming considerable amounts of plants including highly cariogenic dates. This discovery, compared with the results of research on genetic diversity of S. mutans, may suggest that this species, and perhaps other most virulent species, were absent in the oral flora of Neandertals. Copyright © 2012 Elsevier GmbH. All rights reserved.
Streptococcus mutans clonal variation revealed by multilocus sequence typing.
Nakano, Kazuhiko; Lapirattanakul, Jinthana; Nomura, Ryota; Nemoto, Hirotoshi; Alaluusua, Satu; Grönroos, Lisa; Vaara, Martti; Hamada, Shigeyuki; Ooshima, Takashi; Nakagawa, Ichiro
2007-08-01
Streptococcus mutans is the major pathogen of dental caries, a biofilm-dependent infectious disease, and occasionally causes infective endocarditis. S. mutans strains have been classified into four serotypes (c, e, f, and k). However, little is known about the S. mutans population, including the clonal relationships among strains of S. mutans, in relation to the particular clones that cause systemic diseases. To address this issue, we have developed a multilocus sequence typing (MLST) scheme for S. mutans. Eight housekeeping gene fragments were sequenced from each of 102 S. mutans isolates collected from the four serotypes in Japan and Finland. Between 14 and 23 alleles per locus were identified, allowing us theoretically to distinguish more than 1.2 x 10(10) sequence types. We identified 92 sequence types in these 102 isolates, indicating that S. mutans contains a diverse population. Whereas serotype c strains were widely distributed in the dendrogram, serotype e, f, and k strains were differentiated into clonal complexes. Therefore, we conclude that the ancestral strain of S. mutans was serotype c. No geographic specificity was identified. However, the distribution of the collagen-binding protein gene (cnm) and direct evidence of mother-to-child transmission were clearly evident. In conclusion, the superior discriminatory capacity of this MLST scheme for S. mutans may have important practical implications.
Martínez-Robles, Ángel Manuel; Loyola-Rodríguez, Juan Pablo; Zavala-Alonso, Norma Verónica; Martinez-Martinez, Rita Elizabeth; Ruiz, Facundo; Lara-Castro, René Homero; Donohué-Cornejo, Alejandro; Reyes-López, Simón Yobanny; Espinosa-Cristóbal, León Francisco
2016-01-01
(1) Background: Streptococcus mutans (S. mutans) is the principal pathogen involved in the formation of dental caries. Other systemic diseases have also been associated with specific S. mutans serotypes (c, e, f, and k). Silver nanoparticles (SNP) have been demonstrated to have good antibacterial effects against S. mutans; therefore, limited studies have evaluated the antimicrobial activity of biofunctionalized SNP on S. mutans serotypes. The purpose of this work was to prepare and characterize coated SNP using two different organic components and to evaluate the antimicrobial activity of SNP in clinical isolates of S. mutans strains and serotypes; (2) Methods: SNP with bovine serum albumin (BSA) or chitosan (CS) coatings were prepared and the physical, chemical and microbiological properties of SNP were evaluated; (3) Results: Both types of coated SNP showed antimicrobial activity against S. mutans bacteria and serotypes. Better inhibition was associated with smaller particles and BSA coatings; however, no significant differences were found between the different serotypes, indicating a similar sensitivity to the coated SNP; (4) Conclusion: This study concludes that BSA and CS coated SNP had good antimicrobial activity against S. mutans strains and the four serotypes, and this study suggest the widespread use of SNP as an antimicrobial agent for the inhibition of S. mutans bacteria. PMID:28335264
Increased Atherogenesis during Streptococcus mutans Infection in ApoE-null Mice
Kesavalu, L.; Lucas, A.R.; Verma, R.K.; Liu, L.; Dai, E.; Sampson, E.; Progulske-Fox, A.
2012-01-01
Streptococcus mutans, a dental caries pathogen, also causes endocarditis and is detected in atheroscelerotic plaque. We investigated the potential for an invasive strain of S. mutans, OMZ175, to accelerate plaque growth in apolipoprotein E deficient (ApoEnull) mice without and with balloon angioplasty (BA) injury, a model of restenosis. ApoEnull mice were divided into 4 groups (N = 10), 2 with and 2 without BA. One each of the BA and non-BA groups was infected with S. mutans (Sm). S. mutans DNA, plaque area, inflammatory cell invasion, and Toll-like receptor (TLR) expression were measured at 6-20 weeks post-infection. S. mutans genomic DNA was detected in the aorta, liver, spleen, and heart. Plaque growth was significantly increased in infected mice with BA (Sm+BA) vs. those in the non-infected groups (p < 0.03). Plaque size was increased after infection without BA (Sm), but did not reach significance. Aortic specimens from both S. mutans and Sm+BA groups displayed increased numbers of macrophages, and TLR4 expression was increased in BA mice. In conclusion, S. mutans infection accelerated plaque growth, macrophage invasion, and TLR4 expression after angioplasty. S. mutans may also be associated with atherosclerotic plaque growth in non-injured arteries. PMID:22262633
Martínez-Robles, Ángel Manuel; Loyola-Rodríguez, Juan Pablo; Zavala-Alonso, Norma Verónica; Martinez-Martinez, Rita Elizabeth; Ruiz, Facundo; Lara-Castro, René Homero; Donohué-Cornejo, Alejandro; Reyes-López, Simón Yobanny; Espinosa-Cristóbal, León Francisco
2016-07-22
(1) Background: Streptococcus mutans ( S. mutans ) is the principal pathogen involved in the formation of dental caries. Other systemic diseases have also been associated with specific S. mutans serotypes ( c , e , f , and k ). Silver nanoparticles (SNP) have been demonstrated to have good antibacterial effects against S. mutans ; therefore, limited studies have evaluated the antimicrobial activity of biofunctionalized SNP on S. mutans serotypes. The purpose of this work was to prepare and characterize coated SNP using two different organic components and to evaluate the antimicrobial activity of SNP in clinical isolates of S. mutans strains and serotypes; (2) Methods: SNP with bovine serum albumin (BSA) or chitosan (CS) coatings were prepared and the physical, chemical and microbiological properties of SNP were evaluated; (3) Results: Both types of coated SNP showed antimicrobial activity against S. mutans bacteria and serotypes. Better inhibition was associated with smaller particles and BSA coatings; however, no significant differences were found between the different serotypes, indicating a similar sensitivity to the coated SNP; (4) Conclusion: This study concludes that BSA and CS coated SNP had good antimicrobial activity against S. mutans strains and the four serotypes, and this study suggest the widespread use of SNP as an antimicrobial agent for the inhibition of S. mutans bacteria.
CcpA and CodY Coordinate Acetate Metabolism in Streptococcus mutans.
Kim, Jeong Nam; Burne, Robert A
2017-04-01
In the dental caries pathogen Streptococcus mutans , phosphotransacetylase (Pta) and acetate kinase (Ack) convert pyruvate into acetate with the concomitant generation of ATP. The genes for this pathway are tightly regulated by multiple environmental and intracellular inputs, but the basis for differential expression of the genes for Pta and Ack in S. mutans had not been investigated. Here, we show that inactivation in S. mutans of ccpA or codY reduced the activity of the ackA promoter, whereas a ccpA mutant displayed elevated pta promoter activity. The interactions of CcpA with the promoter regions of both genes were observed using electrophoretic mobility shift and DNase protection assays. CodY bound to the ackA promoter region but only in the presence of branched-chain amino acids (BCAAs). DNase footprinting revealed that the upstream region of both genes contains two catabolite-responsive elements ( cre1 and cre2 ) that can be bound by CcpA. Notably, the cre2 site of ackA overlaps with a CodY-binding site. The CcpA- and CodY-binding sites in the promoter region of both genes were further defined by site-directed mutagenesis. Some differences between the reported consensus CodY binding site and the region protected by S. mutans CodY were noted. Transcription of the pta and ackA genes in the ccpA mutant strain was markedly different at low pH relative to transcription at neutral pH. Thus, CcpA and CodY are direct regulators of transcription of ackA and pta in S. mutans that optimize acetate metabolism in response to carbohydrate, amino acid availability, and environmental pH. IMPORTANCE The human dental caries pathogen Streptococcus mutans is remarkably adept at coping with extended periods of carbohydrate limitation during fasting periods. The phosphotransacetylase-acetate kinase (Pta-Ack) pathway in S. mutans modulates carbohydrate flux and fine-tunes the ability of the organisms to cope with stressors that are commonly encountered in the oral cavity. Here, we show that CcpA controls transcription of the pta and ackA genes via direct interaction with the promoter regions of both genes and that branched-chain amino acids (BCAAs), particularly isoleucine, enhance the ability of CodY to bind to the promoter region of the ackA gene. A working model is proposed to explain how regulation of pta and ackA genes by these allosterically controlled regulatory proteins facilitates proper carbon flow and energy production, which are essential functions during infection and pathogenesis as carbohydrate and amino acid availability continually fluctuate. Copyright © 2017 American Society for Microbiology.
He, Jinzhi; Hwang, Geelsu; Liu, Yuan; Gao, Lizeng; Kilpatrick-Liverman, LaTonya; Santarpia, Peter; Zhou, Xuedong; Koo, Hyun
2016-10-01
l-Arginine, a ubiquitous amino acid in human saliva, serves as a substrate for alkali production by arginolytic bacteria. Recently, exogenous l-arginine has been shown to enhance the alkalinogenic potential of oral biofilm and destabilize its microbial community, which might help control dental caries. However, l-arginine exposure may inflict additional changes in the biofilm milieu when bacteria are growing under cariogenic conditions. Here, we investigated how exogenous l-arginine modulates biofilm development using a mixed-species model containing both cariogenic (Streptococcus mutans) and arginolytic (Streptococcus gordonii) bacteria in the presence of sucrose. We observed that 1.5% (wt/vol) l-arginine (also a clinically effective concentration) exposure suppressed the outgrowth of S. mutans, favored S. gordonii dominance, and maintained Actinomyces naeslundii growth within biofilms (versus vehicle control). In parallel, topical l-arginine treatments substantially reduced the amounts of insoluble exopolysaccharides (EPS) by >3-fold, which significantly altered the three-dimensional (3D) architecture of the biofilm. Intriguingly, l-arginine repressed S. mutans genes associated with insoluble EPS (gtfB) and bacteriocin (SMU.150) production, while spxB expression (H2O2 production) by S. gordonii increased sharply during biofilm development, which resulted in higher H2O2 levels in arginine-treated biofilms. These modifications resulted in a markedly defective EPS matrix and areas devoid of any bacterial clusters (microcolonies) on the apatitic surface, while the in situ pH values at the biofilm-apatite interface were nearly one unit higher in arginine-treated biofilms (versus the vehicle control). Our data reveal new biological properties of l-arginine that impact biofilm matrix assembly and the dynamic microbial interactions associated with pathogenic biofilm development, indicating the multiaction potency of this promising biofilm disruptor. Dental caries is one of the most prevalent and costly infectious diseases worldwide, caused by a biofilm formed on tooth surfaces. Novel strategies that compromise the ability of virulent species to assemble and maintain pathogenic biofilms could be an effective alternative to conventional antimicrobials that indiscriminately kill other oral species, including commensal bacteria. l-Arginine at 1.5% has been shown to be clinically effective in modulating cariogenic biofilms via alkali production by arginolytic bacteria. Using a mixed-species ecological model, we show new mechanisms by which l-arginine disrupts the process of biofilm matrix assembly and the dynamic microbial interactions that are associated with cariogenic biofilm development, without impacting the bacterial viability. These results may aid in the development of enhanced methods to control biofilms using l-arginine. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
da SILVA, Juliana Paola Corrêa; de CASTILHO, Adriana Lígia; SARACENI, Cíntia Helena Couri; DÍAZ, Ingrit Elida Collantes; PACIÊNCIA, Mateus Luís Barradas; SUFFREDINI, Ivana Barbosa
2014-01-01
Caries is a global public health problem, whose control requires the introduction of low-cost treatments, such as strong prevention strategies, minimally invasive techniques and chemical prevention agents. Nature plays an important role as a source of new antibacterial substances that can be used in the prevention of caries, and Brazil is the richest country in terms of biodiversity. Objective In this study, the disk diffusion method (DDM) was used to screen over 2,000 Brazilian Amazon plant extracts against Streptococcus mutans. Material and Methods Seventeen active plant extracts were identified and fractionated. Extracts and their fractions, obtained by liquid-liquid partition, were tested in the DDM assay and in the microdilution broth assay (MBA) to determine their minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs). The extracts were also subjected to antioxidant analysis by thin layer chromatography. Results EB271, obtained from Casearia spruceana, showed significant activity against the bacterium in the DDM assay (20.67±0.52 mm), as did EB1129, obtained from Psychotria sp. (Rubiaceae) (15.04±2.29 mm). EB1493, obtained from Ipomoea alba, was the only extract to show strong activity against Streptococcus mutans (0.08 mg/mL
Profiling of Oral Microbiota in Early Childhood Caries Using Single-Molecule Real-Time Sequencing
Wang, Yuan; Zhang, Jie; Chen, Xi; Jiang, Wen; Wang, Sa; Xu, Lei; Tu, Yan; Zheng, Pei; Wang, Ying; Lin, Xiaolong; Chen, Hui
2017-01-01
Background: Alterations of oral microbiota are the main cause of the progression of caries. The goal of this study was to characterize the oral microbiota in childhood caries based on single-molecule real-time sequencing. Methods: A total of 21 preschoolers, aged 3–5 years old with severe early childhood caries, and 20 age-matched, caries-free children as controls were recruited. Saliva samples were collected, followed by DNA extraction, Pacbio sequencing, and phylogenetic analyses of the oral microbial communities. Results: Eight hundred and seventy six species derived from 13 known bacterial phyla and 110 genera were detected from 41 children using Pacbio sequencing. At the species level, 38 species, including Veillonella spp., Streptococcus spp., Prevotella spp., and Lactobacillus spp., showed higher abundance in the caries group compared to the caries-free group (p < 0.05). The core microbiota at the genus and species levels was more stable in the caries-free micro-ecological niche. At follow-up, oral examinations 6 months after sample collection, development of new dental caries was observed in 5 children (the transitional group) among the 21 caries free children. Compared with the caries-free children, in the transitional and caries groups, 6 species, which were more abundant in the caries-free group, exhibited a relatively low abundance in both the caries group and the transitional group (p < 0.05). We conclude that Abiotrophia spp., Neisseria spp., and Veillonella spp., might be associated with healthy oral microbial ecosystem. Prevotella spp., Lactobacillus spp., Dialister spp., and Filifactor spp. may be related to the pathogenesis and progression of dental caries. PMID:29187843
Profiling of Oral Microbiota in Early Childhood Caries Using Single-Molecule Real-Time Sequencing.
Wang, Yuan; Zhang, Jie; Chen, Xi; Jiang, Wen; Wang, Sa; Xu, Lei; Tu, Yan; Zheng, Pei; Wang, Ying; Lin, Xiaolong; Chen, Hui
2017-01-01
Background: Alterations of oral microbiota are the main cause of the progression of caries. The goal of this study was to characterize the oral microbiota in childhood caries based on single-molecule real-time sequencing. Methods: A total of 21 preschoolers, aged 3-5 years old with severe early childhood caries, and 20 age-matched, caries-free children as controls were recruited. Saliva samples were collected, followed by DNA extraction, Pacbio sequencing, and phylogenetic analyses of the oral microbial communities. Results: Eight hundred and seventy six species derived from 13 known bacterial phyla and 110 genera were detected from 41 children using Pacbio sequencing. At the species level, 38 species, including Veillonella spp., Streptococcus spp., Prevotella spp., and Lactobacillus spp., showed higher abundance in the caries group compared to the caries-free group ( p < 0.05). The core microbiota at the genus and species levels was more stable in the caries-free micro-ecological niche. At follow-up, oral examinations 6 months after sample collection, development of new dental caries was observed in 5 children (the transitional group) among the 21 caries free children. Compared with the caries-free children, in the transitional and caries groups, 6 species, which were more abundant in the caries-free group, exhibited a relatively low abundance in both the caries group and the transitional group ( p < 0.05). We conclude that Abiotrophia spp., Neisseria spp., and Veillonella spp., might be associated with healthy oral microbial ecosystem. Prevotella spp., Lactobacillus spp., Dialister spp., and Filifactor spp. may be related to the pathogenesis and progression of dental caries.
Santos-Sanches, Ilda; Chambel, Lélia; Tenreiro, Rogério
2015-01-01
Pulsed-field gel electrophoresis (PFGE) separates large DNA molecules by the use of an alternating electrical field, such that greater size resolution can be obtained when compared to normal agarose gel electrophoresis. PFGE is often employed to track pathogens and is a valuable typing scheme to detect and differentiate strains. Particularly, the contour-clamped homogeneous electric field (CHEF) PFGE system is considered to be the gold standard for use in epidemiological studies of many bacterial pathogens. Here we describe a PFGE protocol that was applicable to the study of bovine streptococci, namely, Streptococcus agalactiae (group B Streptococcus, GBS), Streptococcus dysgalactiae subsp. dysgalactiae (group C Streptococcus, GCS), and Streptococcus uberis-which are relevant pathogens causing mastitis, a highly prevalent and costly disease in dairy industry due to antibiotherapy and loss in milk production.
Paillot, Romain; Steward, Karen F.; Webb, Katy; Ainslie, Fern; Jourdan, Thibaud; Bason, Nathalie C.; Holroyd, Nancy E.; Mungall, Karen; Quail, Michael A.; Sanders, Mandy; Simmonds, Mark; Willey, David; Brooks, Karen; Aanensen, David M.; Spratt, Brian G.; Jolley, Keith A.; Maiden, Martin C. J.; Kehoe, Michael; Chanter, Neil; Bentley, Stephen D.; Robinson, Carl; Maskell, Duncan J.; Parkhill, Julian; Waller, Andrew S.
2009-01-01
The continued evolution of bacterial pathogens has major implications for both human and animal disease, but the exchange of genetic material between host-restricted pathogens is rarely considered. Streptococcus equi subspecies equi (S. equi) is a host-restricted pathogen of horses that has evolved from the zoonotic pathogen Streptococcus equi subspecies zooepidemicus (S. zooepidemicus). These pathogens share approximately 80% genome sequence identity with the important human pathogen Streptococcus pyogenes. We sequenced and compared the genomes of S. equi 4047 and S. zooepidemicus H70 and screened S. equi and S. zooepidemicus strains from around the world to uncover evidence of the genetic events that have shaped the evolution of the S. equi genome and led to its emergence as a host-restricted pathogen. Our analysis provides evidence of functional loss due to mutation and deletion, coupled with pathogenic specialization through the acquisition of bacteriophage encoding a phospholipase A2 toxin, and four superantigens, and an integrative conjugative element carrying a novel iron acquisition system with similarity to the high pathogenicity island of Yersinia pestis. We also highlight that S. equi, S. zooepidemicus, and S. pyogenes share a common phage pool that enhances cross-species pathogen evolution. We conclude that the complex interplay of functional loss, pathogenic specialization, and genetic exchange between S. equi, S. zooepidemicus, and S. pyogenes continues to influence the evolution of these important streptococci. PMID:19325880
Lee, Kichan; Kim, Ji-Yeon; Jung, Suk Chan; Lee, Hee-Soo; Her, Moon; Chae, Chanhee
2016-01-01
Streptococcus species are emerging potential pathogens in marine mammals. We report the isolation and identification of Streptococcus halichoeri and Streptococcus phocae in a Steller sea lion (Eumetopias jubatus) in South Korea.
Pathogen detection in milk samples by ligation detection reaction-mediated universal array method.
Cremonesi, P; Pisoni, G; Severgnini, M; Consolandi, C; Moroni, P; Raschetti, M; Castiglioni, B
2009-07-01
This paper describes a new DNA chip, based on the use of a ligation detection reaction coupled to a universal array, developed to detect and analyze, directly from milk samples, microbial pathogens known to cause bovine, ovine, and caprine mastitis or to be responsible for foodborne intoxication or infection, or both. Probes were designed for the identification of 15 different bacterial groups: Staphylococcus aureus, Streptococcus agalactiae, nonaureus staphylococci, Streptococcus bovis, Streptococcus equi, Streptococcus canis, Streptococcus dysgalactiae, Streptococcus parauberis, Streptococcus uberis, Streptococcus pyogenes, Mycoplasma spp., Salmonella spp., Bacillus spp., Campylobacter spp., and Escherichia coli and related species. These groups were identified based on the 16S rRNA gene. For microarray validation, 22 strains from the American Type Culture Collection or other culture collections and 50 milk samples were tested. The results demonstrated high specificity, with sensitivity as low as 6 fmol. Moreover, the ligation detection reaction-universal array assay allowed for the identification of Mycoplasma spp. in a few hours, avoiding the long incubation times of traditional microbiological identification methods. The universal array described here is a versatile tool able to identify milk pathogens efficiently and rapidly.
Jiang, Shan; Chen, Shuai; Zhang, Chengfei; Zhao, Xingfu; Huang, Xiaojing; Cai, Zhiyu
2017-03-30
Streptococcus mutans ( S. mutans ) is considered a leading cause of dental caries. The capability of S. mutans to tolerate low pH is essential for its cariogenicity. Aciduricity of S. mutans is linked to its adaptation to environmental stress in oral cavity. This study aimed to investigate the effect of biofilm age and starvation condition on acid tolerance of biofilm formed by S. mutans clinical isolates. S. mutans clinical strains isolated from caries-active (SM593) and caries-free (SM18) adults and a reference strain (ATCC25175) were used for biofilm formation. (1) Both young and mature biofilms were formed and then exposed to pH 3.0 for 30 min with (acid-adapted group) or without (non-adapted group) pre-exposure to pH 5.5 for three hours. (2) The mature biofilms were cultured with phosphate-buffered saline (PBS) (starved group) or TPY (polypeptone-yeast extract) medium (non-starved group) at pH 7.0 for 24 h and then immersed in medium of pH 3.0 for 30 min. Biofilms were analyzed through viability staining and confocal laser scanning microscopy. In all three strains, mature, acid-adapted and starved biofilms showed significantly less destructive structure and more viable bacteria after acid shock than young, non-adapted and non-starved biofilms, respectively (all p < 0.05). Furthermore, in each condition, SM593 biofilm was denser, with a significantly larger number of viable bacteria than that of SM18 and ATCC25175 (all p < 0.05). Findings demonstrated that mature, acid-adapted and starvation might protect biofilms of all three S. mutans strains against acid shock. Additionally, SM593 exhibited greater aciduricity compared to SM18 and ATCC25175, which indicated that the colonization of high cariogenicity of clinical strains may lead to high caries risk in individuals.
SHIMADA, Ayumi; NODA, Masafumi; MATOBA, Yasuyuki; KUMAGAI, Takanori; KOZAI, Katsuyuki; SUGIYAMA, Masanori
2015-01-01
Previous studies have demonstrated that the presence of lactic acid bacteria (LAB), especially those classified into the genus Lactobacillus, is associated with the progression of dental caries in preschool children. Nevertheless, the kinds of species of LAB and the characteristics that are important for dental caries have been unclear. The aims of this study were: (1) to investigate the distribution of oral LAB among Japanese preschool children with various prevalence levels of caries; and (2) to reveal the characteristics of these isolated LAB species. Seventy-four Japanese preschool children were examined for caries scores and caries progression, and their dental cavity samples were collected for LAB isolation and identification. The saliva-induced agglutination rate and the resistance to acidic environments of the identified strains were measured. Statistical analysis showed that preschool children carrying Lactobacillus (L.) salivarius or Streptococcus mutans have a significantly higher prevalence of dental caries, the growth ability in acidic environments correlates with the caries scores of individuals with L. salivarius, and the caries scores exhibit positive correlation with saliva-induced agglutination in L. salivarius. These results show that specific Lactobacillus species are associated with dental caries based on the level of carious lesion severity. The present study suggests that these specific Lactobacillus species, especially those with easily agglutinated properties and acid resistance, affect the dental caries scores of preschool children, and that these properties may provide useful information for research into the prevention of dental caries. PMID:25918670
Shimada, Ayumi; Noda, Masafumi; Matoba, Yasuyuki; Kumagai, Takanori; Kozai, Katsuyuki; Sugiyama, Masanori
2015-01-01
Previous studies have demonstrated that the presence of lactic acid bacteria (LAB), especially those classified into the genus Lactobacillus, is associated with the progression of dental caries in preschool children. Nevertheless, the kinds of species of LAB and the characteristics that are important for dental caries have been unclear. The aims of this study were: (1) to investigate the distribution of oral LAB among Japanese preschool children with various prevalence levels of caries; and (2) to reveal the characteristics of these isolated LAB species. Seventy-four Japanese preschool children were examined for caries scores and caries progression, and their dental cavity samples were collected for LAB isolation and identification. The saliva-induced agglutination rate and the resistance to acidic environments of the identified strains were measured. Statistical analysis showed that preschool children carrying Lactobacillus (L.) salivarius or Streptococcus mutans have a significantly higher prevalence of dental caries, the growth ability in acidic environments correlates with the caries scores of individuals with L. salivarius, and the caries scores exhibit positive correlation with saliva-induced agglutination in L. salivarius. These results show that specific Lactobacillus species are associated with dental caries based on the level of carious lesion severity. The present study suggests that these specific Lactobacillus species, especially those with easily agglutinated properties and acid resistance, affect the dental caries scores of preschool children, and that these properties may provide useful information for research into the prevention of dental caries.
Villhauer, Alissa L; Lynch, David J; Drake, David R
2017-08-01
Mutans streptococci (MS), specifically Streptococcus mutans (SM) and Streptococcus sobrinus (SS), are bacterial species frequently targeted for investigation due to their role in the etiology of dental caries. Differentiation of S. mutans and S. sobrinus is an essential part of exploring the role of these organisms in disease progression and the impact of the presence of either/both on a subject's caries experience. Of vital importance to the study of these organisms is an identification protocol that allows us to distinguish between the two species in an easy, accurate, and timely manner. While conducting a 5-year birth cohort study in a Northern Plains American Indian tribe, the need for a more rapid procedure for isolating and identifying high volumes of MS was recognized. We report here on the development of an accurate and rapid method for MS identification. Accuracy, ease of use, and material and time requirements for morphological differentiation on selective agar, biochemical tests, and various combinations of PCR primers were compared. The final protocol included preliminary identification based on colony morphology followed by PCR confirmation of species identification using primers targeting regions of the glucosyltransferase (gtf) genes of SM and SS. This method of isolation and identification was found to be highly accurate, more rapid than the previous methodology used, and easily learned. It resulted in more efficient use of both time and material resources. Copyright © 2017 Elsevier B.V. All rights reserved.
Two Gene Clusters Coordinate Galactose and Lactose Metabolism in Streptococcus gordonii
Zeng, Lin; Martino, Nicole C.
2012-01-01
Streptococcus gordonii is an early colonizer of the human oral cavity and an abundant constituent of oral biofilms. Two tandemly arranged gene clusters, designated lac and gal, were identified in the S. gordonii DL1 genome, which encode genes of the tagatose pathway (lacABCD) and sugar phosphotransferase system (PTS) enzyme II permeases. Genes encoding a predicted phospho-β-galactosidase (LacG), a DeoR family transcriptional regulator (LacR), and a transcriptional antiterminator (LacT) were also present in the clusters. Growth and PTS assays supported that the permease designated EIILac transports lactose and galactose, whereas EIIGal transports galactose. The expression of the gene for EIIGal was markedly upregulated in cells growing on galactose. Using promoter-cat fusions, a role for LacR in the regulation of the expressions of both gene clusters was demonstrated, and the gal cluster was also shown to be sensitive to repression by CcpA. The deletion of lacT caused an inability to grow on lactose, apparently because of its role in the regulation of the expression of the genes for EIILac, but had little effect on galactose utilization. S. gordonii maintained a selective advantage over Streptococcus mutans in a mixed-species competition assay, associated with its possession of a high-affinity galactose PTS, although S. mutans could persist better at low pHs. Collectively, these results support the concept that the galactose and lactose systems of S. gordonii are subject to complex regulation and that a high-affinity galactose PTS may be advantageous when S. gordonii is competing against the caries pathogen S. mutans in oral biofilms. PMID:22660715
Zhang, Jingyang; Liu, Hongling; Liang, Xue; Zhang, Min; Wang, Renke; Peng, Guang; Li, Jiyao
2015-01-01
Radiation caries have been reported to be correlated with radiotherapy-induced destruction of salivary function and changes in oral microbiota. There have been no published reports detailing patients who have remained radiation caries-free following radiotherapy for nasopharyngeal carcinoma. The aim of this study was to investigate the relationship between salivary function, oral microbiota and the absence of radiation caries. Twelve radiation caries-free patients and nine patients exhibiting radiation caries following irradiated nasopharyngeal carcinoma were selected. V40, the dose at which the volume of the contralateral parotid gland receives more than 40 Gy, was recorded. Stimulated saliva flow rate, pH values and buffering capacity were examined to assess salivary function. Stimulated saliva was used for molecular profiling by Denaturing Gradient Gel Electrophoresis. Mutans streptococci and Lactobacilli in saliva were also cultivated. There were no significant differences in V40 between radiation caries-free individuals and those with radiation caries. Compared with normal values, the radiation caries-free group had significantly decreased simulated saliva flow rate, while there were no significant differences in the saliva pH value and buffering capacity. Similar results were observed in the radiation caries group. There was no statistical difference in microbial diversity, composition and log CFU counts in cultivation from the radiation caries-free group and the radiation caries group. Eleven genera were detected in these two groups, among which Streptococcus spp. and Neisseria spp. had the highest distribution. Our results suggest that changes in salivary function and in salivary microbiota do not explain the absence of radiation caries in radiation caries-free individuals. PMID:25860481
Zhang, Jingyang; Liu, Hongling; Liang, Xue; Zhang, Min; Wang, Renke; Peng, Guang; Li, Jiyao
2015-01-01
Radiation caries have been reported to be correlated with radiotherapy-induced destruction of salivary function and changes in oral microbiota. There have been no published reports detailing patients who have remained radiation caries-free following radiotherapy for nasopharyngeal carcinoma. The aim of this study was to investigate the relationship between salivary function, oral microbiota and the absence of radiation caries. Twelve radiation caries-free patients and nine patients exhibiting radiation caries following irradiated nasopharyngeal carcinoma were selected. V40, the dose at which the volume of the contralateral parotid gland receives more than 40 Gy, was recorded. Stimulated saliva flow rate, pH values and buffering capacity were examined to assess salivary function. Stimulated saliva was used for molecular profiling by Denaturing Gradient Gel Electrophoresis. Mutans streptococci and Lactobacilli in saliva were also cultivated. There were no significant differences in V40 between radiation caries-free individuals and those with radiation caries. Compared with normal values, the radiation caries-free group had significantly decreased simulated saliva flow rate, while there were no significant differences in the saliva pH value and buffering capacity. Similar results were observed in the radiation caries group. There was no statistical difference in microbial diversity, composition and log CFU counts in cultivation from the radiation caries-free group and the radiation caries group. Eleven genera were detected in these two groups, among which Streptococcus spp. and Neisseria spp. had the highest distribution. Our results suggest that changes in salivary function and in salivary microbiota do not explain the absence of radiation caries in radiation caries-free individuals.
Cationic antimicrobial peptide resistance mechanisms of streptococcal pathogens.
LaRock, Christopher N; Nizet, Victor
2015-11-01
Cationic antimicrobial peptides (CAMPs) are critical front line contributors to host defense against invasive bacterial infection. These immune factors have direct killing activity toward microbes, but many pathogens are able to resist their effects. Group A Streptococcus, group B Streptococcus and Streptococcus pneumoniae are among the most common pathogens of humans and display a variety of phenotypic adaptations to resist CAMPs. Common themes of CAMP resistance mechanisms among the pathogenic streptococci are repulsion, sequestration, export, and destruction. Each pathogen has a different array of CAMP-resistant mechanisms, with invasive disease potential reflecting the utilization of several mechanisms that may act in synergy. Here we discuss recent progress in identifying the sources of CAMP resistance in the medically important Streptococcus genus. Further study of these mechanisms can contribute to our understanding of streptococcal pathogenesis, and may provide new therapeutic targets for therapy and disease prevention. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides. Copyright © 2015 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae are the three main pathogens causing bovine mastitis, with great losses to the dairy industry. Rapid and specific loop-mediated isothermal amplification methods (LAMP) for identification and differentiation of these three ...
Genome-wide essential gene identification in Streptococcus sanguinis
Xu, Ping; Ge, Xiuchun; Chen, Lei; Wang, Xiaojing; Dou, Yuetan; Xu, Jerry Z.; Patel, Jenishkumar R.; Stone, Victoria; Trinh, My; Evans, Karra; Kitten, Todd; Bonchev, Danail; Buck, Gregory A.
2011-01-01
A clear perception of gene essentiality in bacterial pathogens is pivotal for identifying drug targets to combat emergence of new pathogens and antibiotic-resistant bacteria, for synthetic biology, and for understanding the origins of life. We have constructed a comprehensive set of deletion mutants and systematically identified a clearly defined set of essential genes for Streptococcus sanguinis. Our results were confirmed by growing S. sanguinis in minimal medium and by double-knockout of paralogous or isozyme genes. Careful examination revealed that these essential genes were associated with only three basic categories of biological functions: maintenance of the cell envelope, energy production, and processing of genetic information. Our finding was subsequently validated in two other pathogenic streptococcal species, Streptococcus pneumoniae and Streptococcus mutans and in two other gram-positive pathogens, Bacillus subtilis and Staphylococcus aureus. Our analysis has thus led to a simplified model that permits reliable prediction of gene essentiality. PMID:22355642
Chandak, Shweta; Bhondey, Ashish; Bhardwaj, Amit; Pimpale, Jitesh; Chandwani, Manisha
2016-01-01
Aim: To assess the comparative efficacy of fluoride varnish and casein phosphopeptide–amorphous calcium phosphate (CPP–ACP) complex visa viz. Streptococcus mutans in plaque, and thereby the role that these two agents could play in the prevention of dental caries. Materials and Methods: A cluster sample of 120 caries inactive individuals belonging to moderate and high caries risk group were selected from 3–5-year-old age group based on the criteria given by Krassee and were randomized to four groups, namely, fluoride varnish – Group I, CPP–ACP complex – Group II, mixture of CPP–ACP complex –Gourp III, and fluoride and routine oral hygiene procedures as control – Group IV. The results thus obtained were analyzed using Statistical Package for the Social Sciences (SPSS) version 16. Results: A statistically significant difference in the pre and post-application scores of S. mutans (P < 0.01) count was observed in all the groups with CPP–ACP plus fluoride group being the most proficient. Conclusion: Materials such as fluoride varnish, CPP–ACP, and CPP–ACP plus fluoride protects the tooth structure, preserving the integrity of primary dentition, with the most encouraging results being with CPP–ACP plus fluoride. PMID:27891308
Michalek, S M; McGhee, J R; Babb, J L
1978-01-01
Rats (COBS/CD) provided Formalin-killed Streptococcus mutans 6715, C211 in their drinking water (10(8) to 10(9) equivalent colony-forming units [CFU] per ml) had high levels of specific antibodies in saliva, colostrum, and milk. Rats provided a lower concentration of S. mutans antigen (10(7) CFU per ml) in water had agglutinin titers in secretions that were similar to those in controls. Gnotobiotic rats provided S. mutans antigen in food (10(7) to 10(8) equivalent CFU per g of diet) manifested a secretory immune response as evidenced by the presence of specific immunoglobulin A antibodies in saliva, colostrum, and milk. Gnotobiotic rats provided a higher concentration of antigen (10(9) CFU per g) in food had levels of specific antibodies in their secretions that were similar to those in controls. No significant antibody activity to S. mutans was observed in sera of any group of animals. Furthermore, the presence of specific salivary immunoglobulin A antibodies in gnotobiotic rats correlated with a reduction in the level of plaque, numbers of viable S. mutans in plaque, and levels of S. mutans-induced dental caries. This paper discusses the importance of antigen dosage for induction of a secretory immune response that is protective against S. mutans-induced dental caries.
Falsetta, Megan L.; Klein, Marlise I.; Lemos, José A.; Silva, Bruno B.; Agidi, Senyo; Scott-Anne, Kathy K.
2012-01-01
Fluoride is the mainstay of dental caries prevention, and yet current applications offer incomplete protection and may not effectively address the infectious character of the disease. Therefore, we evaluated the effectiveness of a novel combination therapy (CT; 2 mM myricetin, 4 mM tt-farnesol, 250 ppm of fluoride) that supplements fluoride with naturally occurring, food-derived, antibiofilm compounds. Treatment regimens simulating those experienced clinically (twice daily for ≤60 s) were used both in vitro over a saliva-coated hydroxyapatite biofilm model and in vivo with a rodent model of dental caries. The effectiveness of CT was evaluated based on the incidence and severity of carious lesions (compared to fluoride or vehicle control). We found that CT was superior to fluoride (positive control, P < 0.05); topical applications dramatically reduced caries development in Sprague-Dawley rats, all without altering the Streptococcus mutans or total populations within the plaque. We subsequently identified the underlying mechanisms through which applications of CT modulate biofilm virulence. CT targets expression of key Streptococcus mutans genes during biofilm formation in vitro and in vivo. These are associated with exopolysaccharide matrix synthesis (gtfB) and the ability to tolerate exogenous stress (e.g., sloA), which are essential for cariogenic biofilm assembly. We also identified a unique gene (SMU.940) that was severely repressed and may represent a potentially novel target; its inactivation disrupted exopolysaccharide accumulation and matrix development. Altogether, CT may be clinically more effective than current anticaries modalities, targeting expression of bacterial virulence associated with pathogenesis of the disease. These observations may have relevance for development of enhanced therapies against other biofilm-dependent infections. PMID:22985885
Rudney, J D; Staikov, R K
2002-05-01
Salivary proteins have multiple functions and many share similar functions, which may be why it has been difficult to relate variations in their concentrations to oral health and ecology. An alternative is to focus on variations in the major functions of saliva. An hydroxyapatite-coated microplate model has been developed that simultaneously measures saliva-promoted bacterial viability, bacterial aggregation, and live and dead bacterial adherence, while simulating oral temperature and shearing forces from swallowing. That model was applied to resting whole and stimulated parotid saliva from 149 individuals, using representative strains of Streptococcus crista, S. mutans, and Actinobacillus actinomycetemcomitans. Two major factors were defined by multivariate analysis (this was successful only for whole-saliva). One factor was correlated with aggregation, live adherence and dead adherence for all three strains; the other was correlated with total viability of all three strains. Participants were grouped <25th percentile and >75th percentile for each factor. Those groups were compared for clinical indices of oral health. Caries scores were significantly lower in those with high scores for aggregation-adherence, regardless of whether total viability scores were low or high. Live bacteria always predominated on surfaces when live and dead adherence scores were expressed as ratios. However, participants with high scores for aggregation-adherence showed significantly more dead adherent bacteria than those with low scores (these ratios were uncorrelated with total viability). This finding may indicate that extreme differences in the ability to kill bacteria on surfaces can influence caries risk.
Comparative study of cinnamon oil and clove oil on some oral microbiota.
Gupta, Charu; Kumari, Archana; Garg, A Pankaj; Catanzaro, R; Marotta, F
2011-12-01
A comparative study was carried out between cinnamon oil and clove oil on the oral micro-biota causing dental caries. Cinnamon oil was found to be more effective than clove oil exhibiting broad spectrum of antibacterial activity inhibiting all the ten test bacterial species involved in dental caries. Cinnamon oil produced maximum inhibition zone of diameter (IZD) of 24.0 mm against Streptococcus mutans (major causative bacteria of dental plaque) as compared to clove oil (IZD = 13.0mm). This is contrary to the popular belief that clove oil is effective in tooth decay and dental plaque. This study shows the potential of cinnamon oil over clove oil in the treatment of dental caries. (www.actabiomedica.it).
Polymers for binding of the gram-positive oral pathogen Streptococcus mutans
Magennis, Eugene P.; Francini, Nora; Mastrotto, Francesca; Catania, Rosa; Redhead, Martin; Fernandez-Trillo, Francisco; Bradshaw, David; Churchley, David; Winzer, Klaus; Alexander, Cameron
2017-01-01
Streptococcus mutans is the most significant pathogenic bacterium implicated in the formation of dental caries and, both directly and indirectly, has been associated with severe conditions such as multiple sclerosis, cerebrovascular and peripheral artery disease. Polymers able to selectively bind S. mutans and/or inhibit its adhesion to oral tissue in a non-lethal manner would offer possibilities for addressing pathogenicity without selecting for populations resistant against bactericidal agents. In the present work two libraries of 2-(dimethylamino)ethyl methacrylate (pDMAEMA)-based polymers were synthesized with various proportions of either N,N,N-trimethylethanaminium cationic- or sulfobetaine zwitterionic groups. These copolymers where initially tested as potential macromolecular ligands for S. mutans NCTC 10449, whilst Escherichia coli MG1655 was used as Gram-negative control bacteria. pDMAEMA-derived materials with high proportions of zwitterionic repeating units were found to be selective for S. mutans, in both isolated and S. mutans–E. coli mixed bacterial cultures. Fully sulfobetainized pDMAEMA was subsequently found to bind/cluster preferentially Gram-positive S. mutans and S. aureus compared to Gram negative E. coli and V. harveyi. A key initial stage of S. mutans pathogenesis involves a lectin-mediated adhesion to the tooth surface, thus the range of potential macromolecular ligands was further expanded by investigating two glycopolymers bearing α-mannopyranoside and β-galactopyranoside pendant units. Results with these polymers indicated that preferential binding to either S. mutans or E. coli can be obtained by modulating the glycosylation pattern of the chosen multivalent ligands without incurring unacceptable cytotoxicity in a model gastrointestinal cell line. Overall, our results allowed to identify a structure–property relationship for the potential antimicrobial polymers investigated, and suggest that preferential binding to Gram-positive S. mutans could be achieved by fine-tuning of the recognition elements in the polymer ligands. PMID:28672031
Mundorff-Shrestha, S A; Featherstone, J D; Eisenberg, A D; Cowles, E; Curzon, M E; Espeland, M A; Shields, C P
1994-01-01
A series of rat caries experiments was carried out to test the relative cariogenic potential and to identify the major carcinogenic elements of 22 popular snack foods. Parameters that were measured included rat caries, number of cariogenic bacteria in plaque, salivary parameters including flow rate, buffering capacity, total protein, lysozyme and amylase content, and composition of test foods including protein, fat, phosphorus, calcium, fluoride, galactose, glucose, total reducing sugar, sucrose, and starch. Many interesting relationships were observed between food components, numbers of plaque bacteria, salivary components, and specific types of carious lesions. Protein, fat, and phosphorus in foods were all associated with inhibition of both sulcal and buccolingual (smooth-surface) caries. Food fluoride was associated with inhibition of buccolingual caries, whereas calcium was related to inhibition of sulcal caries. Glucose, reducing sugar, and sucrose in foods were all related to promotion of both sulcal and smooth-surface caries. The numbers of Streptococcus sobrinus in plaque were associated with promotion of smooth-surface caries only, whereas lactobacilli, non-mutans bacteria, and total viable flora were related to promotion of both smooth-surface and sulcal caries. The salivary flow rate was associated with inhibition of both buccolingual and sulcal caries. Salivary buffering capacity (at pH 7) and salivary lysozyme delivery were associated with inhibition of number and severity of sulcal caries, while the salivary amylase content was related to the promotion of the number of sulcal lesions.
Conti, Stefania; Magliani, Walter; Arseni, Simona; Frazzi, Raffaele; Salati, Antonella; Ravanetti, Lara; Polonelli, Luciano
2002-01-01
BACKGROUND: Monoclonal (KTmAb) and recombinant (KTscFv) anti-idiotypic antibodies, representing the internal image of a yeast killer toxin, proved to be microbicidal in vitro against important eukaryotic and prokaryotic pathogens such as Candida albicans, Pneumocystis carinii, Mycobacterium tuberculosis, Staphylococcus aureus, S. haemolyticus, Enterococcus faecalis, E. faecium, and Streptococcus pneumoniae, including multidrug-resistant strains. KTmAb and KTscFv exerted a strong therapeutic effect in well-established animal models of candidiasis and pneumocystosis. Streptococcus mutans is the most important etiologic agent of dental caries that might result from the metabolic end products of dental plaque. Effective strategies to reduce the disease potential of dental plaque have considered the possibility of using antibiotics or antibodies against oral streptococci in general and S. mutans in particular. In this study, the activity of KTmAb and KTscFv against S. mutans and the inhibition and reduction by KTmAb of dental colonization by S. mutans and other oral streptococci in an ex vivo model of human teeth were investigated. MATERIALS AND METHODS: KTscFv and KTmAb were used in a conventional colony forming unit (CFU) assay against a serotype C strain of S. mutans, and other oral streptococci (S. intermedius, S. mitis, S. oralis, S. salivarius). An ex vivo model of human teeth submerged in saliva was used to establish KTmAb potential of inhibiting or reducing the adhesion to dental surfaces by S. mutans and other oral streptococci. RESULTS: KTmAb and KTscFv kill in vitro S. mutans and other oral streptococci. KTmAb inhibit colonization of dental surfaces by S. mutans and oral streptococci in the ex vivo model. CONCLUSIONS: Killer antibodies with antibiotic activity or their engineered derivatives may have a potential in the prevention of dental caries in vivo. PMID:12428062
Soltau, J B; Einax, E; Klengel, K; Katholm, J; Failing, K; Wehrend, A; Donat, K
2017-10-01
The objective of the study was to assess the value of quantitative multiplex real-time PCR examination of bulk tank milk samples for bovine mastitis pathogens as a tool for herd level diagnosis. Using a logistic regression model, this study is aimed at calculating the threshold level of the apparent within-herd prevalence as determined by quarter milk sample cultivation of all lactating cows, thus allowing the detection of a herd positive for a specific pathogen within certain probability levels. A total of 6,335 quarter milk samples were collected and cultured from 1,615 cows on 51 farms in Germany. Bulk tank milk samples were taken from each farm and tested by bacterial culture as well as the commercial PCR assay Mastit 4A (DNA Diagnostic A/S, Risskov, Denmark) identifying Staphylococcus aureus, Streptococcus dysgalactiae, Streptococcus agalactiae, and Streptococcus uberis. In addition, PCR was performed on pooled herd milk samples containing milk aliquots from all lactating cows in each of the 51 herds. Only 1 out of the 51 herds was found PCR positive for Streptococcus agalactiae in bulk tank and pooled herd milk samples, and cultured quarter milk samples. Spearman's rank correlations between the cycle threshold value of bulk tank milk PCR and the apparent within-herd prevalence were calculated in regard to Staphylococcus aureus, Streptococcus dysgalactiae, and Streptococcus uberis. For these pathogens, significant correlations were found. If 1 bulk tank milk sample per herd was tested, the estimated within-herd prevalence thresholds for 90% probability of detection were 27.6% for Staphylococcus aureus, 9.2% for Streptococcus dysgalactiae, and 13.8% for Streptococcus uberis on the cow level. On the quarter level, the within-herd prevalence had to be at least 32.6% for Staphylococcus aureus, 1.7% for Streptococcus dysgalactiae, and 4.3% for Streptococcus uberis to detect a herd as positive using a single bulk milk sample. The results indicate that mastitis pathogens in bulk tank milk can be identified by the applied PCR assay. Bulk tank milk examination is not a reliable tool for the identification of the named pathogens by single testing, but might be a valuable monitoring tool when used frequently with repeated testing. Furthermore, this approach could be a useful monitoring tool for detecting new pathogen occurrence in the herd. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Nagarajappa, Ramesh; Batra, Mehak; Sharda, Archana J; Asawa, Kailash; Sanadhya, Sudhanshu; Daryani, Hemasha; Ramesh, Gayathri
2015-01-01
To assess and compare the antimicrobial potential and determine the minimum inhibitory concentration (MIC) of Jasminum grandiflorum and Hibiscus rosa-sinensis extracts as potential anti-pathogenic agents in dental caries. Aqueous and ethanol (cold and hot) extracts prepared from leaves of Jasminum grandiflorum and Hibiscus rosa-sinensis were screened for in vitro antimicrobial activity against Streptococcus mutans and Lactobacillus acidophilus using the agar well diffusion method. The lowest concentration of every extract considered as the minimum inhibitory concentration (MIC) was determined for both test organisms. Statistical analysis was performed with one-way analysis of variance (ANOVA). At lower concentrations, hot ethanol Jasminum grandiflorum (10 μg/ml) and Hibiscus rosa-sinensis (25 μg/ml) extracts were found to have statistically significant (P≤0.05) antimicrobial activity against S. mutans and L. acidophilus with MIC values of 6.25 μg/ml and 25 μg/ml, respectively. A proportional increase in their antimicrobial activity (zone of inhibition) was observed. Both extracts were found to be antimicrobially active and contain compounds with therapeutic potential. Nevertheless, clinical trials on the effect of these plants are essential before advocating large-scale therapy.
Novel anti-microbial therapies for dental plaque-related diseases.
Allaker, Robert P; Douglas, C W Ian
2009-01-01
Control of dental plaque-related diseases has traditionally relied on non-specific removal of plaque by mechanical means. As our knowledge of oral disease mechanisms increases, future treatment is likely to be more targeted, for example at small groups of organisms, single species or at key virulence factors they produce. The aim of this review is to consider the current status as regards novel treatment approaches. Maintenance of oral hygiene often includes use of chemical agents; however, increasing problems of resistance to synthetic antimicrobials have encouraged the search for alternative natural products. Plants are the source of more than 25% of prescription and over-the-counter preparations, and the potential of natural agents for oral prophylaxis will therefore be considered. Targeted approaches may be directed at the black-pigmented anaerobes associated with periodontitis. Such pigments provide an opportunity for targeted phototherapy with high-intensity monochromatic light. Studies to date have demonstrated selective killing of Porphyromonas gingivalis and Prevotella intermedia in biofilms. Functional inhibition approaches, including the use of protease inhibitors, are also being explored to control periodontitis. Replacement therapy by which a resident pathogen is replaced with a non-pathogenic bacteriocin-producing variant is currently under development with respect to Streptococcus mutans and dental caries.
Antibacterial and glucosyltransferase enzyme inhibitory activity of helmyntostachyszelanica
NASA Astrophysics Data System (ADS)
Kuspradini, H.; Putri, AS; Mitsunaga, T.
2018-04-01
Helminthostachyszeylanica is a terrestrial, herbaceous, fern-like plant of southeastern Asia and Australia, commonly known as tunjuk-langit. This kind of plant have a medicinal properties such as treatment of malaria, dysentery and can be eaten with betel in the treatment of whooping cough. To evaluate the scientific basis for the use of the plant, the antimicrobial activities of extracts of the stem and leaves were evaluated. The bacteria used in this study is Streptococcus sobrinus, a species of gram-positive, that may be associated with human dental caries. The dried powdered plant parts were extracted using methanol and 50% aqueous extract and screened for their antibacterial effects of Streptococcus sobrinus using the 96 well-plate microdilution broth method. The inhibitory activities of its related enzyme were also determined. The plant extracts showed variable antibacterial and Glucosyltransferase enzyme inhibitory activity while some extracts could not cause any inhibition. It was shown that 50% ethanolics of Helminthostachyzeylanica stem have a potency as anti dental caries agents.
Streptococcus mutans: Fructose Transport, Xylitol Resistance, and Virulence
Tanzer, J.M.; Thompson, A.; Wen, Z.T.; Burne, R.A.
2008-01-01
Streptococcus mutans, the primary etiological agent of human dental caries, possesses at least two fructose phosphotransferase systems (PTSs), encoded by fruI and fruCD. fruI is also responsible for xylitol transport. We hypothesized that fructose and xylitol transport systems do not affect virulence. Thus, colonization and cariogenicity of fruI− and fruCD− single and double mutants, their WT (UA159), and xylitol resistance (Xr) of S. mutans were studied in rats fed a high-sucrose diet. A sucrose phosphorylase (gtfA−) mutant and a reference strain (NCTC-10449S) were additional controls. Recoveries of fruI mutant from the teeth were decreased, unlike those for the other strains. The fruCD mutation was associated with a slight loss of cariogenicity on enamel, whereas mutation of fruI was associated with a loss of cariogenicity in dentin. These results also suggest why xylitol inhibition of caries is paradoxically associated with spontaneous emergence of so-called Xr S. mutans in habitual human xylitol users. PMID:16567561
Anti-cariogenic properties of a water-soluble extract from cacao.
Ito, Kyoko; Nakamura, Yuko; Tokunaga, Takahisa; Iijima, Daisuke; Fukushima, Kazuo
2003-12-01
The addition of a water-soluble extract from cacao-extracted powder (CEPWS) to a cariogenic model food, a white chocolate-like diet that contains 35% sucrose, significantly reduced caries scores in SPF rats infected with Streptococcus sobrinus 6715, compared to control rats fed a white chocolate-like diet. CEPWS markedly inhibited water-insoluble glucan (WIG) synthesis through crude glucosyltransferases (GTFs) from Streptococcus sobrinus B13N in vitro. GTF-inhibitor(s) in CEPWS was prepared through three-step fractionation, and was termed CEPWS-BT, which is a high molecular weight (>10 kDa) heat-stable matrix of sugar, protein, and polyphenol. When the inhibitory effect of CEPWS-BT on glucan synthesis was examined using the purified GTF-I, GTF-T, and GTF-U enzymes from S. sobrinus B13N, significant reduction in GTF-I and GTF-T activity as a result of adding CEPWS-BT at low concentrations was observed. These results suggest that the addition of CEPWS to cariogenic food could be useful in controlling dental caries.
Drake, David; Dawson, Deborah; Kramer, Katherine; Schumacher, Amy; Warren, John; Marshall, Teresa; Starr, Delores; Phipps, Kathy
2016-01-01
Severe Early Childhood Caries (S-ECC) is a terribly aggressive and devastating disease that is all too common in lower socio-economic children, but none more so that what is encountered in American Indian Tribes. Nationwide, approximately 27% of 2–5 year olds have decay while 62% percent of American Indian/Alaska Native children in the same age group have a history of decay (IHS 2010, NHANES 1999–2002). We have conducted a study of children from birth to 36 months of age on Pine Reservation to gain a better understanding of the variables that come into play in the development of this disease, from transmission and acquisition of Streptococcus mutans genotypes from mother to child to multiple dietary and behavioral components. This article describes how we established a direct partnership with the Tribe and the many opportunities and challenges we faced in performing this 5-year field study. PMID:27668133
Oxidative Stressors Modify the Response of Streptococcus mutans to Its Competence Signal Peptides
De Furio, Matthew; Ahn, Sang Joon
2017-01-01
ABSTRACT The dental caries pathogen Streptococcus mutans is continually exposed to several types of stress in the oral biofilm environment. Oxidative stress generated by reactive oxygen species has a major impact on the establishment, persistence, and virulence of S. mutans. Here, we combined fluorescent reporter-promoter fusions with single-cell imaging to study the effects of reactive oxygen species on activation of genetic competence in S. mutans. Exposure to paraquat, which generates superoxide anion, produced a qualitatively different effect on activation of expression of the gene for the master competence regulator, ComX, than did treatment with hydrogen peroxide (H2O2), which can yield hydroxyl radical. Paraquat suppressed peptide-mediated induction of comX in a progressive and cumulative fashion, whereas the response to H2O2 displayed a strong threshold behavior. Low concentrations of H2O2 had little effect on induction of comX or the bacteriocin gene cipB, but expression of these genes declined sharply if extracellular H2O2 exceeded a threshold concentration. These effects were not due to decreased reporter gene fluorescence. Two different threshold concentrations were observed in the response to H2O2, depending on the gene promoter that was analyzed and the pathway by which the competence regulon was stimulated. The results show that paraquat and H2O2 affect the S. mutans competence signaling pathway differently, and that some portions of the competence signaling pathway are more sensitive to oxidative stress than others. IMPORTANCE Streptococcus mutans inhabits the oral biofilm, where it plays an important role in the development of dental caries. Environmental stresses such as oxidative stress influence the growth of S. mutans and its important virulence-associated behaviors, such as genetic competence. S. mutans competence development is a complex behavior that involves two different signaling peptides and can exhibit cell-to-cell heterogeneity. Although oxidative stress is known to influence S. mutans competence, it is not understood how oxidative stress interacts with the peptide signaling or affects heterogeneity. In this study, we used fluorescent reporters to probe the effect of reactive oxygen species on competence signaling at the single-cell level. Our data show that different reactive oxygen species have different effects on S. mutans competence, and that some portions of the signaling pathway are more acutely sensitive to oxidative stress than others. PMID:28887419
Evaluation of preventive programs in high caries active preschool children.
Sundell, Anna Lena; Ullbro, Christer; Koch, Göran
2013-01-01
Although caries prevalence in preschool children has dramatically decreased during the last decades it is still a large problem for a minor group of these children. Great efforts have been invested in finding effective preventive programs for the high caries active preschool children. However, few studies have evaluated and discussed which approach will give the best effect. The aim of the present study was to compare the effect of a "standard" preventive program with a series of programs with more extensive measures during a two-year period. At start one hundred and sixty high caries active preschool children (mean age 4 years) were included in the study. The children were randomly distributed to four groups. All groups were exposed to the basic program composed of dietary counselling, oral hygiene instructions and fluoride varnish application. Three groups were exposed to one additional preventive measure e.g. 1% chlorhexidine gel in trays, 0.2% NaF gel in trays or daily tooth brushing with 1% chlorhexidine gel. The programs were repeated seven times during the two-year study period and were executed by trained dental hygienists. Caries examination and saliva sampling for Streptococcus mutans measurements were performed at start of the study and after two years. The mean defs at start was between 10.8 and 12.6 for the four groups (NS). After two years the caries increment was 1.9 ds in the basic preventive group and between 1.9 and 2.6 (NS) in the other groups. Numerically there were more children in the chlorhexidine groups that showed reduction of Streptococcus mutans counts compared to the other groups, but the differences were small. The mean caries increment of about 1.9 ds per year in all groups indicate that all programs were effective taken into account that the children had about 11 defs at start. There were no differences in caries increment between the basic preventive group and the other groups. The conclusion was that addition of preventive measures on top of an effective basic program is a waste of resources. The effect on oral health of individual reinstruction and motivation, by a dental hygienist, seven times during the two-year study period should not be underestimated.
Nomura, Ryota; Otsugu, Masatoshi; Naka, Shuhei; Teramoto, Noboru; Kojima, Ayuchi; Muranaka, Yoshinori; Matsumoto-Nakano, Michiyo; Ooshima, Takashi
2014-01-01
Streptococcus mutans, a pathogen responsible for dental caries, is occasionally isolated from the blood of patients with bacteremia and infective endocarditis (IE). Our previous study demonstrated that serotype k-specific bacterial DNA is frequently detected in S. mutans-positive heart valve specimens extirpated from IE patients. However, the reason for this frequent detection remains unknown. In the present study, we analyzed the virulence of IE from S. mutans strains, focusing on the characterization of serotype k strains, most of which are positive for the 120-kDa cell surface collagen-binding protein Cbm and negative for the 190-kDa protein antigen (PA) known as SpaP, P1, antigen I/II, and other designations. Fibrinogen-binding assays were performed with 85 clinical strains classified by Cbm and PA expression levels. The Cbm+/PA− group strains had significantly higher fibrinogen-binding rates than the other groups. Analysis of platelet aggregation revealed that SA31, a Cbm+/PA− strain, induced an increased level of aggregation in the presence of fibrinogen, while negligible aggregation was induced by the Cbm-defective isogenic mutant SA31CBD. A rat IE model with an artificial impairment of the aortic valve created using a catheter showed that extirpated heart valves in the SA31 group displayed a prominent vegetation mass not seen in those in the SA31CBD group. These findings could explain why Cbm+/PA− strains are highly virulent and are related to the development of IE, and the findings could also explain the frequent detection of serotype k DNA in S. mutans-positive heart valve clinical specimens. PMID:25287921
Nomura, Ryota; Otsugu, Masatoshi; Naka, Shuhei; Teramoto, Noboru; Kojima, Ayuchi; Muranaka, Yoshinori; Matsumoto-Nakano, Michiyo; Ooshima, Takashi; Nakano, Kazuhiko
2014-12-01
Streptococcus mutans, a pathogen responsible for dental caries, is occasionally isolated from the blood of patients with bacteremia and infective endocarditis (IE). Our previous study demonstrated that serotype k-specific bacterial DNA is frequently detected in S. mutans-positive heart valve specimens extirpated from IE patients. However, the reason for this frequent detection remains unknown. In the present study, we analyzed the virulence of IE from S. mutans strains, focusing on the characterization of serotype k strains, most of which are positive for the 120-kDa cell surface collagen-binding protein Cbm and negative for the 190-kDa protein antigen (PA) known as SpaP, P1, antigen I/II, and other designations. Fibrinogen-binding assays were performed with 85 clinical strains classified by Cbm and PA expression levels. The Cbm(+)/PA(-) group strains had significantly higher fibrinogen-binding rates than the other groups. Analysis of platelet aggregation revealed that SA31, a Cbm(+)/PA(-) strain, induced an increased level of aggregation in the presence of fibrinogen, while negligible aggregation was induced by the Cbm-defective isogenic mutant SA31CBD. A rat IE model with an artificial impairment of the aortic valve created using a catheter showed that extirpated heart valves in the SA31 group displayed a prominent vegetation mass not seen in those in the SA31CBD group. These findings could explain why Cbm(+)/PA(-) strains are highly virulent and are related to the development of IE, and the findings could also explain the frequent detection of serotype k DNA in S. mutans-positive heart valve clinical specimens. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Pyrosequencing analysis of oral microbiota shifting in various caries states in childhood.
Jiang, Wen; Ling, Zongxin; Lin, Xiaolong; Chen, Yadong; Zhang, Jie; Yu, Jinjin; Xiang, Charlie; Chen, Hui
2014-05-01
Dental caries is one of the most prevalent childhood diseases worldwide, but little is known about the dynamic characteristics of oral microbiota in the development of dental caries. To investigate the shifting bacterial profiles in different caries states, 60 children (3-7-year-old) were enrolled in this study, including 30 caries-free subjects and 30 caries-active subjects. Supragingival plaques were collected from caries-active subjects on intact enamel, white spot lesions and carious dentin lesions. Plaques from caries-free subjects were used as a control. All samples were analyzed by 454 pyrosequencing based on 16S rRNA gene V1-V3 hypervariable regions. A total of 572,773 pyrosequencing reads passed the quality control and 25,444 unique phylotypes were identified, which represented 18 phyla and 145 genera. Reduced bacterial diversity in the cavitated dentin was observed as compared with the other groups. Thirteen genera (including Capnocytophaga, Fusobacterium, Porphyromonas, Abiotrophia, Comamonas, Tannerella, Eikenella, Paludibacter, Treponema, Actinobaculum, Stenotrophomonas, Aestuariimicrobium, and Peptococcus) were found to be associated with dental health, and the bacterial profiles differed considerably depending on caries status. Eight genera (including Cryptobacterium, Lactobacillus, Megasphaera, Olsenella, Scardovia, Shuttleworthia, Cryptobacterium, and Streptococcus) were increased significantly in cavitated dentin lesions, and Actinomyces and Corynebacterium were present at significant high levels in white spot lesions (P < 0.05), while Flavobacterium, Neisseria, Bergeyella, and Derxia were enriched in the intact surfaces of caries individuals (P < 0.05). Our results showed that oral bacteria were specific at different stages of caries progression, which contributes to informing the prevention and treatment of childhood dental caries.
Potential risk factors for dental caries in Type 2 diabetic patients.
Almusawi, M A; Gosadi, I; Abidia, R; Almasawi, M; Khan, H A
2018-05-11
Diabetic patients are known to be at higher risk for dental caries. However, the role of potential risk factors such as blood glucose, salivary glucose and glycaemic control in the occurrence of dental caries in type 2 diabetes (T2D) is not clearly understood so far, and therefore, it was evaluated in this study. This cross-sectional study was conducted on 100 T2D patients from Saudi Arabia. The caries risk assessment was evaluated using the guidelines of Caries Management by Risk Assessment (CAMBRA). Cariogenic bacteria load in saliva was determined by a chair-side test kit. The levels of fasting blood glucose (FBG), salivary glucose and HbA1c were analysed. Majority of the patients had dental caries (84%), exposed root surfaces (92%) and heavy plaque (73%), whereas 66% of patients suffered from xerostomia. The frequency of patients with high counts of Streptococcus mutans and Lactobacilli (LB) were 78% and 42%, respectively. There were significant associations between dental caries risk and FBG, HbA1c and salivary glucose. After categorizing the patients into 3 categories of glycaemic control, we observed a significant association between glycaemic control and dental caries risk. Type 2 diabetes patients are at high risk for dental caries, which is directly associated with FBG, HbA1c and salivary glucose. This is the first study measuring dental caries and its risk factors in T2D patients from Saudi Arabia. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Etiology and outcome of community-acquired lung abscess.
Takayanagi, Noboru; Kagiyama, Naho; Ishiguro, Takashi; Tokunaga, Daidou; Sugita, Yutaka
2010-01-01
Anaerobes are the first and Streptococcus species the second most common cause of community-acquired lung abscess (CALA) in the West. The etiologic pathogens of this disease have changed in Taiwan, with Klebsiella pneumoniae being reported as the most common cause of CALA. To determine the etiologies of community-acquired lung abscess. We retrospectively reviewed the records of 205 Japanese adult patients with CALA to evaluate etiologies and outcomes. We used not only traditional microbiological investigations but also percutaneous ultrasonography-guided transthoracic needle aspiration and protected specimen brushes. Of these 205 patients, 122 had documented bacteriological results, with 189 bacterial species isolated. Pure aerobic, mixed aerobic and anaerobic, and pure anaerobic bacteria were isolated in 90 (73.8%), 17 (13.9%), and 15 (12.3%) patients, respectively. The four most common etiologic pathogens were Streptococcus species (59.8%), anaerobes (26.2%), Gemella species (9.8%), and K. pneumoniae (8.2%). Streptococcus mitis was the most common among the Streptococcus species. Mean duration of antibiotic administration was 26 days. Six patients (2.9%, 3 with actinomycosis and 3 with nocardiosis) were treated with antibiotics for 76-189 days. Two patients with anaerobic lung abscess died. The first and second most common etiologic pathogens of CALA in our hospital were Streptococcus species and anaerobes, respectively. The etiologies in our study differ from those in Taiwan and are similar to those in the West with the exception that Streptococcus species were the most common etiologic pathogens in our study whereas anaerobes are the most frequent etiologic pathogens in Western countries. S. mitis and Gemella species are important etiologic pathogens as well. The identification of Actinomyces and Nocardia is important in order to define the adequate duration of antibiotic administration. Copyright 2010 S. Karger AG, Basel.
Valdebenito, B; Tullume-Vergara, P O; González, W; Kreth, J; Giacaman, R A
2018-04-01
During dental caries, the dental biofilm modifies the composition of the hundreds of involved bacterial species. Changing environmental conditions influence competition. A pertinent model to exemplify the complex interplay of the microorganisms in the human dental biofilm is the competition between Streptococcus sanguinis and Streptococcus mutans. It has been reported that children and adults harbor greater numbers of S. sanguinis in the oral cavity, associated with caries-free teeth. Conversely, S. mutans is predominant in individuals with a high number of carious lesions. Competition between both microorganisms stems from the production of H 2 O 2 by S. sanguinis and mutacins, a type of bacteriocins, by S. mutans. There is limited evidence on how S. sanguinis survives its own H 2 O 2 levels, or if it has other mechanisms that might aid in the competition against S. mutans, nonetheless. We performed a genomic and metabolic pathway comparison, coupled with a comprehensive literature review, to better understand the competition between these two species. Results indicated that S. sanguinis can outcompete S. mutans by the production of an enzyme capable of metabolizing H 2 O 2 . S. mutans, however, lacks the enzyme and is susceptible to the peroxide from S. sanguinis. In addition, S. sanguinis can generate energy through gluconeogenesis and seems to have evolved different communication mechanisms, indicating that novel proteins may be responsible for intra-species communication. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Serotype diversity of Streptococcus mutans and caries activity in children in Argentina.
Carletto-Körber, F P; González-Ittig, R E; Jimenez, M G; Cornejo, L S
2015-09-01
The purpose of this study was to analyse the serotype distribution of S. mutans and their association with caries activity in school children from Córdoba, Argentina. Clinical examination was performed in 133 children. The dmft+DMFT and Significant Caries (SiC) indices were calculated to identify individuals with high caries activity. After DNA extractions of S. mutans strains, serotypes were determined by PCR amplifications. The median caries activity of each serotype group was compared using a non-parametric Kruskall-Wallis test. We obtained S. mutans strains from stimulated saliva of 94 children. The mean dmft+DMFT was 4.14 and the mean SiC index was 8.65. Serotype c was the most frequent (53.2%), followed by e (31.9%), f (8.5%) and k (6.4%). The comparison between the SiC and Non-Sic groups showed significant differences in the frequency of serotypes c and k. The median caries activity was non-significant in the different serotypes. The difference between the serotype frequencies detected in Argentina compared to those of other countries could be related with contrasting dietary habits. The results obtained in the present study would increase the knowledge about the epidemiology of dental caries in children from Argentina.
The Effect of Chemically Modified Tetracycline-3 on the Progression of Dental Caries in Rats.
Xu, Jun; Miao, Congcong; Tian, Zhenchuan; Li, Jinlu; Zhang, Chunmei; Yang, Dongmei
2018-02-07
Matrix metalloproteinases (MMPs) exist in human saliva and dentin and play an important role in the degradation of organic matrix in teeth. Chemically modified tetracycline-3 (CMT-3) is an inhibitor of MMPs. CMT-3 has been used experimentally to treat caries since 1999, but no distinction between dental caries prevalence and dentin caries prevalence has been described. A total of 65 Sprague-Dawley rats were randomly divided into three groups. The positive control group (25 rats) was inoculated with Streptococcus mutans (ATCC700610) and fed the cariogenic feed of improved Keyes Diet 2000. The CMT-3 group (25 rats) was also inoculated with S. mutans and fed the cariogenic feed of improved Keyes Diet 2000; the surfaces of rats' molars were daily treated with 0.02% CMT-3. The negative control group (15 rats) was only fed the standard rodent chow. At the end of the 10th week, the dental caries prevalence and dentin caries prevalence of each group were calculated, and the regions of caries were assessed. No caries was found in the negative control group. The dental caries prevalence of the CMT-3 and the positive control group was 75.0 and 83.3%, respectively (p > 0.05, Table 2). The dentin caries prevalence of the CMT-3 and the positive control group was 33.3 and 70.8%, respectively (p < 0.05, Table 2). The Keyes scoring of dentin caries in the CMT-3 group was significantly lower than that in the positive control group (p < 0.05, Table 3). CMT-3 had no effect on the prevalence of dental caries, but could lower the prevalence and slow down the progression of dentin caries. © 2018 S. Karger AG, Basel.
Zoumpopoulou, Georgia; Pepelassi, Eudoxie; Papaioannou, William; Georgalaki, Marina; Maragkoudakis, Petros A.; Tarantilis, Petros A.; Polissiou, Moschos; Tsakalidou, Effie; Papadimitriou, Konstantinos
2013-01-01
In the present study we investigated the incidence of bacteriocins produced by 236 lactic acid bacteria (LAB) food isolates against pathogenic or opportunistic pathogenic oral bacteria. This set of LAB contained several strains (≥17%) producing bacteriocins active against food-related bacteria. Interestingly only Streptococcus macedonicus ACA-DC 198 was able to inhibit the growth of Streptococcus oralis, Streptococcus sanguinis and Streptococcus gordonii, while Lactobacillus fermentum ACA-DC 179 and Lactobacillus plantarun ACA-DC 269 produced bacteriocins solely against Streptococcus oralis. Thus, the percentage of strains that were found to produce bacteriocins against oral bacteria was ~1.3%. The rarity of bacteriocins active against oral LAB pathogens produced by food-related LAB was unexpected given their close phylogenetic relationship. Nevertheless, when tested in inhibition assays, the potency of the bacteriocin(s) of S. macedonicus ACA-DC 198 against the three oral streptococci was high. Fourier-transform infrared spectroscopy combined with principal component analysis revealed that exposure of the target cells to the antimicrobial compounds caused major alterations of key cellular constituents. Our findings indicate that bacteriocins produced by food-related LAB against oral LAB may be rare, but deserve further investigation since, when discovered, they can be effective antimicrobials. PMID:23443163
Lung abscess due to Streptococcus pneumoniae: a case series and brief review of the literature.
Nicolini, Antonello; Cilloniz, Catia; Senarega, Renata; Ferraioli, Gianluca; Barlascini, Cornelius
2014-01-01
Anaerobes used to be the most common cause of community-acquired lung abscess, and Streptococcus species used to be the second most common cause. In recent years, this has been changing. Klebsiella pneumoniae is now an increasing cause of community- acquired lung abscess, but Streptococcus species continue to be major pathogens. Necrotizing pneumonia has generally been regarded as a rare complication of pneumococcal infection in adults. Type 3 Streptococcus pneumoniae was the single most common type implicated in necrosis; however, many other serotypes were implicated. This entity predominately infects children, but is present also in adults. Lung abscess in adults due to Streptococcus pneumoniae is not common. In this regard we present a case series of pulmonary cavitation due to Streptococcus pneumoniae and discuss the possible pathogenic mechanism of the disease.
In vitro antimicrobial activity of Caesalpinia ferrea Martius fruits against oral pathogens.
Sampaio, Fábio C; Pereira, Maria do Socorro V; Dias, Celidarque S; Costa, Vicente Carlos O; Conde, Nikeila C O; Buzalaf, Marília A R
2009-07-15
In the Amazon region of Brazil, the fruits of Caesalpinia ferrea Martius (Brazilian ironwood) are widely used as an antimicrobial and healing medicine in many situations including oral infections. This study aimed to evaluate the antimicrobial activity of Caesalpinia ferrea Martius fruit extract against oral pathogens. Polyphenols estimation and spectral analysis ((1)H NMR) of the methanol extract were carried out. The microorganisms Candida albicans, Streptococcus mutans, Streptococcus salivarius, Streptococcus oralis and Lactobacillus casei were tested using the microdilution method for planktonic cells (MIC) and a multispecies biofilm model. Chlorhexidine was used as positive control. Polyphenols in the extract were estimated at 7.3% and (1)H NMR analysis revealed hydroxy phenols and methoxilated compounds. MIC values for Candida albicans, Streptococcus mutans, Streptococcus salivarius, Streptococcus oralis and Lactobacillus casei were 25.0, 40.0, 66.0, 100.0, 66.0 microg/mL, respectively. For the biofilm assay, chlorhexidine and plant extract showed no growth at 10(-4) and 10(-5) microbial dilution, respectively. At 10(-4) and 10(-5) the growth values (mean+/-SD) of the negative controls (DMSO and saline solution) for Streptococcus mutans, Streptococcus sp. and Candida albicans were 8.1+/-0.7, 7.0+/-0.6 and 5.9+/-0.9 x 10(6)CFU, respectively. Caesalpinia ferrea fruit extract can inhibit in vitro growth of oral pathogens in planktonic and biofilm models supporting its use for oral infections.
Abbate, G M; Borghi, D; Passi, A; Levrini, L
2014-03-01
Evaluate the correlations between unstimulated salivary flow, pH and level of S. mutans, analysed through real time PCR, in caries-free and caries-active children. Thirty healthy children were divided into 2 groups: test group (DMFT/dmft ≥ 3 and at least 1 active caries lesion) and control group (DMFT/dmft=0). Un-stimulated saliva was collected, pH was measured and S. mutans and total bacterial amount were evaluated with real-time PCR analysis. Unstimulated salivary flow in the test group was significantly lower (p = 0.0269) compared to group control. The level of S. mutans was higher in the test group (p = 0.176), and an inverse correlation was recorded between total bacterial amount and un-stimulated salivary flow (p = 0.063). In the control group a positive relationship was found between total bacterial amount and S. mutans (p = 0.045) and an inverse correlation between pH and S. mutans (p = 0.088). A t-test and a linear regression analysis were performed. A higher salivary flow and an increased salivary pH seem to represent protective factors against caries in children, while high levels of S. mutans are correlated with caries active lesions. Caries risk assessment should be performed considering all parameters involved in the development of the disease.
Nakano, Kazuhiko; Nomura, Ryota; Matsumoto, Michiyo; Ooshima, Takashi
2010-01-01
Streptococcus mutans is generally known as a pathogen of dental caries, and it is also considered to cause bacteremia and infective endocarditis (IE). S. mutans was previously classified into 3 serotypes, c, e, and f, due to the different chemical compositions of the serotype-specific polysaccharides, which are composed of a rhamnose backbone and glucose side chains. We recently designated non-c/e/f serotype S. mutans strains as novel serotype k, which is characterized by a drastic reduction in the amount of the glucose side chain. A common biological feature of novel serotype-k strains is a lower level of cariogenicity due to alterations of several major cell surface protein antigens. As for virulence in blood, these strains survive in blood for a longer duration due to lower antigenicity, while the detection rate of all strains carrying the gene encoding collagen-binding adhesin has been shown to be high. Furthermore, molecular biological analyses of infected heart valve specimens obtained from IE patients revealed a high detection rate of serotype-k S. mutans. Together, these findings suggest that serotype-k S. mutans strains show low cariogenicity but high virulence in blood as compared to the other serotypes, due to alterations of several cell surface structures.
Ambatipudi, Kiran S.; Hagen, Fred K.; Delahunty, Claire M.; Han, Xuemei; Shafi, Rubina; Hryhorenko, Jennifer; Gregoire, Stacy; Marquis, Robert E.; Melvin, James E.; Koo, Hyun; Yates, John R.
2010-01-01
Summary The saliva proteome includes host defense factors and specific bacterial-binding proteins that modulate microbial growth and colonization of tooth surface in the oral cavity. A multidimensional mass spectrometry approach identified the major host-derived salivary proteins which interacted with Streptococcus mutans (strain UA159), the primary microorganism associated with the pathogenesis of dental caries. Two abundant host proteins were found to tightly bind to S. mutans cells, common salivary protein-1 (CSP-1) and deleted in malignant brain tumor 1 (DMBT1, also known as salivary agglutinin or gp340). In contrast to gp340, limited functional information is available on CSP-1. The sequence of CSP-1 shares 38.1% similarity with rat CSP-1. Recombinant CSP-1 (rCSP-1) protein did not cause aggregation of S. mutans cells and was devoid of any significant biocidal activity (2.5 to 10 μg/ml). However, S. mutans cells exposed to rCSP-1 (10 μg/ml) in saliva displayed enhanced adherence to experimental salivary pellicle and to glucans in the pellicle formed on hydroxyapatite surfaces. Thus, our data demonstrate that the host salivary protein CSP-1 binds to S. mutans cells and may influence the initial colonization of this pathogenic bacterium onto tooth surface. PMID:20858015
Min, Kyung R.; Galvis, Adriana; Williams, Brandon; Rayala, Ramanjaneyulu; Cudic, Predrag
2017-01-01
ABSTRACT Despite continuous efforts to control cariogenic dental biofilms, very few effective antimicrobial treatments exist. In this study, we characterized the activity of the novel synthetic cyclic lipopeptide 4 (CLP-4), derived from fusaricidin, against the cariogenic pathogen Streptococcus mutans UA159. We determined CLP-4's MIC, minimum bactericidal concentration (MBC), and spontaneous resistance frequency, and we performed time-kill assays. Additionally, we assessed CLP-4's potential to inhibit biofilm formation and eradicate preformed biofilms. Our results demonstrate that CLP-4 has strong antibacterial activity in vitro and is a potent bactericidal agent with low spontaneous resistance frequency. At a low concentration of 5 μg/ml, CLP-4 completely inhibited S. mutans UA159 biofilm formation, and at 50 μg/ml, it reduced the viability of established biofilms by >99.99%. We also assessed CLP-4's cytotoxicity and stability against proteolytic digestion. CLP-4 withstood trypsin or chymotrypsin digestion even after treatment for 24 h, and our toxicity studies showed that CLP-4 effective concentrations had negligible effects on hemolysis and the viability of human oral fibroblasts. In summary, our findings showed that CLP-4 is a potent antibacterial and antibiofilm agent with remarkable stability and low nonspecific cytotoxicity. Hence, CLP-4 is a promising novel antimicrobial peptide with potential for clinical application in the prevention and treatment of dental caries. PMID:28533236
Gonçalves, Regiane; Ayres, Vanessa F S; Carvalho, Carlos E; Souza, Maria G M; Guimarães, Anderson C; Corrêa, Geone M; Martins, Carlos H G; Takeara, Renata; Silva, Eliane O; Crotti, Antônio E M
2017-01-01
Abnormal multiplication of oral bacteria causes dental caries and dental plaque. These diseases continue to be major public health concerns worldwide, mainly in developing countries. In this study, the chemical composition and antimicrobial activity of the essential oil of Vitex agnus-castus leaves (VAC‒EO) collected in the North of Brazil against a representative panel of cariogenic bacteria were investigated. The antimicrobial activity of VAC-EO was evaluated in terms of its minimum inhibitory concentration (MIC) values by using the broth microdilution method in 96-well microplates. The chemical constituents of VAC-EO were identified by gas chromatography (GC‒FID) and gas chromatography‒mass spectrometry (GC‒MS). VAC‒EO displayed some activity against all the investigated oral pathogens; MIC values ranged from 15.6 to 200 μg/mL. VAC-EO had promising activity against Streptococcus mutans (MIC= 15.6 μg/mL), Lactobacillus casei (MIC= 15.6 μg/mL), and Streptococcus mitis (MIC= 31.2 μg/mL). The compounds 1,8-cineole (23.8%), (E)-β-farnesene (14.6%), (E)-caryophyllene (12.5%), sabinene (11.4%), and α-terpinyl acetate (7.7%) were the major chemical constituents of VAC‒EO. VAC-EO displays antimicrobial activity against cariogenic bacteria. The efficacy of VAC-EO against S. mutans is noteworthy and should be further investigated.
2012-01-01
Background 10-Hydroxy-2-decenoic acid, an unsaturated fatty acid is the most active and unique component to the royal jelly that has antimicrobial properties. Streptococcus mutans is associated with pathogenesis of oral cavity, gingivoperiodontal diseases and bacteremia following dental manipulations. In the oral cavity, S. mutans colonize the soft tissues including tongue, palate, and buccal mucosa. When considering the role of supragingival dental plaque in caries, the proportion of acid producing bacteria (particularly S. mutans), has direct relevance to the pathogenicity of the plaque. The genes that encode glucosyltransferases (gtfs) especially gtfB and gtfC are important in S. mutans colonization and pathogenesis. This study investigated the hydroxy-decenoic acid (HDA) effects on gtfB and gtfC expression and S. mutans adherence to cells surfaces. Methods Streptococcus mutans was treated by different concentrations of HPLC purified HDA supplied by Iran Beekeeping and Veterinary Association. Real time RT-PCR and western blot assays were conducted to evaluate gtfB and gtfC genes transcription and translation before and after HDA treatment. The bacterial attachment to the cell surfaces was evaluated microscopically. Results 500 μg ml-1 of HDA inhibited gtfB and gtfC mRNA transcription and its expression. The same concentration of HDA decreased 60% the adherence of S. mutans to the surface of P19 cells. Conclusion Hydroxy-decenoic acid prevents gtfB and gtfC expression efficiently in the bactericide sub-concentrations and it could effectively reduce S. mutans adherence to the cell surfaces. In the future, therapeutic approaches to affecting S. mutans could be selective and it’s not necessary to put down the oral flora completely. PMID:22839724
Yousefi, Behnam; Ghaderi, Shahrooz; Rezapoor-Lactooyi, Alireza; Amiri, Niusha; Verdi, Javad; Shoae-Hassani, Alireza
2012-07-28
10-Hydroxy-2-decenoic acid, an unsaturated fatty acid is the most active and unique component to the royal jelly that has antimicrobial properties. Streptococcus mutans is associated with pathogenesis of oral cavity, gingivoperiodontal diseases and bacteremia following dental manipulations. In the oral cavity, S. mutans colonize the soft tissues including tongue, palate, and buccal mucosa. When considering the role of supragingival dental plaque in caries, the proportion of acid producing bacteria (particularly S. mutans), has direct relevance to the pathogenicity of the plaque. The genes that encode glucosyltransferases (gtfs) especially gtfB and gtfC are important in S. mutans colonization and pathogenesis. This study investigated the hydroxy-decenoic acid (HDA) effects on gtfB and gtfC expression and S. mutans adherence to cells surfaces. Streptococcus mutans was treated by different concentrations of HPLC purified HDA supplied by Iran Beekeeping and Veterinary Association. Real time RT-PCR and western blot assays were conducted to evaluate gtfB and gtfC genes transcription and translation before and after HDA treatment. The bacterial attachment to the cell surfaces was evaluated microscopically. 500 μg ml-1 of HDA inhibited gtfB and gtfC mRNA transcription and its expression. The same concentration of HDA decreased 60% the adherence of S. mutans to the surface of P19 cells. Hydroxy-decenoic acid prevents gtfB and gtfC expression efficiently in the bactericide sub-concentrations and it could effectively reduce S. mutans adherence to the cell surfaces. In the future, therapeutic approaches to affecting S. mutans could be selective and it's not necessary to put down the oral flora completely.
Future challenges in the elimination of bacterial meningitis.
Bottomley, Matthew J; Serruto, Davide; Sáfadi, Marco Aurélio Palazzi; Klugman, Keith P
2012-05-30
Despite the widespread implementation of several effective vaccines over the past few decades, bacterial meningitis caused by Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis and Group B Streptococcus (GBS) still results in unacceptably high levels of human mortality and morbidity. A residual disease burden due to bacterial meningitis is also apparent due to a number of persistent or emerging pathogens, including Mycobacterium tuberculosis, Escherichia coli, Staphylococcus aureus, Salmonella spp. and Streptococcus suis. Here, we review the current status of bacterial meningitis caused by these pathogens, highlighting how past and present vaccination programs have attempted to counter these pathogens. We discuss how improved pathogen surveillance, implementation of current vaccines, and development of novel vaccines may be expected to further reduce bacterial meningitis and related diseases in the future. Copyright © 2011 Elsevier Ltd. All rights reserved.
High-level fluorescence labeling of gram-positive pathogens.
Aymanns, Simone; Mauerer, Stefanie; van Zandbergen, Ger; Wolz, Christiane; Spellerberg, Barbara
2011-01-01
Fluorescence labeling of bacterial pathogens has a broad range of interesting applications including the observation of living bacteria within host cells. We constructed a novel vector based on the E. coli streptococcal shuttle plasmid pAT28 that can propagate in numerous bacterial species from different genera. The plasmid harbors a promoterless copy of the green fluorescent variant gene egfp under the control of the CAMP-factor gene (cfb) promoter of Streptococcus agalactiae and was designated pBSU101. Upon transfer of the plasmid into streptococci, the bacteria show a distinct and easily detectable fluorescence using a standard fluorescence microscope and quantification by FACS-analysis demonstrated values that were 10-50 times increased over the respective controls. To assess the suitability of the construct for high efficiency fluorescence labeling in different gram-positive pathogens, numerous species were transformed. We successfully labeled Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus dysgalactiae subsp. equisimilis, Enterococcus faecalis, Enterococcus faecium, Streptococcus mutans, Streptococcus anginosus and Staphylococcus aureus strains utilizing the EGFP reporter plasmid pBSU101. In all of these species the presence of the cfb promoter construct resulted in high-level EGFP expression that could be further increased by growing the streptococcal and enterococcal cultures under high oxygen conditions through continuous aeration.
Comparing the cariogenic species Streptococcus sobrinus and S. mutans on whole genome level
Conrads, Georg; de Soet, Johannes J.; Song, Lifu; Henne, Karsten; Sztajer, Helena; Wagner-Döbler, Irene; Zeng, An-Ping
2014-01-01
Background Two closely related species of mutans streptococci, namely Streptococcus mutans and Streptococcus sobrinus, are associated with dental caries in humans. Their acidogenic and aciduric capacity is directly associated with the cariogenic potential of these bacteria. To survive acidic and temporarily harsh conditions in the human oral cavity with hundreds of other microbial co-colonizers as competitors, both species have developed numerous mechanisms for adaptation. Objectives The recently published novel genome information for both species is used to elucidate genetic similarities but especially differences and to discuss the impact on cariogenicity of the corresponding phenotypic properties including adhesion, carbohydrate uptake and fermentation, acid tolerance, signaling by two component systems, competence, and oxidative stress resistance. Conclusions S. sobrinus can down-regulate the SpaA-mediated adherence to the pellicle. It has a smaller number of two-component signaling systems and bacteriocin-related genes than S. mutans, but all or even more immunity proteins. It lacks the central competence genes comC, comS, and comR. There are more genes coding for glucosyltransferases and a novel energy production pathway formed by lactate oxidase, which is not found in S. mutans. Both species show considerable differences in the regulation of fructan catabolism. However, both S. mutans and S. sobrinus share most of these traits and should therefore be considered as equally virulent with regard to dental caries. PMID:25475081
Strategic Protein Target Analysis for Developing Drugs to Stop Dental Caries
Horst, J.A.; Pieper, U.; Sali, A.; Zhan, L.; Chopra, G.; Samudrala, R.; Featherstone, J.D.B.
2012-01-01
Dental caries is the most common disease to cause irreversible damage in humans. Several therapeutic agents are available to treat or prevent dental caries, but none besides fluoride has significantly influenced the disease burden globally. Etiologic mechanisms of the mutans group streptococci and specific Lactobacillus species have been characterized to various degrees of detail, from identification of physiologic processes to specific proteins. Here, we analyze the entire Streptococcus mutans proteome for potential drug targets by investigating their uniqueness with respect to non-cariogenic dental plaque bacteria, quality of protein structure models, and the likelihood of finding a drug for the active site. Our results suggest specific targets for rational drug discovery, including 15 known virulence factors, 16 proteins for which crystallographic structures are available, and 84 previously uncharacterized proteins, with various levels of similarity to homologs in dental plaque bacteria. This analysis provides a map to streamline the process of clinical development of effective multispecies pharmacologic interventions for dental caries. PMID:22899687
Li, X L; Zhang, Z; Li, Z X; Deng, N J; Zeng, B; Chen, Y M
2017-04-09
Objective: To isolate the cariogenic Streptococcus mutans (Sm) strains and study the therapeutical effect of egg yolk antibody (IgY) of the Sm on dental caries development. Methods: Sm strains were isolated from the children's dental plaque samples. Morphological, biochemical and molecular biological methods were applied to identify the serotype, acid producing and adhesion abilities of isolated Sm strains. After inactivation one of the Sm strains was used as antigen to immune laying hens to collect and extract the specific anti-Sm IgY. The rats were infected with Sm (serotype e). After 16 weeks of infection, all the rats were found developing dental caries. The rats were then randomly divided into two groups. The rats in experimental group were supplied with diet containing anti-Sm IgY while the rats in control group with normal IgY. All rats were sacrificed after another 8 weeks' observation. The degree of caries for each rat was assessed using Keyes' method. Results: We isolated 7 Sm strains from the children's dental plaque samples in the present study. The numbers of serotype c, e, f, k were 3, 2, 0 and 2, respectively. All strains showed similar morphological and biochemical characters as standard UA159 Sm strain, and possessed strong capabilities of acid production and adherence. Interestingly, even the same serotypec strains, such as No.3 and No.7 strains, demonstrated significant difference on acid producing and adherence capabilities. After 16 weeks infection with serotype e strain, the rats' mandibular teeth were apparently decayed, and treatment with specific anti-Sm IgY obviously attenuated the development of caries in the experiment group rats (16.4±2.0) compared with that in the control group rats (30.2±9.3) ( P< 0.05) determined by Keyes' method. Conclusions: Seven cariogenic Sm strains of different serotypes were isolated, which possesses similar morphology and biochemical characters. Although belonging to the same serotype strains they always show significant difference in acid-producing and adherencec apabilities. Further experiment provides evidences that the serotype e strain could obviously induce caries independently, and employment of specific anti-Sm IgY as passive immunotherapy additive might effectively inhibit the further development of dental caries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Xiong-Zhuo; National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871; Li, Lan-Fen
The SMU.961 protein from S. mutans was crystallized and preliminary characterization of the crystals, which diffracted to 2.9 Å resolution, shows them to belong to space group C2. The smu.961 gene encodes a putative protein of 183 residues in Streptococcus mutans, a major pathogen in human dental caries. The gene was cloned into expression vector pET28a and expressed in a substantial quantity in Escherichia coli strain BL21 (DE3) with a His tag at its N-terminus. The recombinant protein SMU.961 was purified to homogeneity in a two-step procedure consisting of Ni{sup 2+}-chelating and size-exclusion chromatography. Crystals suitable for X-ray diffraction weremore » obtained by the hanging-drop vapour-diffusion method and diffracted to 2.9 Å resolution at beamline I911-3, MAX-II-lab, Sweden. The crystal belonged to space group C2, with unit-cell parameters a = 98.62, b = 73.73, c = 184.73 Å, β = 98.82°.« less
Cui, Wei; Liu, Jiaojiao; Su, Donghua; Hu, Danyang; Hou, Shuai; Hu, Tongnan; Yang, Jiyong; Luo, Yanping; Xi, Qing; Chu, Bingfeng; Wang, Chenglong
2016-06-01
Streptococcus mutans, a Gram-positive facultative anaerobic bacterium, is considered to be a major etiological factor for dental caries. In this study, plaques from dental enamel surfaces of caries-active and caries-free individuals were obtained and cultivated for S. mutans isolation. Morphology examination, biochemical characterization, and polymerase chain reaction were performed to identify S. mutans The cariogenicity of S. mutans strains isolated from clinical specimens was evaluated by testing the acidogenicity, aciduricity, extracellular polysaccharide production, and adhesion ability of the bacteria. Finally, subtractive SELEX (systematic evolution of ligands by exponential enrichment) technology targeting whole intact cells was used to screen for ssDNA aptamers specific to the strains with high cariogenicity. After nine rounds of subtractive SELEX, sufficient pool enrichment was achieved as shown by radioactive isotope analysis. The enriched pool was cloned and sequenced randomly, followed by MEME online and RNA structure software analysis of the sequences. Results from the flow cytometry indicated that aptamers H1, H16, H4, L1, L10, and H19 could discriminate highly cariogenic S. mutans strains from poorly cariogenic strains. Among these, Aptamer H19 had the strongest binding capacity with cariogenic S. mutans strains with a dissociation constant of 69.45 ± 38.53 nM. In conclusion, ssDNA aptamers specific to highly cariogenic clinical S. mutans strains were successfully obtained. These ssDNA aptamers might be used for the early diagnosis and treatment of dental caries. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
USDA-ARS?s Scientific Manuscript database
Streptococcus agalactiae has emerged as an economically important bacterial pathogen affecting global aquaculture. Worldwide aquaculture losses due to S. agalactiae are estimated around U.S. $1 billion, annually. Streptococcus agalactiae also known as a Lancefield Group B Streptococcus (GBS) is a Gr...
Gilmer, Daniel B; Schmitz, Jonathan E; Euler, Chad W; Fischetti, Vincent A
2013-06-01
Methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pyogenes (group A streptococcus [GrAS]) cause serious and sometimes fatal human diseases. They are among the many Gram-positive pathogens for which resistance to leading antibiotics has emerged. As a result, alternative therapies need to be developed to combat these pathogens. We have identified a novel bacteriophage lysin (PlySs2), derived from a Streptococcus suis phage, with broad lytic activity against MRSA, vancomycin-intermediate S. aureus (VISA), Streptococcus suis, Listeria, Staphylococcus simulans, Staphylococcus epidermidis, Streptococcus equi, Streptococcus agalactiae (group B streptococcus [GBS]), S. pyogenes, Streptococcus sanguinis, group G streptococci (GGS), group E streptococci (GES), and Streptococcus pneumoniae. PlySs2 has an N-terminal cysteine-histidine aminopeptidase (CHAP) catalytic domain and a C-terminal SH3b binding domain. It is stable at 50 °C for 30 min, 37 °C for >24 h, 4°C for 15 days, and -80 °C for >7 months; it maintained full activity after 10 freeze-thaw cycles. PlySs2 at 128 μg/ml in vitro reduced MRSA and S. pyogenes growth by 5 logs and 3 logs within 1 h, respectively, and exhibited a MIC of 16 μg/ml for MRSA. A single, 2-mg dose of PlySs2 protected 92% (22/24) of the mice in a bacteremia model of mixed MRSA and S. pyogenes infection. Serially increasing exposure of MRSA and S. pyogenes to PlySs2 or mupirocin resulted in no observed resistance to PlySs2 and resistance to mupirocin. To date, no other lysin has shown such notable broad lytic activity, stability, and efficacy against multiple, leading, human bacterial pathogens; as such, PlySs2 has all the characteristics to be an effective therapeutic.
Rato, Márcia G.; Nerlich, Andreas; Bergmann, René; Bexiga, Ricardo; Nunes, Sandro F.; Vilela, Cristina L.; Santos-Sanches, Ilda; Chhatwal, Gursharan S.
2011-01-01
A custom-designed microarray containing 220 virulence genes of Streptococcus pyogenes (group A Streptococcus [GAS]) was used to test group C Streptococcus dysgalactiae subsp. dysgalactiae (GCS) field strains causing bovine mastitis and group C or group G Streptococcus dysgalactiae subsp. equisimilis (GCS/GGS) isolates from human infections, with the latter being used for comparative purposes, for the presence of virulence genes. All bovine and all human isolates carried a fraction of the 220 genes (23% and 39%, respectively). The virulence genes encoding streptolysin S, glyceraldehyde-3-phosphate dehydrogenase, the plasminogen-binding M-like protein PAM, and the collagen-like protein SclB were detected in the majority of both bovine and human isolates (94 to 100%). Virulence factors, usually carried by human beta-hemolytic streptococcal pathogens, such as streptokinase, laminin-binding protein, and the C5a peptidase precursor, were detected in all human isolates but not in bovine isolates. Additionally, GAS bacteriophage-associated virulence genes encoding superantigens, DNase, and/or streptodornase were detected in bovine isolates (72%) but not in the human isolates. Determinants located in non-bacteriophage-related mobile elements, such as the gene encoding R28, were detected in all bovine and human isolates. Several virulence genes, including genes of bacteriophage origin, were shown to be expressed by reverse transcriptase PCR (RT-PCR). Phylogenetic analysis of superantigen gene sequences revealed a high level (>98%) of identity among genes of bovine GCS, of the horse pathogen Streptococcus equi subsp. equi, and of the human pathogen GAS. Our findings indicate that alpha-hemolytic bovine GCS, an important mastitis pathogen and considered to be a nonhuman pathogen, carries important virulence factors responsible for virulence and pathogenesis in humans. PMID:21525223
Nijampatnam, Bhavitavya; Casals, Luke; Zheng, Ruowen; Wu, Hui; Velu, Sadanandan E
2016-08-01
Streptococcus mutans has been implicated as the major etiological agent in the initiation and the development of dental caries due to its robust capacity to form tenacious biofilms. Ideal therapeutics for this disease will aim to selectively inhibit the biofilm formation process while preserving the natural bacterial flora of the mouth. Several studies have demonstrated the efficacies of flavonols on S. mutans biofilms and have suggested the mechanism of action through their effect on S. mutans glucosyltransferases (Gtfs). These enzymes metabolize sucrose into water insoluble and soluble glucans, which are an integral measure of the dental caries pathogenesis. Numerous studies have shown that flavonols and polyphenols can inhibit Gtf and biofilm formation at millimolar concentrations. We have screened a group of 14 hydroxychalcones, synthetic precursors of flavonols, in an S. mutans biofilm assay. Several of these compounds emerged to be biofilm inhibitors at low micro-molar concentrations. Chalcones that contained a 3-OH group on ring A exhibited selectivity for biofilm inhibition. Moreover, we synthesized 6 additional analogs of the lead compound and evaluated their potential activity and selectivity against S. mutans biofilms. The most active compound identified from these studies had an IC50 value of 44μM against biofilm and MIC50 value of 468μM against growth displaying >10-fold selectivity inhibition towards biofilm. The lead compound displayed a dose dependent inhibition of S. mutans Gtfs. The lead compound also did not affect the growth of two commensal species (Streptococcus sanguinis and Streptococcus gordonii) at least up to 200μM, indicating that it can selectively inhibit cariogenic biofilms, while leaving commensal and/or beneficial microbes intact. Thus non-toxic compounds have the potential utility in public oral health regimes. Copyright © 2016. Published by Elsevier Ltd.
Kumarasamy, Barani; Manipal, Sunayana; Duraisamy, Prabu; Ahmed, Adil; Mohanaganesh, Sp; Jeevika, C
2014-11-01
Use of alternative medicine to control oral streptococci is a new topic worthy of further investigation. This study aimed to elucidate the dose-dependent anti-bacterial activity of crude aqueous extract of ripe Morinda citrifolia L. (Family: Rubiaceae) fruits against oral streptococci i.e. Streptococcus mutans and Streptococcus mitis, that cause dental caries in humans. Fresh ripe M. citrifolia fruits (750g) were ground in an electronic blender with sterile water (500ml). The crude aqueous extract was lyophilized to yield a brown colored powder. Various concentrations (1000-100μg/ ml) of the extract were tested for its antibacterial activity (Kirby and Bauer method) against whole cells of S. mutans and S. mitis. Minimum Inhibitory Concentration (MIC) was determined by micro-dilution method, using serially diluted (2 folds) fruit extract, according to the National Committee for Clinical Laboratory Standards (NCCLS). Crude aqueous extract (1000μg/ ml) of ripe M. citrifolia fruits effectively inhibited the growth of S. mutans (19±0.5 mm) and S. mitis (18.6±0.3 mm) compared to the streptomycin control (21.6±0.3 mm). The growth inhibition was clearly evident with "nil" bacteriostasis, even after 48 hours of incubation at 37°C. The MIC of the extract for S. mutans and S. mitis was 125 μg and 62.5 μg, respectively. Our results suggest that phytochemicals naturally synthesized by M. citrifolia have an inhibitory effect on oral streptococci. Furthermore, purification and molecular characterization of the "bioactive principle" would enable us to formulate a sustainable oral hygiene product.
Ashwin, Devasya; Ke, Vijayaprasad; Taranath, Mahanthesh; Ramagoni, Naveen Kumar; Nara, Asha; Sarpangala, Mythri
2015-02-01
To evaluate the caries risk based on the salivary levels of streptococcus mutans in children of 6-12 years of age group before and after consuming probiotic ice-cream containing Bifidobacterium lactis Bb-12 and Lactobacillus acidophilus La-5. A double blind, placebo controlled trial was carried out in 60 children aged between 6 to 12 years with zero decayed, missing, and filled teeth (DMFT). They were randomly divided into two equal groups. Saliva sample were collected before the consumption of ice-cream and Streptococcus mutans count was calculated and recorded as baseline data. For the next seven days both the groups were given ice creams marked as A and B. Saliva samples were collected after ice-cream consumption at the end of study period and also after a washout period of 30 days and again after six months. Samples were inoculated and colonies were counted. On statistical evaluation by students paired t-test, probiotic ice-cream brought significant reduction in the Streptococcus mutans count after seven days of ice-cream ingestion (p<0.001) and also after 30 d of washout period (p<0.001). There was no significant reduction (p=0.076) by normal ice-cream consumption. After six months of the study period in both the groups the salivary levels of Streptococcus mutans was similar to the baseline. Probiotic ice-cream containing Bifidobacterium lactis Bb-12 and Lactobacillus acidophilus La-5 can cause reduction in caries causative organism. The dosage of the probiotic organisms for the long term or synergetic effect on the oral health are still needed to be explored.
Kumarasamy, Barani; Manipal, Sunayana; Duraisamy, Prabu; Ahmed, Adil; Mohanaganesh, SP; Jeevika, C
2014-01-01
Objectives: Use of alternative medicine to control oral streptococci is a new topic worthy of further investigation. This study aimed to elucidate the dose-dependent anti-bacterial activity of crude aqueous extract of ripe Morinda citrifolia L. (Family: Rubiaceae) fruits against oral streptococci i.e. Streptococcus mutans and Streptococcus mitis, that cause dental caries in humans. Methods: Fresh ripe M. citrifolia fruits (750g) were ground in an electronic blender with sterile water (500ml). The crude aqueous extract was lyophilized to yield a brown colored powder. Various concentrations (1000-100μg/ ml) of the extract were tested for its antibacterial activity (Kirby and Bauer method) against whole cells of S. mutans and S. mitis. Minimum Inhibitory Concentration (MIC) was determined by micro-dilution method, using serially diluted (2 folds) fruit extract, according to the National Committee for Clinical Laboratory Standards (NCCLS). Results: Crude aqueous extract (1000μg/ ml) of ripe M. citrifolia fruits effectively inhibited the growth of S. mutans (19±0.5 mm) and S. mitis (18.6±0.3 mm) compared to the streptomycin control (21.6±0.3 mm). The growth inhibition was clearly evident with “nil” bacteriostasis, even after 48 hours of incubation at 37°C. The MIC of the extract for S. mutans and S. mitis was 125 μg and 62.5 μg, respectively. Conclusion: Our results suggest that phytochemicals naturally synthesized by M. citrifolia have an inhibitory effect on oral streptococci. Furthermore, purification and molecular characterization of the “bioactive principle” would enable us to formulate a sustainable oral hygiene product. PMID:25628701
KE, Vijayaprasad; Taranath, Mahanthesh; Ramagoni, Naveen Kumar; Nara, Asha; Sarpangala, Mythri
2015-01-01
Introduction: To evaluate the caries risk based on the salivary levels of streptococcus mutans in children of 6-12 years of age group before and after consuming probiotic ice-cream containing Bifidobacterium lactis Bb-12 and Lactobacillus acidophilus La-5. Materials and Methods: A double blind, placebo controlled trial was carried out in 60 children aged between 6 to 12 years with zero decayed, missing, and filled teeth (DMFT). They were randomly divided into two equal groups. Saliva sample were collected before the consumption of ice-cream and Streptococcus mutans count was calculated and recorded as baseline data. For the next seven days both the groups were given ice creams marked as A and B. Saliva samples were collected after ice-cream consumption at the end of study period and also after a washout period of 30 days and again after six months. Samples were inoculated and colonies were counted. Results: On statistical evaluation by students paired t-test, probiotic ice-cream brought significant reduction in the Streptococcus mutans count after seven days of ice-cream ingestion (p<0.001) and also after 30 d of washout period (p<0.001). There was no significant reduction (p=0.076) by normal ice-cream consumption. After six months of the study period in both the groups the salivary levels of Streptococcus mutans was similar to the baseline. Conclusion: Probiotic ice-cream containing Bifidobacterium lactis Bb-12 and Lactobacillus acidophilus La-5 can cause reduction in caries causative organism. The dosage of the probiotic organisms for the long term or synergetic effect on the oral health are still needed to be explored. PMID:25859515
Dental caries is common in Finnish children infected with Helicobacter pylori.
Kolho, K L; Hölttä, P; Alaluusua, S; Lindahl, H; Savilahti, E; Rautelin, H
2001-01-01
Childhood factors such as low socioeconomic status are risk factors for Helicobacter pylori infection and Streptococcus mutans-related dental caries. We examined whether H. pylori infection and dental caries are present today in the same group of children examined previously. We reviewed the public dental health service files of 21 H. pylori-positive children (upper gastrointestinal endoscopy at a median age of 13.5 y) and 27 H. pylori-negative children (endoscopy at a median age of 12.5 y) examined during 1995-98 at the Helsinki University Central Hospital, Finland. All H. pylori-positive children had experienced dental caries in their primary or permanent teeth or in both whereas among H. pylori-negative children the respective proportion was 70% (p < 0.01). At the age of 7 y, 18% (3/17) of the H. pylori-positive children had experienced caries in permanent teeth as compared to 0% among H. pylori-negative children (0/24; p < 0.05). At the age of 12 y, H. pylori-positive children had more decayed, missing or filled permanent teeth than H. pylori-negative children (80% vs. 38%; p < 0.05). Although a causal relationship between H. pylori and dental caries is unlikely, it is possible that H. pylori-infected children have an increased risk of other health problems, such as dental caries, for which proper treatment is needed.
Relationship of children's salivary microbiota with their caries status: a pyrosequencing study.
Gomar-Vercher, S; Cabrera-Rubio, R; Mira, A; Montiel-Company, J M; Almerich-Silla, J M
2014-12-01
Different dental caries status could be related with alterations in oral microbiota. Previous studies have collected saliva as a representative medium of the oral ecosystem. The purpose of this study was to assess the composition of oral microbiota and its relation to the presence of dental caries at different degrees of severity. One hundred ten saliva samples from 12-year-old children were taken and divided into six groups defined in strict accordance with their dental caries prevalence according to the International Caries Detection and Assessment System II criteria. These samples were studied by pyrosequencing PCR products of the 16S ribosomal RNA gene. The results showed statistically significant intergroup differences at the class and genus taxonomic levels. Streptococcus is the most frequent genus in all groups; although it did not show intergroup statistical differences. In patients with cavities, Porphyromonas and Prevotella showed an increasing percentage compared to healthy individuals. Bacterial diversity diminished as the severity of the disease increased, so those patients with more advanced stages of caries presented less bacterial diversity than healthy subjects. Although microbial composition tended to be different, the intragroup variation is large, as evidenced by the lack of clear intragroup clustering in principal component analyses. Thus, no clear differences were found, indicating that using bacterial composition as the sole source of biomarkers for dental caries may not be reliable in the unstimulated saliva samples used in the current study.
Jiang, Hongchao; Su, Min; Kui, Liyue; Huang, Hailin; Qiu, Lijuan; Li, Li; Ma, Jing; Du, Tingyi; Fan, Mao; Liu, Xiaomei
2017-01-01
Acute bacterial meningitis is still considered one of the most dangerous infectious diseases in children. To investigate the prevalence and antibiotic resistance profiles of cerebrospinal fluid (CSF) pathogens in children with acute bacterial meningitis in Southwest China, CSF samples from 179 meningitis patients (3 days to 12 years old) with positive culture results were collected from 2012 to 2015. Isolated pathogens were identified using the Vitek-32 system. Gram stain results were used to guide subcultures and susceptibility testing. The antimicrobial susceptibility of isolates was determined using the disc diffusion method. Of the isolates, 50.8% were Gram-positive bacteria, and 49.2% were Gram-negative bacteria. The most prevalent pathogens were E. coli (28.5%), Streptococcus pneumoniae (17.8%), Staphylococcus epidermidis (10.0%), Haemophilus influenzae type b (9.5%), and group B streptococcus (7.2%). In young infants aged ≤3 months, E. coli was the organism most frequently isolated from CSF (39/76; 51.3%), followed by group B streptococcus (13/76; 17.1%) and Streptococcus pneumoniae (8/76; 10.5%). However, in young infants aged >3 months, the most frequently isolated organism was Streptococcus pneumoniae (24/103; 23.3%), followed by Staphylococcus epidermidis (18/103; 17.5%) and Haemophilus influenzae type b (16/103; 15.5%). Antimicrobial susceptibility tests indicated that for E. coli isolates, the susceptibility rates to aminoglycosides ranged from 56.8% to 100.0%, among them, amikacin was identified as the most effective against E. coli. As for cephalosporins, the susceptibility rates ranged from 29.4% to 78.4%, and cefoxitin was identified as the most effective cephalosporin. In addition, the susceptibility rates of piperacillin/tazobactam and imipenem against E. coli were 86.3% and 100%. Meanwhile, the susceptibility rates of Streptococcus pneumoniae isolates to penicillin G, erythromycin, chloramphenicol, ceftriaxone and tetracycline were 68.8%, 0.0%, 87.5%, 81.3% and 0.0%, respectively. Gentamycin, ofloxacin, linezolid and vancomycin were identified as the most effective antibiotics for Streptococcus pneumoniae, each with susceptibility rates of 100%. It was notable that other emerging pathogens, such as Listeria monocytogenes and group D streptococcus, cannot be underestimated in meningitis. PMID:28662145
Jiang, Hongchao; Su, Min; Kui, Liyue; Huang, Hailin; Qiu, Lijuan; Li, Li; Ma, Jing; Du, Tingyi; Fan, Mao; Sun, Qiangming; Liu, Xiaomei
2017-01-01
Acute bacterial meningitis is still considered one of the most dangerous infectious diseases in children. To investigate the prevalence and antibiotic resistance profiles of cerebrospinal fluid (CSF) pathogens in children with acute bacterial meningitis in Southwest China, CSF samples from 179 meningitis patients (3 days to 12 years old) with positive culture results were collected from 2012 to 2015. Isolated pathogens were identified using the Vitek-32 system. Gram stain results were used to guide subcultures and susceptibility testing. The antimicrobial susceptibility of isolates was determined using the disc diffusion method. Of the isolates, 50.8% were Gram-positive bacteria, and 49.2% were Gram-negative bacteria. The most prevalent pathogens were E. coli (28.5%), Streptococcus pneumoniae (17.8%), Staphylococcus epidermidis (10.0%), Haemophilus influenzae type b (9.5%), and group B streptococcus (7.2%). In young infants aged ≤3 months, E. coli was the organism most frequently isolated from CSF (39/76; 51.3%), followed by group B streptococcus (13/76; 17.1%) and Streptococcus pneumoniae (8/76; 10.5%). However, in young infants aged >3 months, the most frequently isolated organism was Streptococcus pneumoniae (24/103; 23.3%), followed by Staphylococcus epidermidis (18/103; 17.5%) and Haemophilus influenzae type b (16/103; 15.5%). Antimicrobial susceptibility tests indicated that for E. coli isolates, the susceptibility rates to aminoglycosides ranged from 56.8% to 100.0%, among them, amikacin was identified as the most effective against E. coli. As for cephalosporins, the susceptibility rates ranged from 29.4% to 78.4%, and cefoxitin was identified as the most effective cephalosporin. In addition, the susceptibility rates of piperacillin/tazobactam and imipenem against E. coli were 86.3% and 100%. Meanwhile, the susceptibility rates of Streptococcus pneumoniae isolates to penicillin G, erythromycin, chloramphenicol, ceftriaxone and tetracycline were 68.8%, 0.0%, 87.5%, 81.3% and 0.0%, respectively. Gentamycin, ofloxacin, linezolid and vancomycin were identified as the most effective antibiotics for Streptococcus pneumoniae, each with susceptibility rates of 100%. It was notable that other emerging pathogens, such as Listeria monocytogenes and group D streptococcus, cannot be underestimated in meningitis.
Sanz, Mariano; Beighton, David; Curtis, Michael A; Cury, Jaime A; Dige, Irene; Dommisch, Henrik; Ellwood, Roger; Giacaman, Rodrigo A; Herrera, David; Herzberg, Mark C; Könönen, Eija; Marsh, Philip D; Meyle, Joerg; Mira, Alex; Molina, Ana; Mombelli, Andrea; Quirynen, Marc; Reynolds, Eric C; Shapira, Lior; Zaura, Egija
2017-03-01
The scope of this working group was to review (1) ecological interactions at the dental biofilm in health and disease, (2) the role of microbial communities in the pathogenesis of periodontitis and caries, and (3) the innate host response in caries and periodontal diseases. A health-associated biofilm includes genera such as Neisseria, Streptococcus, Actinomyces, Veillonella and Granulicatella. Microorganisms associated with both caries and periodontal diseases are metabolically highly specialized and organized as multispecies microbial biofilms. Progression of these diseases involves multiple microbial interactions driven by different stressors. In caries, the exposure of dental biofilms to dietary sugars and their fermentation to organic acids results in increasing proportions of acidogenic and aciduric species. In gingivitis, plaque accumulation at the gingival margin leads to inflammation and increasing proportions of proteolytic and often obligately anaerobic species. The natural mucosal barriers and saliva are the main innate defence mechanisms against soft tissue bacterial invasion. Similarly, enamel and dentin are important hard tissue barriers to the caries process. Given that the present state of knowledge suggests that the aetiologies of caries and periodontal diseases are mutually independent, the elements of innate immunity that appear to contribute to resistance to both are somewhat coincidental. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Association between Selected Oral Pathogens and Gastric Precancerous Lesions
Salazar, Christian R.; Sun, Jinghua; Li, Yihong; Francois, Fritz; Corby, Patricia; Perez-Perez, Guillermo; Dasanayake, Ananda; Pei, Zhiheng; Chen, Yu
2013-01-01
We examined whether colonization of selected oral pathogens is associated with gastric precancerous lesions in a cross-sectional study. A total of 119 participants were included, of which 37 were cases of chronic atrophic gastritis, intestinal metaplasia, or dysplasia. An oral examination was performed to measure periodontal indices. Plaque and saliva samples were tested with real-time quantitative PCR for DNA levels of pathogens related to periodontal disease (Porphyromonas gingivalis, Tannerella forsythensis, Treponema denticola, Actinobacillus actinomycetemcomitans) and dental caries (Streptococcus mutans and S. sobrinus). There were no consistent associations between DNA levels of selected bacterial species and gastric precancerous lesions, although an elevated but non-significant odds ratio (OR) for gastric precancerous lesions was observed in relation to increasing colonization of A. actinomycetemcomitans (OR = 1.36 for one standard deviation increase, 95% Confidence Interval = 0.87–2.12), P. gingivalis (OR = 1.12, 0.67–1.88) and T. denticola (OR = 1.34, 0.83–2.12) measured in plaque. To assess the influence of specific long-term infection, stratified analyses by levels of periodontal indices were conducted. A. actinomycetemcomitans was significantly associated with gastric precancerous lesions (OR = 2.51, 1.13–5.56) among those with ≥ median of percent tooth sites with PD≥3 mm, compared with no association among those below the median (OR = 0.86, 0.43–1.72). A significantly stronger relationship was observed between the cumulative bacterial burden score of periodontal disease-related pathogens and gastric precancerous lesions among those with higher versus lower levels of periodontal disease indices (p-values for interactions: 0.03–0.06). Among individuals with periodontal disease, high levels of colonization of periodontal pathogens are associated with an increased risk of gastric precancerous lesions. PMID:23308100
Hassan, Afrah Fatima; Yadav, Gunjan; Tripathi, Abhay Mani; Mehrotra, Mridul; Saha, Sonali; Garg, Nishita
2016-01-01
Caries excavation is a noninvasive technique of caries removal with maximum preservation of healthy tooth structure. To compare the efficacy of three different caries excavation techniques in reducing the count of cariogenic flora. Sixty healthy primary molars were selected from 26 healthy children with occlusal carious lesions without pulpal involvement and divided into three groups in which caries excavation was done with the help of (1) carbide bur; (2) polymer bur using slow-speed handpiece; and (3) ultrasonic tip with ultrasonic machine. Samples were collected before and after caries excavation for microbiological analysis with the help of sterile sharp spoon excavator. Samples were inoculated on blood agar plate and incubated at 37°C for 48 hours. After bacterial cultivation, the bacterial count of Streptococcus mutans was obtained. All statistical analysis was performed using SPSS 13 statistical software version. Kruskal-Wallis analysis of variance, Wilcoxon matched pairs test, and Z test were performed to reveal the statistical significance. The decrease in bacterial count of S. mutans before and after caries excavation was significant (p < 0.001) in all the three groups. Carbide bur showed most efficient reduction in cariogenic flora, while ultrasonic tip showed almost comparable results, while polymer bur showed least reduction in cariogenic flora after caries excavation. Hassan AF, Yadav G, Tripathi AM, Mehrotra M, Saha S, Garg N. A Comparative Evaluation of the Efficacy of Different Caries Excavation Techniques in reducing the Cariogenic Flora: An in vivo Study. Int J Clin Pediatr Dent 2016;9(3):214-217.
High-Level Fluorescence Labeling of Gram-Positive Pathogens
Aymanns, Simone; Mauerer, Stefanie; van Zandbergen, Ger; Wolz, Christiane; Spellerberg, Barbara
2011-01-01
Fluorescence labeling of bacterial pathogens has a broad range of interesting applications including the observation of living bacteria within host cells. We constructed a novel vector based on the E. coli streptococcal shuttle plasmid pAT28 that can propagate in numerous bacterial species from different genera. The plasmid harbors a promoterless copy of the green fluorescent variant gene egfp under the control of the CAMP-factor gene (cfb) promoter of Streptococcus agalactiae and was designated pBSU101. Upon transfer of the plasmid into streptococci, the bacteria show a distinct and easily detectable fluorescence using a standard fluorescence microscope and quantification by FACS-analysis demonstrated values that were 10–50 times increased over the respective controls. To assess the suitability of the construct for high efficiency fluorescence labeling in different gram-positive pathogens, numerous species were transformed. We successfully labeled Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus dysgalactiae subsp. equisimilis, Enterococcus faecalis, Enterococcus faecium, Streptococcus mutans, Streptococcus anginosus and Staphylococcus aureus strains utilizing the EGFP reporter plasmid pBSU101. In all of these species the presence of the cfb promoter construct resulted in high-level EGFP expression that could be further increased by growing the streptococcal and enterococcal cultures under high oxygen conditions through continuous aeration. PMID:21731607
Jans, Christoph; Meile, Leo; Lacroix, Christophe; Stevens, Marc J A
2015-07-01
The Streptococcus bovis/Streptococcus equinus complex (SBSEC) is a group of human and animal derived streptococci that are commensals (rumen and gastrointestinal tract), opportunistic pathogens or food fermentation associates. The classification of SBSEC has undergone massive changes and currently comprises 7 (sub)species grouped into four branches based on sequences identities: the Streptococcus gallolyticus, the Streptococcus equinus, the Streptococcus infantarius and the Streptococcus alactolyticus branch. In animals, SBSEC are causative agents for ruminal acidosis, potentially laminitis and infective endocarditis (IE). In humans, a strong association was established between bacteraemia, IE and colorectal cancer. Especially the SBSEC-species S. gallolyticus subsp. gallolyticus is an emerging pathogen for IE and prosthetic joint infections. S. gallolyticus subsp. pasteurianus and the S. infantarius branch are further associated with biliary and urinary tract infections. Knowledge on pathogenic mechanisms is so far limited to colonization factors such as pili and biofilm formation. Certain strain variants of S. gallolyticus subsp. macedonicus and S. infantarius subsp. infantarius are associated with traditional dairy and plant-based food fermentations and display traits suggesting safety. However, due to their close relationship to virulent strains, their use in food fermentation has to be critically assessed. Additionally, implementing accurate and up-to-date taxonomy is critical to enable appropriate treatment of patients and risk assessment of species and strains via recently developed multilocus sequence typing schemes to enable comparative global epidemiology. Comparative genomics revealed that SBSEC strains harbour genomics islands (GI) that seem acquired from other streptococci by horizontal gene transfer. In case of virulent strains these GI frequently encode putative virulence factors, in strains from food fermentation the GI encode functions that are pivotal for strain performance during fermentation. Comparative genomics is a powerful tool to identify acquired pathogenic functions, but there is still an urgent need for more physiological and epidemiological data to understand SBSEC-specific traits. Copyright © 2014 Elsevier B.V. All rights reserved.
Oral microbial community typing of caries and pigment in primary dentition.
Li, Yanhui; Zou, Cheng-Gang; Fu, Yu; Li, Yanhong; Zhou, Qing; Liu, Bo; Zhang, Zhigang; Liu, Juan
2016-08-05
Black extrinsic discoloration in primary dentition is a common clinical and aesthetic problem that can co-occur with dental caries, the most common oral diseases in childhood. Although the role of bacteria in the formation of pigment and caries in primary dentition is important, their basic features still remain a further mystery. Using targeted sequencing of the V1-V3 hypervariable regions of bacterial 16S ribosomal RNA (rRNA) genes, we obtained a dataset consisting of 831,381 sequences from 111 saliva samples and 110 supragingival plaque samples from 40 patients with pigment (black extrinsic stain), 20 with caries (obvious decay), and 25 with both pigment and caries and from 26 healthy individuals. We applied a Dirichlet multinomial mixture (DMM)-based community typing approach to investigate oral microbial community types. Our results revealed significant structural segregation of microbial communities, as indicated by the identification of two plaque community types (A and B) and three saliva community types (C-E). We found that the independent occurrence of the two plaque community types, A and B, was potentially associated with our oral diseases of interest. For type A, three co-occurring bacterial genus pairs could separately play a potential role in the formation of pigment (Leptotrichia and Fusobacterium), caries (unclassified Gemellales and Granulicatella), and mixed caries and pigment (Streptococcus and Mogibacterium). For type B, three co-occurring bacterial genera (unclassified Clostridiaceae, Peptostreptococcus, and Clostridium) were related to mixed pigment and caries. Three dominant bacterial genera (Selenomonas, Gemella, and Streptobacillus) were linked to the presence of caries. Our study demonstrates that plaque-associated oral microbial communities could majorly contribute to the formation of pigment and caries in primary dentition and suggests potential clinical applications of monitoring oral microbiota as an indicator for disease diagnosis and prognosis.
Neutrophil evasion strategies by Streptococcus pneumoniae and Staphylococcus aureus.
Lewis, Megan L; Surewaard, Bas G J
2018-03-01
Humans are well equipped to defend themselves against bacteria. The innate immune system employs diverse mechanisms to recognize, control and initiate a response that can destroy millions of different microbes. Microbes that evade the sophisticated innate immune system are able to escape detection and could become pathogens. The pathogens Streptococcus pneumoniae and Staphylococcus aureus are particularly successful due to the development of a wide variety of virulence strategies for bacterial pathogenesis and they invest significant efforts towards mechanisms that allow for neutrophil evasion. Neutrophils are a primary cellular defense and can rapidly kill invading microbes, which is an indispensable function for maintaining host health. This review compares the key features of Streptococcus pneumoniae and Staphylococcus aureus in epidemiology, with a specific focus on virulence mechanisms utilized to evade neutrophils in bacterial pathogenesis. It is important to understand the complex interactions between pathogenic bacteria and neutrophils so that we can disrupt the ability of pathogens to cause disease.
Effect of Punica granatum on the virulence factors of cariogenic bacteria Streptococcus mutans.
Gulube, Zandiswa; Patel, Mrudula
2016-09-01
Dental caries is caused by acids produced by biofilm-forming Streptococcus mutans from fermentable carbohydrates and bacterial byproducts. Control of these bacteria is important in the prevention of dental caries. This study investigated the effect of the fruit peel of Punica granatum on biofilm formation, acid and extracellular polysaccharides production (EPS) by S. mutans. Pomegranate fruit peels crude extracts were prepared. The Minimum bactericidal concentrations (MBC) were determined against S. mutans. At 3 sub-bactericidal concentrations, the effect on the acid production, biofilm formation and EPS production was determined. The results were analysed using Kruskal-Wallis and Wilcoxon Rank Sum Tests. The lowest MBC was 6.25 mg/mL. Punica granatum significantly inhibited acid production (p < 0.01). After 6 and 24 h, it significantly reduced biofilm-formation by 91% and 65% respectively (p < 0.01). The plant extract did not inhibit the production of soluble EPS in either the biofilm or the planktonic growth. However, it significantly reduced the insoluble EPS in the biofilm and the plantktonic (p = < 0.01) form of S. mutans. The crude extract of P. granatum killed cariogenic S. mutans at high concentrations. At sub-bactericidal concentrations, it reduced biofilm formation, acid and EPS production. This suggests that P. granatum extract has the potential to prevent dental caries. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chen, Lulu; Ren, Zhi; Zhou, Xuedong; Zeng, Jumei; Zou, Jing; Li, Yuqing
2016-01-01
Dental caries, a biofilm-related oral disease, is a result of disruption of the microbial ecological balance in the oral environment. Streptococcus mutans, which is one of the primary cariogenic bacteria, produces glucosyltransferases (Gtfs) that synthesize extracellular polysaccharides (EPSs). The EPSs, especially water-insoluble glucans, contribute to the formation of dental plaque, biofilm stability, and structural integrity, by allowing bacteria to adhere to tooth surfaces and supplying the bacteria with protection against noxious stimuli and other environmental attacks. The identification of novel alternatives that selectively inhibit cariogenic organisms without suppressing oral microbial residents is required. The goal of the current study is to investigate the influence of an oxazole derivative on S. mutans biofilm formation and the development of dental caries in rats, given that oxazole and its derivatives often exhibit extensive and pharmacologically important biological activities. Our data shows that one particular oxazole derivative, named 5H6, inhibited the formation of S. mutans biofilms and prevented synthesis of extracellular polysaccharides by antagonizing Gtfs in vitro, without affecting the growth of the bacteria. In addition, topical applications with the inhibitor resulted in diminished incidence and severity of both smooth and sulcal surface caries in vivo with a lower percentage of S. mutans in the animals' dental plaque compared to the control group (P < 0.05). Our results showed that this oxazole derivative has the capacity to inhibit biofilm formation and cariogenicity of S. mutans.
Wei, Yuan; Qiu, Wei; Zhou, Xue-Dong; Zheng, Xin; Zhang, Ke-Ke; Wang, Shi-Da; Li, Yu-Qing; Cheng, Lei; Li, Ji-Yao; Xu, Xin; Li, Ming-Yun
2016-12-16
D-alanine (D-Ala) is an essential amino acid that has a key role in bacterial cell wall synthesis. Alanine racemase (Alr) is a unique enzyme that interconverts L-alanine and D-alanine in most bacteria, making this enzyme a potential target for antimicrobial drug development. Streptococcus mutans is a major causative factor of dental caries. The factors involved in the survival, virulence and interspecies interactions of S. mutans could be exploited as potential targets for caries control. The current study aimed to investigate the physiological role of Alr in S. mutans. We constructed alr mutant strain of S. mutans and evaluated its phenotypic traits and interspecies competitiveness compared with the wild-type strain. We found that alr deletion was lethal to S. mutans. A minimal supplement of D-Ala (150 μg·mL -1 ) was required for the optimal growth of the alr mutant. The depletion of D-alanine in the growth medium resulted in cell wall perforation and cell lysis in the alr mutant strain. We also determined the compromised competitiveness of the alr mutant strain relative to the wild-type S. mutans against other oral streptococci (S. sanguinis or S. gordonii), demonstrated using either conditioned medium assays or dual-species fluorescent in situ hybridization analysis. Given the importance and necessity of alr to the growth and competitiveness of S. mutans, Alr may represent a promising target to modulate the cariogenicity of oral biofilms and to benefit the management of dental caries.
Haghgoo, Rosa; Afshari, Elahe; Ghanaat, Tahere; Aghazadeh, Samaneh
2015-01-01
Objective: Dental caries is among the most common chronic diseases in humans. Streptococcus mutans is generally responsible for most cases of dental caries. The present study sought to compare the effects of xylitol-containing and conventional chewing gums on salivary levels of S. mutans. Materials and Methods: This study adopted a crossover design. Two type of chewing gums (one containing 70% xylitol and approved by the Iranian Dental Association, and another containing sucrose) were purchased. The participants were 32 individuals aged 18–35 years whose oral hygiene was categorized as moderate or poor based on a caries risk assessment table. Salivary levels of S. mutans were measured at baseline, after the first and second phases of chewing gums, and after the washout period. The measurements were performed on blood agar and mitis salivarius-bacitracin agar (MSBA). Pairwise comparisons were then used to analyze the collected data. Results: Salivary levels of S. mutans in both groups were significantly higher during the two stages of chewing gum than in the washout period or baseline. Moreover, comparisons between the two types of gums suggested that chewing xylitol-containing gums led to greater reductions in S. mutans counts. This effect was more apparent in subjects with poor oral hygiene than in those with moderate oral hygiene. Conclusions: Xylitol-containing chewing gums are more effective than conventional gums in reducing salivary levels of S. mutans in individuals with poor–moderate oral hygiene. PMID:26942114
NASA Astrophysics Data System (ADS)
Hasnamudhia, F.; Bachtiar, E. W.; Sahlan, M.; Soekanto, S. A.
2017-08-01
The aim of this study was to analyze the effect of CPP-APP and propolis wax if they are combined in a chewing gum formulation, observed from the calcium and phosphate ion level released by CPP-ACP and the emphasis of Streptococcus mutans mass in the biofilm by propolis wax on caries-active subjects’ saliva. Chewing gum simulation was done in vitro on 25 caries-active subjects’ saliva using five concentrations of chewing gum (0% propolis + 0% CPP-ACP, 0% propolis + CPP-ACP, 2% propolis + CPP-ACP, 4% propolis + CPP-ACP, and 6% propolis + CPP-ACP) and was then tested using an atomic absorption spectrophotometer to analyze calcium ion levels, an ultraviolet-visible spectrophotometer to analyze phosphate ion levels, and a biofilm assay using crystal violet to analyze the decline in biofilm mass. After the chewing simulation, calcium ion levels on saliva+gum eluent increased significantly compared to the saliva control, with the highest calcium level released by CPP-ACP + 2% propolis chewing gum. There was an insignificant phosphate level change between the saliva control and saliva+gum eluent. There was also a significant decline of S. mutans biofilm mass in the saliva+gum eluent, mostly by the CPP-ACP chewing gum and CPP-ACP + 6% propolis. The CPP-ACP-propolis chewing gum simulation generated the largest increase in calcium and phosphate ion level and the largest decline in S. mutans biofilm mass.
Oxidative Stressors Modify the Response of Streptococcus mutans to Its Competence Signal Peptides.
De Furio, Matthew; Ahn, Sang Joon; Burne, Robert A; Hagen, Stephen J
2017-11-15
The dental caries pathogen Streptococcus mutans is continually exposed to several types of stress in the oral biofilm environment. Oxidative stress generated by reactive oxygen species has a major impact on the establishment, persistence, and virulence of S. mutans Here, we combined fluorescent reporter-promoter fusions with single-cell imaging to study the effects of reactive oxygen species on activation of genetic competence in S. mutans Exposure to paraquat, which generates superoxide anion, produced a qualitatively different effect on activation of expression of the gene for the master competence regulator, ComX, than did treatment with hydrogen peroxide (H 2 O 2 ), which can yield hydroxyl radical. Paraquat suppressed peptide-mediated induction of comX in a progressive and cumulative fashion, whereas the response to H 2 O 2 displayed a strong threshold behavior. Low concentrations of H 2 O 2 had little effect on induction of comX or the bacteriocin gene cipB , but expression of these genes declined sharply if extracellular H 2 O 2 exceeded a threshold concentration. These effects were not due to decreased reporter gene fluorescence. Two different threshold concentrations were observed in the response to H 2 O 2 , depending on the gene promoter that was analyzed and the pathway by which the competence regulon was stimulated. The results show that paraquat and H 2 O 2 affect the S. mutans competence signaling pathway differently, and that some portions of the competence signaling pathway are more sensitive to oxidative stress than others. IMPORTANCE Streptococcus mutans inhabits the oral biofilm, where it plays an important role in the development of dental caries. Environmental stresses such as oxidative stress influence the growth of S. mutans and its important virulence-associated behaviors, such as genetic competence. S. mutans competence development is a complex behavior that involves two different signaling peptides and can exhibit cell-to-cell heterogeneity. Although oxidative stress is known to influence S. mutans competence, it is not understood how oxidative stress interacts with the peptide signaling or affects heterogeneity. In this study, we used fluorescent reporters to probe the effect of reactive oxygen species on competence signaling at the single-cell level. Our data show that different reactive oxygen species have different effects on S. mutans competence, and that some portions of the signaling pathway are more acutely sensitive to oxidative stress than others. Copyright © 2017 American Society for Microbiology.
Zeng, Lin; Chen, Lulu; Burne, Robert A
2018-05-11
Bacteria prioritize sugar metabolism via carbohydrate catabolite repression, which regulates global gene expression to optimize the catabolism of preferred substrates. Here, we report an unusual long-term memory effect in certain Streptococcus mutans strains that alters adaptation to growth on lactose after prior exposure to glucose or fructose. In strain GS-5, cells that were first cultured on fructose then transferred to lactose displayed an exceptionally long lag (>11 h) and slower growth, compared to cells first cultured on glucose or cellobiose, which displayed a reduction in lag phase by as much as 10 h. Mutants lacking the cellobiose-PTS or phospho-β-glucosidase lost the accelerated growth on lactose associated with prior culturing on glucose. The memory effects of glucose or fructose on lactose catabolism were not as profound in strain UA159, but the lag phase was considerably shorter in mutants lacking the glucose-PTS EII Man Interestingly, when S. mutans was cultivated on lactose, significant quantities of free glucose accumulated in the medium, with higher levels found in the cultures of strains lacking EII Man , glucokinase, or both. Free glucose was also detected in cultures that were utilizing cellobiose or trehalose, albeit at lower levels. Such release of hexoses by S. mutans is likely of biological significance as it was found that cells required small amounts of glucose or other preferred carbohydrates to initiate efficient growth on lactose. These findings suggest that S. mutans modulates the induction of lactose utilization based on its prior exposure to glucose or fructose, which can be liberated from common disaccharides. IMPORTANCE. Understanding the molecular mechanisms employed by oral bacteria to control sugar metabolism is key to developing novel therapies for management of dental caries and other oral diseases. Lactose is a naturally occurring disaccharide that is abundant in dairy products and commonly ingested by humans. However, for the dental caries pathogen Streptococcus mutans , relatively little is known about the molecular mechanisms that regulate expression of genes required for lactose uptake and catabolism. Two peculiarities of lactose utilization by S. mutans are explored here: a) S. mutans excretes glucose that it cleaves from lactose and b) prior exposure to certain carbohydrates can result in a long-term inability to use lactose. The study begins to shed light on how S. mutans may bet-hedge to optimize its persistence and virulence in the human oral cavity. Copyright © 2018 American Society for Microbiology.
Klein, Marlise I.; DeBaz, Lena; Agidi, Senyo; Lee, Herbert; Xie, Gary; Lin, Amy H.-M.; Hamaker, Bruce R.; Lemos, José A.; Koo, Hyun
2010-01-01
The combination of sucrose and starch in the presence of surface-adsorbed salivary α-amylase and bacterial glucosyltransferases increase the formation of a structurally and metabolically distinctive biofilm by Streptococcus mutans. This host-pathogen-diet interaction may modulate the formation of pathogenic biofilms related to dental caries disease. We conducted a comprehensive study to further investigate the influence of the dietary carbohydrates on S. mutans-transcriptome at distinct stages of biofilm development using whole genomic profiling with a new computational tool (MDV) for data mining. S. mutans UA159 biofilms were formed on amylase-active saliva coated hydroxyapatite discs in the presence of various concentrations of sucrose alone (ranging from 0.25 to 5% w/v) or in combination with starch (0.5 to 1% w/v). Overall, the presence of sucrose and starch (suc+st) influenced the dynamics of S. mutans transcriptome (vs. sucrose alone), which may be associated with gradual digestion of starch by surface-adsorbed amylase. At 21 h of biofilm formation, most of the differentially expressed genes were related to sugar metabolism, such as upregulation of genes involved in maltose/maltotriose uptake and glycogen synthesis. In addition, the groEL/groES chaperones were induced in the suc+st-biofilm, indicating that presence of starch hydrolysates may cause environmental stress. In contrast, at 30 h of biofilm development, multiple genes associated with sugar uptake/transport (e.g. maltose), two-component systems, fermentation/glycolysis and iron transport were differentially expressed in suc+st-biofilms (vs. sucrose-biofilms). Interestingly, lytT (bacteria autolysis) was upregulated, which was correlated with presence of extracellular DNA in the matrix of suc+st-biofilms. Specific genes related to carbohydrate uptake and glycogen metabolism were detected in suc+st-biofilms in more than one time point, indicating an association between presence of starch hydrolysates and intracellular polysaccharide storage. Our data show complex remodeling of S. mutans-transcriptome in response to changing environmental conditions in situ, which could modulate the dynamics of biofilm development and pathogenicity. PMID:20976057
USDA-ARS?s Scientific Manuscript database
Streptococcus spp. including Streptococcus agalactiae (Lancefield group B streptococci) are considered emerging pathogens responsible for approximately $1 billion USD in annual losses to the global tilapia (Oreochromis sp.) aquaculture industry. This study evaluated a published multiplex PCR capsul...
Innate immunity glycoprotein gp-340 variants may modulate human susceptibility to dental caries
Jonasson, Anette; Eriksson, Christer; Jenkinson, Howard F; Källestål, Carina; Johansson, Ingegerd; Strömberg, Nicklas
2007-01-01
Background Bacterial adhesion is an important determinant of colonization and infection, including dental caries. The salivary scavenger receptor cysteine-rich glycoprotein gp-340, which mediates adhesion of Streptococcus mutans (implicated in caries), harbours three major size variants, designated gp-340 I to III, each specific to an individual saliva. Here we have examined the association of the gp-340 I to III polymorphisms with caries experience and adhesion of S. mutans. Methods A case-referent study was performed in 12-year-old Swedish children with high (n = 19) or low (n = 19) caries experiences. We measured the gp-340 I to III saliva phenotypes and correlated those with multiple outcome measures for caries experience and saliva adhesion of S. mutans using the partial least squares (PLS) multivariate projection technique. In addition, we used traditional statistics and 2-year caries increment to verify the established PLS associations, and bacterial adhesion to purified gp-340 I to III proteins to support possible mechanisms. Results All except one subject were typed as gp-340 I to III (10, 23 and 4, respectively). The gp-340 I phenotype correlated positively with caries experience (VIP = 1.37) and saliva adhesion of S. mutans Ingbritt (VIP = 1.47). The gp-340 II and III phenotypes tended to behave in the opposite way. Moreover, the gp-340 I phenotype tended to show an increased 2-year caries increment compared to phenotypes II/III. Purified gp-340 I protein mediated markedly higher adhesion of S. mutans strains Ingbritt and NG8 and Lactococcus lactis expressing AgI/II adhesins (SpaP or PAc) compared to gp-340 II and III proteins. In addition, the gp-340 I protein appeared over represented in subjects positive for Db, an allelic acidic PRP variant associated with caries, and subjects positive for both gp-340 I and Db tended to experience more caries than those negative for both proteins. Conclusion Gp-340 I behaves as a caries susceptibility protein. PMID:17562017
Li, Y; Liu, Z; Zhang, Y; Su, Q P; Xue, B; Shao, S; Zhu, Y; Xu, X; Wei, S; Sun, Y
2015-10-01
Streptococcus mutans is a primary pathogen responsible for dental caries. It has an outstanding ability to form biofilm, which is vital for virulence. Previous studies have shown that knockout of Wall-associated protein A (WapA) affects cell chain and biofilm formation of S. mutans. As a surface protein, the distribution of WapA remains unknown, but it is important to understand the mechanism underlying the function of WapA. This study applied the fluorescence protein mCherry as a reporter gene to characterize the dynamic distribution of WapA in S. mutans via time-lapse and super-resolution fluorescence imaging. The results revealed interesting subcellular distribution patterns of WapA in single, dividing and long chains of S. mutans cells. It appears at the middle of the cell and moves to the poles as the cell grows and divides. In a cell chain, after each round of cell division, such dynamic relocation results in WapA distribution at the previous cell division sites, resulting in a pattern where WapA is located at the boundary of two adjacent cell pairs. This WapA distribution pattern corresponds to the breaking segmentation of wapA deletion cell chains. The dynamic relocation of WapA through the cell cycle increases our understanding of the mechanism of WapA in maintaining cell chain integrity and biofilm formation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Nomura, Ryota; Ogaya, Yuko; Nakano, Kazuhiko
2016-01-01
Streptococcus mutans is a major pathogen of dental caries. Collagen-binding proteins (CBPs) (approximately 120 kDa), termed Cnm and Cbm, are regarded as important cell surface antigens related to the adherence of S. mutans to collagenous tissue. Furthermore, CBP-positive S. mutans strains are associated with various systemic diseases involving bacteremia, such as infective endocarditis. Endodontic infection is considered to be an important cause of bacteremia, but little is known regarding the presence of S. mutans in dental pulp tissue. In the present study, the distribution and virulence of S. mutans in dental pulp tissues were investigated by focusing on CBPs. Adhesion and invasion properties of various S. mutans strains were analyzed using human dental pulp fibroblasts (HDPFs). CBP-positive strains had a significantly higher rate of adhesion to HDPFs compared with CBP-defective isogenic mutant strains (P<0.001). In addition, CBP-positive strains induced HDPF proliferation, which is a possible mechanism related to development of hyperplastic pulpitis. The distribution of S. mutans strains isolated from infected root canal specimens was then analyzed by PCR. We found that approximately 50% of the root canal specimens were positive for S. mutans. Approximately 20% of these strains were Cnm-positive, while no Cbm-positive strains were isolated. The Cnm-positive strains isolated from the specimens showed adhesion to HDPFs. Our results suggest that CBP-positive S. mutans strains exhibit high colonization in dental pulp. This could be a possible virulence factor for various systemic diseases.
Dental caries area of rat molar expanded by cigarette smoke exposure.
Fujinami, Y; Nakano, K; Ueda, O; Ara, T; Hattori, T; Kawakami, T; Wang, P-L
2011-01-01
Passive smoking is the involuntary inhalation of cigarette smoke (CS) and has an adverse impact on oral health. We examined the effect of CS exposure on caries risk and experimental dental caries. Experimental dental caries was induced in rat maxillary molars which were inoculated orally with Streptococcus mutans MT8148 and maintained on a cariogenic diet (diet 2000) and high sucrose water during the experimental period. CS-exposed rats were intermittently housed in an animal chamber with whole-body exposure to CS until killed. Whole saliva was collected before CS exposure (day 0) and for 30 days after the start of CS exposure. Saliva secretion was stimulated by administration of isoproterenol and pilocarpine after anesthesia. Maxillary molars were harvested on day 31. The increase in body weight of the CS-exposed rats was less than that of the control rats. Salivary flow rate, concentration of S. mutans in the stimulated saliva and caries activity score did not significantly differ between 0 and 30 days after the start of CS exposure. Histological examination of the caries-affected area on maxillary molars 30 days after CS exposure showed expansion compared to control rats. In the electron probe microanalysis, no differences were observed between the mineral components of the CS-exposed teeth and the control teeth. These results suggest that CS exposure expands the caries-affected area in the maxillary molars of the rat. Copyright © 2011 S. Karger AG, Basel.
Toruner, Gokce A.; Velliyagounder, Kabilan; Sampathkumar, Vandana; Godboley, Dipti; Furgang, David
2013-01-01
Streptococcus mutans is prominently linked to dental caries. Saliva's influence on caries is incompletely understood. Our goal was to identify a salivary protein with anti-S. mutans activity, characterize its genotype, and determine genotypic variants associated with S. mutans activity and reduced caries. An S. mutans affinity column was used to isolate active moieties from saliva obtained from a subject with minimal caries. The bound and eluted protein was identified as lactotransferrin (LTF) by matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) analysis and confirmed by Western blotting with LTF antibody. A single nucleotide polymorphism (SNP) that produced a shift from arginine (R) to lysine (K) at amino acid position 47 in the LTF antimicrobial region (rs: 1126478) killed S. mutans in vitro. Saliva from a subject with moderate caries and with the LTF “wild-type” R form at position 47 had no such activity. A pilot genetic study (n = 30) showed that KK subjects were more likely to have anti-S. mutans activity than RR subjects (P = 0.001; relative risk = 3.6; 95% confidence interval [95% CI] = 1.5 to 11.13). Pretreatment of KK saliva with antibody to LTF reduced S. mutans killing in a dose-dependent manner (P = 0.02). KK subjects were less likely to have caries (P = 0.02). A synthetic 11-mer LTF/K peptide killed S. mutans and other caries-related bacteria, while the LTF/R peptide had no effect (P = 0.01). Our results provide functional evidence that the LTF/K variant results in both anti-S. mutans activity and reduced decay. We suggest that the LTF/K variant can influence oral microbial ecology in general and caries-provoking microbes specifically. PMID:23460521
Dental caries and microbiota in children with black stain and non-discoloured dental plaque.
Heinrich-Weltzien, R; Bartsch, B; Eick, S
2014-01-01
We aimed to assess caries experience and microbiota in systemically healthy children with black stain (BS) and non-discoloured plaque. Forty-six children with BS and 47 counterparts with non-discoloured plaque aged 7.9 ± 1.3 years were clinically examined. Dental caries was scored using WHO criteria. Samples of BS and non-discoloured dental plaque were collected from tooth surfaces. The DNA of the samples was extracted and real-time PCR was performed to determine the total number of bacteria and the species Streptococcus mutans, S. sobrinus, Lactobacillus sp., Actinomyces naeslundii, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia and Fusobacterium nucleatum. Children with BS had lower DMFT (p = 0.013), lower DT values (p = 0.005) and a tendency to lower caries prevalence (p = 0.061) than children with non-discoloured plaque. Plaque samples of the BS group contained higher numbers of A. naeslundii (p = 0.005) and lower numbers of F. nucleatum (p = 0.001) and Lactobacillus sp. (p = 0.001) compared to the non-discoloured plaque samples of the control group. Comparing the children with BS and non-discoloured plaque, higher counts for A. naeslundii (p = 0.013) were observed in caries-free children with BS while in caries-affected children with BS, lower counts of F. nucleatum (p = 0.007) were found. Counts of Lactobacillus sp. were higher in non-discoloured plaque samples than in BS of caries-free and caries-affected children. Results suggest that the different microbial composition of BS might be associated with the lower caries experience in affected subjects. The role of black-pigmented bacteria associated with periodontitis needs further studies.
The antimicrobial potential of stevia in an in vitro microbial caries model.
Kishta-; Derani, Maryam; Neiva, Gisele F; Boynton, James R; Kim, Youngjoo E; Fontana, Margherita
2016-04-01
To determine the effect of stevia on caries development when incorporated into a cariogenic diet in a controlled microbial caries model. 56 bovine tooth specimens (4 x 4 mm) were divided into four groups, each secured in a caries-forming vessel. All vessels were placed on an electric stirrer inside a 37°C incubator. The specimens were inoculated with Streptococcus mutans, and exposed for 4 days to circulating cycles of tryptic soy broth supplemented with 5% sucrose-TSBS (three x/day), and a mineral wash solution. Between TSBS cycles (three x/day), each group received one of four experimental solutions: phosphate buffer (PBS-negative control), 0.5% stevia solution, 5% stevia solution, or 5% xylitol solution. Development of caries lesions was analyzed using enamel surface hardness. Difference in Vickers Hardness between pre and post-treatment was calculated to determine caries development. Plaque was dislodged from six specimens per group, and the CFU/ml calculated. Data were analyzed using ANOVA at 95% confidence level, and individual group differences calculated using Tukey's test. 5% xylitol resulted in significantly less plaque at the end of the study compared to PBS and 5% stevia, but not significantly different than 0.5% stevia. 5% stevia had significantly softer lesions than the other groups, while there was no significant difference in hardness scores between 5% xylitol, 0.5% stevia and PBS.
Antimicrobial effects of commensal oral species are regulated by environmental factors.
Herrero, Esteban Rodriguez; Slomka, Vera; Bernaerts, Kristel; Boon, Nico; Hernandez-Sanabria, Emma; Passoni, Bernardo Born; Quirynen, Marc; Teughels, Wim
2016-04-01
The objectives of this study are to identify oral commensal species which can inhibit the growth of the main periodontopathogens, to determine the antimicrobial substances involved in these inhibitory activities and to evaluate the influence of environmental factors on the magnitude of these inhibitions. The spotting technique was used to quantify the capacity of 13 commensal species to inhibit the growth of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Prevotella intermedia. By altering experimental conditions (distance between spots and size of spots and concentration of commensal and pathogen) as well as environmental factors (inoculation sequence, oxygen and nutrition availability) the influence of these factors was evaluated. Additionally, the mechanism of inhibition was elucidated by performing inhibition experiments in the presence of peroxidase, trypsin and pepsin and by evaluating acid production. Streptococcus sanguinis, Streptococcus cristatus, Streptococcus gordonii, Streptococcus parasanguinis, Streptococcus mitis and Streptococcus oralis significantly inhibit the growth of all pathogens. The volume of the spots and concentration of the commensal have a significant positive correlation with the amount of inhibition whereas distance between the spots and concentration of the pathogen reduced the amount of inhibition. Inhibition is only observed when the commensal species are inoculated 24h before the pathogen and is more pronounced under aerobic conditions. Hydrogen peroxide production by the commensal is the main mechanism of inhibition. Bacterial antagonism is species specific and depending on experimental as well as environmental conditions. Blocking hydrogen peroxide production neutralizes the inhibitory effect. Identifying beneficial oral bacteria and understanding how they inhibit pathogens might help to unravel the mechanisms behind dysbiotic oral diseases. In this context, this study points towards an important role for hydrogen peroxide. The latter might lead in the future to novel preventive strategies for oral health based on improving the antimicrobial properties of commensal oral bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.
Goh, Swee Han; Driedger, David; Gillett, Sandra; Low, Donald E.; Hemmingsen, Sean M.; Amos, Mayben; Chan, David; Lovgren, Marguerite; Willey, Barbara M.; Shaw, Carol; Smith, John A.
1998-01-01
It was recently reported that Streptococcus iniae, a bacterial pathogen of aquatic animals, can cause serious disease in humans. Using the chaperonin 60 (Cpn60) gene identification method with reverse checkerboard hybridization and chemiluminescent detection, we identified correctly each of 12 S. iniae samples among 34 aerobic gram-positive isolates from animal and clinical human sources. PMID:9650992
Isolation of a Novel Phage with Activity against Streptococcus mutans Biofilms
Dalmasso, Marion; de Haas, Eric; Neve, Horst; Strain, Ronan; Cousin, Fabien J.; Stockdale, Stephen R.; Ross, R. Paul; Hill, Colin
2015-01-01
Streptococcus mutans is one of the principal agents of caries formation mainly, because of its ability to form biofilms at the tooth surface. Bacteriophages (phages) are promising antimicrobial agents that could be used to prevent or treat caries formation by S. mutans. The aim of this study was to isolate new S. mutans phages and to characterize their antimicrobial properties. A new phage, ɸAPCM01, was isolated from a human saliva sample. Its genome was closely related to the only two other available S. mutans phage genomes, M102 and M102AD. ɸAPCM01 inhibited the growth of S. mutans strain DPC6143 within hours in broth and in artificial saliva at multiplicity of infections as low as 2.5x10-5. In the presence of phage ɸAPCM01 the metabolic activity of a S. mutans biofilm was reduced after 24 h of contact and did not increased again after 48 h, and the live cells in the biofilm decreased by at least 5 log cfu/ml. Despite its narrow host range, this newly isolated S. mutans phage exhibits promising antimicrobial properties. PMID:26398909
Randomized in vivo evaluation of photodynamic antimicrobial chemotherapy on deciduous carious dentin
NASA Astrophysics Data System (ADS)
Steiner-Oliveira, Carolina; Longo, Priscila Larcher; Aranha, Ana Cecília Corrêa; Ramalho, Karen Müller; Mayer, Marcia Pinto Alves; de Paula Eduardo, Carlos
2015-10-01
The aim of this randomized in vivo study was to compare antimicrobial chemotherapies in primary carious dentin. Thirty-two participants ages 5 to 7 years underwent partial caries removal from deep carious dentin lesions in primary molars and were subsequently divided into three groups: control [chlorhexidine and resin-modified glass ionomer cement (RMGIC)], LEDTB [photodynamic antimicrobial chemotherapy (PACT) with light-emitting diode associated with toluidine blue solution and RMGIC], and LMB [PACT with laser associated with methylene blue solution and RMGIC]. The participants were submitted to initial clinical and radiographic examinations. Demographic features and biofilm, gingival, and DMFT/DMFS indexes were evaluated, in addition to clinical and radiographic followups at 6 and 12 months after treatments. Carious dentin was collected before and after each treatment, and the number of Streptococcus mutans, Streptococcus sobrinus, Lactobacillus casei, Fusobacterium nucleatum, Atopobium rimae, and total bacteria was established by quantitative polymerase chain reaction. No signs of pain or restoration failure were observed. All therapies were effective in reducing the number of microorganisms, except for S. sobrinus. No statistical differences were observed among the protocols used. All therapies may be considered as effective modern approaches to minimal intervention for the management of deep primary caries treatment.
Al-Ahmad, A; Auschill, T M; Dakhel, R; Wittmer, A; Pelz, K; Heumann, C; Hellwig, E; Arweiler, N B
2016-11-01
The correlation between caries and the oral prevalence of Candida spp. in children is contradictory in literature. Thereby, authors focused on Candida albicans as the most isolated Candida species from the oral cavity. Therefore, the aim of the present study was to compare caries-free and caries-bearing children regarding their oral carriage of Candida spp. Twenty-six caries-free (CF group) and 26 caries-active children (CA group) were included into this study. Three different types of specimens were assessed, saliva and plaque, and in the case of caries, infected dentine samples were microbiologically analyzed for aerobic and anaerobic microorganisms and their counts. Special attention was given to the differentiation between C. albicans and Candida dubliniensis. Additionally, different biochemical tests, VITEK 2 (VITEK®2, bioMérieux, Marcy-l'Etoile, France) and 16S and 18S ribosomal DNA (rDNA) sequencing, were applied for identification. The detection of C. albicans did not differ between the CF and CA groups. C. dubliniensis was never detected in any specimen of the CF group, but occurred in one quarter of the CA group (27 % in plaque, 23 % in saliva), thus leading to a statistically significant difference between the two groups (p < 0.05). In six of these cases, C. dubliniensis was detected concomitantly in saliva and plaque and once only in plaque. CA group harbored statistically more Streptococcus mutans than the control group revealing a correlation between S. mutans and C. dubliniensis regarding the caries group. This is the first study reporting a frequent detection of C. dubliniensis in caries-active children, which could have been underestimated so far due to difficulties in differentiation between this yeast species and C. albicans. Microbiological diagnostic-especially of oral Candida species-is an important determinant for identifying etiological factors of dental caries in children.
Feng, Youjun; Zhang, Huimin; Wu, Zuowei; Wang, Shihua; Cao, Min; Hu, Dan; Wang, Changjun
2014-01-01
Streptococcus suis (S. suis) is a family of pathogenic gram-positive bacterial strains that represents a primary health problem in the swine industry worldwide. S. suis is also an emerging zoonotic pathogen that causes severe human infections clinically featuring with varied diseases/syndromes (such as meningitis, septicemia, and arthritis). Over the past few decades, continued efforts have made significant progress toward better understanding this zoonotic infectious entity, contributing in part to the elucidation of the molecular mechanism underlying its high pathogenicity. This review is aimed at presenting an updated overview of this pathogen from the perspective of molecular epidemiology, clinical diagnosis and typing, virulence mechanism, and protective antigens contributing to its zoonosis. PMID:24667807
Xu, Zhenbo; Xie, Jinhong; Peters, Brian M; Li, Bing; Li, Lin; Yu, Guangchao; Shirtliff, Mark E
2017-02-01
A longitudinal surveillance aimed to investigate the antibiogram of three genus of important Gram-positive pathogens in Southern China during 2001-2015. A total of 3849 Staphylococcus, Enterococcus and Streptococcus strains were isolated from Southern China during 2001-2015. Bacteria identification was performed by colony morphology, Gram staining, the API commercial kit and the Vitek 2 automated system. Antimicrobial susceptibility testing was determined by disk diffusion method and MIC method. As sampling site was concerned, 51.4% of Staphylococcus strains were isolated from sputum, whereas urinary tract remained the dominant infection site among Enterococcus and Streptococcus. According to the antimicrobial susceptibility, three genus of important Gram-positive pathogens showed high resistance against erythromycin, tetracycline, ciprofloxacin and clindamycin. Resistance rates to penicillins (penicillin, oxacillin, ampicillin) were high as well, with the exception of E. faecalis and Streptococcus. Overall, resistance rates against methicillin (oxacillin) were 63.2% in S. aureus and 76.2% in coagulase-negative Staphylococcus (CNS), along with continuous increases during the study. VRSA and vancomycin-resistant coagulase-negative Staphylococcus only appeared in 2011-2015. Sight decline was obtained for the vancomycin resistance of E. faecalis, while vancomycin-resistant E. faecium only appeared in 2011-2015, with its intermediate rate decreasing. Significant decrease in penicillin-resistant Streptococcus pneumonia (PRSP) was observed during studied period. Glycopeptide antibiotic remained highly effective to Staphylococcus, Enterococcus and Streptococcus (resistance rates <5%). Despite decline obtained for some antibiotic agents resistance during 2001-2015, antimicrobial resistance among Gram-positive pathogens still remained high in Southern China. This study may aid in the guidance for appropriate therapeutic strategy of infections caused by nosocomial pathogens. Copyright © 2016 Elsevier Ltd. All rights reserved.
1981-05-01
variety of antigens, KLH, GAT, TGAL and antigens from pathogenic bacteria such as Streptococcus mutans . Furthermore, we now have these systems...histocompatibility complex; PBL, peripheral blood lymphocytes; SAI/II, Streptococcus mutans antigen I/II complex; MHFSAI/II, monkey helper factor specific...from Streptococcus mutans . Helper activity was removed from supernatants of monkey cells by affinity chromatography on Sepharose 4B insolubilized
Slee, A M; O'Connor, J R
1983-01-01
The antibacterial activity of octenidine dihydrochloride (WIN 41464-2) against intact preformed in vitro plaques of four indigenous oral plaque-forming microorganisms, Streptococcus mutans, Streptococcus sanguis, Actinomyces viscosus, and Actinomyces naeslundii, was studied. Both absolute (plaque bactericidal index) and relative (chlorhexidine coefficient) indices of antiplaque efficacy were established. Octenidine dihydrochloride compared favorably with chlorhexidine digluconate with respect to overall antiplaque potency in this in vitro plaque bactericidal model. These data indicate that prudent selection of treatment concentration and duration and frequency of exposure should provide an effective means to aid in controlling dental caries and Actinomyces-associated disease in vivo. PMID:6847170
[Rapid identification of meningitis due to bacterial pathogens].
Ubukata, Kimiko
2013-01-01
We constructed a new real-time PCR method to detect causative pathogens in cerebrospinal fluid (CSF) from patient due to bacterial meningitis. The eight pathogens targeted in the PCR are Streptococcus pneumoniae, Haemophilus influenzae, Streptococcus agalactiae, Staphylococcus aurues, Neisseria meningitides, Listeria monocytogenes, Esherichia coli, and Mycoplasma pneumoniae. The total time from DNA extraction from CSF to PCR analysis was 1.5 hour. The pathogens were detected in 72% of the CSF samples (n=115) by real-time PCR, but in only 48% by culture, although the microorganisms were completely concordant. The detection rate of pathogens with PCR was significantly better than that with cultures in patients with antibiotic administration.In conclusion, detection with real-time PCR is useful for rapidly identifying the causative pathogens of meningitis and for examining the clinical course of chemotherapy.
Hagiya, Hideharu; Okita, Shunji; Kuroe, Yasutoshi; Nojima, Hiroyoshi; Otani, Shinkichi; Sugiyama, Junichi; Naito, Hiromichi; Kawanishi, Susumu; Hagioka, Shingo; Morimoto, Naoki
2013-01-01
An 88-year-old man died of streptococcal toxic shock syndrome due to a group G streptococcus infection that was possibly caused by an intramuscular injection given 30 hours earlier in his right deltoid muscle. The causative pathogen was later identified to be Streptococcus dysgalactiae subsp. equisimilis (stG485). Although providing intramuscular injections is an essential skill of health care workers that is performed daily worldwide, it may constitute a port of entry for pathogens via skin breaches that can cause life-threatening infections. All invasive procedures should be carefully performed, especially when immunologically compromised patients are involved.
Nakamura, Keisuke; Shirato, Midori; Kanno, Taro; Örtengren, Ulf; Lingström, Peter; Niwano, Yoshimi
2016-10-01
Prevention of dental caries with maximum conservation of intact tooth substance remains a challenge in dentistry. The present study aimed to evaluate the antimicrobial effect of H2O2 photolysis on Streptococcus mutans biofilm, which may be a novel antimicrobial chemotherapy for treating caries. S. mutans biofilm was grown on disk-shaped hydroxyapatite specimens. After 1-24 h of incubation, growth was assessed by confocal laser scanning microscopy and viable bacterial counting. Resistance to antibiotics (amoxicillin and erythromycin) was evaluated by comparing bactericidal effects on the biofilm with those on planktonic bacteria. To evaluate the effect of the antimicrobial technique, the biofilm was immersed in 3% H2O2 and was irradiated with an LED at 365 nm for 1 min. Viable bacterial counts in the biofilm were determined by colony counting. The thickness and surface coverage of S. mutans biofilm increased with time, whereas viable bacterial counts plateaued after 6 h. When 12- and 24-h-old biofilms were treated with the minimum concentration of antibiotics that killed viable planktonic bacteria with 3 log reduction, their viable counts were not significantly decreased, suggesting the biofilm acquired antibiotic resistance by increasing its thickness. By contrast, hydroxyl radicals generated by photolysis of 3% H2O2 effectively killed S. mutans in 24-h-old biofilm, with greater than 5 log reduction. The technique based on H2O2 photolysis is a potentially powerful adjunctive antimicrobial chemotherapy for caries treatment. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Fitzgerald, R J; Adams, B O; Sandham, H J; Abhyankar, S
1989-03-01
A lactate dehydrogenase-deficient (Ldh-) mutant of a human isolate of Streptococcus mutans serotype c was tested in a gnotobiotic rat caries model. Compared with the wild-type Ldh-positive (Ldh+) strains, it was significantly (alpha less than or equal to 0.005) less cariogenic in experiments with two different sublines of Sprague-Dawley rats. The Ldh- mutant strain 044 colonized the oral cavity of the test animals to the same extent as its parent strain 041, although its initial implantation was slightly but not significantly (P greater than or equal to 0.2) less. Multiple oral or fecal samples plated on 2,3,5-triphenyltetrazolium indicator medium revealed no evidence of back mutation from Ldh- to Ldh+ in vivo. Both Ldh+ strain 041 and Ldh- strain 044 demonstrated bacteriocinlike activity in vitro against a number of human strains of mutans streptococci representing serotype a (S. cricetus) and serotypes c and e (S. mutans). Serotypes b (S. rattus) and f (S. mutans) and strains of S. mitior, S. sanguis, and S. salivarius were not inhibited. Thus, Ldh mutant strain 044 possesses a number of desirable traits that suggest it should be investigated further as a possible effector strain for replacement therapy of dental caries. These traits include its stability and low cariogenicity in the sensitive gnotobiotic rat caries model, its bacteriocinlike activity against certain other cariogenic S. mutans (but not against more inocuous indigenous oral streptococci), and the fact that it is a member of the most prevalent human serotype of cariogenic streptococci.
Mahantesha, Taranatha; Reddy, K M Parveen; Kumar, N H Praveen; Nara, Asha; Ashwin, Devasya; Buddiga, Vinutna
2015-09-01
Dental caries is one of the most common health problems in the world. Probiotics are one the various preventive methods to reduce dental caries. The aim of this study is to compare the effectiveness of probiotic ice cream and drink on salivary Streptococcus mutans levels in children of 6-12 years age group. A three phase study was carried out in children (n = 50) of 6-12 years age with zero decayed missing filled teeth (dmft)/DMFT. They were randomly divided into two equal groups. Saliva samples were collected before the consumptions of probiotic ice cream and probiotic drink. Colony count obtained was recorded as baseline data. For both groups probiotic ice cream and drink was given randomly for 7 days and a washout period of 90 days were given and then the saliva samples were collected and colony counting was done. Statistical analysis was performed using Student's paired t-test and multiple comparisons by Tukey's honest significant difference test which showed, there is a significant reduction in salivary S. mutans level in both groups after 7 days period. However, after washout period only probiotic ice cream showed reduction whereas drink did not. Also, there was no significant difference between probiotic ice cream and drink. Probiotic organisms definitely have a role in reducing the salivary S. mutans level and ice cream would be a better choice than drink. However, the prolonged use of the agents and their effects on caries is still to be determined.
Zhang, Wenling; Deng, Xiaohong; Zhou, Xuedong; Hao, Yuqing; Li, Yuqing
2018-01-01
Dental caries is a chronic progressive disease occurring in the tooth hard tissue due to multiple factors, in which bacteria are the initial cause. Both Streptococcus mutans and Streptococcus sanguinis are main members of oral biofilm. Helicobacter pylori may also be detected in dental plaque, playing an important role in the development of dental caries. The aim of this study was to investigate the effect of H. pylori culture supernatant on S. mutans and S. sanguinis dual-species biofilm and to evaluate its potential ability on affecting dental health. The effect of H. pylori supernatant on single-species and dual-species biofilm was measured by colony forming units counting and fluorescence in situ hybridization (FISH) assay, respectively. The effect of H. pylori supernatant on S. mutans and S. sanguinis extracellular polysaccharides (EPS) production was measured by both confocal laser scanning microscopy observation and anthrone-sulfuric acid method. The effect of H. pylori supernatant on S. mutans gene expression was measured by quantitative real-time PCR (qRT-PCR) assays. H. pylori supernatant could inhibit both S. mutans and S. sanguinis biofilm formation and EPS production. S. sanguinis inhibition rate was significantly higher than that of S. mutans. Finally, S. mutans bacteriocin and acidogenicity related genes expression were affected by H. pylori culture supernatant. Our results showed that H. pylori could destroy the balance between S. mutans and S. sanguinis in oral biofilm, creating an advantageous environment for S. mutans, which became the dominant bacteria, promoting the formation and development of dental caries.
Zhang, Wenling; Deng, Xiaohong; Zhou, Xuedong; Hao, Yuqing; Li, Yuqing
2018-01-01
Abstract Dental caries is a chronic progressive disease occurring in the tooth hard tissue due to multiple factors, in which bacteria are the initial cause. Both Streptococcus mutans and Streptococcus sanguinis are main members of oral biofilm. Helicobacter pylori may also be detected in dental plaque, playing an important role in the development of dental caries. Objective The aim of this study was to investigate the effect of H. pylori culture supernatant on S. mutans and S. sanguinis dual-species biofilm and to evaluate its potential ability on affecting dental health. Material and methods The effect of H. pylori supernatant on single-species and dual-species biofilm was measured by colony forming units counting and fluorescence in situ hybridization (FISH) assay, respectively. The effect of H. pylori supernatant on S. mutans and S. sanguinis extracellular polysaccharides (EPS) production was measured by both confocal laser scanning microscopy observation and anthrone-sulfuric acid method. The effect of H. pylori supernatant on S. mutans gene expression was measured by quantitative real-time PCR (qRT-PCR) assays. Results H. pylori supernatant could inhibit both S. mutans and S. sanguinis biofilm formation and EPS production. S. sanguinis inhibition rate was significantly higher than that of S. mutans. Finally, S. mutans bacteriocin and acidogenicity related genes expression were affected by H. pylori culture supernatant. Conclusion Our results showed that H. pylori could destroy the balance between S. mutans and S. sanguinis in oral biofilm, creating an advantageous environment for S. mutans, which became the dominant bacteria, promoting the formation and development of dental caries. PMID:29489935
Aldana, Jennyfer; Téllez, Nohemí; Gamboa, Fredy
2013-01-01
Dental caries is a multifactorial infectious disease that leads to the destruction of dental hard tissue. The main goal of research into medicinal plants is to seek compounds with antimicrobial activity for subsequent use in prevention strategies and control of infectious diseases. The aim of this study was to evaluate the antimicrobial activity of fractions and subfractions obtained from Elaeagia utilis against Streptococcus mutans, Streptococcus sobrinus and Lactobacillus acidophilus. The plant material was collected in the town of Alban (Cundinamarca, Colombia), which is located at an altitude of 2245 meters above sea level. Two extracts were obtained by cold maceration of E. utilis leaves in (a) petroleum ether extract and (b) ethanol extract. Fractions were obtained from the petroleum ether extract by column vacuum chromatography, and from the ethanol extract by continuous liquid/liquid partitioning. The antimicrobial activity of fractions and subfractions was evaluated by the well diffusion method. At a concentration of 10 mg/well, several fractions from both extracts showed antimicrobial activity against S. mutans, S. sobrinus and L. acidophilus. Among the ethanol extract fractions, the dichloromethane fraction had notably greater antimicrobial activity. It was sub-partitioned, yielding three subfractions with inhibitory activity, of which the most active was MeOH: H2O (Bp) with minimum inhibitory concentration 0.1 mg/well on the 3 study bacteria. Terpenes, sesquiterpenlactones and simple phenolic compounds were identified in it. In conclusion, this study shows the antimicrobial potential of fractions and subfractions obtained from extracts of E. utilis leaves against bacteria that are important in dental caries.
Bowen, W.H.; Koo, H.
2011-01-01
The importance of Streptococcus mutans in the etiology and pathogenesis of dental caries is certainly controversial, in part because excessive attention is paid to the numbers of S. mutans and acid production while the matrix within dental plaque has been neglected. S. mutans does not always dominate within plaque; many organisms are equally acidogenic and aciduric. It is also recognized that glucosyltransferases from S. mutans (Gtfs) play critical roles in the development of virulent dental plaque. Gtfs adsorb to enamel synthesizing glucans in situ, providing sites for avid colonization by microorganisms and an insoluble matrix for plaque. Gtfs also adsorb to surfaces of other oral microorganisms converting them to glucan producers. S. mutans expresses 3 genetically distinct Gtfs; each appears to play a different but overlapping role in the formation of virulent plaque. GtfC is adsorbed to enamel within pellicle whereas GtfB binds avidly to bacteria promoting tight cell clustering, and enhancing cohesion of plaque. GtfD forms a soluble, readily metabolizable polysaccharide and acts as a primer for GtfB. The behavior of soluble Gtfs does not mirror that observed with surface-adsorbed enzymes. Furthermore, the structure of polysaccharide matrix changes over time as a result of the action of mutanases and dextranases within plaque. Gtfs at distinct loci offer chemotherapeutic targets to prevent caries. Nevertheless, agents that inhibit Gtfs in solution frequently have a reduced or no effect on adsorbed enzymes. Clearly, conformational changes and reactions of Gtfs on surfaces are complex and modulate the pathogenesis of dental caries in situ, deserving further investigation. PMID:21346355
Bezerra, Daniela S; Stipp, Rafael N; Neves, Beatriz G; Guedes, Sarah F F; Nascimento, Marcelle M; Rodrigues, Lidiany K A
2016-01-01
Streptococcus mutans is an oral bacterium considered to play a major role in the development of dental caries. This study aimed to investigate the prevalence of S. mutans in active and arrested dentine carious lesions of children with early childhood caries and to examine the expression profile of selected S. mutans genes associated with survival and virulence, within the same carious lesions. Dentine samples were collected from 29 active and 16 arrested carious lesions that were diagnosed in preschool children aged 2-5 years. Total RNA was extracted from the dentine samples, and reverse transcription quantitative real-time PCR analyses were performed for the quantification of S. mutans and for analyses of the expression of S. mutans genes associated with bacterial survival (atpD, nox, pdhA) and virulence (fabM and aguD). There was no statistically significant difference in the prevalence of S. mutans between active and arrested carious lesions. Expression of the tested genes was detected in both types of carious dentine. The pdhA (p = 0.04) and aguD (p = 0.05) genes were expressed at higher levels in arrested as compared to active lesions. Our findings revealed that S. mutans is part of the viable microbial community in active and arrested dentine carious lesions. The increase in expression of the pdhA and aguD genes in arrested lesions is likely due to the unfavourable environmental conditions for microbial growth, inherent to this type of lesions. © 2016 S. Karger AG, Basel.
2013-01-01
Background Tea has been suggested to promote oral health by inhibiting bacterial attachment to the oral cavity. Most studies have focused on prevention of bacterial attachment to hard surfaces such as enamel. Findings This study investigated the effect of five commercial tea (green, oolong, black, pu-erh and chrysanthemum) extracts and tea components (epigallocatechin gallate and gallic acid) on the attachment of five oral pathogens (Streptococcus mutans ATCC 25175, Streptococcus mutans ATCC 35668, Streptococcus mitis ATCC 49456, Streptococcus salivarius ATCC 13419 and Actinomyces naeslundii ATCC 51655) to the HGF-1 gingival cell line. Extracts of two of the teas (pu-erh and chrysanthemum) significantly (p < 0.05) reduced attachment of all the Streptococcus strains by up to 4 log CFU/well but effects of other teas and components were small. Conclusions Pu-erh and chrysanthemum tea may have the potential to reduce attachment of oral pathogens to gingival tissue and improve the health of oral soft tissues. PMID:23578062
Wang, Yi; Chung, Felicia F L; Lee, Sui M; Dykes, Gary A
2013-04-11
Tea has been suggested to promote oral health by inhibiting bacterial attachment to the oral cavity. Most studies have focused on prevention of bacterial attachment to hard surfaces such as enamel. This study investigated the effect of five commercial tea (green, oolong, black, pu-erh and chrysanthemum) extracts and tea components (epigallocatechin gallate and gallic acid) on the attachment of five oral pathogens (Streptococcus mutans ATCC 25175, Streptococcus mutans ATCC 35668, Streptococcus mitis ATCC 49456, Streptococcus salivarius ATCC 13419 and Actinomyces naeslundii ATCC 51655) to the HGF-1 gingival cell line. Extracts of two of the teas (pu-erh and chrysanthemum) significantly (p < 0.05) reduced attachment of all the Streptococcus strains by up to 4 log CFU/well but effects of other teas and components were small. Pu-erh and chrysanthemum tea may have the potential to reduce attachment of oral pathogens to gingival tissue and improve the health of oral soft tissues.
Humphrey, Louise T.; De Groote, Isabelle; Morales, Jacob; Barton, Nick; Collcutt, Simon; Bronk Ramsey, Christopher; Bouzouggar, Abdeljalil
2014-01-01
Dental caries is an infectious disease that causes tooth decay. The high prevalence of dental caries in recent humans is attributed to more frequent consumption of plant foods rich in fermentable carbohydrates in food-producing societies. The transition from hunting and gathering to food production is associated with a change in the composition of the oral microbiota and broadly coincides with the estimated timing of a demographic expansion in Streptococcus mutans, a causative agent of human dental caries. Here we present evidence linking a high prevalence of caries to reliance on highly cariogenic wild plant foods in Pleistocene hunter-gatherers from North Africa, predating other high caries populations and the first signs of food production by several thousand years. Archaeological deposits at Grotte des Pigeons in Morocco document extensive evidence for human occupation during the Middle Stone Age and Later Stone Age (Iberomaurusian), and incorporate numerous human burials representing the earliest known cemetery in the Maghreb. Macrobotanical remains from occupational deposits dated between 15,000 and 13,700 cal B.P. provide evidence for systematic harvesting and processing of edible wild plants, including acorns and pine nuts. Analysis of oral pathology reveals an exceptionally high prevalence of caries (51.2% of teeth in adult dentitions), comparable to modern industrialized populations with a diet high in refined sugars and processed cereals. We infer that increased reliance on wild plants rich in fermentable carbohydrates and changes in food processing caused an early shift toward a disease-associated oral microbiota in this population. PMID:24395774
Oral Biofilm Architecture on Natural Teeth
Zijnge, Vincent; van Leeuwen, M. Barbara M.; Degener, John E.; Abbas, Frank; Thurnheer, Thomas; Gmür, Rudolf; M. Harmsen, Hermie J.
2010-01-01
Periodontitis and caries are infectious diseases of the oral cavity in which oral biofilms play a causative role. Moreover, oral biofilms are widely studied as model systems for bacterial adhesion, biofilm development, and biofilm resistance to antibiotics, due to their widespread presence and accessibility. Despite descriptions of initial plaque formation on the tooth surface, studies on mature plaque and plaque structure below the gum are limited to landmark studies from the 1970s, without appreciating the breadth of microbial diversity in the plaque. We used fluorescent in situ hybridization to localize in vivo the most abundant species from different phyla and species associated with periodontitis on seven embedded teeth obtained from four different subjects. The data showed convincingly the dominance of Actinomyces sp., Tannerella forsythia, Fusobacterium nucleatum, Spirochaetes, and Synergistetes in subgingival plaque. The latter proved to be new with a possibly important role in host-pathogen interaction due to its localization in close proximity to immune cells. The present study identified for the first time in vivo that Lactobacillus sp. are the central cells of bacterial aggregates in subgingival plaque, and that Streptococcus sp. and the yeast Candida albicans form corncob structures in supragingival plaque. Finally, periodontal pathogens colonize already formed biofilms and form microcolonies therein. These in vivo observations on oral biofilms provide a clear vision on biofilm architecture and the spatial distribution of predominant species. PMID:20195365
pH landscapes in a novel five-species model of early dental biofilm.
Schlafer, Sebastian; Raarup, Merete K; Meyer, Rikke L; Sutherland, Duncan S; Dige, Irene; Nyengaard, Jens R; Nyvad, Bente
2011-01-01
Despite continued preventive efforts, dental caries remains the most common disease of man. Organic acids produced by microorganisms in dental plaque play a crucial role for the development of carious lesions. During early stages of the pathogenetic process, repeated pH drops induce changes in microbial composition and favour the establishment of an increasingly acidogenic and aciduric microflora. The complex structure of dental biofilms, allowing for a multitude of different ecological environments in close proximity, remains largely unexplored. In this study, we designed a laboratory biofilm model that mimics the bacterial community present during early acidogenic stages of the caries process. We then performed a time-resolved microscopic analysis of the extracellular pH landscape at the interface between bacterial biofilm and underlying substrate. Strains of Streptococcus oralis, Streptococcus sanguinis, Streptococcus mitis, Streptococcus downei and Actinomyces naeslundii were employed in the model. Biofilms were grown in flow channels that allowed for direct microscopic analysis of the biofilms in situ. The architecture and composition of the biofilms were analysed using fluorescence in situ hybridization and confocal laser scanning microscopy. Both biofilm structure and composition were highly reproducible and showed similarity to in-vivo-grown dental plaque. We employed the pH-sensitive ratiometric probe C-SNARF-4 to perform real-time microscopic analyses of the biofilm pH in response to salivary solutions containing glucose. Anaerobic glycolysis in the model biofilms created a mildly acidic environment. Decrease in pH in different areas of the biofilms varied, and distinct extracellular pH-microenvironments were conserved over several hours. The designed biofilm model represents a promising tool to determine the effect of potential therapeutic agents on biofilm growth, composition and extracellular pH. Ratiometric pH analysis using C-SNARF-4 gives detailed insight into the pH landscape of living biofilms and contributes to our general understanding of metabolic processes in in-vivo-grown bacterial biofilms.
2014-01-01
Background Within the genus Streptococcus, only Streptococcus thermophilus is used as a starter culture in food fermentations. Streptococcus macedonicus though, which belongs to the Streptococcus bovis/Streptococcus equinus complex (SBSEC), is also frequently isolated from fermented foods mainly of dairy origin. Members of the SBSEC have been implicated in human endocarditis and colon cancer. Here we compare the genome sequence of the dairy isolate S. macedonicus ACA-DC 198 to the other SBSEC genomes in order to assess in silico its potential adaptation to milk and its pathogenicity status. Results Despite the fact that the SBSEC species were found tightly related based on whole genome phylogeny of streptococci, two distinct patterns of evolution were identified among them. Streptococcus macedonicus, Streptococcus infantarius CJ18 and Streptococcus pasteurianus ATCC 43144 seem to have undergone reductive evolution resulting in significantly diminished genome sizes and increased percentages of potential pseudogenes when compared to Streptococcus gallolyticus subsp. gallolyticus. In addition, the three species seem to have lost genes for catabolizing complex plant carbohydrates and for detoxifying toxic substances previously linked to the ability of S. gallolyticus to survive in the rumen. Analysis of the S. macedonicus genome revealed features that could support adaptation to milk, including an extra gene cluster for lactose and galactose metabolism, a proteolytic system for casein hydrolysis, auxotrophy for several vitamins, an increased ability to resist bacteriophages and horizontal gene transfer events with the dairy Lactococcus lactis and S. thermophilus as potential donors. In addition, S. macedonicus lacks several pathogenicity-related genes found in S. gallolyticus. For example, S. macedonicus has retained only one (i.e. the pil3) of the three pilus gene clusters which may mediate the binding of S. gallolyticus to the extracellular matrix. Unexpectedly, similar findings were obtained not only for the dairy S. infantarius CJ18, but also for the blood isolate S. pasteurianus ATCC 43144. Conclusions Our whole genome analyses suggest traits of adaptation of S. macedonicus to the nutrient-rich dairy environment. During this process the bacterium gained genes presumably important for this new ecological niche. Finally, S. macedonicus carries a reduced number of putative SBSEC virulence factors, which suggests a diminished pathogenic potential. PMID:24713045
Papadimitriou, Konstantinos; Anastasiou, Rania; Mavrogonatou, Eleni; Blom, Jochen; Papandreou, Nikos C; Hamodrakas, Stavros J; Ferreira, Stéphanie; Renault, Pierre; Supply, Philip; Pot, Bruno; Tsakalidou, Effie
2014-04-08
Within the genus Streptococcus, only Streptococcus thermophilus is used as a starter culture in food fermentations. Streptococcus macedonicus though, which belongs to the Streptococcus bovis/Streptococcus equinus complex (SBSEC), is also frequently isolated from fermented foods mainly of dairy origin. Members of the SBSEC have been implicated in human endocarditis and colon cancer. Here we compare the genome sequence of the dairy isolate S. macedonicus ACA-DC 198 to the other SBSEC genomes in order to assess in silico its potential adaptation to milk and its pathogenicity status. Despite the fact that the SBSEC species were found tightly related based on whole genome phylogeny of streptococci, two distinct patterns of evolution were identified among them. Streptococcus macedonicus, Streptococcus infantarius CJ18 and Streptococcus pasteurianus ATCC 43144 seem to have undergone reductive evolution resulting in significantly diminished genome sizes and increased percentages of potential pseudogenes when compared to Streptococcus gallolyticus subsp. gallolyticus. In addition, the three species seem to have lost genes for catabolizing complex plant carbohydrates and for detoxifying toxic substances previously linked to the ability of S. gallolyticus to survive in the rumen. Analysis of the S. macedonicus genome revealed features that could support adaptation to milk, including an extra gene cluster for lactose and galactose metabolism, a proteolytic system for casein hydrolysis, auxotrophy for several vitamins, an increased ability to resist bacteriophages and horizontal gene transfer events with the dairy Lactococcus lactis and S. thermophilus as potential donors. In addition, S. macedonicus lacks several pathogenicity-related genes found in S. gallolyticus. For example, S. macedonicus has retained only one (i.e. the pil3) of the three pilus gene clusters which may mediate the binding of S. gallolyticus to the extracellular matrix. Unexpectedly, similar findings were obtained not only for the dairy S. infantarius CJ18, but also for the blood isolate S. pasteurianus ATCC 43144. Our whole genome analyses suggest traits of adaptation of S. macedonicus to the nutrient-rich dairy environment. During this process the bacterium gained genes presumably important for this new ecological niche. Finally, S. macedonicus carries a reduced number of putative SBSEC virulence factors, which suggests a diminished pathogenic potential.
Incidence of clinical mastitis and distribution of pathogens on large Chinese dairy farms.
Gao, Jian; Barkema, Herman W; Zhang, Limei; Liu, Gang; Deng, Zhaoju; Cai, Lingjie; Shan, Ruixue; Zhang, Shiyao; Zou, Jiaqi; Kastelic, John P; Han, Bo
2017-06-01
Knowledge of the incidence of clinical mastitis (CM) and the distribution of pathogens involved is essential for development of prevention and control programs as well as treatment protocols. No country-wide study on the incidence of CM and the distribution of pathogens involved has been conducted in China. Core objectives of this study were, therefore, to determine the cumulative incidence of CM and the distribution of pathogens causing CM on large Chinese (>500 cows) dairy farms. In addition, associations between the distribution of CM pathogens and bedding materials and seasonal factors were also investigated. Bacterial culture was done on a total of 3,288 CM quarter milk samples from 161 dairy herds (located in 21 provinces) between March 2014 and September 2016. Additional data, including geographical region of herds, herd size, bedding types, and number of CM cases during the last month, were also recorded. Mean cumulative incidence of CM was 3.3 cases per 100 cows per month (range = 1.7 to 8.1). The most frequently isolated pathogens were Escherichia coli (14.4%), Klebsiella spp. (13.0%), coagulase-negative staphylococci (11.3%), Streptococcus dysgalactiae (10.5%), and Staphylococcus aureus (10.2%). Streptococcus agalactiae was isolated from 2.8% of CM samples, whereas Streptococcus uberis were isolated from 2.1% of samples, and 15.8% of 3,288 samples were culture-negative. Coagulase-negative staphylococci, E. coli, and other Enterobacter spp. were more frequently isolated in the northwest than the northeast or south of China. Streptococcus dysgalactiae, other streptococci, and Strep. agalactiae were more frequently isolated in winter (October-March), whereas E. coli and Klebsiella spp. were mostly isolated in summer (April-September). Streptococcus dysgalactiae was more often isolated from CM cases of herds using sand bedding, whereas Klebsiella spp. and other streptococci were more common in herds using organic bedding. The incidence of CM and distribution of pathogens differed among herds and better mastitis management is needed. Furthermore, geography, bedding materials, and season should be included when designing mastitis control and prevention schemes for Chinese dairies. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Palmieri, Claudio; Magi, Gloria; Mingoia, Marina; Bagnarelli, Patrizia; Ripa, Sandro; Varaldo, Pietro E; Facinelli, Bruna
2012-09-01
Mosaic tetracycline resistance determinants are a recently discovered class of hybrids of ribosomal protection tet genes. They may show different patterns of mosaicism, but their final size has remained unaltered. Initially thought to be confined to a small group of anaerobic bacteria, mosaic tet genes were then found to be widespread. In the genus Streptococcus, a mosaic tet gene [tet(O/W/32/O)] was first discovered in Streptococcus suis, an emerging drug-resistant pig and human pathogen. In this study, we report the molecular characterization of a tet(O/W/32/O) gene-carrying mobile element from an S. suis isolate. tet(O/W/32/O) was detected, in tandem with tet(40), in a circular 14,741-bp genetic element (39.1% G+C; 17 open reading frames [ORFs] identified). The novel element, which we designated 15K, also carried the macrolide resistance determinant erm(B) and an aminoglycoside resistance four-gene cluster including aadE (streptomycin) and aphA (kanamycin). 15K appeared to be an unstable genetic element that, in the absence of recombinases, is capable of undergoing spontaneous excision under standard growth conditions. In the integrated form, 15K was found inside a 54,879-bp integrative and conjugative element (ICE) (50.5% G+C; 55 ORFs), which we designated ICESsu32457. An ∼1.3-kb segment that apparently served as the att site for excision of the unstable 15K element was identified. The novel ICE was transferable at high frequency to recipients from pathogenic Streptococcus species (S. suis, Streptococcus pyogenes, Streptococcus pneumoniae, and Streptococcus agalactiae), suggesting that the multiresistance 15K element can successfully spread within streptococcal populations.
Fiber optic evanescent wave (FOEW) microbial sensor for dental application
NASA Astrophysics Data System (ADS)
Kishen, Anil; John, M. S.; Chen, Jun-Wei; Lim, Chu S.; Hu, Xiao; Asundi, Anand K.
2001-10-01
In this work a new approach based on the fiber Optic Evanescent Wave (FOEW) Spectroscopy is developed for the effective determination of dental caries activity in human saliva. The biosensor design utilized the exponentially decaying wave that extends to the lower index region of the optical fiber's core-cladding interface. In order to achieve this, a short length of the cladding is removed and the fiber core surface is coated with a porous glass medium using sol-gel technique. The acidogenic profile resulting from the Streptococcus mutans activity in the human saliva is monitored using an indicator, which was encapsulated within the porous coating. These investigations display the potential benefits of FOEW based microbial sensor to monitor caries activity in human saliva.
Norimatsu, Yuka; Kawashima, Junko; Takano-Yamamoto, Teruko; Takahashi, Nobuhiro
2015-09-01
Both Streptococcus and Actinomyces can produce acids from dietary sugars and are frequently found in caries lesions. In the oral cavity, nitrogenous compounds, such as peptides and amino acids, are provided continuously by saliva and crevicular gingival fluid. Given that these bacteria can also utilize nitrogen compounds for their growth, it was hypothesized that nitrogenous compounds may influence their acid production; however, no previous studies have examined this topic. Therefore, the present study aimed to assess the effects of nitrogenous compounds (tryptone and glutamate) on glucose-derived acid production by Streptococcus and Actinomyces. Acid production was evaluated using a pH-stat method under anaerobic conditions, whereas the amounts of metabolic end-products were quantified using high performance liquid chromatography. Tryptone enhanced glucose-derived acid production by up to 2.68-fold, whereas glutamate enhanced Streptococcus species only. However, neither tryptone nor glutamate altered the end-product profiles, indicating that the nitrogenous compounds stimulate the whole metabolic pathways involving in acid production from glucose, but are not actively metabolized, nor do they alter metabolic pathways. These results suggest that nitrogenous compounds in the oral cavity promote acid production by Streptococcus and Actinomyces in vivo. © 2015 The Societies and Wiley Publishing Asia Pty Ltd.
Caries in patients with non-insulin-dependent diabetes mellitus.
Collin, H L; Uusitupa, M; Niskanen, L; Koivisto, A M; Markkanen, H; Meurman, J H
1998-06-01
The purpose of this study was to investigate the prevalence and risk factors of dental caries in patients with non-insulin-dependent diabetes mellitus and to determine whether these factors are associated with metabolic control and vascular complications of the disease. Both the occurrence of caries, acidogenic oral bacteria, and yeasts and salivary flow were studied in 25 patients with non-insulin-dependent diabetes mellitus whose diagnosis had been set 13 to 14 years earlier and in whom the metabolic evolution of the disease was well established. The patients' glycemic control was determined by means of analysis of the blood hemoglobin A1C concentration at the time of dental examination. The control group consisted of 40 nondiabetic subjects in the same age group. Decayed, missing, and filled teeth indices and numbers of surfaces with caries, filled surfaces, and root caries were determined by means of clinical dental caries examination. Stimulated salivary flow was measured, and levels of Streptococcus mutans, lactobacilli, and yeasts were analyzed. The median hemoglobin A1C concentration of the patients was 8.6%, which indicates poor metabolic control of diabetes. No association was found between the metabolic control of disease and dental caries. The occurrence of dental caries was not increased in the patients with non-insulin-dependent diabetes mellitus in comparison with the control subjects. The counts of acidogenic microbes and yeasts did not differ statistically significantly between the groups. There was no association of caries with the prevalence of coronary artery disease or hypertension in either the patients or the control subjects. In a stepwise logistic regression model, a salivary flow of at least 0.8 ml/min was related to the occurrence of dental caries in patients with non-insulin-dependent diabetes mellitus, whereas negligence with respect to dental care was the most important risk predictor in the control group. Our results showed no effect of diabetes on the prevalence of caries. However, the caries-protective effect of saliva was partly lost in patients with non-insulin-dependent diabetes mellitus.
Kilian, Mogens; Riley, David R; Jensen, Anders; Brüggemann, Holger; Tettelin, Hervé
2014-07-22
The bacterium Streptococcus pneumoniae is one of the leading causes of fatal infections affecting humans. Intriguingly, phylogenetic analysis shows that the species constitutes one evolutionary lineage in a cluster of the otherwise commensal Streptococcus mitis strains, with which humans live in harmony. In a comparative analysis of 35 genomes, including phylogenetic analyses of all predicted genes, we have shown that the pathogenic pneumococcus has evolved into a master of genomic flexibility while lineages that evolved into the nonpathogenic S. mitis secured harmonious coexistence with their host by stabilizing an approximately 15%-reduced genome devoid of many virulence genes. Our data further provide evidence that interspecies gene transfer between S. pneumoniae and S. mitis occurs in a unidirectional manner, i.e., from S. mitis to S. pneumoniae. Import of genes from S. mitis and other mitis, anginosus, and salivarius group streptococci ensured allelic replacements and antigenic diversification and has been driving the evolution of the remarkable structural diversity of capsular polysaccharides of S. pneumoniae. Our study explains how the unique structural diversity of the pneumococcal capsule emerged and conceivably will continue to increase and reveals a striking example of the fragile border between the commensal and pathogenic lifestyles. While genomic plasticity enabling quick adaptation to environmental stress is a necessity for the pathogenic streptococci, the commensal lifestyle benefits from stability. Importance: One of the leading causes of fatal infections affecting humans, Streptococcus pneumoniae, and the commensal Streptococcus mitis are closely related obligate symbionts associated with hominids. Faced with a shortage of accessible hosts, the two opposing lifestyles evolved in parallel. We have shown that the nonpathogenic S. mitis secured harmonious coexistence with its host by stabilizing a reduced genome devoid of many virulence genes. Meanwhile, the pathogenic pneumococcus evolved into a master of genomic flexibility and imports genes from S. mitis and other related streptococci. This process ensured antigenic diversification and has been driving the evolution of the remarkable structural diversity of capsular polysaccharides of S. pneumoniae, which conceivably will continue to increase and present a challenge to disease prevention. Copyright © 2014 Kilian et al.
Pathogen profile of clinical mastitis in Irish milk-recording herds reveals a complex aetiology.
Keane, O M; Budd, K E; Flynn, J; McCoy, F
2013-07-06
Effective mastitis control requires knowledge of the predominant pathogen challenges on the farm. In order to quantify this challenge, the aetiological agents associated with clinical mastitis in 30 milk-recording dairy herds in Ireland over a complete lactation were investigated. Standard bacteriology was performed on 630 pretreatment quarter milk samples, of which 56 per cent were culture-positive, 42 per cent culture-negative and 2 per cent contaminated. Two micro-organisms were isolated from almost 5 per cent of the culture-positive samples. The bacteria isolated were Staphylococcus aureus (23 per cent), Streptococcus uberis (17 per cent), Escherichia coli (9 per cent), Streptococcus species (6 per cent), coagulase-negative Staphylococci (4 per cent) and other species (1 per cent). A wide variety of bacterial species were associated with clinical mastitis, with S aureus the most prevalent pathogen overall, followed by S uberis. However, the bacterial challenges varied widely from farm to farm. In comparison with previous reports, in the present study, the contagious pathogens S aureus and Streptococcus agalactiae were less commonly associated with clinical mastitis, whereas, the environmental pathogens S uberis and E coli were found more commonly associated with clinical mastitis. While S aureus remains the pathogen most commonly associated with intramammary infection in these herds, environmental pathogens, such as S uberis and E coli also present a considerable challenge.
Lefébure, Tristan; Richards, Vince P.; Lang, Ping; Pavinski-Bitar, Paulina; Stanhope, Michael J.
2012-01-01
Streptococcus pyogenes, is an important human pathogen classified within the pyogenic group of streptococci, exclusively adapted to the human host. Our goal was to employ a comparative evolutionary approach to better understand the genomic events concomitant with S. pyogenes human adaptation. As part of ascertaining these events, we sequenced the genome of one of the potential sister species, the agricultural pathogen S. canis, and combined it in a comparative genomics reconciliation analysis with two other closely related species, Streptococcus dysgalactiae and Streptococcus equi, to determine the genes that were gained and lost during S. pyogenes evolution. Genome wide phylogenetic analyses involving 15 Streptococcus species provided convincing support for a clade of S. equi, S. pyogenes, S. dysgalactiae, and S. canis and suggested that the most likely S. pyogenes sister species was S. dysgalactiae. The reconciliation analysis identified 113 genes that were gained on the lineage leading to S. pyogenes. Almost half (46%) of these gained genes were phage associated and 14 showed significant matches to experimentally verified bacteria virulence factors. Subsequent to the origin of S. pyogenes, over half of the phage associated genes were involved in 90 different LGT events, mostly involving different strains of S. pyogenes, but with a high proportion involving the horse specific pathogen S. equi subsp. equi, with the directionality almost exclusively (86%) in the S. pyogenes to S. equi direction. Streptococcus agalactiae appears to have played an important role in the evolution of S. pyogenes with a high proportion of LGTs originating from this species. Overall the analysis suggests that S. pyogenes adaptation to the human host was achieved in part by (i) the integration of new virulence factors (e.g. speB, and the sal locus) and (ii) the construction of new regulation networks (e.g. rgg, and to some extent speB). PMID:22666370
Determination of bacterial activity by use of an evanescent-wave fiber-optic sensor
NASA Astrophysics Data System (ADS)
John, M. Shelly; Kishen, Anil; Sing, Lim Chu; Asundi, Anand
2002-12-01
A novel technique based on fiber-optic evanescent-wave spectroscopy is proposed for the detection of bacterial activity in human saliva. The sensor determines the specific concentration of Streptococcus mutans in saliva, which is a major causative factor in dental caries. In this design, one prepares the fiber-optic bacterial sensor by replacing a portion of the cladding region of a multimode fiber with a dye-encapsulated xerogel, using the solgel technique. The exponential decay of the evanescent wave at the core-cladding interface of a multimode fiber is utilized for the determination of bacterial activity in saliva. The acidogenic profile of Streptococcus mutans is estimated by use of evanescent-wave absorption spectra at various levels of bacterial activity.
Compact Nd:YAG laser operating at 1.06, 1.32, and 1.44 μm for dental caries effective disinfection
NASA Astrophysics Data System (ADS)
Dostálová, Tat'jana; Jelínková, Helena; Kadlecová, Martina; Němec, Michal; Å ulc, Jan; Fibrich, Martin; Nejezchleb, Karel; Kapitch, Nickalai; Å koda, Václav
2017-02-01
The analysis of the disinfection effect of Nd:YAG laser radiation was investigated for patients with high concentration of Streptococcus mutans in saliva (positive result in Saliva-check mutans test). For the interaction the Nd:YAG laser system generated separate switchable wavelengths with the maximum output energies 1.1, 0.6, and 0.3 J for wavelength 1.06 μm, 1.32, μm and 1.44 μm, respectively, was used. Our study proved that after the laser irradiation the Saliva-check test showed negative presence of Streptococcus mutans. The disinfection effect was confirmed for all used radiation wavelength. For 1.44 μm this effect was reached with a smallest energy density.
Purification and certain properties of a bacteriocin from Streptococcus mutans.
Ikeda, T; Iwanami, T; Hirasawa, M; Watanabe, C; McGhee, J R; Shiota, T
1982-03-01
An inhibition factor from Streptococcus mutans strain C3603 (serotype c) was purified and isolated, and its properties indicated that it was a bacteriocin. Bacteriocin C3603 is a basic protein with a pI value of 10 and a molecular weight of 4,800. The activity of this bacteriocin was not affected by pH over a range of 1.0 to 12.0 or by storage at 100 degrees C for 10 min at pH 2.0 to 7.0 or storage at 121 degrees C for 15 min at pH 4.0. Pronase; papain, phospholipase C, trypsin, and alpha-amylase had no effect on the activity of the bacteriocin, whereas alpha-chymotrypsin and pancreatin were partially active against it. Bacteriocin activity was greater against certain S. mutans strains of serotypes b, c, e, and f than against certain S. mutans strains of serotypes a, d, and g. Bacteriocin C3603 was also effective against selected strains of S. sanguis, S. salivarius, S. bovis, S. faecium, S. lactis, Lactobacillus casei, L. plantarum, L. fermentum, Bifidobacterium bifidum, Bifidobacterium longum, Propionibacterium acnes, and Bacteroides melaninogenicus, but it was not effective against certain strains of Escherichia coli, Klebsiella pneumoniae, Corynebacterium parvum, and Candida albicans. The inhibition of S. mutans strains BHT and PS-14 by bacteriocin C3603 was found to be due to the bacteriocidal activity of the bacteriocin. When water or a diet containing bacteriocin C3603 was consumed by gnotobiotic and specific pathogen-free rats infected with S. mutans PS-14, the caries score was found to be significantly reduced.
Xue, Xiaoli; Sztajer, Helena; Buddruhs, Nora; Petersen, Jörn; Rohde, Manfred; Talay, Susanne R.; Wagner-Döbler, Irene
2011-01-01
The delta subunit of the RNA polymerase, RpoE, maintains the transcriptional specificity in Gram-positive bacteria. Lack of RpoE results in massive changes in the transcriptome of the human dental caries pathogen Streptococcus mutans. In this study, we analyzed traits of the ΔrpoE mutant which are important for biofilm formation and interaction with oral microorganisms and human cells and performed a global phenotypic analysis of its physiological functions. The ΔrpoE mutant showed higher self-aggregation compared to the wild type and coaggregated with other oral bacteria and Candida albicans. It formed a biofilm with a different matrix structure and an altered surface attachment. The amount of the cell surface antigens I/II SpaP and the glucosyltransferase GtfB was reduced. The ΔrpoE mutant displayed significantly stronger adhesion to human extracellular matrix components, especially to fibronectin, than the wild type. Its adhesion to human epithelial cells HEp-2 was reduced, probably due to the highly aggregated cell mass. The analysis of 1248 physiological traits using phenotype microarrays showed that the ΔrpoE mutant metabolized a wider spectrum of carbon sources than the wild type and had acquired resistance to antibiotics and inhibitory compounds with various modes of action. The reduced antigenicity, increased aggregation, adherence to fibronection, broader substrate spectrum and increased resistance to antibiotics of the ΔrpoE mutant reveal the physiological potential of S. mutans and show that some of its virulence related traits are increased. PMID:21625504
Duque, Cristiane; Stipp, Rafael N.; Wang, Bing; Smith, Daniel J.; Höfling, José F.; Kuramitsu, Howard K.; Duncan, Margaret J.; Mattos-Graner, Renata O.
2011-01-01
The virulence of the dental caries pathogen Streptococcus mutans relies in part on the sucrose-dependent synthesis of and interaction with glucan, a major component of the extracellular matrix of tooth biofilms. However, the mechanisms by which secreted and/or cell-associated glucan-binding proteins (Gbps) produced by S. mutans participate in biofilm growth remain to be elucidated. In this study, we further investigate GbpB, an essential immunodominant protein with similarity to murein hydrolases. A conditional knockdown mutant that expressed gbpB antisense RNA under the control of a tetracycline-inducible promoter was constructed in strain UA159 (UACA2) and used to investigate the effects of GbpB depletion on biofilm formation and cell surface-associated characteristics. Additionally, regulation of gbpB by the two-component system VicRK was investigated, and phenotypic analysis of a vicK mutant (UAvicK) was performed. GbpB was directly regulated by VicR, and several phenotypic changes were comparable between UACA2 and UAvicK, although differences between these strains existed. It was established that GbpB depletion impaired initial phases of sucrose-dependent biofilm formation, while exogenous native GbpB partially restored the biofilm phenotype. Several cellular traits were significantly affected by GbpB depletion, including altered cell shape, decreased autolysis, increased cell hydrophobicity, and sensitivity to antibiotics and osmotic and oxidative stresses. These data provide the first experimental evidence for GbpB participation in sucrose-dependent biofilm formation and in cell surface properties. PMID:21078847
Xiaodan, Chen; Xiurong, Zhan; Xinyu, Wu; Chunyan, Zhao; Wanghong, Zhao
2015-04-01
The aim of this study is to analyze the three-dimensional crystal structure of SMU.2055 protein, a putative acetyltransferase from the major caries pathogen Streptococcus mutans (S. mutans). The design and selection of the structure-based small molecule inhibitors are also studied. The three-dimensional crystal structure of SMU.2055 protein was obtained by structural genomics research methods of gene cloning and expression, protein purification with Ni²⁺-chelating affinity chromatography, crystal screening, and X-ray diffraction data collection. An inhibitor virtual model matching with its target protein structure was set up using computer-aided drug design methods, virtual screening and fine docking, and Libdock and Autodock procedures. The crystal of SMU.2055 protein was obtained, and its three-dimensional crystal structure was analyzed. This crystal was diffracted to a resolution of 0.23 nm. It belongs to orthorhombic space group C222(1), with unit cell parameters of a = 9.20 nm, b = 9.46 nm, and c = 19.39 nm. The asymmetric unit contained four molecules, with a solvent content of 56.7%. Moreover, five small molecule compounds, whose structure matched with that of the target protein in high degree, were designed and selected. Protein crystallography research of S. mutans SMU.2055 helps to understand the structures and functions of proteins from S. mutans at the atomic level. These five compounds may be considered as effective inhibitors to SMU.2055. The virtual model of small molecule inhibitors we built will lay a foundation to the anticaries research based on the crystal structure of proteins.
[Analysis of pathogenic bacteria and drug resistance in neonatal purulent meningitis].
Zhu, Minli; Hu, Qianhong; Mai, Jingyun; Lin, Zhenlang
2015-01-01
To study the clinical characteristics, pathogenic bacteria, and antibiotics resistance of neonatal purulent meningitis in order to provide the guide for early diagnosis and appropriate treatment. A retrospective review was performed and a total of 112 cases of neonatal purulent meningitis (male 64, female 58) were identified in the neonatal intensive care unit of Yuying Children's Hospital of Wenzhou Medical University seen from January 1, 2004 to December 31, 2013. The clinical information including pathogenic bacterial distribution, drug sensitivity, head imageology and therapeutic outcome were analyzed. Numeration data were shown in ratio and chi square test was applied for group comparison. Among 112 cases, 46 were admitted from 2004 to 2008 and 66 from 2009 to 2013, 23 patients were preterm and 89 were term, 20 were early onset (occurring within 3 days of life) and 92 were late onset meningitis (occurring after 3 days of life). In 62 (55.4%) cases the pathogens were Gram-positive bacteria and in 50 (44.6%) were Gram-negative bacteria. The five most frequently isolated pathogens were Escherichia coli (32 cases, 28.6%), coagulase-negative staphylococcus (CNS, 20 cases, 17.9%), Streptococcus (18 cases, 16.1%, Streptococcus agalactiae 15 cases), Enterococci (13 cases, 11.6%), Staphylococcus aureus (9 cases, 8.0%). Comparison of pathogenic bacterial distribution between 2004-2008 and 2009-2013 showed that Gram-positive bacteria accounted for more than 50% in both period. Escherichia coli was the most common bacterium, followed by Streptococcus in last five years which was higher than the first five years (22.7% (15/66) vs. 6.5% (3/46), χ(2) = 5.278, P < 0.05). Klebsiella pneumoniae was more common isolate in preterm infants than in term infants (13.0% (3/23) vs. 1.1% (1/89), χ(2) = 7.540, P < 0.05). Streptococcus (most were Streptococcus agalactiae) was the most common bacteria in early onset meningitis and higher than those in late onset meningitis (35.0% (7/20) vs. 12.0% (11/92), χ(2) = 4.872, P < 0.05). Drug sensitivity tests showed that all the Gram-positive bacterial isolates were sensitive to linezolid. Staphylococci were resistant to penicillin, and most of them were resistant to erythromycin, oxacillin and cefazolin; 77.8%of CNS isolates were methicillin-resistant staphylococcus. No Streptococcus and Enterococcus faecalis was resistant to penicillin. None of enterococci was resistant to vancomycin. Among the Gram-negative bacterial isolates, more than 40% of Escherichia coli were resistant to commonly used cephalosporins such as cefuroxime, cefotaxime and ceftazidime, and all of them were sensitive to amikacin, cefoperazone sulbactam and imipenem. Isolates of Klebsiella pneumoniae were all resistant to ampicillin, cefuroxime, cefotaxime and ceftazidime, but none of them was resistant to piperacillin tazobactam and imipenem. Of the 112 patients, 69 were cured, 23 improved, 9 uncured and 11 died. There were 47 cases (42.0%) with poor prognosis, they had abnormal head imageology, severe complications and some cases died, 13 of 18 (72.2%) patients with meningitis caused by Streptococcus died. Escherichia coli, CNS and Streptococcus are the predominant pathogens responsible for neonatal purulent meningitis over the past ten years. There were increasing numbers of cases with Streptococcus meningitis which are more common in early onset meningitis with adverse outcome, therefore careful attention should be paid in clinic. Linezolid should be used as a new choice in intractable neonatal purulent meningitis cases caused by gram positive bacteria.
Drug-Induced Dental Caries: A Disproportionality Analysis Using Data from VigiBase.
de Campaigno, Emilie Patras; Kebir, Inès; Montastruc, Jean-Louis; Rueter, Manuela; Maret, Delphine; Lapeyre-Mestre, Maryse; Sallerin, Brigitte; Despas, Fabien
2017-12-01
Dental caries is defined as a pathological breakdown of the tooth. It is an infectious phenomenon involving a multifactorial aetiology. The impact of drugs on cariogenic risk has been poorly investigated. In this study, we identified drugs suspected to induce dental caries as adverse drug reactions (ADRs) and then studied a possible pathogenic mechanism for each drug that had a statistically significant disproportionality. We extracted individual case safety reports of dental caries associated with drugs from VigiBase ® (the World Health Organization global individual case safety report database). We calculated disproportionality for each drug with a reporting odds ratio (ROR) and 99% confidence interval. We analysed the pharmacodynamics of each drug that had a statistically significant disproportionality. In VigiBase ® , 5229 safety reports for dental caries concerning 733 drugs were identified. Among these drugs, 88 had a significant ROR, and for 65 of them (73.9%), no information about dental caries was found in the summaries of the product characteristics, the Micromedex ® DRUGDEX, or the Martindale databases. Regarding the pharmacological classes of drugs involved in dental caries, we identified bisphosphonates, atropinic drugs, antidepressants, corticoids, immunomodulating drugs, antipsychotics, antiepileptics, opioids and β 2 -adrenoreceptor agonist drugs. Regarding possible pathogenic mechanisms for these drugs, we identified changes in salivary flow/composition for 54 drugs (61.4%), bone metabolism changes for 31 drugs (35.2%), hyperglycaemia for 32 drugs (36.4%) and/or immunosuppression for 23 drugs (26.1%). For nine drugs (10.2%), the mechanism was unclear. We identified 88 drugs with a significant positive disproportionality for dental caries. Special attention has to be paid to bisphosphonates, atropinic drugs, immunosuppressants and drugs causing hyperglycaemia.
Detection of mastitis pathogens by analysis of volatile bacterial metabolites.
Hettinga, K A; van Valenberg, H J F; Lam, T J G M; van Hooijdonk, A C M
2008-10-01
The ability to detect mastitis pathogens based on their volatile metabolites was studied. Milk samples from cows with clinical mastitis, caused by Staphylococcus aureus, coagulase-negative staphylococci, Streptococcus uberis, Streptococcus dysgalactiae, and Escherichia coli were collected. In addition, samples from cows without clinical mastitis and with low somatic cell count (SCC) were collected for comparison. All mastitis samples were examined by using classical microbiological methods, followed by headspace analysis for volatile metabolites. Milk from culture-negative samples contained a lower number and amount of volatile components compared with cows with clinical mastitis. Because of variability between samples within a group, comparisons between pathogens were not sufficient for classification of the samples by univariate statistics. Therefore, an artificial neural network was trained to classify the pathogen in the milk samples based on the bacterial metabolites. The trained network differentiated milk from uninfected and infected quarters very well. When comparing pathogens, Staph. aureus produced a very different pattern of volatile metabolites compared with the other samples. Samples with coagulase-negative staphylococci and E. coli had enough dissimilarity with the other pathogens, making it possible to separate these 2 pathogens from each other and from the other samples. The 2 streptococcus species did not show significant differences between each other but could be identified as a different group from the other pathogens. Five groups can thus be identified based on the volatile bacterial metabolites: Staph. aureus, coagulase-negative staphylococci, streptococci (Strep. uberis and Strep. dysgalactiae as one group), E. coli, and uninfected quarters.
Tong, H J; Rudolf, M C J; Muyombwe, T; Duggal, M S; Balmer, R
2014-06-01
To investigate whether children with obesity experienced more erosion and caries than children with normal weight. This study involved children aged 7-15 years. The study and control group comprised 32 children with BMI > 98th centile and 32 healthy children with normal BMI-for-age, respectively. O'Sullivan Erosion Index and WHO Caries Index were used in the examination of erosion and caries, respectively. Stimulated salivary flow rate, buffering capacity, Streptococcus mutans and lactobacilli counts (CFU/ml) were evaluated. A cross-sectional questionnaire survey was employed to collect information on participant's demographic background, oral health history and habits, and utilisation of dental care services. Children with obesity were more likely to have erosion than healthy children (p < 0.001), and had more erosion in terms of severity (p < 0.0001) and area affected (p < 0.0001), but not in the number of surfaces affected (p = 0.167). Posterior teeth were less likely than anterior teeth to be affected by erosion (OR 0.32, 95 % CI 0.012-0.082). Gender had no effect on erosion. There were no statistically significant differences in the DMFT, saliva profiles or questionnaire responses between the groups. Children with obesity may have high risk of dental erosion, but do not necessarily have higher risk of dental caries than children with normal weight.
The oral microbiome in dental caries.
Struzycka, Izabela
2014-01-01
Dental caries is one of the most common chronic and multifactorial diseases affecting the human population. The appearance of a caries lesion is determined by the coexistence of three main factors: acidogenic and acidophilic microorganisms, carbohydrates derived from the diet, and host factors. Socio-economic and behavioral factors also play an important role in the etiology of the disease. Caries develops as a result of an ecological imbalance in the stable oral microbiom. Oral microorganisms form dental plaque on the surfaces of teeth, which is the cause of the caries process, and shows features of the classic biofilm. Biofilm formation appears to be influenced by large scale changes in protein expression over time and under genetic control Cariogenic microorganisms produce lactic, formic, acetic and propionic acids, which are a product of carbohydrate metabolism. Their presence causes a decrease in pH level below 5.5, resulting in demineralization of enamel hydroxyapatite crystals and proteolytic breakdown of the structure of tooth hard tissues. Streptococcus mutans, other streptococci of the so-called non-mutans streptococci group, Actinomyces and Lactobacillus play a key role in this process. Dental biofilm is a dynamic, constantly active metabolically structure. The alternating processes of decrease and increase of biofilm pH occur, which are followed by the respective processes of de- and remineralisation of the tooth surface. In healthy conditions, these processes are in balance and no permanent damage to the tooth enamel surface occurs.
STREPTOCOCCUS: A WORLDWIDE FISH HEALTH PROBLEM
USDA-ARS?s Scientific Manuscript database
Streptococcus iniae and S. agalactiae are important emergent pathogens that affect many fish species worldwide, especially in warm-water regions. In marine and freshwater systems, these Gram-positive bacteria cause significant economic losses, estimated at hundreds of millions of dollars annually. ...
Jung, Ji-Eun; Cai, Jian-Na; Cho, Sung-Dae; Song, Kwang-Yeob; Jeon, Jae-Gyu
2016-10-01
Despite the widespread use of fluoride for the prevention of dental caries, few studies have demonstrated the effects of fluoride on the bacterial composition of dental biofilms. This study investigated whether fluoride affects the proportion of Streptococcus mutans and S. oralis in mono- and dual-species biofilm models, via microbiological, biochemical, and confocal fluorescence microscope studies. Fluoride did not affect the bacterial count and bio-volume of S. mutans and S. oralis in mono-species biofilms, except for the 24-h-old S. mutans biofilms. However, fluoride reduced the proportion and bio-volume of S. mutans but did not decrease those of S. oralis during both S. oralis and S. mutans dual-species biofilm formation, which may be related to the decrease in extracellular polysaccharide formation by fluoride. These results suggest that fluoride may prevent the shift in the microbial proportion to cariogenic bacteria in dental biofilms, subsequently inhibiting the cariogenic bacteria dominant biofilm formation.
Application of agglomerative clustering for analyzing phylogenetically on bacterium of saliva
NASA Astrophysics Data System (ADS)
Bustamam, A.; Fitria, I.; Umam, K.
2017-07-01
Analyzing population of Streptococcus bacteria is important since these species can cause dental caries, periodontal, halitosis (bad breath) and more problems. This paper will discuss the phylogenetically relation between the bacterium Streptococcus in saliva using a phylogenetic tree of agglomerative clustering methods. Starting with the bacterium Streptococcus DNA sequence obtained from the GenBank, then performed characteristic extraction of DNA sequences. The characteristic extraction result is matrix form, then performed normalization using min-max normalization and calculate genetic distance using Manhattan distance. Agglomerative clustering technique consisting of single linkage, complete linkage and average linkage. In this agglomerative algorithm number of group is started with the number of individual species. The most similar species is grouped until the similarity decreases and then formed a single group. Results of grouping is a phylogenetic tree and branches that join an established level of distance, that the smaller the distance the more the similarity of the larger species implementation is using R, an open source program.
Stress responses in Streptococcus species and their effects on the host.
Nguyen, Cuong Thach; Park, Sang-Sang; Rhee, Dong-Kwon
2015-11-01
Streptococci cause a variety of diseases, such as dental caries, pharyngitis, meningitis, pneumonia, bacteremia, endocarditis, erysipelas, and necrotizing fasciitis. The natural niche of this genus of bacteria ranges from the mouth and nasopharynx to the skin, indicating that the bacteria will inevitably be subjected to environmental changes during invasion into the host, where it is exposed to the host immune system. Thus, the Streptococcus-host interaction determines whether bacteria are cleared by the host's defenses or whether they survive after invasion to cause serious diseases. If this interaction was to be deciphered, it could aid in the development of novel preventive and therapeutic agents. Streptococcus species possess many virulent factors, such as peroxidases and heat-shock proteins (HSPs), which play key roles in protecting the bacteria from hostile host environments. This review will discuss insights into the mechanism(s) by which streptococci adapt to host environments. Additionally, we will address how streptococcal infections trigger host stress responses; however, the mechanism by which bacterial components modulate host stress responses remains largely unknown.
Effect of silver-loaded PMMA on Streptococcus mutans in a drip flow reactor.
Williams, Dustin L; Epperson, Richard Tyler; DeGrauw, Jeffery P; Nielsen, Mattias B; Taylor, Nicholas B; Jolley, Ryan D
2017-09-01
Orthodontic retention has been proposed as a life-long commitment for patients who desire to maintain straight teeth. However, the presence of foreign material increases risk of bacterial colonization and caries formation, of which Streptococcus mutans is a key contributor. Multiple studies have assessed the ability of silver to be added to base plate material and resist attachment of S. mutans. However, it does not appear that long-term washout in connection with biofilm growth under physiologically relevant conditions has been taken into consideration. In this study, silver was added to base plate material and exposed to short- or long-term washout periods. Materials were then assessed for their ability to resist biofilm formation of S. mutans using a drip flow reactor that modeled the human oral environment. Data indicated that silver was able to resist biofilm formation following short-term washout, but long-term washout periods resulted in a lack of ability to resist biofilm formation. These data will be important for future development of base plate materials to achieve long-term antimicrobial efficacy to reduce risk of caries formation and benefit patients in the long term. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2632-2639, 2017. © 2017 Wiley Periodicals, Inc.
Volpato, Flavia Cristina; Jeremias, Fabiano; Spolidório, Denise Madalena Palomari; Silva, Silvio Rocha Corrêa da; Valsecki Junior, Aylton; Rosell, Fernanda Lopez
2011-01-01
The aim of this study was to determine the effect of oral environment stabilization (OES) on the counting of Streptococcus mutans in high-caries-risk pregnant women participants of a prevention program in a public teaching institution. The sample was composed of 30 pregnant women aged 18 to 43 years, who looked for treatment at the Preventive Dentistry Clinic of the Araraquara Dental School, UNESP. Saliva samples were collected before and after the OES procedures and were forwarded to the pathology for observation and quantification of S. mutans CFU. There was a decrease in the number of S. mutans CFU, which was significantly different (p<0.0001) between samples. Considering the age group, 70.0% were between 18 to 30 years old and 30.0% belonged to the 31-43-year-old age group. Data related to the pregnancy period showed that 73.4% were in the second trimester, 13.3% in the first and 13.3% in third trimester. OES showed to be an effective clinical procedure in diminishing the number of S. mutans CFU in the saliva of high-caries-risk pregnant women. This management is simple and effective, corresponding to the basic treatment needs of pregnant women that search dental care in this public service.
Comparative in vitro investigation of the cariogenic potential of bifidobacteria.
Valdez, Remberto Marcelo Argandoña; Dos Santos, Vanessa Rodrigues; Caiaffa, Karina Sampaio; Danelon, Marcelle; Arthur, Rodrigo Alex; Negrini, Thais de Cássia; Delbem, Alberto Carlos Botazzo; Duque, Cristiane
2016-11-01
This study aimed to assess the in vitro cariogenic potential of some Bifidobacterium species in comparison with caries-associated bacteria. Bifidobacterium lactis, Bifidobacterium longum, Bifidobacterium animalis, Bifidobacterium dentium, Lactobacillus acidophilus, Lactobacillus casei, Actinomyces israelii, Streptococcus sobrinus and Streptococcus mutans were tested for acidogenicity and aciduricity by measuring the pH of the cultures after growth in glucose and bacterial growth after exposure to acid solutions. Biofilm biomass was determined for each species either alone or associated with S. mutans or S. mutans/S. sobrinus. Enamel hardness was analyzed before and after 7-days biofilm formation using bacterial combinations. B. animalis and B. longum were the most acidogenic and aciduric strains, comparable to caries-associated bacteria, such as S. mutans and L. casei. All species had a significantly increased biofilm when combined either with S. mutans or with S. mutans/S. sobrinus. The greatest enamel surface loss was produced when B. longum or B. animalis were inoculated with S. mutans, similar to L. casei and S. sobrinus. All strains induced similar enamel demineralization when combined with S. mutans/S. sobrinus, except by B. lactis. The ability to produce acidic environments and to enhance biofilm formation leading to increased demineralization may mean that Bifidobacterium species, especially B. animalis and B. longum, are potentially cariogenic. Copyright © 2016 Elsevier Ltd. All rights reserved.
2012-01-01
Background Streptococcus canis is an important opportunistic pathogen of dogs and cats that can also infect a wide range of additional mammals including cows where it can cause mastitis. It is also an emerging human pathogen. Results Here we provide characterization of the first genome sequence for this species, strain FSL S3-227 (milk isolate from a cow with an intra-mammary infection). A diverse array of putative virulence factors was encoded by the S. canis FSL S3-227 genome. Approximately 75% of these gene sequences were homologous to known Streptococcal virulence factors involved in invasion, evasion, and colonization. Present in the genome are multiple potentially mobile genetic elements (MGEs) [plasmid, phage, integrative conjugative element (ICE)] and comparison to other species provided convincing evidence for lateral gene transfer (LGT) between S. canis and two additional bovine mastitis causing pathogens (Streptococcus agalactiae, and Streptococcus dysgalactiae subsp. dysgalactiae), with this transfer possibly contributing to host adaptation. Population structure among isolates obtained from Europe and USA [bovine = 56, canine = 26, and feline = 1] was explored. Ribotyping of all isolates and multi locus sequence typing (MLST) of a subset of the isolates (n = 45) detected significant differentiation between bovine and canine isolates (Fisher exact test: P = 0.0000 [ribotypes], P = 0.0030 [sequence types]), suggesting possible host adaptation of some genotypes. Concurrently, the ancestral clonal complex (54% of isolates) occurred in many tissue types, all hosts, and all geographic locations suggesting the possibility of a wide and diverse niche. Conclusion This study provides evidence highlighting the importance of LGT in the evolution of the bacteria S. canis, specifically, its possible role in host adaptation and acquisition of virulence factors. Furthermore, recent LGT detected between S. canis and human bacteria (Streptococcus urinalis) is cause for concern, as it highlights the possibility for continued acquisition of human virulence factors for this emerging zoonotic pathogen. PMID:23244770
Galvão, L C C; Rosalen, P L; Rivera-Ramos, I; Franco, G C N; Kajfasz, J K; Abranches, J; Bueno-Silva, B; Koo, H; Lemos, J A
2017-04-01
In oral biofilms, the major environmental challenges encountered by Streptococcus mutans are acid and oxidative stresses. Previously, we showed that the transcriptional regulators SpxA1 and SpxA2 are involved in general stress survival of S. mutans with SpxA1 playing a primary role in activation of antioxidant and detoxification strategies whereas SpxA2 serves as a back up activator of oxidative stress genes. We have also found that spxA1 mutant strains (∆spxA1 and ∆spxA1∆spxA2) are outcompeted by peroxigenic oral streptococci in vitro and have impaired abilities to colonize the teeth of rats fed a highly cariogenic diet. Here, we show that the Spx proteins can also exert regulatory roles in the expression of additional virulence attributes of S. mutans. Competence activation is significantly impaired in Δspx strains and the production of mutacin IV and V is virtually abolished in ΔspxA1 strains. Unexpectedly, the ∆spxA2 strain showed increased production of glucans from sucrose, without affecting the total amount of bacteria within biofilms when compared with the parent strain. By using the rat caries model, we showed that the capacity of the ΔspxA1 and ΔspxA2 strains to cause caries on smooth tooth surfaces is significantly impaired. The ∆spxA2 strain also formed fewer lesions on sulcal surfaces. This report reveals that global regulation via Spx contributes to the cariogenic potential of S. mutans and highlights that animal models are essential in the characterization of bacterial traits implicated in virulence. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Galvão, Lívia C.C.; Rosalen, Pedro L.; Rivera-Ramos, Isamar; Franco, Gilson C.N.; Kajfasz, Jessica K; Abranches, Jacqueline; Bueno-Silva, Bruno; Koo, Hyun; Lemos, José A.
2016-01-01
SUMMARY In oral biofilms, the major environmental challenges encountered by Streptococcus mutans are acid and oxidative stresses. Previously, we showed that the transcriptional regulators SpxA1 and SpxA2 are involved in general stress survival of S. mutans with SpxA1 playing a primary role in activation of antioxidant and detoxification strategies whereas SpxA2 serves as a back up activator of oxidative stress genes. We have also found that spxA1 mutant strains (ΔspxA1 and ΔspxA1ΔspxA2) are outcompeted by peroxigenic oral streptococci in vitro and have impaired abilities to colonize the teeth of rats fed a highly cariogenic diet. Here, we show that the Spx proteins can also exert regulatory roles in the expression of additional virulence attributes of S. mutans. Competence activation is significantly impaired in Δspx strains and the production of mutacin IV and V is virtually abolished in ΔspxA1 strains. Unexpectedly, the ΔspxA2 strain showed increased production of glucans from sucrose, without affecting the total amount of bacteria within biofilms when compared to the parent strain. By using the rat caries model, we showed that the capacity of the ΔspxA1 and ΔspxA2 strains to cause caries on smooth tooth surfaces is significantly impaired. The ΔspxA2 strain also formed fewer lesions on sulcal surfaces. This report reveals that global regulation via Spx contributes to the cariogenic potential of S. mutans and highlights the essentiality of animal models in the characterization of bacterial traits implicated in virulence. PMID:27037617
Villavicencio, Judy; Villegas, Lina Maria; Arango, Maria Cristina; Arias, Susana; Triana, Francia
2018-05-14
Probiotics have provided benefits to general health, but they are still insufficient to dental health. This study aimed to evaluate milk supplemented with probiotic bacteria and standard milk, measured by levels of Streptococcus mutans (S. mutans) and Lactobacillus spp., in 3-4-year-old children after 9 months of intervention. The study was a triple-blind, placebo-controlled, randomized trial. The sample was composed of 363 preschoolers attending five child development centers in Cali, Colombia. They were randomized to two groups: children in the intervention group drank 200 mL of milk with Lactobacillus rhamnosus 5x106 and Bifidobacteruim longum 3x106, and children in the control group drank 200 mL of standard milk. Interventions occurred on weekdays and information was gathered through scheduled clinical examination. The primary result was the number of colony forming units (CFU) of S. mutans and Lactobacillus spp. in the saliva. Secondary results were dental caries, rated by the International Caries Detection and Assessment System (ICDAS), dental plaque, pH, and salivary buffer capacity. The proportion of S. mutans was lower in the intervention group compared with the control group after 9 months; however, the differences did not reach statistical significance (p=0.173); on the other hand, statistically significant differences between groups were found in the CFU/mL of Lactobacillus spp. (p=0.002). There was not statistically significant difference in the prevalence of dental caries for both groups (p=0.767). Differences between groups were found in the salivary buffering capacity (p=0.000); neither salivary pH nor dental plaque were significantly different. Regular consumption of milk containing probiotics bacteria reduced CFU/mL of Lactobacillus spp. and increased salivary buffering capacity at 9 months of consumption.
Wassel, Mariem O; Khattab, Mona A
2017-07-01
Using natural products can be a cost-effective approach for caries prevention especially in low income countries where dental caries is highly prevalent and the resources are limited. Specially prepared dental varnishes containing propolis, miswak, and chitosan nanoparticles (CS-NPs) with or without sodium fluoride (NaF) were assessed for antibacterial effect against Streptococcus mutans ( S. mutans ) using disk diffusion test. In addition, the protective effect of a single pretreatment of primary teeth enamel specimens against in vitro bacterial induced enamel demineralization was assessed for 3 days. All natural products containing varnishes inhibited bacterial growth significantly better than 5% NaF varnish, with NaF loaded CS-NPs (CSF-NPs) showing the highest antibacterial effect, though it didn't significantly differ than those of other varnishes except miswak ethanolic extract (M) varnish. Greater inhibitory effect was noted with varnish containing freeze dried aqueous miswak extract compared to that containing ethanolic miswak extract, possibly due to concentration of antimicrobial substances by freeze drying. Adding natural products to NaF in a dental varnish showed an additive effect especially compared to fluoride containing varnish. 5% NaF varnish showed the best inhibition of demineralization effect. Fluoride containing miswak varnish (MF) and CSF-NPs varnish inhibited demineralization significantly better than all experimental varnishes, especially during the first 2 days, though CSF-NPs varnish had a low fluoride concentration, probably due to better availability of fluoride ions and the smaller size of nanoparticles. Incorporating natural products with fluoride into dental varnishes can be an effective approach for caries prevention, especially miswak and propolis when financial resources are limited.
Inhibitory effect of Lactobacillus salivarius on Streptococcus mutans biofilm formation.
Wu, C-C; Lin, C-T; Wu, C-Y; Peng, W-S; Lee, M-J; Tsai, Y-C
2015-02-01
Dental caries arises from an imbalance of metabolic activities in dental biofilms developed primarily by Streptococcus mutans. This study was conducted to isolate potential oral probiotics with antagonistic activities against S. mutans biofilm formation from Lactobacillus salivarius, frequently found in human saliva. We analysed 64 L. salivarius strains and found that two, K35 and K43, significantly inhibited S. mutans biofilm formation with inhibitory activities more pronounced than those of Lactobacillus rhamnosus GG (LGG), a prototypical probiotic that shows anti-caries activity. Scanning electron microscopy showed that co-culture of S. mutans with K35 or K43 resulted in significantly reduced amounts of attached bacteria and network-like structures, typically comprising exopolysaccharides. Spot assay for S. mutans indicated that K35 and K43 strains possessed a stronger bactericidal activity against S. mutans than LGG. Moreover, quantitative real-time polymerase chain reaction showed that the expression of genes encoding glucosyltransferases, gtfB, gtfC, and gtfD was reduced when S. mutans were co-cultured with K35 or K43. However, LGG activated the expression of gtfB and gtfC, but did not influence the expression of gtfD in the co-culture. A transwell-based biofilm assay indicated that these lactobacilli inhibited S. mutans biofilm formation in a contact-independent manner. In conclusion, we identified two L. salivarius strains with inhibitory activities on the growth and expression of S. mutans virulence genes to reduce its biofilm formation. This is not a general characteristic of the species, so presents a potential strategy for in vivo alteration of plaque biofilm and caries. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The effect of season on somatic cell count and the incidence of clinical mastitis.
Olde Riekerink, R G M; Barkema, H W; Stryhn, H
2007-04-01
Bulk milk somatic cell count (BMSCC), individual cow somatic cell count (ICSCC), and incidence rate of clinical mastitis (IRCM) are all udder health parameters. So far, no studies have been reported on the effect of season on BMSCC, IRCM, and ICSCC in the same herds and period over multiple years. The objectives of this study were to determine the seasonal pattern over a 4-yr period of 1) BMSCC, 2) elevated ICSCC, 3) IRCM, and 4) pathogen-specific IRCM. Bulk milk somatic cell count, ICSCC, and pathogen-specific clinical mastitis data were recorded in 300 Dutch dairy farms. For the analyses of BMSCC, ICSCC, and IRCM, a mixed, a transitional, and a discrete time survival analysis model were used, respectively. Sine and cosine were included in the models to investigate seasonal patterns in the data. For all parameters, a seasonal effect was present. Bulk milk somatic cell count peaked in August to September in all 4 years. The probability of cows getting or maintaining a high ICSCC was highest in August and May, respectively. Older and late-lactation cows were more likely to develop or maintain a high ICSCC. Incidence rate of clinical mastitis was highest in December to January, except for Streptococcus uberis IRCM, which was highest in August. Totally confined herds had a higher Escherichia coli IRCM in summer than in winter. Compared with the major mastitis pathogens, the seasonal differences in IRCM were smaller for the minor pathogens. Distinguishing between Strep. uberis, Streptococcus dysgalactiae, Streptococcus agalactiae, and other streptococci is essential when identifying Streptococcus spp. because each of them has a unique epidemiology. Streptococcus uberis IRCM seemed to be associated with being on pasture, whereas E. coli IRCM was more housing-related.
Limonene inhibits streptococcal biofilm formation by targeting surface-associated virulence factors.
Subramenium, Ganapathy Ashwinkumar; Vijayakumar, Karuppiah; Pandian, Shunmugiah Karutha
2015-08-01
The present study explores the efficacy of limonene, a cyclic terpene found in the rind of citrus fruits, for antibiofilm potential against species of the genus Streptococcus, which have been deeply studied worldwide owing to their multiple pathogenic efficacy. Limonene showed a concentration-dependent reduction in the biofilm formation of Streptococcus pyogenes (SF370), with minimal biofilm inhibitory concentration (MBIC) of 400 μg ml - 1. Limonene was found to possess about 75-95 % antibiofilm activity against all the pathogens tested, viz. Streptococcus pyogenes (SF370 and 5 clinical isolates), Streptococcus mutans (UA159) and Streptococcus mitis (ATCC 6249) at 400 μg ml - 1 concentration. Microscopic analysis of biofilm architecture revealed a quantitative breach in biofilm formation. Results of a surface-coating assay suggested that the possible mode of action of limonene could be by inhibiting bacterial adhesion to surfaces, thereby preventing the biofilm formation cascade. Susceptibility of limonene-treated Streptococcus pyogenes to healthy human blood goes in unison with gene expression studies in which the mga gene was found to be downregulated. Anti-cariogenic efficacy of limonene against Streptococcus mutans was confirmed, with inhibition of acid production and downregulation of the vicR gene. Downregulation of the covR, mga and vicR genes, which play a critical role in regulating surface-associated proteins in Streptococcus pyogenes and Streptococcus mutans, respectively, is yet further evidence to show that limonene targets surface-associated proteins. The results of physiological assays and gene expression studies clearly show that the surface-associated antagonistic mechanism of limonene also reduces surface-mediated virulence factors.
Milgrom, P; Riedy, C A; Weinstein, P; Tanner, A C; Manibusan, L; Bruss, J
2000-08-01
Caufield et al. (1) have suggested that the acquisition of mutans streptococci in young children most likely takes place during a "window of infectivity" from 19 to 31 months of age. This study determined the prevalence of dental caries and bacterial infection in a randomly selected sample of 199 children 6 to 36 months old from the island of Saipan in the Common-wealth of the Northern Mariana Islands, USA. The relationships between caries and Streptococcus mutans infection, hypoplasia, diet and oral hygiene behavior were investigated. The overall estimated prevalence of caries was high: 46.8% of the children had white spot lesions and 39.1% had enamel cavitation. Colonization was seen in very young children; S. mutans was detected in 25% of the predentate children. The results of multi-variable modeling support the hypothesis that bacterial infection, diet, and hypoplasia are important in the etiology of dental caries in this population. Adjusted for age and ethnicity, children with a high level of S. mutans detected were 5 times more likely to have dental caries than children with a lower level of S. mutans detected. Hypoplasia and a high cariogenicity score (diet) were also significant independent predictors. The odds of having any white spot lesions or enamel cavitation were 9.6 times greater for children with any hypoplasia, and 7.8 times greater for children with high cariogenicity scores relative to those with lower scores after adjusting for level of S. mutans, age and ethnicity. Sleeping with a bottle, maternal sharing of utensils, and high snacking frequency were not significant predictors of caries in this population.
Cariogenicity features of Streptococcus mutans in presence of rubusoside.
Chu, Jinpu; Zhang, Tieting; He, Kexin
2016-05-11
One promising way of reducing caries is by using sucrose substitutes in food. rubusoside is a prototype sweet substance isolated from the leaves of the plant Rubrus suavissimus S. Lee. (Rosaceae), and is rated sweeter than sucrose. The purpose of this study was to investigate the effects of rubusoside on Streptococcus mutans growth, acidogenicity, and adherence to glass in vitro. The effects of rubusoside on the growth and glass surface adhering of Streptococcus mutans were investigated by measuring the optical density of the culture at 540 nm with a spectrophotometer. Rubusoside influence on Streptococcus mutans acidogenicity was determined by measuring the pH of the culture. Sucrose, glucose, maltose, fructose and xylitol were designed to compare with rubusoside. S. mutans growth in the rubusoside-treated group was significantly lower than that in the sucrose, glucose, maltose and fructose groups (p < 0.05) except for xylitol group (p > 0.05). Sucrose-treated S. mutans exhibited the highest adherence to glass, and rubusoside-treated S. mutans exhibited the lowest. S. mutans adherence to a glass surface and acidogenicity with sucrose were significantly reduced by rubusoside. Rubusoside may have some potential as a non-cariogenic, non-caloric sweetener.
Quantification of bovine oxylipids during intramammary Streptococcus uberis infection
USDA-ARS?s Scientific Manuscript database
Streptococcus uberis mastitis results in severe mammary tissue damage in dairy cows due to uncontrolled inflammation. Oxylipids are potent lipid mediators that orchestrate pathogen-induced inflammatory responses, however, changes in oxylipid biosynthesis during S. uberis mastitis are unknown. Thus, ...
Eyngor, Marina; Lublin, Avishay; Shapira, Roni; Hurvitz, Avshalom; Zlotkin, Amir; Tekoah, Yoram; Eldar, Avi
2010-04-01
Streptococcus iniae is a major pathogen of fish, causing considerable economic losses in Israel, the United States and the Far East. Containment of mortalities through vaccination was recently compromised due to the emergence of novel vaccine-escape strains that are distinguished from previous strains by their ability to produce large amounts of extracellular polysaccharide (EPS) that is released to the medium. In vitro and in vivo data now indicate that the EPS is a major virulence factor, capable of triggering the proinflammatory cytokine machinery and inducing mortality of fish. Streptococcus iniae EPS might therefore be considered to be responsible for sepsis and death just as lipopolysaccharide is for Gram-negative pathogens.
Spondylodiskitis secondary to Streptococcus equi subspecies zooepidemicus.
Bhatia, Ravi; Bhanot, Nitin
2012-01-01
Streptococcus equi subspecies zooepidemicus, traditionally classified under Group C Streptococci, is primarily a veterinary pathogen. Rarely, it may cause infections such as bacteremia, meningitis, endocarditis and pneumonia in humans. Musculoskeletal infections secondary to this pathogen are very uncommon. The authors present the first case of osteomyelitis due to S. zooepidemicus in a farmer who had close contact with a dead horse. The authors review all cases of osteoarticular infections secondary to this microbe, in addition to providing an overview of clinical manifestations, treatment and outcome of this infection.
Srivastava, Shivangi; Saha, Sabyasachi; Kumari, Minti; Mohd, Shafaat
2016-02-01
Dairy products like curd seem to be the most natural way to ingest probiotics which can reduce Streptococcus mutans level and also increase salivary pH thereby reducing the dental caries risk. To estimate the role of probiotic curd on salivary pH and Streptococcus mutans count, over a period of 7 days. This double blind parallel randomized clinical trial was conducted at the institution with 60 caries free volunteers belonging to the age group of 20-25 years who were randomly allocated into two groups. Test Group consisted of 30 subjects who consumed 100ml of probiotic curd daily for seven days while an equal numbered Control Group were given 100ml of regular curd for seven days. Saliva samples were assessed at baseline, after ½ hour 1 hour and 7 days of intervention period using pH meter and Mitis Salivarius Bacitracin agar to estimate salivary pH and S. mutans count. Data was statistically analysed using Paired and Unpaired t-test. The study revealed a reduction in salivary pH after ½ hour and 1 hour in both the groups. However after 7 days, normal curd showed a statistically significant (p< 0.05) reduction in salivary pH while probiotic curd showed a statistically significant (p< 0.05) increase in salivary pH. Similarly with regard to S. mutans colony counts probiotic curd showed statistically significant reduction (p< 0.05) as compared to normal curd. Short-term consumption of probiotic curds showed marked salivary pH elevation and reduction of salivary S. mutans counts and thus can be exploited for the prevention of enamel demineralization as a long-term remedy keeping in mind its cost effectiveness.
Lundberg, Å; Nyman, A-K; Aspán, A; Börjesson, S; Unnerstad, H Ericsson; Waller, K Persson
2016-03-01
Udder infections with Staphylococcus aureus, Streptococcus dysgalactiae, and Streptococcus uberis are common causes of bovine mastitis. To study these pathogens in early lactation, a 12-mo longitudinal, observational study was carried out in 13 herds with suboptimal udder health. The aims of the study were to investigate the occurrence of these pathogens and to identify if presence of the 3 pathogens, and of genotypes within the pathogens, differed with respect to herd, season, and parity. Quarter milk samples, collected at calving and 4 d in milk (DIM), were cultured for the 3 pathogens. Genotyping of staphylococcal and streptococcal isolates was performed using spa typing and pulsed-field gel electrophoresis, respectively. For each of the 3 pathogens, cows with an udder infection at calving or 4 DIM were allocated to 1 of 4 infection types: cleared (pathogen present only at calving), persistent (pathogen present in the same quarter at calving and 4 DIM), new (pathogen present only at 4 DIM), or cleared/new (pathogen present in 1 quarter at calving and in another quarter at 4 DIM). Associations between season or parity and overall occurrence of pathogens or infection types were determined using univariable mixed-effect logistic-regression models and the Fisher's exact test, respectively. The most commonly occurring pathogen was Staph. aureus, followed by Strep. dysgalactiae and Strep. uberis. Persistent infections were the most common infection type among Staph. aureus-infected cows, whereas cleared infections were the most common among Strep. dysgalactiae- and Strep. uberis-positive cows. The proportion of cows with persistent Staph. aureus infections and the proportion of cows having a Strep. uberis infection at calving or 4 DIM were higher in the multiparous cows than in primiparous cows. Infections with Strep. dysgalactiae were less common during the early housing season than during the late housing or pasture seasons, whereas persistent Strep. uberis infections were less common during the pasture season than during the late housing season. The relative occurrence of the 3 pathogens, infection types of each pathogen, and genotype diversity of each pathogen throughout the year or in different seasons and parities varied among the herds, indicating that underlying factors predisposing for udder infections at calving differ between herds. Genotyping of bacterial isolates gave important insight into how such infection patterns differed within and between herds. These findings emphasize the need to choose preventive strategies for each individual herd. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Xiao, Cuicui; Ran, Shujun; Huang, Zhengwei; Liang, Jingping
2016-01-01
Dental caries has a polymicrobial etiology within the complex oral microbial ecosystem. However, the overall diversity and structure of supragingival plaque microbiota in adult dental health and caries are not well understood. Here, 160 supragingival plaque samples from patients with dental health and different severities of dental caries were collected for bacterial genomic DNA extraction, pyrosequencing by amplification of the 16S rDNA V1–V3 hypervariable regions, and bioinformatic analysis. High-quality sequences (2,261,700) clustered into 10,365 operational taxonomic units (OTUs; 97% identity), representing 453 independent species belonging to 122 genera, 66 families, 34 orders, 21 classes, and 12 phyla. All groups shared 7522 OTUs, indicating the presence of a core plaque microbiome. α diversity analysis showed that the microbial diversity in healthy plaques exceeded that of dental caries, with the diversity decreasing gradually with the severity of caries. The dominant phyla of plaque microbiota included Bacteroidetes, Actinobacteria, Proteobacteria, Firmicutes, Fusobacteria, and TM7. The dominant genera included Capnocytophaga, Prevotella, Actinomyces, Corynebacterium, Neisseria, Streptococcus, Rothia, and Leptotrichia. β diversity analysis showed that the plaque microbial community structure was similar in all groups. Using LEfSe analysis, 25 differentially abundant taxa were identified as potential biomarkers. Key genera (27) that potentially contributed to the differential distributions of plaque microbiota between groups were identified by PLS-DA analysis. Finally, co-occurrence network analysis and function predictions were performed. Treatment strategies directed toward modulating microbial interactions and their functional output should be further developed. PMID:27499752
Reyher, K K; Haine, D; Dohoo, I R; Revie, C W
2012-11-01
Major mastitis pathogens such as Staphylococcus aureus, Streptococcus agalactiae, Streptococcus uberis, Streptococcus dysgalactiae, and the coliforms are usually considered more virulent and damaging to the udder than minor mastitis pathogens such as Corynebacterium bovis and coagulase-negative staphylococci (CNS). The current literature contains several studies detailing analyses with conflicting results as to whether intramammary infection (IMI) with the minor pathogens decreases, increases, or has no effect on the risk of a quarter acquiring a new intramammary infection (NIMI) with a major pathogen. To investigate the available scientific evidence regarding the effect of IMI with minor pathogens on the acquisition of NIMI with major pathogens, a systematic review and meta-analysis were conducted. The total extant English- and French-language literature in electronic databases was searched and all publications cited by relevant papers were investigated. Results from 68 studies were extracted from 38 relevant papers. Random-effects models were used to investigate the effects of CNS and C. bovis on acquisition of new IMI with any of the major pathogens, as well as individually for the minor pathogens and Staph. aureus. Significant heterogeneity among studies exists, some of which could be accounted for by using meta-regression. Overall, observational studies showed no effect, whereas challenge studies showed strong and significant protective effects, specifically when major pathogens were introduced into the mammary gland via methods bypassing the teat end. Underlying risk can account for several unmeasured factors, and studies with higher underlying risk found more protective effects of minor pathogens. Larger doses of challenge organisms reduced the protective effect of minor pathogens, and studies with more stringent diagnostic criteria for pathogen IMI identified less protection. Smaller studies (those utilizing fewer than 40 cows) also showed a greater protective effect than larger studies. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
The Naval Health Research Center Respiratory Disease Laboratory.
Ryan, M; Gray, G; Hawksworth, A; Malasig, M; Hudspeth, M; Poddar, S
2000-07-01
Concern about emerging and reemerging respiratory pathogens prompted the development of a respiratory disease reference laboratory at the Naval Health Research Center. Professionals working in this laboratory have instituted population-based surveillance for pathogens that affect military trainees and responded to threats of increased respiratory disease among high-risk military groups. Capabilities of this laboratory that are unique within the Department of Defense include adenovirus testing by viral shell culture and microneutralization serotyping, influenza culture and hemagglutination inhibition serotyping, and other special testing for Streptococcus pneumoniae, Streptococcus pyogenes, Mycoplasma pneumonia, and Chlamydia pneumoniae. Projected capabilities of this laboratory include more advanced testing for these pathogens and testing for other emerging pathogens, including Bordetella pertussis, Legionella pneumoniae, and Haemophilus influenzae type B. Such capabilities make the laboratory a valuable resource for military public health.
Biological approach of dental caries management.
Grigalauskienė, Rūta; Slabšinskienė, Eglė; Vasiliauskienė, Ingrida
2015-01-01
Dental caries is a disease induced by dental plaque, which can be described as a community of microorganisms (biofilm). Because of genetic and environmental factors a number of changes in the oral microbiome takes place; in case of commensalism and mutualism between biofilm microorganisms and the host, homeostasis in oral microbiome is maintained. However, when a risk factor occurs parasitic relationship starts prevailing and activity of the pathogenic cariogenic microorganisms increases leading to a dental caries. According to the newest technologies of molecular microbiology new cariogenic microorganisms species have been determined. Each individual's oral microbiome is as unique as his/her immune system; therefore, commonly taken caries prevention measures cannot be of the same effectiveness for all individuals. Each person has his own caries risk which is determined by the oral microbiome and immune system influenced by the environmental and genetic factors. Early caries diagnostic, risk assessment and individualized caries prevention plan will allow us to control the disease and achieve a desirable effect. For the dentist the most important thing is not to treat the consequences of the disease - cavities - but be aware of the dental caries as a biological phenomenon.
USDA-ARS?s Scientific Manuscript database
Streptococcus iniae is a significant bacterial pathogen that causes hemorrhagic septicemia and meningoencephalitis in tilapia, hybrid striped bass, rainbow trout, olive flounder, yellowtail, barramundi and other species of cultured and wild fish worldwide. In tilapia production, vaccination of fry ...
Cardoso-Toset, F; Luque, I; Morales-Partera, A; Galán-Relaño, A; Barrero-Domínguez, B; Hernández, M; Gómez-Laguna, J
2017-02-01
Dry-cured hams, shoulders and loins of Iberian pigs are highly appreciated in national and international markets. Salting, additive addition and dehydration are the main strategies to produce these ready-to-eat products. Although the dry curing process is known to reduce the load of well-known food borne pathogens, studies evaluating the viability of other microorganisms in contaminated pork have not been performed. In this work, the efficacy of the dry curing process to eliminate three swine pathogens associated with pork carcass condemnation, Streptococcus suis, Streptococcus dysgalactiae and Trueperella pyogenes, was evaluated. Results of this study highlight that the dry curing process is a suitable method to obtain safe ready-to-eat products free of these microorganisms. Although salting of dry-cured shoulders had a moderate bactericidal effect, results of this study suggest that drying and ripening were the most important stages to obtain dry-cured products free of these microorganisms. Copyright © 2016 Elsevier Ltd. All rights reserved.
pH-controlled drug release for dental applications
NASA Astrophysics Data System (ADS)
Wironen, John Francis
A large proportion of the dental fillings replaced at present are revised because of the perceived presence of a recurrent caries under or adjacent to the restoration. Many of these perceived caries may not exist, while others may go undetected. This work describes the preparation of drug loaded polymer microspheres that sense the presence of the bacteria that cause caries by the associated presence of acid by-products of digestion. These microspheres are designed to swell and release their antimicrobial drugs once the pH drops to a level that would normally cause caries. The preparation of the microspheres as well as their loading with potassium fluoride, chlorhexidine digluconate, chlorhexidine dihydrochloride, chlorhexidine diacetate, and tetracycline hydrochloride are described. A detailed study of the controlled release behavior of fluoride as a function of polymer composition and pH is presented first. A study of the release kinetics of potassium fluoride, chlorhexidine digluconate, diacetate, dihydrochloride, and tetracycline hydrochloride as a function of pH in the same polymer system is then presented. Additional studies of the swelling kinetics of chlorhexidine-loaded microspheres in various pH buffers are discussed with special reference to correlations with the controlled-release data. Finally, an experiment in which the microspheres are tested in an in vitro bacteria model that includes Streptococcus mutans is presented and discussed in detail.
Dental plaque microbial profiles of children from Khartoum, Sudan, with congenital heart defects.
Mohamed Ali, Hiba; Berggreen, Ellen; Nguyen, Daniel; Wahab Ali, Raouf; Van Dyke, Thomas E; Hasturk, Hatice; Mustafa, Manal
2017-01-01
Few studies have focused on the bacterial species associated with the deterioration of the dental and gingival health of children with congenital heart defects (CHD). The aims of this study were (1) to examine the dental plaque of children with CHD in order to quantify bacterial load and altered bacterial composition compared with children without CHD; and (2) to investigate the correlation between the level of caries and gingivitis and dental biofilm bacteria among those children. In this cross-sectional study, participants were children (3-12 years) recruited in Khartoum State, Sudan. A total of 80 CHD cases from the Ahmed Gasim Cardiac Centre and 80 healthy controls from randomly selected schools and kindergartens were included. Participants underwent clinical oral examinations for caries (decayed, missing, and filled teeth indices [DMFT] for primary dentition, and DMFT for permanent dentition), and gingivitis (simplified gingival index [GI]). Pooled dental biofilm samples were obtained from four posterior teeth using paper points. Real-time quantitative polymerase chain reaction was used for the detection and quantification of Streptococcus mutans , Streptococcus sanguinis, and Lactobacillus acidophilus . Checkerboard DNA-DNA hybridization was used for the detection of 40 additional bacterial species. CHD cases had a significantly higher caries experience (DMFT = 4.1 vs. 2.3, p < 0.05; DMFT = 1.4 vs. 0.7, p < 0.05) and a higher mean number of examined teeth with gingivitis (4.2 vs. 2.0; p < 0.05) compared with controls. S. mutans counts were significantly higher among the CHD cases ( p < 0.05). Checkerboard results revealed that 18/40 bacterial species exhibited significantly higher mean counts among CHD cases ( p < 0.01). Correlation analyses revealed that among CHD cases, the detection levels of Tannerella forsythia, Campylobacter rectus, Fusobacterium nucleatum subsp. vincentii, F. nucleatum subsp. nucleatum , and F. nucleatum subsp. polymorphum were highly positively correlated with GI. CHD cases harbor more cariogenic and periodontopathogenic bacterial species in their dental plaque, which correlated with higher levels of caries and gingivitis.
Current perspectives of nanoparticles in medical and dental biomaterials
Mohamed Hamouda, Ibrahim
2012-01-01
Nanotechnology is gaining tremendous impetus due to its capability of modulating metals into their nanosize, which drastically changes the chemical, physical and optical properties of metals. Nanoparticles have been introduced as materials with good potential to be extensively used in biological and medical applications. Nanoparticles are clusters of atoms in the size range of 1-100 nm. Inorganic nanoparticles and their nano-composites are applied as good antibacterial agents. Due to the outbreak of infectious diseases caused by different pathogenic bacteria and the development of antibiotic resistance, pharmaceutical companies and researchers are searching for new antibacterial agents. The metallic nanoparticles are the most promising as they show good antibacterial properties due to their large surface area to volume ratios, which draw growing interest from researchers due to increasing microbial resistance against metal ions, antibiotics and the development of resistant strains. Metallic nanoparticles can be used as effective growth inhibitors in various microorganisms and thereby are applicable to diverse medical devices. Nanotechnology discloses the use of elemental nanoparticles as active antibacterial ingredient for dental materials. In dentistry, both restorative materials and oral bacteria are believed to be responsible for restoration failure. Secondary caries is found to be the main reason to restoration failure. Secondary caries is primarily caused by invasion of plaque bacteria (acid-producing bacteria) such as Streptococcus mutans and lactobacilli in the presence of fermentable carbohydrates. To make long-lasting restorations, antibacterial materials should be made. The potential of nanoparticles to control the formation of biofilms within the oral cavity is also coming under increasing scrutiny. Possible uses of nanoparticles as topically applied agents within dental materials and the application of nanoparticles in the control of oral infections are also reviewed. PMID:23554743
Bacterial GtfB Augments Candida albicans Accumulation in Cross-Kingdom Biofilms.
Ellepola, K; Liu, Y; Cao, T; Koo, H; Seneviratne, C J
2017-09-01
Streptococcus mutans is a biofilm-forming oral pathogen commonly associated with dental caries. Clinical studies have shown that S. mutans is often detected with Candida albicans in early childhood caries. Although the C. albicans presence has been shown to enhance bacterial accumulation in biofilms, the influence of S. mutans on fungal biology in this mixed-species relationship remains largely uncharacterized. Therefore, we aimed to investigate how the presence of S. mutans influences C. albicans biofilm development and coexistence. Using a newly established haploid biofilm model of C. albicans, we found that S. mutans augmented haploid C. albicans accumulation in mixed-species biofilms. Similarly, diploid C. albicans also showed enhanced biofilm formation in the presence of S. mutans. Surprisingly, the presence of S. mutans restored the biofilm-forming ability of C. albicans bcr1Δ mutant and bcr1Δ/Δ mutant, which is known to be severely defective in biofilm formation when grown as single species. Moreover, C. albicans hyphal growth factor HWP1 as well as ALS1 and ALS3, which are also involved in fungal biofilm formation, were upregulated in the presence of S. mutans. Subsequently, we found that S. mutans-derived glucosyltransferase B (GtfB) itself can promote C. albicans biofilm development. Interestingly, GtfB was able to increase the expression of HWP1, ALS1, and ALS3 genes in the C. albicans diploid wild-type SC5314 and bcr1Δ/Δ, leading to enhanced fungal biofilms. Hence, the present study demonstrates that a bacterial exoenzyme (GtfB) augments the C. albicans counterpart in mixed-species biofilms through a BCR1-independent mechanism. This novel finding may explain the mutualistic role of S. mutans and C. albicans in cariogenic biofilms.
Kawashima, Junko; Nakajo, Kazuko; Washio, Jumpei; Mayanagi, Gen; Shimauchi, Hidetoshi; Takahashi, Nobuhiro
2013-12-01
Actinomyces are predominant oral bacteria; however, their cariogenic potential in terms of acid production and fluoride sensitivity has not been elucidated in detail and compared with that of other caries-associated oral bacteria, such as Streptococcus. Therefore, this study aimed to elucidate and compare the acid production and growth of Actinomyces and Streptococcus in the presence of bicarbonate and fluoride to mimic conditions in the oral cavity. Acid production from glucose was measured by pH-stat at pH 5.5 and 7.0 under anaerobic conditions. Growth rate was assessed by optical density in anaerobic culture. Although Actinomyces produced acid at a lower rate than did Streptococcus, their acid production was more tolerant of fluoride (IDacid production 50 = 110-170 ppm at pH 7.0 and 10-13 ppm at pH 5.5) than that of Streptococcus (IDacid production 50 = 36-53 ppm at pH 7.0 and 6.3-6.5 ppm at pH 5.5). Bicarbonate increased acid production by Actinomyces with prominent succinate production and enhanced their fluoride tolerance (IDacid production 50 = 220-320 ppm at pH 7.0 and 33-52 ppm at pH 5.5). Bicarbonate had no effect on these variables in Streptococcus. In addition, although the growth rate of Actinomyces was lower than that of Streptococcus, Actinomyces growth was more tolerant of fluoride (IDgrowth 50 = 130-160 ppm) than was that of Streptococcus (IDgrowth 50 = 27-36 ppm). These results indicate that oral Actinomyces are more tolerant of fluoride than oral Streptococcus, and bicarbonate enhances the fluoride tolerance of oral Actinomyces. Because of the limited number of species tested here, further study is needed to generalize these findings to the genus level. © 2013 The Societies and Wiley Publishing Asia Pty Ltd.
Cao, Kun; Li, Nan; Wang, Hongcui; Cao, Xin; He, Jiaojiao; Zhang, Bing; He, Qing-Yu; Zhang, Gong; Sun, Xuesong
2018-04-20
Zinc is an essential metal in bacteria. One important bacterial zinc transporter is AdcA, and most bacteria possess AdcA homologs that are single-domain small proteins due to better efficiency of protein biogenesis. However, a double-domain AdcA with two zinc-binding sites is significantly overrepresented in Streptococcus species, many of which are major human pathogens. Using molecular simulation and experimental validations of AdcA from Streptococcus pyogenes , we found here that the two AdcA domains sequentially stabilize the structure upon zinc binding, indicating an organization required for both increased zinc affinity and transfer speed. This structural organization appears to endow Streptococcus species with distinct advantages in zinc-depleted environments, which would not be achieved by each single AdcA domain alone. This enhanced zinc transport mechanism sheds light on the significance of the evolution of the AdcA domain fusion, provides new insights into double-domain transporter proteins with two binding sites for the same ion, and indicates a potential target of antimicrobial drugs against pathogenic Streptococcus species. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Watanabe, Shinya; Takemoto, Norihiko; Ogura, Kohei; Miyoshi-Akiyama, Tohru
2016-01-01
Streptococcus pyogenes, a group A Streptococcus (GAS), has been recognized as the causative pathogen in patients with severe invasive streptococcal infection with or without necrotizing fasciitis. In recent epidemiological studies, Streptococcus dysgalactiae subsp. equisimilis (SDSE) has been isolated from severe invasive streptococcal infection. Complete genome sequence showed that SDSE is the closest bacterial species to GAS, with approximately 70% of genome coverage. SDSE, however, lacks several key virulence factors present in GAS, such as SPE-B, the hyaluronan synthesis operon and active superantigen against human immune cells. A key event in the ability of GAS to cause severe invasive streptococcal infection was shown to be the acquisition of novel genetic traits such as phages. Strikingly, however, during severe invasive infection, GAS destroys its own covRS two-component system, which negatively regulates many virulence factor genes, resulting in a hyper-virulent phenotype. In contrast, this phenomenon has not been observed in SDSE. The present review describes the epidemiology of severe invasive streptococcal infection and the detailed pathogenic mechanisms of GAS and SDSE, emphasizing findings from their genome sequences and analyses of gene expression. © 2015 The Societies and John Wiley & Sons Australia, Ltd.
Muraleedharan, Soumya; Panchmal, Ganesh Shenoy; Shenoy, Rekha P; Jodalli, Praveen; Sonde, Laxminarayan; Pasha, Imran
2018-05-01
The aim of the present study was to compare the association of CD4 count with cariogenic oral flora indicators and dental caries in HIV-seropositive children receiving antiretroviral therapy (ART). A descriptive study was conducted among HIV-seropositive children receiving ART at Snehasadan Camillian Care and Support Center HIV/AIDS in Mangaluru, India. Demographic details and r recent CD4 counts were recorded. For dental caries, the Decayed, Missing, Filled Teeth (DMFT)/decayed, missing, filled/decayed, extracted, filled index was used. Data were analyzed using SPSS version 22. Spearman's correlation was used to correlate CD4 count with dental caries and cariogenic oral flora indicators (mutans streptococci and lactobacilli). The study population comprised 35 patients. Dental caries prevalence was 54.1% in deciduous teeth and 41.2% in permanent teeth. Age and DMFT showed a significant, positive correlation; age and dmft showed a negative correlation (P < .05). A weak, negative correlation was found between age and Streptococcus mutans (S. mutans), and also CD4 count; S. mutans and CD4 count and dmft were not found to be statistically significant (P < .05). No statistically-significant correlation was found between CD4 count and cariogenic oral flora indicators in HIV-positive patients. The presence of a minimum number of restored teeth compared to decayed teeth suggests a lack of dental care being given to HIV-positive patients. © 2017 John Wiley & Sons Australia, Ltd.
Red fluorescence of dental plaque in children -A cross-sectional study.
Volgenant, Catherine M C; Zaura, Egija; Brandt, Bernd W; Buijs, Mark J; Tellez, Marisol; Malik, Gayatri; Ismail, Amid I; Ten Cate, Jacob M; van der Veen, Monique H
2017-03-01
The relation between the presence of red fluorescent plaque and the caries status in children was studied. In addition, the microbial composition of dental plaque from sites with red fluorescent plaque (RFP) and from sites with no red fluorescent plaque (NFP) was assessed. Fluorescence photographs were taken from fifty children (6-14 years old) with overnight plaque. Full-mouth caries scores (ICDAS II) were obtained. The composition of a saliva sample and two plaque samples (RFP and NFP) was assessed using 16S rDNA sequencing. At the site level, no clinically relevant correlations were found between the presence of RFP and the caries status. At the subject level, a weak correlation was found between RFP and the caries status when non-cavitated lesions were included (r s =0.37, p=0.007). The microbial composition of RFP differed significantly from NFP. RFP had more anaerobes and more Gram-negative bacterial taxa. The most discriminative operational taxonomic units (OTUs) for RFP were Corynebacterium, Leptotrichia, Porphyromonas and Selenomonas, while the most discriminative OTUs for NFP were Neisseria, Actinomyces, Streptococcus and Rothia. There were no clinical relevant correlations in this cross-sectional study between the presence of RFP and (early) caries lesions. There were differences in the composition of these phenotypically different plaque samples: RFP contained more Gram-negative, anaerobic taxa and was more diverse than NFP. The study outcomes provide more insight in the possibilities to use plaque fluorescence in oral health risk assessments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fish Vaccine Development and Use to Prevent Streptococcal Diseases
USDA-ARS?s Scientific Manuscript database
An important pathogen of tilapia, hybrid striped bass and trout raised in intensive aquaculture is Streptococcus sp., a cause of severe economic losses in the fish farming industry. Infected fish experience severe to moderate mortality due to Streptococcus iniae and/or S. agalactiae. The diseased ...
USDA-ARS?s Scientific Manuscript database
Both Streptococcus suis and Haemophilus parasuis are important invasive bacterial pathogens of swine, commonly causing meningitis, arthritis, polyserositis, and septicemia. Due to the presence of many serotypes and high genotypic variability, efficacious vaccines are not readily available. We are us...
The disease complex of the gypsy moth. II. Aerobic bacterial pathogens
J.D. Podgwaite; R.W. Campbell
1972-01-01
Eighty-six pathogenic aerobic bacterial isolates from diseased gypsy moth larvae collected in both sparse and dense populations were characterized and identified as members of the families Bacillaceae, Enterobacteriaceae, Lactobacillaceae, Pseudomonadaceae, and Achromobacteraceae. The commonest pathogens were Streptococcus faecalis, Bacillus cereus, Bacillus...
Manning, Jayne; Russell, Fiona M.; Robins-Browne, Roy M.; Mulholland, E. Kim; Satzke, Catherine
2012-01-01
The 7-valent pneumococcal conjugate vaccine (PCV7) reduces carriage of vaccine type Streptococcus pneumoniae but leads to replacement by nonvaccine serotypes and may affect carriage of other respiratory pathogens. We investigated nasopharyngeal carriage of S. pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Staphylococcus aureus in Fijian infants participating in a pneumococcal vaccine trial using quantitative PCR. Vaccination did not affect pathogen carriage rates or densities, whereas significant differences between the two major ethnic groups were observed. PMID:22170924
Referrals for Dental Care During Pregnancy
Kloetzel, Megan K.; Huebner, Colleen E.; Milgrom, Peter
2011-01-01
Oral health is essential to overall health in the prenatal period. Pregnancy is not a time to delay dental care. Several studies have shown an association between periodontal disease and poor pregnancy outcomes including preterm birth. Interventions to provide periodontal treatment to pregnant women yield inconsistent results regarding preterm birth but have established the safety of periodontal therapy during pregnancy. Postpartum, women in poor dental health readily transmit the tooth decay pathogen Streptococcus mutans from their saliva to their infants resulting in increased risk of early childhood caries. Preventive services and treatment for acute problems should be recommended, fears allayed, and women referred. Dental x-rays may be performed safely with the use of appropriate shielding. Non-emergent interventions are best provided between 14 and 20 weeks of gestation for comfort and optimal fetal safety. Most gravid women do not seek dental care. Increased interprofessional communication to encourage dentists to treat pregnant women will reduce the number of women without care. In states where it is available, Medicaid coverage of dental services for pregnant women is typically allowed during pregnancy and for two months postpartum. Women’s health providers should understand the importance of protecting oral health during pregnancy and educate their patients accordingly. PMID:21429074
Preventive Effects of Houttuynia cordata Extract for Oral Infectious Diseases
Sekita, Yasuko; Murakami, Keiji; Amoh, Takashi; Ogata, Shohei; Matsuo, Takashi; Miyake, Yoichiro; Kashiwada, Yoshiki
2016-01-01
Houttuynia cordata (HC) (Saururaceae) has been used internally and externally as a traditional medicine and as an herbal tea for healthcare in Japan. Our recent survey showed that HC poultice (HCP) prepared from smothering fresh leaves of HC had been frequently used for the treatment of purulent skin diseases with high effectiveness. Our experimental study also demonstrated that ethanol extract of HCP (eHCP) has antibacterial, antibiofilm, and anti-inflammatory effects against S. aureus which caused purulent skin diseases. In this study, we focused on novel effects of HCP against oral infectious diseases, such as periodontal disease and dental caries. We determined the antimicrobial and antibiofilm effects of water solution of HCP ethanol extract (wHCP) against important oral pathogens and investigated its cytotoxicity and anti-inflammatory effects on human oral epithelial cells. wHCP had moderate antimicrobial effects against some oral microorganisms and profound antibiofilm effects against Fusobacterium nucleatum, Streptococcus mutans, and Candida albicans. In addition, wHCP had no cytotoxic effects and could inhibit interleukin-8 and CCL20 productions by Porphyromonas gingivalis lipopolysaccharide-stimulated human oral keratinocytes. Our findings suggested that wHCP may be clinically useful for preventing oral infectious diseases as a mouthwash for oral care. PMID:27413739
Preventive Effects of Houttuynia cordata Extract for Oral Infectious Diseases.
Sekita, Yasuko; Murakami, Keiji; Yumoto, Hiromichi; Amoh, Takashi; Fujiwara, Natsumi; Ogata, Shohei; Matsuo, Takashi; Miyake, Yoichiro; Kashiwada, Yoshiki
2016-01-01
Houttuynia cordata (HC) (Saururaceae) has been used internally and externally as a traditional medicine and as an herbal tea for healthcare in Japan. Our recent survey showed that HC poultice (HCP) prepared from smothering fresh leaves of HC had been frequently used for the treatment of purulent skin diseases with high effectiveness. Our experimental study also demonstrated that ethanol extract of HCP (eHCP) has antibacterial, antibiofilm, and anti-inflammatory effects against S. aureus which caused purulent skin diseases. In this study, we focused on novel effects of HCP against oral infectious diseases, such as periodontal disease and dental caries. We determined the antimicrobial and antibiofilm effects of water solution of HCP ethanol extract (wHCP) against important oral pathogens and investigated its cytotoxicity and anti-inflammatory effects on human oral epithelial cells. wHCP had moderate antimicrobial effects against some oral microorganisms and profound antibiofilm effects against Fusobacterium nucleatum, Streptococcus mutans, and Candida albicans. In addition, wHCP had no cytotoxic effects and could inhibit interleukin-8 and CCL20 productions by Porphyromonas gingivalis lipopolysaccharide-stimulated human oral keratinocytes. Our findings suggested that wHCP may be clinically useful for preventing oral infectious diseases as a mouthwash for oral care.
Referrals for dental care during pregnancy.
Kloetzel, Megan K; Huebner, Colleen E; Milgrom, Peter
2011-01-01
Oral health is essential to overall health in the prenatal period. Pregnancy is not a time to delay dental care. Several studies have shown an association between periodontal disease and poor pregnancy outcomes including preterm birth. Interventions to provide periodontal treatment to pregnant women yield inconsistent results regarding preterm birth but have established the safety of periodontal therapy during pregnancy. Postpartum women in poor dental health readily transmit the tooth decay pathogen Streptococcus mutans from their saliva to their infants, resulting in increased risk of early childhood caries. Preventive services and treatment for acute problems should be recommended, fears allayed, and women referred. Dental radiographs may be performed safely with the use of appropriate shielding. Nonemergent interventions are best provided between 14 and 20 weeks' gestation for comfort and optimal fetal safety. Most gravid women do not seek dental care. Increased interprofessional communication to encourage dentists to treat pregnant women will reduce the number of women without care. In states where it is available, Medicaid coverage of dental services for pregnant women is typically allowed during pregnancy and for 2 months postpartum. Women's health providers should understand the importance of protecting oral health during pregnancy and educate their patients accordingly. © 2011 by the American College of Nurse-Midwives.
Penetration of Streptococcus sobrinus and Streptococcus sanguinis into dental enamel.
Kneist, Susanne; Nietzsche, Sandor; Küpper, Harald; Raser, Gerhard; Willershausen, Brita; Callaway, Angelika
2015-10-01
The aim of this pilot study was to assess the difference in virulence of acidogenic and aciduric oral streptococci in an in vitro caries model using their penetration depths into dental enamel. 30 caries-free extracted molars from 11- to 16-year-olds were cleaned ultrasonically for 1 min with de-ionized water and, after air-drying, embedded in epoxy resin. After 8-h of setting at room temperature, the specimens were ground on the buccal side with SiC-paper 1200 (particle size 13-16 μm). Enamel was removed in circular areas sized 3 mm in diameter; the mean depth of removed enamel was 230 ± 60 μm. 15 specimens each were incubated anaerobically under standardized conditions with 24 h-cultures of Streptococcus sanguinis 9S or Streptococcus sobrinus OMZ 176 in Balmelli broth at 37 ± 2 °C; the pH-values of the broths were measured at the beginning and end of each incubation cycle. After 2, 4, 6, 8, and 10 weeks 3 teeth each were fixed in 2.5% glutaraldehyde in cacodylate buffer for 24 h, washed 3× and dehydrated 30-60min by sequential washes through a series of 30-100% graded ethanol. The teeth were cut in half longitudinally; afterward, two slits were made to obtain fracture surfaces in the infected area. After critical-point-drying the fragments were gold-sputtered and viewed in a scanning electron microscope at magnifications of ×20-20,000. After 10 weeks of incubation, penetration of S. sanguinis of 11.13 ± 24.04 μm below the break edges into the enamel was observed. The invasion of S. sobrinus reached depths of 87.53 ± 76.34 μm. The difference was statistically significant (paired t test: p = 0.033). The experimental penetration depths emphasize the importance of S. sanguinis versus S. sobrinus in the context of the extended ecological plaque hypothesis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Phenotypic Heterogeneity of Genomically-Diverse Isolates of Streptococcus mutans
Palmer, Sara R.; Miller, James H.; Abranches, Jacqueline; Zeng, Lin; Lefebure, Tristan; Richards, Vincent P.; Lemos, José A.; Stanhope, Michael J.; Burne, Robert A.
2013-01-01
High coverage, whole genome shotgun (WGS) sequencing of 57 geographically- and genetically-diverse isolates of Streptococcus mutans from individuals of known dental caries status was recently completed. Of the 57 sequenced strains, fifteen isolates, were selected based primarily on differences in gene content and phenotypic characteristics known to affect virulence and compared with the reference strain UA159. A high degree of variability in these properties was observed between strains, with a broad spectrum of sensitivities to low pH, oxidative stress (air and paraquat) and exposure to competence stimulating peptide (CSP). Significant differences in autolytic behavior and in biofilm development in glucose or sucrose were also observed. Natural genetic competence varied among isolates, and this was correlated to the presence or absence of competence genes, comCDE and comX, and to bacteriocins. In general strains that lacked the ability to become competent possessed fewer genes for bacteriocins and immunity proteins or contained polymorphic variants of these genes. WGS sequence analysis of the pan-genome revealed, for the first time, components of a Type VII secretion system in several S. mutans strains, as well as two putative ORFs that encode possible collagen binding proteins located upstream of the cnm gene, which is associated with host cell invasiveness. The virulence of these particular strains was assessed in a wax-worm model. This is the first study to combine a comprehensive analysis of key virulence-related phenotypes with extensive genomic analysis of a pathogen that evolved closely with humans. Our analysis highlights the phenotypic diversity of S. mutans isolates and indicates that the species has evolved a variety of adaptive strategies to persist in the human oral cavity and, when conditions are favorable, to initiate disease. PMID:23613838
Detection of serotype k Streptococcus mutans in Thai subjects.
Lapirattanakul, J; Nakano, K; Nomura, R; Nemoto, H; Kojima, A; Senawongse, P; Srisatjaluk, R; Ooshima, T
2009-10-01
Streptococcus mutans, known to be a pathogen of dental caries as well as bacteremia and infective endocarditis, is classified into four serotypes, c, e, f and k, based on the structures of serotype-specific polysaccharides. Serotype k was recently designated using blood isolates from Japanese subjects and such strains are considered to be virulent in the bloodstream. The purpose of the present study was to analyse the serotype distribution of strains isolated from Thai subjects and determine whether serotype k strains were present. A total of 250 S. mutans strains were isolated from 50 Thai subjects, and serotypes of all strains were determined. Then, molecular and biological analyses were carried out for serotype k strains. Immunodiffusion and polymerase chain reaction analyses showed that serotype c was the most prevalent (70%), followed by serotypes e (22.8%), f (4.4%) and k (2.8%), which indicated that serotype k S. mutans strains occurred in Thai individuals at a similar rate to that previously reported for Japanese and Finnish populations. Molecular analyses of the seven serotype k strains showed extremely low expression of rgpE, which is related to glucose side-chain formation in serotype-specific rhamnose-glucose polymers, similar to previous reports for those other populations. In addition, analysis of the biological properties of the seven serotype k strains demonstrated low levels of sucrose-dependent adhesion, cellular hydrophobicity, dextran-binding activity and phagocytosis susceptibility by human polymorphonuclear leukocytes, which are characteristics similar to those of serotype k strains previously isolated in Japan. Our results indicate the possibility of a worldwide prevalence of serotype k strains with properties in common with those of previously reported strains.
Kacergius, Tomas; Abu-Lafi, Saleh; Kirkliauskiene, Agne; Gabe, Vika; Adawi, Azmi; Rayan, Mahmoud; Qutob, Mutaz; Stukas, Rimantas; Utkus, Algirdas; Zeidan, Mouhammad; Rayan, Anwar
2017-07-01
Streptococcus mutans (S. mutans) bacterium is the most well recognized pathogen involved in pathogenesis of dental caries. Its virulence arises from its ability to produce a biofilm and acidogenicity, causing tooth decay. Discovery of natural products capable to inhibit biofilm formation is of high importance for developing health care products. To the best of our knowledge, in all previous scientific reports, a colorimetric assay was applied to test the effect of sumac and methyl gallate (MG) on S. mutans adherence. Quantitative assessment of the developed biofilm should be further performed by applying an optical profilometry assay, and by testing the effect on both surface roughness and thickness parameters of the biofilm. To the best of our knowledge, this is the first study to report the effect of sumac extract and its constituent MG on biofilm formation using an optical profilometry assay. Testing antibacterial activity of the sumac extract and its fractions revealed that MG is the most bioactive component against S. mutans bacteria. It reduced S. mutans biofilm biomass on the polystyrene surface by 68‑93%, whereas 1 mg/ml MG was able to decrease the biofilm roughness and thickness on the glass surface by 99%. MG also prevented a decrease in pH level by 97%. These bioactivities of MG occurred in a dose‑dependent manner and were significant vs. untreated bacteria. The findings are important for the development of novel pharmaceuticals and formulations of natural products and extracts that possess anti‑biofilm activities with primary applications for oral health, and in a broader context, for the treatment of various bacterial infections.
Patra, Jayanta Kumar; Kim, Eun Sil; Oh, Kyounghee; Kim, Hyeon-Jeong; Dhakal, Radhika; Kim, Yangseon; Baek, Kwang-Hyun
2015-04-08
The mouth cavity hosts many types of anaerobic bacteria, including Streptococcus mutans and Porphyromonas gingivalis, which cause periodontal inflammatory diseases and dental caries. The present study was conducted to evaluate the antibacterial potential of extracts of Robinia pseudoacacia and its different fractions, as well as some of its natural compounds against oral pathogens and a nonpathogenic reference bacteria, Escherichia coli. The antibacterial activity of the crude extract and the solvent fractions (hexane, chloroform, ethyl acetate and butanol) of R. pseudoacacia were evaluated against S. mutans, P. gingivalis and E. coli DH5α by standard micro-assay procedure using conventional sterile polystyrene microplates. The results showed that the crude extract was more active against P. gingivalis (100% growth inhibition) than against S. mutans (73% growth inhibition) at 1.8 mg/mL. The chloroform and hexane fractions were active against P. gingivalis, with 91 and 97% growth inhibition, respectively, at 0.2 mg/mL. None of seven natural compounds found in R. pseudoacacia exerted an antibacterial effect on P. gingivalis; however, fisetin and myricetin at 8 µg/mL inhibited the growth of S. mutans by 81% and 86%, respectively. The crude extract of R. pseudoacacia possesses bioactive compounds that could completely control the growth of P. gingivalis. The antibiotic activities of the hexane and chloroform fractions suggest that the active compounds are hydrophobic in nature. The results indicate the effectiveness of the plant in clinical applications for the treatment of dental plaque and periodontal inflammatory diseases and its potential use as disinfectant for various surgical and orthodontic appliances.
Zhang, Shan; Zou, Zhengzhong; Kreth, Jens; Merritt, Justin
2017-01-01
Studies of the dental caries pathogen Streptococcus mutans have benefitted tremendously from its sophisticated genetic system. As part of our own efforts to further improve upon the S. mutans genetic toolbox, we previously reported the development of the first cloning-independent markerless mutagenesis (CIMM) system for S. mutans and illustrated how this approach could be adapted for use in many other organisms. The CIMM approach only requires overlap extension PCR (OE-PCR) protocols to assemble counterselectable allelic replacement mutagenesis constructs, and thus greatly increased the speed and efficiency with which markerless mutations could be introduced into S. mutans . Despite its utility, the system is still subject to a couple limitations. Firstly, CIMM requires negative selection with the conditionally toxic phenylalanine analog p -chlorophenylalanine (4-CP), which is efficient, but never perfect. Typically, 4-CP negative selection results in a small percentage of naturally resistant background colonies. Secondly, CIMM requires two transformation steps to create markerless mutants. This can be inherently problematic if the transformability of the strain is negatively impacted after the first transformation step, which is used to insert the counterselection cassette at the mutation site on the chromosome. In the current study, we develop a next-generation counterselection cassette that eliminates 4-CP background resistance and combine this with a new direct repeat-mediated cloning-independent markerless mutagenesis (DR-CIMM) system to specifically address the limitations of the prior approach. DR-CIMM is even faster and more efficient than CIMM for the creation of all types of deletions, insertions, and point mutations and is similarly adaptable for use in a wide range of genetically tractable bacteria.
USDA-ARS?s Scientific Manuscript database
Streptococcus agalactiae, the Lancefield group B Streptococcus (GBS), has a broad host range and can be pathogenic to numerous animals, including fish. GBS is most recognized for causing cattle mastitis and human neonatal meningitis, it also causes fatal meningo-encephalitis in fish. We investigat...
Primer prueba de desafio controlado en tilapia del Nilo Para Resistencia a Streptococcus iniae
USDA-ARS?s Scientific Manuscript database
Intensification of tilapia production has resulted in disease outbreaks that negatively affect commercial fish farmers. One bacterial pathogen that commonly causes losses in tilapia production is Streptococcus iniae. Control and prevention of S. iniae can be difficult and requires an integrated fish...
Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans.
Zadoks, Ruth N; Middleton, John R; McDougall, Scott; Katholm, Jorgen; Schukken, Ynte H
2011-12-01
Mastitis, inflammation of the mammary gland, can be caused by a wide range of organisms, including gram-negative and gram-positive bacteria, mycoplasmas and algae. Many microbial species that are common causes of bovine mastitis, such as Escherichia coli, Klebsiella pneumoniae, Streptococcus agalactiae and Staphylococcus aureus also occur as commensals or pathogens of humans whereas other causative species, such as Streptococcus uberis, Streptococcus dysgalactiae subsp. dysgalactiae or Staphylococcus chromogenes, are almost exclusively found in animals. A wide range of molecular typing methods have been used in the past two decades to investigate the epidemiology of bovine mastitis at the subspecies level. These include comparative typing methods that are based on electrophoretic banding patterns, library typing methods that are based on the sequence of selected genes, virulence gene arrays and whole genome sequencing projects. The strain distribution of mastitis pathogens has been investigated within individual animals and across animals, herds, countries and host species, with consideration of the mammary gland, other animal or human body sites, and environmental sources. Molecular epidemiological studies have contributed considerably to our understanding of sources, transmission routes, and prognosis for many bovine mastitis pathogens and to our understanding of mechanisms of host-adaptation and disease causation. In this review, we summarize knowledge gleaned from two decades of molecular epidemiological studies of mastitis pathogens in dairy cattle and discuss aspects of comparative relevance to human medicine.
Huy, Nguyen Tien; Hang, Le Thi Thuy; Boamah, Daniel; Lan, Nguyen Thi Phuong; Van Thanh, Phan; Watanabe, Kiwao; Huong, Vu Thi Thu; Kikuchi, Mihoko; Ariyoshi, Koya; Morita, Kouichi; Hirayama, Kenji
2012-12-01
Several loop-mediated isothermal amplification (LAMP) assays have been developed to detect common causative pathogens of bacterial meningitis (BM). However, no LAMP assay is reported to detect Streptococcus agalactiae and Streptococcus suis, which are also among common pathogens of BM. Moreover, it is laborious and expensive by performing multiple reactions for each sample to detect bacterial pathogen. Thus, we aimed to design and develop a single-tube LAMP assay capable of detecting multiple bacterial species, based on the nucleotide sequences of the 16S rRNA genes of the bacteria. The nucleotide sequences of the 16S rRNA genes of main pathogens involved in BM were aligned to identify conserved regions, which were further used to design broad range specific LAMP assay primers. We successfully designed a set of broad range specific LAMP assay primers for simultaneous detection of four species including Staphylococcus aureus, Streptococcus pneumoniae, S. suis and S. agalactiae. The broad range LAMP assay was highly specific without cross-reactivity with other bacteria including Haemophilus influenzae, Neisseria meningitidis and Escherichia coli. The sensitivity of our LAMP assay was 100-1000 times higher compared with the conventional PCR assay. The bacterial species could be identified after digestion of the LAMP products with restriction endonuclease DdeI and HaeIII. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
The anti-caries activity and toxicity of an experimental propolis-containing varnish.
DE Luca, Mariana Passos; Freires, Irlan Almeida; Gala-García, Alfonso; Santos, Vagner Rodrigues; Vale, Miriam Pimenta; Alencar, Severino Matias de; Rosalen, Pedro Luiz
2017-06-05
We investigated the anti-caries effects of an experimental propolis varnish in vivo, and further tested its toxicity against fibroblasts. Fifty-six SPF female Wistar rats were infected with Streptococcus mutans UA159 (SM) and allocated into four groups (n = 14/group): G1, propolis varnish (15%/PV); G2, chitosan varnish (CV/vehicle); G3, gold standard (GS/Duraphat®); and G4, untreated. The animals received a single varnish application on their molars and were submitted to a high cariogenic challenge (Diet-2000, 56% sucrose, and 5% sucrose-added water, ad libitum) for 4 weeks. Total cultivable microbiota and SM were counted, and smooth-surface and sulcal caries were scored. PV, CV and GS cytotoxic effects were tested against fibroblasts. The data were analyzed using ANOVA with the Tukey-Kramer test (p ≤ 0.05). Total microbiota and SM counts did not differ among the treatments (p = 0.78), or in relation to the untreated group (p = 0.52). PV reduced development of smooth-surface enamel caries compared with the untreated group (p = 0.0018), with no significant difference from GS (p = 0.92); however, the PV effects were no longer observed when the dentin was affected. Neither PV nor GS prevented enamel sulcal lesion onset, but GS significantly reduced the severity of dentinal sulcal lesions (p < 0.0001). No significant difference was observed in fibroblast viability between PV and GS (p < 0.0001). In conclusion, PV prevented smooth-surface enamel caries and showed low cell toxicity. Nevertheless, due to the high cariogenic challenge, its effects were not sustained throughout the experiment. Further studies are encouraged to establish a protocol to sustain the long-term anti-caries activity of PV in the oral cavity.
Katz-Sagi, Hadas; Redlich, Meir; Shapira, Joseph; Peretz, Benjamin; Steinberg, Doron
2008-01-01
To assess whether parental involvement can improve children's oral health as a strategiy to reduce caries risk in children undergoing orthodontic treatment. The study population consisted of 40 healthy children aged 7 to 15 years (mean 10.93 ± 2.78) and their accompanying parents (mother or father). Oral hygiene instructions were given simultaneously to all children and accompanying parents every 6 weeks at their regular orthodontic appointments. Levels of Streptococcus mutans and salivary buffer capacity were assessed for both children and parents before and 9 months into orthodontic treatment. The majority of children (74%) and parents (92%) expressed unchanged levels of Streptococcus mutans and stable salivary buffer capacity throughout the study. When analyzing child-parent pairs with respect to Streptococcus mutans and salivary buffer capacity, no significant differences were found prior to treatment. Nine months into treatment, 57% of the children and parents still showed similar Streptococcus mutans counts and buffer capacity. The child-parent approach succeeded in preventing deterioration of children's oral hygiene. Parental involvement has an essential part in maintaining children's oral health. Oral health care professionals should partner with parents when implementing any kind of health behavior. COPYRIGHT © 2008 BY QUINTESSENCE PUBLISHING CO, INC.
Latest developments on Streptococcus suis: an emerging zoonotic pathogen: part 2.
Segura, Mariela; Zheng, Han; de Greeff, Astrid; Gao, George F; Grenier, Daniel; Jiang, Yongqiang; Lu, Chengping; Maskell, Duncan; Oishi, Kazunori; Okura, Masatoshi; Osawa, Ro; Schultsz, Constance; Schwerk, Christian; Sekizaki, Tsutomu; Smith, Hilde; Srimanote, Potjanee; Takamatsu, Daisuke; Tang, Jiaqi; Tenenbaum, Tobias; Tharavichitkul, Prasit; Hoa, Ngo Thi; Valentin-Weigand, Peter; Wells, Jerry M; Wertheim, Heiman; Zhu, Baoli; Xu, Jianguo; Gottschalk, Marcelo
2014-01-01
First International Workshop on Streptococcus suis, Beijing, China, 12-13 August 2013. This second and final chapter of the report on the First International Workshop on Streptococcus suis follows on from Part 1, published in the April 2014, volume 9, issue 4 of Future Microbiology. S. suis is a swine pathogen and a zoonotic agent afflicting people in close contact with infected pigs or pork meat. Although sporadic cases of human infections had been reported worldwide, deadly S. suis outbreaks emerged in Asia. The severity of the disease underscores the lack of knowledge on the virulence and zoonotic evolution of this human-infecting agent. The pathogenesis of the infection, interactions with host cells and new avenues for treatments were among the topics discussed during the First International Workshop on S. suis (China 2013).
Zinc disrupts central carbon metabolism and capsule biosynthesis in Streptococcus pyogenes.
Ong, Cheryl-lynn Y; Walker, Mark J; McEwan, Alastair G
2015-06-01
Neutrophils release free zinc to eliminate the phagocytosed bacterial pathogen Streptococcus pyogenes (Group A Streptococcus; GAS). In this study, we investigated the mechanisms underpinning zinc toxicity towards this human pathogen, responsible for diseases ranging from pharyngitis and impetigo, to severe invasive infections. Using the globally-disseminated M1T1 GAS strain, we demonstrate that zinc stress impairs glucose metabolism through the inhibition of the glycolytic enzymes phosphofructokinase and glyceraldehyde-3-phosphate dehydrogenase. In the presence of zinc, a metabolic shift to the tagatose-6-phosphate pathway allows conversion of D-galactose to dihydroxyacetone phosphate and glyceraldehyde phosphate, partially bypassing impaired glycolytic enzymes to generate pyruvate. Additionally, zinc inhibition of phosphoglucomutase results in decreased capsule biosynthesis. These data indicate that zinc exerts it toxicity via mechanisms that inhibit both GAS central carbon metabolism and virulence pathways.
Zinc disrupts central carbon metabolism and capsule biosynthesis in Streptococcus pyogenes
Ong, Cheryl-lynn Y.; Walker, Mark J.; McEwan, Alastair G.
2015-01-01
Neutrophils release free zinc to eliminate the phagocytosed bacterial pathogen Streptococcus pyogenes (Group A Streptococcus; GAS). In this study, we investigated the mechanisms underpinning zinc toxicity towards this human pathogen, responsible for diseases ranging from pharyngitis and impetigo, to severe invasive infections. Using the globally-disseminated M1T1 GAS strain, we demonstrate that zinc stress impairs glucose metabolism through the inhibition of the glycolytic enzymes phosphofructokinase and glyceraldehyde-3-phosphate dehydrogenase. In the presence of zinc, a metabolic shift to the tagatose-6-phosphate pathway allows conversion of D-galactose to dihydroxyacetone phosphate and glyceraldehyde phosphate, partially bypassing impaired glycolytic enzymes to generate pyruvate. Additionally, zinc inhibition of phosphoglucomutase results in decreased capsule biosynthesis. These data indicate that zinc exerts it toxicity via mechanisms that inhibit both GAS central carbon metabolism and virulence pathways. PMID:26028191
Hong, Chl; Aung, M M; Kanagasabai, K; Lim, C A; Liang, S; Tan, K S
2018-05-01
This study aimed to assess the oral health and the prevalence of pre-existing oral colonization with respiratory pathogens in dependent elderly, and whether these factors influence pneumonia development. Participants residing in a long-term care facility received bedside oral examinations, and information on their oral health (caries status, calculus index and debris index) was obtained. Samples from the tongue and teeth were collected at baseline and at time of pneumonia development. Sputum was collected at the time of pneumonia diagnosis. Samples were assessed for Haemophilus influenzae, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus pneumoniae by polymerase chain reaction. This was a 1-year longitudinal study of 60 dependent elderly (mean age: 64.2 ± 14.1 years). Seventeen patients (28.3%) developed pneumonia. The mean Decayed, Missing and Filled Teeth and Simplified Oral Hygiene Index were 22.8 ± 9.2 and 4.0 ± 1.0, respectively. At baseline, 48.3% were orally colonized with ≥1 respiratory pathogens. The presence of H. influenzae (P = .002) and P. aeruginosa (P = .049) in the sputum was significantly associated with their colonization on the tongue at baseline. In the bivariate analyses, pneumonia development was associated with naso-gastric feeding tube (P = .0001), H. influenzae (P = .015) and P. aeruginosa (P = .003) tongue colonization at baseline and calculus index (P = .002). Multivariate analyses revealed that calculus index (P = .09) and the presence of tracheostomy (P = .037) were associated with pneumonia. The calculus amount and tongue colonization with respiratory pathogens are risk factors for pneumonia development. Oral hygiene measures to remove tongue biofilm and calculus may reduce pneumonia development. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Makthal, Nishanth; Nguyen, Kimberly; Do, Hackwon; Gavagan, Maire; Chandrangsu, Pete; Helmann, John D; Olsen, Randall J; Kumaraswami, Muthiah
2017-07-01
Bacterial pathogens must overcome host immune mechanisms to acquire micronutrients for successful replication and infection. Streptococcus pyogenes, also known as group A streptococcus (GAS), is a human pathogen that causes a variety of clinical manifestations, and disease prevention is hampered by lack of a human GAS vaccine. Herein, we report that the mammalian host recruits calprotectin (CP) to GAS infection sites and retards bacterial growth by zinc limitation. However, a GAS-encoded zinc importer and a nuanced zinc sensor aid bacterial defense against CP-mediated growth inhibition and contribute to GAS virulence. Immunization of mice with the extracellular component of the zinc importer confers protection against systemic GAS challenge. Together, we identified a key early stage host-GAS interaction and translated that knowledge into a novel vaccine strategy against GAS infection. Furthermore, we provided evidence that a similar struggle for zinc may occur during other streptococcal infections, which raises the possibility of a broad-spectrum prophylactic strategy against multiple streptococcal pathogens. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Treatment of Streptococcus mutans bacteria by a plasma needle
NASA Astrophysics Data System (ADS)
Zhang, Xianhui; Huang, Jun; Liu, Xiaodi; Peng, Lei; Guo, Lihong; Lv, Guohua; Chen, Wei; Feng, Kecheng; Yang, Si-ze
2009-03-01
A dielectric barrier discharge plasma needle was realized at atmospheric pressure with a funnel-shaped nozzle. The preliminary characteristics of the plasma plume and its applications in the inactivation of Streptococcus mutans (S. mutans), the most important microorganism causing dental caries, were presented in this paper. The temperature of the plasma plume does not reach higher than 315 K when the power is below 28 W. Oxygen was injected downstream in the plasma afterglow region through the powered steel tube. Its effect was studied via optical-emission spectroscopy, both in air and in agar. Results show that addition of 26 SCCM O2 does not affect the plume length significantly (SCCM denotes cubic centimeter per minute at STP). The inactivation of S. mutans is primarily attributed to ultraviolet light emission, O, OH, and He radicals.
Huis in 't Veld, J; Fischer, M
1984-01-01
Crude ribosomal preparations of Streptococcus mutans C67-1 (serotype c) and 50B4 (serotype d) contain protein RNA and carbohydrate. Sepharose CL-2B column chromatography of preparations yielded two distinct peaks. Cell-wall carbohydrates were predominantly present in peak I; the serological activity resided mainly in peak II. The preparations contained antigens which cross-reacted with several streptococcal Lancefield antisera. Antisera prepared against the preparations cross-reacted with cell-wall proteins (NaCl extracts) and Ag I/II, but not with cell-wall carbohydrate antigens (Rantz-Randall extracts). Thus, cell-envelope protein antigens in the preparations appear to be responsible for the serological activity. The unique properties of ribosomal preparations may, apart from serological cross-reactivity, be useful in the immunological protection against dental caries.
Treatment of Streptococcus mutans bacteria by a plasma needle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Xianhui; School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022; Fujian Key Lab of Plasma and Magnetic Resonance, Department of Aeronautics School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005
2009-03-15
A dielectric barrier discharge plasma needle was realized at atmospheric pressure with a funnel-shaped nozzle. The preliminary characteristics of the plasma plume and its applications in the inactivation of Streptococcus mutans (S. mutans), the most important microorganism causing dental caries, were presented in this paper. The temperature of the plasma plume does not reach higher than 315 K when the power is below 28 W. Oxygen was injected downstream in the plasma afterglow region through the powered steel tube. Its effect was studied via optical-emission spectroscopy, both in air and in agar. Results show that addition of 26 SCCM O{submore » 2} does not affect the plume length significantly (SCCM denotes cubic centimeter per minute at STP). The inactivation of S. mutans is primarily attributed to ultraviolet light emission, O, OH, and He radicals.« less
Chen, Ling-Ju; Tsai, Hsiu-Ting; Chen, Wei-Jen; Hsieh, Chu-Yang; Wang, Pi-Chieh; Chen, Chung-Shih; Wang, Lina; Yang, Chi-Chiang
2012-10-01
As lactobacilli possess an antagonistic growth property, these bacteria may be beneficial as bioprotective agents for infection control. However, whether the antagonistic growth effects are attributed to the lactobacilli themselves or their fermentative broth remains unclear. The antagonistic growth effects of Lactobacillus salivarius and Lactobacillus fermentum as well as their fermentative broth were thus tested using both disc agar diffusion test and broth dilution method, and their effects on periodontal pathogens, including Streptococcus mutans, Streptococcus sanguis, and Porphyromonas gingivalis in vitro at different concentrations and for different time periods were also compared. Both Lactobacillus salivarius and Lactobacillus fermentum and their concentrated fermentative broth were shown to inhibit significantly the growth of Streptococcus mutans, Streptococcus sanguis, and Porphyromonas gingivalis, although different inhibitory effects were observed for different pathogens. The higher the counts of lactobacilli and the higher the folds of concentrated fermentative broth, the stronger the inhibitory effects are observed. The inhibitory effect is demonstrated to be dose-dependent. Moreover, for the lactobacilli themselves, Lactobacillus fermentum showed stronger inhibitory effects than Lactobacillus salivarius. However, the fermentative broth of Lactobacillus fermentum showed weaker inhibitory effects than that of Lactobacillus salivarius. These data suggested that lactobacilli and their fermentative broth exhibit antagonistic growth activity, and consumption of probiotics or their broth containing lactobacilli may benefit oral health.
Miyamoto, Atsushi; Tsuboi, Eiyasu; Takaya, Hisashi; Sugino, Keishi; Sakamoto, Susumu; Kawabata, Masateru; Kishi, Kazuma; Narui, Koji; Homma, Sakae; Nakatani, Tatsuo; Nakata, Koichiro; Yoshimura, Kunihiko
2006-08-01
Some microbes, including the Bacteroides species, Staphylococcus aureus and Streptococcus milleri groups, can cause pulmonary abscess. Haemophilus parainfluenzae is usually categorized as one of the normal flora which colonizes in the ears and the nasopharynx, and it has been long considered that H. parainfluenzae has little pathogenicity in the lower respiratory tract and lung parenchymal. In this report, we present a case of pulmonary abscess caused by both H. parainfluenzae and Streptococcus intermedius. The patient was a 75-year-old man who had had total esophageo-gastrectomy because of esophageal cancer. He presented with purulent sputum, and chest X-ray film showed a dense consolidation in the right upper lung field. CT-guided transcutaneous fine needle aspiration was performed as a diagnostic procedure. Since both H. parainfluenzae and S. intermedius had been isolated from the lesion, pulmonary abscess caused by these two pathogens was diagnosed. The patient was treated with panipenem/betamipron, and his symptoms and pulmonary infiltrates on the chest X-ray film improved thereafter. So far, very few cases have been reported in which H. parainfluenzae caused lower respiratory tract infection. Although S. intermedius is known as one of the pathogens of pulmonary abscess, it is possible that H. parainfluenzae could also be pathogenic in infectious diseases of the lung.
Sunitha, J; Krishna, Swathy; Ananthalakshmi, R; Jeeva, J Sathiya; Girija, As Smiline; Jeddy, Nadeem
2017-06-01
Solanum nigrum and Phyllanthus niruri are common herbs which are indigeneous to India. Solanum nigrum commonly called 'manathakkali Keerai' in Tamil, forms an indispensable part of South Indian diet. Phyllanthus niruri (keezhanelli in Tamil) is a widely used medicinal plant, the leaves of which have been used extensively in Ayurveda and native medicine to cure various liver ailments. The herbs Solanum nigrum and Phyllanthus niruri have been found to be effective against numerous enteropathogens in various in vitro studies. To assess and compare the antibacterial efficacy of the crude alcoholic extract of the leaves of Solanum nigrum and Phyllanthus niruri against five cariogenic organisms. Standard strains of the micro-organisms were obtained from ATCC (American Type Culture Collection) and MTCC (Microbial Type Culture Collection) which comprised of Streptococcus mutans MTCC no. 890, Streptococcus oralis MTCC no 2696, Lactobacillus acidophillus MTCC no. 10307, Streptococcus sanguis ATCC no. 10556 and Streptococcus salivarius ATCC no. 13419. The organisms obtained were revived and lawn cultured on Trypticase Soy Agar-Blood Agar (TSA-BA) and de Man, Rogosa and Sharpe (MRS) agar media. The antibacterial effect of the dried and powdered leaves of Solanum nigrum and Phyllanthus niruri was tested using agar well diffusion method. The zones of inhibition obtained after incubation were measured and tabulated. The antibacterial activity for the two herbs was compared using the Mann-Whitney test. The antibacterial zones of inhibition obtained for the herb Solanum nigrum was in the range of 12.3-14.6 mm and ranged from 9.7-11.6 mm for the herb Phyllanthus niruri . When the zones of inhibition were compared for the herbs, Solanum nigrum showed significantly greater zones of inhibition compared to Phyllanthus niruri for the organisms Streptococcus sanguis , Streptococcus salivarius , Streptococcus oralis and Streptococcus mutans (p-value<0.05). The alcoholic extract of leaves of Solanum nigrum and Phyllanthus niruri showed significant antibacterial activity against cariogenic organisms, with Solanum nigrum being more anti-cariogenic than Phyllanthus niruri .
Wang, Shaoguo; Hu, Xiaopan; Jiao, Kangli; He, Xiangyi; Li, Zhiqiang; Wang, Jizeng
2016-01-01
Recently, high-throughput sequencing has improved the understanding of the microbiological etiology of caries, but the characteristics of the microbial community structure in the human oral cavity with and without caries are not completely clear. To better understand these characteristics, Illumina MiSeq high-throughput sequencing was utilized to analyze 20 salivary samples (10 caries-free and 10 caries) from subjects from the same town in Dongxiang, Gansu, China. A total of 5,113 OTUs (Operational Taxonomic Units, 97% cutoff) were characterized in all of the salivary samples obtained from the 20 subjects. A comparison of the two groups revealed that (i) the predominant phyla were constant between the two groups; (ii) the relative abundance of the genera Veillonella, Bifidobacterium, Selenomonas, Olsenella, Parascardovia, Scardovia, Chryseobacterium, Terrimonas, Burkholderia and Sporobacter was significantly higher in the group with caries (P < 0.05); and (iii) four genera with low relative abundance (< 0.01% on average), including two characteristic genera in caries (Chryseobacterium and Scardovia), significantly influenced the microbial community structure at the genus and OTU levels. Moreover, via co-occurrence and principal component analyses, the co-prevalence of the pathogenic genera was detected in the caries samples, but in the caries-free samples, the function of clustered genera was more random. This result suggests that a synergistic effect may be influencing the assembly of the caries microbial community, whereas competition may play a more dominant role in governing the microbial community in the caries-free group. Our findings regarding the characteristics of the microbial communities of the groups with and without caries might improve the understanding of the microbiological etiology of caries and might improve the prevention and cure of caries in the future. PMID:26784334
USDA-ARS?s Scientific Manuscript database
Passive immunization has been shown to provide a spectrum of protection against certain piscine pathogens, and studies were conducted to determine the role of specific antibodies in immunity to Streptococcus ictaluri. Adult Nile tilapia (Oreochromis niloticus) were injected i.p. with tryptic soy br...
USDA-ARS?s Scientific Manuscript database
Streptococcus (S.) iniae and S. agalactiae are both economically important Gram positive bacterial pathogens affecting the globally farmed tilapia (Oreochromis spp.). Historically control of these bacteria in tilapia culture has included biosecurity, therapeutants and vaccination strategies. Genet...
Draft genome sequences of nine Streptococcus suis strains isolated in the United States
USDA-ARS?s Scientific Manuscript database
Streptococcus suis is a swine pathogen responsible for economic losses to the pig industry worldwide. Additionally, it is a zoonotic agent that can cause severe infections in those in close contact with infected pigs and/or who consume uncooked or undercooked pork products. Here, we report nine draf...
USDA-ARS?s Scientific Manuscript database
Streptococcus iniae is among the major pathogens of a large number of fish species cultured in fresh and marine recirculating and net pen production systems . The traditional plate culture technique to detect and identify S. iniae is time consuming and may be problematic due to phenotypic variations...
Wang, Rui; Li, Liping; Huang, Yin; Huang, Ting; Tang, Jiayou; Xie, Ting; Lei, Aiying; Luo, Fuguang; Li, Jian; Huang, Yan; Shi, Yunliang; Wang, Dongying; Chen, Ming; Mi, Qiang; Huang, Weiyi
2017-01-01
Streptococcus agalactiae , or Group B Streptococcus (GBS), is a major pathogen causing neonatal sepsis and meningitis, bovine mastitis, and fish meningoencephalitis. CC23, including its namesake ST23, is not only the predominant GBS strain derived from human and cattle, but also can infect a variety of homeothermic and poikilothermic species. However, it has never been characterized in fish. This study aimed to determine the pathogenicity of ST23 GBS to fish and explore the mechanisms causing the difference in the pathogenicity of ST23 GBS based on the genome analysis. Infection of tilapia with 10 human-derived ST23 GBS isolates caused tissue damage and the distribution of pathogens within tissues. The mortality rate of infection was ranged from 76 to 100%, and it was shown that the mortality rate caused by only three human isolates had statistically significant difference compared with fish-derived ST7 strain ( P < 0.05), whereas the mortality caused by other seven human isolates did not show significant difference compared with fish-derived ST7 strain. The genome comparison and prophage analysis showed that the major genome difference between virulent and non-virulent ST23 GBS was attributed to the different prophage sequences. The prophage in the P1 region contained about 43% GC and encoded 28-39 proteins, which can mediate the acquisition of YafQ/DinJ structure for GBS by phage recombination. YafQ/DinJ belongs to one of the bacterial toxin-antitoxin (TA) systems and allows cells to cope with stress. The ST23 GBS strains carrying this prophage were not pathogenic to tilapia, but the strains without the prophage or carrying the pophage that had gene mutation or deletion, especially the deletion of YafQ/DinJ structure, were highly pathogenic to tilapia. In conclusion, human ST23 GBS is highly pathogenic to fish, which may be related to the phage recombination.
Wang, Rui; Li, Liping; Huang, Yin; Huang, Ting; Tang, Jiayou; Xie, Ting; Lei, Aiying; Luo, Fuguang; Li, Jian; Huang, Yan; Shi, Yunliang; Wang, Dongying; Chen, Ming; Mi, Qiang; Huang, Weiyi
2017-01-01
Streptococcus agalactiae, or Group B Streptococcus (GBS), is a major pathogen causing neonatal sepsis and meningitis, bovine mastitis, and fish meningoencephalitis. CC23, including its namesake ST23, is not only the predominant GBS strain derived from human and cattle, but also can infect a variety of homeothermic and poikilothermic species. However, it has never been characterized in fish. This study aimed to determine the pathogenicity of ST23 GBS to fish and explore the mechanisms causing the difference in the pathogenicity of ST23 GBS based on the genome analysis. Infection of tilapia with 10 human-derived ST23 GBS isolates caused tissue damage and the distribution of pathogens within tissues. The mortality rate of infection was ranged from 76 to 100%, and it was shown that the mortality rate caused by only three human isolates had statistically significant difference compared with fish-derived ST7 strain (P < 0.05), whereas the mortality caused by other seven human isolates did not show significant difference compared with fish-derived ST7 strain. The genome comparison and prophage analysis showed that the major genome difference between virulent and non-virulent ST23 GBS was attributed to the different prophage sequences. The prophage in the P1 region contained about 43% GC and encoded 28–39 proteins, which can mediate the acquisition of YafQ/DinJ structure for GBS by phage recombination. YafQ/DinJ belongs to one of the bacterial toxin–antitoxin (TA) systems and allows cells to cope with stress. The ST23 GBS strains carrying this prophage were not pathogenic to tilapia, but the strains without the prophage or carrying the pophage that had gene mutation or deletion, especially the deletion of YafQ/DinJ structure, were highly pathogenic to tilapia. In conclusion, human ST23 GBS is highly pathogenic to fish, which may be related to the phage recombination. PMID:29056932
Zebrafish and Streptococcal Infections.
Saralahti, A; Rämet, M
2015-09-01
Streptococcal bacteria are a versatile group of gram-positive bacteria capable of infecting several host organisms, including humans and fish. Streptococcal species are common colonizers of the human respiratory and gastrointestinal tract, but they also cause some of the most common life-threatening, invasive infections in humans and aquaculture. With its unique characteristics and efficient tools for genetic and imaging applications, the zebrafish (Danio rerio) has emerged as a powerful vertebrate model for infectious diseases. Several zebrafish models introduced so far have shown that zebrafish are suitable models for both zoonotic and human-specific infections. Recently, several zebrafish models mimicking human streptococcal infections have also been developed. These models show great potential in providing novel information about the pathogenic mechanisms and host responses associated with human streptococcal infections. Here, we review the zebrafish infection models for the most relevant streptococcal species: the human-specific Streptococcus pneumoniae and Streptococcus pyogenes, and the zoonotic Streptococcus iniae and Streptococcus agalactiae. The recent success and the future potential of these models for the study of host-pathogen interactions in streptococcal infections are also discussed. © 2015 The Foundation for the Scandinavian Journal of Immunology.
Ferrando, Maria Laura; Schultsz, Constance
2016-01-01
ABSTRACT Streptococcus suis (SS) is a zoonotic pathogen that can cause systemic infection in pigs and humans. The ingestion of contaminated pig meat is a well-established risk factor for zoonotic S. suis disease. In our studies, we provide experimental evidence that S. suis is capable to translocate across the host gastro-intestinal tract (GIT) using in vivo and in vitro models. Hence, S. suis should be considered an emerging foodborne pathogen. In this addendum, we give an overview of the complex interactions between S. suis and host-intestinal mucosa which depends on the host origin, the serotype and genotype of S. suis, as well as the presence and expression of virulence factors involved in host-pathogen interaction. Finally, we propose a hypothetical model of S. suis interaction with the host-GIT taking in account differences in conditions between the porcine and human host. PMID:26900998
Bacterial Profile of Dentine Caries and the Impact of pH on Bacterial Population Diversity
Kianoush, Nima; Adler, Christina J.; Nguyen, Ky-Anh T.; Browne, Gina V.; Simonian, Mary; Hunter, Neil
2014-01-01
Dental caries is caused by the release of organic acids from fermentative bacteria, which results in the dissolution of hydroxyapatite matrices of enamel and dentine. While low environmental pH is proposed to cause a shift in the consortium of oral bacteria, favouring the development of caries, the impact of this variable has been overlooked in microbial population studies. This study aimed to detail the zonal composition of the microbiota associated with carious dentine lesions with reference to pH. We used 454 sequencing of the 16S rRNA gene (V3–V4 region) to compare microbial communities in layers ranging in pH from 4.5–7.8 from 25 teeth with advanced dentine caries. Pyrosequencing of the amplicons yielded 449,762 sequences. Nine phyla, 97 genera and 409 species were identified from the quality-filtered, de-noised and chimera-free sequences. Among the microbiota associated with dentinal caries, the most abundant taxa included Lactobacillus sp., Prevotella sp., Atopobium sp., Olsenella sp. and Actinomyces sp. We found a disparity between microbial communities localised at acidic versus neutral pH strata. Acidic conditions were associated with low diversity microbial populations, with Lactobacillus species including L. fermentum, L. rhamnosus and L. crispatus, being prominent. In comparison, the distinctive species of a more diverse flora associated with neutral pH regions of carious lesions included Alloprevotella tanerrae, Leptothrix sp., Sphingomonas sp. and Streptococcus anginosus. While certain bacteria were affected by the pH gradient, we also found that ∼60% of the taxa associated with caries were present across the investigated pH range, representing a substantial core. We demonstrated that some bacterial species implicated in caries progression show selective clustering with respect to pH gradient, providing a basis for specific therapeutic strategies. PMID:24675997
Ueno, Tomoka; Shimada, Yasushi; Matin, Khairul; Zhou, Yuan; Wada, Ikumi; Sadr, Alireza; Sumi, Yasunori; Tagami, Junji
2016-01-01
Abstract. The aim of this study was to evaluate the signal intensity and signal attenuation of swept source optical coherence tomography (SS-OCT) for dental caries in relation to the variation of mineral density. SS-OCT observation was performed on the enamel and dentin artificial demineralization and on natural caries. The artificial caries model on enamel and dentin surfaces was created using Streptococcus mutans biofilms incubated in an oral biofilm reactor. The lesions were centrally cross sectioned and SS-OCT scans were obtained in two directions to construct a three-dimensional data set, from the lesion surface (sagittal scan) and parallel to the lesion surface (horizontal scan). The integrated signal up to 200 μm in depth (IS200) and the attenuation coefficient (μ) of the enamel and dentin lesions were calculated from the SS-OCT signal in horizontal scans at five locations of lesion depth. The values were compared with the mineral density obtained from transverse microradiography. Both enamel and dentin demineralization showed significantly higher IS200 and μ than the sound tooth substrate from the sagittal scan. Enamel demineralization showed significantly higher IS200 than sound enamel, even with low levels of demineralization. In demineralized dentin, the μ from the horizontal scan consistently trended downward compared to the sound dentin. PMID:27704033
[The microbiological aspects of orthodontic treatment of children with dental maxillary anomalies].
Chesnokov, V A; Chesnokova, M G; Leontiev, V K; Mironov, A Yu; Lomiashvili, L M; Kriga, A S
2015-03-01
The issues of pre-nosologic diagnostic and effectiveness of treatment of diseases of oral cavity is an actual issue in dentistry. The long- duration orthodontic treatment of patients with dentoalveolar anomalies using non-removable devices is followed by such negative consequences as development demineralization of enamel and caries registered during treatment and after remove ofdevices. The level of quantitative content of oral streptococci was analyzed and dental status in children with dentoalveolar anomalies was evaluated during treatment with non-removable devices was evaluated. The caries and inflammation of periodontium of oral cavity were most often detected in children with high level of content of streptococci. In different periods of study the firm tendency of increasing of concentration of Streptococcus mutans and S. sanguis of dental plaque of oral cavity is established. The established index indicators of dental status of patients testify intensity of caries damage, level of poor hygiene of oral cavity, development of average degree of severity of inflammation process of periodontium. The obtained results substantiate involvement ofstreptococci, associates of microbiota of dental plaque of oral cavity in children, in process of development of caries. The characteristics of micro-ecology of dental plaque to evaluate cariesgenic situation that can be used as a basis for constructing diagnostic algorithm under monitoring of patients with dentoalveolar anomalies with purpose of forthcoming planning and implementation of effective orthodontic treatment.
The human oral metaproteome reveals potential biomarkers for caries disease.
Belda-Ferre, Pedro; Williamson, James; Simón-Soro, Áurea; Artacho, Alejandro; Jensen, Ole N; Mira, Alex
2015-10-01
Tooth decay is considered the most prevalent human disease worldwide. We present the first metaproteomic study of the oral biofilm, using different mass spectrometry approaches that have allowed us to quantify individual peptides in healthy and caries-bearing individuals. A total of 7771 bacterial and 853 human proteins were identified in 17 individuals, which provide the first available protein repertoire of human dental plaque. Actinomyces and Coryneybacterium represent a large proportion of the protein activity followed by Rothia and Streptococcus. Those four genera account for 60-90% of total diversity. Healthy individuals appeared to have significantly higher amounts of L-lactate dehydrogenase and the arginine deiminase system, both implicated in pH buffering. Other proteins found to be at significantly higher levels in healthy individuals were involved in exopolysaccharide synthesis, iron metabolism and immune response. We applied multivariate analysis in order to find the minimum set of proteins that better allows discrimination of healthy and caries-affected dental plaque samples, detecting seven bacterial and five human protein functions that allow determining the health status of the studied individuals with an estimated specificity and sensitivity over 96%. We propose that future validation of these potential biomarkers in larger sample size studies may serve to develop diagnostic tests of caries risk that could be used in tooth decay prevention. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Huang, Jinhu; Ma, Jiale; Shang, Kexin; Hu, Xiao; Liang, Yuan; Li, Daiwei; Wu, Zuowei; Dai, Lei; Chen, Li; Wang, Liping
2016-01-01
Streptococcus suis is a previously neglected, newly emerging multidrug-resistant zoonotic pathogen. Mobile genetic elements (MGEs) play a key role in intra- and interspecies horizontal transfer of antimicrobial resistance (AMR) determinants. Although, previous studies showed the presence of several MGEs, a comprehensive analysis of AMR-associated mobilome as well as their interaction and evolution has not been performed. In this study, we presented the AMR-associated mobilome and their insertion hotspots in S. suis . Integrative conjugative elements (ICEs), prophages and tandem MGEs were located at different insertion sites, while 86% of the AMR-associated MGEs were inserted at rplL and rum loci. Comprehensive analysis of insertions at rplL and rum loci among four pathogenic Streptococcus species ( Streptococcus agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes , and S. suis ) revealed the existence of different groups of MGEs, including Tn5252, ICE Sp 1108, and TnGBS2 groups ICEs, Φm46.1 group prophage, ICE_ICE and ICE_prophage tandem MGEs. Comparative ICE genomics of ICE Sa 2603 family revealed that module exchange and acquisition/deletion were the main mechanisms in MGEs' expansion and evolution. Furthermore, the observation of tandem MGEs reflected a novel mechanism for MGE diversity. Moreover, an in vitro competition assay showed no visible fitness cost was observed between different MGE-carrying isolates and a conjugation assay revealed the transferability of ICE Sa 2603 family of ICEs. Our statistics further indicated that the prevalence and diversity of MGEs in S. suis is much greater than in other three species which prompted our hypothesis that S. suis is probably a MGEs reservoir for other streptococci. In conclusion, our results showed that acquisition of MGEs confers S. suis not only its capability as a multidrug resistance pathogen, but also represents a paradigm to study the modular evolution and matryoshkas of MGEs.
Huang, Jinhu; Ma, Jiale; Shang, Kexin; Hu, Xiao; Liang, Yuan; Li, Daiwei; Wu, Zuowei; Dai, Lei; Chen, Li; Wang, Liping
2016-01-01
Streptococcus suis is a previously neglected, newly emerging multidrug-resistant zoonotic pathogen. Mobile genetic elements (MGEs) play a key role in intra- and interspecies horizontal transfer of antimicrobial resistance (AMR) determinants. Although, previous studies showed the presence of several MGEs, a comprehensive analysis of AMR-associated mobilome as well as their interaction and evolution has not been performed. In this study, we presented the AMR-associated mobilome and their insertion hotspots in S. suis. Integrative conjugative elements (ICEs), prophages and tandem MGEs were located at different insertion sites, while 86% of the AMR-associated MGEs were inserted at rplL and rum loci. Comprehensive analysis of insertions at rplL and rum loci among four pathogenic Streptococcus species (Streptococcus agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes, and S. suis) revealed the existence of different groups of MGEs, including Tn5252, ICESp1108, and TnGBS2 groups ICEs, Φm46.1 group prophage, ICE_ICE and ICE_prophage tandem MGEs. Comparative ICE genomics of ICESa2603 family revealed that module exchange and acquisition/deletion were the main mechanisms in MGEs' expansion and evolution. Furthermore, the observation of tandem MGEs reflected a novel mechanism for MGE diversity. Moreover, an in vitro competition assay showed no visible fitness cost was observed between different MGE-carrying isolates and a conjugation assay revealed the transferability of ICESa2603 family of ICEs. Our statistics further indicated that the prevalence and diversity of MGEs in S. suis is much greater than in other three species which prompted our hypothesis that S. suis is probably a MGEs reservoir for other streptococci. In conclusion, our results showed that acquisition of MGEs confers S. suis not only its capability as a multidrug resistance pathogen, but also represents a paradigm to study the modular evolution and matryoshkas of MGEs. PMID:27774436
Palys, Erica E; Li, John; Gaut, Paula L; Hardy, W David
2006-01-01
Streptococcus agalactiae, commonly known as Group B streptococcus (GBS), was originally discovered as a cause of bovine mastitis. GBS colonizes the genital tract of up to 40% of women and has become a major pathogen in neonatal meningitis. GBS endocarditis is thought to be an uncommon manifestation of this infection and carries a higher mortality compared to other streptococcal pathogens. Studies have shown that endocarditis after abortion has an incidence of about one per million. However, this figure was published prior to routine use of echocardiography for diagnosis. The American Heart Association has recently declared transesophageal echocardiography the gold standard for endocarditis diagnosis. This case report illustrates that, given the potentially devastating consequences of endocarditis, there is a need for updated studies to adequately assess the true incidence of this infection. Pending the outcome of these studies, routine GBS screening and prophylactic antibiotics prior to abortion should be recommended.
Sekizuka, Tsuyoshi; Nai, Emina; Yoshida, Tomohiro; Endo, Shota; Hamajima, Emi; Akiyama, Satoka; Ikuta, Yoji; Obana, Natsuko; Kawaguchi, Takahiro; Hayashi, Kenta; Noda, Masahiro; Sumita, Tomoko; Kokaji, Masayuki; Katori, Tatsuo; Hashino, Masanori; Oba, Kunihiro; Kuroda, Makoto
2017-12-18
Streptococcus pyogenes (group A Streptococcus [GAS]) is a major human pathogen that causes a wide spectrum of clinical manifestations. Although invasive GAS (iGAS) infections are relatively uncommon, emm3/ST15 GAS is a highly virulent, invasive, and pathogenic strain. Global molecular epidemiology analysis has suggested that the frequency of emm3 GAS has been recently increasing. A 14-year-old patient was diagnosed with streptococcal toxic shock syndrome and severe pneumonia, impaired renal function, and rhabdomyolysis. GAS was isolated from a culture of endotracheal aspirates and designated as KS030. Comparative genome analysis suggested that KS030 is classified as emm3 (emm-type) and ST15 (multilocus sequencing typing [MLST]), which is similar to iGAS isolates identified in the UK (2013) and Switzerland (2015). We conclude that the global dissemination of emm3/ST15 GAS strain has the potential to cause invasive disease.
Mélançon, D.; Grenier, D.
2003-01-01
Streptococcus suis serotype 2 is a major pathogen found in the upper respiratory tract of swine. In this study, isolates of this bacterial species were tested for the production of bacteriocin-like inhibitory substances (BLIS). Of the 38 strains tested, four inhibited the growth of other S. suis isolates according to a deferred-antagonism plate assay. Interestingly, three of the strains were originally isolated from healthy carrier pigs and were considered nonvirulent. Three isolates (94-623, 90-1330, and AAH4) that produced BLIS in liquid broth were selected for further characterization. None of the inhibitory activities was related to the production of either organic acids or hydrogen peroxide. The BLIS produced by these strains were heat stable and proteinase K, pronase, and elastase sensitive but were trypsin and chymotrypsin resistant. They were stable at pH 2 and 12 and had molecular masses in the range of 14 to 30 kDa. Maximum production was observed during the mid-log phase. Following a curing procedure with novobiocin, only 90-1330 lost the ability to produce BLIS, suggesting that the BLIS might be plasmid encoded. Analysis of the inhibitory spectra revealed that the BLIS-producing strains also inhibited the growth of Actinobacillus minor, Actinobacillus porcinus, Enterococcus durans, Micrococcus luteus, Streptococcus agalactiae, Streptococcus dysgalactiae subsp. dysgalactiae, Streptococcus equi subsp. zooepidemicus, and S. dysgalactiae subsp. equisimilis. This study reports for the first time the ability of the swine pathogen S. suis serotype 2 to produce BLIS with the characteristics of classic bacteriocins. Further studies are required to investigate the possibility of using bacteriocin-producing strains to prevent swine infections caused by virulent strains of S. suis serotype 2. PMID:12902232
Insight into the Evolution of the Histidine Triad Protein (HTP) Family in Streptococcus
Pan, Xiu-Zhen; Wang, Bin; Chen, Jian-Qun
2013-01-01
The Histidine Triad Proteins (HTPs), also known as Pht proteins in Streptococcus pneumoniae, constitute a family of surface-exposed proteins that exist in many pathogenic streptococcal species. Although many studies have revealed the importance of HTPs in streptococcal physiology and pathogenicity, little is known about their origin and evolution. In this study, after identifying all htp homologs from 105 streptococcal genomes representing 38 different species/subspecies, we analyzed their domain structures, positions in genome, and most importantly, their evolutionary histories. By further projecting this information onto the streptococcal phylogeny, we made several major findings. First, htp genes originated earlier than the Streptococcus genus and gene-loss events have occurred among three streptococcal groups, resulting in the absence of the htp gene in the Bovis, Mutans and Salivarius groups. Second, the copy number of htp genes in other groups of Streptococcus is variable, ranging from one to four functional copies. Third, both phylogenetic evidence and domain structure analyses support the division of two htp subfamilies, designated as htp I and htp II. Although present mainly in the pyogenic group and in Streptococcus suis, htp II members are distinct from htp I due to the presence of an additional leucine-rich-repeat domain at the C-terminus. Finally, htp genes exhibit a faster nucleotide substitution rate than do housekeeping genes. Specifically, the regions outside the HTP domains are under strong positive selection. This distinct evolutionary pattern likely helped Streptococcus to easily escape from recognition by host immunity. PMID:23527301
Backlund, Christopher J; Worley, Brittany V; Schoenfisch, Mark H
2016-01-01
The effect of nitric oxide (NO)-releasing dendrimer hydrophobicity on Streptococcus mutans killing and biofilm disruption was examined at pH 7.4 and 6.4, the latter relevant to dental caries. Generation 1 (G1) poly(amidoamine) (PAMAM) dendrimers were modified with alkyl epoxides to generate propyl-, butyl-, hexyl-, octyl-, and dodecyl-functionalized dendrimers. The resulting secondary amines were reacted with NO to form N-diazeniumdiolate NO donor-modified dendrimer scaffolds (total NO ∼1μmol/mg). The bactericidal action of the NO-releasing dendrimers against both planktonic and biofilm-based S. mutans proved greatest with increasing alkyl chain length and at lower pH. Improved bactericidal efficacy at pH 6.4 was attributed to increased scaffold surface charge that enhanced dendrimer-bacteria association and ensuing membrane damage. For shorter alkyl chain (i.e., propyl and butyl) dendrimer modifications, increased antibacterial action at pH 6.4 was due to faster NO-release kinetics from proton-labile N-diazeniumdiolate NO donors. Octyl- and dodecyl-modified PAMAM dendrimers proved most effective for eradicating S. mutans biofilms with NO release mitigating dendrimer scaffold cytotoxicity. We report the antibacterial and anti-biofilm efficacy of dual-action nitric oxide (NO)-releasing dendrimers against S. mutans, an etiological agent in dental caries. This work was undertaken to enhance the anti-biofilm action of these scaffolds by employing various alkyl chain modifications. Furthermore, we evaluated the ability of NO to eradicate cariogenic biofilms. We found that at the lower pH associated with dental caries (pH ∼6.4), NO has a more pronounced antibacterial effect for alkyl modifications less capable of biofilm penetration and membrane disruption. Of greatest significance, we introduce dendrimers as a new macromolecular antibacterial agent against the cariogenic bacteria S. mutans. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Lynch, David J.; Villhauer, Alissa L.; Warren, John J.; Marshall, Teresa A.; Dawson, Deborah V.; Blanchette, Derek R.; Phipps, Kathy R.; Starr, Delores E.; Drake, David R.
2015-01-01
Background Severe-early childhood caries (S-ECC) is one of the most common infectious diseases in children and is prevalent in lower socio-economic populations. American Indian children suffer from the highest levels of S-ECC in the United States. Members of the mutans streptococci, Streptococcus mutans, in particular, are key etiologic agents in the development of caries. Children typically acquire S. mutans from their mothers and early acquisition is often associated with higher levels of tooth decay. Methods We have conducted a 5-year birth cohort study with a Northern Plains Tribe to determine the temporality and fidelity of S. mutans transmission from mother to child in addition to the genotypic diversity of S. mutans in this community. Plaque samples were collected from 239 mother/child dyads at regular intervals from birth to 36 months and S. mutans were isolated and genotyped by arbitrarily primed-polymerase chain reaction (AP-PCR). Results Here we present preliminary findings from a subset of the cohort. The focus for this paper is on initial acquisition events in the children. We identified 17 unique genotypes in 711 S. mutans isolates in our subset of 40 children, 40 mothers and 14 primary caregivers. Twelve of these genotypes were identified in more than one individual. S. mutans colonization occurred by 16 months in 57.5% of the children and early colonization was associated with higher decayed, missing and filled surface (DMFS) scores (p=0.0007). Children colonized by S. mutans shared a common genotype with their mothers 47.8% of the time. While multiple genotypes were common in adults, only 10% of children harbored multiple genotypes. Conclusion These children acquire S. mutans at an earlier age than the originally described ‘window of infectivity’ and often, but not exclusively, from their mothers. Early acquisition is associated with both the caries status of the children and the mothers. PMID:25840611
Wen, Xin; Su, Jinzhu; Cui, Li; Wang, Juan; Zuo, Lujie
2015-02-01
To analyze the distribution and drug susceptibility of the pathogenic bacteria in the airway secretions in children with tracheobronchial foreign bodies so as to assist physicians in clinical prescription. Sputum specimens of 1 125 children with tracheobronchial foreign bodies were collected in removal of the foreign bodies by rigid bronchoscope, and the drug susceptibility test was performed. Pathogenic bacteria were detected in 218 (19.4%) of 1 125 sputum specimens. Among the pathogenic bacteria, 126 (57.79%) strains were gram-negative bacilli, consisting of 76 (34.86%) strains of Haemophilus influenzae, 10 (4.59%) strains of Escherichia coli, 7 (3.21%) strains of Sewer enterobacter, 7 (3.21%) strains of Pseudomonas aeruginosa, and 6 (2.75%) strains of Klebsiella bacillus; and 92 (42.21%) strains were gram-positive bacilli, consisting of 80 (36.69%) strains of Streptococcus pneumonia and 10 (4.59%) strains of Escherichia coli. Most of detected gram-negative bacilli were highly sensitive to cefepime, ceftazidine, imipenem and amikacin, no strains were resistant to meropenem and ciprofloxacin. None of the detected gram-positive bacilli were resistant to cefepime, vancomycin, levofloxacin and teicoplanin. The Haemophilus influenzae of gram-negative bacilli and the Streptococcus pneumonia of gram-positive bacilli are the main pathogenic bacteria existing in the airway secretions of children with tracheobronchial foreign bodies. The Haemophilus influenzae were highly sensitive to cephalosporin, imipenem and amikacin, and the Streptococcus pneumonia to cefepime, vancomycin, levofloxacin and teicoplanin.
Bethke, J; Avendaño-Herrera, R
2017-02-01
Streptococcus phocae is a beta-hemolytic, Gram-positive bacterium that was first isolated in Norway from clinical specimens of harbor seal (Phoca vitulina) affected by pneumonia or respiratory infection, and in 2005, this bacterium was identified from disease outbreaks at an Atlantic salmon farm. A recent comparative polyphasic study reclassified Streptococcus phocae as subsp. phocae and subsp. salmonis, and there are currently two S. phocae NCBI sequencing projects for the type strains ATCC 51973 T and C-4 T . The present study compared these genome sequences to determine shared properties between the pathogenic mammalian and fish S. phocae subspecies. Both subspecies presented genomic islands, prophages, CRISPRs, and multiple gene activator and RofA regulator regions that could play key roles in the pathogenesis of streptococcal species. Likewise, proteins possibly influencing immune system evasion and virulence strategies were identified in both genomes, including Streptokinases, Streptolysin S, IgG endopeptidase, Fibronectin binding proteins, Daunorubicin, and Penicillin resistance proteins. Comparative differences in phage, non-phage, and genomic island sequences may form the genetic basis for the virulence, pathogenicity, and ability of S. phocae subsp. salmonis to infect and cause disease in Atlantic salmon, in contrast to S. phocae subsp. phocae. This comparative genomic study between two S. phocae subsp. provides novel insights into virulence factors and pathogenicity, offering important information that will facilitate the development of preventive and treatment measures against this pathogen. Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of pathogen-specific clinical mastitis on probability of conception in Holstein dairy cows.
Hertl, J A; Schukken, Y H; Welcome, F L; Tauer, L W; Gröhn, Y T
2014-11-01
The objective of this study was to estimate the effects of pathogen-specific clinical mastitis (CM), occurring in different weekly intervals before or after artificial insemination (AI), on the probability of conception in Holstein cows. Clinical mastitis occurring in weekly intervals from 6 wk before until 6 wk after AI was modeled. The first 4 AI in a cow's lactation were included. The following categories of pathogens were studied: Streptococcus spp. (comprising Streptococcus dysgalactiae, Streptococcus uberis, and other Streptococcus spp.); Staphylococcus aureus; coagulase-negative staphylococci (CNS); Escherichia coli; Klebsiella spp.; cases with CM signs but no bacterial growth (above the level that can be detected from our microbiological procedures) observed in the culture sample and cases with contamination (≥ 3 pathogens in the sample); and other pathogens [including Citrobacter, yeasts, Trueperella pyogenes, gram-negative bacilli (i.e., gram-negative organisms other than E. coli, Klebsiella spp., Enterobacter, and Citrobacter), Corynebacterium bovis, Corynebacterium spp., Pasteurella, Enterococcus, Pseudomonas, Mycoplasma, Prototheca, and others]. Other factors included in the model were parity (1, 2, 3, 4 and higher), season of AI (winter, spring, summer, autumn), day in lactation of first AI, farm, and other non-CM diseases (retained placenta, metritis, ketosis, displaced abomasum). Data from 90,271 AI in 39,361 lactations in 20,328 cows collected from 2003/2004 to 2011 from 5 New York State dairy farms were analyzed in a generalized linear mixed model with a Poisson distribution. The largest reductions in probability of conception were associated with CM occurring in the week before AI or in the 2 wk following AI. Escherichia coli and Klebsiella spp. had the greatest adverse effects on probability of conception. The probability of conception for a cow with any combination of characteristics may be calculated based on the parameter estimates. These findings may be helpful to farmers in assessing reproduction in their dairy cows for more effective cow management. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
[Protease activity of microflora in the oral cavity of patients with periodontitis].
Voropaeva, E A; Baĭrakova, A L; Bichucher, A M; D'iakov, V L; Kozlov, L V
2008-01-01
Microbial spectrum and non-specific as well as specific IgA1 protease activity of isolated microorganisms were investigated in gingival liquid of patients with periodontitis. Microorganisms from the gingival liqud of these patients belonged to conditional-pathogenic obligate and facultatively anaerobic bacteria. 24 strains of microorganisms have been identified. Nonspecific proteolytic activity was found in the following microorganisms: Actinomyces israelii, Actinomyces naeslundii, Aerococcus viridans, Bifidobacterium longum, Neisseria subflave, Streptococcus parvulus, Eubacterium alactolyticum, Lactobaccilus catenoforme, Bacillus spp. Specific IgA1-protease activity and lack of proteolytic activity towards IgG was found in Streptococcus acidominimus, Streptococcus hansenii, Streptococcus salivarius, Leptotrychia buccalis, Staphylococcus haemolyticus and Neisseria sicca. No proteolytic activity was found in cultivation medium of Eubacterium alactolyticum (1 strain), Prevotella buccalis, Aerococcus viridans and Streptococcus sanguis.
USDA-ARS?s Scientific Manuscript database
Streptococcus iniae is one of the most economically important Gram-positive pathogens in cultured fish species worldwide. Research has shown that vaccination is a tool that can be used in the prevention of streptococcal disease. The USDA-ARS patented S. iniae vaccine has been demonstrated to be ef...
Bhuyan, Golam Sarower; Hossain, Mohammad Amir; Sarker, Suprovath Kumar; Rahat, Asifuzzaman; Islam, Md Tarikul; Haque, Tanjina Noor; Begum, Noorjahan; Qadri, Syeda Kashfi; Muraduzzaman, A. K. M.; Islam, Nafisa Nawal; Islam, Mohammad Sazzadul; Sultana, Nusrat; Jony, Manjur Hossain Khan; Khanam, Farhana; Mowla, Golam; Matin, Abdul; Begum, Firoza; Shirin, Tahmina; Ahmed, Dilruba; Saha, Narayan; Qadri, Firdausi
2017-01-01
The study aimed to examine for the first time the spectra of viral and bacterial pathogens along with the antibiotic susceptibility of the isolated bacteria in under-5 children with acute respiratory infections (ARIs) in hospital settings of Dhaka, Bangladesh. Nasal swabs were collected from 200 under-five children hospitalized with clinical signs of ARIs. Nasal swabs from 30 asymptomatic children were also collected. Screening of viral pathogens targeted ten respiratory viruses using RT-qPCR. Bacterial pathogens were identified by bacteriological culture methods and antimicrobial susceptibility of the isolates was determined following CLSI guidelines. About 82.5% (n = 165) of specimens were positive for pathogens. Of 165 infected cases, 3% (n = 6) had only single bacterial pathogens, whereas 43.5% (n = 87) cases had only single viral pathogens. The remaining 36% (n = 72) cases had coinfections. In symptomatic cases, human rhinovirus was detected as the predominant virus (31.5%), followed by RSV (31%), HMPV (13%), HBoV (11%), HPIV-3 (10.5%), and adenovirus (7%). Streptococcus pneumoniae was the most frequently isolated bacterial pathogen (9%), whereas Klebsiella pneumaniae, Streptococcus spp., Enterobacter agglomerans, and Haemophilus influenzae were 5.5%, 5%, 2%, and 1.5%, respectively. Of 15 multidrug-resistant bacteria, a Klebsiella pneumoniae isolate and an Enterobacter agglomerans isolate exhibited resistance against more than 10 different antibiotics. Both ARI incidence and predominant pathogen detection rates were higher during post-monsoon and winter, peaking in September. Pathogen detection rates and coinfection incidence in less than 1-year group were significantly higher (P = 0.0034 and 0.049, respectively) than in 1–5 years age group. Pathogen detection rate (43%) in asymptomatic cases was significantly lower compared to symptomatic group (P<0.0001). Human rhinovirus, HPIV-3, adenovirus, Streptococcus pneumonia, and Klebsiella pneumaniae had significant involvement in coinfections with P values of 0.0001, 0.009 and 0.0001, 0.0001 and 0.001 respectively. Further investigations are required to better understand the clinical roles of the isolated pathogens and their seasonality. PMID:28346512
Tabchoury, C M; Holt, T; Pearson, S K; Bowen, W H
1998-12-01
Dental caries is an infectious and transmissible disease that continues to affect the majority of people. The presence of carbohydrate, mainly sucrose in the diet, is an important factor in its occurrence. The amount of fluoride required for optimal protective effect where there is a high caries challenge is unclear. Differences in the intensity of cariogenic challenge, for whatever reason, may play a part in determining fluctuations in the effectiveness of fluoride. The purpose of this study was to evaluate the effect of different concentrations of fluoride on the development of caries and explore the cariostatic effect of fluoride under various levels of cariogenic challenge. The study comprises two experiments. In experiment I, 60 desalivated Sprague Dawley rats infected with Streptococcus sobrinus were offered the following to drink for 21 days: group (1), sterile distilled water (SDW); (2) 10 parts/10(6) F SDW; (3) 20 parts/10(6) F SDW; (4) 30 parts/10(6) F SDW; (5) 40 parts/10(6) F SDW. In experiment II, eight groups of 9 rats were placed in a König Höfer programmed feeder and were exposed to different levels of cariogenic challenge through varying frequency of eating and offered water containing 10 parts/10(6) F. In experiment I, exposure to 20, 30 and 40 parts/10(6) F reduced caries development significantly: fluoride, at 10 parts/10(6), reduced the severity of the carious lesions. In this model of severe cariogenic challenge, the results suggest that elevated concentrations of fluoride might be effective in patients at high caries risk. In experiment II, fluoride reduced the incidence and severity of smooth-surface caries in all groups. The protective effect of fluoride decreased as the number of exposures to sugar increased. It is concluded that the effectiveness of fluoride is influenced by the level of cariogenic challenge and that consideration should be given to adjusting the level of fluoride exposure based on perceived caries risk, and that there is a maximum therapeutic effect of fluoride beyond which no additional protection can be expected.
[Use of cefotaxime in severe infections in newborn infants].
Peskine, F; Astruc, J; Rodiére, M; Echenne, B; Brunel, D
1984-12-01
Twenty-seven septicemia, 2 urinary tract infections and 2 meningitis were treated with Cefotaxime. The pathogenic organisms were most often entero-bacteria (16 E. coli, 2 Klebsiella, 2 Enterobacter cloacae, 1 Proteus, 1 Acinetobacter); sometimes they were Streptococcus (5 Streptococcus D, 3 Streptococcus B, 1 Streptococcus Salivarius). Cefotaxime was given alone to 16 patients, in association to an aminoglycoside in 15 cases. It was administered by infusion over 30 minutes every 8 hours in a daily dose of 150 mg/kg (during 10 days in case of septicemia and during 18 days if it was a meningitis). A clinical and bacteriological success was obtained in 86% of the 22 cases caused by Enterobacteria, in one of the 5 septicemia due to Streptococcus D and in the 3 infections caused by Streptococcus B. It may be concluded from these results that cefotaxime may be used in neonate infection due to a Gram-. But when a Listeria or a Streptococcus D is discovered the ampicillin classically prescribed must be maintained.
Rocha, Guilherme Roncari; Florez Salamanca, Elkin Jahir; de Barros, Ana Letícia; Lobo, Carmélia Isabel Vitorino; Klein, Marlise Inêz
2018-02-14
Dental caries is considered a multifactorial disease, in which microorganisms play an important role. The diet is decisive in the biofilm formation because it provides the necessary resources for cellular growth and exopolysaccharides synthesis. Exopolysaccharides are the main components of the extracellular matrix (ECM). The ECM provides a 3D structure, support for the microorganisms and form diffusion-limited environments (acidic niches) that cause demineralization of the dental enamel. Streptococcus mutans is the main producer of exopolysaccharides. Candida albicans is detected together with S. mutans in biofilms associated with severe caries lesions. Thus, this study aimed to determine the effect of tt-farnesol and myricetin topical treatments on cariogenic biofilms formed by Streptococcus mutans and Candida albicans. In vitro dual-species biofilms were grown on saliva-coated hydroxyapatite discs, using tryptone-yeast extract broth with 1% sucrose (37 °C, 5% CO 2 ). Twice-daily topical treatments were performed with: vehicle (ethanol 15%, negative control), 2 mM myricetin, 4 mM tt-farnesol, myricetin + tt-farnesol, myricetin + tt-farnesol + fluoride (250 ppm), fluoride, and chlorhexidine digluconate (0.12%; positive control). After 67 h, biofilms were evaluated to determine biofilm biomass, microbial population, and water-soluble and -insoluble exopolysaccharides in the ECM. Only the positive control yielded a reduced quantity of biomass and microbial population, while tt-farnesol treatment was the least efficient in reducing C. albicans population. The combination therapy myricetin + farnesol + fluoride significantly reduced water-soluble exopolysaccharides in the ECM (vs. negative control; p < 0.05; ANOVA one-way, followed by Tukey's test), similarly to the positive control. Therefore, the combination therapy negatively influenced an important virulence trait of cariogenic biofilms. However, the concentrations of both myricetin and tt-farnesol should be increased to produce a more pronounced effect to control these biofilms.
Smith, D J; Taubman, M A; Ebersole, J L
1978-09-01
Seven serotypes of Streptococcus mutans have been identified. The biochemical, genetic, and serological characteristics of these serotypes have indicated that certain serotypes are quite similar, whereas others are quite distinct. The effect of local immunization with glucosyltransferase (GTF) enzymes from serotypes a, c, or g on infection and disease caused by homologous or heterologous cariogenic S. mutans is reported. Organisms with either similar (a and g) or different (c and g) biochemical and serological characteristics were selected for heterologous challenge. NIH white hamsters were injected four times at weekly intervals with GTF prepared by 6 M guanidine-hydrochloride elution from water-insoluble glucan of serotypes a, c, or g, which resulted in enzyme (homologous) inhibitory activity in sera and salivas. After infection of GTF-immunized and sham-immunized groups of hamsters with cariogenic S. mutans of the same serotype as the injected antigen (homologous infection) or with S. mutans of a different serotype from the injected antigen (heterologous infection), the numbers of streptomycin-labeled S. mutans, caries, and lesions were determined. Immunization with GTF preparations from each of the three serotypes resulted in statistically significant reductions in the extent of infection and disease and number of lesions caused by infections with homologous cariogenic S. mutans. Statistically significant reductions in these three parameters were also observed in groups immunized with enzyme from serotype a (strain E49) and challenged with cariogenic serotype g (strain 6715) organisms; or immunized with enzyme from serotype c (strain Ingbritt) and challenged with cariogenic serotype g (strain 6715) organisms; or immunized with enzyme from serotype g (strain 6715) and challenged with cariogenic serotype c (strain Ingbritt) organisms. These studies suggest that soluble antigen preparations containing GTF from one serotype may elicit a protective immune response against infection with cariogenic S. mutans from many or possibly all serotypes.
Tofiño-Rivera, A; Ortega-Cuadros, M; Galvis-Pareja, D; Jiménez-Rios, H; Merini, L J; Martínez-Pabón, M C
2016-12-24
Caries is a public health problem, given that it prevails in 60 to 90% of the school-age global population. Multiple factors interact in its etiology, among them dental plaque is necessary to have lactic acid producing microorganisms like Streptococcus from he Mutans group. Existing prevention and treatment measures are not totally effective and generate adverse effects, which is why it is necessary to search for complementary strategies for their management. The study sought to evaluate the eradication capacity of Streptococcus mutans biofilms and the toxicity on eukaryotic cells of Lippia alba and Cymbopogon citratus essential oils. Essential oils were extracted from plant material through steam distillation and then its chemical composition was determined. The MBEC-high-throughput (MBEC-HTP) (Innovotech, Edmonton, Alberta, Canada) assay used to determine the eradication concentration of S. mutans ATCC 35668 strain biofilms. Cytotoxicity was evaluated on CHO cells through the MTT cell proliferation assay. The major components in both oils were Geraniol and Citral; in L. alba 18.9% and 15.9%, respectively, and in C. citratus 31.3% and 26.7%. The L. alba essential oils presented eradication activity against S. mutans biofilms of 95.8% in 0.01mg/dL concentration and C. citratus essential oils showed said eradication activity of 95.4% at 0.1, 0.01mg/dL concentrations and of 93.1% in the 0.001mg/dL concentration; none of the concentrations of both essential oils showed toxicity on CHO cells during 24h. The L. alba and C. citratus essential oils showed eradication activity against S. mutans biofilms and null cytotoxicity, evidencing the need to conduct further studies that can identify their active components and in order to guide a safe use in treating and preventing dental caries. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2002-10-18
... cerebrospinal fluid infections caused by key Pathogens-Streptococcus Pneumoniae, Haemophilus Influenzae, and non... pathogens causing meningitis (pneumococcus, Haemophilus Influenzae, and Meningococcus). The infrastructure... testing, for meningitis agents including pneumococcus and Haemophilus Influenzae. Laboratory staff have...
Hamada, S; Masuda, N; Ooshima, T; Sobue, S; Kotani, S
1976-02-01
An epidemiological investigation was carried out to identify and determine the serotypes of Streptococcus mutans from carious lesions of young Japanese children. For this purpose, a direct fluorescent antibody technique was mainly used. Fluorescein isothiocyanate-conjugated antibodies were prepared for the five known serotypes of S. mutans. Cross reactions and nonspecific reactions were eliminated by adsorption, counterstaining, or DEAE-cellulosecolumn chromatography. Agar-gel immunodiffusion was used to distinguish between serotypes a and d. The epidemiological survey suggested that serotype c strains were most prevalent in dental plaques of Japanese children. The d and e serotypes were rare and serotypes a and b were not detected. It was also noted that more than one serotype of S. mutans could be found in the same locus of a carious lesion and that there might be no relationship between the degree of caries and the causative serotype(s) of S. mutans.
Streptococcus mutans in a Wild, Sucrose-Eating Rat Population
Coykendall, Alan L.; Specht, Patricia A.; Samol, Harry H.
1974-01-01
Streptococcus mutans, an organism implicated in dental caries and not previously found outside of man and certain laboratory animals, was isolated from the mouths of wild rats which ate sugar cane. The strains isolated fermented mannitol and sorbitol, and failed to grow in 6.5% NaCl or at 45 C. They formed in vitro plaques on nichrome wires when grown in sucrose broth. They also stored intracellular polysaccharide which could be catabolized by washed, resting cells. Deoxyribonucleic acid-deoxyribonucleic acid reassociations revealed two genetic types. One type shared extensive deoxyribonucleic acid base sequences with S. mutans strains HS6 and OMZ61, two members of a genetic type found in man and laboratory hamsters. The other type seemed unrelated to any S. mutans genetic type previously encountered. It is concluded that the ecological triad of tooth-sucrose-S. mutans is not a phenomenon unique to man and experimental animals. Images PMID:4601769
Evaluation of (GTG)5-PCR for rapid identification of Streptococcus mutans.
Svec, Pavel; Nováková, Dana; Zácková, Lenka; Kukletová, Martina; Sedlácek, Ivo
2008-11-01
Repetitive sequence-based polymerase chain reaction (PCR) fingerprinting using the (GTG)(5) primer was applied for fast screening of bacterial strains isolated from dental plaque of early childhood caries (ECC)-affected children. A group of 29 Gram-positive bacteria was separated into a homogeneous cluster together with Streptococcus mutans reference strains and constituted an aberrant branch after the numerical analysis of (GTG)(5)-PCR fingerprints. Automated ribotyping with EcoRI restriction enzyme (RiboPrinter microbial characterization system) revealed high genetic heterogeneity among the tested group and proved to be a good tool for strain-typing purposes. Further characterization of the studied strains was achieved by extensive phenotyping and whole-cell protein fingerprinting and confirmed all the strains as S. mutans representatives. Obtained results showed rep-PCR fingerprinting with the (GTG)(5) primer to be a fast and reliable method for identification of S. mutans.
Anand, Geethashri; Ravinanthan, Manikandan; Basaviah, Ravishankar; Shetty, A. Veena
2015-01-01
Background: Oral health is an integral and important component of general health. Infectious diseases such as caries, periodontal, and gingivitis indicate the onset of imbalance in homeostasis between oral micro biota and host. The present day medicaments used in oral health care have numerous side effects. The uses of herbal plants as an alternative have gained popularity due to side effects of antibiotics and emergence of multidrug resistant strains. Anacardium occidentale (cashew) and Mangifera indica (mango) have been used as traditional oral health care measures in India since time immemorial. Materials and Methods: The ethanol extracts of cashew and mango leaves were obtained by maceration method. The antimicrobial activity was evaluated by clear zone produced by these plant extracts against Enterococcus faecalis, Staphylococcus aureus, Streptococcus mutans, Escherichia coli, and Candida albicans in agar plate method, determination of minimum inhibitory concentration (MIC), minimum bactericidal/fungicidal concentration (MBC/MFC), and suppression of biofilm. The cytotoxic effects of plants extract was determined by microculture tetrazolium assay on human gingival fibroblast and Chinese hamster lung fibroblast (V79) cell lines. Results: Cashew and mango leaf extract significantly (P < 0.05) produced larger zone of inhibition against test pathogens when compared to povidone-iodine-based mouth rinses. Although the MIC and MBC/MFC values of mouth rinses were effective in lower concentrations; plant extracts significantly (P < 0.001) suppressed the biofilms of oral pathogens. The leaf extracts were less cytotoxic (P < 0.001) compared to mouth rinses. Conclusions: Plant extracts are superior to the mouth rinses and have a promising role in future oral health care. PMID:25709341
Anand, Geethashri; Ravinanthan, Manikandan; Basaviah, Ravishankar; Shetty, A Veena
2015-01-01
Oral health is an integral and important component of general health. Infectious diseases such as caries, periodontal, and gingivitis indicate the onset of imbalance in homeostasis between oral micro biota and host. The present day medicaments used in oral health care have numerous side effects. The uses of herbal plants as an alternative have gained popularity due to side effects of antibiotics and emergence of multidrug resistant strains. Anacardium occidentale (cashew) and Mangifera indica (mango) have been used as traditional oral health care measures in India since time immemorial. The ethanol extracts of cashew and mango leaves were obtained by maceration method. The antimicrobial activity was evaluated by clear zone produced by these plant extracts against Enterococcus faecalis, Staphylococcus aureus, Streptococcus mutans, Escherichia coli, and Candida albicans in agar plate method, determination of minimum inhibitory concentration (MIC), minimum bactericidal/fungicidal concentration (MBC/MFC), and suppression of biofilm. The cytotoxic effects of plants extract was determined by microculture tetrazolium assay on human gingival fibroblast and Chinese hamster lung fibroblast (V79) cell lines. Cashew and mango leaf extract significantly (P < 0.05) produced larger zone of inhibition against test pathogens when compared to povidone-iodine-based mouth rinses. Although the MIC and MBC/MFC values of mouth rinses were effective in lower concentrations; plant extracts significantly (P < 0.001) suppressed the biofilms of oral pathogens. The leaf extracts were less cytotoxic (P < 0.001) compared to mouth rinses. Plant extracts are superior to the mouth rinses and have a promising role in future oral health care.
Molecular Epidemiology and Genomics of Group A Streptococcus
Bessen, Debra E.; McShan, W. Michael; Nguyen, Scott V.; Shetty, Amol; Agrawal, Sonia; Tettelin, Hervé
2014-01-01
Streptococcus pyogenes (group A streptococcus; GAS) is a strict human pathogen with a very high prevalence worldwide. This review highlights the genetic organization of the species and the important ecological considerations that impact its evolution. Recent advances are presented on the topics of molecular epidemiology, population biology, molecular basis for genetic change, genome structure and genetic flux, phylogenomics and closely related streptococcal species, and the long- and short-term evolution of GAS. The application of whole genome sequence data to addressing key biological questions is discussed. PMID:25460818
Sakaue, Yuuki; Domon, Hisanori; Oda, Masataka; Takenaka, Shoji; Kubo, Miwa; Fukuyama, Yoshiyasu; Okiji, Takashi; Terao, Yutaka
2016-01-01
Dental caries affects people of all ages and is a worldwide health concern. Streptococcus mutans is a major cariogenic bacterium because of its ability to form biofilm and induce an acidic environment. In this study, the antibacterial activities of magnolol and honokiol, the main constituents of the bark of magnolia plants, toward planktonic cell and biofilm of S. mutans were examined and compared with those of chlorhexidine. The minimal inhibitory concentrations of magnolol, honokiol and chlorhexidine for S. mutans were 10, 10 and 0.25 µg/mL, respectively. In addition, each agent showed bactericidal activity against S. mutans planktonic cells and inhibited biofilm formation in a dose- and time-dependent manner. Magnolol (50 µg/mL) had greater bactericidal activity against S. mutans biofilm than honokiol (50 µg/mL) and chlorhexidine (500 µg/mL) at 5 min after exposure, while all showed scant activity against biofilm at 30 s. Furthermore; chlorhexidine (0.5-500 µg/mL) exhibited high cellular toxicity for the gingival epithelial cell line Ca9-22 at 1 hr, whereas magnolol (50 µg/mL) and honokiol (50 µg/mL) did not. Thus; it was found that magnolol has antimicrobial activities against planktonic and biofilm cells of S. mutans. Magnolol may be a candidate for prevention and management of dental caries. © 2015 The Societies and John Wiley & Sons Australia, Ltd.
Peripheral arterial disease associated with caries and periodontal disease.
Soto-Barreras, Uriel; Olvera-Rubio, Javier O; Loyola-Rodriguez, Juan P; Reyes-Macias, Juan F; Martinez-Martinez, Rita E; Patiño-Marin, Nuria; Martinez-Castañon, Gabriel A; Aradillas-Garcia, Celia; Little, James W
2013-04-01
Peripheral arterial disease (PAD) is an important cardiovascular disorder of the peripheral arteries. Chronic infections, such as periodontitis, may play an important role in the etiology and pathophysiology of PAD and other cardiovascular conditions. Recently, Streptococcus mutans has been found with high frequency in atheromatous plaques. The aim of this study is to evaluate the possible clinical and microbiologic association between PAD and periodontitis and dental caries. Thirty patients with PAD and 30 control individuals were selected. PAD and its severity were established by the use of the ankle-brachial index (ABI). Clinical attachment loss (AL); probing depth; decayed, missing, and filled teeth (DMFT) index; and C-reactive protein (CRP) levels were evaluated. The presence of bacterial DNA from Streptococcus mutans, Porphyromonas gingivalis, Tannerella forsythia, Prevotella intermedia, Treponema denticola, and Aggregatibacter actinomycetemcomitans was identified by polymerase chain reaction in subgingival biofilm and serum. Patients with ≥30% AL ≥ 4 mm had six-fold increased risk of having PAD (odds ratio = 8.18; 95% confidence interval = 1.21 to 35.23; P = 0.031). There was statistical difference in the CRP (P = 0.0413) and DMFT index (P = 0.0002), with elevated number of missing teeth (P = 0.0459) in the PAD group compared with the control group. There were no significant differences in the frequency of bacteria in serum and subgingival plaque. There was a positive relationship between periodontitis based on AL and PAD determined by the ABI (odds ratio = 8.18).
PlsX deletion impacts fatty acid synthesis and acid adaptation in Streptococcus mutans.
Cross, Benjamin; Garcia, Ariana; Faustoferri, Roberta; Quivey, Robert G
2016-04-01
Streptococcus mutans, one of the primary causative agents of dental caries in humans, ferments dietary sugars in the mouth to produce organic acids. These acids lower local pH values, resulting in demineralization of the tooth enamel, leading to caries. To survive acidic environments, Strep. mutans employs several adaptive mechanisms, including a shift from saturated to unsaturated fatty acids in membrane phospholipids. PlsX is an acyl-ACP : phosphate transacylase that links the fatty acid synthase II (FASII) pathway to the phospholipid synthesis pathway, and is therefore central to the movement of unsaturated fatty acids into the membrane. Recently, we discovered that plsX is not essential in Strep. mutans. A plsX deletion mutant was not a fatty acid or phospholipid auxotroph. Gas chromatography of fatty acid methyl esters indicated that membrane fatty acid chain length in the plsX deletion strain differed from those detected in the parent strain, UA159. The deletion strain displayed a fatty acid shift similar to WT, but had a higher percentage of unsaturated fatty acids at low pH. The deletion strain survived significantly longer than the parent strain when cultures were subjected to an acid challenge of pH 2.5.The ΔplsX strain also exhibited elevated F-ATPase activity at pH 5.2, compared with the parent. These results indicate that the loss of plsX affects both the fatty acid synthesis pathway and the acid-adaptive response of Strep. mutans.
Microbial profile on metallic and ceramic bracket materials.
Anhoury, Patrick; Nathanson, Dan; Hughes, Christopher V; Socransky, Sigmund; Feres, Magda; Chou, Laisheng Lee
2002-08-01
The placement of orthodontic appliances creates a favorable environment for the accumulation of a microbiota and food residues, which, in time, may cause caries or exacerbate any pre-existing periodontal disease. The purpose of the present study was to compare the total bacterial counts present on metallic and ceramic orthodontic brackets in order to clarify which bracket type has a higher plaque retaining capacity and to determine the levels of Streptococcus mutans and Lactobacillus spp on both types of brackets. Thirty-two metallic brackets and 24 ceramic brackets were collected from orthodontic patients at the day of debonding. Two brackets were collected from each patient; one from a maxillary central incisor and another from a maxillary second premolar. Sixteen patients who used metallic brackets and 12 patients who used ceramic brackets were sampled. Bacterial populations were studied using "checkerboard" DNA-DNA hybridization, which uses DNA probes to identify species in complex microbial samples. The significance of differences between groups was determined using the Mann-Whitney U-test. Results showed no significant differences between metallic and ceramic brackets with respect to the caries-inducing S mutans and L acidophilus spp counts. Mean counts of 8 of 35 additional species differed significantly between metallic and ceramic brackets with no obvious pattern favoring one bracket type over the other. This study showed higher mean counts of Treponema denticola, Actinobacillus actinomycetemcomitans, Fusobacterium nucleatum ss vincentii, Streptococcus anginosus, and Eubacterium nodatum on metallic brackets while higher counts of Eikenella corrodens, Campylobacter showae, and Selenomonas noxia were found on ceramic brackets.
Yang, Hang; Bi, Yongli; Shang, Xiaoran; Wang, Mengyue; Linden, Sara B.; Li, Yunpeng
2016-01-01
Streptococcus mutans often survives as a biofilm on the tooth surface and contributes to the development of dental caries. We investigated the efficacy of ClyR, an engineered chimeolysin, against S. mutans biofilms under physiological and cariogenic conditions. Susceptibility tests showed that ClyR was active against all clinical S. mutans isolates tested as well as S. mutans biofilms that displayed resistance to penicillin. The S. mutans biofilms that formed on hydroxyapatite discs under physiological sugar conditions and cariogenic conditions were reduced ∼2 logs and 3 logs after treatment with 100 μg/ml ClyR, respectively. In comparison, only a 1-log reduction was observed in the chlorhexidine gluconate (ChX)-treated group, and no killing effect was observed in the NaF-treated group. A mouse dental colonization model showed that repeated use of ClyR for 3 weeks (5 μg/day) reduced the number of colonized S. mutans cells in the dental plaques significantly (P < 0.05) and had no harmful effects on the mice. Furthermore, toxicity was not noted at concentrations exceeding those used for the in vitro and in vivo studies, and ClyR-specific antibodies could not be detected in mouse saliva after repeated use of ClyR in the oral cavity. Our data collectively demonstrate that ClyR is active against S. mutans biofilms both in vitro and in vivo, thus representing a preventative or therapeutic agent for use against dental caries. PMID:27736755
Moscoso, Miriam; Esteban-Torres, María; Menéndez, Margarita; García, Ernesto
2014-01-01
Ceragenin CSA-13, a cationic steroid, is here reported to show a concentration-dependent bactericidal/bacteriolytic activity against pathogenic streptococci, including multidrug-resistant Streptococcus pneumoniae. The autolysis promoted by CSA-13 in pneumococcal cultures appears to be due to the triggering of the major S. pneumoniae autolysin LytA, an N-acetylmuramoyl-L-alanine amidase. CSA-13 also disintegrated pneumococcal biofilms in a very efficient manner, although at concentrations slightly higher than those required for bactericidal activity on planktonic bacteria. CSA-13 has little hemolytic activity which should allow testing its antibacterial efficacy in animal models.
Responses of innate immune cells to group A Streptococcus
Fieber, Christina; Kovarik, Pavel
2014-01-01
Group A Streptococcus (GAS), also called Streptococcus pyogenes, is a Gram-positive beta-hemolytic human pathogen which causes a wide range of mostly self-limiting but also several life-threatening diseases. Innate immune responses are fundamental for defense against GAS, yet their activation by pattern recognition receptors (PRRs) and GAS-derived pathogen-associated molecular patterns (PAMPs) is incompletely understood. In recent years, the use of animal models together with the powerful tools of human molecular genetics began shedding light onto the molecular mechanisms of innate immune defense against GAS. The signaling adaptor MyD88 was found to play a key role in launching the immune response against GAS in both humans and mice, suggesting that PRRs of the Toll-like receptor (TLR) family are involved in sensing this pathogen. The specific TLRs and their ligands have yet to be identified. Following GAS recognition, induction of cytokines such as TNF and type I interferons (IFNs), leukocyte recruitment, phagocytosis, and the formation of neutrophil extracellular traps (NETs) have been recognized as key events in host defense. A comprehensive knowledge of these mechanisms is needed in order to understand their frequent failure against GAS immune evasion strategies. PMID:25325020
Babbar, Anshu; Kumar, Venkatesan Naveen; Bergmann, René; Barrantes, Israel; Pieper, Dietmar H; Itzek, Andreas; Nitsche-Schmitz, D Patric
2017-04-01
Conventionally categorized as commensals, the Streptococci of the species S. anginosus are facultative human pathogens that are difficult to diagnose and often overlooked. Furthermore, detailed investigation and diagnosis of S. anginosus infections is hampered by unexplored taxonomy and widely elusive molecular pathogenesis. To explore their pathogenic potential, S. anginosus isolates collected from patients of two geographical locations (Vellore, India and Leipzig, Germany) were subjected to multi-locus sequence analysis (MLSA). This analysis revealed the potential presence of a new distinct clade of the species S. anginosus, tentatively termed here as genomosubspecies vellorensis. A complementary PCR-based screening for S. pyogenes virulence factor as well as antibiotic resistance genes revealed not only the presence of superantigen- and extracellular DNase coding genes identical to corresponding genes of S. pyogenes, but also of erythromycin and tetracycline resistance genes in the genomes of the analyzed S. anginosus isolates, thus posing a matter of significant health concern. Identification of new pathogenic S. anginosus strains capable of causing difficult to treat infections may pose additional challenges to the diagnosis and treatment of Streptococcus based infections. Copyright © 2017 Elsevier GmbH. All rights reserved.
Use of MALDI-TOF Mass Spectrometry for the Fast Identification of Gram-Positive Fish Pathogens
Assis, Gabriella B. N.; Pereira, Felipe L.; Zegarra, Alexandra U.; Tavares, Guilherme C.; Leal, Carlos A.; Figueiredo, Henrique C. P.
2017-01-01
Gram-positive cocci, such as Streptococcus agalactiae, Lactococcus garvieae, Streptococcus iniae, and Streptococcus dysgalactiae subsp. dysgalactiae, are found throughout the world, particularly in outbreaks in farmed fish, and are thus associated with high economic losses, especially in the cultivation of Nile Tilapia. The aim of this study was to evaluate the efficacy of matrix-assisted laser desorption ionization (MALDI)-time of flight (TOF) mass spectrometry (MS) as an alternative for the diagnosis of these pathogens. One hundred and thirty-one isolates from Brazilian outbreaks assisted by the national authority were identified using a MALDI Biotyper from Bruker Daltonics. The results showed an agreement with respect to identification (Kappa = 1) between this technique and 16S ribosomal RNA gene sequencing for S. agalactiae and L. garvieae. However, for S. iniae and S. dysgalactiae subsp. dysgalactiae, perfect agreement was only achieved after the creation of a custom main spectra profile, as well as further comparisons with 16S ribosomal RNA and multilocus sequence analysis. MALDI-TOF MS was shown to be an efficient technology for the identification of these Gram-positive pathogens, yielding a quick and precise diagnosis. PMID:28848512
Fitzgerald, D B; Fitzgerald, R J; Adams, B O; Morhart, R E
1983-08-01
The prevalence of mutans streptococci (Streptococcus mutans, Streptococcus cricetus, Streptococcus sobrinus, and Streptococcus rattus) was determined in the salivas of 169 elderly individuals ranging in age from 60 to 87 years. Approximately 40% of these individuals were edentulous and wore full upper and lower dentures. With the exception of a higher proportion of saliva counts below 1,000 CFU/ml in the full-denture wearers, the prevalence and the serotype and species distributions of the mutans streptococci were similar in the denture wearers and individuals with natural teeth only. The species and serotype distributions of mutans streptococci in this elderly population were also consistent with reported observations of other workers on younger, more caries-prone populations. A total of 87 representative isolates of the mutans streptococci were tested for cariogenic potential in a hamster model system. A considerable degree of variation in virulence between different strains was observed. However, these differences were not relatable to individual species or serotypes or to whether the organisms were isolated from denture wearers or naturally dentate subjects. The results of our studies indicate that elderly individuals with either natural or artificial dentitions may be a hitherto unrecognized reservoir of mutans streptococci having varying degrees of potential cariogenicity. Hence, in close family situations they could serve, along with parents and siblings, as vectors in the initial transmission of cariogenic microorganisms to young children.
Li, X C; Li, J S; Meng, L; Bai, Y N; Yu, D S; Liu, X N; Liu, X F; Jiang, X J; Ren, X W; Yang, X T; Shen, X P; Zhang, J W
2017-08-10
Objective: To understand the dominant pathogens of febrile respiratory syndrome (FRS) patients in Gansu province and to establish the Bayes discriminant function in order to identify the patients infected with the dominant pathogens. Methods: FRS patients were collected in various sentinel hospitals of Gansu province from 2009 to 2015 and the dominant pathogens were determined by describing the composition of pathogenic profile. Significant clinical variables were selected by stepwise discriminant analysis to establish the Bayes discriminant function. Results: In the detection of pathogens for FRS, both influenza virus and rhinovirus showed higher positive rates than those caused by other viruses (13.79%, 8.63%), that accounting for 54.38%, 13.73% of total viral positive patients. Most frequently detected bacteria would include Streptococcus pneumoniae , and haemophilus influenza (44.41%, 18.07%) that accounting for 66.21% and 24.55% among the bacterial positive patients. The original-validated rate of discriminant function, established by 11 clinical variables, was 73.1%, with the cross-validated rate as 70.6%. Conclusion: Influenza virus, Rhinovirus, Streptococcus pneumoniae and Haemophilus influenzae were the dominant pathogens of FRS in Gansu province. Results from the Bayes discriminant analysis showed both higher accuracy in the classification of dominant pathogens, and applicative value for FRS.
Beres, Stephen B; Kachroo, Priyanka; Nasser, Waleed; Olsen, Randall J; Zhu, Luchang; Flores, Anthony R; de la Riva, Ivan; Paez-Mayorga, Jesus; Jimenez, Francisco E; Cantu, Concepcion; Vuopio, Jaana; Jalava, Jari; Kristinsson, Karl G; Gottfredsson, Magnus; Corander, Jukka; Fittipaldi, Nahuel; Di Luca, Maria Chiara; Petrelli, Dezemona; Vitali, Luca A; Raiford, Annessa; Jenkins, Leslie; Musser, James M
2016-05-31
For over a century, a fundamental objective in infection biology research has been to understand the molecular processes contributing to the origin and perpetuation of epidemics. Divergent hypotheses have emerged concerning the extent to which environmental events or pathogen evolution dominates in these processes. Remarkably few studies bear on this important issue. Based on population pathogenomic analysis of 1,200 Streptococcus pyogenes type emm89 infection isolates, we report that a series of horizontal gene transfer events produced a new pathogenic genotype with increased ability to cause infection, leading to an epidemic wave of disease on at least two continents. In the aggregate, these and other genetic changes substantially remodeled the transcriptomes of the evolved progeny, causing extensive differential expression of virulence genes and altered pathogen-host interaction, including enhanced immune evasion. Our findings delineate the precise molecular genetic changes that occurred and enhance our understanding of the evolutionary processes that contribute to the emergence and persistence of epidemically successful pathogen clones. The data have significant implications for understanding bacterial epidemics and for translational research efforts to blunt their detrimental effects. The confluence of studies of molecular events underlying pathogen strain emergence, evolutionary genetic processes mediating altered virulence, and epidemics is in its infancy. Although understanding these events is necessary to develop new or improved strategies to protect health, surprisingly few studies have addressed this issue, in particular, at the comprehensive population genomic level. Herein we establish that substantial remodeling of the transcriptome of the human-specific pathogen Streptococcus pyogenes by horizontal gene flow and other evolutionary genetic changes is a central factor in precipitating and perpetuating epidemic disease. The data unambiguously show that the key outcome of these molecular events is evolution of a new, more virulent pathogenic genotype. Our findings provide new understanding of epidemic disease. Copyright © 2016 Beres et al.
Crowley, R. C.; Leigh, J. A.; Ward, P. N.; Lappin-Scott, H. M.; Bowler, L. D.
2011-01-01
The bovine pathogen Streptococcus uberis was assessed for biofilm growth. The transition from planktonic to biofilm growth in strain 0140J correlated with an upregulation of several gene products that have been shown to be important for pathogenesis, including a glutamine ABC transporter (SUB1152) and a lactoferrin binding protein (gene lbp; protein SUB0145). PMID:21075893
USDA-ARS?s Scientific Manuscript database
Streptococcus iniae, the etiological agent of streptococcosis in fish, is an important pathogen of cultured and wild fish worldwide. During the last decade outbreaks of streptococcosis have occurred in a wide range of cultured and wild fish in the Americas and Caribbean islands. To gain a better und...
Suarez, Rudy; Lazo, Eduardo; Bravo, Diego; Llegues, Katerina O.; Romalde, Jesús L.; Godoy, Marcos G.
2014-01-01
Streptococcus phocae subsp. salmonis is a fish pathogen that has an important impact on the Chilean salmon industry. Here, we report the genome sequence of the type strain C-4T isolated from Atlantic salmon (Salmo salar), showing a number of interesting features and genes related to its possible virulence factors. PMID:25502668
Reck, Michael; Bunk, Boyke; Jarek, Michael; App, Constantin Benjamin; Meier-Kolthoff, Jan P.; Overmann, Jörg; Müller, Rolf; Kirschning, Andreas; Wagner-Döbler, Irene
2017-01-01
ABSTRACT The myxobacterial secondary metabolite carolacton inhibits growth of Streptococcus pneumoniae and kills biofilm cells of the caries- and endocarditis-associated pathogen Streptococcus mutans at nanomolar concentrations. Here, we studied the response to carolacton of an Escherichia coli strain that lacked the outer membrane protein TolC. Whole-genome sequencing of the laboratory E. coli strain TolC revealed the integration of an insertion element, IS5, at the tolC locus and a close phylogenetic relationship to the ancient E. coli K-12. We demonstrated via transcriptome sequencing (RNA-seq) and determination of MIC values that carolacton penetrates the phospholipid bilayer of the Gram-negative cell envelope and inhibits growth of E. coli TolC at similar concentrations as for streptococci. This inhibition is completely lost for a C-9 (R) epimer of carolacton, a derivative with an inverted stereocenter at carbon atom 9 [(S) → (R)] as the sole difference from the native molecule, which is also inactive in S. pneumoniae and S. mutans, suggesting a specific interaction of native carolacton with a conserved cellular target present in bacterial phyla as distantly related as Firmicutes and Proteobacteria. The efflux pump inhibitor (EPI) phenylalanine arginine β-naphthylamide (PAβN), which specifically inhibits AcrAB-TolC, renders E. coli susceptible to carolacton. Our data indicate that carolacton has potential for use in antimicrobial chemotherapy against Gram-negative bacteria, as a single drug or in combination with EPIs. Strain E. coli TolC has been deposited at the DSMZ; together with the associated RNA-seq data and MIC values, it can be used as a reference during future screenings for novel bioactive compounds. IMPORTANCE The emergence of pathogens resistant against most or all of the antibiotics currently used in human therapy is a global threat, and therefore the search for antimicrobials with novel targets and modes of action is of utmost importance. The myxobacterial secondary metabolite carolacton had previously been shown to inhibit biofilm formation and growth of streptococci. Here, we investigated if carolacton could act against Gram-negative bacteria, which are difficult targets because of their double-layered cytoplasmic envelope. We found that the model organism Escherichia coli is susceptible to carolacton, similar to the Gram-positive Streptococcus pneumoniae, if its multidrug efflux system AcrAB-TolC is either inactivated genetically, by disruption of the tolC gene, or physiologically by coadministering an efflux pump inhibitor. A carolacton epimer that has a different steric configuration at carbon atom 9 is completely inactive, suggesting that carolacton may interact with the same molecular target in both Gram-positive and Gram-negative bacteria. PMID:28959742
Herrera Herrera, Alejandra; Franco Ospina, Luis; Fang, Luis; Díaz Caballero, Antonio
2014-01-01
The development of periodontal disease and dental caries is influenced by several factors, such as microorganisms of bacterial biofilm or commensal bacteria in the mouth. These microorganisms trigger inflammatory and immune responses in the host. Currently, medicinal plants are treatment options for these oral diseases. Mammea americana extracts have reported antimicrobial effects against several microorganisms. Nevertheless, this effect is unknown against oral bacteria. Therefore, the aim of this study was to evaluate the antibacterial effect of M. americana extract against Porphyromonas gingivalis and Streptococcus mutans. For this, an experimental study was conducted. Ethanolic extract was obtained from seeds of M. americana (one oil phase and one ethanolic phase). The strains of Porphyromonas gingivalis ATCC 33277 and Streptococcus mutans ATCC 25175 were exposed to this extract to evaluate its antibacterial effect. Antibacterial activity was observed with the two phases of M. americana extract on P. gingivalis and S. mutans with lower MICs (minimum inhibitory concentration). Also, bactericidal and bacteriostatic activity was detected against S. mutans, depending on the concentration of the extract, while on M. americana extract presented only bacteriostatic activity against P. gingivalis. These findings provide important and promising information allowing for further exploration in the future. PMID:24864137
Aziznezhad, Mahdiye; Alaghemand, Homayoon; Shahande, Zahra; Pasdar, Nilgoon; Bijani, Ali; Eslami, Abdolreza; Dastan, Zohre
2017-03-01
Dental caries is a major public health problem, and Streptococcus mutans is considered the main causal agent of dental caries. This study aimed to compare the effect of three re-mineralizing materials: resin infiltrant, fluoride varnish, and nano-hydroxy apatite paste on the surface hardness and adhesion of Streptococcus mutans as noninvasive treatments for initial enamel lesions. This experimental study was conducted from December 2015 through March 2016 in Babol, Iran. Artificial enamel lesions were created on 60 enamel surfaces, which were divided into two groups: Group A and Group B (30 subjects per group). Group A was divided into three subgroups (10 samples in each subgroup), including fluoride varnish group, nano-hydroxy apatite paste group (Nano P paste), and resin infiltrant group (Icon-resin). In Group A, the surface hardness of each sample was measured in three stages: First, on an intact enamel (baseline); second, after creating artificial enamel lesions; third, after application of re-mineralizing materials. In Group B, the samples were divided into five subgroups, including intact enamel, demineralized enamel, demineralized enamel treated with fluoride varnish, Nano P paste, and Icon-resin. In Group B, standard Streptococcus mutans bacteria adhesion (PTCC 1683) was examined and reported in terms of colony forming units (CFU/ml). Then, data were analyzed using ANOVA, Kruskal-Wallis, Mann-Whitney, and post hoc tests. In Group A, after treatment with re-mineralizing materials, the Icon-resin group had the highest surface hardness among the studied groups, then the Nano P paste group and fluoride varnish group, respectively (p = 0.035). In Group B, in terms of bacterial adhesion, fluoride varnish group had zero bacterial adhesion level, and then the Nano P paste group, Icon-resin group, intact enamel group, and the de-mineralized enamel group showed bacterial adhesion increasing in order (p < 0.001). According to the study among the examined materials, the resin infiltrant increased the tooth surface hardness as the intact enamel and fluoride varnish had the highest reduction level for bacterial adhesion. Nano P paste had an effect between the two materials, both in increasing surface hardness and reducing bacterial adhesion.
Lefébure, Tristan; Stanhope, Michael J
2007-01-01
Background The genus Streptococcus is one of the most diverse and important human and agricultural pathogens. This study employs comparative evolutionary analyses of 26 Streptococcus genomes to yield an improved understanding of the relative roles of recombination and positive selection in pathogen adaptation to their hosts. Results Streptococcus genomes exhibit extreme levels of evolutionary plasticity, with high levels of gene gain and loss during species and strain evolution. S. agalactiae has a large pan-genome, with little recombination in its core-genome, while S. pyogenes has a smaller pan-genome and much more recombination of its core-genome, perhaps reflecting the greater habitat, and gene pool, diversity for S. agalactiae compared to S. pyogenes. Core-genome recombination was evident in all lineages (18% to 37% of the core-genome judged to be recombinant), while positive selection was mainly observed during species differentiation (from 11% to 34% of the core-genome). Positive selection pressure was unevenly distributed across lineages and biochemical main role categories. S. suis was the lineage with the greatest level of positive selection pressure, the largest number of unique loci selected, and the largest amount of gene gain and loss. Conclusion Recombination is an important evolutionary force in shaping Streptococcus genomes, not only in the acquisition of significant portions of the genome as lineage specific loci, but also in facilitating rapid evolution of the core-genome. Positive selection, although undoubtedly a slower process, has nonetheless played an important role in adaptation of the core-genome of different Streptococcus species to different hosts. PMID:17475002
Dalia, Ankur B.; Weiser, Jeffrey N.
2011-01-01
SUMMARY The complement system, which functions by lysing pathogens directly or by promoting their uptake by phagocytes, is critical for controlling many microbial infections. Here we show that in Streptococcus pneumoniae, increasing bacterial chain length sensitizes this pathogen to complement deposition and subsequent uptake by human neutrophils. Consistent with this, we show that minimizing chain length provides wild-type bacteria with a competitive advantage in vivo in a model of systemic infection. Investigating how the host overcomes this virulence strategy, we find that antibody promotes complement-dependent opsonophagocytic killing of Streptococcus pneumoniae and lysis of Haemophilus influenzae independent of Fc-mediated effector functions. Consistent with the agglutinating effect of antibody, F(ab′)2 but not Fab could promote this effect. Therefore, increasing pathogen size, whether by natural changes in cellular morphology or via antibody-mediated agglutination, promotes complement-dependent killing. These observations have broad implications for how cell size and morphology can affect virulence among pathogenic microbes. PMID:22100164
Malcolm, J; Sherriff, A; Lappin, D F; Ramage, G; Conway, D I; Macpherson, L M D; Culshaw, S
2014-12-01
Secretion of antimicrobial proteins (AMPs) and salivary antibodies can modify biofilm formation at host body surfaces. In adolescents, associations have been reported between dental caries and salivary AMPs. AMPs demonstrate direct antimicrobial effects at high concentrations, and at lower more physiological concentrations they mediate changes in host cell defenses, which may alter the local environment and indirectly shape local biofilm formation. The expression of salivary AMPs in preschool children, at an age when the oral bacteria are known to change, has not been investigated. We sought to investigate salivary AMP expression in the context of previously well-documented changes in the oral cavities of this age group including salivary immunoglobulin A (IgA), oral bacteria and dental caries. Dental plaque and saliva were collected from 57 children aged 12-24 months at baseline, of whom 23 children were followed-up at 3 years of age. At each time, saliva was assessed for LL37, human neutrophil peptides 1-3, calprotectin, lactoferrin, salivary IgA, total plaque bacteria and Streptococcus mutans. Over time, concentrations of AMPs, S. mutans and bacteria-specific salivary IgA increased. Caries experience was also recorded when children were 3 years old. Concentrations of AMPs were highest in the saliva of 3-year-old children with the greatest burden of S. mutans. These data suggest that salivary AMPs are variable over time and between individuals, and are linked with bacterial colonization. At follow up, the majority of children remained caries free. Larger longitudinal studies are required to confirm whether salivary AMP levels are predictive of caries and whether their modulation offers therapeutic benefit. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Host and microbiological factors related to dental caries development.
De Soet, J J; van Gemert-Schriks, M C M; Laine, M L; van Amerongen, W E; Morré, S A; van Winkelhoff, A J
2008-01-01
Studies on dental caries suggest that in severe cases it may induce a systemic immune response. This occurs particularly when caries progresses into pulpal inflammation and results in abscess or fistula formation (AFF). We hypothesized that severe dental caries will affect the general health of children. The acute phase proteins alpha-1-acid glycoprotein (AGP), C-reactive protein (CRP) and the cytokine neopterin were chosen as parameters to monitor general health. Also, a polymorphism in the bacterial ligand CD14 (-260) was studied to investigate the relationship between genotype sensitivity for bacterial infections and AFF. In Suriname, children aged 6 years were recruited and enrolled into a dental care scheme, randomly assigned to 4 groups with different treatment strategies and monitored longitudinally. 348 children were included in the present study. Blood and saliva samples were taken at baseline and 1 year, and concentrations of serum AGP, CRP, neopterin, salivary Streptococcus mutans and CD14-260 C>T polymorphism were determined. There was no significant association between different treatment strategies and the serum parameters. Binary logistic regression analyses revealed a significant association between AFF as the outcome variable and the CD14 genotype and the concentrations of CRP and of neopterin as factors (p < 0.05). A significant negative association was found between the CD14-260 TT and AFF (p = 0.035, OR = 3.3) for the whole population. For children who had 4 or more carious lesions at baseline, the significance increased (p = 0.005, OR = 4.8), suggesting that the CD14-260 TT genotype was protective for AFF as a consequence of dental caries. Copyright 2008 S. Karger AG, Basel.
Alves-Barroco, Cinthia; Roma-Rodrigues, Catarina; Raposo, Luís R; Brás, Catarina; Diniz, Mário; Caço, João; Costa, Pedro M; Santos-Sanches, Ilda; Fernandes, Alexandra R
2018-03-25
Streptococcus dysgalactiae subsp. dysgalactiae (SDSD) is a major cause of bovine mastitis and has been regarded as an animal-restricted pathogen, although rare infections have been described in humans. Previous studies revealed the presence of virulence genes encoded by phages of the human pathogen Group A Streptococcus pyogenes (GAS) in SDSD isolated from the milk of bovine udder with mastitis. The isolates SDSD VSD5 and VSD13 could adhere and internalize human primary keratinocyte cells, suggesting a possible human infection potential of bovine isolates. In this work, the in vitro and in vivo potential of SDSD to internalize/adhere human cells of the respiratory track and zebrafish as biological models was evaluated. Our results showed that, in vitro, bovine SDSD strains could interact and internalize human respiratory cell lines and that this internalization was dependent on an active transport mechanism and that, in vivo, SDSD are able to cause invasive infections producing zebrafish morbidity and mortality. The infectious potential of these isolates showed to be isolate-specific and appeared to be independent of the presence or absence of GAS phage-encoded virulence genes. Although the infection ability of the bovine SDSD strains was not as strong as the human pathogenic S. pyogenes in the zebrafish model, results suggested that these SDSD isolates are able to interact with human cells and infect zebrafish, a vertebrate infectious model, emerging as pathogens with zoonotic capability. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Gao, Lizeng; Liu, Yuan; Kim, Dongyeop; Li, Yong; Hwang, Geelsu; Naha, Pratap C; Cormode, David P; Koo, Hyun
2016-09-01
Dental biofilms (known as plaque) are notoriously difficult to remove or treat because the bacteria can be enmeshed in a protective extracellular matrix. It can also create highly acidic microenvironments that cause acid-dissolution of enamel-apatite on teeth, leading to the onset of dental caries. Current antimicrobial agents are incapable of disrupting the matrix and thereby fail to efficiently kill the microbes within plaque-biofilms. Here, we report a novel strategy to control plaque-biofilms using catalytic nanoparticles (CAT-NP) with peroxidase-like activity that trigger extracellular matrix degradation and cause bacterial death within acidic niches of caries-causing biofilm. CAT-NP containing biocompatible Fe3O4 were developed to catalyze H2O2 to generate free-radicals in situ that simultaneously degrade the biofilm matrix and rapidly kill the embedded bacteria with exceptional efficacy (>5-log reduction of cell-viability). Moreover, it displays an additional property of reducing apatite demineralization in acidic conditions. Using 1-min topical daily treatments akin to a clinical situation, we demonstrate that CAT-NP in combination with H2O2 effectively suppress the onset and severity of dental caries while sparing normal tissues in vivo. Our results reveal the potential to exploit nanocatalysts with enzyme-like activity as a potent alternative approach for treatment of a prevalent biofilm-associated oral disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cariogenic microbiota of children under chemotherapy: A pilot study.
Volpato, Luiz Evaristo Ricci; Kloster, Annelyze Podolan; Nunes, Lenieser Fajardo; Pedro, Fabio Luis Miranda; Borges, Alvaro Henrique
2016-01-01
To analyze the cariogenic microbiota of children who are under antineoplastic therapy. Twenty-seven patients undergoing cancer treatment in the Pediatric Unit of Mato Grosso Cancer Hospital were selected. The inclusion criteria of volunteers were being under chemotherapy in the saliva collection period, age between 2 and 18 years, collaborate with the protocol for clinical examination and saliva collection, and responsible have given their written consent. For the realization of lactobacilli and Streptococcus mutans count in the patients' saliva, respectively, Dentalcult I and II (LaborClin; ) kits were used. Kruskal-Wallis and Fisher's exact tests were used to assess the association of the variables age group, prevalence of lactobacilli and S. mutans, diagnosis of patients, presence and level of decay of patients defined by decayed, filled, and missing teeth (DMFT)/dmft indexes with a significance level of 5%. The group of patients consisted of 27 children, 15 males, and 12 females; 44% were aged between 6 and 10 years; 61% had present or past history of caries (dmft/DMFT >0); 48% had low value for Dentalcult I; 59% presented value grade 0 to Dentalcult II; and 63% were diagnosed with acute lymphoid leukemia. There was a high prevalence of dental caries in the study population but low rates of S. mutans and lactobacilli in the saliva of the children. Lactobacilli rate was significantly associated with caries index scores, and the prevalence of caries was directly associated with the age group of the children.
Elevated Incidence of Dental Caries in a Mouse Model of Cystic Fibrosis
Catalán, Marcelo A.; Scott-Anne, Kathleen; Klein, Marlise I.; Koo, Hyun; Bowen, William H.; Melvin, James E.
2011-01-01
Background Dental caries is the single most prevalent and costly infectious disease worldwide, affecting more than 90% of the population in the U.S. The development of dental cavities requires the colonization of the tooth surface by acid-producing bacteria, such as Streptococcus mutans. Saliva bicarbonate constitutes the main buffering system which neutralizes the pH fall generated by the plaque bacteria during sugar metabolism. We found that the saliva pH is severely decreased in a mouse model of cystic fibrosis disease (CF). Given the close relationship between pH and caries development, we hypothesized that caries incidence might be elevated in the mouse CF model. Methodology/Principal Findings We induced carious lesions in CF and wildtype mice by infecting their oral cavity with S. mutans, a well-studied cariogenic bacterium. After infection, the mice were fed a high-sucrose diet for 5 weeks (diet 2000). The mice were then euthanized and their jaws removed for caries scoring and bacterial counting. A dramatic increase in caries and severity of lesions scores were apparent in CF mice compared to their wildtype littermates. The elevated incidence of carious lesions correlated with a striking increase in the S. mutans viable population in dental plaque (20-fold increase in CF vs. wildtype mice; p value<0.003; t test). We also found that the pilocarpine-stimulated saliva bicarbonate concentration was significantly reduced in CF mice (16±2 mM vs. 31±2 mM, CF and wildtype mice, respectively; p value<0.01; t test). Conclusions/Significance Considering that bicarbonate is the most important pH buffering system in saliva, and the adherence and survival of aciduric bacteria such as S. mutans are enhanced at low pH values, we speculate that the decrease in the bicarbonate content and pH buffering of the saliva is at least partially responsible for the increased severity of lesions observed in the CF mouse. PMID:21304986
Genotype-Specific Regulation of Oral Innate Immunity by T2R38 Taste Receptor
Gil, Sucheol; Coldwell, Susan; Drury, Jeanie L.; Arroyo, Fabiola; Phi, Tran; Saadat, Sanaz; Kwong, Danny; Chung, Whasun Oh
2015-01-01
The bitter taste receptor T2R38 has been shown to regulate mucosal innate immune responses in the upper airway epithelium. Furthermore, SNPs in T2R38 influence the sensitivity to 6-n-propylthiouracil (PROP) and are associated with caries risk/protection. However, no study has been reported on the role of T2R38 in the innate immune responses to oral bacteria. We hypothesize that T2R38 regulates oral innate immunity and that this regulation is genotype-specific. Primary gingival epithelial cells carrying three common genotypes, PAV/PAV (PROP super-taster), AVI/PAV (intermediate) and AVI/AVI (non-taster) were stimulated with cariogenic bacteria Streptococcus mutans, periodontal pathogen Porphyromonas gingivalis or non-pathogen Fusobacterium nucleatum. QRT-PCR analyzed T2R38 mRNA, and T2R38-specific siRNA and ELISA were utilized to evaluate induction of hBD-2 (antimicrobial peptide), IL-1α and IL-8 in various donor-lines. Experiments were set up in duplicate and repeated three times. T2R38 mRNA induction in response to S. mutans was highest in PAV/PAV (4.3-fold above the unstimulated controls; p<0.05), while lowest in AVI/AVI (1.2-fold). In PAV/PAV, hBD-2 secretion in response to S. mutans was decreased by 77% when T2R38 was silenced. IL-1α secretion was higher in PAV/PAV compared to AVI/PAV or AVI/AVI with S. mutans stimulation, but it was reduced by half when T2R38 was silenced (p<0.05). In response to P. gingivalis, AVI/AVI showed 4.4-fold increase (p<0.05) in T2R38 expression, whereas the levels in PAV/PAV and AVI/PAV remained close to that of the controls. Secretion levels of IL-1α and IL-8 decreased in AVI/AVI in response to P. gingivalis when T2R38 was silenced (p<0.05), while the changes were not significant in PAV/PAV. Our data suggest that the regulation of gingival innate immunity by T2R38 is genotype-dependent and that the ability to induce a high level of hBD-2 by PAV/PAV carriers may be a reason for protection against caries in this group. PMID:26552761
Nakaranurack, Chotirat; Puttilerpong, Chankit; Suwanpimolkul, Gompol
2017-05-24
Infective endocarditis is an infection with a high mortality rate. Antimicrobial therapy is important for treatment, but data on antimicrobial susceptibilities are limited. This retrospective study analyzed data on the causative microorganisms and antimicrobial susceptibility patterns in patients with infective endocarditis 18 years of age or older who received inpatient care between 2006 and 2015 at King Chulalongkorn Memorial Hospital. A total of 213 patients fulfilled the inclusion criteria. Streptococcus spp. (54.5%) was the most common organism. Viridans streptococcus (46%) was the leading pathogen, followed by Group B streptococcus (27%). The majority of Streptococcus spp. were susceptible to penicillin (82.7%). Among Streptococcus spp., Streptococcus suis had the highest MIC 90 of penicillin and cefotaxime (1.65 and 0.95 μg/ml, respectively). There was a statistically significant increase in the MICs of penicillin and cefotaxime for Streptococcus suis (P = 0.03 and 0.04). Only 45.5% of Streptococcus suis and 77.5% of Viridans streptococcus were susceptible to penicillin. All Enterococcus spp. and Staphylococcus spp. were susceptible to vancomycin. In conclusion, the prevalence of Group B streptococcus isolates increased among patients with infective endocarditis in Thailand. Streptococcus suis had the highest MIC 90 and proportion of isolates not susceptible to penicillin. Rigorous restriction of the use of antimicrobial agents in animal feeds should be a primary concern.
Valentiny, Christine; Dirschmid, Harald; Lhotta, Karl
2015-05-28
Streptococcus uberis, the most frequent cause of mastitis in lactating cows, is considered non-pathogenic for humans. Only a few case reports have described human infections with this microorganism, which is notoriously difficult to identify. We report the case of a 75-year-old male haemodialysis patient, who developed a severe foot infection with osteomyelitis and bacteraemia. Both Streptococcus uberis and Staphylococcus aureus were identified in wound secretion and blood samples using mass spectrometry. The presence of Streptococcus uberis was confirmed by superoxide dismutase A sequencing. The patient recovered after amputation of the forefoot and antibiotic treatment with ampicillin/sulbactam. He had probably acquired the infection while walking barefoot on cattle pasture land. This is the first case report of a human infection with Streptococcus uberis with identification of the microorganism using modern molecular technology. We propose that Staphylococcus aureus co-infection was a prerequisite for deep wound and bloodstream infection with Streptococcus uberis.
Molecular and genomic characterization of pathogenic traits of group A Streptococcus pyogenes
HAMADA, Shigeyuki; KAWABATA, Shigetada; NAKAGAWA, Ichiro
2015-01-01
Group A streptococcus (GAS) or Streptococcus pyogenes causes various diseases ranging from self-limiting sore throat to deadly invasive diseases. The genome size of GAS is 1.85–1.9 Mb, and genomic rearrangement has been demonstrated. GAS possesses various surface-associated substances such as hyaluronic capsule, M proteins, and fibronectin/laminin/immunoglobulin-binding proteins. These are related to the virulence and play multifaceted and mutually reflected roles in the pathogenesis of GAS infections. Invasion of GAS into epithelial cells and deeper tissues provokes immune and non-immune defense or inflammatory responses including the recruitment of neutrophils, macrophages, and dendritic cells in hosts. GAS frequently evades host defense mechanisms by using its virulence factors. Extracellular products of GAS may perturb cellular and subcellular functions and degrade tissues enzymatically, which leads to the aggravation of local and/or systemic disorders in the host. In this review, we summarize some important cellular and extracellular substances that may affect pathogenic processes during GAS infections, and the host responses to these. PMID:26666305
Bullous impetigo caused by Streptococcus salivarius: a case report.
Brook, I
1980-01-01
A 19-month-old child presented with bullous impetigo around the perineal region, penis, and left foot. Streptococcus salivarius was the only isolate recovered from the lesions. The child was treated with parenteral penicillin, debridement of the bulli, and local application of silver sulphadiazine cream. This case of bullous impetigo illustrates another aspect of the pathogenicity of Strep. salivarius. Images Fig. 1 Fig. 2 PMID:7002959
Koczula, A; Willenborg, J; Bertram, R; Takamatsu, D; Valentin-Weigand, P; Goethe, R
2014-12-01
The lack of knowledge about pathogenicity mechanisms of Streptococcus (S.) suis is, at least partially, attributed to limited methods for its genetic manipulation. Here, we established a Cre-lox based recombination system for markerless gene deletions in S. suis serotype 2 with high selective pressure and without undesired side effects. Copyright © 2014 Elsevier B.V. All rights reserved.
Krishna, Swathy; Ananthalakshmi, R; Jeeva, J Sathiya; Girija, AS Smiline; Jeddy, Nadeem
2017-01-01
Introduction Solanum nigrum and Phyllanthus niruri are common herbs which are indigeneous to India. Solanum nigrum commonly called ‘manathakkali Keerai’ in Tamil, forms an indispensable part of South Indian diet. Phyllanthus niruri (keezhanelli in Tamil) is a widely used medicinal plant, the leaves of which have been used extensively in Ayurveda and native medicine to cure various liver ailments. The herbs Solanum nigrum and Phyllanthus niruri have been found to be effective against numerous enteropathogens in various in vitro studies. Aim To assess and compare the antibacterial efficacy of the crude alcoholic extract of the leaves of Solanum nigrum and Phyllanthus niruri against five cariogenic organisms. Materials and Methods Standard strains of the micro-organisms were obtained from ATCC (American Type Culture Collection) and MTCC (Microbial Type Culture Collection) which comprised of Streptococcus mutans MTCC no. 890, Streptococcus oralis MTCC no 2696, Lactobacillus acidophillus MTCC no. 10307, Streptococcus sanguis ATCC no. 10556 and Streptococcus salivarius ATCC no. 13419. The organisms obtained were revived and lawn cultured on Trypticase Soy Agar-Blood Agar (TSA-BA) and de Man, Rogosa and Sharpe (MRS) agar media. The antibacterial effect of the dried and powdered leaves of Solanum nigrum and Phyllanthus niruri was tested using agar well diffusion method. The zones of inhibition obtained after incubation were measured and tabulated. The antibacterial activity for the two herbs was compared using the Mann-Whitney test. Results The antibacterial zones of inhibition obtained for the herb Solanum nigrum was in the range of 12.3-14.6 mm and ranged from 9.7-11.6 mm for the herb Phyllanthus niruri. When the zones of inhibition were compared for the herbs, Solanum nigrum showed significantly greater zones of inhibition compared to Phyllanthus niruri for the organisms Streptococcus sanguis, Streptococcus salivarius, Streptococcus oralis and Streptococcus mutans (p-value<0.05). Conclusion The alcoholic extract of leaves of Solanum nigrum and Phyllanthus niruri showed significant antibacterial activity against cariogenic organisms, with Solanum nigrum being more anti-cariogenic than Phyllanthus niruri. PMID:28764202