Sample records for carlo automatic modeling

  1. [Study on the automatic parameters identification of water pipe network model].

    PubMed

    Jia, Hai-Feng; Zhao, Qi-Feng

    2010-01-01

    Based on the problems analysis on development and application of water pipe network model, the model parameters automatic identification is regarded as a kernel bottleneck of model's application in water supply enterprise. The methodology of water pipe network model parameters automatic identification based on GIS and SCADA database is proposed. Then the kernel algorithm of model parameters automatic identification is studied, RSA (Regionalized Sensitivity Analysis) is used for automatic recognition of sensitive parameters, and MCS (Monte-Carlo Sampling) is used for automatic identification of parameters, the detail technical route based on RSA and MCS is presented. The module of water pipe network model parameters automatic identification is developed. At last, selected a typical water pipe network as a case, the case study on water pipe network model parameters automatic identification is conducted and the satisfied results are achieved.

  2. UNCERTAINTY ANALYSIS IN WATER QUALITY MODELING USING QUAL2E

    EPA Science Inventory

    A strategy for incorporating uncertainty analysis techniques (sensitivity analysis, first order error analysis, and Monte Carlo simulation) into the mathematical water quality model QUAL2E is described. The model, named QUAL2E-UNCAS, automatically selects the input variables or p...

  3. Exploring cluster Monte Carlo updates with Boltzmann machines

    NASA Astrophysics Data System (ADS)

    Wang, Lei

    2017-11-01

    Boltzmann machines are physics informed generative models with broad applications in machine learning. They model the probability distribution of an input data set with latent variables and generate new samples accordingly. Applying the Boltzmann machines back to physics, they are ideal recommender systems to accelerate the Monte Carlo simulation of physical systems due to their flexibility and effectiveness. More intriguingly, we show that the generative sampling of the Boltzmann machines can even give different cluster Monte Carlo algorithms. The latent representation of the Boltzmann machines can be designed to mediate complex interactions and identify clusters of the physical system. We demonstrate these findings with concrete examples of the classical Ising model with and without four-spin plaquette interactions. In the future, automatic searches in the algorithm space parametrized by Boltzmann machines may discover more innovative Monte Carlo updates.

  4. Discrete range clustering using Monte Carlo methods

    NASA Technical Reports Server (NTRS)

    Chatterji, G. B.; Sridhar, B.

    1993-01-01

    For automatic obstacle avoidance guidance during rotorcraft low altitude flight, a reliable model of the nearby environment is needed. Such a model may be constructed by applying surface fitting techniques to the dense range map obtained by active sensing using radars. However, for covertness, passive sensing techniques using electro-optic sensors are desirable. As opposed to the dense range map obtained via active sensing, passive sensing algorithms produce reliable range at sparse locations, and therefore, surface fitting techniques to fill the gaps in the range measurement are not directly applicable. Both for automatic guidance and as a display for aiding the pilot, these discrete ranges need to be grouped into sets which correspond to objects in the nearby environment. The focus of this paper is on using Monte Carlo methods for clustering range points into meaningful groups. One of the aims of the paper is to explore whether simulated annealing methods offer significant advantage over the basic Monte Carlo method for this class of problems. We compare three different approaches and present application results of these algorithms to a laboratory image sequence and a helicopter flight sequence.

  5. Image based Monte Carlo Modeling for Computational Phantom

    NASA Astrophysics Data System (ADS)

    Cheng, Mengyun; Wang, Wen; Zhao, Kai; Fan, Yanchang; Long, Pengcheng; Wu, Yican

    2014-06-01

    The evaluation on the effects of ionizing radiation and the risk of radiation exposure on human body has been becoming one of the most important issues for radiation protection and radiotherapy fields, which is helpful to avoid unnecessary radiation and decrease harm to human body. In order to accurately evaluate the dose on human body, it is necessary to construct more realistic computational phantom. However, manual description and verfication of the models for Monte carlo(MC)simulation are very tedious, error-prone and time-consuming. In addiation, it is difficult to locate and fix the geometry error, and difficult to describe material information and assign it to cells. MCAM (CAD/Image-based Automatic Modeling Program for Neutronics and Radiation Transport Simulation) was developed as an interface program to achieve both CAD- and image-based automatic modeling by FDS Team (Advanced Nuclear Energy Research Team, http://www.fds.org.cn). The advanced version (Version 6) of MCAM can achieve automatic conversion from CT/segmented sectioned images to computational phantoms such as MCNP models. Imaged-based automatic modeling program(MCAM6.0) has been tested by several medical images and sectioned images. And it has been applied in the construction of Rad-HUMAN. Following manual segmentation and 3D reconstruction, a whole-body computational phantom of Chinese adult female called Rad-HUMAN was created by using MCAM6.0 from sectioned images of a Chinese visible human dataset. Rad-HUMAN contains 46 organs/tissues, which faithfully represented the average anatomical characteristics of the Chinese female. The dose conversion coefficients(Dt/Ka) from kerma free-in-air to absorbed dose of Rad-HUMAN were calculated. Rad-HUMAN can be applied to predict and evaluate dose distributions in the Treatment Plan System (TPS), as well as radiation exposure for human body in radiation protection.

  6. Assessing the performance of a covert automatic target recognition algorithm

    NASA Astrophysics Data System (ADS)

    Ehrman, Lisa M.; Lanterman, Aaron D.

    2005-05-01

    Passive radar systems exploit illuminators of opportunity, such as TV and FM radio, to illuminate potential targets. Doing so allows them to operate covertly and inexpensively. Our research seeks to enhance passive radar systems by adding automatic target recognition (ATR) capabilities. In previous papers we proposed conducting ATR by comparing the radar cross section (RCS) of aircraft detected by a passive radar system to the precomputed RCS of aircraft in the target class. To effectively model the low-frequency setting, the comparison is made via a Rician likelihood model. Monte Carlo simulations indicate that the approach is viable. This paper builds on that work by developing a method for quickly assessing the potential performance of the ATR algorithm without using exhaustive Monte Carlo trials. This method exploits the relation between the probability of error in a binary hypothesis test under the Bayesian framework to the Chernoff information. Since the data are well-modeled as Rician, we begin by deriving a closed-form approximation for the Chernoff information between two Rician densities. This leads to an approximation for the probability of error in the classification algorithm that is a function of the number of available measurements. We conclude with an application that would be particularly cumbersome to accomplish via Monte Carlo trials, but that can be quickly addressed using the Chernoff information approach. This application evaluates the length of time that an aircraft must be tracked before the probability of error in the ATR algorithm drops below a desired threshold.

  7. Efficient Monte Carlo sampling of inverse problems using a neural network-based forward—applied to GPR crosshole traveltime inversion

    NASA Astrophysics Data System (ADS)

    Hansen, T. M.; Cordua, K. S.

    2017-12-01

    Probabilistically formulated inverse problems can be solved using Monte Carlo-based sampling methods. In principle, both advanced prior information, based on for example, complex geostatistical models and non-linear forward models can be considered using such methods. However, Monte Carlo methods may be associated with huge computational costs that, in practice, limit their application. This is not least due to the computational requirements related to solving the forward problem, where the physical forward response of some earth model has to be evaluated. Here, it is suggested to replace a numerical complex evaluation of the forward problem, with a trained neural network that can be evaluated very fast. This will introduce a modeling error that is quantified probabilistically such that it can be accounted for during inversion. This allows a very fast and efficient Monte Carlo sampling of the solution to an inverse problem. We demonstrate the methodology for first arrival traveltime inversion of crosshole ground penetrating radar data. An accurate forward model, based on 2-D full-waveform modeling followed by automatic traveltime picking, is replaced by a fast neural network. This provides a sampling algorithm three orders of magnitude faster than using the accurate and computationally expensive forward model, and also considerably faster and more accurate (i.e. with better resolution), than commonly used approximate forward models. The methodology has the potential to dramatically change the complexity of non-linear and non-Gaussian inverse problems that have to be solved using Monte Carlo sampling techniques.

  8. Modeling the Hyperdistribution of Item Parameters To Improve the Accuracy of Recovery in Estimation Procedures.

    ERIC Educational Resources Information Center

    Matthews-Lopez, Joy L.; Hombo, Catherine M.

    The purpose of this study was to examine the recovery of item parameters in simulated Automatic Item Generation (AIG) conditions, using Markov chain Monte Carlo (MCMC) estimation methods to attempt to recover the generating distributions. To do this, variability in item and ability parameters was manipulated. Realistic AIG conditions were…

  9. CAD-based Automatic Modeling Method for Geant4 geometry model Through MCAM

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Nie, Fanzhi; Wang, Guozhong; Long, Pengcheng; LV, Zhongliang; LV, Zhongliang

    2014-06-01

    Geant4 is a widely used Monte Carlo transport simulation package. Before calculating using Geant4, the calculation model need be established which could be described by using Geometry Description Markup Language (GDML) or C++ language. However, it is time-consuming and error-prone to manually describe the models by GDML. Automatic modeling methods have been developed recently, but there are some problem existed in most of present modeling programs, specially some of them were not accurate or adapted to specifically CAD format. To convert the GDML format models to CAD format accurately, a Geant4 Computer Aided Design (CAD) based modeling method was developed for automatically converting complex CAD geometry model into GDML geometry model. The essence of this method was dealing with CAD model represented with boundary representation (B-REP) and GDML model represented with constructive solid geometry (CSG). At first, CAD model was decomposed to several simple solids which had only one close shell. And then the simple solid was decomposed to convex shell set. Then corresponding GDML convex basic solids were generated by the boundary surfaces getting from the topological characteristic of a convex shell. After the generation of these solids, GDML model was accomplished with series boolean operations. This method was adopted in CAD/Image-based Automatic Modeling Program for Neutronics & Radiation Transport (MCAM), and tested with several models including the examples in Geant4 install package. The results showed that this method could convert standard CAD model accurately, and can be used for Geant4 automatic modeling.

  10. Noise in Neuronal and Electronic Circuits: A General Modeling Framework and Non-Monte Carlo Simulation Techniques.

    PubMed

    Kilinc, Deniz; Demir, Alper

    2017-08-01

    The brain is extremely energy efficient and remarkably robust in what it does despite the considerable variability and noise caused by the stochastic mechanisms in neurons and synapses. Computational modeling is a powerful tool that can help us gain insight into this important aspect of brain mechanism. A deep understanding and computational design tools can help develop robust neuromorphic electronic circuits and hybrid neuroelectronic systems. In this paper, we present a general modeling framework for biological neuronal circuits that systematically captures the nonstationary stochastic behavior of ion channels and synaptic processes. In this framework, fine-grained, discrete-state, continuous-time Markov chain models of both ion channels and synaptic processes are treated in a unified manner. Our modeling framework features a mechanism for the automatic generation of the corresponding coarse-grained, continuous-state, continuous-time stochastic differential equation models for neuronal variability and noise. Furthermore, we repurpose non-Monte Carlo noise analysis techniques, which were previously developed for analog electronic circuits, for the stochastic characterization of neuronal circuits both in time and frequency domain. We verify that the fast non-Monte Carlo analysis methods produce results with the same accuracy as computationally expensive Monte Carlo simulations. We have implemented the proposed techniques in a prototype simulator, where both biological neuronal and analog electronic circuits can be simulated together in a coupled manner.

  11. Automatic crown cover mapping to improve forest inventory

    Treesearch

    Claude Vidal; Jean-Guy Boureau; Nicolas Robert; Nicolas Py; Josiane Zerubia; Xavier Descombes; Guillaume Perrin

    2009-01-01

    To automatically analyze near infrared aerial photographs, the French National Institute for Research in Computer Science and Control developed together with the French National Forest Inventory (NFI) a method for automatic crown cover mapping. This method uses a Reverse Jump Monte Carlo Markov Chain algorithm to locate the crowns and describe those using ellipses or...

  12. SU-D-BRC-01: An Automatic Beam Model Commissioning Method for Monte Carlo Simulations in Pencil-Beam Scanning Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, N; Shen, C; Tian, Z

    Purpose: Monte Carlo (MC) simulation is typically regarded as the most accurate dose calculation method for proton therapy. Yet for real clinical cases, the overall accuracy also depends on that of the MC beam model. Commissioning a beam model to faithfully represent a real beam requires finely tuning a set of model parameters, which could be tedious given the large number of pencil beams to commmission. This abstract reports an automatic beam-model commissioning method for pencil-beam scanning proton therapy via an optimization approach. Methods: We modeled a real pencil beam with energy and spatial spread following Gaussian distributions. Mean energy,more » and energy and spatial spread are model parameters. To commission against a real beam, we first performed MC simulations to calculate dose distributions of a set of ideal (monoenergetic, zero-size) pencil beams. Dose distribution for a real pencil beam is hence linear superposition of doses for those ideal pencil beams with weights in the Gaussian form. We formulated the commissioning task as an optimization problem, such that the calculated central axis depth dose and lateral profiles at several depths match corresponding measurements. An iterative algorithm combining conjugate gradient method and parameter fitting was employed to solve the optimization problem. We validated our method in simulation studies. Results: We calculated dose distributions for three real pencil beams with nominal energies 83, 147 and 199 MeV using realistic beam parameters. These data were regarded as measurements and used for commission. After commissioning, average difference in energy and beam spread between determined values and ground truth were 4.6% and 0.2%. With the commissioned model, we recomputed dose. Mean dose differences from measurements were 0.64%, 0.20% and 0.25%. Conclusion: The developed automatic MC beam-model commissioning method for pencil-beam scanning proton therapy can determine beam model parameters with satisfactory accuracy.« less

  13. New approach based on tetrahedral-mesh geometry for accurate 4D Monte Carlo patient-dose calculation

    NASA Astrophysics Data System (ADS)

    Han, Min Cheol; Yeom, Yeon Soo; Kim, Chan Hyeong; Kim, Seonghoon; Sohn, Jason W.

    2015-02-01

    In the present study, to achieve accurate 4D Monte Carlo dose calculation in radiation therapy, we devised a new approach that combines (1) modeling of the patient body using tetrahedral-mesh geometry based on the patient’s 4D CT data, (2) continuous movement/deformation of the tetrahedral patient model by interpolation of deformation vector fields acquired through deformable image registration, and (3) direct transportation of radiation particles during the movement and deformation of the tetrahedral patient model. The results of our feasibility study show that it is certainly possible to construct 4D patient models (= phantoms) with sufficient accuracy using the tetrahedral-mesh geometry and to directly transport radiation particles during continuous movement and deformation of the tetrahedral patient model. This new approach not only produces more accurate dose distribution in the patient but also replaces the current practice of using multiple 3D voxel phantoms and combining multiple dose distributions after Monte Carlo simulations. For routine clinical application of our new approach, the use of fast automatic segmentation algorithms is a must. In order to achieve, simultaneously, both dose accuracy and computation speed, the number of tetrahedrons for the lungs should be optimized. Although the current computation speed of our new 4D Monte Carlo simulation approach is slow (i.e. ~40 times slower than that of the conventional dose accumulation approach), this problem is resolvable by developing, in Geant4, a dedicated navigation class optimized for particle transportation in tetrahedral-mesh geometry.

  14. Parametric diagnosis of the adaptive gas path in the automatic control system of the aircraft engine

    NASA Astrophysics Data System (ADS)

    Kuznetsova, T. A.

    2017-01-01

    The paper dwells on the adaptive multimode mathematical model of the gas-turbine aircraft engine (GTE) embedded in the automatic control system (ACS). The mathematical model is based on the throttle performances, and is characterized by high accuracy of engine parameters identification in stationary and dynamic modes. The proposed on-board engine model is the state space linearized low-level simulation. The engine health is identified by the influence of the coefficient matrix. The influence coefficient is determined by the GTE high-level mathematical model based on measurements of gas-dynamic parameters. In the automatic control algorithm, the sum of squares of the deviation between the parameters of the mathematical model and real GTE is minimized. The proposed mathematical model is effectively used for gas path defects detecting in on-line GTE health monitoring. The accuracy of the on-board mathematical model embedded in ACS determines the quality of adaptive control and reliability of the engine. To improve the accuracy of identification solutions and sustainability provision, the numerical method of Monte Carlo was used. The parametric diagnostic algorithm based on the LPτ - sequence was developed and tested. Analysis of the results suggests that the application of the developed algorithms allows achieving higher identification accuracy and reliability than similar models used in practice.

  15. Automatic mesh adaptivity for hybrid Monte Carlo/deterministic neutronics modeling of difficult shielding problems

    DOE PAGES

    Ibrahim, Ahmad M.; Wilson, Paul P.H.; Sawan, Mohamed E.; ...

    2015-06-30

    The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as muchmore » geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, eliminating the need for a world-class super computer.« less

  16. Excavator Design Validation

    NASA Technical Reports Server (NTRS)

    Pholsiri, Chalongrath; English, James; Seberino, Charles; Lim, Yi-Je

    2010-01-01

    The Excavator Design Validation tool verifies excavator designs by automatically generating control systems and modeling their performance in an accurate simulation of their expected environment. Part of this software design includes interfacing with human operations that can be included in simulation-based studies and validation. This is essential for assessing productivity, versatility, and reliability. This software combines automatic control system generation from CAD (computer-aided design) models, rapid validation of complex mechanism designs, and detailed models of the environment including soil, dust, temperature, remote supervision, and communication latency to create a system of high value. Unique algorithms have been created for controlling and simulating complex robotic mechanisms automatically from just a CAD description. These algorithms are implemented as a commercial cross-platform C++ software toolkit that is configurable using the Extensible Markup Language (XML). The algorithms work with virtually any mobile robotic mechanisms using module descriptions that adhere to the XML standard. In addition, high-fidelity, real-time physics-based simulation algorithms have also been developed that include models of internal forces and the forces produced when a mechanism interacts with the outside world. This capability is combined with an innovative organization for simulation algorithms, new regolith simulation methods, and a unique control and study architecture to make powerful tools with the potential to transform the way NASA verifies and compares excavator designs. Energid's Actin software has been leveraged for this design validation. The architecture includes parametric and Monte Carlo studies tailored for validation of excavator designs and their control by remote human operators. It also includes the ability to interface with third-party software and human-input devices. Two types of simulation models have been adapted: high-fidelity discrete element models and fast analytical models. By using the first to establish parameters for the second, a system has been created that can be executed in real time, or faster than real time, on a desktop PC. This allows Monte Carlo simulations to be performed on a computer platform available to all researchers, and it allows human interaction to be included in a real-time simulation process. Metrics on excavator performance are established that work with the simulation architecture. Both static and dynamic metrics are included.

  17. Cross hole GPR traveltime inversion using a fast and accurate neural network as a forward model

    NASA Astrophysics Data System (ADS)

    Mejer Hansen, Thomas

    2017-04-01

    Probabilistic formulated inverse problems can be solved using Monte Carlo based sampling methods. In principle both advanced prior information, such as based on geostatistics, and complex non-linear forward physical models can be considered. However, in practice these methods can be associated with huge computational costs that in practice limit their application. This is not least due to the computational requirements related to solving the forward problem, where the physical response of some earth model has to be evaluated. Here, it is suggested to replace a numerical complex evaluation of the forward problem, with a trained neural network that can be evaluated very fast. This will introduce a modeling error, that is quantified probabilistically such that it can be accounted for during inversion. This allows a very fast and efficient Monte Carlo sampling of the solution to an inverse problem. We demonstrate the methodology for first arrival travel time inversion of cross hole ground-penetrating radar (GPR) data. An accurate forward model, based on 2D full-waveform modeling followed by automatic travel time picking, is replaced by a fast neural network. This provides a sampling algorithm three orders of magnitude faster than using the full forward model, and considerably faster, and more accurate, than commonly used approximate forward models. The methodology has the potential to dramatically change the complexity of the types of inverse problems that can be solved using non-linear Monte Carlo sampling techniques.

  18. FitSKIRT: genetic algorithms to automatically fit dusty galaxies with a Monte Carlo radiative transfer code

    NASA Astrophysics Data System (ADS)

    De Geyter, G.; Baes, M.; Fritz, J.; Camps, P.

    2013-02-01

    We present FitSKIRT, a method to efficiently fit radiative transfer models to UV/optical images of dusty galaxies. These images have the advantage that they have better spatial resolution compared to FIR/submm data. FitSKIRT uses the GAlib genetic algorithm library to optimize the output of the SKIRT Monte Carlo radiative transfer code. Genetic algorithms prove to be a valuable tool in handling the multi- dimensional search space as well as the noise induced by the random nature of the Monte Carlo radiative transfer code. FitSKIRT is tested on artificial images of a simulated edge-on spiral galaxy, where we gradually increase the number of fitted parameters. We find that we can recover all model parameters, even if all 11 model parameters are left unconstrained. Finally, we apply the FitSKIRT code to a V-band image of the edge-on spiral galaxy NGC 4013. This galaxy has been modeled previously by other authors using different combinations of radiative transfer codes and optimization methods. Given the different models and techniques and the complexity and degeneracies in the parameter space, we find reasonable agreement between the different models. We conclude that the FitSKIRT method allows comparison between different models and geometries in a quantitative manner and minimizes the need of human intervention and biasing. The high level of automation makes it an ideal tool to use on larger sets of observed data.

  19. New developments in FEYNRULES

    NASA Astrophysics Data System (ADS)

    Alloul, Adam; Christensen, Neil D.; Degrande, Céline; Duhr, Claude; Fuks, Benjamin

    2014-06-01

    The program FEYNRULES is a MATHEMATICA package developed to facilitate the implementation of new physics theories into high-energy physics tools. Starting from a minimal set of information such as the model gauge symmetries, its particle content, parameters and Lagrangian, FEYNRULES provides all necessary routines to extract automatically from the Lagrangian (that can also be computed semi-automatically for supersymmetric theories) the associated Feynman rules. These can be further exported to several Monte Carlo event generators through dedicated interfaces, as well as translated into a PYTHON library, under the so-called UFO model format, agnostic of the model complexity, especially in terms of Lorentz and/or color structures appearing in the vertices or of number of external legs. In this work, we briefly report on the most recent new features that have been added to FEYNRULES, including full support for spin-1 fermions, a new module allowing for the automated diagonalization of the particle spectrum and a new set of routines dedicated to decay width calculations.

  20. ACCELERATING FUSION REACTOR NEUTRONICS MODELING BY AUTOMATIC COUPLING OF HYBRID MONTE CARLO/DETERMINISTIC TRANSPORT ON CAD GEOMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biondo, Elliott D; Ibrahim, Ahmad M; Mosher, Scott W

    2015-01-01

    Detailed radiation transport calculations are necessary for many aspects of the design of fusion energy systems (FES) such as ensuring occupational safety, assessing the activation of system components for waste disposal, and maintaining cryogenic temperatures within superconducting magnets. Hybrid Monte Carlo (MC)/deterministic techniques are necessary for this analysis because FES are large, heavily shielded, and contain streaming paths that can only be resolved with MC. The tremendous complexity of FES necessitates the use of CAD geometry for design and analysis. Previous ITER analysis has required the translation of CAD geometry to MCNP5 form in order to use the AutomateD VAriaNcemore » reducTion Generator (ADVANTG) for hybrid MC/deterministic transport. In this work, ADVANTG was modified to support CAD geometry, allowing hybrid (MC)/deterministic transport to be done automatically and eliminating the need for this translation step. This was done by adding a new ray tracing routine to ADVANTG for CAD geometries using the Direct Accelerated Geometry Monte Carlo (DAGMC) software library. This new capability is demonstrated with a prompt dose rate calculation for an ITER computational benchmark problem using both the Consistent Adjoint Driven Importance Sampling (CADIS) method an the Forward Weighted (FW)-CADIS method. The variance reduction parameters produced by ADVANTG are shown to be the same using CAD geometry and standard MCNP5 geometry. Significant speedups were observed for both neutrons (as high as a factor of 7.1) and photons (as high as a factor of 59.6).« less

  1. Stochastic analog neutron transport with TRIPOLI-4 and FREYA: Bayesian uncertainty quantification for neutron multiplicity counting

    DOE PAGES

    Verbeke, J. M.; Petit, O.

    2016-06-01

    From nuclear safeguards to homeland security applications, the need for the better modeling of nuclear interactions has grown over the past decades. Current Monte Carlo radiation transport codes compute average quantities with great accuracy and performance; however, performance and averaging come at the price of limited interaction-by-interaction modeling. These codes often lack the capability of modeling interactions exactly: for a given collision, energy is not conserved, energies of emitted particles are uncorrelated, and multiplicities of prompt fission neutrons and photons are uncorrelated. Many modern applications require more exclusive quantities than averages, such as the fluctuations in certain observables (e.g., themore » neutron multiplicity) and correlations between neutrons and photons. In an effort to meet this need, the radiation transport Monte Carlo code TRIPOLI-4® was modified to provide a specific mode that models nuclear interactions in a full analog way, replicating as much as possible the underlying physical process. Furthermore, the computational model FREYA (Fission Reaction Event Yield Algorithm) was coupled with TRIPOLI-4 to model complete fission events. As a result, FREYA automatically includes fluctuations as well as correlations resulting from conservation of energy and momentum.« less

  2. Structured filtering

    NASA Astrophysics Data System (ADS)

    Granade, Christopher; Wiebe, Nathan

    2017-08-01

    A major challenge facing existing sequential Monte Carlo methods for parameter estimation in physics stems from the inability of existing approaches to robustly deal with experiments that have different mechanisms that yield the results with equivalent probability. We address this problem here by proposing a form of particle filtering that clusters the particles that comprise the sequential Monte Carlo approximation to the posterior before applying a resampler. Through a new graphical approach to thinking about such models, we are able to devise an artificial-intelligence based strategy that automatically learns the shape and number of the clusters in the support of the posterior. We demonstrate the power of our approach by applying it to randomized gap estimation and a form of low circuit-depth phase estimation where existing methods from the physics literature either exhibit much worse performance or even fail completely.

  3. Probabilistic calibration of the distributed hydrological model RIBS applied to real-time flood forecasting: the Harod river basin case study (Israel)

    NASA Astrophysics Data System (ADS)

    Nesti, Alice; Mediero, Luis; Garrote, Luis; Caporali, Enrica

    2010-05-01

    An automatic probabilistic calibration method for distributed rainfall-runoff models is presented. The high number of parameters in hydrologic distributed models makes special demands on the optimization procedure to estimate model parameters. With the proposed technique it is possible to reduce the complexity of calibration while maintaining adequate model predictions. The first step of the calibration procedure of the main model parameters is done manually with the aim to identify their variation range. Afterwards a Monte-Carlo technique is applied, which consists on repetitive model simulations with randomly generated parameters. The Monte Carlo Analysis Toolbox (MCAT) includes a number of analysis methods to evaluate the results of these Monte Carlo parameter sampling experiments. The study investigates the use of a global sensitivity analysis as a screening tool to reduce the parametric dimensionality of multi-objective hydrological model calibration problems, while maximizing the information extracted from hydrological response data. The method is applied to the calibration of the RIBS flood forecasting model in the Harod river basin, placed on Israel. The Harod basin has an extension of 180 km2. The catchment has a Mediterranean climate and it is mainly characterized by a desert landscape, with a soil that is able to absorb large quantities of rainfall and at the same time is capable to generate high peaks of discharge. Radar rainfall data with 6 minute temporal resolution are available as input to the model. The aim of the study is the validation of the model for real-time flood forecasting, in order to evaluate the benefits of improved precipitation forecasting within the FLASH European project.

  4. A Machine Learning Method for the Prediction of Receptor Activation in the Simulation of Synapses

    PubMed Central

    Montes, Jesus; Gomez, Elena; Merchán-Pérez, Angel; DeFelipe, Javier; Peña, Jose-Maria

    2013-01-01

    Chemical synaptic transmission involves the release of a neurotransmitter that diffuses in the extracellular space and interacts with specific receptors located on the postsynaptic membrane. Computer simulation approaches provide fundamental tools for exploring various aspects of the synaptic transmission under different conditions. In particular, Monte Carlo methods can track the stochastic movements of neurotransmitter molecules and their interactions with other discrete molecules, the receptors. However, these methods are computationally expensive, even when used with simplified models, preventing their use in large-scale and multi-scale simulations of complex neuronal systems that may involve large numbers of synaptic connections. We have developed a machine-learning based method that can accurately predict relevant aspects of the behavior of synapses, such as the percentage of open synaptic receptors as a function of time since the release of the neurotransmitter, with considerably lower computational cost compared with the conventional Monte Carlo alternative. The method is designed to learn patterns and general principles from a corpus of previously generated Monte Carlo simulations of synapses covering a wide range of structural and functional characteristics. These patterns are later used as a predictive model of the behavior of synapses under different conditions without the need for additional computationally expensive Monte Carlo simulations. This is performed in five stages: data sampling, fold creation, machine learning, validation and curve fitting. The resulting procedure is accurate, automatic, and it is general enough to predict synapse behavior under experimental conditions that are different to the ones it has been trained on. Since our method efficiently reproduces the results that can be obtained with Monte Carlo simulations at a considerably lower computational cost, it is suitable for the simulation of high numbers of synapses and it is therefore an excellent tool for multi-scale simulations. PMID:23894367

  5. Design, development and validation of software for modelling dietary exposure to food chemicals and nutrients.

    PubMed

    McNamara, C; Naddy, B; Rohan, D; Sexton, J

    2003-10-01

    The Monte Carlo computational system for stochastic modelling of dietary exposure to food chemicals and nutrients is presented. This system was developed through a European Commission-funded research project. It is accessible as a Web-based application service. The system allows and supports very significant complexity in the data sets used as the model input, but provides a simple, general purpose, linear kernel for model evaluation. Specific features of the system include the ability to enter (arbitrarily) complex mathematical or probabilistic expressions at each and every input data field, automatic bootstrapping on subjects and on subject food intake diaries, and custom kernels to apply brand information such as market share and loyalty to the calculation of food and chemical intake.

  6. Automatic Implementation of Prony Analysis for Electromechanical Mode Identification from Phasor Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Ning; Huang, Zhenyu; Tuffner, Francis K.

    2010-07-31

    Small signal stability problems are one of the major threats to grid stability and reliability. Prony analysis has been successfully applied on ringdown data to monitor electromechanical modes of a power system using phasor measurement unit (PMU) data. To facilitate an on-line application of mode estimation, this paper developed a recursive algorithm for implementing Prony analysis and proposed an oscillation detection method to detect ringdown data in real time. By automatically detect ringdown data, the proposed method helps guarantee that Prony analysis is applied properly and timely on the ringdown data. Thus, the mode estimation results can be performed reliablymore » and timely. The proposed method is tested using Monte Carlo simulations based on a 17-machine model and is shown to be able to properly identify the oscillation data for on-line application of Prony analysis.« less

  7. Faunus: An object oriented framework for molecular simulation

    PubMed Central

    Lund, Mikael; Trulsson, Martin; Persson, Björn

    2008-01-01

    Background We present a C++ class library for Monte Carlo simulation of molecular systems, including proteins in solution. The design is generic and highly modular, enabling multiple developers to easily implement additional features. The statistical mechanical methods are documented by extensive use of code comments that – subsequently – are collected to automatically build a web-based manual. Results We show how an object oriented design can be used to create an intuitively appealing coding framework for molecular simulation. This is exemplified in a minimalistic C++ program that can calculate protein protonation states. We further discuss performance issues related to high level coding abstraction. Conclusion C++ and the Standard Template Library (STL) provide a high-performance platform for generic molecular modeling. Automatic generation of code documentation from inline comments has proven particularly useful in that no separate manual needs to be maintained. PMID:18241331

  8. Generating Impact Maps from Automatically Detected Bomb Craters in Aerial Wartime Images Using Marked Point Processes

    NASA Astrophysics Data System (ADS)

    Kruse, Christian; Rottensteiner, Franz; Hoberg, Thorsten; Ziems, Marcel; Rebke, Julia; Heipke, Christian

    2018-04-01

    The aftermath of wartime attacks is often felt long after the war ended, as numerous unexploded bombs may still exist in the ground. Typically, such areas are documented in so-called impact maps which are based on the detection of bomb craters. This paper proposes a method for the automatic detection of bomb craters in aerial wartime images that were taken during the Second World War. The object model for the bomb craters is represented by ellipses. A probabilistic approach based on marked point processes determines the most likely configuration of objects within the scene. Adding and removing new objects to and from the current configuration, respectively, changing their positions and modifying the ellipse parameters randomly creates new object configurations. Each configuration is evaluated using an energy function. High gradient magnitudes along the border of the ellipse are favored and overlapping ellipses are penalized. Reversible Jump Markov Chain Monte Carlo sampling in combination with simulated annealing provides the global energy optimum, which describes the conformance with a predefined model. For generating the impact map a probability map is defined which is created from the automatic detections via kernel density estimation. By setting a threshold, areas around the detections are classified as contaminated or uncontaminated sites, respectively. Our results show the general potential of the method for the automatic detection of bomb craters and its automated generation of an impact map in a heterogeneous image stock.

  9. Nuclear analysis of structural damage and nuclear heating on enhanced K-DEMO divertor model

    NASA Astrophysics Data System (ADS)

    Park, J.; Im, K.; Kwon, S.; Kim, J.; Kim, D.; Woo, M.; Shin, C.

    2017-12-01

    This paper addresses nuclear analysis on the Korean fusion demonstration reactor (K-DEMO) divertor to estimate the overall trend of nuclear heating values and displacement damages. The K-DEMO divertor model was created and converted by the CAD (Pro-Engineer™) and Monte Carlo automatic modeling programs as a 22.5° sector of the tokamak. The Monte Carlo neutron photon transport and ADVANTG codes were used in this calculation with the FENDL-2.1 nuclear data library. The calculation results indicate that the highest values appeared on the upper outboard target (OT) area, which means the OT is exposed to the highest radiation conditions among the three plasma-facing parts (inboard, central and outboard) in the divertor. Especially, much lower nuclear heating values and displacement damages are indicated on the lower part of the OT area than others. These are important results contributing to thermal-hydraulic and thermo-mechanical analyses on the divertor and also it is expected that the copper alloy materials may be partially used as a heat sink only at the lower part of the OT instead of the reduced activation ferritic-martensitic steel due to copper alloy’s high thermal conductivity.

  10. Diffuse X-ray scattering from benzil, C(14)H(10)O(2): analysis via automatic refinement of a Monte Carlo model.

    PubMed

    Welberry, T R; Goossens, D J; Edwards, A J; David, W I

    2001-01-01

    A recently developed method for fitting a Monte Carlo computer-simulation model to observed single-crystal diffuse X-ray scattering has been used to study the diffuse scattering in benzil, diphenylethanedione, C(6)H(5)-CO-CO-C(6)H(5). A model involving 13 parameters consisting of 11 intermolecular force constants, a single intramolecular torsional force constant and a local Debye-Waller factor was refined to give an agreement factor, R = [summation operator omega(Delta I)(2)/summation operator omega I(obs)(2)](1/2), of 14.5% for 101,324 data points. The model was purely thermal in nature. The analysis has shown that the diffuse lines, which feature so prominently in the observed diffraction patterns, are due to strong longitudinal displacement correlations. These are transmitted from molecule to molecule via a network of contacts involving hydrogen bonding of an O atom on one molecule and the para H atom of the phenyl ring of a neighbouring molecule. The analysis also allowed the determination of a torsional force constant for rotations about the single bonds in the molecule. This is the first diffuse scattering study in which measurement of such internal molecular torsion forces has been attempted.

  11. Tool for Rapid Analysis of Monte Carlo Simulations

    NASA Technical Reports Server (NTRS)

    Restrepo, Carolina; McCall, Kurt E.; Hurtado, John E.

    2011-01-01

    Designing a spacecraft, or any other complex engineering system, requires extensive simulation and analysis work. Oftentimes, the large amounts of simulation data generated are very di cult and time consuming to analyze, with the added risk of overlooking potentially critical problems in the design. The authors have developed a generic data analysis tool that can quickly sort through large data sets and point an analyst to the areas in the data set that cause specific types of failures. The Tool for Rapid Analysis of Monte Carlo simulations (TRAM) has been used in recent design and analysis work for the Orion vehicle, greatly decreasing the time it takes to evaluate performance requirements. A previous version of this tool was developed to automatically identify driving design variables in Monte Carlo data sets. This paper describes a new, parallel version, of TRAM implemented on a graphical processing unit, and presents analysis results for NASA's Orion Monte Carlo data to demonstrate its capabilities.

  12. Hypothesis testing of scientific Monte Carlo calculations.

    PubMed

    Wallerberger, Markus; Gull, Emanuel

    2017-11-01

    The steadily increasing size of scientific Monte Carlo simulations and the desire for robust, correct, and reproducible results necessitates rigorous testing procedures for scientific simulations in order to detect numerical problems and programming bugs. However, the testing paradigms developed for deterministic algorithms have proven to be ill suited for stochastic algorithms. In this paper we demonstrate explicitly how the technique of statistical hypothesis testing, which is in wide use in other fields of science, can be used to devise automatic and reliable tests for Monte Carlo methods, and we show that these tests are able to detect some of the common problems encountered in stochastic scientific simulations. We argue that hypothesis testing should become part of the standard testing toolkit for scientific simulations.

  13. Hypothesis testing of scientific Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Wallerberger, Markus; Gull, Emanuel

    2017-11-01

    The steadily increasing size of scientific Monte Carlo simulations and the desire for robust, correct, and reproducible results necessitates rigorous testing procedures for scientific simulations in order to detect numerical problems and programming bugs. However, the testing paradigms developed for deterministic algorithms have proven to be ill suited for stochastic algorithms. In this paper we demonstrate explicitly how the technique of statistical hypothesis testing, which is in wide use in other fields of science, can be used to devise automatic and reliable tests for Monte Carlo methods, and we show that these tests are able to detect some of the common problems encountered in stochastic scientific simulations. We argue that hypothesis testing should become part of the standard testing toolkit for scientific simulations.

  14. CTRANS: A Monte Carlo program for radiative transfer in plane parallel atmospheres with imbedded finite clouds: Development, testing and user's guide

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The program called CTRANS is described which was designed to perform radiative transfer computations in an atmosphere with horizontal inhomogeneities (clouds). Since the atmosphere-ground system was to be richly detailed, the Monte Carlo method was employed. This means that results are obtained through direct modeling of the physical process of radiative transport. The effects of atmopheric or ground albedo pattern detail are essentially built up from their impact upon the transport of individual photons. The CTRANS program actually tracks the photons backwards through the atmosphere, initiating them at a receiver and following them backwards along their path to the Sun. The pattern of incident photons generated through backwards tracking automatically reflects the importance to the receiver of each region of the sky. Further, through backwards tracking, the impact of the finite field of view of the receiver and variations in its response over the field of view can be directly simulated.

  15. Three dimensional quantitative characterization of magnetite nanoparticles embedded in mesoporous silicon: local curvature, demagnetizing factors and magnetic Monte Carlo simulations.

    PubMed

    Uusimäki, Toni; Margaris, Georgios; Trohidou, Kalliopi; Granitzer, Petra; Rumpf, Klemens; Sezen, Meltem; Kothleitner, Gerald

    2013-12-07

    Magnetite nanoparticles embedded within the pores of a mesoporous silicon template have been characterized using electron tomography. Linear least squares optimization was used to fit an arbitrary ellipsoid to each segmented particle from the three dimensional reconstruction. It was then possible to calculate the demagnetizing factors and the direction of the shape anisotropy easy axis for every particle. The demagnetizing factors, along with the knowledge of spatial and volume distribution of the superparamagnetic nanoparticles, were used as a model for magnetic Monte Carlo simulations, yielding zero field cooling/field cooling and magnetic hysteresis curves, which were compared to the measured ones. Additionally, the local curvature of the magnetite particles' docking site within the mesoporous silicon's surface was obtained in two different ways and a comparison will be given. A new iterative semi-automatic image alignment program was written and the importance of image segmentation for a truly objective analysis is also addressed.

  16. Logic circuits based on molecular spider systems.

    PubMed

    Mo, Dandan; Lakin, Matthew R; Stefanovic, Darko

    2016-08-01

    Spatial locality brings the advantages of computation speed-up and sequence reuse to molecular computing. In particular, molecular walkers that undergo localized reactions are of interest for implementing logic computations at the nanoscale. We use molecular spider walkers to implement logic circuits. We develop an extended multi-spider model with a dynamic environment wherein signal transmission is triggered via localized reactions, and use this model to implement three basic gates (AND, OR, NOT) and a cascading mechanism. We develop an algorithm to automatically generate the layout of the circuit. We use a kinetic Monte Carlo algorithm to simulate circuit computations, and we analyze circuit complexity: our design scales linearly with formula size and has a logarithmic time complexity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Differential pencil beam dose computation model for photons.

    PubMed

    Mohan, R; Chui, C; Lidofsky, L

    1986-01-01

    Differential pencil beam (DPB) is defined as the dose distribution relative to the position of the first collision, per unit collision density, for a monoenergetic pencil beam of photons in an infinite homogeneous medium of unit density. We have generated DPB dose distribution tables for a number of photon energies in water using the Monte Carlo method. The three-dimensional (3D) nature of the transport of photons and electrons is automatically incorporated in DPB dose distributions. Dose is computed by evaluating 3D integrals of DPB dose. The DPB dose computation model has been applied to calculate dose distributions for 60Co and accelerator beams. Calculations for the latter are performed using energy spectra generated with the Monte Carlo program. To predict dose distributions near the beam boundaries defined by the collimation system as well as blocks, we utilize the angular distribution of incident photons. Inhomogeneities are taken into account by attenuating the primary photon fluence exponentially utilizing the average total linear attenuation coefficient of intervening tissue, by multiplying photon fluence by the linear attenuation coefficient to yield the number of collisions in the scattering volume, and by scaling the path between the scattering volume element and the computation point by an effective density.

  18. Algorithm Summary and Evaluation: Automatic Implementation of Ringdown Analysis for Electromechanical Mode Identification from Phasor Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Ning; Huang, Zhenyu; Tuffner, Francis K.

    2010-02-28

    Small signal stability problems are one of the major threats to grid stability and reliability. Prony analysis has been successfully applied on ringdown data to monitor electromechanical modes of a power system using phasor measurement unit (PMU) data. To facilitate an on-line application of mode estimation, this paper develops a recursive algorithm for implementing Prony analysis and proposed an oscillation detection method to detect ringdown data in real time. By automatically detecting ringdown data, the proposed method helps guarantee that Prony analysis is applied properly and timely on the ringdown data. Thus, the mode estimation results can be performed reliablymore » and timely. The proposed method is tested using Monte Carlo simulations based on a 17-machine model and is shown to be able to properly identify the oscillation data for on-line application of Prony analysis. In addition, the proposed method is applied to field measurement data from WECC to show the performance of the proposed algorithm.« less

  19. Automated crack detection in conductive smart-concrete structures using a resistor mesh model

    NASA Astrophysics Data System (ADS)

    Downey, Austin; D'Alessandro, Antonella; Ubertini, Filippo; Laflamme, Simon

    2018-03-01

    Various nondestructive evaluation techniques are currently used to automatically detect and monitor cracks in concrete infrastructure. However, these methods often lack the scalability and cost-effectiveness over large geometries. A solution is the use of self-sensing carbon-doped cementitious materials. These self-sensing materials are capable of providing a measurable change in electrical output that can be related to their damage state. Previous work by the authors showed that a resistor mesh model could be used to track damage in structural components fabricated from electrically conductive concrete, where damage was located through the identification of high resistance value resistors in a resistor mesh model. In this work, an automated damage detection strategy that works through placing high value resistors into the previously developed resistor mesh model using a sequential Monte Carlo method is introduced. Here, high value resistors are used to mimic the internal condition of damaged cementitious specimens. The proposed automated damage detection method is experimentally validated using a 500 × 500 × 50 mm3 reinforced cement paste plate doped with multi-walled carbon nanotubes exposed to 100 identical impact tests. Results demonstrate that the proposed Monte Carlo method is capable of detecting and localizing the most prominent damage in a structure, demonstrating that automated damage detection in smart-concrete structures is a promising strategy for real-time structural health monitoring of civil infrastructure.

  20. ITOUGH2(UNIX). Inverse Modeling for TOUGH2 Family of Multiphase Flow Simulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finsterle, S.

    1999-03-01

    ITOUGH2 provides inverse modeling capabilities for the TOUGH2 family of numerical simulators for non-isothermal multiphase flows in fractured-porous media. The ITOUGH2 can be used for estimating parameters by automatic modeling calibration, for sensitivity analyses, and for uncertainity propagation analyses (linear and Monte Carlo simulations). Any input parameter to the TOUGH2 simulator can be estimated based on any type of observation for which a corresponding TOUGH2 output is calculated. ITOUGH2 solves a non-linear least-squares problem using direct or gradient-based minimization algorithms. A detailed residual and error analysis is performed, which includes the evaluation of model identification criteria. ITOUGH2 can also bemore » run in forward mode, solving subsurface flow problems related to nuclear waste isolation, oil, gas, and geothermal resevoir engineering, and vadose zone hydrology.« less

  1. Design considerations for a C-shaped PET system, dedicated to small animal brain imaging, using GATE Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Efthimiou, N.; Papadimitroulas, P.; Kostou, T.; Loudos, G.

    2015-09-01

    Commercial clinical and preclinical PET scanners rely on the full cylindrical geometry for whole body scans as well as for dedicated organs. In this study we propose the construction of a low cost dual-head C-shaped PET system dedicated for small animal brain imaging. Monte Carlo simulation studies were performed using GATE toolkit to evaluate the optimum design in terms of sensitivity, distortions in the FOV and spatial resolution. The PET model is based on SiPMs and BGO pixelated arrays. Four different configurations with C- angle 0°, 15°, 30° and 45° within the modules, were considered. Geometrical phantoms were used for the evaluation process. STIR software, extended by an efficient multi-threaded ray tracing technique, was used for the image reconstruction. The algorithm automatically adjusts the size of the FOV according to the shape of the detector's geometry. The results showed improvement in sensitivity of ∼15% in case of 45° C-angle compared to the 0° case. The spatial resolution was found 2 mm for 45° C-angle.

  2. Investigation of the performance of EOTD for GSM users in telematics applications

    NASA Astrophysics Data System (ADS)

    Sharawi, Mohammad S.; Aloi, Daniel N.

    2003-08-01

    Location-based services have been standardized for incorporation into 3rd generation wireless communications as a result of the Federal Communications Commission"s (FCC) mandate on wireless carriers to provide automatic location information (ALI) during emergency911 calls. This mandate has driven the wireless carriers to explore terrestrial, satellite, and hybrid based location technology solutions. This paper presents a communications model that investigates the position accuracyof a Global Standard Mobile (GSM) phone employing the enhanced observed time difference (EOTD) location technology. The EOTD positioning technique requires the mobile station (MS) to detect signals from at least three base stations (BS). This studyassumes the three BSs are synchronized in time. For a given BS geometry with respect to the MS, a Monte Carlo simulation was performed to assess the two-dimensional position accuracyof the MS in Rayleigh and Ricean fading channels. In each channel, a Monte Carlo simulation was performed for a good and a bad BS-to-MS geometry. The paper concludes with a list of pros/cons of implementing EOTD as a location technologyenabler in telematics applications.

  3. ChemTS: an efficient python library for de novo molecular generation.

    PubMed

    Yang, Xiufeng; Zhang, Jinzhe; Yoshizoe, Kazuki; Terayama, Kei; Tsuda, Koji

    2017-01-01

    Automatic design of organic materials requires black-box optimization in a vast chemical space. In conventional molecular design algorithms, a molecule is built as a combination of predetermined fragments. Recently, deep neural network models such as variational autoencoders and recurrent neural networks (RNNs) are shown to be effective in de novo design of molecules without any predetermined fragments. This paper presents a novel Python library ChemTS that explores the chemical space by combining Monte Carlo tree search and an RNN. In a benchmarking problem of optimizing the octanol-water partition coefficient and synthesizability, our algorithm showed superior efficiency in finding high-scoring molecules. ChemTS is available at https://github.com/tsudalab/ChemTS.

  4. ChemTS: an efficient python library for de novo molecular generation

    NASA Astrophysics Data System (ADS)

    Yang, Xiufeng; Zhang, Jinzhe; Yoshizoe, Kazuki; Terayama, Kei; Tsuda, Koji

    2017-12-01

    Automatic design of organic materials requires black-box optimization in a vast chemical space. In conventional molecular design algorithms, a molecule is built as a combination of predetermined fragments. Recently, deep neural network models such as variational autoencoders and recurrent neural networks (RNNs) are shown to be effective in de novo design of molecules without any predetermined fragments. This paper presents a novel Python library ChemTS that explores the chemical space by combining Monte Carlo tree search and an RNN. In a benchmarking problem of optimizing the octanol-water partition coefficient and synthesizability, our algorithm showed superior efficiency in finding high-scoring molecules. ChemTS is available at https://github.com/tsudalab/ChemTS.

  5. Eyeglasses Lens Contour Extraction from Facial Images Using an Efficient Shape Description

    PubMed Central

    Borza, Diana; Darabant, Adrian Sergiu; Danescu, Radu

    2013-01-01

    This paper presents a system that automatically extracts the position of the eyeglasses and the accurate shape and size of the frame lenses in facial images. The novelty brought by this paper consists in three key contributions. The first one is an original model for representing the shape of the eyeglasses lens, using Fourier descriptors. The second one is a method for generating the search space starting from a finite, relatively small number of representative lens shapes based on Fourier morphing. Finally, we propose an accurate lens contour extraction algorithm using a multi-stage Monte Carlo sampling technique. Multiple experiments demonstrate the effectiveness of our approach. PMID:24152926

  6. An object-oriented approach to risk and reliability analysis : methodology and aviation safety applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dandini, Vincent John; Duran, Felicia Angelica; Wyss, Gregory Dane

    2003-09-01

    This article describes how features of event tree analysis and Monte Carlo-based discrete event simulation can be combined with concepts from object-oriented analysis to develop a new risk assessment methodology, with some of the best features of each. The resultant object-based event scenario tree (OBEST) methodology enables an analyst to rapidly construct realistic models for scenarios for which an a priori discovery of event ordering is either cumbersome or impossible. Each scenario produced by OBEST is automatically associated with a likelihood estimate because probabilistic branching is integral to the object model definition. The OBEST methodology is then applied to anmore » aviation safety problem that considers mechanisms by which an aircraft might become involved in a runway incursion incident. The resulting OBEST model demonstrates how a close link between human reliability analysis and probabilistic risk assessment methods can provide important insights into aviation safety phenomenology.« less

  7. Probabilistic modeling of bifurcations in single-cell gene expression data using a Bayesian mixture of factor analyzers.

    PubMed

    Campbell, Kieran R; Yau, Christopher

    2017-03-15

    Modeling bifurcations in single-cell transcriptomics data has become an increasingly popular field of research. Several methods have been proposed to infer bifurcation structure from such data, but all rely on heuristic non-probabilistic inference. Here we propose the first generative, fully probabilistic model for such inference based on a Bayesian hierarchical mixture of factor analyzers. Our model exhibits competitive performance on large datasets despite implementing full Markov-Chain Monte Carlo sampling, and its unique hierarchical prior structure enables automatic determination of genes driving the bifurcation process. We additionally propose an Empirical-Bayes like extension that deals with the high levels of zero-inflation in single-cell RNA-seq data and quantify when such models are useful. We apply or model to both real and simulated single-cell gene expression data and compare the results to existing pseudotime methods. Finally, we discuss both the merits and weaknesses of such a unified, probabilistic approach in the context practical bioinformatics analyses.

  8. Towards optimization in digital chest radiography using Monte Carlo modelling

    NASA Astrophysics Data System (ADS)

    Ullman, Gustaf; Sandborg, Michael; Dance, David R.; Hunt, Roger A.; Alm Carlsson, Gudrun

    2006-06-01

    A Monte Carlo based computer model of the x-ray imaging system was used to investigate how various image quality parameters of interest in chest PA radiography and the effective dose E vary with tube voltage (90-150 kV), additional copper filtration (0-0.5 mm), anti-scatter method (grid ratios 8-16 and air gap lengths 20-40 cm) and patient thickness (20-28 cm) in a computed radiography (CR) system. Calculated quantities were normalized to a fixed value of air kerma (5.0 µGy) at the automatic exposure control chambers. Soft-tissue nodules were positioned at different locations in the anatomy and calcifications in the apical region. The signal-to-noise ratio, SNR, of the nodules and the nodule contrast relative to the contrast of bone (C/CB) as well as relative to the dynamic range in the image (Crel) were used as image quality measures. In all anatomical regions, except in the densest regions in the thickest patients, the air gap technique provides higher SNR and contrast ratios than the grid technique and at a lower effective dose E. Choice of tube voltage depends on whether quantum noise (SNR) or the contrast ratios are most relevant for the diagnostic task. SNR increases with decreasing tube voltage while C/CB increases with increasing tube voltage.

  9. TestDose: A nuclear medicine software based on Monte Carlo modeling for generating gamma camera acquisitions and dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Marie-Paule, E-mail: marie-paule.garcia@univ-brest.fr; Villoing, Daphnée; McKay, Erin

    Purpose: The TestDose platform was developed to generate scintigraphic imaging protocols and associated dosimetry by Monte Carlo modeling. TestDose is part of a broader project (www.dositest.com) whose aim is to identify the biases induced by different clinical dosimetry protocols. Methods: The TestDose software allows handling the whole pipeline from virtual patient generation to resulting planar and SPECT images and dosimetry calculations. The originality of their approach relies on the implementation of functional segmentation for the anthropomorphic model representing a virtual patient. Two anthropomorphic models are currently available: 4D XCAT and ICRP 110. A pharmacokinetic model describes the biodistribution of amore » given radiopharmaceutical in each defined compartment at various time-points. The Monte Carlo simulation toolkit GATE offers the possibility to accurately simulate scintigraphic images and absorbed doses in volumes of interest. The TestDose platform relies on GATE to reproduce precisely any imaging protocol and to provide reference dosimetry. For image generation, TestDose stores user’s imaging requirements and generates automatically command files used as input for GATE. Each compartment is simulated only once and the resulting output is weighted using pharmacokinetic data. Resulting compartment projections are aggregated to obtain the final image. For dosimetry computation, emission data are stored in the platform database and relevant GATE input files are generated for the virtual patient model and associated pharmacokinetics. Results: Two samples of software runs are given to demonstrate the potential of TestDose. A clinical imaging protocol for the Octreoscan™ therapeutical treatment was implemented using the 4D XCAT model. Whole-body “step and shoot” acquisitions at different times postinjection and one SPECT acquisition were generated within reasonable computation times. Based on the same Octreoscan™ kinetics, a dosimetry computation performed on the ICRP 110 model is also presented. Conclusions: The proposed platform offers a generic framework to implement any scintigraphic imaging protocols and voxel/organ-based dosimetry computation. Thanks to the modular nature of TestDose, other imaging modalities could be supported in the future such as positron emission tomography.« less

  10. TestDose: A nuclear medicine software based on Monte Carlo modeling for generating gamma camera acquisitions and dosimetry.

    PubMed

    Garcia, Marie-Paule; Villoing, Daphnée; McKay, Erin; Ferrer, Ludovic; Cremonesi, Marta; Botta, Francesca; Ferrari, Mahila; Bardiès, Manuel

    2015-12-01

    The TestDose platform was developed to generate scintigraphic imaging protocols and associated dosimetry by Monte Carlo modeling. TestDose is part of a broader project (www.dositest.com) whose aim is to identify the biases induced by different clinical dosimetry protocols. The TestDose software allows handling the whole pipeline from virtual patient generation to resulting planar and SPECT images and dosimetry calculations. The originality of their approach relies on the implementation of functional segmentation for the anthropomorphic model representing a virtual patient. Two anthropomorphic models are currently available: 4D XCAT and ICRP 110. A pharmacokinetic model describes the biodistribution of a given radiopharmaceutical in each defined compartment at various time-points. The Monte Carlo simulation toolkit gate offers the possibility to accurately simulate scintigraphic images and absorbed doses in volumes of interest. The TestDose platform relies on gate to reproduce precisely any imaging protocol and to provide reference dosimetry. For image generation, TestDose stores user's imaging requirements and generates automatically command files used as input for gate. Each compartment is simulated only once and the resulting output is weighted using pharmacokinetic data. Resulting compartment projections are aggregated to obtain the final image. For dosimetry computation, emission data are stored in the platform database and relevant gate input files are generated for the virtual patient model and associated pharmacokinetics. Two samples of software runs are given to demonstrate the potential of TestDose. A clinical imaging protocol for the Octreoscan™ therapeutical treatment was implemented using the 4D XCAT model. Whole-body "step and shoot" acquisitions at different times postinjection and one SPECT acquisition were generated within reasonable computation times. Based on the same Octreoscan™ kinetics, a dosimetry computation performed on the ICRP 110 model is also presented. The proposed platform offers a generic framework to implement any scintigraphic imaging protocols and voxel/organ-based dosimetry computation. Thanks to the modular nature of TestDose, other imaging modalities could be supported in the future such as positron emission tomography.

  11. A Modified Monte Carlo Method for Carrier Transport in Germanium, Free of Isotropic Rates

    NASA Astrophysics Data System (ADS)

    Sundqvist, Kyle

    2010-03-01

    We present a new method for carrier transport simulation, relevant for high-purity germanium < 100 > at a temperature of 40 mK. In this system, the scattering of electrons and holes is dominated by spontaneous phonon emission. Free carriers are always out of equilibrium with the lattice. We must also properly account for directional effects due to band structure, but there are many cautions in the literature about treating germanium in particular. These objections arise because the germanium electron system is anisotropic to an extreme degree, while standard Monte Carlo algorithms maintain a reliance on isotropic, integrated rates. We re-examine Fermi's Golden Rule to produce a Monte Carlo method free of isotropic rates. Traditional Monte Carlo codes implement particle scattering based on an isotropically averaged rate, followed by a separate selection of the particle's final state via a momentum-dependent probability. In our method, the kernel of Fermi's Golden Rule produces analytical, bivariate rates which allow for the simultaneous choice of scatter and final state selection. Energy and momentum are automatically conserved. We compare our results to experimental data.

  12. Supporting Teachers to Automatically Build Accessible Pedagogical Resources: The APEINTA Project

    NASA Astrophysics Data System (ADS)

    Iglesias, Ana; Moreno, Lourdes; Jiménez, Javier

    Most of the universities in Europe have started their process of adaptation towards a common educational space according to the European Higher Education Area (EHEA). The social dimension of the Bologna Process is a constituent part of the EHEA and it is a necessary condition for the attractiveness and competitiveness of the EHEA. Two of the main features of the social dimension are the equal access for all the students and the lifelong learning. One of the main problems of the adaptation process to the EHEA is that the teachers have no previous references and models to develop new pedagogical experiences accessible to all the students, nevertheless of their abilities, capabilities or accessibility characteristics. The APEINTA project presented in this paper can be used as a helpful tool for teachers in order to cope with the teaching demands of EHEA, helping the teachers to automatically build accessible pedagogical resources even when the teachers are not accessibility experts. This educational project has been successfully used in 2009 in two different degrees at the Carlos III University of Madrid: Computer Science and Library and Information Science.

  13. Parallelizing Timed Petri Net simulations

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1993-01-01

    The possibility of using parallel processing to accelerate the simulation of Timed Petri Nets (TPN's) was studied. It was recognized that complex system development tools often transform system descriptions into TPN's or TPN-like models, which are then simulated to obtain information about system behavior. Viewed this way, it was important that the parallelization of TPN's be as automatic as possible, to admit the possibility of the parallelization being embedded in the system design tool. Later years of the grant were devoted to examining the problem of joint performance and reliability analysis, to explore whether both types of analysis could be accomplished within a single framework. In this final report, the results of our studies are summarized. We believe that the problem of parallelizing TPN's automatically for MIMD architectures has been almost completely solved for a large and important class of problems. Our initial investigations into joint performance/reliability analysis are two-fold; it was shown that Monte Carlo simulation, with importance sampling, offers promise of joint analysis in the context of a single tool, and methods for the parallel simulation of general Continuous Time Markov Chains, a model framework within which joint performance/reliability models can be cast, were developed. However, very much more work is needed to determine the scope and generality of these approaches. The results obtained in our two studies, future directions for this type of work, and a list of publications are included.

  14. MDTS: automatic complex materials design using Monte Carlo tree search.

    PubMed

    M Dieb, Thaer; Ju, Shenghong; Yoshizoe, Kazuki; Hou, Zhufeng; Shiomi, Junichiro; Tsuda, Koji

    2017-01-01

    Complex materials design is often represented as a black-box combinatorial optimization problem. In this paper, we present a novel python library called MDTS (Materials Design using Tree Search). Our algorithm employs a Monte Carlo tree search approach, which has shown exceptional performance in computer Go game. Unlike evolutionary algorithms that require user intervention to set parameters appropriately, MDTS has no tuning parameters and works autonomously in various problems. In comparison to a Bayesian optimization package, our algorithm showed competitive search efficiency and superior scalability. We succeeded in designing large Silicon-Germanium (Si-Ge) alloy structures that Bayesian optimization could not deal with due to excessive computational cost. MDTS is available at https://github.com/tsudalab/MDTS.

  15. MDTS: automatic complex materials design using Monte Carlo tree search

    NASA Astrophysics Data System (ADS)

    Dieb, Thaer M.; Ju, Shenghong; Yoshizoe, Kazuki; Hou, Zhufeng; Shiomi, Junichiro; Tsuda, Koji

    2017-12-01

    Complex materials design is often represented as a black-box combinatorial optimization problem. In this paper, we present a novel python library called MDTS (Materials Design using Tree Search). Our algorithm employs a Monte Carlo tree search approach, which has shown exceptional performance in computer Go game. Unlike evolutionary algorithms that require user intervention to set parameters appropriately, MDTS has no tuning parameters and works autonomously in various problems. In comparison to a Bayesian optimization package, our algorithm showed competitive search efficiency and superior scalability. We succeeded in designing large Silicon-Germanium (Si-Ge) alloy structures that Bayesian optimization could not deal with due to excessive computational cost. MDTS is available at https://github.com/tsudalab/MDTS.

  16. ChemTS: an efficient python library for de novo molecular generation

    PubMed Central

    Yang, Xiufeng; Zhang, Jinzhe; Yoshizoe, Kazuki; Terayama, Kei; Tsuda, Koji

    2017-01-01

    Abstract Automatic design of organic materials requires black-box optimization in a vast chemical space. In conventional molecular design algorithms, a molecule is built as a combination of predetermined fragments. Recently, deep neural network models such as variational autoencoders and recurrent neural networks (RNNs) are shown to be effective in de novo design of molecules without any predetermined fragments. This paper presents a novel Python library ChemTS that explores the chemical space by combining Monte Carlo tree search and an RNN. In a benchmarking problem of optimizing the octanol-water partition coefficient and synthesizability, our algorithm showed superior efficiency in finding high-scoring molecules. ChemTS is available at https://github.com/tsudalab/ChemTS. PMID:29435094

  17. Infinite hidden conditional random fields for human behavior analysis.

    PubMed

    Bousmalis, Konstantinos; Zafeiriou, Stefanos; Morency, Louis-Philippe; Pantic, Maja

    2013-01-01

    Hidden conditional random fields (HCRFs) are discriminative latent variable models that have been shown to successfully learn the hidden structure of a given classification problem (provided an appropriate validation of the number of hidden states). In this brief, we present the infinite HCRF (iHCRF), which is a nonparametric model based on hierarchical Dirichlet processes and is capable of automatically learning the optimal number of hidden states for a classification task. We show how we learn the model hyperparameters with an effective Markov-chain Monte Carlo sampling technique, and we explain the process that underlines our iHCRF model with the Restaurant Franchise Rating Agencies analogy. We show that the iHCRF is able to converge to a correct number of represented hidden states, and outperforms the best finite HCRFs--chosen via cross-validation--for the difficult tasks of recognizing instances of agreement, disagreement, and pain. Moreover, the iHCRF manages to achieve this performance in significantly less total training, validation, and testing time.

  18. Automatic Learning of Fine Operating Rules for Online Power System Security Control.

    PubMed

    Sun, Hongbin; Zhao, Feng; Wang, Hao; Wang, Kang; Jiang, Weiyong; Guo, Qinglai; Zhang, Boming; Wehenkel, Louis

    2016-08-01

    Fine operating rules for security control and an automatic system for their online discovery were developed to adapt to the development of smart grids. The automatic system uses the real-time system state to determine critical flowgates, and then a continuation power flow-based security analysis is used to compute the initial transfer capability of critical flowgates. Next, the system applies the Monte Carlo simulations to expected short-term operating condition changes, feature selection, and a linear least squares fitting of the fine operating rules. The proposed system was validated both on an academic test system and on a provincial power system in China. The results indicated that the derived rules provide accuracy and good interpretability and are suitable for real-time power system security control. The use of high-performance computing systems enables these fine operating rules to be refreshed online every 15 min.

  19. Measurement of antiproton annihilation on Cu, Ag and Au with emulsion films

    NASA Astrophysics Data System (ADS)

    Aghion, S.; Amsler, C.; Ariga, A.; Ariga, T.; Bonomi, G.; Bräunig, P.; Brusa, R. S.; Cabaret, L.; Caccia, M.; Caravita, R.; Castelli, F.; Cerchiari, G.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Doser, M.; Ereditato, A.; Evans, C.; Ferragut, R.; Fesel, J.; Fontana, A.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Guatieri, F.; Haider, S.; Hinterberger, A.; Holmestad, H.; Huse, T.; Kawada, J.; Kellerbauer, A.; Kimura, M.; Krasnický, D.; Lagomarsino, V.; Lansonneur, P.; Lebrun, P.; Malbrunot, C.; Mariazzi, S.; Matveev, V.; Mazzotta, Z.; Müller, S. R.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Pacifico, N.; Pagano, D.; Penasa, L.; Petracek, V.; Pistillo, C.; Prelz, F.; Prevedelli, M.; Ravelli, L.; Rienaecker, B.; RØhne, O. M.; Rotondi, A.; Sacerdoti, M.; Sandaker, H.; Santoro, R.; Scampoli, P.; Simon, M.; Smestad, L.; Sorrentino, F.; Testera, G.; Tietje, I. C.; Vamosi, S.; Vladymyrov, M.; Widmann, E.; Yzombard, P.; Zimmer, C.; Zmeskal, J.; Zurlo, N.

    2017-04-01

    The characteristics of low energy antiproton annihilations on nuclei (e.g. hadronization and product multiplicities) are not well known, and Monte Carlo simulation packages that use different models provide different descriptions of the annihilation events. In this study, we measured the particle multiplicities resulting from antiproton annihilations on nuclei. The results were compared with predictions obtained using different models in the simulation tools GEANT4 and FLUKA. For this study, we exposed thin targets (Cu, Ag and Au) to a very low energy antiproton beam from CERN's Antiproton Decelerator, exploiting the secondary beamline available in the AEgIS experimental zone. The antiproton annihilation products were detected using emulsion films developed at the Laboratory of High Energy Physics in Bern, where they were analysed at the automatic microscope facility. The fragment multiplicity measured in this study is in good agreement with results obtained with FLUKA simulations for both minimally and heavily ionizing particles.

  20. Pattern Recognition for a Flight Dynamics Monte Carlo Simulation

    NASA Technical Reports Server (NTRS)

    Restrepo, Carolina; Hurtado, John E.

    2011-01-01

    The design, analysis, and verification and validation of a spacecraft relies heavily on Monte Carlo simulations. Modern computational techniques are able to generate large amounts of Monte Carlo data but flight dynamics engineers lack the time and resources to analyze it all. The growing amounts of data combined with the diminished available time of engineers motivates the need to automate the analysis process. Pattern recognition algorithms are an innovative way of analyzing flight dynamics data efficiently. They can search large data sets for specific patterns and highlight critical variables so analysts can focus their analysis efforts. This work combines a few tractable pattern recognition algorithms with basic flight dynamics concepts to build a practical analysis tool for Monte Carlo simulations. Current results show that this tool can quickly and automatically identify individual design parameters, and most importantly, specific combinations of parameters that should be avoided in order to prevent specific system failures. The current version uses a kernel density estimation algorithm and a sequential feature selection algorithm combined with a k-nearest neighbor classifier to find and rank important design parameters. This provides an increased level of confidence in the analysis and saves a significant amount of time.

  1. Learning reduced kinetic Monte Carlo models of complex chemistry from molecular dynamics.

    PubMed

    Yang, Qian; Sing-Long, Carlos A; Reed, Evan J

    2017-08-01

    We propose a novel statistical learning framework for automatically and efficiently building reduced kinetic Monte Carlo (KMC) models of large-scale elementary reaction networks from data generated by a single or few molecular dynamics simulations (MD). Existing approaches for identifying species and reactions from molecular dynamics typically use bond length and duration criteria, where bond duration is a fixed parameter motivated by an understanding of bond vibrational frequencies. In contrast, we show that for highly reactive systems, bond duration should be a model parameter that is chosen to maximize the predictive power of the resulting statistical model. We demonstrate our method on a high temperature, high pressure system of reacting liquid methane, and show that the learned KMC model is able to extrapolate more than an order of magnitude in time for key molecules. Additionally, our KMC model of elementary reactions enables us to isolate the most important set of reactions governing the behavior of key molecules found in the MD simulation. We develop a new data-driven algorithm to reduce the chemical reaction network which can be solved either as an integer program or efficiently using L1 regularization, and compare our results with simple count-based reduction. For our liquid methane system, we discover that rare reactions do not play a significant role in the system, and find that less than 7% of the approximately 2000 reactions observed from molecular dynamics are necessary to reproduce the molecular concentration over time of methane. The framework described in this work paves the way towards a genomic approach to studying complex chemical systems, where expensive MD simulation data can be reused to contribute to an increasingly large and accurate genome of elementary reactions and rates.

  2. Learning reduced kinetic Monte Carlo models of complex chemistry from molecular dynamics

    PubMed Central

    Sing-Long, Carlos A.

    2017-01-01

    We propose a novel statistical learning framework for automatically and efficiently building reduced kinetic Monte Carlo (KMC) models of large-scale elementary reaction networks from data generated by a single or few molecular dynamics simulations (MD). Existing approaches for identifying species and reactions from molecular dynamics typically use bond length and duration criteria, where bond duration is a fixed parameter motivated by an understanding of bond vibrational frequencies. In contrast, we show that for highly reactive systems, bond duration should be a model parameter that is chosen to maximize the predictive power of the resulting statistical model. We demonstrate our method on a high temperature, high pressure system of reacting liquid methane, and show that the learned KMC model is able to extrapolate more than an order of magnitude in time for key molecules. Additionally, our KMC model of elementary reactions enables us to isolate the most important set of reactions governing the behavior of key molecules found in the MD simulation. We develop a new data-driven algorithm to reduce the chemical reaction network which can be solved either as an integer program or efficiently using L1 regularization, and compare our results with simple count-based reduction. For our liquid methane system, we discover that rare reactions do not play a significant role in the system, and find that less than 7% of the approximately 2000 reactions observed from molecular dynamics are necessary to reproduce the molecular concentration over time of methane. The framework described in this work paves the way towards a genomic approach to studying complex chemical systems, where expensive MD simulation data can be reused to contribute to an increasingly large and accurate genome of elementary reactions and rates. PMID:28989618

  3. Learning reduced kinetic Monte Carlo models of complex chemistry from molecular dynamics

    DOE PAGES

    Yang, Qian; Sing-Long, Carlos A.; Reed, Evan J.

    2017-06-19

    Here, we propose a novel statistical learning framework for automatically and efficiently building reduced kinetic Monte Carlo (KMC) models of large-scale elementary reaction networks from data generated by a single or few molecular dynamics simulations (MD). Existing approaches for identifying species and reactions from molecular dynamics typically use bond length and duration criteria, where bond duration is a fixed parameter motivated by an understanding of bond vibrational frequencies. Conversely, we show that for highly reactive systems, bond duration should be a model parameter that is chosen to maximize the predictive power of the resulting statistical model. We demonstrate our methodmore » on a high temperature, high pressure system of reacting liquid methane, and show that the learned KMC model is able to extrapolate more than an order of magnitude in time for key molecules. Additionally, our KMC model of elementary reactions enables us to isolate the most important set of reactions governing the behavior of key molecules found in the MD simulation. We develop a new data-driven algorithm to reduce the chemical reaction network which can be solved either as an integer program or efficiently using L1 regularization, and compare our results with simple count-based reduction. For our liquid methane system, we discover that rare reactions do not play a significant role in the system, and find that less than 7% of the approximately 2000 reactions observed from molecular dynamics are necessary to reproduce the molecular concentration over time of methane. Furthermore, we describe a framework in this work that paves the way towards a genomic approach to studying complex chemical systems, where expensive MD simulation data can be reused to contribute to an increasingly large and accurate genome of elementary reactions and rates.« less

  4. MO-F-CAMPUS-I-01: A System for Automatically Calculating Organ and Effective Dose for Fluoroscopically-Guided Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Z; Vijayan, S; Rana, V

    2015-06-15

    Purpose: A system was developed that automatically calculates the organ and effective dose for individual fluoroscopically-guided procedures using a log of the clinical exposure parameters. Methods: We have previously developed a dose tracking system (DTS) to provide a real-time color-coded 3D- mapping of skin dose. This software produces a log file of all geometry and exposure parameters for every x-ray pulse during a procedure. The data in the log files is input into PCXMC, a Monte Carlo program that calculates organ and effective dose for projections and exposure parameters set by the user. We developed a MATLAB program to readmore » data from the log files produced by the DTS and to automatically generate the definition files in the format used by PCXMC. The processing is done at the end of a procedure after all exposures are completed. Since there are thousands of exposure pulses with various parameters for fluoroscopy, DA and DSA and at various projections, the data for exposures with similar parameters is grouped prior to entry into PCXMC to reduce the number of Monte Carlo calculations that need to be performed. Results: The software developed automatically transfers data from the DTS log file to PCXMC and runs the program for each grouping of exposure pulses. When the dose from all exposure events are calculated, the doses for each organ and all effective doses are summed to obtain procedure totals. For a complicated interventional procedure, the calculations can be completed on a PC without manual intervention in less than 30 minutes depending on the level of data grouping. Conclusion: This system allows organ dose to be calculated for individual procedures for every patient without tedious calculations or data entry so that estimates of stochastic risk can be obtained in addition to the deterministic risk estimate provided by the DTS. Partial support from NIH grant R01EB002873 and Toshiba Medical Systems Corp.« less

  5. Sentry: An Automated Close Approach Monitoring System for Near-Earth Objects

    NASA Astrophysics Data System (ADS)

    Chamberlin, A. B.; Chesley, S. R.; Chodas, P. W.; Giorgini, J. D.; Keesey, M. S.; Wimberly, R. N.; Yeomans, D. K.

    2001-11-01

    In response to international concern about potential asteroid impacts on Earth, NASA's Near-Earth Object (NEO) Program Office has implemented a new system called ``Sentry'' to automatically update the orbits of all NEOs on a daily basis and compute Earth close approaches up to 100 years into the future. Results are published on our web site (http://neo.jpl.nasa.gov/) and updated orbits and ephemerides made available via the JPL Horizons ephemeris service (http://ssd.jpl.nasa.gov/horizons.html). Sentry collects new and revised astrometric observations from the Minor Planet Center (MPC) via their electronic circulars (MPECs) in near real time as well as radar and optical astrometry sent directly from observers. NEO discoveries and identifications are detected in MPECs and processed appropriately. In addition to these daily updates, Sentry synchronizes with each monthly batch of MPC astrometry and automatically updates all NEO observation files. Daily and monthly processing of NEO astrometry is managed using a queuing system which allows for manual intervention of selected NEOs without interfering with the automatic system. At the heart of Sentry is a fully automatic orbit determination program which handles outlier rejection and ensures convergence in the new solution. Updated orbital elements and their covariances are published via Horizons and our NEO web site, typically within 24 hours. A new version of Horizons, in development, will allow computation of ephemeris uncertainties using covariance data. The positions of NEOs with updated orbits are numerically integrated up to 100 years into the future and each close approach to any perturbing body in our dynamic model (all planets, Moon, Ceres, Pallas, Vesta) is recorded. Significant approaches are flagged for extended analysis including Monte Carlo studies. Results, such as minimum encounter distances and future Earth impact probabilities, are published on our NEO web site.

  6. Non-vascular interventional procedures: effective dose to patient and equivalent dose to abdominal organs by means of DICOM images and Monte Carlo simulation.

    PubMed

    Longo, Mariaconcetta; Marchioni, Chiara; Insero, Teresa; Donnarumma, Raffaella; D'Adamo, Alessandro; Lucatelli, Pierleone; Fanelli, Fabrizio; Salvatori, Filippo Maria; Cannavale, Alessandro; Di Castro, Elisabetta

    2016-03-01

    This study evaluates X-ray exposure in patient undergoing abdominal extra-vascular interventional procedures by means of Digital Imaging and COmmunications in Medicine (DICOM) image headers and Monte Carlo simulation. The main aim was to assess the effective and equivalent doses, under the hypothesis of their correlation with the dose area product (DAP) measured during each examination. This allows to collect dosimetric information about each patient and to evaluate associated risks without resorting to in vivo dosimetry. The dose calculation was performed in 79 procedures through the Monte Carlo simulator PCXMC (A PC-based Monte Carlo program for calculating patient doses in medical X-ray examinations), by using the real geometrical and dosimetric irradiation conditions, automatically extracted from DICOM headers. The DAP measurements were also validated by using thermoluminescent dosemeters on an anthropomorphic phantom. The expected linear correlation between effective doses and DAP was confirmed with an R(2) of 0.974. Moreover, in order to easily calculate patient doses, conversion coefficients that relate equivalent doses to measurable quantities, such as DAP, were obtained. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Robust parameter design for automatically controlled systems and nanostructure synthesis

    NASA Astrophysics Data System (ADS)

    Dasgupta, Tirthankar

    2007-12-01

    This research focuses on developing comprehensive frameworks for developing robust parameter design methodology for dynamic systems with automatic control and for synthesis of nanostructures. In many automatically controlled dynamic processes, the optimal feedback control law depends on the parameter design solution and vice versa and therefore an integrated approach is necessary. A parameter design methodology in the presence of feedback control is developed for processes of long duration under the assumption that experimental noise factors are uncorrelated over time. Systems that follow a pure-gain dynamic model are considered and the best proportional-integral and minimum mean squared error control strategies are developed by using robust parameter design. The proposed method is illustrated using a simulated example and a case study in a urea packing plant. This idea is also extended to cases with on-line noise factors. The possibility of integrating feedforward control with a minimum mean squared error feedback control scheme is explored. To meet the needs of large scale synthesis of nanostructures, it is critical to systematically find experimental conditions under which the desired nanostructures are synthesized reproducibly, at large quantity and with controlled morphology. The first part of the research in this area focuses on modeling and optimization of existing experimental data. Through a rigorous statistical analysis of experimental data, models linking the probabilities of obtaining specific morphologies to the process variables are developed. A new iterative algorithm for fitting a Multinomial GLM is proposed and used. The optimum process conditions, which maximize the above probabilities and make the synthesis process less sensitive to variations of process variables around set values, are derived from the fitted models using Monte-Carlo simulations. The second part of the research deals with development of an experimental design methodology, tailor-made to address the unique phenomena associated with nanostructure synthesis. A sequential space filling design called Sequential Minimum Energy Design (SMED) for exploring best process conditions for synthesis of nanowires. The SMED is a novel approach to generate sequential designs that are model independent, can quickly "carve out" regions with no observable nanostructure morphology, and allow for the exploration of complex response surfaces.

  8. A novel hybrid scattering order-dependent variance reduction method for Monte Carlo simulations of radiative transfer in cloudy atmosphere

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Cui, Shengcheng; Yang, Jun; Gao, Haiyang; Liu, Chao; Zhang, Zhibo

    2017-03-01

    We present a novel hybrid scattering order-dependent variance reduction method to accelerate the convergence rate in both forward and backward Monte Carlo radiative transfer simulations involving highly forward-peaked scattering phase function. This method is built upon a newly developed theoretical framework that not only unifies both forward and backward radiative transfer in scattering-order-dependent integral equation, but also generalizes the variance reduction formalism in a wide range of simulation scenarios. In previous studies, variance reduction is achieved either by using the scattering phase function forward truncation technique or the target directional importance sampling technique. Our method combines both of them. A novel feature of our method is that all the tuning parameters used for phase function truncation and importance sampling techniques at each order of scattering are automatically optimized by the scattering order-dependent numerical evaluation experiments. To make such experiments feasible, we present a new scattering order sampling algorithm by remodeling integral radiative transfer kernel for the phase function truncation method. The presented method has been implemented in our Multiple-Scaling-based Cloudy Atmospheric Radiative Transfer (MSCART) model for validation and evaluation. The main advantage of the method is that it greatly improves the trade-off between numerical efficiency and accuracy order by order.

  9. The X-43A Six Degree of Freedom Monte Carlo Analysis

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan; Bahm, Catherine; Strovers, Brian; Beck, Roger

    2008-01-01

    This report provides an overview of the Hyper-X research vehicle Monte Carlo analysis conducted with the six-degree-of-freedom simulation. The methodology and model uncertainties used for the Monte Carlo analysis are presented as permitted. In addition, the process used to select hardware validation test cases from the Monte Carlo data is described. The preflight Monte Carlo analysis indicated that the X-43A control system was robust to the preflight uncertainties and provided the Hyper-X project an important indication that the vehicle would likely be successful in accomplishing the mission objectives. The X-43A inflight performance is compared to the preflight Monte Carlo predictions and shown to exceed the Monte Carlo bounds in several instances. Possible modeling shortfalls are presented that may account for these discrepancies. The flight control laws and guidance algorithms were robust enough as a result of the preflight Monte Carlo analysis that the unexpected in-flight performance did not have undue consequences. Modeling and Monte Carlo analysis lessons learned are presented.

  10. The X-43A Six Degree of Freedom Monte Carlo Analysis

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan; Bahm, Catherine; Strovers, Brian; Beck, Roger; Richard, Michael

    2007-01-01

    This report provides an overview of the Hyper-X research vehicle Monte Carlo analysis conducted with the six-degree-of-freedom simulation. The methodology and model uncertainties used for the Monte Carlo analysis are presented as permitted. In addition, the process used to select hardware validation test cases from the Monte Carlo data is described. The preflight Monte Carlo analysis indicated that the X-43A control system was robust to the preflight uncertainties and provided the Hyper-X project an important indication that the vehicle would likely be successful in accomplishing the mission objectives. The X-43A in-flight performance is compared to the preflight Monte Carlo predictions and shown to exceed the Monte Carlo bounds in several instances. Possible modeling shortfalls are presented that may account for these discrepancies. The flight control laws and guidance algorithms were robust enough as a result of the preflight Monte Carlo analysis that the unexpected in-flight performance did not have undue consequences. Modeling and Monte Carlo analysis lessons learned are presented.

  11. Rainfall-Runoff Parameters Uncertainity

    NASA Astrophysics Data System (ADS)

    Heidari, A.; Saghafian, B.; Maknoon, R.

    2003-04-01

    Karkheh river basin, located in southwest of Iran, drains an area of over 40000 km2 and is considered a flood active basin. A flood forecasting system is under development for the basin, which consists of a rainfall-runoff model, a river routing model, a reservior simulation model, and a real time data gathering and processing module. SCS, Clark synthetic unit hydrograph, and Modclark methods are the main subbasin rainfall-runoff transformation options included in the rainfall-runoff model. Infiltration schemes, such as exponentioal and SCS-CN methods, account for infiltration losses. Simulation of snow melt is based on degree day approach. River flood routing is performed by FLDWAV model based on one-dimensional full dynamic equation. Calibration and validation of the rainfall-runoff model on Karkheh subbasins are ongoing while the river routing model awaits cross section surveys.Real time hydrometeological data are collected by a telemetry network. The telemetry network is equipped with automatic sensors and INMARSAT-C comunication system. A geographic information system (GIS) stores and manages the spatial data while a database holds the hydroclimatological historical and updated time series. Rainfall runoff parameters uncertainty is analyzed by Monte Carlo and GLUE approaches.

  12. An investigation of automatic guidance concepts to steer a VTOL aircraft to a small aviation facility ship

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Goka, T.; Phatak, A. V.; Schmidt, S. F.

    1980-01-01

    A detailed system model of a VTOL aircraft approaching a small aviation facility ship was developed and used to investigate several approach guidance concepts. A preliminary anaysis of the aircraft-vessel landing guidance requirements was conducted. The various subelements and constraints of the flight system are described including the landing scenario, lift fan aircraft, state rate feedback flight control, MLS-based navigation, sea state induced ship motion, and wake turbulence due to wind-over-deck effects. These elements are integrated into a systems model with various guidance concepts. Guidance is described in terms of lateral, vertical, and longitudinal axes steering modes and approach and landing phases divided by a nominal hover (or stationkeeping) point defined with respect to the landing pad. The approach guidance methods are evaluated, and the two better steering concepts are studied by both single pass and Monte Carlo statistical simulation runs. Four different guidance concepts are defined for further analysis for the landing phase of flight.

  13. Simulation of beta radiator handling procedures in nuclear medicine by means of a movable hand phantom.

    PubMed

    Blunck, Ch; Becker, F; Urban, M

    2011-03-01

    In nuclear medicine therapies, people working with beta radiators such as (90)Y may be exposed to non-negligible partial body doses. For radiation protection, it is important to know the characteristics of the radiation field and possible dose exposures at relevant positions in the working area. Besides extensive measurements, simulations can provide these data. For this purpose, a movable hand phantom for Monte Carlo simulations was developed. Specific beta radiator handling scenarios can be modelled interactively with forward kinematics or automatically with an inverse kinematics procedure. As a first investigation, the dose distribution on a medical doctor's hand injecting a (90)Y solution was measured and simulated with the phantom. Modelling was done with the interactive method based on five consecutive frames from a video recorded during the injection. Owing to the use of only one camera, not each detail of the radiation scenario is visible in the video. In spite of systematic uncertainties, the measured and simulated dose values are in good agreement.

  14. Propagation of uncertainty in nasal spray in vitro performance models using Monte Carlo simulation: Part II. Error propagation during product performance modeling.

    PubMed

    Guo, Changning; Doub, William H; Kauffman, John F

    2010-08-01

    Monte Carlo simulations were applied to investigate the propagation of uncertainty in both input variables and response measurements on model prediction for nasal spray product performance design of experiment (DOE) models in the first part of this study, with an initial assumption that the models perfectly represent the relationship between input variables and the measured responses. In this article, we discard the initial assumption, and extended the Monte Carlo simulation study to examine the influence of both input variable variation and product performance measurement variation on the uncertainty in DOE model coefficients. The Monte Carlo simulations presented in this article illustrate the importance of careful error propagation during product performance modeling. Our results show that the error estimates based on Monte Carlo simulation result in smaller model coefficient standard deviations than those from regression methods. This suggests that the estimated standard deviations from regression may overestimate the uncertainties in the model coefficients. Monte Carlo simulations provide a simple software solution to understand the propagation of uncertainty in complex DOE models so that design space can be specified with statistically meaningful confidence levels. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  15. Modeling of photon migration in the human lung using a finite volume solver

    NASA Astrophysics Data System (ADS)

    Sikorski, Zbigniew; Furmanczyk, Michal; Przekwas, Andrzej J.

    2006-02-01

    The application of the frequency domain and steady-state diffusive optical spectroscopy (DOS) and steady-state near infrared spectroscopy (NIRS) to diagnosis of the human lung injury challenges many elements of these techniques. These include the DOS/NIRS instrument performance and accurate models of light transport in heterogeneous thorax tissue. The thorax tissue not only consists of different media (e.g. chest wall with ribs, lungs) but its optical properties also vary with time due to respiration and changes in thorax geometry with contusion (e.g. pneumothorax or hemothorax). This paper presents a finite volume solver developed to model photon migration in the diffusion approximation in heterogeneous complex 3D tissues. The code applies boundary conditions that account for Fresnel reflections. We propose an effective diffusion coefficient for the void volumes (pneumothorax) based on the assumption of the Lambertian diffusion of photons entering the pleural cavity and accounting for the local pleural cavity thickness. The code has been validated using the MCML Monte Carlo code as a benchmark. The code environment enables a semi-automatic preparation of 3D computational geometry from medical images and its rapid automatic meshing. We present the application of the code to analysis/optimization of the hybrid DOS/NIRS/ultrasound technique in which ultrasound provides data on the localization of thorax tissue boundaries. The code effectiveness (3D complex case computation takes 1 second) enables its use to quantitatively relate detected light signal to absorption and reduced scattering coefficients that are indicators of the pulmonary physiologic state (hemoglobin concentration and oxygenation).

  16. Methodology for Collision Risk Assessment of an Airspace Flow Corridor Concept

    NASA Astrophysics Data System (ADS)

    Zhang, Yimin

    This dissertation presents a methodology to estimate the collision risk associated with a future air-transportation concept called the flow corridor. The flow corridor is a Next Generation Air Transportation System (NextGen) concept to reduce congestion and increase throughput in en-route airspace. The flow corridor has the potential to increase throughput by reducing the controller workload required to manage aircraft outside the corridor and by reducing separation of aircraft within corridor. The analysis in this dissertation is a starting point for the safety analysis required by the Federal Aviation Administration (FAA) to eventually approve and implement the corridor concept. This dissertation develops a hybrid risk analysis methodology that combines Monte Carlo simulation with dynamic event tree analysis. The analysis captures the unique characteristics of the flow corridor concept, including self-separation within the corridor, lane change maneuvers, speed adjustments, and the automated separation assurance system. Monte Carlo simulation is used to model the movement of aircraft in the flow corridor and to identify precursor events that might lead to a collision. Since these precursor events are not rare, standard Monte Carlo simulation can be used to estimate these occurrence rates. Dynamic event trees are then used to model the subsequent series of events that may lead to collision. When two aircraft are on course for a near-mid-air collision (NMAC), the on-board automated separation assurance system provides a series of safety layers to prevent the impending NNAC or collision. Dynamic event trees are used to evaluate the potential failures of these layers in order to estimate the rare-event collision probabilities. The results show that the throughput can be increased by reducing separation to 2 nautical miles while maintaining the current level of safety. A sensitivity analysis shows that the most critical parameters in the model related to the overall collision probability are the minimum separation, the probability that both flights fail to respond to traffic collision avoidance system, the probability that an NMAC results in a collision, the failure probability of the automatic dependent surveillance broadcast in receiver, and the conflict detection probability.

  17. Radiative transfer modelling inside thermal protection system using hybrid homogenization method for a backward Monte Carlo method coupled with Mie theory

    NASA Astrophysics Data System (ADS)

    Le Foll, S.; André, F.; Delmas, A.; Bouilly, J. M.; Aspa, Y.

    2012-06-01

    A backward Monte Carlo method for modelling the spectral directional emittance of fibrous media has been developed. It uses Mie theory to calculate the radiative properties of single fibres, modelled as infinite cylinders, and the complex refractive index is computed by a Drude-Lorenz model for the dielectric function. The absorption and scattering coefficient are homogenised over several fibres, but the scattering phase function of a single one is used to determine the scattering direction of energy inside the medium. Sensitivity analysis based on several Monte Carlo results has been performed to estimate coefficients for a Multi-Linear Model (MLM) specifically developed for inverse analysis of experimental data. This model concurs with the Monte Carlo method and is highly computationally efficient. In contrast, the surface emissivity model, which assumes an opaque medium, shows poor agreement with the reference Monte Carlo calculations.

  18. GATE Monte Carlo simulation in a cloud computing environment

    NASA Astrophysics Data System (ADS)

    Rowedder, Blake Austin

    The GEANT4-based GATE is a unique and powerful Monte Carlo (MC) platform, which provides a single code library allowing the simulation of specific medical physics applications, e.g. PET, SPECT, CT, radiotherapy, and hadron therapy. However, this rigorous yet flexible platform is used only sparingly in the clinic due to its lengthy calculation time. By accessing the powerful computational resources of a cloud computing environment, GATE's runtime can be significantly reduced to clinically feasible levels without the sizable investment of a local high performance cluster. This study investigated a reliable and efficient execution of GATE MC simulations using a commercial cloud computing services. Amazon's Elastic Compute Cloud was used to launch several nodes equipped with GATE. Job data was initially broken up on the local computer, then uploaded to the worker nodes on the cloud. The results were automatically downloaded and aggregated on the local computer for display and analysis. Five simulations were repeated for every cluster size between 1 and 20 nodes. Ultimately, increasing cluster size resulted in a decrease in calculation time that could be expressed with an inverse power model. Comparing the benchmark results to the published values and error margins indicated that the simulation results were not affected by the cluster size and thus that integrity of a calculation is preserved in a cloud computing environment. The runtime of a 53 minute long simulation was decreased to 3.11 minutes when run on a 20-node cluster. The ability to improve the speed of simulation suggests that fast MC simulations are viable for imaging and radiotherapy applications. With high power computing continuing to lower in price and accessibility, implementing Monte Carlo techniques with cloud computing for clinical applications will continue to become more attractive.

  19. Tool Support for Parametric Analysis of Large Software Simulation Systems

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Gundy-Burlet, Karen; Pasareanu, Corina; Menzies, Tim; Barrett, Tony

    2008-01-01

    The analysis of large and complex parameterized software systems, e.g., systems simulation in aerospace, is very complicated and time-consuming due to the large parameter space, and the complex, highly coupled nonlinear nature of the different system components. Thus, such systems are generally validated only in regions local to anticipated operating points rather than through characterization of the entire feasible operational envelope of the system. We have addressed the factors deterring such an analysis with a tool to support envelope assessment: we utilize a combination of advanced Monte Carlo generation with n-factor combinatorial parameter variations to limit the number of cases, but still explore important interactions in the parameter space in a systematic fashion. Additional test-cases, automatically generated from models (e.g., UML, Simulink, Stateflow) improve the coverage. The distributed test runs of the software system produce vast amounts of data, making manual analysis impossible. Our tool automatically analyzes the generated data through a combination of unsupervised Bayesian clustering techniques (AutoBayes) and supervised learning of critical parameter ranges using the treatment learner TAR3. The tool has been developed around the Trick simulation environment, which is widely used within NASA. We will present this tool with a GN&C (Guidance, Navigation and Control) simulation of a small satellite system.

  20. A proposed criterion for aircraft flight in turbulence

    NASA Technical Reports Server (NTRS)

    Porter, R. F.; Robinson, A. C.

    1971-01-01

    A proposed criterion for aircraft flight in turbulent conditions is presented. Subjects discussed are: (1) the problem of flight safety in turbulence, (2) new criterion for turbulence flight where existing ones seem adequate, and (3) computational problems associated with new criterion. Primary emphasis is placed on catastrophic occurrences in subsonic cruise with the aircraft under automatic control. A Monte Carlo simulation is used in the formulation and evaluation of probabilities of survival of an encounter with turbulence.

  1. Proceedings of the International Wire and Cable Symposium Held in St. Louis, Missouri on 15-18 November 1993

    DTIC Science & Technology

    1993-11-18

    CABEL Industria Bellcore, Morristown, NJ; and I. M. Plitz, Bellcore, Venezolana de Cables Electricos C.A., Valencia, Red Bank, NJ...COMPOSITE CABLE Salvador camps, Carlos Osorio, Richard Vasquez and J. A. Olszewski CABEL Industria Venezolana de Cables Electricos C.A. Valencia...durability. As a result. the automatic control puller can consistently pull a cable, whether the cable is wet or not. 3.2 Crawler Auto -adjusting mechanism

  2. Software Toolbox Development for Rapid Earthquake Source Optimisation Combining InSAR Data and Seismic Waveforms

    NASA Astrophysics Data System (ADS)

    Isken, Marius P.; Sudhaus, Henriette; Heimann, Sebastian; Steinberg, Andreas; Bathke, Hannes M.

    2017-04-01

    We present a modular open-source software framework (pyrocko, kite, grond; http://pyrocko.org) for rapid InSAR data post-processing and modelling of tectonic and volcanic displacement fields derived from satellite data. Our aim is to ease and streamline the joint optimisation of earthquake observations from InSAR and GPS data together with seismological waveforms for an improved estimation of the ruptures' parameters. Through this approach we can provide finite models of earthquake ruptures and therefore contribute to a timely and better understanding of earthquake kinematics. The new kite module enables a fast processing of unwrapped InSAR scenes for source modelling: the spatial sub-sampling and data error/noise estimation for the interferogram is evaluated automatically and interactively. The rupture's near-field surface displacement data are then combined with seismic far-field waveforms and jointly modelled using the pyrocko.gf framwork, which allows for fast forward modelling based on pre-calculated elastodynamic and elastostatic Green's functions. Lastly the grond module supplies a bootstrap-based probabilistic (Monte Carlo) joint optimisation to estimate the parameters and uncertainties of a finite-source earthquake rupture model. We describe the developed and applied methods as an effort to establish a semi-automatic processing and modelling chain. The framework is applied to Sentinel-1 data from the 2016 Central Italy earthquake sequence, where we present the earthquake mechanism and rupture model from which we derive regions of increased coulomb stress. The open source software framework is developed at GFZ Potsdam and at the University of Kiel, Germany, it is written in Python and C programming languages. The toolbox architecture is modular and independent, and can be utilized flexibly for a variety of geophysical problems. This work is conducted within the BridGeS project (http://www.bridges.uni-kiel.de) funded by the German Research Foundation DFG through an Emmy-Noether grant.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudhyadhom, A; McGuinness, C; Descovich, M

    Purpose: To develop a methodology for validation of a Monte-Carlo dose calculation model for robotic small field SRS/SBRT deliveries. Methods: In a robotic treatment planning system, a Monte-Carlo model was iteratively optimized to match with beam data. A two-part analysis was developed to verify this model. 1) The Monte-Carlo model was validated in a simulated water phantom versus a Ray-Tracing calculation on a single beam collimator-by-collimator calculation. 2) The Monte-Carlo model was validated to be accurate in the most challenging situation, lung, by acquiring in-phantom measurements. A plan was created and delivered in a CIRS lung phantom with film insert.more » Separately, plans were delivered in an in-house created lung phantom with a PinPoint chamber insert within a lung simulating material. For medium to large collimator sizes, a single beam was delivered to the phantom. For small size collimators (10, 12.5, and 15mm), a robotically delivered plan was created to generate a uniform dose field of irradiation over a 2×2cm{sup 2} area. Results: Dose differences in simulated water between Ray-Tracing and Monte-Carlo were all within 1% at dmax and deeper. Maximum dose differences occurred prior to dmax but were all within 3%. Film measurements in a lung phantom show high correspondence of over 95% gamma at the 2%/2mm level for Monte-Carlo. Ion chamber measurements for collimator sizes of 12.5mm and above were within 3% of Monte-Carlo calculated values. Uniform irradiation involving the 10mm collimator resulted in a dose difference of ∼8% for both Monte-Carlo and Ray-Tracing indicating that there may be limitations with the dose calculation. Conclusion: We have developed a methodology to validate a Monte-Carlo model by verifying that it matches in water and, separately, that it corresponds well in lung simulating materials. The Monte-Carlo model and algorithm tested may have more limited accuracy for 10mm fields and smaller.« less

  4. Monte Carlo Modeling of the Initial Radiation Emitted by a Nuclear Device in the National Capital Region

    DTIC Science & Technology

    2013-07-01

    also simulated in the models. Data was derived from calculations using the three-dimensional Monte Carlo radiation transport code MCNP (Monte Carlo N...32  B.  MCNP PHYSICS OPTIONS ......................................................................................... 33  C.  HAZUS...input deck’) for the MCNP , Monte Carlo N-Particle, radiation transport code. MCNP is a general-purpose code designed to simulate neutron, photon

  5. APPLICATION OF BAYESIAN MONTE CARLO ANALYSIS TO A LAGRANGIAN PHOTOCHEMICAL AIR QUALITY MODEL. (R824792)

    EPA Science Inventory

    Uncertainties in ozone concentrations predicted with a Lagrangian photochemical air quality model have been estimated using Bayesian Monte Carlo (BMC) analysis. Bayesian Monte Carlo analysis provides a means of combining subjective "prior" uncertainty estimates developed ...

  6. Bayesian Peak Picking for NMR Spectra

    PubMed Central

    Cheng, Yichen; Gao, Xin; Liang, Faming

    2013-01-01

    Protein structure determination is a very important topic in structural genomics, which helps people to understand varieties of biological functions such as protein-protein interactions, protein–DNA interactions and so on. Nowadays, nuclear magnetic resonance (NMR) has often been used to determine the three-dimensional structures of protein in vivo. This study aims to automate the peak picking step, the most important and tricky step in NMR structure determination. We propose to model the NMR spectrum by a mixture of bivariate Gaussian densities and use the stochastic approximation Monte Carlo algorithm as the computational tool to solve the problem. Under the Bayesian framework, the peak picking problem is casted as a variable selection problem. The proposed method can automatically distinguish true peaks from false ones without preprocessing the data. To the best of our knowledge, this is the first effort in the literature that tackles the peak picking problem for NMR spectrum data using Bayesian method. PMID:24184964

  7. VTOL controls for shipboard landing. M.S.Thesis

    NASA Technical Reports Server (NTRS)

    Mcmuldroch, C. G.

    1979-01-01

    The problem of landing a VTOL aircraft on a small ship in rough seas using an automatic controller is examined. The controller design uses the linear quadratic Gaussian results of modern control theory. Linear time invariant dynamic models are developed for the aircraft, ship, and wave motions. A hover controller commands the aircraft to track position and orientation of the ship deck using only low levels of control power. Commands for this task are generated by the solution of the steady state linear quadratic gaussian regulator problem. Analytical performance and control requirement tradeoffs are obtained. A landing controller commands the aircraft from stationary hover along a smooth, low control effort trajectory, to a touchdown on a predicted crest of ship motion. The design problem is formulated and solved as an approximate finite-time linear quadratic stochastic regulator. Performance and control results are found by Monte Carlo simulations.

  8. Automatic enhancement of skin fluorescence localization due to refractive index matching

    NASA Astrophysics Data System (ADS)

    Churmakov, Dmitry Y.; Meglinski, Igor V.; Piletsky, Sergey A.; Greenhalgh, Douglas A.

    2004-07-01

    Fluorescence diagnostic techniques are notable amongst many other optical methods, as they offer high sensitivity and non-invasive measurements of tissue properties. However, a combination of multiple scattering and physical heterogeneity of biological tissues hampers the interpretation of the fluorescence measurements. The analyses of the spatial distribution of endogenous and exogenous fluorophores excitations within tissues and their contribution to the detected signal localization are essential for many applications. We have developed a novel Monte Carlo technique that gives a graphical perception of how the excitation and fluorescence detected signal are localized in tissues. Our model takes into account spatial distribution of fluorophores and their quantum yields. We demonstrate that matching of the refractive indices of ambient medium and topical skin layer improves spatial localization of the detected fluorescence signal within the tissue. This result is consistent with the recent conclusion that administering biocompatible agents results in higher image contrast.

  9. SU-E-T-493: Accelerated Monte Carlo Methods for Photon Dosimetry Using a Dual-GPU System and CUDA.

    PubMed

    Liu, T; Ding, A; Xu, X

    2012-06-01

    To develop a Graphics Processing Unit (GPU) based Monte Carlo (MC) code that accelerates dose calculations on a dual-GPU system. We simulated a clinical case of prostate cancer treatment. A voxelized abdomen phantom derived from 120 CT slices was used containing 218×126×60 voxels, and a GE LightSpeed 16-MDCT scanner was modeled. A CPU version of the MC code was first developed in C++ and tested on Intel Xeon X5660 2.8GHz CPU, then it was translated into GPU version using CUDA C 4.1 and run on a dual Tesla m 2 090 GPU system. The code was featured with automatic assignment of simulation task to multiple GPUs, as well as accurate calculation of energy- and material- dependent cross-sections. Double-precision floating point format was used for accuracy. Doses to the rectum, prostate, bladder and femoral heads were calculated. When running on a single GPU, the MC GPU code was found to be ×19 times faster than the CPU code and ×42 times faster than MCNPX. These speedup factors were doubled on the dual-GPU system. The dose Result was benchmarked against MCNPX and a maximum difference of 1% was observed when the relative error is kept below 0.1%. A GPU-based MC code was developed for dose calculations using detailed patient and CT scanner models. Efficiency and accuracy were both guaranteed in this code. Scalability of the code was confirmed on the dual-GPU system. © 2012 American Association of Physicists in Medicine.

  10. SCoPE: an efficient method of Cosmological Parameter Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Santanu; Souradeep, Tarun, E-mail: santanud@iucaa.ernet.in, E-mail: tarun@iucaa.ernet.in

    Markov Chain Monte Carlo (MCMC) sampler is widely used for cosmological parameter estimation from CMB and other data. However, due to the intrinsic serial nature of the MCMC sampler, convergence is often very slow. Here we present a fast and independently written Monte Carlo method for cosmological parameter estimation named as Slick Cosmological Parameter Estimator (SCoPE), that employs delayed rejection to increase the acceptance rate of a chain, and pre-fetching that helps an individual chain to run on parallel CPUs. An inter-chain covariance update is also incorporated to prevent clustering of the chains allowing faster and better mixing of themore » chains. We use an adaptive method for covariance calculation to calculate and update the covariance automatically as the chains progress. Our analysis shows that the acceptance probability of each step in SCoPE is more than 95% and the convergence of the chains are faster. Using SCoPE, we carry out some cosmological parameter estimations with different cosmological models using WMAP-9 and Planck results. One of the current research interests in cosmology is quantifying the nature of dark energy. We analyze the cosmological parameters from two illustrative commonly used parameterisations of dark energy models. We also asses primordial helium fraction in the universe can be constrained by the present CMB data from WMAP-9 and Planck. The results from our MCMC analysis on the one hand helps us to understand the workability of the SCoPE better, on the other hand it provides a completely independent estimation of cosmological parameters from WMAP-9 and Planck data.« less

  11. Computing at h1 - Experience and Future

    NASA Astrophysics Data System (ADS)

    Eckerlin, G.; Gerhards, R.; Kleinwort, C.; KrÜNer-Marquis, U.; Egli, S.; Niebergall, F.

    The H1 experiment has now been successfully operating at the electron proton collider HERA at DESY for three years. During this time the computing environment has gradually shifted from a mainframe oriented environment to the distributed server/client Unix world. This transition is now almost complete. Computing needs are largely determined by the present amount of 1.5 TB of reconstructed data per year (1994), corresponding to 1.2 × 107 accepted events. All data are centrally available at DESY. In addition to data analysis, which is done in all collaborating institutes, most of the centrally organized Monte Carlo production is performed outside of DESY. New software tools to cope with offline computing needs include CENTIPEDE, a tool for the use of distributed batch and interactive resources for Monte Carlo production, and H1 UNIX, a software package for automatic updates of H1 software on all UNIX platforms.

  12. Organization and use of a Software/Hardware Avionics Research Program (SHARP)

    NASA Technical Reports Server (NTRS)

    Karmarkar, J. S.; Kareemi, M. N.

    1975-01-01

    The organization and use is described of the software/hardware avionics research program (SHARP) developed to duplicate the automatic portion of the STOLAND simulator system, on a general-purpose computer system (i.e., IBM 360). The program's uses are: (1) to conduct comparative evaluation studies of current and proposed airborne and ground system concepts via single run or Monte Carlo simulation techniques, and (2) to provide a software tool for efficient algorithm evaluation and development for the STOLAND avionics computer.

  13. Triaging Patient Complaints: Monte Carlo Cross-Validation of Six Machine Learning Classifiers

    PubMed Central

    Cooper, William O; Catron, Thomas F; Karrass, Jan; Zhang, Zhe; Singh, Munindar P

    2017-01-01

    Background Unsolicited patient complaints can be a useful service recovery tool for health care organizations. Some patient complaints contain information that may necessitate further action on the part of the health care organization and/or the health care professional. Current approaches depend on the manual processing of patient complaints, which can be costly, slow, and challenging in terms of scalability. Objective The aim of this study was to evaluate automatic patient triage, which can potentially improve response time and provide much-needed scale, thereby enhancing opportunities to encourage physicians to self-regulate. Methods We implemented a comparison of several well-known machine learning classifiers to detect whether a complaint was associated with a physician or his/her medical practice. We compared these classifiers using a real-life dataset containing 14,335 patient complaints associated with 768 physicians that was extracted from patient complaints collected by the Patient Advocacy Reporting System developed at Vanderbilt University and associated institutions. We conducted a 10-splits Monte Carlo cross-validation to validate our results. Results We achieved an accuracy of 82% and F-score of 81% in correctly classifying patient complaints with sensitivity and specificity of 0.76 and 0.87, respectively. Conclusions We demonstrate that natural language processing methods based on modeling patient complaint text can be effective in identifying those patient complaints requiring physician action. PMID:28760726

  14. BATMAN--an R package for the automated quantification of metabolites from nuclear magnetic resonance spectra using a Bayesian model.

    PubMed

    Hao, Jie; Astle, William; De Iorio, Maria; Ebbels, Timothy M D

    2012-08-01

    Nuclear Magnetic Resonance (NMR) spectra are widely used in metabolomics to obtain metabolite profiles in complex biological mixtures. Common methods used to assign and estimate concentrations of metabolites involve either an expert manual peak fitting or extra pre-processing steps, such as peak alignment and binning. Peak fitting is very time consuming and is subject to human error. Conversely, alignment and binning can introduce artefacts and limit immediate biological interpretation of models. We present the Bayesian automated metabolite analyser for NMR spectra (BATMAN), an R package that deconvolutes peaks from one-dimensional NMR spectra, automatically assigns them to specific metabolites from a target list and obtains concentration estimates. The Bayesian model incorporates information on characteristic peak patterns of metabolites and is able to account for shifts in the position of peaks commonly seen in NMR spectra of biological samples. It applies a Markov chain Monte Carlo algorithm to sample from a joint posterior distribution of the model parameters and obtains concentration estimates with reduced error compared with conventional numerical integration and comparable to manual deconvolution by experienced spectroscopists. http://www1.imperial.ac.uk/medicine/people/t.ebbels/ t.ebbels@imperial.ac.uk.

  15. Automatic mathematical modeling for real time simulation program (AI application)

    NASA Technical Reports Server (NTRS)

    Wang, Caroline; Purinton, Steve

    1989-01-01

    A methodology is described for automatic mathematical modeling and generating simulation models. The major objective was to create a user friendly environment for engineers to design, maintain, and verify their models; to automatically convert the mathematical models into conventional code for computation; and finally, to document the model automatically.

  16. How Monte Carlo heuristics aid to identify the physical processes of drug release kinetics.

    PubMed

    Lecca, Paola

    2018-01-01

    We implement a Monte Carlo heuristic algorithm to model drug release from a solid dosage form. We show that with Monte Carlo simulations it is possible to identify and explain the causes of the unsatisfactory predictive power of current drug release models. It is well known that the power-law, the exponential models, as well as those derived from or inspired by them accurately reproduce only the first 60% of the release curve of a drug from a dosage form. In this study, by using Monte Carlo simulation approaches, we show that these models fit quite accurately almost the entire release profile when the release kinetics is not governed by the coexistence of different physico-chemical mechanisms. We show that the accuracy of the traditional models are comparable with those of Monte Carlo heuristics when these heuristics approximate and oversimply the phenomenology of drug release. This observation suggests to develop and use novel Monte Carlo simulation heuristics able to describe the complexity of the release kinetics, and consequently to generate data more similar to those observed in real experiments. Implementing Monte Carlo simulation heuristics of the drug release phenomenology may be much straightforward and efficient than hypothesizing and implementing from scratch complex mathematical models of the physical processes involved in drug release. Identifying and understanding through simulation heuristics what processes of this phenomenology reproduce the observed data and then formalize them in mathematics may allow avoiding time-consuming, trial-error based regression procedures. Three bullet points, highlighting the customization of the procedure. •An efficient heuristics based on Monte Carlo methods for simulating drug release from solid dosage form encodes is presented. It specifies the model of the physical process in a simple but accurate way in the formula of the Monte Carlo Micro Step (MCS) time interval.•Given the experimentally observed curve of drug release, we point out how Monte Carlo heuristics can be integrated in an evolutionary algorithmic approach to infer the mode of MCS best fitting the observed data, and thus the observed release kinetics.•The software implementing the method is written in R language, the free most used language in the bioinformaticians community.

  17. Automatic variance reduction for Monte Carlo simulations via the local importance function transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, S.A.

    1996-02-01

    The author derives a transformed transport problem that can be solved theoretically by analog Monte Carlo with zero variance. However, the Monte Carlo simulation of this transformed problem cannot be implemented in practice, so he develops a method for approximating it. The approximation to the zero variance method consists of replacing the continuous adjoint transport solution in the transformed transport problem by a piecewise continuous approximation containing local biasing parameters obtained from a deterministic calculation. He uses the transport and collision processes of the transformed problem to bias distance-to-collision and selection of post-collision energy groups and trajectories in a traditionalmore » Monte Carlo simulation of ``real`` particles. He refers to the resulting variance reduction method as the Local Importance Function Transform (LIFI) method. He demonstrates the efficiency of the LIFT method for several 3-D, linearly anisotropic scattering, one-group, and multigroup problems. In these problems the LIFT method is shown to be more efficient than the AVATAR scheme, which is one of the best variance reduction techniques currently available in a state-of-the-art Monte Carlo code. For most of the problems considered, the LIFT method produces higher figures of merit than AVATAR, even when the LIFT method is used as a ``black box``. There are some problems that cause trouble for most variance reduction techniques, and the LIFT method is no exception. For example, the author demonstrates that problems with voids, or low density regions, can cause a reduction in the efficiency of the LIFT method. However, the LIFT method still performs better than survival biasing and AVATAR in these difficult cases.« less

  18. Monte Carlo Calculations of Polarized Microwave Radiation Emerging from Cloud Structures

    NASA Technical Reports Server (NTRS)

    Kummerow, Christian; Roberti, Laura

    1998-01-01

    The last decade has seen tremendous growth in cloud dynamical and microphysical models that are able to simulate storms and storm systems with very high spatial resolution, typically of the order of a few kilometers. The fairly realistic distributions of cloud and hydrometeor properties that these models generate has in turn led to a renewed interest in the three-dimensional microwave radiative transfer modeling needed to understand the effect of cloud and rainfall inhomogeneities upon microwave observations. Monte Carlo methods, and particularly backwards Monte Carlo methods have shown themselves to be very desirable due to the quick convergence of the solutions. Unfortunately, backwards Monte Carlo methods are not well suited to treat polarized radiation. This study reviews the existing Monte Carlo methods and presents a new polarized Monte Carlo radiative transfer code. The code is based on a forward scheme but uses aliasing techniques to keep the computational requirements equivalent to the backwards solution. Radiative transfer computations have been performed using a microphysical-dynamical cloud model and the results are presented together with the algorithm description.

  19. A Monte Carlo method using octree structure in photon and electron transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, K.; Maeda, S.

    Most of the early Monte Carlo calculations in medical physics were used to calculate absorbed dose distributions, and detector responses and efficiencies. Recently, data acquisition in Single Photon Emission CT (SPECT) has been simulated by a Monte Carlo method to evaluate scatter photons generated in a human body and a collimator. Monte Carlo simulations in SPECT data acquisition are generally based on the transport of photons only because the photons being simulated are low energy, and therefore the bremsstrahlung productions by the electrons generated are negligible. Since the transport calculation of photons without electrons is much simpler than that withmore » electrons, it is possible to accomplish the high-speed simulation in a simple object with one medium. Here, object description is important in performing the photon and/or electron transport using a Monte Carlo method efficiently. The authors propose a new description method using an octree representation of an object. Thus even if the boundaries of each medium are represented accurately, high-speed calculation of photon transport can be accomplished because the number of voxels is much fewer than that of the voxel-based approach which represents an object by a union of the voxels of the same size. This Monte Carlo code using the octree representation of an object first establishes the simulation geometry by reading octree string, which is produced by forming an octree structure from a set of serial sections for the object before the simulation; then it transports photons in the geometry. Using the code, if the user just prepares a set of serial sections for the object in which he or she wants to simulate photon trajectories, he or she can perform the simulation automatically using the suboptimal geometry simplified by the octree representation without forming the optimal geometry by handwriting.« less

  20. Study of multi-dimensional radiative energy transfer in molecular gases

    NASA Technical Reports Server (NTRS)

    Liu, Jiwen; Tiwari, S. N.

    1993-01-01

    The Monte Carlo method (MCM) is applied to analyze radiative heat transfer in nongray gases. The nongray model employed is based on the statistical arrow band model with an exponential-tailed inverse intensity distribution. Consideration of spectral correlation results in some distinguishing features of the Monte Carlo formulations. Validation of the Monte Carlo formulations has been conducted by comparing results of this method with other solutions. Extension of a one-dimensional problem to a multi-dimensional problem requires some special treatments in the Monte Carlo analysis. Use of different assumptions results in different sets of Monte Carlo formulations. The nongray narrow band formulations provide the most accurate results.

  1. Reconstruction of three-dimensional grain structure in polycrystalline iron via an interactive segmentation method

    NASA Astrophysics Data System (ADS)

    Feng, Min-nan; Wang, Yu-cong; Wang, Hao; Liu, Guo-quan; Xue, Wei-hua

    2017-03-01

    Using a total of 297 segmented sections, we reconstructed the three-dimensional (3D) structure of pure iron and obtained the largest dataset of 16254 3D complete grains reported to date. The mean values of equivalent sphere radius and face number of pure iron were observed to be consistent with those of Monte Carlo simulated grains, phase-field simulated grains, Ti-alloy grains, and Ni-based super alloy grains. In this work, by finding a balance between automatic methods and manual refinement, we developed an interactive segmentation method to segment serial sections accurately in the reconstruction of the 3D microstructure; this approach can save time as well as substantially eliminate errors. The segmentation process comprises four operations: image preprocessing, breakpoint detection based on mathematical morphology analysis, optimized automatic connection of the breakpoints, and manual refinement by artificial evaluation.

  2. Automation of NLO processes and decays and POWHEG matching in WHIZARD

    NASA Astrophysics Data System (ADS)

    Reuter, Jürgen; Chokoufé, Bijan; Hoang, André; Kilian, Wolfgang; Stahlhofen, Maximilian; Teubner, Thomas; Weiss, Christian

    2016-10-01

    We give a status report on the automation of next-to-leading order processes within the Monte Carlo event generator WHIZARD, using GoSam and OpenLoops as provider for one- loop matrix elements. To deal with divergences, WHIZARD uses automated FKS subtraction, and the phase space for singular regions is generated automatically. NLO examples for both scattering and decay processes with a focus on e+ e- processes are shown. Also, first NLO- studies of observables for collisions of polarized leptons beams, e.g. at the ILC, will be presented. Furthermore, the automatic matching of the fixed-order NLO amplitudes with emissions from the parton shower within the Powheg formalism inside WHIZARD will be discussed. We also present results for top pairs at threshold in lepton collisions, including matching between a resummed threshold calculation and fixed-order NLO. This allows the investigation of more exclusive differential observables.

  3. High-Dimensional Heteroscedastic Regression with an Application to eQTL Data Analysis

    PubMed Central

    Daye, Z. John; Chen, Jinbo; Li, Hongzhe

    2011-01-01

    Summary We consider the problem of high-dimensional regression under non-constant error variances. Despite being a common phenomenon in biological applications, heteroscedasticity has, so far, been largely ignored in high-dimensional analysis of genomic data sets. We propose a new methodology that allows non-constant error variances for high-dimensional estimation and model selection. Our method incorporates heteroscedasticity by simultaneously modeling both the mean and variance components via a novel doubly regularized approach. Extensive Monte Carlo simulations indicate that our proposed procedure can result in better estimation and variable selection than existing methods when heteroscedasticity arises from the presence of predictors explaining error variances and outliers. Further, we demonstrate the presence of heteroscedasticity in and apply our method to an expression quantitative trait loci (eQTLs) study of 112 yeast segregants. The new procedure can automatically account for heteroscedasticity in identifying the eQTLs that are associated with gene expression variations and lead to smaller prediction errors. These results demonstrate the importance of considering heteroscedasticity in eQTL data analysis. PMID:22547833

  4. Parallel Markov chain Monte Carlo - bridging the gap to high-performance Bayesian computation in animal breeding and genetics.

    PubMed

    Wu, Xiao-Lin; Sun, Chuanyu; Beissinger, Timothy M; Rosa, Guilherme Jm; Weigel, Kent A; Gatti, Natalia de Leon; Gianola, Daniel

    2012-09-25

    Most Bayesian models for the analysis of complex traits are not analytically tractable and inferences are based on computationally intensive techniques. This is true of Bayesian models for genome-enabled selection, which uses whole-genome molecular data to predict the genetic merit of candidate animals for breeding purposes. In this regard, parallel computing can overcome the bottlenecks that can arise from series computing. Hence, a major goal of the present study is to bridge the gap to high-performance Bayesian computation in the context of animal breeding and genetics. Parallel Monte Carlo Markov chain algorithms and strategies are described in the context of animal breeding and genetics. Parallel Monte Carlo algorithms are introduced as a starting point including their applications to computing single-parameter and certain multiple-parameter models. Then, two basic approaches for parallel Markov chain Monte Carlo are described: one aims at parallelization within a single chain; the other is based on running multiple chains, yet some variants are discussed as well. Features and strategies of the parallel Markov chain Monte Carlo are illustrated using real data, including a large beef cattle dataset with 50K SNP genotypes. Parallel Markov chain Monte Carlo algorithms are useful for computing complex Bayesian models, which does not only lead to a dramatic speedup in computing but can also be used to optimize model parameters in complex Bayesian models. Hence, we anticipate that use of parallel Markov chain Monte Carlo will have a profound impact on revolutionizing the computational tools for genomic selection programs.

  5. Parallel Markov chain Monte Carlo - bridging the gap to high-performance Bayesian computation in animal breeding and genetics

    PubMed Central

    2012-01-01

    Background Most Bayesian models for the analysis of complex traits are not analytically tractable and inferences are based on computationally intensive techniques. This is true of Bayesian models for genome-enabled selection, which uses whole-genome molecular data to predict the genetic merit of candidate animals for breeding purposes. In this regard, parallel computing can overcome the bottlenecks that can arise from series computing. Hence, a major goal of the present study is to bridge the gap to high-performance Bayesian computation in the context of animal breeding and genetics. Results Parallel Monte Carlo Markov chain algorithms and strategies are described in the context of animal breeding and genetics. Parallel Monte Carlo algorithms are introduced as a starting point including their applications to computing single-parameter and certain multiple-parameter models. Then, two basic approaches for parallel Markov chain Monte Carlo are described: one aims at parallelization within a single chain; the other is based on running multiple chains, yet some variants are discussed as well. Features and strategies of the parallel Markov chain Monte Carlo are illustrated using real data, including a large beef cattle dataset with 50K SNP genotypes. Conclusions Parallel Markov chain Monte Carlo algorithms are useful for computing complex Bayesian models, which does not only lead to a dramatic speedup in computing but can also be used to optimize model parameters in complex Bayesian models. Hence, we anticipate that use of parallel Markov chain Monte Carlo will have a profound impact on revolutionizing the computational tools for genomic selection programs. PMID:23009363

  6. A multi-threaded version of MCFM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, John M.; Ellis, R. Keith; Giele, Walter T.

    We report on our findings modifying MCFM using OpenMP to implement multi-threading. By using OpenMP, the modified MCFM will execute on any processor, automatically adjusting to the number of available threads. We then modified the integration routine VEGAS to distribute the event evaluation over the threads, while combining all events at the end of every iteration to optimize the numerical integration. Furthermore, we took special care so that the results of the Monte Carlo integration were independent of the number of threads used, to facilitate the validation of the OpenMP version of MCFM.

  7. Translating expert system rules into Ada code with validation and verification

    NASA Technical Reports Server (NTRS)

    Becker, Lee; Duckworth, R. James; Green, Peter; Michalson, Bill; Gosselin, Dave; Nainani, Krishan; Pease, Adam

    1991-01-01

    The purpose of this ongoing research and development program is to develop software tools which enable the rapid development, upgrading, and maintenance of embedded real-time artificial intelligence systems. The goals of this phase of the research were to investigate the feasibility of developing software tools which automatically translate expert system rules into Ada code and develop methods for performing validation and verification testing of the resultant expert system. A prototype system was demonstrated which automatically translated rules from an Air Force expert system was demonstrated which detected errors in the execution of the resultant system. The method and prototype tools for converting AI representations into Ada code by converting the rules into Ada code modules and then linking them with an Activation Framework based run-time environment to form an executable load module are discussed. This method is based upon the use of Evidence Flow Graphs which are a data flow representation for intelligent systems. The development of prototype test generation and evaluation software which was used to test the resultant code is discussed. This testing was performed automatically using Monte-Carlo techniques based upon a constraint based description of the required performance for the system.

  8. Vectorized Monte Carlo methods for reactor lattice analysis

    NASA Technical Reports Server (NTRS)

    Brown, F. B.

    1984-01-01

    Some of the new computational methods and equivalent mathematical representations of physics models used in the MCV code, a vectorized continuous-enery Monte Carlo code for use on the CYBER-205 computer are discussed. While the principal application of MCV is the neutronics analysis of repeating reactor lattices, the new methods used in MCV should be generally useful for vectorizing Monte Carlo for other applications. For background, a brief overview of the vector processing features of the CYBER-205 is included, followed by a discussion of the fundamentals of Monte Carlo vectorization. The physics models used in the MCV vectorized Monte Carlo code are then summarized. The new methods used in scattering analysis are presented along with details of several key, highly specialized computational routines. Finally, speedups relative to CDC-7600 scalar Monte Carlo are discussed.

  9. Analysis of Naval Ammunition Stock Positioning

    DTIC Science & Technology

    2015-12-01

    model takes once the Monte -Carlo simulation determines the assigned probabilities for site-to-site locations. Column two shows how the simulation...stockpiles and positioning them at coastal Navy facilities. A Monte -Carlo simulation model was developed to simulate expected cost and delivery...TERMS supply chain management, Monte -Carlo simulation, risk, delivery performance, stock positioning 15. NUMBER OF PAGES 85 16. PRICE CODE 17

  10. Monte Carlo modelling the dosimetric effects of electrode material on diamond detectors.

    PubMed

    Baluti, Florentina; Deloar, Hossain M; Lansley, Stuart P; Meyer, Juergen

    2015-03-01

    Diamond detectors for radiation dosimetry were modelled using the EGSnrc Monte Carlo code to investigate the influence of electrode material and detector orientation on the absorbed dose. The small dimensions of the electrode/diamond/electrode detector structure required very thin voxels and the use of non-standard DOSXYZnrc Monte Carlo model parameters. The interface phenomena was investigated by simulating a 6 MV beam and detectors with different electrode materials, namely Al, Ag, Cu and Au, with thickens of 0.1 µm for the electrodes and 0.1 mm for the diamond, in both perpendicular and parallel detector orientation with regards to the incident beam. The smallest perturbations were observed for the parallel detector orientation and Al electrodes (Z = 13). In summary, EGSnrc Monte Carlo code is well suited for modelling small detector geometries. The Monte Carlo model developed is a useful tool to investigate the dosimetric effects caused by different electrode materials. To minimise perturbations cause by the detector electrodes, it is recommended that the electrodes should be made from a low-atomic number material and placed parallel to the beam direction.

  11. SABRINA - An interactive geometry modeler for MCNP (Monte Carlo Neutron Photon)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, J.T.; Murphy, J.

    SABRINA is an interactive three-dimensional geometry modeler developed to produce complicated models for the Los Alamos Monte Carlo Neutron Photon program MCNP. SABRINA produces line drawings and color-shaded drawings for a wide variety of interactive graphics terminals. It is used as a geometry preprocessor in model development and as a Monte Carlo particle-track postprocessor in the visualization of complicated particle transport problem. SABRINA is written in Fortran 77 and is based on the Los Alamos Common Graphics System, CGS. 5 refs., 2 figs.

  12. Pushing the limits of Monte Carlo simulations for the three-dimensional Ising model

    NASA Astrophysics Data System (ADS)

    Ferrenberg, Alan M.; Xu, Jiahao; Landau, David P.

    2018-04-01

    While the three-dimensional Ising model has defied analytic solution, various numerical methods like Monte Carlo, Monte Carlo renormalization group, and series expansion have provided precise information about the phase transition. Using Monte Carlo simulation that employs the Wolff cluster flipping algorithm with both 32-bit and 53-bit random number generators and data analysis with histogram reweighting and quadruple precision arithmetic, we have investigated the critical behavior of the simple cubic Ising Model, with lattice sizes ranging from 163 to 10243. By analyzing data with cross correlations between various thermodynamic quantities obtained from the same data pool, e.g., logarithmic derivatives of magnetization and derivatives of magnetization cumulants, we have obtained the critical inverse temperature Kc=0.221 654 626 (5 ) and the critical exponent of the correlation length ν =0.629 912 (86 ) with precision that exceeds all previous Monte Carlo estimates.

  13. A modified Monte Carlo model for the ionospheric heating rates

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Fontheim, E. G.; Robertson, S. C.

    1972-01-01

    A Monte Carlo method is adopted as a basis for the derivation of the photoelectron heat input into the ionospheric plasma. This approach is modified in an attempt to minimize the computation time. The heat input distributions are computed for arbitrarily small source elements that are spaced at distances apart corresponding to the photoelectron dissipation range. By means of a nonlinear interpolation procedure their individual heating rate distributions are utilized to produce synthetic ones that fill the gaps between the Monte Carlo generated distributions. By varying these gaps and the corresponding number of Monte Carlo runs the accuracy of the results is tested to verify the validity of this procedure. It is concluded that this model can reduce the computation time by more than a factor of three, thus improving the feasibility of including Monte Carlo calculations in self-consistent ionosphere models.

  14. Accurately modeling Gaussian beam propagation in the context of Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Hokr, Brett H.; Winblad, Aidan; Bixler, Joel N.; Elpers, Gabriel; Zollars, Byron; Scully, Marlan O.; Yakovlev, Vladislav V.; Thomas, Robert J.

    2016-03-01

    Monte Carlo simulations are widely considered to be the gold standard for studying the propagation of light in turbid media. However, traditional Monte Carlo methods fail to account for diffraction because they treat light as a particle. This results in converging beams focusing to a point instead of a diffraction limited spot, greatly effecting the accuracy of Monte Carlo simulations near the focal plane. Here, we present a technique capable of simulating a focusing beam in accordance to the rules of Gaussian optics, resulting in a diffraction limited focal spot. This technique can be easily implemented into any traditional Monte Carlo simulation allowing existing models to be converted to include accurate focusing geometries with minimal effort. We will present results for a focusing beam in a layered tissue model, demonstrating that for different scenarios the region of highest intensity, thus the greatest heating, can change from the surface to the focus. The ability to simulate accurate focusing geometries will greatly enhance the usefulness of Monte Carlo for countless applications, including studying laser tissue interactions in medical applications and light propagation through turbid media.

  15. Estimation of ambient dose equivalent distribution in the 18F-FDG administration room using Monte Carlo simulation.

    PubMed

    Nagamine, Shuji; Fujibuchi, Toshioh; Umezu, Yoshiyuki; Himuro, Kazuhiko; Awamoto, Shinichi; Tsutsui, Yuji; Nakamura, Yasuhiko

    2017-03-01

    In this study, we estimated the ambient dose equivalent rate (hereafter "dose rate") in the fluoro-2-deoxy-D-glucose (FDG) administration room in our hospital using Monte Carlo simulations, and examined the appropriate medical-personnel locations and a shielding method to reduce the dose rate during FDG injection using a lead glass shield. The line source was assumed to be the FDG feed tube and the patient a cube source. The dose rate distribution was calculated with a composite source that combines the line and cube sources. The dose rate distribution was also calculated when a lead glass shield was placed in the rear section of the lead-acrylic shield. The dose rate behind the automatic administration device decreased by 87 % with respect to that behind the lead-acrylic shield. Upon positioning a 2.8-cm-thick lead glass shield, the dose rate behind the lead-acrylic shield decreased by 67 %.

  16. Multilevel and quasi-Monte Carlo methods for uncertainty quantification in particle travel times through random heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Crevillén-García, D.; Power, H.

    2017-08-01

    In this study, we apply four Monte Carlo simulation methods, namely, Monte Carlo, quasi-Monte Carlo, multilevel Monte Carlo and multilevel quasi-Monte Carlo to the problem of uncertainty quantification in the estimation of the average travel time during the transport of particles through random heterogeneous porous media. We apply the four methodologies to a model problem where the only input parameter, the hydraulic conductivity, is modelled as a log-Gaussian random field by using direct Karhunen-Loéve decompositions. The random terms in such expansions represent the coefficients in the equations. Numerical calculations demonstrating the effectiveness of each of the methods are presented. A comparison of the computational cost incurred by each of the methods for three different tolerances is provided. The accuracy of the approaches is quantified via the mean square error.

  17. Multilevel and quasi-Monte Carlo methods for uncertainty quantification in particle travel times through random heterogeneous porous media.

    PubMed

    Crevillén-García, D; Power, H

    2017-08-01

    In this study, we apply four Monte Carlo simulation methods, namely, Monte Carlo, quasi-Monte Carlo, multilevel Monte Carlo and multilevel quasi-Monte Carlo to the problem of uncertainty quantification in the estimation of the average travel time during the transport of particles through random heterogeneous porous media. We apply the four methodologies to a model problem where the only input parameter, the hydraulic conductivity, is modelled as a log-Gaussian random field by using direct Karhunen-Loéve decompositions. The random terms in such expansions represent the coefficients in the equations. Numerical calculations demonstrating the effectiveness of each of the methods are presented. A comparison of the computational cost incurred by each of the methods for three different tolerances is provided. The accuracy of the approaches is quantified via the mean square error.

  18. Multilevel and quasi-Monte Carlo methods for uncertainty quantification in particle travel times through random heterogeneous porous media

    PubMed Central

    Power, H.

    2017-01-01

    In this study, we apply four Monte Carlo simulation methods, namely, Monte Carlo, quasi-Monte Carlo, multilevel Monte Carlo and multilevel quasi-Monte Carlo to the problem of uncertainty quantification in the estimation of the average travel time during the transport of particles through random heterogeneous porous media. We apply the four methodologies to a model problem where the only input parameter, the hydraulic conductivity, is modelled as a log-Gaussian random field by using direct Karhunen–Loéve decompositions. The random terms in such expansions represent the coefficients in the equations. Numerical calculations demonstrating the effectiveness of each of the methods are presented. A comparison of the computational cost incurred by each of the methods for three different tolerances is provided. The accuracy of the approaches is quantified via the mean square error. PMID:28878974

  19. Parametric Testing of Launch Vehicle FDDR Models

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Bajwa, Anupa; Berg, Peter; Thirumalainambi, Rajkumar

    2011-01-01

    For the safe operation of a complex system like a (manned) launch vehicle, real-time information about the state of the system and potential faults is extremely important. The on-board FDDR (Failure Detection, Diagnostics, and Response) system is a software system to detect and identify failures, provide real-time diagnostics, and to initiate fault recovery and mitigation. The ERIS (Evaluation of Rocket Integrated Subsystems) failure simulation is a unified Matlab/Simulink model of the Ares I Launch Vehicle with modular, hierarchical subsystems and components. With this model, the nominal flight performance characteristics can be studied. Additionally, failures can be injected to see their effects on vehicle state and on vehicle behavior. A comprehensive test and analysis of such a complicated model is virtually impossible. In this paper, we will describe, how parametric testing (PT) can be used to support testing and analysis of the ERIS failure simulation. PT uses a combination of Monte Carlo techniques with n-factor combinatorial exploration to generate a small, yet comprehensive set of parameters for the test runs. For the analysis of the high-dimensional simulation data, we are using multivariate clustering to automatically find structure in this high-dimensional data space. Our tools can generate detailed HTML reports that facilitate the analysis.

  20. Reference-free error estimation for multiple measurement methods.

    PubMed

    Madan, Hennadii; Pernuš, Franjo; Špiclin, Žiga

    2018-01-01

    We present a computational framework to select the most accurate and precise method of measurement of a certain quantity, when there is no access to the true value of the measurand. A typical use case is when several image analysis methods are applied to measure the value of a particular quantitative imaging biomarker from the same images. The accuracy of each measurement method is characterized by systematic error (bias), which is modeled as a polynomial in true values of measurand, and the precision as random error modeled with a Gaussian random variable. In contrast to previous works, the random errors are modeled jointly across all methods, thereby enabling the framework to analyze measurement methods based on similar principles, which may have correlated random errors. Furthermore, the posterior distribution of the error model parameters is estimated from samples obtained by Markov chain Monte-Carlo and analyzed to estimate the parameter values and the unknown true values of the measurand. The framework was validated on six synthetic and one clinical dataset containing measurements of total lesion load, a biomarker of neurodegenerative diseases, which was obtained with four automatic methods by analyzing brain magnetic resonance images. The estimates of bias and random error were in a good agreement with the corresponding least squares regression estimates against a reference.

  1. MODELING LEACHING OF VIRUSES BY THE MONTE CARLO METHOD

    EPA Science Inventory

    A predictive screening model was developed for fate and transport
    of viruses in the unsaturated zone. A database of input parameters
    allowed Monte Carlo analysis with the model. The resulting kernel
    densities of predicted attenuation during percolation indicated very ...

  2. NRMC - A GPU code for N-Reverse Monte Carlo modeling of fluids in confined media

    NASA Astrophysics Data System (ADS)

    Sánchez-Gil, Vicente; Noya, Eva G.; Lomba, Enrique

    2017-08-01

    NRMC is a parallel code for performing N-Reverse Monte Carlo modeling of fluids in confined media [V. Sánchez-Gil, E.G. Noya, E. Lomba, J. Chem. Phys. 140 (2014) 024504]. This method is an extension of the usual Reverse Monte Carlo method to obtain structural models of confined fluids compatible with experimental diffraction patterns, specifically designed to overcome the problem of slow diffusion that can appear under conditions of tight confinement. Most of the computational time in N-Reverse Monte Carlo modeling is spent in the evaluation of the structure factor for each trial configuration, a calculation that can be easily parallelized. Implementation of the structure factor evaluation in NVIDIA® CUDA so that the code can be run on GPUs leads to a speed up of up to two orders of magnitude.

  3. Bayesian peak picking for NMR spectra.

    PubMed

    Cheng, Yichen; Gao, Xin; Liang, Faming

    2014-02-01

    Protein structure determination is a very important topic in structural genomics, which helps people to understand varieties of biological functions such as protein-protein interactions, protein-DNA interactions and so on. Nowadays, nuclear magnetic resonance (NMR) has often been used to determine the three-dimensional structures of protein in vivo. This study aims to automate the peak picking step, the most important and tricky step in NMR structure determination. We propose to model the NMR spectrum by a mixture of bivariate Gaussian densities and use the stochastic approximation Monte Carlo algorithm as the computational tool to solve the problem. Under the Bayesian framework, the peak picking problem is casted as a variable selection problem. The proposed method can automatically distinguish true peaks from false ones without preprocessing the data. To the best of our knowledge, this is the first effort in the literature that tackles the peak picking problem for NMR spectrum data using Bayesian method. Copyright © 2013. Production and hosting by Elsevier Ltd.

  4. Hyper-X Stage Separation Trajectory Validation Studies

    NASA Technical Reports Server (NTRS)

    Tartabini, Paul V.; Bose, David M.; McMinn, John D.; Martin, John G.; Strovers, Brian K.

    2003-01-01

    An independent twelve degree-of-freedom simulation of the X-43A separation trajectory was created with the Program to Optimize Simulated trajectories (POST II). This simulation modeled the multi-body dynamics of the X-43A and its booster and included the effect of two pyrotechnically actuated pistons used to push the vehicles apart as well as aerodynamic interaction forces and moments between the two vehicles. The simulation was developed to validate trajectory studies conducted with a 14 degree-of-freedom simulation created early in the program using the Automatic Dynamic Analysis of Mechanics Systems (ADAMS) simulation software. The POST simulation was less detailed than the official ADAMS-based simulation used by the Project, but was simpler, more concise and ran faster, while providing similar results. The increase in speed provided by the POST simulation provided the Project with an alternate analysis tool. This tool was ideal for performing separation control logic trade studies that required the running of numerous Monte Carlo trajectories.

  5. A line transect model for aerial surveys

    USGS Publications Warehouse

    Quang, Pham Xuan; Lanctot, Richard B.

    1991-01-01

    We employ a line transect method to estimate the density of the common and Pacific loon in the Yukon Flats National Wildlife Refuge from aerial survey data. Line transect methods have the advantage of automatically taking into account “visibility bias” due to detectability difference of animals at different distances from the transect line. However, line transect methods must overcome two difficulties when applied to inaccurate recording of sighting distances due to high travel speeds, so that in fact only a few reliable distance class counts are available. We propose a unimodal detection function that provides an estimate of the effective area lost due to the blind strip, under the assumption that a line of perfect detection exists parallel to the transect line. The unimodal detection function can also be applied when a blind strip is absent, and in certain instances when the maximum probability of detection is less than 100%. A simple bootstrap procedure to estimate standard error is illustrated. Finally, we present results from a small set of Monte Carlo experiments.

  6. Precision tools and models to narrow in on the 750 GeV diphoton resonance

    NASA Astrophysics Data System (ADS)

    Staub, Florian; Athron, Peter; Basso, Lorenzo; Goodsell, Mark D.; Harries, Dylan; Krauss, Manuel E.; Nickel, Kilian; Opferkuch, Toby; Ubaldi, Lorenzo; Vicente, Avelino; Voigt, Alexander

    2016-09-01

    The hints for a new resonance at 750 GeV from ATLAS and CMS have triggered a significant amount of attention. Since the simplest extensions of the standard model cannot accommodate the observation, many alternatives have been considered to explain the excess. Here we focus on several proposed renormalisable weakly-coupled models and revisit results given in the literature. We point out that physically important subtleties are often missed or neglected. To facilitate the study of the excess we have created a collection of 40 model files, selected from recent literature, for the Mathematica package SARAH. With SARAH one can generate files to perform numerical studies using the tailor-made spectrum generators FlexibleSUSY and SPheno. These have been extended to automatically include crucial higher order corrections to the diphoton and digluon decay rates for both CP-even and CP-odd scalars. Additionally, we have extended the UFO and CalcHep interfaces of SARAH, to pass the precise information about the effective vertices from the spectrum generator to a Monte-Carlo tool. Finally, as an example to demonstrate the power of the entire setup, we present a new supersymmetric model that accommodates the diphoton excess, explicitly demonstrating how a large width can be obtained. We explicitly show several steps in detail to elucidate the use of these public tools in the precision study of this model.

  7. An empirical approach to estimate near-infra-red photon propagation and optically induced drug release in brain tissues

    NASA Astrophysics Data System (ADS)

    Prabhu Verleker, Akshay; Fang, Qianqian; Choi, Mi-Ran; Clare, Susan; Stantz, Keith M.

    2015-03-01

    The purpose of this study is to develop an alternate empirical approach to estimate near-infra-red (NIR) photon propagation and quantify optically induced drug release in brain metastasis, without relying on computationally expensive Monte Carlo techniques (gold standard). Targeted drug delivery with optically induced drug release is a noninvasive means to treat cancers and metastasis. This study is part of a larger project to treat brain metastasis by delivering lapatinib-drug-nanocomplexes and activating NIR-induced drug release. The empirical model was developed using a weighted approach to estimate photon scattering in tissues and calibrated using a GPU based 3D Monte Carlo. The empirical model was developed and tested against Monte Carlo in optical brain phantoms for pencil beams (width 1mm) and broad beams (width 10mm). The empirical algorithm was tested against the Monte Carlo for different albedos along with diffusion equation and in simulated brain phantoms resembling white-matter (μs'=8.25mm-1, μa=0.005mm-1) and gray-matter (μs'=2.45mm-1, μa=0.035mm-1) at wavelength 800nm. The goodness of fit between the two models was determined using coefficient of determination (R-squared analysis). Preliminary results show the Empirical algorithm matches Monte Carlo simulated fluence over a wide range of albedo (0.7 to 0.99), while the diffusion equation fails for lower albedo. The photon fluence generated by empirical code matched the Monte Carlo in homogeneous phantoms (R2=0.99). While GPU based Monte Carlo achieved 300X acceleration compared to earlier CPU based models, the empirical code is 700X faster than the Monte Carlo for a typical super-Gaussian laser beam.

  8. A white-box model of S-shaped and double S-shaped single-species population growth

    PubMed Central

    Kalmykov, Lev V.

    2015-01-01

    Complex systems may be mechanistically modelled by white-box modeling with using logical deterministic individual-based cellular automata. Mathematical models of complex systems are of three types: black-box (phenomenological), white-box (mechanistic, based on the first principles) and grey-box (mixtures of phenomenological and mechanistic models). Most basic ecological models are of black-box type, including Malthusian, Verhulst, Lotka–Volterra models. In black-box models, the individual-based (mechanistic) mechanisms of population dynamics remain hidden. Here we mechanistically model the S-shaped and double S-shaped population growth of vegetatively propagated rhizomatous lawn grasses. Using purely logical deterministic individual-based cellular automata we create a white-box model. From a general physical standpoint, the vegetative propagation of plants is an analogue of excitation propagation in excitable media. Using the Monte Carlo method, we investigate a role of different initial positioning of an individual in the habitat. We have investigated mechanisms of the single-species population growth limited by habitat size, intraspecific competition, regeneration time and fecundity of individuals in two types of boundary conditions and at two types of fecundity. Besides that, we have compared the S-shaped and J-shaped population growth. We consider this white-box modeling approach as a method of artificial intelligence which works as automatic hyper-logical inference from the first principles of the studied subject. This approach is perspective for direct mechanistic insights into nature of any complex systems. PMID:26038717

  9. On the predictivity of pore-scale simulations: Estimating uncertainties with multilevel Monte Carlo

    NASA Astrophysics Data System (ADS)

    Icardi, Matteo; Boccardo, Gianluca; Tempone, Raúl

    2016-09-01

    A fast method with tunable accuracy is proposed to estimate errors and uncertainties in pore-scale and Digital Rock Physics (DRP) problems. The overall predictivity of these studies can be, in fact, hindered by many factors including sample heterogeneity, computational and imaging limitations, model inadequacy and not perfectly known physical parameters. The typical objective of pore-scale studies is the estimation of macroscopic effective parameters such as permeability, effective diffusivity and hydrodynamic dispersion. However, these are often non-deterministic quantities (i.e., results obtained for specific pore-scale sample and setup are not totally reproducible by another ;equivalent; sample and setup). The stochastic nature can arise due to the multi-scale heterogeneity, the computational and experimental limitations in considering large samples, and the complexity of the physical models. These approximations, in fact, introduce an error that, being dependent on a large number of complex factors, can be modeled as random. We propose a general simulation tool, based on multilevel Monte Carlo, that can reduce drastically the computational cost needed for computing accurate statistics of effective parameters and other quantities of interest, under any of these random errors. This is, to our knowledge, the first attempt to include Uncertainty Quantification (UQ) in pore-scale physics and simulation. The method can also provide estimates of the discretization error and it is tested on three-dimensional transport problems in heterogeneous materials, where the sampling procedure is done by generation algorithms able to reproduce realistic consolidated and unconsolidated random sphere and ellipsoid packings and arrangements. A totally automatic workflow is developed in an open-source code [1], that include rigid body physics and random packing algorithms, unstructured mesh discretization, finite volume solvers, extrapolation and post-processing techniques. The proposed method can be efficiently used in many porous media applications for problems such as stochastic homogenization/upscaling, propagation of uncertainty from microscopic fluid and rock properties to macro-scale parameters, robust estimation of Representative Elementary Volume size for arbitrary physics.

  10. Uncertainties in models of tropospheric ozone based on Monte Carlo analysis: Tropospheric ozone burdens, atmospheric lifetimes and surface distributions

    NASA Astrophysics Data System (ADS)

    Derwent, Richard G.; Parrish, David D.; Galbally, Ian E.; Stevenson, David S.; Doherty, Ruth M.; Naik, Vaishali; Young, Paul J.

    2018-05-01

    Recognising that global tropospheric ozone models have many uncertain input parameters, an attempt has been made to employ Monte Carlo sampling to quantify the uncertainties in model output that arise from global tropospheric ozone precursor emissions and from ozone production and destruction in a global Lagrangian chemistry-transport model. Ninety eight quasi-randomly Monte Carlo sampled model runs were completed and the uncertainties were quantified in tropospheric burdens and lifetimes of ozone, carbon monoxide and methane, together with the surface distribution and seasonal cycle in ozone. The results have shown a satisfactory degree of convergence and provide a first estimate of the likely uncertainties in tropospheric ozone model outputs. There are likely to be diminishing returns in carrying out many more Monte Carlo runs in order to refine further these outputs. Uncertainties due to model formulation were separately addressed using the results from 14 Atmospheric Chemistry Coupled Climate Model Intercomparison Project (ACCMIP) chemistry-climate models. The 95% confidence ranges surrounding the ACCMIP model burdens and lifetimes for ozone, carbon monoxide and methane were somewhat smaller than for the Monte Carlo estimates. This reflected the situation where the ACCMIP models used harmonised emissions data and differed only in their meteorological data and model formulations whereas a conscious effort was made to describe the uncertainties in the ozone precursor emissions and in the kinetic and photochemical data in the Monte Carlo runs. Attention was focussed on the model predictions of the ozone seasonal cycles at three marine boundary layer stations: Mace Head, Ireland, Trinidad Head, California and Cape Grim, Tasmania. Despite comprehensively addressing the uncertainties due to global emissions and ozone sources and sinks, none of the Monte Carlo runs were able to generate seasonal cycles that matched the observations at all three MBL stations. Although the observed seasonal cycles were found to fall within the confidence limits of the ACCMIP members, this was because the model seasonal cycles spanned extremely wide ranges and there was no single ACCMIP member that performed best for each station. Further work is required to examine the parameterisation of convective mixing in the models to see if this erodes the isolation of the marine boundary layer from the free troposphere and thus hides the models' real ability to reproduce ozone seasonal cycles over marine stations.

  11. Probabilistic learning of nonlinear dynamical systems using sequential Monte Carlo

    NASA Astrophysics Data System (ADS)

    Schön, Thomas B.; Svensson, Andreas; Murray, Lawrence; Lindsten, Fredrik

    2018-05-01

    Probabilistic modeling provides the capability to represent and manipulate uncertainty in data, models, predictions and decisions. We are concerned with the problem of learning probabilistic models of dynamical systems from measured data. Specifically, we consider learning of probabilistic nonlinear state-space models. There is no closed-form solution available for this problem, implying that we are forced to use approximations. In this tutorial we will provide a self-contained introduction to one of the state-of-the-art methods-the particle Metropolis-Hastings algorithm-which has proven to offer a practical approximation. This is a Monte Carlo based method, where the particle filter is used to guide a Markov chain Monte Carlo method through the parameter space. One of the key merits of the particle Metropolis-Hastings algorithm is that it is guaranteed to converge to the "true solution" under mild assumptions, despite being based on a particle filter with only a finite number of particles. We will also provide a motivating numerical example illustrating the method using a modeling language tailored for sequential Monte Carlo methods. The intention of modeling languages of this kind is to open up the power of sophisticated Monte Carlo methods-including particle Metropolis-Hastings-to a large group of users without requiring them to know all the underlying mathematical details.

  12. Monte Carlo Simulation of Microscopic Stock Market Models

    NASA Astrophysics Data System (ADS)

    Stauffer, Dietrich

    Computer simulations with random numbers, that is, Monte Carlo methods, have been considerably applied in recent years to model the fluctuations of stock market or currency exchange rates. Here we concentrate on the percolation model of Cont and Bouchaud, to simulate, not to predict, the market behavior.

  13. Monte Carlo model of light transport in multi-layered tubular organs

    NASA Astrophysics Data System (ADS)

    Zhang, Yunyao; Zhu, Jingping; Zhang, Ning

    2017-02-01

    We present a Monte Carlo static light migration model (Endo-MCML) to simulate endoscopic optical spectroscopy for tubular organs such as esophagus and colon. The model employs multi-layered hollow cylinder which emitting and receiving light both from the inner boundary to meet the conditions of endoscopy. Inhomogeneous sphere can be added in tissue layers to model cancer or other abnormal changes. The 3D light distribution and exit angle would be recorded as results. The accuracy of the model has been verified by Multi-layered Monte Carlo(MCML) method and NIRFAST. This model can be used for the forward modeling of light transport during endoscopically diffuse optical spectroscopy, light scattering spectroscopy, reflectance spectroscopy and other static optical detection or imaging technologies.

  14. Monte Carlo modeling of atomic oxygen attack of polymers with protective coatings on LDEF

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Degroh, Kim K.; Sechkar, Edward A.

    1992-01-01

    Characterization of the behavior of atomic oxygen interaction with materials on the Long Duration Exposure Facility (LDEF) will assist in understanding the mechanisms involved, and will lead to improved reliability in predicting in-space durability of materials based on ground laboratory testing. A computational simulation of atomic oxygen interaction with protected polymers was developed using Monte Carlo techniques. Through the use of assumed mechanistic behavior of atomic oxygen and results of both ground laboratory and LDEF data, a predictive Monte Carlo model was developed which simulates the oxidation processes that occur on polymers with applied protective coatings that have defects. The use of high atomic oxygen fluence-directed ram LDEF results has enabled mechanistic implications to be made by adjusting Monte Carlo modeling assumptions to match observed results based on scanning electron microscopy. Modeling assumptions, implications, and predictions are presented, along with comparison of observed ground laboratory and LDEF results.

  15. Automatic 3d Building Model Generations with Airborne LiDAR Data

    NASA Astrophysics Data System (ADS)

    Yastikli, N.; Cetin, Z.

    2017-11-01

    LiDAR systems become more and more popular because of the potential use for obtaining the point clouds of vegetation and man-made objects on the earth surface in an accurate and quick way. Nowadays, these airborne systems have been frequently used in wide range of applications such as DEM/DSM generation, topographic mapping, object extraction, vegetation mapping, 3 dimensional (3D) modelling and simulation, change detection, engineering works, revision of maps, coastal management and bathymetry. The 3D building model generation is the one of the most prominent applications of LiDAR system, which has the major importance for urban planning, illegal construction monitoring, 3D city modelling, environmental simulation, tourism, security, telecommunication and mobile navigation etc. The manual or semi-automatic 3D building model generation is costly and very time-consuming process for these applications. Thus, an approach for automatic 3D building model generation is needed in a simple and quick way for many studies which includes building modelling. In this study, automatic 3D building models generation is aimed with airborne LiDAR data. An approach is proposed for automatic 3D building models generation including the automatic point based classification of raw LiDAR point cloud. The proposed point based classification includes the hierarchical rules, for the automatic production of 3D building models. The detailed analyses for the parameters which used in hierarchical rules have been performed to improve classification results using different test areas identified in the study area. The proposed approach have been tested in the study area which has partly open areas, forest areas and many types of the buildings, in Zekeriyakoy, Istanbul using the TerraScan module of TerraSolid. The 3D building model was generated automatically using the results of the automatic point based classification. The obtained results of this research on study area verified that automatic 3D building models can be generated successfully using raw LiDAR point cloud data.

  16. Adaptive measurement selection for progressive damage estimation

    NASA Astrophysics Data System (ADS)

    Zhou, Wenfan; Kovvali, Narayan; Papandreou-Suppappola, Antonia; Chattopadhyay, Aditi; Peralta, Pedro

    2011-04-01

    Noise and interference in sensor measurements degrade the quality of data and have a negative impact on the performance of structural damage diagnosis systems. In this paper, a novel adaptive measurement screening approach is presented to automatically select the most informative measurements and use them intelligently for structural damage estimation. The method is implemented efficiently in a sequential Monte Carlo (SMC) setting using particle filtering. The noise suppression and improved damage estimation capability of the proposed method is demonstrated by an application to the problem of estimating progressive fatigue damage in an aluminum compact-tension (CT) sample using noisy PZT sensor measurements.

  17. CCC Observations of Pluto, Neptune and Triton with the San Fernando automatic meridian circle.

    NASA Astrophysics Data System (ADS)

    Muiños, J. L.; Belizón, F.; Vallejo, M.; Mallamaci, C. C.; Pérez, J. A.; Marmolejo, L. F.; Navarro, J. L.; Sedeño, J. A.

    2003-11-01

    The San Fernando automatic meridian circle (CMASF) is a meridian telescope built by Grubb-Parsons in 1948 fully automated between 1987 and 1995. In 1996 was moved from the Real Instituto y Observatorio de la Armada (ROA) in San Fernando to the Carlos U. Cesco (CUC) mountain observatory in San Juan (Argentine). The CUC is owned by the Observatorio Astronómico Félix Aguilar (OAFA) of National University of San Juan. In 1999 the telescope was provided with a CCD camera borrowed by the Copenhagen University Observatory (CUO). Between March and October of 2001 a campaign of observations of Pluto, Neptune and its satellite Triton was carried out with the CMASF. They were observed every five days while their transits through the CUC meridian happened during the night. In total 12 transits of Pluto, 15 of Neptune and 16 of Triton were got during that period. In this paper we present the results of the campaign.

  18. Automatic determination of optimal linear drilling trajectories for cochlear access accounting for drill-positioning error.

    PubMed

    Noble, Jack H; Majdani, Omid; Labadie, Robert F; Dawant, Benoit; Fitzpatrick, J Michael

    2010-09-01

    Cochlear implantation is a surgical procedure in which an electrode array is permanently implanted into the cochlea to stimulate the auditory nerve and allow deaf people to hear. Percutaneous cochlear access, a new minimally invasive implantation approach, requires drilling a single linear channel from the skull surface to the cochlea. The focus of this paper addresses a major challenge with this approach, which is the ability to determine, in a pre-operative CT, a safe and effective drilling trajectory. A measure of the safety and effectiveness of a given trajectory relative to sensitive structures is derived using a Monte Carlo approach. The drilling trajectory that maximizes this measure is found using an optimization algorithm. In tests on 13 ears, the technique was shown to find approximately twice as many acceptable trajectories as those found manually by an experienced surgeon. Using this method, safe trajectories can be automatically determined quickly and consistently. Copyright 2010 John Wiley & Sons, Ltd.

  19. Improved radial dose function estimation using current version MCNP Monte-Carlo simulation: Model 6711 and ISC3500 125I brachytherapy sources.

    PubMed

    Duggan, Dennis M

    2004-12-01

    Improved cross-sections in a new version of the Monte-Carlo N-particle (MCNP) code may eliminate discrepancies between radial dose functions (as defined by American Association of Physicists in Medicine Task Group 43) derived from Monte-Carlo simulations of low-energy photon-emitting brachytherapy sources and those from measurements on the same sources with thermoluminescent dosimeters. This is demonstrated for two 125I brachytherapy seed models, the Implant Sciences Model ISC3500 (I-Plant) and the Amersham Health Model 6711, by simulating their radial dose functions with two versions of MCNP, 4c2 and 5.

  20. SABRINA: an interactive solid geometry modeling program for Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, J.T.

    SABRINA is a fully interactive three-dimensional geometry modeling program for MCNP. In SABRINA, a user interactively constructs either body geometry, or surface geometry models, and interactively debugs spatial descriptions for the resulting objects. This enhanced capability significantly reduces the effort in constructing and debugging complicated three-dimensional geometry models for Monte Carlo Analysis.

  1. The structure of molten CuCl: Reverse Monte Carlo modeling with high-energy X-ray diffraction data and molecular dynamics of a polarizable ion model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alcaraz, Olga; Trullàs, Joaquim, E-mail: quim.trullas@upc.edu; Tahara, Shuta

    2016-09-07

    The results of the structural properties of molten copper chloride are reported from high-energy X-ray diffraction measurements, reverse Monte Carlo modeling method, and molecular dynamics simulations using a polarizable ion model. The simulated X-ray structure factor reproduces all trends observed experimentally, in particular the shoulder at around 1 Å{sup −1} related to intermediate range ordering, as well as the partial copper-copper correlations from the reverse Monte Carlo modeling, which cannot be reproduced by using a simple rigid ion model. It is shown that the shoulder comes from intermediate range copper-copper correlations caused by the polarized chlorides.

  2. Simulation-Based Model Checking for Nondeterministic Systems and Rare Events

    DTIC Science & Technology

    2016-03-24

    year, we have investigated AO* search and Monte Carlo Tree Search algorithms to complement and enhance CMU’s SMCMDP. 1 Final Report, March 14... tree , so we can use it to find the probability of reachability for a property in PRISM’s Probabilistic LTL. By finding the maximum probability of...savings, particularly when handling very large models. 2.3 Monte Carlo Tree Search The Monte Carlo sampling process in SMCMDP can take a long time to

  3. Monte Carlo simulation of aorta autofluorescence

    NASA Astrophysics Data System (ADS)

    Kuznetsova, A. A.; Pushkareva, A. E.

    2016-08-01

    Results of numerical simulation of autofluorescence of the aorta by the method of Monte Carlo are reported. Two states of the aorta, normal and with atherosclerotic lesions, are studied. A model of the studied tissue is developed on the basis of information about optical, morphological, and physico-chemical properties. It is shown that the data obtained by numerical Monte Carlo simulation are in good agreement with experimental results indicating adequacy of the developed model of the aorta autofluorescence.

  4. Sampling theory and automated simulations for vertical sections, applied to human brain.

    PubMed

    Cruz-Orive, L M; Gelšvartas, J; Roberts, N

    2014-02-01

    In recent years, there have been substantial developments in both magnetic resonance imaging techniques and automatic image analysis software. The purpose of this paper is to develop stereological image sampling theory (i.e. unbiased sampling rules) that can be used by image analysts for estimating geometric quantities such as surface area and volume, and to illustrate its implementation. The methods will ideally be applied automatically on segmented, properly sampled 2D images - although convenient manual application is always an option - and they are of wide applicability in many disciplines. In particular, the vertical sections design to estimate surface area is described in detail and applied to estimate the area of the pial surface and of the boundary between cortex and underlying white matter (i.e. subcortical surface area). For completeness, cortical volume and mean cortical thickness are also estimated. The aforementioned surfaces were triangulated in 3D with the aid of FreeSurfer software, which provided accurate surface area measures that served as gold standards. Furthermore, a software was developed to produce digitized trace curves of the triangulated target surfaces automatically from virtual sections. From such traces, a new method (called the 'lambda method') is presented to estimate surface area automatically. In addition, with the new software, intersections could be counted automatically between the relevant surface traces and a cycloid test grid for the classical design. This capability, together with the aforementioned gold standard, enabled us to thoroughly check the performance and the variability of the different estimators by Monte Carlo simulations for studying the human brain. In particular, new methods are offered to split the total error variance into the orientations, sectioning and cycloid components. The latter prediction was hitherto unavailable--one is proposed here and checked by way of simulations on a given set of digitized vertical sections with automatically superimposed cycloid grids of three different sizes. Concrete and detailed recommendations are given to implement the methods. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  5. A novel variable selection approach that iteratively optimizes variable space using weighted binary matrix sampling.

    PubMed

    Deng, Bai-chuan; Yun, Yong-huan; Liang, Yi-zeng; Yi, Lun-zhao

    2014-10-07

    In this study, a new optimization algorithm called the Variable Iterative Space Shrinkage Approach (VISSA) that is based on the idea of model population analysis (MPA) is proposed for variable selection. Unlike most of the existing optimization methods for variable selection, VISSA statistically evaluates the performance of variable space in each step of optimization. Weighted binary matrix sampling (WBMS) is proposed to generate sub-models that span the variable subspace. Two rules are highlighted during the optimization procedure. First, the variable space shrinks in each step. Second, the new variable space outperforms the previous one. The second rule, which is rarely satisfied in most of the existing methods, is the core of the VISSA strategy. Compared with some promising variable selection methods such as competitive adaptive reweighted sampling (CARS), Monte Carlo uninformative variable elimination (MCUVE) and iteratively retaining informative variables (IRIV), VISSA showed better prediction ability for the calibration of NIR data. In addition, VISSA is user-friendly; only a few insensitive parameters are needed, and the program terminates automatically without any additional conditions. The Matlab codes for implementing VISSA are freely available on the website: https://sourceforge.net/projects/multivariateanalysis/files/VISSA/.

  6. DESHARKY: automatic design of metabolic pathways for optimal cell growth.

    PubMed

    Rodrigo, Guillermo; Carrera, Javier; Prather, Kristala Jones; Jaramillo, Alfonso

    2008-11-01

    The biological solution for synthesis or remediation of organic compounds using living organisms, particularly bacteria and yeast, has been promoted because of the cost reduction with respect to the non-living chemical approach. In that way, computational frameworks can profit from the previous knowledge stored in large databases of compounds, enzymes and reactions. In addition, the cell behavior can be studied by modeling the cellular context. We have implemented a Monte Carlo algorithm (DESHARKY) that finds a metabolic pathway from a target compound by exploring a database of enzymatic reactions. DESHARKY outputs a biochemical route to the host metabolism together with its impact in the cellular context by using mathematical models of the cell resources and metabolism. Furthermore, we provide the sequence of amino acids for the enzymes involved in the route closest phylogenetically to the considered organism. We provide examples of designed metabolic pathways with their genetic load characterizations. Here, we have used Escherichia coli as host organism. In addition, our bioinformatic tool can be applied for biodegradation or biosynthesis and its performance scales with the database size. Software, a tutorial and examples are freely available and open source at http://soft.synth-bio.org/desharky.html

  7. Spatio-temporal diffusion of dynamic PET images

    NASA Astrophysics Data System (ADS)

    Tauber, C.; Stute, S.; Chau, M.; Spiteri, P.; Chalon, S.; Guilloteau, D.; Buvat, I.

    2011-10-01

    Positron emission tomography (PET) images are corrupted by noise. This is especially true in dynamic PET imaging where short frames are required to capture the peak of activity concentration after the radiotracer injection. High noise results in a possible bias in quantification, as the compartmental models used to estimate the kinetic parameters are sensitive to noise. This paper describes a new post-reconstruction filter to increase the signal-to-noise ratio in dynamic PET imaging. It consists in a spatio-temporal robust diffusion of the 4D image based on the time activity curve (TAC) in each voxel. It reduces the noise in homogeneous areas while preserving the distinct kinetics in regions of interest corresponding to different underlying physiological processes. Neither anatomical priors nor the kinetic model are required. We propose an automatic selection of the scale parameter involved in the diffusion process based on a robust statistical analysis of the distances between TACs. The method is evaluated using Monte Carlo simulations of brain activity distributions. We demonstrate the usefulness of the method and its superior performance over two other post-reconstruction spatial and temporal filters. Our simulations suggest that the proposed method can be used to significantly increase the signal-to-noise ratio in dynamic PET imaging.

  8. Validation of automatic segmentation of ribs for NTCP modeling.

    PubMed

    Stam, Barbara; Peulen, Heike; Rossi, Maddalena M G; Belderbos, José S A; Sonke, Jan-Jakob

    2016-03-01

    Determination of a dose-effect relation for rib fractures in a large patient group has been limited by the time consuming manual delineation of ribs. Automatic segmentation could facilitate such an analysis. We determine the accuracy of automatic rib segmentation in the context of normal tissue complication probability modeling (NTCP). Forty-one patients with stage I/II non-small cell lung cancer treated with SBRT to 54 Gy in 3 fractions were selected. Using the 4DCT derived mid-ventilation planning CT, all ribs were manually contoured and automatically segmented. Accuracy of segmentation was assessed using volumetric, shape and dosimetric measures. Manual and automatic dosimetric parameters Dx and EUD were tested for equivalence using the Two One-Sided T-test (TOST), and assessed for agreement using Bland-Altman analysis. NTCP models based on manual and automatic segmentation were compared. Automatic segmentation was comparable with the manual delineation in radial direction, but larger near the costal cartilage and vertebrae. Manual and automatic Dx and EUD were significantly equivalent. The Bland-Altman analysis showed good agreement. The two NTCP models were very similar. Automatic rib segmentation was significantly equivalent to manual delineation and can be used for NTCP modeling in a large patient group. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. FluxPyt: a Python-based free and open-source software for 13C-metabolic flux analyses.

    PubMed

    Desai, Trunil S; Srivastava, Shireesh

    2018-01-01

    13 C-Metabolic flux analysis (MFA) is a powerful approach to estimate intracellular reaction rates which could be used in strain analysis and design. Processing and analysis of labeling data for calculation of fluxes and associated statistics is an essential part of MFA. However, various software currently available for data analysis employ proprietary platforms and thus limit accessibility. We developed FluxPyt, a Python-based truly open-source software package for conducting stationary 13 C-MFA data analysis. The software is based on the efficient elementary metabolite unit framework. The standard deviations in the calculated fluxes are estimated using the Monte-Carlo analysis. FluxPyt also automatically creates flux maps based on a template for visualization of the MFA results. The flux distributions calculated by FluxPyt for two separate models: a small tricarboxylic acid cycle model and a larger Corynebacterium glutamicum model, were found to be in good agreement with those calculated by a previously published software. FluxPyt was tested in Microsoft™ Windows 7 and 10, as well as in Linux Mint 18.2. The availability of a free and open 13 C-MFA software that works in various operating systems will enable more researchers to perform 13 C-MFA and to further modify and develop the package.

  10. FluxPyt: a Python-based free and open-source software for 13C-metabolic flux analyses

    PubMed Central

    Desai, Trunil S.

    2018-01-01

    13C-Metabolic flux analysis (MFA) is a powerful approach to estimate intracellular reaction rates which could be used in strain analysis and design. Processing and analysis of labeling data for calculation of fluxes and associated statistics is an essential part of MFA. However, various software currently available for data analysis employ proprietary platforms and thus limit accessibility. We developed FluxPyt, a Python-based truly open-source software package for conducting stationary 13C-MFA data analysis. The software is based on the efficient elementary metabolite unit framework. The standard deviations in the calculated fluxes are estimated using the Monte-Carlo analysis. FluxPyt also automatically creates flux maps based on a template for visualization of the MFA results. The flux distributions calculated by FluxPyt for two separate models: a small tricarboxylic acid cycle model and a larger Corynebacterium glutamicum model, were found to be in good agreement with those calculated by a previously published software. FluxPyt was tested in Microsoft™ Windows 7 and 10, as well as in Linux Mint 18.2. The availability of a free and open 13C-MFA software that works in various operating systems will enable more researchers to perform 13C-MFA and to further modify and develop the package. PMID:29736347

  11. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees.

    PubMed

    Rabosky, Daniel L

    2014-01-01

    A number of methods have been developed to infer differential rates of species diversification through time and among clades using time-calibrated phylogenetic trees. However, we lack a general framework that can delineate and quantify heterogeneous mixtures of dynamic processes within single phylogenies. I developed a method that can identify arbitrary numbers of time-varying diversification processes on phylogenies without specifying their locations in advance. The method uses reversible-jump Markov Chain Monte Carlo to move between model subspaces that vary in the number of distinct diversification regimes. The model assumes that changes in evolutionary regimes occur across the branches of phylogenetic trees under a compound Poisson process and explicitly accounts for rate variation through time and among lineages. Using simulated datasets, I demonstrate that the method can be used to quantify complex mixtures of time-dependent, diversity-dependent, and constant-rate diversification processes. I compared the performance of the method to the MEDUSA model of rate variation among lineages. As an empirical example, I analyzed the history of speciation and extinction during the radiation of modern whales. The method described here will greatly facilitate the exploration of macroevolutionary dynamics across large phylogenetic trees, which may have been shaped by heterogeneous mixtures of distinct evolutionary processes.

  12. Automatic Detection of Key Innovations, Rate Shifts, and Diversity-Dependence on Phylogenetic Trees

    PubMed Central

    Rabosky, Daniel L.

    2014-01-01

    A number of methods have been developed to infer differential rates of species diversification through time and among clades using time-calibrated phylogenetic trees. However, we lack a general framework that can delineate and quantify heterogeneous mixtures of dynamic processes within single phylogenies. I developed a method that can identify arbitrary numbers of time-varying diversification processes on phylogenies without specifying their locations in advance. The method uses reversible-jump Markov Chain Monte Carlo to move between model subspaces that vary in the number of distinct diversification regimes. The model assumes that changes in evolutionary regimes occur across the branches of phylogenetic trees under a compound Poisson process and explicitly accounts for rate variation through time and among lineages. Using simulated datasets, I demonstrate that the method can be used to quantify complex mixtures of time-dependent, diversity-dependent, and constant-rate diversification processes. I compared the performance of the method to the MEDUSA model of rate variation among lineages. As an empirical example, I analyzed the history of speciation and extinction during the radiation of modern whales. The method described here will greatly facilitate the exploration of macroevolutionary dynamics across large phylogenetic trees, which may have been shaped by heterogeneous mixtures of distinct evolutionary processes. PMID:24586858

  13. Unsupervised Detection of Planetary Craters by a Marked Point Process

    NASA Technical Reports Server (NTRS)

    Troglio, G.; Benediktsson, J. A.; Le Moigne, J.; Moser, G.; Serpico, S. B.

    2011-01-01

    With the launch of several planetary missions in the last decade, a large amount of planetary images is being acquired. Preferably, automatic and robust processing techniques need to be used for data analysis because of the huge amount of the acquired data. Here, the aim is to achieve a robust and general methodology for crater detection. A novel technique based on a marked point process is proposed. First, the contours in the image are extracted. The object boundaries are modeled as a configuration of an unknown number of random ellipses, i.e., the contour image is considered as a realization of a marked point process. Then, an energy function is defined, containing both an a priori energy and a likelihood term. The global minimum of this function is estimated by using reversible jump Monte-Carlo Markov chain dynamics and a simulated annealing scheme. The main idea behind marked point processes is to model objects within a stochastic framework: Marked point processes represent a very promising current approach in the stochastic image modeling and provide a powerful and methodologically rigorous framework to efficiently map and detect objects and structures in an image with an excellent robustness to noise. The proposed method for crater detection has several feasible applications. One such application area is image registration by matching the extracted features.

  14. Automatic mathematical modeling for space application

    NASA Technical Reports Server (NTRS)

    Wang, Caroline K.

    1987-01-01

    A methodology for automatic mathematical modeling is described. The major objective is to create a very friendly environment for engineers to design, maintain and verify their model and also automatically convert the mathematical model into FORTRAN code for conventional computation. A demonstration program was designed for modeling the Space Shuttle Main Engine simulation mathematical model called Propulsion System Automatic Modeling (PSAM). PSAM provides a very friendly and well organized environment for engineers to build a knowledge base for base equations and general information. PSAM contains an initial set of component process elements for the Space Shuttle Main Engine simulation and a questionnaire that allows the engineer to answer a set of questions to specify a particular model. PSAM is then able to automatically generate the model and the FORTRAN code. A future goal is to download the FORTRAN code to the VAX/VMS system for conventional computation.

  15. QUANTIFYING AGGREGATE CHLORPYRIFOS EXPOSURE AND DOSE TO CHILDREN USING A PHYSICALLY-BASED TWO-STAGE MONTE CARLO PROBABILISTIC MODEL

    EPA Science Inventory

    To help address the Food Quality Protection Act of 1996, a physically-based, two-stage Monte Carlo probabilistic model has been developed to quantify and analyze aggregate exposure and dose to pesticides via multiple routes and pathways. To illustrate model capabilities and ide...

  16. Monte Carlo simulation models of breeding-population advancement.

    Treesearch

    J.N. King; G.R. Johnson

    1993-01-01

    Five generations of population improvement were modeled using Monte Carlo simulations. The model was designed to address questions that are important to the development of an advanced generation breeding population. Specifically we addressed the effects on both gain and effective population size of different mating schemes when creating a recombinant population for...

  17. Geant4 hadronic physics for space radiation environment.

    PubMed

    Ivantchenko, Anton V; Ivanchenko, Vladimir N; Molina, Jose-Manuel Quesada; Incerti, Sebastien L

    2012-01-01

    To test and to develop Geant4 (Geometry And Tracking version 4) Monte Carlo hadronic models with focus on applications in a space radiation environment. The Monte Carlo simulations have been performed using the Geant4 toolkit. Binary (BIC), its extension for incident light ions (BIC-ion) and Bertini (BERT) cascades were used as main Monte Carlo generators. For comparisons purposes, some other models were tested too. The hadronic testing suite has been used as a primary tool for model development and validation against experimental data. The Geant4 pre-compound (PRECO) and de-excitation (DEE) models were revised and improved. Proton, neutron, pion, and ion nuclear interactions were simulated with the recent version of Geant4 9.4 and were compared with experimental data from thin and thick target experiments. The Geant4 toolkit offers a large set of models allowing effective simulation of interactions of particles with matter. We have tested different Monte Carlo generators with our hadronic testing suite and accordingly we can propose an optimal configuration of Geant4 models for the simulation of the space radiation environment.

  18. The Impact of Misspecifying the Within-Subject Covariance Structure in Multiwave Longitudinal Multilevel Models: A Monte Carlo Study

    ERIC Educational Resources Information Center

    Kwok, Oi-man; West, Stephen G.; Green, Samuel B.

    2007-01-01

    This Monte Carlo study examined the impact of misspecifying the [big sum] matrix in longitudinal data analysis under both the multilevel model and mixed model frameworks. Under the multilevel model approach, under-specification and general-misspecification of the [big sum] matrix usually resulted in overestimation of the variances of the random…

  19. Parameter Uncertainty Analysis Using Monte Carlo Simulations for a Regional-Scale Groundwater Model

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Pohlmann, K.

    2016-12-01

    Regional-scale grid-based groundwater models for flow and transport often contain multiple types of parameters that can intensify the challenge of parameter uncertainty analysis. We propose a Monte Carlo approach to systematically quantify the influence of various types of model parameters on groundwater flux and contaminant travel times. The Monte Carlo simulations were conducted based on the steady-state conversion of the original transient model, which was then combined with the PEST sensitivity analysis tool SENSAN and particle tracking software MODPATH. Results identified hydrogeologic units whose hydraulic conductivity can significantly affect groundwater flux, and thirteen out of 173 model parameters that can cause large variation in travel times for contaminant particles originating from given source zones.

  20. Parallel Monte Carlo transport modeling in the context of a time-dependent, three-dimensional multi-physics code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Procassini, R.J.

    1997-12-31

    The fine-scale, multi-space resolution that is envisioned for accurate simulations of complex weapons systems in three spatial dimensions implies flop-rate and memory-storage requirements that will only be obtained in the near future through the use of parallel computational techniques. Since the Monte Carlo transport models in these simulations usually stress both of these computational resources, they are prime candidates for parallelization. The MONACO Monte Carlo transport package, which is currently under development at LLNL, will utilize two types of parallelism within the context of a multi-physics design code: decomposition of the spatial domain across processors (spatial parallelism) and distribution ofmore » particles in a given spatial subdomain across additional processors (particle parallelism). This implementation of the package will utilize explicit data communication between domains (message passing). Such a parallel implementation of a Monte Carlo transport model will result in non-deterministic communication patterns. The communication of particles between subdomains during a Monte Carlo time step may require a significant level of effort to achieve a high parallel efficiency.« less

  1. The structure of liquid water by polarized neutron diffraction and reverse Monte Carlo modelling.

    PubMed

    Temleitner, László; Pusztai, László; Schweika, Werner

    2007-08-22

    The coherent static structure factor of water has been investigated by polarized neutron diffraction. Polarization analysis allows us to separate the huge incoherent scattering background from hydrogen and to obtain high quality data of the coherent scattering from four different mixtures of liquid H(2)O and D(2)O. The information obtained by the variation of the scattering contrast confines the configurational space of water and is used by the reverse Monte Carlo technique to model the total structure factors. Structural characteristics have been calculated directly from the resulting sets of particle coordinates. Consistency with existing partial pair correlation functions, derived without the application of polarized neutrons, was checked by incorporating them into our reverse Monte Carlo calculations. We also performed Monte Carlo simulations of a hard sphere system, which provides an accurate estimate of the information content of the measured data. It is shown that the present combination of polarized neutron scattering and reverse Monte Carlo structural modelling is a promising approach towards a detailed understanding of the microscopic structure of water.

  2. Calculating phase equilibrium properties of plasma pseudopotential model using hybrid Gibbs statistical ensemble Monte-Carlo technique

    NASA Astrophysics Data System (ADS)

    Butlitsky, M. A.; Zelener, B. B.; Zelener, B. V.

    2015-11-01

    Earlier a two-component pseudopotential plasma model, which we called a “shelf Coulomb” model has been developed. A Monte-Carlo study of canonical NVT ensemble with periodic boundary conditions has been undertaken to calculate equations of state, pair distribution functions, internal energies and other thermodynamics properties of the model. In present work, an attempt is made to apply so-called hybrid Gibbs statistical ensemble Monte-Carlo technique to this model. First simulation results data show qualitatively similar results for critical point region for both methods. Gibbs ensemble technique let us to estimate the melting curve position and a triple point of the model (in reduced temperature and specific volume coordinates): T* ≈ 0.0476, v* ≈ 6 × 10-4.

  3. Use of seatbelts in cars with automatic belts.

    PubMed Central

    Williams, A F; Wells, J K; Lund, A K; Teed, N J

    1992-01-01

    Use of seatbelts in late model cars with automatic or manual belt systems was observed in suburban Washington, DC, Chicago, Los Angeles, and Philadelphia. In cars with automatic two-point belt systems, the use of shoulder belts by drivers was substantially higher than in the same model cars with manual three-point belts. This finding was true in varying degrees whatever the type of automatic belt, including cars with detachable nonmotorized belts, cars with detachable motorized belts, and especially cars with nondetachable motorized belts. Most of these automatic shoulder belts systems include manual lap belts. Use of lap belts was lower in cars with automatic two-point belt systems than in the same model cars with manual three-point belts; precisely how much lower could not be reliably estimated in this survey. Use of shoulder and lap belts was slightly higher in General Motors cars with detachable automatic three-point belts compared with the same model cars with manual three-point belts; in Hondas there was no difference in the rates of use of manual three-point belts and the rates of use of automatic three-point belts. PMID:1561301

  4. Recovery of Graded Response Model Parameters: A Comparison of Marginal Maximum Likelihood and Markov Chain Monte Carlo Estimation

    ERIC Educational Resources Information Center

    Kieftenbeld, Vincent; Natesan, Prathiba

    2012-01-01

    Markov chain Monte Carlo (MCMC) methods enable a fully Bayesian approach to parameter estimation of item response models. In this simulation study, the authors compared the recovery of graded response model parameters using marginal maximum likelihood (MML) and Gibbs sampling (MCMC) under various latent trait distributions, test lengths, and…

  5. A Bayesian destructive weighted Poisson cure rate model and an application to a cutaneous melanoma data.

    PubMed

    Rodrigues, Josemar; Cancho, Vicente G; de Castro, Mário; Balakrishnan, N

    2012-12-01

    In this article, we propose a new Bayesian flexible cure rate survival model, which generalises the stochastic model of Klebanov et al. [Klebanov LB, Rachev ST and Yakovlev AY. A stochastic-model of radiation carcinogenesis--latent time distributions and their properties. Math Biosci 1993; 113: 51-75], and has much in common with the destructive model formulated by Rodrigues et al. [Rodrigues J, de Castro M, Balakrishnan N and Cancho VG. Destructive weighted Poisson cure rate models. Technical Report, Universidade Federal de São Carlos, São Carlos-SP. Brazil, 2009 (accepted in Lifetime Data Analysis)]. In our approach, the accumulated number of lesions or altered cells follows a compound weighted Poisson distribution. This model is more flexible than the promotion time cure model in terms of dispersion. Moreover, it possesses an interesting and realistic interpretation of the biological mechanism of the occurrence of the event of interest as it includes a destructive process of tumour cells after an initial treatment or the capacity of an individual exposed to irradiation to repair altered cells that results in cancer induction. In other words, what is recorded is only the damaged portion of the original number of altered cells not eliminated by the treatment or repaired by the repair system of an individual. Markov Chain Monte Carlo (MCMC) methods are then used to develop Bayesian inference for the proposed model. Also, some discussions on the model selection and an illustration with a cutaneous melanoma data set analysed by Rodrigues et al. [Rodrigues J, de Castro M, Balakrishnan N and Cancho VG. Destructive weighted Poisson cure rate models. Technical Report, Universidade Federal de São Carlos, São Carlos-SP. Brazil, 2009 (accepted in Lifetime Data Analysis)] are presented.

  6. Latin hypercube sampling and geostatistical modeling of spatial uncertainty in a spatially explicit forest landscape model simulation

    Treesearch

    Chonggang Xu; Hong S. He; Yuanman Hu; Yu Chang; Xiuzhen Li; Rencang Bu

    2005-01-01

    Geostatistical stochastic simulation is always combined with Monte Carlo method to quantify the uncertainty in spatial model simulations. However, due to the relatively long running time of spatially explicit forest models as a result of their complexity, it is always infeasible to generate hundreds or thousands of Monte Carlo simulations. Thus, it is of great...

  7. Groundwars Version 5.0. User’s Guide

    DTIC Science & Technology

    1992-08-01

    model, Monte Carlo, land duel , heterogeneous forces, TANKWARS, target acquisition, combat survivability 19. ABSTRACT (Continue on reverse if necessary...land duel between two heterogeneous forces. The model simuJ.ates individual weapon systems and employs Monte Carlo probability theory as its primary...is a weapon systems effectiveness model which provides the results of a land duel between two forces. The model simulates individual weapon systems

  8. Non-Cartesian MRI Reconstruction With Automatic Regularization Via Monte-Carlo SURE

    PubMed Central

    Weller, Daniel S.; Nielsen, Jon-Fredrik; Fessler, Jeffrey A.

    2013-01-01

    Magnetic resonance image (MRI) reconstruction from undersampled k-space data requires regularization to reduce noise and aliasing artifacts. Proper application of regularization however requires appropriate selection of associated regularization parameters. In this work, we develop a data-driven regularization parameter adjustment scheme that minimizes an estimate (based on the principle of Stein’s unbiased risk estimate—SURE) of a suitable weighted squared-error measure in k-space. To compute this SURE-type estimate, we propose a Monte-Carlo scheme that extends our previous approach to inverse problems (e.g., MRI reconstruction) involving complex-valued images. Our approach depends only on the output of a given reconstruction algorithm and does not require knowledge of its internal workings, so it is capable of tackling a wide variety of reconstruction algorithms and nonquadratic regularizers including total variation and those based on the ℓ1-norm. Experiments with simulated and real MR data indicate that the proposed approach is capable of providing near mean squared-error (MSE) optimal regularization parameters for single-coil undersampled non-Cartesian MRI reconstruction. PMID:23591478

  9. Modulated phases in a three-dimensional Maier-Saupe model with competing interactions

    NASA Astrophysics Data System (ADS)

    Bienzobaz, P. F.; Xu, Na; Sandvik, Anders W.

    2017-07-01

    This work is dedicated to the study of the discrete version of the Maier-Saupe model in the presence of competing interactions. The competition between interactions favoring different orientational ordering produces a rich phase diagram including modulated phases. Using a mean-field approach and Monte Carlo simulations, we show that the proposed model exhibits isotropic and nematic phases and also a series of modulated phases that meet at a multicritical point, a Lifshitz point. Though the Monte Carlo and mean-field phase diagrams show some quantitative disagreements, the Monte Carlo simulations corroborate the general behavior found within the mean-field approximation.

  10. Rapid Monte Carlo Simulation of Gravitational Wave Galaxies

    NASA Astrophysics Data System (ADS)

    Breivik, Katelyn; Larson, Shane L.

    2015-01-01

    With the detection of gravitational waves on the horizon, astrophysical catalogs produced by gravitational wave observatories can be used to characterize the populations of sources and validate different galactic population models. Efforts to simulate gravitational wave catalogs and source populations generally focus on population synthesis models that require extensive time and computational power to produce a single simulated galaxy. Monte Carlo simulations of gravitational wave source populations can also be used to generate observation catalogs from the gravitational wave source population. Monte Carlo simulations have the advantes of flexibility and speed, enabling rapid galactic realizations as a function of galactic binary parameters with less time and compuational resources required. We present a Monte Carlo method for rapid galactic simulations of gravitational wave binary populations.

  11. Applying Hierarchical Model Calibration to Automatically Generated Items.

    ERIC Educational Resources Information Center

    Williamson, David M.; Johnson, Matthew S.; Sinharay, Sandip; Bejar, Isaac I.

    This study explored the application of hierarchical model calibration as a means of reducing, if not eliminating, the need for pretesting of automatically generated items from a common item model prior to operational use. Ultimately the successful development of automatic item generation (AIG) systems capable of producing items with highly similar…

  12. Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Fredriksson, Ingemar; Larsson, Marcus; Strömberg, Tomas

    2012-04-01

    Model based data analysis of diffuse reflectance spectroscopy data enables the estimation of optical and structural tissue parameters. The aim of this study was to present an inverse Monte Carlo method based on spectra from two source-detector distances (0.4 and 1.2 mm), using a multilayered tissue model. The tissue model variables include geometrical properties, light scattering properties, tissue chromophores such as melanin and hemoglobin, oxygen saturation and average vessel diameter. The method utilizes a small set of presimulated Monte Carlo data for combinations of different levels of epidermal thickness and tissue scattering. The path length distributions in the different layers are stored and the effect of the other parameters is added in the post-processing. The accuracy of the method was evaluated using Monte Carlo simulations of tissue-like models containing discrete blood vessels, evaluating blood tissue fraction and oxygenation. It was also compared to a homogeneous model. The multilayer model performed better than the homogeneous model and all tissue parameters significantly improved spectral fitting. Recorded in vivo spectra were fitted well at both distances, which we previously found was not possible with a homogeneous model. No absolute intensity calibration is needed and the algorithm is fast enough for real-time processing.

  13. Validation of the Monte Carlo simulator GATE for indium-111 imaging.

    PubMed

    Assié, K; Gardin, I; Véra, P; Buvat, I

    2005-07-07

    Monte Carlo simulations are useful for optimizing and assessing single photon emission computed tomography (SPECT) protocols, especially when aiming at measuring quantitative parameters from SPECT images. Before Monte Carlo simulated data can be trusted, the simulation model must be validated. The purpose of this work was to validate the use of GATE, a new Monte Carlo simulation platform based on GEANT4, for modelling indium-111 SPECT data, the quantification of which is of foremost importance for dosimetric studies. To that end, acquisitions of (111)In line sources in air and in water and of a cylindrical phantom were performed, together with the corresponding simulations. The simulation model included Monte Carlo modelling of the camera collimator and of a back-compartment accounting for photomultiplier tubes and associated electronics. Energy spectra, spatial resolution, sensitivity values, images and count profiles obtained for experimental and simulated data were compared. An excellent agreement was found between experimental and simulated energy spectra. For source-to-collimator distances varying from 0 to 20 cm, simulated and experimental spatial resolution differed by less than 2% in air, while the simulated sensitivity values were within 4% of the experimental values. The simulation of the cylindrical phantom closely reproduced the experimental data. These results suggest that GATE enables accurate simulation of (111)In SPECT acquisitions.

  14. Bayesian Monte Carlo and Maximum Likelihood Approach for Uncertainty Estimation and Risk Management: Application to Lake Oxygen Recovery Model

    EPA Science Inventory

    Model uncertainty estimation and risk assessment is essential to environmental management and informed decision making on pollution mitigation strategies. In this study, we apply a probabilistic methodology, which combines Bayesian Monte Carlo simulation and Maximum Likelihood e...

  15. Verification and Validation of Monte Carlo N-Particle 6 for Computing Gamma Protection Factors

    DTIC Science & Technology

    2015-03-26

    methods for evaluating RPFs, which it used for the subsequent 30 years. These approaches included computational modeling, radioisotopes , and a high...1.2.1. Past Methods of Experimental Evaluation ........................................................ 2 1.2.2. Modeling Efforts...Other Considerations ......................................................................................... 14 2.4. Monte Carlo Methods

  16. A Workstation Farm Optimized for Monte Carlo Shell Model Calculations : Alphleet

    NASA Astrophysics Data System (ADS)

    Watanabe, Y.; Shimizu, N.; Haruyama, S.; Honma, M.; Mizusaki, T.; Taketani, A.; Utsuno, Y.; Otsuka, T.

    We have built a workstation farm named ``Alphleet" which consists of 140 COMPAQ's Alpha 21264 CPUs, for Monte Carlo Shell Model (MCSM) calculations. It has achieved more than 90 % scalable performance with 140 CPUs when the MCSM calculation with PVM and 61.2 Gflops of LINPACK.

  17. Automatic Parametrization of Somatosensory Evoked Potentials With Chirp Modeling.

    PubMed

    Vayrynen, Eero; Noponen, Kai; Vipin, Ashwati; Thow, X Y; Al-Nashash, Hasan; Kortelainen, Jukka; All, Angelo

    2016-09-01

    In this paper, an approach using polynomial phase chirp signals to model somatosensory evoked potentials (SEPs) is proposed. SEP waveforms are assumed as impulses undergoing group velocity dispersion while propagating along a multipath neural connection. Mathematical analysis of pulse dispersion resulting in chirp signals is performed. An automatic parameterization of SEPs is proposed using chirp models. A Particle Swarm Optimization algorithm is used to optimize the model parameters. Features describing the latencies and amplitudes of SEPs are automatically derived. A rat model is then used to evaluate the automatic parameterization of SEPs in two experimental cases, i.e., anesthesia level and spinal cord injury (SCI). Experimental results show that chirp-based model parameters and the derived SEP features are significant in describing both anesthesia level and SCI changes. The proposed automatic optimization based approach for extracting chirp parameters offers potential for detailed SEP analysis in future studies. The method implementation in Matlab technical computing language is provided online.

  18. Modeling 2D and 3D diffusion.

    PubMed

    Saxton, Michael J

    2007-01-01

    Modeling obstructed diffusion is essential to the understanding of diffusion-mediated processes in the crowded cellular environment. Simple Monte Carlo techniques for modeling obstructed random walks are explained and related to Brownian dynamics and more complicated Monte Carlo methods. Random number generation is reviewed in the context of random walk simulations. Programming techniques and event-driven algorithms are discussed as ways to speed simulations.

  19. MUSiC—An Automated Scan for Deviations between Data and Monte Carlo Simulation

    NASA Astrophysics Data System (ADS)

    Meyer, Arnd

    2010-02-01

    A model independent analysis approach is presented, systematically scanning the data for deviations from the standard model Monte Carlo expectation. Such an analysis can contribute to the understanding of the CMS detector and the tuning of event generators. The approach is sensitive to a variety of models of new physics, including those not yet thought of.

  20. MUSiC - An Automated Scan for Deviations between Data and Monte Carlo Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Arnd

    2010-02-10

    A model independent analysis approach is presented, systematically scanning the data for deviations from the standard model Monte Carlo expectation. Such an analysis can contribute to the understanding of the CMS detector and the tuning of event generators. The approach is sensitive to a variety of models of new physics, including those not yet thought of.

  1. Self tuning system for industrial surveillance

    DOEpatents

    Stephan, Wegerich W; Jarman, Kristin K.; Gross, Kenneth C.

    2000-01-01

    A method and system for automatically establishing operational parameters of a statistical surveillance system. The method and system performs a frequency domain transition on time dependent data, a first Fourier composite is formed, serial correlation is removed, a series of Gaussian whiteness tests are performed along with an autocorrelation test, Fourier coefficients are stored and a second Fourier composite is formed. Pseudorandom noise is added, a Monte Carlo simulation is performed to establish SPRT missed alarm probabilities and tested with a synthesized signal. A false alarm test is then emperically evaluated and if less than a desired target value, then SPRT probabilities are used for performing surveillance.

  2. Monte Carlo modeling of spatial coherence: free-space diffraction

    PubMed Central

    Fischer, David G.; Prahl, Scott A.; Duncan, Donald D.

    2008-01-01

    We present a Monte Carlo method for propagating partially coherent fields through complex deterministic optical systems. A Gaussian copula is used to synthesize a random source with an arbitrary spatial coherence function. Physical optics and Monte Carlo predictions of the first- and second-order statistics of the field are shown for coherent and partially coherent sources for free-space propagation, imaging using a binary Fresnel zone plate, and propagation through a limiting aperture. Excellent agreement between the physical optics and Monte Carlo predictions is demonstrated in all cases. Convergence criteria are presented for judging the quality of the Monte Carlo predictions. PMID:18830335

  3. SKIRT: The design of a suite of input models for Monte Carlo radiative transfer simulations

    NASA Astrophysics Data System (ADS)

    Baes, M.; Camps, P.

    2015-09-01

    The Monte Carlo method is the most popular technique to perform radiative transfer simulations in a general 3D geometry. The algorithms behind and acceleration techniques for Monte Carlo radiative transfer are discussed extensively in the literature, and many different Monte Carlo codes are publicly available. On the contrary, the design of a suite of components that can be used for the distribution of sources and sinks in radiative transfer codes has received very little attention. The availability of such models, with different degrees of complexity, has many benefits. For example, they can serve as toy models to test new physical ingredients, or as parameterised models for inverse radiative transfer fitting. For 3D Monte Carlo codes, this requires algorithms to efficiently generate random positions from 3D density distributions. We describe the design of a flexible suite of components for the Monte Carlo radiative transfer code SKIRT. The design is based on a combination of basic building blocks (which can be either analytical toy models or numerical models defined on grids or a set of particles) and the extensive use of decorators that combine and alter these building blocks to more complex structures. For a number of decorators, e.g. those that add spiral structure or clumpiness, we provide a detailed description of the algorithms that can be used to generate random positions. Advantages of this decorator-based design include code transparency, the avoidance of code duplication, and an increase in code maintainability. Moreover, since decorators can be chained without problems, very complex models can easily be constructed out of simple building blocks. Finally, based on a number of test simulations, we demonstrate that our design using customised random position generators is superior to a simpler design based on a generic black-box random position generator.

  4. A measurement-based generalized source model for Monte Carlo dose simulations of CT scans

    PubMed Central

    Ming, Xin; Feng, Yuanming; Liu, Ransheng; Yang, Chengwen; Zhou, Li; Zhai, Hezheng; Deng, Jun

    2018-01-01

    The goal of this study is to develop a generalized source model (GSM) for accurate Monte Carlo dose simulations of CT scans based solely on the measurement data without a priori knowledge of scanner specifications. The proposed generalized source model consists of an extended circular source located at x-ray target level with its energy spectrum, source distribution and fluence distribution derived from a set of measurement data conveniently available in the clinic. Specifically, the central axis percent depth dose (PDD) curves measured in water and the cone output factors measured in air were used to derive the energy spectrum and the source distribution respectively with a Levenberg-Marquardt algorithm. The in-air film measurement of fan-beam dose profiles at fixed gantry was back-projected to generate the fluence distribution of the source model. A benchmarked Monte Carlo user code was used to simulate the dose distributions in water with the developed source model as beam input. The feasibility and accuracy of the proposed source model was tested on a GE LightSpeed and a Philips Brilliance Big Bore multi-detector CT (MDCT) scanners available in our clinic. In general, the Monte Carlo simulations of the PDDs in water and dose profiles along lateral and longitudinal directions agreed with the measurements within 4%/1mm for both CT scanners. The absolute dose comparison using two CTDI phantoms (16 cm and 32 cm in diameters) indicated a better than 5% agreement between the Monte Carlo-simulated and the ion chamber-measured doses at a variety of locations for the two scanners. Overall, this study demonstrated that a generalized source model can be constructed based only on a set of measurement data and used for accurate Monte Carlo dose simulations of patients’ CT scans, which would facilitate patient-specific CT organ dose estimation and cancer risk management in the diagnostic and therapeutic radiology. PMID:28079526

  5. A measurement-based generalized source model for Monte Carlo dose simulations of CT scans

    NASA Astrophysics Data System (ADS)

    Ming, Xin; Feng, Yuanming; Liu, Ransheng; Yang, Chengwen; Zhou, Li; Zhai, Hezheng; Deng, Jun

    2017-03-01

    The goal of this study is to develop a generalized source model for accurate Monte Carlo dose simulations of CT scans based solely on the measurement data without a priori knowledge of scanner specifications. The proposed generalized source model consists of an extended circular source located at x-ray target level with its energy spectrum, source distribution and fluence distribution derived from a set of measurement data conveniently available in the clinic. Specifically, the central axis percent depth dose (PDD) curves measured in water and the cone output factors measured in air were used to derive the energy spectrum and the source distribution respectively with a Levenberg-Marquardt algorithm. The in-air film measurement of fan-beam dose profiles at fixed gantry was back-projected to generate the fluence distribution of the source model. A benchmarked Monte Carlo user code was used to simulate the dose distributions in water with the developed source model as beam input. The feasibility and accuracy of the proposed source model was tested on a GE LightSpeed and a Philips Brilliance Big Bore multi-detector CT (MDCT) scanners available in our clinic. In general, the Monte Carlo simulations of the PDDs in water and dose profiles along lateral and longitudinal directions agreed with the measurements within 4%/1 mm for both CT scanners. The absolute dose comparison using two CTDI phantoms (16 cm and 32 cm in diameters) indicated a better than 5% agreement between the Monte Carlo-simulated and the ion chamber-measured doses at a variety of locations for the two scanners. Overall, this study demonstrated that a generalized source model can be constructed based only on a set of measurement data and used for accurate Monte Carlo dose simulations of patients’ CT scans, which would facilitate patient-specific CT organ dose estimation and cancer risk management in the diagnostic and therapeutic radiology.

  6. Radio diagnostics and analysis on the Puerto Rico CubeSat

    NASA Astrophysics Data System (ADS)

    Bergman, J. E. S.; Bruhn, F.; Isham, B.; Rincon-Charris, A.

    2014-04-01

    The Puerto Rico CubeSat is a collaboration between Interamerican University of Puerto Rico, the University of Puerto Rico, the Ana G. Ḿendez University System, NASA Marshal Space Flight Center, the University of Alabama at Huntsville, the Swedish Institute of Space Physics, and M¨alardalens University. Principle goals include providing aerospace and systems engineering experiences to students at the participating institutions. Mission objectives include the acquisition of space weather data to aid in better understanding the Sun to Earth connection. The Puerto Rico Cube- Sat is a 3U configuration, 10 × 10 × 30 cm. Active attitude control will be used to align the long (3U) axis along the orbital path, and the satellite will rotate along the 3U axis to assist in thermal management. The Puerto Rico CubeSat will carry two scientific payloads. One is CARLO (Charge Analyzer Responsive to Local Oscillation), which is designed to measure ion turbulence from 0 to 10 kHz. CARLO will operate in a ram configuration, thus giving it the ability to distinguish between ambient and spacecraftinduced irregularities in plasma density. The second payload is GIMMERF, a 0 to 30 MHz radio instrument, consisting of a digital 4-channel direct sampling receiver board, atmospheric-noise-limited preamplifiers, and four electrically short monopole antennas. The antennas are connected electronically, as dipoles, to enable measurements of the full 3-dimensional electric field vector signal, which, in turn makes it possible to characterize the radio emissions in terms of Stokes parameters and to perform direction finding. GIMME-RF will use artificial neural network technology to automatically identify radio data of interest. All radio data will be downloaded at 1% time resolution, and radio data of special interest (automatically identified or human selected) will be downloaded at full time and frequency resolution. CARLO and GIMME-RF are complementary instruments, as CARLO will measure low-frequency plasma turbulence, which affects radio propagation in the high-frequency radio band. The satellite communications system 1 EPSC Abstracts Vol. 9, EPSC2014-799, 2014 European Planetary Science Congress 2014 c Author(s) 2014 EPSC European Planetary Science Congress will operate at frequencies between 902 and 928 MHz and will share the same antenna used by GIMME-RF. The Puerto Rico CubeSat is expected to be ready for launch in 2016; a launch vehicle has not yet been identified. Support for the Puerto Rico Cubesat comes from the Puerto Rico Industrial Development Company (PRIDCO), the Puerto Rico NASA Experimental Program to Stimulate Competitive Research (EPSCoR), and the Interamerican University of Puerto Rico Bayaḿon Campus. The GIMMERF payload is supported by the Swedish National Space Board (SNSB), with in-kind contributions from Ḿalardalen's University and the Swedish Institute of Space Physics.

  7. SU-E-T-561: Monte Carlo-Based Organ Dose Reconstruction Using Pre-Contoured Human Model for Hodgkins Lymphoma Patients Treated by Cobalt-60 External Beam Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, J; Pelletier, C; Lee, C

    Purpose: Organ doses for the Hodgkin’s lymphoma patients treated with cobalt-60 radiation were estimated using an anthropomorphic model and Monte Carlo modeling. Methods: A cobalt-60 treatment unit modeled in the BEAMnrc Monte Carlo code was used to produce phase space data. The Monte Carlo simulation was verified with percent depth dose measurement in water at various field sizes. Radiation transport through the lung blocks were modeled by adjusting the weights of phase space data. We imported a precontoured adult female hybrid model and generated a treatment plan. The adjusted phase space data and the human model were imported to themore » XVMC Monte Carlo code for dose calculation. The organ mean doses were estimated and dose volume histograms were plotted. Results: The percent depth dose agreement between measurement and calculation in water phantom was within 2% for all field sizes. The mean organ doses of heart, left breast, right breast, and spleen for the selected case were 44.3, 24.1, 14.6 and 3.4 Gy, respectively with the midline prescription dose of 40.0 Gy. Conclusion: Organ doses were estimated for the patient group whose threedimensional images are not available. This development may open the door to more accurate dose reconstruction and estimates of uncertainties in secondary cancer risk for Hodgkin’s lymphoma patients. This work was partially supported by the intramural research program of the National Institutes of Health, National Cancer Institute, Division of Cancer Epidemiology and Genetics.« less

  8. Mosaicing of airborne LiDAR bathymetry strips based on Monte Carlo matching

    NASA Astrophysics Data System (ADS)

    Yang, Fanlin; Su, Dianpeng; Zhang, Kai; Ma, Yue; Wang, Mingwei; Yang, Anxiu

    2017-09-01

    This study proposes a new methodology for mosaicing airborne light detection and ranging (LiDAR) bathymetry (ALB) data based on Monte Carlo matching. Various errors occur in ALB data due to imperfect system integration and other interference factors. To account for these errors, a Monte Carlo matching algorithm based on a nonlinear least-squares adjustment model is proposed. First, the raw data of strip overlap areas were filtered according to their relative drift of depths. Second, a Monte Carlo model and nonlinear least-squares adjustment model were combined to obtain seven transformation parameters. Then, the multibeam bathymetric data were used to correct the initial strip during strip mosaicing. Finally, to evaluate the proposed method, the experimental results were compared with the results of the Iterative Closest Points (ICP) and three-dimensional Normal Distributions Transform (3D-NDT) algorithms. The results demonstrate that the algorithm proposed in this study is more robust and effective. When the quality of the raw data is poor, the Monte Carlo matching algorithm can still achieve centimeter-level accuracy for overlapping areas, which meets the accuracy of bathymetry required by IHO Standards for Hydrographic Surveys Special Publication No.44.

  9. Monte Carlo simulation for kinetic chemotaxis model: An application to the traveling population wave

    NASA Astrophysics Data System (ADS)

    Yasuda, Shugo

    2017-02-01

    A Monte Carlo simulation of chemotactic bacteria is developed on the basis of the kinetic model and is applied to a one-dimensional traveling population wave in a microchannel. In this simulation, the Monte Carlo method, which calculates the run-and-tumble motions of bacteria, is coupled with a finite volume method to calculate the macroscopic transport of the chemical cues in the environment. The simulation method can successfully reproduce the traveling population wave of bacteria that was observed experimentally and reveal the microscopic dynamics of bacterium coupled with the macroscopic transports of the chemical cues and bacteria population density. The results obtained by the Monte Carlo method are also compared with the asymptotic solution derived from the kinetic chemotaxis equation in the continuum limit, where the Knudsen number, which is defined by the ratio of the mean free path of bacterium to the characteristic length of the system, vanishes. The validity of the Monte Carlo method in the asymptotic behaviors for small Knudsen numbers is numerically verified.

  10. A new variable parallel holes collimator for scintigraphic device with validation method based on Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Trinci, G.; Massari, R.; Scandellari, M.; Boccalini, S.; Costantini, S.; Di Sero, R.; Basso, A.; Sala, R.; Scopinaro, F.; Soluri, A.

    2010-09-01

    The aim of this work is to show a new scintigraphic device able to change automatically the length of its collimator in order to adapt the spatial resolution value to gamma source distance. This patented technique replaces the need for collimator change that standard gamma cameras still feature. Monte Carlo simulations represent the best tool in searching new technological solutions for such an innovative collimation structure. They also provide a valid analysis on response of gamma cameras performances as well as on advantages and limits of this new solution. Specifically, Monte Carlo simulations are realized with GEANT4 (GEometry ANd Tracking) framework and the specific simulation object is a collimation method based on separate blocks that can be brought closer and farther, in order to reach and maintain specific spatial resolution values for all source-detector distances. To verify the accuracy and the faithfulness of these simulations, we have realized experimental measurements with identical setup and conditions. This confirms the power of the simulation as an extremely useful tool, especially where new technological solutions need to be studied, tested and analyzed before their practical realization. The final aim of this new collimation system is the improvement of the SPECT techniques, with the real control of the spatial resolution value during tomographic acquisitions. This principle did allow us to simulate a tomographic acquisition of two capillaries of radioactive solution, in order to verify the possibility to clearly distinguish them.

  11. Multistep Lattice-Voxel method utilizing lattice function for Monte-Carlo treatment planning with pixel based voxel model.

    PubMed

    Kumada, H; Saito, K; Nakamura, T; Sakae, T; Sakurai, H; Matsumura, A; Ono, K

    2011-12-01

    Treatment planning for boron neutron capture therapy generally utilizes Monte-Carlo methods for calculation of the dose distribution. The new treatment planning system JCDS-FX employs the multi-purpose Monte-Carlo code PHITS to calculate the dose distribution. JCDS-FX allows to build a precise voxel model consisting of pixel based voxel cells in the scale of 0.4×0.4×2.0 mm(3) voxel in order to perform high-accuracy dose estimation, e.g. for the purpose of calculating the dose distribution in a human body. However, the miniaturization of the voxel size increases calculation time considerably. The aim of this study is to investigate sophisticated modeling methods which can perform Monte-Carlo calculations for human geometry efficiently. Thus, we devised a new voxel modeling method "Multistep Lattice-Voxel method," which can configure a voxel model that combines different voxel sizes by utilizing the lattice function over and over. To verify the performance of the calculation with the modeling method, several calculations for human geometry were carried out. The results demonstrated that the Multistep Lattice-Voxel method enabled the precise voxel model to reduce calculation time substantially while keeping the high-accuracy of dose estimation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Combined Radar-Radiometer Surface Soil Moisture and Roughness Estimation

    NASA Technical Reports Server (NTRS)

    Akbar, Ruzbeh; Cosh, Michael H.; O'Neill, Peggy E.; Entekhabi, Dara; Moghaddam, Mahta

    2017-01-01

    A robust physics-based combined radar-radiometer, or Active-Passive, surface soil moisture and roughness estimation methodology is presented. Soil moisture and roughness retrieval is performed via optimization, i.e., minimization, of a joint objective function which constrains similar resolution radar and radiometer observations simultaneously. A data-driven and noise-dependent regularization term has also been developed to automatically regularize and balance corresponding radar and radiometer contributions to achieve optimal soil moisture retrievals. It is shown that in order to compensate for measurement and observation noise, as well as forward model inaccuracies, in combined radar-radiometer estimation surface roughness can be considered a free parameter. Extensive Monte-Carlo numerical simulations and assessment using field data have been performed to both evaluate the algorithms performance and to demonstrate soil moisture estimation. Unbiased root mean squared errors (RMSE) range from 0.18 to 0.03 cm3cm3 for two different land cover types of corn and soybean. In summary, in the context of soil moisture retrieval, the importance of consistent forward emission and scattering development is discussed and presented.

  13. Combined Radar-Radiometer Surface Soil Moisture and Roughness Estimation.

    PubMed

    Akbar, Ruzbeh; Cosh, Michael H; O'Neill, Peggy E; Entekhabi, Dara; Moghaddam, Mahta

    2017-07-01

    A robust physics-based combined radar-radiometer, or Active-Passive, surface soil moisture and roughness estimation methodology is presented. Soil moisture and roughness retrieval is performed via optimization, i.e., minimization, of a joint objective function which constrains similar resolution radar and radiometer observations simultaneously. A data-driven and noise-dependent regularization term has also been developed to automatically regularize and balance corresponding radar and radiometer contributions to achieve optimal soil moisture retrievals. It is shown that in order to compensate for measurement and observation noise, as well as forward model inaccuracies, in combined radar-radiometer estimation surface roughness can be considered a free parameter. Extensive Monte-Carlo numerical simulations and assessment using field data have been performed to both evaluate the algorithm's performance and to demonstrate soil moisture estimation. Unbiased root mean squared errors (RMSE) range from 0.18 to 0.03 cm3/cm3 for two different land cover types of corn and soybean. In summary, in the context of soil moisture retrieval, the importance of consistent forward emission and scattering development is discussed and presented.

  14. Accurate Theoretical Predictions of the Properties of Energetic Materials

    DTIC Science & Technology

    2008-09-18

    decomposition, Monte Carlo, molecular dynamics, supercritical fluids, solvation and separation, quantum Monte Carlo, potential energy surfaces, RDX , TNAZ...labs, who are contributing to the theoretical efforts, providing data for testing of the models, or aiding in the transition of the methods, models...and results to DoD applications. The major goals of the project are: • Models that describe phase transitions and chemical reactions in

  15. Application of the three-component bidirectional reflectance distribution function model to Monte Carlo calculation of spectral effective emissivities of nonisothermal blackbody cavities.

    PubMed

    Prokhorov, Alexander; Prokhorova, Nina I

    2012-11-20

    We applied the bidirectional reflectance distribution function (BRDF) model consisting of diffuse, quasi-specular, and glossy components to the Monte Carlo modeling of spectral effective emissivities for nonisothermal cavities. A method for extension of a monochromatic three-component (3C) BRDF model to a continuous spectral range is proposed. The initial data for this method are the BRDFs measured in the plane of incidence at a single wavelength and several incidence angles and directional-hemispherical reflectance measured at one incidence angle within a finite spectral range. We proposed the Monte Carlo algorithm for calculation of spectral effective emissivities for nonisothermal cavities whose internal surface is described by the wavelength-dependent 3C BRDF model. The results obtained for a cylindroconical nonisothermal cavity are discussed and compared with results obtained using the conventional specular-diffuse model.

  16. On the meaning of meaning when being mean: commentary on Berkowitz's "on the consideration of automatic as well as controlled psychological processes in aggression".

    PubMed

    Dodge, Kenneth A

    2008-01-01

    Berkowitz (this issue) makes a cogent case for his cognitive neo-associationist (CNA) model that some aggressive behaviors occur automatically, emotionally, and through conditioned association with other stimuli. He also proposes that they can occur without "processing," that is, without meaning. He contrasts his position with that of social information processing (SIP) models, which he casts as positing only controlled processing mechanisms for aggressive behavior. However, both CNA and SIP models posit automatic as well as controlled processes in aggressive behavior. Most aggressive behaviors occur through automatic processes, which are nonetheless rule governed. SIP models differ from the CNA model in asserting the essential role of meaning (often through nonconscious, automatic, and emotional processes) in mediating the link between a stimulus and an angry aggressive behavioral response. Copyright 2008 Wiley-Liss, Inc.

  17. Monte-Carlo-based uncertainty propagation with hierarchical models—a case study in dynamic torque

    NASA Astrophysics Data System (ADS)

    Klaus, Leonard; Eichstädt, Sascha

    2018-04-01

    For a dynamic calibration, a torque transducer is described by a mechanical model, and the corresponding model parameters are to be identified from measurement data. A measuring device for the primary calibration of dynamic torque, and a corresponding model-based calibration approach, have recently been developed at PTB. The complete mechanical model of the calibration set-up is very complex, and involves several calibration steps—making a straightforward implementation of a Monte Carlo uncertainty evaluation tedious. With this in mind, we here propose to separate the complete model into sub-models, with each sub-model being treated with individual experiments and analysis. The uncertainty evaluation for the overall model then has to combine the information from the sub-models in line with Supplement 2 of the Guide to the Expression of Uncertainty in Measurement. In this contribution, we demonstrate how to carry this out using the Monte Carlo method. The uncertainty evaluation involves various input quantities of different origin and the solution of a numerical optimisation problem.

  18. Experimental validation of a Monte Carlo proton therapy nozzle model incorporating magnetically steered protons.

    PubMed

    Peterson, S W; Polf, J; Bues, M; Ciangaru, G; Archambault, L; Beddar, S; Smith, A

    2009-05-21

    The purpose of this study is to validate the accuracy of a Monte Carlo calculation model of a proton magnetic beam scanning delivery nozzle developed using the Geant4 toolkit. The Monte Carlo model was used to produce depth dose and lateral profiles, which were compared to data measured in the clinical scanning treatment nozzle at several energies. Comparisons were also made between measured and simulated off-axis profiles to test the accuracy of the model's magnetic steering. Comparison of the 80% distal dose fall-off values for the measured and simulated depth dose profiles agreed to within 1 mm for the beam energies evaluated. Agreement of the full width at half maximum values for the measured and simulated lateral fluence profiles was within 1.3 mm for all energies. The position of measured and simulated spot positions for the magnetically steered beams agreed to within 0.7 mm of each other. Based on these results, we found that the Geant4 Monte Carlo model of the beam scanning nozzle has the ability to accurately predict depth dose profiles, lateral profiles perpendicular to the beam axis and magnetic steering of a proton beam during beam scanning proton therapy.

  19. 92 Years of the Ising Model: A High Resolution Monte Carlo Study

    NASA Astrophysics Data System (ADS)

    Xu, Jiahao; Ferrenberg, Alan M.; Landau, David P.

    2018-04-01

    Using extensive Monte Carlo simulations that employ the Wolff cluster flipping and data analysis with histogram reweighting and quadruple precision arithmetic, we have investigated the critical behavior of the simple cubic Ising model with lattice sizes ranging from 163 to 10243. By analyzing data with cross correlations between various thermodynamic quantities obtained from the same data pool, we obtained the critical inverse temperature K c = 0.221 654 626(5) and the critical exponent of the correlation length ν = 0.629 912(86) with precision that improves upon previous Monte Carlo estimates.

  20. Monte Carlo Simulation of Nonlinear Radiation Induced Plasmas. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wang, B. S.

    1972-01-01

    A Monte Carlo simulation model for radiation induced plasmas with nonlinear properties due to recombination was, employing a piecewise linearized predict-correct iterative technique. Several important variance reduction techniques were developed and incorporated into the model, including an antithetic variates technique. This approach is especially efficient for plasma systems with inhomogeneous media, multidimensions, and irregular boundaries. The Monte Carlo code developed has been applied to the determination of the electron energy distribution function and related parameters for a noble gas plasma created by alpha-particle irradiation. The characteristics of the radiation induced plasma involved are given.

  1. VARIAN CLINAC 6 MeV Photon Spectra Unfolding using a Monte Carlo Meshed Model

    NASA Astrophysics Data System (ADS)

    Morató, S.; Juste, B.; Miró, R.; Verdú, G.

    2017-09-01

    Energy spectrum is the best descriptive function to determine photon beam quality of a Medical Linear Accelerator (LinAc). The use of realistic photon spectra in Monte Carlo simulations has a great importance to obtain precise dose calculations in Radiotherapy Treatment Planning (RTP). Reconstruction of photon spectra emitted by medical accelerators from measured depth dose distributions in a water cube is an important tool for commissioning a Monte Carlo treatment planning system. Regarding this, the reconstruction problem is an inverse radiation transport function which is ill conditioned and its solution may become unstable due to small perturbations in the input data. This paper presents a more stable spectral reconstruction method which can be used to provide an independent confirmation of source models for a given machine without any prior knowledge of the spectral distribution. Monte Carlo models used in this work are built with unstructured meshes to simulate with realism the linear accelerator head geometry.

  2. Commissioning of a Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirgayussa, I Gde Eka, E-mail: ekadirgayussa@gmail.com; Yani, Sitti; Haryanto, Freddy, E-mail: freddy@fi.itb.ac.id

    2015-09-30

    Monte Carlo modelling of a linear accelerator is the first and most important step in Monte Carlo dose calculations in radiotherapy. Monte Carlo is considered today to be the most accurate and detailed calculation method in different fields of medical physics. In this research, we developed a photon beam model for Varian Clinac iX 6 MV equipped with MilleniumMLC120 for dose calculation purposes using BEAMnrc/DOSXYZnrc Monte Carlo system based on the underlying EGSnrc particle transport code. Monte Carlo simulation for this commissioning head LINAC divided in two stages are design head Linac model using BEAMnrc, characterize this model using BEAMDPmore » and analyze the difference between simulation and measurement data using DOSXYZnrc. In the first step, to reduce simulation time, a virtual treatment head LINAC was built in two parts (patient-dependent component and patient-independent component). The incident electron energy varied 6.1 MeV, 6.2 MeV and 6.3 MeV, 6.4 MeV, and 6.6 MeV and the FWHM (full width at half maximum) of source is 1 mm. Phase-space file from the virtual model characterized using BEAMDP. The results of MC calculations using DOSXYZnrc in water phantom are percent depth doses (PDDs) and beam profiles at depths 10 cm were compared with measurements. This process has been completed if the dose difference of measured and calculated relative depth-dose data along the central-axis and dose profile at depths 10 cm is ≤ 5%. The effect of beam width on percentage depth doses and beam profiles was studied. Results of the virtual model were in close agreement with measurements in incident energy electron 6.4 MeV. Our results showed that photon beam width could be tuned using large field beam profile at the depth of maximum dose. The Monte Carlo model developed in this study accurately represents the Varian Clinac iX with millennium MLC 120 leaf and can be used for reliable patient dose calculations. In this commissioning process, the good criteria of dose difference in PDD and dose profiles were achieve using incident electron energy 6.4 MeV.« less

  3. Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features.

    PubMed

    Zheng, Yefeng; Barbu, Adrian; Georgescu, Bogdan; Scheuering, Michael; Comaniciu, Dorin

    2008-11-01

    We propose an automatic four-chamber heart segmentation system for the quantitative functional analysis of the heart from cardiac computed tomography (CT) volumes. Two topics are discussed: heart modeling and automatic model fitting to an unseen volume. Heart modeling is a nontrivial task since the heart is a complex nonrigid organ. The model must be anatomically accurate, allow manual editing, and provide sufficient information to guide automatic detection and segmentation. Unlike previous work, we explicitly represent important landmarks (such as the valves and the ventricular septum cusps) among the control points of the model. The control points can be detected reliably to guide the automatic model fitting process. Using this model, we develop an efficient and robust approach for automatic heart chamber segmentation in 3-D CT volumes. We formulate the segmentation as a two-step learning problem: anatomical structure localization and boundary delineation. In both steps, we exploit the recent advances in learning discriminative models. A novel algorithm, marginal space learning (MSL), is introduced to solve the 9-D similarity transformation search problem for localizing the heart chambers. After determining the pose of the heart chambers, we estimate the 3-D shape through learning-based boundary delineation. The proposed method has been extensively tested on the largest dataset (with 323 volumes from 137 patients) ever reported in the literature. To the best of our knowledge, our system is the fastest with a speed of 4.0 s per volume (on a dual-core 3.2-GHz processor) for the automatic segmentation of all four chambers.

  4. Advanced Monte Carlo methods for thermal radiation transport

    NASA Astrophysics Data System (ADS)

    Wollaber, Allan B.

    During the past 35 years, the Implicit Monte Carlo (IMC) method proposed by Fleck and Cummings has been the standard Monte Carlo approach to solving the thermal radiative transfer (TRT) equations. However, the IMC equations are known to have accuracy limitations that can produce unphysical solutions. In this thesis, we explicitly provide the IMC equations with a Monte Carlo interpretation by including particle weight as one of its arguments. We also develop and test a stability theory for the 1-D, gray IMC equations applied to a nonlinear problem. We demonstrate that the worst case occurs for 0-D problems, and we extend the results to a stability algorithm that may be used for general linearizations of the TRT equations. We derive gray, Quasidiffusion equations that may be deterministically solved in conjunction with IMC to obtain an inexpensive, accurate estimate of the temperature at the end of the time step. We then define an average temperature T* to evaluate the temperature-dependent problem data in IMC, and we demonstrate that using T* is more accurate than using the (traditional) beginning-of-time-step temperature. We also propose an accuracy enhancement to the IMC equations: the use of a time-dependent "Fleck factor". This Fleck factor can be considered an automatic tuning of the traditionally defined user parameter alpha, which generally provides more accurate solutions at an increased cost relative to traditional IMC. We also introduce a global weight window that is proportional to the forward scalar intensity calculated by the Quasidiffusion method. This weight window improves the efficiency of the IMC calculation while conserving energy. All of the proposed enhancements are tested in 1-D gray and frequency-dependent problems. These enhancements do not unconditionally eliminate the unphysical behavior that can be seen in the IMC calculations. However, for fixed spatial and temporal grids, they suppress them and clearly work to make the solution more accurate. Overall, the work presented represents first steps along several paths that can be taken to improve the Monte Carlo simulations of TRT problems.

  5. CT-based patient modeling for head and neck hyperthermia treatment planning: manual versus automatic normal-tissue-segmentation.

    PubMed

    Verhaart, René F; Fortunati, Valerio; Verduijn, Gerda M; van Walsum, Theo; Veenland, Jifke F; Paulides, Margarethus M

    2014-04-01

    Clinical trials have shown that hyperthermia, as adjuvant to radiotherapy and/or chemotherapy, improves treatment of patients with locally advanced or recurrent head and neck (H&N) carcinoma. Hyperthermia treatment planning (HTP) guided H&N hyperthermia is being investigated, which requires patient specific 3D patient models derived from Computed Tomography (CT)-images. To decide whether a recently developed automatic-segmentation algorithm can be introduced in the clinic, we compared the impact of manual- and automatic normal-tissue-segmentation variations on HTP quality. CT images of seven patients were segmented automatically and manually by four observers, to study inter-observer and intra-observer geometrical variation. To determine the impact of this variation on HTP quality, HTP was performed using the automatic and manual segmentation of each observer, for each patient. This impact was compared to other sources of patient model uncertainties, i.e. varying gridsizes and dielectric tissue properties. Despite geometrical variations, manual and automatic generated 3D patient models resulted in an equal, i.e. 1%, variation in HTP quality. This variation was minor with respect to the total of other sources of patient model uncertainties, i.e. 11.7%. Automatically generated 3D patient models can be introduced in the clinic for H&N HTP. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. 10 CFR 429.45 - Automatic commercial ice makers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Automatic commercial ice makers. 429.45 Section 429.45... PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.45 Automatic commercial ice makers. (a... automatic commercial ice makers; and (2) For each basic model of automatic commercial ice maker selected for...

  7. 10 CFR 429.45 - Automatic commercial ice makers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Automatic commercial ice makers. 429.45 Section 429.45... PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.45 Automatic commercial ice makers. (a... automatic commercial ice makers; and (2) For each basic model of automatic commercial ice maker selected for...

  8. 10 CFR 429.45 - Automatic commercial ice makers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Automatic commercial ice makers. 429.45 Section 429.45... PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.45 Automatic commercial ice makers. (a... automatic commercial ice makers; and (2) For each basic model of automatic commercial ice maker selected for...

  9. Automatic programming of simulation models

    NASA Technical Reports Server (NTRS)

    Schroer, Bernard J.; Tseng, Fan T.; Zhang, Shou X.; Dwan, Wen S.

    1988-01-01

    The objective of automatic programming is to improve the overall environment for describing the program. This improved environment is realized by a reduction in the amount of detail that the programmer needs to know and is exposed to. Furthermore, this improved environment is achieved by a specification language that is more natural to the user's problem domain and to the user's way of thinking and looking at the problem. The goal of this research is to apply the concepts of automatic programming (AP) to modeling discrete event simulation system. Specific emphasis is on the design and development of simulation tools to assist the modeler define or construct a model of the system and to then automatically write the corresponding simulation code in the target simulation language, GPSS/PC. A related goal is to evaluate the feasibility of various languages for constructing automatic programming simulation tools.

  10. Bayesian dynamic regression models for interval censored survival data with application to children dental health.

    PubMed

    Wang, Xiaojing; Chen, Ming-Hui; Yan, Jun

    2013-07-01

    Cox models with time-varying coefficients offer great flexibility in capturing the temporal dynamics of covariate effects on event times, which could be hidden from a Cox proportional hazards model. Methodology development for varying coefficient Cox models, however, has been largely limited to right censored data; only limited work on interval censored data has been done. In most existing methods for varying coefficient models, analysts need to specify which covariate coefficients are time-varying and which are not at the time of fitting. We propose a dynamic Cox regression model for interval censored data in a Bayesian framework, where the coefficient curves are piecewise constant but the number of pieces and the jump points are covariate specific and estimated from the data. The model automatically determines the extent to which the temporal dynamics is needed for each covariate, resulting in smoother and more stable curve estimates. The posterior computation is carried out via an efficient reversible jump Markov chain Monte Carlo algorithm. Inference of each coefficient is based on an average of models with different number of pieces and jump points. A simulation study with three covariates, each with a coefficient of different degree in temporal dynamics, confirmed that the dynamic model is preferred to the existing time-varying model in terms of model comparison criteria through conditional predictive ordinate. When applied to a dental health data of children with age between 7 and 12 years, the dynamic model reveals that the relative risk of emergence of permanent tooth 24 between children with and without an infected primary predecessor is the highest at around age 7.5, and that it gradually reduces to one after age 11. These findings were not seen from the existing studies with Cox proportional hazards models.

  11. SABRINA: an interactive three-dimensional geometry-mnodeling program for MCNP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, J.T. III

    SABRINA is a fully interactive three-dimensional geometry-modeling program for MCNP, a Los Alamos Monte Carlo code for neutron and photon transport. In SABRINA, a user constructs either body geometry or surface geometry models and debugs spatial descriptions for the resulting objects. This enhanced capability significantly reduces effort in constructing and debugging complicated three-dimensional geometry models for Monte Carlo analysis. 2 refs., 33 figs.

  12. A comparison of Monte Carlo-based Bayesian parameter estimation methods for stochastic models of genetic networks

    PubMed Central

    Zaikin, Alexey; Míguez, Joaquín

    2017-01-01

    We compare three state-of-the-art Bayesian inference methods for the estimation of the unknown parameters in a stochastic model of a genetic network. In particular, we introduce a stochastic version of the paradigmatic synthetic multicellular clock model proposed by Ullner et al., 2007. By introducing dynamical noise in the model and assuming that the partial observations of the system are contaminated by additive noise, we enable a principled mechanism to represent experimental uncertainties in the synthesis of the multicellular system and pave the way for the design of probabilistic methods for the estimation of any unknowns in the model. Within this setup, we tackle the Bayesian estimation of a subset of the model parameters. Specifically, we compare three Monte Carlo based numerical methods for the approximation of the posterior probability density function of the unknown parameters given a set of partial and noisy observations of the system. The schemes we assess are the particle Metropolis-Hastings (PMH) algorithm, the nonlinear population Monte Carlo (NPMC) method and the approximate Bayesian computation sequential Monte Carlo (ABC-SMC) scheme. We present an extensive numerical simulation study, which shows that while the three techniques can effectively solve the problem there are significant differences both in estimation accuracy and computational efficiency. PMID:28797087

  13. TU-AB-BRC-11: Moving a GPU-OpenCL-Based Monte Carlo (MC) Dose Engine Towards Routine Clinical Use: Automatic Beam Commissioning and Efficient Source Sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Z; Folkerts, M; Jiang, S

    Purpose: We have previously developed a GPU-OpenCL-based MC dose engine named goMC with built-in analytical linac beam model. To move goMC towards routine clinical use, we have developed an automatic beam-commissioning method, and an efficient source sampling strategy to facilitate dose calculations for real treatment plans. Methods: Our commissioning method is to automatically adjust the relative weights among the sub-sources, through an optimization process minimizing the discrepancies between calculated dose and measurements. Six models built for Varian Truebeam linac photon beams (6MV, 10MV, 15MV, 18MV, 6MVFFF, 10MVFFF) were commissioned using measurement data acquired at our institution. To facilitate dose calculationsmore » for real treatment plans, we employed inverse sampling method to efficiently incorporate MLC leaf-sequencing into source sampling. Specifically, instead of sampling source particles control-point by control-point and rejecting the particles blocked by MLC, we assigned a control-point index to each sampled source particle, according to MLC leaf-open duration of each control-point at the pixel where the particle intersects the iso-center plane. Results: Our auto-commissioning method decreased distance-to-agreement (DTA) of depth dose at build-up regions by 36.2% averagely, making it within 1mm. Lateral profiles were better matched for all beams, with biggest improvement found at 15MV for which root-mean-square difference was reduced from 1.44% to 0.50%. Maximum differences of output factors were reduced to less than 0.7% for all beams, with largest decrease being from1.70% to 0.37% found at 10FFF. Our new sampling strategy was tested on a Head&Neck VMAT patient case. Achieving clinically acceptable accuracy, the new strategy could reduce the required history number by a factor of ∼2.8 given a statistical uncertainty level and hence achieve a similar speed-up factor. Conclusion: Our studies have demonstrated the feasibility and effectiveness of our auto-commissioning approach and new efficient source sampling strategy, implying the potential of our GPU-based MC dose engine goMC for routine clinical use.« less

  14. [Modeling and implementation method for the automatic biochemistry analyzer control system].

    PubMed

    Wang, Dong; Ge, Wan-cheng; Song, Chun-lin; Wang, Yun-guang

    2009-03-01

    In this paper the system structure The automatic biochemistry analyzer is a necessary instrument for clinical diagnostics. First of is analyzed. The system problems description and the fundamental principles for dispatch are brought forward. Then this text puts emphasis on the modeling for the automatic biochemistry analyzer control system. The objects model and the communications model are put forward. Finally, the implementation method is designed. It indicates that the system based on the model has good performance.

  15. iTOUGH2 V6.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finsterle, Stefan A.

    2010-11-01

    iTOUGH2 (inverse TOUGH2) provides inverse modeling capabilities for TOUGH2, a simulator for multi-dimensional , multi-phase, multi-component, non-isothermal flow and transport in fractured porous media. It performs sensitivity analysis, parameter estimation, and uncertainty propagation, analysis in geosciences and reservoir engineering and other application areas. It supports a number of different combination of fluids and components [equation-of-state (EOS) modules]. In addition, the optimization routines implemented in iTOUGH2 can also be used or sensitivity analysis, automatic model calibration, and uncertainty quantification of any external code that uses text-based input and output files. This link is achieved by means of the PEST application programmingmore » interface. iTOUGH2 solves the inverse problem by minimizing a non-linear objective function of the weighted differences between model output and the corresponding observations. Multiple minimization algorithms (derivative fee, gradient-based and second-order; local and global) are available. iTOUGH2 also performs Latin Hypercube Monte Carlos simulation for uncertainty propagation analysis. A detailed residual and error analysis is provided. This upgrade includes new EOS modules (specifically EOS7c, ECO2N and TMVOC), hysteretic relative permeability and capillary pressure functions and the PEST API. More details can be found at http://esd.lbl.gov/iTOUGH2 and the publications cited there. Hardware Req.: Multi-platform; Related/auxiliary software PVM (if running in parallel).« less

  16. iTOUGH2 v7.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FINSTERLE, STEFAN; JUNG, YOOJIN; KOWALSKY, MICHAEL

    2016-09-15

    iTOUGH2 (inverse TOUGH2) provides inverse modeling capabilities for TOUGH2, a simulator for multi-dimensional, multi-phase, multi-component, non-isothermal flow and transport in fractured porous media. iTOUGH2 performs sensitivity analyses, data-worth analyses, parameter estimation, and uncertainty propagation analyses in geosciences and reservoir engineering and other application areas. iTOUGH2 supports a number of different combinations of fluids and components (equation-of-state (EOS) modules). In addition, the optimization routines implemented in iTOUGH2 can also be used for sensitivity analysis, automatic model calibration, and uncertainty quantification of any external code that uses text-based input and output files using the PEST protocol. iTOUGH2 solves the inverse problem bymore » minimizing a non-linear objective function of the weighted differences between model output and the corresponding observations. Multiple minimization algorithms (derivative-free, gradient-based, and second-order; local and global) are available. iTOUGH2 also performs Latin Hypercube Monte Carlo simulations for uncertainty propagation analyses. A detailed residual and error analysis is provided. This upgrade includes (a) global sensitivity analysis methods, (b) dynamic memory allocation (c) additional input features and output analyses, (d) increased forward simulation capabilities, (e) parallel execution on multicore PCs and Linux clusters, and (f) bug fixes. More details can be found at http://esd.lbl.gov/iTOUGH2.« less

  17. Monte Carlo Simulation Using HyperCard and Lotus 1-2-3.

    ERIC Educational Resources Information Center

    Oulman, Charles S.; Lee, Motoko Y.

    Monte Carlo simulation is a computer modeling procedure for mimicking observations on a random variable. A random number generator is used in generating the outcome for the events that are being modeled. The simulation can be used to obtain results that otherwise require extensive testing or complicated computations. This paper describes how Monte…

  18. FluorWPS: A Monte Carlo ray-tracing model to compute sun-induced chlorophyll fluorescence of three-dimensional canopy

    USDA-ARS?s Scientific Manuscript database

    A model to simulate radiative transfer (RT) of sun-induced chlorophyll fluorescence (SIF) of three-dimensional (3-D) canopy, FluorWPS, was proposed and evaluated. The inclusion of fluorescence excitation was implemented with the ‘weight reduction’ and ‘photon spread’ concepts based on Monte Carlo ra...

  19. A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis

    ERIC Educational Resources Information Center

    Edwards, Michael C.

    2010-01-01

    Item factor analysis has a rich tradition in both the structural equation modeling and item response theory frameworks. The goal of this paper is to demonstrate a novel combination of various Markov chain Monte Carlo (MCMC) estimation routines to estimate parameters of a wide variety of confirmatory item factor analysis models. Further, I show…

  20. Markov Chain Monte Carlo Estimation of Item Parameters for the Generalized Graded Unfolding Model

    ERIC Educational Resources Information Center

    de la Torre, Jimmy; Stark, Stephen; Chernyshenko, Oleksandr S.

    2006-01-01

    The authors present a Markov Chain Monte Carlo (MCMC) parameter estimation procedure for the generalized graded unfolding model (GGUM) and compare it to the marginal maximum likelihood (MML) approach implemented in the GGUM2000 computer program, using simulated and real personality data. In the simulation study, test length, number of response…

  1. McSnow: A Monte-Carlo Particle Model for Riming and Aggregation of Ice Particles in a Multidimensional Microphysical Phase Space

    NASA Astrophysics Data System (ADS)

    Brdar, S.; Seifert, A.

    2018-01-01

    We present a novel Monte-Carlo ice microphysics model, McSnow, to simulate the evolution of ice particles due to deposition, aggregation, riming, and sedimentation. The model is an application and extension of the super-droplet method of Shima et al. (2009) to the more complex problem of rimed ice particles and aggregates. For each individual super-particle, the ice mass, rime mass, rime volume, and the number of monomers are predicted establishing a four-dimensional particle-size distribution. The sensitivity of the model to various assumptions is discussed based on box model and one-dimensional simulations. We show that the Monte-Carlo method provides a feasible approach to tackle this high-dimensional problem. The largest uncertainty seems to be related to the treatment of the riming processes. This calls for additional field and laboratory measurements of partially rimed snowflakes.

  2. The Role of Item Models in Automatic Item Generation

    ERIC Educational Resources Information Center

    Gierl, Mark J.; Lai, Hollis

    2012-01-01

    Automatic item generation represents a relatively new but rapidly evolving research area where cognitive and psychometric theories are used to produce tests that include items generated using computer technology. Automatic item generation requires two steps. First, test development specialists create item models, which are comparable to templates…

  3. Joint Facial Action Unit Detection and Feature Fusion: A Multi-conditional Learning Approach.

    PubMed

    Eleftheriadis, Stefanos; Rudovic, Ognjen; Pantic, Maja

    2016-10-05

    Automated analysis of facial expressions can benefit many domains, from marketing to clinical diagnosis of neurodevelopmental disorders. Facial expressions are typically encoded as a combination of facial muscle activations, i.e., action units. Depending on context, these action units co-occur in specific patterns, and rarely in isolation. Yet, most existing methods for automatic action unit detection fail to exploit dependencies among them, and the corresponding facial features. To address this, we propose a novel multi-conditional latent variable model for simultaneous fusion of facial features and joint action unit detection. Specifically, the proposed model performs feature fusion in a generative fashion via a low-dimensional shared subspace, while simultaneously performing action unit detection using a discriminative classification approach. We show that by combining the merits of both approaches, the proposed methodology outperforms existing purely discriminative/generative methods for the target task. To reduce the number of parameters, and avoid overfitting, a novel Bayesian learning approach based on Monte Carlo sampling is proposed, to integrate out the shared subspace. We validate the proposed method on posed and spontaneous data from three publicly available datasets (CK+, DISFA and Shoulder-pain), and show that both feature fusion and joint learning of action units leads to improved performance compared to the state-of-the-art methods for the task.

  4. The system of technical diagnostics of the industrial safety information network

    NASA Astrophysics Data System (ADS)

    Repp, P. V.

    2017-01-01

    This research is devoted to problems of safety of the industrial information network. Basic sub-networks, ensuring reliable operation of the elements of the industrial Automatic Process Control System, were identified. The core tasks of technical diagnostics of industrial information safety were presented. The structure of the technical diagnostics system of the information safety was proposed. It includes two parts: a generator of cyber-attacks and the virtual model of the enterprise information network. The virtual model was obtained by scanning a real enterprise network. A new classification of cyber-attacks was proposed. This classification enables one to design an efficient generator of cyber-attacks sets for testing the virtual modes of the industrial information network. The numerical method of the Monte Carlo (with LPτ - sequences of Sobol), and Markov chain was considered as the design method for the cyber-attacks generation algorithm. The proposed system also includes a diagnostic analyzer, performing expert functions. As an integrative quantitative indicator of the network reliability the stability factor (Kstab) was selected. This factor is determined by the weight of sets of cyber-attacks, identifying the vulnerability of the network. The weight depends on the frequency and complexity of cyber-attacks, the degree of damage, complexity of remediation. The proposed Kstab is an effective integral quantitative measure of the information network reliability.

  5. EARLINET Single Calculus Chain - technical - Part 1: Pre-processing of raw lidar data

    NASA Astrophysics Data System (ADS)

    D'Amico, Giuseppe; Amodeo, Aldo; Mattis, Ina; Freudenthaler, Volker; Pappalardo, Gelsomina

    2016-02-01

    In this paper we describe an automatic tool for the pre-processing of aerosol lidar data called ELPP (EARLINET Lidar Pre-Processor). It is one of two calculus modules of the EARLINET Single Calculus Chain (SCC), the automatic tool for the analysis of EARLINET data. ELPP is an open source module that executes instrumental corrections and data handling of the raw lidar signals, making the lidar data ready to be processed by the optical retrieval algorithms. According to the specific lidar configuration, ELPP automatically performs dead-time correction, atmospheric and electronic background subtraction, gluing of lidar signals, and trigger-delay correction. Moreover, the signal-to-noise ratio of the pre-processed signals can be improved by means of configurable time integration of the raw signals and/or spatial smoothing. ELPP delivers the statistical uncertainties of the final products by means of error propagation or Monte Carlo simulations. During the development of ELPP, particular attention has been payed to make the tool flexible enough to handle all lidar configurations currently used within the EARLINET community. Moreover, it has been designed in a modular way to allow an easy extension to lidar configurations not yet implemented. The primary goal of ELPP is to enable the application of quality-assured procedures in the lidar data analysis starting from the raw lidar data. This provides the added value of full traceability of each delivered lidar product. Several tests have been performed to check the proper functioning of ELPP. The whole SCC has been tested with the same synthetic data sets, which were used for the EARLINET algorithm inter-comparison exercise. ELPP has been successfully employed for the automatic near-real-time pre-processing of the raw lidar data measured during several EARLINET inter-comparison campaigns as well as during intense field campaigns.

  6. Free energy and phase equilibria for the restricted primitive model of ionic fluids from Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Orkoulas, Gerassimos; Panagiotopoulos, Athanassios Z.

    1994-07-01

    In this work, we investigate the liquid-vapor phase transition of the restricted primitive model of ionic fluids. We show that at the low temperatures where the phase transition occurs, the system cannot be studied by conventional molecular simulation methods because convergence to equilibrium is slow. To accelerate convergence, we propose cluster Monte Carlo moves capable of moving more than one particle at a time. We then address the issue of charged particle transfers in grand canonical and Gibbs ensemble Monte Carlo simulations, for which we propose a biased particle insertion/destruction scheme capable of sampling short interparticle distances. We compute the chemical potential for the restricted primitive model as a function of temperature and density from grand canonical Monte Carlo simulations and the phase envelope from Gibbs Monte Carlo simulations. Our calculated phase coexistence curve is in agreement with recent results of Caillol obtained on the four-dimensional hypersphere and our own earlier Gibbs ensemble simulations with single-ion transfers, with the exception of the critical temperature, which is lower in the current calculations. Our best estimates for the critical parameters are T*c=0.053, ρ*c=0.025. We conclude with possible future applications of the biased techniques developed here for phase equilibrium calculations for ionic fluids.

  7. Monte Carlo Transport for Electron Thermal Transport

    NASA Astrophysics Data System (ADS)

    Chenhall, Jeffrey; Cao, Duc; Moses, Gregory

    2015-11-01

    The iSNB (implicit Schurtz Nicolai Busquet multigroup electron thermal transport method of Cao et al. is adapted into a Monte Carlo transport method in order to better model the effects of non-local behavior. The end goal is a hybrid transport-diffusion method that combines Monte Carlo Transport with a discrete diffusion Monte Carlo (DDMC). The hybrid method will combine the efficiency of a diffusion method in short mean free path regions with the accuracy of a transport method in long mean free path regions. The Monte Carlo nature of the approach allows the algorithm to be massively parallelized. Work to date on the method will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.

  8. Monte Carlo capabilities of the SCALE code system

    DOE PAGES

    Rearden, Bradley T.; Petrie, Jr., Lester M.; Peplow, Douglas E.; ...

    2014-09-12

    SCALE is a broadly used suite of tools for nuclear systems modeling and simulation that provides comprehensive, verified and validated, user-friendly capabilities for criticality safety, reactor physics, radiation shielding, and sensitivity and uncertainty analysis. For more than 30 years, regulators, licensees, and research institutions around the world have used SCALE for nuclear safety analysis and design. SCALE provides a “plug-and-play” framework that includes three deterministic and three Monte Carlo radiation transport solvers that can be selected based on the desired solution, including hybrid deterministic/Monte Carlo simulations. SCALE includes the latest nuclear data libraries for continuous-energy and multigroup radiation transport asmore » well as activation, depletion, and decay calculations. SCALE’s graphical user interfaces assist with accurate system modeling, visualization, and convenient access to desired results. SCALE 6.2 will provide several new capabilities and significant improvements in many existing features, especially with expanded continuous-energy Monte Carlo capabilities for criticality safety, shielding, depletion, and sensitivity and uncertainty analysis. Finally, an overview of the Monte Carlo capabilities of SCALE is provided here, with emphasis on new features for SCALE 6.2.« less

  9. Integrating hidden Markov model and PRAAT: a toolbox for robust automatic speech transcription

    NASA Astrophysics Data System (ADS)

    Kabir, A.; Barker, J.; Giurgiu, M.

    2010-09-01

    An automatic time-aligned phone transcription toolbox of English speech corpora has been developed. Especially the toolbox would be very useful to generate robust automatic transcription and able to produce phone level transcription using speaker independent models as well as speaker dependent models without manual intervention. The system is based on standard Hidden Markov Models (HMM) approach and it was successfully experimented over a large audiovisual speech corpus namely GRID corpus. One of the most powerful features of the toolbox is the increased flexibility in speech processing where the speech community would be able to import the automatic transcription generated by HMM Toolkit (HTK) into a popular transcription software, PRAAT, and vice-versa. The toolbox has been evaluated through statistical analysis on GRID data which shows that automatic transcription deviates by an average of 20 ms with respect to manual transcription.

  10. Chain pooling to minimize prediction error in subset regression. [Monte Carlo studies using population models

    NASA Technical Reports Server (NTRS)

    Holms, A. G.

    1974-01-01

    Monte Carlo studies using population models intended to represent response surface applications are reported. Simulated experiments were generated by adding pseudo random normally distributed errors to population values to generate observations. Model equations were fitted to the observations and the decision procedure was used to delete terms. Comparison of values predicted by the reduced models with the true population values enabled the identification of deletion strategies that are approximately optimal for minimizing prediction errors.

  11. Sample Size and Power Estimates for a Confirmatory Factor Analytic Model in Exercise and Sport: A Monte Carlo Approach

    ERIC Educational Resources Information Center

    Myers, Nicholas D.; Ahn, Soyeon; Jin, Ying

    2011-01-01

    Monte Carlo methods can be used in data analytic situations (e.g., validity studies) to make decisions about sample size and to estimate power. The purpose of using Monte Carlo methods in a validity study is to improve the methodological approach within a study where the primary focus is on construct validity issues and not on advancing…

  12. Monte Carlo Techniques for Nuclear Systems - Theory Lectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B.

    These are lecture notes for a Monte Carlo class given at the University of New Mexico. The following topics are covered: course information; nuclear eng. review & MC; random numbers and sampling; computational geometry; collision physics; tallies and statistics; eigenvalue calculations I; eigenvalue calculations II; eigenvalue calculations III; variance reduction; parallel Monte Carlo; parameter studies; fission matrix and higher eigenmodes; doppler broadening; Monte Carlo depletion; HTGR modeling; coupled MC and T/H calculations; fission energy deposition. Solving particle transport problems with the Monte Carlo method is simple - just simulate the particle behavior. The devil is in the details, however. Thesemore » lectures provide a balanced approach to the theory and practice of Monte Carlo simulation codes. The first lectures provide an overview of Monte Carlo simulation methods, covering the transport equation, random sampling, computational geometry, collision physics, and statistics. The next lectures focus on the state-of-the-art in Monte Carlo criticality simulations, covering the theory of eigenvalue calculations, convergence analysis, dominance ratio calculations, bias in Keff and tallies, bias in uncertainties, a case study of a realistic calculation, and Wielandt acceleration techniques. The remaining lectures cover advanced topics, including HTGR modeling and stochastic geometry, temperature dependence, fission energy deposition, depletion calculations, parallel calculations, and parameter studies. This portion of the class focuses on using MCNP to perform criticality calculations for reactor physics and criticality safety applications. It is an intermediate level class, intended for those with at least some familiarity with MCNP. Class examples provide hands-on experience at running the code, plotting both geometry and results, and understanding the code output. The class includes lectures & hands-on computer use for a variety of Monte Carlo calculations. Beginning MCNP users are encouraged to review LA-UR-09-00380, "Criticality Calculations with MCNP: A Primer (3nd Edition)" (available at http:// mcnp.lanl.gov under "Reference Collection") prior to the class. No Monte Carlo class can be complete without having students write their own simple Monte Carlo routines for basic random sampling, use of the random number generator, and simplified particle transport simulation.« less

  13. Systematic evaluation of a time-domain Monte Carlo fitting routine to estimate the adult brain optical properties

    NASA Astrophysics Data System (ADS)

    Selb, Juliette; Ogden, Tyler M.; Dubb, Jay; Fang, Qianqian; Boas, David A.

    2013-03-01

    Time-domain near-infrared spectroscopy (TD-NIRS) offers the ability to measure the absolute baseline optical properties of a tissue. Specifically, for brain imaging, the robust assessment of cerebral blood volume and oxygenation based on measurement of cerebral hemoglobin concentrations is essential for reliable cross-sectional and longitudinal studies. In adult heads, these baseline measurements are complicated by the presence of thick extra-cerebral tissue (scalp, skull, CSF). A simple semi-infinite homogeneous model of the head has proven to have limited use because of the large errors it introduces in the recovered brain absorption. Analytical solutions for layered media have shown improved performance on Monte-Carlo simulated data and layered phantom experiments, but their validity on real adult head data has never been demonstrated. With the advance of fast Monte Carlo approaches based on GPU computation, numerical methods to solve the radiative transfer equation become viable alternatives to analytical solutions of the diffusion equation. Monte Carlo approaches provide the additional advantage to be adaptable to any geometry, in particular more realistic head models. The goals of the present study were twofold: (1) to implement a fast and flexible Monte Carlo-based fitting routine to retrieve the brain optical properties; (2) to characterize the performances of this fitting method on realistic adult head data. We generated time-resolved data at various locations over the head, and fitted them with different models of light propagation: the homogeneous analytical model, and Monte Carlo simulations for three head models: a two-layer slab, the true subject's anatomy, and that of a generic atlas head. We found that the homogeneous model introduced a median 20 to 25% error on the recovered brain absorption, with large variations over the range of true optical properties. The two-layer slab model only improved moderately the results over the homogeneous one. On the other hand, using a generic atlas head registered to the subject's head surface decreased the error by a factor of 2. When the information is available, using the true subject anatomy offers the best performance.

  14. Monte Carlo simulation of cutaneous absorption and reflectance for clear, matt and dark biological tissue with varicosities: an investigation for dermatological laser

    NASA Astrophysics Data System (ADS)

    Klouch, Nawel; Riane, Houaria; Hamdache, Fatima; Addi, Djamel

    2013-05-01

    We are interested in modeling the interaction between light and biological tissue from the Monte Carlo method which is an approach used to solve modeling problems in different physical domains. Through the Monte Carlo approach we are going to try to interpret the spectral response absorption, reflectance, transmittance of normal human tissue under its three dominant tints in the visible range (350-700) nm. Then we will focus on the spectral response of the human tissue with varicosities in order to determinate the optimal conditions of operating the semiconductor laser for esthetic aim.

  15. Predictions of a Large Magnetocaloric Effect in Co- and Cr-Substituted Heusler Alloys Using First-Principles and Monte Carlo Approaches

    NASA Astrophysics Data System (ADS)

    Sokolovskiy, Vladimir V.; Buchelnikov, Vasiliy D.; Zagrebin, Mikhail A.; Grünebohm, Anna; Entel, Peter

    The effect of Co- and Cr-doping on magnetic and magnetocaloric poperties of Ni-Mn-(In, Ga, Sn, and Al) Heusler alloys has been theoretically studied by combining first principles with Monte Carlo approaches. The magnetic and magnetocaloric properties are obtained as a function of temperature and magnetic field using a mixed type of Potts and Blume-Emery-Griffiths model where the model parameters are obtained from ab initio calculations. The Monte Carlo calculations allowed to make predictions of a giant inverse magnetocaloric effect in partially new hypothetical magnetic Heusler alloys across the martensitic transformation.

  16. Accurate quantification of fluorescent targets within turbid media based on a decoupled fluorescence Monte Carlo model.

    PubMed

    Deng, Yong; Luo, Zhaoyang; Jiang, Xu; Xie, Wenhao; Luo, Qingming

    2015-07-01

    We propose a method based on a decoupled fluorescence Monte Carlo model for constructing fluorescence Jacobians to enable accurate quantification of fluorescence targets within turbid media. The effectiveness of the proposed method is validated using two cylindrical phantoms enclosing fluorescent targets within homogeneous and heterogeneous background media. The results demonstrate that our method can recover relative concentrations of the fluorescent targets with higher accuracy than the perturbation fluorescence Monte Carlo method. This suggests that our method is suitable for quantitative fluorescence diffuse optical tomography, especially for in vivo imaging of fluorophore targets for diagnosis of different diseases and abnormalities.

  17. Particle tracking acceleration via signed distance fields in direct-accelerated geometry Monte Carlo

    DOE PAGES

    Shriwise, Patrick C.; Davis, Andrew; Jacobson, Lucas J.; ...

    2017-08-26

    Computer-aided design (CAD)-based Monte Carlo radiation transport is of value to the nuclear engineering community for its ability to conduct transport on high-fidelity models of nuclear systems, but it is more computationally expensive than native geometry representations. This work describes the adaptation of a rendering data structure, the signed distance field, as a geometric query tool for accelerating CAD-based transport in the direct-accelerated geometry Monte Carlo toolkit. Demonstrations of its effectiveness are shown for several problems. The beginnings of a predictive model for the data structure's utilization based on various problem parameters is also introduced.

  18. Accurate Monte Carlo simulations for nozzle design, commissioning and quality assurance for a proton radiation therapy facility.

    PubMed

    Paganetti, H; Jiang, H; Lee, S Y; Kooy, H M

    2004-07-01

    Monte Carlo dosimetry calculations are essential methods in radiation therapy. To take full advantage of this tool, the beam delivery system has to be simulated in detail and the initial beam parameters have to be known accurately. The modeling of the beam delivery system itself opens various areas where Monte Carlo calculations prove extremely helpful, such as for design and commissioning of a therapy facility as well as for quality assurance verification. The gantry treatment nozzles at the Northeast Proton Therapy Center (NPTC) at Massachusetts General Hospital (MGH) were modeled in detail using the GEANT4.5.2 Monte Carlo code. For this purpose, various novel solutions for simulating irregular shaped objects in the beam path, like contoured scatterers, patient apertures or patient compensators, were found. The four-dimensional, in time and space, simulation of moving parts, such as the modulator wheel, was implemented. Further, the appropriate physics models and cross sections for proton therapy applications were defined. We present comparisons between measured data and simulations. These show that by modeling the treatment nozzle with millimeter accuracy, it is possible to reproduce measured dose distributions with an accuracy in range and modulation width, in the case of a spread-out Bragg peak (SOBP), of better than 1 mm. The excellent agreement demonstrates that the simulations can even be used to generate beam data for commissioning treatment planning systems. The Monte Carlo nozzle model was used to study mechanical optimization in terms of scattered radiation and secondary radiation in the design of the nozzles. We present simulations on the neutron background. Further, the Monte Carlo calculations supported commissioning efforts in understanding the sensitivity of beam characteristics and how these influence the dose delivered. We present the sensitivity of dose distributions in water with respect to various beam parameters and geometrical misalignments. This allows the definition of tolerances for quality assurance and the design of quality assurance procedures.

  19. Dose calculation accuracy of the Monte Carlo algorithm for CyberKnife compared with other commercially available dose calculation algorithms.

    PubMed

    Sharma, Subhash; Ott, Joseph; Williams, Jamone; Dickow, Danny

    2011-01-01

    Monte Carlo dose calculation algorithms have the potential for greater accuracy than traditional model-based algorithms. This enhanced accuracy is particularly evident in regions of lateral scatter disequilibrium, which can develop during treatments incorporating small field sizes and low-density tissue. A heterogeneous slab phantom was used to evaluate the accuracy of several commercially available dose calculation algorithms, including Monte Carlo dose calculation for CyberKnife, Analytical Anisotropic Algorithm and Pencil Beam convolution for the Eclipse planning system, and convolution-superposition for the Xio planning system. The phantom accommodated slabs of varying density; comparisons between planned and measured dose distributions were accomplished with radiochromic film. The Monte Carlo algorithm provided the most accurate comparison between planned and measured dose distributions. In each phantom irradiation, the Monte Carlo predictions resulted in gamma analysis comparisons >97%, using acceptance criteria of 3% dose and 3-mm distance to agreement. In general, the gamma analysis comparisons for the other algorithms were <95%. The Monte Carlo dose calculation algorithm for CyberKnife provides more accurate dose distribution calculations in regions of lateral electron disequilibrium than commercially available model-based algorithms. This is primarily because of the ability of Monte Carlo algorithms to implicitly account for tissue heterogeneities, density scaling functions; and/or effective depth correction factors are not required. Copyright © 2011 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  20. An Evaluation of a Markov Chain Monte Carlo Method for the Two-Parameter Logistic Model.

    ERIC Educational Resources Information Center

    Kim, Seock-Ho; Cohen, Allan S.

    The accuracy of the Markov Chain Monte Carlo (MCMC) procedure Gibbs sampling was considered for estimation of item parameters of the two-parameter logistic model. Data for the Law School Admission Test (LSAT) Section 6 were analyzed to illustrate the MCMC procedure. In addition, simulated data sets were analyzed using the MCMC, marginal Bayesian…

  1. Recovery of Item Parameters in the Nominal Response Model: A Comparison of Marginal Maximum Likelihood Estimation and Markov Chain Monte Carlo Estimation.

    ERIC Educational Resources Information Center

    Wollack, James A.; Bolt, Daniel M.; Cohen, Allan S.; Lee, Young-Sun

    2002-01-01

    Compared the quality of item parameter estimates for marginal maximum likelihood (MML) and Markov Chain Monte Carlo (MCMC) with the nominal response model using simulation. The quality of item parameter recovery was nearly identical for MML and MCMC, and both methods tended to produce good estimates. (SLD)

  2. An NCME Instructional Module on Estimating Item Response Theory Models Using Markov Chain Monte Carlo Methods

    ERIC Educational Resources Information Center

    Kim, Jee-Seon; Bolt, Daniel M.

    2007-01-01

    The purpose of this ITEMS module is to provide an introduction to Markov chain Monte Carlo (MCMC) estimation for item response models. A brief description of Bayesian inference is followed by an overview of the various facets of MCMC algorithms, including discussion of prior specification, sampling procedures, and methods for evaluating chain…

  3. Stochastic modelling to assess economic effects of treatment of chronic subclinical mastitis caused by Streptococcus uberis.

    PubMed

    Steeneveld, Wilma; Swinkels, Jantijn; Hogeveen, Henk

    2007-11-01

    Chronic subclinical mastitis is usually not treated during the lactation. However, some veterinarians regard treatment of some types of subclinical mastitis to be effective. The goal of this research was to develop a stochastic Monte Carlo simulation model to support decisions around treatment of chronic subclinical mastitis caused by Streptococcus uberis. Factors in the model included the probability of cure after treatment, probability of the cow becoming clinically diseased, transmission of infection to other cows, and physiological effects of the infection. Using basic input parameters for Dutch circumstances, the average economic costs per cow of an untreated chronic subclinical mastitis case caused by Str. uberis in a single quarter from day of diagnosis onwards was euro109. With treatment, the average costs were higher (euro120). Thus, for the average cow, treatment was not efficient economically. However, the risk of high costs was much higher when cows with chronic subclinical mastitis were not treated. A sensitivity analysis showed that profitability of treatment of chronic subclinical Str. uberis mastitis depended on farm-specific factors (such as economic value of discarded milk) and cow-specific factors (such as day of diagnosis, duration of infection, amount of transmission to other cows and cure rate). Therefore, herd level protocols are not sufficient and decision support should be cow specific. Given the importance of cow-specific factors, information from the current model could be applied to automatic decision support systems.

  4. A new method for designing dual foil electron beam forming systems. I. Introduction, concept of the method

    NASA Astrophysics Data System (ADS)

    Adrich, Przemysław

    2016-05-01

    In Part I of this work existing methods and problems in dual foil electron beam forming system design are presented. On this basis, a new method of designing these systems is introduced. The motivation behind this work is to eliminate the shortcomings of the existing design methods and improve overall efficiency of the dual foil design process. The existing methods are based on approximate analytical models applied in an unrealistically simplified geometry. Designing a dual foil system with these methods is a rather labor intensive task as corrections to account for the effects not included in the analytical models have to be calculated separately and accounted for in an iterative procedure. To eliminate these drawbacks, the new design method is based entirely on Monte Carlo modeling in a realistic geometry and using physics models that include all relevant processes. In our approach, an optimal configuration of the dual foil system is found by means of a systematic, automatized scan of the system performance in function of parameters of the foils. The new method, while being computationally intensive, minimizes the involvement of the designer and considerably shortens the overall design time. The results are of high quality as all the relevant physics and geometry details are naturally accounted for. To demonstrate the feasibility of practical implementation of the new method, specialized software tools were developed and applied to solve a real life design problem, as described in Part II of this work.

  5. Space Object Collision Probability via Monte Carlo on the Graphics Processing Unit

    NASA Astrophysics Data System (ADS)

    Vittaldev, Vivek; Russell, Ryan P.

    2017-09-01

    Fast and accurate collision probability computations are essential for protecting space assets. Monte Carlo (MC) simulation is the most accurate but computationally intensive method. A Graphics Processing Unit (GPU) is used to parallelize the computation and reduce the overall runtime. Using MC techniques to compute the collision probability is common in literature as the benchmark. An optimized implementation on the GPU, however, is a challenging problem and is the main focus of the current work. The MC simulation takes samples from the uncertainty distributions of the Resident Space Objects (RSOs) at any time during a time window of interest and outputs the separations at closest approach. Therefore, any uncertainty propagation method may be used and the collision probability is automatically computed as a function of RSO collision radii. Integration using a fixed time step and a quartic interpolation after every Runge Kutta step ensures that no close approaches are missed. Two orders of magnitude speedups over a serial CPU implementation are shown, and speedups improve moderately with higher fidelity dynamics. The tool makes the MC approach tractable on a single workstation, and can be used as a final product, or for verifying surrogate and analytical collision probability methods.

  6. Assessment of myocardial metabolic rate of glucose by means of Bayesian ICA and Markov Chain Monte Carlo methods in small animal PET imaging

    NASA Astrophysics Data System (ADS)

    Berradja, Khadidja; Boughanmi, Nabil

    2016-09-01

    In dynamic cardiac PET FDG studies the assessment of myocardial metabolic rate of glucose (MMRG) requires the knowledge of the blood input function (IF). IF can be obtained by manual or automatic blood sampling and cross calibrated with PET. These procedures are cumbersome, invasive and generate uncertainties. The IF is contaminated by spillover of radioactivity from the adjacent myocardium and this could cause important error in the estimated MMRG. In this study, we show that the IF can be extracted from the images in a rat heart study with 18F-fluorodeoxyglucose (18F-FDG) by means of Independent Component Analysis (ICA) based on Bayesian theory and Markov Chain Monte Carlo (MCMC) sampling method (BICA). Images of the heart from rats were acquired with the Sherbrooke small animal PET scanner. A region of interest (ROI) was drawn around the rat image and decomposed into blood and tissue using BICA. The Statistical study showed that there is a significant difference (p < 0.05) between MMRG obtained with IF extracted by BICA with respect to IF extracted from measured images corrupted with spillover.

  7. An Approach in Radiation Therapy Treatment Planning: A Fast, GPU-Based Monte Carlo Method.

    PubMed

    Karbalaee, Mojtaba; Shahbazi-Gahrouei, Daryoush; Tavakoli, Mohammad B

    2017-01-01

    An accurate and fast radiation dose calculation is essential for successful radiation radiotherapy. The aim of this study was to implement a new graphic processing unit (GPU) based radiation therapy treatment planning for accurate and fast dose calculation in radiotherapy centers. A program was written for parallel running based on GPU. The code validation was performed by EGSnrc/DOSXYZnrc. Moreover, a semi-automatic, rotary, asymmetric phantom was designed and produced using a bone, the lung, and the soft tissue equivalent materials. All measurements were performed using a Mapcheck dosimeter. The accuracy of the code was validated using the experimental data, which was obtained from the anthropomorphic phantom as the gold standard. The findings showed that, compared with those of DOSXYZnrc in the virtual phantom and for most of the voxels (>95%), <3% dose-difference or 3 mm distance-to-agreement (DTA) was found. Moreover, considering the anthropomorphic phantom, compared to the Mapcheck dose measurements, <5% dose-difference or 5 mm DTA was observed. Fast calculation speed and high accuracy of GPU-based Monte Carlo method in dose calculation may be useful in routine radiation therapy centers as the core and main component of a treatment planning verification system.

  8. Monte Carlo algorithms for Brownian phylogenetic models.

    PubMed

    Horvilleur, Benjamin; Lartillot, Nicolas

    2014-11-01

    Brownian models have been introduced in phylogenetics for describing variation in substitution rates through time, with applications to molecular dating or to the comparative analysis of variation in substitution patterns among lineages. Thus far, however, the Monte Carlo implementations of these models have relied on crude approximations, in which the Brownian process is sampled only at the internal nodes of the phylogeny or at the midpoints along each branch, and the unknown trajectory between these sampled points is summarized by simple branchwise average substitution rates. A more accurate Monte Carlo approach is introduced, explicitly sampling a fine-grained discretization of the trajectory of the (potentially multivariate) Brownian process along the phylogeny. Generic Monte Carlo resampling algorithms are proposed for updating the Brownian paths along and across branches. Specific computational strategies are developed for efficient integration of the finite-time substitution probabilities across branches induced by the Brownian trajectory. The mixing properties and the computational complexity of the resulting Markov chain Monte Carlo sampler scale reasonably with the discretization level, allowing practical applications with up to a few hundred discretization points along the entire depth of the tree. The method can be generalized to other Markovian stochastic processes, making it possible to implement a wide range of time-dependent substitution models with well-controlled computational precision. The program is freely available at www.phylobayes.org. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. CPMC-Lab: A MATLAB package for Constrained Path Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Nguyen, Huy; Shi, Hao; Xu, Jie; Zhang, Shiwei

    2014-12-01

    We describe CPMC-Lab, a MATLAB program for the constrained-path and phaseless auxiliary-field Monte Carlo methods. These methods have allowed applications ranging from the study of strongly correlated models, such as the Hubbard model, to ab initio calculations in molecules and solids. The present package implements the full ground-state constrained-path Monte Carlo (CPMC) method in MATLAB with a graphical interface, using the Hubbard model as an example. The package can perform calculations in finite supercells in any dimensions, under periodic or twist boundary conditions. Importance sampling and all other algorithmic details of a total energy calculation are included and illustrated. This open-source tool allows users to experiment with various model and run parameters and visualize the results. It provides a direct and interactive environment to learn the method and study the code with minimal overhead for setup. Furthermore, the package can be easily generalized for auxiliary-field quantum Monte Carlo (AFQMC) calculations in many other models for correlated electron systems, and can serve as a template for developing a production code for AFQMC total energy calculations in real materials. Several illustrative studies are carried out in one- and two-dimensional lattices on total energy, kinetic energy, potential energy, and charge- and spin-gaps.

  10. An atomic and molecular fluid model for efficient edge-plasma transport simulations at high densities

    NASA Astrophysics Data System (ADS)

    Rognlien, Thomas; Rensink, Marvin

    2016-10-01

    Transport simulations for the edge plasma of tokamaks and other magnetic fusion devices requires the coupling of plasma and recycling or injected neutral gas. There are various neutral models used for this purpose, e.g., atomic fluid model, a Monte Carlo particle models, transition/escape probability methods, and semi-analytic models. While the Monte Carlo method is generally viewed as the most accurate, it is time consuming, which becomes even more demanding for device simulations of high densities and size typical of fusion power plants because the neutral collisional mean-free path becomes very small. Here we examine the behavior of an extended fluid neutral model for hydrogen that includes both atoms and molecules, which easily includes nonlinear neutral-neutral collision effects. In addition to the strong charge-exchange between hydrogen atoms and ions, elastic scattering is included among all species. Comparisons are made with the DEGAS 2 Monte Carlo code. Work performed for U.S. DoE by LLNL under Contract DE-AC52-07NA27344.

  11. Approaches to the automatic generation and control of finite element meshes

    NASA Technical Reports Server (NTRS)

    Shephard, Mark S.

    1987-01-01

    The algorithmic approaches being taken to the development of finite element mesh generators capable of automatically discretizing general domains without the need for user intervention are discussed. It is demonstrated that because of the modeling demands placed on a automatic mesh generator, all the approaches taken to date produce unstructured meshes. Consideration is also given to both a priori and a posteriori mesh control devices for automatic mesh generators as well as their integration with geometric modeling and adaptive analysis procedures.

  12. Hybrid Monte Carlo-Diffusion Method For Light Propagation in Tissue With a Low-Scattering Region

    NASA Astrophysics Data System (ADS)

    Hayashi, Toshiyuki; Kashio, Yoshihiko; Okada, Eiji

    2003-06-01

    The heterogeneity of the tissues in a head, especially the low-scattering cerebrospinal fluid (CSF) layer surrounding the brain has previously been shown to strongly affect light propagation in the brain. The radiosity-diffusion method, in which the light propagation in the CSF layer is assumed to obey the radiosity theory, has been employed to predict the light propagation in head models. Although the CSF layer is assumed to be a nonscattering region in the radiosity-diffusion method, fine arachnoid trabeculae cause faint scattering in the CSF layer in real heads. A novel approach, the hybrid Monte Carlo-diffusion method, is proposed to calculate the head models, including the low-scattering region in which the light propagation does not obey neither the diffusion approximation nor the radiosity theory. The light propagation in the high-scattering region is calculated by means of the diffusion approximation solved by the finite-element method and that in the low-scattering region is predicted by the Monte Carlo method. The intensity and mean time of flight of the detected light for the head model with a low-scattering CSF layer calculated by the hybrid method agreed well with those by the Monte Carlo method, whereas the results calculated by means of the diffusion approximation included considerable error caused by the effect of the CSF layer. In the hybrid method, the time-consuming Monte Carlo calculation is employed only for the thin CSF layer, and hence, the computation time of the hybrid method is dramatically shorter than that of the Monte Carlo method.

  13. Hybrid Monte Carlo-diffusion method for light propagation in tissue with a low-scattering region.

    PubMed

    Hayashi, Toshiyuki; Kashio, Yoshihiko; Okada, Eiji

    2003-06-01

    The heterogeneity of the tissues in a head, especially the low-scattering cerebrospinal fluid (CSF) layer surrounding the brain has previously been shown to strongly affect light propagation in the brain. The radiosity-diffusion method, in which the light propagation in the CSF layer is assumed to obey the radiosity theory, has been employed to predict the light propagation in head models. Although the CSF layer is assumed to be a nonscattering region in the radiosity-diffusion method, fine arachnoid trabeculae cause faint scattering in the CSF layer in real heads. A novel approach, the hybrid Monte Carlo-diffusion method, is proposed to calculate the head models, including the low-scattering region in which the light propagation does not obey neither the diffusion approximation nor the radiosity theory. The light propagation in the high-scattering region is calculated by means of the diffusion approximation solved by the finite-element method and that in the low-scattering region is predicted by the Monte Carlo method. The intensity and mean time of flight of the detected light for the head model with a low-scattering CSF layer calculated by the hybrid method agreed well with those by the Monte Carlo method, whereas the results calculated by means of the diffusion approximation included considerable error caused by the effect of the CSF layer. In the hybrid method, the time-consuming Monte Carlo calculation is employed only for the thin CSF layer, and hence, the computation time of the hybrid method is dramatically shorter than that of the Monte Carlo method.

  14. A New Monte Carlo Method for Estimating Marginal Likelihoods.

    PubMed

    Wang, Yu-Bo; Chen, Ming-Hui; Kuo, Lynn; Lewis, Paul O

    2018-06-01

    Evaluating the marginal likelihood in Bayesian analysis is essential for model selection. Estimators based on a single Markov chain Monte Carlo sample from the posterior distribution include the harmonic mean estimator and the inflated density ratio estimator. We propose a new class of Monte Carlo estimators based on this single Markov chain Monte Carlo sample. This class can be thought of as a generalization of the harmonic mean and inflated density ratio estimators using a partition weighted kernel (likelihood times prior). We show that our estimator is consistent and has better theoretical properties than the harmonic mean and inflated density ratio estimators. In addition, we provide guidelines on choosing optimal weights. Simulation studies were conducted to examine the empirical performance of the proposed estimator. We further demonstrate the desirable features of the proposed estimator with two real data sets: one is from a prostate cancer study using an ordinal probit regression model with latent variables; the other is for the power prior construction from two Eastern Cooperative Oncology Group phase III clinical trials using the cure rate survival model with similar objectives.

  15. Study of the Transition Flow Regime using Monte Carlo Methods

    NASA Technical Reports Server (NTRS)

    Hassan, H. A.

    1999-01-01

    This NASA Cooperative Agreement presents a study of the Transition Flow Regime Using Monte Carlo Methods. The topics included in this final report are: 1) New Direct Simulation Monte Carlo (DSMC) procedures; 2) The DS3W and DS2A Programs; 3) Papers presented; 4) Miscellaneous Applications and Program Modifications; 5) Solution of Transitional Wake Flows at Mach 10; and 6) Turbulence Modeling of Shock-Dominated Fows with a k-Enstrophy Formulation.

  16. MUSiC - A Generic Search for Deviations from Monte Carlo Predictions in CMS

    NASA Astrophysics Data System (ADS)

    Hof, Carsten

    2009-05-01

    We present a model independent analysis approach, systematically scanning the data for deviations from the Standard Model Monte Carlo expectation. Such an analysis can contribute to the understanding of the CMS detector and the tuning of the event generators. Furthermore, due to the minimal theoretical bias this approach is sensitive to a variety of models of new physics, including those not yet thought of. Events are classified into event classes according to their particle content (muons, electrons, photons, jets and missing transverse energy). A broad scan of various distributions is performed, identifying significant deviations from the Monte Carlo simulation. We outline the importance of systematic uncertainties, which are taken into account rigorously within the algorithm. Possible detector effects and generator issues, as well as models involving supersymmetry and new heavy gauge bosons have been used as an input to the search algorithm.

  17. Big climate data analysis

    NASA Astrophysics Data System (ADS)

    Mudelsee, Manfred

    2015-04-01

    The Big Data era has begun also in the climate sciences, not only in economics or molecular biology. We measure climate at increasing spatial resolution by means of satellites and look farther back in time at increasing temporal resolution by means of natural archives and proxy data. We use powerful supercomputers to run climate models. The model output of the calculations made for the IPCC's Fifth Assessment Report amounts to ~650 TB. The 'scientific evolution' of grid computing has started, and the 'scientific revolution' of quantum computing is being prepared. This will increase computing power, and data amount, by several orders of magnitude in the future. However, more data does not automatically mean more knowledge. We need statisticians, who are at the core of transforming data into knowledge. Statisticians notably also explore the limits of our knowledge (uncertainties, that is, confidence intervals and P-values). Mudelsee (2014 Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. Second edition. Springer, Cham, xxxii + 454 pp.) coined the term 'optimal estimation'. Consider the hyperspace of climate estimation. It has many, but not infinite, dimensions. It consists of the three subspaces Monte Carlo design, method and measure. The Monte Carlo design describes the data generating process. The method subspace describes the estimation and confidence interval construction. The measure subspace describes how to detect the optimal estimation method for the Monte Carlo experiment. The envisaged large increase in computing power may bring the following idea of optimal climate estimation into existence. Given a data sample, some prior information (e.g. measurement standard errors) and a set of questions (parameters to be estimated), the first task is simple: perform an initial estimation on basis of existing knowledge and experience with such types of estimation problems. The second task requires the computing power: explore the hyperspace to find the suitable method, that is, the mode of estimation and uncertainty-measure determination that optimizes a selected measure for prescribed values close to the initial estimates. Also here, intelligent exploration methods (gradient, Brent, etc.) are useful. The third task is to apply the optimal estimation method to the climate dataset. This conference paper illustrates by means of three examples that optimal estimation has the potential to shape future big climate data analysis. First, we consider various hypothesis tests to study whether climate extremes are increasing in their occurrence. Second, we compare Pearson's and Spearman's correlation measures. Third, we introduce a novel estimator of the tail index, which helps to better quantify climate-change related risks.

  18. Multilevel Monte Carlo and improved timestepping methods in atmospheric dispersion modelling

    NASA Astrophysics Data System (ADS)

    Katsiolides, Grigoris; Müller, Eike H.; Scheichl, Robert; Shardlow, Tony; Giles, Michael B.; Thomson, David J.

    2018-02-01

    A common way to simulate the transport and spread of pollutants in the atmosphere is via stochastic Lagrangian dispersion models. Mathematically, these models describe turbulent transport processes with stochastic differential equations (SDEs). The computational bottleneck is the Monte Carlo algorithm, which simulates the motion of a large number of model particles in a turbulent velocity field; for each particle, a trajectory is calculated with a numerical timestepping method. Choosing an efficient numerical method is particularly important in operational emergency-response applications, such as tracking radioactive clouds from nuclear accidents or predicting the impact of volcanic ash clouds on international aviation, where accurate and timely predictions are essential. In this paper, we investigate the application of the Multilevel Monte Carlo (MLMC) method to simulate the propagation of particles in a representative one-dimensional dispersion scenario in the atmospheric boundary layer. MLMC can be shown to result in asymptotically superior computational complexity and reduced computational cost when compared to the Standard Monte Carlo (StMC) method, which is currently used in atmospheric dispersion modelling. To reduce the absolute cost of the method also in the non-asymptotic regime, it is equally important to choose the best possible numerical timestepping method on each level. To investigate this, we also compare the standard symplectic Euler method, which is used in many operational models, with two improved timestepping algorithms based on SDE splitting methods.

  19. The proton therapy nozzles at Samsung Medical Center: A Monte Carlo simulation study using TOPAS

    NASA Astrophysics Data System (ADS)

    Chung, Kwangzoo; Kim, Jinsung; Kim, Dae-Hyun; Ahn, Sunghwan; Han, Youngyih

    2015-07-01

    To expedite the commissioning process of the proton therapy system at Samsung Medical Center (SMC), we have developed a Monte Carlo simulation model of the proton therapy nozzles by using TOol for PArticle Simulation (TOPAS). At SMC proton therapy center, we have two gantry rooms with different types of nozzles: a multi-purpose nozzle and a dedicated scanning nozzle. Each nozzle has been modeled in detail following the geometry information provided by the manufacturer, Sumitomo Heavy Industries, Ltd. For this purpose, the novel features of TOPAS, such as the time feature or the ridge filter class, have been used, and the appropriate physics models for proton nozzle simulation have been defined. Dosimetric properties, like percent depth dose curve, spreadout Bragg peak (SOBP), and beam spot size, have been simulated and verified against measured beam data. Beyond the Monte Carlo nozzle modeling, we have developed an interface between TOPAS and the treatment planning system (TPS), RayStation. An exported radiotherapy (RT) plan from the TPS is interpreted by using an interface and is then translated into the TOPAS input text. The developed Monte Carlo nozzle model can be used to estimate the non-beam performance, such as the neutron background, of the nozzles. Furthermore, the nozzle model can be used to study the mechanical optimization of the design of the nozzle.

  20. Minimal model for the secondary structures and conformational conversions in proteins

    NASA Astrophysics Data System (ADS)

    Imamura, Hideo

    Better understanding of protein folding process can provide physical insights on the function of proteins and makes it possible to benefit from genetic information accumulated so far. Protein folding process normally takes place in less than seconds but even seconds are beyond reach of current computational power for simulations on a system of all-atom detail. Hence, to model and explore protein folding process it is crucial to construct a proper model that can adequately describe the physical process and mechanism for the relevant time scale. We discuss the reduced off-lattice model that can express _-helix and ?-hairpin conformations defined solely by a given sequence in order to investigate a protein folding mechanism of conformations such as a ?-hairpin and also to investigate conformational conversions in proteins. The first two chapters introduce and review essential concepts in protein folding modelling physical interaction in proteins, various simple models, and also review computational methods, in particular, the Metropolis Monte Carlo method, its dynamic interpretation and thermodynamic Monte Carlo algorithms. Chapter 3 describes the minimalist model that represents both _-helix and ?-sheet conformations using simple potentials. The native conformation can be specified by the sequence without particular conformational biases to a reference state. In Chapter 4, the model is used to investigate the folding mechanism of ?-hairpins exhaustively using the dynamic Monte Carlo and a thermodynamic Monte Carlo method an effcient combination of the multicanonical Monte Carlo and the weighted histogram analysis method. We show that the major folding pathways and folding rate depend on the location of a hydrophobic. The conformational conversions between _-helix and ?-sheet conformations are examined in Chapter 5 and 6. First, the conformational conversion due to mutation in a non-hydrophobic system and then the conformational conversion due to mutation with a hydrophobic pair at a different position at various temperatures are examined.

  1. Monte Carlo Studies of Phase Separation in Compressible 2-dim Ising Models

    NASA Astrophysics Data System (ADS)

    Mitchell, S. J.; Landau, D. P.

    2006-03-01

    Using high resolution Monte Carlo simulations, we study time-dependent domain growth in compressible 2-dim ferromagnetic (s=1/2) Ising models with continuous spin positions and spin-exchange moves [1]. Spins interact with slightly modified Lennard-Jones potentials, and we consider a model with no lattice mismatch and one with 4% mismatch. For comparison, we repeat calculations for the rigid Ising model [2]. For all models, large systems (512^2) and long times (10^ 6 MCS) are examined over multiple runs, and the growth exponent is measured in the asymptotic scaling regime. For the rigid model and the compressible model with no lattice mismatch, the growth exponent is consistent with the theoretically expected value of 1/3 [1] for Model B type growth. However, we find that non-zero lattice mismatch has a significant and unexpected effect on the growth behavior.Supported by the NSF.[1] D.P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, second ed. (Cambridge University Press, New York, 2005).[2] J. Amar, F. Sullivan, and R.D. Mountain, Phys. Rev. B 37, 196 (1988).

  2. Kinetic Monte Carlo simulations of water ice porosity: extrapolations of deposition parameters from the laboratory to interstellar space

    NASA Astrophysics Data System (ADS)

    Clements, Aspen R.; Berk, Brandon; Cooke, Ilsa R.; Garrod, Robin T.

    2018-02-01

    Using an off-lattice kinetic Monte Carlo model we reproduce experimental laboratory trends in the density of amorphous solid water (ASW) for varied deposition angle, rate and surface temperature. Extrapolation of the model to conditions appropriate to protoplanetary disks and interstellar dark clouds indicate that these ices may be less porous than laboratory ices.

  3. Recommender engine for continuous-time quantum Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Huang, Li; Yang, Yi-feng; Wang, Lei

    2017-03-01

    Recommender systems play an essential role in the modern business world. They recommend favorable items such as books, movies, and search queries to users based on their past preferences. Applying similar ideas and techniques to Monte Carlo simulations of physical systems boosts their efficiency without sacrificing accuracy. Exploiting the quantum to classical mapping inherent in the continuous-time quantum Monte Carlo methods, we construct a classical molecular gas model to reproduce the quantum distributions. We then utilize powerful molecular simulation techniques to propose efficient quantum Monte Carlo updates. The recommender engine approach provides a general way to speed up the quantum impurity solvers.

  4. Semi-Automatic Modelling of Building FAÇADES with Shape Grammars Using Historic Building Information Modelling

    NASA Astrophysics Data System (ADS)

    Dore, C.; Murphy, M.

    2013-02-01

    This paper outlines a new approach for generating digital heritage models from laser scan or photogrammetric data using Historic Building Information Modelling (HBIM). HBIM is a plug-in for Building Information Modelling (BIM) software that uses parametric library objects and procedural modelling techniques to automate the modelling stage. The HBIM process involves a reverse engineering solution whereby parametric interactive objects representing architectural elements are mapped onto laser scan or photogrammetric survey data. A library of parametric architectural objects has been designed from historic manuscripts and architectural pattern books. These parametric objects were built using an embedded programming language within the ArchiCAD BIM software called Geometric Description Language (GDL). Procedural modelling techniques have been implemented with the same language to create a parametric building façade which automatically combines library objects based on architectural rules and proportions. Different configurations of the façade are controlled by user parameter adjustment. The automatically positioned elements of the façade can be subsequently refined using graphical editing while overlaying the model with orthographic imagery. Along with this semi-automatic method for generating façade models, manual plotting of library objects can also be used to generate a BIM model from survey data. After the 3D model has been completed conservation documents such as plans, sections, elevations and 3D views can be automatically generated for conservation projects.

  5. Quantum interference and Monte Carlo simulations of multiparticle production

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Krzywicki, A.

    1995-02-01

    We show that the effects of quantum interference can be implemented in Monte Carlo generators by modelling the generalized Wigner functions. A specific prescription for an appropriate modification of the weights of events produced by standard generators is proposed.

  6. Monte Carlo simulations to assess the effects of tube current modulation on breast dose for multidetector CT

    NASA Astrophysics Data System (ADS)

    Angel, Erin; Yaghmai, Nazanin; Matilda Jude, Cecilia; DeMarco, John J.; Cagnon, Christopher H.; Goldin, Jonathan G.; Primak, Andrew N.; Stevens, Donna M.; Cody, Dianna D.; McCollough, Cynthia H.; McNitt-Gray, Michael F.

    2009-02-01

    Tube current modulation was designed to reduce radiation dose in CT imaging while maintaining overall image quality. This study aims to develop a method for evaluating the effects of tube current modulation (TCM) on organ dose in CT exams of actual patient anatomy. This method was validated by simulating a TCM and a fixed tube current chest CT exam on 30 voxelized patient models and estimating the radiation dose to each patient's glandular breast tissue. This new method for estimating organ dose was compared with other conventional estimates of dose reduction. Thirty detailed voxelized models of patient anatomy were created based on image data from female patients who had previously undergone clinically indicated CT scans including the chest area. As an indicator of patient size, the perimeter of the patient was measured on the image containing at least one nipple using a semi-automated technique. The breasts were contoured on each image set by a radiologist and glandular tissue was semi-automatically segmented from this region. Previously validated Monte Carlo models of two multidetector CT scanners were used, taking into account details about the source spectra, filtration, collimation and geometry of the scanner. TCM data were obtained from each patient's clinical scan and factored into the model to simulate the effects of TCM. For each patient model, two exams were simulated: a fixed tube current chest CT and a tube current modulated chest CT. X-ray photons were transported through the anatomy of the voxelized patient models, and radiation dose was tallied in the glandular breast tissue. The resulting doses from the tube current modulated simulations were compared to the results obtained from simulations performed using a fixed mA value. The average radiation dose to the glandular breast tissue from a fixed tube current scan across all patient models was 19 mGy. The average reduction in breast dose using the tube current modulated scan was 17%. Results were size dependent with smaller patients getting better dose reduction (up to 64% reduction) and larger patients getting a smaller reduction, and in some cases the dose actually increased when using tube current modulation (up to 41% increase). The results indicate that radiation dose to glandular breast tissue generally decreases with the use of tube current modulated CT acquisition, but that patient size (and in some cases patient positioning) may affect dose reduction.

  7. "3D_Fault_Offsets," a Matlab Code to Automatically Measure Lateral and Vertical Fault Offsets in Topographic Data: Application to San Andreas, Owens Valley, and Hope Faults

    NASA Astrophysics Data System (ADS)

    Stewart, N.; Gaudemer, Y.; Manighetti, I.; Serreau, L.; Vincendeau, A.; Dominguez, S.; Mattéo, L.; Malavieille, J.

    2018-01-01

    Measuring fault offsets preserved at the ground surface is of primary importance to recover earthquake and long-term slip distributions and understand fault mechanics. The recent explosion of high-resolution topographic data, such as Lidar and photogrammetric digital elevation models, offers an unprecedented opportunity to measure dense collections of fault offsets. We have developed a new Matlab code, 3D_Fault_Offsets, to automate these measurements. In topographic data, 3D_Fault_Offsets mathematically identifies and represents nine of the most prominent geometric characteristics of common sublinear markers along faults (especially strike slip) in 3-D, such as the streambed (minimum elevation), top, free face and base of channel banks or scarps (minimum Laplacian, maximum gradient, and maximum Laplacian), and ridges (maximum elevation). By calculating best fit lines through the nine point clouds on either side of the fault, the code computes the lateral and vertical offsets between the piercing points of these lines onto the fault plane, providing nine lateral and nine vertical offset measures per marker. Through a Monte Carlo approach, the code calculates the total uncertainty on each offset. It then provides tools to statistically analyze the dense collection of measures and to reconstruct the prefaulted marker geometry in the horizontal and vertical planes. We applied 3D_Fault_Offsets to remeasure previously published offsets across 88 markers on the San Andreas, Owens Valley, and Hope faults. We obtained 5,454 lateral and vertical offset measures. These automatic measures compare well to prior ones, field and remote, while their rich record provides new insights on the preservation of fault displacements in the morphology.

  8. Automatic discovery of the communication network topology for building a supercomputer model

    NASA Astrophysics Data System (ADS)

    Sobolev, Sergey; Stefanov, Konstantin; Voevodin, Vadim

    2016-10-01

    The Research Computing Center of Lomonosov Moscow State University is developing the Octotron software suite for automatic monitoring and mitigation of emergency situations in supercomputers so as to maximize hardware reliability. The suite is based on a software model of the supercomputer. The model uses a graph to describe the computing system components and their interconnections. One of the most complex components of a supercomputer that needs to be included in the model is its communication network. This work describes the proposed approach for automatically discovering the Ethernet communication network topology in a supercomputer and its description in terms of the Octotron model. This suite automatically detects computing nodes and switches, collects information about them and identifies their interconnections. The application of this approach is demonstrated on the "Lomonosov" and "Lomonosov-2" supercomputers.

  9. Finite-size scaling study of the two-dimensional Blume-Capel model

    NASA Astrophysics Data System (ADS)

    Beale, Paul D.

    1986-02-01

    The phase diagram of the two-dimensional Blume-Capel model is investigated by using the technique of phenomenological finite-size scaling. The location of the tricritical point and the values of the critical and tricritical exponents are determined. The location of the tricritical point (Tt=0.610+/-0.005, Dt=1.9655+/-0.0010) is well outside the error bars for the value quoted in previous Monte Carlo simulations but in excellent agreement with more recent Monte Carlo renormalization-group results. The values of the critical and tricritical exponents, with the exception of the leading thermal tricritical exponent, are in excellent agreement with previous calculations, conjectured values, and Monte Carlo renormalization-group studies.

  10. Gutzwiller Monte Carlo approach for a critical dissipative spin model

    NASA Astrophysics Data System (ADS)

    Casteels, Wim; Wilson, Ryan M.; Wouters, Michiel

    2018-06-01

    We use the Gutzwiller Monte Carlo approach to simulate the dissipative X Y Z model in the vicinity of a dissipative phase transition. This approach captures classical spatial correlations together with the full on-site quantum behavior while neglecting nonlocal quantum effects. By considering finite two-dimensional lattices of various sizes, we identify a ferromagnetic and two paramagnetic phases, in agreement with earlier studies. The greatly reduced numerical complexity of the Gutzwiller Monte Carlo approach facilitates efficient simulation of relatively large lattice sizes. The inclusion of the spatial correlations allows to capture parts of the phase diagram that are completely missed by the widely applied Gutzwiller decoupling of the density matrix.

  11. Application of the Monte Carlo method for building up models for octanol-water partition coefficient of platinum complexes

    NASA Astrophysics Data System (ADS)

    Toropov, Andrey A.; Toropova, Alla P.

    2018-06-01

    Predictive model of logP for Pt(II) and Pt(IV) complexes built up with the Monte Carlo method using the CORAL software has been validated with six different splits into the training and validation sets. The improving of the predictive potential of models for six different splits has been obtained using so-called index of ideality of correlation. The suggested models give possibility to extract molecular features, which cause the increase or vice versa decrease of the logP.

  12. The anesthetic action of some polyhalogenated ethers-Monte Carlo method based QSAR study.

    PubMed

    Golubović, Mlađan; Lazarević, Milan; Zlatanović, Dragan; Krtinić, Dane; Stoičkov, Viktor; Mladenović, Bojan; Milić, Dragan J; Sokolović, Dušan; Veselinović, Aleksandar M

    2018-04-13

    Up to this date, there has been an ongoing debate about the mode of action of general anesthetics, which have postulated many biological sites as targets for their action. However, postoperative nausea and vomiting are common problems in which inhalational agents may have a role in their development. When a mode of action is unknown, QSAR modelling is essential in drug development. To investigate the aspects of their anesthetic, QSAR models based on the Monte Carlo method were developed for a set of polyhalogenated ethers. Until now, their anesthetic action has not been completely defined, although some hypotheses have been suggested. Therefore, a QSAR model should be developed on molecular fragments that contribute to anesthetic action. QSAR models were built on the basis of optimal molecular descriptors based on the SMILES notation and local graph invariants, whereas the Monte Carlo optimization method with three random splits into the training and test set was applied for model development. Different methods, including novel Index of ideality correlation, were applied for the determination of the robustness of the model and its predictive potential. The Monte Carlo optimization process was capable of being an efficient in silico tool for building up a robust model of good statistical quality. Molecular fragments which have both positive and negative influence on anesthetic action were determined. The presented study can be useful in the search for novel anesthetics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Model-Based Reasoning in Humans Becomes Automatic with Training.

    PubMed

    Economides, Marcos; Kurth-Nelson, Zeb; Lübbert, Annika; Guitart-Masip, Marc; Dolan, Raymond J

    2015-09-01

    Model-based and model-free reinforcement learning (RL) have been suggested as algorithmic realizations of goal-directed and habitual action strategies. Model-based RL is more flexible than model-free but requires sophisticated calculations using a learnt model of the world. This has led model-based RL to be identified with slow, deliberative processing, and model-free RL with fast, automatic processing. In support of this distinction, it has recently been shown that model-based reasoning is impaired by placing subjects under cognitive load--a hallmark of non-automaticity. Here, using the same task, we show that cognitive load does not impair model-based reasoning if subjects receive prior training on the task. This finding is replicated across two studies and a variety of analysis methods. Thus, task familiarity permits use of model-based reasoning in parallel with other cognitive demands. The ability to deploy model-based reasoning in an automatic, parallelizable fashion has widespread theoretical implications, particularly for the learning and execution of complex behaviors. It also suggests a range of important failure modes in psychiatric disorders.

  14. Monte Carlo modeling of atomic oxygen attack of polymers with protective coatings on LDEF

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Degroh, Kim K.; Auer, Bruce M.; Gebauer, Linda; Edwards, Jonathan L.

    1993-01-01

    Characterization of the behavior of atomic oxygen interaction with materials on the Long Duration Exposure Facility (LDEF) assists in understanding of the mechanisms involved. Thus the reliability of predicting in-space durability of materials based on ground laboratory testing should be improved. A computational model which simulates atomic oxygen interaction with protected polymers was developed using Monte Carlo techniques. Through the use of an assumed mechanistic behavior of atomic oxygen interaction based on in-space atomic oxygen erosion of unprotected polymers and ground laboratory atomic oxygen interaction with protected polymers, prediction of atomic oxygen interaction with protected polymers on LDEF was accomplished. However, the results of these predictions are not consistent with the observed LDEF results at defect sites in protected polymers. Improved agreement between observed LDEF results and predicted Monte Carlo modeling can be achieved by modifying of the atomic oxygen interactive assumptions used in the model. LDEF atomic oxygen undercutting results, modeling assumptions, and implications are presented.

  15. PRELIMINARY COUPLING OF THE MONTE CARLO CODE OPENMC AND THE MULTIPHYSICS OBJECT-ORIENTED SIMULATION ENVIRONMENT (MOOSE) FOR ANALYZING DOPPLER FEEDBACK IN MONTE CARLO SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthew Ellis; Derek Gaston; Benoit Forget

    In recent years the use of Monte Carlo methods for modeling reactors has become feasible due to the increasing availability of massively parallel computer systems. One of the primary challenges yet to be fully resolved, however, is the efficient and accurate inclusion of multiphysics feedback in Monte Carlo simulations. The research in this paper presents a preliminary coupling of the open source Monte Carlo code OpenMC with the open source Multiphysics Object-Oriented Simulation Environment (MOOSE). The coupling of OpenMC and MOOSE will be used to investigate efficient and accurate numerical methods needed to include multiphysics feedback in Monte Carlo codes.more » An investigation into the sensitivity of Doppler feedback to fuel temperature approximations using a two dimensional 17x17 PWR fuel assembly is presented in this paper. The results show a functioning multiphysics coupling between OpenMC and MOOSE. The coupling utilizes Functional Expansion Tallies to accurately and efficiently transfer pin power distributions tallied in OpenMC to unstructured finite element meshes used in MOOSE. The two dimensional PWR fuel assembly case also demonstrates that for a simplified model the pin-by-pin doppler feedback can be adequately replicated by scaling a representative pin based on pin relative powers.« less

  16. Efficient Word Reading: Automaticity of Print-Related Skills Indexed by Rapid Automatized Naming through Cusp-Catastrophe Modeling

    ERIC Educational Resources Information Center

    Sideridis, Georgios D.; Simos, Panagiotis; Mouzaki, Angeliki; Stamovlasis, Dimitrios

    2016-01-01

    The study explored the moderating role of rapid automatized naming (RAN) in reading achievement through a cusp-catastrophe model grounded on nonlinear dynamic systems theory. Data were obtained from a community sample of 496 second through fourth graders who were followed longitudinally over 2 years and split into 2 random subsamples (validation…

  17. Effective emissivities of isothermal blackbody cavities calculated by the Monte Carlo method using the three-component bidirectional reflectance distribution function model.

    PubMed

    Prokhorov, Alexander

    2012-05-01

    This paper proposes a three-component bidirectional reflectance distribution function (3C BRDF) model consisting of diffuse, quasi-specular, and glossy components for calculation of effective emissivities of blackbody cavities and then investigates the properties of the new reflection model. The particle swarm optimization method is applied for fitting a 3C BRDF model to measured BRDFs. The model is incorporated into the Monte Carlo ray-tracing algorithm for isothermal cavities. Finally, the paper compares the results obtained using the 3C model and the conventional specular-diffuse model of reflection.

  18. Local Hamiltonian Monte Carlo study of the massive schwinger model, the decoupling of heavy flavours

    NASA Astrophysics Data System (ADS)

    Ranft, J.

    1983-12-01

    The massive Schwinger model with two flavours is studied using the local hamiltonian lattice Monte Carlo method. Chiral symmetry breaking is studied using the fermion condensate as order parameter. For a small ratio of the two fermion masses, degeneracy of the two flavours is found. For a large ratio of the masses, the heavy flavour decouples and the light fermion behaves like in the one flavour Schwinger model. On leave from Sektion Physik, Karl-Marx-Universität, Leipzig, GDR.

  19. Monte Carlo renormalization-group study of the Baxter-Wu model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novotny, M.A.; Landau, D.P.; Swendsen, R.H.

    1982-07-01

    The effectiveness of a Monte Carlo renormalization-group method is studied by applying it to the Baxter-Wu model (Ising spins on a triangular lattice with three-spin interactions). The calculations yield three relevent eigenvalues in good agreement with exact or conjectured results. We demonstrate that the method is capable of distinguishing between models expected to be in the same universality class, when one of them (four-state Potts) exhibits logarithmic corrections to the usual power-law singularities and the other (Baxter-Wu) does not.

  20. A Monte Carlo-finite element model for strain energy controlled microstructural evolution - 'Rafting' in superalloys

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Srolovitz, D. J.

    1989-01-01

    This paper presents a specialized microstructural lattice model, MCFET (Monte Carlo finite element technique), which simulates microstructural evolution in materials in which strain energy has an important role in determining morphology. The model is capable of accounting for externally applied stress, surface tension, misfit, elastic inhomogeneity, elastic anisotropy, and arbitrary temperatures. The MCFET analysis was found to compare well with the results of analytical calculations of the equilibrium morphologies of isolated particles in an infinite matrix.

  1. Density matrix Monte Carlo modeling of quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Jirauschek, Christian

    2017-10-01

    By including elements of the density matrix formalism, the semiclassical ensemble Monte Carlo method for carrier transport is extended to incorporate incoherent tunneling, known to play an important role in quantum cascade lasers (QCLs). In particular, this effect dominates electron transport across thick injection barriers, which are frequently used in terahertz QCL designs. A self-consistent model for quantum mechanical dephasing is implemented, eliminating the need for empirical simulation parameters. Our modeling approach is validated against available experimental data for different types of terahertz QCL designs.

  2. General Monte Carlo reliability simulation code including common mode failures and HARP fault/error-handling

    NASA Technical Reports Server (NTRS)

    Platt, M. E.; Lewis, E. E.; Boehm, F.

    1991-01-01

    A Monte Carlo Fortran computer program was developed that uses two variance reduction techniques for computing system reliability applicable to solving very large highly reliable fault-tolerant systems. The program is consistent with the hybrid automated reliability predictor (HARP) code which employs behavioral decomposition and complex fault-error handling models. This new capability is called MC-HARP which efficiently solves reliability models with non-constant failures rates (Weibull). Common mode failure modeling is also a specialty.

  3. A Lattice Kinetic Monte Carlo Solver for First-Principles Microkinetic Trend Studies

    DOE PAGES

    Hoffmann, Max J.; Bligaard, Thomas

    2018-01-22

    Here, mean-field microkinetic models in combination with Brønsted–Evans–Polanyi like scaling relations have proven highly successful in identifying catalyst materials with good or promising reactivity and selectivity. Analysis of the microkinetic model by means of lattice kinetic Monte Carlo promises a faithful description of a range of atomistic features involving short-range ordering of species in the vicinity of an active site. In this paper, we use the “fruit fly” example reaction of CO oxidation on fcc(111) transition and coinage metals to motivate and develop a lattice kinetic Monte Carlo solver suitable for the numerically challenging case of vastly disparate rate constants.more » As a result, we show that for the case of infinitely fast diffusion and absence of adsorbate-adsorbate interaction it is, in fact, possible to match the prediction of the mean-field-theory method and the lattice kinetic Monte Carlo method. As a corollary, we conclude that lattice kinetic Monte Carlo simulations of surface chemical reactions are most likely to provide additional insight over mean-field simulations if diffusion limitations or adsorbate–adsorbate interactions have a significant influence on the mixing of the adsorbates.« less

  4. A path integral methodology for obtaining thermodynamic properties of nonadiabatic systems using Gaussian mixture distributions

    NASA Astrophysics Data System (ADS)

    Raymond, Neil; Iouchtchenko, Dmitri; Roy, Pierre-Nicholas; Nooijen, Marcel

    2018-05-01

    We introduce a new path integral Monte Carlo method for investigating nonadiabatic systems in thermal equilibrium and demonstrate an approach to reducing stochastic error. We derive a general path integral expression for the partition function in a product basis of continuous nuclear and discrete electronic degrees of freedom without the use of any mapping schemes. We separate our Hamiltonian into a harmonic portion and a coupling portion; the partition function can then be calculated as the product of a Monte Carlo estimator (of the coupling contribution to the partition function) and a normalization factor (that is evaluated analytically). A Gaussian mixture model is used to evaluate the Monte Carlo estimator in a computationally efficient manner. Using two model systems, we demonstrate our approach to reduce the stochastic error associated with the Monte Carlo estimator. We show that the selection of the harmonic oscillators comprising the sampling distribution directly affects the efficiency of the method. Our results demonstrate that our path integral Monte Carlo method's deviation from exact Trotter calculations is dominated by the choice of the sampling distribution. By improving the sampling distribution, we can drastically reduce the stochastic error leading to lower computational cost.

  5. A Lattice Kinetic Monte Carlo Solver for First-Principles Microkinetic Trend Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, Max J.; Bligaard, Thomas

    Here, mean-field microkinetic models in combination with Brønsted–Evans–Polanyi like scaling relations have proven highly successful in identifying catalyst materials with good or promising reactivity and selectivity. Analysis of the microkinetic model by means of lattice kinetic Monte Carlo promises a faithful description of a range of atomistic features involving short-range ordering of species in the vicinity of an active site. In this paper, we use the “fruit fly” example reaction of CO oxidation on fcc(111) transition and coinage metals to motivate and develop a lattice kinetic Monte Carlo solver suitable for the numerically challenging case of vastly disparate rate constants.more » As a result, we show that for the case of infinitely fast diffusion and absence of adsorbate-adsorbate interaction it is, in fact, possible to match the prediction of the mean-field-theory method and the lattice kinetic Monte Carlo method. As a corollary, we conclude that lattice kinetic Monte Carlo simulations of surface chemical reactions are most likely to provide additional insight over mean-field simulations if diffusion limitations or adsorbate–adsorbate interactions have a significant influence on the mixing of the adsorbates.« less

  6. Monte Carlo analysis of uncertainty propagation in a stratospheric model. 2: Uncertainties due to reaction rates

    NASA Technical Reports Server (NTRS)

    Stolarski, R. S.; Butler, D. M.; Rundel, R. D.

    1977-01-01

    A concise stratospheric model was used in a Monte-Carlo analysis of the propagation of reaction rate uncertainties through the calculation of an ozone perturbation due to the addition of chlorine. Two thousand Monte-Carlo cases were run with 55 reaction rates being varied. Excellent convergence was obtained in the output distributions because the model is sensitive to the uncertainties in only about 10 reactions. For a 1 ppby chlorine perturbation added to a 1.5 ppby chlorine background, the resultant 1 sigma uncertainty on the ozone perturbation is a factor of 1.69 on the high side and 1.80 on the low side. The corresponding 2 sigma factors are 2.86 and 3.23. Results are also given for the uncertainties, due to reaction rates, in the ambient concentrations of stratospheric species.

  7. Optical roughness BRDF model for reverse Monte Carlo simulation of real material thermal radiation transfer.

    PubMed

    Su, Peiran; Eri, Qitai; Wang, Qiang

    2014-04-10

    Optical roughness was introduced into the bidirectional reflectance distribution function (BRDF) model to simulate the reflectance characteristics of thermal radiation. The optical roughness BRDF model stemmed from the influence of surface roughness and wavelength on the ray reflectance calculation. This model was adopted to simulate real metal emissivity. The reverse Monte Carlo method was used to display the distribution of reflectance rays. The numerical simulations showed that the optical roughness BRDF model can calculate the wavelength effect on emissivity and simulate the real metal emissivity variance with incidence angles.

  8. Uncertainty Analysis Based on Sparse Grid Collocation and Quasi-Monte Carlo Sampling with Application in Groundwater Modeling

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Lu, D.; Ye, M.; Gunzburger, M.

    2011-12-01

    Markov Chain Monte Carlo (MCMC) methods have been widely used in many fields of uncertainty analysis to estimate the posterior distributions of parameters and credible intervals of predictions in the Bayesian framework. However, in practice, MCMC may be computationally unaffordable due to slow convergence and the excessive number of forward model executions required, especially when the forward model is expensive to compute. Both disadvantages arise from the curse of dimensionality, i.e., the posterior distribution is usually a multivariate function of parameters. Recently, sparse grid method has been demonstrated to be an effective technique for coping with high-dimensional interpolation or integration problems. Thus, in order to accelerate the forward model and avoid the slow convergence of MCMC, we propose a new method for uncertainty analysis based on sparse grid interpolation and quasi-Monte Carlo sampling. First, we construct a polynomial approximation of the forward model in the parameter space by using the sparse grid interpolation. This approximation then defines an accurate surrogate posterior distribution that can be evaluated repeatedly at minimal computational cost. Second, instead of using MCMC, a quasi-Monte Carlo method is applied to draw samples in the parameter space. Then, the desired probability density function of each prediction is approximated by accumulating the posterior density values of all the samples according to the prediction values. Our method has the following advantages: (1) the polynomial approximation of the forward model on the sparse grid provides a very efficient evaluation of the surrogate posterior distribution; (2) the quasi-Monte Carlo method retains the same accuracy in approximating the PDF of predictions but avoids all disadvantages of MCMC. The proposed method is applied to a controlled numerical experiment of groundwater flow modeling. The results show that our method attains the same accuracy much more efficiently than traditional MCMC.

  9. Monte Carlo calculation of skyshine'' neutron dose from ALS (Advanced Light Source)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moin-Vasiri, M.

    1990-06-01

    This report discusses the following topics on skyshine'' neutron dose from ALS: Sources of radiation; ALS modeling for skyshine calculations; MORSE Monte-Carlo; Implementation of MORSE; Results of skyshine calculations from storage ring; and Comparison of MORSE shielding calculations.

  10. Impact of reconstruction parameters on quantitative I-131 SPECT

    NASA Astrophysics Data System (ADS)

    van Gils, C. A. J.; Beijst, C.; van Rooij, R.; de Jong, H. W. A. M.

    2016-07-01

    Radioiodine therapy using I-131 is widely used for treatment of thyroid disease or neuroendocrine tumors. Monitoring treatment by accurate dosimetry requires quantitative imaging. The high energy photons however render quantitative SPECT reconstruction challenging, potentially requiring accurate correction for scatter and collimator effects. The goal of this work is to assess the effectiveness of various correction methods on these effects using phantom studies. A SPECT/CT acquisition of the NEMA IEC body phantom was performed. Images were reconstructed using the following parameters: (1) without scatter correction, (2) with triple energy window (TEW) scatter correction and (3) with Monte Carlo-based scatter correction. For modelling the collimator-detector response (CDR), both (a) geometric Gaussian CDRs as well as (b) Monte Carlo simulated CDRs were compared. Quantitative accuracy, contrast to noise ratios and recovery coefficients were calculated, as well as the background variability and the residual count error in the lung insert. The Monte Carlo scatter corrected reconstruction method was shown to be intrinsically quantitative, requiring no experimentally acquired calibration factor. It resulted in a more accurate quantification of the background compartment activity density compared with TEW or no scatter correction. The quantification error relative to a dose calibrator derived measurement was found to be  <1%,-26% and 33%, respectively. The adverse effects of partial volume were significantly smaller with the Monte Carlo simulated CDR correction compared with geometric Gaussian or no CDR modelling. Scatter correction showed a small effect on quantification of small volumes. When using a weighting factor, TEW correction was comparable to Monte Carlo reconstruction in all measured parameters, although this approach is clinically impractical since this factor may be patient dependent. Monte Carlo based scatter correction including accurately simulated CDR modelling is the most robust and reliable method to reconstruct accurate quantitative iodine-131 SPECT images.

  11. Finite element model updating using the shadow hybrid Monte Carlo technique

    NASA Astrophysics Data System (ADS)

    Boulkaibet, I.; Mthembu, L.; Marwala, T.; Friswell, M. I.; Adhikari, S.

    2015-02-01

    Recent research in the field of finite element model updating (FEM) advocates the adoption of Bayesian analysis techniques to dealing with the uncertainties associated with these models. However, Bayesian formulations require the evaluation of the Posterior Distribution Function which may not be available in analytical form. This is the case in FEM updating. In such cases sampling methods can provide good approximations of the Posterior distribution when implemented in the Bayesian context. Markov Chain Monte Carlo (MCMC) algorithms are the most popular sampling tools used to sample probability distributions. However, the efficiency of these algorithms is affected by the complexity of the systems (the size of the parameter space). The Hybrid Monte Carlo (HMC) offers a very important MCMC approach to dealing with higher-dimensional complex problems. The HMC uses the molecular dynamics (MD) steps as the global Monte Carlo (MC) moves to reach areas of high probability where the gradient of the log-density of the Posterior acts as a guide during the search process. However, the acceptance rate of HMC is sensitive to the system size as well as the time step used to evaluate the MD trajectory. To overcome this limitation we propose the use of the Shadow Hybrid Monte Carlo (SHMC) algorithm. The SHMC algorithm is a modified version of the Hybrid Monte Carlo (HMC) and designed to improve sampling for large-system sizes and time steps. This is done by sampling from a modified Hamiltonian function instead of the normal Hamiltonian function. In this paper, the efficiency and accuracy of the SHMC method is tested on the updating of two real structures; an unsymmetrical H-shaped beam structure and a GARTEUR SM-AG19 structure and is compared to the application of the HMC algorithm on the same structures.

  12. MCNP (Monte Carlo Neutron Photon) capabilities for nuclear well logging calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forster, R.A.; Little, R.C.; Briesmeister, J.F.

    The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. The general-purpose continuous-energy Monte Carlo code MCNP (Monte Carlo Neutron Photon), part of the LARTCS, provides a computational predictive capability for many applications of interest to the nuclear well logging community. The generalized three-dimensional geometry of MCNP is well suited for borehole-tool models. SABRINA, another component of the LARTCS, is a graphics code that can be used to interactively create a complex MCNP geometry. Users can define many source and tally characteristics with standard MCNP features. The time-dependent capabilitymore » of the code is essential when modeling pulsed sources. Problems with neutrons, photons, and electrons as either single particle or coupled particles can be calculated with MCNP. The physics of neutron and photon transport and interactions is modeled in detail using the latest available cross-section data. A rich collections of variance reduction features can greatly increase the efficiency of a calculation. MCNP is written in FORTRAN 77 and has been run on variety of computer systems from scientific workstations to supercomputers. The next production version of MCNP will include features such as continuous-energy electron transport and a multitasking option. Areas of ongoing research of interest to the well logging community include angle biasing, adaptive Monte Carlo, improved discrete ordinates capabilities, and discrete ordinates/Monte Carlo hybrid development. Los Alamos has requested approval by the Department of Energy to create a Radiation Transport Computational Facility under their User Facility Program to increase external interactions with industry, universities, and other government organizations. 21 refs.« less

  13. Monte Carlo calculation of dynamical properties of the two-dimensional Hubbard model

    NASA Technical Reports Server (NTRS)

    White, S. R.; Scalapino, D. J.; Sugar, R. L.; Bickers, N. E.

    1989-01-01

    A new method is introduced for analytically continuing imaginary-time data from quantum Monte Carlo calculations to the real-frequency axis. The method is based on a least-squares-fitting procedure with constraints of positivity and smoothness on the real-frequency quantities. Results are shown for the single-particle spectral-weight function and density of states for the half-filled, two-dimensional Hubbard model.

  14. Finite element fatigue analysis of rectangular clutch spring of automatic slack adjuster

    NASA Astrophysics Data System (ADS)

    Xu, Chen-jie; Luo, Zai; Hu, Xiao-feng; Jiang, Wen-song

    2015-02-01

    The failure of rectangular clutch spring of automatic slack adjuster directly affects the work of automatic slack adjuster. We establish the structural mechanics model of automatic slack adjuster rectangular clutch spring based on its working principle and mechanical structure. In addition, we upload such structural mechanics model to ANSYS Workbench FEA system to predict the fatigue life of rectangular clutch spring. FEA results show that the fatigue life of rectangular clutch spring is 2.0403×105 cycle under the effect of braking loads. In the meantime, fatigue tests of 20 automatic slack adjusters are carried out on the fatigue test bench to verify the conclusion of the structural mechanics model. The experimental results show that the mean fatigue life of rectangular clutch spring is 1.9101×105, which meets the results based on the finite element analysis using ANSYS Workbench FEA system.

  15. Accelerated Monte Carlo Simulation for Safety Analysis of the Advanced Airspace Concept

    NASA Technical Reports Server (NTRS)

    Thipphavong, David

    2010-01-01

    Safe separation of aircraft is a primary objective of any air traffic control system. An accelerated Monte Carlo approach was developed to assess the level of safety provided by a proposed next-generation air traffic control system. It combines features of fault tree and standard Monte Carlo methods. It runs more than one order of magnitude faster than the standard Monte Carlo method while providing risk estimates that only differ by about 10%. It also preserves component-level model fidelity that is difficult to maintain using the standard fault tree method. This balance of speed and fidelity allows sensitivity analysis to be completed in days instead of weeks or months with the standard Monte Carlo method. Results indicate that risk estimates are sensitive to transponder, pilot visual avoidance, and conflict detection failure probabilities.

  16. Understanding quantum tunneling using diffusion Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Inack, E. M.; Giudici, G.; Parolini, T.; Santoro, G.; Pilati, S.

    2018-03-01

    In simple ferromagnetic quantum Ising models characterized by an effective double-well energy landscape the characteristic tunneling time of path-integral Monte Carlo (PIMC) simulations has been shown to scale as the incoherent quantum-tunneling time, i.e., as 1 /Δ2 , where Δ is the tunneling gap. Since incoherent quantum tunneling is employed by quantum annealers (QAs) to solve optimization problems, this result suggests that there is no quantum advantage in using QAs with respect to quantum Monte Carlo (QMC) simulations. A counterexample is the recently introduced shamrock model (Andriyash and Amin, arXiv:1703.09277), where topological obstructions cause an exponential slowdown of the PIMC tunneling dynamics with respect to incoherent quantum tunneling, leaving open the possibility for potential quantum speedup, even for stoquastic models. In this work we investigate the tunneling time of projective QMC simulations based on the diffusion Monte Carlo (DMC) algorithm without guiding functions, showing that it scales as 1 /Δ , i.e., even more favorably than the incoherent quantum-tunneling time, both in a simple ferromagnetic system and in the more challenging shamrock model. However, a careful comparison between the DMC ground-state energies and the exact solution available for the transverse-field Ising chain indicates an exponential scaling of the computational cost required to keep a fixed relative error as the system size increases.

  17. Million-body star cluster simulations: comparisons between Monte Carlo and direct N-body

    NASA Astrophysics Data System (ADS)

    Rodriguez, Carl L.; Morscher, Meagan; Wang, Long; Chatterjee, Sourav; Rasio, Frederic A.; Spurzem, Rainer

    2016-12-01

    We present the first detailed comparison between million-body globular cluster simulations computed with a Hénon-type Monte Carlo code, CMC, and a direct N-body code, NBODY6++GPU. Both simulations start from an identical cluster model with 106 particles, and include all of the relevant physics needed to treat the system in a highly realistic way. With the two codes `frozen' (no fine-tuning of any free parameters or internal algorithms of the codes) we find good agreement in the overall evolution of the two models. Furthermore, we find that in both models, large numbers of stellar-mass black holes (>1000) are retained for 12 Gyr. Thus, the very accurate direct N-body approach confirms recent predictions that black holes can be retained in present-day, old globular clusters. We find only minor disagreements between the two models and attribute these to the small-N dynamics driving the evolution of the cluster core for which the Monte Carlo assumptions are less ideal. Based on the overwhelming general agreement between the two models computed using these vastly different techniques, we conclude that our Monte Carlo approach, which is more approximate, but dramatically faster compared to the direct N-body, is capable of producing an accurate description of the long-term evolution of massive globular clusters even when the clusters contain large populations of stellar-mass black holes.

  18. SU-E-T-405: Evaluation of the Raystation Electron Monte Carlo Algorithm for Varian Linear Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sansourekidou, P; Allen, C

    2015-06-15

    Purpose: To evaluate the Raystation v4.51 Electron Monte Carlo algorithm for Varian Trilogy, IX and 2100 series linear accelerators and commission for clinical use. Methods: Seventy two water and forty air scans were acquired with a water tank in the form of profiles and depth doses, as requested by vendor. Data was imported into Rayphysics beam modeling module. Energy spectrum was modeled using seven parameters. Contamination photons were modeled using five parameters. Source phase space was modeled using six parameters. Calculations were performed in clinical version 4.51 and percent depth dose curves and profiles were extracted to be compared tomore » water tank measurements. Sensitivity tests were performed for all parameters. Grid size and particle histories were evaluated per energy for statistical uncertainty performance. Results: Model accuracy for air profiles is poor in the shoulder and penumbra region. However, model accuracy for water scans is acceptable. All energies and cones are within 2%/2mm for 90% of the points evaluated. Source phase space parameters have a cumulative effect. To achieve distributions with satisfactory smoothness level a 0.1cm grid and 3,000,000 particle histories were used for commissioning calculations. Calculation time was approximately 3 hours per energy. Conclusion: Raystation electron Monte Carlo is acceptable for clinical use for the Varian accelerators listed. Results are inferior to Elekta Electron Monte Carlo modeling. Known issues were reported to Raysearch and will be resolved in upcoming releases. Auto-modeling is limited to open cone depth dose curves and needs expansion.« less

  19. Development of a cerebral circulation model for the automatic control of brain physiology.

    PubMed

    Utsuki, T

    2015-01-01

    In various clinical guidelines of brain injury, intracranial pressure (ICP), cerebral blood flow (CBF) and brain temperature (BT) are essential targets for precise management for brain resuscitation. In addition, the integrated automatic control of BT, ICP, and CBF is required for improving therapeutic effects and reducing medical costs and staff burden. Thus, a new model of cerebral circulation was developed in this study for integrative automatic control. With this model, the CBF and cerebral perfusion pressure of a normal adult male were regionally calculated according to cerebrovascular structure, blood viscosity, blood distribution, CBF autoregulation, and ICP. The analysis results were consistent with physiological knowledge already obtained with conventional studies. Therefore, the developed model is potentially available for the integrative control of the physiological state of the brain as a reference model of an automatic control system, or as a controlled object in various control simulations.

  20. A Monte Carlo simulation study of associated liquid crystals

    NASA Astrophysics Data System (ADS)

    Berardi, R.; Fehervari, M.; Zannoni, C.

    We have performed a Monte Carlo simulation study of a system of ellipsoidal particles with donor-acceptor sites modelling complementary hydrogen-bonding groups in real molecules. We have considered elongated Gay-Berne particles with terminal interaction sites allowing particles to associate and form dimers. The changes in the phase transitions and in the molecular organization and the interplay between orientational ordering and dimer formation are discussed. Particle flip and dimer moves have been used to increase the convergency rate of the Monte Carlo (MC) Markov chain.

  1. Using Stan for Item Response Theory Models

    ERIC Educational Resources Information Center

    Ames, Allison J.; Au, Chi Hang

    2018-01-01

    Stan is a flexible probabilistic programming language providing full Bayesian inference through Hamiltonian Monte Carlo algorithms. The benefits of Hamiltonian Monte Carlo include improved efficiency and faster inference, when compared to other MCMC software implementations. Users can interface with Stan through a variety of computing…

  2. Shielding analyses of an AB-BNCT facility using Monte Carlo simulations and simplified methods

    NASA Astrophysics Data System (ADS)

    Lai, Bo-Lun; Sheu, Rong-Jiun

    2017-09-01

    Accurate Monte Carlo simulations and simplified methods were used to investigate the shielding requirements of a hypothetical accelerator-based boron neutron capture therapy (AB-BNCT) facility that included an accelerator room and a patient treatment room. The epithermal neutron beam for BNCT purpose was generated by coupling a neutron production target with a specially designed beam shaping assembly (BSA), which was embedded in the partition wall between the two rooms. Neutrons were produced from a beryllium target bombarded by 1-mA 30-MeV protons. The MCNP6-generated surface sources around all the exterior surfaces of the BSA were established to facilitate repeated Monte Carlo shielding calculations. In addition, three simplified models based on a point-source line-of-sight approximation were developed and their predictions were compared with the reference Monte Carlo results. The comparison determined which model resulted in better dose estimation, forming the basis of future design activities for the first ABBNCT facility in Taiwan.

  3. Data decomposition of Monte Carlo particle transport simulations via tally servers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romano, Paul K.; Siegel, Andrew R.; Forget, Benoit

    An algorithm for decomposing large tally data in Monte Carlo particle transport simulations is developed, analyzed, and implemented in a continuous-energy Monte Carlo code, OpenMC. The algorithm is based on a non-overlapping decomposition of compute nodes into tracking processors and tally servers. The former are used to simulate the movement of particles through the domain while the latter continuously receive and update tally data. A performance model for this approach is developed, suggesting that, for a range of parameters relevant to LWR analysis, the tally server algorithm should perform with minimal overhead on contemporary supercomputers. An implementation of the algorithmmore » in OpenMC is then tested on the Intrepid and Titan supercomputers, supporting the key predictions of the model over a wide range of parameters. We thus conclude that the tally server algorithm is a successful approach to circumventing classical on-node memory constraints en route to unprecedentedly detailed Monte Carlo reactor simulations.« less

  4. Response Matrix Monte Carlo for electron transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballinger, C.T.; Nielsen, D.E. Jr.; Rathkopf, J.A.

    1990-11-01

    A Response Matrix Monte Carol (RMMC) method has been developed for solving electron transport problems. This method was born of the need to have a reliable, computationally efficient transport method for low energy electrons (below a few hundred keV) in all materials. Today, condensed history methods are used which reduce the computation time by modeling the combined effect of many collisions but fail at low energy because of the assumptions required to characterize the electron scattering. Analog Monte Carlo simulations are prohibitively expensive since electrons undergo coulombic scattering with little state change after a collision. The RMMC method attempts tomore » combine the accuracy of an analog Monte Carlo simulation with the speed of the condensed history methods. The combined effect of many collisions is modeled, like condensed history, except it is precalculated via an analog Monte Carol simulation. This avoids the scattering kernel assumptions associated with condensed history methods. Results show good agreement between the RMMC method and analog Monte Carlo. 11 refs., 7 figs., 1 tabs.« less

  5. Transdimensional Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Bodin, T.; Sambridge, M.

    2009-12-01

    In seismic imaging the degree of model complexity is usually determined by manually tuning damping parameters within a fixed parameterization chosen in advance. Here we present an alternative methodology for seismic travel time tomography where the model complexity is controlled automatically by the data. In particular we use a variable parametrization consisting of Voronoi cells with mobile geometry, shape and number, all treated as unknowns in the inversion. The reversible jump algorithm is used to sample the transdimensional model space within a Bayesian framework which avoids global damping procedures and the need to tune regularisation parameters. The method is an ensemble inference approach, as many potential solutions are generated with variable numbers of cells. Information is extracted from the ensemble as a whole by performing Monte Carlo integration to produce the expected Earth model. The ensemble of models can also be used to produce velocity uncertainty estimates and experiments with synthetic data suggest they represent actual uncertainty surprisingly well. In a transdimensional approach, the level of data uncertainty directly determines the model complexity needed to satisfy the data. Intriguingly, the Bayesian formulation can be extended to the case where data uncertainty is also uncertain. Experiments show that it is possible to recover data noise estimate while at the same time controlling model complexity in an automated fashion. The method is tested on synthetic data in a 2-D application and compared with a more standard matrix based inversion scheme. The method has also been applied to real data obtained from cross correlation of ambient noise where little is known about the size of the errors associated with the travel times. As an example, a tomographic image of Rayleigh wave group velocity for the Australian continent is constructed for 5s data together with uncertainty estimates.

  6. Effortful versus automatic emotional processing in schizophrenia: Insights from a face-vignette task.

    PubMed

    Patrick, Regan E; Rastogi, Anuj; Christensen, Bruce K

    2015-01-01

    Adaptive emotional responding relies on dual automatic and effortful processing streams. Dual-stream models of schizophrenia (SCZ) posit a selective deficit in neural circuits that govern goal-directed, effortful processes versus reactive, automatic processes. This imbalance suggests that when patients are confronted with competing automatic and effortful emotional response cues, they will exhibit diminished effortful responding and intact, possibly elevated, automatic responding compared to controls. This prediction was evaluated using a modified version of the face-vignette task (FVT). Participants viewed emotional faces (automatic response cue) paired with vignettes (effortful response cue) that signalled a different emotion category and were instructed to discriminate the manifest emotion. Patients made less vignette and more face responses than controls. However, the relationship between group and FVT responding was moderated by IQ and reading comprehension ability. These results replicate and extend previous research and provide tentative support for abnormal conflict resolution between automatic and effortful emotional processing predicted by dual-stream models of SCZ.

  7. Lognormal Approximations of Fault Tree Uncertainty Distributions.

    PubMed

    El-Shanawany, Ashraf Ben; Ardron, Keith H; Walker, Simon P

    2018-01-26

    Fault trees are used in reliability modeling to create logical models of fault combinations that can lead to undesirable events. The output of a fault tree analysis (the top event probability) is expressed in terms of the failure probabilities of basic events that are input to the model. Typically, the basic event probabilities are not known exactly, but are modeled as probability distributions: therefore, the top event probability is also represented as an uncertainty distribution. Monte Carlo methods are generally used for evaluating the uncertainty distribution, but such calculations are computationally intensive and do not readily reveal the dominant contributors to the uncertainty. In this article, a closed-form approximation for the fault tree top event uncertainty distribution is developed, which is applicable when the uncertainties in the basic events of the model are lognormally distributed. The results of the approximate method are compared with results from two sampling-based methods: namely, the Monte Carlo method and the Wilks method based on order statistics. It is shown that the closed-form expression can provide a reasonable approximation to results obtained by Monte Carlo sampling, without incurring the computational expense. The Wilks method is found to be a useful means of providing an upper bound for the percentiles of the uncertainty distribution while being computationally inexpensive compared with full Monte Carlo sampling. The lognormal approximation method and Wilks's method appear attractive, practical alternatives for the evaluation of uncertainty in the output of fault trees and similar multilinear models. © 2018 Society for Risk Analysis.

  8. GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models

    PubMed Central

    Mukherjee, Chiranjit; Rodriguez, Abel

    2016-01-01

    Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful. PMID:28626348

  9. GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models.

    PubMed

    Mukherjee, Chiranjit; Rodriguez, Abel

    2016-01-01

    Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful.

  10. Conditional Monte Carlo randomization tests for regression models.

    PubMed

    Parhat, Parwen; Rosenberger, William F; Diao, Guoqing

    2014-08-15

    We discuss the computation of randomization tests for clinical trials of two treatments when the primary outcome is based on a regression model. We begin by revisiting the seminal paper of Gail, Tan, and Piantadosi (1988), and then describe a method based on Monte Carlo generation of randomization sequences. The tests based on this Monte Carlo procedure are design based, in that they incorporate the particular randomization procedure used. We discuss permuted block designs, complete randomization, and biased coin designs. We also use a new technique by Plamadeala and Rosenberger (2012) for simple computation of conditional randomization tests. Like Gail, Tan, and Piantadosi, we focus on residuals from generalized linear models and martingale residuals from survival models. Such techniques do not apply to longitudinal data analysis, and we introduce a method for computation of randomization tests based on the predicted rate of change from a generalized linear mixed model when outcomes are longitudinal. We show, by simulation, that these randomization tests preserve the size and power well under model misspecification. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Self-learning Monte Carlo method

    DOE PAGES

    Liu, Junwei; Qi, Yang; Meng, Zi Yang; ...

    2017-01-04

    Monte Carlo simulation is an unbiased numerical tool for studying classical and quantum many-body systems. One of its bottlenecks is the lack of a general and efficient update algorithm for large size systems close to the phase transition, for which local updates perform badly. In this Rapid Communication, we propose a general-purpose Monte Carlo method, dubbed self-learning Monte Carlo (SLMC), in which an efficient update algorithm is first learned from the training data generated in trial simulations and then used to speed up the actual simulation. Lastly, we demonstrate the efficiency of SLMC in a spin model at the phasemore » transition point, achieving a 10–20 times speedup.« less

  12. Prediction-error variance in Bayesian model updating: a comparative study

    NASA Astrophysics Data System (ADS)

    Asadollahi, Parisa; Li, Jian; Huang, Yong

    2017-04-01

    In Bayesian model updating, the likelihood function is commonly formulated by stochastic embedding in which the maximum information entropy probability model of prediction error variances plays an important role and it is Gaussian distribution subject to the first two moments as constraints. The selection of prediction error variances can be formulated as a model class selection problem, which automatically involves a trade-off between the average data-fit of the model class and the information it extracts from the data. Therefore, it is critical for the robustness in the updating of the structural model especially in the presence of modeling errors. To date, three ways of considering prediction error variances have been seem in the literature: 1) setting constant values empirically, 2) estimating them based on the goodness-of-fit of the measured data, and 3) updating them as uncertain parameters by applying Bayes' Theorem at the model class level. In this paper, the effect of different strategies to deal with the prediction error variances on the model updating performance is investigated explicitly. A six-story shear building model with six uncertain stiffness parameters is employed as an illustrative example. Transitional Markov Chain Monte Carlo is used to draw samples of the posterior probability density function of the structure model parameters as well as the uncertain prediction variances. The different levels of modeling uncertainty and complexity are modeled through three FE models, including a true model, a model with more complexity, and a model with modeling error. Bayesian updating is performed for the three FE models considering the three aforementioned treatments of the prediction error variances. The effect of number of measurements on the model updating performance is also examined in the study. The results are compared based on model class assessment and indicate that updating the prediction error variances as uncertain parameters at the model class level produces more robust results especially when the number of measurement is small.

  13. Population Synthesis of Radio and Y-ray Millisecond Pulsars Using Markov Chain Monte Carlo

    NASA Astrophysics Data System (ADS)

    Gonthier, Peter L.; Billman, C.; Harding, A. K.

    2013-04-01

    We present preliminary results of a new population synthesis of millisecond pulsars (MSP) from the Galactic disk using Markov Chain Monte Carlo techniques to better understand the model parameter space. We include empirical radio and γ-ray luminosity models that are dependent on the pulsar period and period derivative with freely varying exponents. The magnitudes of the model luminosities are adjusted to reproduce the number of MSPs detected by a group of ten radio surveys and by Fermi, predicting the MSP birth rate in the Galaxy. We follow a similar set of assumptions that we have used in previous, more constrained Monte Carlo simulations. The parameters associated with the birth distributions such as those for the accretion rate, magnetic field and period distributions are also free to vary. With the large set of free parameters, we employ Markov Chain Monte Carlo simulations to explore the large and small worlds of the parameter space. We present preliminary comparisons of the simulated and detected distributions of radio and γ-ray pulsar characteristics. We express our gratitude for the generous support of the National Science Foundation (REU and RUI), Fermi Guest Investigator Program and the NASA Astrophysics Theory and Fundamental Program.

  14. A Monte-Carlo Benchmark of TRIPOLI-4® and MCNP on ITER neutronics

    NASA Astrophysics Data System (ADS)

    Blanchet, David; Pénéliau, Yannick; Eschbach, Romain; Fontaine, Bruno; Cantone, Bruno; Ferlet, Marc; Gauthier, Eric; Guillon, Christophe; Letellier, Laurent; Proust, Maxime; Mota, Fernando; Palermo, Iole; Rios, Luis; Guern, Frédéric Le; Kocan, Martin; Reichle, Roger

    2017-09-01

    Radiation protection and shielding studies are often based on the extensive use of 3D Monte-Carlo neutron and photon transport simulations. ITER organization hence recommends the use of MCNP-5 code (version 1.60), in association with the FENDL-2.1 neutron cross section data library, specifically dedicated to fusion applications. The MCNP reference model of the ITER tokamak, the `C-lite', is being continuously developed and improved. This article proposes to develop an alternative model, equivalent to the 'C-lite', but for the Monte-Carlo code TRIPOLI-4®. A benchmark study is defined to test this new model. Since one of the most critical areas for ITER neutronics analysis concerns the assessment of radiation levels and Shutdown Dose Rates (SDDR) behind the Equatorial Port Plugs (EPP), the benchmark is conducted to compare the neutron flux through the EPP. This problem is quite challenging with regard to the complex geometry and considering the important neutron flux attenuation ranging from 1014 down to 108 n•cm-2•s-1. Such code-to-code comparison provides independent validation of the Monte-Carlo simulations, improving the confidence in neutronic results.

  15. Software Would Largely Automate Design of Kalman Filter

    NASA Technical Reports Server (NTRS)

    Chuang, Jason C. H.; Negast, William J.

    2005-01-01

    Embedded Navigation Filter Automatic Designer (ENFAD) is a computer program being developed to automate the most difficult tasks in designing embedded software to implement a Kalman filter in a navigation system. The most difficult tasks are selection of error states of the filter and tuning of filter parameters, which are timeconsuming trial-and-error tasks that require expertise and rarely yield optimum results. An optimum selection of error states and filter parameters depends on navigation-sensor and vehicle characteristics, and on filter processing time. ENFAD would include a simulation module that would incorporate all possible error states with respect to a given set of vehicle and sensor characteristics. The first of two iterative optimization loops would vary the selection of error states until the best filter performance was achieved in Monte Carlo simulations. For a fixed selection of error states, the second loop would vary the filter parameter values until an optimal performance value was obtained. Design constraints would be satisfied in the optimization loops. Users would supply vehicle and sensor test data that would be used to refine digital models in ENFAD. Filter processing time and filter accuracy would be computed by ENFAD.

  16. Monte Carlo simulations of coherent backscatter for identification of the optical coefficients of biological tissues in vivo

    NASA Astrophysics Data System (ADS)

    Eddowes, M. H.; Mills, T. N.; Delpy, D. T.

    1995-05-01

    A Monte Carlo model of light backscattered from turbid media has been used to simulate the effects of weak localization in biological tissues. A validation technique is used that implies that for the scattering and absorption coefficients and for refractive index mismatches found in tissues, the Monte Carlo method is likely to provide more accurate results than the methods previously used. The model also has the ability to simulate the effects of various illumination profiles and other laboratory-imposed conditions. A curve-fitting routine has been developed that might be used to extract the optical coefficients from the angular intensity profiles seen in experiments on turbid biological tissues, data that could be obtained in vivo.

  17. 11. MOVABLE BED SEDIMENTATION MODELS. AUTOMATIC SEDIMENT FEEDER DESIGNED AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. MOVABLE BED SEDIMENTATION MODELS. AUTOMATIC SEDIMENT FEEDER DESIGNED AND BUILT BY WES. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  18. Computerized adaptive control weld skate with CCTV weld guidance project

    NASA Technical Reports Server (NTRS)

    Wall, W. A.

    1976-01-01

    This report summarizes progress of the automatic computerized weld skate development portion of the Computerized Weld Skate with Closed Circuit Television (CCTV) Arc Guidance Project. The main goal of the project is to develop an automatic welding skate demonstration model equipped with CCTV weld guidance. The three main goals of the overall project are to: (1) develop a demonstration model computerized weld skate system, (2) develop a demonstration model automatic CCTV guidance system, and (3) integrate the two systems into a demonstration model of computerized weld skate with CCTV weld guidance for welding contoured parts.

  19. The XXth International Workshop High Energy Physics and Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    The Workshop continues a series of workshops started by the Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University (SINP MSU) in 1985 and conceived with the purpose of presenting topics of current interest and providing a stimulating environment for scientific discussion on new developments in theoretical and experimental high energy physics and physical programs for future colliders. Traditionally the list of workshop attendees includes a great number of active young scientists and students from Russia and other countries. This year Workshop is organized jointly by the SINP MSU and the Southern Federal University (SFedU) and will take place in the holiday hotel "Luchezarniy" (Effulgent) situated on the Black Sea shore in a picturesque natural park in the suburb of the largest Russian resort city Sochi - the host city of the XXII Olympic Winter Games to be held in 2014. The main topics to be covered are: Experimental results from the LHC. Tevatron summary: the status of the Standard Model and the boundaries on BSM physics. Future physics at Linear Colliders and super B-factories. Extensions of the Standard Model and their phenomenological consequences at the LHC and Linear Colliders: SUSY extensions of the Standard Model; particle interactions in space-time with extra dimensions; strings, quantum groups and new ideas from modern algebra and geometry. Higher order corrections and resummations for collider phenomenology. Automatic calculations of Feynman diagrams and Monte Carlo simulations. LHC/LC and astroparticle/cosmology connections. Modern nuclear physics and relativistic nucleous-nucleous collisions.

  20. Automatic programming of simulation models

    NASA Technical Reports Server (NTRS)

    Schroer, Bernard J.; Tseng, Fan T.; Zhang, Shou X.; Dwan, Wen S.

    1990-01-01

    The concepts of software engineering were used to improve the simulation modeling environment. Emphasis was placed on the application of an element of rapid prototyping, or automatic programming, to assist the modeler define the problem specification. Then, once the problem specification has been defined, an automatic code generator is used to write the simulation code. The following two domains were selected for evaluating the concepts of software engineering for discrete event simulation: manufacturing domain and a spacecraft countdown network sequence. The specific tasks were to: (1) define the software requirements for a graphical user interface to the Automatic Manufacturing Programming System (AMPS) system; (2) develop a graphical user interface for AMPS; and (3) compare the AMPS graphical interface with the AMPS interactive user interface.

  1. Fully automatic adjoints: a robust and efficient mechanism for generating adjoint ocean models

    NASA Astrophysics Data System (ADS)

    Ham, D. A.; Farrell, P. E.; Funke, S. W.; Rognes, M. E.

    2012-04-01

    The problem of generating and maintaining adjoint models is sufficiently difficult that typically only the most advanced and well-resourced community ocean models achieve it. There are two current technologies which each suffer from their own limitations. Algorithmic differentiation, also called automatic differentiation, is employed by models such as the MITGCM [2] and the Alfred Wegener Institute model FESOM [3]. This technique is very difficult to apply to existing code, and requires a major initial investment to prepare the code for automatic adjoint generation. AD tools may also have difficulty with code employing modern software constructs such as derived data types. An alternative is to formulate the adjoint differential equation and to discretise this separately. This approach, known as the continuous adjoint and employed in ROMS [4], has the disadvantage that two different model code bases must be maintained and manually kept synchronised as the model develops. The discretisation of the continuous adjoint is not automatically consistent with that of the forward model, producing an additional source of error. The alternative presented here is to formulate the flow model in the high level language UFL (Unified Form Language) and to automatically generate the model using the software of the FEniCS project. In this approach it is the high level code specification which is differentiated, a task very similar to the formulation of the continuous adjoint [5]. However since the forward and adjoint models are generated automatically, the difficulty of maintaining them vanishes and the software engineering process is therefore robust. The scheduling and execution of the adjoint model, including the application of an appropriate checkpointing strategy is managed by libadjoint [1]. In contrast to the conventional algorithmic differentiation description of a model as a series of primitive mathematical operations, libadjoint employs a new abstraction of the simulation process as a sequence of discrete equations which are assembled and solved. It is the coupling of the respective abstractions employed by libadjoint and the FEniCS project which produces the adjoint model automatically, without further intervention from the model developer. This presentation will demonstrate this new technology through linear and non-linear shallow water test cases. The exceptionally simple model syntax will be highlighted and the correctness of the resulting adjoint simulations will be demonstrated using rigorous convergence tests.

  2. Comparison of effects of copropagated and precomputed atmosphere profiles on Monte Carlo trajectory simulation

    NASA Technical Reports Server (NTRS)

    Queen, Eric M.; Omara, Thomas M.

    1990-01-01

    A realization of a stochastic atmosphere model for use in simulations is presented. The model provides pressure, density, temperature, and wind velocity as a function of latitude, longitude, and altitude, and is implemented in a three degree of freedom simulation package. This implementation is used in the Monte Carlo simulation of an aeroassisted orbital transfer maneuver and results are compared to those of a more traditional approach.

  3. Computer simulation of stochastic processes through model-sampling (Monte Carlo) techniques.

    PubMed

    Sheppard, C W.

    1969-03-01

    A simple Monte Carlo simulation program is outlined which can be used for the investigation of random-walk problems, for example in diffusion, or the movement of tracers in the blood circulation. The results given by the simulation are compared with those predicted by well-established theory, and it is shown how the model can be expanded to deal with drift, and with reflexion from or adsorption at a boundary.

  4. An Analysis of Polynomial Chaos Approximations for Modeling Single-Fluid-Phase Flow in Porous Medium Systems

    PubMed Central

    Rupert, C.P.; Miller, C.T.

    2008-01-01

    We examine a variety of polynomial-chaos-motivated approximations to a stochastic form of a steady state groundwater flow model. We consider approaches for truncating the infinite dimensional problem and producing decoupled systems. We discuss conditions under which such decoupling is possible and show that to generalize the known decoupling by numerical cubature, it would be necessary to find new multivariate cubature rules. Finally, we use the acceleration of Monte Carlo to compare the quality of polynomial models obtained for all approaches and find that in general the methods considered are more efficient than Monte Carlo for the relatively small domains considered in this work. A curse of dimensionality in the series expansion of the log-normal stochastic random field used to represent hydraulic conductivity provides a significant impediment to efficient approximations for large domains for all methods considered in this work, other than the Monte Carlo method. PMID:18836519

  5. PDF approach for compressible turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Hsu, A. T.; Tsai, Y.-L. P.; Raju, M. S.

    1993-01-01

    The objective of the present work is to develop a probability density function (pdf) turbulence model for compressible reacting flows for use with a CFD flow solver. The probability density function of the species mass fraction and enthalpy are obtained by solving a pdf evolution equation using a Monte Carlo scheme. The pdf solution procedure is coupled with a compressible CFD flow solver which provides the velocity and pressure fields. A modeled pdf equation for compressible flows, capable of capturing shock waves and suitable to the present coupling scheme, is proposed and tested. Convergence of the combined finite-volume Monte Carlo solution procedure is discussed, and an averaging procedure is developed to provide smooth Monte-Carlo solutions to ensure convergence. Two supersonic diffusion flames are studied using the proposed pdf model and the results are compared with experimental data; marked improvements over CFD solutions without pdf are observed. Preliminary applications of pdf to 3D flows are also reported.

  6. Three-dimensional electron microscopy simulation with the CASINO Monte Carlo software.

    PubMed

    Demers, Hendrix; Poirier-Demers, Nicolas; Couture, Alexandre Réal; Joly, Dany; Guilmain, Marc; de Jonge, Niels; Drouin, Dominique

    2011-01-01

    Monte Carlo softwares are widely used to understand the capabilities of electron microscopes. To study more realistic applications with complex samples, 3D Monte Carlo softwares are needed. In this article, the development of the 3D version of CASINO is presented. The software feature a graphical user interface, an efficient (in relation to simulation time and memory use) 3D simulation model, accurate physic models for electron microscopy applications, and it is available freely to the scientific community at this website: www.gel.usherbrooke.ca/casino/index.html. It can be used to model backscattered, secondary, and transmitted electron signals as well as absorbed energy. The software features like scan points and shot noise allow the simulation and study of realistic experimental conditions. This software has an improved energy range for scanning electron microscopy and scanning transmission electron microscopy applications. Copyright © 2011 Wiley Periodicals, Inc.

  7. Three-Dimensional Electron Microscopy Simulation with the CASINO Monte Carlo Software

    PubMed Central

    Demers, Hendrix; Poirier-Demers, Nicolas; Couture, Alexandre Réal; Joly, Dany; Guilmain, Marc; de Jonge, Niels; Drouin, Dominique

    2011-01-01

    Monte Carlo softwares are widely used to understand the capabilities of electron microscopes. To study more realistic applications with complex samples, 3D Monte Carlo softwares are needed. In this paper, the development of the 3D version of CASINO is presented. The software feature a graphical user interface, an efficient (in relation to simulation time and memory use) 3D simulation model, accurate physic models for electron microscopy applications, and it is available freely to the scientific community at this website: www.gel.usherbrooke.ca/casino/index.html. It can be used to model backscattered, secondary, and transmitted electron signals as well as absorbed energy. The software features like scan points and shot noise allow the simulation and study of realistic experimental conditions. This software has an improved energy range for scanning electron microscopy and scanning transmission electron microscopy applications. PMID:21769885

  8. Monte Carlo Simulation of THz Multipliers

    NASA Technical Reports Server (NTRS)

    East, J.; Blakey, P.

    1997-01-01

    Schottky Barrier diode frequency multipliers are critical components in submillimeter and Thz space based earth observation systems. As the operating frequency of these multipliers has increased, the agreement between design predictions and experimental results has become poorer. The multiplier design is usually based on a nonlinear model using a form of harmonic balance and a model for the Schottky barrier diode. Conventional voltage dependent lumped element models do a poor job of predicting THz frequency performance. This paper will describe a large signal Monte Carlo simulation of Schottky barrier multipliers. The simulation is a time dependent particle field Monte Carlo simulation with ohmic and Schottky barrier boundary conditions included that has been combined with a fixed point solution for the nonlinear circuit interaction. The results in the paper will point out some important time constants in varactor operation and will describe the effects of current saturation and nonlinear resistances on multiplier operation.

  9. MUSiC - A general search for deviations from monte carlo predictions in CMS

    NASA Astrophysics Data System (ADS)

    Biallass, Philipp A.; CMS Collaboration

    2009-06-01

    A model independent analysis approach in CMS is presented, systematically scanning the data for deviations from the Monte Carlo expectation. Such an analysis can contribute to the understanding of the detector and the tuning of the event generators. Furthermore, due to the minimal theoretical bias this approach is sensitive to a variety of models of new physics, including those not yet thought of. Events are classified into event classes according to their particle content (muons, electrons, photons, jets and missing transverse energy). A broad scan of various distributions is performed, identifying significant deviations from the Monte Carlo simulation. The importance of systematic uncertainties is outlined, which are taken into account rigorously within the algorithm. Possible detector effects and generator issues, as well as models involving Supersymmetry and new heavy gauge bosons are used as an input to the search algorithm.

  10. Quasi-Monte Carlo Methods Applied to Tau-Leaping in Stochastic Biological Systems.

    PubMed

    Beentjes, Casper H L; Baker, Ruth E

    2018-05-25

    Quasi-Monte Carlo methods have proven to be effective extensions of traditional Monte Carlo methods in, amongst others, problems of quadrature and the sample path simulation of stochastic differential equations. By replacing the random number input stream in a simulation procedure by a low-discrepancy number input stream, variance reductions of several orders have been observed in financial applications. Analysis of stochastic effects in well-mixed chemical reaction networks often relies on sample path simulation using Monte Carlo methods, even though these methods suffer from typical slow [Formula: see text] convergence rates as a function of the number of sample paths N. This paper investigates the combination of (randomised) quasi-Monte Carlo methods with an efficient sample path simulation procedure, namely [Formula: see text]-leaping. We show that this combination is often more effective than traditional Monte Carlo simulation in terms of the decay of statistical errors. The observed convergence rate behaviour is, however, non-trivial due to the discrete nature of the models of chemical reactions. We explain how this affects the performance of quasi-Monte Carlo methods by looking at a test problem in standard quadrature.

  11. A deterministic partial differential equation model for dose calculation in electron radiotherapy.

    PubMed

    Duclous, R; Dubroca, B; Frank, M

    2010-07-07

    High-energy ionizing radiation is a prominent modality for the treatment of many cancers. The approaches to electron dose calculation can be categorized into semi-empirical models (e.g. Fermi-Eyges, convolution-superposition) and probabilistic methods (e.g.Monte Carlo). A third approach to dose calculation has only recently attracted attention in the medical physics community. This approach is based on the deterministic kinetic equations of radiative transfer. We derive a macroscopic partial differential equation model for electron transport in tissue. This model involves an angular closure in the phase space. It is exact for the free streaming and the isotropic regime. We solve it numerically by a newly developed HLLC scheme based on Berthon et al (2007 J. Sci. Comput. 31 347-89) that exactly preserves the key properties of the analytical solution on the discrete level. We discuss several test cases taken from the medical physics literature. A test case with an academic Henyey-Greenstein scattering kernel is considered. We compare our model to a benchmark discrete ordinate solution. A simplified model of electron interactions with tissue is employed to compute the dose of an electron beam in a water phantom, and a case of irradiation of the vertebral column. Here our model is compared to the PENELOPE Monte Carlo code. In the academic example, the fluences computed with the new model and a benchmark result differ by less than 1%. The depths at half maximum differ by less than 0.6%. In the two comparisons with Monte Carlo, our model gives qualitatively reasonable dose distributions. Due to the crude interaction model, these so far do not have the accuracy needed in clinical practice. However, the new model has a computational cost that is less than one-tenth of the cost of a Monte Carlo simulation. In addition, simulations can be set up in a similar way as a Monte Carlo simulation. If more detailed effects such as coupled electron-photon transport, bremsstrahlung, Compton scattering and the production of delta electrons are added to our model, the computation time will only slightly increase. Its margin of error, on the other hand, will decrease and should be within a few per cent of the actual dose. Therefore, the new model has the potential to become useful for dose calculations in clinical practice.

  12. A deterministic partial differential equation model for dose calculation in electron radiotherapy

    NASA Astrophysics Data System (ADS)

    Duclous, R.; Dubroca, B.; Frank, M.

    2010-07-01

    High-energy ionizing radiation is a prominent modality for the treatment of many cancers. The approaches to electron dose calculation can be categorized into semi-empirical models (e.g. Fermi-Eyges, convolution-superposition) and probabilistic methods (e.g. Monte Carlo). A third approach to dose calculation has only recently attracted attention in the medical physics community. This approach is based on the deterministic kinetic equations of radiative transfer. We derive a macroscopic partial differential equation model for electron transport in tissue. This model involves an angular closure in the phase space. It is exact for the free streaming and the isotropic regime. We solve it numerically by a newly developed HLLC scheme based on Berthon et al (2007 J. Sci. Comput. 31 347-89) that exactly preserves the key properties of the analytical solution on the discrete level. We discuss several test cases taken from the medical physics literature. A test case with an academic Henyey-Greenstein scattering kernel is considered. We compare our model to a benchmark discrete ordinate solution. A simplified model of electron interactions with tissue is employed to compute the dose of an electron beam in a water phantom, and a case of irradiation of the vertebral column. Here our model is compared to the PENELOPE Monte Carlo code. In the academic example, the fluences computed with the new model and a benchmark result differ by less than 1%. The depths at half maximum differ by less than 0.6%. In the two comparisons with Monte Carlo, our model gives qualitatively reasonable dose distributions. Due to the crude interaction model, these so far do not have the accuracy needed in clinical practice. However, the new model has a computational cost that is less than one-tenth of the cost of a Monte Carlo simulation. In addition, simulations can be set up in a similar way as a Monte Carlo simulation. If more detailed effects such as coupled electron-photon transport, bremsstrahlung, Compton scattering and the production of δ electrons are added to our model, the computation time will only slightly increase. Its margin of error, on the other hand, will decrease and should be within a few per cent of the actual dose. Therefore, the new model has the potential to become useful for dose calculations in clinical practice.

  13. On recontamination and directional-bias problems in Monte Carlo simulation of PDF turbulence models. [probability density function

    NASA Technical Reports Server (NTRS)

    Hsu, Andrew T.

    1992-01-01

    Turbulent combustion can not be simulated adequately by conventional moment closure turbulent models. The probability density function (PDF) method offers an attractive alternative: in a PDF model, the chemical source terms are closed and do not require additional models. Because the number of computational operations grows only linearly in the Monte Carlo scheme, it is chosen over finite differencing schemes. A grid dependent Monte Carlo scheme following J.Y. Chen and W. Kollmann has been studied in the present work. It was found that in order to conserve the mass fractions absolutely, one needs to add further restrictions to the scheme, namely alpha(sub j) + gamma(sub j) = alpha(sub j - 1) + gamma(sub j + 1). A new algorithm was devised that satisfied this restriction in the case of pure diffusion or uniform flow problems. Using examples, it is shown that absolute conservation can be achieved. Although for non-uniform flows absolute conservation seems impossible, the present scheme has reduced the error considerably.

  14. Nuclear reaction measurements on tissue-equivalent materials and GEANT4 Monte Carlo simulations for hadrontherapy

    NASA Astrophysics Data System (ADS)

    De Napoli, M.; Romano, F.; D'Urso, D.; Licciardello, T.; Agodi, C.; Candiano, G.; Cappuzzello, F.; Cirrone, G. A. P.; Cuttone, G.; Musumarra, A.; Pandola, L.; Scuderi, V.

    2014-12-01

    When a carbon beam interacts with human tissues, many secondary fragments are produced into the tumor region and the surrounding healthy tissues. Therefore, in hadrontherapy precise dose calculations require Monte Carlo tools equipped with complex nuclear reaction models. To get realistic predictions, however, simulation codes must be validated against experimental results; the wider the dataset is, the more the models are finely tuned. Since no fragmentation data for tissue-equivalent materials at Fermi energies are available in literature, we measured secondary fragments produced by the interaction of a 55.6 MeV u-1 12C beam with thick muscle and cortical bone targets. Three reaction models used by the Geant4 Monte Carlo code, the Binary Light Ions Cascade, the Quantum Molecular Dynamic and the Liege Intranuclear Cascade, have been benchmarked against the collected data. In this work we present the experimental results and we discuss the predictive power of the above mentioned models.

  15. Raman Monte Carlo simulation for light propagation for tissue with embedded objects

    NASA Astrophysics Data System (ADS)

    Periyasamy, Vijitha; Jaafar, Humaira Bte; Pramanik, Manojit

    2018-02-01

    Monte Carlo (MC) stimulation is one of the prominent simulation technique and is rapidly becoming the model of choice to study light-tissue interaction. Monte Carlo simulation for light transport in multi-layered tissue (MCML) is adapted and modelled with different geometry by integrating embedded objects of various shapes (i.e., sphere, cylinder, cuboid and ellipsoid) into the multi-layered structure. These geometries would be useful in providing a realistic tissue structure such as modelling for lymph nodes, tumors, blood vessels, head and other simulation medium. MC simulations were performed on various geometric medium. Simulation of MCML with embedded object (MCML-EO) was improvised for propagation of the photon in the defined medium with Raman scattering. The location of Raman photon generation is recorded. Simulations were experimented on a modelled breast tissue with tumor (spherical and ellipsoidal) and blood vessels (cylindrical). Results were presented in both A-line and B-line scans for embedded objects to determine spatial location where Raman photons were generated. Studies were done for different Raman probabilities.

  16. Modeling the frequency-dependent detective quantum efficiency of photon-counting x-ray detectors.

    PubMed

    Stierstorfer, Karl

    2018-01-01

    To find a simple model for the frequency-dependent detective quantum efficiency (DQE) of photon-counting detectors in the low flux limit. Formula for the spatial cross-talk, the noise power spectrum and the DQE of a photon-counting detector working at a given threshold are derived. Parameters are probabilities for types of events like single counts in the central pixel, double counts in the central pixel and a neighboring pixel or single count in a neighboring pixel only. These probabilities can be derived in a simple model by extensive use of Monte Carlo techniques: The Monte Carlo x-ray propagation program MOCASSIM is used to simulate the energy deposition from the x-rays in the detector material. A simple charge cloud model using Gaussian clouds of fixed width is used for the propagation of the electric charge generated by the primary interactions. Both stages are combined in a Monte Carlo simulation randomizing the location of impact which finally produces the required probabilities. The parameters of the charge cloud model are fitted to the spectral response to a polychromatic spectrum measured with our prototype detector. Based on the Monte Carlo model, the DQE of photon-counting detectors as a function of spatial frequency is calculated for various pixel sizes, photon energies, and thresholds. The frequency-dependent DQE of a photon-counting detector in the low flux limit can be described with an equation containing only a small set of probabilities as input. Estimates for the probabilities can be derived from a simple model of the detector physics. © 2017 American Association of Physicists in Medicine.

  17. A Monte Carlo model for the internal dosimetry of choroid plexuses in nuclear medicine procedures.

    PubMed

    Amato, Ernesto; Cicone, Francesco; Auditore, Lucrezia; Baldari, Sergio; Prior, John O; Gnesin, Silvano

    2018-05-01

    Choroid plexuses are vascular structures located in the brain ventricles, showing specific uptake of some diagnostic and therapeutic radiopharmaceuticals currently under clinical investigation, such as integrin-binding arginine-glycine-aspartic acid (RGD) peptides. No specific geometry for choroid plexuses has been implemented in commercially available software for internal dosimetry. The aims of the present study were to assess the dependence of absorbed dose to the choroid plexuses on the organ geometry implemented in Monte Carlo simulations, and to propose an analytical model for the internal dosimetry of these structures for 18 F, 64 Cu, 67 Cu, 68 Ga, 90 Y, 131 I and 177 Lu nuclides. A GAMOS Monte Carlo simulation based on direct organ segmentation was taken as the gold standard to validate a second simulation based on a simplified geometrical model of the choroid plexuses. Both simulations were compared with the OLINDA/EXM sphere model. The gold standard and the simplified geometrical model gave similar dosimetry results (dose difference < 3.5%), indicating that the latter can be considered as a satisfactory approximation of the real geometry. In contrast, the sphere model systematically overestimated the absorbed dose compared to both Monte Carlo models (range: 4-50% dose difference), depending on the isotope energy and organ mass. Therefore, the simplified geometric model was adopted to introduce an analytical approach for choroid plexuses dosimetry in the mass range 2-16 g. The proposed model enables the estimation of the choroid plexuses dose by a simple bi-parametric function, once the organ mass and the residence time of the radiopharmaceutical under investigation are provided. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. RNA folding kinetics using Monte Carlo and Gillespie algorithms.

    PubMed

    Clote, Peter; Bayegan, Amir H

    2018-04-01

    RNA secondary structure folding kinetics is known to be important for the biological function of certain processes, such as the hok/sok system in E. coli. Although linear algebra provides an exact computational solution of secondary structure folding kinetics with respect to the Turner energy model for tiny ([Formula: see text]20 nt) RNA sequences, the folding kinetics for larger sequences can only be approximated by binning structures into macrostates in a coarse-grained model, or by repeatedly simulating secondary structure folding with either the Monte Carlo algorithm or the Gillespie algorithm. Here we investigate the relation between the Monte Carlo algorithm and the Gillespie algorithm. We prove that asymptotically, the expected time for a K-step trajectory of the Monte Carlo algorithm is equal to [Formula: see text] times that of the Gillespie algorithm, where [Formula: see text] denotes the Boltzmann expected network degree. If the network is regular (i.e. every node has the same degree), then the mean first passage time (MFPT) computed by the Monte Carlo algorithm is equal to MFPT computed by the Gillespie algorithm multiplied by [Formula: see text]; however, this is not true for non-regular networks. In particular, RNA secondary structure folding kinetics, as computed by the Monte Carlo algorithm, is not equal to the folding kinetics, as computed by the Gillespie algorithm, although the mean first passage times are roughly correlated. Simulation software for RNA secondary structure folding according to the Monte Carlo and Gillespie algorithms is publicly available, as is our software to compute the expected degree of the network of secondary structures of a given RNA sequence-see http://bioinformatics.bc.edu/clote/RNAexpNumNbors .

  19. Automated Bone Segmentation and Surface Evaluation of a Small Animal Model of Post-Traumatic Osteoarthritis.

    PubMed

    Ramme, Austin J; Voss, Kevin; Lesporis, Jurinus; Lendhey, Matin S; Coughlin, Thomas R; Strauss, Eric J; Kennedy, Oran D

    2017-05-01

    MicroCT imaging allows for noninvasive microstructural evaluation of mineralized bone tissue, and is essential in studies of small animal models of bone and joint diseases. Automatic segmentation and evaluation of articular surfaces is challenging. Here, we present a novel method to create knee joint surface models, for the evaluation of PTOA-related joint changes in the rat using an atlas-based diffeomorphic registration to automatically isolate bone from surrounding tissues. As validation, two independent raters manually segment datasets and the resulting segmentations were compared to our novel automatic segmentation process. Data were evaluated using label map volumes, overlap metrics, Euclidean distance mapping, and a time trial. Intraclass correlation coefficients were calculated to compare methods, and were greater than 0.90. Total overlap, union overlap, and mean overlap were calculated to compare the automatic and manual methods and ranged from 0.85 to 0.99. A Euclidean distance comparison was also performed and showed no measurable difference between manual and automatic segmentations. Furthermore, our new method was 18 times faster than manual segmentation. Overall, this study describes a reliable, accurate, and automatic segmentation method for mineralized knee structures from microCT images, and will allow for efficient assessment of bony changes in small animal models of PTOA.

  20. Use of Fluka to Create Dose Calculations

    NASA Technical Reports Server (NTRS)

    Lee, Kerry T.; Barzilla, Janet; Townsend, Lawrence; Brittingham, John

    2012-01-01

    Monte Carlo codes provide an effective means of modeling three dimensional radiation transport; however, their use is both time- and resource-intensive. The creation of a lookup table or parameterization from Monte Carlo simulation allows users to perform calculations with Monte Carlo results without replicating lengthy calculations. FLUKA Monte Carlo transport code was used to develop lookup tables and parameterizations for data resulting from the penetration of layers of aluminum, polyethylene, and water with areal densities ranging from 0 to 100 g/cm^2. Heavy charged ion radiation including ions from Z=1 to Z=26 and from 0.1 to 10 GeV/nucleon were simulated. Dose, dose equivalent, and fluence as a function of particle identity, energy, and scattering angle were examined at various depths. Calculations were compared against well-known results and against the results of other deterministic and Monte Carlo codes. Results will be presented.

  1. QMCPACK: an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids

    NASA Astrophysics Data System (ADS)

    Kim, Jeongnim; Baczewski, Andrew D.; Beaudet, Todd D.; Benali, Anouar; Chandler Bennett, M.; Berrill, Mark A.; Blunt, Nick S.; Josué Landinez Borda, Edgar; Casula, Michele; Ceperley, David M.; Chiesa, Simone; Clark, Bryan K.; Clay, Raymond C., III; Delaney, Kris T.; Dewing, Mark; Esler, Kenneth P.; Hao, Hongxia; Heinonen, Olle; Kent, Paul R. C.; Krogel, Jaron T.; Kylänpää, Ilkka; Li, Ying Wai; Lopez, M. Graham; Luo, Ye; Malone, Fionn D.; Martin, Richard M.; Mathuriya, Amrita; McMinis, Jeremy; Melton, Cody A.; Mitas, Lubos; Morales, Miguel A.; Neuscamman, Eric; Parker, William D.; Pineda Flores, Sergio D.; Romero, Nichols A.; Rubenstein, Brenda M.; Shea, Jacqueline A. R.; Shin, Hyeondeok; Shulenburger, Luke; Tillack, Andreas F.; Townsend, Joshua P.; Tubman, Norm M.; Van Der Goetz, Brett; Vincent, Jordan E.; ChangMo Yang, D.; Yang, Yubo; Zhang, Shuai; Zhao, Luning

    2018-05-01

    QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater–Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.

  2. QMCPACK: an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids.

    PubMed

    Kim, Jeongnim; Baczewski, Andrew T; Beaudet, Todd D; Benali, Anouar; Bennett, M Chandler; Berrill, Mark A; Blunt, Nick S; Borda, Edgar Josué Landinez; Casula, Michele; Ceperley, David M; Chiesa, Simone; Clark, Bryan K; Clay, Raymond C; Delaney, Kris T; Dewing, Mark; Esler, Kenneth P; Hao, Hongxia; Heinonen, Olle; Kent, Paul R C; Krogel, Jaron T; Kylänpää, Ilkka; Li, Ying Wai; Lopez, M Graham; Luo, Ye; Malone, Fionn D; Martin, Richard M; Mathuriya, Amrita; McMinis, Jeremy; Melton, Cody A; Mitas, Lubos; Morales, Miguel A; Neuscamman, Eric; Parker, William D; Pineda Flores, Sergio D; Romero, Nichols A; Rubenstein, Brenda M; Shea, Jacqueline A R; Shin, Hyeondeok; Shulenburger, Luke; Tillack, Andreas F; Townsend, Joshua P; Tubman, Norm M; Van Der Goetz, Brett; Vincent, Jordan E; Yang, D ChangMo; Yang, Yubo; Zhang, Shuai; Zhao, Luning

    2018-05-16

    QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program's capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.

  3. State-to-state models of vibrational relaxation in Direct Simulation Monte Carlo (DSMC)

    NASA Astrophysics Data System (ADS)

    Oblapenko, G. P.; Kashkovsky, A. V.; Bondar, Ye A.

    2017-02-01

    In the present work, the application of state-to-state models of vibrational energy exchanges to the Direct Simulation Monte Carlo (DSMC) is considered. A state-to-state model for VT transitions of vibrational energy in nitrogen and oxygen, based on the application of the inverse Laplace transform to results of quasiclassical trajectory calculations (QCT) of vibrational energy transitions, along with the Forced Harmonic Oscillator (FHO) state-to-state model is implemented in DSMC code and applied to flows around blunt bodies. Comparisons are made with the widely used Larsen-Borgnakke model and the in uence of multi-quantum VT transitions is assessed.

  4. Bayesian inference based on dual generalized order statistics from the exponentiated Weibull model

    NASA Astrophysics Data System (ADS)

    Al Sobhi, Mashail M.

    2015-02-01

    Bayesian estimation for the two parameters and the reliability function of the exponentiated Weibull model are obtained based on dual generalized order statistics (DGOS). Also, Bayesian prediction bounds for future DGOS from exponentiated Weibull model are obtained. The symmetric and asymmetric loss functions are considered for Bayesian computations. The Markov chain Monte Carlo (MCMC) methods are used for computing the Bayes estimates and prediction bounds. The results have been specialized to the lower record values. Comparisons are made between Bayesian and maximum likelihood estimators via Monte Carlo simulation.

  5. Conserved directed percolation: exact quasistationary distribution of small systems and Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    César Mansur Filho, Júlio; Dickman, Ronald

    2011-05-01

    We study symmetric sleepy random walkers, a model exhibiting an absorbing-state phase transition in the conserved directed percolation (CDP) universality class. Unlike most examples of this class studied previously, this model possesses a continuously variable control parameter, facilitating analysis of critical properties. We study the model using two complementary approaches: analysis of the numerically exact quasistationary (QS) probability distribution on rings of up to 22 sites, and Monte Carlo simulation of systems of up to 32 000 sites. The resulting estimates for critical exponents β, \\beta /\

  6. Skin fluorescence model based on the Monte Carlo technique

    NASA Astrophysics Data System (ADS)

    Churmakov, Dmitry Y.; Meglinski, Igor V.; Piletsky, Sergey A.; Greenhalgh, Douglas A.

    2003-10-01

    The novel Monte Carlo technique of simulation of spatial fluorescence distribution within the human skin is presented. The computational model of skin takes into account spatial distribution of fluorophores following the collagen fibers packing, whereas in epidermis and stratum corneum the distribution of fluorophores assumed to be homogeneous. The results of simulation suggest that distribution of auto-fluorescence is significantly suppressed in the NIR spectral region, while fluorescence of sensor layer embedded in epidermis is localized at the adjusted depth. The model is also able to simulate the skin fluorescence spectra.

  7. Material migration studies with an ITER first wall panel proxy on EAST

    NASA Astrophysics Data System (ADS)

    Ding, R.; Pitts, R. A.; Borodin, D.; Carpentier, S.; Ding, F.; Gong, X. Z.; Guo, H. Y.; Kirschner, A.; Kocan, M.; Li, J. G.; Luo, G.-N.; Mao, H. M.; Qian, J. P.; Stangeby, P. C.; Wampler, W. R.; Wang, H. Q.; Wang, W. Z.

    2015-02-01

    The ITER beryllium (Be) first wall (FW) panels are shaped to protect leading edges between neighbouring panels arising from assembly tolerances. This departure from a perfectly cylindrical surface automatically leads to magnetically shadowed regions where eroded Be can be re-deposited, together with co-deposition of tritium fuel. To provide a benchmark for a series of erosion/re-deposition simulation studies performed for the ITER FW panels, dedicated experiments have been performed on the EAST tokamak using a specially designed, instrumented test limiter acting as a proxy for the FW panel geometry. Carbon coated molybdenum plates forming the limiter front surface were exposed to the outer midplane boundary plasma of helium discharges using the new Material and Plasma Evaluation System (MAPES). Net erosion and deposition patterns are estimated using ion beam analysis to measure the carbon layer thickness variation across the surface after exposure. The highest erosion of about 0.8 µm is found near the midplane, where the surface is closest to the plasma separatrix. No net deposition above the measurement detection limit was found on the proxy wall element, even in shadowed regions. The measured 2D surface erosion distribution has been modelled with the 3D Monte Carlo code ERO, using the local plasma parameter measurements together with a diffusive transport assumption. Excellent agreement between the experimentally observed net erosion and the modelled erosion profile has been obtained.

  8. Automated tracking for advanced satellite laser ranging systems

    NASA Astrophysics Data System (ADS)

    McGarry, Jan F.; Degnan, John J.; Titterton, Paul J., Sr.; Sweeney, Harold E.; Conklin, Brion P.; Dunn, Peter J.

    1996-06-01

    NASA's Satellite Laser Ranging Network was originally developed during the 1970's to track satellites carrying corner cube reflectors. Today eight NASA systems, achieving millimeter ranging precision, are part of a global network of more than 40 stations that track 17 international satellites. To meet the tracking demands of a steadily growing satellite constellation within existing resources, NASA is embarking on a major automation program. While manpower on the current systems will be reduced to a single operator, the fully automated SLR2000 system is being designed to operate for months without human intervention. Because SLR2000 must be eyesafe and operate in daylight, tracking is often performed in a low probability of detection and high noise environment. The goal is to automatically select the satellite, setup the tracking and ranging hardware, verify acquisition, and close the tracking loop to optimize data yield. TO accomplish the autotracking tasks, we are investigating (1) improved satellite force models, (2) more frequent updates of orbital ephemerides, (3) lunar laser ranging data processing techniques to distinguish satellite returns from noise, and (4) angular detection and search techniques to acquire the satellite. A Monte Carlo simulator has been developed to allow optimization of the autotracking algorithms by modeling the relevant system errors and then checking performance against system truth. A combination of simulator and preliminary field results will be presented.

  9. Monte Carlo uncertainty analysis of dose estimates in radiochromic film dosimetry with single-channel and multichannel algorithms.

    PubMed

    Vera-Sánchez, Juan Antonio; Ruiz-Morales, Carmen; González-López, Antonio

    2018-03-01

    To provide a multi-stage model to calculate uncertainty in radiochromic film dosimetry with Monte-Carlo techniques. This new approach is applied to single-channel and multichannel algorithms. Two lots of Gafchromic EBT3 are exposed in two different Varian linacs. They are read with an EPSON V800 flatbed scanner. The Monte-Carlo techniques in uncertainty analysis provide a numerical representation of the probability density functions of the output magnitudes. From this numerical representation, traditional parameters of uncertainty analysis as the standard deviations and bias are calculated. Moreover, these numerical representations are used to investigate the shape of the probability density functions of the output magnitudes. Also, another calibration film is read in four EPSON scanners (two V800 and two 10000XL) and the uncertainty analysis is carried out with the four images. The dose estimates of single-channel and multichannel algorithms show a Gaussian behavior and low bias. The multichannel algorithms lead to less uncertainty in the final dose estimates when the EPSON V800 is employed as reading device. In the case of the EPSON 10000XL, the single-channel algorithms provide less uncertainty in the dose estimates for doses higher than four Gy. A multi-stage model has been presented. With the aid of this model and the use of the Monte-Carlo techniques, the uncertainty of dose estimates for single-channel and multichannel algorithms are estimated. The application of the model together with Monte-Carlo techniques leads to a complete characterization of the uncertainties in radiochromic film dosimetry. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  10. Applying Monte-Carlo simulations to optimize an inelastic neutron scattering system for soil carbon analysis

    USDA-ARS?s Scientific Manuscript database

    Computer Monte-Carlo (MC) simulations (Geant4) of neutron propagation and acquisition of gamma response from soil samples was applied to evaluate INS system performance characteristic [sensitivity, minimal detectable level (MDL)] for soil carbon measurement. The INS system model with best performanc...

  11. Monte Carlo-based searching as a tool to study carbohydrate structure

    USDA-ARS?s Scientific Manuscript database

    A torsion angle-based Monte-Carlo searching routine was developed and applied to several carbohydrate modeling problems. The routine was developed as a Unix shell script that calls several programs, which allows it to be interfaced with multiple potential functions and various functions for evaluat...

  12. Monte Carlo Approach for Reliability Estimations in Generalizability Studies.

    ERIC Educational Resources Information Center

    Dimitrov, Dimiter M.

    A Monte Carlo approach is proposed, using the Statistical Analysis System (SAS) programming language, for estimating reliability coefficients in generalizability theory studies. Test scores are generated by a probabilistic model that considers the probability for a person with a given ability score to answer an item with a given difficulty…

  13. Calculating Remote Sensing Reflectance Uncertainties Using an Instrument Model Propagated Through Atmospheric Correction via Monte Carlo Simulations

    NASA Technical Reports Server (NTRS)

    Karakoylu, E.; Franz, B.

    2016-01-01

    First attempt at quantifying uncertainties in ocean remote sensing reflectance satellite measurements. Based on 1000 iterations of Monte Carlo. Data source is a SeaWiFS 4-day composite, 2003. The uncertainty is for remote sensing reflectance (Rrs) at 443 nm.

  14. Harnessing graphical structure in Markov chain Monte Carlo learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolorz, P.E.; Chew P.C.

    1996-12-31

    The Monte Carlo method is recognized as a useful tool in learning and probabilistic inference methods common to many datamining problems. Generalized Hidden Markov Models and Bayes nets are especially popular applications. However, the presence of multiple modes in many relevant integrands and summands often renders the method slow and cumbersome. Recent mean field alternatives designed to speed things up have been inspired by experience gleaned from physics. The current work adopts an approach very similar to this in spirit, but focusses instead upon dynamic programming notions as a basis for producing systematic Monte Carlo improvements. The idea is tomore » approximate a given model by a dynamic programming-style decomposition, which then forms a scaffold upon which to build successively more accurate Monte Carlo approximations. Dynamic programming ideas alone fail to account for non-local structure, while standard Monte Carlo methods essentially ignore all structure. However, suitably-crafted hybrids can successfully exploit the strengths of each method, resulting in algorithms that combine speed with accuracy. The approach relies on the presence of significant {open_quotes}local{close_quotes} information in the problem at hand. This turns out to be a plausible assumption for many important applications. Example calculations are presented, and the overall strengths and weaknesses of the approach are discussed.« less

  15. Design and implementation of coded aperture coherent scatter spectral imaging of cancerous and healthy breast tissue samples

    PubMed Central

    Lakshmanan, Manu N.; Greenberg, Joel A.; Samei, Ehsan; Kapadia, Anuj J.

    2016-01-01

    Abstract. A scatter imaging technique for the differentiation of cancerous and healthy breast tissue in a heterogeneous sample is introduced in this work. Such a technique has potential utility in intraoperative margin assessment during lumpectomy procedures. In this work, we investigate the feasibility of the imaging method for tumor classification using Monte Carlo simulations and physical experiments. The coded aperture coherent scatter spectral imaging technique was used to reconstruct three-dimensional (3-D) images of breast tissue samples acquired through a single-position snapshot acquisition, without rotation as is required in coherent scatter computed tomography. We perform a quantitative assessment of the accuracy of the cancerous voxel classification using Monte Carlo simulations of the imaging system; describe our experimental implementation of coded aperture scatter imaging; show the reconstructed images of the breast tissue samples; and present segmentations of the 3-D images in order to identify the cancerous and healthy tissue in the samples. From the Monte Carlo simulations, we find that coded aperture scatter imaging is able to reconstruct images of the samples and identify the distribution of cancerous and healthy tissues (i.e., fibroglandular, adipose, or a mix of the two) inside them with a cancerous voxel identification sensitivity, specificity, and accuracy of 92.4%, 91.9%, and 92.0%, respectively. From the experimental results, we find that the technique is able to identify cancerous and healthy tissue samples and reconstruct differential coherent scatter cross sections that are highly correlated with those measured by other groups using x-ray diffraction. Coded aperture scatter imaging has the potential to provide scatter images that automatically differentiate cancerous and healthy tissue inside samples within a time on the order of a minute per slice. PMID:26962543

  16. Design and implementation of coded aperture coherent scatter spectral imaging of cancerous and healthy breast tissue samples.

    PubMed

    Lakshmanan, Manu N; Greenberg, Joel A; Samei, Ehsan; Kapadia, Anuj J

    2016-01-01

    A scatter imaging technique for the differentiation of cancerous and healthy breast tissue in a heterogeneous sample is introduced in this work. Such a technique has potential utility in intraoperative margin assessment during lumpectomy procedures. In this work, we investigate the feasibility of the imaging method for tumor classification using Monte Carlo simulations and physical experiments. The coded aperture coherent scatter spectral imaging technique was used to reconstruct three-dimensional (3-D) images of breast tissue samples acquired through a single-position snapshot acquisition, without rotation as is required in coherent scatter computed tomography. We perform a quantitative assessment of the accuracy of the cancerous voxel classification using Monte Carlo simulations of the imaging system; describe our experimental implementation of coded aperture scatter imaging; show the reconstructed images of the breast tissue samples; and present segmentations of the 3-D images in order to identify the cancerous and healthy tissue in the samples. From the Monte Carlo simulations, we find that coded aperture scatter imaging is able to reconstruct images of the samples and identify the distribution of cancerous and healthy tissues (i.e., fibroglandular, adipose, or a mix of the two) inside them with a cancerous voxel identification sensitivity, specificity, and accuracy of 92.4%, 91.9%, and 92.0%, respectively. From the experimental results, we find that the technique is able to identify cancerous and healthy tissue samples and reconstruct differential coherent scatter cross sections that are highly correlated with those measured by other groups using x-ray diffraction. Coded aperture scatter imaging has the potential to provide scatter images that automatically differentiate cancerous and healthy tissue inside samples within a time on the order of a minute per slice.

  17. Improved first-order uncertainty method for water-quality modeling

    USGS Publications Warehouse

    Melching, C.S.; Anmangandla, S.

    1992-01-01

    Uncertainties are unavoidable in water-quality modeling and subsequent management decisions. Monte Carlo simulation and first-order uncertainty analysis (involving linearization at central values of the uncertain variables) have been frequently used to estimate probability distributions for water-quality model output due to their simplicity. Each method has its drawbacks: Monte Carlo simulation's is mainly computational time; and first-order analysis are mainly questions of accuracy and representativeness, especially for nonlinear systems and extreme conditions. An improved (advanced) first-order method is presented, where the linearization point varies to match the output level whose exceedance probability is sought. The advanced first-order method is tested on the Streeter-Phelps equation to estimate the probability distribution of critical dissolved-oxygen deficit and critical dissolved oxygen using two hypothetical examples from the literature. The advanced first-order method provides a close approximation of the exceedance probability for the Streeter-Phelps model output estimated by Monte Carlo simulation using less computer time - by two orders of magnitude - regardless of the probability distributions assumed for the uncertain model parameters.

  18. Common radiation analysis model for 75,000 pound thrust NERVA engine (1137400E)

    NASA Technical Reports Server (NTRS)

    Warman, E. A.; Lindsey, B. A.

    1972-01-01

    The mathematical model and sources of radiation used for the radiation analysis and shielding activities in support of the design of the 1137400E version of the 75,000 lbs thrust NERVA engine are presented. The nuclear subsystem (NSS) and non-nuclear components are discussed. The geometrical model for the NSS is two dimensional as required for the DOT discrete ordinates computer code or for an azimuthally symetrical three dimensional Point Kernel or Monte Carlo code. The geometrical model for the non-nuclear components is three dimensional in the FASTER geometry format. This geometry routine is inherent in the ANSC versions of the QAD and GGG Point Kernal programs and the COHORT Monte Carlo program. Data are included pertaining to a pressure vessel surface radiation source data tape which has been used as the basis for starting ANSC analyses with the DASH code to bridge into the COHORT Monte Carlo code using the WANL supplied DOT angular flux leakage data. In addition to the model descriptions and sources of radiation, the methods of analyses are briefly described.

  19. A Monte Carlo model for 3D grain evolution during welding

    NASA Astrophysics Data System (ADS)

    Rodgers, Theron M.; Mitchell, John A.; Tikare, Veena

    2017-09-01

    Welding is one of the most wide-spread processes used in metal joining. However, there are currently no open-source software implementations for the simulation of microstructural evolution during a weld pass. Here we describe a Potts Monte Carlo based model implemented in the SPPARKS kinetic Monte Carlo computational framework. The model simulates melting, solidification and solid-state microstructural evolution of material in the fusion and heat-affected zones of a weld. The model does not simulate thermal behavior, but rather utilizes user input parameters to specify weld pool and heat-affect zone properties. Weld pool shapes are specified by Bézier curves, which allow for the specification of a wide range of pool shapes. Pool shapes can range from narrow and deep to wide and shallow representing different fluid flow conditions within the pool. Surrounding temperature gradients are calculated with the aide of a closest point projection algorithm. The model also allows simulation of pulsed power welding through time-dependent variation of the weld pool size. Example simulation results and comparisons with laboratory weld observations demonstrate microstructural variation with weld speed, pool shape, and pulsed-power.

  20. A multi-agent quantum Monte Carlo model for charge transport: Application to organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Bauer, Thilo; Jäger, Christof M.; Jordan, Meredith J. T.; Clark, Timothy

    2015-07-01

    We have developed a multi-agent quantum Monte Carlo model to describe the spatial dynamics of multiple majority charge carriers during conduction of electric current in the channel of organic field-effect transistors. The charge carriers are treated by a neglect of diatomic differential overlap Hamiltonian using a lattice of hydrogen-like basis functions. The local ionization energy and local electron affinity defined previously map the bulk structure of the transistor channel to external potentials for the simulations of electron- and hole-conduction, respectively. The model is designed without a specific charge-transport mechanism like hopping- or band-transport in mind and does not arbitrarily localize charge. An electrode model allows dynamic injection and depletion of charge carriers according to source-drain voltage. The field-effect is modeled by using the source-gate voltage in a Metropolis-like acceptance criterion. Although the current cannot be calculated because the simulations have no time axis, using the number of Monte Carlo moves as pseudo-time gives results that resemble experimental I/V curves.

  1. A multi-agent quantum Monte Carlo model for charge transport: Application to organic field-effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Thilo; Jäger, Christof M.; Jordan, Meredith J. T.

    2015-07-28

    We have developed a multi-agent quantum Monte Carlo model to describe the spatial dynamics of multiple majority charge carriers during conduction of electric current in the channel of organic field-effect transistors. The charge carriers are treated by a neglect of diatomic differential overlap Hamiltonian using a lattice of hydrogen-like basis functions. The local ionization energy and local electron affinity defined previously map the bulk structure of the transistor channel to external potentials for the simulations of electron- and hole-conduction, respectively. The model is designed without a specific charge-transport mechanism like hopping- or band-transport in mind and does not arbitrarily localizemore » charge. An electrode model allows dynamic injection and depletion of charge carriers according to source-drain voltage. The field-effect is modeled by using the source-gate voltage in a Metropolis-like acceptance criterion. Although the current cannot be calculated because the simulations have no time axis, using the number of Monte Carlo moves as pseudo-time gives results that resemble experimental I/V curves.« less

  2. A menu-driven software package of Bayesian nonparametric (and parametric) mixed models for regression analysis and density estimation.

    PubMed

    Karabatsos, George

    2017-02-01

    Most of applied statistics involves regression analysis of data. In practice, it is important to specify a regression model that has minimal assumptions which are not violated by data, to ensure that statistical inferences from the model are informative and not misleading. This paper presents a stand-alone and menu-driven software package, Bayesian Regression: Nonparametric and Parametric Models, constructed from MATLAB Compiler. Currently, this package gives the user a choice from 83 Bayesian models for data analysis. They include 47 Bayesian nonparametric (BNP) infinite-mixture regression models; 5 BNP infinite-mixture models for density estimation; and 31 normal random effects models (HLMs), including normal linear models. Each of the 78 regression models handles either a continuous, binary, or ordinal dependent variable, and can handle multi-level (grouped) data. All 83 Bayesian models can handle the analysis of weighted observations (e.g., for meta-analysis), and the analysis of left-censored, right-censored, and/or interval-censored data. Each BNP infinite-mixture model has a mixture distribution assigned one of various BNP prior distributions, including priors defined by either the Dirichlet process, Pitman-Yor process (including the normalized stable process), beta (two-parameter) process, normalized inverse-Gaussian process, geometric weights prior, dependent Dirichlet process, or the dependent infinite-probits prior. The software user can mouse-click to select a Bayesian model and perform data analysis via Markov chain Monte Carlo (MCMC) sampling. After the sampling completes, the software automatically opens text output that reports MCMC-based estimates of the model's posterior distribution and model predictive fit to the data. Additional text and/or graphical output can be generated by mouse-clicking other menu options. This includes output of MCMC convergence analyses, and estimates of the model's posterior predictive distribution, for selected functionals and values of covariates. The software is illustrated through the BNP regression analysis of real data.

  3. Modeling the reflectance of the lunar regolith by a new method combining Monte Carlo Ray tracing and Hapke's model with application to Chang'E-1 IIM data.

    PubMed

    Wong, Un-Hong; Wu, Yunzhao; Wong, Hon-Cheng; Liang, Yanyan; Tang, Zesheng

    2014-01-01

    In this paper, we model the reflectance of the lunar regolith by a new method combining Monte Carlo ray tracing and Hapke's model. The existing modeling methods exploit either a radiative transfer model or a geometric optical model. However, the measured data from an Interference Imaging spectrometer (IIM) on an orbiter were affected not only by the composition of minerals but also by the environmental factors. These factors cannot be well addressed by a single model alone. Our method implemented Monte Carlo ray tracing for simulating the large-scale effects such as the reflection of topography of the lunar soil and Hapke's model for calculating the reflection intensity of the internal scattering effects of particles of the lunar soil. Therefore, both the large-scale and microscale effects are considered in our method, providing a more accurate modeling of the reflectance of the lunar regolith. Simulation results using the Lunar Soil Characterization Consortium (LSCC) data and Chang'E-1 elevation map show that our method is effective and useful. We have also applied our method to Chang'E-1 IIM data for removing the influence of lunar topography to the reflectance of the lunar soil and to generate more realistic visualizations of the lunar surface.

  4. Computational Evaluation of Cochlear Implant Surgery Outcomes Accounting for Uncertainty and Parameter Variability.

    PubMed

    Mangado, Nerea; Pons-Prats, Jordi; Coma, Martí; Mistrík, Pavel; Piella, Gemma; Ceresa, Mario; González Ballester, Miguel Á

    2018-01-01

    Cochlear implantation (CI) is a complex surgical procedure that restores hearing in patients with severe deafness. The successful outcome of the implanted device relies on a group of factors, some of them unpredictable or difficult to control. Uncertainties on the electrode array position and the electrical properties of the bone make it difficult to accurately compute the current propagation delivered by the implant and the resulting neural activation. In this context, we use uncertainty quantification methods to explore how these uncertainties propagate through all the stages of CI computational simulations. To this end, we employ an automatic framework, encompassing from the finite element generation of CI models to the assessment of the neural response induced by the implant stimulation. To estimate the confidence intervals of the simulated neural response, we propose two approaches. First, we encode the variability of the cochlear morphology among the population through a statistical shape model. This allows us to generate a population of virtual patients using Monte Carlo sampling and to assign to each of them a set of parameter values according to a statistical distribution. The framework is implemented and parallelized in a High Throughput Computing environment that enables to maximize the available computing resources. Secondly, we perform a patient-specific study to evaluate the computed neural response to seek the optimal post-implantation stimulus levels. Considering a single cochlear morphology, the uncertainty in tissue electrical resistivity and surgical insertion parameters is propagated using the Probabilistic Collocation method, which reduces the number of samples to evaluate. Results show that bone resistivity has the highest influence on CI outcomes. In conjunction with the variability of the cochlear length, worst outcomes are obtained for small cochleae with high resistivity values. However, the effect of the surgical insertion length on the CI outcomes could not be clearly observed, since its impact may be concealed by the other considered parameters. Whereas the Monte Carlo approach implies a high computational cost, Probabilistic Collocation presents a suitable trade-off between precision and computational time. Results suggest that the proposed framework has a great potential to help in both surgical planning decisions and in the audiological setting process.

  5. Monte Carlo based statistical power analysis for mediation models: methods and software.

    PubMed

    Zhang, Zhiyong

    2014-12-01

    The existing literature on statistical power analysis for mediation models often assumes data normality and is based on a less powerful Sobel test instead of the more powerful bootstrap test. This study proposes to estimate statistical power to detect mediation effects on the basis of the bootstrap method through Monte Carlo simulation. Nonnormal data with excessive skewness and kurtosis are allowed in the proposed method. A free R package called bmem is developed to conduct the power analysis discussed in this study. Four examples, including a simple mediation model, a multiple-mediator model with a latent mediator, a multiple-group mediation model, and a longitudinal mediation model, are provided to illustrate the proposed method.

  6. Influence of single particle orbital sets and configuration selection on multideterminant wavefunctions in quantum Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clay, Raymond C.; Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550; Morales, Miguel A., E-mail: moralessilva2@llnl.gov

    2015-06-21

    Multideterminant wavefunctions, while having a long history in quantum chemistry, are increasingly being used in highly accurate quantum Monte Carlo calculations. Since the accuracy of QMC is ultimately limited by the quality of the trial wavefunction, multi-Slater determinants wavefunctions offer an attractive alternative to Slater-Jastrow and more sophisticated wavefunction ansatz for several reasons. They can be efficiently calculated, straightforwardly optimized, and systematically improved by increasing the number of included determinants. In spite of their potential, however, the convergence properties of multi-Slater determinant wavefunctions with respect to orbital set choice and excited determinant selection are poorly understood, which hinders the applicationmore » of these wavefunctions to large systems and solids. In this paper, by performing QMC calculations on the equilibrium and stretched carbon dimer, we find that convergence of the recovered correlation energy with respect to number of determinants can depend quite strongly on basis set and determinant selection methods, especially where there is strong correlation. We demonstrate that properly chosen orbital sets and determinant selection techniques from quantum chemistry methods can dramatically reduce the required number of determinants (and thus the computational cost) to reach a given accuracy, which we argue shows clear need for an automatic QMC-only method for selecting determinants and generating optimal orbital sets.« less

  7. A new method for automatic discontinuity traces sampling on rock mass 3D model

    NASA Astrophysics Data System (ADS)

    Umili, G.; Ferrero, A.; Einstein, H. H.

    2013-02-01

    A new automatic method for discontinuity traces mapping and sampling on a rock mass digital model is described in this work. The implemented procedure allows one to automatically identify discontinuity traces on a Digital Surface Model: traces are detected directly as surface breaklines, by means of maximum and minimum principal curvature values of the vertices that constitute the model surface. Color influence and user errors, that usually characterize the trace mapping on images, are eliminated. Also trace sampling procedures based on circular windows and circular scanlines have been implemented: they are used to infer trace data and to calculate values of mean trace length, expected discontinuity diameter and intensity of rock discontinuities. The method is tested on a case study: results obtained applying the automatic procedure on the DSM of a rock face are compared to those obtained performing a manual sampling on the orthophotograph of the same rock face.

  8. Model-Averaged ℓ1 Regularization using Markov Chain Monte Carlo Model Composition

    PubMed Central

    Fraley, Chris; Percival, Daniel

    2014-01-01

    Bayesian Model Averaging (BMA) is an effective technique for addressing model uncertainty in variable selection problems. However, current BMA approaches have computational difficulty dealing with data in which there are many more measurements (variables) than samples. This paper presents a method for combining ℓ1 regularization and Markov chain Monte Carlo model composition techniques for BMA. By treating the ℓ1 regularization path as a model space, we propose a method to resolve the model uncertainty issues arising in model averaging from solution path point selection. We show that this method is computationally and empirically effective for regression and classification in high-dimensional datasets. We apply our technique in simulations, as well as to some applications that arise in genomics. PMID:25642001

  9. Application of nonlinear transformations to automatic flight control

    NASA Technical Reports Server (NTRS)

    Meyer, G.; Su, R.; Hunt, L. R.

    1984-01-01

    The theory of transformations of nonlinear systems to linear ones is applied to the design of an automatic flight controller for the UH-1H helicopter. The helicopter mathematical model is described and it is shown to satisfy the necessary and sufficient conditions for transformability. The mapping is constructed, taking the nonlinear model to canonical form. The performance of the automatic control system in a detailed simulation on the flight computer is summarized.

  10. FURTHER ANALYSIS OF SUBTYPES OF AUTOMATICALLY REINFORCED SIB: A REPLICATION AND QUANTITATIVE ANALYSIS OF PUBLISHED DATASETS

    PubMed Central

    Hagopian, Louis P.; Rooker, Griffin W.; Zarcone, Jennifer R.; Bonner, Andrew C.; Arevalo, Alexander R.

    2017-01-01

    Hagopian, Rooker, and Zarcone (2015) evaluated a model for subtyping automatically reinforced self-injurious behavior (SIB) based on its sensitivity to changes in functional analysis conditions and the presence of self-restraint. The current study tested the generality of the model by applying it to all datasets of automatically reinforced SIB published from 1982 to 2015. We identified 49 datasets that included sufficient data to permit subtyping. Similar to the original study, Subtype-1 SIB was generally amenable to treatment using reinforcement alone, whereas Subtype-2 SIB was not. Conclusions could not be drawn about Subtype-3 SIB due to the small number of datasets. Nevertheless, the findings support the generality of the model and suggest that sensitivity of SIB to disruption by alternative reinforcement is an important dimension of automatically reinforced SIB. Findings also suggest that automatically reinforced SIB should no longer be considered a single category and that additional research is needed to better understand and treat Subtype-2 SIB. PMID:28032344

  11. Inhomogeneous Monte Carlo simulations of dermoscopic spectroscopy

    NASA Astrophysics Data System (ADS)

    Gareau, Daniel S.; Li, Ting; Jacques, Steven; Krueger, James

    2012-03-01

    Clinical skin-lesion diagnosis uses dermoscopy: 10X epiluminescence microscopy. Skin appearance ranges from black to white with shades of blue, red, gray and orange. Color is an important diagnostic criteria for diseases including melanoma. Melanin and blood content and distribution impact the diffuse spectral remittance (300-1000nm). Skin layers: immersion medium, stratum corneum, spinous epidermis, basal epidermis and dermis as well as laterally asymmetric features (eg. melanocytic invasion) were modeled in an inhomogeneous Monte Carlo model.

  12. Kinetic Monte Carlo Simulation of the Growth of Various Nanostructures through Atomic and Cluster Deposition: Application to Gold Nanostructure Growth on Graphite

    NASA Astrophysics Data System (ADS)

    Claassens, C. H.; Hoffman, M. J. H.; Terblans, J. J.; Swart, H. C.

    2006-01-01

    A Kinetic Monte Carlo (KMC) method is presented to describe the growth of metallic nanostructures through atomic and cluster deposition in the mono -and multilayer regime. The model makes provision for homo- and heteroepitaxial systems with small lattice mismatch. The accuracy of the model is tested with simulations of the growth of gold nanostructures on HOPG and comparisons are made with existing experimental data.

  13. MCMEG: Simulations of both PDD and TPR for 6 MV LINAC photon beam using different MC codes

    NASA Astrophysics Data System (ADS)

    Fonseca, T. C. F.; Mendes, B. M.; Lacerda, M. A. S.; Silva, L. A. C.; Paixão, L.; Bastos, F. M.; Ramirez, J. V.; Junior, J. P. R.

    2017-11-01

    The Monte Carlo Modelling Expert Group (MCMEG) is an expert network specializing in Monte Carlo radiation transport and the modelling and simulation applied to the radiation protection and dosimetry research field. For the first inter-comparison task the group launched an exercise to model and simulate a 6 MV LINAC photon beam using the Monte Carlo codes available within their laboratories and validate their simulated results by comparing them with experimental measurements carried out in the National Cancer Institute (INCA) in Rio de Janeiro, Brazil. The experimental measurements were performed using an ionization chamber with calibration traceable to a Secondary Standard Dosimetry Laboratory (SSDL). The detector was immersed in a water phantom at different depths and was irradiated with a radiation field size of 10×10 cm2. This exposure setup was used to determine the dosimetric parameters Percentage Depth Dose (PDD) and Tissue Phantom Ratio (TPR). The validation process compares the MC calculated results to the experimental measured PDD20,10 and TPR20,10. Simulations were performed reproducing the experimental TPR20,10 quality index which provides a satisfactory description of both the PDD curve and the transverse profiles at the two depths measured. This paper reports in detail the modelling process using MCNPx, MCNP6, EGSnrc and Penelope Monte Carlo codes, the source and tally descriptions, the validation processes and the results.

  14. The structure of PX3 (X = Cl, Br, I) molecular liquids from X-ray diffraction, molecular dynamics simulations, and reverse Monte Carlo modeling.

    PubMed

    Pothoczki, Szilvia; Temleitner, László; Pusztai, László

    2014-02-07

    Synchrotron X-ray diffraction measurements have been conducted on liquid phosphorus trichloride, tribromide, and triiodide. Molecular Dynamics simulations for these molecular liquids were performed with a dual purpose: (1) to establish whether existing intermolecular potential functions can provide a picture that is consistent with diffraction data and (2) to generate reliable starting configurations for subsequent Reverse Monte Carlo modelling. Structural models (i.e., sets of coordinates of thousands of atoms) that were fully consistent with experimental diffraction information, within errors, have been prepared by means of the Reverse Monte Carlo method. Comparison with reference systems, generated by hard sphere-like Monte Carlo simulations, was also carried out to demonstrate the extent to which simple space filling effects determine the structure of the liquids (and thus, also estimating the information content of measured data). Total scattering structure factors, partial radial distribution functions and orientational correlations as a function of distances between the molecular centres have been calculated from the models. In general, more or less antiparallel arrangements of the primary molecular axes that are found to be the most favourable orientation of two neighbouring molecules. In liquid PBr3 electrostatic interactions seem to play a more important role in determining intermolecular correlations than in the other two liquids; molecular arrangements in both PCl3 and PI3 are largely driven by steric effects.

  15. Coupling of kinetic Monte Carlo simulations of surface reactions to transport in a fluid for heterogeneous catalytic reactor modeling.

    PubMed

    Schaefer, C; Jansen, A P J

    2013-02-07

    We have developed a method to couple kinetic Monte Carlo simulations of surface reactions at a molecular scale to transport equations at a macroscopic scale. This method is applicable to steady state reactors. We use a finite difference upwinding scheme and a gap-tooth scheme to efficiently use a limited amount of kinetic Monte Carlo simulations. In general the stochastic kinetic Monte Carlo results do not obey mass conservation so that unphysical accumulation of mass could occur in the reactor. We have developed a method to perform mass balance corrections that is based on a stoichiometry matrix and a least-squares problem that is reduced to a non-singular set of linear equations that is applicable to any surface catalyzed reaction. The implementation of these methods is validated by comparing numerical results of a reactor simulation with a unimolecular reaction to an analytical solution. Furthermore, the method is applied to two reaction mechanisms. The first is the ZGB model for CO oxidation in which inevitable poisoning of the catalyst limits the performance of the reactor. The second is a model for the oxidation of NO on a Pt(111) surface, which becomes active due to lateral interaction at high coverages of oxygen. This reaction model is based on ab initio density functional theory calculations from literature.

  16. TU-H-CAMPUS-JeP1-02: Fully Automatic Verification of Automatically Contoured Normal Tissues in the Head and Neck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarroll, R; UT Health Science Center, Graduate School of Biomedical Sciences, Houston, TX; Beadle, B

    Purpose: To investigate and validate the use of an independent deformable-based contouring algorithm for automatic verification of auto-contoured structures in the head and neck towards fully automated treatment planning. Methods: Two independent automatic contouring algorithms [(1) Eclipse’s Smart Segmentation followed by pixel-wise majority voting, (2) an in-house multi-atlas based method] were used to create contours of 6 normal structures of 10 head-and-neck patients. After rating by a radiation oncologist, the higher performing algorithm was selected as the primary contouring method, the other used for automatic verification of the primary. To determine the ability of the verification algorithm to detect incorrectmore » contours, contours from the primary method were shifted from 0.5 to 2cm. Using a logit model the structure-specific minimum detectable shift was identified. The models were then applied to a set of twenty different patients and the sensitivity and specificity of the models verified. Results: Per physician rating, the multi-atlas method (4.8/5 point scale, with 3 rated as generally acceptable for planning purposes) was selected as primary and the Eclipse-based method (3.5/5) for verification. Mean distance to agreement and true positive rate were selected as covariates in an optimized logit model. These models, when applied to a group of twenty different patients, indicated that shifts could be detected at 0.5cm (brain), 0.75cm (mandible, cord), 1cm (brainstem, cochlea), or 1.25cm (parotid), with sensitivity and specificity greater than 0.95. If sensitivity and specificity constraints are reduced to 0.9, detectable shifts of mandible and brainstem were reduced by 0.25cm. These shifts represent additional safety margins which might be considered if auto-contours are used for automatic treatment planning without physician review. Conclusion: Automatically contoured structures can be automatically verified. This fully automated process could be used to flag auto-contours for special review or used with safety margins in a fully automatic treatment planning system.« less

  17. Proton Upset Monte Carlo Simulation

    NASA Technical Reports Server (NTRS)

    O'Neill, Patrick M.; Kouba, Coy K.; Foster, Charles C.

    2009-01-01

    The Proton Upset Monte Carlo Simulation (PROPSET) program calculates the frequency of on-orbit upsets in computer chips (for given orbits such as Low Earth Orbit, Lunar Orbit, and the like) from proton bombardment based on the results of heavy ion testing alone. The software simulates the bombardment of modern microelectronic components (computer chips) with high-energy (.200 MeV) protons. The nuclear interaction of the proton with the silicon of the chip is modeled and nuclear fragments from this interaction are tracked using Monte Carlo techniques to produce statistically accurate predictions.

  18. A Dasymetric-Based Monte Carlo Simulation Approach to the Probabilistic Analysis of Spatial Variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morton, April M; Piburn, Jesse O; McManamay, Ryan A

    2017-01-01

    Monte Carlo simulation is a popular numerical experimentation technique used in a range of scientific fields to obtain the statistics of unknown random output variables. Despite its widespread applicability, it can be difficult to infer required input probability distributions when they are related to population counts unknown at desired spatial resolutions. To overcome this challenge, we propose a framework that uses a dasymetric model to infer the probability distributions needed for a specific class of Monte Carlo simulations which depend on population counts.

  19. Tally and geometry definition influence on the computing time in radiotherapy treatment planning with MCNP Monte Carlo code.

    PubMed

    Juste, B; Miro, R; Gallardo, S; Santos, A; Verdu, G

    2006-01-01

    The present work has simulated the photon and electron transport in a Theratron 780 (MDS Nordion) (60)Co radiotherapy unit, using the Monte Carlo transport code, MCNP (Monte Carlo N-Particle), version 5. In order to become computationally more efficient in view of taking part in the practical field of radiotherapy treatment planning, this work is focused mainly on the analysis of dose results and on the required computing time of different tallies applied in the model to speed up calculations.

  20. Coupled particle-in-cell and Monte Carlo transport modeling of intense radiographic sources

    NASA Astrophysics Data System (ADS)

    Rose, D. V.; Welch, D. R.; Oliver, B. V.; Clark, R. E.; Johnson, D. L.; Maenchen, J. E.; Menge, P. R.; Olson, C. L.; Rovang, D. C.

    2002-03-01

    Dose-rate calculations for intense electron-beam diodes using particle-in-cell (PIC) simulations along with Monte Carlo electron/photon transport calculations are presented. The electromagnetic PIC simulations are used to model the dynamic operation of the rod-pinch and immersed-B diodes. These simulations include algorithms for tracking electron scattering and energy loss in dense materials. The positions and momenta of photons created in these materials are recorded and separate Monte Carlo calculations are used to transport the photons to determine the dose in far-field detectors. These combined calculations are used to determine radiographer equations (dose scaling as a function of diode current and voltage) that are compared directly with measured dose rates obtained on the SABRE generator at Sandia National Laboratories.

  1. Quantum Monte Carlo Simulation of Frustrated Kondo Lattice Models

    NASA Astrophysics Data System (ADS)

    Sato, Toshihiro; Assaad, Fakher F.; Grover, Tarun

    2018-03-01

    The absence of the negative sign problem in quantum Monte Carlo simulations of spin and fermion systems has different origins. World-line based algorithms for spins require positivity of matrix elements whereas auxiliary field approaches for fermions depend on symmetries such as particle-hole symmetry. For negative-sign-free spin and fermionic systems, we show that one can formulate a negative-sign-free auxiliary field quantum Monte Carlo algorithm that allows Kondo coupling of fermions with the spins. Using this general approach, we study a half-filled Kondo lattice model on the honeycomb lattice with geometric frustration. In addition to the conventional Kondo insulator and antiferromagnetically ordered phases, we find a partial Kondo screened state where spins are selectively screened so as to alleviate frustration, and the lattice rotation symmetry is broken nematically.

  2. Radiative interactions in chemically reacting compressible nozzle flows using Monte Carlo simulations

    NASA Technical Reports Server (NTRS)

    Liu, J.; Tiwari, Surendra N.

    1994-01-01

    The two-dimensional spatially elliptic Navier-Stokes equations have been used to investigate the radiative interactions in chemically reacting compressible flows of premixed hydrogen and air in an expanding nozzle. The radiative heat transfer term in the energy equation is simulated using the Monte Carlo method (MCM). The nongray model employed is based on the statistical narrow band model with an exponential-tailed inverse intensity distribution. The spectral correlation has been considered in the Monte Carlo formulations. Results obtained demonstrate that the effect of radiation on the flow field is minimal but its effect on the wall heat transfer is significant. Extensive parametric studies are conducted to investigate the effects of equivalence ratio, wall temperature, inlet flow temperature, and the nozzle size on the radiative and conductive wall fluxes.

  3. Trust, control strategies and allocation of function in human-machine systems.

    PubMed

    Lee, J; Moray, N

    1992-10-01

    As automated controllers supplant human intervention in controlling complex systems, the operators' role often changes from that of an active controller to that of a supervisory controller. Acting as supervisors, operators can choose between automatic and manual control. Improperly allocating function between automatic and manual control can have negative consequences for the performance of a system. Previous research suggests that the decision to perform the job manually or automatically depends, in part, upon the trust the operators invest in the automatic controllers. This paper reports an experiment to characterize the changes in operators' trust during an interaction with a semi-automatic pasteurization plant, and investigates the relationship between changes in operators' control strategies and trust. A regression model identifies the causes of changes in trust, and a 'trust transfer function' is developed using time series analysis to describe the dynamics of trust. Based on a detailed analysis of operators' strategies in response to system faults we suggest a model for the choice between manual and automatic control, based on trust in automatic controllers and self-confidence in the ability to control the system manually.

  4. Automatic updating and 3D modeling of airport information from high resolution images using GIS and LIDAR data

    NASA Astrophysics Data System (ADS)

    Lv, Zheng; Sui, Haigang; Zhang, Xilin; Huang, Xianfeng

    2007-11-01

    As one of the most important geo-spatial objects and military establishment, airport is always a key target in fields of transportation and military affairs. Therefore, automatic recognition and extraction of airport from remote sensing images is very important and urgent for updating of civil aviation and military application. In this paper, a new multi-source data fusion approach on automatic airport information extraction, updating and 3D modeling is addressed. Corresponding key technologies including feature extraction of airport information based on a modified Ostu algorithm, automatic change detection based on new parallel lines-based buffer detection algorithm, 3D modeling based on gradual elimination of non-building points algorithm, 3D change detecting between old airport model and LIDAR data, typical CAD models imported and so on are discussed in detail. At last, based on these technologies, we develop a prototype system and the results show our method can achieve good effects.

  5. Bayes factors for the linear ballistic accumulator model of decision-making.

    PubMed

    Evans, Nathan J; Brown, Scott D

    2018-04-01

    Evidence accumulation models of decision-making have led to advances in several different areas of psychology. These models provide a way to integrate response time and accuracy data, and to describe performance in terms of latent cognitive processes. Testing important psychological hypotheses using cognitive models requires a method to make inferences about different versions of the models which assume different parameters to cause observed effects. The task of model-based inference using noisy data is difficult, and has proven especially problematic with current model selection methods based on parameter estimation. We provide a method for computing Bayes factors through Monte-Carlo integration for the linear ballistic accumulator (LBA; Brown and Heathcote, 2008), a widely used evidence accumulation model. Bayes factors are used frequently for inference with simpler statistical models, and they do not require parameter estimation. In order to overcome the computational burden of estimating Bayes factors via brute force integration, we exploit general purpose graphical processing units; we provide free code for this. This approach allows estimation of Bayes factors via Monte-Carlo integration within a practical time frame. We demonstrate the method using both simulated and real data. We investigate the stability of the Monte-Carlo approximation, and the LBA's inferential properties, in simulation studies.

  6. EARLINET Single Calculus Chain - technical - Part 1: Pre-processing of raw lidar data

    NASA Astrophysics Data System (ADS)

    D'Amico, G.; Amodeo, A.; Mattis, I.; Freudenthaler, V.; Pappalardo, G.

    2015-10-01

    In this paper we describe an automatic tool for the pre-processing of lidar data called ELPP (EARLINET Lidar Pre-Processor). It is one of two calculus modules of the EARLINET Single Calculus Chain (SCC), the automatic tool for the analysis of EARLINET data. The ELPP is an open source module that executes instrumental corrections and data handling of the raw lidar signals, making the lidar data ready to be processed by the optical retrieval algorithms. According to the specific lidar configuration, the ELPP automatically performs dead-time correction, atmospheric and electronic background subtraction, gluing of lidar signals, and trigger-delay correction. Moreover, the signal-to-noise ratio of the pre-processed signals can be improved by means of configurable time integration of the raw signals and/or spatial smoothing. The ELPP delivers the statistical uncertainties of the final products by means of error propagation or Monte Carlo simulations. During the development of the ELPP module, particular attention has been payed to make the tool flexible enough to handle all lidar configurations currently used within the EARLINET community. Moreover, it has been designed in a modular way to allow an easy extension to lidar configurations not yet implemented. The primary goal of the ELPP module is to enable the application of quality-assured procedures in the lidar data analysis starting from the raw lidar data. This provides the added value of full traceability of each delivered lidar product. Several tests have been performed to check the proper functioning of the ELPP module. The whole SCC has been tested with the same synthetic data sets, which were used for the EARLINET algorithm inter-comparison exercise. The ELPP module has been successfully employed for the automatic near-real-time pre-processing of the raw lidar data measured during several EARLINET inter-comparison campaigns as well as during intense field campaigns.

  7. Examination of a cognitive model of stress, burnout, and intention to resign for Japanese nurses.

    PubMed

    Ohue, Takashi; Moriyama, Michiko; Nakaya, Takashi

    2011-06-01

    A reduction in burnout is required to decrease the voluntary turnover of nurses. This study was carried out with the aim of establishing a cognitive model of stress, burnout, and intention to resign for nurses. A questionnaire survey was administered to 336 nurses (27 male and 309 female) who had worked for ≤5 years at a hospital with multiple departments. The survey included an evaluation of burnout (Maslach Burnout Inventory), stress (Nursing Job Stressor Scale), automatic thoughts (Automatic Thoughts Questionnaire-Revised), and irrational beliefs (Japanese Irrational Belief Test), in addition to the intention to resign. The stressors that affected burnout in the nurses included conflict with other nursing staff, nursing role conflict, qualitative workload, quantitative workload, and conflict with patients. The irrational beliefs that were related to burnout included dependence, problem avoidance, and helplessness. In order to examine the automatic thoughts affecting burnout, groups with low and high negative automatic thoughts and low and high positive automatic thoughts were established. A two-way ANOVA showed a significant interaction of these factors with emotional exhaustion, but no significant interaction with depersonalization and a personal sense of accomplishment. Only the major effect was significant. The final model showed a process of "stressor → irrational beliefs → negative automatic thoughts/positive automatic thoughts → burnout". In addition, a relationship between burnout and an intention to resign was shown. These results suggest that stress and burnout in nurses might be prevented and that the number of nurses who leave their position could be decreased by changing irrational beliefs to rational beliefs, decreasing negative automatic thoughts, and facilitating positive automatic thoughts. © 2010 The Authors. Japan Journal of Nursing Science © 2010 Japan Academy of Nursing Science.

  8. Monte Carlo Modeling of VLWIR HgCdTe Interdigitated Pixel Response

    NASA Astrophysics Data System (ADS)

    D'Souza, A. I.; Stapelbroek, M. G.; Wijewarnasuriya, P. S.

    2010-07-01

    Increasing very long-wave infrared (VLWIR, λ c ≈ 15 μm) pixel operability was approached by subdividing each pixel into four interdigitated subpixels. High response is maintained across the pixel, even if one or two interdigitated subpixels are deselected (turned off), because interdigitation provides that the preponderance of minority carriers photogenerated in the pixel are collected by the selected subpixels. Monte Carlo modeling of the photoresponse of the interdigitated subpixel simulates minority-carrier diffusion from carrier creation to recombination. Each carrier generated at an appropriately weighted random location is assigned an exponentially distributed random lifetime τ i, where < τ i> is the bulk minority-carrier lifetime. The minority carrier is allowed to diffuse for a short time d τ, and the fate of the carrier is decided from its present position and the boundary conditions, i.e., whether the carrier is absorbed in a junction, recombined at a surface, reflected from a surface, or recombined in the bulk because it lived for its designated lifetime. If nothing happens, the process is then repeated until one of the boundary conditions is attained. The next step is to go on to the next carrier and repeat the procedure for all the launches of minority carriers. For each minority carrier launched, the original location and boundary condition at fatality are recorded. An example of the results from Monte Carlo modeling is that, for a 20- μm diffusion length, the calculated quantum efficiency (QE) changed from 85% with no subpixels deselected, to 78% with one subpixel deselected, 67% with two subpixels deselected, and 48% with three subpixels deselected. Demonstration of the interdigitated pixel concept and verification of the Monte Carlo modeling utilized λ c(60 K) ≈ 15 μm HgCdTe pixels in a 96 × 96 array format. The measured collection efficiency for one, two, and three subelements selected, divided by the collection efficiency for all four subelements selected, matched that calculated using Monte Carlo modeling.

  9. Automatization of an inverse surface temperature modelling procedure for Greenland ice cores, developed and evaluated using nitrogen and argon isotope data measured on the Gisp2 ice core

    NASA Astrophysics Data System (ADS)

    Döring, Michael; Kobashi, Takuro; Leuenberger, Markus

    2017-04-01

    In order to study Northern Hemisphere climate interactions and variability during the Holocene, access to high resolution surface temperature records of the Greenland ice sheet is an integral condition. Surface temperature reconstruction relies on firn densification combined with gas and heat diffusion [Severinghaus et al. (1998)]. In this study we use the model developed by Schwander et al. (1997). A theoretical δ15N record is generated for different temperature scenarios and compared with measurements by minimizing the mean squared error (MSE). The goal of the presented study is an automatization of this inverse modelling procedure. To solve the inverse problem, the Holocene temperature reconstruction is implemented in three steps. First a rough first guess temperature input (prior) is constructed which serves as the starting point for the optimization. Second, a smooth solution which transects the δ15N measurement data is generated following a Monte Carlo approach. It is assumed that the smooth solution contains all long term temperature trends and (together with the accumulation rate input) drives changes in firn column height, which generate the gravitational background signal in δ15N. Finally, the smooth solution is superimposed with high frequency information directly extracted from the δ15N measurement data. Following the approach, a high resolution Holocene temperature history for the Gisp2 site was extracted (posteriori), which leads to modelled δ15N data that fits the measurements in the low permeg level (MSE) and shows excellent agreement in timing and strength of the measurement variability. To evaluate the reconstruction procedure different synthetic data experiments were conducted underlining the quality of the method. Additionally, a second firn model [Goujon et al. (2003)] was used, which leads to very similar results, that shows the robustness of the presented approach. References: Goujon, C., Barnola, J.-M., Ritz, C. (2003). Modeling the densification of polar firn including heat diffusion: Application to close-off characteristics and gas isotopic fractionation for Antarctica and Greenland sites. J. Geophys. Res.,108, NO. D24, 4792. Severinghaus, J. P., Sowers, T., Brook, E. J., Alley, R. B., and Bender, M. L. (1998). Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature, 391:141-146. Schwander, J., Sowers, T., Barnola, J., Blunier, T., Fuchs, A., and Malaizé, B. (1997). Age scale of the air in the summit ice: implication for glacial-interglacial temperature change. J. Geophys. Res-Atmos., 102(D16):19483-19493.

  10. Estimating Uncertainty in N2O Emissions from US Cropland Soils

    USDA-ARS?s Scientific Manuscript database

    A Monte Carlo analysis was combined with an empirically-based approach to quantify uncertainties in soil N2O emissions from US croplands estimated with the DAYCENT simulation model. Only a subset of croplands was simulated in the Monte Carlo analysis which was used to infer uncertainties across the ...

  11. Testing the Intervention Effect in Single-Case Experiments: A Monte Carlo Simulation Study

    ERIC Educational Resources Information Center

    Heyvaert, Mieke; Moeyaert, Mariola; Verkempynck, Paul; Van den Noortgate, Wim; Vervloet, Marlies; Ugille, Maaike; Onghena, Patrick

    2017-01-01

    This article reports on a Monte Carlo simulation study, evaluating two approaches for testing the intervention effect in replicated randomized AB designs: two-level hierarchical linear modeling (HLM) and using the additive method to combine randomization test "p" values (RTcombiP). Four factors were manipulated: mean intervention effect,…

  12. Variational Approach to Monte Carlo Renormalization Group

    NASA Astrophysics Data System (ADS)

    Wu, Yantao; Car, Roberto

    2017-12-01

    We present a Monte Carlo method for computing the renormalized coupling constants and the critical exponents within renormalization theory. The scheme, which derives from a variational principle, overcomes critical slowing down, by means of a bias potential that renders the coarse grained variables uncorrelated. The two-dimensional Ising model is used to illustrate the method.

  13. Concept of Fractal Dimension use of Multifractal Cloud Liquid Models Based on Real Data as Input to Monte Carlo Radiation Models

    NASA Technical Reports Server (NTRS)

    Wiscombe, W.

    1999-01-01

    The purpose of this paper is discuss the concept of fractal dimension; multifractal statistics as an extension of this; the use of simple multifractal statistics (power spectrum, structure function) to characterize cloud liquid water data; and to understand the use of multifractal cloud liquid water models based on real data as input to Monte Carlo radiation models of shortwave radiation transfer in 3D clouds, and the consequences of this in two areas: the design of aircraft field programs to measure cloud absorptance; and the explanation of the famous "Landsat scale break" in measured radiance.

  14. Efficient Simulation of Secondary Fluorescence Via NIST DTSA-II Monte Carlo.

    PubMed

    Ritchie, Nicholas W M

    2017-06-01

    Secondary fluorescence, the final term in the familiar matrix correction triumvirate Z·A·F, is the most challenging for Monte Carlo models to simulate. In fact, only two implementations of Monte Carlo models commonly used to simulate electron probe X-ray spectra can calculate secondary fluorescence-PENEPMA and NIST DTSA-II a (DTSA-II is discussed herein). These two models share many physical models but there are some important differences in the way each implements X-ray emission including secondary fluorescence. PENEPMA is based on PENELOPE, a general purpose software package for simulation of both relativistic and subrelativistic electron/positron interactions with matter. On the other hand, NIST DTSA-II was designed exclusively for simulation of X-ray spectra generated by subrelativistic electrons. NIST DTSA-II uses variance reduction techniques unsuited to general purpose code. These optimizations help NIST DTSA-II to be orders of magnitude more computationally efficient while retaining detector position sensitivity. Simulations execute in minutes rather than hours and can model differences that result from detector position. Both PENEPMA and NIST DTSA-II are capable of handling complex sample geometries and we will demonstrate that both are of similar accuracy when modeling experimental secondary fluorescence data from the literature.

  15. Monte Carlo Methodology Serves Up a Software Success

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Widely used for the modeling of gas flows through the computation of the motion and collisions of representative molecules, the Direct Simulation Monte Carlo method has become the gold standard for producing research and engineering predictions in the field of rarefied gas dynamics. Direct Simulation Monte Carlo was first introduced in the early 1960s by Dr. Graeme Bird, a professor at the University of Sydney, Australia. It has since proved to be a valuable tool to the aerospace and defense industries in providing design and operational support data, as well as flight data analysis. In 2002, NASA brought to the forefront a software product that maintains the same basic physics formulation of Dr. Bird's method, but provides effective modeling of complex, three-dimensional, real vehicle simulations and parallel processing capabilities to handle additional computational requirements, especially in areas where computational fluid dynamics (CFD) is not applicable. NASA's Direct Simulation Monte Carlo Analysis Code (DAC) software package is now considered the Agency s premier high-fidelity simulation tool for predicting vehicle aerodynamics and aerothermodynamic environments in rarified, or low-density, gas flows.

  16. Accelerating Monte Carlo simulations of photon transport in a voxelized geometry using a massively parallel graphics processing unit.

    PubMed

    Badal, Andreu; Badano, Aldo

    2009-11-01

    It is a known fact that Monte Carlo simulations of radiation transport are computationally intensive and may require long computing times. The authors introduce a new paradigm for the acceleration of Monte Carlo simulations: The use of a graphics processing unit (GPU) as the main computing device instead of a central processing unit (CPU). A GPU-based Monte Carlo code that simulates photon transport in a voxelized geometry with the accurate physics models from PENELOPE has been developed using the CUDATM programming model (NVIDIA Corporation, Santa Clara, CA). An outline of the new code and a sample x-ray imaging simulation with an anthropomorphic phantom are presented. A remarkable 27-fold speed up factor was obtained using a GPU compared to a single core CPU. The reported results show that GPUs are currently a good alternative to CPUs for the simulation of radiation transport. Since the performance of GPUs is currently increasing at a faster pace than that of CPUs, the advantages of GPU-based software are likely to be more pronounced in the future.

  17. Application of a semi-automatic cartilage segmentation method for biomechanical modeling of the knee joint.

    PubMed

    Liukkonen, Mimmi K; Mononen, Mika E; Tanska, Petri; Saarakkala, Simo; Nieminen, Miika T; Korhonen, Rami K

    2017-10-01

    Manual segmentation of articular cartilage from knee joint 3D magnetic resonance images (MRI) is a time consuming and laborious task. Thus, automatic methods are needed for faster and reproducible segmentations. In the present study, we developed a semi-automatic segmentation method based on radial intensity profiles to generate 3D geometries of knee joint cartilage which were then used in computational biomechanical models of the knee joint. Six healthy volunteers were imaged with a 3T MRI device and their knee cartilages were segmented both manually and semi-automatically. The values of cartilage thicknesses and volumes produced by these two methods were compared. Furthermore, the influences of possible geometrical differences on cartilage stresses and strains in the knee were evaluated with finite element modeling. The semi-automatic segmentation and 3D geometry construction of one knee joint (menisci, femoral and tibial cartilages) was approximately two times faster than with manual segmentation. Differences in cartilage thicknesses, volumes, contact pressures, stresses, and strains between segmentation methods in femoral and tibial cartilage were mostly insignificant (p > 0.05) and random, i.e. there were no systematic differences between the methods. In conclusion, the devised semi-automatic segmentation method is a quick and accurate way to determine cartilage geometries; it may become a valuable tool for biomechanical modeling applications with large patient groups.

  18. A smart Monte Carlo procedure for production costing and uncertainty analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, C.; Stremel, J.

    1996-11-01

    Electric utilities using chronological production costing models to decide whether to buy or sell power over the next week or next few weeks need to determine potential profits or losses under a number of uncertainties. A large amount of money can be at stake--often $100,000 a day or more--and one party of the sale must always take on the risk. In the case of fixed price ($/MWh) contracts, the seller accepts the risk. In the case of cost plus contracts, the buyer must accept the risk. So, modeling uncertainty and understanding the risk accurately can improve the competitive edge ofmore » the user. This paper investigates an efficient procedure for representing risks and costs from capacity outages. Typically, production costing models use an algorithm based on some form of random number generator to select resources as available or on outage. These algorithms allow experiments to be repeated and gains and losses to be observed in a short time. The authors perform several experiments to examine the capability of three unit outage selection methods and measures their results. Specifically, a brute force Monte Carlo procedure, a Monte Carlo procedure with Latin Hypercube sampling, and a Smart Monte Carlo procedure with cost stratification and directed sampling are examined.« less

  19. Comparing kinetic Monte Carlo and thin-film modeling of transversal instabilities of ridges on patterned substrates

    NASA Astrophysics Data System (ADS)

    Tewes, Walter; Buller, Oleg; Heuer, Andreas; Thiele, Uwe; Gurevich, Svetlana V.

    2017-03-01

    We employ kinetic Monte Carlo (KMC) simulations and a thin-film continuum model to comparatively study the transversal (i.e., Plateau-Rayleigh) instability of ridges formed by molecules on pre-patterned substrates. It is demonstrated that the evolution of the occurring instability qualitatively agrees between the two models for a single ridge as well as for two weakly interacting ridges. In particular, it is shown for both models that the instability occurs on well defined length and time scales which are, for the KMC model, significantly larger than the intrinsic scales of thermodynamic fluctuations. This is further evidenced by the similarity of dispersion relations characterizing the linear instability modes.

  20. SCOUT: A Fast Monte-Carlo Modeling Tool of Scintillation Camera Output

    PubMed Central

    Hunter, William C. J.; Barrett, Harrison H.; Lewellen, Thomas K.; Miyaoka, Robert S.; Muzi, John P.; Li, Xiaoli; McDougald, Wendy; MacDonald, Lawrence R.

    2011-01-01

    We have developed a Monte-Carlo photon-tracking and readout simulator called SCOUT to study the stochastic behavior of signals output from a simplified rectangular scintillation-camera design. SCOUT models the salient processes affecting signal generation, transport, and readout. Presently, we compare output signal statistics from SCOUT to experimental results for both a discrete and a monolithic camera. We also benchmark the speed of this simulation tool and compare it to existing simulation tools. We find this modeling tool to be relatively fast and predictive of experimental results. Depending on the modeled camera geometry, we found SCOUT to be 4 to 140 times faster than other modeling tools. PMID:22072297

  1. SCOUT: a fast Monte-Carlo modeling tool of scintillation camera output†

    PubMed Central

    Hunter, William C J; Barrett, Harrison H.; Muzi, John P.; McDougald, Wendy; MacDonald, Lawrence R.; Miyaoka, Robert S.; Lewellen, Thomas K.

    2013-01-01

    We have developed a Monte-Carlo photon-tracking and readout simulator called SCOUT to study the stochastic behavior of signals output from a simplified rectangular scintillation-camera design. SCOUT models the salient processes affecting signal generation, transport, and readout of a scintillation camera. Presently, we compare output signal statistics from SCOUT to experimental results for both a discrete and a monolithic camera. We also benchmark the speed of this simulation tool and compare it to existing simulation tools. We find this modeling tool to be relatively fast and predictive of experimental results. Depending on the modeled camera geometry, we found SCOUT to be 4 to 140 times faster than other modeling tools. PMID:23640136

  2. Automatic Detection of Student Mental Models during Prior Knowledge Activation in MetaTutor

    ERIC Educational Resources Information Center

    Rus, Vasile; Lintean, Mihai; Azevedo, Roger

    2009-01-01

    This paper presents several methods to automatically detecting students' mental models in MetaTutor, an intelligent tutoring system that teaches students self-regulatory processes during learning of complex science topics. In particular, we focus on detecting students' mental models based on student-generated paragraphs during prior knowledge…

  3. Application of dynamic Monte Carlo technique in proton beam radiotherapy using Geant4 simulation toolkit

    NASA Astrophysics Data System (ADS)

    Guan, Fada

    Monte Carlo method has been successfully applied in simulating the particles transport problems. Most of the Monte Carlo simulation tools are static and they can only be used to perform the static simulations for the problems with fixed physics and geometry settings. Proton therapy is a dynamic treatment technique in the clinical application. In this research, we developed a method to perform the dynamic Monte Carlo simulation of proton therapy using Geant4 simulation toolkit. A passive-scattering treatment nozzle equipped with a rotating range modulation wheel was modeled in this research. One important application of the Monte Carlo simulation is to predict the spatial dose distribution in the target geometry. For simplification, a mathematical model of a human body is usually used as the target, but only the average dose over the whole organ or tissue can be obtained rather than the accurate spatial dose distribution. In this research, we developed a method using MATLAB to convert the medical images of a patient from CT scanning into the patient voxel geometry. Hence, if the patient voxel geometry is used as the target in the Monte Carlo simulation, the accurate spatial dose distribution in the target can be obtained. A data analysis tool---root was used to score the simulation results during a Geant4 simulation and to analyze the data and plot results after simulation. Finally, we successfully obtained the accurate spatial dose distribution in part of a human body after treating a patient with prostate cancer using proton therapy.

  4. Automatic Texture Mapping of Architectural and Archaeological 3d Models

    NASA Astrophysics Data System (ADS)

    Kersten, T. P.; Stallmann, D.

    2012-07-01

    Today, detailed, complete and exact 3D models with photo-realistic textures are increasingly demanded for numerous applications in architecture and archaeology. Manual texture mapping of 3D models by digital photographs with software packages, such as Maxon Cinema 4D, Autodesk 3Ds Max or Maya, still requires a complex and time-consuming workflow. So, procedures for automatic texture mapping of 3D models are in demand. In this paper two automatic procedures are presented. The first procedure generates 3D surface models with textures by web services, while the second procedure textures already existing 3D models with the software tmapper. The program tmapper is based on the Multi Layer 3D image (ML3DImage) algorithm and developed in the programming language C++. The studies showing that the visibility analysis using the ML3DImage algorithm is not sufficient to obtain acceptable results of automatic texture mapping. To overcome the visibility problem the Point Cloud Painter algorithm in combination with the Z-buffer-procedure will be applied in the future.

  5. Using the Monte Carlo method for assessing the tissue and organ doses of patients in dental radiography

    NASA Astrophysics Data System (ADS)

    Makarevich, K. O.; Minenko, V. F.; Verenich, K. A.; Kuten, S. A.

    2016-05-01

    This work is dedicated to modeling dental radiographic examinations to assess the absorbed doses of patients and effective doses. For simulating X-ray spectra, the TASMIP empirical model is used. Doses are assessed on the basis of the Monte Carlo method by using MCNP code for voxel phantoms of ICRP. The results of the assessment of doses to individual organs and effective doses for different types of dental examinations and features of X-ray tube are presented.

  6. A Model-Based Method for Content Validation of Automatically Generated Test Items

    ERIC Educational Resources Information Center

    Zhang, Xinxin; Gierl, Mark

    2016-01-01

    The purpose of this study is to describe a methodology to recover the item model used to generate multiple-choice test items with a novel graph theory approach. Beginning with the generated test items and working backward to recover the original item model provides a model-based method for validating the content used to automatically generate test…

  7. Automatic mathematical modeling for real time simulation system

    NASA Technical Reports Server (NTRS)

    Wang, Caroline; Purinton, Steve

    1988-01-01

    A methodology for automatic mathematical modeling and generating simulation models is described. The models will be verified by running in a test environment using standard profiles with the results compared against known results. The major objective is to create a user friendly environment for engineers to design, maintain, and verify their model and also automatically convert the mathematical model into conventional code for conventional computation. A demonstration program was designed for modeling the Space Shuttle Main Engine Simulation. It is written in LISP and MACSYMA and runs on a Symbolic 3670 Lisp Machine. The program provides a very friendly and well organized environment for engineers to build a knowledge base for base equations and general information. It contains an initial set of component process elements for the Space Shuttle Main Engine Simulation and a questionnaire that allows the engineer to answer a set of questions to specify a particular model. The system is then able to automatically generate the model and FORTRAN code. The future goal which is under construction is to download the FORTRAN code to VAX/VMS system for conventional computation. The SSME mathematical model will be verified in a test environment and the solution compared with the real data profile. The use of artificial intelligence techniques has shown that the process of the simulation modeling can be simplified.

  8. SU-F-T-657: In-Room Neutron Dose From High Energy Photon Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christ, D; Ding, G

    Purpose: To estimate neutron dose inside the treatment room from photodisintegration events in high energy photon beams using Monte Carlo simulations and experimental measurements. Methods: The Monte Carlo code MCNP6 was used for the simulations. An Eberline ESP-1 Smart Portable Neutron Detector was used to measure neutron dose. A water phantom was centered at isocenter on the treatment couch, and the detector was placed near the phantom. A Varian 2100EX linear accelerator delivered an 18MV open field photon beam to the phantom at 400MU/min, and a camera captured the detector readings. The experimental setup was modeled in the Monte Carlomore » simulation. The source was modeled for two extreme cases: a) hemispherical photon source emitting from the target and b) cone source with an angle of the primary collimator cone. The model includes the target, primary collimator, flattening filter, secondary collimators, water phantom, detector and concrete walls. Energy deposition tallies were measured for neutrons in the detector and for photons at the center of the phantom. Results: For an 18MV beam with an open 10cm by 10cm field and the gantry at 180°, the Monte Carlo simulations predict the neutron dose in the detector to be 0.11% of the photon dose in the water phantom for case a) and 0.01% for case b). The measured neutron dose is 0.04% of the photon dose. Considering the range of neutron dose predicted by Monte Carlo simulations, the calculated results are in good agreement with measurements. Conclusion: We calculated in-room neutron dose by using Monte Carlo techniques, and the predicted neutron dose is confirmed by experimental measurements. If we remodel the source as an electron beam hitting the target for a more accurate representation of the bremsstrahlung fluence, it is feasible that the Monte Carlo simulations can be used to help in shielding designs.« less

  9. Self-learning Monte Carlo with deep neural networks

    NASA Astrophysics Data System (ADS)

    Shen, Huitao; Liu, Junwei; Fu, Liang

    2018-05-01

    The self-learning Monte Carlo (SLMC) method is a general algorithm to speedup MC simulations. Its efficiency has been demonstrated in various systems by introducing an effective model to propose global moves in the configuration space. In this paper, we show that deep neural networks can be naturally incorporated into SLMC, and without any prior knowledge can learn the original model accurately and efficiently. Demonstrated in quantum impurity models, we reduce the complexity for a local update from O (β2) in Hirsch-Fye algorithm to O (β lnβ ) , which is a significant speedup especially for systems at low temperatures.

  10. Bayesian estimation of realized stochastic volatility model by Hybrid Monte Carlo algorithm

    NASA Astrophysics Data System (ADS)

    Takaishi, Tetsuya

    2014-03-01

    The hybrid Monte Carlo algorithm (HMCA) is applied for Bayesian parameter estimation of the realized stochastic volatility (RSV) model. Using the 2nd order minimum norm integrator (2MNI) for the molecular dynamics (MD) simulation in the HMCA, we find that the 2MNI is more efficient than the conventional leapfrog integrator. We also find that the autocorrelation time of the volatility variables sampled by the HMCA is very short. Thus it is concluded that the HMCA with the 2MNI is an efficient algorithm for parameter estimations of the RSV model.

  11. The effect of finite geometry on the three-dimensional transfer of solar irradiance in clouds

    NASA Technical Reports Server (NTRS)

    Davies, R.

    1978-01-01

    Results are presented for a Monte Carlo model applied to a wide range of cloud widths and heights, and for an analytical model restricted in its application to cuboidally shaped clouds whose length, breadth, and depth may be varied independently; the clouds must be internally homogeneous with respect to their intrinsic radiative properties. Comparative results from the Monte Carlo method and the derived analytical model are presented for a wide range of cloud sizes, with special emphasis on the effects of varying the single scatter albedo, the solar zenith angle, and the scattering phase angle.

  12. Anatomy-based transmission factors for technique optimization in portable chest x-ray

    NASA Astrophysics Data System (ADS)

    Liptak, Christopher L.; Tovey, Deborah; Segars, William P.; Dong, Frank D.; Li, Xiang

    2015-03-01

    Portable x-ray examinations often account for a large percentage of all radiographic examinations. Currently, portable examinations do not employ automatic exposure control (AEC). To aid in the design of a size-specific technique chart, acrylic slabs of various thicknesses are often used to estimate x-ray transmission for patients of various body thicknesses. This approach, while simple, does not account for patient anatomy, tissue heterogeneity, and the attenuation properties of the human body. To better account for these factors, in this work, we determined x-ray transmission factors using computational patient models that are anatomically realistic. A Monte Carlo program was developed to model a portable x-ray system. Detailed modeling was done of the x-ray spectrum, detector positioning, collimation, and source-to-detector distance. Simulations were performed using 18 computational patient models from the extended cardiac-torso (XCAT) family (9 males, 9 females; age range: 2-58 years; weight range: 12-117 kg). The ratio of air kerma at the detector with and without a patient model was calculated as the transmission factor. Our study showed that the transmission factor decreased exponentially with increasing patient thickness. For the range of patient thicknesses examined (12-28 cm), the transmission factor ranged from approximately 21% to 1.9% when the air kerma used in the calculation represented an average over the entire imaging field of view. The transmission factor ranged from approximately 21% to 3.6% when the air kerma used in the calculation represented the average signals from two discrete AEC cells behind the lung fields. These exponential relationships may be used to optimize imaging techniques for patients of various body thicknesses to aid in the design of clinical technique charts.

  13. Modelling of a Solar Thermal Power Plant for Benchmarking Blackbox Optimization Solvers

    NASA Astrophysics Data System (ADS)

    Lemyre Garneau, Mathieu

    A new family of problems is provided to serve as a benchmark for blackbox optimization solvers. The problems are single or bi-objective and vary in complexity in terms of the number of variables used (from 5 to 29), the type of variables (integer, real, category), the number of constraints (from 5 to 17) and their types (binary or continuous). In order to provide problems exhibiting dynamics that reflect real engineering challenges, they are extracted from an original numerical model of a concentrated solar power (CSP) power plant with molten salt thermal storage. The model simulates the performance of the power plant by using a high level modeling of each of its main components, namely, an heliostats field, a central cavity receiver, a molten salt heat storage, a steam generator and an idealized powerblock. The heliostats field layout is determined through a simple automatic strategy that finds the best individual positions on the field by considering their respective cosine efficiency, atmospheric scattering and spillage losses as a function of the design parameters. A Monte-Carlo integral method is used to evaluate the heliostats field's optical performance throughout the day so that shadowing effects between heliostats are considered, and the results of this evaluation provide the inputs to simulate the levels and temperatures of the thermal storage. The molten salt storage inventory is used to transfer thermal energy to the powerblock, which simulates a simple Rankine cycle with a single steam turbine. Auxiliary models are used to provide additional optimization constraints on the investment cost, parasitic losses or components failure. The results of preliminary optimizations performed with the NOMAD software using default settings are provided to show the validity of the problems.

  14. Model Checking Satellite Operational Procedures

    NASA Astrophysics Data System (ADS)

    Cavaliere, Federico; Mari, Federico; Melatti, Igor; Minei, Giovanni; Salvo, Ivano; Tronci, Enrico; Verzino, Giovanni; Yushtein, Yuri

    2011-08-01

    We present a model checking approach for the automatic verification of satellite operational procedures (OPs). Building a model for a complex system as a satellite is a hard task. We overcome this obstruction by using a suitable simulator (SIMSAT) for the satellite. Our approach aims at improving OP quality assurance by automatic exhaustive exploration of all possible simulation scenarios. Moreover, our solution decreases OP verification costs by using a model checker (CMurphi) to automatically drive the simulator. We model OPs as user-executed programs observing the simulator telemetries and sending telecommands to the simulator. In order to assess feasibility of our approach we present experimental results on a simple meaningful scenario. Our results show that we can save up to 90% of verification time.

  15. Self-Learning Monte Carlo Method

    NASA Astrophysics Data System (ADS)

    Liu, Junwei; Qi, Yang; Meng, Zi Yang; Fu, Liang

    Monte Carlo simulation is an unbiased numerical tool for studying classical and quantum many-body systems. One of its bottlenecks is the lack of general and efficient update algorithm for large size systems close to phase transition or with strong frustrations, for which local updates perform badly. In this work, we propose a new general-purpose Monte Carlo method, dubbed self-learning Monte Carlo (SLMC), in which an efficient update algorithm is first learned from the training data generated in trial simulations and then used to speed up the actual simulation. We demonstrate the efficiency of SLMC in a spin model at the phase transition point, achieving a 10-20 times speedup. This work is supported by the DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0010526.

  16. Bridging automatic speech recognition and psycholinguistics: Extending Shortlist to an end-to-end model of human speech recognition (L)

    NASA Astrophysics Data System (ADS)

    Scharenborg, Odette; ten Bosch, Louis; Boves, Lou; Norris, Dennis

    2003-12-01

    This letter evaluates potential benefits of combining human speech recognition (HSR) and automatic speech recognition by building a joint model of an automatic phone recognizer (APR) and a computational model of HSR, viz., Shortlist [Norris, Cognition 52, 189-234 (1994)]. Experiments based on ``real-life'' speech highlight critical limitations posed by some of the simplifying assumptions made in models of human speech recognition. These limitations could be overcome by avoiding hard phone decisions at the output side of the APR, and by using a match between the input and the internal lexicon that flexibly copes with deviations from canonical phonemic representations.

  17. Monte Carlo charged-particle tracking and energy deposition on a Lagrangian mesh.

    PubMed

    Yuan, J; Moses, G A; McKenty, P W

    2005-10-01

    A Monte Carlo algorithm for alpha particle tracking and energy deposition on a cylindrical computational mesh in a Lagrangian hydrodynamics code used for inertial confinement fusion (ICF) simulations is presented. The straight line approximation is used to follow propagation of "Monte Carlo particles" which represent collections of alpha particles generated from thermonuclear deuterium-tritium (DT) reactions. Energy deposition in the plasma is modeled by the continuous slowing down approximation. The scheme addresses various aspects arising in the coupling of Monte Carlo tracking with Lagrangian hydrodynamics; such as non-orthogonal severely distorted mesh cells, particle relocation on the moving mesh and particle relocation after rezoning. A comparison with the flux-limited multi-group diffusion transport method is presented for a polar direct drive target design for the National Ignition Facility. Simulations show the Monte Carlo transport method predicts about earlier ignition than predicted by the diffusion method, and generates higher hot spot temperature. Nearly linear speed-up is achieved for multi-processor parallel simulations.

  18. QMCPACK : an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids

    DOE PAGES

    Kim, Jeongnim; Baczewski, Andrew T.; Beaudet, Todd D.; ...

    2018-04-19

    QMCPACK is an open source quantum Monte Carlo package for ab-initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wave functions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performancemore » computing architectures, including multicore central processing unit (CPU) and graphical processing unit (GPU) systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://www.qmcpack.org.« less

  19. Collision of Physics and Software in the Monte Carlo Application Toolkit (MCATK)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweezy, Jeremy Ed

    2016-01-21

    The topic is presented in a series of slides organized as follows: MCATK overview, development strategy, available algorithms, problem modeling (sources, geometry, data, tallies), parallelism, miscellaneous tools/features, example MCATK application, recent areas of research, and summary and future work. MCATK is a C++ component-based Monte Carlo neutron-gamma transport software library with continuous energy neutron and photon transport. Designed to build specialized applications and to provide new functionality in existing general-purpose Monte Carlo codes like MCNP, it reads ACE formatted nuclear data generated by NJOY. The motivation behind MCATK was to reduce costs. MCATK physics involves continuous energy neutron & gammamore » transport with multi-temperature treatment, static eigenvalue (k eff and α) algorithms, time-dependent algorithm, and fission chain algorithms. MCATK geometry includes mesh geometries and solid body geometries. MCATK provides verified, unit-test Monte Carlo components, flexibility in Monte Carlo application development, and numerous tools such as geometry and cross section plotters.« less

  20. QMCPACK : an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jeongnim; Baczewski, Andrew T.; Beaudet, Todd D.

    QMCPACK is an open source quantum Monte Carlo package for ab-initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wave functions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performancemore » computing architectures, including multicore central processing unit (CPU) and graphical processing unit (GPU) systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://www.qmcpack.org.« less

  1. Adapting phase-switch Monte Carlo method for flexible organic molecules

    NASA Astrophysics Data System (ADS)

    Bridgwater, Sally; Quigley, David

    2014-03-01

    The role of cholesterol in lipid bilayers has been widely studied via molecular simulation, however, there has been relatively little work on crystalline cholesterol in biological environments. Recent work has linked the crystallisation of cholesterol in the body with heart attacks and strokes. Any attempt to model this process will require new models and advanced sampling methods to capture and quantify the subtle polymorphism of solid cholesterol, in which two crystalline phases are separated by a phase transition close to body temperature. To this end, we have adapted phase-switch Monte Carlo for use with flexible molecules, to calculate the free energy between crystal polymorphs to a high degree of accuracy. The method samples an order parameter , which divides a displacement space for the N molecules, into regions energetically favourable for each polymorph; which is traversed using biased Monte Carlo. Results for a simple model of butane will be presented, demonstrating that conformational flexibility can be correctly incorporated within a phase-switching scheme. Extension to a coarse grained model of cholesterol and the resulting free energies will be discussed.

  2. Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head

    PubMed Central

    Selb, Juliette; Ogden, Tyler M.; Dubb, Jay; Fang, Qianqian; Boas, David A.

    2014-01-01

    Abstract. Near-infrared spectroscopy (NIRS) estimations of the adult brain baseline optical properties based on a homogeneous model of the head are known to introduce significant contamination from extracerebral layers. More complex models have been proposed and occasionally applied to in vivo data, but their performances have never been characterized on realistic head structures. Here we implement a flexible fitting routine of time-domain NIRS data using graphics processing unit based Monte Carlo simulations. We compare the results for two different geometries: a two-layer slab with variable thickness of the first layer and a template atlas head registered to the subject’s head surface. We characterize the performance of the Monte Carlo approaches for fitting the optical properties from simulated time-resolved data of the adult head. We show that both geometries provide better results than the commonly used homogeneous model, and we quantify the improvement in terms of accuracy, linearity, and cross-talk from extracerebral layers. PMID:24407503

  3. An integrated radiation physics computer code system.

    NASA Technical Reports Server (NTRS)

    Steyn, J. J.; Harris, D. W.

    1972-01-01

    An integrated computer code system for the semi-automatic and rapid analysis of experimental and analytic problems in gamma photon and fast neutron radiation physics is presented. Such problems as the design of optimum radiation shields and radioisotope power source configurations may be studied. The system codes allow for the unfolding of complex neutron and gamma photon experimental spectra. Monte Carlo and analytic techniques are used for the theoretical prediction of radiation transport. The system includes a multichannel pulse-height analyzer scintillation and semiconductor spectrometer coupled to an on-line digital computer with appropriate peripheral equipment. The system is geometry generalized as well as self-contained with respect to material nuclear cross sections and the determination of the spectrometer response functions. Input data may be either analytic or experimental.

  4. A deterministic particle method for one-dimensional reaction-diffusion equations

    NASA Technical Reports Server (NTRS)

    Mascagni, Michael

    1995-01-01

    We derive a deterministic particle method for the solution of nonlinear reaction-diffusion equations in one spatial dimension. This deterministic method is an analog of a Monte Carlo method for the solution of these problems that has been previously investigated by the author. The deterministic method leads to the consideration of a system of ordinary differential equations for the positions of suitably defined particles. We then consider the time explicit and implicit methods for this system of ordinary differential equations and we study a Picard and Newton iteration for the solution of the implicit system. Next we solve numerically this system and study the discretization error both analytically and numerically. Numerical computation shows that this deterministic method is automatically adaptive to large gradients in the solution.

  5. Monte Carlo modeling of spatially complex wrist tissue for the optimization of optical pulse oximeters

    NASA Astrophysics Data System (ADS)

    Robinson, Mitchell; Butcher, Ryan; Coté, Gerard L.

    2017-02-01

    Monte Carlo modeling of photon propagation has been used in the examination of particular areas of the body to further enhance the understanding of light propagation through tissue. This work seeks to improve upon the established simulation methods through more accurate representations of the simulated tissues in the wrist as well as the characteristics of the light source. The Monte Carlo simulation program was developed using Matlab. Generation of different tissue domains, such as muscle, vasculature, and bone, was performed in Solidworks, where each domain was saved as a separate .stl file that was read into the program. The light source was altered to give considerations to both viewing angle of the simulated LED as well as the nominal diameter of the source. It is believed that the use of these more accurate models generates results that more closely match those seen in-vivo, and can be used to better guide the design of optical wrist-worn measurement devices.

  6. Simulating complex atomistic processes: On-the-fly kinetic Monte Carlo scheme with selective active volumes

    NASA Astrophysics Data System (ADS)

    Xu, Haixuan; Osetsky, Yury N.; Stoller, Roger E.

    2011-10-01

    An accelerated atomistic kinetic Monte Carlo (KMC) approach for evolving complex atomistic structures has been developed. The method incorporates on-the-fly calculations of transition states (TSs) with a scheme for defining active volumes (AVs) in an off-lattice (relaxed) system. In contrast to conventional KMC models that require all reactions to be predetermined, this approach is self-evolving and any physically relevant motion or reaction may occur. Application of this self-evolving atomistic kinetic Monte Carlo (SEAK-MC) approach is illustrated by predicting the evolution of a complex defect configuration obtained in a molecular dynamics (MD) simulation of a displacement cascade in Fe. Over much longer times, it was shown that interstitial clusters interacting with other defects may change their structure, e.g., from glissile to sessile configuration. The direct comparison with MD modeling confirms the atomistic fidelity of the approach, while the longer time simulation demonstrates the unique capability of the model.

  7. A users' manual for MCPRAM (Monte Carlo PReprocessor for AMEER) and for the fuze options in AMEER (Aero Mechanical Equation Evaluation Routines)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaFarge, R.A.

    1990-05-01

    MCPRAM (Monte Carlo PReprocessor for AMEER), a computer program that uses Monte Carlo techniques to create an input file for the AMEER trajectory code, has been developed for the Sandia National Laboratories VAX and Cray computers. Users can select the number of trajectories to compute, which AMEER variables to investigate, and the type of probability distribution for each variable. Any legal AMEER input variable can be investigated anywhere in the input run stream with either a normal, uniform, or Rayleigh distribution. Users also have the option to use covariance matrices for the investigation of certain correlated variables such as boostermore » pre-reentry errors and wind, axial force, and atmospheric models. In conjunction with MCPRAM, AMEER was modified to include the variables introduced by the covariance matrices and to include provisions for six types of fuze models. The new fuze models and the new AMEER variables are described in this report.« less

  8. MCNP capabilities for nuclear well logging calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forster, R.A.; Little, R.C.; Briesmeister, J.F.

    The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. This paper discusses how the general-purpose continuous-energy Monte Carlo code MCNP ({und M}onte {und C}arlo {und n}eutron {und p}hoton), part of the LARTCS, provides a computational predictive capability for many applications of interest to the nuclear well logging community. The generalized three-dimensional geometry of MCNP is well suited for borehole-tool models. SABRINA, another component of the LARTCS, is a graphics code that can be used to interactively create a complex MCNP geometry. Users can define many source and tallymore » characteristics with standard MCNP features. The time-dependent capability of the code is essential when modeling pulsed sources. Problems with neutrons, photons, and electrons as either single particle or coupled particles can be calculated with MCNP. The physics of neutron and photon transport and interactions is modeled in detail using the latest available cross-section data.« less

  9. Comparison of UWCC MOX fuel measurements to MCNP-REN calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abhold, M.; Baker, M.; Jie, R.

    1998-12-31

    The development of neutron coincidence counting has greatly improved the accuracy and versatility of neutron-based techniques to assay fissile materials. Today, the shift register analyzer connected to either a passive or active neutron detector is widely used by both domestic and international safeguards organizations. The continued development of these techniques and detectors makes extensive use of the predictions of detector response through the use of Monte Carlo techniques in conjunction with the point reactor model. Unfortunately, the point reactor model, as it is currently used, fails to accurately predict detector response in highly multiplying mediums such as mixed-oxide (MOX) lightmore » water reactor fuel assemblies. For this reason, efforts have been made to modify the currently used Monte Carlo codes and to develop new analytical methods so that this model is not required to predict detector response. The authors describe their efforts to modify a widely used Monte Carlo code for this purpose and also compare calculational results with experimental measurements.« less

  10. Sign problem and Monte Carlo calculations beyond Lefschetz thimbles

    DOE PAGES

    Alexandru, Andrei; Basar, Gokce; Bedaque, Paulo F.; ...

    2016-05-10

    We point out that Monte Carlo simulations of theories with severe sign problems can be profitably performed over manifolds in complex space different from the one with fixed imaginary part of the action (“Lefschetz thimble”). We describe a family of such manifolds that interpolate between the tangent space at one critical point (where the sign problem is milder compared to the real plane but in some cases still severe) and the union of relevant thimbles (where the sign problem is mild but a multimodal distribution function complicates the Monte Carlo sampling). As a result, we exemplify this approach using amore » simple 0+1 dimensional fermion model previously used on sign problem studies and show that it can solve the model for some parameter values where a solution using Lefschetz thimbles was elusive.« less

  11. Stabilizing canonical-ensemble calculations in the auxiliary-field Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Gilbreth, C. N.; Alhassid, Y.

    2015-03-01

    Quantum Monte Carlo methods are powerful techniques for studying strongly interacting Fermi systems. However, implementing these methods on computers with finite-precision arithmetic requires careful attention to numerical stability. In the auxiliary-field Monte Carlo (AFMC) method, low-temperature or large-model-space calculations require numerically stabilized matrix multiplication. When adapting methods used in the grand-canonical ensemble to the canonical ensemble of fixed particle number, the numerical stabilization increases the number of required floating-point operations for computing observables by a factor of the size of the single-particle model space, and thus can greatly limit the systems that can be studied. We describe an improved method for stabilizing canonical-ensemble calculations in AFMC that exhibits better scaling, and present numerical tests that demonstrate the accuracy and improved performance of the method.

  12. Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics

    PubMed Central

    Hey, Jody; Nielsen, Rasmus

    2007-01-01

    In 1988, Felsenstein described a framework for assessing the likelihood of a genetic data set in which all of the possible genealogical histories of the data are considered, each in proportion to their probability. Although not analytically solvable, several approaches, including Markov chain Monte Carlo methods, have been developed to find approximate solutions. Here, we describe an approach in which Markov chain Monte Carlo simulations are used to integrate over the space of genealogies, whereas other parameters are integrated out analytically. The result is an approximation to the full joint posterior density of the model parameters. For many purposes, this function can be treated as a likelihood, thereby permitting likelihood-based analyses, including likelihood ratio tests of nested models. Several examples, including an application to the divergence of chimpanzee subspecies, are provided. PMID:17301231

  13. A calibrated Monte Carlo approach to quantify the impacts of misorientation and different driving forces on texture development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liangzhe Zhang; Anthony D. Rollett; Timothy Bartel

    2012-02-01

    A calibrated Monte Carlo (cMC) approach, which quantifies grain boundary kinetics within a generic setting, is presented. The influence of misorientation is captured by adding a scaling coefficient in the spin flipping probability equation, while the contribution of different driving forces is weighted using a partition function. The calibration process relies on the established parametric links between Monte Carlo (MC) and sharp-interface models. The cMC algorithm quantifies microstructural evolution under complex thermomechanical environments and remedies some of the difficulties associated with conventional MC models. After validation, the cMC approach is applied to quantify the texture development of polycrystalline materials withmore » influences of misorientation and inhomogeneous bulk energy across grain boundaries. The results are in good agreement with theory and experiments.« less

  14. Studies of Low Luminosity Active Galactic Nuclei with Monte Carlo and Magnetohydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Hilburn, Guy Louis

    Results from several studies are presented which detail explorations of the physical and spectral properties of low luminosity active galactic nuclei. An initial Sagittarius A* general relativistic magnetohydrodynamic simulation and Monte Carlo radiation transport model suggests accretion rate changes as the dominant flaring method. A similar study on M87 introduces new methods to the Monte Carlo model for increased consistency in highly energetic sources. Again, accretion rate variation seems most appropriate to explain spectral transients. To more closely resolve the methods of particle energization in active galactic nuclei accretion disks, a series of localized shearing box simulations explores the effect of numerical resolution on the development of current sheets. A particular focus on numerically describing converged current sheet formation will provide new methods for consideration of turbulence in accretion disks.

  15. Large-cell Monte Carlo renormalization of irreversible growth processes

    NASA Technical Reports Server (NTRS)

    Nakanishi, H.; Family, F.

    1985-01-01

    Monte Carlo sampling is applied to a recently formulated direct-cell renormalization method for irreversible, disorderly growth processes. Large-cell Monte Carlo renormalization is carried out for various nonequilibrium problems based on the formulation dealing with relative probabilities. Specifically, the method is demonstrated by application to the 'true' self-avoiding walk and the Eden model of growing animals for d = 2, 3, and 4 and to the invasion percolation problem for d = 2 and 3. The results are asymptotically in agreement with expectations; however, unexpected complications arise, suggesting the possibility of crossovers, and in any case, demonstrating the danger of using small cells alone, because of the very slow convergence as the cell size b is extrapolated to infinity. The difficulty of applying the present method to the diffusion-limited-aggregation model, is commented on.

  16. Investigation of radiative interaction in laminar flows using Monte Carlo simulation

    NASA Technical Reports Server (NTRS)

    Liu, Jiwen; Tiwari, S. N.

    1993-01-01

    The Monte Carlo method (MCM) is employed to study the radiative interactions in fully developed laminar flow between two parallel plates. Taking advantage of the characteristics of easy mathematical treatment of the MCM, a general numerical procedure is developed for nongray radiative interaction. The nongray model is based on the statistical narrow band model with an exponential-tailed inverse intensity distribution. To validate the Monte Carlo simulation for nongray radiation problems, the results of radiative dissipation from the MCM are compared with two available solutions for a given temperature profile between two plates. After this validation, the MCM is employed to solve the present physical problem and results for the bulk temperature are compared with available solutions. In general, good agreement is noted and reasons for some discrepancies in certain ranges of parameters are explained.

  17. Full System Model of Magnetron Sputter Chamber - Proof-of-Principle Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walton, C; Gilmer, G; Zepeda-Ruiz, L

    2007-05-04

    The lack of detailed knowledge of internal process conditions remains a key challenge in magnetron sputtering, both for chamber design and for process development. Fundamental information such as the pressure and temperature distribution of the sputter gas, and the energies and arrival angles of the sputtered atoms and other energetic species is often missing, or is only estimated from general formulas. However, open-source or low-cost tools are available for modeling most steps of the sputter process, which can give more accurate and complete data than textbook estimates, using only desktop computations. To get a better understanding of magnetron sputtering, wemore » have collected existing models for the 5 major process steps: the input and distribution of the neutral background gas using Direct Simulation Monte Carlo (DSMC), dynamics of the plasma using Particle In Cell-Monte Carlo Collision (PIC-MCC), impact of ions on the target using molecular dynamics (MD), transport of sputtered atoms to the substrate using DSMC, and growth of the film using hybrid Kinetic Monte Carlo (KMC) and MD methods. Models have been tested against experimental measurements. For example, gas rarefaction as observed by Rossnagel and others has been reproduced, and it is associated with a local pressure increase of {approx}50% which may strongly influence film properties such as stress. Results on energies and arrival angles of sputtered atoms and reflected gas neutrals are applied to the Kinetic Monte Carlo simulation of film growth. Model results and applications to growth of dense Cu and Be films are presented.« less

  18. Comparison of screening-level and Monte Carlo approaches for wildlife food web exposure modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastorok, R.; Butcher, M.; LaTier, A.

    1995-12-31

    The implications of using quantitative uncertainty analysis (e.g., Monte Carlo) and site-specific tissue residue data for wildlife exposure modeling were examined with data on trace elements at the Clark Fork River Superfund Site. Exposure of white-tailed deer, red fox, and American kestrel was evaluated using three approaches. First, a screening-level exposure model was based on conservative estimates of exposure parameters, including estimates of dietary residues derived from bioconcentration factors (BCFs) and soil chemistry. A second model without Monte Carlo was based on site-specific data for tissue residues of trace elements (As, Cd, Cu, Pb, Zn) in key dietary species andmore » plausible assumptions for habitat spatial segmentation and other exposure parameters. Dietary species sampled included dominant grasses (tufted hairgrass and redtop), willows, alfalfa, barley, invertebrates (grasshoppers, spiders, and beetles), and deer mice. Third, the Monte Carlo analysis was based on the site-specific residue data and assumed or estimated distributions for exposure parameters. Substantial uncertainties are associated with several exposure parameters, especially BCFS, such that exposure and risk may be greatly overestimated in screening-level approaches. The results of the three approaches are compared with respect to realism, practicality, and data gaps. Collection of site-specific data on trace elements concentrations in plants and animals eaten by the target wildlife receptors is a cost-effective way to obtain realistic estimates of exposure. Implications of the results for exposure and risk estimates are discussed relative to use of wildlife exposure modeling and evaluation of remedial actions at Superfund sites.« less

  19. Modeling the Reflectance of the Lunar Regolith by a New Method Combining Monte Carlo Ray Tracing and Hapke's Model with Application to Chang'E-1 IIM Data

    PubMed Central

    Wu, Yunzhao; Tang, Zesheng

    2014-01-01

    In this paper, we model the reflectance of the lunar regolith by a new method combining Monte Carlo ray tracing and Hapke's model. The existing modeling methods exploit either a radiative transfer model or a geometric optical model. However, the measured data from an Interference Imaging spectrometer (IIM) on an orbiter were affected not only by the composition of minerals but also by the environmental factors. These factors cannot be well addressed by a single model alone. Our method implemented Monte Carlo ray tracing for simulating the large-scale effects such as the reflection of topography of the lunar soil and Hapke's model for calculating the reflection intensity of the internal scattering effects of particles of the lunar soil. Therefore, both the large-scale and microscale effects are considered in our method, providing a more accurate modeling of the reflectance of the lunar regolith. Simulation results using the Lunar Soil Characterization Consortium (LSCC) data and Chang'E-1 elevation map show that our method is effective and useful. We have also applied our method to Chang'E-1 IIM data for removing the influence of lunar topography to the reflectance of the lunar soil and to generate more realistic visualizations of the lunar surface. PMID:24526892

  20. HepSim: A repository with predictions for high-energy physics experiments

    DOE PAGES

    Chekanov, S. V.

    2015-02-03

    A file repository for calculations of cross sections and kinematic distributions using Monte Carlo generators for high-energy collisions is discussed. The repository is used to facilitate effective preservation and archiving of data from theoretical calculations and for comparisons with experimental data. The HepSim data library is publicly accessible and includes a number of Monte Carlo event samples with Standard Model predictions for current and future experiments. The HepSim project includes a software package to automate the process of downloading and viewing online Monte Carlo event samples. Data streaming over a network for end-user analysis is discussed.

  1. A Monte Carlo Uncertainty Analysis of Ozone Trend Predictions in a Two Dimensional Model. Revision

    NASA Technical Reports Server (NTRS)

    Considine, D. B.; Stolarski, R. S.; Hollandsworth, S. M.; Jackman, C. H.; Fleming, E. L.

    1998-01-01

    We use Monte Carlo analysis to estimate the uncertainty in predictions of total O3 trends between 1979 and 1995 made by the Goddard Space Flight Center (GSFC) two-dimensional (2D) model of stratospheric photochemistry and dynamics. The uncertainty is caused by gas-phase chemical reaction rates, photolysis coefficients, and heterogeneous reaction parameters which are model inputs. The uncertainty represents a lower bound to the total model uncertainty assuming the input parameter uncertainties are characterized correctly. Each of the Monte Carlo runs was initialized in 1970 and integrated for 26 model years through the end of 1995. This was repeated 419 times using input parameter sets generated by Latin Hypercube Sampling. The standard deviation (a) of the Monte Carlo ensemble of total 03 trend predictions is used to quantify the model uncertainty. The 34% difference between the model trend in globally and annually averaged total O3 using nominal inputs and atmospheric trends calculated from Nimbus 7 and Meteor 3 total ozone mapping spectrometer (TOMS) version 7 data is less than the 46% calculated 1 (sigma), model uncertainty, so there is no significant difference between the modeled and observed trends. In the northern hemisphere midlatitude spring the modeled and observed total 03 trends differ by more than 1(sigma) but less than 2(sigma), which we refer to as marginal significance. We perform a multiple linear regression analysis of the runs which suggests that only a few of the model reactions contribute significantly to the variance in the model predictions. The lack of significance in these comparisons suggests that they are of questionable use as guides for continuing model development. Large model/measurement differences which are many multiples of the input parameter uncertainty are seen in the meridional gradients of the trend and the peak-to-peak variations in the trends over an annual cycle. These discrepancies unambiguously indicate model formulation problems and provide a measure of model performance which can be used in attempts to improve such models.

  2. The Interplay between Automatic and Control Processes in Reading.

    ERIC Educational Resources Information Center

    Walczyk, Jeffrey J.

    2000-01-01

    Reviews prominent reading theories in light of their accounts of how automatic and control processes combine to produce successful text comprehension, and the trade-offs between the two. Presents the Compensatory-Encoding Model of reading, which explicates how, when, and why automatic and control processes interact. Notes important educational…

  3. Voxel2MCNP: a framework for modeling, simulation and evaluation of radiation transport scenarios for Monte Carlo codes.

    PubMed

    Pölz, Stefan; Laubersheimer, Sven; Eberhardt, Jakob S; Harrendorf, Marco A; Keck, Thomas; Benzler, Andreas; Breustedt, Bastian

    2013-08-21

    The basic idea of Voxel2MCNP is to provide a framework supporting users in modeling radiation transport scenarios using voxel phantoms and other geometric models, generating corresponding input for the Monte Carlo code MCNPX, and evaluating simulation output. Applications at Karlsruhe Institute of Technology are primarily whole and partial body counter calibration and calculation of dose conversion coefficients. A new generic data model describing data related to radiation transport, including phantom and detector geometries and their properties, sources, tallies and materials, has been developed. It is modular and generally independent of the targeted Monte Carlo code. The data model has been implemented as an XML-based file format to facilitate data exchange, and integrated with Voxel2MCNP to provide a common interface for modeling, visualization, and evaluation of data. Also, extensions to allow compatibility with several file formats, such as ENSDF for nuclear structure properties and radioactive decay data, SimpleGeo for solid geometry modeling, ImageJ for voxel lattices, and MCNPX's MCTAL for simulation results have been added. The framework is presented and discussed in this paper and example workflows for body counter calibration and calculation of dose conversion coefficients is given to illustrate its application.

  4. Experiences with Markov Chain Monte Carlo Convergence Assessment in Two Psychometric Examples

    ERIC Educational Resources Information Center

    Sinharay, Sandip

    2004-01-01

    There is an increasing use of Markov chain Monte Carlo (MCMC) algorithms for fitting statistical models in psychometrics, especially in situations where the traditional estimation techniques are very difficult to apply. One of the disadvantages of using an MCMC algorithm is that it is not straightforward to determine the convergence of the…

  5. Estimation of parameters and basic reproduction ratio for Japanese encephalitis transmission in the Philippines using sequential Monte Carlo filter

    USDA-ARS?s Scientific Manuscript database

    We developed a sequential Monte Carlo filter to estimate the states and the parameters in a stochastic model of Japanese Encephalitis (JE) spread in the Philippines. This method is particularly important for its adaptability to the availability of new incidence data. This method can also capture the...

  6. Progressive sampling-based Bayesian optimization for efficient and automatic machine learning model selection.

    PubMed

    Zeng, Xueqiang; Luo, Gang

    2017-12-01

    Machine learning is broadly used for clinical data analysis. Before training a model, a machine learning algorithm must be selected. Also, the values of one or more model parameters termed hyper-parameters must be set. Selecting algorithms and hyper-parameter values requires advanced machine learning knowledge and many labor-intensive manual iterations. To lower the bar to machine learning, miscellaneous automatic selection methods for algorithms and/or hyper-parameter values have been proposed. Existing automatic selection methods are inefficient on large data sets. This poses a challenge for using machine learning in the clinical big data era. To address the challenge, this paper presents progressive sampling-based Bayesian optimization, an efficient and automatic selection method for both algorithms and hyper-parameter values. We report an implementation of the method. We show that compared to a state of the art automatic selection method, our method can significantly reduce search time, classification error rate, and standard deviation of error rate due to randomization. This is major progress towards enabling fast turnaround in identifying high-quality solutions required by many machine learning-based clinical data analysis tasks.

  7. Learning of state-space models with highly informative observations: A tempered sequential Monte Carlo solution

    NASA Astrophysics Data System (ADS)

    Svensson, Andreas; Schön, Thomas B.; Lindsten, Fredrik

    2018-05-01

    Probabilistic (or Bayesian) modeling and learning offers interesting possibilities for systematic representation of uncertainty using probability theory. However, probabilistic learning often leads to computationally challenging problems. Some problems of this type that were previously intractable can now be solved on standard personal computers thanks to recent advances in Monte Carlo methods. In particular, for learning of unknown parameters in nonlinear state-space models, methods based on the particle filter (a Monte Carlo method) have proven very useful. A notoriously challenging problem, however, still occurs when the observations in the state-space model are highly informative, i.e. when there is very little or no measurement noise present, relative to the amount of process noise. The particle filter will then struggle in estimating one of the basic components for probabilistic learning, namely the likelihood p (data | parameters). To this end we suggest an algorithm which initially assumes that there is substantial amount of artificial measurement noise present. The variance of this noise is sequentially decreased in an adaptive fashion such that we, in the end, recover the original problem or possibly a very close approximation of it. The main component in our algorithm is a sequential Monte Carlo (SMC) sampler, which gives our proposed method a clear resemblance to the SMC2 method. Another natural link is also made to the ideas underlying the approximate Bayesian computation (ABC). We illustrate it with numerical examples, and in particular show promising results for a challenging Wiener-Hammerstein benchmark problem.

  8. Probabilistic biosphere modeling for the long-term safety assessment of geological disposal facilities for radioactive waste using first- and second-order Monte Carlo simulation.

    PubMed

    Ciecior, Willy; Röhlig, Klaus-Jürgen; Kirchner, Gerald

    2018-10-01

    In the present paper, deterministic as well as first- and second-order probabilistic biosphere modeling approaches are compared. Furthermore, the sensitivity of the influence of the probability distribution function shape (empirical distribution functions and fitted lognormal probability functions) representing the aleatory uncertainty (also called variability) of a radioecological model parameter as well as the role of interacting parameters are studied. Differences in the shape of the output distributions for the biosphere dose conversion factor from first-order Monte Carlo uncertainty analysis using empirical and fitted lognormal distribution functions for input parameters suggest that a lognormal approximation is possibly not always an adequate representation of the aleatory uncertainty of a radioecological parameter. Concerning the comparison of the impact of aleatory and epistemic parameter uncertainty on the biosphere dose conversion factor, the latter here is described using uncertain moments (mean, variance) while the distribution itself represents the aleatory uncertainty of the parameter. From the results obtained, the solution space of second-order Monte Carlo simulation is much larger than that from first-order Monte Carlo simulation. Therefore, the influence of epistemic uncertainty of a radioecological parameter on the output result is much larger than that one caused by its aleatory uncertainty. Parameter interactions are only of significant influence in the upper percentiles of the distribution of results as well as only in the region of the upper percentiles of the model parameters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titt, U; Suzuki, K

    Purpose: The PTCH is preparing the ocular proton beam nozzle for clinical use. Currently commissioning measurements are being performed using films, diodes and ionization chambers. In parallel, a Monte Carlo model of the beam line was created for integration into the automated Monte Carlo treatment plan computation system, MC{sup 2}. This work aims to compare Monte Carlo predictions to measured proton doses in order to validate the Monte Carlo model. Methods: A complete model of the double scattering ocular beam line has been created and is capable of simulating proton beams with a comprehensive set of beam modifying devices, includingmore » eleven different range modulator wheels. Simulations of doses in water were scored and compare to ion chamber measurements of depth doses, lateral dose profiles extracted from half beam block exposures of films, and diode measurements of lateral penumbrae at various depths. Results: All comparison resulted in an average relative entrance dose difference of less than 3% and peak dose difference of less than 2%. All range differences were smaller than 0.2 mm. The differences in the lateral beam profiles were smaller than 0.2 mm, and the differences in the penumbrae were all smaller than 0.4%. Conclusion: All available data shows excellent agreement of simulations and measurements. More measurements will have to be performed in order to completely and systematically validate the model. Besides simulating and measuring PDDs and lateral profiles of all remaining range modulator wheels, the absolute dosimetry factors in terms of number of source protons per monitor unit have to be determined.« less

  10. Adjustment of automatic control systems of production facilities at coal processing plants using multivariant physico- mathematical models

    NASA Astrophysics Data System (ADS)

    Evtushenko, V. F.; Myshlyaev, L. P.; Makarov, G. V.; Ivushkin, K. A.; Burkova, E. V.

    2016-10-01

    The structure of multi-variant physical and mathematical models of control system is offered as well as its application for adjustment of automatic control system (ACS) of production facilities on the example of coal processing plant.

  11. Integrating the automatic and the controlled: Strategies in Semantic Priming in an Attractor Network with Latching Dynamics

    PubMed Central

    Lerner, Itamar; Bentin, Shlomo; Shriki, Oren

    2014-01-01

    Semantic priming has long been recognized to reflect, along with automatic semantic mechanisms, the contribution of controlled strategies. However, previous theories of controlled priming were mostly qualitative, lacking common grounds with modern mathematical models of automatic priming based on neural networks. Recently, we have introduced a novel attractor network model of automatic semantic priming with latching dynamics. Here, we extend this work to show how the same model can also account for important findings regarding controlled processes. Assuming the rate of semantic transitions in the network can be adapted using simple reinforcement learning, we show how basic findings attributed to controlled processes in priming can be achieved, including their dependency on stimulus onset asynchrony and relatedness proportion and their unique effect on associative, category-exemplar, mediated and backward prime-target relations. We discuss how our mechanism relates to the classic expectancy theory and how it can be further extended in future developments of the model. PMID:24890261

  12. GIS Data Based Automatic High-Fidelity 3D Road Network Modeling

    NASA Technical Reports Server (NTRS)

    Wang, Jie; Shen, Yuzhong

    2011-01-01

    3D road models are widely used in many computer applications such as racing games and driving simulations_ However, almost all high-fidelity 3D road models were generated manually by professional artists at the expense of intensive labor. There are very few existing methods for automatically generating 3D high-fidelity road networks, especially those existing in the real world. This paper presents a novel approach thai can automatically produce 3D high-fidelity road network models from real 2D road GIS data that mainly contain road. centerline in formation. The proposed method first builds parametric representations of the road centerlines through segmentation and fitting . A basic set of civil engineering rules (e.g., cross slope, superelevation, grade) for road design are then selected in order to generate realistic road surfaces in compliance with these rules. While the proposed method applies to any types of roads, this paper mainly addresses automatic generation of complex traffic interchanges and intersections which are the most sophisticated elements in the road networks

  13. Accuracy of Monte Carlo simulations compared to in-vivo MDCT dosimetry.

    PubMed

    Bostani, Maryam; Mueller, Jonathon W; McMillan, Kyle; Cody, Dianna D; Cagnon, Chris H; DeMarco, John J; McNitt-Gray, Michael F

    2015-02-01

    The purpose of this study was to assess the accuracy of a Monte Carlo simulation-based method for estimating radiation dose from multidetector computed tomography (MDCT) by comparing simulated doses in ten patients to in-vivo dose measurements. MD Anderson Cancer Center Institutional Review Board approved the acquisition of in-vivo rectal dose measurements in a pilot study of ten patients undergoing virtual colonoscopy. The dose measurements were obtained by affixing TLD capsules to the inner lumen of rectal catheters. Voxelized patient models were generated from the MDCT images of the ten patients, and the dose to the TLD for all exposures was estimated using Monte Carlo based simulations. The Monte Carlo simulation results were compared to the in-vivo dose measurements to determine accuracy. The calculated mean percent difference between TLD measurements and Monte Carlo simulations was -4.9% with standard deviation of 8.7% and a range of -22.7% to 5.7%. The results of this study demonstrate very good agreement between simulated and measured doses in-vivo. Taken together with previous validation efforts, this work demonstrates that the Monte Carlo simulation methods can provide accurate estimates of radiation dose in patients undergoing CT examinations.

  14. Employment, Production and Consumption model: Patterns of phase transitions

    NASA Astrophysics Data System (ADS)

    Lavička, H.; Lin, L.; Novotný, J.

    2010-04-01

    We have simulated the model of Employment, Production and Consumption (EPC) using Monte Carlo. The EPC model is an agent based model that mimics very basic rules of industrial economy. From the perspective of physics, the nature of the interactions in the EPC model represents multi-agent interactions where the relations among agents follow the key laws for circulation of capital and money. Monte Carlo simulations of the stochastic model reveal phase transition in the model economy. The two phases are the phase with full unemployment and the phase with nearly full employment. The economy switches between these two states suddenly as a reaction to a slight variation in the exogenous parameter, thus the system exhibits strong non-linear behavior as a response to the change of the exogenous parameters.

  15. A Monte Carlo model for 3D grain evolution during welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, Theron M.; Mitchell, John A.; Tikare, Veena

    Welding is one of the most wide-spread processes used in metal joining. However, there are currently no open-source software implementations for the simulation of microstructural evolution during a weld pass. Here we describe a Potts Monte Carlo based model implemented in the SPPARKS kinetic Monte Carlo computational framework. The model simulates melting, solidification and solid-state microstructural evolution of material in the fusion and heat-affected zones of a weld. The model does not simulate thermal behavior, but rather utilizes user input parameters to specify weld pool and heat-affect zone properties. Weld pool shapes are specified by Bezier curves, which allow formore » the specification of a wide range of pool shapes. Pool shapes can range from narrow and deep to wide and shallow representing different fluid flow conditions within the pool. Surrounding temperature gradients are calculated with the aide of a closest point projection algorithm. Furthermore, the model also allows simulation of pulsed power welding through time-dependent variation of the weld pool size. Example simulation results and comparisons with laboratory weld observations demonstrate microstructural variation with weld speed, pool shape, and pulsed-power.« less

  16. A Monte Carlo model for 3D grain evolution during welding

    DOE PAGES

    Rodgers, Theron M.; Mitchell, John A.; Tikare, Veena

    2017-08-04

    Welding is one of the most wide-spread processes used in metal joining. However, there are currently no open-source software implementations for the simulation of microstructural evolution during a weld pass. Here we describe a Potts Monte Carlo based model implemented in the SPPARKS kinetic Monte Carlo computational framework. The model simulates melting, solidification and solid-state microstructural evolution of material in the fusion and heat-affected zones of a weld. The model does not simulate thermal behavior, but rather utilizes user input parameters to specify weld pool and heat-affect zone properties. Weld pool shapes are specified by Bezier curves, which allow formore » the specification of a wide range of pool shapes. Pool shapes can range from narrow and deep to wide and shallow representing different fluid flow conditions within the pool. Surrounding temperature gradients are calculated with the aide of a closest point projection algorithm. Furthermore, the model also allows simulation of pulsed power welding through time-dependent variation of the weld pool size. Example simulation results and comparisons with laboratory weld observations demonstrate microstructural variation with weld speed, pool shape, and pulsed-power.« less

  17. Point-based warping with optimized weighting factors of displacement vectors

    NASA Astrophysics Data System (ADS)

    Pielot, Ranier; Scholz, Michael; Obermayer, Klaus; Gundelfinger, Eckart D.; Hess, Andreas

    2000-06-01

    The accurate comparison of inter-individual 3D image brain datasets requires non-affine transformation techniques (warping) to reduce geometric variations. Constrained by the biological prerequisites we use in this study a landmark-based warping method with weighted sums of displacement vectors, which is enhanced by an optimization process. Furthermore, we investigate fast automatic procedures for determining landmarks to improve the practicability of 3D warping. This combined approach was tested on 3D autoradiographs of Gerbil brains. The autoradiographs were obtained after injecting a non-metabolized radioactive glucose derivative into the Gerbil thereby visualizing neuronal activity in the brain. Afterwards the brain was processed with standard autoradiographical methods. The landmark-generator computes corresponding reference points simultaneously within a given number of datasets by Monte-Carlo-techniques. The warping function is a distance weighted exponential function with a landmark- specific weighting factor. These weighting factors are optimized by a computational evolution strategy. The warping quality is quantified by several coefficients (correlation coefficient, overlap-index, and registration error). The described approach combines a highly suitable procedure to automatically detect landmarks in autoradiographical brain images and an enhanced point-based warping technique, optimizing the local weighting factors. This optimization process significantly improves the similarity between the warped and the target dataset.

  18. Adaptation of a cubic smoothing spline algortihm for multi-channel data stitching at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, C; Adcock, A; Azevedo, S

    2010-12-28

    Some diagnostics at the National Ignition Facility (NIF), including the Gamma Reaction History (GRH) diagnostic, require multiple channels of data to achieve the required dynamic range. These channels need to be stitched together into a single time series, and they may have non-uniform and redundant time samples. We chose to apply the popular cubic smoothing spline technique to our stitching problem because we needed a general non-parametric method. We adapted one of the algorithms in the literature, by Hutchinson and deHoog, to our needs. The modified algorithm and the resulting code perform a cubic smoothing spline fit to multiple datamore » channels with redundant time samples and missing data points. The data channels can have different, time-varying, zero-mean white noise characteristics. The method we employ automatically determines an optimal smoothing level by minimizing the Generalized Cross Validation (GCV) score. In order to automatically validate the smoothing level selection, the Weighted Sum-Squared Residual (WSSR) and zero-mean tests are performed on the residuals. Further, confidence intervals, both analytical and Monte Carlo, are also calculated. In this paper, we describe the derivation of our cubic smoothing spline algorithm. We outline the algorithm and test it with simulated and experimental data.« less

  19. Man vs. Machine: An interactive poll to evaluate hydrological model performance of a manual and an automatic calibration

    NASA Astrophysics Data System (ADS)

    Wesemann, Johannes; Burgholzer, Reinhard; Herrnegger, Mathew; Schulz, Karsten

    2017-04-01

    In recent years, a lot of research in hydrological modelling has been invested to improve the automatic calibration of rainfall-runoff models. This includes for example (1) the implementation of new optimisation methods, (2) the incorporation of new and different objective criteria and signatures in the optimisation and (3) the usage of auxiliary data sets apart from runoff. Nevertheless, in many applications manual calibration is still justifiable and frequently applied. The hydrologist performing the manual calibration, with his expert knowledge, is able to judge the hydrographs simultaneously concerning details but also in a holistic view. This integrated eye-ball verification procedure available to man can be difficult to formulate in objective criteria, even when using a multi-criteria approach. Comparing the results of automatic and manual calibration is not straightforward. Automatic calibration often solely involves objective criteria such as Nash-Sutcliffe Efficiency Coefficient or the Kling-Gupta-Efficiency as a benchmark during the calibration. Consequently, a comparison based on such measures is intrinsically biased towards automatic calibration. Additionally, objective criteria do not cover all aspects of a hydrograph leaving questions concerning the quality of a simulation open. This contribution therefore seeks to examine the quality of manually and automatically calibrated hydrographs by interactively involving expert knowledge in the evaluation. Simulations have been performed for the Mur catchment in Austria with the rainfall-runoff model COSERO using two parameter sets evolved from a manual and an automatic calibration. A subset of resulting hydrographs for observation and simulation, representing the typical flow conditions and events, will be evaluated in this study. In an interactive crowdsourcing approach experts attending the session can vote for their preferred simulated hydrograph without having information on the calibration method that produced the respective hydrograph. Therefore, the result of the poll can be seen as an additional quality criterion for the comparison of the two different approaches and help in the evaluation of the automatic calibration method.

  20. Monte Carlo verification of radiotherapy treatments with CloudMC.

    PubMed

    Miras, Hector; Jiménez, Rubén; Perales, Álvaro; Terrón, José Antonio; Bertolet, Alejandro; Ortiz, Antonio; Macías, José

    2018-06-27

    A new implementation has been made on CloudMC, a cloud-based platform presented in a previous work, in order to provide services for radiotherapy treatment verification by means of Monte Carlo in a fast, easy and economical way. A description of the architecture of the application and the new developments implemented is presented together with the results of the tests carried out to validate its performance. CloudMC has been developed over Microsoft Azure cloud. It is based on a map/reduce implementation for Monte Carlo calculations distribution over a dynamic cluster of virtual machines in order to reduce calculation time. CloudMC has been updated with new methods to read and process the information related to radiotherapy treatment verification: CT image set, treatment plan, structures and dose distribution files in DICOM format. Some tests have been designed in order to determine, for the different tasks, the most suitable type of virtual machines from those available in Azure. Finally, the performance of Monte Carlo verification in CloudMC is studied through three real cases that involve different treatment techniques, linac models and Monte Carlo codes. Considering computational and economic factors, D1_v2 and G1 virtual machines were selected as the default type for the Worker Roles and the Reducer Role respectively. Calculation times up to 33 min and costs of 16 € were achieved for the verification cases presented when a statistical uncertainty below 2% (2σ) was required. The costs were reduced to 3-6 € when uncertainty requirements are relaxed to 4%. Advantages like high computational power, scalability, easy access and pay-per-usage model, make Monte Carlo cloud-based solutions, like the one presented in this work, an important step forward to solve the long-lived problem of truly introducing the Monte Carlo algorithms in the daily routine of the radiotherapy planning process.

  1. Path Toward a Unified Geometry for Radiation Transport

    NASA Astrophysics Data System (ADS)

    Lee, Kerry

    The Direct Accelerated Geometry for Radiation Analysis and Design (DAGRAD) element of the RadWorks Project under Advanced Exploration Systems (AES) within the Space Technology Mission Directorate (STMD) of NASA will enable new designs and concepts of operation for radiation risk assessment, mitigation and protection. This element is designed to produce a solution that will allow NASA to calculate the transport of space radiation through complex CAD models using the state-of-the-art analytic and Monte Carlo radiation transport codes. Due to the inherent hazard of astronaut and spacecraft exposure to ionizing radiation in low-Earth orbit (LEO) or in deep space, risk analyses must be performed for all crew vehicles and habitats. Incorporating these analyses into the design process can minimize the mass needed solely for radiation protection. Transport of the radiation fields as they pass through shielding and body materials can be simulated using Monte Carlo techniques or described by the Boltzmann equation, which is obtained by balancing changes in particle fluxes as they traverse a small volume of material with the gains and losses caused by atomic and nuclear collisions. Deterministic codes that solve the Boltzmann transport equation, such as HZETRN (high charge and energy transport code developed by NASA LaRC), are generally computationally faster than Monte Carlo codes such as FLUKA, GEANT4, MCNP(X) or PHITS; however, they are currently limited to transport in one dimension, which poorly represents the secondary light ion and neutron radiation fields. NASA currently uses HZETRN space radiation transport software, both because it is computationally efficient and because proven methods have been developed for using this software to analyze complex geometries. Although Monte Carlo codes describe the relevant physics in a fully three-dimensional manner, their computational costs have thus far prevented their widespread use for analysis of complex CAD models, leading to the creation and maintenance of toolkit specific simplistic geometry models. The work presented here builds on the Direct Accelerated Geometry Monte Carlo (DAGMC) toolkit developed for use with the Monte Carlo N-Particle (MCNP) transport code. The work-flow for doing radiation transport on CAD models using MCNP and FLUKA has been demonstrated and the results of analyses on realistic spacecraft/habitats will be presented. Future work is planned that will further automate this process and enable the use of multiple radiation transport codes on identical geometry models imported from CAD. This effort will enhance the modeling tools used by NASA to accurately evaluate the astronaut space radiation risk and accurately determine the protection provided by as-designed exploration mission vehicles and habitats.

  2. Combining MEDLINE and publisher data to create parallel corpora for the automatic translation of biomedical text

    PubMed Central

    2013-01-01

    Background Most of the institutional and research information in the biomedical domain is available in the form of English text. Even in countries where English is an official language, such as the United States, language can be a barrier for accessing biomedical information for non-native speakers. Recent progress in machine translation suggests that this technique could help make English texts accessible to speakers of other languages. However, the lack of adequate specialized corpora needed to train statistical models currently limits the quality of automatic translations in the biomedical domain. Results We show how a large-sized parallel corpus can automatically be obtained for the biomedical domain, using the MEDLINE database. The corpus generated in this work comprises article titles obtained from MEDLINE and abstract text automatically retrieved from journal websites, which substantially extends the corpora used in previous work. After assessing the quality of the corpus for two language pairs (English/French and English/Spanish) we use the Moses package to train a statistical machine translation model that outperforms previous models for automatic translation of biomedical text. Conclusions We have built translation data sets in the biomedical domain that can easily be extended to other languages available in MEDLINE. These sets can successfully be applied to train statistical machine translation models. While further progress should be made by incorporating out-of-domain corpora and domain-specific lexicons, we believe that this work improves the automatic translation of biomedical texts. PMID:23631733

  3. A comparison of conscious and automatic memory processes for picture and word stimuli: a process dissociation analysis.

    PubMed

    McBride, Dawn M; Anne Dosher, Barbara

    2002-09-01

    Four experiments were conducted to evaluate explanations of picture superiority effects previously found for several tasks. In a process dissociation procedure (Jacoby, 1991) with word stem completion, picture fragment completion, and category production tasks, conscious and automatic memory processes were compared for studied pictures and words with an independent retrieval model and a generate-source model. The predictions of a transfer appropriate processing account of picture superiority were tested and validated in "process pure" latent measures of conscious and unconscious, or automatic and source, memory processes. Results from both model fits verified that pictures had a conceptual (conscious/source) processing advantage over words for all tasks. The effects of perceptual (automatic/word generation) compatibility depended on task type, with pictorial tasks favoring pictures and linguistic tasks favoring words. Results show support for an explanation of the picture superiority effect that involves an interaction of encoding and retrieval processes.

  4. Automatic lumbar vertebrae detection based on feature fusion deep learning for partial occluded C-arm X-ray images.

    PubMed

    Yang Li; Wei Liang; Yinlong Zhang; Haibo An; Jindong Tan

    2016-08-01

    Automatic and accurate lumbar vertebrae detection is an essential step of image-guided minimally invasive spine surgery (IG-MISS). However, traditional methods still require human intervention due to the similarity of vertebrae, abnormal pathological conditions and uncertain imaging angle. In this paper, we present a novel convolutional neural network (CNN) model to automatically detect lumbar vertebrae for C-arm X-ray images. Training data is augmented by DRR and automatic segmentation of ROI is able to reduce the computational complexity. Furthermore, a feature fusion deep learning (FFDL) model is introduced to combine two types of features of lumbar vertebrae X-ray images, which uses sobel kernel and Gabor kernel to obtain the contour and texture of lumbar vertebrae, respectively. Comprehensive qualitative and quantitative experiments demonstrate that our proposed model performs more accurate in abnormal cases with pathologies and surgical implants in multi-angle views.

  5. Using suggestion to model different types of automatic writing.

    PubMed

    Walsh, E; Mehta, M A; Oakley, D A; Guilmette, D N; Gabay, A; Halligan, P W; Deeley, Q

    2014-05-01

    Our sense of self includes awareness of our thoughts and movements, and our control over them. This feeling can be altered or lost in neuropsychiatric disorders as well as in phenomena such as "automatic writing" whereby writing is attributed to an external source. Here, we employed suggestion in highly hypnotically suggestible participants to model various experiences of automatic writing during a sentence completion task. Results showed that the induction of hypnosis, without additional suggestion, was associated with a small but significant reduction of control, ownership, and awareness for writing. Targeted suggestions produced a double dissociation between thought and movement components of writing, for both feelings of control and ownership, and additionally, reduced awareness of writing. Overall, suggestion produced selective alterations in the control, ownership, and awareness of thought and motor components of writing, thus enabling key aspects of automatic writing, observed across different clinical and cultural settings, to be modelled. Copyright © 2014. Published by Elsevier Inc.

  6. Monte Carlo simulation for light propagation in 3D tooth model

    NASA Astrophysics Data System (ADS)

    Fu, Yongji; Jacques, Steven L.

    2011-03-01

    Monte Carlo (MC) simulation was implemented in a three dimensional tooth model to simulate the light propagation in the tooth for antibiotic photodynamic therapy and other laser therapy. The goal of this research is to estimate the light energy deposition in the target region of tooth with given light source information, tooth optical properties and tooth structure. Two use cases were presented to demonstrate the practical application of this model. One case was comparing the isotropic point source and narrow beam dosage distribution and the other case was comparing different incident points for the same light source. This model will help the doctor for PDT design in the tooth.

  7. Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method

    NASA Astrophysics Data System (ADS)

    He, Wei; Williard, Nicholas; Osterman, Michael; Pecht, Michael

    A new method for state of health (SOH) and remaining useful life (RUL) estimations for lithium-ion batteries using Dempster-Shafer theory (DST) and the Bayesian Monte Carlo (BMC) method is proposed. In this work, an empirical model based on the physical degradation behavior of lithium-ion batteries is developed. Model parameters are initialized by combining sets of training data based on DST. BMC is then used to update the model parameters and predict the RUL based on available data through battery capacity monitoring. As more data become available, the accuracy of the model in predicting RUL improves. Two case studies demonstrating this approach are presented.

  8. Correlated Production and Analog Transport of Fission Neutrons and Photons using Fission Models FREYA, FIFRELIN and the Monte Carlo Code TRIPOLI-4® .

    NASA Astrophysics Data System (ADS)

    Verbeke, Jérôme M.; Petit, Odile; Chebboubi, Abdelhazize; Litaize, Olivier

    2018-01-01

    Fission modeling in general-purpose Monte Carlo transport codes often relies on average nuclear data provided by international evaluation libraries. As such, only average fission multiplicities are available and correlations between fission neutrons and photons are missing. Whereas uncorrelated fission physics is usually sufficient for standard reactor core and radiation shielding calculations, correlated fission secondaries are required for specialized nuclear instrumentation and detector modeling. For coincidence counting detector optimization for instance, precise simulation of fission neutrons and photons that remain correlated in time from birth to detection is essential. New developments were recently integrated into the Monte Carlo transport code TRIPOLI-4 to model fission physics more precisely, the purpose being to access event-by-event fission events from two different fission models: FREYA and FIFRELIN. TRIPOLI-4 simulations can now be performed, either by connecting via an API to the LLNL fission library including FREYA, or by reading external fission event data files produced by FIFRELIN beforehand. These new capabilities enable us to easily compare results from Monte Carlo transport calculations using the two fission models in a nuclear instrumentation application. In the first part of this paper, broad underlying principles of the two fission models are recalled. We then present experimental measurements of neutron angular correlations for 252Cf(sf) and 240Pu(sf). The correlations were measured for several neutron kinetic energy thresholds. In the latter part of the paper, simulation results are compared to experimental data. Spontaneous fissions in 252Cf and 240Pu are modeled by FREYA or FIFRELIN. Emitted neutrons and photons are subsequently transported to an array of scintillators by TRIPOLI-4 in analog mode to preserve their correlations. Angular correlations between fission neutrons obtained independently from these TRIPOLI-4 simulations, using either FREYA or FIFRELIN, are compared to experimental results. For 240Pu(sf), the measured correlations were used to tune the model parameters.

  9. On the modeling of the 2010 Gulf of Mexico Oil Spill

    NASA Astrophysics Data System (ADS)

    Mariano, A. J.; Kourafalou, V. H.; Srinivasan, A.; Kang, H.; Halliwell, G. R.; Ryan, E. H.; Roffer, M.

    2011-09-01

    Two oil particle trajectory forecasting systems were developed and applied to the 2010 Deepwater Horizon Oil Spill in the Gulf of Mexico. Both systems use ocean current fields from high-resolution numerical ocean circulation model simulations, Lagrangian stochastic models to represent unresolved sub-grid scale variability to advect oil particles, and Monte Carlo-based schemes for representing uncertain biochemical and physical processes. The first system assumes two-dimensional particle motion at the ocean surface, the oil is in one state, and the particle removal is modeled as a Monte Carlo process parameterized by a one number removal rate. Oil particles are seeded using both initial conditions based on observations and particles released at the location of the Maconda well. The initial conditions (ICs) of oil particle location for the two-dimensional surface oil trajectory forecasts are based on a fusing of all available information including satellite-based analyses. The resulting oil map is digitized into a shape file within which a polygon filling software generates longitude and latitude with variable particle density depending on the amount of oil present in the observations for the IC. The more complex system assumes three (light, medium, heavy) states for the oil, each state has a different removal rate in the Monte Carlo process, three-dimensional particle motion, and a particle size-dependent oil mixing model. Simulations from the two-dimensional forecast system produced results that qualitatively agreed with the uncertain "truth" fields. These simulations validated the use of our Monte Carlo scheme for representing oil removal by evaporation and other weathering processes. Eulerian velocity fields for predicting particle motion from data-assimilative models produced better particle trajectory distributions than a free running model with no data assimilation. Monte Carlo simulations of the three-dimensional oil particle trajectory, whose ensembles were generated by perturbing the size of the oil particles and the fraction in a given size range that are released at depth, the two largest unknowns in this problem. 36 realizations of the model were run with only subsurface oil releases. An average of these results yields that after three months, about 25% of the oil remains in the water column and that most of the oil is below 800 m.

  10. Three-dimensional Monte Carlo model of pulsed-laser treatment of cutaneous vascular lesions

    NASA Astrophysics Data System (ADS)

    Milanič, Matija; Majaron, Boris

    2011-12-01

    We present a three-dimensional Monte Carlo model of optical transport in skin with a novel approach to treatment of side boundaries of the volume of interest. This represents an effective way to overcome the inherent limitations of ``escape'' and ``mirror'' boundary conditions and enables high-resolution modeling of skin inclusions with complex geometries and arbitrary irradiation patterns. The optical model correctly reproduces measured values of diffuse reflectance for normal skin. When coupled with a sophisticated model of thermal transport and tissue coagulation kinetics, it also reproduces realistic values of radiant exposure thresholds for epidermal injury and for photocoagulation of port wine stain blood vessels in various skin phototypes, with or without application of cryogen spray cooling.

  11. Fast automatic 3D liver segmentation based on a three-level AdaBoost-guided active shape model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Baochun; Huang, Cheng; Zhou, Shoujun

    Purpose: A robust, automatic, and rapid method for liver delineation is urgently needed for the diagnosis and treatment of liver disorders. Until now, the high variability in liver shape, local image artifacts, and the presence of tumors have complicated the development of automatic 3D liver segmentation. In this study, an automatic three-level AdaBoost-guided active shape model (ASM) is proposed for the segmentation of the liver based on enhanced computed tomography images in a robust and fast manner, with an emphasis on the detection of tumors. Methods: The AdaBoost voxel classifier and AdaBoost profile classifier were used to automatically guide three-levelmore » active shape modeling. In the first level of model initialization, fast automatic liver segmentation by an AdaBoost voxel classifier method is proposed. A shape model is then initialized by registration with the resulting rough segmentation. In the second level of active shape model fitting, a prior model based on the two-class AdaBoost profile classifier is proposed to identify the optimal surface. In the third level, a deformable simplex mesh with profile probability and curvature constraint as the external force is used to refine the shape fitting result. In total, three registration methods—3D similarity registration, probability atlas B-spline, and their proposed deformable closest point registration—are used to establish shape correspondence. Results: The proposed method was evaluated using three public challenge datasets: 3Dircadb1, SLIVER07, and Visceral Anatomy3. The results showed that our approach performs with promising efficiency, with an average of 35 s, and accuracy, with an average Dice similarity coefficient (DSC) of 0.94 ± 0.02, 0.96 ± 0.01, and 0.94 ± 0.02 for the 3Dircadb1, SLIVER07, and Anatomy3 training datasets, respectively. The DSC of the SLIVER07 testing and Anatomy3 unseen testing datasets were 0.964 and 0.933, respectively. Conclusions: The proposed automatic approach achieves robust, accurate, and fast liver segmentation for 3D CTce datasets. The AdaBoost voxel classifier can detect liver area quickly without errors and provides sufficient liver shape information for model initialization. The AdaBoost profile classifier achieves sufficient accuracy and greatly decreases segmentation time. These results show that the proposed segmentation method achieves a level of accuracy comparable to that of state-of-the-art automatic methods based on ASM.« less

  12. Fast automatic 3D liver segmentation based on a three-level AdaBoost-guided active shape model.

    PubMed

    He, Baochun; Huang, Cheng; Sharp, Gregory; Zhou, Shoujun; Hu, Qingmao; Fang, Chihua; Fan, Yingfang; Jia, Fucang

    2016-05-01

    A robust, automatic, and rapid method for liver delineation is urgently needed for the diagnosis and treatment of liver disorders. Until now, the high variability in liver shape, local image artifacts, and the presence of tumors have complicated the development of automatic 3D liver segmentation. In this study, an automatic three-level AdaBoost-guided active shape model (ASM) is proposed for the segmentation of the liver based on enhanced computed tomography images in a robust and fast manner, with an emphasis on the detection of tumors. The AdaBoost voxel classifier and AdaBoost profile classifier were used to automatically guide three-level active shape modeling. In the first level of model initialization, fast automatic liver segmentation by an AdaBoost voxel classifier method is proposed. A shape model is then initialized by registration with the resulting rough segmentation. In the second level of active shape model fitting, a prior model based on the two-class AdaBoost profile classifier is proposed to identify the optimal surface. In the third level, a deformable simplex mesh with profile probability and curvature constraint as the external force is used to refine the shape fitting result. In total, three registration methods-3D similarity registration, probability atlas B-spline, and their proposed deformable closest point registration-are used to establish shape correspondence. The proposed method was evaluated using three public challenge datasets: 3Dircadb1, SLIVER07, and Visceral Anatomy3. The results showed that our approach performs with promising efficiency, with an average of 35 s, and accuracy, with an average Dice similarity coefficient (DSC) of 0.94 ± 0.02, 0.96 ± 0.01, and 0.94 ± 0.02 for the 3Dircadb1, SLIVER07, and Anatomy3 training datasets, respectively. The DSC of the SLIVER07 testing and Anatomy3 unseen testing datasets were 0.964 and 0.933, respectively. The proposed automatic approach achieves robust, accurate, and fast liver segmentation for 3D CTce datasets. The AdaBoost voxel classifier can detect liver area quickly without errors and provides sufficient liver shape information for model initialization. The AdaBoost profile classifier achieves sufficient accuracy and greatly decreases segmentation time. These results show that the proposed segmentation method achieves a level of accuracy comparable to that of state-of-the-art automatic methods based on ASM.

  13. pyNSMC: A Python Module for Null-Space Monte Carlo Uncertainty Analysis

    NASA Astrophysics Data System (ADS)

    White, J.; Brakefield, L. K.

    2015-12-01

    The null-space monte carlo technique is a non-linear uncertainty analyses technique that is well-suited to high-dimensional inverse problems. While the technique is powerful, the existing workflow for completing null-space monte carlo is cumbersome, requiring the use of multiple commandline utilities, several sets of intermediate files and even a text editor. pyNSMC is an open-source python module that automates the workflow of null-space monte carlo uncertainty analyses. The module is fully compatible with the PEST and PEST++ software suites and leverages existing functionality of pyEMU, a python framework for linear-based uncertainty analyses. pyNSMC greatly simplifies the existing workflow for null-space monte carlo by taking advantage of object oriented design facilities in python. The core of pyNSMC is the ensemble class, which draws and stores realized random vectors and also provides functionality for exporting and visualizing results. By relieving users of the tedium associated with file handling and command line utility execution, pyNSMC instead focuses the user on the important steps and assumptions of null-space monte carlo analysis. Furthermore, pyNSMC facilitates learning through flow charts and results visualization, which are available at many points in the algorithm. The ease-of-use of the pyNSMC workflow is compared to the existing workflow for null-space monte carlo for a synthetic groundwater model with hundreds of estimable parameters.

  14. Monte Carlo simulation of proton track structure in biological matter

    DOE PAGES

    Quinto, Michele A.; Monti, Juan M.; Weck, Philippe F.; ...

    2017-05-25

    Here, understanding the radiation-induced effects at the cellular and subcellular levels remains crucial for predicting the evolution of irradiated biological matter. In this context, Monte Carlo track-structure simulations have rapidly emerged among the most suitable and powerful tools. However, most existing Monte Carlo track-structure codes rely heavily on the use of semi-empirical cross sections as well as water as a surrogate for biological matter. In the current work, we report on the up-to-date version of our homemade Monte Carlo code TILDA-V – devoted to the modeling of the slowing-down of 10 keV–100 MeV protons in both water and DNA –more » where the main collisional processes are described by means of an extensive set of ab initio differential and total cross sections.« less

  15. Monte Carlo simulation of proton track structure in biological matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinto, Michele A.; Monti, Juan M.; Weck, Philippe F.

    Here, understanding the radiation-induced effects at the cellular and subcellular levels remains crucial for predicting the evolution of irradiated biological matter. In this context, Monte Carlo track-structure simulations have rapidly emerged among the most suitable and powerful tools. However, most existing Monte Carlo track-structure codes rely heavily on the use of semi-empirical cross sections as well as water as a surrogate for biological matter. In the current work, we report on the up-to-date version of our homemade Monte Carlo code TILDA-V – devoted to the modeling of the slowing-down of 10 keV–100 MeV protons in both water and DNA –more » where the main collisional processes are described by means of an extensive set of ab initio differential and total cross sections.« less

  16. Towards Automatic Processing of Virtual City Models for Simulations

    NASA Astrophysics Data System (ADS)

    Piepereit, R.; Schilling, A.; Alam, N.; Wewetzer, M.; Pries, M.; Coors, V.

    2016-10-01

    Especially in the field of numerical simulations, such as flow and acoustic simulations, the interest in using virtual 3D models to optimize urban systems is increasing. The few instances in which simulations were already carried out in practice have been associated with an extremely high manual and therefore uneconomical effort for the processing of models. Using different ways of capturing models in Geographic Information System (GIS) and Computer Aided Engineering (CAE), increases the already very high complexity of the processing. To obtain virtual 3D models suitable for simulation, we developed a tool for automatic processing with the goal to establish ties between the world of GIS and CAE. In this paper we introduce a way to use Coons surfaces for the automatic processing of building models in LoD2, and investigate ways to simplify LoD3 models in order to reduce unnecessary information for a numerical simulation.

  17. Automatic Coding of Short Text Responses via Clustering in Educational Assessment

    ERIC Educational Resources Information Center

    Zehner, Fabian; Sälzer, Christine; Goldhammer, Frank

    2016-01-01

    Automatic coding of short text responses opens new doors in assessment. We implemented and integrated baseline methods of natural language processing and statistical modelling by means of software components that are available under open licenses. The accuracy of automatic text coding is demonstrated by using data collected in the "Programme…

  18. Simulation of Satellite, Airborne and Terrestrial LiDAR with DART (I):Waveform Simulation with Quasi-Monte Carlo Ray Tracing

    NASA Technical Reports Server (NTRS)

    Gastellu-Etchegorry, Jean-Philippe; Yin, Tiangang; Lauret, Nicolas; Grau, Eloi; Rubio, Jeremy; Cook, Bruce D.; Morton, Douglas C.; Sun, Guoqing

    2016-01-01

    Light Detection And Ranging (LiDAR) provides unique data on the 3-D structure of atmosphere constituents and the Earth's surface. Simulating LiDAR returns for different laser technologies and Earth scenes is fundamental for evaluating and interpreting signal and noise in LiDAR data. Different types of models are capable of simulating LiDAR waveforms of Earth surfaces. Semi-empirical and geometric models can be imprecise because they rely on simplified simulations of Earth surfaces and light interaction mechanisms. On the other hand, Monte Carlo ray tracing (MCRT) models are potentially accurate but require long computational time. Here, we present a new LiDAR waveform simulation tool that is based on the introduction of a quasi-Monte Carlo ray tracing approach in the Discrete Anisotropic Radiative Transfer (DART) model. Two new approaches, the so-called "box method" and "Ray Carlo method", are implemented to provide robust and accurate simulations of LiDAR waveforms for any landscape, atmosphere and LiDAR sensor configuration (view direction, footprint size, pulse characteristics, etc.). The box method accelerates the selection of the scattering direction of a photon in the presence of scatterers with non-invertible phase function. The Ray Carlo method brings traditional ray-tracking into MCRT simulation, which makes computational time independent of LiDAR field of view (FOV) and reception solid angle. Both methods are fast enough for simulating multi-pulse acquisition. Sensitivity studies with various landscapes and atmosphere constituents are presented, and the simulated LiDAR signals compare favorably with their associated reflectance images and Laser Vegetation Imaging Sensor (LVIS) waveforms. The LiDAR module is fully integrated into DART, enabling more detailed simulations of LiDAR sensitivity to specific scene elements (e.g., atmospheric aerosols, leaf area, branches, or topography) and sensor configuration for airborne or satellite LiDAR sensors.

  19. Vertically Integrated Seismological Analysis II : Inference

    NASA Astrophysics Data System (ADS)

    Arora, N. S.; Russell, S.; Sudderth, E.

    2009-12-01

    Methods for automatically associating detected waveform features with hypothesized seismic events, and localizing those events, are a critical component of efforts to verify the Comprehensive Test Ban Treaty (CTBT). As outlined in our companion abstract, we have developed a hierarchical model which views detection, association, and localization as an integrated probabilistic inference problem. In this abstract, we provide more details on the Markov chain Monte Carlo (MCMC) methods used to solve this inference task. MCMC generates samples from a posterior distribution π(x) over possible worlds x by defining a Markov chain whose states are the worlds x, and whose stationary distribution is π(x). In the Metropolis-Hastings (M-H) method, transitions in the Markov chain are constructed in two steps. First, given the current state x, a candidate next state x‧ is generated from a proposal distribution q(x‧ | x), which may be (more or less) arbitrary. Second, the transition to x‧ is not automatic, but occurs with an acceptance probability—α(x‧ | x) = min(1, π(x‧)q(x | x‧)/π(x)q(x‧ | x)). The seismic event model outlined in our companion abstract is quite similar to those used in multitarget tracking, for which MCMC has proved very effective. In this model, each world x is defined by a collection of events, a list of properties characterizing those events (times, locations, magnitudes, and types), and the association of each event to a set of observed detections. The target distribution π(x) = P(x | y), the posterior distribution over worlds x given the observed waveform data y at all stations. Proposal distributions then implement several types of moves between worlds. For example, birth moves create new events; death moves delete existing events; split moves partition the detections for an event into two new events; merge moves combine event pairs; swap moves modify the properties and assocations for pairs of events. Importantly, the rules for accepting such complex moves need not be hand-designed. Instead, they are automatically determined by the underlying probabilistic model, which is in turn calibrated via historical data and scientific knowledge. Consider a small seismic event which generates weak signals at several different stations, which might independently be mistaken for noise. A birth move may nevertheless hypothesize an event jointly explaining these detections. If the corresponding waveform data then aligns with the seismological knowledge encoded in the probabilistic model, the event may be detected even though no single station observes it unambiguously. Alternatively, if a large outlier reading is produced at a single station, moves which instantiate a corresponding (false) event would be rejected because of the absence of plausible detections at other sensors. More broadly, one of the main advantages of our MCMC approach is its consistent handling of the relative uncertainties in different information sources. By avoiding low-level thresholds, we expect to improve accuracy and robustness. At the conference, we will present results quantitatively validating our approach, using ground-truth associations and locations provided either by simulation or human analysts.

  20. Automatic Determination of the Conic Coronal Mass Ejection Model Parameters

    NASA Technical Reports Server (NTRS)

    Pulkkinen, A.; Oates, T.; Taktakishvili, A.

    2009-01-01

    Characterization of the three-dimensional structure of solar transients using incomplete plane of sky data is a difficult problem whose solutions have potential for societal benefit in terms of space weather applications. In this paper transients are characterized in three dimensions by means of conic coronal mass ejection (CME) approximation. A novel method for the automatic determination of cone model parameters from observed halo CMEs is introduced. The method uses both standard image processing techniques to extract the CME mass from white-light coronagraph images and a novel inversion routine providing the final cone parameters. A bootstrap technique is used to provide model parameter distributions. When combined with heliospheric modeling, the cone model parameter distributions will provide direct means for ensemble predictions of transient propagation in the heliosphere. An initial validation of the automatic method is carried by comparison to manually determined cone model parameters. It is shown using 14 halo CME events that there is reasonable agreement, especially between the heliocentric locations of the cones derived with the two methods. It is argued that both the heliocentric locations and the opening half-angles of the automatically determined cones may be more realistic than those obtained from the manual analysis

  1. DUAL STATE-PARAMETER UPDATING SCHEME ON A CONCEPTUAL HYDROLOGIC MODEL USING SEQUENTIAL MONTE CARLO FILTERS

    NASA Astrophysics Data System (ADS)

    Noh, Seong Jin; Tachikawa, Yasuto; Shiiba, Michiharu; Kim, Sunmin

    Applications of data assimilation techniques have been widely used to improve upon the predictability of hydrologic modeling. Among various data assimilation techniques, sequential Monte Carlo (SMC) filters, known as "particle filters" provide the capability to handle non-linear and non-Gaussian state-space models. This paper proposes a dual state-parameter updating scheme (DUS) based on SMC methods to estimate both state and parameter variables of a hydrologic model. We introduce a kernel smoothing method for the robust estimation of uncertain model parameters in the DUS. The applicability of the dual updating scheme is illustrated using the implementation of the storage function model on a middle-sized Japanese catchment. We also compare performance results of DUS combined with various SMC methods, such as SIR, ASIR and RPF.

  2. Automatic segmentation of right ventricle on ultrasound images using sparse matrix transform and level set

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Cong, Zhibin; Halig, Luma V.; Fei, Baowei

    2013-03-01

    An automatic framework is proposed to segment right ventricle on ultrasound images. This method can automatically segment both epicardial and endocardial boundaries from a continuous echocardiography series by combining sparse matrix transform (SMT), a training model, and a localized region based level set. First, the sparse matrix transform extracts main motion regions of myocardium as eigenimages by analyzing statistical information of these images. Second, a training model of right ventricle is registered to the extracted eigenimages in order to automatically detect the main location of the right ventricle and the corresponding transform relationship between the training model and the SMT-extracted results in the series. Third, the training model is then adjusted as an adapted initialization for the segmentation of each image in the series. Finally, based on the adapted initializations, a localized region based level set algorithm is applied to segment both epicardial and endocardial boundaries of the right ventricle from the whole series. Experimental results from real subject data validated the performance of the proposed framework in segmenting right ventricle from echocardiography. The mean Dice scores for both epicardial and endocardial boundaries are 89.1%+/-2.3% and 83.6+/-7.3%, respectively. The automatic segmentation method based on sparse matrix transform and level set can provide a useful tool for quantitative cardiac imaging.

  3. Accelerated rescaling of single Monte Carlo simulation runs with the Graphics Processing Unit (GPU).

    PubMed

    Yang, Owen; Choi, Bernard

    2013-01-01

    To interpret fiber-based and camera-based measurements of remitted light from biological tissues, researchers typically use analytical models, such as the diffusion approximation to light transport theory, or stochastic models, such as Monte Carlo modeling. To achieve rapid (ideally real-time) measurement of tissue optical properties, especially in clinical situations, there is a critical need to accelerate Monte Carlo simulation runs. In this manuscript, we report on our approach using the Graphics Processing Unit (GPU) to accelerate rescaling of single Monte Carlo runs to calculate rapidly diffuse reflectance values for different sets of tissue optical properties. We selected MATLAB to enable non-specialists in C and CUDA-based programming to use the generated open-source code. We developed a software package with four abstraction layers. To calculate a set of diffuse reflectance values from a simulated tissue with homogeneous optical properties, our rescaling GPU-based approach achieves a reduction in computation time of several orders of magnitude as compared to other GPU-based approaches. Specifically, our GPU-based approach generated a diffuse reflectance value in 0.08ms. The transfer time from CPU to GPU memory currently is a limiting factor with GPU-based calculations. However, for calculation of multiple diffuse reflectance values, our GPU-based approach still can lead to processing that is ~3400 times faster than other GPU-based approaches.

  4. Stochastic capture zone analysis of an arsenic-contaminated well using the generalized likelihood uncertainty estimator (GLUE) methodology

    NASA Astrophysics Data System (ADS)

    Morse, Brad S.; Pohll, Greg; Huntington, Justin; Rodriguez Castillo, Ramiro

    2003-06-01

    In 1992, Mexican researchers discovered concentrations of arsenic in excess of World Heath Organization (WHO) standards in several municipal wells in the Zimapan Valley of Mexico. This study describes a method to delineate a capture zone for one of the most highly contaminated wells to aid in future well siting. A stochastic approach was used to model the capture zone because of the high level of uncertainty in several input parameters. Two stochastic techniques were performed and compared: "standard" Monte Carlo analysis and the generalized likelihood uncertainty estimator (GLUE) methodology. The GLUE procedure differs from standard Monte Carlo analysis in that it incorporates a goodness of fit (termed a likelihood measure) in evaluating the model. This allows for more information (in this case, head data) to be used in the uncertainty analysis, resulting in smaller prediction uncertainty. Two likelihood measures are tested in this study to determine which are in better agreement with the observed heads. While the standard Monte Carlo approach does not aid in parameter estimation, the GLUE methodology indicates best fit models when hydraulic conductivity is approximately 10-6.5 m/s, with vertically isotropic conditions and large quantities of interbasin flow entering the basin. Probabilistic isochrones (capture zone boundaries) are then presented, and as predicted, the GLUE-derived capture zones are significantly smaller in area than those from the standard Monte Carlo approach.

  5. Conductance in inhomogeneous quantum wires: Luttinger liquid predictions and quantum Monte Carlo results

    NASA Astrophysics Data System (ADS)

    Morath, D.; Sedlmayr, N.; Sirker, J.; Eggert, S.

    2016-09-01

    We study electron and spin transport in interacting quantum wires contacted by noninteracting leads. We theoretically model the wire and junctions as an inhomogeneous chain where the parameters at the junction change on the scale of the lattice spacing. We study such systems analytically in the appropriate limits based on Luttinger liquid theory and compare the results to quantum Monte Carlo calculations of the conductances and local densities near the junction. We first consider an inhomogeneous spinless fermion model with a nearest-neighbor interaction and then generalize our results to a spinful model with an on-site Hubbard interaction.

  6. An efficient interpolation technique for jump proposals in reversible-jump Markov chain Monte Carlo calculations

    PubMed Central

    Farr, W. M.; Mandel, I.; Stevens, D.

    2015-01-01

    Selection among alternative theoretical models given an observed dataset is an important challenge in many areas of physics and astronomy. Reversible-jump Markov chain Monte Carlo (RJMCMC) is an extremely powerful technique for performing Bayesian model selection, but it suffers from a fundamental difficulty and it requires jumps between model parameter spaces, but cannot efficiently explore both parameter spaces at once. Thus, a naive jump between parameter spaces is unlikely to be accepted in the Markov chain Monte Carlo (MCMC) algorithm and convergence is correspondingly slow. Here, we demonstrate an interpolation technique that uses samples from single-model MCMCs to propose intermodel jumps from an approximation to the single-model posterior of the target parameter space. The interpolation technique, based on a kD-tree data structure, is adaptive and efficient in modest dimensionality. We show that our technique leads to improved convergence over naive jumps in an RJMCMC, and compare it to other proposals in the literature to improve the convergence of RJMCMCs. We also demonstrate the use of the same interpolation technique as a way to construct efficient ‘global’ proposal distributions for single-model MCMCs without prior knowledge of the structure of the posterior distribution, and discuss improvements that permit the method to be used in higher dimensional spaces efficiently. PMID:26543580

  7. A new moving strategy for the sequential Monte Carlo approach in optimizing the hydrological model parameters

    NASA Astrophysics Data System (ADS)

    Zhu, Gaofeng; Li, Xin; Ma, Jinzhu; Wang, Yunquan; Liu, Shaomin; Huang, Chunlin; Zhang, Kun; Hu, Xiaoli

    2018-04-01

    Sequential Monte Carlo (SMC) samplers have become increasing popular for estimating the posterior parameter distribution with the non-linear dependency structures and multiple modes often present in hydrological models. However, the explorative capabilities and efficiency of the sampler depends strongly on the efficiency in the move step of SMC sampler. In this paper we presented a new SMC sampler entitled the Particle Evolution Metropolis Sequential Monte Carlo (PEM-SMC) algorithm, which is well suited to handle unknown static parameters of hydrologic model. The PEM-SMC sampler is inspired by the works of Liang and Wong (2001) and operates by incorporating the strengths of the genetic algorithm, differential evolution algorithm and Metropolis-Hasting algorithm into the framework of SMC. We also prove that the sampler admits the target distribution to be a stationary distribution. Two case studies including a multi-dimensional bimodal normal distribution and a conceptual rainfall-runoff hydrologic model by only considering parameter uncertainty and simultaneously considering parameter and input uncertainty show that PEM-SMC sampler is generally superior to other popular SMC algorithms in handling the high dimensional problems. The study also indicated that it may be important to account for model structural uncertainty by using multiplier different hydrological models in the SMC framework in future study.

  8. MCNP-REN - A Monte Carlo Tool for Neutron Detector Design Without Using the Point Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abhold, M.E.; Baker, M.C.

    1999-07-25

    The development of neutron detectors makes extensive use of the predictions of detector response through the use of Monte Carlo techniques in conjunction with the point reactor model. Unfortunately, the point reactor model fails to accurately predict detector response in common applications. For this reason, the general Monte Carlo N-Particle code (MCNP) was modified to simulate the pulse streams that would be generated by a neutron detector and normally analyzed by a shift register. This modified code, MCNP - Random Exponentially Distributed Neutron Source (MCNP-REN), along with the Time Analysis Program (TAP) predict neutron detector response without using the pointmore » reactor model, making it unnecessary for the user to decide whether or not the assumptions of the point model are met for their application. MCNP-REN is capable of simulating standard neutron coincidence counting as well as neutron multiplicity counting. Measurements of MOX fresh fuel made using the Underwater Coincidence Counter (UWCC) as well as measurements of HEU reactor fuel using the active neutron Research Reactor Fuel Counter (RRFC) are compared with calculations. The method used in MCNP-REN is demonstrated to be fundamentally sound and shown to eliminate the need to use the point model for detector performance predictions.« less

  9. Event-chain algorithm for the Heisenberg model: Evidence for z≃1 dynamic scaling.

    PubMed

    Nishikawa, Yoshihiko; Michel, Manon; Krauth, Werner; Hukushima, Koji

    2015-12-01

    We apply the event-chain Monte Carlo algorithm to the three-dimensional ferromagnetic Heisenberg model. The algorithm is rejection-free and also realizes an irreversible Markov chain that satisfies global balance. The autocorrelation functions of the magnetic susceptibility and the energy indicate a dynamical critical exponent z≈1 at the critical temperature, while that of the magnetization does not measure the performance of the algorithm. We show that the event-chain Monte Carlo algorithm substantially reduces the dynamical critical exponent from the conventional value of z≃2.

  10. Monte Carlo technique for very large ising models

    NASA Astrophysics Data System (ADS)

    Kalle, C.; Winkelmann, V.

    1982-08-01

    Rebbi's multispin coding technique is improved and applied to the kinetic Ising model with size 600*600*600. We give the central part of our computer program (for a CDC Cyber 76), which will be helpful also in a simulation of smaller systems, and describe the other tricks necessary to go to large lattices. The magnetization M at T=1.4* T c is found to decay asymptotically as exp(-t/2.90) if t is measured in Monte Carlo steps per spin, and M( t = 0) = 1 initially.

  11. A Monte Carlo modeling alternative for the API Gamma Ray Calibration Facility.

    PubMed

    Galford, J E

    2017-04-01

    The gamma ray pit at the API Calibration Facility, located on the University of Houston campus, defines the API unit for natural gamma ray logs used throughout the petroleum logging industry. Future use of the facility is uncertain. An alternative method is proposed to preserve the gamma ray API unit definition as an industry standard by using Monte Carlo modeling to obtain accurate counting rate-to-API unit conversion factors for gross-counting and spectral gamma ray tool designs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Monte Carlo simulation of a dynamical fermion problem: The light q sup 2 q sup 2 system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grondin, G.

    1991-01-01

    We present results from a Guided Random Walk Monte Carlo simulation of the light q{sup 2}{bar q}{sup 2} system in a Coulomb-plus-linear quark potential model using an Intel iPSC/860 hypercube. A solvable model problem is first considered, after which we study the full q{sup 2}{bar q}{sup 2} system in (J,I) = (2,2) and (2,0) sectors. We find evidence for no bound states below the vector-vector threshold in these systems. 17 refs., 6 figs.

  13. A Program of Continuing Research on Representing, Manipulating, and Reasoning about Physical Objects

    DTIC Science & Technology

    1991-09-30

    graphics with the goal of automatically converting complex graphics models into forms more appropriate for radiosity computation. 2.4 Least Constraint We...to computer graphics with the goal of automatically 7 converting complex graphics models into forms more appropriate for radiosity com- putation. 8 4

  14. Acquisition of Automatic Imitation Is Sensitive to Sensorimotor Contingency

    ERIC Educational Resources Information Center

    Cook, Richard; Press, Clare; Dickinson, Anthony; Heyes, Cecilia

    2010-01-01

    The associative sequence learning model proposes that the development of the mirror system depends on the same mechanisms of associative learning that mediate Pavlovian and instrumental conditioning. To test this model, two experiments used the reduction of automatic imitation through incompatible sensorimotor training to assess whether mirror…

  15. Use of single scatter electron monte carlo transport for medical radiation sciences

    DOEpatents

    Svatos, Michelle M.

    2001-01-01

    The single scatter Monte Carlo code CREEP models precise microscopic interactions of electrons with matter to enhance physical understanding of radiation sciences. It is designed to simulate electrons in any medium, including materials important for biological studies. It simulates each interaction individually by sampling from a library which contains accurate information over a broad range of energies.

  16. Direct Simulation Monte Carlo Calculations in Support of the Columbia Shuttle Orbiter Accident Investigation

    NASA Technical Reports Server (NTRS)

    Gallis, Michael A.; LeBeau, Gerald J.; Boyles, Katie A.

    2003-01-01

    The Direct Simulation Monte Carlo method was used to provide 3-D simulations of the early entry phase of the Shuttle Orbiter. Undamaged and damaged scenarios were modeled to provide calibration points for engineering "bridging function" type of analysis. Currently the simulation technology (software and hardware) are mature enough to allow realistic simulations of three dimensional vehicles.

  17. Radiative interactions in multi-dimensional chemically reacting flows using Monte Carlo simulations

    NASA Technical Reports Server (NTRS)

    Liu, Jiwen; Tiwari, Surendra N.

    1994-01-01

    The Monte Carlo method (MCM) is applied to analyze radiative heat transfer in nongray gases. The nongray model employed is based on the statistical narrow band model with an exponential-tailed inverse intensity distribution. The amount and transfer of the emitted radiative energy in a finite volume element within a medium are considered in an exact manner. The spectral correlation between transmittances of two different segments of the same path in a medium makes the statistical relationship different from the conventional relationship, which only provides the non-correlated results for nongray methods is discussed. Validation of the Monte Carlo formulations is conducted by comparing results of this method of other solutions. In order to further establish the validity of the MCM, a relatively simple problem of radiative interactions in laminar parallel plate flows is considered. One-dimensional correlated Monte Carlo formulations are applied to investigate radiative heat transfer. The nongray Monte Carlo solutions are also obtained for the same problem and they also essentially match the available analytical solutions. the exact correlated and non-correlated Monte Carlo formulations are very complicated for multi-dimensional systems. However, by introducing the assumption of an infinitesimal volume element, the approximate correlated and non-correlated formulations are obtained which are much simpler than the exact formulations. Consideration of different problems and comparison of different solutions reveal that the approximate and exact correlated solutions agree very well, and so do the approximate and exact non-correlated solutions. However, the two non-correlated solutions have no physical meaning because they significantly differ from the correlated solutions. An accurate prediction of radiative heat transfer in any nongray and multi-dimensional system is possible by using the approximate correlated formulations. Radiative interactions are investigated in chemically reacting compressible flows of premixed hydrogen and air in an expanding nozzle. The governing equations are based on the fully elliptic Navier-Stokes equations. Chemical reaction mechanisms were described by a finite rate chemistry model. The correlated Monte Carlo method developed earlier was employed to simulate multi-dimensional radiative heat transfer. Results obtained demonstrate that radiative effects on the flowfield are minimal but radiative effects on the wall heat transfer are significant. Extensive parametric studies are conducted to investigate the effects of equivalence ratio, wall temperature, inlet flow temperature, and nozzle size on the radiative and conductive wall fluxes.

  18. Monte Carlo Methods in Materials Science Based on FLUKA and ROOT

    NASA Technical Reports Server (NTRS)

    Pinsky, Lawrence; Wilson, Thomas; Empl, Anton; Andersen, Victor

    2003-01-01

    A comprehensive understanding of mitigation measures for space radiation protection necessarily involves the relevant fields of nuclear physics and particle transport modeling. One method of modeling the interaction of radiation traversing matter is Monte Carlo analysis, a subject that has been evolving since the very advent of nuclear reactors and particle accelerators in experimental physics. Countermeasures for radiation protection from neutrons near nuclear reactors, for example, were an early application and Monte Carlo methods were quickly adapted to this general field of investigation. The project discussed here is concerned with taking the latest tools and technology in Monte Carlo analysis and adapting them to space applications such as radiation shielding design for spacecraft, as well as investigating how next-generation Monte Carlos can complement the existing analytical methods currently used by NASA. We have chosen to employ the Monte Carlo program known as FLUKA (A legacy acronym based on the German for FLUctuating KAscade) used to simulate all of the particle transport, and the CERN developed graphical-interface object-oriented analysis software called ROOT. One aspect of space radiation analysis for which the Monte Carlo s are particularly suited is the study of secondary radiation produced as albedoes in the vicinity of the structural geometry involved. This broad goal of simulating space radiation transport through the relevant materials employing the FLUKA code necessarily requires the addition of the capability to simulate all heavy-ion interactions from 10 MeV/A up to the highest conceivable energies. For all energies above 3 GeV/A the Dual Parton Model (DPM) is currently used, although the possible improvement of the DPMJET event generator for energies 3-30 GeV/A is being considered. One of the major tasks still facing us is the provision for heavy ion interactions below 3 GeV/A. The ROOT interface is being developed in conjunction with the CERN ALICE (A Large Ion Collisions Experiment) software team through an adaptation of their existing AliROOT (ALICE Using ROOT) architecture. In order to check our progress against actual data, we have chosen to simulate the ATIC14 (Advanced Thin Ionization Calorimeter) cosmic-ray astrophysics balloon payload as well as neutron fluences in the Mir spacecraft. This paper contains a summary of status of this project, and a roadmap to its successful completion.

  19. Stochastic Analysis of Orbital Lifetimes of Spacecraft

    NASA Technical Reports Server (NTRS)

    Sasamoto, Washito; Goodliff, Kandyce; Cornelius, David

    2008-01-01

    A document discusses (1) a Monte-Carlo-based methodology for probabilistic prediction and analysis of orbital lifetimes of spacecraft and (2) Orbital Lifetime Monte Carlo (OLMC)--a Fortran computer program, consisting of a previously developed long-term orbit-propagator integrated with a Monte Carlo engine. OLMC enables modeling of variances of key physical parameters that affect orbital lifetimes through the use of probability distributions. These parameters include altitude, speed, and flight-path angle at insertion into orbit; solar flux; and launch delays. The products of OLMC are predicted lifetimes (durations above specified minimum altitudes) for the number of user-specified cases. Histograms generated from such predictions can be used to determine the probabilities that spacecraft will satisfy lifetime requirements. The document discusses uncertainties that affect modeling of orbital lifetimes. Issues of repeatability, smoothness of distributions, and code run time are considered for the purpose of establishing values of code-specific parameters and number of Monte Carlo runs. Results from test cases are interpreted as demonstrating that solar-flux predictions are primary sources of variations in predicted lifetimes. Therefore, it is concluded, multiple sets of predictions should be utilized to fully characterize the lifetime range of a spacecraft.

  20. Accelerating Monte Carlo simulations of photon transport in a voxelized geometry using a massively parallel graphics processing unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badal, Andreu; Badano, Aldo

    Purpose: It is a known fact that Monte Carlo simulations of radiation transport are computationally intensive and may require long computing times. The authors introduce a new paradigm for the acceleration of Monte Carlo simulations: The use of a graphics processing unit (GPU) as the main computing device instead of a central processing unit (CPU). Methods: A GPU-based Monte Carlo code that simulates photon transport in a voxelized geometry with the accurate physics models from PENELOPE has been developed using the CUDA programming model (NVIDIA Corporation, Santa Clara, CA). Results: An outline of the new code and a sample x-raymore » imaging simulation with an anthropomorphic phantom are presented. A remarkable 27-fold speed up factor was obtained using a GPU compared to a single core CPU. Conclusions: The reported results show that GPUs are currently a good alternative to CPUs for the simulation of radiation transport. Since the performance of GPUs is currently increasing at a faster pace than that of CPUs, the advantages of GPU-based software are likely to be more pronounced in the future.« less

Top