Sample records for carlo computer codes-mcb

  1. Parallel CARLOS-3D code development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putnam, J.M.; Kotulski, J.D.

    1996-02-01

    CARLOS-3D is a three-dimensional scattering code which was developed under the sponsorship of the Electromagnetic Code Consortium, and is currently used by over 80 aerospace companies and government agencies. The code has been extensively validated and runs on both serial workstations and parallel super computers such as the Intel Paragon. CARLOS-3D is a three-dimensional surface integral equation scattering code based on a Galerkin method of moments formulation employing Rao- Wilton-Glisson roof-top basis for triangular faceted surfaces. Fully arbitrary 3D geometries composed of multiple conducting and homogeneous bulk dielectric materials can be modeled. This presentation describes some of the extensions tomore » the CARLOS-3D code, and how the operator structure of the code facilitated these improvements. Body of revolution (BOR) and two-dimensional geometries were incorporated by simply including new input routines, and the appropriate Galerkin matrix operator routines. Some additional modifications were required in the combined field integral equation matrix generation routine due to the symmetric nature of the BOR and 2D operators. Quadrilateral patched surfaces with linear roof-top basis functions were also implemented in the same manner. Quadrilateral facets and triangular facets can be used in combination to more efficiently model geometries with both large smooth surfaces and surfaces with fine detail such as gaps and cracks. Since the parallel implementation in CARLOS-3D is at high level, these changes were independent of the computer platform being used. This approach minimizes code maintenance, while providing capabilities with little additional effort. Results are presented showing the performance and accuracy of the code for some large scattering problems. Comparisons between triangular faceted and quadrilateral faceted geometry representations will be shown for some complex scatterers.« less

  2. Tally and geometry definition influence on the computing time in radiotherapy treatment planning with MCNP Monte Carlo code.

    PubMed

    Juste, B; Miro, R; Gallardo, S; Santos, A; Verdu, G

    2006-01-01

    The present work has simulated the photon and electron transport in a Theratron 780 (MDS Nordion) (60)Co radiotherapy unit, using the Monte Carlo transport code, MCNP (Monte Carlo N-Particle), version 5. In order to become computationally more efficient in view of taking part in the practical field of radiotherapy treatment planning, this work is focused mainly on the analysis of dose results and on the required computing time of different tallies applied in the model to speed up calculations.

  3. Full 3D visualization tool-kit for Monte Carlo and deterministic transport codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frambati, S.; Frignani, M.

    2012-07-01

    We propose a package of tools capable of translating the geometric inputs and outputs of many Monte Carlo and deterministic radiation transport codes into open source file formats. These tools are aimed at bridging the gap between trusted, widely-used radiation analysis codes and very powerful, more recent and commonly used visualization software, thus supporting the design process and helping with shielding optimization. Three main lines of development were followed: mesh-based analysis of Monte Carlo codes, mesh-based analysis of deterministic codes and Monte Carlo surface meshing. The developed kit is considered a powerful and cost-effective tool in the computer-aided design formore » radiation transport code users of the nuclear world, and in particular in the fields of core design and radiation analysis. (authors)« less

  4. Computation of a Canadian SCWR unit cell with deterministic and Monte Carlo codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrisson, G.; Marleau, G.

    2012-07-01

    The Canadian SCWR has the potential to achieve the goals that the generation IV nuclear reactors must meet. As part of the optimization process for this design concept, lattice cell calculations are routinely performed using deterministic codes. In this study, the first step (self-shielding treatment) of the computation scheme developed with the deterministic code DRAGON for the Canadian SCWR has been validated. Some options available in the module responsible for the resonance self-shielding calculation in DRAGON 3.06 and different microscopic cross section libraries based on the ENDF/B-VII.0 evaluated nuclear data file have been tested and compared to a reference calculationmore » performed with the Monte Carlo code SERPENT under the same conditions. Compared to SERPENT, DRAGON underestimates the infinite multiplication factor in all cases. In general, the original Stammler model with the Livolant-Jeanpierre approximations are the most appropriate self-shielding options to use in this case of study. In addition, the 89 groups WIMS-AECL library for slight enriched uranium and the 172 groups WLUP library for a mixture of plutonium and thorium give the most consistent results with those of SERPENT. (authors)« less

  5. Portable LQCD Monte Carlo code using OpenACC

    NASA Astrophysics Data System (ADS)

    Bonati, Claudio; Calore, Enrico; Coscetti, Simone; D'Elia, Massimo; Mesiti, Michele; Negro, Francesco; Fabio Schifano, Sebastiano; Silvi, Giorgio; Tripiccione, Raffaele

    2018-03-01

    Varying from multi-core CPU processors to many-core GPUs, the present scenario of HPC architectures is extremely heterogeneous. In this context, code portability is increasingly important for easy maintainability of applications; this is relevant in scientific computing where code changes are numerous and frequent. In this talk we present the design and optimization of a state-of-the-art production level LQCD Monte Carlo application, using the OpenACC directives model. OpenACC aims to abstract parallel programming to a descriptive level, where programmers do not need to specify the mapping of the code on the target machine. We describe the OpenACC implementation and show that the same code is able to target different architectures, including state-of-the-art CPUs and GPUs.

  6. ME(SSY)**2: Monte Carlo Code for Star Cluster Simulations

    NASA Astrophysics Data System (ADS)

    Freitag, Marc Dewi

    2013-02-01

    ME(SSY)**2 stands for “Monte-carlo Experiments with Spherically SYmmetric Stellar SYstems." This code simulates the long term evolution of spherical clusters of stars; it was devised specifically to treat dense galactic nuclei. It is based on the pioneering Monte Carlo scheme proposed by Hénon in the 70's and includes all relevant physical ingredients (2-body relaxation, stellar mass spectrum, collisions, tidal disruption, ldots). It is basically a Monte Carlo resolution of the Fokker-Planck equation. It can cope with any stellar mass spectrum or velocity distribution. Being a particle-based method, it also allows one to take stellar collisions into account in a very realistic way. This unique code, featuring most important physical processes, allows million particle simulations, spanning a Hubble time, in a few CPU days on standard personal computers and provides a wealth of data only rivalized by N-body simulations. The current version of the software requires the use of routines from the "Numerical Recipes in Fortran 77" (http://www.nrbook.com/a/bookfpdf.php).

  7. Accelerating execution of the integrated TIGER series Monte Carlo radiation transport codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, L.M.; Hochstedler, R.D.

    1997-02-01

    Execution of the integrated TIGER series (ITS) of coupled electron/photon Monte Carlo radiation transport codes has been accelerated by modifying the FORTRAN source code for more efficient computation. Each member code of ITS was benchmarked and profiled with a specific test case that directed the acceleration effort toward the most computationally intensive subroutines. Techniques for accelerating these subroutines included replacing linear search algorithms with binary versions, replacing the pseudo-random number generator, reducing program memory allocation, and proofing the input files for geometrical redundancies. All techniques produced identical or statistically similar results to the original code. Final benchmark timing of themore » accelerated code resulted in speed-up factors of 2.00 for TIGER (the one-dimensional slab geometry code), 1.74 for CYLTRAN (the two-dimensional cylindrical geometry code), and 1.90 for ACCEPT (the arbitrary three-dimensional geometry code).« less

  8. SUPREM-DSMC: A New Scalable, Parallel, Reacting, Multidimensional Direct Simulation Monte Carlo Flow Code

    NASA Technical Reports Server (NTRS)

    Campbell, David; Wysong, Ingrid; Kaplan, Carolyn; Mott, David; Wadsworth, Dean; VanGilder, Douglas

    2000-01-01

    An AFRL/NRL team has recently been selected to develop a scalable, parallel, reacting, multidimensional (SUPREM) Direct Simulation Monte Carlo (DSMC) code for the DoD user community under the High Performance Computing Modernization Office (HPCMO) Common High Performance Computing Software Support Initiative (CHSSI). This paper will introduce the JANNAF Exhaust Plume community to this three-year development effort and present the overall goals, schedule, and current status of this new code.

  9. Quantum Monte Carlo Endstation for Petascale Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lubos Mitas

    2011-01-26

    NCSU research group has been focused on accomplising the key goals of this initiative: establishing new generation of quantum Monte Carlo (QMC) computational tools as a part of Endstation petaflop initiative for use at the DOE ORNL computational facilities and for use by computational electronic structure community at large; carrying out high accuracy quantum Monte Carlo demonstration projects in application of these tools to the forefront electronic structure problems in molecular and solid systems; expanding the impact of QMC methods and approaches; explaining and enhancing the impact of these advanced computational approaches. In particular, we have developed quantum Monte Carlomore » code (QWalk, www.qwalk.org) which was significantly expanded and optimized using funds from this support and at present became an actively used tool in the petascale regime by ORNL researchers and beyond. These developments have been built upon efforts undertaken by the PI's group and collaborators over the period of the last decade. The code was optimized and tested extensively on a number of parallel architectures including petaflop ORNL Jaguar machine. We have developed and redesigned a number of code modules such as evaluation of wave functions and orbitals, calculations of pfaffians and introduction of backflow coordinates together with overall organization of the code and random walker distribution over multicore architectures. We have addressed several bottlenecks such as load balancing and verified efficiency and accuracy of the calculations with the other groups of the Endstation team. The QWalk package contains about 50,000 lines of high quality object-oriented C++ and includes also interfaces to data files from other conventional electronic structure codes such as Gamess, Gaussian, Crystal and others. This grant supported PI for one month during summers, a full-time postdoc and partially three graduate students over the period of the grant duration, it has resulted in

  10. Supercritical Saltwater Spray for Marine Cloud Brightening (MCB)

    NASA Astrophysics Data System (ADS)

    Neukermans, A.; Cooper, G. F.; Foster, J.; Galbraith, L. K.; Johnston, D.; Ormond, B.; Wang, Q.

    2012-12-01

    Solar Radiation Management (SRM), including both stratospheric sulfur aerosol delivery and MCB, has emerged as the leading contender for geoengineering. Field research in MCB would require a technique capable of producing 1017 salt nuclei/sec from a single source on a seagoing vessel. Spraying supercritical saltwater has emerged as a viable technology, at least for research purposes. Under optimum conditions a single 50-μm nozzle produces 1014 suitable nuclei/sec. Power consumption is high (1-2 MW), but 95% of the required energy is in the form of heat that can probably be obtained from wasted ship-engine heat. While its implementation is conceptually simple, the corrosive nature of supercritical saltwater makes the material requirements very demanding. Progress on this work is detailed.

  11. PyMercury: Interactive Python for the Mercury Monte Carlo Particle Transport Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iandola, F N; O'Brien, M J; Procassini, R J

    2010-11-29

    Monte Carlo particle transport applications are often written in low-level languages (C/C++) for optimal performance on clusters and supercomputers. However, this development approach often sacrifices straightforward usability and testing in the interest of fast application performance. To improve usability, some high-performance computing applications employ mixed-language programming with high-level and low-level languages. In this study, we consider the benefits of incorporating an interactive Python interface into a Monte Carlo application. With PyMercury, a new Python extension to the Mercury general-purpose Monte Carlo particle transport code, we improve application usability without diminishing performance. In two case studies, we illustrate how PyMercury improvesmore » usability and simplifies testing and validation in a Monte Carlo application. In short, PyMercury demonstrates the value of interactive Python for Monte Carlo particle transport applications. In the future, we expect interactive Python to play an increasingly significant role in Monte Carlo usage and testing.« less

  12. AREVA Developments for an Efficient and Reliable use of Monte Carlo codes for Radiation Transport Applications

    NASA Astrophysics Data System (ADS)

    Chapoutier, Nicolas; Mollier, François; Nolin, Guillaume; Culioli, Matthieu; Mace, Jean-Reynald

    2017-09-01

    In the context of the rising of Monte Carlo transport calculations for any kind of application, AREVA recently improved its suite of engineering tools in order to produce efficient Monte Carlo workflow. Monte Carlo codes, such as MCNP or TRIPOLI, are recognized as reference codes to deal with a large range of radiation transport problems. However the inherent drawbacks of theses codes - laboring input file creation and long computation time - contrast with the maturity of the treatment of the physical phenomena. The goals of the recent AREVA developments were to reach similar efficiency as other mature engineering sciences such as finite elements analyses (e.g. structural or fluid dynamics). Among the main objectives, the creation of a graphical user interface offering CAD tools for geometry creation and other graphical features dedicated to the radiation field (source definition, tally definition) has been reached. The computations times are drastically reduced compared to few years ago thanks to the use of massive parallel runs, and above all, the implementation of hybrid variance reduction technics. From now engineering teams are capable to deliver much more prompt support to any nuclear projects dealing with reactors or fuel cycle facilities from conceptual phase to decommissioning.

  13. NRMC - A GPU code for N-Reverse Monte Carlo modeling of fluids in confined media

    NASA Astrophysics Data System (ADS)

    Sánchez-Gil, Vicente; Noya, Eva G.; Lomba, Enrique

    2017-08-01

    NRMC is a parallel code for performing N-Reverse Monte Carlo modeling of fluids in confined media [V. Sánchez-Gil, E.G. Noya, E. Lomba, J. Chem. Phys. 140 (2014) 024504]. This method is an extension of the usual Reverse Monte Carlo method to obtain structural models of confined fluids compatible with experimental diffraction patterns, specifically designed to overcome the problem of slow diffusion that can appear under conditions of tight confinement. Most of the computational time in N-Reverse Monte Carlo modeling is spent in the evaluation of the structure factor for each trial configuration, a calculation that can be easily parallelized. Implementation of the structure factor evaluation in NVIDIA® CUDA so that the code can be run on GPUs leads to a speed up of up to two orders of magnitude.

  14. Design and optimization of a portable LQCD Monte Carlo code using OpenACC

    NASA Astrophysics Data System (ADS)

    Bonati, Claudio; Coscetti, Simone; D'Elia, Massimo; Mesiti, Michele; Negro, Francesco; Calore, Enrico; Schifano, Sebastiano Fabio; Silvi, Giorgio; Tripiccione, Raffaele

    The present panorama of HPC architectures is extremely heterogeneous, ranging from traditional multi-core CPU processors, supporting a wide class of applications but delivering moderate computing performance, to many-core Graphics Processor Units (GPUs), exploiting aggressive data-parallelism and delivering higher performances for streaming computing applications. In this scenario, code portability (and performance portability) become necessary for easy maintainability of applications; this is very relevant in scientific computing where code changes are very frequent, making it tedious and prone to error to keep different code versions aligned. In this work, we present the design and optimization of a state-of-the-art production-level LQCD Monte Carlo application, using the directive-based OpenACC programming model. OpenACC abstracts parallel programming to a descriptive level, relieving programmers from specifying how codes should be mapped onto the target architecture. We describe the implementation of a code fully written in OpenAcc, and show that we are able to target several different architectures, including state-of-the-art traditional CPUs and GPUs, with the same code. We also measure performance, evaluating the computing efficiency of our OpenACC code on several architectures, comparing with GPU-specific implementations and showing that a good level of performance-portability can be reached.

  15. Nuclide Depletion Capabilities in the Shift Monte Carlo Code

    DOE PAGES

    Davidson, Gregory G.; Pandya, Tara M.; Johnson, Seth R.; ...

    2017-12-21

    A new depletion capability has been developed in the Exnihilo radiation transport code suite. This capability enables massively parallel domain-decomposed coupling between the Shift continuous-energy Monte Carlo solver and the nuclide depletion solvers in ORIGEN to perform high-performance Monte Carlo depletion calculations. This paper describes this new depletion capability and discusses its various features, including a multi-level parallel decomposition, high-order transport-depletion coupling, and energy-integrated power renormalization. Several test problems are presented to validate the new capability against other Monte Carlo depletion codes, and the parallel performance of the new capability is analyzed.

  16. CloudMC: a cloud computing application for Monte Carlo simulation.

    PubMed

    Miras, H; Jiménez, R; Miras, C; Gomà, C

    2013-04-21

    This work presents CloudMC, a cloud computing application-developed in Windows Azure®, the platform of the Microsoft® cloud-for the parallelization of Monte Carlo simulations in a dynamic virtual cluster. CloudMC is a web application designed to be independent of the Monte Carlo code in which the simulations are based-the simulations just need to be of the form: input files → executable → output files. To study the performance of CloudMC in Windows Azure®, Monte Carlo simulations with penelope were performed on different instance (virtual machine) sizes, and for different number of instances. The instance size was found to have no effect on the simulation runtime. It was also found that the decrease in time with the number of instances followed Amdahl's law, with a slight deviation due to the increase in the fraction of non-parallelizable time with increasing number of instances. A simulation that would have required 30 h of CPU on a single instance was completed in 48.6 min when executed on 64 instances in parallel (speedup of 37 ×). Furthermore, the use of cloud computing for parallel computing offers some advantages over conventional clusters: high accessibility, scalability and pay per usage. Therefore, it is strongly believed that cloud computing will play an important role in making Monte Carlo dose calculation a reality in future clinical practice.

  17. Anode optimization for miniature electronic brachytherapy X-ray sources using Monte Carlo and computational fluid dynamic codes

    PubMed Central

    Khajeh, Masoud; Safigholi, Habib

    2015-01-01

    A miniature X-ray source has been optimized for electronic brachytherapy. The cooling fluid for this device is water. Unlike the radionuclide brachytherapy sources, this source is able to operate at variable voltages and currents to match the dose with the tumor depth. First, Monte Carlo (MC) optimization was performed on the tungsten target-buffer thickness layers versus energy such that the minimum X-ray attenuation occurred. Second optimization was done on the selection of the anode shape based on the Monte Carlo in water TG-43U1 anisotropy function. This optimization was carried out to get the dose anisotropy functions closer to unity at any angle from 0° to 170°. Three anode shapes including cylindrical, spherical, and conical were considered. Moreover, by Computational Fluid Dynamic (CFD) code the optimal target-buffer shape and different nozzle shapes for electronic brachytherapy were evaluated. The characterization criteria of the CFD were the minimum temperature on the anode shape, cooling water, and pressure loss from inlet to outlet. The optimal anode was conical in shape with a conical nozzle. Finally, the TG-43U1 parameters of the optimal source were compared with the literature. PMID:26966563

  18. SPAMCART: a code for smoothed particle Monte Carlo radiative transfer

    NASA Astrophysics Data System (ADS)

    Lomax, O.; Whitworth, A. P.

    2016-10-01

    We present a code for generating synthetic spectral energy distributions and intensity maps from smoothed particle hydrodynamics simulation snapshots. The code is based on the Lucy Monte Carlo radiative transfer method, I.e. it follows discrete luminosity packets as they propagate through a density field, and then uses their trajectories to compute the radiative equilibrium temperature of the ambient dust. The sources can be extended and/or embedded, and discrete and/or diffuse. The density is not mapped on to a grid, and therefore the calculation is performed at exactly the same resolution as the hydrodynamics. We present two example calculations using this method. First, we demonstrate that the code strictly adheres to Kirchhoff's law of radiation. Secondly, we present synthetic intensity maps and spectra of an embedded protostellar multiple system. The algorithm uses data structures that are already constructed for other purposes in modern particle codes. It is therefore relatively simple to implement.

  19. An Overview of the NCC Spray/Monte-Carlo-PDF Computations

    NASA Technical Reports Server (NTRS)

    Raju, M. S.; Liu, Nan-Suey (Technical Monitor)

    2000-01-01

    This paper advances the state-of-the-art in spray computations with some of our recent contributions involving scalar Monte Carlo PDF (Probability Density Function), unstructured grids and parallel computing. It provides a complete overview of the scalar Monte Carlo PDF and Lagrangian spray computer codes developed for application with unstructured grids and parallel computing. Detailed comparisons for the case of a reacting non-swirling spray clearly highlight the important role that chemistry/turbulence interactions play in the modeling of reacting sprays. The results from the PDF and non-PDF methods were found to be markedly different and the PDF solution is closer to the reported experimental data. The PDF computations predict that some of the combustion occurs in a predominantly premixed-flame environment and the rest in a predominantly diffusion-flame environment. However, the non-PDF solution predicts wrongly for the combustion to occur in a vaporization-controlled regime. Near the premixed flame, the Monte Carlo particle temperature distribution shows two distinct peaks: one centered around the flame temperature and the other around the surrounding-gas temperature. Near the diffusion flame, the Monte Carlo particle temperature distribution shows a single peak. In both cases, the computed PDF's shape and strength are found to vary substantially depending upon the proximity to the flame surface. The results bring to the fore some of the deficiencies associated with the use of assumed-shape PDF methods in spray computations. Finally, we end the paper by demonstrating the computational viability of the present solution procedure for its use in 3D combustor calculations by summarizing the results of a 3D test case with periodic boundary conditions. For the 3D case, the parallel performance of all the three solvers (CFD, PDF, and spray) has been found to be good when the computations were performed on a 24-processor SGI Origin work-station.

  20. Comparison of space radiation calculations for deterministic and Monte Carlo transport codes

    NASA Astrophysics Data System (ADS)

    Lin, Zi-Wei; Adams, James; Barghouty, Abdulnasser; Randeniya, Sharmalee; Tripathi, Ram; Watts, John; Yepes, Pablo

    For space radiation protection of astronauts or electronic equipments, it is necessary to develop and use accurate radiation transport codes. Radiation transport codes include deterministic codes, such as HZETRN from NASA and UPROP from the Naval Research Laboratory, and Monte Carlo codes such as FLUKA, the Geant4 toolkit and HETC-HEDS. The deterministic codes and Monte Carlo codes complement each other in that deterministic codes are very fast while Monte Carlo codes are more elaborate. Therefore it is important to investigate how well the results of deterministic codes compare with those of Monte Carlo transport codes and where they differ. In this study we evaluate these different codes in their space radiation applications by comparing their output results in the same given space radiation environments, shielding geometry and material. Typical space radiation environments such as the 1977 solar minimum galactic cosmic ray environment are used as the well-defined input, and simple geometries made of aluminum, water and/or polyethylene are used to represent the shielding material. We then compare various outputs of these codes, such as the dose-depth curves and the flux spectra of different fragments and other secondary particles. These comparisons enable us to learn more about the main differences between these space radiation transport codes. At the same time, they help us to learn the qualitative and quantitative features that these transport codes have in common.

  1. TU-AB-BRC-10: Modeling of Radiotherapy Linac Source Terms Using ARCHER Monte Carlo Code: Performance Comparison of GPU and MIC Computing Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, T; Lin, H; Xu, X

    Purpose: (1) To perform phase space (PS) based source modeling for Tomotherapy and Varian TrueBeam 6 MV Linacs, (2) to examine the accuracy and performance of the ARCHER Monte Carlo code on a heterogeneous computing platform with Many Integrated Core coprocessors (MIC, aka Xeon Phi) and GPUs, and (3) to explore the software micro-optimization methods. Methods: The patient-specific source of Tomotherapy and Varian TrueBeam Linacs was modeled using the PS approach. For the helical Tomotherapy case, the PS data were calculated in our previous study (Su et al. 2014 41(7) Medical Physics). For the single-view Varian TrueBeam case, we analyticallymore » derived them from the raw patient-independent PS data in IAEA’s database, partial geometry information of the jaw and MLC as well as the fluence map. The phantom was generated from DICOM images. The Monte Carlo simulation was performed by ARCHER-MIC and GPU codes, which were benchmarked against a modified parallel DPM code. Software micro-optimization was systematically conducted, and was focused on SIMD vectorization of tight for-loops and data prefetch, with the ultimate goal of increasing 512-bit register utilization and reducing memory access latency. Results: Dose calculation was performed for two clinical cases, a Tomotherapy-based prostate cancer treatment and a TrueBeam-based left breast treatment. ARCHER was verified against the DPM code. The statistical uncertainty of the dose to the PTV was less than 1%. Using double-precision, the total wall time of the multithreaded CPU code on a X5650 CPU was 339 seconds for the Tomotherapy case and 131 seconds for the TrueBeam, while on 3 5110P MICs it was reduced to 79 and 59 seconds, respectively. The single-precision GPU code on a K40 GPU took 45 seconds for the Tomotherapy dose calculation. Conclusion: We have extended ARCHER, the MIC and GPU-based Monte Carlo dose engine to Tomotherapy and Truebeam dose calculations.« less

  2. The Fission Yeast Minichromosome Maintenance (MCM)-binding Protein (MCM-BP), Mcb1, Regulates MCM Function during Prereplicative Complex Formation in DNA Replication*

    PubMed Central

    Santosa, Venny; Martha, Sabrina; Hirose, Noriaki; Tanaka, Katsunori

    2013-01-01

    The minichromosome maintenance (MCM) complex is a replicative helicase, which is essential for chromosome DNA replication. In recent years, the identification of a novel MCM-binding protein (MCM-BP) in most eukaryotes has led to numerous studies investigating its function and its relationship to the MCM complex. However, the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood; in addition, the functional role of MCM-BP remains controversial and may vary between model organisms. The present study aims to elucidate the nature and biological function of the MCM-BP ortholog, Mcb1, in fission yeast. The Mcb1 protein continuously interacts with MCM proteins during the cell cycle in vivo and can interact with any individual MCM subunit in vitro. To understand the detailed characteristics of mcb1+, two temperature-sensitive mcb1 gene mutants (mcb1ts) were isolated. Extensive genetic analysis showed that the mcb1ts mutants were suppressed by a mcm5+ multicopy plasmid and displayed synthetic defects with many S-phase-related gene mutants. Moreover, cyclin-dependent kinase modulation by Cig2 repression or Rum1 overproduction suppressed the mcb1ts mutants, suggesting the involvement of Mcb1 in pre-RC formation during DNA replication. These data are consistent with the observation that Mcm7 loading onto replication origins is reduced and S-phase progression is delayed in mcb1ts mutants. Furthermore, the mcb1ts mutation led to the redistribution of MCM subunits to the cytoplasm, and this redistribution was dependent on an active nuclear export system. These results strongly suggest that Mcb1 promotes efficient pre-RC formation during DNA replication by regulating the MCM complex. PMID:23322785

  3. The fission yeast minichromosome maintenance (MCM)-binding protein (MCM-BP), Mcb1, regulates MCM function during prereplicative complex formation in DNA replication.

    PubMed

    Santosa, Venny; Martha, Sabrina; Hirose, Noriaki; Tanaka, Katsunori

    2013-03-08

    The minichromosome maintenance (MCM) complex is a replicative helicase, which is essential for chromosome DNA replication. In recent years, the identification of a novel MCM-binding protein (MCM-BP) in most eukaryotes has led to numerous studies investigating its function and its relationship to the MCM complex. However, the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood; in addition, the functional role of MCM-BP remains controversial and may vary between model organisms. The present study aims to elucidate the nature and biological function of the MCM-BP ortholog, Mcb1, in fission yeast. The Mcb1 protein continuously interacts with MCM proteins during the cell cycle in vivo and can interact with any individual MCM subunit in vitro. To understand the detailed characteristics of mcb1(+), two temperature-sensitive mcb1 gene mutants (mcb1(ts)) were isolated. Extensive genetic analysis showed that the mcb1(ts) mutants were suppressed by a mcm5(+) multicopy plasmid and displayed synthetic defects with many S-phase-related gene mutants. Moreover, cyclin-dependent kinase modulation by Cig2 repression or Rum1 overproduction suppressed the mcb1(ts) mutants, suggesting the involvement of Mcb1 in pre-RC formation during DNA replication. These data are consistent with the observation that Mcm7 loading onto replication origins is reduced and S-phase progression is delayed in mcb1(ts) mutants. Furthermore, the mcb1(ts) mutation led to the redistribution of MCM subunits to the cytoplasm, and this redistribution was dependent on an active nuclear export system. These results strongly suggest that Mcb1 promotes efficient pre-RC formation during DNA replication by regulating the MCM complex.

  4. An integrated radiation physics computer code system.

    NASA Technical Reports Server (NTRS)

    Steyn, J. J.; Harris, D. W.

    1972-01-01

    An integrated computer code system for the semi-automatic and rapid analysis of experimental and analytic problems in gamma photon and fast neutron radiation physics is presented. Such problems as the design of optimum radiation shields and radioisotope power source configurations may be studied. The system codes allow for the unfolding of complex neutron and gamma photon experimental spectra. Monte Carlo and analytic techniques are used for the theoretical prediction of radiation transport. The system includes a multichannel pulse-height analyzer scintillation and semiconductor spectrometer coupled to an on-line digital computer with appropriate peripheral equipment. The system is geometry generalized as well as self-contained with respect to material nuclear cross sections and the determination of the spectrometer response functions. Input data may be either analytic or experimental.

  5. SU-E-T-222: Computational Optimization of Monte Carlo Simulation On 4D Treatment Planning Using the Cloud Computing Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, J

    Purpose: This study evaluated the efficiency of 4D lung radiation treatment planning using Monte Carlo simulation on the cloud. The EGSnrc Monte Carlo code was used in dose calculation on the 4D-CT image set. Methods: 4D lung radiation treatment plan was created by the DOSCTP linked to the cloud, based on the Amazon elastic compute cloud platform. Dose calculation was carried out by Monte Carlo simulation on the 4D-CT image set on the cloud, and results were sent to the FFD4D image deformation program for dose reconstruction. The dependence of computing time for treatment plan on the number of computemore » node was optimized with variations of the number of CT image set in the breathing cycle and dose reconstruction time of the FFD4D. Results: It is found that the dependence of computing time on the number of compute node was affected by the diminishing return of the number of node used in Monte Carlo simulation. Moreover, the performance of the 4D treatment planning could be optimized by using smaller than 10 compute nodes on the cloud. The effects of the number of image set and dose reconstruction time on the dependence of computing time on the number of node were not significant, as more than 15 compute nodes were used in Monte Carlo simulations. Conclusion: The issue of long computing time in 4D treatment plan, requiring Monte Carlo dose calculations in all CT image sets in the breathing cycle, can be solved using the cloud computing technology. It is concluded that the optimized number of compute node selected in simulation should be between 5 and 15, as the dependence of computing time on the number of node is significant.« less

  6. [Series: Medical Applications of the PHITS Code (2): Acceleration by Parallel Computing].

    PubMed

    Furuta, Takuya; Sato, Tatsuhiko

    2015-01-01

    Time-consuming Monte Carlo dose calculation becomes feasible owing to the development of computer technology. However, the recent development is due to emergence of the multi-core high performance computers. Therefore, parallel computing becomes a key to achieve good performance of software programs. A Monte Carlo simulation code PHITS contains two parallel computing functions, the distributed-memory parallelization using protocols of message passing interface (MPI) and the shared-memory parallelization using open multi-processing (OpenMP) directives. Users can choose the two functions according to their needs. This paper gives the explanation of the two functions with their advantages and disadvantages. Some test applications are also provided to show their performance using a typical multi-core high performance workstation.

  7. Vectorized Monte Carlo methods for reactor lattice analysis

    NASA Technical Reports Server (NTRS)

    Brown, F. B.

    1984-01-01

    Some of the new computational methods and equivalent mathematical representations of physics models used in the MCV code, a vectorized continuous-enery Monte Carlo code for use on the CYBER-205 computer are discussed. While the principal application of MCV is the neutronics analysis of repeating reactor lattices, the new methods used in MCV should be generally useful for vectorizing Monte Carlo for other applications. For background, a brief overview of the vector processing features of the CYBER-205 is included, followed by a discussion of the fundamentals of Monte Carlo vectorization. The physics models used in the MCV vectorized Monte Carlo code are then summarized. The new methods used in scattering analysis are presented along with details of several key, highly specialized computational routines. Finally, speedups relative to CDC-7600 scalar Monte Carlo are discussed.

  8. Optimization of the Monte Carlo code for modeling of photon migration in tissue.

    PubMed

    Zołek, Norbert S; Liebert, Adam; Maniewski, Roman

    2006-10-01

    The Monte Carlo method is frequently used to simulate light transport in turbid media because of its simplicity and flexibility, allowing to analyze complicated geometrical structures. Monte Carlo simulations are, however, time consuming because of the necessity to track the paths of individual photons. The time consuming computation is mainly associated with the calculation of the logarithmic and trigonometric functions as well as the generation of pseudo-random numbers. In this paper, the Monte Carlo algorithm was developed and optimized, by approximation of the logarithmic and trigonometric functions. The approximations were based on polynomial and rational functions, and the errors of these approximations are less than 1% of the values of the original functions. The proposed algorithm was verified by simulations of the time-resolved reflectance at several source-detector separations. The results of the calculation using the approximated algorithm were compared with those of the Monte Carlo simulations obtained with an exact computation of the logarithm and trigonometric functions as well as with the solution of the diffusion equation. The errors of the moments of the simulated distributions of times of flight of photons (total number of photons, mean time of flight and variance) are less than 2% for a range of optical properties, typical of living tissues. The proposed approximated algorithm allows to speed up the Monte Carlo simulations by a factor of 4. The developed code can be used on parallel machines, allowing for further acceleration.

  9. Comparative Dosimetric Estimates of a 25 keV Electron Micro-beam with three Monte Carlo Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mainardi, Enrico; Donahue, Richard J.; Blakely, Eleanor A.

    2002-09-11

    The calculations presented compare the different performances of the three Monte Carlo codes PENELOPE-1999, MCNP-4C and PITS, for the evaluation of Dose profiles from a 25 keV electron micro-beam traversing individual cells. The overall model of a cell is a water cylinder equivalent for the three codes but with a different internal scoring geometry: hollow cylinders for PENELOPE and MCNP, whereas spheres are used for the PITS code. A cylindrical cell geometry with scoring volumes with the shape of hollow cylinders was initially selected for PENELOPE and MCNP because of its superior simulation of the actual shape and dimensions ofmore » a cell and for its improved computer-time efficiency if compared to spherical internal volumes. Some of the transfer points and energy transfer that constitute a radiation track may actually fall in the space between spheres, that would be outside the spherical scoring volume. This internal geometry, along with the PENELOPE algorithm, drastically reduced the computer time when using this code if comparing with event-by-event Monte Carlo codes like PITS. This preliminary work has been important to address dosimetric estimates at low electron energies. It demonstrates that codes like PENELOPE can be used for Dose evaluation, even with such small geometries and energies involved, which are far below the normal use for which the code was created. Further work (initiated in Summer 2002) is still needed however, to create a user-code for PENELOPE that allows uniform comparison of exact cell geometries, integral volumes and also microdosimetric scoring quantities, a field where track-structure codes like PITS, written for this purpose, are believed to be superior.« less

  10. General Monte Carlo reliability simulation code including common mode failures and HARP fault/error-handling

    NASA Technical Reports Server (NTRS)

    Platt, M. E.; Lewis, E. E.; Boehm, F.

    1991-01-01

    A Monte Carlo Fortran computer program was developed that uses two variance reduction techniques for computing system reliability applicable to solving very large highly reliable fault-tolerant systems. The program is consistent with the hybrid automated reliability predictor (HARP) code which employs behavioral decomposition and complex fault-error handling models. This new capability is called MC-HARP which efficiently solves reliability models with non-constant failures rates (Weibull). Common mode failure modeling is also a specialty.

  11. Advanced Computational Methods for Monte Carlo Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B.

    This course is intended for graduate students who already have a basic understanding of Monte Carlo methods. It focuses on advanced topics that may be needed for thesis research, for developing new state-of-the-art methods, or for working with modern production Monte Carlo codes.

  12. PRELIMINARY COUPLING OF THE MONTE CARLO CODE OPENMC AND THE MULTIPHYSICS OBJECT-ORIENTED SIMULATION ENVIRONMENT (MOOSE) FOR ANALYZING DOPPLER FEEDBACK IN MONTE CARLO SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthew Ellis; Derek Gaston; Benoit Forget

    In recent years the use of Monte Carlo methods for modeling reactors has become feasible due to the increasing availability of massively parallel computer systems. One of the primary challenges yet to be fully resolved, however, is the efficient and accurate inclusion of multiphysics feedback in Monte Carlo simulations. The research in this paper presents a preliminary coupling of the open source Monte Carlo code OpenMC with the open source Multiphysics Object-Oriented Simulation Environment (MOOSE). The coupling of OpenMC and MOOSE will be used to investigate efficient and accurate numerical methods needed to include multiphysics feedback in Monte Carlo codes.more » An investigation into the sensitivity of Doppler feedback to fuel temperature approximations using a two dimensional 17x17 PWR fuel assembly is presented in this paper. The results show a functioning multiphysics coupling between OpenMC and MOOSE. The coupling utilizes Functional Expansion Tallies to accurately and efficiently transfer pin power distributions tallied in OpenMC to unstructured finite element meshes used in MOOSE. The two dimensional PWR fuel assembly case also demonstrates that for a simplified model the pin-by-pin doppler feedback can be adequately replicated by scaling a representative pin based on pin relative powers.« less

  13. A 3DHZETRN Code in a Spherical Uniform Sphere with Monte Carlo Verification

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.

    2014-01-01

    The computationally efficient HZETRN code has been used in recent trade studies for lunar and Martian exploration and is currently being used in the engineering development of the next generation of space vehicles, habitats, and extra vehicular activity equipment. A new version (3DHZETRN) capable of transporting High charge (Z) and Energy (HZE) and light ions (including neutrons) under space-like boundary conditions with enhanced neutron and light ion propagation is under development. In the present report, new algorithms for light ion and neutron propagation with well-defined convergence criteria in 3D objects is developed and tested against Monte Carlo simulations to verify the solution methodology. The code will be available through the software system, OLTARIS, for shield design and validation and provides a basis for personal computer software capable of space shield analysis and optimization.

  14. Monte Carlo simulation of Ising models by multispin coding on a vector computer

    NASA Astrophysics Data System (ADS)

    Wansleben, Stephan; Zabolitzky, John G.; Kalle, Claus

    1984-11-01

    Rebbi's efficient multispin coding algorithm for Ising models is combined with the use of the vector computer CDC Cyber 205. A speed of 21.2 million updates per second is reached. This is comparable to that obtained by special- purpose computers.

  15. Characterization of Proxy Application Performance on Advanced Architectures. UMT2013, MCB, AMG2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howell, Louis H.; Gunney, Brian T.; Bhatele, Abhinav

    2015-10-09

    Three codes were tested at LLNL as part of a Tri-Lab effort to make detailed assessments of several proxy applications on various advanced architectures, with the eventual goal of extending these assessments to codes of programmatic interest running more realistic simulations. Teams from Sandia and Los Alamos tested proxy apps of their own. The focus in this report is on the LLNL codes UMT2013, MCB, and AMG2013. We present weak and strong MPI scaling results and studies of OpenMP efficiency on a large BG/Q system at LLNL, with comparison against similar tests on an Intel Sandy Bridge TLCC2 system. Themore » hardware counters on BG/Q provide detailed information on many aspects of on-node performance, while information from the mpiP tool gives insight into the reasons for the differing scaling behavior on these two different architectures. Results from three more speculative tests are also included: one that exploits NVRAM as extended memory, one that studies performance under a power bound, and one that illustrates the effects of changing the torus network mapping on BG/Q.« less

  16. Results of comparative RBMK neutron computation using VNIIEF codes (cell computation, 3D statics, 3D kinetics). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grebennikov, A.N.; Zhitnik, A.K.; Zvenigorodskaya, O.A.

    1995-12-31

    In conformity with the protocol of the Workshop under Contract {open_quotes}Assessment of RBMK reactor safety using modern Western Codes{close_quotes} VNIIEF performed a neutronics computation series to compare western and VNIIEF codes and assess whether VNIIEF codes are suitable for RBMK type reactor safety assessment computation. The work was carried out in close collaboration with M.I. Rozhdestvensky and L.M. Podlazov, NIKIET employees. The effort involved: (1) cell computations with the WIMS, EKRAN codes (improved modification of the LOMA code) and the S-90 code (VNIIEF Monte Carlo). Cell, polycell, burnup computation; (2) 3D computation of static states with the KORAT-3D and NEUmore » codes and comparison with results of computation with the NESTLE code (USA). The computations were performed in the geometry and using the neutron constants presented by the American party; (3) 3D computation of neutron kinetics with the KORAT-3D and NEU codes. These computations were performed in two formulations, both being developed in collaboration with NIKIET. Formulation of the first problem maximally possibly agrees with one of NESTLE problems and imitates gas bubble travel through a core. The second problem is a model of the RBMK as a whole with imitation of control and protection system controls (CPS) movement in a core.« less

  17. Morse Monte Carlo Radiation Transport Code System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emmett, M.B.

    1975-02-01

    The report contains sections containing descriptions of the MORSE and PICTURE codes, input descriptions, sample problems, deviations of the physical equations and explanations of the various error messages. The MORSE code is a multipurpose neutron and gamma-ray transport Monte Carlo code. Time dependence for both shielding and criticality problems is provided. General three-dimensional geometry may be used with an albedo option available at any material surface. The PICTURE code provide aid in preparing correct input data for the combinatorial geometry package CG. It provides a printed view of arbitrary two-dimensional slices through the geometry. By inspecting these pictures one maymore » determine if the geometry specified by the input cards is indeed the desired geometry. 23 refs. (WRF)« less

  18. WE-AB-204-11: Development of a Nuclear Medicine Dosimetry Module for the GPU-Based Monte Carlo Code ARCHER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, T; Lin, H; Xu, X

    Purpose: To develop a nuclear medicine dosimetry module for the GPU-based Monte Carlo code ARCHER. Methods: We have developed a nuclear medicine dosimetry module for the fast Monte Carlo code ARCHER. The coupled electron-photon Monte Carlo transport kernel included in ARCHER is built upon the Dose Planning Method code (DPM). The developed module manages the radioactive decay simulation by consecutively tracking several types of radiation on a per disintegration basis using the statistical sampling method. Optimization techniques such as persistent threads and prefetching are studied and implemented. The developed module is verified against the VIDA code, which is based onmore » Geant4 toolkit and has previously been verified against OLINDA/EXM. A voxelized geometry is used in the preliminary test: a sphere made of ICRP soft tissue is surrounded by a box filled with water. Uniform activity distribution of I-131 is assumed in the sphere. Results: The self-absorption dose factors (mGy/MBqs) of the sphere with varying diameters are calculated by ARCHER and VIDA respectively. ARCHER’s result is in agreement with VIDA’s that are obtained from a previous publication. VIDA takes hours of CPU time to finish the computation, while it takes ARCHER 4.31 seconds for the 12.4-cm uniform activity sphere case. For a fairer CPU-GPU comparison, more effort will be made to eliminate the algorithmic differences. Conclusion: The coupled electron-photon Monte Carlo code ARCHER has been extended to radioactive decay simulation for nuclear medicine dosimetry. The developed code exhibits good performance in our preliminary test. The GPU-based Monte Carlo code is developed with grant support from the National Institute of Biomedical Imaging and Bioengineering through an R01 grant (R01EB015478)« less

  19. A parallel Monte Carlo code for planar and SPECT imaging: implementation, verification and applications in (131)I SPECT.

    PubMed

    Dewaraja, Yuni K; Ljungberg, Michael; Majumdar, Amitava; Bose, Abhijit; Koral, Kenneth F

    2002-02-01

    This paper reports the implementation of the SIMIND Monte Carlo code on an IBM SP2 distributed memory parallel computer. Basic aspects of running Monte Carlo particle transport calculations on parallel architectures are described. Our parallelization is based on equally partitioning photons among the processors and uses the Message Passing Interface (MPI) library for interprocessor communication and the Scalable Parallel Random Number Generator (SPRNG) to generate uncorrelated random number streams. These parallelization techniques are also applicable to other distributed memory architectures. A linear increase in computing speed with the number of processors is demonstrated for up to 32 processors. This speed-up is especially significant in Single Photon Emission Computed Tomography (SPECT) simulations involving higher energy photon emitters, where explicit modeling of the phantom and collimator is required. For (131)I, the accuracy of the parallel code is demonstrated by comparing simulated and experimental SPECT images from a heart/thorax phantom. Clinically realistic SPECT simulations using the voxel-man phantom are carried out to assess scatter and attenuation correction.

  20. Parallel Monte Carlo transport modeling in the context of a time-dependent, three-dimensional multi-physics code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Procassini, R.J.

    1997-12-31

    The fine-scale, multi-space resolution that is envisioned for accurate simulations of complex weapons systems in three spatial dimensions implies flop-rate and memory-storage requirements that will only be obtained in the near future through the use of parallel computational techniques. Since the Monte Carlo transport models in these simulations usually stress both of these computational resources, they are prime candidates for parallelization. The MONACO Monte Carlo transport package, which is currently under development at LLNL, will utilize two types of parallelism within the context of a multi-physics design code: decomposition of the spatial domain across processors (spatial parallelism) and distribution ofmore » particles in a given spatial subdomain across additional processors (particle parallelism). This implementation of the package will utilize explicit data communication between domains (message passing). Such a parallel implementation of a Monte Carlo transport model will result in non-deterministic communication patterns. The communication of particles between subdomains during a Monte Carlo time step may require a significant level of effort to achieve a high parallel efficiency.« less

  1. Parallelization of a Monte Carlo particle transport simulation code

    NASA Astrophysics Data System (ADS)

    Hadjidoukas, P.; Bousis, C.; Emfietzoglou, D.

    2010-05-01

    We have developed a high performance version of the Monte Carlo particle transport simulation code MC4. The original application code, developed in Visual Basic for Applications (VBA) for Microsoft Excel, was first rewritten in the C programming language for improving code portability. Several pseudo-random number generators have been also integrated and studied. The new MC4 version was then parallelized for shared and distributed-memory multiprocessor systems using the Message Passing Interface. Two parallel pseudo-random number generator libraries (SPRNG and DCMT) have been seamlessly integrated. The performance speedup of parallel MC4 has been studied on a variety of parallel computing architectures including an Intel Xeon server with 4 dual-core processors, a Sun cluster consisting of 16 nodes of 2 dual-core AMD Opteron processors and a 200 dual-processor HP cluster. For large problem size, which is limited only by the physical memory of the multiprocessor server, the speedup results are almost linear on all systems. We have validated the parallel implementation against the serial VBA and C implementations using the same random number generator. Our experimental results on the transport and energy loss of electrons in a water medium show that the serial and parallel codes are equivalent in accuracy. The present improvements allow for studying of higher particle energies with the use of more accurate physical models, and improve statistics as more particles tracks can be simulated in low response time.

  2. Capabilities overview of the MORET 5 Monte Carlo code

    NASA Astrophysics Data System (ADS)

    Cochet, B.; Jinaphanh, A.; Heulers, L.; Jacquet, O.

    2014-06-01

    The MORET code is a simulation tool that solves the transport equation for neutrons using the Monte Carlo method. It allows users to model complex three-dimensional geometrical configurations, describe the materials, define their own tallies in order to analyse the results. The MORET code has been initially designed to perform calculations for criticality safety assessments. New features has been introduced in the MORET 5 code to expand its use for reactor applications. This paper presents an overview of the MORET 5 code capabilities, going through the description of materials, the geometry modelling, the transport simulation and the definition of the outputs.

  3. The Monte Carlo photoionization and moving-mesh radiation hydrodynamics code CMACIONIZE

    NASA Astrophysics Data System (ADS)

    Vandenbroucke, B.; Wood, K.

    2018-04-01

    We present the public Monte Carlo photoionization and moving-mesh radiation hydrodynamics code CMACIONIZE, which can be used to simulate the self-consistent evolution of HII regions surrounding young O and B stars, or other sources of ionizing radiation. The code combines a Monte Carlo photoionization algorithm that uses a complex mix of hydrogen, helium and several coolants in order to self-consistently solve for the ionization and temperature balance at any given type, with a standard first order hydrodynamics scheme. The code can be run as a post-processing tool to get the line emission from an existing simulation snapshot, but can also be used to run full radiation hydrodynamical simulations. Both the radiation transfer and the hydrodynamics are implemented in a general way that is independent of the grid structure that is used to discretize the system, allowing it to be run both as a standard fixed grid code, but also as a moving-mesh code.

  4. GATE Monte Carlo simulation in a cloud computing environment

    NASA Astrophysics Data System (ADS)

    Rowedder, Blake Austin

    The GEANT4-based GATE is a unique and powerful Monte Carlo (MC) platform, which provides a single code library allowing the simulation of specific medical physics applications, e.g. PET, SPECT, CT, radiotherapy, and hadron therapy. However, this rigorous yet flexible platform is used only sparingly in the clinic due to its lengthy calculation time. By accessing the powerful computational resources of a cloud computing environment, GATE's runtime can be significantly reduced to clinically feasible levels without the sizable investment of a local high performance cluster. This study investigated a reliable and efficient execution of GATE MC simulations using a commercial cloud computing services. Amazon's Elastic Compute Cloud was used to launch several nodes equipped with GATE. Job data was initially broken up on the local computer, then uploaded to the worker nodes on the cloud. The results were automatically downloaded and aggregated on the local computer for display and analysis. Five simulations were repeated for every cluster size between 1 and 20 nodes. Ultimately, increasing cluster size resulted in a decrease in calculation time that could be expressed with an inverse power model. Comparing the benchmark results to the published values and error margins indicated that the simulation results were not affected by the cluster size and thus that integrity of a calculation is preserved in a cloud computing environment. The runtime of a 53 minute long simulation was decreased to 3.11 minutes when run on a 20-node cluster. The ability to improve the speed of simulation suggests that fast MC simulations are viable for imaging and radiotherapy applications. With high power computing continuing to lower in price and accessibility, implementing Monte Carlo techniques with cloud computing for clinical applications will continue to become more attractive.

  5. Los Alamos radiation transport code system on desktop computing platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briesmeister, J.F.; Brinkley, F.W.; Clark, B.A.

    The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. These codes were originally developed many years ago and have undergone continual improvement. With a large initial effort and continued vigilance, the codes are easily portable from one type of hardware to another. The performance of scientific work-stations (SWS) has evolved to the point that such platforms can be used routinely to perform sophisticated radiation transport calculations. As the personal computer (PC) performance approaches that of the SWS, the hardware options for desk-top radiation transport calculations expands considerably. Themore » current status of the radiation transport codes within the LARTCS is described: MCNP, SABRINA, LAHET, ONEDANT, TWODANT, TWOHEX, and ONELD. Specifically, the authors discuss hardware systems on which the codes run and present code performance comparisons for various machines.« less

  6. Recent advances and future prospects for Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B

    2010-01-01

    The history of Monte Carlo methods is closely linked to that of computers: The first known Monte Carlo program was written in 1947 for the ENIAC; a pre-release of the first Fortran compiler was used for Monte Carlo In 1957; Monte Carlo codes were adapted to vector computers in the 1980s, clusters and parallel computers in the 1990s, and teraflop systems in the 2000s. Recent advances include hierarchical parallelism, combining threaded calculations on multicore processors with message-passing among different nodes. With the advances In computmg, Monte Carlo codes have evolved with new capabilities and new ways of use. Production codesmore » such as MCNP, MVP, MONK, TRIPOLI and SCALE are now 20-30 years old (or more) and are very rich in advanced featUres. The former 'method of last resort' has now become the first choice for many applications. Calculations are now routinely performed on office computers, not just on supercomputers. Current research and development efforts are investigating the use of Monte Carlo methods on FPGAs. GPUs, and many-core processors. Other far-reaching research is exploring ways to adapt Monte Carlo methods to future exaflop systems that may have 1M or more concurrent computational processes.« less

  7. Validation of a personalized dosimetric evaluation tool (Oedipe) for targeted radiotherapy based on the Monte Carlo MCNPX code

    NASA Astrophysics Data System (ADS)

    Chiavassa, S.; Aubineau-Lanièce, I.; Bitar, A.; Lisbona, A.; Barbet, J.; Franck, D.; Jourdain, J. R.; Bardiès, M.

    2006-02-01

    Dosimetric studies are necessary for all patients treated with targeted radiotherapy. In order to attain the precision required, we have developed Oedipe, a dosimetric tool based on the MCNPX Monte Carlo code. The anatomy of each patient is considered in the form of a voxel-based geometry created using computed tomography (CT) images or magnetic resonance imaging (MRI). Oedipe enables dosimetry studies to be carried out at the voxel scale. Validation of the results obtained by comparison with existing methods is complex because there are multiple sources of variation: calculation methods (different Monte Carlo codes, point kernel), patient representations (model or specific) and geometry definitions (mathematical or voxel-based). In this paper, we validate Oedipe by taking each of these parameters into account independently. Monte Carlo methodology requires long calculation times, particularly in the case of voxel-based geometries, and this is one of the limits of personalized dosimetric methods. However, our results show that the use of voxel-based geometry as opposed to a mathematically defined geometry decreases the calculation time two-fold, due to an optimization of the MCNPX2.5e code. It is therefore possible to envisage the use of Oedipe for personalized dosimetry in the clinical context of targeted radiotherapy.

  8. Development of a Space Radiation Monte-Carlo Computer Simulation Based on the FLUKE and Root Codes

    NASA Technical Reports Server (NTRS)

    Pinsky, L. S.; Wilson, T. L.; Ferrari, A.; Sala, Paola; Carminati, F.; Brun, R.

    2001-01-01

    The radiation environment in space is a complex problem to model. Trying to extrapolate the projections of that environment into all areas of the internal spacecraft geometry is even more daunting. With the support of our CERN colleagues, our research group in Houston is embarking on a project to develop a radiation transport tool that is tailored to the problem of taking the external radiation flux incident on any particular spacecraft and simulating the evolution of that flux through a geometrically accurate model of the spacecraft material. The output will be a prediction of the detailed nature of the resulting internal radiation environment within the spacecraft as well as its secondary albedo. Beyond doing the physics transport of the incident flux, the software tool we are developing will provide a self-contained stand-alone object-oriented analysis and visualization infrastructure. It will also include a graphical user interface and a set of input tools to facilitate the simulation of space missions in terms of nominal radiation models and mission trajectory profiles. The goal of this project is to produce a code that is considerably more accurate and user-friendly than existing Monte-Carlo-based tools for the evaluation of the space radiation environment. Furthermore, the code will be an essential complement to the currently existing analytic codes in the BRYNTRN/HZETRN family for the evaluation of radiation shielding. The code will be directly applicable to the simulation of environments in low earth orbit, on the lunar surface, on planetary surfaces (including the Earth) and in the interplanetary medium such as on a transit to Mars (and even in the interstellar medium). The software will include modules whose underlying physics base can continue to be enhanced and updated for physics content, as future data become available beyond the timeframe of the initial development now foreseen. This future maintenance will be available from the authors of FLUKA as

  9. Fast GPU-based Monte Carlo code for SPECT/CT reconstructions generates improved 177Lu images.

    PubMed

    Rydén, T; Heydorn Lagerlöf, J; Hemmingsson, J; Marin, I; Svensson, J; Båth, M; Gjertsson, P; Bernhardt, P

    2018-01-04

    Full Monte Carlo (MC)-based SPECT reconstructions have a strong potential for correcting for image degrading factors, but the reconstruction times are long. The objective of this study was to develop a highly parallel Monte Carlo code for fast, ordered subset expectation maximum (OSEM) reconstructions of SPECT/CT images. The MC code was written in the Compute Unified Device Architecture language for a computer with four graphics processing units (GPUs) (GeForce GTX Titan X, Nvidia, USA). This enabled simulations of parallel photon emissions from the voxels matrix (128 3 or 256 3 ). Each computed tomography (CT) number was converted to attenuation coefficients for photo absorption, coherent scattering, and incoherent scattering. For photon scattering, the deflection angle was determined by the differential scattering cross sections. An angular response function was developed and used to model the accepted angles for photon interaction with the crystal, and a detector scattering kernel was used for modeling the photon scattering in the detector. Predefined energy and spatial resolution kernels for the crystal were used. The MC code was implemented in the OSEM reconstruction of clinical and phantom 177 Lu SPECT/CT images. The Jaszczak image quality phantom was used to evaluate the performance of the MC reconstruction in comparison with attenuated corrected (AC) OSEM reconstructions and attenuated corrected OSEM reconstructions with resolution recovery corrections (RRC). The performance of the MC code was 3200 million photons/s. The required number of photons emitted per voxel to obtain a sufficiently low noise level in the simulated image was 200 for a 128 3 voxel matrix. With this number of emitted photons/voxel, the MC-based OSEM reconstruction with ten subsets was performed within 20 s/iteration. The images converged after around six iterations. Therefore, the reconstruction time was around 3 min. The activity recovery for the spheres in the Jaszczak phantom was

  10. Implementation, capabilities, and benchmarking of Shift, a massively parallel Monte Carlo radiation transport code

    DOE PAGES

    Pandya, Tara M.; Johnson, Seth R.; Evans, Thomas M.; ...

    2015-12-21

    This paper discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package developed and maintained at Oak Ridge National Laboratory. It has been developed to scale well from laptop to small computing clusters to advanced supercomputers. Special features of Shift include hybrid capabilities for variance reduction such as CADIS and FW-CADIS, and advanced parallel decomposition and tally methods optimized for scalability on supercomputing architectures. Shift has been validated and verified against various reactor physics benchmarks and compares well to other state-of-the-art Monte Carlo radiation transport codes such as MCNP5, CE KENO-VI, and OpenMC. Somemore » specific benchmarks used for verification and validation include the CASL VERA criticality test suite and several Westinghouse AP1000 ® problems. These benchmark and scaling studies show promising results.« less

  11. Experimental benchmarking of a Monte Carlo dose simulation code for pediatric CT

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Samei, Ehsan; Yoshizumi, Terry; Colsher, James G.; Jones, Robert P.; Frush, Donald P.

    2007-03-01

    In recent years, there has been a desire to reduce CT radiation dose to children because of their susceptibility and prolonged risk for cancer induction. Concerns arise, however, as to the impact of dose reduction on image quality and thus potentially on diagnostic accuracy. To study the dose and image quality relationship, we are developing a simulation code to calculate organ dose in pediatric CT patients. To benchmark this code, a cylindrical phantom was built to represent a pediatric torso, which allows measurements of dose distributions from its center to its periphery. Dose distributions for axial CT scans were measured on a 64-slice multidetector CT (MDCT) scanner (GE Healthcare, Chalfont St. Giles, UK). The same measurements were simulated using a Monte Carlo code (PENELOPE, Universitat de Barcelona) with the applicable CT geometry including bowtie filter. The deviations between simulated and measured dose values were generally within 5%. To our knowledge, this work is one of the first attempts to compare measured radial dose distributions on a cylindrical phantom with Monte Carlo simulated results. It provides a simple and effective method for benchmarking organ dose simulation codes and demonstrates the potential of Monte Carlo simulation for investigating the relationship between dose and image quality for pediatric CT patients.

  12. Forward Monte Carlo Computations of Polarized Microwave Radiation

    NASA Technical Reports Server (NTRS)

    Battaglia, A.; Kummerow, C.

    2000-01-01

    Microwave radiative transfer computations continue to acquire greater importance as the emphasis in remote sensing shifts towards the understanding of microphysical properties of clouds and with these to better understand the non linear relation between rainfall rates and satellite-observed radiance. A first step toward realistic radiative simulations has been the introduction of techniques capable of treating 3-dimensional geometry being generated by ever more sophisticated cloud resolving models. To date, a series of numerical codes have been developed to treat spherical and randomly oriented axisymmetric particles. Backward and backward-forward Monte Carlo methods are, indeed, efficient in this field. These methods, however, cannot deal properly with oriented particles, which seem to play an important role in polarization signatures over stratiform precipitation. Moreover, beyond the polarization channel, the next generation of fully polarimetric radiometers challenges us to better understand the behavior of the last two Stokes parameters as well. In order to solve the vector radiative transfer equation, one-dimensional numerical models have been developed, These codes, unfortunately, consider the atmosphere as horizontally homogeneous with horizontally infinite plane parallel layers. The next development step for microwave radiative transfer codes must be fully polarized 3-D methods. Recently a 3-D polarized radiative transfer model based on the discrete ordinate method was presented. A forward MC code was developed that treats oriented nonspherical hydrometeors, but only for plane-parallel situations.

  13. A new Monte Carlo code for light transport in biological tissue.

    PubMed

    Torres-García, Eugenio; Oros-Pantoja, Rigoberto; Aranda-Lara, Liliana; Vieyra-Reyes, Patricia

    2018-04-01

    The aim of this work was to develop an event-by-event Monte Carlo code for light transport (called MCLTmx) to identify and quantify ballistic, diffuse, and absorbed photons, as well as their interaction coordinates inside the biological tissue. The mean free path length was computed between two interactions for scattering or absorption processes, and if necessary scatter angles were calculated, until the photon disappeared or went out of region of interest. A three-layer array (air-tissue-air) was used, forming a semi-infinite sandwich. The light source was placed at (0,0,0), emitting towards (0,0,1). The input data were: refractive indices, target thickness (0.02, 0.05, 0.1, 0.5, and 1 cm), number of particle histories, and λ from which the code calculated: anisotropy, scattering, and absorption coefficients. Validation presents differences less than 0.1% compared with that reported in the literature. The MCLTmx code discriminates between ballistic and diffuse photons, and inside of biological tissue, it calculates: specular reflection, diffuse reflection, ballistics transmission, diffuse transmission and absorption, and all parameters dependent on wavelength and thickness. The MCLTmx code can be useful for light transport inside any medium by changing the parameters that describe the new medium: anisotropy, dispersion and attenuation coefficients, and refractive indices for specific wavelength.

  14. Considerations of MCNP Monte Carlo code to be used as a radiotherapy treatment planning tool.

    PubMed

    Juste, B; Miro, R; Gallardo, S; Verdu, G; Santos, A

    2005-01-01

    The present work has simulated the photon and electron transport in a Theratron 780® (MDS Nordion)60Co radiotherapy unit, using the Monte Carlo transport code, MCNP (Monte Carlo N-Particle). This project explains mainly the different methodologies carried out to speedup calculations in order to apply this code efficiently in radiotherapy treatment planning.

  15. SU-E-T-254: Optimization of GATE and PHITS Monte Carlo Code Parameters for Uniform Scanning Proton Beam Based On Simulation with FLUKA General-Purpose Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurosu, K; Department of Medical Physics ' Engineering, Osaka University Graduate School of Medicine, Osaka; Takashina, M

    Purpose: Monte Carlo codes are becoming important tools for proton beam dosimetry. However, the relationships between the customizing parameters and percentage depth dose (PDD) of GATE and PHITS codes have not been reported which are studied for PDD and proton range compared to the FLUKA code and the experimental data. Methods: The beam delivery system of the Indiana University Health Proton Therapy Center was modeled for the uniform scanning beam in FLUKA and transferred identically into GATE and PHITS. This computational model was built from the blue print and validated with the commissioning data. Three parameters evaluated are the maximummore » step size, cut off energy and physical and transport model. The dependence of the PDDs on the customizing parameters was compared with the published results of previous studies. Results: The optimal parameters for the simulation of the whole beam delivery system were defined by referring to the calculation results obtained with each parameter. Although the PDDs from FLUKA and the experimental data show a good agreement, those of GATE and PHITS obtained with our optimal parameters show a minor discrepancy. The measured proton range R90 was 269.37 mm, compared to the calculated range of 269.63 mm, 268.96 mm, and 270.85 mm with FLUKA, GATE and PHITS, respectively. Conclusion: We evaluated the dependence of the results for PDDs obtained with GATE and PHITS Monte Carlo generalpurpose codes on the customizing parameters by using the whole computational model of the treatment nozzle. The optimal parameters for the simulation were then defined by referring to the calculation results. The physical model, particle transport mechanics and the different geometrybased descriptions need accurate customization in three simulation codes to agree with experimental data for artifact-free Monte Carlo simulation. This study was supported by Grants-in Aid for Cancer Research (H22-3rd Term Cancer Control-General-043) from the Ministry of

  16. The hierarchically organized splitting of chromosome bands into sub-bands analyzed by multicolor banding (MCB).

    PubMed

    Lehrer, H; Weise, A; Michel, S; Starke, H; Mrasek, K; Heller, A; Kuechler, A; Claussen, U; Liehr, T

    2004-01-01

    To clarify the nature of chromosome sub-bands in more detail, the multicolor banding (MCB) probe-set for chromosome 5 was hybridized to normal metaphase spreads of GTG band levels at approximately 850, approximately 550, approximately 400 and approximately 300. It could be observed that as the chromosomes became shorter, more of the initial 39 MCB pseudo-colors disappeared, ending with 18 MCB pseudo-colored bands at the approximately 300-band level. The hierarchically organized splitting of bands into sub-bands was analyzed by comparing the disappearance or appearance of pseudo-color bands of the four different band levels. The regions to split first are telomere-near, centromere-near and in 5q23-->q31, followed by 5p15, 5p14, and all GTG dark bands in 5q apart from 5q12 and 5q32 and finalized by sub-band building in 5p15.2, 5q21.2-->q21.3, 5q23.1 and 5q34. The direction of band splitting towards the centromere or the telomere could be assigned to each band separately. Pseudo-colors assigned to GTG-light bands were resistant to band splitting. These observations are in concordance with the recently proposed concept of chromosome region-specific protein swelling. Copyright 2003 S. Karger AG, Basel

  17. Hanford meteorological station computer codes: Volume 9, The quality assurance computer codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burk, K.W.; Andrews, G.L.

    1989-02-01

    The Hanford Meteorological Station (HMS) was established in 1944 on the Hanford Site to collect and archive meteorological data and provide weather forecasts and related services for Hanford Site approximately 1/2 mile east of the 200 West Area and is operated by PNL for the US Department of Energy. Meteorological data are collected from various sensors and equipment located on and off the Hanford Site. These data are stored in data bases on the Digital Equipment Corporation (DEC) VAX 11/750 at the HMS (hereafter referred to as the HMS computer). Files from those data bases are routinely transferred to themore » Emergency Management System (EMS) computer at the Unified Dose Assessment Center (UDAC). To ensure the quality and integrity of the HMS data, a set of Quality Assurance (QA) computer codes has been written. The codes will be routinely used by the HMS system manager or the data base custodian. The QA codes provide detailed output files that will be used in correcting erroneous data. The following sections in this volume describe the implementation and operation of QA computer codes. The appendices contain detailed descriptions, flow charts, and source code listings of each computer code. 2 refs.« less

  18. Energetic properties' investigation of removing flattening filter at phantom surface: Monte Carlo study using BEAMnrc code, DOSXYZnrc code and BEAMDP code

    NASA Astrophysics Data System (ADS)

    Bencheikh, Mohamed; Maghnouj, Abdelmajid; Tajmouati, Jaouad

    2017-11-01

    The Monte Carlo calculation method is considered to be the most accurate method for dose calculation in radiotherapy and beam characterization investigation, in this study, the Varian Clinac 2100 medical linear accelerator with and without flattening filter (FF) was modelled. The objective of this study was to determine flattening filter impact on particles' energy properties at phantom surface in terms of energy fluence, mean energy, and energy fluence distribution. The Monte Carlo codes used in this study were BEAMnrc code for simulating linac head, DOSXYZnrc code for simulating the absorbed dose in a water phantom, and BEAMDP for extracting energy properties. Field size was 10 × 10 cm2, simulated photon beam energy was 6 MV and SSD was 100 cm. The Monte Carlo geometry was validated by a gamma index acceptance rate of 99% in PDD and 98% in dose profiles, gamma criteria was 3% for dose difference and 3mm for distance to agreement. In without-FF, the energetic properties was as following: electron contribution was increased by more than 300% in energy fluence, almost 14% in mean energy and 1900% in energy fluence distribution, however, photon contribution was increased 50% in energy fluence, and almost 18% in mean energy and almost 35% in energy fluence distribution. The removing flattening filter promotes the increasing of electron contamination energy versus photon energy; our study can contribute in the evolution of removing flattening filter configuration in future linac.

  19. Improved Convergence Rate of Multi-Group Scattering Moment Tallies for Monte Carlo Neutron Transport Codes

    NASA Astrophysics Data System (ADS)

    Nelson, Adam

    Multi-group scattering moment matrices are critical to the solution of the multi-group form of the neutron transport equation, as they are responsible for describing the change in direction and energy of neutrons. These matrices, however, are difficult to correctly calculate from the measured nuclear data with both deterministic and stochastic methods. Calculating these parameters when using deterministic methods requires a set of assumptions which do not hold true in all conditions. These quantities can be calculated accurately with stochastic methods, however doing so is computationally expensive due to the poor efficiency of tallying scattering moment matrices. This work presents an improved method of obtaining multi-group scattering moment matrices from a Monte Carlo neutron transport code. This improved method of tallying the scattering moment matrices is based on recognizing that all of the outgoing particle information is known a priori and can be taken advantage of to increase the tallying efficiency (therefore reducing the uncertainty) of the stochastically integrated tallies. In this scheme, the complete outgoing probability distribution is tallied, supplying every one of the scattering moment matrices elements with its share of data. In addition to reducing the uncertainty, this method allows for the use of a track-length estimation process potentially offering even further improvement to the tallying efficiency. Unfortunately, to produce the needed distributions, the probability functions themselves must undergo an integration over the outgoing energy and scattering angle dimensions. This integration is too costly to perform during the Monte Carlo simulation itself and therefore must be performed in advance by way of a pre-processing code. The new method increases the information obtained from tally events and therefore has a significantly higher efficiency than the currently used techniques. The improved method has been implemented in a code system

  20. Cellular dosimetry calculations for Strontium-90 using Monte Carlo code PENELOPE.

    PubMed

    Hocine, Nora; Farlay, Delphine; Boivin, Georges; Franck, Didier; Agarande, Michelle

    2014-11-01

    To improve risk assessments associated with chronic exposure to Strontium-90 (Sr-90), for both the environment and human health, it is necessary to know the energy distribution in specific cells or tissue. Monte Carlo (MC) simulation codes are extremely useful tools for calculating deposition energy. The present work was focused on the validation of the MC code PENetration and Energy LOss of Positrons and Electrons (PENELOPE) and the assessment of dose distribution to bone marrow cells from punctual Sr-90 source localized within the cortical bone part. S-values (absorbed dose per unit cumulated activity) calculations using Monte Carlo simulations were performed by using PENELOPE and Monte Carlo N-Particle eXtended (MCNPX). Cytoplasm, nucleus, cell surface, mouse femur bone and Sr-90 radiation source were simulated. Cells are assumed to be spherical with the radii of the cell and cell nucleus ranging from 2-10 μm. The Sr-90 source is assumed to be uniformly distributed in cell nucleus, cytoplasm and cell surface. The comparison of S-values calculated with PENELOPE to MCNPX results and the Medical Internal Radiation Dose (MIRD) values agreed very well since the relative deviations were less than 4.5%. The dose distribution to mouse bone marrow cells showed that the cells localized near the cortical part received the maximum dose. The MC code PENELOPE may prove useful for cellular dosimetry involving radiation transport through materials other than water, or for complex distributions of radionuclides and geometries.

  1. Mesh-based Monte Carlo code for fluorescence modeling in complex tissues with irregular boundaries

    NASA Astrophysics Data System (ADS)

    Wilson, Robert H.; Chen, Leng-Chun; Lloyd, William; Kuo, Shiuhyang; Marcelo, Cynthia; Feinberg, Stephen E.; Mycek, Mary-Ann

    2011-07-01

    There is a growing need for the development of computational models that can account for complex tissue morphology in simulations of photon propagation. We describe the development and validation of a user-friendly, MATLAB-based Monte Carlo code that uses analytically-defined surface meshes to model heterogeneous tissue geometry. The code can use information from non-linear optical microscopy images to discriminate the fluorescence photons (from endogenous or exogenous fluorophores) detected from different layers of complex turbid media. We present a specific application of modeling a layered human tissue-engineered construct (Ex Vivo Produced Oral Mucosa Equivalent, EVPOME) designed for use in repair of oral tissue following surgery. Second-harmonic generation microscopic imaging of an EVPOME construct (oral keratinocytes atop a scaffold coated with human type IV collagen) was employed to determine an approximate analytical expression for the complex shape of the interface between the two layers. This expression can then be inserted into the code to correct the simulated fluorescence for the effect of the irregular tissue geometry.

  2. Radiotherapy Monte Carlo simulation using cloud computing technology.

    PubMed

    Poole, C M; Cornelius, I; Trapp, J V; Langton, C M

    2012-12-01

    Cloud computing allows for vast computational resources to be leveraged quickly and easily in bursts as and when required. Here we describe a technique that allows for Monte Carlo radiotherapy dose calculations to be performed using GEANT4 and executed in the cloud, with relative simulation cost and completion time evaluated as a function of machine count. As expected, simulation completion time decreases as 1/n for n parallel machines, and relative simulation cost is found to be optimal where n is a factor of the total simulation time in hours. Using the technique, we demonstrate the potential usefulness of cloud computing as a solution for rapid Monte Carlo simulation for radiotherapy dose calculation without the need for dedicated local computer hardware as a proof of principal.

  3. Parallelization of KENO-Va Monte Carlo code

    NASA Astrophysics Data System (ADS)

    Ramón, Javier; Peña, Jorge

    1995-07-01

    KENO-Va is a code integrated within the SCALE system developed by Oak Ridge that solves the transport equation through the Monte Carlo Method. It is being used at the Consejo de Seguridad Nuclear (CSN) to perform criticality calculations for fuel storage pools and shipping casks. Two parallel versions of the code: one for shared memory machines and other for distributed memory systems using the message-passing interface PVM have been generated. In both versions the neutrons of each generation are tracked in parallel. In order to preserve the reproducibility of the results in both versions, advanced seeds for random numbers were used. The CONVEX C3440 with four processors and shared memory at CSN was used to implement the shared memory version. A FDDI network of 6 HP9000/735 was employed to implement the message-passing version using proprietary PVM. The speedup obtained was 3.6 in both cases.

  4. COSMOABC: Likelihood-free inference via Population Monte Carlo Approximate Bayesian Computation

    NASA Astrophysics Data System (ADS)

    Ishida, E. E. O.; Vitenti, S. D. P.; Penna-Lima, M.; Cisewski, J.; de Souza, R. S.; Trindade, A. M. M.; Cameron, E.; Busti, V. C.; COIN Collaboration

    2015-11-01

    Approximate Bayesian Computation (ABC) enables parameter inference for complex physical systems in cases where the true likelihood function is unknown, unavailable, or computationally too expensive. It relies on the forward simulation of mock data and comparison between observed and synthetic catalogues. Here we present COSMOABC, a Python ABC sampler featuring a Population Monte Carlo variation of the original ABC algorithm, which uses an adaptive importance sampling scheme. The code is very flexible and can be easily coupled to an external simulator, while allowing to incorporate arbitrary distance and prior functions. As an example of practical application, we coupled COSMOABC with the NUMCOSMO library and demonstrate how it can be used to estimate posterior probability distributions over cosmological parameters based on measurements of galaxy clusters number counts without computing the likelihood function. COSMOABC is published under the GPLv3 license on PyPI and GitHub and documentation is available at http://goo.gl/SmB8EX.

  5. Assessment of background hydrogen by the Monte Carlo computer code MCNP-4A during measurements of total body nitrogen.

    PubMed

    Ryde, S J; al-Agel, F A; Evans, C J; Hancock, D A

    2000-05-01

    The use of a hydrogen internal standard to enable the estimation of absolute mass during measurement of total body nitrogen by in vivo neutron activation is an established technique. Central to the technique is a determination of the H prompt gamma ray counts arising from the subject. In practice, interference counts from other sources--e.g., neutron shielding--are included. This study reports use of the Monte Carlo computer code, MCNP-4A, to investigate the interference counts arising from shielding both with and without a phantom containing a urea solution. Over a range of phantom size (depth 5 to 30 cm, width 20 to 40 cm), the counts arising from shielding increased by between 4% and 32% compared with the counts without a phantom. For any given depth, the counts increased approximately linearly with width. For any given width, there was little increase for depths exceeding 15 centimeters. The shielding counts comprised between 15% and 26% of those arising from the urea phantom. These results, although specific to the Swansea apparatus, suggest that extraneous hydrogen counts can be considerable and depend strongly on the subject's size.

  6. Improvements of MCOR: A Monte Carlo depletion code system for fuel assembly reference calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tippayakul, C.; Ivanov, K.; Misu, S.

    2006-07-01

    This paper presents the improvements of MCOR, a Monte Carlo depletion code system for fuel assembly reference calculations. The improvements of MCOR were initiated by the cooperation between the Penn State Univ. and AREVA NP to enhance the original Penn State Univ. MCOR version in order to be used as a new Monte Carlo depletion analysis tool. Essentially, a new depletion module using KORIGEN is utilized to replace the existing ORIGEN-S depletion module in MCOR. Furthermore, the online burnup cross section generation by the Monte Carlo calculation is implemented in the improved version instead of using the burnup cross sectionmore » library pre-generated by a transport code. Other code features have also been added to make the new MCOR version easier to use. This paper, in addition, presents the result comparisons of the original and the improved MCOR versions against CASMO-4 and OCTOPUS. It was observed in the comparisons that there were quite significant improvements of the results in terms of k{sub inf}, fission rate distributions and isotopic contents. (authors)« less

  7. Extensions of the MCNP5 and TRIPOLI4 Monte Carlo Codes for Transient Reactor Analysis

    NASA Astrophysics Data System (ADS)

    Hoogenboom, J. Eduard; Sjenitzer, Bart L.

    2014-06-01

    To simulate reactor transients for safety analysis with the Monte Carlo method the generation and decay of delayed neutron precursors is implemented in the MCNP5 and TRIPOLI4 general purpose Monte Carlo codes. Important new variance reduction techniques like forced decay of precursors in each time interval and the branchless collision method are included to obtain reasonable statistics for the power production per time interval. For simulation of practical reactor transients also the feedback effect from the thermal-hydraulics must be included. This requires coupling of the Monte Carlo code with a thermal-hydraulics (TH) code, providing the temperature distribution in the reactor, which affects the neutron transport via the cross section data. The TH code also provides the coolant density distribution in the reactor, directly influencing the neutron transport. Different techniques for this coupling are discussed. As a demonstration a 3x3 mini fuel assembly with a moving control rod is considered for MCNP5 and a mini core existing of 3x3 PWR fuel assemblies with control rods and burnable poisons for TRIPOLI4. Results are shown for reactor transients due to control rod movement or withdrawal. The TRIPOLI4 transient calculation is started at low power and includes thermal-hydraulic feedback. The power rises about 10 decades and finally stabilises the reactor power at a much higher level than initial. The examples demonstrate that the modified Monte Carlo codes are capable of performing correct transient calculations, taking into account all geometrical and cross section detail.

  8. Force field development with GOMC, a fast new Monte Carlo molecular simulation code

    NASA Astrophysics Data System (ADS)

    Mick, Jason Richard

    In this work GOMC (GPU Optimized Monte Carlo) a new fast, flexible, and free molecular Monte Carlo code for the simulation atomistic chemical systems is presented. The results of a large Lennard-Jonesium simulation in the Gibbs ensemble is presented. Force fields developed using the code are also presented. To fit the models a quantitative fitting process is outlined using a scoring function and heat maps. The presented n-6 force fields include force fields for noble gases and branched alkanes. These force fields are shown to be the most accurate LJ or n-6 force fields to date for these compounds, capable of reproducing pure fluid behavior and binary mixture behavior to a high degree of accuracy.

  9. A comparison of the COG and MCNP codes in computational neutron capture therapy modeling, Part I: boron neutron capture therapy models.

    PubMed

    Culbertson, C N; Wangerin, K; Ghandourah, E; Jevremovic, T

    2005-08-01

    The goal of this study was to evaluate the COG Monte Carlo radiation transport code, developed and tested by Lawrence Livermore National Laboratory, for neutron capture therapy related modeling. A boron neutron capture therapy model was analyzed comparing COG calculational results to results from the widely used MCNP4B (Monte Carlo N-Particle) transport code. The approach for computing neutron fluence rate and each dose component relevant in boron neutron capture therapy is described, and calculated values are shown in detail. The differences between the COG and MCNP predictions are qualified and quantified. The differences are generally small and suggest that the COG code can be applied for BNCT research related problems.

  10. GUINEVERE experiment: Kinetic analysis of some reactivity measurement methods by deterministic and Monte Carlo codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bianchini, G.; Burgio, N.; Carta, M.

    The GUINEVERE experiment (Generation of Uninterrupted Intense Neutrons at the lead Venus Reactor) is an experimental program in support of the ADS technology presently carried out at SCK-CEN in Mol (Belgium). In the experiment a modified lay-out of the original thermal VENUS critical facility is coupled to an accelerator, built by the French body CNRS in Grenoble, working in both continuous and pulsed mode and delivering 14 MeV neutrons by bombardment of deuterons on a tritium-target. The modified lay-out of the facility consists of a fast subcritical core made of 30% U-235 enriched metallic Uranium in a lead matrix. Severalmore » off-line and on-line reactivity measurement techniques will be investigated during the experimental campaign. This report is focused on the simulation by deterministic (ERANOS French code) and Monte Carlo (MCNPX US code) calculations of three reactivity measurement techniques, Slope ({alpha}-fitting), Area-ratio and Source-jerk, applied to a GUINEVERE subcritical configuration (namely SC1). The inferred reactivity, in dollar units, by the Area-ratio method shows an overall agreement between the two deterministic and Monte Carlo computational approaches, whereas the MCNPX Source-jerk results are affected by large uncertainties and allow only partial conclusions about the comparison. Finally, no particular spatial dependence of the results is observed in the case of the GUINEVERE SC1 subcritical configuration. (authors)« less

  11. Simulation of Nuclear Reactor Kinetics by the Monte Carlo Method

    NASA Astrophysics Data System (ADS)

    Gomin, E. A.; Davidenko, V. D.; Zinchenko, A. S.; Kharchenko, I. K.

    2017-12-01

    The KIR computer code intended for calculations of nuclear reactor kinetics using the Monte Carlo method is described. The algorithm implemented in the code is described in detail. Some results of test calculations are given.

  12. MC3: Multi-core Markov-chain Monte Carlo code

    NASA Astrophysics Data System (ADS)

    Cubillos, Patricio; Harrington, Joseph; Lust, Nate; Foster, AJ; Stemm, Madison; Loredo, Tom; Stevenson, Kevin; Campo, Chris; Hardin, Matt; Hardy, Ryan

    2016-10-01

    MC3 (Multi-core Markov-chain Monte Carlo) is a Bayesian statistics tool that can be executed from the shell prompt or interactively through the Python interpreter with single- or multiple-CPU parallel computing. It offers Markov-chain Monte Carlo (MCMC) posterior-distribution sampling for several algorithms, Levenberg-Marquardt least-squares optimization, and uniform non-informative, Jeffreys non-informative, or Gaussian-informative priors. MC3 can share the same value among multiple parameters and fix the value of parameters to constant values, and offers Gelman-Rubin convergence testing and correlated-noise estimation with time-averaging or wavelet-based likelihood estimation methods.

  13. MCNP (Monte Carlo Neutron Photon) capabilities for nuclear well logging calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forster, R.A.; Little, R.C.; Briesmeister, J.F.

    The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. The general-purpose continuous-energy Monte Carlo code MCNP (Monte Carlo Neutron Photon), part of the LARTCS, provides a computational predictive capability for many applications of interest to the nuclear well logging community. The generalized three-dimensional geometry of MCNP is well suited for borehole-tool models. SABRINA, another component of the LARTCS, is a graphics code that can be used to interactively create a complex MCNP geometry. Users can define many source and tally characteristics with standard MCNP features. The time-dependent capabilitymore » of the code is essential when modeling pulsed sources. Problems with neutrons, photons, and electrons as either single particle or coupled particles can be calculated with MCNP. The physics of neutron and photon transport and interactions is modeled in detail using the latest available cross-section data. A rich collections of variance reduction features can greatly increase the efficiency of a calculation. MCNP is written in FORTRAN 77 and has been run on variety of computer systems from scientific workstations to supercomputers. The next production version of MCNP will include features such as continuous-energy electron transport and a multitasking option. Areas of ongoing research of interest to the well logging community include angle biasing, adaptive Monte Carlo, improved discrete ordinates capabilities, and discrete ordinates/Monte Carlo hybrid development. Los Alamos has requested approval by the Department of Energy to create a Radiation Transport Computational Facility under their User Facility Program to increase external interactions with industry, universities, and other government organizations. 21 refs.« less

  14. Monte Carlo Techniques for Nuclear Systems - Theory Lectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B.

    These are lecture notes for a Monte Carlo class given at the University of New Mexico. The following topics are covered: course information; nuclear eng. review & MC; random numbers and sampling; computational geometry; collision physics; tallies and statistics; eigenvalue calculations I; eigenvalue calculations II; eigenvalue calculations III; variance reduction; parallel Monte Carlo; parameter studies; fission matrix and higher eigenmodes; doppler broadening; Monte Carlo depletion; HTGR modeling; coupled MC and T/H calculations; fission energy deposition. Solving particle transport problems with the Monte Carlo method is simple - just simulate the particle behavior. The devil is in the details, however. Thesemore » lectures provide a balanced approach to the theory and practice of Monte Carlo simulation codes. The first lectures provide an overview of Monte Carlo simulation methods, covering the transport equation, random sampling, computational geometry, collision physics, and statistics. The next lectures focus on the state-of-the-art in Monte Carlo criticality simulations, covering the theory of eigenvalue calculations, convergence analysis, dominance ratio calculations, bias in Keff and tallies, bias in uncertainties, a case study of a realistic calculation, and Wielandt acceleration techniques. The remaining lectures cover advanced topics, including HTGR modeling and stochastic geometry, temperature dependence, fission energy deposition, depletion calculations, parallel calculations, and parameter studies. This portion of the class focuses on using MCNP to perform criticality calculations for reactor physics and criticality safety applications. It is an intermediate level class, intended for those with at least some familiarity with MCNP. Class examples provide hands-on experience at running the code, plotting both geometry and results, and understanding the code output. The class includes lectures & hands-on computer use for a variety of Monte Carlo

  15. Parallel Grand Canonical Monte Carlo (ParaGrandMC) Simulation Code

    NASA Technical Reports Server (NTRS)

    Yamakov, Vesselin I.

    2016-01-01

    This report provides an overview of the Parallel Grand Canonical Monte Carlo (ParaGrandMC) simulation code. This is a highly scalable parallel FORTRAN code for simulating the thermodynamic evolution of metal alloy systems at the atomic level, and predicting the thermodynamic state, phase diagram, chemical composition and mechanical properties. The code is designed to simulate multi-component alloy systems, predict solid-state phase transformations such as austenite-martensite transformations, precipitate formation, recrystallization, capillary effects at interfaces, surface absorption, etc., which can aid the design of novel metallic alloys. While the software is mainly tailored for modeling metal alloys, it can also be used for other types of solid-state systems, and to some degree for liquid or gaseous systems, including multiphase systems forming solid-liquid-gas interfaces.

  16. Development of a Space Radiation Monte Carlo Computer Simulation

    NASA Technical Reports Server (NTRS)

    Pinsky, Lawrence S.

    1997-01-01

    The ultimate purpose of this effort is to undertake the development of a computer simulation of the radiation environment encountered in spacecraft which is based upon the Monte Carlo technique. The current plan is to adapt and modify a Monte Carlo calculation code known as FLUKA, which is presently used in high energy and heavy ion physics, to simulate the radiation environment present in spacecraft during missions. The initial effort would be directed towards modeling the MIR and Space Shuttle environments, but the long range goal is to develop a program for the accurate prediction of the radiation environment likely to be encountered on future planned endeavors such as the Space Station, a Lunar Return Mission, or a Mars Mission. The longer the mission, especially those which will not have the shielding protection of the earth's magnetic field, the more critical the radiation threat will be. The ultimate goal of this research is to produce a code that will be useful to mission planners and engineers who need to have detailed projections of radiation exposures at specified locations within the spacecraft and for either specific times during the mission or integrated over the entire mission. In concert with the development of the simulation, it is desired to integrate it with a state-of-the-art interactive 3-D graphics-capable analysis package known as ROOT, to allow easy investigation and visualization of the results. The efforts reported on here include the initial development of the program and the demonstration of the efficacy of the technique through a model simulation of the MIR environment. This information was used to write a proposal to obtain follow-on permanent funding for this project.

  17. Review of Hybrid (Deterministic/Monte Carlo) Radiation Transport Methods, Codes, and Applications at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, John C; Peplow, Douglas E.; Mosher, Scott W

    2011-01-01

    This paper provides a review of the hybrid (Monte Carlo/deterministic) radiation transport methods and codes used at the Oak Ridge National Laboratory and examples of their application for increasing the efficiency of real-world, fixed-source Monte Carlo analyses. The two principal hybrid methods are (1) Consistent Adjoint Driven Importance Sampling (CADIS) for optimization of a localized detector (tally) region (e.g., flux, dose, or reaction rate at a particular location) and (2) Forward Weighted CADIS (FW-CADIS) for optimizing distributions (e.g., mesh tallies over all or part of the problem space) or multiple localized detector regions (e.g., simultaneous optimization of two or moremore » localized tally regions). The two methods have been implemented and automated in both the MAVRIC sequence of SCALE 6 and ADVANTG, a code that works with the MCNP code. As implemented, the methods utilize the results of approximate, fast-running 3-D discrete ordinates transport calculations (with the Denovo code) to generate consistent space- and energy-dependent source and transport (weight windows) biasing parameters. These methods and codes have been applied to many relevant and challenging problems, including calculations of PWR ex-core thermal detector response, dose rates throughout an entire PWR facility, site boundary dose from arrays of commercial spent fuel storage casks, radiation fields for criticality accident alarm system placement, and detector response for special nuclear material detection scenarios and nuclear well-logging tools. Substantial computational speed-ups, generally O(102-4), have been realized for all applications to date. This paper provides a brief review of the methods, their implementation, results of their application, and current development activities, as well as a considerable list of references for readers seeking more information about the methods and/or their applications.« less

  18. Review of Hybrid (Deterministic/Monte Carlo) Radiation Transport Methods, Codes, and Applications at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, John C; Peplow, Douglas E.; Mosher, Scott W

    2010-01-01

    This paper provides a review of the hybrid (Monte Carlo/deterministic) radiation transport methods and codes used at the Oak Ridge National Laboratory and examples of their application for increasing the efficiency of real-world, fixed-source Monte Carlo analyses. The two principal hybrid methods are (1) Consistent Adjoint Driven Importance Sampling (CADIS) for optimization of a localized detector (tally) region (e.g., flux, dose, or reaction rate at a particular location) and (2) Forward Weighted CADIS (FW-CADIS) for optimizing distributions (e.g., mesh tallies over all or part of the problem space) or multiple localized detector regions (e.g., simultaneous optimization of two or moremore » localized tally regions). The two methods have been implemented and automated in both the MAVRIC sequence of SCALE 6 and ADVANTG, a code that works with the MCNP code. As implemented, the methods utilize the results of approximate, fast-running 3-D discrete ordinates transport calculations (with the Denovo code) to generate consistent space- and energy-dependent source and transport (weight windows) biasing parameters. These methods and codes have been applied to many relevant and challenging problems, including calculations of PWR ex-core thermal detector response, dose rates throughout an entire PWR facility, site boundary dose from arrays of commercial spent fuel storage casks, radiation fields for criticality accident alarm system placement, and detector response for special nuclear material detection scenarios and nuclear well-logging tools. Substantial computational speed-ups, generally O(10{sup 2-4}), have been realized for all applications to date. This paper provides a brief review of the methods, their implementation, results of their application, and current development activities, as well as a considerable list of references for readers seeking more information about the methods and/or their applications.« less

  19. Monte Carlo tests of the ELIPGRID-PC algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, J.R.

    1995-04-01

    The standard tool for calculating the probability of detecting pockets of contamination called hot spots has been the ELIPGRID computer code of Singer and Wickman. The ELIPGRID-PC program has recently made this algorithm available for an IBM{reg_sign} PC. However, no known independent validation of the ELIPGRID algorithm exists. This document describes a Monte Carlo simulation-based validation of a modified version of the ELIPGRID-PC code. The modified ELIPGRID-PC code is shown to match Monte Carlo-calculated hot-spot detection probabilities to within {plus_minus}0.5% for 319 out of 320 test cases. The one exception, a very thin elliptical hot spot located within a rectangularmore » sampling grid, differed from the Monte Carlo-calculated probability by about 1%. These results provide confidence in the ability of the modified ELIPGRID-PC code to accurately predict hot-spot detection probabilities within an acceptable range of error.« less

  20. Positron follow-up in liquid water: I. A new Monte Carlo track-structure code.

    PubMed

    Champion, C; Le Loirec, C

    2006-04-07

    When biological matter is irradiated by charged particles, a wide variety of interactions occur, which lead to a deep modification of the cellular environment. To understand the fine structure of the microscopic distribution of energy deposits, Monte Carlo event-by-event simulations are particularly suitable. However, the development of these track-structure codes needs accurate interaction cross sections for all the electronic processes: ionization, excitation, positronium formation and even elastic scattering. Under these conditions, we have recently developed a Monte Carlo code for positrons in water, the latter being commonly used to simulate the biological medium. All the processes are studied in detail via theoretical differential and total cross-section calculations performed by using partial wave methods. Comparisons with existing theoretical and experimental data in terms of stopping powers, mean energy transfers and ranges show very good agreements. Moreover, thanks to the theoretical description of positronium formation, we have access, for the first time, to the complete kinematics of the electron capture process. Then, the present Monte Carlo code is able to describe the detailed positronium history, which will provide useful information for medical imaging (like positron emission tomography) where improvements are needed to define with the best accuracy the tumoural volumes.

  1. Multi-threading performance of Geant4, MCNP6, and PHITS Monte Carlo codes for tetrahedral-mesh geometry.

    PubMed

    Han, Min Cheol; Yeom, Yeon Soo; Lee, Hyun Su; Shin, Bangho; Kim, Chan Hyeong; Furuta, Takuya

    2018-05-04

    In this study, the multi-threading performance of the Geant4, MCNP6, and PHITS codes was evaluated as a function of the number of threads (N) and the complexity of the tetrahedral-mesh phantom. For this, three tetrahedral-mesh phantoms of varying complexity (simple, moderately complex, and highly complex) were prepared and implemented in the three different Monte Carlo codes, in photon and neutron transport simulations. Subsequently, for each case, the initialization time, calculation time, and memory usage were measured as a function of the number of threads used in the simulation. It was found that for all codes, the initialization time significantly increased with the complexity of the phantom, but not with the number of threads. Geant4 exhibited much longer initialization time than the other codes, especially for the complex phantom (MRCP). The improvement of computation speed due to the use of a multi-threaded code was calculated as the speed-up factor, the ratio of the computation speed on a multi-threaded code to the computation speed on a single-threaded code. Geant4 showed the best multi-threading performance among the codes considered in this study, with the speed-up factor almost linearly increasing with the number of threads, reaching ~30 when N  =  40. PHITS and MCNP6 showed a much smaller increase of the speed-up factor with the number of threads. For PHITS, the speed-up factors were low when N  =  40. For MCNP6, the increase of the speed-up factors was better, but they were still less than ~10 when N  =  40. As for memory usage, Geant4 was found to use more memory than the other codes. In addition, compared to that of the other codes, the memory usage of Geant4 more rapidly increased with the number of threads, reaching as high as ~74 GB when N  =  40 for the complex phantom (MRCP). It is notable that compared to that of the other codes, the memory usage of PHITS was much lower, regardless of both the complexity of the

  2. Application of a Java-based, univel geometry, neutral particle Monte Carlo code to the searchlight problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles A. Wemple; Joshua J. Cogliati

    2005-04-01

    A univel geometry, neutral particle Monte Carlo transport code, written entirely in the Java programming language, is under development for medical radiotherapy applications. The code uses ENDF-VI based continuous energy cross section data in a flexible XML format. Full neutron-photon coupling, including detailed photon production and photonuclear reactions, is included. Charged particle equilibrium is assumed within the patient model so that detailed transport of electrons produced by photon interactions may be neglected. External beam and internal distributed source descriptions for mixed neutron-photon sources are allowed. Flux and dose tallies are performed on a univel basis. A four-tap, shift-register-sequence random numbermore » generator is used. Initial verification and validation testing of the basic neutron transport routines is underway. The searchlight problem was chosen as a suitable first application because of the simplicity of the physical model. Results show excellent agreement with analytic solutions. Computation times for similar numbers of histories are comparable to other neutron MC codes written in C and FORTRAN.« less

  3. Performance analysis of a parallel Monte Carlo code for simulating solar radiative transfer in cloudy atmospheres using CUDA-enabled NVIDIA GPU

    NASA Astrophysics Data System (ADS)

    Russkova, Tatiana V.

    2017-11-01

    One tool to improve the performance of Monte Carlo methods for numerical simulation of light transport in the Earth's atmosphere is the parallel technology. A new algorithm oriented to parallel execution on the CUDA-enabled NVIDIA graphics processor is discussed. The efficiency of parallelization is analyzed on the basis of calculating the upward and downward fluxes of solar radiation in both a vertically homogeneous and inhomogeneous models of the atmosphere. The results of testing the new code under various atmospheric conditions including continuous singlelayered and multilayered clouds, and selective molecular absorption are presented. The results of testing the code using video cards with different compute capability are analyzed. It is shown that the changeover of computing from conventional PCs to the architecture of graphics processors gives more than a hundredfold increase in performance and fully reveals the capabilities of the technology used.

  4. The STAGS computer code

    NASA Technical Reports Server (NTRS)

    Almroth, B. O.; Brogan, F. A.

    1978-01-01

    Basic information about the computer code STAGS (Structural Analysis of General Shells) is presented to describe to potential users the scope of the code and the solution procedures that are incorporated. Primarily, STAGS is intended for analysis of shell structures, although it has been extended to more complex shell configurations through the inclusion of springs and beam elements. The formulation is based on a variational approach in combination with local two dimensional power series representations of the displacement components. The computer code includes options for analysis of linear or nonlinear static stress, stability, vibrations, and transient response. Material as well as geometric nonlinearities are included. A few examples of applications of the code are presented for further illustration of its scope.

  5. Verification and Validation of Monte Carlo n-Particle Code 6 (MCNP6) with Neutron Protection Factor Measurements of an Iron Box

    DTIC Science & Technology

    2014-03-27

    VERIFICATION AND VALIDATION OF MONTE CARLO N- PARTICLE CODE 6 (MCNP6) WITH NEUTRON PROTECTION FACTOR... PARTICLE CODE 6 (MCNP6) WITH NEUTRON PROTECTION FACTOR MEASUREMENTS OF AN IRON BOX THESIS Presented to the Faculty Department of Engineering...STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED iv AFIT-ENP-14-M-05 VERIFICATION AND VALIDATION OF MONTE CARLO N- PARTICLE CODE 6

  6. Monte Carlo Calculations of Polarized Microwave Radiation Emerging from Cloud Structures

    NASA Technical Reports Server (NTRS)

    Kummerow, Christian; Roberti, Laura

    1998-01-01

    The last decade has seen tremendous growth in cloud dynamical and microphysical models that are able to simulate storms and storm systems with very high spatial resolution, typically of the order of a few kilometers. The fairly realistic distributions of cloud and hydrometeor properties that these models generate has in turn led to a renewed interest in the three-dimensional microwave radiative transfer modeling needed to understand the effect of cloud and rainfall inhomogeneities upon microwave observations. Monte Carlo methods, and particularly backwards Monte Carlo methods have shown themselves to be very desirable due to the quick convergence of the solutions. Unfortunately, backwards Monte Carlo methods are not well suited to treat polarized radiation. This study reviews the existing Monte Carlo methods and presents a new polarized Monte Carlo radiative transfer code. The code is based on a forward scheme but uses aliasing techniques to keep the computational requirements equivalent to the backwards solution. Radiative transfer computations have been performed using a microphysical-dynamical cloud model and the results are presented together with the algorithm description.

  7. TH-A-19A-11: Validation of GPU-Based Monte Carlo Code (gPMC) Versus Fully Implemented Monte Carlo Code (TOPAS) for Proton Radiation Therapy: Clinical Cases Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giantsoudi, D; Schuemann, J; Dowdell, S

    Purpose: For proton radiation therapy, Monte Carlo simulation (MCS) methods are recognized as the gold-standard dose calculation approach. Although previously unrealistic due to limitations in available computing power, GPU-based applications allow MCS of proton treatment fields to be performed in routine clinical use, on time scales comparable to that of conventional pencil-beam algorithms. This study focuses on validating the results of our GPU-based code (gPMC) versus fully implemented proton therapy based MCS code (TOPAS) for clinical patient cases. Methods: Two treatment sites were selected to provide clinical cases for this study: head-and-neck cases due to anatomical geometrical complexity (air cavitiesmore » and density heterogeneities), making dose calculation very challenging, and prostate cases due to higher proton energies used and close proximity of the treatment target to sensitive organs at risk. Both gPMC and TOPAS methods were used to calculate 3-dimensional dose distributions for all patients in this study. Comparisons were performed based on target coverage indices (mean dose, V90 and D90) and gamma index distributions for 2% of the prescription dose and 2mm. Results: For seven out of eight studied cases, mean target dose, V90 and D90 differed less than 2% between TOPAS and gPMC dose distributions. Gamma index analysis for all prostate patients resulted in passing rate of more than 99% of voxels in the target. Four out of five head-neck-cases showed passing rate of gamma index for the target of more than 99%, the fifth having a gamma index passing rate of 93%. Conclusion: Our current work showed excellent agreement between our GPU-based MCS code and fully implemented proton therapy based MC code for a group of dosimetrically challenging patient cases.« less

  8. [Dosimetric evaluation of eye lense shieldings in computed tomography examination--measurements and Monte Carlo simulations].

    PubMed

    Wulff, Jorg; Keil, Boris; Auvanis, Diyala; Heverhagen, Johannes T; Klose, Klaus Jochen; Zink, Klemens

    2008-01-01

    The present study aims at the investigation of eye lens shielding of different composition for the use in computed tomography examinations. Measurements with thermo-luminescent dosimeters and a simple cylindrical waterfilled phantom were performed as well as Monte Carlo simulations with an equivalent geometry. Besides conventional shielding made of Bismuth coated latex, a new shielding with a mixture of metallic components was analyzed. This new material leads to an increased dose reduction compared to the Bismuth shielding. Measured and Monte Carlo simulated dose reductions are in good agreement and amount to 34% for the Bismuth shielding and 46% for the new material. For simulations the EGSnrc code system was used and a new application CTDOSPP was developed for the simulation of the computed tomography examination. The investigations show that a satisfying agreement between simulation and measurement with the chosen geometries of this study could only be achieved, when transport of secondary electrons was accounted for in the simulation. The amount of scattered radiation due to the protector by fluorescent photons was analyzed and is larger for the new material due to the smaller atomic number of the metallic components.

  9. Volume accumulator design analysis computer codes

    NASA Technical Reports Server (NTRS)

    Whitaker, W. D.; Shimazaki, T. T.

    1973-01-01

    The computer codes, VANEP and VANES, were written and used to aid in the design and performance calculation of the volume accumulator units (VAU) for the 5-kwe reactor thermoelectric system. VANEP computes the VAU design which meets the primary coolant loop VAU volume and pressure performance requirements. VANES computes the performance of the VAU design, determined from the VANEP code, at the conditions of the secondary coolant loop. The codes can also compute the performance characteristics of the VAU's under conditions of possible modes of failure which still permit continued system operation.

  10. Geometrical-optics code for computing the optical properties of large dielectric spheres.

    PubMed

    Zhou, Xiaobing; Li, Shusun; Stamnes, Knut

    2003-07-20

    Absorption of electromagnetic radiation by absorptive dielectric spheres such as snow grains in the near-infrared part of the solar spectrum cannot be neglected when radiative properties of snow are computed. Thus a new, to our knowledge, geometrical-optics code is developed to compute scattering and absorption cross sections of large dielectric particles of arbitrary complex refractive index. The number of internal reflections and transmissions are truncated on the basis of the ratio of the irradiance incident at the nth interface to the irradiance incident at the first interface for a specific optical ray. Thus the truncation number is a function of the angle of incidence. Phase functions for both near- and far-field absorption and scattering of electromagnetic radiation are calculated directly at any desired scattering angle by using a hybrid algorithm based on the bisection and Newton-Raphson methods. With these methods a large sphere's absorption and scattering properties of light can be calculated for any wavelength from the ultraviolet to the microwave regions. Assuming that large snow meltclusters (1-cm order), observed ubiquitously in the snow cover during summer, can be characterized as spheres, one may compute absorption and scattering efficiencies and the scattering phase function on the basis of this geometrical-optics method. A geometrical-optics method for sphere (GOMsphere) code is developed and tested against Wiscombe's Mie scattering code (MIE0) and a Monte Carlo code for a range of size parameters. GOMsphere can be combined with MIE0 to calculate the single-scattering properties of dielectric spheres of any size.

  11. Comparison of scientific computing platforms for MCNP4A Monte Carlo calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, J.S.; Brockhoff, R.C.

    1994-04-01

    The performance of seven computer platforms is evaluated with the widely used and internationally available MCNP4A Monte Carlo radiation transport code. All results are reproducible and are presented in such a way as to enable comparison with computer platforms not in the study. The authors observed that the HP/9000-735 workstation runs MCNP 50% faster than the Cray YMP 8/64. Compared with the Cray YMP 8/64, the IBM RS/6000-560 is 68% as fast, the Sun Sparc10 is 66% as fast, the Silicon Graphics ONYX is 90% as fast, the Gateway 2000 model 4DX2-66V personal computer is 27% as fast, and themore » Sun Sparc2 is 24% as fast. In addition to comparing the timing performance of the seven platforms, the authors observe that changes in compilers and software over the past 2 yr have resulted in only modest performance improvements, hardware improvements have enhanced performance by less than a factor of [approximately]3, timing studies are very problem dependent, MCNP4Q runs about as fast as MCNP4.« less

  12. SU-F-T-193: Evaluation of a GPU-Based Fast Monte Carlo Code for Proton Therapy Biological Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taleei, R; Qin, N; Jiang, S

    2016-06-15

    Purpose: Biological treatment plan optimization is of great interest for proton therapy. It requires extensive Monte Carlo (MC) simulations to compute physical dose and biological quantities. Recently, a gPMC package was developed for rapid MC dose calculations on a GPU platform. This work investigated its suitability for proton therapy biological optimization in terms of accuracy and efficiency. Methods: We performed simulations of a proton pencil beam with energies of 75, 150 and 225 MeV in a homogeneous water phantom using gPMC and FLUKA. Physical dose and energy spectra for each ion type on the central beam axis were scored. Relativemore » Biological Effectiveness (RBE) was calculated using repair-misrepair-fixation model. Microdosimetry calculations were performed using Monte Carlo Damage Simulation (MCDS). Results: Ranges computed by the two codes agreed within 1 mm. Physical dose difference was less than 2.5 % at the Bragg peak. RBE-weighted dose agreed within 5 % at the Bragg peak. Differences in microdosimetric quantities such as dose average lineal energy transfer and specific energy were < 10%. The simulation time per source particle with FLUKA was 0.0018 sec, while gPMC was ∼ 600 times faster. Conclusion: Physical dose computed by FLUKA and gPMC were in a good agreement. The RBE differences along the central axis were small, and RBE-weighted dose difference was found to be acceptable. The combined accuracy and efficiency makes gPMC suitable for proton therapy biological optimization.« less

  13. Verification of Three Dimensional Triangular Prismatic Discrete Ordinates Transport Code ENSEMBLE-TRIZ by Comparison with Monte Carlo Code GMVP

    NASA Astrophysics Data System (ADS)

    Homma, Yuto; Moriwaki, Hiroyuki; Ohki, Shigeo; Ikeda, Kazumi

    2014-06-01

    This paper deals with verification of three dimensional triangular prismatic discrete ordinates transport calculation code ENSEMBLE-TRIZ by comparison with multi-group Monte Carlo calculation code GMVP in a large fast breeder reactor. The reactor is a 750 MWe electric power sodium cooled reactor. Nuclear characteristics are calculated at beginning of cycle of an initial core and at beginning and end of cycle of equilibrium core. According to the calculations, the differences between the two methodologies are smaller than 0.0002 Δk in the multi-plication factor, relatively about 1% in the control rod reactivity, and 1% in the sodium void reactivity.

  14. SU-E-T-121: Analyzing the Broadening Effect On the Bragg Peak Due to Heterogeneous Geometries and Implementing User-Routines in the Monte-Carlo Code FLUKA in Order to Reduce Computation Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumann, K; Weber, U; Simeonov, Y

    2015-06-15

    Purpose: Aim of this study was to analyze the modulating, broadening effect on the Bragg Peak due to heterogeneous geometries like multi-wire chambers in the beam path of a particle therapy beam line. The effect was described by a mathematical model which was implemented in the Monte-Carlo code FLUKA via user-routines, in order to reduce the computation time for the simulations. Methods: The depth dose curve of 80 MeV/u C12-ions in a water phantom was calculated using the Monte-Carlo code FLUKA (reference curve). The modulating effect on this dose distribution behind eleven mesh-like foils (periodicity ∼80 microns) occurring in amore » typical set of multi-wire and dose chambers was mathematically described by optimizing a normal distribution so that the reverence curve convoluted with this distribution equals the modulated dose curve. This distribution describes a displacement in water and was transferred in a probability distribution of the thickness of the eleven foils using the water equivalent thickness of the foil’s material. From this distribution the distribution of the thickness of one foil was determined inversely. In FLUKA the heterogeneous foils were replaced by homogeneous foils and a user-routine was programmed that varies the thickness of the homogeneous foils for each simulated particle using this distribution. Results: Using the mathematical model and user-routine in FLUKA the broadening effect could be reproduced exactly when replacing the heterogeneous foils by homogeneous ones. The computation time was reduced by 90 percent. Conclusion: In this study the broadening effect on the Bragg Peak due to heterogeneous structures was analyzed, described by a mathematical model and implemented in FLUKA via user-routines. Applying these routines the computing time was reduced by 90 percent. The developed tool can be used for any heterogeneous structure in the dimensions of microns to millimeters, in principle even for organic materials like lung

  15. Validation of radiative transfer computation with Monte Carlo method for ultra-relativistic background flow

    NASA Astrophysics Data System (ADS)

    Ishii, Ayako; Ohnishi, Naofumi; Nagakura, Hiroki; Ito, Hirotaka; Yamada, Shoichi

    2017-11-01

    We developed a three-dimensional radiative transfer code for an ultra-relativistic background flow-field by using the Monte Carlo (MC) method in the context of gamma-ray burst (GRB) emission. For obtaining reliable simulation results in the coupled computation of MC radiation transport with relativistic hydrodynamics which can reproduce GRB emission, we validated radiative transfer computation in the ultra-relativistic regime and assessed the appropriate simulation conditions. The radiative transfer code was validated through two test calculations: (1) computing in different inertial frames and (2) computing in flow-fields with discontinuous and smeared shock fronts. The simulation results of the angular distribution and spectrum were compared among three different inertial frames and in good agreement with each other. If the time duration for updating the flow-field was sufficiently small to resolve a mean free path of a photon into ten steps, the results were thoroughly converged. The spectrum computed in the flow-field with a discontinuous shock front obeyed a power-law in frequency whose index was positive in the range from 1 to 10 MeV. The number of photons in the high-energy side decreased with the smeared shock front because the photons were less scattered immediately behind the shock wave due to the small electron number density. The large optical depth near the shock front was needed for obtaining high-energy photons through bulk Compton scattering. Even one-dimensional structure of the shock wave could affect the results of radiation transport computation. Although we examined the effect of the shock structure on the emitted spectrum with a large number of cells, it is hard to employ so many computational cells per dimension in multi-dimensional simulations. Therefore, a further investigation with a smaller number of cells is required for obtaining realistic high-energy photons with multi-dimensional computations.

  16. The Serpent Monte Carlo Code: Status, Development and Applications in 2013

    NASA Astrophysics Data System (ADS)

    Leppänen, Jaakko; Pusa, Maria; Viitanen, Tuomas; Valtavirta, Ville; Kaltiaisenaho, Toni

    2014-06-01

    The Serpent Monte Carlo reactor physics burnup calculation code has been developed at VTT Technical Research Centre of Finland since 2004, and is currently used in 100 universities and research organizations around the world. This paper presents the brief history of the project, together with the currently available methods and capabilities and plans for future work. Typical user applications are introduced in the form of a summary review on Serpent-related publications over the past few years.

  17. Radiation doses in volume-of-interest breast computed tomography—A Monte Carlo simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Chao-Jen, E-mail: cjlai3711@gmail.com; Zhong, Yuncheng; Yi, Ying

    2015-06-15

    Purpose: Cone beam breast computed tomography (breast CT) with true three-dimensional, nearly isotropic spatial resolution has been developed and investigated over the past decade to overcome the problem of lesions overlapping with breast anatomical structures on two-dimensional mammographic images. However, the ability of breast CT to detect small objects, such as tissue structure edges and small calcifications, is limited. To resolve this problem, the authors proposed and developed a volume-of-interest (VOI) breast CT technique to image a small VOI using a higher radiation dose to improve that region’s visibility. In this study, the authors performed Monte Carlo simulations to estimatemore » average breast dose and average glandular dose (AGD) for the VOI breast CT technique. Methods: Electron–Gamma-Shower system code-based Monte Carlo codes were used to simulate breast CT. The Monte Carlo codes estimated were validated using physical measurements of air kerma ratios and point doses in phantoms with an ion chamber and optically stimulated luminescence dosimeters. The validated full cone x-ray source was then collimated to simulate half cone beam x-rays to image digital pendant-geometry, hemi-ellipsoidal, homogeneous breast phantoms and to estimate breast doses with full field scans. 13-cm in diameter, 10-cm long hemi-ellipsoidal homogeneous phantoms were used to simulate median breasts. Breast compositions of 25% and 50% volumetric glandular fractions (VGFs) were used to investigate the influence on breast dose. The simulated half cone beam x-rays were then collimated to a narrow x-ray beam with an area of 2.5 × 2.5 cm{sup 2} field of view at the isocenter plane and to perform VOI field scans. The Monte Carlo results for the full field scans and the VOI field scans were then used to estimate the AGD for the VOI breast CT technique. Results: The ratios of air kerma ratios and dose measurement results from the Monte Carlo simulation to those from the

  18. Radiation doses in volume-of-interest breast computed tomography—A Monte Carlo simulation study

    PubMed Central

    Lai, Chao-Jen; Zhong, Yuncheng; Yi, Ying; Wang, Tianpeng; Shaw, Chris C.

    2015-01-01

    Purpose: Cone beam breast computed tomography (breast CT) with true three-dimensional, nearly isotropic spatial resolution has been developed and investigated over the past decade to overcome the problem of lesions overlapping with breast anatomical structures on two-dimensional mammographic images. However, the ability of breast CT to detect small objects, such as tissue structure edges and small calcifications, is limited. To resolve this problem, the authors proposed and developed a volume-of-interest (VOI) breast CT technique to image a small VOI using a higher radiation dose to improve that region’s visibility. In this study, the authors performed Monte Carlo simulations to estimate average breast dose and average glandular dose (AGD) for the VOI breast CT technique. Methods: Electron–Gamma-Shower system code-based Monte Carlo codes were used to simulate breast CT. The Monte Carlo codes estimated were validated using physical measurements of air kerma ratios and point doses in phantoms with an ion chamber and optically stimulated luminescence dosimeters. The validated full cone x-ray source was then collimated to simulate half cone beam x-rays to image digital pendant-geometry, hemi-ellipsoidal, homogeneous breast phantoms and to estimate breast doses with full field scans. 13-cm in diameter, 10-cm long hemi-ellipsoidal homogeneous phantoms were used to simulate median breasts. Breast compositions of 25% and 50% volumetric glandular fractions (VGFs) were used to investigate the influence on breast dose. The simulated half cone beam x-rays were then collimated to a narrow x-ray beam with an area of 2.5 × 2.5 cm2 field of view at the isocenter plane and to perform VOI field scans. The Monte Carlo results for the full field scans and the VOI field scans were then used to estimate the AGD for the VOI breast CT technique. Results: The ratios of air kerma ratios and dose measurement results from the Monte Carlo simulation to those from the physical measurements

  19. Cloud Computing for Complex Performance Codes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appel, Gordon John; Hadgu, Teklu; Klein, Brandon Thorin

    This report describes the use of cloud computing services for running complex public domain performance assessment problems. The work consisted of two phases: Phase 1 was to demonstrate complex codes, on several differently configured servers, could run and compute trivial small scale problems in a commercial cloud infrastructure. Phase 2 focused on proving non-trivial large scale problems could be computed in the commercial cloud environment. The cloud computing effort was successfully applied using codes of interest to the geohydrology and nuclear waste disposal modeling community.

  20. High-Fidelity Coupled Monte-Carlo/Thermal-Hydraulics Calculations

    NASA Astrophysics Data System (ADS)

    Ivanov, Aleksandar; Sanchez, Victor; Ivanov, Kostadin

    2014-06-01

    Monte Carlo methods have been used as reference reactor physics calculation tools worldwide. The advance in computer technology allows the calculation of detailed flux distributions in both space and energy. In most of the cases however, those calculations are done under the assumption of homogeneous material density and temperature distributions. The aim of this work is to develop a consistent methodology for providing realistic three-dimensional thermal-hydraulic distributions by coupling the in-house developed sub-channel code SUBCHANFLOW with the standard Monte-Carlo transport code MCNP. In addition to the innovative technique of on-the fly material definition, a flux-based weight-window technique has been introduced to improve both the magnitude and the distribution of the relative errors. Finally, a coupled code system for the simulation of steady-state reactor physics problems has been developed. Besides the problem of effective feedback data interchange between the codes, the treatment of temperature dependence of the continuous energy nuclear data has been investigated.

  1. The Monte Carlo code MCPTV--Monte Carlo dose calculation in radiation therapy with carbon ions.

    PubMed

    Karg, Juergen; Speer, Stefan; Schmidt, Manfred; Mueller, Reinhold

    2010-07-07

    The Monte Carlo code MCPTV is presented. MCPTV is designed for dose calculation in treatment planning in radiation therapy with particles and especially carbon ions. MCPTV has a voxel-based concept and can perform a fast calculation of the dose distribution on patient CT data. Material and density information from CT are taken into account. Electromagnetic and nuclear interactions are implemented. Furthermore the algorithm gives information about the particle spectra and the energy deposition in each voxel. This can be used to calculate the relative biological effectiveness (RBE) for each voxel. Depth dose distributions are compared to experimental data giving good agreement. A clinical example is shown to demonstrate the capabilities of the MCPTV dose calculation.

  2. Monte Carlo simulation of photon migration in a cloud computing environment with MapReduce

    PubMed Central

    Pratx, Guillem; Xing, Lei

    2011-01-01

    Monte Carlo simulation is considered the most reliable method for modeling photon migration in heterogeneous media. However, its widespread use is hindered by the high computational cost. The purpose of this work is to report on our implementation of a simple MapReduce method for performing fault-tolerant Monte Carlo computations in a massively-parallel cloud computing environment. We ported the MC321 Monte Carlo package to Hadoop, an open-source MapReduce framework. In this implementation, Map tasks compute photon histories in parallel while a Reduce task scores photon absorption. The distributed implementation was evaluated on a commercial compute cloud. The simulation time was found to be linearly dependent on the number of photons and inversely proportional to the number of nodes. For a cluster size of 240 nodes, the simulation of 100 billion photon histories took 22 min, a 1258 × speed-up compared to the single-threaded Monte Carlo program. The overall computational throughput was 85,178 photon histories per node per second, with a latency of 100 s. The distributed simulation produced the same output as the original implementation and was resilient to hardware failure: the correctness of the simulation was unaffected by the shutdown of 50% of the nodes. PMID:22191916

  3. Monte Carlo method for calculating the radiation skyshine produced by electron accelerators

    NASA Astrophysics Data System (ADS)

    Kong, Chaocheng; Li, Quanfeng; Chen, Huaibi; Du, Taibin; Cheng, Cheng; Tang, Chuanxiang; Zhu, Li; Zhang, Hui; Pei, Zhigang; Ming, Shenjin

    2005-06-01

    Using the MCNP4C Monte Carlo code, the X-ray skyshine produced by 9 MeV, 15 MeV and 21 MeV electron linear accelerators were calculated respectively with a new two-step method combined with the split and roulette variance reduction technique. Results of the Monte Carlo simulation, the empirical formulas used for skyshine calculation and the dose measurements were analyzed and compared. In conclusion, the skyshine dose measurements agreed reasonably with the results computed by the Monte Carlo method, but deviated from computational results given by empirical formulas. The effect on skyshine dose caused by different structures of accelerator head is also discussed in this paper.

  4. Computer Code Aids Design Of Wings

    NASA Technical Reports Server (NTRS)

    Carlson, Harry W.; Darden, Christine M.

    1993-01-01

    AERO2S computer code developed to aid design engineers in selection and evaluation of aerodynamically efficient wing/canard and wing/horizontal-tail configurations that includes simple hinged-flap systems. Code rapidly estimates longitudinal aerodynamic characteristics of conceptual airplane lifting-surface arrangements. Developed in FORTRAN V on CDC 6000 computer system, and ported to MS-DOS environment.

  5. On the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods

    PubMed Central

    Lee, Anthony; Yau, Christopher; Giles, Michael B.; Doucet, Arnaud; Holmes, Christopher C.

    2011-01-01

    We present a case-study on the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods. Graphics cards, containing multiple Graphics Processing Units (GPUs), are self-contained parallel computational devices that can be housed in conventional desktop and laptop computers and can be thought of as prototypes of the next generation of many-core processors. For certain classes of population-based Monte Carlo algorithms they offer massively parallel simulation, with the added advantage over conventional distributed multi-core processors that they are cheap, easily accessible, easy to maintain, easy to code, dedicated local devices with low power consumption. On a canonical set of stochastic simulation examples including population-based Markov chain Monte Carlo methods and Sequential Monte Carlo methods, we nd speedups from 35 to 500 fold over conventional single-threaded computer code. Our findings suggest that GPUs have the potential to facilitate the growth of statistical modelling into complex data rich domains through the availability of cheap and accessible many-core computation. We believe the speedup we observe should motivate wider use of parallelizable simulation methods and greater methodological attention to their design. PMID:22003276

  6. Development of probabilistic internal dosimetry computer code

    NASA Astrophysics Data System (ADS)

    Noh, Siwan; Kwon, Tae-Eun; Lee, Jai-Ki

    2017-02-01

    Internal radiation dose assessment involves biokinetic models, the corresponding parameters, measured data, and many assumptions. Every component considered in the internal dose assessment has its own uncertainty, which is propagated in the intake activity and internal dose estimates. For research or scientific purposes, and for retrospective dose reconstruction for accident scenarios occurring in workplaces having a large quantity of unsealed radionuclides, such as nuclear power plants, nuclear fuel cycle facilities, and facilities in which nuclear medicine is practiced, a quantitative uncertainty assessment of the internal dose is often required. However, no calculation tools or computer codes that incorporate all the relevant processes and their corresponding uncertainties, i.e., from the measured data to the committed dose, are available. Thus, the objective of the present study is to develop an integrated probabilistic internal-dose-assessment computer code. First, the uncertainty components in internal dosimetry are identified, and quantitative uncertainty data are collected. Then, an uncertainty database is established for each component. In order to propagate these uncertainties in an internal dose assessment, a probabilistic internal-dose-assessment system that employs the Bayesian and Monte Carlo methods. Based on the developed system, we developed a probabilistic internal-dose-assessment code by using MATLAB so as to estimate the dose distributions from the measured data with uncertainty. Using the developed code, we calculated the internal dose distribution and statistical values ( e.g. the 2.5th, 5th, median, 95th, and 97.5th percentiles) for three sample scenarios. On the basis of the distributions, we performed a sensitivity analysis to determine the influence of each component on the resulting dose in order to identify the major component of the uncertainty in a bioassay. The results of this study can be applied to various situations. In cases of

  7. Preliminary estimates of nucleon fluxes in a water target exposed to solar-flare protons: BRYNTRN versus Monte Carlo code

    NASA Technical Reports Server (NTRS)

    Shinn, Judy L.; Wilson, John W.; Lone, M. A.; Wong, P. Y.; Costen, Robert C.

    1994-01-01

    A baryon transport code (BRYNTRN) has previously been verified using available Monte Carlo results for a solar-flare spectrum as the reference. Excellent results were obtained, but the comparisons were limited to the available data on dose and dose equivalent for moderate penetration studies that involve minor contributions from secondary neutrons. To further verify the code, the secondary energy spectra of protons and neutrons are calculated using BRYNTRN and LAHET (Los Alamos High-Energy Transport code, which is a Monte Carlo code). These calculations are compared for three locations within a water slab exposed to the February 1956 solar-proton spectrum. Reasonable agreement was obtained when various considerations related to the calculational techniques and their limitations were taken into account. Although the Monte Carlo results are preliminary, it appears that the neutron albedo, which is not currently treated in BRYNTRN, might be a cause for the large discrepancy seen at small penetration depths. It also appears that the nonelastic neutron production cross sections in BRYNTRN may underestimate the number of neutrons produced in proton collisions with energies below 200 MeV. The notion that the poor energy resolution in BRYNTRN may cause a large truncation error in neutron elastic scattering requires further study.

  8. Optimization of GATE and PHITS Monte Carlo code parameters for spot scanning proton beam based on simulation with FLUKA general-purpose code

    NASA Astrophysics Data System (ADS)

    Kurosu, Keita; Das, Indra J.; Moskvin, Vadim P.

    2016-01-01

    Spot scanning, owing to its superior dose-shaping capability, provides unsurpassed dose conformity, in particular for complex targets. However, the robustness of the delivered dose distribution and prescription has to be verified. Monte Carlo (MC) simulation has the potential to generate significant advantages for high-precise particle therapy, especially for medium containing inhomogeneities. However, the inherent choice of computational parameters in MC simulation codes of GATE, PHITS and FLUKA that is observed for uniform scanning proton beam needs to be evaluated. This means that the relationship between the effect of input parameters and the calculation results should be carefully scrutinized. The objective of this study was, therefore, to determine the optimal parameters for the spot scanning proton beam for both GATE and PHITS codes by using data from FLUKA simulation as a reference. The proton beam scanning system of the Indiana University Health Proton Therapy Center was modeled in FLUKA, and the geometry was subsequently and identically transferred to GATE and PHITS. Although the beam transport is managed by spot scanning system, the spot location is always set at the center of a water phantom of 600 × 600 × 300 mm3, which is placed after the treatment nozzle. The percentage depth dose (PDD) is computed along the central axis using 0.5 × 0.5 × 0.5 mm3 voxels in the water phantom. The PDDs and the proton ranges obtained with several computational parameters are then compared to those of FLUKA, and optimal parameters are determined from the accuracy of the proton range, suppressed dose deviation, and computational time minimization. Our results indicate that the optimized parameters are different from those for uniform scanning, suggesting that the gold standard for setting computational parameters for any proton therapy application cannot be determined consistently since the impact of setting parameters depends on the proton irradiation technique. We

  9. Microgravity computing codes. User's guide

    NASA Astrophysics Data System (ADS)

    1982-01-01

    Codes used in microgravity experiments to compute fluid parameters and to obtain data graphically are introduced. The computer programs are stored on two diskettes, compatible with the floppy disk drives of the Apple 2. Two versions of both disks are available (DOS-2 and DOS-3). The codes are written in BASIC and are structured as interactive programs. Interaction takes place through the keyboard of any Apple 2-48K standard system with single floppy disk drive. The programs are protected against wrong commands given by the operator. The programs are described step by step in the same order as the instructions displayed on the monitor. Most of these instructions are shown, with samples of computation and of graphics.

  10. Computer access security code system

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr. (Inventor)

    1990-01-01

    A security code system for controlling access to computer and computer-controlled entry situations comprises a plurality of subsets of alpha-numeric characters disposed in random order in matrices of at least two dimensions forming theoretical rectangles, cubes, etc., such that when access is desired, at least one pair of previously unused character subsets not found in the same row or column of the matrix is chosen at random and transmitted by the computer. The proper response to gain access is transmittal of subsets which complete the rectangle, and/or a parallelepiped whose opposite corners were defined by first groups of code. Once used, subsets are not used again to absolutely defeat unauthorized access by eavesdropping, and the like.

  11. Many-integrated core (MIC) technology for accelerating Monte Carlo simulation of radiation transport: A study based on the code DPM

    NASA Astrophysics Data System (ADS)

    Rodriguez, M.; Brualla, L.

    2018-04-01

    Monte Carlo simulation of radiation transport is computationally demanding to obtain reasonably low statistical uncertainties of the estimated quantities. Therefore, it can benefit in a large extent from high-performance computing. This work is aimed at assessing the performance of the first generation of the many-integrated core architecture (MIC) Xeon Phi coprocessor with respect to that of a CPU consisting of a double 12-core Xeon processor in Monte Carlo simulation of coupled electron-photonshowers. The comparison was made twofold, first, through a suite of basic tests including parallel versions of the random number generators Mersenne Twister and a modified implementation of RANECU. These tests were addressed to establish a baseline comparison between both devices. Secondly, through the p DPM code developed in this work. p DPM is a parallel version of the Dose Planning Method (DPM) program for fast Monte Carlo simulation of radiation transport in voxelized geometries. A variety of techniques addressed to obtain a large scalability on the Xeon Phi were implemented in p DPM. Maximum scalabilities of 84 . 2 × and 107 . 5 × were obtained in the Xeon Phi for simulations of electron and photon beams, respectively. Nevertheless, in none of the tests involving radiation transport the Xeon Phi performed better than the CPU. The disadvantage of the Xeon Phi with respect to the CPU owes to the low performance of the single core of the former. A single core of the Xeon Phi was more than 10 times less efficient than a single core of the CPU for all radiation transport simulations.

  12. 40 CFR 194.23 - Models and computer codes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e., computer...

  13. 40 CFR 194.23 - Models and computer codes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e., computer...

  14. 40 CFR 194.23 - Models and computer codes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e., computer...

  15. 40 CFR 194.23 - Models and computer codes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e., computer...

  16. 40 CFR 194.23 - Models and computer codes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e., computer...

  17. Simulation of the Mg(Ar) ionization chamber currents by different Monte Carlo codes in benchmark gamma fields

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Chun; Liu, Yuan-Hao; Nievaart, Sander; Chen, Yen-Fu; Wu, Shu-Wei; Chou, Wen-Tsae; Jiang, Shiang-Huei

    2011-10-01

    High energy photon (over 10 MeV) and neutron beams adopted in radiobiology and radiotherapy always produce mixed neutron/gamma-ray fields. The Mg(Ar) ionization chambers are commonly applied to determine the gamma-ray dose because of its neutron insensitive characteristic. Nowadays, many perturbation corrections for accurate dose estimation and lots of treatment planning systems are based on Monte Carlo technique. The Monte Carlo codes EGSnrc, FLUKA, GEANT4, MCNP5, and MCNPX were used to evaluate energy dependent response functions of the Exradin M2 Mg(Ar) ionization chamber to a parallel photon beam with mono-energies from 20 keV to 20 MeV. For the sake of validation, measurements were carefully performed in well-defined (a) primary M-100 X-ray calibration field, (b) primary 60Co calibration beam, (c) 6-MV, and (d) 10-MV therapeutic beams in hospital. At energy region below 100 keV, MCNP5 and MCNPX both had lower responses than other codes. For energies above 1 MeV, the MCNP ITS-mode greatly resembled other three codes and the differences were within 5%. Comparing to the measured currents, MCNP5 and MCNPX using ITS-mode had perfect agreement with the 60Co, and 10-MV beams. But at X-ray energy region, the derivations reached 17%. This work shows us a better insight into the performance of different Monte Carlo codes in photon-electron transport calculation. Regarding the application of the mixed field dosimetry like BNCT, MCNP with ITS-mode is recognized as the most suitable tool by this work.

  18. DNA strand breaks induced by electrons simulated with Nanodosimetry Monte Carlo Simulation Code: NASIC.

    PubMed

    Li, Junli; Li, Chunyan; Qiu, Rui; Yan, Congchong; Xie, Wenzhang; Wu, Zhen; Zeng, Zhi; Tung, Chuanjong

    2015-09-01

    The method of Monte Carlo simulation is a powerful tool to investigate the details of radiation biological damage at the molecular level. In this paper, a Monte Carlo code called NASIC (Nanodosimetry Monte Carlo Simulation Code) was developed. It includes physical module, pre-chemical module, chemical module, geometric module and DNA damage module. The physical module can simulate physical tracks of low-energy electrons in the liquid water event-by-event. More than one set of inelastic cross sections were calculated by applying the dielectric function method of Emfietzoglou's optical-data treatments, with different optical data sets and dispersion models. In the pre-chemical module, the ionised and excited water molecules undergo dissociation processes. In the chemical module, the produced radiolytic chemical species diffuse and react. In the geometric module, an atomic model of 46 chromatin fibres in a spherical nucleus of human lymphocyte was established. In the DNA damage module, the direct damages induced by the energy depositions of the electrons and the indirect damages induced by the radiolytic chemical species were calculated. The parameters should be adjusted to make the simulation results be agreed with the experimental results. In this paper, the influence study of the inelastic cross sections and vibrational excitation reaction on the parameters and the DNA strand break yields were studied. Further work of NASIC is underway. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Monte Carlo Methodology Serves Up a Software Success

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Widely used for the modeling of gas flows through the computation of the motion and collisions of representative molecules, the Direct Simulation Monte Carlo method has become the gold standard for producing research and engineering predictions in the field of rarefied gas dynamics. Direct Simulation Monte Carlo was first introduced in the early 1960s by Dr. Graeme Bird, a professor at the University of Sydney, Australia. It has since proved to be a valuable tool to the aerospace and defense industries in providing design and operational support data, as well as flight data analysis. In 2002, NASA brought to the forefront a software product that maintains the same basic physics formulation of Dr. Bird's method, but provides effective modeling of complex, three-dimensional, real vehicle simulations and parallel processing capabilities to handle additional computational requirements, especially in areas where computational fluid dynamics (CFD) is not applicable. NASA's Direct Simulation Monte Carlo Analysis Code (DAC) software package is now considered the Agency s premier high-fidelity simulation tool for predicting vehicle aerodynamics and aerothermodynamic environments in rarified, or low-density, gas flows.

  20. Comment on ‘egs_brachy: a versatile and fast Monte Carlo code for brachytherapy’

    NASA Astrophysics Data System (ADS)

    Yegin, Gultekin

    2018-02-01

    In a recent paper (Chamberland et al 2016 Phys. Med. Biol. 61 8214) develop a new Monte Carlo code called egs_brachy for brachytherapy treatments. It is based on EGSnrc, and written in the C++ programming language. In order to benchmark the egs_brachy code, the authors use it in various test case scenarios in which complex geometry conditions exist. Another EGSnrc based brachytherapy dose calculation engine, BrachyDose, is used for dose comparisons. The authors fail to prove that egs_brachy can produce reasonable dose values for brachytherapy sources in a given medium. The dose comparisons in the paper are erroneous and misleading. egs_brachy should not be used in any further research studies unless and until all the potential bugs are fixed in the code.

  1. Parallel and Portable Monte Carlo Particle Transport

    NASA Astrophysics Data System (ADS)

    Lee, S. R.; Cummings, J. C.; Nolen, S. D.; Keen, N. D.

    1997-08-01

    We have developed a multi-group, Monte Carlo neutron transport code in C++ using object-oriented methods and the Parallel Object-Oriented Methods and Applications (POOMA) class library. This transport code, called MC++, currently computes k and α eigenvalues of the neutron transport equation on a rectilinear computational mesh. It is portable to and runs in parallel on a wide variety of platforms, including MPPs, clustered SMPs, and individual workstations. It contains appropriate classes and abstractions for particle transport and, through the use of POOMA, for portable parallelism. Current capabilities are discussed, along with physics and performance results for several test problems on a variety of hardware, including all three Accelerated Strategic Computing Initiative (ASCI) platforms. Current parallel performance indicates the ability to compute α-eigenvalues in seconds or minutes rather than days or weeks. Current and future work on the implementation of a general transport physics framework (TPF) is also described. This TPF employs modern C++ programming techniques to provide simplified user interfaces, generic STL-style programming, and compile-time performance optimization. Physics capabilities of the TPF will be extended to include continuous energy treatments, implicit Monte Carlo algorithms, and a variety of convergence acceleration techniques such as importance combing.

  2. Computer algorithm for coding gain

    NASA Technical Reports Server (NTRS)

    Dodd, E. E.

    1974-01-01

    Development of a computer algorithm for coding gain for use in an automated communications link design system. Using an empirical formula which defines coding gain as used in space communications engineering, an algorithm is constructed on the basis of available performance data for nonsystematic convolutional encoding with soft-decision (eight-level) Viterbi decoding.

  3. Computer-Access-Code Matrices

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1990-01-01

    Authorized users respond to changing challenges with changing passwords. Scheme for controlling access to computers defeats eavesdroppers and "hackers". Based on password system of challenge and password or sign, challenge, and countersign correlated with random alphanumeric codes in matrices of two or more dimensions. Codes stored on floppy disk or plug-in card and changed frequently. For even higher security, matrices of four or more dimensions used, just as cubes compounded into hypercubes in concurrent processing.

  4. Application des codes de Monte Carlo à la radiothérapie par rayonnement à faible TEL

    NASA Astrophysics Data System (ADS)

    Marcié, S.

    1998-04-01

    In radiation therapy, there is low LET rays: photons of 60Co, photons and electrons to 4 at 25 MV created in a linac, photons 137Cs, of 192Ir and of 125I. To know the most exactly possible the dose to the tissu by this rays, software and measurements are used. With the development of the power and the capacity of computers, the application of Monte Carlo codes expand to the radiation therapy which have permitted to better determine effects of rays and spectra, to explicit parameters used in dosimetric calculation, to verify algorithms , to study measuremtents systems and phantoms, to calculate the dose in inaccessible points and to consider the utilization of new radionuclides. En Radiothérapie, il existe une variété, de rayonnements ? faible TLE : photons du cobalt 60, photons et ,électron de 4 à? 25 MV générés dans des accélérateurs linéaires, photons du césium 137, de l'iridium 192 et de l'iode 125. Pour connatre le plus exactement possible la dose délivrée aux tissus par ces rayonnements, des logiciels sont utilisés ainsi que des instruments de mesures. Avec le développement de la puissance et de la capacité, des calculateurs, l'application des codes de Monte Carlo s'est ,étendue ? la Radiothérapie ce qui a permis de mieux cerner les effets des rayonnements, déterminer les spectres, préciser les valeurs des paramètres utilisés dans les calculs dosimétriques, vérifier les algorithmes, ,étudier les systèmes de mesures et les fantomes utilisés, calculer la dose en des points inaccessibles ?à la mesure et envisager l'utilisation de nouveaux radio,éléments.

  5. Benchmarking the MCNP Monte Carlo code with a photon skyshine experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsher, R.H.; Hsu, Hsiao Hua; Harvey, W.F.

    1993-07-01

    The MCNP Monte Carlo transport code is used by the Los Alamos National Laboratory Health and Safety Division for a broad spectrum of radiation shielding calculations. One such application involves the determination of skyshine dose for a variety of photon sources. To verify the accuracy of the code, it was benchmarked with the Kansas State Univ. (KSU) photon skyshine experiment of 1977. The KSU experiment for the unshielded source geometry was simulated in great detail to include the contribution of groundshine, in-silo photon scatter, and the effect of spectral degradation in the source capsule. The standard deviation of the KSUmore » experimental data was stated to be 7%, while the statistical uncertainty of the simulation was kept at or under 1%. The results of the simulation agreed closely with the experimental data, generally to within 6%. At distances of under 100 m from the silo, the modeling of the in-silo scatter was crucial to achieving close agreement with the experiment. Specifically, scatter off the top layer of the source cask accounted for [approximately]12% of the dose at 50 m. At distance >300m, using the [sup 60]Co line spectrum led to a dose overresponse as great as 19% at 700 m. It was necessary to use the actual source spectrum, which includes a Compton tail from photon collisions in the source capsule, to achieve close agreement with experimental data. These results highlight the importance of using Monte Carlo transport techniques to account for the nonideal features of even simple experiments''.« less

  6. Computer codes developed and under development at Lewis

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1992-01-01

    The objective of this summary is to provide a brief description of: (1) codes developed or under development at LeRC; and (2) the development status of IPACS with some typical early results. The computer codes that have been developed and/or are under development at LeRC are listed in the accompanying charts. This list includes: (1) the code acronym; (2) select physics descriptors; (3) current enhancements; and (4) present (9/91) code status with respect to its availability and documentation. The computer codes list is grouped by related functions such as: (1) composite mechanics; (2) composite structures; (3) integrated and 3-D analysis; (4) structural tailoring; and (5) probabilistic structural analysis. These codes provide a broad computational simulation infrastructure (technology base-readiness) for assessing the structural integrity/durability/reliability of propulsion systems. These codes serve two other very important functions: they provide an effective means of technology transfer; and they constitute a depository of corporate memory.

  7. Development and application of computational aerothermodynamics flowfield computer codes

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj

    1994-01-01

    Research was performed in the area of computational modeling and application of hypersonic, high-enthalpy, thermo-chemical nonequilibrium flow (Aerothermodynamics) problems. A number of computational fluid dynamic (CFD) codes were developed and applied to simulate high altitude rocket-plume, the Aeroassist Flight Experiment (AFE), hypersonic base flow for planetary probes, the single expansion ramp model (SERN) connected with the National Aerospace Plane, hypersonic drag devices, hypersonic ramp flows, ballistic range models, shock tunnel facility nozzles, transient and steady flows in the shock tunnel facility, arc-jet flows, thermochemical nonequilibrium flows around simple and complex bodies, axisymmetric ionized flows of interest to re-entry, unsteady shock induced combustion phenomena, high enthalpy pulsed facility simulations, and unsteady shock boundary layer interactions in shock tunnels. Computational modeling involved developing appropriate numerical schemes for the flows on interest and developing, applying, and validating appropriate thermochemical processes. As part of improving the accuracy of the numerical predictions, adaptive grid algorithms were explored, and a user-friendly, self-adaptive code (SAGE) was developed. Aerothermodynamic flows of interest included energy transfer due to strong radiation, and a significant level of effort was spent in developing computational codes for calculating radiation and radiation modeling. In addition, computational tools were developed and applied to predict the radiative heat flux and spectra that reach the model surface.

  8. TH-E-18A-01: Developments in Monte Carlo Methods for Medical Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badal, A; Zbijewski, W; Bolch, W

    Monte Carlo simulation methods are widely used in medical physics research and are starting to be implemented in clinical applications such as radiation therapy planning systems. Monte Carlo simulations offer the capability to accurately estimate quantities of interest that are challenging to measure experimentally while taking into account the realistic anatomy of an individual patient. Traditionally, practical application of Monte Carlo simulation codes in diagnostic imaging was limited by the need for large computational resources or long execution times. However, recent advancements in high-performance computing hardware, combined with a new generation of Monte Carlo simulation algorithms and novel postprocessing methods,more » are allowing for the computation of relevant imaging parameters of interest such as patient organ doses and scatter-to-primaryratios in radiographic projections in just a few seconds using affordable computational resources. Programmable Graphics Processing Units (GPUs), for example, provide a convenient, affordable platform for parallelized Monte Carlo executions that yield simulation times on the order of 10{sup 7} xray/ s. Even with GPU acceleration, however, Monte Carlo simulation times can be prohibitive for routine clinical practice. To reduce simulation times further, variance reduction techniques can be used to alter the probabilistic models underlying the x-ray tracking process, resulting in lower variance in the results without biasing the estimates. Other complementary strategies for further reductions in computation time are denoising of the Monte Carlo estimates and estimating (scoring) the quantity of interest at a sparse set of sampling locations (e.g. at a small number of detector pixels in a scatter simulation) followed by interpolation. Beyond reduction of the computational resources required for performing Monte Carlo simulations in medical imaging, the use of accurate representations of patient anatomy is crucial to

  9. Million-body star cluster simulations: comparisons between Monte Carlo and direct N-body

    NASA Astrophysics Data System (ADS)

    Rodriguez, Carl L.; Morscher, Meagan; Wang, Long; Chatterjee, Sourav; Rasio, Frederic A.; Spurzem, Rainer

    2016-12-01

    We present the first detailed comparison between million-body globular cluster simulations computed with a Hénon-type Monte Carlo code, CMC, and a direct N-body code, NBODY6++GPU. Both simulations start from an identical cluster model with 106 particles, and include all of the relevant physics needed to treat the system in a highly realistic way. With the two codes `frozen' (no fine-tuning of any free parameters or internal algorithms of the codes) we find good agreement in the overall evolution of the two models. Furthermore, we find that in both models, large numbers of stellar-mass black holes (>1000) are retained for 12 Gyr. Thus, the very accurate direct N-body approach confirms recent predictions that black holes can be retained in present-day, old globular clusters. We find only minor disagreements between the two models and attribute these to the small-N dynamics driving the evolution of the cluster core for which the Monte Carlo assumptions are less ideal. Based on the overwhelming general agreement between the two models computed using these vastly different techniques, we conclude that our Monte Carlo approach, which is more approximate, but dramatically faster compared to the direct N-body, is capable of producing an accurate description of the long-term evolution of massive globular clusters even when the clusters contain large populations of stellar-mass black holes.

  10. The MluI cell cycle box (MCB) motifs, but not damage-responsive elements (DREs), are responsible for the transcriptional induction of the rhp51+ gene in response to DNA replication stress.

    PubMed

    Sartagul, Wugangerile; Zhou, Xin; Yamada, Yuki; Ma, Ning; Tanaka, Katsunori; Furuyashiki, Tomoyuki; Ma, Yan

    2014-01-01

    DNA replication stress induces the transcriptional activation of rhp51+, a fission yeast recA homolog required for repair of DNA double strand breaks. However, the mechanism by which DNA replication stress activates rhp51+ transcription is not understood. The promoter region of rhp51+ contains two damage-responsive elements (DREs) and two MluI cell cycle box (MCB) motifs. Using luciferase reporter assays, we examined the role of these elements in rhp51+ transcription. The full-length rhp51+ promoter and a promoter fragment containing MCB motifs only, but not a fragment containing DREs, mediated transcriptional activation upon DNA replication stress. Removal of the MCB motifs from the rhp51+ promoter abolished the induction of rhp51+ transcription by DNA replication stress. Consistent with a role for MCB motifs in rhp51+ transcription activation, deletion of the MBF (MCB-binding factor) co-repressors Nrm1 and Yox1 precluded rhp51+ transcriptional induction in response to DNA replication stress. Using cells deficient in checkpoint signaling molecules, we found that the Rad3-Cds1/Chk1 pathway partially mediated rhp51+ transcription in response to DNA replication stress, suggesting the involvement of unidentified checkpoint signaling pathways. Because MBF is critical for G1/S transcription, we examined how the cell cycle affected rhp51+ transcription. The transcription of rhp51+ and cdc18+, an MBF-dependent G1/S gene, peaked simultaneously in synchronized cdc25-22 cells. Furthermore, DNA replication stress maintained transcription of rhp51+ similarly to cdc18+. Collectively, these results suggest that MBF and its regulators mediate rhp51+ transcription in response to DNA replication stress, and underlie rhp51+ transcription at the G1/S transition.

  11. Comparison of Geant4-DNA simulation of S-values with other Monte Carlo codes

    NASA Astrophysics Data System (ADS)

    André, T.; Morini, F.; Karamitros, M.; Delorme, R.; Le Loirec, C.; Campos, L.; Champion, C.; Groetz, J.-E.; Fromm, M.; Bordage, M.-C.; Perrot, Y.; Barberet, Ph.; Bernal, M. A.; Brown, J. M. C.; Deleuze, M. S.; Francis, Z.; Ivanchenko, V.; Mascialino, B.; Zacharatou, C.; Bardiès, M.; Incerti, S.

    2014-01-01

    Monte Carlo simulations of S-values have been carried out with the Geant4-DNA extension of the Geant4 toolkit. The S-values have been simulated for monoenergetic electrons with energies ranging from 0.1 keV up to 20 keV, in liquid water spheres (for four radii, chosen between 10 nm and 1 μm), and for electrons emitted by five isotopes of iodine (131, 132, 133, 134 and 135), in liquid water spheres of varying radius (from 15 μm up to 250 μm). The results have been compared to those obtained from other Monte Carlo codes and from other published data. The use of the Kolmogorov-Smirnov test has allowed confirming the statistical compatibility of all simulation results.

  12. Accuracy Evaluation of Oncentra™ TPS in HDR Brachytherapy of Nasopharynx Cancer Using EGSnrc Monte Carlo Code.

    PubMed

    Hadad, K; Zohrevand, M; Faghihi, R; Sedighi Pashaki, A

    2015-03-01

    HDR brachytherapy is one of the commonest methods of nasopharyngeal cancer treatment. In this method, depending on how advanced one tumor is, 2 to 6 Gy dose as intracavitary brachytherapy is prescribed. Due to high dose rate and tumor location, accuracy evaluation of treatment planning system (TPS) is particularly important. Common methods used in TPS dosimetry are based on computations in a homogeneous phantom. Heterogeneous phantoms, especially patient-specific voxel phantoms can increase dosimetric accuracy. In this study, using CT images taken from a patient and ctcreate-which is a part of the DOSXYZnrc computational code, patient-specific phantom was made. Dose distribution was plotted by DOSXYZnrc and compared with TPS one. Also, by extracting the voxels absorbed dose in treatment volume, dose-volume histograms (DVH) was plotted and compared with Oncentra™ TPS DVHs. The results from calculations were compared with data from Oncentra™ treatment planning system and it was observed that TPS calculation predicts lower dose in areas near the source, and higher dose in areas far from the source relative to MC code. Absorbed dose values in the voxels also showed that TPS reports D90 value is 40% higher than the Monte Carlo method. Today, most treatment planning systems use TG-43 protocol. This protocol may results in errors such as neglecting tissue heterogeneity, scattered radiation as well as applicator attenuation. Due to these errors, AAPM emphasized departing from TG-43 protocol and approaching new brachytherapy protocol TG-186 in which patient-specific phantom is used and heterogeneities are affected in dosimetry.

  13. Accuracy Evaluation of Oncentra™ TPS in HDR Brachytherapy of Nasopharynx Cancer Using EGSnrc Monte Carlo Code

    PubMed Central

    Hadad, K.; Zohrevand, M.; Faghihi, R.; Sedighi Pashaki, A.

    2015-01-01

    Background HDR brachytherapy is one of the commonest methods of nasopharyngeal cancer treatment. In this method, depending on how advanced one tumor is, 2 to 6 Gy dose as intracavitary brachytherapy is prescribed. Due to high dose rate and tumor location, accuracy evaluation of treatment planning system (TPS) is particularly important. Common methods used in TPS dosimetry are based on computations in a homogeneous phantom. Heterogeneous phantoms, especially patient-specific voxel phantoms can increase dosimetric accuracy. Materials and Methods In this study, using CT images taken from a patient and ctcreate-which is a part of the DOSXYZnrc computational code, patient-specific phantom was made. Dose distribution was plotted by DOSXYZnrc and compared with TPS one. Also, by extracting the voxels absorbed dose in treatment volume, dose-volume histograms (DVH) was plotted and compared with Oncentra™ TPS DVHs. Results The results from calculations were compared with data from Oncentra™ treatment planning system and it was observed that TPS calculation predicts lower dose in areas near the source, and higher dose in areas far from the source relative to MC code. Absorbed dose values in the voxels also showed that TPS reports D90 value is 40% higher than the Monte Carlo method. Conclusion Today, most treatment planning systems use TG-43 protocol. This protocol may results in errors such as neglecting tissue heterogeneity, scattered radiation as well as applicator attenuation. Due to these errors, AAPM emphasized departing from TG-43 protocol and approaching new brachytherapy protocol TG-186 in which patient-specific phantom is used and heterogeneities are affected in dosimetry. PMID:25973408

  14. Internal dosimetry with the Monte Carlo code GATE: validation using the ICRP/ICRU female reference computational model

    NASA Astrophysics Data System (ADS)

    Villoing, Daphnée; Marcatili, Sara; Garcia, Marie-Paule; Bardiès, Manuel

    2017-03-01

    The purpose of this work was to validate GATE-based clinical scale absorbed dose calculations in nuclear medicine dosimetry. GATE (version 6.2) and MCNPX (version 2.7.a) were used to derive dosimetric parameters (absorbed fractions, specific absorbed fractions and S-values) for the reference female computational model proposed by the International Commission on Radiological Protection in ICRP report 110. Monoenergetic photons and electrons (from 50 keV to 2 MeV) and four isotopes currently used in nuclear medicine (fluorine-18, lutetium-177, iodine-131 and yttrium-90) were investigated. Absorbed fractions, specific absorbed fractions and S-values were generated with GATE and MCNPX for 12 regions of interest in the ICRP 110 female computational model, thereby leading to 144 source/target pair configurations. Relative differences between GATE and MCNPX obtained in specific configurations (self-irradiation or cross-irradiation) are presented. Relative differences in absorbed fractions, specific absorbed fractions or S-values are below 10%, and in most cases less than 5%. Dosimetric results generated with GATE for the 12 volumes of interest are available as supplemental data. GATE can be safely used for radiopharmaceutical dosimetry at the clinical scale. This makes GATE a viable option for Monte Carlo modelling of both imaging and absorbed dose in nuclear medicine.

  15. DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations

    NASA Astrophysics Data System (ADS)

    Sempau, Josep; Wilderman, Scott J.; Bielajew, Alex F.

    2000-08-01

    A new Monte Carlo (MC) algorithm, the `dose planning method' (DPM), and its associated computer program for simulating the transport of electrons and photons in radiotherapy class problems employing primary electron beams, is presented. DPM is intended to be a high-accuracy MC alternative to the current generation of treatment planning codes which rely on analytical algorithms based on an approximate solution of the photon/electron Boltzmann transport equation. For primary electron beams, DPM is capable of computing 3D dose distributions (in 1 mm3 voxels) which agree to within 1% in dose maximum with widely used and exhaustively benchmarked general-purpose public-domain MC codes in only a fraction of the CPU time. A representative problem, the simulation of 1 million 10 MeV electrons impinging upon a water phantom of 1283 voxels of 1 mm on a side, can be performed by DPM in roughly 3 min on a modern desktop workstation. DPM achieves this performance by employing transport mechanics and electron multiple scattering distribution functions which have been derived to permit long transport steps (of the order of 5 mm) which can cross heterogeneity boundaries. The underlying algorithm is a `mixed' class simulation scheme, with differential cross sections for hard inelastic collisions and bremsstrahlung events described in an approximate manner to simplify their sampling. The continuous energy loss approximation is employed for energy losses below some predefined thresholds, and photon transport (including Compton, photoelectric absorption and pair production) is simulated in an analogue manner. The δ-scattering method (Woodcock tracking) is adopted to minimize the computational costs of transporting photons across voxels.

  16. Improved Algorithms Speed It Up for Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazi, A

    2005-09-20

    Huge computers, huge codes, complex problems to solve. The longer it takes to run a code, the more it costs. One way to speed things up and save time and money is through hardware improvements--faster processors, different system designs, bigger computers. But another side of supercomputing can reap savings in time and speed: software improvements to make codes--particularly the mathematical algorithms that form them--run faster and more efficiently. Speed up math? Is that really possible? According to Livermore physicist Eugene Brooks, the answer is a resounding yes. ''Sure, you get great speed-ups by improving hardware,'' says Brooks, the deputy leadermore » for Computational Physics in N Division, which is part of Livermore's Physics and Advanced Technologies (PAT) Directorate. ''But the real bonus comes on the software side, where improvements in software can lead to orders of magnitude improvement in run times.'' Brooks knows whereof he speaks. Working with Laboratory physicist Abraham Szoeke and others, he has been instrumental in devising ways to shrink the running time of what has, historically, been a tough computational nut to crack: radiation transport codes based on the statistical or Monte Carlo method of calculation. And Brooks is not the only one. Others around the Laboratory, including physicists Andrew Williamson, Randolph Hood, and Jeff Grossman, have come up with innovative ways to speed up Monte Carlo calculations using pure mathematics.« less

  17. Parallel Markov chain Monte Carlo - bridging the gap to high-performance Bayesian computation in animal breeding and genetics.

    PubMed

    Wu, Xiao-Lin; Sun, Chuanyu; Beissinger, Timothy M; Rosa, Guilherme Jm; Weigel, Kent A; Gatti, Natalia de Leon; Gianola, Daniel

    2012-09-25

    Most Bayesian models for the analysis of complex traits are not analytically tractable and inferences are based on computationally intensive techniques. This is true of Bayesian models for genome-enabled selection, which uses whole-genome molecular data to predict the genetic merit of candidate animals for breeding purposes. In this regard, parallel computing can overcome the bottlenecks that can arise from series computing. Hence, a major goal of the present study is to bridge the gap to high-performance Bayesian computation in the context of animal breeding and genetics. Parallel Monte Carlo Markov chain algorithms and strategies are described in the context of animal breeding and genetics. Parallel Monte Carlo algorithms are introduced as a starting point including their applications to computing single-parameter and certain multiple-parameter models. Then, two basic approaches for parallel Markov chain Monte Carlo are described: one aims at parallelization within a single chain; the other is based on running multiple chains, yet some variants are discussed as well. Features and strategies of the parallel Markov chain Monte Carlo are illustrated using real data, including a large beef cattle dataset with 50K SNP genotypes. Parallel Markov chain Monte Carlo algorithms are useful for computing complex Bayesian models, which does not only lead to a dramatic speedup in computing but can also be used to optimize model parameters in complex Bayesian models. Hence, we anticipate that use of parallel Markov chain Monte Carlo will have a profound impact on revolutionizing the computational tools for genomic selection programs.

  18. Parallel Markov chain Monte Carlo - bridging the gap to high-performance Bayesian computation in animal breeding and genetics

    PubMed Central

    2012-01-01

    Background Most Bayesian models for the analysis of complex traits are not analytically tractable and inferences are based on computationally intensive techniques. This is true of Bayesian models for genome-enabled selection, which uses whole-genome molecular data to predict the genetic merit of candidate animals for breeding purposes. In this regard, parallel computing can overcome the bottlenecks that can arise from series computing. Hence, a major goal of the present study is to bridge the gap to high-performance Bayesian computation in the context of animal breeding and genetics. Results Parallel Monte Carlo Markov chain algorithms and strategies are described in the context of animal breeding and genetics. Parallel Monte Carlo algorithms are introduced as a starting point including their applications to computing single-parameter and certain multiple-parameter models. Then, two basic approaches for parallel Markov chain Monte Carlo are described: one aims at parallelization within a single chain; the other is based on running multiple chains, yet some variants are discussed as well. Features and strategies of the parallel Markov chain Monte Carlo are illustrated using real data, including a large beef cattle dataset with 50K SNP genotypes. Conclusions Parallel Markov chain Monte Carlo algorithms are useful for computing complex Bayesian models, which does not only lead to a dramatic speedup in computing but can also be used to optimize model parameters in complex Bayesian models. Hence, we anticipate that use of parallel Markov chain Monte Carlo will have a profound impact on revolutionizing the computational tools for genomic selection programs. PMID:23009363

  19. COOL: A code for Dynamic Monte Carlo Simulation of molecular dynamics

    NASA Astrophysics Data System (ADS)

    Barletta, Paolo

    2012-02-01

    Cool is a program to simulate evaporative and sympathetic cooling for a mixture of two gases co-trapped in an harmonic potential. The collisions involved are assumed to be exclusively elastic, and losses are due to evaporation from the trap. Each particle is followed individually in its trajectory, consequently properties such as spatial densities or energy distributions can be readily evaluated. The code can be used sequentially, by employing one output as input for another run. The code can be easily generalised to describe more complicated processes, such as the inclusion of inelastic collisions, or the possible presence of more than two species in the trap. New version program summaryProgram title: COOL Catalogue identifier: AEHJ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHJ_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1 097 733 No. of bytes in distributed program, including test data, etc.: 18 425 722 Distribution format: tar.gz Programming language: C++ Computer: Desktop Operating system: Linux RAM: 500 Mbytes Classification: 16.7, 23 Catalogue identifier of previous version: AEHJ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 182 (2011) 388 Does the new version supersede the previous version?: Yes Nature of problem: Simulation of the sympathetic process occurring for two molecular gases co-trapped in a deep optical trap. Solution method: The Direct Simulation Monte Carlo method exploits the decoupling, over a short time period, of the inter-particle interaction from the trapping potential. The particle dynamics is thus exclusively driven by the external optical field. The rare inter-particle collisions are considered with an acceptance/rejection mechanism, that is, by comparing a random number to the collisional probability

  20. Testing of Error-Correcting Sparse Permutation Channel Codes

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill, V.; Orlov, Sergei S.

    2008-01-01

    A computer program performs Monte Carlo direct numerical simulations for testing sparse permutation channel codes, which offer strong error-correction capabilities at high code rates and are considered especially suitable for storage of digital data in holographic and volume memories. A word in a code of this type is characterized by, among other things, a sparseness parameter (M) and a fixed number (K) of 1 or "on" bits in a channel block length of N.

  1. Reeds computer code

    NASA Technical Reports Server (NTRS)

    Bjork, C.

    1981-01-01

    The REEDS (rocket exhaust effluent diffusion single layer) computer code is used for the estimation of certain rocket exhaust effluent concentrations and dosages and their distributions near the Earth's surface following a rocket launch event. Output from REEDS is used in producing near real time air quality and environmental assessments of the effects of certain potentially harmful effluents, namely HCl, Al2O3, CO, and NO.

  2. Nonuniform code concatenation for universal fault-tolerant quantum computing

    NASA Astrophysics Data System (ADS)

    Nikahd, Eesa; Sedighi, Mehdi; Saheb Zamani, Morteza

    2017-09-01

    Using transversal gates is a straightforward and efficient technique for fault-tolerant quantum computing. Since transversal gates alone cannot be computationally universal, they must be combined with other approaches such as magic state distillation, code switching, or code concatenation to achieve universality. In this paper we propose an alternative approach for universal fault-tolerant quantum computing, mainly based on the code concatenation approach proposed in [T. Jochym-O'Connor and R. Laflamme, Phys. Rev. Lett. 112, 010505 (2014), 10.1103/PhysRevLett.112.010505], but in a nonuniform fashion. The proposed approach is described based on nonuniform concatenation of the 7-qubit Steane code with the 15-qubit Reed-Muller code, as well as the 5-qubit code with the 15-qubit Reed-Muller code, which lead to two 49-qubit and 47-qubit codes, respectively. These codes can correct any arbitrary single physical error with the ability to perform a universal set of fault-tolerant gates, without using magic state distillation.

  3. Talking about Code: Integrating Pedagogical Code Reviews into Early Computing Courses

    ERIC Educational Resources Information Center

    Hundhausen, Christopher D.; Agrawal, Anukrati; Agarwal, Pawan

    2013-01-01

    Given the increasing importance of soft skills in the computing profession, there is good reason to provide students withmore opportunities to learn and practice those skills in undergraduate computing courses. Toward that end, we have developed an active learning approach for computing education called the "Pedagogical Code Review"…

  4. Accelerated GPU based SPECT Monte Carlo simulations.

    PubMed

    Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris

    2016-06-07

    Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: (99m) Tc, (111)In and (131)I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational

  5. Monte Carlo simulations of adult and pediatric computed tomography exams: Validation studies of organ doses with physical phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Daniel J.; Lee, Choonsik; Tien, Christopher

    2013-01-15

    Purpose: To validate the accuracy of a Monte Carlo source model of the Siemens SOMATOM Sensation 16 CT scanner using organ doses measured in physical anthropomorphic phantoms. Methods: The x-ray output of the Siemens SOMATOM Sensation 16 multidetector CT scanner was simulated within the Monte Carlo radiation transport code, MCNPX version 2.6. The resulting source model was able to perform various simulated axial and helical computed tomographic (CT) scans of varying scan parameters, including beam energy, filtration, pitch, and beam collimation. Two custom-built anthropomorphic phantoms were used to take dose measurements on the CT scanner: an adult male and amore » 9-month-old. The adult male is a physical replica of University of Florida reference adult male hybrid computational phantom, while the 9-month-old is a replica of University of Florida Series B 9-month-old voxel computational phantom. Each phantom underwent a series of axial and helical CT scans, during which organ doses were measured using fiber-optic coupled plastic scintillator dosimeters developed at University of Florida. The physical setup was reproduced and simulated in MCNPX using the CT source model and the computational phantoms upon which the anthropomorphic phantoms were constructed. Average organ doses were then calculated based upon these MCNPX results. Results: For all CT scans, good agreement was seen between measured and simulated organ doses. For the adult male, the percent differences were within 16% for axial scans, and within 18% for helical scans. For the 9-month-old, the percent differences were all within 15% for both the axial and helical scans. These results are comparable to previously published validation studies using GE scanners and commercially available anthropomorphic phantoms. Conclusions: Overall results of this study show that the Monte Carlo source model can be used to accurately and reliably calculate organ doses for patients undergoing a variety of axial or

  6. FitSKIRT: genetic algorithms to automatically fit dusty galaxies with a Monte Carlo radiative transfer code

    NASA Astrophysics Data System (ADS)

    De Geyter, G.; Baes, M.; Fritz, J.; Camps, P.

    2013-02-01

    We present FitSKIRT, a method to efficiently fit radiative transfer models to UV/optical images of dusty galaxies. These images have the advantage that they have better spatial resolution compared to FIR/submm data. FitSKIRT uses the GAlib genetic algorithm library to optimize the output of the SKIRT Monte Carlo radiative transfer code. Genetic algorithms prove to be a valuable tool in handling the multi- dimensional search space as well as the noise induced by the random nature of the Monte Carlo radiative transfer code. FitSKIRT is tested on artificial images of a simulated edge-on spiral galaxy, where we gradually increase the number of fitted parameters. We find that we can recover all model parameters, even if all 11 model parameters are left unconstrained. Finally, we apply the FitSKIRT code to a V-band image of the edge-on spiral galaxy NGC 4013. This galaxy has been modeled previously by other authors using different combinations of radiative transfer codes and optimization methods. Given the different models and techniques and the complexity and degeneracies in the parameter space, we find reasonable agreement between the different models. We conclude that the FitSKIRT method allows comparison between different models and geometries in a quantitative manner and minimizes the need of human intervention and biasing. The high level of automation makes it an ideal tool to use on larger sets of observed data.

  7. Monte Carlo N Particle code - Dose distribution of clinical electron beams in inhomogeneous phantoms

    PubMed Central

    Nedaie, H. A.; Mosleh-Shirazi, M. A.; Allahverdi, M.

    2013-01-01

    Electron dose distributions calculated using the currently available analytical methods can be associated with large uncertainties. The Monte Carlo method is the most accurate method for dose calculation in electron beams. Most of the clinical electron beam simulation studies have been performed using non- MCNP [Monte Carlo N Particle] codes. Given the differences between Monte Carlo codes, this work aims to evaluate the accuracy of MCNP4C-simulated electron dose distributions in a homogenous phantom and around inhomogeneities. Different types of phantoms ranging in complexity were used; namely, a homogeneous water phantom and phantoms made of polymethyl methacrylate slabs containing different-sized, low- and high-density inserts of heterogeneous materials. Electron beams with 8 and 15 MeV nominal energy generated by an Elekta Synergy linear accelerator were investigated. Measurements were performed for a 10 cm × 10 cm applicator at a source-to-surface distance of 100 cm. Individual parts of the beam-defining system were introduced into the simulation one at a time in order to show their effect on depth doses. In contrast to the first scattering foil, the secondary scattering foil, X and Y jaws and applicator provide up to 5% of the dose. A 2%/2 mm agreement between MCNP and measurements was found in the homogenous phantom, and in the presence of heterogeneities in the range of 1-3%, being generally within 2% of the measurements for both energies in a "complex" phantom. A full-component simulation is necessary in order to obtain a realistic model of the beam. The MCNP4C results agree well with the measured electron dose distributions. PMID:23533162

  8. McSKY: A hybrid Monte-Carlo lime-beam code for shielded gamma skyshine calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shultis, J.K.; Faw, R.E.; Stedry, M.H.

    1994-07-01

    McSKY evaluates skyshine dose from an isotropic, monoenergetic, point photon source collimated into either a vertical cone or a vertical structure with an N-sided polygon cross section. The code assumes an overhead shield of two materials, through the user can specify zero shield thickness for an unshielded calculation. The code uses a Monte-Carlo algorithm to evaluate transport through source shields and the integral line source to describe photon transport through the atmosphere. The source energy must be between 0.02 and 100 MeV. For heavily shielded sources with energies above 20 MeV, McSKY results must be used cautiously, especially at detectormore » locations near the source.« less

  9. APC: A New Code for Atmospheric Polarization Computations

    NASA Technical Reports Server (NTRS)

    Korkin, Sergey V.; Lyapustin, Alexei I.; Rozanov, Vladimir V.

    2014-01-01

    A new polarized radiative transfer code Atmospheric Polarization Computations (APC) is described. The code is based on separation of the diffuse light field into anisotropic and smooth (regular) parts. The anisotropic part is computed analytically. The smooth regular part is computed numerically using the discrete ordinates method. Vertical stratification of the atmosphere, common types of bidirectional surface reflection and scattering by spherical particles or spheroids are included. A particular consideration is given to computation of the bidirectional polarization distribution function (BPDF) of the waved ocean surface.

  10. Quantum computing with Majorana fermion codes

    NASA Astrophysics Data System (ADS)

    Litinski, Daniel; von Oppen, Felix

    2018-05-01

    We establish a unified framework for Majorana-based fault-tolerant quantum computation with Majorana surface codes and Majorana color codes. All logical Clifford gates are implemented with zero-time overhead. This is done by introducing a protocol for Pauli product measurements with tetrons and hexons which only requires local 4-Majorana parity measurements. An analogous protocol is used in the fault-tolerant setting, where tetrons and hexons are replaced by Majorana surface code patches, and parity measurements are replaced by lattice surgery, still only requiring local few-Majorana parity measurements. To this end, we discuss twist defects in Majorana fermion surface codes and adapt the technique of twist-based lattice surgery to fermionic codes. Moreover, we propose a family of codes that we refer to as Majorana color codes, which are obtained by concatenating Majorana surface codes with small Majorana fermion codes. Majorana surface and color codes can be used to decrease the space overhead and stabilizer weight compared to their bosonic counterparts.

  11. Chemical application of diffusion quantum Monte Carlo

    NASA Technical Reports Server (NTRS)

    Reynolds, P. J.; Lester, W. A., Jr.

    1984-01-01

    The diffusion quantum Monte Carlo (QMC) method gives a stochastic solution to the Schroedinger equation. This approach is receiving increasing attention in chemical applications as a result of its high accuracy. However, reducing statistical uncertainty remains a priority because chemical effects are often obtained as small differences of large numbers. As an example, the single-triplet splitting of the energy of the methylene molecule CH sub 2 is given. The QMC algorithm was implemented on the CYBER 205, first as a direct transcription of the algorithm running on the VAX 11/780, and second by explicitly writing vector code for all loops longer than a crossover length C. The speed of the codes relative to one another as a function of C, and relative to the VAX, are discussed. The computational time dependence obtained versus the number of basis functions is discussed and this is compared with that obtained from traditional quantum chemistry codes and that obtained from traditional computer architectures.

  12. Benchmarking the MCNP code for Monte Carlo modelling of an in vivo neutron activation analysis system.

    PubMed

    Natto, S A; Lewis, D G; Ryde, S J

    1998-01-01

    The Monte Carlo computer code MCNP (version 4A) has been used to develop a personal computer-based model of the Swansea in vivo neutron activation analysis (IVNAA) system. The model included specification of the neutron source (252Cf), collimators, reflectors and shielding. The MCNP model was 'benchmarked' against fast neutron and thermal neutron fluence data obtained experimentally from the IVNAA system. The Swansea system allows two irradiation geometries using 'short' and 'long' collimators, which provide alternative dose rates for IVNAA. The data presented here relate to the short collimator, although results of similar accuracy were obtained using the long collimator. The fast neutron fluence was measured in air at a series of depths inside the collimator. The measurements agreed with the MCNP simulation within the statistical uncertainty (5-10%) of the calculations. The thermal neutron fluence was measured and calculated inside the cuboidal water phantom. The depth of maximum thermal fluence was 3.2 cm (measured) and 3.0 cm (calculated). The width of the 50% thermal fluence level across the phantom at its mid-depth was found to be the same by both MCNP and experiment. This benchmarking exercise has given us a high degree of confidence in MCNP as a tool for the design of IVNAA systems.

  13. MELCOR computer code manuals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.

    1995-03-01

    MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, andmore » combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR`s phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package.« less

  14. Enhancement of the CAVE computer code

    NASA Astrophysics Data System (ADS)

    Rathjen, K. A.; Burk, H. O.

    1983-12-01

    The computer code CAVE (Conduction Analysis via Eigenvalues) is a convenient and efficient computer code for predicting two dimensional temperature histories within thermal protection systems for hypersonic vehicles. The capabilities of CAVE were enhanced by incorporation of the following features into the code: real gas effects in the aerodynamic heating predictions, geometry and aerodynamic heating package for analyses of cone shaped bodies, input option to change from laminar to turbulent heating predictions on leading edges, modification to account for reduction in adiabatic wall temperature with increase in leading sweep, geometry package for two dimensional scramjet engine sidewall, with an option for heat transfer to external and internal surfaces, print out modification to provide tables of select temperatures for plotting and storage, and modifications to the radiation calculation procedure to eliminate temperature oscillations induced by high heating rates. These new features are described.

  15. Reconstruction of Human Monte Carlo Geometry from Segmented Images

    NASA Astrophysics Data System (ADS)

    Zhao, Kai; Cheng, Mengyun; Fan, Yanchang; Wang, Wen; Long, Pengcheng; Wu, Yican

    2014-06-01

    Human computational phantoms have been used extensively for scientific experimental analysis and experimental simulation. This article presented a method for human geometry reconstruction from a series of segmented images of a Chinese visible human dataset. The phantom geometry could actually describe detailed structure of an organ and could be converted into the input file of the Monte Carlo codes for dose calculation. A whole-body computational phantom of Chinese adult female has been established by FDS Team which is named Rad-HUMAN with about 28.8 billion voxel number. For being processed conveniently, different organs on images were segmented with different RGB colors and the voxels were assigned with positions of the dataset. For refinement, the positions were first sampled. Secondly, the large sums of voxels inside the organ were three-dimensional adjacent, however, there were not thoroughly mergence methods to reduce the cell amounts for the description of the organ. In this study, the voxels on the organ surface were taken into consideration of the mergence which could produce fewer cells for the organs. At the same time, an indexed based sorting algorithm was put forward for enhancing the mergence speed. Finally, the Rad-HUMAN which included a total of 46 organs and tissues was described by the cuboids into the Monte Carlo Monte Carlo Geometry for the simulation. The Monte Carlo geometry was constructed directly from the segmented images and the voxels was merged exhaustively. Each organ geometry model was constructed without ambiguity and self-crossing, its geometry information could represent the accuracy appearance and precise interior structure of the organs. The constructed geometry largely retaining the original shape of organs could easily be described into different Monte Carlo codes input file such as MCNP. Its universal property was testified and high-performance was experimentally verified

  16. A Monte Carlo code for the fragmentation of polarized quarks

    NASA Astrophysics Data System (ADS)

    Kerbizi, A.; Artru, X.; Belghobsi, Z.; Bradamante, F.; Martin, A.

    2017-12-01

    We describe a Monte Carlo code for the fragmentation of polarized quarks into pseudoscalar mesons. The quark jet is generated by iteration of the splitting q → h + q‧ where q and q‧ indicate quarks and h a hadron. The splitting function describing the energy sharing between q‧ and h is calculated on the basis of the Symmetric Lund Model where the quark spin is introduced through spin matrices as foreseen in the 3 P 0 mechanism. A complex mass parameter is introduced for the parametrisation of the Collins effect. The results for the Collins analysing power and the comparison with the Collins asymmetries measured by the COMPASS collaboration are presented. For the first time preliminary results on the simulated azimuthal asymmetry due to the Boer-Mulders function are also given.

  17. Computer program uses Monte Carlo techniques for statistical system performance analysis

    NASA Technical Reports Server (NTRS)

    Wohl, D. P.

    1967-01-01

    Computer program with Monte Carlo sampling techniques determines the effect of a component part of a unit upon the overall system performance. It utilizes the full statistics of the disturbances and misalignments of each component to provide unbiased results through simulated random sampling.

  18. Error threshold for color codes and random three-body Ising models.

    PubMed

    Katzgraber, Helmut G; Bombin, H; Martin-Delgado, M A

    2009-08-28

    We study the error threshold of color codes, a class of topological quantum codes that allow a direct implementation of quantum Clifford gates suitable for entanglement distillation, teleportation, and fault-tolerant quantum computation. We map the error-correction process onto a statistical mechanical random three-body Ising model and study its phase diagram via Monte Carlo simulations. The obtained error threshold of p(c) = 0.109(2) is very close to that of Kitaev's toric code, showing that enhanced computational capabilities do not necessarily imply lower resistance to noise.

  19. Acceleration of Monte Carlo simulation of photon migration in complex heterogeneous media using Intel many-integrated core architecture.

    PubMed

    Gorshkov, Anton V; Kirillin, Mikhail Yu

    2015-08-01

    Over two decades, the Monte Carlo technique has become a gold standard in simulation of light propagation in turbid media, including biotissues. Technological solutions provide further advances of this technique. The Intel Xeon Phi coprocessor is a new type of accelerator for highly parallel general purpose computing, which allows execution of a wide range of applications without substantial code modification. We present a technical approach of porting our previously developed Monte Carlo (MC) code for simulation of light transport in tissues to the Intel Xeon Phi coprocessor. We show that employing the accelerator allows reducing computational time of MC simulation and obtaining simulation speed-up comparable to GPU. We demonstrate the performance of the developed code for simulation of light transport in the human head and determination of the measurement volume in near-infrared spectroscopy brain sensing.

  20. Superimposed Code Theoretic Analysis of DNA Codes and DNA Computing

    DTIC Science & Technology

    2008-01-01

    complements of one another and the DNA duplex formed is a Watson - Crick (WC) duplex. However, there are many instances when the formation of non-WC...that the user’s requirements for probe selection are met based on the Watson - Crick probe locality within a target. The second type, called...AFRL-RI-RS-TR-2007-288 Final Technical Report January 2008 SUPERIMPOSED CODE THEORETIC ANALYSIS OF DNA CODES AND DNA COMPUTING

  1. Advances in Monte-Carlo code TRIPOLI-4®'s treatment of the electromagnetic cascade

    NASA Astrophysics Data System (ADS)

    Mancusi, Davide; Bonin, Alice; Hugot, François-Xavier; Malouch, Fadhel

    2018-01-01

    TRIPOLI-4® is a Monte-Carlo particle-transport code developed at CEA-Saclay (France) that is employed in the domains of nuclear-reactor physics, criticality-safety, shielding/radiation protection and nuclear instrumentation. The goal of this paper is to report on current developments, validation and verification made in TRIPOLI-4 in the electron/positron/photon sector. The new capabilities and improvements concern refinements to the electron transport algorithm, the introduction of a charge-deposition score, the new thick-target bremsstrahlung option, the upgrade of the bremsstrahlung model and the improvement of electron angular straggling at low energy. The importance of each of the developments above is illustrated by comparisons with calculations performed with other codes and with experimental data.

  2. Accelerating Monte Carlo simulations of photon transport in a voxelized geometry using a massively parallel graphics processing unit.

    PubMed

    Badal, Andreu; Badano, Aldo

    2009-11-01

    It is a known fact that Monte Carlo simulations of radiation transport are computationally intensive and may require long computing times. The authors introduce a new paradigm for the acceleration of Monte Carlo simulations: The use of a graphics processing unit (GPU) as the main computing device instead of a central processing unit (CPU). A GPU-based Monte Carlo code that simulates photon transport in a voxelized geometry with the accurate physics models from PENELOPE has been developed using the CUDATM programming model (NVIDIA Corporation, Santa Clara, CA). An outline of the new code and a sample x-ray imaging simulation with an anthropomorphic phantom are presented. A remarkable 27-fold speed up factor was obtained using a GPU compared to a single core CPU. The reported results show that GPUs are currently a good alternative to CPUs for the simulation of radiation transport. Since the performance of GPUs is currently increasing at a faster pace than that of CPUs, the advantages of GPU-based software are likely to be more pronounced in the future.

  3. High-Throughput Computation and the Applicability of Monte Carlo Integration in Fatigue Load Estimation of Floating Offshore Wind Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, Peter A.; Stewart, Gordon; Lackner, Matthew

    Long-term fatigue loads for floating offshore wind turbines are hard to estimate because they require the evaluation of the integral of a highly nonlinear function over a wide variety of wind and wave conditions. Current design standards involve scanning over a uniform rectangular grid of metocean inputs (e.g., wind speed and direction and wave height and period), which becomes intractable in high dimensions as the number of required evaluations grows exponentially with dimension. Monte Carlo integration offers a potentially efficient alternative because it has theoretical convergence proportional to the inverse of the square root of the number of samples, whichmore » is independent of dimension. In this paper, we first report on the integration of the aeroelastic code FAST into NREL's systems engineering tool, WISDEM, and the development of a high-throughput pipeline capable of sampling from arbitrary distributions, running FAST on a large scale, and postprocessing the results into estimates of fatigue loads. Second, we use this tool to run a variety of studies aimed at comparing grid-based and Monte Carlo-based approaches with calculating long-term fatigue loads. We observe that for more than a few dimensions, the Monte Carlo approach can represent a large improvement in computational efficiency, but that as nonlinearity increases, the effectiveness of Monte Carlo is correspondingly reduced. The present work sets the stage for future research focusing on using advanced statistical methods for analysis of wind turbine fatigue as well as extreme loads.« less

  4. An Object-Oriented Approach to Writing Computational Electromagnetics Codes

    NASA Technical Reports Server (NTRS)

    Zimmerman, Martin; Mallasch, Paul G.

    1996-01-01

    Presently, most computer software development in the Computational Electromagnetics (CEM) community employs the structured programming paradigm, particularly using the Fortran language. Other segments of the software community began switching to an Object-Oriented Programming (OOP) paradigm in recent years to help ease design and development of highly complex codes. This paper examines design of a time-domain numerical analysis CEM code using the OOP paradigm, comparing OOP code and structured programming code in terms of software maintenance, portability, flexibility, and speed.

  5. Comparison of EGS4 and MCNP Monte Carlo codes when calculating radiotherapy depth doses.

    PubMed

    Love, P A; Lewis, D G; Al-Affan, I A; Smith, C W

    1998-05-01

    The Monte Carlo codes EGS4 and MCNP have been compared when calculating radiotherapy depth doses in water. The aims of the work were to study (i) the differences between calculated depth doses in water for a range of monoenergetic photon energies and (ii) the relative efficiency of the two codes for different electron transport energy cut-offs. The depth doses from the two codes agree with each other within the statistical uncertainties of the calculations (1-2%). The relative depth doses also agree with data tabulated in the British Journal of Radiology Supplement 25. A discrepancy in the dose build-up region may by attributed to the different electron transport algorithims used by EGS4 and MCNP. This discrepancy is considerably reduced when the improved electron transport routines are used in the latest (4B) version of MCNP. Timing calculations show that EGS4 is at least 50% faster than MCNP for the geometries used in the simulations.

  6. Parameters Free Computational Characterization of Defects in Transition Metal Oxides with Diffusion Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Santana, Juan A.; Krogel, Jaron T.; Kent, Paul R.; Reboredo, Fernando

    Materials based on transition metal oxides (TMO's) are among the most challenging systems for computational characterization. Reliable and practical computations are possible by directly solving the many-body problem for TMO's with quantum Monte Carlo (QMC) methods. These methods are very computationally intensive, but recent developments in algorithms and computational infrastructures have enabled their application to real materials. We will show our efforts on the application of the diffusion quantum Monte Carlo (DMC) method to study the formation of defects in binary and ternary TMO and heterostructures of TMO. We will also outline current limitations in hardware and algorithms. This work is supported by the Materials Sciences & Engineering Division of the Office of Basic Energy Sciences, U.S. Department of Energy (DOE).

  7. Holonomic surface codes for fault-tolerant quantum computation

    NASA Astrophysics Data System (ADS)

    Zhang, Jiang; Devitt, Simon J.; You, J. Q.; Nori, Franco

    2018-02-01

    Surface codes can protect quantum information stored in qubits from local errors as long as the per-operation error rate is below a certain threshold. Here we propose holonomic surface codes by harnessing the quantum holonomy of the system. In our scheme, the holonomic gates are built via auxiliary qubits rather than the auxiliary levels in multilevel systems used in conventional holonomic quantum computation. The key advantage of our approach is that the auxiliary qubits are in their ground state before and after each gate operation, so they are not involved in the operation cycles of surface codes. This provides an advantageous way to implement surface codes for fault-tolerant quantum computation.

  8. A collision history-based approach to Sensitivity/Perturbation calculations in the continuous energy Monte Carlo code SERPENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giuseppe Palmiotti

    In this work, the implementation of a collision history-based approach to sensitivity/perturbation calculations in the Monte Carlo code SERPENT is discussed. The proposed methods allow the calculation of the eects of nuclear data perturbation on several response functions: the eective multiplication factor, reaction rate ratios and bilinear ratios (e.g., eective kinetics parameters). SERPENT results are compared to ERANOS and TSUNAMI Generalized Perturbation Theory calculations for two fast metallic systems and for a PWR pin-cell benchmark. New methods for the calculation of sensitivities to angular scattering distributions are also presented, which adopts fully continuous (in energy and angle) Monte Carlo estimators.

  9. Fixed forced detection for fast SPECT Monte-Carlo simulation

    NASA Astrophysics Data System (ADS)

    Cajgfinger, T.; Rit, S.; Létang, J. M.; Halty, A.; Sarrut, D.

    2018-03-01

    Monte-Carlo simulations of SPECT images are notoriously slow to converge due to the large ratio between the number of photons emitted and detected in the collimator. This work proposes a method to accelerate the simulations based on fixed forced detection (FFD) combined with an analytical response of the detector. FFD is based on a Monte-Carlo simulation but forces the detection of a photon in each detector pixel weighted by the probability of emission (or scattering) and transmission to this pixel. The method was evaluated with numerical phantoms and on patient images. We obtained differences with analog Monte Carlo lower than the statistical uncertainty. The overall computing time gain can reach up to five orders of magnitude. Source code and examples are available in the Gate V8.0 release.

  10. Fixed forced detection for fast SPECT Monte-Carlo simulation.

    PubMed

    Cajgfinger, T; Rit, S; Létang, J M; Halty, A; Sarrut, D

    2018-03-02

    Monte-Carlo simulations of SPECT images are notoriously slow to converge due to the large ratio between the number of photons emitted and detected in the collimator. This work proposes a method to accelerate the simulations based on fixed forced detection (FFD) combined with an analytical response of the detector. FFD is based on a Monte-Carlo simulation but forces the detection of a photon in each detector pixel weighted by the probability of emission (or scattering) and transmission to this pixel. The method was evaluated with numerical phantoms and on patient images. We obtained differences with analog Monte Carlo lower than the statistical uncertainty. The overall computing time gain can reach up to five orders of magnitude. Source code and examples are available in the Gate V8.0 release.

  11. DOSE COEFFICIENTS FOR LIVER CHEMOEMBOLISATION PROCEDURES USING MONTE CARLO CODE.

    PubMed

    Karavasilis, E; Dimitriadis, A; Gonis, H; Pappas, P; Georgiou, E; Yakoumakis, E

    2016-12-01

    The aim of the present study is the estimation of radiation burden during liver chemoembolisation procedures. Organ dose and effective dose conversion factors, normalised to dose-area product (DAP), were estimated for chemoembolisation procedures using a Monte Carlo transport code in conjunction with an adult mathematical phantom. Exposure data from 32 patients were used to determine the exposure projections for the simulations. Equivalent organ (H T ) and effective (E) doses were estimated using individual DAP values. The organs receiving the highest amount of doses during these exams were lumbar spine, liver and kidneys. The mean effective dose conversion factor was 1.4 Sv Gy -1 m -2 Dose conversion factors can be useful for patient-specific radiation burden during chemoembolisation procedures. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Calculation of electron and isotopes dose point kernels with fluka Monte Carlo code for dosimetry in nuclear medicine therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botta, F; Di Dia, A; Pedroli, G

    The calculation of patient-specific dose distribution can be achieved by Monte Carlo simulations or by analytical methods. In this study, fluka Monte Carlo code has been considered for use in nuclear medicine dosimetry. Up to now, fluka has mainly been dedicated to other fields, namely high energy physics, radiation protection, and hadrontherapy. When first employing a Monte Carlo code for nuclear medicine dosimetry, its results concerning electron transport at energies typical of nuclear medicine applications need to be verified. This is commonly achieved by means of calculation of a representative parameter and comparison with reference data. Dose point kernel (DPK),more » quantifying the energy deposition all around a point isotropic source, is often the one.Methods: fluka DPKs have been calculated in both water and compact bone for monoenergetic electrons (10–3 MeV) and for beta emitting isotopes commonly used for therapy (89Sr, 90Y, 131I, 153Sm, 177Lu, 186Re, and 188Re). Point isotropic sources have been simulated at the center of a water (bone) sphere, and deposed energy has been tallied in concentric shells. fluka outcomes have been compared to penelope v.2008 results, calculated in this study as well. Moreover, in case of monoenergetic electrons in water, comparison with the data from the literature (etran, geant4, mcnpx) has been done. Maximum percentage differences within 0.8·RCSDA and 0.9·RCSDA for monoenergetic electrons (RCSDA being the continuous slowing down approximation range) and within 0.8·X90 and 0.9·X90 for isotopes (X90 being the radius of the sphere in which 90% of the emitted energy is absorbed) have been computed, together with the average percentage difference within 0.9·RCSDA and 0.9·X90 for electrons and isotopes, respectively.Results: Concerning monoenergetic electrons, within 0.8·RCSDA (where 90%–97% of the particle energy is deposed), fluka and penelope agree mostly within 7%, except for 10 and 20 keV electrons (12% in

  13. astroABC : An Approximate Bayesian Computation Sequential Monte Carlo sampler for cosmological parameter estimation

    NASA Astrophysics Data System (ADS)

    Jennings, E.; Madigan, M.

    2017-04-01

    Given the complexity of modern cosmological parameter inference where we are faced with non-Gaussian data and noise, correlated systematics and multi-probe correlated datasets,the Approximate Bayesian Computation (ABC) method is a promising alternative to traditional Markov Chain Monte Carlo approaches in the case where the Likelihood is intractable or unknown. The ABC method is called "Likelihood free" as it avoids explicit evaluation of the Likelihood by using a forward model simulation of the data which can include systematics. We introduce astroABC, an open source ABC Sequential Monte Carlo (SMC) sampler for parameter estimation. A key challenge in astrophysics is the efficient use of large multi-probe datasets to constrain high dimensional, possibly correlated parameter spaces. With this in mind astroABC allows for massive parallelization using MPI, a framework that handles spawning of processes across multiple nodes. A key new feature of astroABC is the ability to create MPI groups with different communicators, one for the sampler and several others for the forward model simulation, which speeds up sampling time considerably. For smaller jobs the Python multiprocessing option is also available. Other key features of this new sampler include: a Sequential Monte Carlo sampler; a method for iteratively adapting tolerance levels; local covariance estimate using scikit-learn's KDTree; modules for specifying optimal covariance matrix for a component-wise or multivariate normal perturbation kernel and a weighted covariance metric; restart files output frequently so an interrupted sampling run can be resumed at any iteration; output and restart files are backed up at every iteration; user defined distance metric and simulation methods; a module for specifying heterogeneous parameter priors including non-standard prior PDFs; a module for specifying a constant, linear, log or exponential tolerance level; well-documented examples and sample scripts. This code is hosted

  14. Implementation of a 3D mixing layer code on parallel computers

    NASA Technical Reports Server (NTRS)

    Roe, K.; Thakur, R.; Dang, T.; Bogucz, E.

    1995-01-01

    This paper summarizes our progress and experience in the development of a Computational-Fluid-Dynamics code on parallel computers to simulate three-dimensional spatially-developing mixing layers. In this initial study, the three-dimensional time-dependent Euler equations are solved using a finite-volume explicit time-marching algorithm. The code was first programmed in Fortran 77 for sequential computers. The code was then converted for use on parallel computers using the conventional message-passing technique, while we have not been able to compile the code with the present version of HPF compilers.

  15. Convergence acceleration of the Proteus computer code with multigrid methods

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.; Ibraheem, S. O.

    1992-01-01

    Presented here is the first part of a study to implement convergence acceleration techniques based on the multigrid concept in the Proteus computer code. A review is given of previous studies on the implementation of multigrid methods in computer codes for compressible flow analysis. Also presented is a detailed stability analysis of upwind and central-difference based numerical schemes for solving the Euler and Navier-Stokes equations. Results are given of a convergence study of the Proteus code on computational grids of different sizes. The results presented here form the foundation for the implementation of multigrid methods in the Proteus code.

  16. Calculated criticality for sup 235 U/graphite systems using the VIM Monte Carlo code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, P.J.; Grasseschi, G.L.; Olsen, D.N.

    1992-01-01

    Calculations for highly enriched uranium and graphite systems gained renewed interest recently for the new production modular high-temperature gas-cooled reactor (MHTGR). Experiments to validate the physics calculations for these systems are being prepared for the Transient Reactor Test Facility (TREAT) reactor at Argonne National Laboratory (ANL-West) and in the Compact Nuclear Power Source facility at Los Alamos National Laboratory. The continuous-energy Monte Carlo code VIM, or equivalently the MCNP code, can utilize fully detailed models of the MHTGR and serve as benchmarks for the approximate multigroup methods necessary in full reactor calculations. Validation of these codes and their associated nuclearmore » data did not exist for highly enriched {sup 235}U/graphite systems. Experimental data, used in development of more approximate methods, dates back to the 1960s. The authors have selected two independent sets of experiments for calculation with the VIM code. The carbon-to-uranium (C/U) ratios encompass the range of 2,000, representative of the new production MHTGR, to the ratio of 10,000 in the fuel of TREAT. Calculations used the ENDF/B-V data.« less

  17. A Deterministic Transport Code for Space Environment Electrons

    NASA Technical Reports Server (NTRS)

    Nealy, John E.; Chang, C. K.; Norman, Ryan B.; Blattnig, Steve R.; Badavi, Francis F.; Adamczyk, Anne M.

    2010-01-01

    A deterministic computational procedure has been developed to describe transport of space environment electrons in various shield media. This code is an upgrade and extension of an earlier electron code. Whereas the former code was formulated on the basis of parametric functions derived from limited laboratory data, the present code utilizes well established theoretical representations to describe the relevant interactions and transport processes. The shield material specification has been made more general, as have the pertinent cross sections. A combined mean free path and average trajectory approach has been used in the transport formalism. Comparisons with Monte Carlo calculations are presented.

  18. An update on the BQCD Hybrid Monte Carlo program

    NASA Astrophysics Data System (ADS)

    Haar, Taylor Ryan; Nakamura, Yoshifumi; Stüben, Hinnerk

    2018-03-01

    We present an update of BQCD, our Hybrid Monte Carlo program for simulating lattice QCD. BQCD is one of the main production codes of the QCDSF collaboration and is used by CSSM and in some Japanese finite temperature and finite density projects. Since the first publication of the code at Lattice 2010 the program has been extended in various ways. New features of the code include: dynamical QED, action modification in order to compute matrix elements by using Feynman-Hellman theory, more trace measurements (like Tr(D-n) for K, cSW and chemical potential reweighting), a more flexible integration scheme, polynomial filtering, term-splitting for RHMC, and a portable implementation of performance critical parts employing SIMD.

  19. Treating voxel geometries in radiation protection dosimetry with a patched version of the Monte Carlo codes MCNP and MCNPX.

    PubMed

    Burn, K W; Daffara, C; Gualdrini, G; Pierantoni, M; Ferrari, P

    2007-01-01

    The question of Monte Carlo simulation of radiation transport in voxel geometries is addressed. Patched versions of the MCNP and MCNPX codes are developed aimed at transporting radiation both in the standard geometry mode and in the voxel geometry treatment. The patched code reads an unformatted FORTRAN file derived from DICOM format data and uses special subroutines to handle voxel-to-voxel radiation transport. The various phases of the development of the methodology are discussed together with the new input options. Examples are given of employment of the code in internal and external dosimetry and comparisons with results from other groups are reported.

  20. Development and application of the GIM code for the Cyber 203 computer

    NASA Technical Reports Server (NTRS)

    Stainaker, J. F.; Robinson, M. A.; Rawlinson, E. G.; Anderson, P. G.; Mayne, A. W.; Spradley, L. W.

    1982-01-01

    The GIM computer code for fluid dynamics research was developed. Enhancement of the computer code, implicit algorithm development, turbulence model implementation, chemistry model development, interactive input module coding and wing/body flowfield computation are described. The GIM quasi-parabolic code development was completed, and the code used to compute a number of example cases. Turbulence models, algebraic and differential equations, were added to the basic viscous code. An equilibrium reacting chemistry model and implicit finite difference scheme were also added. Development was completed on the interactive module for generating the input data for GIM. Solutions for inviscid hypersonic flow over a wing/body configuration are also presented.

  1. Rigorous-two-Steps scheme of TRIPOLI-4® Monte Carlo code validation for shutdown dose rate calculation

    NASA Astrophysics Data System (ADS)

    Jaboulay, Jean-Charles; Brun, Emeric; Hugot, François-Xavier; Huynh, Tan-Dat; Malouch, Fadhel; Mancusi, Davide; Tsilanizara, Aime

    2017-09-01

    After fission or fusion reactor shutdown the activated structure emits decay photons. For maintenance operations the radiation dose map must be established in the reactor building. Several calculation schemes have been developed to calculate the shutdown dose rate. These schemes are widely developed in fusion application and more precisely for the ITER tokamak. This paper presents the rigorous-two-steps scheme implemented at CEA. It is based on the TRIPOLI-4® Monte Carlo code and the inventory code MENDEL. The ITER shutdown dose rate benchmark has been carried out, results are in a good agreement with the other participant.

  2. Estimating statistical uncertainty of Monte Carlo efficiency-gain in the context of a correlated sampling Monte Carlo code for brachytherapy treatment planning with non-normal dose distribution.

    PubMed

    Mukhopadhyay, Nitai D; Sampson, Andrew J; Deniz, Daniel; Alm Carlsson, Gudrun; Williamson, Jeffrey; Malusek, Alexandr

    2012-01-01

    Correlated sampling Monte Carlo methods can shorten computing times in brachytherapy treatment planning. Monte Carlo efficiency is typically estimated via efficiency gain, defined as the reduction in computing time by correlated sampling relative to conventional Monte Carlo methods when equal statistical uncertainties have been achieved. The determination of the efficiency gain uncertainty arising from random effects, however, is not a straightforward task specially when the error distribution is non-normal. The purpose of this study is to evaluate the applicability of the F distribution and standardized uncertainty propagation methods (widely used in metrology to estimate uncertainty of physical measurements) for predicting confidence intervals about efficiency gain estimates derived from single Monte Carlo runs using fixed-collision correlated sampling in a simplified brachytherapy geometry. A bootstrap based algorithm was used to simulate the probability distribution of the efficiency gain estimates and the shortest 95% confidence interval was estimated from this distribution. It was found that the corresponding relative uncertainty was as large as 37% for this particular problem. The uncertainty propagation framework predicted confidence intervals reasonably well; however its main disadvantage was that uncertainties of input quantities had to be calculated in a separate run via a Monte Carlo method. The F distribution noticeably underestimated the confidence interval. These discrepancies were influenced by several photons with large statistical weights which made extremely large contributions to the scored absorbed dose difference. The mechanism of acquiring high statistical weights in the fixed-collision correlated sampling method was explained and a mitigation strategy was proposed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Accelerating Monte Carlo simulations of photon transport in a voxelized geometry using a massively parallel graphics processing unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badal, Andreu; Badano, Aldo

    Purpose: It is a known fact that Monte Carlo simulations of radiation transport are computationally intensive and may require long computing times. The authors introduce a new paradigm for the acceleration of Monte Carlo simulations: The use of a graphics processing unit (GPU) as the main computing device instead of a central processing unit (CPU). Methods: A GPU-based Monte Carlo code that simulates photon transport in a voxelized geometry with the accurate physics models from PENELOPE has been developed using the CUDA programming model (NVIDIA Corporation, Santa Clara, CA). Results: An outline of the new code and a sample x-raymore » imaging simulation with an anthropomorphic phantom are presented. A remarkable 27-fold speed up factor was obtained using a GPU compared to a single core CPU. Conclusions: The reported results show that GPUs are currently a good alternative to CPUs for the simulation of radiation transport. Since the performance of GPUs is currently increasing at a faster pace than that of CPUs, the advantages of GPU-based software are likely to be more pronounced in the future.« less

  4. Radiation Protection Studies for Medical Particle Accelerators using Fluka Monte Carlo Code.

    PubMed

    Infantino, Angelo; Cicoria, Gianfranco; Lucconi, Giulia; Pancaldi, Davide; Vichi, Sara; Zagni, Federico; Mostacci, Domiziano; Marengo, Mario

    2017-04-01

    Radiation protection (RP) in the use of medical cyclotrons involves many aspects both in the routine use and for the decommissioning of a site. Guidelines for site planning and installation, as well as for RP assessment, are given in international documents; however, the latter typically offer analytic methods of calculation of shielding and materials activation, in approximate or idealised geometry set-ups. The availability of Monte Carlo (MC) codes with accurate up-to-date libraries for transport and interaction of neutrons and charged particles at energies below 250 MeV, together with the continuously increasing power of modern computers, makes the systematic use of simulations with realistic geometries possible, yielding equipment and site-specific evaluation of the source terms, shielding requirements and all quantities relevant to RP at the same time. In this work, the well-known FLUKA MC code was used to simulate different aspects of RP in the use of biomedical accelerators, particularly for the production of medical radioisotopes. In the context of the Young Professionals Award, held at the IRPA 14 conference, only a part of the complete work is presented. In particular, the simulation of the GE PETtrace cyclotron (16.5 MeV) installed at S. Orsola-Malpighi University Hospital evaluated the effective dose distribution around the equipment; the effective number of neutrons produced per incident proton and their spectral distribution; the activation of the structure of the cyclotron and the vault walls; the activation of the ambient air, in particular the production of 41Ar. The simulations were validated, in terms of physical and transport parameters to be used at the energy range of interest, through an extensive measurement campaign of the neutron environmental dose equivalent using a rem-counter and TLD dosemeters. The validated model was then used in the design and the licensing request of a new Positron Emission Tomography facility. © The Author 2016

  5. METHES: A Monte Carlo collision code for the simulation of electron transport in low temperature plasmas

    NASA Astrophysics Data System (ADS)

    Rabie, M.; Franck, C. M.

    2016-06-01

    We present a freely available MATLAB code for the simulation of electron transport in arbitrary gas mixtures in the presence of uniform electric fields. For steady-state electron transport, the program provides the transport coefficients, reaction rates and the electron energy distribution function. The program uses established Monte Carlo techniques and is compatible with the electron scattering cross section files from the open-access Plasma Data Exchange Project LXCat. The code is written in object-oriented design, allowing the tracing and visualization of the spatiotemporal evolution of electron swarms and the temporal development of the mean energy and the electron number due to attachment and/or ionization processes. We benchmark our code with well-known model gases as well as the real gases argon, N2, O2, CF4, SF6 and mixtures of N2 and O2.

  6. Proceduracy: Computer Code Writing in the Continuum of Literacy

    ERIC Educational Resources Information Center

    Vee, Annette

    2010-01-01

    This dissertation looks at computer programming through the lens of literacy studies, building from the concept of code as a written text with expressive and rhetorical power. I focus on the intersecting technological and social factors of computer code writing as a literacy--a practice I call "proceduracy". Like literacy, proceduracy is a human…

  7. Monte Carlo simulation of electrothermal atomization on a desktop personal computer

    NASA Astrophysics Data System (ADS)

    Histen, Timothy E.; Güell, Oscar A.; Chavez, Iris A.; Holcombea, James A.

    1996-07-01

    Monte Carlo simulations have been applied to electrothermal atomization (ETA) using a tubular atomizer (e.g. graphite furnace) because of the complexity in the geometry, heating, molecular interactions, etc. The intense computational time needed to accurately model ETA often limited its effective implementation to the use of supercomputers. However, with the advent of more powerful desktop processors, this is no longer the case. A C-based program has been developed and can be used under Windows TM or DOS. With this program, basic parameters such as furnace dimensions, sample placement, furnace heating and kinetic parameters such as activation energies for desorption and adsorption can be varied to show the absorbance profile dependence on these parameters. Even data such as time-dependent spatial distribution of analyte inside the furnace can be collected. The DOS version also permits input of external temperaturetime data to permit comparison of simulated profiles with experimentally obtained absorbance data. The run-time versions are provided along with the source code. This article is an electronic publication in Spectrochimica Acta Electronica (SAE), the electronic section of Spectrochimica Acta Part B (SAB). The hardcopy text is accompanied by a diskette with a program (PC format), data files and text files.

  8. Monte Carlo capabilities of the SCALE code system

    DOE PAGES

    Rearden, Bradley T.; Petrie, Jr., Lester M.; Peplow, Douglas E.; ...

    2014-09-12

    SCALE is a broadly used suite of tools for nuclear systems modeling and simulation that provides comprehensive, verified and validated, user-friendly capabilities for criticality safety, reactor physics, radiation shielding, and sensitivity and uncertainty analysis. For more than 30 years, regulators, licensees, and research institutions around the world have used SCALE for nuclear safety analysis and design. SCALE provides a “plug-and-play” framework that includes three deterministic and three Monte Carlo radiation transport solvers that can be selected based on the desired solution, including hybrid deterministic/Monte Carlo simulations. SCALE includes the latest nuclear data libraries for continuous-energy and multigroup radiation transport asmore » well as activation, depletion, and decay calculations. SCALE’s graphical user interfaces assist with accurate system modeling, visualization, and convenient access to desired results. SCALE 6.2 will provide several new capabilities and significant improvements in many existing features, especially with expanded continuous-energy Monte Carlo capabilities for criticality safety, shielding, depletion, and sensitivity and uncertainty analysis. Finally, an overview of the Monte Carlo capabilities of SCALE is provided here, with emphasis on new features for SCALE 6.2.« less

  9. Implementation of the DPM Monte Carlo code on a parallel architecture for treatment planning applications.

    PubMed

    Tyagi, Neelam; Bose, Abhijit; Chetty, Indrin J

    2004-09-01

    We have parallelized the Dose Planning Method (DPM), a Monte Carlo code optimized for radiotherapy class problems, on distributed-memory processor architectures using the Message Passing Interface (MPI). Parallelization has been investigated on a variety of parallel computing architectures at the University of Michigan-Center for Advanced Computing, with respect to efficiency and speedup as a function of the number of processors. We have integrated the parallel pseudo random number generator from the Scalable Parallel Pseudo-Random Number Generator (SPRNG) library to run with the parallel DPM. The Intel cluster consisting of 800 MHz Intel Pentium III processor shows an almost linear speedup up to 32 processors for simulating 1 x 10(8) or more particles. The speedup results are nearly linear on an Athlon cluster (up to 24 processors based on availability) which consists of 1.8 GHz+ Advanced Micro Devices (AMD) Athlon processors on increasing the problem size up to 8 x 10(8) histories. For a smaller number of histories (1 x 10(8)) the reduction of efficiency with the Athlon cluster (down to 83.9% with 24 processors) occurs because the processing time required to simulate 1 x 10(8) histories is less than the time associated with interprocessor communication. A similar trend was seen with the Opteron Cluster (consisting of 1400 MHz, 64-bit AMD Opteron processors) on increasing the problem size. Because of the 64-bit architecture Opteron processors are capable of storing and processing instructions at a faster rate and hence are faster as compared to the 32-bit Athlon processors. We have validated our implementation with an in-phantom dose calculation study using a parallel pencil monoenergetic electron beam of 20 MeV energy. The phantom consists of layers of water, lung, bone, aluminum, and titanium. The agreement in the central axis depth dose curves and profiles at different depths shows that the serial and parallel codes are equivalent in accuracy.

  10. egs_brachy: a versatile and fast Monte Carlo code for brachytherapy

    NASA Astrophysics Data System (ADS)

    Chamberland, Marc J. P.; Taylor, Randle E. P.; Rogers, D. W. O.; Thomson, Rowan M.

    2016-12-01

    egs_brachy is a versatile and fast Monte Carlo (MC) code for brachytherapy applications. It is based on the EGSnrc code system, enabling simulation of photons and electrons. Complex geometries are modelled using the EGSnrc C++ class library and egs_brachy includes a library of geometry models for many brachytherapy sources, in addition to eye plaques and applicators. Several simulation efficiency enhancing features are implemented in the code. egs_brachy is benchmarked by comparing TG-43 source parameters of three source models to previously published values. 3D dose distributions calculated with egs_brachy are also compared to ones obtained with the BrachyDose code. Well-defined simulations are used to characterize the effectiveness of many efficiency improving techniques, both as an indication of the usefulness of each technique and to find optimal strategies. Efficiencies and calculation times are characterized through single source simulations and simulations of idealized and typical treatments using various efficiency improving techniques. In general, egs_brachy shows agreement within uncertainties with previously published TG-43 source parameter values. 3D dose distributions from egs_brachy and BrachyDose agree at the sub-percent level. Efficiencies vary with radionuclide and source type, number of sources, phantom media, and voxel size. The combined effects of efficiency-improving techniques in egs_brachy lead to short calculation times: simulations approximating prostate and breast permanent implant (both with (2 mm)3 voxels) and eye plaque (with (1 mm)3 voxels) treatments take between 13 and 39 s, on a single 2.5 GHz Intel Xeon E5-2680 v3 processor core, to achieve 2% average statistical uncertainty on doses within the PTV. egs_brachy will be released as free and open source software to the research community.

  11. egs_brachy: a versatile and fast Monte Carlo code for brachytherapy.

    PubMed

    Chamberland, Marc J P; Taylor, Randle E P; Rogers, D W O; Thomson, Rowan M

    2016-12-07

    egs_brachy is a versatile and fast Monte Carlo (MC) code for brachytherapy applications. It is based on the EGSnrc code system, enabling simulation of photons and electrons. Complex geometries are modelled using the EGSnrc C++ class library and egs_brachy includes a library of geometry models for many brachytherapy sources, in addition to eye plaques and applicators. Several simulation efficiency enhancing features are implemented in the code. egs_brachy is benchmarked by comparing TG-43 source parameters of three source models to previously published values. 3D dose distributions calculated with egs_brachy are also compared to ones obtained with the BrachyDose code. Well-defined simulations are used to characterize the effectiveness of many efficiency improving techniques, both as an indication of the usefulness of each technique and to find optimal strategies. Efficiencies and calculation times are characterized through single source simulations and simulations of idealized and typical treatments using various efficiency improving techniques. In general, egs_brachy shows agreement within uncertainties with previously published TG-43 source parameter values. 3D dose distributions from egs_brachy and BrachyDose agree at the sub-percent level. Efficiencies vary with radionuclide and source type, number of sources, phantom media, and voxel size. The combined effects of efficiency-improving techniques in egs_brachy lead to short calculation times: simulations approximating prostate and breast permanent implant (both with (2 mm) 3 voxels) and eye plaque (with (1 mm) 3 voxels) treatments take between 13 and 39 s, on a single 2.5 GHz Intel Xeon E5-2680 v3 processor core, to achieve 2% average statistical uncertainty on doses within the PTV. egs_brachy will be released as free and open source software to the research community.

  12. Comparison between a classical command law and a new advanced recovery command law in a MCB-ARS boost

    NASA Astrophysics Data System (ADS)

    Petit, Pierre; Saint-Eve, Frédéric; Sawicki, Jean-Paul; Aillerie, Michel

    2017-02-01

    This paper focuses on an original performed command on DC-DC boosts developed for applications in the LMOPS lab for the photovoltaic energy conversion and more specifically the Photovoltaic panels connected to HVDC smart grids. This boost, commonly named MCB-ARS (Magnetically Coupled Boost with Active Recovery Switch) presents great advantages concerning the simplicity of the command on the single constitutive switch, the global efficiency and the voltage conversion ratio. A fine analysis of the losses all over the entire converter shows that losses are not distributed uniformly in the constituting components. So a previous modification described in a previous paper consisting in the conducting assistance on the power flowing intermediate diode, performed advantageously the global efficiency. The present analysis takes into account the fact that the new configuration obtained after this important improvement looks like a classical half-bridge push-pull stage and may be controlled by a twice complementary command. In that way, a comparison has been done between a natural commutation recovery diode and an assisted switch commutation driven in a push-pull mode. As attempted, the switching command laws in charge to assume the energy transfer has been compared to the classical previous system described in anterior papers, and we demonstrate in this publication that a commutation based on a push-pull command mode within the two switches of the MCB-ARS converter is possible and increases the power transfer.

  13. Computer code for charge-exchange plasma propagation

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.; Kaufman, H. R.

    1981-01-01

    The propagation of the charge-exchange plasma from an electrostatic ion thruster is crucial in determining the interaction of that plasma with the associated spacecraft. A model that describes this plasma and its propagation is described, together with a computer code based on this model. The structure and calling sequence of the code, named PLASIM, is described. An explanation of the program's input and output is included, together with samples of both. The code is written in ASNI Standard FORTRAN.

  14. Portable multi-node LQCD Monte Carlo simulations using OpenACC

    NASA Astrophysics Data System (ADS)

    Bonati, Claudio; Calore, Enrico; D'Elia, Massimo; Mesiti, Michele; Negro, Francesco; Sanfilippo, Francesco; Schifano, Sebastiano Fabio; Silvi, Giorgio; Tripiccione, Raffaele

    This paper describes a state-of-the-art parallel Lattice QCD Monte Carlo code for staggered fermions, purposely designed to be portable across different computer architectures, including GPUs and commodity CPUs. Portability is achieved using the OpenACC parallel programming model, used to develop a code that can be compiled for several processor architectures. The paper focuses on parallelization on multiple computing nodes using OpenACC to manage parallelism within the node, and OpenMPI to manage parallelism among the nodes. We first discuss the available strategies to be adopted to maximize performances, we then describe selected relevant details of the code, and finally measure the level of performance and scaling-performance that we are able to achieve. The work focuses mainly on GPUs, which offer a significantly high level of performances for this application, but also compares with results measured on other processors.

  15. New Parallel computing framework for radiation transport codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostin, M.A.; /Michigan State U., NSCL; Mokhov, N.V.

    A new parallel computing framework has been developed to use with general-purpose radiation transport codes. The framework was implemented as a C++ module that uses MPI for message passing. The module is significantly independent of radiation transport codes it can be used with, and is connected to the codes by means of a number of interface functions. The framework was integrated with the MARS15 code, and an effort is under way to deploy it in PHITS. Besides the parallel computing functionality, the framework offers a checkpoint facility that allows restarting calculations with a saved checkpoint file. The checkpoint facility canmore » be used in single process calculations as well as in the parallel regime. Several checkpoint files can be merged into one thus combining results of several calculations. The framework also corrects some of the known problems with the scheduling and load balancing found in the original implementations of the parallel computing functionality in MARS15 and PHITS. The framework can be used efficiently on homogeneous systems and networks of workstations, where the interference from the other users is possible.« less

  16. PBMC: Pre-conditioned Backward Monte Carlo code for radiative transport in planetary atmospheres

    NASA Astrophysics Data System (ADS)

    García Muñoz, A.; Mills, F. P.

    2017-08-01

    PBMC (Pre-Conditioned Backward Monte Carlo) solves the vector Radiative Transport Equation (vRTE) and can be applied to planetary atmospheres irradiated from above. The code builds the solution by simulating the photon trajectories from the detector towards the radiation source, i.e. in the reverse order of the actual photon displacements. In accounting for the polarization in the sampling of photon propagation directions and pre-conditioning the scattering matrix with information from the scattering matrices of prior (in the BMC integration order) photon collisions, PBMC avoids the unstable and biased solutions of classical BMC algorithms for conservative, optically-thick, strongly-polarizing media such as Rayleigh atmospheres.

  17. Calculation of electron and isotopes dose point kernels with fluka Monte Carlo code for dosimetry in nuclear medicine therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botta, F.; Mairani, A.; Battistoni, G.

    Purpose: The calculation of patient-specific dose distribution can be achieved by Monte Carlo simulations or by analytical methods. In this study, fluka Monte Carlo code has been considered for use in nuclear medicine dosimetry. Up to now, fluka has mainly been dedicated to other fields, namely high energy physics, radiation protection, and hadrontherapy. When first employing a Monte Carlo code for nuclear medicine dosimetry, its results concerning electron transport at energies typical of nuclear medicine applications need to be verified. This is commonly achieved by means of calculation of a representative parameter and comparison with reference data. Dose point kernelmore » (DPK), quantifying the energy deposition all around a point isotropic source, is often the one. Methods: fluka DPKs have been calculated in both water and compact bone for monoenergetic electrons (10{sup -3} MeV) and for beta emitting isotopes commonly used for therapy ({sup 89}Sr, {sup 90}Y, {sup 131}I, {sup 153}Sm, {sup 177}Lu, {sup 186}Re, and {sup 188}Re). Point isotropic sources have been simulated at the center of a water (bone) sphere, and deposed energy has been tallied in concentric shells. fluka outcomes have been compared to penelope v.2008 results, calculated in this study as well. Moreover, in case of monoenergetic electrons in water, comparison with the data from the literature (etran, geant4, mcnpx) has been done. Maximum percentage differences within 0.8{center_dot}R{sub CSDA} and 0.9{center_dot}R{sub CSDA} for monoenergetic electrons (R{sub CSDA} being the continuous slowing down approximation range) and within 0.8{center_dot}X{sub 90} and 0.9{center_dot}X{sub 90} for isotopes (X{sub 90} being the radius of the sphere in which 90% of the emitted energy is absorbed) have been computed, together with the average percentage difference within 0.9{center_dot}R{sub CSDA} and 0.9{center_dot}X{sub 90} for electrons and isotopes, respectively. Results: Concerning monoenergetic

  18. Coarse-grained computation for particle coagulation and sintering processes by linking Quadrature Method of Moments with Monte-Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou Yu, E-mail: yzou@Princeton.ED; Kavousanakis, Michail E., E-mail: mkavousa@Princeton.ED; Kevrekidis, Ioannis G., E-mail: yannis@Princeton.ED

    2010-07-20

    The study of particle coagulation and sintering processes is important in a variety of research studies ranging from cell fusion and dust motion to aerosol formation applications. These processes are traditionally simulated using either Monte-Carlo methods or integro-differential equations for particle number density functions. In this paper, we present a computational technique for cases where we believe that accurate closed evolution equations for a finite number of moments of the density function exist in principle, but are not explicitly available. The so-called equation-free computational framework is then employed to numerically obtain the solution of these unavailable closed moment equations bymore » exploiting (through intelligent design of computational experiments) the corresponding fine-scale (here, Monte-Carlo) simulation. We illustrate the use of this method by accelerating the computation of evolving moments of uni- and bivariate particle coagulation and sintering through short simulation bursts of a constant-number Monte-Carlo scheme.« less

  19. A Novel Implementation of Massively Parallel Three Dimensional Monte Carlo Radiation Transport

    NASA Astrophysics Data System (ADS)

    Robinson, P. B.; Peterson, J. D. L.

    2005-12-01

    The goal of our summer project was to implement the difference formulation for radiation transport into Cosmos++, a multidimensional, massively parallel, magneto hydrodynamics code for astrophysical applications (Peter Anninos - AX). The difference formulation is a new method for Symbolic Implicit Monte Carlo thermal transport (Brooks and Szöke - PAT). Formerly, simultaneous implementation of fully implicit Monte Carlo radiation transport in multiple dimensions on multiple processors had not been convincingly demonstrated. We found that a combination of the difference formulation and the inherent structure of Cosmos++ makes such an implementation both accurate and straightforward. We developed a "nearly nearest neighbor physics" technique to allow each processor to work independently, even with a fully implicit code. This technique coupled with the increased accuracy of an implicit Monte Carlo solution and the efficiency of parallel computing systems allows us to demonstrate the possibility of massively parallel thermal transport. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48

  20. Validation of a Monte Carlo code system for grid evaluation with interference effect on Rayleigh scattering

    NASA Astrophysics Data System (ADS)

    Zhou, Abel; White, Graeme L.; Davidson, Rob

    2018-02-01

    Anti-scatter grids are commonly used in x-ray imaging systems to reduce scatter radiation reaching the image receptor. Anti-scatter grid performance and validation can be simulated through use of Monte Carlo (MC) methods. Our recently reported work has modified existing MC codes resulting in improved performance when simulating x-ray imaging. The aim of this work is to validate the transmission of x-ray photons in grids from the recently reported new MC codes against experimental results and results previously reported in other literature. The results of this work show that the scatter-to-primary ratio (SPR), the transmissions of primary (T p), scatter (T s), and total (T t) radiation determined using this new MC code system have strong agreement with the experimental results and the results reported in the literature. T p, T s, T t, and SPR determined in this new MC simulation code system are valid. These results also show that the interference effect on Rayleigh scattering should not be neglected in both mammographic and general grids’ evaluation. Our new MC simulation code system has been shown to be valid and can be used for analysing and evaluating the designs of grids.

  1. The FLUKA Monte Carlo code coupled with the NIRS approach for clinical dose calculations in carbon ion therapy

    NASA Astrophysics Data System (ADS)

    Magro, G.; Dahle, T. J.; Molinelli, S.; Ciocca, M.; Fossati, P.; Ferrari, A.; Inaniwa, T.; Matsufuji, N.; Ytre-Hauge, K. S.; Mairani, A.

    2017-05-01

    Particle therapy facilities often require Monte Carlo (MC) simulations to overcome intrinsic limitations of analytical treatment planning systems (TPS) related to the description of the mixed radiation field and beam interaction with tissue inhomogeneities. Some of these uncertainties may affect the computation of effective dose distributions; therefore, particle therapy dedicated MC codes should provide both absorbed and biological doses. Two biophysical models are currently applied clinically in particle therapy: the local effect model (LEM) and the microdosimetric kinetic model (MKM). In this paper, we describe the coupling of the NIRS (National Institute for Radiological Sciences, Japan) clinical dose to the FLUKA MC code. We moved from the implementation of the model itself to its application in clinical cases, according to the NIRS approach, where a scaling factor is introduced to rescale the (carbon-equivalent) biological dose to a clinical dose level. A high level of agreement was found with published data by exploring a range of values for the MKM input parameters, while some differences were registered in forward recalculations of NIRS patient plans, mainly attributable to differences with the analytical TPS dose engine (taken as reference) in describing the mixed radiation field (lateral spread and fragmentation). We presented a tool which is being used at the Italian National Center for Oncological Hadrontherapy to support the comparison study between the NIRS clinical dose level and the LEM dose specification.

  2. (U) Introduction to Monte Carlo Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hungerford, Aimee L.

    2017-03-20

    Monte Carlo methods are very valuable for representing solutions to particle transport problems. Here we describe a “cook book” approach to handling the terms in a transport equation using Monte Carlo methods. Focus is on the mechanics of a numerical Monte Carlo code, rather than the mathematical foundations of the method.

  3. Topological color codes on Union Jack lattices: a stable implementation of the whole Clifford group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katzgraber, Helmut G.; Theoretische Physik, ETH Zurich, CH-8093 Zurich; Bombin, H.

    We study the error threshold of topological color codes on Union Jack lattices that allow for the full implementation of the whole Clifford group of quantum gates. After mapping the error-correction process onto a statistical mechanical random three-body Ising model on a Union Jack lattice, we compute its phase diagram in the temperature-disorder plane using Monte Carlo simulations. Surprisingly, topological color codes on Union Jack lattices have a similar error stability to color codes on triangular lattices, as well as to the Kitaev toric code. The enhanced computational capabilities of the topological color codes on Union Jack lattices with respectmore » to triangular lattices and the toric code combined with the inherent robustness of this implementation show good prospects for future stable quantum computer implementations.« less

  4. A generalized one-dimensional computer code for turbomachinery cooling passage flow calculations

    NASA Technical Reports Server (NTRS)

    Kumar, Ganesh N.; Roelke, Richard J.; Meitner, Peter L.

    1989-01-01

    A generalized one-dimensional computer code for analyzing the flow and heat transfer in the turbomachinery cooling passages was developed. This code is capable of handling rotating cooling passages with turbulators, 180 degree turns, pin fins, finned passages, by-pass flows, tip cap impingement flows, and flow branching. The code is an extension of a one-dimensional code developed by P. Meitner. In the subject code, correlations for both heat transfer coefficient and pressure loss computations were developed to model each of the above mentioned type of coolant passages. The code has the capability of independently computing the friction factor and heat transfer coefficient on each side of a rectangular passage. Either the mass flow at the inlet to the channel or the exit plane pressure can be specified. For a specified inlet total temperature, inlet total pressure, and exit static pressure, the code computers the flow rates through the main branch and the subbranches, flow through tip cap for impingement cooling, in addition to computing the coolant pressure, temperature, and heat transfer coefficient distribution in each coolant flow branch. Predictions from the subject code for both nonrotating and rotating passages agree well with experimental data. The code was used to analyze the cooling passage of a research cooled radial rotor.

  5. Development Of A Navier-Stokes Computer Code

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Kwak, Dochan

    1993-01-01

    Report discusses aspects of development of CENS3D computer code, solving three-dimensional Navier-Stokes equations of compressible, viscous, unsteady flow. Implements implicit finite-difference or finite-volume numerical-integration scheme, called "lower-upper symmetric-Gauss-Seidel" (LU-SGS), offering potential for very low computer time per iteration and for fast convergence.

  6. Monte Carlo treatment planning for molecular targeted radiotherapy within the MINERVA system

    NASA Astrophysics Data System (ADS)

    Lehmann, Joerg; Hartmann Siantar, Christine; Wessol, Daniel E.; Wemple, Charles A.; Nigg, David; Cogliati, Josh; Daly, Tom; Descalle, Marie-Anne; Flickinger, Terry; Pletcher, David; DeNardo, Gerald

    2005-03-01

    The aim of this project is to extend accurate and patient-specific treatment planning to new treatment modalities, such as molecular targeted radiation therapy, incorporating previously crafted and proven Monte Carlo and deterministic computation methods. A flexible software environment is being created that allows planning radiation treatment for these new modalities and combining different forms of radiation treatment with consideration of biological effects. The system uses common input interfaces, medical image sets for definition of patient geometry and dose reporting protocols. Previously, the Idaho National Engineering and Environmental Laboratory (INEEL), Montana State University (MSU) and Lawrence Livermore National Laboratory (LLNL) had accrued experience in the development and application of Monte Carlo based, three-dimensional, computational dosimetry and treatment planning tools for radiotherapy in several specialized areas. In particular, INEEL and MSU have developed computational dosimetry systems for neutron radiotherapy and neutron capture therapy, while LLNL has developed the PEREGRINE computational system for external beam photon-electron therapy. Building on that experience, the INEEL and MSU are developing the MINERVA (modality inclusive environment for radiotherapeutic variable analysis) software system as a general framework for computational dosimetry and treatment planning for a variety of emerging forms of radiotherapy. In collaboration with this development, LLNL has extended its PEREGRINE code to accommodate internal sources for molecular targeted radiotherapy (MTR), and has interfaced it with the plugin architecture of MINERVA. Results from the extended PEREGRINE code have been compared to published data from other codes, and found to be in general agreement (EGS4—2%, MCNP—10%) (Descalle et al 2003 Cancer Biother. Radiopharm. 18 71-9). The code is currently being benchmarked against experimental data. The interpatient variability of

  7. Using hybrid implicit Monte Carlo diffusion to simulate gray radiation hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleveland, Mathew A., E-mail: cleveland7@llnl.gov; Gentile, Nick

    This work describes how to couple a hybrid Implicit Monte Carlo Diffusion (HIMCD) method with a Lagrangian hydrodynamics code to evaluate the coupled radiation hydrodynamics equations. This HIMCD method dynamically applies Implicit Monte Carlo Diffusion (IMD) [1] to regions of a problem that are opaque and diffusive while applying standard Implicit Monte Carlo (IMC) [2] to regions where the diffusion approximation is invalid. We show that this method significantly improves the computational efficiency as compared to a standard IMC/Hydrodynamics solver, when optically thick diffusive material is present, while maintaining accuracy. Two test cases are used to demonstrate the accuracy andmore » performance of HIMCD as compared to IMC and IMD. The first is the Lowrie semi-analytic diffusive shock [3]. The second is a simple test case where the source radiation streams through optically thin material and heats a thick diffusive region of material causing it to rapidly expand. We found that HIMCD proves to be accurate, robust, and computationally efficient for these test problems.« less

  8. EUPDF: An Eulerian-Based Monte Carlo Probability Density Function (PDF) Solver. User's Manual

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    1998-01-01

    EUPDF is an Eulerian-based Monte Carlo PDF solver developed for application with sprays, combustion, parallel computing and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and spray solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type. The manual provides the user with the coding required to couple the PDF code to any given flow code and a basic understanding of the EUPDF code structure as well as the models involved in the PDF formulation. The source code of EUPDF will be available with the release of the National Combustion Code (NCC) as a complete package.

  9. ScintSim1: A new Monte Carlo simulation code for transport of optical photons in 2D arrays of scintillation detectors.

    PubMed

    Mosleh-Shirazi, Mohammad Amin; Zarrini-Monfared, Zinat; Karbasi, Sareh; Zamani, Ali

    2014-01-01

    Two-dimensional (2D) arrays of thick segmented scintillators are of interest as X-ray detectors for both 2D and 3D image-guided radiotherapy (IGRT). Their detection process involves ionizing radiation energy deposition followed by production and transport of optical photons. Only a very limited number of optical Monte Carlo simulation models exist, which has limited the number of modeling studies that have considered both stages of the detection process. We present ScintSim1, an in-house optical Monte Carlo simulation code for 2D arrays of scintillation crystals, developed in the MATLAB programming environment. The code was rewritten and revised based on an existing program for single-element detectors, with the additional capability to model 2D arrays of elements with configurable dimensions, material, etc., The code generates and follows each optical photon history through the detector element (and, in case of cross-talk, the surrounding ones) until it reaches a configurable receptor, or is attenuated. The new model was verified by testing against relevant theoretically known behaviors or quantities and the results of a validated single-element model. For both sets of comparisons, the discrepancies in the calculated quantities were all <1%. The results validate the accuracy of the new code, which is a useful tool in scintillation detector optimization.

  10. Scalable and massively parallel Monte Carlo photon transport simulations for heterogeneous computing platforms

    NASA Astrophysics Data System (ADS)

    Yu, Leiming; Nina-Paravecino, Fanny; Kaeli, David; Fang, Qianqian

    2018-01-01

    We present a highly scalable Monte Carlo (MC) three-dimensional photon transport simulation platform designed for heterogeneous computing systems. Through the development of a massively parallel MC algorithm using the Open Computing Language framework, this research extends our existing graphics processing unit (GPU)-accelerated MC technique to a highly scalable vendor-independent heterogeneous computing environment, achieving significantly improved performance and software portability. A number of parallel computing techniques are investigated to achieve portable performance over a wide range of computing hardware. Furthermore, multiple thread-level and device-level load-balancing strategies are developed to obtain efficient simulations using multiple central processing units and GPUs.

  11. User Instructions for the Systems Assessment Capability, Rev. 1, Computer Codes Volume 3: Utility Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eslinger, Paul W.; Aaberg, Rosanne L.; Lopresti, Charles A.

    2004-09-14

    This document contains detailed user instructions for a suite of utility codes developed for Rev. 1 of the Systems Assessment Capability. The suite of computer codes for Rev. 1 of Systems Assessment Capability performs many functions.

  12. ITS version 5.0 : the integrated TIGER series of coupled electron/photon Monte Carlo transport codes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William

    ITS is a powerful and user-friendly software package permitting state of the art Monte Carlo solution of linear time-independent couple electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theoristsmore » alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2)multigroup codes with adjoint transport capabilities, and (3) parallel implementations of all ITS codes. Moreover the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.« less

  13. ITS Version 6 : the integrated TIGER series of coupled electron/photon Monte Carlo transport codes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William

    2008-04-01

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of lineartime-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a methodmore » for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 6, the latest version of ITS, contains (1) improvements to the ITS 5.0 codes, and (2) conversion to Fortran 90. The general user friendliness of the software has been enhanced through memory allocation to reduce the need for users to modify and recompile the code.« less

  14. Efficient Proximity Computation Techniques Using ZIP Code Data for Smart Cities †

    PubMed Central

    Murdani, Muhammad Harist; Hong, Bonghee

    2018-01-01

    In this paper, we are interested in computing ZIP code proximity from two perspectives, proximity between two ZIP codes (Ad-Hoc) and neighborhood proximity (Top-K). Such a computation can be used for ZIP code-based target marketing as one of the smart city applications. A naïve approach to this computation is the usage of the distance between ZIP codes. We redefine a distance metric combining the centroid distance with the intersecting road network between ZIP codes by using a weighted sum method. Furthermore, we prove that the results of our combined approach conform to the characteristics of distance measurement. We have proposed a general and heuristic approach for computing Ad-Hoc proximity, while for computing Top-K proximity, we have proposed a general approach only. Our experimental results indicate that our approaches are verifiable and effective in reducing the execution time and search space. PMID:29587366

  15. Efficient Proximity Computation Techniques Using ZIP Code Data for Smart Cities †.

    PubMed

    Murdani, Muhammad Harist; Kwon, Joonho; Choi, Yoon-Ho; Hong, Bonghee

    2018-03-24

    In this paper, we are interested in computing ZIP code proximity from two perspectives, proximity between two ZIP codes ( Ad-Hoc ) and neighborhood proximity ( Top-K ). Such a computation can be used for ZIP code-based target marketing as one of the smart city applications. A naïve approach to this computation is the usage of the distance between ZIP codes. We redefine a distance metric combining the centroid distance with the intersecting road network between ZIP codes by using a weighted sum method. Furthermore, we prove that the results of our combined approach conform to the characteristics of distance measurement. We have proposed a general and heuristic approach for computing Ad-Hoc proximity, while for computing Top-K proximity, we have proposed a general approach only. Our experimental results indicate that our approaches are verifiable and effective in reducing the execution time and search space.

  16. Monte Carlo Computational Modeling of Atomic Oxygen Interactions

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Stueber, Thomas J.; Miller, Sharon K.; De Groh, Kim K.

    2017-01-01

    Computational modeling of the erosion of polymers caused by atomic oxygen in low Earth orbit (LEO) is useful for determining areas of concern for spacecraft environment durability. Successful modeling requires that the characteristics of the environment such as atomic oxygen energy distribution, flux, and angular distribution be properly represented in the model. Thus whether the atomic oxygen is arriving normal to or inclined to a surface and whether it arrives in a consistent direction or is sweeping across the surface such as in the case of polymeric solar array blankets is important to determine durability. When atomic oxygen impacts a polymer surface it can react removing a certain volume per incident atom (called the erosion yield), recombine, or be ejected as an active oxygen atom to potentially either react with other polymer atoms or exit into space. Scattered atoms can also have a lower energy as a result of partial or total thermal accommodation. Many solutions to polymer durability in LEO involve protective thin films of metal oxides such as SiO2 to prevent atomic oxygen erosion. Such protective films also have their own interaction characteristics. A Monte Carlo computational model has been developed which takes into account the various types of atomic oxygen arrival and how it reacts with a representative polymer (polyimide Kapton H) and how it reacts at defect sites in an oxide protective coating, such as SiO2 on that polymer. Although this model was initially intended to determine atomic oxygen erosion behavior at defect sites for the International Space Station solar arrays, it has been used to predict atomic oxygen erosion or oxidation behavior on many other spacecraft components including erosion of polymeric joints, durability of solar array blanket box covers, and scattering of atomic oxygen into telescopes and microwave cavities where oxidation of critical component surfaces can take place. The computational model is a two dimensional model

  17. Monte Carlo track structure for radiation biology and space applications

    NASA Technical Reports Server (NTRS)

    Nikjoo, H.; Uehara, S.; Khvostunov, I. G.; Cucinotta, F. A.; Wilson, W. E.; Goodhead, D. T.

    2001-01-01

    Over the past two decades event by event Monte Carlo track structure codes have increasingly been used for biophysical modelling and radiotherapy. Advent of these codes has helped to shed light on many aspects of microdosimetry and mechanism of damage by ionising radiation in the cell. These codes have continuously been modified to include new improved cross sections and computational techniques. This paper provides a summary of input data for ionizations, excitations and elastic scattering cross sections for event by event Monte Carlo track structure simulations for electrons and ions in the form of parametric equations, which makes it easy to reproduce the data. Stopping power and radial distribution of dose are presented for ions and compared with experimental data. A model is described for simulation of full slowing down of proton tracks in water in the range 1 keV to 1 MeV. Modelling and calculations are presented for the response of a TEPC proportional counter irradiated with 5 MeV alpha-particles. Distributions are presented for the wall and wall-less counters. Data shows contribution of indirect effects to the lineal energy distribution for the wall counters responses even at such a low ion energy.

  18. Monte Carlo derivation of filtered tungsten anode X-ray spectra for dose computation in digital mammography.

    PubMed

    Paixão, Lucas; Oliveira, Bruno Beraldo; Viloria, Carolina; de Oliveira, Marcio Alves; Teixeira, Maria Helena Araújo; Nogueira, Maria do Socorro

    2015-01-01

    Derive filtered tungsten X-ray spectra used in digital mammography systems by means of Monte Carlo simulations. Filtered spectra for rhodium filter were obtained for tube potentials between 26 and 32 kV. The half-value layer (HVL) of simulated filtered spectra were compared with those obtained experimentally with a solid state detector Unfors model 8202031-H Xi R/F & MAM Detector Platinum and 8201023-C Xi Base unit Platinum Plus w mAs in a Hologic Selenia Dimensions system using a direct radiography mode. Calculated HVL values showed good agreement as compared with those obtained experimentally. The greatest relative difference between the Monte Carlo calculated HVL values and experimental HVL values was 4%. The results show that the filtered tungsten anode X-ray spectra and the EGSnrc Monte Carlo code can be used for mean glandular dose determination in mammography.

  19. Monte Carlo errors with less errors

    NASA Astrophysics Data System (ADS)

    Wolff, Ulli; Alpha Collaboration

    2004-01-01

    We explain in detail how to estimate mean values and assess statistical errors for arbitrary functions of elementary observables in Monte Carlo simulations. The method is to estimate and sum the relevant autocorrelation functions, which is argued to produce more certain error estimates than binning techniques and hence to help toward a better exploitation of expensive simulations. An effective integrated autocorrelation time is computed which is suitable to benchmark efficiencies of simulation algorithms with regard to specific observables of interest. A Matlab code is offered for download that implements the method. It can also combine independent runs (replica) allowing to judge their consistency.

  20. Monte Carlo Simulation of X-Ray Spectra in Mammography and Contrast-Enhanced Digital Mammography Using the Code PENELOPE

    NASA Astrophysics Data System (ADS)

    Cunha, Diego M.; Tomal, Alessandra; Poletti, Martin E.

    2013-04-01

    In this work, the Monte Carlo (MC) code PENELOPE was employed for simulation of x-ray spectra in mammography and contrast-enhanced digital mammography (CEDM). Spectra for Mo, Rh and W anodes were obtained for tube potentials between 24-36 kV, for mammography, and between 45-49 kV, for CEDM. The spectra obtained from the simulations were analytically filtered to correspond to the anode/filter combinations usually employed in each technique (Mo/Mo, Rh/Rh and W/Rh for mammography and Mo/Cu, Rh/Cu and W/Cu for CEDM). For the Mo/Mo combination, the simulated spectra were compared with those obtained experimentally, and for spectra for the W anode, with experimental data from the literature, through comparison of distribution shape, average energies, half-value layers (HVL) and transmission curves. For all combinations evaluated, the simulated spectra were also compared with those provided by different models from the literature. Results showed that the code PENELOPE provides mammographic x-ray spectra in good agreement with those experimentally measured and those from the literature. The differences in the values of HVL ranged between 2-7%, for anode/filter combinations and tube potentials employed in mammography, and they were less than 5% for those employed in CEDM. The transmission curves for the spectra obtained also showed good agreement compared to those computed from reference spectra, with average relative differences less than 12% for mammography and CEDM. These results show that the code PENELOPE can be a useful tool to generate x-ray spectra for studies in mammography and CEDM, and also for evaluation of new x-ray tube designs and new anode materials.

  1. Monte Carlo simulation of MOSFET dosimeter for electron backscatter using the GEANT4 code.

    PubMed

    Chow, James C L; Leung, Michael K K

    2008-06-01

    The aim of this study is to investigate the influence of the body of the metal-oxide-semiconductor field effect transistor (MOSFET) dosimeter in measuring the electron backscatter from lead. The electron backscatter factor (EBF), which is defined as the ratio of dose at the tissue-lead interface to the dose at the same point without the presence of backscatter, was calculated by the Monte Carlo simulation using the GEANT4 code. Electron beams with energies of 4, 6, 9, and 12 MeV were used in the simulation. It was found that in the presence of the MOSFET body, the EBFs were underestimated by about 2%-0.9% for electron beam energies of 4-12 MeV, respectively. The trend of the decrease of EBF with an increase of electron energy can be explained by the small MOSFET dosimeter, mainly made of epoxy and silicon, not only attenuated the electron fluence of the electron beam from upstream, but also the electron backscatter generated by the lead underneath the dosimeter. However, this variation of the EBF underestimation is within the same order of the statistical uncertainties as the Monte Carlo simulations, which ranged from 1.3% to 0.8% for the electron energies of 4-12 MeV, due to the small dosimetric volume. Such small EBF deviation is therefore insignificant when the uncertainty of the Monte Carlo simulation is taken into account. Corresponding measurements were carried out and uncertainties compared to Monte Carlo results were within +/- 2%. Spectra of energy deposited by the backscattered electrons in dosimetric volumes with and without the lead and MOSFET were determined by Monte Carlo simulations. It was found that in both cases, when the MOSFET body is either present or absent in the simulation, deviations of electron energy spectra with and without the lead decrease with an increase of the electron beam energy. Moreover, the softer spectrum of the backscattered electron when lead is present can result in a reduction of the MOSFET response due to stronger

  2. Voxel2MCNP: a framework for modeling, simulation and evaluation of radiation transport scenarios for Monte Carlo codes.

    PubMed

    Pölz, Stefan; Laubersheimer, Sven; Eberhardt, Jakob S; Harrendorf, Marco A; Keck, Thomas; Benzler, Andreas; Breustedt, Bastian

    2013-08-21

    The basic idea of Voxel2MCNP is to provide a framework supporting users in modeling radiation transport scenarios using voxel phantoms and other geometric models, generating corresponding input for the Monte Carlo code MCNPX, and evaluating simulation output. Applications at Karlsruhe Institute of Technology are primarily whole and partial body counter calibration and calculation of dose conversion coefficients. A new generic data model describing data related to radiation transport, including phantom and detector geometries and their properties, sources, tallies and materials, has been developed. It is modular and generally independent of the targeted Monte Carlo code. The data model has been implemented as an XML-based file format to facilitate data exchange, and integrated with Voxel2MCNP to provide a common interface for modeling, visualization, and evaluation of data. Also, extensions to allow compatibility with several file formats, such as ENSDF for nuclear structure properties and radioactive decay data, SimpleGeo for solid geometry modeling, ImageJ for voxel lattices, and MCNPX's MCTAL for simulation results have been added. The framework is presented and discussed in this paper and example workflows for body counter calibration and calculation of dose conversion coefficients is given to illustrate its application.

  3. War of Ontology Worlds: Mathematics, Computer Code, or Esperanto?

    PubMed Central

    Rzhetsky, Andrey; Evans, James A.

    2011-01-01

    The use of structured knowledge representations—ontologies and terminologies—has become standard in biomedicine. Definitions of ontologies vary widely, as do the values and philosophies that underlie them. In seeking to make these views explicit, we conducted and summarized interviews with a dozen leading ontologists. Their views clustered into three broad perspectives that we summarize as mathematics, computer code, and Esperanto. Ontology as mathematics puts the ultimate premium on rigor and logic, symmetry and consistency of representation across scientific subfields, and the inclusion of only established, non-contradictory knowledge. Ontology as computer code focuses on utility and cultivates diversity, fitting ontologies to their purpose. Like computer languages C++, Prolog, and HTML, the code perspective holds that diverse applications warrant custom designed ontologies. Ontology as Esperanto focuses on facilitating cross-disciplinary communication, knowledge cross-referencing, and computation across datasets from diverse communities. We show how these views align with classical divides in science and suggest how a synthesis of their concerns could strengthen the next generation of biomedical ontologies. PMID:21980276

  4. War of ontology worlds: mathematics, computer code, or Esperanto?

    PubMed

    Rzhetsky, Andrey; Evans, James A

    2011-09-01

    The use of structured knowledge representations-ontologies and terminologies-has become standard in biomedicine. Definitions of ontologies vary widely, as do the values and philosophies that underlie them. In seeking to make these views explicit, we conducted and summarized interviews with a dozen leading ontologists. Their views clustered into three broad perspectives that we summarize as mathematics, computer code, and Esperanto. Ontology as mathematics puts the ultimate premium on rigor and logic, symmetry and consistency of representation across scientific subfields, and the inclusion of only established, non-contradictory knowledge. Ontology as computer code focuses on utility and cultivates diversity, fitting ontologies to their purpose. Like computer languages C++, Prolog, and HTML, the code perspective holds that diverse applications warrant custom designed ontologies. Ontology as Esperanto focuses on facilitating cross-disciplinary communication, knowledge cross-referencing, and computation across datasets from diverse communities. We show how these views align with classical divides in science and suggest how a synthesis of their concerns could strengthen the next generation of biomedical ontologies.

  5. A comparison of the COG and MCNP codes in computational neutron capture therapy modeling, Part II: gadolinium neutron capture therapy models and therapeutic effects.

    PubMed

    Wangerin, K; Culbertson, C N; Jevremovic, T

    2005-08-01

    The goal of this study was to evaluate the COG Monte Carlo radiation transport code, developed and tested by Lawrence Livermore National Laboratory, for gadolinium neutron capture therapy (GdNCT) related modeling. The validity of COG NCT model has been established for this model, and here the calculation was extended to analyze the effect of various gadolinium concentrations on dose distribution and cell-kill effect of the GdNCT modality and to determine the optimum therapeutic conditions for treating brain cancers. The computational results were compared with the widely used MCNP code. The differences between the COG and MCNP predictions were generally small and suggest that the COG code can be applied to similar research problems in NCT. Results for this study also showed that a concentration of 100 ppm gadolinium in the tumor was most beneficial when using an epithermal neutron beam.

  6. The specific purpose Monte Carlo code McENL for simulating the response of epithermal neutron lifetime well logging tools

    NASA Astrophysics Data System (ADS)

    Prettyman, T. H.; Gardner, R. P.; Verghese, K.

    1993-08-01

    A new specific purpose Monte Carlo code called McENL for modeling the time response of epithermal neutron lifetime tools is described. The weight windows technique, employing splitting and Russian roulette, is used with an automated importance function based on the solution of an adjoint diffusion model to improve the code efficiency. Complete composition and density correlated sampling is also included in the code, and can be used to study the effect on tool response of small variations in the formation, borehole, or logging tool composition and density. An illustration of the latter application is given for the density of a thermal neutron filter. McENL was benchmarked against test-pit data for the Mobil pulsed neutron porosity tool and was found to be very accurate. Results of the experimental validation and details of code performance are presented.

  7. Markov Chain Monte Carlo from Lagrangian Dynamics.

    PubMed

    Lan, Shiwei; Stathopoulos, Vasileios; Shahbaba, Babak; Girolami, Mark

    2015-04-01

    Hamiltonian Monte Carlo (HMC) improves the computational e ciency of the Metropolis-Hastings algorithm by reducing its random walk behavior. Riemannian HMC (RHMC) further improves the performance of HMC by exploiting the geometric properties of the parameter space. However, the geometric integrator used for RHMC involves implicit equations that require fixed-point iterations. In some cases, the computational overhead for solving implicit equations undermines RHMC's benefits. In an attempt to circumvent this problem, we propose an explicit integrator that replaces the momentum variable in RHMC by velocity. We show that the resulting transformation is equivalent to transforming Riemannian Hamiltonian dynamics to Lagrangian dynamics. Experimental results suggests that our method improves RHMC's overall computational e ciency in the cases considered. All computer programs and data sets are available online (http://www.ics.uci.edu/~babaks/Site/Codes.html) in order to allow replication of the results reported in this paper.

  8. [Design and study of parallel computing environment of Monte Carlo simulation for particle therapy planning using a public cloud-computing infrastructure].

    PubMed

    Yokohama, Noriya

    2013-07-01

    This report was aimed at structuring the design of architectures and studying performance measurement of a parallel computing environment using a Monte Carlo simulation for particle therapy using a high performance computing (HPC) instance within a public cloud-computing infrastructure. Performance measurements showed an approximately 28 times faster speed than seen with single-thread architecture, combined with improved stability. A study of methods of optimizing the system operations also indicated lower cost.

  9. Development of probabilistic multimedia multipathway computer codes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, C.; LePoire, D.; Gnanapragasam, E.

    2002-01-01

    The deterministic multimedia dose/risk assessment codes RESRAD and RESRAD-BUILD have been widely used for many years for evaluation of sites contaminated with residual radioactive materials. The RESRAD code applies to the cleanup of sites (soils) and the RESRAD-BUILD code applies to the cleanup of buildings and structures. This work describes the procedure used to enhance the deterministic RESRAD and RESRAD-BUILD codes for probabilistic dose analysis. A six-step procedure was used in developing default parameter distributions and the probabilistic analysis modules. These six steps include (1) listing and categorizing parameters; (2) ranking parameters; (3) developing parameter distributions; (4) testing parameter distributionsmore » for probabilistic analysis; (5) developing probabilistic software modules; and (6) testing probabilistic modules and integrated codes. The procedures used can be applied to the development of other multimedia probabilistic codes. The probabilistic versions of RESRAD and RESRAD-BUILD codes provide tools for studying the uncertainty in dose assessment caused by uncertain input parameters. The parameter distribution data collected in this work can also be applied to other multimedia assessment tasks and multimedia computer codes.« less

  10. Present Status and Extensions of the Monte Carlo Performance Benchmark

    NASA Astrophysics Data System (ADS)

    Hoogenboom, J. Eduard; Petrovic, Bojan; Martin, William R.

    2014-06-01

    The NEA Monte Carlo Performance benchmark started in 2011 aiming to monitor over the years the abilities to perform a full-size Monte Carlo reactor core calculation with a detailed power production for each fuel pin with axial distribution. This paper gives an overview of the contributed results thus far. It shows that reaching a statistical accuracy of 1 % for most of the small fuel zones requires about 100 billion neutron histories. The efficiency of parallel execution of Monte Carlo codes on a large number of processor cores shows clear limitations for computer clusters with common type computer nodes. However, using true supercomputers the speedup of parallel calculations is increasing up to large numbers of processor cores. More experience is needed from calculations on true supercomputers using large numbers of processors in order to predict if the requested calculations can be done in a short time. As the specifications of the reactor geometry for this benchmark test are well suited for further investigations of full-core Monte Carlo calculations and a need is felt for testing other issues than its computational performance, proposals are presented for extending the benchmark to a suite of benchmark problems for evaluating fission source convergence for a system with a high dominance ratio, for coupling with thermal-hydraulics calculations to evaluate the use of different temperatures and coolant densities and to study the correctness and effectiveness of burnup calculations. Moreover, other contemporary proposals for a full-core calculation with realistic geometry and material composition will be discussed.

  11. Thermoelectric pump performance analysis computer code

    NASA Technical Reports Server (NTRS)

    Johnson, J. L.

    1973-01-01

    A computer program is presented that was used to analyze and design dual-throat electromagnetic dc conduction pumps for the 5-kwe ZrH reactor thermoelectric system. In addition to a listing of the code and corresponding identification of symbols, the bases for this analytical model are provided.

  12. Monte Carlo derivation of filtered tungsten anode X-ray spectra for dose computation in digital mammography*

    PubMed Central

    Paixão, Lucas; Oliveira, Bruno Beraldo; Viloria, Carolina; de Oliveira, Marcio Alves; Teixeira, Maria Helena Araújo; Nogueira, Maria do Socorro

    2015-01-01

    Objective Derive filtered tungsten X-ray spectra used in digital mammography systems by means of Monte Carlo simulations. Materials and Methods Filtered spectra for rhodium filter were obtained for tube potentials between 26 and 32 kV. The half-value layer (HVL) of simulated filtered spectra were compared with those obtained experimentally with a solid state detector Unfors model 8202031-H Xi R/F & MAM Detector Platinum and 8201023-C Xi Base unit Platinum Plus w mAs in a Hologic Selenia Dimensions system using a direct radiography mode. Results Calculated HVL values showed good agreement as compared with those obtained experimentally. The greatest relative difference between the Monte Carlo calculated HVL values and experimental HVL values was 4%. Conclusion The results show that the filtered tungsten anode X-ray spectra and the EGSnrc Monte Carlo code can be used for mean glandular dose determination in mammography. PMID:26811553

  13. ScintSim1: A new Monte Carlo simulation code for transport of optical photons in 2D arrays of scintillation detectors

    PubMed Central

    Mosleh-Shirazi, Mohammad Amin; Zarrini-Monfared, Zinat; Karbasi, Sareh; Zamani, Ali

    2014-01-01

    Two-dimensional (2D) arrays of thick segmented scintillators are of interest as X-ray detectors for both 2D and 3D image-guided radiotherapy (IGRT). Their detection process involves ionizing radiation energy deposition followed by production and transport of optical photons. Only a very limited number of optical Monte Carlo simulation models exist, which has limited the number of modeling studies that have considered both stages of the detection process. We present ScintSim1, an in-house optical Monte Carlo simulation code for 2D arrays of scintillation crystals, developed in the MATLAB programming environment. The code was rewritten and revised based on an existing program for single-element detectors, with the additional capability to model 2D arrays of elements with configurable dimensions, material, etc., The code generates and follows each optical photon history through the detector element (and, in case of cross-talk, the surrounding ones) until it reaches a configurable receptor, or is attenuated. The new model was verified by testing against relevant theoretically known behaviors or quantities and the results of a validated single-element model. For both sets of comparisons, the discrepancies in the calculated quantities were all <1%. The results validate the accuracy of the new code, which is a useful tool in scintillation detector optimization. PMID:24600168

  14. Implementation of the direct S ( α , β ) method in the KENO Monte Carlo code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Shane W. D.; Maldonado, G. Ivan

    The Monte Carlo code KENO contains thermal scattering data for a wide variety of thermal moderators. These data are processed from Evaluated Nuclear Data Files (ENDF) by AMPX and stored as double differential probability distribution functions. The method examined in this study uses S(α,β) probability distribution functions derived from the ENDF data files directly instead of being converted to double differential cross sections. This allows the size of the cross section data on the disk to be reduced substantially amount. KENO has also been updated to allow interpolation in temperature on these data so that problems can be run atmore » any temperature. Results are shown for several simplified problems for a variety of moderators. In addition, benchmark models based on the KRITZ reactor in Sweden were run, and the results are compared with the previous versions of KENO without the direct S(α,β) method. Results from the direct S(α,β) method compare favorably with the original results obtained using the double differential cross sections. Finally, sampling the data increases the run-time of the Monte Carlo calculation, but memory usage is decreased substantially.« less

  15. Implementation of the direct S ( α , β ) method in the KENO Monte Carlo code

    DOE PAGES

    Hart, Shane W. D.; Maldonado, G. Ivan

    2016-11-25

    The Monte Carlo code KENO contains thermal scattering data for a wide variety of thermal moderators. These data are processed from Evaluated Nuclear Data Files (ENDF) by AMPX and stored as double differential probability distribution functions. The method examined in this study uses S(α,β) probability distribution functions derived from the ENDF data files directly instead of being converted to double differential cross sections. This allows the size of the cross section data on the disk to be reduced substantially amount. KENO has also been updated to allow interpolation in temperature on these data so that problems can be run atmore » any temperature. Results are shown for several simplified problems for a variety of moderators. In addition, benchmark models based on the KRITZ reactor in Sweden were run, and the results are compared with the previous versions of KENO without the direct S(α,β) method. Results from the direct S(α,β) method compare favorably with the original results obtained using the double differential cross sections. Finally, sampling the data increases the run-time of the Monte Carlo calculation, but memory usage is decreased substantially.« less

  16. The radiation fields around a proton therapy facility: A comparison of Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Ottaviano, G.; Picardi, L.; Pillon, M.; Ronsivalle, C.; Sandri, S.

    2014-02-01

    A proton therapy test facility with a beam current lower than 10 nA in average, and an energy up to 150 MeV, is planned to be sited at the Frascati ENEA Research Center, in Italy. The accelerator is composed of a sequence of linear sections. The first one is a commercial 7 MeV proton linac, from which the beam is injected in a SCDTL (Side Coupled Drift Tube Linac) structure reaching the energy of 52 MeV. Then a conventional CCL (coupled Cavity Linac) with side coupling cavities completes the accelerator. The linear structure has the important advantage that the main radiation losses during the acceleration process occur to protons with energy below 20 MeV, with a consequent low production of neutrons and secondary radiation. From the radiation protection point of view the source of radiation for this facility is then almost completely located at the final target. Physical and geometrical models of the device have been developed and implemented into radiation transport computer codes based on the Monte Carlo method. The scope is the assessment of the radiation field around the main source for supporting the safety analysis. For the assessment independent researchers used two different Monte Carlo computer codes named FLUKA (FLUktuierende KAskade) and MCNPX (Monte Carlo N-Particle eXtended) respectively. Both are general purpose tools for calculations of particle transport and interactions with matter, covering an extended range of applications including proton beam analysis. Nevertheless each one utilizes its own nuclear cross section libraries and uses specific physics models for particle types and energies. The models implemented into the codes are described and the results are presented. The differences between the two calculations are reported and discussed pointing out disadvantages and advantages of each code in the specific application.

  17. Computing Challenges in Coded Mask Imaging

    NASA Technical Reports Server (NTRS)

    Skinner, Gerald

    2009-01-01

    This slide presaentation reviews the complications and challenges in developing computer systems for Coded Mask Imaging telescopes. The coded mask technique is used when there is no other way to create the telescope, (i.e., when there are wide fields of view, high energies for focusing or low energies for the Compton/Tracker Techniques and very good angular resolution.) The coded mask telescope is described, and the mask is reviewed. The coded Masks for the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) instruments are shown, and a chart showing the types of position sensitive detectors used for the coded mask telescopes is also reviewed. Slides describe the mechanism of recovering an image from the masked pattern. The correlation with the mask pattern is described. The Matrix approach is reviewed, and other approaches to image reconstruction are described. Included in the presentation is a review of the Energetic X-ray Imaging Survey Telescope (EXIST) / High Energy Telescope (HET), with information about the mission, the operation of the telescope, comparison of the EXIST/HET with the SWIFT/BAT and details of the design of the EXIST/HET.

  18. Parallel Algorithms for Monte Carlo Particle Transport Simulation on Exascale Computing Architectures

    NASA Astrophysics Data System (ADS)

    Romano, Paul Kollath

    Monte Carlo particle transport methods are being considered as a viable option for high-fidelity simulation of nuclear reactors. While Monte Carlo methods offer several potential advantages over deterministic methods, there are a number of algorithmic shortcomings that would prevent their immediate adoption for full-core analyses. In this thesis, algorithms are proposed both to ameliorate the degradation in parallel efficiency typically observed for large numbers of processors and to offer a means of decomposing large tally data that will be needed for reactor analysis. A nearest-neighbor fission bank algorithm was proposed and subsequently implemented in the OpenMC Monte Carlo code. A theoretical analysis of the communication pattern shows that the expected cost is O( N ) whereas traditional fission bank algorithms are O(N) at best. The algorithm was tested on two supercomputers, the Intrepid Blue Gene/P and the Titan Cray XK7, and demonstrated nearly linear parallel scaling up to 163,840 processor cores on a full-core benchmark problem. An algorithm for reducing network communication arising from tally reduction was analyzed and implemented in OpenMC. The proposed algorithm groups only particle histories on a single processor into batches for tally purposes---in doing so it prevents all network communication for tallies until the very end of the simulation. The algorithm was tested, again on a full-core benchmark, and shown to reduce network communication substantially. A model was developed to predict the impact of load imbalances on the performance of domain decomposed simulations. The analysis demonstrated that load imbalances in domain decomposed simulations arise from two distinct phenomena: non-uniform particle densities and non-uniform spatial leakage. The dominant performance penalty for domain decomposition was shown to come from these physical effects rather than insufficient network bandwidth or high latency. The model predictions were verified with

  19. Monte Carlo charged-particle tracking and energy deposition on a Lagrangian mesh.

    PubMed

    Yuan, J; Moses, G A; McKenty, P W

    2005-10-01

    A Monte Carlo algorithm for alpha particle tracking and energy deposition on a cylindrical computational mesh in a Lagrangian hydrodynamics code used for inertial confinement fusion (ICF) simulations is presented. The straight line approximation is used to follow propagation of "Monte Carlo particles" which represent collections of alpha particles generated from thermonuclear deuterium-tritium (DT) reactions. Energy deposition in the plasma is modeled by the continuous slowing down approximation. The scheme addresses various aspects arising in the coupling of Monte Carlo tracking with Lagrangian hydrodynamics; such as non-orthogonal severely distorted mesh cells, particle relocation on the moving mesh and particle relocation after rezoning. A comparison with the flux-limited multi-group diffusion transport method is presented for a polar direct drive target design for the National Ignition Facility. Simulations show the Monte Carlo transport method predicts about earlier ignition than predicted by the diffusion method, and generates higher hot spot temperature. Nearly linear speed-up is achieved for multi-processor parallel simulations.

  20. Analyzing Pulse-Code Modulation On A Small Computer

    NASA Technical Reports Server (NTRS)

    Massey, David E.

    1988-01-01

    System for analysis pulse-code modulation (PCM) comprises personal computer, computer program, and peripheral interface adapter on circuit board that plugs into expansion bus of computer. Functions essentially as "snapshot" PCM decommutator, which accepts and stores thousands of frames of PCM data, sifts through them repeatedly to process according to routines specified by operator. Enables faster testing and involves less equipment than older testing systems.

  1. Monte Carlo verification of radiotherapy treatments with CloudMC.

    PubMed

    Miras, Hector; Jiménez, Rubén; Perales, Álvaro; Terrón, José Antonio; Bertolet, Alejandro; Ortiz, Antonio; Macías, José

    2018-06-27

    A new implementation has been made on CloudMC, a cloud-based platform presented in a previous work, in order to provide services for radiotherapy treatment verification by means of Monte Carlo in a fast, easy and economical way. A description of the architecture of the application and the new developments implemented is presented together with the results of the tests carried out to validate its performance. CloudMC has been developed over Microsoft Azure cloud. It is based on a map/reduce implementation for Monte Carlo calculations distribution over a dynamic cluster of virtual machines in order to reduce calculation time. CloudMC has been updated with new methods to read and process the information related to radiotherapy treatment verification: CT image set, treatment plan, structures and dose distribution files in DICOM format. Some tests have been designed in order to determine, for the different tasks, the most suitable type of virtual machines from those available in Azure. Finally, the performance of Monte Carlo verification in CloudMC is studied through three real cases that involve different treatment techniques, linac models and Monte Carlo codes. Considering computational and economic factors, D1_v2 and G1 virtual machines were selected as the default type for the Worker Roles and the Reducer Role respectively. Calculation times up to 33 min and costs of 16 € were achieved for the verification cases presented when a statistical uncertainty below 2% (2σ) was required. The costs were reduced to 3-6 € when uncertainty requirements are relaxed to 4%. Advantages like high computational power, scalability, easy access and pay-per-usage model, make Monte Carlo cloud-based solutions, like the one presented in this work, an important step forward to solve the long-lived problem of truly introducing the Monte Carlo algorithms in the daily routine of the radiotherapy planning process.

  2. Upgrades of Two Computer Codes for Analysis of Turbomachinery

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.; Liou, Meng-Sing

    2005-01-01

    Major upgrades have been made in two of the programs reported in "ive Computer Codes for Analysis of Turbomachinery". The affected programs are: Swift -- a code for three-dimensional (3D) multiblock analysis; and TCGRID, which generates a 3D grid used with Swift. Originally utilizing only a central-differencing scheme for numerical solution, Swift was augmented by addition of two upwind schemes that give greater accuracy but take more computing time. Other improvements in Swift include addition of a shear-stress-transport turbulence model for better prediction of adverse pressure gradients, addition of an H-grid capability for flexibility in modeling flows in pumps and ducts, and modification to enable simultaneous modeling of hub and tip clearances. Improvements in TCGRID include modifications to enable generation of grids for more complicated flow paths and addition of an option to generate grids compatible with the ADPAC code used at NASA and in industry. For both codes, new test cases were developed and documentation was updated. Both codes were converted to Fortran 90, with dynamic memory allocation. Both codes were also modified for ease of use in both UNIX and Windows operating systems.

  3. Fast GPU-based Monte Carlo simulations for LDR prostate brachytherapy.

    PubMed

    Bonenfant, Éric; Magnoux, Vincent; Hissoiny, Sami; Ozell, Benoît; Beaulieu, Luc; Després, Philippe

    2015-07-07

    The aim of this study was to evaluate the potential of bGPUMCD, a Monte Carlo algorithm executed on Graphics Processing Units (GPUs), for fast dose calculations in permanent prostate implant dosimetry. It also aimed to validate a low dose rate brachytherapy source in terms of TG-43 metrics and to use this source to compute dose distributions for permanent prostate implant in very short times. The physics of bGPUMCD was reviewed and extended to include Rayleigh scattering and fluorescence from photoelectric interactions for all materials involved. The radial and anisotropy functions were obtained for the Nucletron SelectSeed in TG-43 conditions. These functions were compared to those found in the MD Anderson Imaging and Radiation Oncology Core brachytherapy source registry which are considered the TG-43 reference values. After appropriate calibration of the source, permanent prostate implant dose distributions were calculated for four patients and compared to an already validated Geant4 algorithm. The radial function calculated from bGPUMCD showed excellent agreement (differences within 1.3%) with TG-43 accepted values. The anisotropy functions at r = 1 cm and r = 4 cm were within 2% of TG-43 values for angles over 17.5°. For permanent prostate implants, Monte Carlo-based dose distributions with a statistical uncertainty of 1% or less for the target volume were obtained in 30 s or less for 1 × 1 × 1 mm(3) calculation grids. Dosimetric indices were very similar (within 2.7%) to those obtained with a validated, independent Monte Carlo code (Geant4) performing the calculations for the same cases in a much longer time (tens of minutes to more than a hour). bGPUMCD is a promising code that lets envision the use of Monte Carlo techniques in a clinical environment, with sub-minute execution times on a standard workstation. Future work will explore the use of this code with an inverse planning method to provide a complete Monte Carlo-based planning solution.

  4. Fast GPU-based Monte Carlo simulations for LDR prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Bonenfant, Éric; Magnoux, Vincent; Hissoiny, Sami; Ozell, Benoît; Beaulieu, Luc; Després, Philippe

    2015-07-01

    The aim of this study was to evaluate the potential of bGPUMCD, a Monte Carlo algorithm executed on Graphics Processing Units (GPUs), for fast dose calculations in permanent prostate implant dosimetry. It also aimed to validate a low dose rate brachytherapy source in terms of TG-43 metrics and to use this source to compute dose distributions for permanent prostate implant in very short times. The physics of bGPUMCD was reviewed and extended to include Rayleigh scattering and fluorescence from photoelectric interactions for all materials involved. The radial and anisotropy functions were obtained for the Nucletron SelectSeed in TG-43 conditions. These functions were compared to those found in the MD Anderson Imaging and Radiation Oncology Core brachytherapy source registry which are considered the TG-43 reference values. After appropriate calibration of the source, permanent prostate implant dose distributions were calculated for four patients and compared to an already validated Geant4 algorithm. The radial function calculated from bGPUMCD showed excellent agreement (differences within 1.3%) with TG-43 accepted values. The anisotropy functions at r = 1 cm and r = 4 cm were within 2% of TG-43 values for angles over 17.5°. For permanent prostate implants, Monte Carlo-based dose distributions with a statistical uncertainty of 1% or less for the target volume were obtained in 30 s or less for 1 × 1 × 1 mm3 calculation grids. Dosimetric indices were very similar (within 2.7%) to those obtained with a validated, independent Monte Carlo code (Geant4) performing the calculations for the same cases in a much longer time (tens of minutes to more than a hour). bGPUMCD is a promising code that lets envision the use of Monte Carlo techniques in a clinical environment, with sub-minute execution times on a standard workstation. Future work will explore the use of this code with an inverse planning method to provide a complete Monte Carlo-based planning solution.

  5. Root cause investigation of a viral contamination incident occurred during master cell bank (MCB) testing and characterization--a case study.

    PubMed

    Chen, Dayue; Nims, Raymond; Dusing, Sandra; Miller, Pamela; Luo, Wen; Quertinmont, Michelle; Parekh, Bhavin; Poorbaugh, Josh; Boose, Jeri Ann; Atkinson, E Morrey

    2008-11-01

    An adventitious agent contamination occurred during a routine 9 CFR bovine viral screening test at BioReliance for an Eli Lilly Chinese Hamster Ovary (CHO) cell-derived Master Cell Bank (MCB) intended for biological production. Scientists from the sponsor (Eli Lilly and Company) and the testing service company (BioReliance) jointly conducted a systematic investigation in an attempt to determine the root cause of the contamination. Our investigation resulted in the identification of the viral nature of the contaminant. Subsequent experiments indicated that the viral contaminant was a non-enveloped and non-hemadsorbing virus. Transmission electron microscopy (TEM) revealed that the viral contaminant was 25-30 nm in size and morphologically resembled viruses of the family Picornaviridae. The contaminant virus was readily inactivated when exposed to acidic pH, suggesting that the viral contaminant was a member of rhinoviruses. Although incapable of infecting CHO cells, the viral contaminant replicated efficiently in Vero cell with a life cycle of approximately 16 h. Our investigation provided compelling data demonstrating that the viral contaminant did not originate from the MCB. Instead, it was introduced into the process during cell passaging and a possible entry point was proposed. We identified the viral contaminant as an equine rhinitis A virus using molecular cloning and DNA sequencing. Finally, our investigation led us to conclude that the source of the viral contaminant was the equine serum added to the cell growth medium in the 9 CFR bovine virus test.

  6. Computational Model of D-Region Ion Production Caused by Energetic Electron Precipitations Based on General Monte Carlo Transport Calculations

    NASA Astrophysics Data System (ADS)

    Kouznetsov, A.; Cully, C. M.

    2017-12-01

    During enhanced magnetic activities, large ejections of energetic electrons from radiation belts are deposited in the upper polar atmosphere where they play important roles in its physical and chemical processes, including VLF signals subionospheric propagation. Electron deposition can affect D-Region ionization, which are estimated based on ionization rates derived from energy depositions. We present a model of D-region ion production caused by an arbitrary (in energy and pitch angle) distribution of fast (10 keV - 1 MeV) electrons. The model relies on a set of pre-calculated results obtained using a general Monte Carlo approach with the latest version of the MCNP6 (Monte Carlo N-Particle) code for the explicit electron tracking in magnetic fields. By expressing those results using the ionization yield functions, the pre-calculated results are extended to cover arbitrary magnetic field inclinations and atmospheric density profiles, allowing ionization rate altitude profile computations in the range of 20 and 200 km at any geographic point of interest and date/time by adopting results from an external atmospheric density model (e.g. NRLMSISE-00). The pre-calculated MCNP6 results are stored in a CDF (Common Data Format) file, and IDL routines library is written to provide an end-user interface to the model.

  7. Additional extensions to the NASCAP computer code, volume 3

    NASA Technical Reports Server (NTRS)

    Mandell, M. J.; Cooke, D. L.

    1981-01-01

    The ION computer code is designed to calculate charge exchange ion densities, electric potentials, plasma temperatures, and current densities external to a neutralized ion engine in R-Z geometry. The present version assumes the beam ion current and density to be known and specified, and the neutralizing electrons to originate from a hot-wire ring surrounding the beam orifice. The plasma is treated as being resistive, with an electron relaxation time comparable to the plasma frequency. Together with the thermal and electrical boundary conditions described below and other straightforward engine parameters, these assumptions suffice to determine the required quantities. The ION code, written in ASCII FORTRAN for UNIVAC 1100 series computers, is designed to be run interactively, although it can also be run in batch mode. The input is free-format, and the output is mainly graphical, using the machine-independent graphics developed for the NASCAP code. The executive routine calls the code's major subroutines in user-specified order, and the code allows great latitude for restart and parameter change.

  8. Verification and Validation of Monte Carlo N-Particle 6 for Computing Gamma Protection Factors

    DTIC Science & Technology

    2015-03-26

    methods for evaluating RPFs, which it used for the subsequent 30 years. These approaches included computational modeling, radioisotopes , and a high...1.2.1. Past Methods of Experimental Evaluation ........................................................ 2 1.2.2. Modeling Efforts...Other Considerations ......................................................................................... 14 2.4. Monte Carlo Methods

  9. Computer-assisted coding and clinical documentation: first things first.

    PubMed

    Tully, Melinda; Carmichael, Angela

    2012-10-01

    Computer-assisted coding tools have the potential to drive improvements in seven areas: Transparency of coding. Productivity (generally by 20 to 25 percent for inpatient claims). Accuracy (by improving specificity of documentation). Cost containment (by reducing overtime expenses, audit fees, and denials). Compliance. Efficiency. Consistency.

  10. Monte Carlo technique for very large ising models

    NASA Astrophysics Data System (ADS)

    Kalle, C.; Winkelmann, V.

    1982-08-01

    Rebbi's multispin coding technique is improved and applied to the kinetic Ising model with size 600*600*600. We give the central part of our computer program (for a CDC Cyber 76), which will be helpful also in a simulation of smaller systems, and describe the other tricks necessary to go to large lattices. The magnetization M at T=1.4* T c is found to decay asymptotically as exp(-t/2.90) if t is measured in Monte Carlo steps per spin, and M( t = 0) = 1 initially.

  11. Physical models, cross sections, and numerical approximations used in MCNP and GEANT4 Monte Carlo codes for photon and electron absorbed fraction calculation.

    PubMed

    Yoriyaz, Hélio; Moralles, Maurício; Siqueira, Paulo de Tarso Dalledone; Guimarães, Carla da Costa; Cintra, Felipe Belonsi; dos Santos, Adimir

    2009-11-01

    Radiopharmaceutical applications in nuclear medicine require a detailed dosimetry estimate of the radiation energy delivered to the human tissues. Over the past years, several publications addressed the problem of internal dose estimate in volumes of several sizes considering photon and electron sources. Most of them used Monte Carlo radiation transport codes. Despite the widespread use of these codes due to the variety of resources and potentials they offered to carry out dose calculations, several aspects like physical models, cross sections, and numerical approximations used in the simulations still remain an object of study. Accurate dose estimate depends on the correct selection of a set of simulation options that should be carefully chosen. This article presents an analysis of several simulation options provided by two of the most used codes worldwide: MCNP and GEANT4. For this purpose, comparisons of absorbed fraction estimates obtained with different physical models, cross sections, and numerical approximations are presented for spheres of several sizes and composed as five different biological tissues. Considerable discrepancies have been found in some cases not only between the different codes but also between different cross sections and algorithms in the same code. Maximum differences found between the two codes are 5.0% and 10%, respectively, for photons and electrons. Even for simple problems as spheres and uniform radiation sources, the set of parameters chosen by any Monte Carlo code significantly affects the final results of a simulation, demonstrating the importance of the correct choice of parameters in the simulation.

  12. Monte Carlo method for computing density of states and quench probability of potential energy and enthalpy landscapes.

    PubMed

    Mauro, John C; Loucks, Roger J; Balakrishnan, Jitendra; Raghavan, Srikanth

    2007-05-21

    The thermodynamics and kinetics of a many-body system can be described in terms of a potential energy landscape in multidimensional configuration space. The partition function of such a landscape can be written in terms of a density of states, which can be computed using a variety of Monte Carlo techniques. In this paper, a new self-consistent Monte Carlo method for computing density of states is described that uses importance sampling and a multiplicative update factor to achieve rapid convergence. The technique is then applied to compute the equilibrium quench probability of the various inherent structures (minima) in the landscape. The quench probability depends on both the potential energy of the inherent structure and the volume of its corresponding basin in configuration space. Finally, the methodology is extended to the isothermal-isobaric ensemble in order to compute inherent structure quench probabilities in an enthalpy landscape.

  13. Accuracy and convergence of coupled finite-volume/Monte Carlo codes for plasma edge simulations of nuclear fusion reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghoos, K., E-mail: kristel.ghoos@kuleuven.be; Dekeyser, W.; Samaey, G.

    2016-10-01

    The plasma and neutral transport in the plasma edge of a nuclear fusion reactor is usually simulated using coupled finite volume (FV)/Monte Carlo (MC) codes. However, under conditions of future reactors like ITER and DEMO, convergence issues become apparent. This paper examines the convergence behaviour and the numerical error contributions with a simplified FV/MC model for three coupling techniques: Correlated Sampling, Random Noise and Robbins Monro. Also, practical procedures to estimate the errors in complex codes are proposed. Moreover, first results with more complex models show that an order of magnitude speedup can be achieved without any loss in accuracymore » by making use of averaging in the Random Noise coupling technique.« less

  14. Computation of the Genetic Code

    NASA Astrophysics Data System (ADS)

    Kozlov, Nicolay N.; Kozlova, Olga N.

    2018-03-01

    One of the problems in the development of mathematical theory of the genetic code (summary is presented in [1], the detailed -to [2]) is the problem of the calculation of the genetic code. Similar problems in the world is unknown and could be delivered only in the 21st century. One approach to solving this problem is devoted to this work. For the first time provides a detailed description of the method of calculation of the genetic code, the idea of which was first published earlier [3]), and the choice of one of the most important sets for the calculation was based on an article [4]. Such a set of amino acid corresponds to a complete set of representations of the plurality of overlapping triple gene belonging to the same DNA strand. A separate issue was the initial point, triggering an iterative search process all codes submitted by the initial data. Mathematical analysis has shown that the said set contains some ambiguities, which have been founded because of our proposed compressed representation of the set. As a result, the developed method of calculation was limited to the two main stages of research, where the first stage only the of the area were used in the calculations. The proposed approach will significantly reduce the amount of computations at each step in this complex discrete structure.

  15. SU-F-I-53: Coded Aperture Coherent Scatter Spectral Imaging of the Breast: A Monte Carlo Evaluation of Absorbed Dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, R; Lakshmanan, M; Fong, G

    Purpose: Coherent scatter based imaging has shown improved contrast and molecular specificity over conventional digital mammography however the biological risks have not been quantified due to a lack of accurate information on absorbed dose. This study intends to characterize the dose distribution and average glandular dose from coded aperture coherent scatter spectral imaging of the breast. The dose deposited in the breast from this new diagnostic imaging modality has not yet been quantitatively evaluated. Here, various digitized anthropomorphic phantoms are tested in a Monte Carlo simulation to evaluate the absorbed dose distribution and average glandular dose using clinically feasible scanmore » protocols. Methods: Geant4 Monte Carlo radiation transport simulation software is used to replicate the coded aperture coherent scatter spectral imaging system. Energy sensitive, photon counting detectors are used to characterize the x-ray beam spectra for various imaging protocols. This input spectra is cross-validated with the results from XSPECT, a commercially available application that yields x-ray tube specific spectra for the operating parameters employed. XSPECT is also used to determine the appropriate number of photons emitted per mAs of tube current at a given kVp tube potential. With the implementation of the XCAT digital anthropomorphic breast phantom library, a variety of breast sizes with differing anatomical structure are evaluated. Simulations were performed with and without compression of the breast for dose comparison. Results: Through the Monte Carlo evaluation of a diverse population of breast types imaged under real-world scan conditions, a clinically relevant average glandular dose for this new imaging modality is extrapolated. Conclusion: With access to the physical coherent scatter imaging system used in the simulation, the results of this Monte Carlo study may be used to directly influence the future development of the modality to keep breast

  16. Parameters that affect parallel processing for computational electromagnetic simulation codes on high performance computing clusters

    NASA Astrophysics Data System (ADS)

    Moon, Hongsik

    What is the impact of multicore and associated advanced technologies on computational software for science? Most researchers and students have multicore laptops or desktops for their research and they need computing power to run computational software packages. Computing power was initially derived from Central Processing Unit (CPU) clock speed. That changed when increases in clock speed became constrained by power requirements. Chip manufacturers turned to multicore CPU architectures and associated technological advancements to create the CPUs for the future. Most software applications benefited by the increased computing power the same way that increases in clock speed helped applications run faster. However, for Computational ElectroMagnetics (CEM) software developers, this change was not an obvious benefit - it appeared to be a detriment. Developers were challenged to find a way to correctly utilize the advancements in hardware so that their codes could benefit. The solution was parallelization and this dissertation details the investigation to address these challenges. Prior to multicore CPUs, advanced computer technologies were compared with the performance using benchmark software and the metric was FLoting-point Operations Per Seconds (FLOPS) which indicates system performance for scientific applications that make heavy use of floating-point calculations. Is FLOPS an effective metric for parallelized CEM simulation tools on new multicore system? Parallel CEM software needs to be benchmarked not only by FLOPS but also by the performance of other parameters related to type and utilization of the hardware, such as CPU, Random Access Memory (RAM), hard disk, network, etc. The codes need to be optimized for more than just FLOPs and new parameters must be included in benchmarking. In this dissertation, the parallel CEM software named High Order Basis Based Integral Equation Solver (HOBBIES) is introduced. This code was developed to address the needs of the

  17. Recent applications of the transonic wing analysis computer code, TWING

    NASA Technical Reports Server (NTRS)

    Subramanian, N. R.; Holst, T. L.; Thomas, S. D.

    1982-01-01

    An evaluation of the transonic-wing-analysis computer code TWING is given. TWING utilizes a fully implicit approximate factorization iteration scheme to solve the full potential equation in conservative form. A numerical elliptic-solver grid-generation scheme is used to generate the required finite-difference mesh. Several wing configurations were analyzed, and the limits of applicability of this code was evaluated. Comparisons of computed results were made with available experimental data. Results indicate that the code is robust, accurate (when significant viscous effects are not present), and efficient. TWING generally produces solutions an order of magnitude faster than other conservative full potential codes using successive-line overrelaxation. The present method is applicable to a wide range of isolated wing configurations including high-aspect-ratio transport wings and low-aspect-ratio, high-sweep, fighter configurations.

  18. Multitasking the code ARC3D. [for computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Barton, John T.; Hsiung, Christopher C.

    1986-01-01

    The CRAY multitasking system was developed in order to utilize all four processors and sharply reduce the wall clock run time. This paper describes the techniques used to modify the computational fluid dynamics code ARC3D for this run and analyzes the achieved speedup. The ARC3D code solves either the Euler or thin-layer N-S equations using an implicit approximate factorization scheme. Results indicate that multitask processing can be used to achieve wall clock speedup factors of over three times, depending on the nature of the program code being used. Multitasking appears to be particularly advantageous for large-memory problems running on multiple CPU computers.

  19. Fred: a GPU-accelerated fast-Monte Carlo code for rapid treatment plan recalculation in ion beam therapy

    NASA Astrophysics Data System (ADS)

    Schiavi, A.; Senzacqua, M.; Pioli, S.; Mairani, A.; Magro, G.; Molinelli, S.; Ciocca, M.; Battistoni, G.; Patera, V.

    2017-09-01

    Ion beam therapy is a rapidly growing technique for tumor radiation therapy. Ions allow for a high dose deposition in the tumor region, while sparing the surrounding healthy tissue. For this reason, the highest possible accuracy in the calculation of dose and its spatial distribution is required in treatment planning. On one hand, commonly used treatment planning software solutions adopt a simplified beam-body interaction model by remapping pre-calculated dose distributions into a 3D water-equivalent representation of the patient morphology. On the other hand, Monte Carlo (MC) simulations, which explicitly take into account all the details in the interaction of particles with human tissues, are considered to be the most reliable tool to address the complexity of mixed field irradiation in a heterogeneous environment. However, full MC calculations are not routinely used in clinical practice because they typically demand substantial computational resources. Therefore MC simulations are usually only used to check treatment plans for a restricted number of difficult cases. The advent of general-purpose programming GPU cards prompted the development of trimmed-down MC-based dose engines which can significantly reduce the time needed to recalculate a treatment plan with respect to standard MC codes in CPU hardware. In this work, we report on the development of fred, a new MC simulation platform for treatment planning in ion beam therapy. The code can transport particles through a 3D voxel grid using a class II MC algorithm. Both primary and secondary particles are tracked and their energy deposition is scored along the trajectory. Effective models for particle-medium interaction have been implemented, balancing accuracy in dose deposition with computational cost. Currently, the most refined module is the transport of proton beams in water: single pencil beam dose-depth distributions obtained with fred agree with those produced by standard MC codes within 1-2% of the

  20. Organ doses for reference adult male and female undergoing computed tomography estimated by Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Choonsik; Kim, Kwang Pyo; Long, Daniel

    2011-03-15

    Purpose: To develop a computed tomography (CT) organ dose estimation method designed to readily provide organ doses in a reference adult male and female for different scan ranges to investigate the degree to which existing commercial programs can reasonably match organ doses defined in these more anatomically realistic adult hybrid phantomsMethods: The x-ray fan beam in the SOMATOM Sensation 16 multidetector CT scanner was simulated within the Monte Carlo radiation transport code MCNPX2.6. The simulated CT scanner model was validated through comparison with experimentally measured lateral free-in-air dose profiles and computed tomography dose index (CTDI) values. The reference adult malemore » and female hybrid phantoms were coupled with the established CT scanner model following arm removal to simulate clinical head and other body region scans. A set of organ dose matrices were calculated for a series of consecutive axial scans ranging from the top of the head to the bottom of the phantoms with a beam thickness of 10 mm and the tube potentials of 80, 100, and 120 kVp. The organ doses for head, chest, and abdomen/pelvis examinations were calculated based on the organ dose matrices and compared to those obtained from two commercial programs, CT-EXPO and CTDOSIMETRY. Organ dose calculations were repeated for an adult stylized phantom by using the same simulation method used for the adult hybrid phantom. Results: Comparisons of both lateral free-in-air dose profiles and CTDI values through experimental measurement with the Monte Carlo simulations showed good agreement to within 9%. Organ doses for head, chest, and abdomen/pelvis scans reported in the commercial programs exceeded those from the Monte Carlo calculations in both the hybrid and stylized phantoms in this study, sometimes by orders of magnitude. Conclusions: The organ dose estimation method and dose matrices established in this study readily provides organ doses for a reference adult male and female for

  1. Performance Study of Monte Carlo Codes on Xeon Phi Coprocessors — Testing MCNP 6.1 and Profiling ARCHER Geometry Module on the FS7ONNi Problem

    NASA Astrophysics Data System (ADS)

    Liu, Tianyu; Wolfe, Noah; Lin, Hui; Zieb, Kris; Ji, Wei; Caracappa, Peter; Carothers, Christopher; Xu, X. George

    2017-09-01

    This paper contains two parts revolving around Monte Carlo transport simulation on Intel Many Integrated Core coprocessors (MIC, also known as Xeon Phi). (1) MCNP 6.1 was recompiled into multithreading (OpenMP) and multiprocessing (MPI) forms respectively without modification to the source code. The new codes were tested on a 60-core 5110P MIC. The test case was FS7ONNi, a radiation shielding problem used in MCNP's verification and validation suite. It was observed that both codes became slower on the MIC than on a 6-core X5650 CPU, by a factor of 4 for the MPI code and, abnormally, 20 for the OpenMP code, and both exhibited limited capability of strong scaling. (2) We have recently added a Constructive Solid Geometry (CSG) module to our ARCHER code to provide better support for geometry modelling in radiation shielding simulation. The functions of this module are frequently called in the particle random walk process. To identify the performance bottleneck we developed a CSG proxy application and profiled the code using the geometry data from FS7ONNi. The profiling data showed that the code was primarily memory latency bound on the MIC. This study suggests that despite low initial porting e_ort, Monte Carlo codes do not naturally lend themselves to the MIC platform — just like to the GPUs, and that the memory latency problem needs to be addressed in order to achieve decent performance gain.

  2. High-performance computational fluid dynamics: a custom-code approach

    NASA Astrophysics Data System (ADS)

    Fannon, James; Loiseau, Jean-Christophe; Valluri, Prashant; Bethune, Iain; Náraigh, Lennon Ó.

    2016-07-01

    We introduce a modified and simplified version of the pre-existing fully parallelized three-dimensional Navier-Stokes flow solver known as TPLS. We demonstrate how the simplified version can be used as a pedagogical tool for the study of computational fluid dynamics (CFDs) and parallel computing. TPLS is at its heart a two-phase flow solver, and uses calls to a range of external libraries to accelerate its performance. However, in the present context we narrow the focus of the study to basic hydrodynamics and parallel computing techniques, and the code is therefore simplified and modified to simulate pressure-driven single-phase flow in a channel, using only relatively simple Fortran 90 code with MPI parallelization, but no calls to any other external libraries. The modified code is analysed in order to both validate its accuracy and investigate its scalability up to 1000 CPU cores. Simulations are performed for several benchmark cases in pressure-driven channel flow, including a turbulent simulation, wherein the turbulence is incorporated via the large-eddy simulation technique. The work may be of use to advanced undergraduate and graduate students as an introductory study in CFDs, while also providing insight for those interested in more general aspects of high-performance computing.

  3. New coding technique for computer generated holograms.

    NASA Technical Reports Server (NTRS)

    Haskell, R. E.; Culver, B. C.

    1972-01-01

    A coding technique is developed for recording computer generated holograms on a computer controlled CRT in which each resolution cell contains two beam spots of equal size and equal intensity. This provides a binary hologram in which only the position of the two dots is varied from cell to cell. The amplitude associated with each resolution cell is controlled by selectively diffracting unwanted light into a higher diffraction order. The recording of the holograms is fast and simple.

  4. Development of the 3DHZETRN code for space radiation protection

    NASA Astrophysics Data System (ADS)

    Wilson, John; Badavi, Francis; Slaba, Tony; Reddell, Brandon; Bahadori, Amir; Singleterry, Robert

    Space radiation protection requires computationally efficient shield assessment methods that have been verified and validated. The HZETRN code is the engineering design code used for low Earth orbit dosimetric analysis and astronaut record keeping with end-to-end validation to twenty percent in Space Shuttle and International Space Station operations. HZETRN treated diffusive leakage only at the distal surface limiting its application to systems with a large radius of curvature. A revision of HZETRN that included forward and backward diffusion allowed neutron leakage to be evaluated at both the near and distal surfaces. That revision provided a deterministic code of high computational efficiency that was in substantial agreement with Monte Carlo (MC) codes in flat plates (at least to the degree that MC codes agree among themselves). In the present paper, the 3DHZETRN formalism capable of evaluation in general geometry is described. Benchmarking will help quantify uncertainty with MC codes (Geant4, FLUKA, MCNP6, and PHITS) in simple shapes such as spheres within spherical shells and boxes. Connection of the 3DHZETRN to general geometry will be discussed.

  5. Comparison of a 3D multi‐group SN particle transport code with Monte Carlo for intercavitary brachytherapy of the cervix uteri

    PubMed Central

    Wareing, Todd A.; Failla, Gregory; Horton, John L.; Eifel, Patricia J.; Mourtada, Firas

    2009-01-01

    A patient dose distribution was calculated by a 3D multi‐group SN particle transport code for intracavitary brachytherapy of the cervix uteri and compared to previously published Monte Carlo results. A Cs‐137 LDR intracavitary brachytherapy CT data set was chosen from our clinical database. MCNPX version 2.5.c, was used to calculate the dose distribution. A 3D multi‐group SN particle transport code, Attila version 6.1.1 was used to simulate the same patient. Each patient applicator was built in SolidWorks, a mechanical design package, and then assembled with a coordinate transformation and rotation for the patient. The SolidWorks exported applicator geometry was imported into Attila for calculation. Dose matrices were overlaid on the patient CT data set. Dose volume histograms and point doses were compared. The MCNPX calculation required 14.8 hours, whereas the Attila calculation required 22.2 minutes on a 1.8 GHz AMD Opteron CPU. Agreement between Attila and MCNPX dose calculations at the ICRU 38 points was within ±3%. Calculated doses to the 2 cc and 5 cc volumes of highest dose differed by not more than ±1.1% between the two codes. Dose and DVH overlays agreed well qualitatively. Attila can calculate dose accurately and efficiently for this Cs‐137 CT‐based patient geometry. Our data showed that a three‐group cross‐section set is adequate for Cs‐137 computations. Future work is aimed at implementing an optimized version of Attila for radiotherapy calculations. PACS number: 87.53.Jw

  6. Comparison of a 3-D multi-group SN particle transport code with Monte Carlo for intracavitary brachytherapy of the cervix uteri.

    PubMed

    Gifford, Kent A; Wareing, Todd A; Failla, Gregory; Horton, John L; Eifel, Patricia J; Mourtada, Firas

    2009-12-03

    A patient dose distribution was calculated by a 3D multi-group S N particle transport code for intracavitary brachytherapy of the cervix uteri and compared to previously published Monte Carlo results. A Cs-137 LDR intracavitary brachytherapy CT data set was chosen from our clinical database. MCNPX version 2.5.c, was used to calculate the dose distribution. A 3D multi-group S N particle transport code, Attila version 6.1.1 was used to simulate the same patient. Each patient applicator was built in SolidWorks, a mechanical design package, and then assembled with a coordinate transformation and rotation for the patient. The SolidWorks exported applicator geometry was imported into Attila for calculation. Dose matrices were overlaid on the patient CT data set. Dose volume histograms and point doses were compared. The MCNPX calculation required 14.8 hours, whereas the Attila calculation required 22.2 minutes on a 1.8 GHz AMD Opteron CPU. Agreement between Attila and MCNPX dose calculations at the ICRU 38 points was within +/- 3%. Calculated doses to the 2 cc and 5 cc volumes of highest dose differed by not more than +/- 1.1% between the two codes. Dose and DVH overlays agreed well qualitatively. Attila can calculate dose accurately and efficiently for this Cs-137 CT-based patient geometry. Our data showed that a three-group cross-section set is adequate for Cs-137 computations. Future work is aimed at implementing an optimized version of Attila for radiotherapy calculations.

  7. Error Suppression for Hamiltonian-Based Quantum Computation Using Subsystem Codes

    NASA Astrophysics Data System (ADS)

    Marvian, Milad; Lidar, Daniel A.

    2017-01-01

    We present general conditions for quantum error suppression for Hamiltonian-based quantum computation using subsystem codes. This involves encoding the Hamiltonian performing the computation using an error detecting subsystem code and the addition of a penalty term that commutes with the encoded Hamiltonian. The scheme is general and includes the stabilizer formalism of both subspace and subsystem codes as special cases. We derive performance bounds and show that complete error suppression results in the large penalty limit. To illustrate the power of subsystem-based error suppression, we introduce fully two-local constructions for protection against local errors of the swap gate of adiabatic gate teleportation and the Ising chain in a transverse field.

  8. Error Suppression for Hamiltonian-Based Quantum Computation Using Subsystem Codes.

    PubMed

    Marvian, Milad; Lidar, Daniel A

    2017-01-20

    We present general conditions for quantum error suppression for Hamiltonian-based quantum computation using subsystem codes. This involves encoding the Hamiltonian performing the computation using an error detecting subsystem code and the addition of a penalty term that commutes with the encoded Hamiltonian. The scheme is general and includes the stabilizer formalism of both subspace and subsystem codes as special cases. We derive performance bounds and show that complete error suppression results in the large penalty limit. To illustrate the power of subsystem-based error suppression, we introduce fully two-local constructions for protection against local errors of the swap gate of adiabatic gate teleportation and the Ising chain in a transverse field.

  9. Data decomposition of Monte Carlo particle transport simulations via tally servers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romano, Paul K.; Siegel, Andrew R.; Forget, Benoit

    An algorithm for decomposing large tally data in Monte Carlo particle transport simulations is developed, analyzed, and implemented in a continuous-energy Monte Carlo code, OpenMC. The algorithm is based on a non-overlapping decomposition of compute nodes into tracking processors and tally servers. The former are used to simulate the movement of particles through the domain while the latter continuously receive and update tally data. A performance model for this approach is developed, suggesting that, for a range of parameters relevant to LWR analysis, the tally server algorithm should perform with minimal overhead on contemporary supercomputers. An implementation of the algorithmmore » in OpenMC is then tested on the Intrepid and Titan supercomputers, supporting the key predictions of the model over a wide range of parameters. We thus conclude that the tally server algorithm is a successful approach to circumventing classical on-node memory constraints en route to unprecedentedly detailed Monte Carlo reactor simulations.« less

  10. Kinetic Monte Carlo simulations for transient thermal fields: Computational methodology and application to the submicrosecond laser processes in implanted silicon.

    PubMed

    Fisicaro, G; Pelaz, L; Lopez, P; La Magna, A

    2012-09-01

    Pulsed laser irradiation of damaged solids promotes ultrafast nonequilibrium kinetics, on the submicrosecond scale, leading to microscopic modifications of the material state. Reliable theoretical predictions of this evolution can be achieved only by simulating particle interactions in the presence of large and transient gradients of the thermal field. We propose a kinetic Monte Carlo (KMC) method for the simulation of damaged systems in the extremely far-from-equilibrium conditions caused by the laser irradiation. The reference systems are nonideal crystals containing point defect excesses, an order of magnitude larger than the equilibrium density, due to a preirradiation ion implantation process. The thermal and, eventual, melting problem is solved within the phase-field methodology, and the numerical solutions for the space- and time-dependent thermal field were then dynamically coupled to the KMC code. The formalism, implementation, and related tests of our computational code are discussed in detail. As an application example we analyze the evolution of the defect system caused by P ion implantation in Si under nanosecond pulsed irradiation. The simulation results suggest a significant annihilation of the implantation damage which can be well controlled by the laser fluence.

  11. Computational Nuclear Physics and Post Hartree-Fock Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lietz, Justin; Sam, Novario; Hjorth-Jensen, M.

    We present a computational approach to infinite nuclear matter employing Hartree-Fock theory, many-body perturbation theory and coupled cluster theory. These lectures are closely linked with those of chapters 9, 10 and 11 and serve as input for the correlation functions employed in Monte Carlo calculations in chapter 9, the in-medium similarity renormalization group theory of dense fermionic systems of chapter 10 and the Green's function approach in chapter 11. We provide extensive code examples and benchmark calculations, allowing thereby an eventual reader to start writing her/his own codes. We start with an object-oriented serial code and end with discussions onmore » strategies for porting the code to present and planned high-performance computing facilities.« less

  12. Computer Code for Transportation Network Design and Analysis

    DOT National Transportation Integrated Search

    1977-01-01

    This document describes the results of research into the application of the mathematical programming technique of decomposition to practical transportation network problems. A computer code called Catnap (for Control Analysis Transportation Network A...

  13. JEFF-3.1, ENDF/B-VII and JENDL-3.3 Critical Assemblies Benchmarking With the Monte Carlo Code TRIPOLI

    NASA Astrophysics Data System (ADS)

    Sublet, Jean-Christophe

    2008-02-01

    ENDF/B-VII.0, the first release of the ENDF/B-VII nuclear data library, was formally released in December 2006. Prior to this event the European JEFF-3.1 nuclear data library was distributed in April 2005, while the Japanese JENDL-3.3 library has been available since 2002. The recent releases of these neutron transport libraries and special purpose files, the updates of the processing tools and the significant progress in computer power and potency, allow today far better leaner Monte Carlo code and pointwise library integration leading to enhanced benchmarking studies. A TRIPOLI-4.4 critical assembly suite has been set up as a collection of 86 benchmarks taken principally from the International Handbook of Evaluated Criticality Benchmarks Experiments (2006 Edition). It contains cases for a variety of U and Pu fuels and systems, ranging from fast to deep thermal solutions and assemblies. It covers cases with a variety of moderators, reflectors, absorbers, spectra and geometries. The results presented show that while the most recent library ENDF/B-VII.0, which benefited from the timely development of JENDL-3.3 and JEFF-3.1, produces better overall results, it suggest clearly also that improvements are still needed. This is true in particular in Light Water Reactor applications for thermal and epithermal plutonium data for all libraries and fast uranium data for JEFF-3.1 and JENDL-3.3. It is also true to state that other domains, in which Monte Carlo code are been used, such as astrophysics, fusion, high-energy or medical, radiation transport in general benefit notably from such enhanced libraries. It is particularly noticeable in term of the number of isotopes, materials available, the overall quality of the data and the much broader energy range for which evaluated (as opposed to modeled) data are available, spanning from meV to hundreds of MeV. In pointing out the impact of the different nuclear data at the library but also the isotopic levels one could not help

  14. Coupled Monte Carlo neutronics and thermal hydraulics for power reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernnat, W.; Buck, M.; Mattes, M.

    The availability of high performance computing resources enables more and more the use of detailed Monte Carlo models even for full core power reactors. The detailed structure of the core can be described by lattices, modeled by so-called repeated structures e.g. in Monte Carlo codes such as MCNP5 or MCNPX. For cores with mainly uniform material compositions, fuel and moderator temperatures, there is no problem in constructing core models. However, when the material composition and the temperatures vary strongly a huge number of different material cells must be described which complicate the input and in many cases exceed code ormore » memory limits. The second problem arises with the preparation of corresponding temperature dependent cross sections and thermal scattering laws. Only if these problems can be solved, a realistic coupling of Monte Carlo neutronics with an appropriate thermal-hydraulics model is possible. In this paper a method for the treatment of detailed material and temperature distributions in MCNP5 is described based on user-specified internal functions which assign distinct elements of the core cells to material specifications (e.g. water density) and temperatures from a thermal-hydraulics code. The core grid itself can be described with a uniform material specification. The temperature dependency of cross sections and thermal neutron scattering laws is taken into account by interpolation, requiring only a limited number of data sets generated for different temperatures. Applications will be shown for the stationary part of the Purdue PWR benchmark using ATHLET for thermal- hydraulics and for a generic Modular High Temperature reactor using THERMIX for thermal- hydraulics. (authors)« less

  15. Error-correcting codes in computer arithmetic.

    NASA Technical Reports Server (NTRS)

    Massey, J. L.; Garcia, O. N.

    1972-01-01

    Summary of the most important results so far obtained in the theory of coding for the correction and detection of errors in computer arithmetic. Attempts to satisfy the stringent reliability demands upon the arithmetic unit are considered, and special attention is given to attempts to incorporate redundancy into the numbers themselves which are being processed so that erroneous results can be detected and corrected.

  16. Parallelization of Finite Element Analysis Codes Using Heterogeneous Distributed Computing

    NASA Technical Reports Server (NTRS)

    Ozguner, Fusun

    1996-01-01

    Performance gains in computer design are quickly consumed as users seek to analyze larger problems to a higher degree of accuracy. Innovative computational methods, such as parallel and distributed computing, seek to multiply the power of existing hardware technology to satisfy the computational demands of large applications. In the early stages of this project, experiments were performed using two large, coarse-grained applications, CSTEM and METCAN. These applications were parallelized on an Intel iPSC/860 hypercube. It was found that the overall speedup was very low, due to large, inherently sequential code segments present in the applications. The overall execution time T(sub par), of the application is dependent on these sequential segments. If these segments make up a significant fraction of the overall code, the application will have a poor speedup measure.

  17. Computer codes for thermal analysis of a solid rocket motor nozzle

    NASA Technical Reports Server (NTRS)

    Chauhan, Rajinder Singh

    1988-01-01

    A number of computer codes are available for performing thermal analysis of solid rocket motor nozzles. Aerotherm Chemical Equilibrium (ACE) computer program can be used to perform one-dimensional gas expansion to determine the state of the gas at each location of a nozzle. The ACE outputs can be used as input to a computer program called Momentum/Energy Integral Technique (MEIT) for predicting boundary layer development development, shear, and heating on the surface of the nozzle. The output from MEIT can be used as input to another computer program called Aerotherm Charring Material Thermal Response and Ablation Program (CMA). This program is used to calculate oblation or decomposition response of the nozzle material. A code called Failure Analysis Nonlinear Thermal and Structural Integrated Code (FANTASTIC) is also likely to be used for performing thermal analysis of solid rocket motor nozzles after the program is duly verified. A part of the verification work on FANTASTIC was done by using one and two dimension heat transfer examples with known answers. An attempt was made to prepare input for performing thermal analysis of the CCT nozzle using the FANTASTIC computer code. The CCT nozzle problem will first be solved by using ACE, MEIT, and CMA. The same problem will then be solved using FANTASTIC. These results will then be compared for verification of FANTASTIC.

  18. Operations analysis (study 2.1). Program listing for the LOVES computer code

    NASA Technical Reports Server (NTRS)

    Wray, S. T., Jr.

    1974-01-01

    A listing of the LOVES computer program is presented. The program is coded partially in SIMSCRIPT and FORTRAN. This version of LOVES is compatible with both the CDC 7600 and the UNIVAC 1108 computers. The code has been compiled, loaded, and executed successfully on the EXEC 8 system for the UNIVAC 1108.

  19. Intercomparison of Monte Carlo radiation transport codes to model TEPC response in low-energy neutron and gamma-ray fields.

    PubMed

    Ali, F; Waker, A J; Waller, E J

    2014-10-01

    Tissue-equivalent proportional counters (TEPC) can potentially be used as a portable and personal dosemeter in mixed neutron and gamma-ray fields, but what hinders this use is their typically large physical size. To formulate compact TEPC designs, the use of a Monte Carlo transport code is necessary to predict the performance of compact designs in these fields. To perform this modelling, three candidate codes were assessed: MCNPX 2.7.E, FLUKA 2011.2 and PHITS 2.24. In each code, benchmark simulations were performed involving the irradiation of a 5-in. TEPC with monoenergetic neutron fields and a 4-in. wall-less TEPC with monoenergetic gamma-ray fields. The frequency and dose mean lineal energies and dose distributions calculated from each code were compared with experimentally determined data. For the neutron benchmark simulations, PHITS produces data closest to the experimental values and for the gamma-ray benchmark simulations, FLUKA yields data closest to the experimentally determined quantities. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Where Next for Marine Cloud Brightening Research?

    NASA Astrophysics Data System (ADS)

    Jenkins, A. K. L.; Forster, P.

    2014-12-01

    Realistic estimates of geoengineering effectiveness will be central to informed decision-making on its possible role in addressing climate change. Over the last decade, global-scale computer climate modelling of geoengineering has been developing. While these developments have allowed quantitative estimates of geoengineering effectiveness to be produced, the relative coarseness of the grid of these models (tens of kilometres) means that key practical details of the proposed geoengineering is not always realistically captured. This is particularly true for marine cloud brightening (MCB), where both the clouds, as well as the tens-of-meters scale sea-going implementation vessels cannot be captured in detail. Previous research using cloud resolving modelling has shown that neglecting such details may lead to MCB effectiveness being overestimated by up to half. Realism of MCB effectiveness will likely improve from ongoing developments in the understanding and modelling of clouds. We also propose that realism can be increased via more specific improvements (see figure). A readily achievable example would be the reframing of previous MCB effectiveness estimates in light of the cloud resolving scale findings. Incorporation of implementation details could also be made - via parameterisation - into future global-scale modelling of MCB. However, as significant unknowns regarding the design of the MCB aerosol production technique remain, resource-intensive cloud resolving computer modelling of MCB may be premature unless of broader benefit to the wider understanding of clouds. One of the most essential recommendations is for enhanced communication between climate scientists and MCB designers. This would facilitate the identification of potentially important design aspects necessary for realistic computer simulations. Such relationships could be mutually beneficial, with computer modelling potentially informing more efficient designs of the MCB implementation technique

  1. Accelerating Monte Carlo simulations with an NVIDIA ® graphics processor

    NASA Astrophysics Data System (ADS)

    Martinsen, Paul; Blaschke, Johannes; Künnemeyer, Rainer; Jordan, Robert

    2009-10-01

    Modern graphics cards, commonly used in desktop computers, have evolved beyond a simple interface between processor and display to incorporate sophisticated calculation engines that can be applied to general purpose computing. The Monte Carlo algorithm for modelling photon transport in turbid media has been implemented on an NVIDIA ® 8800 GT graphics card using the CUDA toolkit. The Monte Carlo method relies on following the trajectory of millions of photons through the sample, often taking hours or days to complete. The graphics-processor implementation, processing roughly 110 million scattering events per second, was found to run more than 70 times faster than a similar, single-threaded implementation on a 2.67 GHz desktop computer. Program summaryProgram title: Phoogle-C/Phoogle-G Catalogue identifier: AEEB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 51 264 No. of bytes in distributed program, including test data, etc.: 2 238 805 Distribution format: tar.gz Programming language: C++ Computer: Designed for Intel PCs. Phoogle-G requires a NVIDIA graphics card with support for CUDA 1.1 Operating system: Windows XP Has the code been vectorised or parallelized?: Phoogle-G is written for SIMD architectures RAM: 1 GB Classification: 21.1 External routines: Charles Karney Random number library. Microsoft Foundation Class library. NVIDA CUDA library [1]. Nature of problem: The Monte Carlo technique is an effective algorithm for exploring the propagation of light in turbid media. However, accurate results require tracing the path of many photons within the media. The independence of photons naturally lends the Monte Carlo technique to implementation on parallel architectures. Generally, parallel computing

  2. Massively parallelized Monte Carlo software to calculate the light propagation in arbitrarily shaped 3D turbid media

    NASA Astrophysics Data System (ADS)

    Zoller, Christian; Hohmann, Ansgar; Ertl, Thomas; Kienle, Alwin

    2017-07-01

    The Monte Carlo method is often referred as the gold standard to calculate the light propagation in turbid media [1]. Especially for complex shaped geometries where no analytical solutions are available the Monte Carlo method becomes very important [1, 2]. In this work a Monte Carlo software is presented, to simulate the light propagation in complex shaped geometries. To improve the simulation time the code is based on OpenCL such that graphics cards can be used as well as other computing devices. Within the software an illumination concept is presented to realize easily all kinds of light sources, like spatial frequency domain (SFD), optical fibers or Gaussian beam profiles. Moreover different objects, which are not connected to each other, can be considered simultaneously, without any additional preprocessing. This Monte Carlo software can be used for many applications. In this work the transmission spectrum of a tooth and the color reconstruction of a virtual object are shown, using results from the Monte Carlo software.

  3. Fast Monte Carlo-assisted simulation of cloudy Earth backgrounds

    NASA Astrophysics Data System (ADS)

    Adler-Golden, Steven; Richtsmeier, Steven C.; Berk, Alexander; Duff, James W.

    2012-11-01

    A calculation method has been developed for rapidly synthesizing radiometrically accurate ultraviolet through longwavelengthinfrared spectral imagery of the Earth for arbitrary locations and cloud fields. The method combines cloudfree surface reflectance imagery with cloud radiance images calculated from a first-principles 3-D radiation transport model. The MCScene Monte Carlo code [1-4] is used to build a cloud image library; a data fusion method is incorporated to speed convergence. The surface and cloud images are combined with an upper atmospheric description with the aid of solar and thermal radiation transport equations that account for atmospheric inhomogeneity. The method enables a wide variety of sensor and sun locations, cloud fields, and surfaces to be combined on-the-fly, and provides hyperspectral wavelength resolution with minimal computational effort. The simulations agree very well with much more time-consuming direct Monte Carlo calculations of the same scene.

  4. Computing Temperatures in Optically Thick Protoplanetary Disks

    NASA Technical Reports Server (NTRS)

    Capuder, Lawrence F.. Jr.

    2011-01-01

    We worked with a Monte Carlo radiative transfer code to simulate the transfer of energy through protoplanetary disks, where planet formation occurs. The code tracks photons from the star into the disk, through scattering, absorption and re-emission, until they escape to infinity. High optical depths in the disk interior dominate the computation time because it takes the photon packet many interactions to get out of the region. High optical depths also receive few photons and therefore do not have well-estimated temperatures. We applied a modified random walk (MRW) approximation for treating high optical depths and to speed up the Monte Carlo calculations. The MRW is implemented by calculating the average number of interactions the photon packet will undergo in diffusing within a single cell of the spatial grid and then updating the packet position, packet frequencies, and local radiation absorption rate appropriately. The MRW approximation was then tested for accuracy and speed compared to the original code. We determined that MRW provides accurate answers to Monte Carlo Radiative transfer simulations. The speed gained from using MRW is shown to be proportional to the disk mass.

  5. CFD and Neutron codes coupling on a computational platform

    NASA Astrophysics Data System (ADS)

    Cerroni, D.; Da Vià, R.; Manservisi, S.; Menghini, F.; Scardovelli, R.

    2017-01-01

    In this work we investigate the thermal-hydraulics behavior of a PWR nuclear reactor core, evaluating the power generation distribution taking into account the local temperature field. The temperature field, evaluated using a self-developed CFD module, is exchanged with a neutron code, DONJON-DRAGON, which updates the macroscopic cross sections and evaluates the new neutron flux. From the updated neutron flux the new peak factor is evaluated and the new temperature field is computed. The exchange of data between the two codes is obtained thanks to their inclusion into the computational platform SALOME, an open-source tools developed by the collaborative project NURESAFE. The numerical libraries MEDmem, included into the SALOME platform, are used in this work, for the projection of computational fields from one problem to another. The two problems are driven by a common supervisor that can access to the computational fields of both systems, in every time step, the temperature field, is extracted from the CFD problem and set into the neutron problem. After this iteration the new power peak factor is projected back into the CFD problem and the new time step can be computed. Several computational examples, where both neutron and thermal-hydraulics quantities are parametrized, are finally reported in this work.

  6. Development and application of computational aerothermodynamics flowfield computer codes

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj

    1993-01-01

    Computations are presented for one-dimensional, strong shock waves that are typical of those that form in front of a reentering spacecraft. The fluid mechanics and thermochemistry are modeled using two different approaches. The first employs traditional continuum techniques in solving the Navier-Stokes equations. The second-approach employs a particle simulation technique (the direct simulation Monte Carlo method, DSMC). The thermochemical models employed in these two techniques are quite different. The present investigation presents an evaluation of thermochemical models for nitrogen under hypersonic flow conditions. Four separate cases are considered. The cases are governed, respectively, by the following: vibrational relaxation; weak dissociation; strong dissociation; and weak ionization. In near-continuum, hypersonic flow, the nonequilibrium thermochemical models employed in continuum and particle simulations produce nearly identical solutions. Further, the two approaches are evaluated successfully against available experimental data for weakly and strongly dissociating flows.

  7. Education:=Coding+Aesthetics; Aesthetic Understanding, Computer Science Education, and Computational Thinking

    ERIC Educational Resources Information Center

    Good, Jonathon; Keenan, Sarah; Mishra, Punya

    2016-01-01

    The popular press is rife with examples of how students in the United States and around the globe are learning to program, make, and tinker. The Hour of Code, maker-education, and similar efforts are advocating that more students be exposed to principles found within computer science. We propose an expansion beyond simply teaching computational…

  8. Monte Carlo Modeling of the Initial Radiation Emitted by a Nuclear Device in the National Capital Region

    DTIC Science & Technology

    2013-07-01

    also simulated in the models. Data was derived from calculations using the three-dimensional Monte Carlo radiation transport code MCNP (Monte Carlo N...32  B.  MCNP PHYSICS OPTIONS ......................................................................................... 33  C.  HAZUS...input deck’) for the MCNP , Monte Carlo N-Particle, radiation transport code. MCNP is a general-purpose code designed to simulate neutron, photon

  9. Comparison of two computer codes for crack growth analysis: NASCRAC Versus NASA/FLAGRO

    NASA Technical Reports Server (NTRS)

    Stallworth, R.; Meyers, C. A.; Stinson, H. C.

    1989-01-01

    Results are presented from the comparison study of two computer codes for crack growth analysis - NASCRAC and NASA/FLAGRO. The two computer codes gave compatible conservative results when the part through crack analysis solutions were analyzed versus experimental test data. Results showed good correlation between the codes for the through crack at a lug solution. For the through crack at a lug solution, NASA/FLAGRO gave the most conservative results.

  10. A three-dimensional spacecraft-charging computer code

    NASA Technical Reports Server (NTRS)

    Rubin, A. G.; Katz, I.; Mandell, M.; Schnuelle, G.; Steen, P.; Parks, D.; Cassidy, J.; Roche, J.

    1980-01-01

    A computer code is described which simulates the interaction of the space environment with a satellite at geosynchronous altitude. Employing finite elements, a three-dimensional satellite model has been constructed with more than 1000 surface cells and 15 different surface materials. Free space around the satellite is modeled by nesting grids within grids. Applications of this NASA Spacecraft Charging Analyzer Program (NASCAP) code to the study of a satellite photosheath and the differential charging of the SCATHA (satellite charging at high altitudes) satellite in eclipse and in sunlight are discussed. In order to understand detector response when the satellite is charged, the code is used to trace the trajectories of particles reaching the SCATHA detectors. Particle trajectories from positive and negative emitters on SCATHA also are traced to determine the location of returning particles, to estimate the escaping flux, and to simulate active control of satellite potentials.

  11. Fast multipurpose Monte Carlo simulation for proton therapy using multi- and many-core CPU architectures.

    PubMed

    Souris, Kevin; Lee, John Aldo; Sterpin, Edmond

    2016-04-01

    Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods hinders their use in clinical routine. This work aims to develop a fast multipurpose Monte Carlo simulation tool for proton therapy using massively parallel central processing unit (CPU) architectures. A new Monte Carlo, called MCsquare (many-core Monte Carlo), has been designed and optimized for the last generation of Intel Xeon processors and Intel Xeon Phi coprocessors. These massively parallel architectures offer the flexibility and the computational power suitable to MC methods. The class-II condensed history algorithm of MCsquare provides a fast and yet accurate method of simulating heavy charged particles such as protons, deuterons, and alphas inside voxelized geometries. Hard ionizations, with energy losses above a user-specified threshold, are simulated individually while soft events are regrouped in a multiple scattering theory. Elastic and inelastic nuclear interactions are sampled from ICRU 63 differential cross sections, thereby allowing for the computation of prompt gamma emission profiles. MCsquare has been benchmarked with the gate/geant4 Monte Carlo application for homogeneous and heterogeneous geometries. Comparisons with gate/geant4 for various geometries show deviations within 2%-1 mm. In spite of the limited memory bandwidth of the coprocessor simulation time is below 25 s for 10(7) primary 200 MeV protons in average soft tissues using all Xeon Phi and CPU resources embedded in a single desktop unit. MCsquare exploits the flexibility of CPU architectures to provide a multipurpose MC simulation tool. Optimized code enables the use of accurate MC calculation within a reasonable computation time, adequate for clinical practice. MCsquare also simulates prompt gamma emission and can thus be used also for in vivo range verification.

  12. Fast multipurpose Monte Carlo simulation for proton therapy using multi- and many-core CPU architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souris, Kevin, E-mail: kevin.souris@uclouvain.be; Lee, John Aldo; Sterpin, Edmond

    2016-04-15

    Purpose: Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods hinders their use in clinical routine. This work aims to develop a fast multipurpose Monte Carlo simulation tool for proton therapy using massively parallel central processing unit (CPU) architectures. Methods: A new Monte Carlo, called MCsquare (many-core Monte Carlo), has been designed and optimized for the last generation of Intel Xeon processors and Intel Xeon Phi coprocessors. These massively parallel architectures offer the flexibility and the computational power suitable to MC methods. The class-II condensed history algorithmmore » of MCsquare provides a fast and yet accurate method of simulating heavy charged particles such as protons, deuterons, and alphas inside voxelized geometries. Hard ionizations, with energy losses above a user-specified threshold, are simulated individually while soft events are regrouped in a multiple scattering theory. Elastic and inelastic nuclear interactions are sampled from ICRU 63 differential cross sections, thereby allowing for the computation of prompt gamma emission profiles. MCsquare has been benchmarked with the GATE/GEANT4 Monte Carlo application for homogeneous and heterogeneous geometries. Results: Comparisons with GATE/GEANT4 for various geometries show deviations within 2%–1 mm. In spite of the limited memory bandwidth of the coprocessor simulation time is below 25 s for 10{sup 7} primary 200 MeV protons in average soft tissues using all Xeon Phi and CPU resources embedded in a single desktop unit. Conclusions: MCsquare exploits the flexibility of CPU architectures to provide a multipurpose MC simulation tool. Optimized code enables the use of accurate MC calculation within a reasonable computation time, adequate for clinical practice. MCsquare also simulates prompt gamma emission and can thus be used also for in vivo range verification.« less

  13. Monte Carlo calculations of initial energies of electrons in water irradiated by photons with energies up to 1GeV.

    PubMed

    Todo, A S; Hiromoto, G; Turner, J E; Hamm, R N; Wright, H A

    1982-12-01

    Previous calculations of the initial energies of electrons produced in water irradiated by photons are extended to 1 GeV by including pair and triplet production. Calculations were performed with the Monte Carlo computer code PHOEL-3, which replaces the earlier code, PHOEL-2. Tables of initial electron energies are presented for single interactions of monoenergetic photons at a number of energies from 10 keV to 1 GeV. These tables can be used to compute kerma in water irradiated by photons with arbitrary energy spectra to 1 GeV. In addition, separate tables of Compton-and pair-electron spectra are given over this energy range. The code PHOEL-3 is available from the Radiation Shielding Information Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830.

  14. Benchmark of neutron production cross sections with Monte Carlo codes

    NASA Astrophysics Data System (ADS)

    Tsai, Pi-En; Lai, Bo-Lun; Heilbronn, Lawrence H.; Sheu, Rong-Jiun

    2018-02-01

    Aiming to provide critical information in the fields of heavy ion therapy, radiation shielding in space, and facility design for heavy-ion research accelerators, the physics models in three Monte Carlo simulation codes - PHITS, FLUKA, and MCNP6, were systematically benchmarked with comparisons to fifteen sets of experimental data for neutron production cross sections, which include various combinations of 12C, 20Ne, 40Ar, 84Kr and 132Xe projectiles and natLi, natC, natAl, natCu, and natPb target nuclides at incident energies between 135 MeV/nucleon and 600 MeV/nucleon. For neutron energies above 60% of the specific projectile energy per nucleon, the LAQGMS03.03 in MCNP6, the JQMD/JQMD-2.0 in PHITS, and the RQMD-2.4 in FLUKA all show a better agreement with data in heavy-projectile systems than with light-projectile systems, suggesting that the collective properties of projectile nuclei and nucleon interactions in the nucleus should be considered for light projectiles. For intermediate-energy neutrons whose energies are below the 60% projectile energy per nucleon and above 20 MeV, FLUKA is likely to overestimate the secondary neutron production, while MCNP6 tends towards underestimation. PHITS with JQMD shows a mild tendency for underestimation, but the JQMD-2.0 model with a modified physics description for central collisions generally improves the agreement between data and calculations. For low-energy neutrons (below 20 MeV), which are dominated by the evaporation mechanism, PHITS (which uses GEM linked with JQMD and JQMD-2.0) and FLUKA both tend to overestimate the production cross section, whereas MCNP6 tends to underestimate more systems than to overestimate. For total neutron production cross sections, the trends of the benchmark results over the entire energy range are similar to the trends seen in the dominate energy region. Also, the comparison of GEM coupled with either JQMD or JQMD-2.0 in the PHITS code indicates that the model used to describe the first

  15. Development of a model and computer code to describe solar grade silicon production processes

    NASA Technical Reports Server (NTRS)

    Gould, R. K.; Srivastava, R.

    1979-01-01

    Two computer codes were developed for describing flow reactors in which high purity, solar grade silicon is produced via reduction of gaseous silicon halides. The first is the CHEMPART code, an axisymmetric, marching code which treats two phase flows with models describing detailed gas-phase chemical kinetics, particle formation, and particle growth. It can be used to described flow reactors in which reactants, mix, react, and form a particulate phase. Detailed radial gas-phase composition, temperature, velocity, and particle size distribution profiles are computed. Also, deposition of heat, momentum, and mass (either particulate or vapor) on reactor walls is described. The second code is a modified version of the GENMIX boundary layer code which is used to compute rates of heat, momentum, and mass transfer to the reactor walls. This code lacks the detailed chemical kinetics and particle handling features of the CHEMPART code but has the virtue of running much more rapidly than CHEMPART, while treating the phenomena occurring in the boundary layer in more detail.

  16. Instrumentation for Verification of Bomb Damage Repair Computer Code.

    DTIC Science & Technology

    1981-09-01

    record the data, a conventional 14-track FM analog tape recorder was retained. The unknown factors of signal duration, test duration, and signal ...Kirtland Air Force Base computer centers for more detailed analyses. In addition to the analog recorder, signal conditioning equipment and amplifiers were...necessary to allow high quality data to be recorded. An Interrange Instrumentation Group (IRIG) code generator/reader placed a coded signal on the tape

  17. An Object-Oriented Computer Code for Aircraft Engine Weight Estimation

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Naylor, Bret A.

    2009-01-01

    Reliable engine-weight estimation at the conceptual design stage is critical to the development of new aircraft engines. It helps to identify the best engine concept amongst several candidates. At NASA Glenn Research Center (GRC), the Weight Analysis of Turbine Engines (WATE) computer code, originally developed by Boeing Aircraft, has been used to estimate the engine weight of various conceptual engine designs. The code, written in FORTRAN, was originally developed for NASA in 1979. Since then, substantial improvements have been made to the code to improve the weight calculations for most of the engine components. Most recently, to improve the maintainability and extensibility of WATE, the FORTRAN code has been converted into an object-oriented version. The conversion was done within the NASA's NPSS (Numerical Propulsion System Simulation) framework. This enables WATE to interact seamlessly with the thermodynamic cycle model which provides component flow data such as airflows, temperatures, and pressures, etc., that are required for sizing the components and weight calculations. The tighter integration between the NPSS and WATE would greatly enhance system-level analysis and optimization capabilities. It also would facilitate the enhancement of the WATE code for next-generation aircraft and space propulsion systems. In this paper, the architecture of the object-oriented WATE code (or WATE++) is described. Both the FORTRAN and object-oriented versions of the code are employed to compute the dimensions and weight of a 300-passenger aircraft engine (GE90 class). Both versions of the code produce essentially identical results as should be the case.

  18. An Object-oriented Computer Code for Aircraft Engine Weight Estimation

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Naylor, Bret A.

    2008-01-01

    Reliable engine-weight estimation at the conceptual design stage is critical to the development of new aircraft engines. It helps to identify the best engine concept amongst several candidates. At NASA Glenn (GRC), the Weight Analysis of Turbine Engines (WATE) computer code, originally developed by Boeing Aircraft, has been used to estimate the engine weight of various conceptual engine designs. The code, written in FORTRAN, was originally developed for NASA in 1979. Since then, substantial improvements have been made to the code to improve the weight calculations for most of the engine components. Most recently, to improve the maintainability and extensibility of WATE, the FORTRAN code has been converted into an object-oriented version. The conversion was done within the NASA s NPSS (Numerical Propulsion System Simulation) framework. This enables WATE to interact seamlessly with the thermodynamic cycle model which provides component flow data such as airflows, temperatures, and pressures, etc. that are required for sizing the components and weight calculations. The tighter integration between the NPSS and WATE would greatly enhance system-level analysis and optimization capabilities. It also would facilitate the enhancement of the WATE code for next-generation aircraft and space propulsion systems. In this paper, the architecture of the object-oriented WATE code (or WATE++) is described. Both the FORTRAN and object-oriented versions of the code are employed to compute the dimensions and weight of a 300- passenger aircraft engine (GE90 class). Both versions of the code produce essentially identical results as should be the case. Keywords: NASA, aircraft engine, weight, object-oriented

  19. Comparison of DAC and MONACO DSMC Codes with Flat Plate Simulation

    NASA Technical Reports Server (NTRS)

    Padilla, Jose F.

    2010-01-01

    Various implementations of the direct simulation Monte Carlo (DSMC) method exist in academia, government and industry. By comparing implementations, deficiencies and merits of each can be discovered. This document reports comparisons between DSMC Analysis Code (DAC) and MONACO. DAC is NASA's standard DSMC production code and MONACO is a research DSMC code developed in academia. These codes have various differences; in particular, they employ distinct computational grid definitions. In this study, DAC and MONACO are compared by having each simulate a blunted flat plate wind tunnel test, using an identical volume mesh. Simulation expense and DSMC metrics are compared. In addition, flow results are compared with available laboratory data. Overall, this study revealed that both codes, excluding grid adaptation, performed similarly. For parallel processing, DAC was generally more efficient. As expected, code accuracy was mainly dependent on physical models employed.

  20. Analysis of the Length of Braille Texts in English Braille American Edition, the Nemeth Code, and Computer Braille Code versus the Unified English Braille Code

    ERIC Educational Resources Information Center

    Knowlton, Marie; Wetzel, Robin

    2006-01-01

    This study compared the length of text in English Braille American Edition, the Nemeth code, and the computer braille code with the Unified English Braille Code (UEBC)--also known as Unified English Braille (UEB). The findings indicate that differences in the length of text are dependent on the type of material that is transcribed and the grade…

  1. QMC Goes BOINC: Using Public Resource Computing to Perform Quantum Monte Carlo Calculations

    NASA Astrophysics Data System (ADS)

    Rainey, Cameron; Engelhardt, Larry; Schröder, Christian; Hilbig, Thomas

    2008-10-01

    Theoretical modeling of magnetic molecules traditionally involves the diagonalization of quantum Hamiltonian matrices. However, as the complexity of these molecules increases, the matrices become so large that this process becomes unusable. An additional challenge to this modeling is that many repetitive calculations must be performed, further increasing the need for computing power. Both of these obstacles can be overcome by using a quantum Monte Carlo (QMC) method and a distributed computing project. We have recently implemented a QMC method within the Spinhenge@home project, which is a Public Resource Computing (PRC) project where private citizens allow part-time usage of their PCs for scientific computing. The use of PRC for scientific computing will be described in detail, as well as how you can contribute to the project. See, e.g., L. Engelhardt, et. al., Angew. Chem. Int. Ed. 47, 924 (2008). C. Schröoder, in Distributed & Grid Computing - Science Made Transparent for Everyone. Principles, Applications and Supporting Communities. (Weber, M.H.W., ed., 2008). Project URL: http://spin.fh-bielefeld.de

  2. Implementation of tetrahedral-mesh geometry in Monte Carlo radiation transport code PHITS

    NASA Astrophysics Data System (ADS)

    Furuta, Takuya; Sato, Tatsuhiko; Han, Min Cheol; Yeom, Yeon Soo; Kim, Chan Hyeong; Brown, Justin L.; Bolch, Wesley E.

    2017-06-01

    A new function to treat tetrahedral-mesh geometry was implemented in the particle and heavy ion transport code systems. To accelerate the computational speed in the transport process, an original algorithm was introduced to initially prepare decomposition maps for the container box of the tetrahedral-mesh geometry. The computational performance was tested by conducting radiation transport simulations of 100 MeV protons and 1 MeV photons in a water phantom represented by tetrahedral mesh. The simulation was repeated with varying number of meshes and the required computational times were then compared with those of the conventional voxel representation. Our results show that the computational costs for each boundary crossing of the region mesh are essentially equivalent for both representations. This study suggests that the tetrahedral-mesh representation offers not only a flexible description of the transport geometry but also improvement of computational efficiency for the radiation transport. Due to the adaptability of tetrahedrons in both size and shape, dosimetrically equivalent objects can be represented by tetrahedrons with a much fewer number of meshes as compared its voxelized representation. Our study additionally included dosimetric calculations using a computational human phantom. A significant acceleration of the computational speed, about 4 times, was confirmed by the adoption of a tetrahedral mesh over the traditional voxel mesh geometry.

  3. Implementation of tetrahedral-mesh geometry in Monte Carlo radiation transport code PHITS.

    PubMed

    Furuta, Takuya; Sato, Tatsuhiko; Han, Min Cheol; Yeom, Yeon Soo; Kim, Chan Hyeong; Brown, Justin L; Bolch, Wesley E

    2017-06-21

    A new function to treat tetrahedral-mesh geometry was implemented in the particle and heavy ion transport code systems. To accelerate the computational speed in the transport process, an original algorithm was introduced to initially prepare decomposition maps for the container box of the tetrahedral-mesh geometry. The computational performance was tested by conducting radiation transport simulations of 100 MeV protons and 1 MeV photons in a water phantom represented by tetrahedral mesh. The simulation was repeated with varying number of meshes and the required computational times were then compared with those of the conventional voxel representation. Our results show that the computational costs for each boundary crossing of the region mesh are essentially equivalent for both representations. This study suggests that the tetrahedral-mesh representation offers not only a flexible description of the transport geometry but also improvement of computational efficiency for the radiation transport. Due to the adaptability of tetrahedrons in both size and shape, dosimetrically equivalent objects can be represented by tetrahedrons with a much fewer number of meshes as compared its voxelized representation. Our study additionally included dosimetric calculations using a computational human phantom. A significant acceleration of the computational speed, about 4 times, was confirmed by the adoption of a tetrahedral mesh over the traditional voxel mesh geometry.

  4. Diffusion Monte Carlo approach versus adiabatic computation for local Hamiltonians

    NASA Astrophysics Data System (ADS)

    Bringewatt, Jacob; Dorland, William; Jordan, Stephen P.; Mink, Alan

    2018-02-01

    Most research regarding quantum adiabatic optimization has focused on stoquastic Hamiltonians, whose ground states can be expressed with only real non-negative amplitudes and thus for whom destructive interference is not manifest. This raises the question of whether classical Monte Carlo algorithms can efficiently simulate quantum adiabatic optimization with stoquastic Hamiltonians. Recent results have given counterexamples in which path-integral and diffusion Monte Carlo fail to do so. However, most adiabatic optimization algorithms, such as for solving MAX-k -SAT problems, use k -local Hamiltonians, whereas our previous counterexample for diffusion Monte Carlo involved n -body interactions. Here we present a 6-local counterexample which demonstrates that even for these local Hamiltonians there are cases where diffusion Monte Carlo cannot efficiently simulate quantum adiabatic optimization. Furthermore, we perform empirical testing of diffusion Monte Carlo on a standard well-studied class of permutation-symmetric tunneling problems and similarly find large advantages for quantum optimization over diffusion Monte Carlo.

  5. PLASIM: A computer code for simulating charge exchange plasma propagation

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.; Deininger, W. D.; Winder, D. R.; Kaufman, H. R.

    1982-01-01

    The propagation of the charge exchange plasma for an electrostatic ion thruster is crucial in determining the interaction of that plasma with the associated spacecraft. A model that describes this plasma and its propagation is described, together with a computer code based on this model. The structure and calling sequence of the code, named PLASIM, is described. An explanation of the program's input and output is included, together with samples of both. The code is written in ANSI Standard FORTRAN.

  6. A fully-implicit Particle-In-Cell Monte Carlo Collision code for the simulation of inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Mattei, S.; Nishida, K.; Onai, M.; Lettry, J.; Tran, M. Q.; Hatayama, A.

    2017-12-01

    We present a fully-implicit electromagnetic Particle-In-Cell Monte Carlo collision code, called NINJA, written for the simulation of inductively coupled plasmas. NINJA employs a kinetic enslaved Jacobian-Free Newton Krylov method to solve self-consistently the interaction between the electromagnetic field generated by the radio-frequency coil and the plasma response. The simulated plasma includes a kinetic description of charged and neutral species as well as the collision processes between them. The algorithm allows simulations with cell sizes much larger than the Debye length and time steps in excess of the Courant-Friedrichs-Lewy condition whilst preserving the conservation of the total energy. The code is applied to the simulation of the plasma discharge of the Linac4 H- ion source at CERN. Simulation results of plasma density, temperature and EEDF are discussed and compared with optical emission spectroscopy measurements. A systematic study of the energy conservation as a function of the numerical parameters is presented.

  7. Study of SOL in DIII-D tokamak with SOLPS suite of codes.

    NASA Astrophysics Data System (ADS)

    Pankin, Alexei; Bateman, Glenn; Brennan, Dylan; Coster, David; Hogan, John; Kritz, Arnold; Kukushkin, Andrey; Schnack, Dalton; Snyder, Phil

    2005-10-01

    The scrape-of-layer (SOL) region in DIII-D tokamak is studied with the SOLPS integrated suite of codes. The SOLPS package includes the 3D multi-species Monte-Carlo neutral code EIRINE and 2D multi-fluid code B2. The EIRINE and B2 codes are cross-coupled through B2-EIRINE interface. The results of SOLPS simulations are used in the integrated modeling of the plasma edge in DIII-D tokamak with the ASTRA transport code. Parameterized dependences for neutral particle fluxes that are computed with the SOLPS code are implemented in a model for the H-mode pedestal and ELMs [1] in the ASTRA code. The effects of neutrals on the H-mode pedestal and ELMs are studied in this report. [1] A. Y. Pankin, I. Voitsekhovitch, G. Bateman, et al., Plasma Phys. Control. Fusion 47, 483 (2005).

  8. QMCPACK: an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids

    NASA Astrophysics Data System (ADS)

    Kim, Jeongnim; Baczewski, Andrew D.; Beaudet, Todd D.; Benali, Anouar; Chandler Bennett, M.; Berrill, Mark A.; Blunt, Nick S.; Josué Landinez Borda, Edgar; Casula, Michele; Ceperley, David M.; Chiesa, Simone; Clark, Bryan K.; Clay, Raymond C., III; Delaney, Kris T.; Dewing, Mark; Esler, Kenneth P.; Hao, Hongxia; Heinonen, Olle; Kent, Paul R. C.; Krogel, Jaron T.; Kylänpää, Ilkka; Li, Ying Wai; Lopez, M. Graham; Luo, Ye; Malone, Fionn D.; Martin, Richard M.; Mathuriya, Amrita; McMinis, Jeremy; Melton, Cody A.; Mitas, Lubos; Morales, Miguel A.; Neuscamman, Eric; Parker, William D.; Pineda Flores, Sergio D.; Romero, Nichols A.; Rubenstein, Brenda M.; Shea, Jacqueline A. R.; Shin, Hyeondeok; Shulenburger, Luke; Tillack, Andreas F.; Townsend, Joshua P.; Tubman, Norm M.; Van Der Goetz, Brett; Vincent, Jordan E.; ChangMo Yang, D.; Yang, Yubo; Zhang, Shuai; Zhao, Luning

    2018-05-01

    QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater–Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.

  9. QMCPACK: an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids.

    PubMed

    Kim, Jeongnim; Baczewski, Andrew T; Beaudet, Todd D; Benali, Anouar; Bennett, M Chandler; Berrill, Mark A; Blunt, Nick S; Borda, Edgar Josué Landinez; Casula, Michele; Ceperley, David M; Chiesa, Simone; Clark, Bryan K; Clay, Raymond C; Delaney, Kris T; Dewing, Mark; Esler, Kenneth P; Hao, Hongxia; Heinonen, Olle; Kent, Paul R C; Krogel, Jaron T; Kylänpää, Ilkka; Li, Ying Wai; Lopez, M Graham; Luo, Ye; Malone, Fionn D; Martin, Richard M; Mathuriya, Amrita; McMinis, Jeremy; Melton, Cody A; Mitas, Lubos; Morales, Miguel A; Neuscamman, Eric; Parker, William D; Pineda Flores, Sergio D; Romero, Nichols A; Rubenstein, Brenda M; Shea, Jacqueline A R; Shin, Hyeondeok; Shulenburger, Luke; Tillack, Andreas F; Townsend, Joshua P; Tubman, Norm M; Van Der Goetz, Brett; Vincent, Jordan E; Yang, D ChangMo; Yang, Yubo; Zhang, Shuai; Zhao, Luning

    2018-05-16

    QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program's capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.

  10. Convergence acceleration of the Proteus computer code with multigrid methods

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.; Ibraheem, S. O.

    1995-01-01

    This report presents the results of a study to implement convergence acceleration techniques based on the multigrid concept in the two-dimensional and three-dimensional versions of the Proteus computer code. The first section presents a review of the relevant literature on the implementation of the multigrid methods in computer codes for compressible flow analysis. The next two sections present detailed stability analysis of numerical schemes for solving the Euler and Navier-Stokes equations, based on conventional von Neumann analysis and the bi-grid analysis, respectively. The next section presents details of the computational method used in the Proteus computer code. Finally, the multigrid implementation and applications to several two-dimensional and three-dimensional test problems are presented. The results of the present study show that the multigrid method always leads to a reduction in the number of iterations (or time steps) required for convergence. However, there is an overhead associated with the use of multigrid acceleration. The overhead is higher in 2-D problems than in 3-D problems, thus overall multigrid savings in CPU time are in general better in the latter. Savings of about 40-50 percent are typical in 3-D problems, but they are about 20-30 percent in large 2-D problems. The present multigrid method is applicable to steady-state problems and is therefore ineffective in problems with inherently unstable solutions.

  11. TAIR- TRANSONIC AIRFOIL ANALYSIS COMPUTER CODE

    NASA Technical Reports Server (NTRS)

    Dougherty, F. C.

    1994-01-01

    The Transonic Airfoil analysis computer code, TAIR, was developed to employ a fast, fully implicit algorithm to solve the conservative full-potential equation for the steady transonic flow field about an arbitrary airfoil immersed in a subsonic free stream. The full-potential formulation is considered exact under the assumptions of irrotational, isentropic, and inviscid flow. These assumptions are valid for a wide range of practical transonic flows typical of modern aircraft cruise conditions. The primary features of TAIR include: a new fully implicit iteration scheme which is typically many times faster than classical successive line overrelaxation algorithms; a new, reliable artifical density spatial differencing scheme treating the conservative form of the full-potential equation; and a numerical mapping procedure capable of generating curvilinear, body-fitted finite-difference grids about arbitrary airfoil geometries. Three aspects emphasized during the development of the TAIR code were reliability, simplicity, and speed. The reliability of TAIR comes from two sources: the new algorithm employed and the implementation of effective convergence monitoring logic. TAIR achieves ease of use by employing a "default mode" that greatly simplifies code operation, especially by inexperienced users, and many useful options including: several airfoil-geometry input options, flexible user controls over program output, and a multiple solution capability. The speed of the TAIR code is attributed to the new algorithm and the manner in which it has been implemented. Input to the TAIR program consists of airfoil coordinates, aerodynamic and flow-field convergence parameters, and geometric and grid convergence parameters. The airfoil coordinates for many airfoil shapes can be generated in TAIR from just a few input parameters. Most of the other input parameters have default values which allow the user to run an analysis in the default mode by specifing only a few input parameters

  12. SOURCELESS STARTUP. A MACHINE CODE FOR COMPUTING LOW-SOURCE REACTOR STARTUPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacMillan, D.B.

    1960-06-01

    >A revision to the sourceless start-up code is presented. The code solves a system of differential equations encountered in computing the probability distribution of activity at an observed power level during reactor start-up from a very low source level. (J.R.D.)

  13. User's manual for a material transport code on the Octopus Computer Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naymik, T.G.; Mendez, G.D.

    1978-09-15

    A code to simulate material transport through porous media was developed at Oak Ridge National Laboratory. This code has been modified and adapted for use at Lawrence Livermore Laboratory. This manual, in conjunction with report ORNL-4928, explains the input, output, and execution of the code on the Octopus Computer Network.

  14. hybrid\\scriptsize{{MANTIS}}: a CPU-GPU Monte Carlo method for modeling indirect x-ray detectors with columnar scintillators

    NASA Astrophysics Data System (ADS)

    Sharma, Diksha; Badal, Andreu; Badano, Aldo

    2012-04-01

    The computational modeling of medical imaging systems often requires obtaining a large number of simulated images with low statistical uncertainty which translates into prohibitive computing times. We describe a novel hybrid approach for Monte Carlo simulations that maximizes utilization of CPUs and GPUs in modern workstations. We apply the method to the modeling of indirect x-ray detectors using a new and improved version of the code \\scriptsize{{MANTIS}}, an open source software tool used for the Monte Carlo simulations of indirect x-ray imagers. We first describe a GPU implementation of the physics and geometry models in fast\\scriptsize{{DETECT}}2 (the optical transport model) and a serial CPU version of the same code. We discuss its new features like on-the-fly column geometry and columnar crosstalk in relation to the \\scriptsize{{MANTIS}} code, and point out areas where our model provides more flexibility for the modeling of realistic columnar structures in large area detectors. Second, we modify \\scriptsize{{PENELOPE}} (the open source software package that handles the x-ray and electron transport in \\scriptsize{{MANTIS}}) to allow direct output of location and energy deposited during x-ray and electron interactions occurring within the scintillator. This information is then handled by optical transport routines in fast\\scriptsize{{DETECT}}2. A load balancer dynamically allocates optical transport showers to the GPU and CPU computing cores. Our hybrid\\scriptsize{{MANTIS}} approach achieves a significant speed-up factor of 627 when compared to \\scriptsize{{MANTIS}} and of 35 when compared to the same code running only in a CPU instead of a GPU. Using hybrid\\scriptsize{{MANTIS}}, we successfully hide hours of optical transport time by running it in parallel with the x-ray and electron transport, thus shifting the computational bottleneck from optical to x-ray transport. The new code requires much less memory than \\scriptsize{{MANTIS}} and, as a result

  15. Quantum speedup of Monte Carlo methods.

    PubMed

    Montanaro, Ashley

    2015-09-08

    Monte Carlo methods use random sampling to estimate numerical quantities which are hard to compute deterministically. One important example is the use in statistical physics of rapidly mixing Markov chains to approximately compute partition functions. In this work, we describe a quantum algorithm which can accelerate Monte Carlo methods in a very general setting. The algorithm estimates the expected output value of an arbitrary randomized or quantum subroutine with bounded variance, achieving a near-quadratic speedup over the best possible classical algorithm. Combining the algorithm with the use of quantum walks gives a quantum speedup of the fastest known classical algorithms with rigorous performance bounds for computing partition functions, which use multiple-stage Markov chain Monte Carlo techniques. The quantum algorithm can also be used to estimate the total variation distance between probability distributions efficiently.

  16. Computational techniques in gamma-ray skyshine analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, D.L.

    1988-12-01

    Two computer codes were developed to analyze gamma-ray skyshine, the scattering of gamma photons by air molecules. A review of previous gamma-ray skyshine studies discusses several Monte Carlo codes, programs using a single-scatter model, and the MicroSkyshine program for microcomputers. A benchmark gamma-ray skyshine experiment performed at Kansas State University is also described. A single-scatter numerical model was presented which traces photons from the source to their first scatter, then applies a buildup factor along a direct path from the scattering point to a detector. The FORTRAN code SKY, developed with this model before the present study, was modified tomore » use Gauss quadrature, recent photon attenuation data and a more accurate buildup approximation. The resulting code, SILOGP, computes response from a point photon source on the axis of a silo, with and without concrete shielding over the opening. Another program, WALLGP, was developed using the same model to compute response from a point gamma source behind a perfectly absorbing wall, with and without shielding overhead. 29 refs., 48 figs., 13 tabs.« less

  17. Selection of a computer code for Hanford low-level waste engineered-system performance assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGrail, B.P.; Mahoney, L.A.

    Planned performance assessments for the proposed disposal of low-level waste (LLW) glass produced from remediation of wastes stored in underground tanks at Hanford, Washington will require calculations of radionuclide release rates from the subsurface disposal facility. These calculations will be done with the aid of computer codes. Currently available computer codes were ranked in terms of the feature sets implemented in the code that match a set of physical, chemical, numerical, and functional capabilities needed to assess release rates from the engineered system. The needed capabilities were identified from an analysis of the important physical and chemical process expected tomore » affect LLW glass corrosion and the mobility of radionuclides. The highest ranked computer code was found to be the ARES-CT code developed at PNL for the US Department of Energy for evaluation of and land disposal sites.« less

  18. A code for optically thick and hot photoionized media

    NASA Astrophysics Data System (ADS)

    Dumont, A.-M.; Abrassart, A.; Collin, S.

    2000-05-01

    We describe a code designed for hot media (T >= a few 104 K), optically thick to Compton scattering. It computes the structure of a plane-parallel slab of gas in thermal and ionization equilibrium, illuminated on one or on both sides by a given spectrum. Contrary to the other photoionization codes, it solves the transfer of the continuum and of the lines in a two stream approximation, without using the local escape probability formalism to approximate the line transfer. We stress the importance of taking into account the returning flux even for small column densities (1022 cm-2), and we show that the escape probability approximation can lead to strong errors in the thermal and ionization structure, as well as in the emitted spectrum, for a Thomson thickness larger than a few tenths. The transfer code is coupled with a Monte Carlo code which allows to take into account Compton and inverse Compton diffusions, and to compute the spectrum emitted up to MeV energies, in any geometry. Comparisons with cloudy show that it gives similar results for small column densities. Several applications are mentioned.

  19. Additional extensions to the NASCAP computer code, volume 1

    NASA Technical Reports Server (NTRS)

    Mandell, M. J.; Katz, I.; Stannard, P. R.

    1981-01-01

    Extensions and revisions to a computer code that comprehensively analyzes problems of spacecraft charging (NASCAP) are documented. Using a fully three dimensional approach, it can accurately predict spacecraft potentials under a variety of conditions. Among the extensions are a multiple electron/ion gun test tank capability, and the ability to model anisotropic and time dependent space environments. Also documented are a greatly extended MATCHG program and the preliminary version of NASCAP/LEO. The interactive MATCHG code was developed into an extremely powerful tool for the study of material-environment interactions. The NASCAP/LEO, a three dimensional code to study current collection under conditions of high voltages and short Debye lengths, was distributed for preliminary testing.

  20. Development of non-linear finite element computer code

    NASA Technical Reports Server (NTRS)

    Becker, E. B.; Miller, T.

    1985-01-01

    Recent work has shown that the use of separable symmetric functions of the principal stretches can adequately describe the response of certain propellant materials and, further, that a data reduction scheme gives a convenient way of obtaining the values of the functions from experimental data. Based on representation of the energy, a computational scheme was developed that allows finite element analysis of boundary value problems of arbitrary shape and loading. The computational procedure was implemental in a three-dimensional finite element code, TEXLESP-S, which is documented herein.

  1. Verification of a Viscous Computational Aeroacoustics Code using External Verification Analysis

    NASA Technical Reports Server (NTRS)

    Ingraham, Daniel; Hixon, Ray

    2015-01-01

    The External Verification Analysis approach to code verification is extended to solve the three-dimensional Navier-Stokes equations with constant properties, and is used to verify a high-order computational aeroacoustics (CAA) code. After a brief review of the relevant literature, the details of the EVA approach are presented and compared to the similar Method of Manufactured Solutions (MMS). Pseudocode representations of EVA's algorithms are included, along with the recurrence relations needed to construct the EVA solution. The code verification results show that EVA was able to convincingly verify a high-order, viscous CAA code without the addition of MMS-style source terms, or any other modifications to the code.

  2. Verification of a Viscous Computational Aeroacoustics Code Using External Verification Analysis

    NASA Technical Reports Server (NTRS)

    Ingraham, Daniel; Hixon, Ray

    2015-01-01

    The External Verification Analysis approach to code verification is extended to solve the three-dimensional Navier-Stokes equations with constant properties, and is used to verify a high-order computational aeroacoustics (CAA) code. After a brief review of the relevant literature, the details of the EVA approach are presented and compared to the similar Method of Manufactured Solutions (MMS). Pseudocode representations of EVA's algorithms are included, along with the recurrence relations needed to construct the EVA solution. The code verification results show that EVA was able to convincingly verify a high-order, viscous CAA code without the addition of MMS-style source terms, or any other modifications to the code.

  3. Development of MCNPX-ESUT computer code for simulation of neutron/gamma pulse height distribution

    NASA Astrophysics Data System (ADS)

    Abolfazl Hosseini, Seyed; Vosoughi, Naser; Zangian, Mehdi

    2015-05-01

    In this paper, the development of the MCNPX-ESUT (MCNPX-Energy Engineering of Sharif University of Technology) computer code for simulation of neutron/gamma pulse height distribution is reported. Since liquid organic scintillators like NE-213 are well suited and routinely used for spectrometry in mixed neutron/gamma fields, this type of detectors is selected for simulation in the present study. The proposed algorithm for simulation includes four main steps. The first step is the modeling of the neutron/gamma particle transport and their interactions with the materials in the environment and detector volume. In the second step, the number of scintillation photons due to charged particles such as electrons, alphas, protons and carbon nuclei in the scintillator material is calculated. In the third step, the transport of scintillation photons in the scintillator and lightguide is simulated. Finally, the resolution corresponding to the experiment is considered in the last step of the simulation. Unlike the similar computer codes like SCINFUL, NRESP7 and PHRESP, the developed computer code is applicable to both neutron and gamma sources. Hence, the discrimination of neutron and gamma in the mixed fields may be performed using the MCNPX-ESUT computer code. The main feature of MCNPX-ESUT computer code is that the neutron/gamma pulse height simulation may be performed without needing any sort of post processing. In the present study, the pulse height distributions due to a monoenergetic neutron/gamma source in NE-213 detector using MCNPX-ESUT computer code is simulated. The simulated neutron pulse height distributions are validated through comparing with experimental data (Gohil et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 664 (2012) 304-309.) and the results obtained from similar computer codes like SCINFUL, NRESP7 and Geant4. The simulated gamma pulse height distribution for a 137Cs

  4. Computation of Ground-State Properties in Molecular Systems: Back-Propagation with Auxiliary-Field Quantum Monte Carlo.

    PubMed

    Motta, Mario; Zhang, Shiwei

    2017-11-14

    We address the computation of ground-state properties of chemical systems and realistic materials within the auxiliary-field quantum Monte Carlo method. The phase constraint to control the Fermion phase problem requires the random walks in Slater determinant space to be open-ended with branching. This in turn makes it necessary to use back-propagation (BP) to compute averages and correlation functions of operators that do not commute with the Hamiltonian. Several BP schemes are investigated, and their optimization with respect to the phaseless constraint is considered. We propose a modified BP method for the computation of observables in electronic systems, discuss its numerical stability and computational complexity, and assess its performance by computing ground-state properties in several molecular systems, including small organic molecules.

  5. Topics in computational physics

    NASA Astrophysics Data System (ADS)

    Monville, Maura Edelweiss

    Computational Physics spans a broad range of applied fields extending beyond the border of traditional physics tracks. Demonstrated flexibility and capability to switch to a new project, and pick up the basics of the new field quickly, are among the essential requirements for a computational physicist. In line with the above mentioned prerequisites, my thesis described the development and results of two computational projects belonging to two different applied science areas. The first project is a Materials Science application. It is a prescription for an innovative nano-fabrication technique that is built out of two other known techniques. The preliminary results of the simulation of this novel nano-patterning fabrication method show an average improvement, roughly equal to 18%, with respect to the single techniques it draws on. The second project is a Homeland Security application aimed at preventing smuggling of nuclear material at ports of entry. It is concerned with a simulation of an active material interrogation system based on the analysis of induced photo-nuclear reactions. This project consists of a preliminary evaluation of the photo-fission implementation in the more robust radiation transport Monte Carlo codes, followed by the customization and extension of MCNPX, a Monte Carlo code developed in Los Alamos National Laboratory, and MCNP-PoliMi. The final stage of the project consists of testing the interrogation system against some real world scenarios, for the purpose of determining the system's reliability, material discrimination power, and limitations.

  6. Molecular Dynamics, Monte Carlo Simulations, and Langevin Dynamics: A Computational Review

    PubMed Central

    Paquet, Eric; Viktor, Herna L.

    2015-01-01

    Macromolecular structures, such as neuraminidases, hemagglutinins, and monoclonal antibodies, are not rigid entities. Rather, they are characterised by their flexibility, which is the result of the interaction and collective motion of their constituent atoms. This conformational diversity has a significant impact on their physicochemical and biological properties. Among these are their structural stability, the transport of ions through the M2 channel, drug resistance, macromolecular docking, binding energy, and rational epitope design. To assess these properties and to calculate the associated thermodynamical observables, the conformational space must be efficiently sampled and the dynamic of the constituent atoms must be simulated. This paper presents algorithms and techniques that address the abovementioned issues. To this end, a computational review of molecular dynamics, Monte Carlo simulations, Langevin dynamics, and free energy calculation is presented. The exposition is made from first principles to promote a better understanding of the potentialities, limitations, applications, and interrelations of these computational methods. PMID:25785262

  7. QMCPACK : an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids

    DOE PAGES

    Kim, Jeongnim; Baczewski, Andrew T.; Beaudet, Todd D.; ...

    2018-04-19

    QMCPACK is an open source quantum Monte Carlo package for ab-initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wave functions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performancemore » computing architectures, including multicore central processing unit (CPU) and graphical processing unit (GPU) systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://www.qmcpack.org.« less

  8. QMCPACK : an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jeongnim; Baczewski, Andrew T.; Beaudet, Todd D.

    QMCPACK is an open source quantum Monte Carlo package for ab-initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wave functions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performancemore » computing architectures, including multicore central processing unit (CPU) and graphical processing unit (GPU) systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://www.qmcpack.org.« less

  9. Hybrid Monte Carlo/deterministic methods for radiation shielding problems

    NASA Astrophysics Data System (ADS)

    Becker, Troy L.

    For the past few decades, the most common type of deep-penetration (shielding) problem simulated using Monte Carlo methods has been the source-detector problem, in which a response is calculated at a single location in space. Traditionally, the nonanalog Monte Carlo methods used to solve these problems have required significant user input to generate and sufficiently optimize the biasing parameters necessary to obtain a statistically reliable solution. It has been demonstrated that this laborious task can be replaced by automated processes that rely on a deterministic adjoint solution to set the biasing parameters---the so-called hybrid methods. The increase in computational power over recent years has also led to interest in obtaining the solution in a region of space much larger than a point detector. In this thesis, we propose two methods for solving problems ranging from source-detector problems to more global calculations---weight windows and the Transform approach. These techniques employ sonic of the same biasing elements that have been used previously; however, the fundamental difference is that here the biasing techniques are used as elements of a comprehensive tool set to distribute Monte Carlo particles in a user-specified way. The weight window achieves the user-specified Monte Carlo particle distribution by imposing a particular weight window on the system, without altering the particle physics. The Transform approach introduces a transform into the neutron transport equation, which results in a complete modification of the particle physics to produce the user-specified Monte Carlo distribution. These methods are tested in a three-dimensional multigroup Monte Carlo code. For a basic shielding problem and a more realistic one, these methods adequately solved source-detector problems and more global calculations. Furthermore, they confirmed that theoretical Monte Carlo particle distributions correspond to the simulated ones, implying that these methods

  10. Benchmarking and validation of a Geant4-SHADOW Monte Carlo simulation for dose calculations in microbeam radiation therapy.

    PubMed

    Cornelius, Iwan; Guatelli, Susanna; Fournier, Pauline; Crosbie, Jeffrey C; Sanchez Del Rio, Manuel; Bräuer-Krisch, Elke; Rosenfeld, Anatoly; Lerch, Michael

    2014-05-01

    Microbeam radiation therapy (MRT) is a synchrotron-based radiotherapy modality that uses high-intensity beams of spatially fractionated radiation to treat tumours. The rapid evolution of MRT towards clinical trials demands accurate treatment planning systems (TPS), as well as independent tools for the verification of TPS calculated dose distributions in order to ensure patient safety and treatment efficacy. Monte Carlo computer simulation represents the most accurate method of dose calculation in patient geometries and is best suited for the purpose of TPS verification. A Monte Carlo model of the ID17 biomedical beamline at the European Synchrotron Radiation Facility has been developed, including recent modifications, using the Geant4 Monte Carlo toolkit interfaced with the SHADOW X-ray optics and ray-tracing libraries. The code was benchmarked by simulating dose profiles in water-equivalent phantoms subject to irradiation by broad-beam (without spatial fractionation) and microbeam (with spatial fractionation) fields, and comparing against those calculated with a previous model of the beamline developed using the PENELOPE code. Validation against additional experimental dose profiles in water-equivalent phantoms subject to broad-beam irradiation was also performed. Good agreement between codes was observed, with the exception of out-of-field doses and toward the field edge for larger field sizes. Microbeam results showed good agreement between both codes and experimental results within uncertainties. Results of the experimental validation showed agreement for different beamline configurations. The asymmetry in the out-of-field dose profiles due to polarization effects was also investigated, yielding important information for the treatment planning process in MRT. This work represents an important step in the development of a Monte Carlo-based independent verification tool for treatment planning in MRT.

  11. The Metropolis Monte Carlo method with CUDA enabled Graphic Processing Units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Clifford; School of Physics, Astronomy, and Computational Sciences, George Mason University, 4400 University Dr., Fairfax, VA 22030; Ji, Weixiao

    2014-02-01

    We present a CPU–GPU system for runtime acceleration of large molecular simulations using GPU computation and memory swaps. The memory architecture of the GPU can be used both as container for simulation data stored on the graphics card and as floating-point code target, providing an effective means for the manipulation of atomistic or molecular data on the GPU. To fully take advantage of this mechanism, efficient GPU realizations of algorithms used to perform atomistic and molecular simulations are essential. Our system implements a versatile molecular engine, including inter-molecule interactions and orientational variables for performing the Metropolis Monte Carlo (MMC) algorithm,more » which is one type of Markov chain Monte Carlo. By combining memory objects with floating-point code fragments we have implemented an MMC parallel engine that entirely avoids the communication time of molecular data at runtime. Our runtime acceleration system is a forerunner of a new class of CPU–GPU algorithms exploiting memory concepts combined with threading for avoiding bus bandwidth and communication. The testbed molecular system used here is a condensed phase system of oligopyrrole chains. A benchmark shows a size scaling speedup of 60 for systems with 210,000 pyrrole monomers. Our implementation can easily be combined with MPI to connect in parallel several CPU–GPU duets. -- Highlights: •We parallelize the Metropolis Monte Carlo (MMC) algorithm on one CPU—GPU duet. •The Adaptive Tempering Monte Carlo employs MMC and profits from this CPU—GPU implementation. •Our benchmark shows a size scaling-up speedup of 62 for systems with 225,000 particles. •The testbed involves a polymeric system of oligopyrroles in the condensed phase. •The CPU—GPU parallelization includes dipole—dipole and Mie—Jones classic potentials.« less

  12. Analog system for computing sparse codes

    DOEpatents

    Rozell, Christopher John; Johnson, Don Herrick; Baraniuk, Richard Gordon; Olshausen, Bruno A.; Ortman, Robert Lowell

    2010-08-24

    A parallel dynamical system for computing sparse representations of data, i.e., where the data can be fully represented in terms of a small number of non-zero code elements, and for reconstructing compressively sensed images. The system is based on the principles of thresholding and local competition that solves a family of sparse approximation problems corresponding to various sparsity metrics. The system utilizes Locally Competitive Algorithms (LCAs), nodes in a population continually compete with neighboring units using (usually one-way) lateral inhibition to calculate coefficients representing an input in an over complete dictionary.

  13. Quantum speedup of Monte Carlo methods

    PubMed Central

    Montanaro, Ashley

    2015-01-01

    Monte Carlo methods use random sampling to estimate numerical quantities which are hard to compute deterministically. One important example is the use in statistical physics of rapidly mixing Markov chains to approximately compute partition functions. In this work, we describe a quantum algorithm which can accelerate Monte Carlo methods in a very general setting. The algorithm estimates the expected output value of an arbitrary randomized or quantum subroutine with bounded variance, achieving a near-quadratic speedup over the best possible classical algorithm. Combining the algorithm with the use of quantum walks gives a quantum speedup of the fastest known classical algorithms with rigorous performance bounds for computing partition functions, which use multiple-stage Markov chain Monte Carlo techniques. The quantum algorithm can also be used to estimate the total variation distance between probability distributions efficiently. PMID:26528079

  14. Industrial Computer Codes

    NASA Technical Reports Server (NTRS)

    Shapiro, Wilbur

    1996-01-01

    This is an overview of new and updated industrial codes for seal design and testing. GCYLT (gas cylindrical seals -- turbulent), SPIRALI (spiral-groove seals -- incompressible), KTK (knife to knife) Labyrinth Seal Code, and DYSEAL (dynamic seal analysis) are covered. CGYLT uses G-factors for Poiseuille and Couette turbulence coefficients. SPIRALI is updated to include turbulence and inertia, but maintains the narrow groove theory. KTK labyrinth seal code handles straight or stepped seals. And DYSEAL provides dynamics for the seal geometry.

  15. Microdosimetric investigation of the spectra from YAYOI by use of the Monte Carlo code PHITS.

    PubMed

    Nakao, Minoru; Baba, Hiromi; Oishi, Ayumu; Onizuka, Yoshihiko

    2010-07-01

    The purpose of this study was to obtain the neutron energy spectrum on the surface of the moderator of the Tokyo University reactor YAYOI and to investigate the origins of peaks observed in the neutron energy spectrum by use of the Monte Carlo Code PHITS for evaluating biological studies. The moderator system was modeled with the use of details from an article that reported a calculation result and a measurement result for a neutron spectrum on the surface of the moderator of the reactor. Our calculation results with PHITS were compared to those obtained with the discrete ordinate code ANISN described in the article. In addition, the changes in the neutron spectrum at the boundaries of materials in the moderator system were examined with PHITS. Also, microdosimetric energy distributions of secondary charged particles from neutron recoil or reaction were calculated by use of PHITS and compared with a microdosimetric experiment. Our calculations of the neutron energy spectrum with PHITS showed good agreement with the results of ANISN in terms of the energy and structure of the peaks. However, the microdosimetric dose distribution spectrum with PHITS showed a remarkable discrepancy with the experimental one. The experimental spectrum could not be explained by PHITS when we used neutron beams of two mono-energies.

  16. GATE Monte Carlo simulation of dose distribution using MapReduce in a cloud computing environment.

    PubMed

    Liu, Yangchuan; Tang, Yuguo; Gao, Xin

    2017-12-01

    The GATE Monte Carlo simulation platform has good application prospects of treatment planning and quality assurance. However, accurate dose calculation using GATE is time consuming. The purpose of this study is to implement a novel cloud computing method for accurate GATE Monte Carlo simulation of dose distribution using MapReduce. An Amazon Machine Image installed with Hadoop and GATE is created to set up Hadoop clusters on Amazon Elastic Compute Cloud (EC2). Macros, the input files for GATE, are split into a number of self-contained sub-macros. Through Hadoop Streaming, the sub-macros are executed by GATE in Map tasks and the sub-results are aggregated into final outputs in Reduce tasks. As an evaluation, GATE simulations were performed in a cubical water phantom for X-ray photons of 6 and 18 MeV. The parallel simulation on the cloud computing platform is as accurate as the single-threaded simulation on a local server and the simulation correctness is not affected by the failure of some worker nodes. The cloud-based simulation time is approximately inversely proportional to the number of worker nodes. For the simulation of 10 million photons on a cluster with 64 worker nodes, time decreases of 41× and 32× were achieved compared to the single worker node case and the single-threaded case, respectively. The test of Hadoop's fault tolerance showed that the simulation correctness was not affected by the failure of some worker nodes. The results verify that the proposed method provides a feasible cloud computing solution for GATE.

  17. Code of Ethical Conduct for Computer-Using Educators: An ICCE Policy Statement.

    ERIC Educational Resources Information Center

    Computing Teacher, 1987

    1987-01-01

    Prepared by the International Council for Computers in Education's Ethics and Equity Committee, this code of ethics for educators using computers covers nine main areas: curriculum issues, issues relating to computer access, privacy/confidentiality issues, teacher-related issues, student issues, the community, school organizational issues,…

  18. Users manual for updated computer code for axial-flow compressor conceptual design

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1992-01-01

    An existing computer code that determines the flow path for an axial-flow compressor either for a given number of stages or for a given overall pressure ratio was modified for use in air-breathing engine conceptual design studies. This code uses a rapid approximate design methodology that is based on isentropic simple radial equilibrium. Calculations are performed at constant-span-fraction locations from tip to hub. Energy addition per stage is controlled by specifying the maximum allowable values for several aerodynamic design parameters. New modeling was introduced to the code to overcome perceived limitations. Specific changes included variable rather than constant tip radius, flow path inclination added to the continuity equation, input of mass flow rate directly rather than indirectly as inlet axial velocity, solution for the exact value of overall pressure ratio rather than for any value that met or exceeded it, and internal computation of efficiency rather than the use of input values. The modified code was shown to be capable of computing efficiencies that are compatible with those of five multistage compressors and one fan that were tested experimentally. This report serves as a users manual for the revised code, Compressor Spanline Analysis (CSPAN). The modeling modifications, including two internal loss correlations, are presented. Program input and output are described. A sample case for a multistage compressor is included.

  19. Image based Monte Carlo Modeling for Computational Phantom

    NASA Astrophysics Data System (ADS)

    Cheng, Mengyun; Wang, Wen; Zhao, Kai; Fan, Yanchang; Long, Pengcheng; Wu, Yican

    2014-06-01

    The evaluation on the effects of ionizing radiation and the risk of radiation exposure on human body has been becoming one of the most important issues for radiation protection and radiotherapy fields, which is helpful to avoid unnecessary radiation and decrease harm to human body. In order to accurately evaluate the dose on human body, it is necessary to construct more realistic computational phantom. However, manual description and verfication of the models for Monte carlo(MC)simulation are very tedious, error-prone and time-consuming. In addiation, it is difficult to locate and fix the geometry error, and difficult to describe material information and assign it to cells. MCAM (CAD/Image-based Automatic Modeling Program for Neutronics and Radiation Transport Simulation) was developed as an interface program to achieve both CAD- and image-based automatic modeling by FDS Team (Advanced Nuclear Energy Research Team, http://www.fds.org.cn). The advanced version (Version 6) of MCAM can achieve automatic conversion from CT/segmented sectioned images to computational phantoms such as MCNP models. Imaged-based automatic modeling program(MCAM6.0) has been tested by several medical images and sectioned images. And it has been applied in the construction of Rad-HUMAN. Following manual segmentation and 3D reconstruction, a whole-body computational phantom of Chinese adult female called Rad-HUMAN was created by using MCAM6.0 from sectioned images of a Chinese visible human dataset. Rad-HUMAN contains 46 organs/tissues, which faithfully represented the average anatomical characteristics of the Chinese female. The dose conversion coefficients(Dt/Ka) from kerma free-in-air to absorbed dose of Rad-HUMAN were calculated. Rad-HUMAN can be applied to predict and evaluate dose distributions in the Treatment Plan System (TPS), as well as radiation exposure for human body in radiation protection.

  20. Monte Carlo Particle Lists: MCPL

    NASA Astrophysics Data System (ADS)

    Kittelmann, T.; Klinkby, E.; Knudsen, E. B.; Willendrup, P.; Cai, X. X.; Kanaki, K.

    2017-09-01

    A binary format with lists of particle state information, for interchanging particles between various Monte Carlo simulation applications, is presented. Portable C code for file manipulation is made available to the scientific community, along with converters and plugins for several popular simulation packages.

  1. Computer code for the optimization of performance parameters of mixed explosive formulations.

    PubMed

    Muthurajan, H; Sivabalan, R; Talawar, M B; Venugopalan, S; Gandhe, B R

    2006-08-25

    LOTUSES is a novel computer code, which has been developed for the prediction of various thermodynamic properties such as heat of formation, heat of explosion, volume of explosion gaseous products and other related performance parameters. In this paper, we report LOTUSES (Version 1.4) code which has been utilized for the optimization of various high explosives in different combinations to obtain maximum possible velocity of detonation. LOTUSES (Version 1.4) code will vary the composition of mixed explosives automatically in the range of 1-100% and computes the oxygen balance as well as the velocity of detonation for various compositions in preset steps. Further, the code suggests the compositions for which least oxygen balance and the higher velocity of detonation could be achieved. Presently, the code can be applied for two component explosive compositions. The code has been validated with well-known explosives like, TNT, HNS, HNF, TATB, RDX, HMX, AN, DNA, CL-20 and TNAZ in different combinations. The new algorithm incorporated in LOTUSES (Version 1.4) enhances the efficiency and makes it a more powerful tool for the scientists/researches working in the field of high energy materials/hazardous materials.

  2. PIC codes for plasma accelerators on emerging computer architectures (GPUS, Multicore/Manycore CPUS)

    NASA Astrophysics Data System (ADS)

    Vincenti, Henri

    2016-03-01

    The advent of exascale computers will enable 3D simulations of a new laser-plasma interaction regimes that were previously out of reach of current Petasale computers. However, the paradigm used to write current PIC codes will have to change in order to fully exploit the potentialities of these new computing architectures. Indeed, achieving Exascale computing facilities in the next decade will be a great challenge in terms of energy consumption and will imply hardware developments directly impacting our way of implementing PIC codes. As data movement (from die to network) is by far the most energy consuming part of an algorithm future computers will tend to increase memory locality at the hardware level and reduce energy consumption related to data movement by using more and more cores on each compute nodes (''fat nodes'') that will have a reduced clock speed to allow for efficient cooling. To compensate for frequency decrease, CPU machine vendors are making use of long SIMD instruction registers that are able to process multiple data with one arithmetic operator in one clock cycle. SIMD register length is expected to double every four years. GPU's also have a reduced clock speed per core and can process Multiple Instructions on Multiple Datas (MIMD). At the software level Particle-In-Cell (PIC) codes will thus have to achieve both good memory locality and vectorization (for Multicore/Manycore CPU) to fully take advantage of these upcoming architectures. In this talk, we present the portable solutions we implemented in our high performance skeleton PIC code PICSAR to both achieve good memory locality and cache reuse as well as good vectorization on SIMD architectures. We also present the portable solutions used to parallelize the Pseudo-sepctral quasi-cylindrical code FBPIC on GPUs using the Numba python compiler.

  3. Proton Upset Monte Carlo Simulation

    NASA Technical Reports Server (NTRS)

    O'Neill, Patrick M.; Kouba, Coy K.; Foster, Charles C.

    2009-01-01

    The Proton Upset Monte Carlo Simulation (PROPSET) program calculates the frequency of on-orbit upsets in computer chips (for given orbits such as Low Earth Orbit, Lunar Orbit, and the like) from proton bombardment based on the results of heavy ion testing alone. The software simulates the bombardment of modern microelectronic components (computer chips) with high-energy (.200 MeV) protons. The nuclear interaction of the proton with the silicon of the chip is modeled and nuclear fragments from this interaction are tracked using Monte Carlo techniques to produce statistically accurate predictions.

  4. How to differentiate collective variables in free energy codes: Computer-algebra code generation and automatic differentiation

    NASA Astrophysics Data System (ADS)

    Giorgino, Toni

    2018-07-01

    The proper choice of collective variables (CVs) is central to biased-sampling free energy reconstruction methods in molecular dynamics simulations. The PLUMED 2 library, for instance, provides several sophisticated CV choices, implemented in a C++ framework; however, developing new CVs is still time consuming due to the need to provide code for the analytical derivatives of all functions with respect to atomic coordinates. We present two solutions to this problem, namely (a) symbolic differentiation and code generation, and (b) automatic code differentiation, in both cases leveraging open-source libraries (SymPy and Stan Math, respectively). The two approaches are demonstrated and discussed in detail implementing a realistic example CV, the local radius of curvature of a polymer. Users may use the code as a template to streamline the implementation of their own CVs using high-level constructs and automatic gradient computation.

  5. Computer search for binary cyclic UEP codes of odd length up to 65

    NASA Technical Reports Server (NTRS)

    Lin, Mao-Chao; Lin, Chi-Chang; Lin, Shu

    1990-01-01

    Using an exhaustive computation, the unequal error protection capabilities of all binary cyclic codes of odd length up to 65 that have minimum distances at least 3 are found. For those codes that can only have upper bounds on their unequal error protection capabilities computed, an analytic method developed by Dynkin and Togonidze (1976) is used to show that the upper bounds meet the exact unequal error protection capabilities.

  6. A backward Monte Carlo method for efficient computation of runaway probabilities in runaway electron simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Guannan; Del-Castillo-Negrete, Diego

    2017-10-01

    Kinetic descriptions of RE are usually based on the bounced-averaged Fokker-Planck model that determines the PDFs of RE. Despite of the simplification involved, the Fokker-Planck equation can rarely be solved analytically and direct numerical approaches (e.g., continuum and particle-based Monte Carlo (MC)) can be time consuming specially in the computation of asymptotic-type observable including the runaway probability, the slowing-down and runaway mean times, and the energy limit probability. Here we present a novel backward MC approach to these problems based on backward stochastic differential equations (BSDEs). The BSDE model can simultaneously describe the PDF of RE and the runaway probabilities by means of the well-known Feynman-Kac theory. The key ingredient of the backward MC algorithm is to place all the particles in a runaway state and simulate them backward from the terminal time to the initial time. As such, our approach can provide much faster convergence than the brute-force MC methods, which can significantly reduce the number of particles required to achieve a prescribed accuracy. Moreover, our algorithm can be parallelized as easy as the direct MC code, which paves the way for conducting large-scale RE simulation. This work is supported by DOE FES and ASCR under the Contract Numbers ERKJ320 and ERAT377.

  7. XSECT: A computer code for generating fuselage cross sections - user's manual

    NASA Technical Reports Server (NTRS)

    Ames, K. R.

    1982-01-01

    A computer code, XSECT, has been developed to generate fuselage cross sections from a given area distribution and wing definition. The cross sections are generated to match the wing definition while conforming to the area requirement. An iterative procedure is used to generate each cross section. Fuselage area balancing may be included in this procedure if desired. The code is intended as an aid for engineers who must first design a wing under certain aerodynamic constraints and then design a fuselage for the wing such that the contraints remain satisfied. This report contains the information necessary for accessing and executing the code, which is written in FORTRAN to execute on the Cyber 170 series computers (NOS operating system) and produces graphical output for a Tektronix 4014 CRT. The LRC graphics software is used in combination with the interface between this software and the PLOT 10 software.

  8. Monte Carlo MCNP-4B-based absorbed dose distribution estimates for patient-specific dosimetry.

    PubMed

    Yoriyaz, H; Stabin, M G; dos Santos, A

    2001-04-01

    This study was intended to verify the capability of the Monte Carlo MCNP-4B code to evaluate spatial dose distribution based on information gathered from CT or SPECT. A new three-dimensional (3D) dose calculation approach for internal emitter use in radioimmunotherapy (RIT) was developed using the Monte Carlo MCNP-4B code as the photon and electron transport engine. It was shown that the MCNP-4B computer code can be used with voxel-based anatomic and physiologic data to provide 3D dose distributions. This study showed that the MCNP-4B code can be used to develop a treatment planning system that will provide such information in a time manner, if dose reporting is suitably optimized. If each organ is divided into small regions where the average energy deposition is calculated with a typical volume of 0.4 cm(3), regional dose distributions can be provided with reasonable central processing unit times (on the order of 12-24 h on a 200-MHz personal computer or modest workstation). Further efforts to provide semiautomated region identification (segmentation) and improvement of marrow dose calculations are needed to supply a complete system for RIT. It is envisioned that all such efforts will continue to develop and that internal dose calculations may soon be brought to a similar level of accuracy, detail, and robustness as is commonly expected in external dose treatment planning. For this study we developed a code with a user-friendly interface that works on several nuclear medicine imaging platforms and provides timely patient-specific dose information to the physician and medical physicist. Future therapy with internal emitters should use a 3D dose calculation approach, which represents a significant advance over dose information provided by the standard geometric phantoms used for more than 20 y (which permit reporting of only average organ doses for certain standardized individuals)

  9. NOTE: MCDE: a new Monte Carlo dose engine for IMRT

    NASA Astrophysics Data System (ADS)

    Reynaert, N.; DeSmedt, B.; Coghe, M.; Paelinck, L.; Van Duyse, B.; DeGersem, W.; DeWagter, C.; DeNeve, W.; Thierens, H.

    2004-07-01

    A new accurate Monte Carlo code for IMRT dose computations, MCDE (Monte Carlo dose engine), is introduced. MCDE is based on BEAMnrc/DOSXYZnrc and consequently the accurate EGSnrc electron transport. DOSXYZnrc is reprogrammed as a component module for BEAMnrc. In this way both codes are interconnected elegantly, while maintaining the BEAM structure and only minimal changes to BEAMnrc.mortran are necessary. The treatment head of the Elekta SLiplus linear accelerator is modelled in detail. CT grids consisting of up to 200 slices of 512 × 512 voxels can be introduced and up to 100 beams can be handled simultaneously. The beams and CT data are imported from the treatment planning system GRATIS via a DICOM interface. To enable the handling of up to 50 × 106 voxels the system was programmed in Fortran95 to enable dynamic memory management. All region-dependent arrays (dose, statistics, transport arrays) were redefined. A scoring grid was introduced and superimposed on the geometry grid, to be able to limit the number of scoring voxels. The whole system uses approximately 200 MB of RAM and runs on a PC cluster consisting of 38 1.0 GHz processors. A set of in-house made scripts handle the parallellization and the centralization of the Monte Carlo calculations on a server. As an illustration of MCDE, a clinical example is discussed and compared with collapsed cone convolution calculations. At present, the system is still rather slow and is intended to be a tool for reliable verification of IMRT treatment planning in the case of the presence of tissue inhomogeneities such as air cavities.

  10. Users manual and modeling improvements for axial turbine design and performance computer code TD2-2

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1992-01-01

    Computer code TD2 computes design point velocity diagrams and performance for multistage, multishaft, cooled or uncooled, axial flow turbines. This streamline analysis code was recently modified to upgrade modeling related to turbine cooling and to the internal loss correlation. These modifications are presented in this report along with descriptions of the code's expanded input and output. This report serves as the users manual for the upgraded code, which is named TD2-2.

  11. TAIR: A transonic airfoil analysis computer code

    NASA Technical Reports Server (NTRS)

    Dougherty, F. C.; Holst, T. L.; Grundy, K. L.; Thomas, S. D.

    1981-01-01

    The operation of the TAIR (Transonic AIRfoil) computer code, which uses a fast, fully implicit algorithm to solve the conservative full-potential equation for transonic flow fields about arbitrary airfoils, is described on two levels of sophistication: simplified operation and detailed operation. The program organization and theory are elaborated to simplify modification of TAIR for new applications. Examples with input and output are given for a wide range of cases, including incompressible, subcritical compressible, and transonic calculations.

  12. Performance of a parallel code for the Euler equations on hypercube computers

    NASA Technical Reports Server (NTRS)

    Barszcz, Eric; Chan, Tony F.; Jesperson, Dennis C.; Tuminaro, Raymond S.

    1990-01-01

    The performance of hypercubes were evaluated on a computational fluid dynamics problem and the parallel environment issues were considered that must be addressed, such as algorithm changes, implementation choices, programming effort, and programming environment. The evaluation focuses on a widely used fluid dynamics code, FLO52, which solves the two dimensional steady Euler equations describing flow around the airfoil. The code development experience is described, including interacting with the operating system, utilizing the message-passing communication system, and code modifications necessary to increase parallel efficiency. Results from two hypercube parallel computers (a 16-node iPSC/2, and a 512-node NCUBE/ten) are discussed and compared. In addition, a mathematical model of the execution time was developed as a function of several machine and algorithm parameters. This model accurately predicts the actual run times obtained and is used to explore the performance of the code in interesting but yet physically realizable regions of the parameter space. Based on this model, predictions about future hypercubes are made.

  13. A Deep Penetration Problem Calculation Using AETIUS:An Easy Modeling Discrete Ordinates Transport Code UsIng Unstructured Tetrahedral Mesh, Shared Memory Parallel

    NASA Astrophysics Data System (ADS)

    KIM, Jong Woon; LEE, Young-Ouk

    2017-09-01

    As computing power gets better and better, computer codes that use a deterministic method seem to be less useful than those using the Monte Carlo method. In addition, users do not like to think about space, angles, and energy discretization for deterministic codes. However, a deterministic method is still powerful in that we can obtain a solution of the flux throughout the problem, particularly as when particles can barely penetrate, such as in a deep penetration problem with small detection volumes. Recently, a new state-of-the-art discrete-ordinates code, ATTILA, was developed and has been widely used in several applications. ATTILA provides the capabilities to solve geometrically complex 3-D transport problems by using an unstructured tetrahedral mesh. Since 2009, we have been developing our own code by benchmarking ATTILA. AETIUS is a discrete ordinates code that uses an unstructured tetrahedral mesh such as ATTILA. For pre- and post- processing, Gmsh is used to generate an unstructured tetrahedral mesh by importing a CAD file (*.step) and visualizing the calculation results of AETIUS. Using a CAD tool, the geometry can be modeled very easily. In this paper, we describe a brief overview of AETIUS and provide numerical results from both AETIUS and a Monte Carlo code, MCNP5, in a deep penetration problem with small detection volumes. The results demonstrate the effectiveness and efficiency of AETIUS for such calculations.

  14. Connecting Neural Coding to Number Cognition: A Computational Account

    ERIC Educational Resources Information Center

    Prather, Richard W.

    2012-01-01

    The current study presents a series of computational simulations that demonstrate how the neural coding of numerical magnitude may influence number cognition and development. This includes behavioral phenomena cataloged in cognitive literature such as the development of numerical estimation and operational momentum. Though neural research has…

  15. Approximate Bayesian Computation Using Markov Chain Monte Carlo Simulation: Theory, Concepts, and Applications

    NASA Astrophysics Data System (ADS)

    Sadegh, M.; Vrugt, J. A.

    2013-12-01

    The ever increasing pace of computational power, along with continued advances in measurement technologies and improvements in process understanding has stimulated the development of increasingly complex hydrologic models that simulate soil moisture flow, groundwater recharge, surface runoff, root water uptake, and river discharge at increasingly finer spatial and temporal scales. Reconciling these system models with field and remote sensing data is a difficult task, particularly because average measures of model/data similarity inherently lack the power to provide a meaningful comparative evaluation of the consistency in model form and function. The very construction of the likelihood function - as a summary variable of the (usually averaged) properties of the error residuals - dilutes and mixes the available information into an index having little remaining correspondence to specific behaviors of the system (Gupta et al., 2008). The quest for a more powerful method for model evaluation has inspired Vrugt and Sadegh [2013] to introduce "likelihood-free" inference as vehicle for diagnostic model evaluation. This class of methods is also referred to as Approximate Bayesian Computation (ABC) and relaxes the need for an explicit likelihood function in favor of one or multiple different summary statistics rooted in hydrologic theory that together have a much stronger and compelling diagnostic power than some aggregated measure of the size of the error residuals. Here, we will introduce an efficient ABC sampling method that is orders of magnitude faster in exploring the posterior parameter distribution than commonly used rejection and Population Monte Carlo (PMC) samplers. Our methodology uses Markov Chain Monte Carlo simulation with DREAM, and takes advantage of a simple computational trick to resolve discontinuity problems with the application of set-theoretic summary statistics. We will also demonstrate a set of summary statistics that are rather insensitive to

  16. Implementation and verification of nuclear interactions in a Monte-Carlo code for the Procom-ProGam proton therapy planning system

    NASA Astrophysics Data System (ADS)

    Kostyuchenko, V. I.; Makarova, A. S.; Ryazantsev, O. B.; Samarin, S. I.; Uglov, A. S.

    2014-06-01

    A great breakthrough in proton therapy has happened in the new century: several tens of dedicated centers are now operated throughout the world and their number increases every year. An important component of proton therapy is a treatment planning system. To make calculations faster, these systems usually use analytical methods whose reliability and accuracy do not allow the advantages of this method of treatment to implement to the full extent. Predictions by the Monte Carlo (MC) method are a "gold" standard for the verification of calculations with these systems. At the Institute of Experimental and Theoretical Physics (ITEP) which is one of the eldest proton therapy centers in the world, an MC code is an integral part of their treatment planning system. This code which is called IThMC was developed by scientists from RFNC-VNIITF (Snezhinsk) under ISTC Project 3563.

  17. Simulation of the ALTEA experiment with Monte Carlo (PHITS) and deterministic (GNAC, SihverCC and Tripathi97) codes

    NASA Astrophysics Data System (ADS)

    La Tessa, Chiara; Mancusi, Davide; Rinaldi, Adele; di Fino, Luca; Zaconte, Veronica; Larosa, Marianna; Narici, Livio; Gustafsson, Katarina; Sihver, Lembit

    ALTEA-Space is the principal in-space experiment of an international and multidisciplinary project called ALTEA (Anomalus Long Term Effects on Astronauts). The measurements were performed on the International Space Station between August 2006 and July 2007 and aimed at characterising the space radiation environment inside the station. The analysis of the collected data provided the abundances of elements with charge 5 ≤ Z ≤ 26 and energy above 100 MeV/nucleon. The same results have been obtained by simulating the experiment with the three-dimensional Monte Carlo code PHITS (Particle and Heavy Ion Transport System). The simulation reproduces accurately the composition of the space radiation environment as well as the geometry of the experimental apparatus; moreover the presence of several materials, e.g. the spacecraft hull and the shielding, that surround the device has been taken into account. An estimate of the abundances has also been calculated with the help of experimental fragmentation cross sections taken from literature and predictions of the deterministic codes GNAC, SihverCC and Tripathi97. The comparison between the experimental and simulated data has two important aspects: it validates the codes giving possible hints how to benchmark them; it helps to interpret the measurements and therefore have a better understanding of the results.

  18. Temporal parallelization of edge plasma simulations using the parareal algorithm and the SOLPS code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samaddar, Debasmita; Coster, D. P.; Bonnin, X.

    We show that numerical modelling of edge plasma physics may be successfully parallelized in time. The parareal algorithm has been employed for this purpose and the SOLPS code package coupling the B2.5 finite-volume fluid plasma solver with the kinetic Monte-Carlo neutral code Eirene has been used as a test bed. The complex dynamics of the plasma and neutrals in the scrape-off layer (SOL) region makes this a unique application. It is demonstrated that a significant computational gain (more than an order of magnitude) may be obtained with this technique. The use of the IPS framework for event-based parareal implementation optimizesmore » resource utilization and has been shown to significantly contribute to the computational gain.« less

  19. Temporal parallelization of edge plasma simulations using the parareal algorithm and the SOLPS code

    DOE PAGES

    Samaddar, Debasmita; Coster, D. P.; Bonnin, X.; ...

    2017-07-31

    We show that numerical modelling of edge plasma physics may be successfully parallelized in time. The parareal algorithm has been employed for this purpose and the SOLPS code package coupling the B2.5 finite-volume fluid plasma solver with the kinetic Monte-Carlo neutral code Eirene has been used as a test bed. The complex dynamics of the plasma and neutrals in the scrape-off layer (SOL) region makes this a unique application. It is demonstrated that a significant computational gain (more than an order of magnitude) may be obtained with this technique. The use of the IPS framework for event-based parareal implementation optimizesmore » resource utilization and has been shown to significantly contribute to the computational gain.« less

  20. Multilevel sequential Monte Carlo samplers

    DOE PAGES

    Beskos, Alexandros; Jasra, Ajay; Law, Kody; ...

    2016-08-24

    Here, we study the approximation of expectations w.r.t. probability distributions associated to the solution of partial differential equations (PDEs); this scenario appears routinely in Bayesian inverse problems. In practice, one often has to solve the associated PDE numerically, using, for instance finite element methods and leading to a discretisation bias, with the step-size level h L. In addition, the expectation cannot be computed analytically and one often resorts to Monte Carlo methods. In the context of this problem, it is known that the introduction of the multilevel Monte Carlo (MLMC) method can reduce the amount of computational effort to estimate expectations, for a given level of error. This is achieved via a telescoping identity associated to a Monte Carlo approximation of a sequence of probability distributions with discretisation levelsmore » $${\\infty}$$ >h 0>h 1 ...>h L. In many practical problems of interest, one cannot achieve an i.i.d. sampling of the associated sequence of probability distributions. A sequential Monte Carlo (SMC) version of the MLMC method is introduced to deal with this problem. In conclusion, it is shown that under appropriate assumptions, the attractive property of a reduction of the amount of computational effort to estimate expectations, for a given level of error, can be maintained within the SMC context.« less

  1. On-the-Fly Generation of Differential Resonance Scattering Probability Distribution Functions for Monte Carlo Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Eva E.; Martin, William R.

    Current Monte Carlo codes use one of three models: (1) the asymptotic scattering model, (2) the free gas scattering model, or (3) the S(α,β) model, depending on the neutron energy and the specific Monte Carlo code. This thesis addresses the consequences of using the free gas scattering model, which assumes that the neutron interacts with atoms in thermal motion in a monatomic gas in thermal equilibrium at material temperature, T. Most importantly, the free gas model assumes the scattering cross section is constant over the neutron energy range, which is usually a good approximation for light nuclei, but not formore » heavy nuclei where the scattering cross section may have several resonances in the epithermal region. Several researchers in the field have shown that the exact resonance scattering model is temperaturedependent, and neglecting the resonances in the lower epithermal range can under-predict resonance absorption due to the upscattering phenomenon mentioned above, leading to an over-prediction of keff by several hundred pcm. Existing methods to address this issue involve changing the neutron weights or implementing an extra rejection scheme in the free gas sampling scheme, and these all involve performing the collision analysis in the center-of-mass frame, followed by a conversion back to the laboratory frame to continue the random walk of the neutron. The goal of this paper was to develop a sampling methodology that (1) accounted for the energydependent scattering cross sections in the collision analysis and (2) was performed in the laboratory frame,avoiding the conversion to the center-of-mass frame. The energy dependence of the scattering cross section was modeled with even-ordered polynomials (2nd and 4th order) to approximate the scattering cross section in Blackshaw’s equations for the moments of the differential scattering PDFs. These moments were used to sample the outgoing neutron speed and angle in the laboratory frame on-the-fly during

  2. On-the-Fly Generation of Differential Resonance Scattering Probability Distribution Functions for Monte Carlo Codes

    DOE PAGES

    Davidson, Eva E.; Martin, William R.

    2017-05-26

    Current Monte Carlo codes use one of three models: (1) the asymptotic scattering model, (2) the free gas scattering model, or (3) the S(α,β) model, depending on the neutron energy and the specific Monte Carlo code. This thesis addresses the consequences of using the free gas scattering model, which assumes that the neutron interacts with atoms in thermal motion in a monatomic gas in thermal equilibrium at material temperature, T. Most importantly, the free gas model assumes the scattering cross section is constant over the neutron energy range, which is usually a good approximation for light nuclei, but not formore » heavy nuclei where the scattering cross section may have several resonances in the epithermal region. Several researchers in the field have shown that the exact resonance scattering model is temperaturedependent, and neglecting the resonances in the lower epithermal range can under-predict resonance absorption due to the upscattering phenomenon mentioned above, leading to an over-prediction of keff by several hundred pcm. Existing methods to address this issue involve changing the neutron weights or implementing an extra rejection scheme in the free gas sampling scheme, and these all involve performing the collision analysis in the center-of-mass frame, followed by a conversion back to the laboratory frame to continue the random walk of the neutron. The goal of this paper was to develop a sampling methodology that (1) accounted for the energydependent scattering cross sections in the collision analysis and (2) was performed in the laboratory frame,avoiding the conversion to the center-of-mass frame. The energy dependence of the scattering cross section was modeled with even-ordered polynomials (2nd and 4th order) to approximate the scattering cross section in Blackshaw’s equations for the moments of the differential scattering PDFs. These moments were used to sample the outgoing neutron speed and angle in the laboratory frame on-the-fly during

  3. Monte Carlo simulation of X-ray imaging and spectroscopy experiments using quadric geometry and variance reduction techniques

    NASA Astrophysics Data System (ADS)

    Golosio, Bruno; Schoonjans, Tom; Brunetti, Antonio; Oliva, Piernicola; Masala, Giovanni Luca

    2014-03-01

    The simulation of X-ray imaging experiments is often performed using deterministic codes, which can be relatively fast and easy to use. However, such codes are generally not suitable for the simulation of even slightly more complex experimental conditions, involving, for instance, first-order or higher-order scattering, X-ray fluorescence emissions, or more complex geometries, particularly for experiments that combine spatial resolution with spectral information. In such cases, simulations are often performed using codes based on the Monte Carlo method. In a simple Monte Carlo approach, the interaction position of an X-ray photon and the state of the photon after an interaction are obtained simply according to the theoretical probability distributions. This approach may be quite inefficient because the final channels of interest may include only a limited region of space or photons produced by a rare interaction, e.g., fluorescent emission from elements with very low concentrations. In the field of X-ray fluorescence spectroscopy, this problem has been solved by combining the Monte Carlo method with variance reduction techniques, which can reduce the computation time by several orders of magnitude. In this work, we present a C++ code for the general simulation of X-ray imaging and spectroscopy experiments, based on the application of the Monte Carlo method in combination with variance reduction techniques, with a description of sample geometry based on quadric surfaces. We describe the benefits of the object-oriented approach in terms of code maintenance, the flexibility of the program for the simulation of different experimental conditions and the possibility of easily adding new modules. Sample applications in the fields of X-ray imaging and X-ray spectroscopy are discussed. Catalogue identifier: AERO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERO_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland

  4. Monte Carlo calculation of dose rate conversion factors for external exposure to photon emitters in soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clovas, A.; Zanthos, S.; Antonopoulos-Domis, M.

    2000-03-01

    The dose rate conversion factors {dot D}{sub CF} (absorbed dose rate in air per unit activity per unit of soil mass, nGy h{sup {minus}1} per Bq kg{sup {minus}1}) are calculated 1 m above ground for photon emitters of natural radionuclides uniformly distributed in the soil. Three Monte Carlo codes are used: (1) The MCNP code of Los Alamos; (2) The GEANT code of CERN; and (3) a Monte Carlo code developed in the Nuclear Technology Laboratory of the Aristotle University of Thessaloniki. The accuracy of the Monte Carlo results is tested by the comparison of the unscattered flux obtained bymore » the three Monte Carlo codes with an independent straightforward calculation. All codes and particularly the MCNP calculate accurately the absorbed dose rate in air due to the unscattered radiation. For the total radiation (unscattered plus scattered) the {dot D}{sub CF} values calculated from the three codes are in very good agreement between them. The comparison between these results and the results deduced previously by other authors indicates a good agreement (less than 15% of difference) for photon energies above 1,500 keV. Antithetically, the agreement is not as good (difference of 20--30%) for the low energy photons.« less

  5. TERRA: a computer code for simulating the transport of environmentally released radionuclides through agriculture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baes, C.F. III; Sharp, R.D.; Sjoreen, A.L.

    1984-11-01

    TERRA is a computer code which calculates concentrations of radionuclides and ingrowing daughters in surface and root-zone soil, produce and feed, beef, and milk from a given deposition rate at any location in the conterminous United States. The code is fully integrated with seven other computer codes which together comprise a Computerized Radiological Risk Investigation System, CRRIS. Output from either the long range (> 100 km) atmospheric dispersion code RETADD-II or the short range (<80 km) atmospheric dispersion code ANEMOS, in the form of radionuclide air concentrations and ground deposition rates by downwind location, serves as input to TERRA. User-definedmore » deposition rates and air concentrations may also be provided as input to TERRA through use of the PRIMUS computer code. The environmental concentrations of radionuclides predicted by TERRA serve as input to the ANDROS computer code which calculates population and individual intakes, exposures, doses, and risks. TERRA incorporates models to calculate uptake from soil and atmospheric deposition on four groups of produce for human consumption and four groups of livestock feeds. During the environmental transport simulation, intermediate calculations of interception fraction for leafy vegetables, produce directly exposed to atmospherically depositing material, pasture, hay, and silage are made based on location-specific estimates of standing crop biomass. Pasture productivity is estimated by a model which considers the number and types of cattle and sheep, pasture area, and annual production of other forages (hay and silage) at a given location. Calculations are made of the fraction of grain imported from outside the assessment area. TERRA output includes the above calculations and estimated radionuclide concentrations in plant produce, milk, and a beef composite by location.« less

  6. A method of non-contact reading code based on computer vision

    NASA Astrophysics Data System (ADS)

    Zhang, Chunsen; Zong, Xiaoyu; Guo, Bingxuan

    2018-03-01

    With the purpose of guarantee the computer information exchange security between internal and external network (trusted network and un-trusted network), A non-contact Reading code method based on machine vision has been proposed. Which is different from the existing network physical isolation method. By using the computer monitors, camera and other equipment. Deal with the information which will be on exchanged, Include image coding ,Generate the standard image , Display and get the actual image , Calculate homography matrix, Image distort correction and decoding in calibration, To achieve the computer information security, Non-contact, One-way transmission between the internal and external network , The effectiveness of the proposed method is verified by experiments on real computer text data, The speed of data transfer can be achieved 24kb/s. The experiment shows that this algorithm has the characteristics of high security, fast velocity and less loss of information. Which can meet the daily needs of the confidentiality department to update the data effectively and reliably, Solved the difficulty of computer information exchange between Secret network and non-secret network, With distinctive originality, practicability, and practical research value.

  7. Verification and benchmark testing of the NUFT computer code

    NASA Astrophysics Data System (ADS)

    Lee, K. H.; Nitao, J. J.; Kulshrestha, A.

    1993-10-01

    This interim report presents results of work completed in the ongoing verification and benchmark testing of the NUFT (Nonisothermal Unsaturated-saturated Flow and Transport) computer code. NUFT is a suite of multiphase, multicomponent models for numerical solution of thermal and isothermal flow and transport in porous media, with application to subsurface contaminant transport problems. The code simulates the coupled transport of heat, fluids, and chemical components, including volatile organic compounds. Grid systems may be cartesian or cylindrical, with one-, two-, or fully three-dimensional configurations possible. In this initial phase of testing, the NUFT code was used to solve seven one-dimensional unsaturated flow and heat transfer problems. Three verification and four benchmarking problems were solved. In the verification testing, excellent agreement was observed between NUFT results and the analytical or quasianalytical solutions. In the benchmark testing, results of code intercomparison were very satisfactory. From these testing results, it is concluded that the NUFT code is ready for application to field and laboratory problems similar to those addressed here. Multidimensional problems, including those dealing with chemical transport, will be addressed in a subsequent report.

  8. Design geometry and design/off-design performance computer codes for compressors and turbines

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1995-01-01

    This report summarizes some NASA Lewis (i.e., government owned) computer codes capable of being used for airbreathing propulsion system studies to determine the design geometry and to predict the design/off-design performance of compressors and turbines. These are not CFD codes; velocity-diagram energy and continuity computations are performed fore and aft of the blade rows using meanline, spanline, or streamline analyses. Losses are provided by empirical methods. Both axial-flow and radial-flow configurations are included.

  9. Monte Carlo track-structure calculations for aqueous solutions containing biomolecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, J.E.; Hamm, R.N.; Ritchie, R.H.

    1993-10-01

    Detailed Monte Carlo calculations provide a powerful tool for understanding mechanisms of radiation damage to biological molecules irradiated in aqueous solution. This paper describes the computer codes, OREC and RADLYS, which have been developed for this purpose over a number of years. Some results are given for calculations of the irradiation of pure water. comparisons are presented between computations for liquid water and water vapor. Detailed calculations of the chemical yields of several products from X-irradiated, oxygen-free glycylglycine solutions have been performed as a function of solute concentration. Excellent agreement is obtained between calculated and measured yields. The Monte Carlomore » analysis provides a complete mechanistic picture of pathways to observed radiolytic products. This approach, successful with glycylglycine, will be extended to study the irradiation of oligonucleotides in aqueous solution.« less

  10. RNA folding kinetics using Monte Carlo and Gillespie algorithms.

    PubMed

    Clote, Peter; Bayegan, Amir H

    2018-04-01

    RNA secondary structure folding kinetics is known to be important for the biological function of certain processes, such as the hok/sok system in E. coli. Although linear algebra provides an exact computational solution of secondary structure folding kinetics with respect to the Turner energy model for tiny ([Formula: see text]20 nt) RNA sequences, the folding kinetics for larger sequences can only be approximated by binning structures into macrostates in a coarse-grained model, or by repeatedly simulating secondary structure folding with either the Monte Carlo algorithm or the Gillespie algorithm. Here we investigate the relation between the Monte Carlo algorithm and the Gillespie algorithm. We prove that asymptotically, the expected time for a K-step trajectory of the Monte Carlo algorithm is equal to [Formula: see text] times that of the Gillespie algorithm, where [Formula: see text] denotes the Boltzmann expected network degree. If the network is regular (i.e. every node has the same degree), then the mean first passage time (MFPT) computed by the Monte Carlo algorithm is equal to MFPT computed by the Gillespie algorithm multiplied by [Formula: see text]; however, this is not true for non-regular networks. In particular, RNA secondary structure folding kinetics, as computed by the Monte Carlo algorithm, is not equal to the folding kinetics, as computed by the Gillespie algorithm, although the mean first passage times are roughly correlated. Simulation software for RNA secondary structure folding according to the Monte Carlo and Gillespie algorithms is publicly available, as is our software to compute the expected degree of the network of secondary structures of a given RNA sequence-see http://bioinformatics.bc.edu/clote/RNAexpNumNbors .

  11. TU-AB-BRC-08: Egs-brachy, a Fast and Versatile Monte Carlo Code for Brachytherapy Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamberland, M; Taylor, R; Rogers, D

    2016-06-15

    Purpose: To introduce egs-brachy, a new, fast, and versatile Monte Carlo code for brachytherapy applications. Methods: egs-brachy is an EGSnrc user-code based on the EGSnrc C++ class library (egs++). Complex phantom, applicator, and source model geometries are built using the egs++ geometry module. egs-brachy uses a tracklength estimator to score collision kerma in voxels. Interaction, spectrum, energy fluence, and phase space scoring are also implemented. Phase space sources and particle recycling may be used to improve simulation efficiency. HDR treatments (e.g. stepping source through dwell positions) can be simulated. Standard brachytherapy seeds, as well as electron and miniature x-ray tubemore » sources are fully modelled. Variance reduction techniques for electron source simulations are implemented (Bremsstrahlung cross section enhancement, uniform Bremsstrahlung splitting, and Russian Roulette). TG-43 parameters of seeds are computed and compared to published values. Example simulations of various treatments are carried out on a single 2.5 GHz Intel Xeon E5-2680 v3 processor core. Results: TG-43 parameters calculated with egs-brachy show excellent agreement with published values. Using a phase space source, 2% average statistical uncertainty in the PTV ((2mm){sup 3} voxels) can be achieved in 10 s for 100 {sup 125}I or {sup 103}Pd seeds in a 36.2 cm{sup 3} prostate PTV, 31 s for 64 {sup 103}Pd seeds in a 64 cm{sup 3} breast PTV, and 56 s for a miniature x-ray tube in a 27 cm{sup 3} breast PTV. Comparable uncertainty is reached in 12 s in a (1 mm){sup 3} water voxel 5 mm away from a COMS 16mm eye plaque with 13 {sup 103}Pd seeds. Conclusion: The accuracy of egs-brachy has been demonstrated through benchmarking calculations. Calculation times are sufficiently fast to allow full MC simulations for routine treatment planning for diverse brachytherapy treatments (LDR, HDR, miniature x-ray tube). egs-brachy will be available as free and open-source software to

  12. Life Prediction for a CMC Component Using the NASALIFE Computer Code

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Murthy, Pappu L. N.; Mital, Subodh K.

    2005-01-01

    The computer code, NASALIFE, was used to provide estimates for life of an SiC/SiC stator vane under varying thermomechanical loading conditions. The primary intention of this effort is to show how the computer code NASALIFE can be used to provide reasonable estimates of life for practical propulsion system components made of advanced ceramic matrix composites (CMC). Simple loading conditions provided readily observable and acceptable life predictions. Varying the loading conditions such that low cycle fatigue and creep were affected independently provided expected trends in the results for life due to varying loads and life due to creep. Analysis was based on idealized empirical data for the 9/99 Melt Infiltrated SiC fiber reinforced SiC.

  13. Analysis of airborne antenna systems using geometrical theory of diffraction and moment method computer codes

    NASA Technical Reports Server (NTRS)

    Hartenstein, Richard G., Jr.

    1985-01-01

    Computer codes have been developed to analyze antennas on aircraft and in the presence of scatterers. The purpose of this study is to use these codes to develop accurate computer models of various aircraft and antenna systems. The antenna systems analyzed are a P-3B L-Band antenna, an A-7E UHF relay pod antenna, and traffic advisory antenna system installed on a Bell Long Ranger helicopter. Computer results are compared to measured ones with good agreement. These codes can be used in the design stage of an antenna system to determine the optimum antenna location and save valuable time and costly flight hours.

  14. SU-F-T-111: Investigation of the Attila Deterministic Solver as a Supplement to Monte Carlo for Calculating Out-Of-Field Radiotherapy Dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mille, M; Lee, C; Failla, G

    Purpose: To use the Attila deterministic solver as a supplement to Monte Carlo for calculating out-of-field organ dose in support of epidemiological studies looking at the risks of second cancers. Supplemental dosimetry tools are needed to speed up dose calculations for studies involving large-scale patient cohorts. Methods: Attila is a multi-group discrete ordinates code which can solve the 3D photon-electron coupled linear Boltzmann radiation transport equation on a finite-element mesh. Dose is computed by multiplying the calculated particle flux in each mesh element by a medium-specific energy deposition cross-section. The out-of-field dosimetry capability of Attila is investigated by comparing averagemore » organ dose to that which is calculated by Monte Carlo simulation. The test scenario consists of a 6 MV external beam treatment of a female patient with a tumor in the left breast. The patient is simulated by a whole-body adult reference female computational phantom. Monte Carlo simulations were performed using MCNP6 and XVMC. Attila can export a tetrahedral mesh for MCNP6, allowing for a direct comparison between the two codes. The Attila and Monte Carlo methods were also compared in terms of calculation speed and complexity of simulation setup. A key perquisite for this work was the modeling of a Varian Clinac 2100 linear accelerator. Results: The solid mesh of the torso part of the adult female phantom for the Attila calculation was prepared using the CAD software SpaceClaim. Preliminary calculations suggest that Attila is a user-friendly software which shows great promise for our intended application. Computational performance is related to the number of tetrahedral elements included in the Attila calculation. Conclusion: Attila is being explored as a supplement to the conventional Monte Carlo radiation transport approach for performing retrospective patient dosimetry. The goal is for the dosimetry to be sufficiently accurate for use in retrospective

  15. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure.

    PubMed

    Wang, Henry; Ma, Yunzhi; Pratx, Guillem; Xing, Lei

    2011-09-07

    Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47× speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed.

  16. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure

    NASA Astrophysics Data System (ADS)

    Wang, Henry; Ma, Yunzhi; Pratx, Guillem; Xing, Lei

    2011-09-01

    Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47× speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed. This work was presented in part at the 2010 Annual Meeting of the American Association of Physicists in Medicine (AAPM), Philadelphia, PA.

  17. A High-Order Low-Order Algorithm with Exponentially Convergent Monte Carlo for Thermal Radiative Transfer

    DOE PAGES

    Bolding, Simon R.; Cleveland, Mathew Allen; Morel, Jim E.

    2016-10-21

    In this paper, we have implemented a new high-order low-order (HOLO) algorithm for solving thermal radiative transfer problems. The low-order (LO) system is based on the spatial and angular moments of the transport equation and a linear-discontinuous finite-element spatial representation, producing equations similar to the standard S 2 equations. The LO solver is fully implicit in time and efficiently resolves the nonlinear temperature dependence at each time step. The high-order (HO) solver utilizes exponentially convergent Monte Carlo (ECMC) to give a globally accurate solution for the angular intensity to a fixed-source pure-absorber transport problem. This global solution is used tomore » compute consistency terms, which require the HO and LO solutions to converge toward the same solution. The use of ECMC allows for the efficient reduction of statistical noise in the Monte Carlo solution, reducing inaccuracies introduced through the LO consistency terms. Finally, we compare results with an implicit Monte Carlo code for one-dimensional gray test problems and demonstrate the efficiency of ECMC over standard Monte Carlo in this HOLO algorithm.« less

  18. Calculation of response matrix of CaSO 4:Dy based neutron dosimeter using Monte Carlo code FLUKA and measurement of 241Am-Be spectra

    NASA Astrophysics Data System (ADS)

    Chatterjee, S.; Bakshi, A. K.; Tripathy, S. P.

    2010-09-01

    Response matrix for CaSO 4:Dy based neutron dosimeter was generated using Monte Carlo code FLUKA in the energy range thermal to 20 MeV for a set of eight Bonner spheres of diameter 3-12″ including the bare one. Response of the neutron dosimeter was measured for the above set of spheres for 241Am-Be neutron source covered with 2 mm lead. An analytical expression for the response function was devised as a function of sphere mass. Using Frascati Unfolding Iteration Tool (FRUIT) unfolding code, the neutron spectrum of 241Am-Be was unfolded and compared with standard IAEA spectrum for the same.

  19. HYDRA-II: A hydrothermal analysis computer code: Volume 2, User's manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCann, R.A.; Lowery, P.S.; Lessor, D.L.

    1987-09-01

    HYDRA-II is a hydrothermal computer code capable of three-dimensional analysis of coupled conduction, convection, and thermal radiation problems. This code is especially appropriate for simulating the steady-state performance of spent fuel storage systems. The code has been evaluated for this application for the US Department of Energy's Commercial Spent Fuel Management Program. HYDRA-II provides a finite-difference solution in cartesian coordinates to the equations governing the conservation of mass, momentum, and energy. A cylindrical coordinate system may also be used to enclose the cartesian coordinate system. This exterior coordinate system is useful for modeling cylindrical cask bodies. The difference equations formore » conservation of momentum incorporate directional porosities and permeabilities that are available to model solid structures whose dimensions may be smaller than the computational mesh. The equation for conservation of energy permits modeling of orthotropic physical properties and film resistances. Several automated methods are available to model radiation transfer within enclosures and from fuel rod to fuel rod. The documentation of HYDRA-II is presented in three separate volumes. Volume 1 - Equations and Numerics describes the basic differential equations, illustrates how the difference equations are formulated, and gives the solution procedures employed. This volume, Volume 2 - User's Manual, contains code flow charts, discusses the code structure, provides detailed instructions for preparing an input file, and illustrates the operation of the code by means of a sample problem. The final volume, Volume 3 - Verification/Validation Assessments, provides a comparison between the analytical solution and the numerical simulation for problems with a known solution. 6 refs.« less

  20. Hybrid transport and diffusion modeling using electron thermal transport Monte Carlo SNB in DRACO

    NASA Astrophysics Data System (ADS)

    Chenhall, Jeffrey; Moses, Gregory

    2017-10-01

    The iSNB (implicit Schurtz Nicolai Busquet) multigroup diffusion electron thermal transport method is adapted into an Electron Thermal Transport Monte Carlo (ETTMC) transport method to better model angular and long mean free path non-local effects. Previously, the ETTMC model had been implemented in the 2D DRACO multiphysics code and found to produce consistent results with the iSNB method. Current work is focused on a hybridization of the computationally slower but higher fidelity ETTMC transport method with the computationally faster iSNB diffusion method in order to maximize computational efficiency. Furthermore, effects on the energy distribution of the heat flux divergence are studied. Work to date on the hybrid method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.

  1. A Radiation Shielding Code for Spacecraft and Its Validation

    NASA Technical Reports Server (NTRS)

    Shinn, J. L.; Cucinotta, F. A.; Singleterry, R. C.; Wilson, J. W.; Badavi, F. F.; Badhwar, G. D.; Miller, J.; Zeitlin, C.; Heilbronn, L.; Tripathi, R. K.

    2000-01-01

    The HZETRN code, which uses a deterministic approach pioneered at NASA Langley Research Center, has been developed over the past decade to evaluate the local radiation fields within sensitive materials (electronic devices and human tissue) on spacecraft in the space environment. The code describes the interactions of shield materials with the incident galactic cosmic rays, trapped protons, or energetic protons from solar particle events in free space and low Earth orbit. The content of incident radiations is modified by atomic and nuclear reactions with the spacecraft and radiation shield materials. High-energy heavy ions are fragmented into less massive reaction products, and reaction products are produced by direct knockout of shield constituents or from de-excitation products. An overview of the computational procedures and database which describe these interactions is given. Validation of the code with recent Monte Carlo benchmarks, and laboratory and flight measurement is also included.

  2. Development of the Code RITRACKS

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2013-01-01

    A document discusses the code RITRACKS (Relativistic Ion Tracks), which was developed to simulate heavy ion track structure at the microscopic and nanoscopic scales. It is a Monte-Carlo code that simulates the production of radiolytic species in water, event-by-event, and which may be used to simulate tracks and also to calculate dose in targets and voxels of different sizes. The dose deposited by the radiation can be calculated in nanovolumes (voxels). RITRACKS allows simulation of radiation tracks without the need of extensive knowledge of computer programming or Monte-Carlo simulations. It is installed as a regular application on Windows systems. The main input parameters entered by the user are the type and energy of the ion, the length and size of the irradiated volume, the number of ions impacting the volume, and the number of histories. The simulation can be started after the input parameters are entered in the GUI. The number of each kind of interactions for each track is shown in the result details window. The tracks can be visualized in 3D after the simulation is complete. It is also possible to see the time evolution of the tracks and zoom on specific parts of the tracks. The software RITRACKS can be very useful for radiation scientists to investigate various problems in the fields of radiation physics, radiation chemistry, and radiation biology. For example, it can be used to simulate electron ejection experiments (radiation physics).

  3. Monte Carlo Shower Counter Studies

    NASA Technical Reports Server (NTRS)

    Snyder, H. David

    1991-01-01

    Activities and accomplishments related to the Monte Carlo shower counter studies are summarized. A tape of the VMS version of the GEANT software was obtained and installed on the central computer at Gallaudet University. Due to difficulties encountered in updating this VMS version, a decision was made to switch to the UNIX version of the package. This version was installed and used to generate the set of data files currently accessed by various analysis programs. The GEANT software was used to write files of data for positron and proton showers. Showers were simulated for a detector consisting of 50 alternating layers of lead and scintillator. Each file consisted of 1000 events at each of the following energies: 0.1, 0.5, 2.0, 10, 44, and 200 GeV. Data analysis activities related to clustering, chi square, and likelihood analyses are summarized. Source code for the GEANT user subprograms and data analysis programs are provided along with example data plots.

  4. ASHMET: A computer code for estimating insolation incident on tilted surfaces

    NASA Technical Reports Server (NTRS)

    Elkin, R. F.; Toelle, R. G.

    1980-01-01

    A computer code, ASHMET, was developed by MSFC to estimate the amount of solar insolation incident on the surfaces of solar collectors. Both tracking and fixed-position collectors were included. Climatological data for 248 U. S. locations are built into the code. The basic methodology used by ASHMET is the ASHRAE clear-day insolation relationships modified by a clearness index derived from SOLMET-measured solar radiation data to a horizontal surface.

  5. Computation of Thermodynamic Equilibria Pertinent to Nuclear Materials in Multi-Physics Codes

    NASA Astrophysics Data System (ADS)

    Piro, Markus Hans Alexander

    Nuclear energy plays a vital role in supporting electrical needs and fulfilling commitments to reduce greenhouse gas emissions. Research is a continuing necessity to improve the predictive capabilities of fuel behaviour in order to reduce costs and to meet increasingly stringent safety requirements by the regulator. Moreover, a renewed interest in nuclear energy has given rise to a "nuclear renaissance" and the necessity to design the next generation of reactors. In support of this goal, significant research efforts have been dedicated to the advancement of numerical modelling and computational tools in simulating various physical and chemical phenomena associated with nuclear fuel behaviour. This undertaking in effect is collecting the experience and observations of a past generation of nuclear engineers and scientists in a meaningful way for future design purposes. There is an increasing desire to integrate thermodynamic computations directly into multi-physics nuclear fuel performance and safety codes. A new equilibrium thermodynamic solver is being developed with this matter as a primary objective. This solver is intended to provide thermodynamic material properties and boundary conditions for continuum transport calculations. There are several concerns with the use of existing commercial thermodynamic codes: computational performance; limited capabilities in handling large multi-component systems of interest to the nuclear industry; convenient incorporation into other codes with quality assurance considerations; and, licensing entanglements associated with code distribution. The development of this software in this research is aimed at addressing all of these concerns. The approach taken in this work exploits fundamental principles of equilibrium thermodynamics to simplify the numerical optimization equations. In brief, the chemical potentials of all species and phases in the system are constrained by estimates of the chemical potentials of the system

  6. f1: a code to compute Appell's F1 hypergeometric function

    NASA Astrophysics Data System (ADS)

    Colavecchia, F. D.; Gasaneo, G.

    2004-02-01

    In this work we present the FORTRAN code to compute the hypergeometric function F1( α, β1, β2, γ, x, y) of Appell. The program can compute the F1 function for real values of the variables { x, y}, and complex values of the parameters { α, β1, β2, γ}. The code uses different strategies to calculate the function according to the ideas outlined in [F.D. Colavecchia et al., Comput. Phys. Comm. 138 (1) (2001) 29]. Program summaryTitle of the program: f1 Catalogue identifier: ADSJ Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSJ Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Computers: PC compatibles, SGI Origin2∗ Operating system under which the program has been tested: Linux, IRIX Programming language used: Fortran 90 Memory required to execute with typical data: 4 kbytes No. of bits in a word: 32 No. of bytes in distributed program, including test data, etc.: 52 325 Distribution format: tar gzip file External subprograms used: Numerical Recipes hypgeo [W.H. Press et al., Numerical Recipes in Fortran 77, Cambridge Univ. Press, 1996] or chyp routine of R.C. Forrey [J. Comput. Phys. 137 (1997) 79], rkf45 [L.F. Shampine and H.H. Watts, Rep. SAND76-0585, 1976]. Keywords: Numerical methods, special functions, hypergeometric functions, Appell functions, Gauss function Nature of the physical problem: Computing the Appell F1 function is relevant in atomic collisions and elementary particle physics. It is usually the result of multidimensional integrals involving Coulomb continuum states. Method of solution: The F1 function has a convergent-series definition for | x|<1 and | y|<1, and several analytic continuations for other regions of the variable space. The code tests the values of the variables and selects one of the precedent cases. In the convergence region the program uses the series definition near the origin of coordinates, and a numerical integration of the third-order differential

  7. Code manual for CONTAIN 2.0: A computer code for nuclear reactor containment analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murata, K.K.; Williams, D.C.; Griffith, R.O.

    1997-12-01

    The CONTAIN 2.0 computer code is an integrated analysis tool used for predicting the physical conditions, chemical compositions, and distributions of radiological materials inside a containment building following the release of material from the primary system in a light-water reactor accident. It can also predict the source term to the environment. CONTAIN 2.0 is intended to replace the earlier CONTAIN 1.12, which was released in 1991. The purpose of this Code Manual is to provide full documentation of the features and models in CONTAIN 2.0. Besides complete descriptions of the models, this Code Manual provides a complete description of themore » input and output from the code. CONTAIN 2.0 is a highly flexible and modular code that can run problems that are either quite simple or highly complex. An important aspect of CONTAIN is that the interactions among thermal-hydraulic phenomena, aerosol behavior, and fission product behavior are taken into account. The code includes atmospheric models for steam/air thermodynamics, intercell flows, condensation/evaporation on structures and aerosols, aerosol behavior, and gas combustion. It also includes models for reactor cavity phenomena such as core-concrete interactions and coolant pool boiling. Heat conduction in structures, fission product decay and transport, radioactive decay heating, and the thermal-hydraulic and fission product decontamination effects of engineered safety features are also modeled. To the extent possible, the best available models for severe accident phenomena have been incorporated into CONTAIN, but it is intrinsic to the nature of accident analysis that significant uncertainty exists regarding numerous phenomena. In those cases, sensitivity studies can be performed with CONTAIN by means of user-specified input parameters. Thus, the code can be viewed as a tool designed to assist the knowledge reactor safety analyst in evaluating the consequences of specific modeling assumptions.« less

  8. Application of advanced computational procedures for modeling solar-wind interactions with Venus: Theory and computer code

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.; Klenke, D.; Trudinger, B. C.; Spreiter, J. R.

    1980-01-01

    Computational procedures are developed and applied to the prediction of solar wind interaction with nonmagnetic terrestrial planet atmospheres, with particular emphasis to Venus. The theoretical method is based on a single fluid, steady, dissipationless, magnetohydrodynamic continuum model, and is appropriate for the calculation of axisymmetric, supersonic, super-Alfvenic solar wind flow past terrestrial planets. The procedures, which consist of finite difference codes to determine the gasdynamic properties and a variety of special purpose codes to determine the frozen magnetic field, streamlines, contours, plots, etc. of the flow, are organized into one computational program. Theoretical results based upon these procedures are reported for a wide variety of solar wind conditions and ionopause obstacle shapes. Plasma and magnetic field comparisons in the ionosheath are also provided with actual spacecraft data obtained by the Pioneer Venus Orbiter.

  9. Spiking network simulation code for petascale computers.

    PubMed

    Kunkel, Susanne; Schmidt, Maximilian; Eppler, Jochen M; Plesser, Hans E; Masumoto, Gen; Igarashi, Jun; Ishii, Shin; Fukai, Tomoki; Morrison, Abigail; Diesmann, Markus; Helias, Moritz

    2014-01-01

    Brain-scale networks exhibit a breathtaking heterogeneity in the dynamical properties and parameters of their constituents. At cellular resolution, the entities of theory are neurons and synapses and over the past decade researchers have learned to manage the heterogeneity of neurons and synapses with efficient data structures. Already early parallel simulation codes stored synapses in a distributed fashion such that a synapse solely consumes memory on the compute node harboring the target neuron. As petaflop computers with some 100,000 nodes become increasingly available for neuroscience, new challenges arise for neuronal network simulation software: Each neuron contacts on the order of 10,000 other neurons and thus has targets only on a fraction of all compute nodes; furthermore, for any given source neuron, at most a single synapse is typically created on any compute node. From the viewpoint of an individual compute node, the heterogeneity in the synaptic target lists thus collapses along two dimensions: the dimension of the types of synapses and the dimension of the number of synapses of a given type. Here we present a data structure taking advantage of this double collapse using metaprogramming techniques. After introducing the relevant scaling scenario for brain-scale simulations, we quantitatively discuss the performance on two supercomputers. We show that the novel architecture scales to the largest petascale supercomputers available today.

  10. Spiking network simulation code for petascale computers

    PubMed Central

    Kunkel, Susanne; Schmidt, Maximilian; Eppler, Jochen M.; Plesser, Hans E.; Masumoto, Gen; Igarashi, Jun; Ishii, Shin; Fukai, Tomoki; Morrison, Abigail; Diesmann, Markus; Helias, Moritz

    2014-01-01

    Brain-scale networks exhibit a breathtaking heterogeneity in the dynamical properties and parameters of their constituents. At cellular resolution, the entities of theory are neurons and synapses and over the past decade researchers have learned to manage the heterogeneity of neurons and synapses with efficient data structures. Already early parallel simulation codes stored synapses in a distributed fashion such that a synapse solely consumes memory on the compute node harboring the target neuron. As petaflop computers with some 100,000 nodes become increasingly available for neuroscience, new challenges arise for neuronal network simulation software: Each neuron contacts on the order of 10,000 other neurons and thus has targets only on a fraction of all compute nodes; furthermore, for any given source neuron, at most a single synapse is typically created on any compute node. From the viewpoint of an individual compute node, the heterogeneity in the synaptic target lists thus collapses along two dimensions: the dimension of the types of synapses and the dimension of the number of synapses of a given type. Here we present a data structure taking advantage of this double collapse using metaprogramming techniques. After introducing the relevant scaling scenario for brain-scale simulations, we quantitatively discuss the performance on two supercomputers. We show that the novel architecture scales to the largest petascale supercomputers available today. PMID:25346682

  11. User's manual for a two-dimensional, ground-water flow code on the Octopus computer network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naymik, T.G.

    1978-08-30

    A ground-water hydrology computer code, programmed by R.L. Taylor (in Proc. American Society of Civil Engineers, Journal of Hydraulics Division, 93(HY2), pp. 25-33 (1967)), has been adapted to the Octopus computer system at Lawrence Livermore Laboratory. Using an example problem, this manual details the input, output, and execution options of the code.

  12. Radiation transport codes for potential applications related to radiobiology and radiotherapy using protons, neutrons, and negatively charged pions

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.

    1972-01-01

    Several Monte Carlo radiation transport computer codes are used to predict quantities of interest in the fields of radiotherapy and radiobiology. The calculational methods are described and comparisions of calculated and experimental results are presented for dose distributions produced by protons, neutrons, and negatively charged pions. Comparisons of calculated and experimental cell survival probabilities are also presented.

  13. ASR4: A computer code for fitting and processing 4-gage anelastic strain recovery data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.

    A computer code for analyzing four-gage Anelastic Strain Recovery (ASR) data has been modified for use on a personal computer. This code fits the viscoelastic model of Warpinski and Teufel to measured ASR data, calculates the stress orientation directly, and computes stress magnitudes if sufficient input data are available. The code also calculates the stress orientation using strain-rosette equations, and its calculates stress magnitudes using Blanton's approach, assuming sufficient input data are available. The program is written in FORTRAN, compiled with Ryan-McFarland Version 2.4. Graphics use PLOT88 software by Plotworks, Inc., but the graphics software must be obtained by themore » user because of licensing restrictions. A version without graphics can also be run. This code is available through the National Energy Software Center (NESC), operated by Argonne National Laboratory. 5 refs., 3 figs.« less

  14. Monte Carlo simulation of proton track structure in biological matter

    DOE PAGES

    Quinto, Michele A.; Monti, Juan M.; Weck, Philippe F.; ...

    2017-05-25

    Here, understanding the radiation-induced effects at the cellular and subcellular levels remains crucial for predicting the evolution of irradiated biological matter. In this context, Monte Carlo track-structure simulations have rapidly emerged among the most suitable and powerful tools. However, most existing Monte Carlo track-structure codes rely heavily on the use of semi-empirical cross sections as well as water as a surrogate for biological matter. In the current work, we report on the up-to-date version of our homemade Monte Carlo code TILDA-V – devoted to the modeling of the slowing-down of 10 keV–100 MeV protons in both water and DNA –more » where the main collisional processes are described by means of an extensive set of ab initio differential and total cross sections.« less

  15. Monte Carlo simulation of proton track structure in biological matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinto, Michele A.; Monti, Juan M.; Weck, Philippe F.

    Here, understanding the radiation-induced effects at the cellular and subcellular levels remains crucial for predicting the evolution of irradiated biological matter. In this context, Monte Carlo track-structure simulations have rapidly emerged among the most suitable and powerful tools. However, most existing Monte Carlo track-structure codes rely heavily on the use of semi-empirical cross sections as well as water as a surrogate for biological matter. In the current work, we report on the up-to-date version of our homemade Monte Carlo code TILDA-V – devoted to the modeling of the slowing-down of 10 keV–100 MeV protons in both water and DNA –more » where the main collisional processes are described by means of an extensive set of ab initio differential and total cross sections.« less

  16. Estimation of whole-body radiation exposure from brachytherapy for oral cancer using a Monte Carlo simulation

    PubMed Central

    Ozaki, Y.; Kaida, A.; Miura, M.; Nakagawa, K.; Toda, K.; Yoshimura, R.; Sumi, Y.; Kurabayashi, T.

    2017-01-01

    Abstract Early stage oral cancer can be cured with oral brachytherapy, but whole-body radiation exposure status has not been previously studied. Recently, the International Commission on Radiological Protection Committee (ICRP) recommended the use of ICRP phantoms to estimate radiation exposure from external and internal radiation sources. In this study, we used a Monte Carlo simulation with ICRP phantoms to estimate whole-body exposure from oral brachytherapy. We used a Particle and Heavy Ion Transport code System (PHITS) to model oral brachytherapy with 192Ir hairpins and 198Au grains and to perform a Monte Carlo simulation on the ICRP adult reference computational phantoms. To confirm the simulations, we also computed local dose distributions from these small sources, and compared them with the results from Oncentra manual Low Dose Rate Treatment Planning (mLDR) software which is used in day-to-day clinical practice. We successfully obtained data on absorbed dose for each organ in males and females. Sex-averaged equivalent doses were 0.547 and 0.710 Sv with 192Ir hairpins and 198Au grains, respectively. Simulation with PHITS was reliable when compared with an alternative computational technique using mLDR software. We concluded that the absorbed dose for each organ and whole-body exposure from oral brachytherapy can be estimated with Monte Carlo simulation using PHITS on ICRP reference phantoms. Effective doses for patients with oral cancer were obtained. PMID:28339846

  17. Computer code for preliminary sizing analysis of axial-flow turbines

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1992-01-01

    This mean diameter flow analysis uses a stage average velocity diagram as the basis for the computational efficiency. Input design requirements include power or pressure ratio, flow rate, temperature, pressure, and rotative speed. Turbine designs are generated for any specified number of stages and for any of three types of velocity diagrams (symmetrical, zero exit swirl, or impulse) or for any specified stage swirl split. Exit turning vanes can be included in the design. The program output includes inlet and exit annulus dimensions, exit temperature and pressure, total and static efficiencies, flow angles, and last stage absolute and relative Mach numbers. An analysis is presented along with a description of the computer program input and output with sample cases. The analysis and code presented herein are modifications of those described in NASA-TN-D-6702. These modifications improve modeling rigor and extend code applicability.

  18. Neutron dose rate analysis on HTGR-10 reactor using Monte Carlo code

    NASA Astrophysics Data System (ADS)

    Suwoto; Adrial, H.; Hamzah, A.; Zuhair; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    The HTGR-10 reactor is cylinder-shaped core fuelled with kernel TRISO coated fuel particles in the spherical pebble with helium cooling system. The outlet helium gas coolant temperature outputted from the reactor core is designed to 700 °C. One advantage HTGR type reactor is capable of co-generation, as an addition to generating electricity, the reactor was designed to produce heat at high temperature can be used for other processes. The spherical fuel pebble contains 8335 TRISO UO2 kernel coated particles with enrichment of 10% and 17% are dispersed in a graphite matrix. The main purpose of this study was to analysis the distribution of neutron dose rates generated from HTGR-10 reactors. The calculation and analysis result of neutron dose rate in the HTGR-10 reactor core was performed using Monte Carlo MCNP5v1.6 code. The problems of double heterogeneity in kernel fuel coated particles TRISO and spherical fuel pebble in the HTGR-10 core are modelled well with MCNP5v1.6 code. The neutron flux to dose conversion factors taken from the International Commission on Radiological Protection (ICRP-74) was used to determine the dose rate that passes through the active core, reflectors, core barrel, reactor pressure vessel (RPV) and a biological shield. The calculated results of neutron dose rate with MCNP5v1.6 code using a conversion factor of ICRP-74 (2009) for radiation workers in the radial direction on the outside of the RPV (radial position = 220 cm from the center of the patio HTGR-10) provides the respective value of 9.22E-4 μSv/h and 9.58E-4 μSv/h for enrichment 10% and 17%, respectively. The calculated values of neutron dose rates are compliant with BAPETEN Chairman’s Regulation Number 4 Year 2013 on Radiation Protection and Safety in Nuclear Energy Utilization which sets the limit value for the average effective dose for radiation workers 20 mSv/year or 10μSv/h. Thus the protection and safety for radiation workers to be safe from the radiation source has

  19. A users' manual for MCPRAM (Monte Carlo PReprocessor for AMEER) and for the fuze options in AMEER (Aero Mechanical Equation Evaluation Routines)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaFarge, R.A.

    1990-05-01

    MCPRAM (Monte Carlo PReprocessor for AMEER), a computer program that uses Monte Carlo techniques to create an input file for the AMEER trajectory code, has been developed for the Sandia National Laboratories VAX and Cray computers. Users can select the number of trajectories to compute, which AMEER variables to investigate, and the type of probability distribution for each variable. Any legal AMEER input variable can be investigated anywhere in the input run stream with either a normal, uniform, or Rayleigh distribution. Users also have the option to use covariance matrices for the investigation of certain correlated variables such as boostermore » pre-reentry errors and wind, axial force, and atmospheric models. In conjunction with MCPRAM, AMEER was modified to include the variables introduced by the covariance matrices and to include provisions for six types of fuze models. The new fuze models and the new AMEER variables are described in this report.« less

  20. Development of a cryogenic mixed fluid J-T cooling computer code, 'JTMIX'

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1991-01-01

    An initial study was performed for analyzing and predicting the temperatures and cooling capacities when mixtures of fluids are used in Joule-Thomson coolers and in heat pipes. A computer code, JTMIX, was developed for mixed gas J-T analysis for any fluid combination of neon, nitrogen, various hydrocarbons, argon, oxygen, carbon monoxide, carbon dioxide, and hydrogen sulfide. When used in conjunction with the NIST computer code, DDMIX, it has accurately predicted order-of-magnitude increases in J-T cooling capacities when various hydrocarbons are added to nitrogen, and it predicts nitrogen normal boiling point depressions to as low as 60 K when neon is added.

  1. SKIRT: The design of a suite of input models for Monte Carlo radiative transfer simulations

    NASA Astrophysics Data System (ADS)

    Baes, M.; Camps, P.

    2015-09-01

    The Monte Carlo method is the most popular technique to perform radiative transfer simulations in a general 3D geometry. The algorithms behind and acceleration techniques for Monte Carlo radiative transfer are discussed extensively in the literature, and many different Monte Carlo codes are publicly available. On the contrary, the design of a suite of components that can be used for the distribution of sources and sinks in radiative transfer codes has received very little attention. The availability of such models, with different degrees of complexity, has many benefits. For example, they can serve as toy models to test new physical ingredients, or as parameterised models for inverse radiative transfer fitting. For 3D Monte Carlo codes, this requires algorithms to efficiently generate random positions from 3D density distributions. We describe the design of a flexible suite of components for the Monte Carlo radiative transfer code SKIRT. The design is based on a combination of basic building blocks (which can be either analytical toy models or numerical models defined on grids or a set of particles) and the extensive use of decorators that combine and alter these building blocks to more complex structures. For a number of decorators, e.g. those that add spiral structure or clumpiness, we provide a detailed description of the algorithms that can be used to generate random positions. Advantages of this decorator-based design include code transparency, the avoidance of code duplication, and an increase in code maintainability. Moreover, since decorators can be chained without problems, very complex models can easily be constructed out of simple building blocks. Finally, based on a number of test simulations, we demonstrate that our design using customised random position generators is superior to a simpler design based on a generic black-box random position generator.

  2. HOMAR: A computer code for generating homotopic grids using algebraic relations: User's manual

    NASA Technical Reports Server (NTRS)

    Moitra, Anutosh

    1989-01-01

    A computer code for fast automatic generation of quasi-three-dimensional grid systems for aerospace configurations is described. The code employs a homotopic method to algebraically generate two-dimensional grids in cross-sectional planes, which are stacked to produce a three-dimensional grid system. Implementation of the algebraic equivalents of the homotopic relations for generating body geometries and grids are explained. Procedures for controlling grid orthogonality and distortion are described. Test cases with description and specification of inputs are presented in detail. The FORTRAN computer program and notes on implementation and use are included.

  3. Use of SCALE Continuous-Energy Monte Carlo Tools for Eigenvalue Sensitivity Coefficient Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perfetti, Christopher M; Rearden, Bradley T

    2013-01-01

    The TSUNAMI code within the SCALE code system makes use of eigenvalue sensitivity coefficients for an extensive number of criticality safety applications, such as quantifying the data-induced uncertainty in the eigenvalue of critical systems, assessing the neutronic similarity between different critical systems, and guiding nuclear data adjustment studies. The need to model geometrically complex systems with improved fidelity and the desire to extend TSUNAMI analysis to advanced applications has motivated the development of a methodology for calculating sensitivity coefficients in continuous-energy (CE) Monte Carlo applications. The CLUTCH and Iterated Fission Probability (IFP) eigenvalue sensitivity methods were recently implemented in themore » CE KENO framework to generate the capability for TSUNAMI-3D to perform eigenvalue sensitivity calculations in continuous-energy applications. This work explores the improvements in accuracy that can be gained in eigenvalue and eigenvalue sensitivity calculations through the use of the SCALE CE KENO and CE TSUNAMI continuous-energy Monte Carlo tools as compared to multigroup tools. The CE KENO and CE TSUNAMI tools were used to analyze two difficult models of critical benchmarks, and produced eigenvalue and eigenvalue sensitivity coefficient results that showed a marked improvement in accuracy. The CLUTCH sensitivity method in particular excelled in terms of efficiency and computational memory requirements.« less

  4. Space Radiation Transport Code Development: 3DHZETRN

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.

    2015-01-01

    The space radiation transport code, HZETRN, has been used extensively for research, vehicle design optimization, risk analysis, and related applications. One of the simplifying features of the HZETRN transport formalism is the straight-ahead approximation, wherein all particles are assumed to travel along a common axis. This reduces the governing equation to one spatial dimension allowing enormous simplification and highly efficient computational procedures to be implemented. Despite the physical simplifications, the HZETRN code is widely used for space applications and has been found to agree well with fully 3D Monte Carlo simulations in many circumstances. Recent work has focused on the development of 3D transport corrections for neutrons and light ions (Z < 2) for which the straight-ahead approximation is known to be less accurate. Within the development of 3D corrections, well-defined convergence criteria have been considered, allowing approximation errors at each stage in model development to be quantified. The present level of development assumes the neutron cross sections have an isotropic component treated within N explicit angular directions and a forward component represented by the straight-ahead approximation. The N = 1 solution refers to the straight-ahead treatment, while N = 2 represents the bi-directional model in current use for engineering design. The figure below shows neutrons, protons, and alphas for various values of N at locations in an aluminum sphere exposed to a solar particle event (SPE) spectrum. The neutron fluence converges quickly in simple geometry with N > 14 directions. The improved code, 3DHZETRN, transports neutrons, light ions, and heavy ions under space-like boundary conditions through general geometry while maintaining a high degree of computational efficiency. A brief overview of the 3D transport formalism for neutrons and light ions is given, and extensive benchmarking results with the Monte Carlo codes Geant4, FLUKA, and

  5. Neutron Deep Penetration Calculations in Light Water with Monte Carlo TRIPOLI-4® Variance Reduction Techniques

    NASA Astrophysics Data System (ADS)

    Lee, Yi-Kang

    2017-09-01

    Nuclear decommissioning takes place in several stages due to the radioactivity in the reactor structure materials. A good estimation of the neutron activation products distributed in the reactor structure materials impacts obviously on the decommissioning planning and the low-level radioactive waste management. Continuous energy Monte-Carlo radiation transport code TRIPOLI-4 has been applied on radiation protection and shielding analyses. To enhance the TRIPOLI-4 application in nuclear decommissioning activities, both experimental and computational benchmarks are being performed. To calculate the neutron activation of the shielding and structure materials of nuclear facilities, the knowledge of 3D neutron flux map and energy spectra must be first investigated. To perform this type of neutron deep penetration calculations with the Monte Carlo transport code, variance reduction techniques are necessary in order to reduce the uncertainty of the neutron activation estimation. In this study, variance reduction options of the TRIPOLI-4 code were used on the NAIADE 1 light water shielding benchmark. This benchmark document is available from the OECD/NEA SINBAD shielding benchmark database. From this benchmark database, a simplified NAIADE 1 water shielding model was first proposed in this work in order to make the code validation easier. Determination of the fission neutron transport was performed in light water for penetration up to 50 cm for fast neutrons and up to about 180 cm for thermal neutrons. Measurement and calculation results were benchmarked. Variance reduction options and their performance were discussed and compared.

  6. Update On the Status of the FLUKA Monte Carlo Transport Code*

    NASA Technical Reports Server (NTRS)

    Ferrari, A.; Lorenzo-Sentis, M.; Roesler, S.; Smirnov, G.; Sommerer, F.; Theis, C.; Vlachoudis, V.; Carboni, M.; Mostacci, A.; Pelliccioni, M.

    2006-01-01

    The FLUKA Monte Carlo transport code is a well-known simulation tool in High Energy Physics. FLUKA is a dynamic tool in the sense that it is being continually updated and improved by the authors. We review the progress achieved since the last CHEP Conference on the physics models, some technical improvements to the code and some recent applications. From the point of view of the physics, improvements have been made with the extension of PEANUT to higher energies for p, n, pi, pbar/nbar and for nbars down to the lowest energies, the addition of the online capability to evolve radioactive products and get subsequent dose rates, upgrading of the treatment of EM interactions with the elimination of the need to separately prepare preprocessed files. A new coherent photon scattering model, an updated treatment of the photo-electric effect, an improved pair production model, new photon cross sections from the LLNL Cullen database have been implemented. In the field of nucleus-- nucleus interactions the electromagnetic dissociation of heavy ions has been added along with the extension of the interaction models for some nuclide pairs to energies below 100 MeV/A using the BME approach, as well as the development of an improved QMD model for intermediate energies. Both DPMJET 2.53 and 3 remain available along with rQMD 2.4 for heavy ion interactions above 100 MeV/A. Technical improvements include the ability to use parentheses in setting up the combinatorial geometry, the introduction of pre-processor directives in the input stream. a new random number generator with full 64 bit randomness, new routines for mathematical special functions (adapted from SLATEC). Finally, work is progressing on the deployment of a user-friendly GUI input interface as well as a CAD-like geometry creation and visualization tool. On the application front, FLUKA has been used to extensively evaluate the potential space radiation effects on astronauts for future deep space missions, the activation

  7. A modified Monte Carlo model for the ionospheric heating rates

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Fontheim, E. G.; Robertson, S. C.

    1972-01-01

    A Monte Carlo method is adopted as a basis for the derivation of the photoelectron heat input into the ionospheric plasma. This approach is modified in an attempt to minimize the computation time. The heat input distributions are computed for arbitrarily small source elements that are spaced at distances apart corresponding to the photoelectron dissipation range. By means of a nonlinear interpolation procedure their individual heating rate distributions are utilized to produce synthetic ones that fill the gaps between the Monte Carlo generated distributions. By varying these gaps and the corresponding number of Monte Carlo runs the accuracy of the results is tested to verify the validity of this procedure. It is concluded that this model can reduce the computation time by more than a factor of three, thus improving the feasibility of including Monte Carlo calculations in self-consistent ionosphere models.

  8. Majorana fermion surface code for universal quantum computation

    DOE PAGES

    Vijay, Sagar; Hsieh, Timothy H.; Fu, Liang

    2015-12-10

    In this study, we introduce an exactly solvable model of interacting Majorana fermions realizing Z 2 topological order with a Z 2 fermion parity grading and lattice symmetries permuting the three fundamental anyon types. We propose a concrete physical realization by utilizing quantum phase slips in an array of Josephson-coupled mesoscopic topological superconductors, which can be implemented in a wide range of solid-state systems, including topological insulators, nanowires, or two-dimensional electron gases, proximitized by s-wave superconductors. Our model finds a natural application as a Majorana fermion surface code for universal quantum computation, with a single-step stabilizer measurement requiring no physicalmore » ancilla qubits, increased error tolerance, and simpler logical gates than a surface code with bosonic physical qubits. We thoroughly discuss protocols for stabilizer measurements, encoding and manipulating logical qubits, and gate implementations.« less

  9. The EDIT-COMGEOM Code

    DTIC Science & Technology

    1975-09-01

    This report assumes a familiarity with the GIFT and MAGIC computer codes. The EDIT-COMGEOM code is a FORTRAN computer code. The EDIT-COMGEOM code...converts the target description data which was used in the MAGIC computer code to the target description data which can be used in the GIFT computer code

  10. Assessment of uncertainties of the models used in thermal-hydraulic computer codes

    NASA Astrophysics Data System (ADS)

    Gricay, A. S.; Migrov, Yu. A.

    2015-09-01

    The article deals with matters concerned with the problem of determining the statistical characteristics of variable parameters (the variation range and distribution law) in analyzing the uncertainty and sensitivity of calculation results to uncertainty in input data. A comparative analysis of modern approaches to uncertainty in input data is presented. The need to develop an alternative method for estimating the uncertainty of model parameters used in thermal-hydraulic computer codes, in particular, in the closing correlations of the loop thermal hydraulics block, is shown. Such a method shall feature the minimal degree of subjectivism and must be based on objective quantitative assessment criteria. The method includes three sequential stages: selecting experimental data satisfying the specified criteria, identifying the key closing correlation using a sensitivity analysis, and carrying out case calculations followed by statistical processing of the results. By using the method, one can estimate the uncertainty range of a variable parameter and establish its distribution law in the above-mentioned range provided that the experimental information is sufficiently representative. Practical application of the method is demonstrated taking as an example the problem of estimating the uncertainty of a parameter appearing in the model describing transition to post-burnout heat transfer that is used in the thermal-hydraulic computer code KORSAR. The performed study revealed the need to narrow the previously established uncertainty range of this parameter and to replace the uniform distribution law in the above-mentioned range by the Gaussian distribution law. The proposed method can be applied to different thermal-hydraulic computer codes. In some cases, application of the method can make it possible to achieve a smaller degree of conservatism in the expert estimates of uncertainties pertinent to the model parameters used in computer codes.

  11. Modernization and optimization of a legacy open-source CFD code for high-performance computing architectures

    NASA Astrophysics Data System (ADS)

    Gel, Aytekin; Hu, Jonathan; Ould-Ahmed-Vall, ElMoustapha; Kalinkin, Alexander A.

    2017-02-01

    Legacy codes remain a crucial element of today's simulation-based engineering ecosystem due to the extensive validation process and investment in such software. The rapid evolution of high-performance computing architectures necessitates the modernization of these codes. One approach to modernization is a complete overhaul of the code. However, this could require extensive investments, such as rewriting in modern languages, new data constructs, etc., which will necessitate systematic verification and validation to re-establish the credibility of the computational models. The current study advocates using a more incremental approach and is a culmination of several modernization efforts of the legacy code MFIX, which is an open-source computational fluid dynamics code that has evolved over several decades, widely used in multiphase flows and still being developed by the National Energy Technology Laboratory. Two different modernization approaches,'bottom-up' and 'top-down', are illustrated. Preliminary results show up to 8.5x improvement at the selected kernel level with the first approach, and up to 50% improvement in total simulated time with the latter were achieved for the demonstration cases and target HPC systems employed.

  12. Modernization and optimization of a legacy open-source CFD code for high-performance computing architectures

    DOE PAGES

    Gel, Aytekin; Hu, Jonathan; Ould-Ahmed-Vall, ElMoustapha; ...

    2017-03-20

    Legacy codes remain a crucial element of today's simulation-based engineering ecosystem due to the extensive validation process and investment in such software. The rapid evolution of high-performance computing architectures necessitates the modernization of these codes. One approach to modernization is a complete overhaul of the code. However, this could require extensive investments, such as rewriting in modern languages, new data constructs, etc., which will necessitate systematic verification and validation to re-establish the credibility of the computational models. The current study advocates using a more incremental approach and is a culmination of several modernization efforts of the legacy code MFIX, whichmore » is an open-source computational fluid dynamics code that has evolved over several decades, widely used in multiphase flows and still being developed by the National Energy Technology Laboratory. Two different modernization approaches,‘bottom-up’ and ‘top-down’, are illustrated. Here, preliminary results show up to 8.5x improvement at the selected kernel level with the first approach, and up to 50% improvement in total simulated time with the latter were achieved for the demonstration cases and target HPC systems employed.« less

  13. Modernization and optimization of a legacy open-source CFD code for high-performance computing architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gel, Aytekin; Hu, Jonathan; Ould-Ahmed-Vall, ElMoustapha

    Legacy codes remain a crucial element of today's simulation-based engineering ecosystem due to the extensive validation process and investment in such software. The rapid evolution of high-performance computing architectures necessitates the modernization of these codes. One approach to modernization is a complete overhaul of the code. However, this could require extensive investments, such as rewriting in modern languages, new data constructs, etc., which will necessitate systematic verification and validation to re-establish the credibility of the computational models. The current study advocates using a more incremental approach and is a culmination of several modernization efforts of the legacy code MFIX, whichmore » is an open-source computational fluid dynamics code that has evolved over several decades, widely used in multiphase flows and still being developed by the National Energy Technology Laboratory. Two different modernization approaches,‘bottom-up’ and ‘top-down’, are illustrated. Here, preliminary results show up to 8.5x improvement at the selected kernel level with the first approach, and up to 50% improvement in total simulated time with the latter were achieved for the demonstration cases and target HPC systems employed.« less

  14. Modeling And Simulation Of Bar Code Scanners Using Computer Aided Design Software

    NASA Astrophysics Data System (ADS)

    Hellekson, Ron; Campbell, Scott

    1988-06-01

    Many optical systems have demanding requirements to package the system in a small 3 dimensional space. The use of computer graphic tools can be a tremendous aid to the designer in analyzing the optical problems created by smaller and less costly systems. The Spectra Physics grocery store bar code scanner employs an especially complex 3 dimensional scan pattern to read bar code labels. By using a specially written program which interfaces with a computer aided design system, we have simulated many of the functions of this complex optical system. In this paper we will illustrate how a recent version of the scanner has been designed. We will discuss the use of computer graphics in the design process including interactive tweaking of the scan pattern, analysis of collected light, analysis of the scan pattern density, and analysis of the manufacturing tolerances used to build the scanner.

  15. Modeling Improvements and Users Manual for Axial-flow Turbine Off-design Computer Code AXOD

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1994-01-01

    An axial-flow turbine off-design performance computer code used for preliminary studies of gas turbine systems was modified and calibrated based on the experimental performance of large aircraft-type turbines. The flow- and loss-model modifications and calibrations are presented in this report. Comparisons are made between computed performances and experimental data for seven turbines over wide ranges of speed and pressure ratio. This report also serves as the users manual for the revised code, which is named AXOD.

  16. Comparison of computer codes for calculating dynamic loads in wind turbines

    NASA Technical Reports Server (NTRS)

    Spera, D. A.

    1977-01-01

    Seven computer codes for analyzing performance and loads in large, horizontal axis wind turbines were used to calculate blade bending moment loads for two operational conditions of the 100 kW Mod-0 wind turbine. Results were compared with test data on the basis of cyclic loads, peak loads, and harmonic contents. Four of the seven codes include rotor-tower interaction and three were limited to rotor analysis. With a few exceptions, all calculated loads were within 25 percent of nominal test data.

  17. Development of a new generation solid rocket motor ignition computer code

    NASA Technical Reports Server (NTRS)

    Foster, Winfred A., Jr.; Jenkins, Rhonald M.; Ciucci, Alessandro; Johnson, Shelby D.

    1994-01-01

    This report presents the results of experimental and numerical investigations of the flow field in the head-end star grain slots of the Space Shuttle Solid Rocket Motor. This work provided the basis for the development of an improved solid rocket motor ignition transient code which is also described in this report. The correlation between the experimental and numerical results is excellent and provides a firm basis for the development of a fully three-dimensional solid rocket motor ignition transient computer code.

  18. Computer code for controller partitioning with IFPC application: A user's manual

    NASA Technical Reports Server (NTRS)

    Schmidt, Phillip H.; Yarkhan, Asim

    1994-01-01

    A user's manual for the computer code for partitioning a centralized controller into decentralized subcontrollers with applicability to Integrated Flight/Propulsion Control (IFPC) is presented. Partitioning of a centralized controller into two subcontrollers is described and the algorithm on which the code is based is discussed. The algorithm uses parameter optimization of a cost function which is described. The major data structures and functions are described. Specific instructions are given. The user is led through an example of an IFCP application.

  19. Simulation of spacecraft attitude dynamics using TREETOPS and model-specific computer Codes

    NASA Technical Reports Server (NTRS)

    Cochran, John E.; No, T. S.; Fitz-Coy, Norman G.

    1989-01-01

    The simulation of spacecraft attitude dynamics and control using the generic, multi-body code called TREETOPS and other codes written especially to simulate particular systems is discussed. Differences in the methods used to derive equations of motion--Kane's method for TREETOPS and the Lagrangian and Newton-Euler methods, respectively, for the other two codes--are considered. Simulation results from the TREETOPS code are compared with those from the other two codes for two example systems. One system is a chain of rigid bodies; the other consists of two rigid bodies attached to a flexible base body. Since the computer codes were developed independently, consistent results serve as a verification of the correctness of all the programs. Differences in the results are discussed. Results for the two-rigid-body, one-flexible-body system are useful also as information on multi-body, flexible, pointing payload dynamics.

  20. Characterizing the Properties of a Woven SiC/SiC Composite Using W-CEMCAN Computer Code

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Mital, Subodh K.; DiCarlo, James A.

    1999-01-01

    A micromechanics based computer code to predict the thermal and mechanical properties of woven ceramic matrix composites (CMC) is developed. This computer code, W-CEMCAN (Woven CEramic Matrix Composites ANalyzer), predicts the properties of two-dimensional woven CMC at any temperature and takes into account various constituent geometries and volume fractions. This computer code is used to predict the thermal and mechanical properties of an advanced CMC composed of 0/90 five-harness (5 HS) Sylramic fiber which had been chemically vapor infiltrated (CVI) with boron nitride (BN) and SiC interphase coatings and melt-infiltrated (MI) with SiC. The predictions, based on the bulk constituent properties from the literature, are compared with measured experimental data. Based on the comparison. improved or calibrated properties for the constituent materials are then developed for use by material developers/designers. The computer code is then used to predict the properties of a composite with the same constituents but with different fiber volume fractions. The predictions are compared with measured data and a good agreement is achieved.

  1. Pediatric personalized CT-dosimetry Monte Carlo simulations, using computational phantoms

    NASA Astrophysics Data System (ADS)

    Papadimitroulas, P.; Kagadis, G. C.; Ploussi, A.; Kordolaimi, S.; Papamichail, D.; Karavasilis, E.; Syrgiamiotis, V.; Loudos, G.

    2015-09-01

    The last 40 years Monte Carlo (MC) simulations serve as a “gold standard” tool for a wide range of applications in the field of medical physics and tend to be essential in daily clinical practice. Regarding diagnostic imaging applications, such as computed tomography (CT), the assessment of deposited energy is of high interest, so as to better analyze the risks and the benefits of the procedure. The last few years a big effort is done towards personalized dosimetry, especially in pediatric applications. In the present study the GATE toolkit was used and computational pediatric phantoms have been modeled for the assessment of CT examinations dosimetry. The pediatric models used come from the XCAT and IT'IS series. The X-ray spectrum of a Brightspeed CT scanner was simulated and validated with experimental data. Specifically, a DCT-10 ionization chamber was irradiated twice using 120 kVp with 100 mAs and 200 mAs, for 1 sec in 1 central axial slice (thickness = 10mm). The absorbed dose was measured in air resulting in differences lower than 4% between the experimental and simulated data. The simulations were acquired using ˜1010 number of primaries in order to achieve low statistical uncertainties. Dose maps were also saved for quantification of the absorbed dose in several children critical organs during CT acquisition.

  2. An accurate, compact and computationally efficient representation of orbitals for quantum Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Luo, Ye; Esler, Kenneth; Kent, Paul; Shulenburger, Luke

    Quantum Monte Carlo (QMC) calculations of giant molecules, surface and defect properties of solids have been feasible recently due to drastically expanding computational resources. However, with the most computationally efficient basis set, B-splines, these calculations are severely restricted by the memory capacity of compute nodes. The B-spline coefficients are shared on a node but not distributed among nodes, to ensure fast evaluation. A hybrid representation which incorporates atomic orbitals near the ions and B-spline ones in the interstitial regions offers a more accurate and less memory demanding description of the orbitals because they are naturally more atomic like near ions and much smoother in between, thus allowing coarser B-spline grids. We will demonstrate the advantage of hybrid representation over pure B-spline and Gaussian basis sets and also show significant speed-up like computing the non-local pseudopotentials with our new scheme. Moreover, we discuss a new algorithm for atomic orbital initialization which used to require an extra workflow step taking a few days. With this work, the highly efficient hybrid representation paves the way to simulate large size even in-homogeneous systems using QMC. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Computational Materials Sciences Program.

  3. Monte Carlo Simulation of a Segmented Detector for Low-Energy Electron Antineutrinos

    NASA Astrophysics Data System (ADS)

    Qomi, H. Akhtari; Safari, M. J.; Davani, F. Abbasi

    2017-11-01

    Detection of low-energy electron antineutrinos is of importance for several purposes, such as ex-vessel reactor monitoring, neutrino oscillation studies, etc. The inverse beta decay (IBD) is the interaction that is responsible for detection mechanism in (organic) plastic scintillation detectors. Here, a detailed study will be presented dealing with the radiation and optical transport simulation of a typical segmented antineutrino detector withMonte Carlo method using MCNPX and FLUKA codes. This study shows different aspects of the detector, benefiting from inherent capabilities of the Monte Carlo simulation codes.

  4. High-temperature high-pressure properties of silica from Quantum Monte Carlo and Density Functional Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Cohen, R. E.; Driver, K.; Wu, Z.; Militzer, B.; Rios, P. L.; Towler, M.; Needs, R.

    2009-03-01

    We have used diffusion quantum Monte Carlo (DMC) with the CASINO code with thermal free energies from phonons computed using density functional perturbation theory (DFPT) with the ABINIT code to obtain phase transition curves and thermal equations of state of silica phases under pressure. We obtain excellent agreement with experiments for the metastable phase transition from quartz to stishovite. The local density approximation (LDA) incorrectly gives stishovite as the ground state. The generalized gradient approximation (GGA) correctly gives quartz as the ground state, but does worse than LDA for the equations of state. DMC, variational quantum Monte Carlo (VMC), and DFT all give good results for the ferroelastic transition of stishovite to the CaCl2 structure, and LDA or the WC exchange correlation potentials give good results within a given silica phase. The δV and δH from the CaCl2 structure to α-PbO2 is small, giving uncertainly in the theoretical transition pressure. It is interesting that DFT has trouble with silica transitions, although the electronic structures of silica are insulating, simple closed-shell with ionic/covalent bonding. It seems like the errors in DFT are from not precisely giving the ion sizes.

  5. A dental public health approach based on computational mathematics: Monte Carlo simulation of childhood dental decay.

    PubMed

    Tennant, Marc; Kruger, Estie

    2013-02-01

    This study developed a Monte Carlo simulation approach to examining the prevalence and incidence of dental decay using Australian children as a test environment. Monte Carlo simulation has been used for a half a century in particle physics (and elsewhere); put simply, it is the probability for various population-level outcomes seeded randomly to drive the production of individual level data. A total of five runs of the simulation model for all 275,000 12-year-olds in Australia were completed based on 2005-2006 data. Measured on average decayed/missing/filled teeth (DMFT) and DMFT of highest 10% of sample (Sic10) the runs did not differ from each other by more than 2% and the outcome was within 5% of the reported sampled population data. The simulations rested on the population probabilities that are known to be strongly linked to dental decay, namely, socio-economic status and Indigenous heritage. Testing the simulated population found DMFT of all cases where DMFT<>0 was 2.3 (n = 128,609) and DMFT for Indigenous cases only was 1.9 (n = 13,749). In the simulation population the Sic25 was 3.3 (n = 68,750). Monte Carlo simulations were created in particle physics as a computational mathematical approach to unknown individual-level effects by resting a simulation on known population-level probabilities. In this study a Monte Carlo simulation approach to childhood dental decay was built, tested and validated. © 2013 FDI World Dental Federation.

  6. Computer code for predicting coolant flow and heat transfer in turbomachinery

    NASA Technical Reports Server (NTRS)

    Meitner, Peter L.

    1990-01-01

    A computer code was developed to analyze any turbomachinery coolant flow path geometry that consist of a single flow passage with a unique inlet and exit. Flow can be bled off for tip-cap impingement cooling, and a flow bypass can be specified in which coolant flow is taken off at one point in the flow channel and reintroduced at a point farther downstream in the same channel. The user may either choose the coolant flow rate or let the program determine the flow rate from specified inlet and exit conditions. The computer code integrates the 1-D momentum and energy equations along a defined flow path and calculates the coolant's flow rate, temperature, pressure, and velocity and the heat transfer coefficients along the passage. The equations account for area change, mass addition or subtraction, pumping, friction, and heat transfer.

  7. A Monte Carlo Simulation of Brownian Motion in the Freshman Laboratory

    ERIC Educational Resources Information Center

    Anger, C. D.; Prescott, J. R.

    1970-01-01

    Describes a dry- lab" experiment for the college freshman laboratory, in which the essential features of Browian motion are given principles, using the Monte Carlo technique. Calculations principles, using the Monte Carlo technique. Calculations are carried out by a computation sheme based on computer language. Bibliography. (LC)

  8. A Computer Code for Swirling Turbulent Axisymmetric Recirculating Flows in Practical Isothermal Combustor Geometries

    NASA Technical Reports Server (NTRS)

    Lilley, D. G.; Rhode, D. L.

    1982-01-01

    A primitive pressure-velocity variable finite difference computer code was developed to predict swirling recirculating inert turbulent flows in axisymmetric combustors in general, and for application to a specific idealized combustion chamber with sudden or gradual expansion. The technique involves a staggered grid system for axial and radial velocities, a line relaxation procedure for efficient solution of the equations, a two-equation k-epsilon turbulence model, a stairstep boundary representation of the expansion flow, and realistic accommodation of swirl effects. A user's manual, dealing with the computational problem, showing how the mathematical basis and computational scheme may be translated into a computer program is presented. A flow chart, FORTRAN IV listing, notes about various subroutines and a user's guide are supplied as an aid to prospective users of the code.

  9. FASTER 3: A generalized-geometry Monte Carlo computer program for the transport of neutrons and gamma rays. Volume 2: Users manual

    NASA Technical Reports Server (NTRS)

    Jordan, T. M.

    1970-01-01

    A description of the FASTER-III program for Monte Carlo Carlo calculation of photon and neutron transport in complex geometries is presented. Major revisions include the capability of calculating minimum weight shield configurations for primary and secondary radiation and optimal importance sampling parameters. The program description includes a users manual describing the preparation of input data cards, the printout from a sample problem including the data card images, definitions of Fortran variables, the program logic, and the control cards required to run on the IBM 7094, IBM 360, UNIVAC 1108 and CDC 6600 computers.

  10. An Educational MONTE CARLO Simulation/Animation Program for the Cosmic Rays Muons and a Prototype Computer-Driven Hardware Display.

    ERIC Educational Resources Information Center

    Kalkanis, G.; Sarris, M. M.

    1999-01-01

    Describes an educational software program for the study of and detection methods for the cosmic ray muons passing through several light transparent materials (i.e., water, air, etc.). Simulates muons and Cherenkov photons' paths and interactions and visualizes/animates them on the computer screen using Monte Carlo methods/techniques which employ…

  11. Computer code for the prediction of nozzle admittance

    NASA Technical Reports Server (NTRS)

    Nguyen, Thong V.

    1988-01-01

    A procedure which can accurately characterize injector designs for large thrust (0.5 to 1.5 million pounds), high pressure (500 to 3000 psia) LOX/hydrocarbon engines is currently under development. In this procedure, a rectangular cross-sectional combustion chamber is to be used to simulate the lower traverse frequency modes of the large scale chamber. The chamber will be sized so that the first width mode of the rectangular chamber corresponds to the first tangential mode of the full-scale chamber. Test data to be obtained from the rectangular chamber will be used to assess the full scale engine stability. This requires the development of combustion stability models for rectangular chambers. As part of the combustion stability model development, a computer code, NOAD based on existing theory was developed to calculate the nozzle admittances for both rectangular and axisymmetric nozzles. This code is detailed.

  12. A Multiple Sphere T-Matrix Fortran Code for Use on Parallel Computer Clusters

    NASA Technical Reports Server (NTRS)

    Mackowski, D. W.; Mishchenko, M. I.

    2011-01-01

    A general-purpose Fortran-90 code for calculation of the electromagnetic scattering and absorption properties of multiple sphere clusters is described. The code can calculate the efficiency factors and scattering matrix elements of the cluster for either fixed or random orientation with respect to the incident beam and for plane wave or localized- approximation Gaussian incident fields. In addition, the code can calculate maps of the electric field both interior and exterior to the spheres.The code is written with message passing interface instructions to enable the use on distributed memory compute clusters, and for such platforms the code can make feasible the calculation of absorption, scattering, and general EM characteristics of systems containing several thousand spheres.

  13. Implementing Scientific Simulation Codes Highly Tailored for Vector Architectures Using Custom Configurable Computing Machines

    NASA Technical Reports Server (NTRS)

    Rutishauser, David

    2006-01-01

    The motivation for this work comes from an observation that amidst the push for Massively Parallel (MP) solutions to high-end computing problems such as numerical physical simulations, large amounts of legacy code exist that are highly optimized for vector supercomputers. Because re-hosting legacy code often requires a complete re-write of the original code, which can be a very long and expensive effort, this work examines the potential to exploit reconfigurable computing machines in place of a vector supercomputer to implement an essentially unmodified legacy source code. Custom and reconfigurable computing resources could be used to emulate an original application's target platform to the extent required to achieve high performance. To arrive at an architecture that delivers the desired performance subject to limited resources involves solving a multi-variable optimization problem with constraints. Prior research in the area of reconfigurable computing has demonstrated that designing an optimum hardware implementation of a given application under hardware resource constraints is an NP-complete problem. The premise of the approach is that the general issue of applying reconfigurable computing resources to the implementation of an application, maximizing the performance of the computation subject to physical resource constraints, can be made a tractable problem by assuming a computational paradigm, such as vector processing. This research contributes a formulation of the problem and a methodology to design a reconfigurable vector processing implementation of a given application that satisfies a performance metric. A generic, parametric, architectural framework for vector processing implemented in reconfigurable logic is developed as a target for a scheduling/mapping algorithm that maps an input computation to a given instance of the architecture. This algorithm is integrated with an optimization framework to arrive at a specification of the architecture parameters

  14. Plagiarism Detection Algorithm for Source Code in Computer Science Education

    ERIC Educational Resources Information Center

    Liu, Xin; Xu, Chan; Ouyang, Boyu

    2015-01-01

    Nowadays, computer programming is getting more necessary in the course of program design in college education. However, the trick of plagiarizing plus a little modification exists among some students' home works. It's not easy for teachers to judge if there's plagiarizing in source code or not. Traditional detection algorithms cannot fit this…

  15. Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nataf, J.M.; Winkelmann, F.

    We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK's symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of thesemore » methods to solving the partial differential equations for two-dimensional heat flow is illustrated.« less

  16. Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nataf, J.M.; Winkelmann, F.

    We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK`s symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of thesemore » methods to solving the partial differential equations for two-dimensional heat flow is illustrated.« less

  17. Nexus: A modular workflow management system for quantum simulation codes

    NASA Astrophysics Data System (ADS)

    Krogel, Jaron T.

    2016-01-01

    The management of simulation workflows represents a significant task for the individual computational researcher. Automation of the required tasks involved in simulation work can decrease the overall time to solution and reduce sources of human error. A new simulation workflow management system, Nexus, is presented to address these issues. Nexus is capable of automated job management on workstations and resources at several major supercomputing centers. Its modular design allows many quantum simulation codes to be supported within the same framework. Current support includes quantum Monte Carlo calculations with QMCPACK, density functional theory calculations with Quantum Espresso or VASP, and quantum chemical calculations with GAMESS. Users can compose workflows through a transparent, text-based interface, resembling the input file of a typical simulation code. A usage example is provided to illustrate the process.

  18. Estimation of whole-body radiation exposure from brachytherapy for oral cancer using a Monte Carlo simulation.

    PubMed

    Ozaki, Y; Watanabe, H; Kaida, A; Miura, M; Nakagawa, K; Toda, K; Yoshimura, R; Sumi, Y; Kurabayashi, T

    2017-07-01

    Early stage oral cancer can be cured with oral brachytherapy, but whole-body radiation exposure status has not been previously studied. Recently, the International Commission on Radiological Protection Committee (ICRP) recommended the use of ICRP phantoms to estimate radiation exposure from external and internal radiation sources. In this study, we used a Monte Carlo simulation with ICRP phantoms to estimate whole-body exposure from oral brachytherapy. We used a Particle and Heavy Ion Transport code System (PHITS) to model oral brachytherapy with 192Ir hairpins and 198Au grains and to perform a Monte Carlo simulation on the ICRP adult reference computational phantoms. To confirm the simulations, we also computed local dose distributions from these small sources, and compared them with the results from Oncentra manual Low Dose Rate Treatment Planning (mLDR) software which is used in day-to-day clinical practice. We successfully obtained data on absorbed dose for each organ in males and females. Sex-averaged equivalent doses were 0.547 and 0.710 Sv with 192Ir hairpins and 198Au grains, respectively. Simulation with PHITS was reliable when compared with an alternative computational technique using mLDR software. We concluded that the absorbed dose for each organ and whole-body exposure from oral brachytherapy can be estimated with Monte Carlo simulation using PHITS on ICRP reference phantoms. Effective doses for patients with oral cancer were obtained. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  19. Simulation of charge breeding of rubidium using Monte Carlo charge breeding code and generalized ECRIS model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, L.; Cluggish, B.; Kim, J. S.

    2010-02-15

    A Monte Carlo charge breeding code (MCBC) is being developed by FAR-TECH, Inc. to model the capture and charge breeding of 1+ ion beam in an electron cyclotron resonance ion source (ECRIS) device. The ECRIS plasma is simulated using the generalized ECRIS model which has two choices of boundary settings, free boundary condition and Bohm condition. The charge state distribution of the extracted beam ions is calculated by solving the steady state ion continuity equations where the profiles of the captured ions are used as source terms. MCBC simulations of the charge breeding of Rb+ showed good agreement with recentmore » charge breeding experiments at Argonne National Laboratory (ANL). MCBC correctly predicted the peak of highly charged ion state outputs under free boundary condition and similar charge state distribution width but a lower peak charge state under the Bohm condition. The comparisons between the simulation results and ANL experimental measurements are presented and discussed.« less

  20. Parallel tempering simulation of the three-dimensional Edwards-Anderson model with compact asynchronous multispin coding on GPU

    NASA Astrophysics Data System (ADS)

    Fang, Ye; Feng, Sheng; Tam, Ka-Ming; Yun, Zhifeng; Moreno, Juana; Ramanujam, J.; Jarrell, Mark

    2014-10-01

    Monte Carlo simulations of the Ising model play an important role in the field of computational statistical physics, and they have revealed many properties of the model over the past few decades. However, the effect of frustration due to random disorder, in particular the possible spin glass phase, remains a crucial but poorly understood problem. One of the obstacles in the Monte Carlo simulation of random frustrated systems is their long relaxation time making an efficient parallel implementation on state-of-the-art computation platforms highly desirable. The Graphics Processing Unit (GPU) is such a platform that provides an opportunity to significantly enhance the computational performance and thus gain new insight into this problem. In this paper, we present optimization and tuning approaches for the CUDA implementation of the spin glass simulation on GPUs. We discuss the integration of various design alternatives, such as GPU kernel construction with minimal communication, memory tiling, and look-up tables. We present a binary data format, Compact Asynchronous Multispin Coding (CAMSC), which provides an additional 28.4% speedup compared with the traditionally used Asynchronous Multispin Coding (AMSC). Our overall design sustains a performance of 33.5 ps per spin flip attempt for simulating the three-dimensional Edwards-Anderson model with parallel tempering, which significantly improves the performance over existing GPU implementations.

  1. A Model Code of Ethics for the Use of Computers in Education.

    ERIC Educational Resources Information Center

    Shere, Daniel T.; Cannings, Terence R.

    Two Delphi studies were conducted by the Ethics and Equity Committee of the International Council for Computers in Education (ICCE) to obtain the opinions of experts on areas that should be covered by ethical guides for the use of computers in education and for software development, and to develop a model code of ethics for each of these areas.…

  2. Monte Carlo Computational Modeling of the Energy Dependence of Atomic Oxygen Undercutting of Protected Polymers

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Stueber, Thomas J.; Norris, Mary Jo

    1998-01-01

    A Monte Carlo computational model has been developed which simulates atomic oxygen attack of protected polymers at defect sites in the protective coatings. The parameters defining how atomic oxygen interacts with polymers and protective coatings as well as the scattering processes which occur have been optimized to replicate experimental results observed from protected polyimide Kapton on the Long Duration Exposure Facility (LDEF) mission. Computational prediction of atomic oxygen undercutting at defect sites in protective coatings for various arrival energies was investigated. The atomic oxygen undercutting energy dependence predictions enable one to predict mass loss that would occur in low Earth orbit, based on lower energy ground laboratory atomic oxygen beam systems. Results of computational model prediction of undercut cavity size as a function of energy and defect size will be presented to provide insight into expected in-space mass loss of protected polymers with protective coating defects based on lower energy ground laboratory testing.

  3. Dosimetric comparison of Monte Carlo codes (EGS4, MCNP, MCNPX) considering external and internal exposures of the Zubal phantom to electron and photon sources.

    PubMed

    Chiavassa, S; Lemosquet, A; Aubineau-Lanièce, I; de Carlan, L; Clairand, I; Ferrer, L; Bardiès, M; Franck, D; Zankl, M

    2005-01-01

    This paper aims at comparing dosimetric assessments performed with three Monte Carlo codes: EGS4, MCNP4c2 and MCNPX2.5e, using a realistic voxel phantom, namely the Zubal phantom, in two configurations of exposure. The first one deals with an external irradiation corresponding to the example of a radiological accident. The results are obtained using the EGS4 and the MCNP4c2 codes and expressed in terms of the mean absorbed dose (in Gy per source particle) for brain, lungs, liver and spleen. The second one deals with an internal exposure corresponding to the treatment of a medullary thyroid cancer by 131I-labelled radiopharmaceutical. The results are obtained by EGS4 and MCNPX2.5e and compared in terms of S-values (expressed in mGy per kBq and per hour) for liver, kidney, whole body and thyroid. The results of these two studies are presented and differences between the codes are analysed and discussed.

  4. A package of Linux scripts for the parallelization of Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Badal, Andreu; Sempau, Josep

    2006-09-01

    Despite the fact that fast computers are nowadays available at low cost, there are many situations where obtaining a reasonably low statistical uncertainty in a Monte Carlo (MC) simulation involves a prohibitively large amount of time. This limitation can be overcome by having recourse to parallel computing. Most tools designed to facilitate this approach require modification of the source code and the installation of additional software, which may be inconvenient for some users. We present a set of tools, named clonEasy, that implement a parallelization scheme of a MC simulation that is free from these drawbacks. In clonEasy, which is designed to run under Linux, a set of "clone" CPUs is governed by a "master" computer by taking advantage of the capabilities of the Secure Shell (ssh) protocol. Any Linux computer on the Internet that can be ssh-accessed by the user can be used as a clone. A key ingredient for the parallel calculation to be reliable is the availability of an independent string of random numbers for each CPU. Many generators—such as RANLUX, RANECU or the Mersenne Twister—can readily produce these strings by initializing them appropriately and, hence, they are suitable to be used with clonEasy. This work was primarily motivated by the need to find a straightforward way to parallelize PENELOPE, a code for MC simulation of radiation transport that (in its current 2005 version) employs the generator RANECU, which uses a combination of two multiplicative linear congruential generators (MLCGs). Thus, this paper is focused on this class of generators and, in particular, we briefly present an extension of RANECU that increases its period up to ˜5×10 and we introduce seedsMLCG, a tool that provides the information necessary to initialize disjoint sequences of an MLCG to feed different CPUs. This program, in combination with clonEasy, allows to run PENELOPE in parallel easily, without requiring specific libraries or significant alterations of the

  5. Estimation of computed tomography dose index in cone beam computed tomography: MOSFET measurements and Monte Carlo simulations.

    PubMed

    Kim, Sangroh; Yoshizumi, Terry; Toncheva, Greta; Yoo, Sua; Yin, Fang-Fang; Frush, Donald

    2010-05-01

    To address the lack of accurate dose estimation method in cone beam computed tomography (CBCT), we performed point dose metal oxide semiconductor field-effect transistor (MOSFET) measurements and Monte Carlo (MC) simulations. A Varian On-Board Imager (OBI) was employed to measure point doses in the polymethyl methacrylate (PMMA) CT phantoms with MOSFETs for standard and low dose modes. A MC model of the OBI x-ray tube was developed using BEAMnrc/EGSnrc MC system and validated by the half value layer, x-ray spectrum and lateral and depth dose profiles. We compared the weighted computed tomography dose index (CTDIw) between MOSFET measurements and MC simulations. The CTDIw was found to be 8.39 cGy for the head scan and 4.58 cGy for the body scan from the MOSFET measurements in standard dose mode, and 1.89 cGy for the head and 1.11 cGy for the body in low dose mode, respectively. The CTDIw from MC compared well to the MOSFET measurements within 5% differences. In conclusion, a MC model for Varian CBCT has been established and this approach may be easily extended from the CBCT geometry to multi-detector CT geometry.

  6. Applying Quantum Monte Carlo to the Electronic Structure Problem

    NASA Astrophysics Data System (ADS)

    Powell, Andrew D.; Dawes, Richard

    2016-06-01

    Two distinct types of Quantum Monte Carlo (QMC) calculations are applied to electronic structure problems such as calculating potential energy curves and producing benchmark values for reaction barriers. First, Variational and Diffusion Monte Carlo (VMC and DMC) methods using a trial wavefunction subject to the fixed node approximation were tested using the CASINO code.[1] Next, Full Configuration Interaction Quantum Monte Carlo (FCIQMC), along with its initiator extension (i-FCIQMC) were tested using the NECI code.[2] FCIQMC seeks the FCI energy for a specific basis set. At a reduced cost, the efficient i-FCIQMC method can be applied to systems in which the standard FCIQMC approach proves to be too costly. Since all of these methods are statistical approaches, uncertainties (error-bars) are introduced for each calculated energy. This study tests the performance of the methods relative to traditional quantum chemistry for some benchmark systems. References: [1] R. J. Needs et al., J. Phys.: Condensed Matter 22, 023201 (2010). [2] G. H. Booth et al., J. Chem. Phys. 131, 054106 (2009).

  7. Bayesian statistics and Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Koch, K. R.

    2018-03-01

    The Bayesian approach allows an intuitive way to derive the methods of statistics. Probability is defined as a measure of the plausibility of statements or propositions. Three rules are sufficient to obtain the laws of probability. If the statements refer to the numerical values of variables, the so-called random variables, univariate and multivariate distributions follow. They lead to the point estimation by which unknown quantities, i.e. unknown parameters, are computed from measurements. The unknown parameters are random variables, they are fixed quantities in traditional statistics which is not founded on Bayes' theorem. Bayesian statistics therefore recommends itself for Monte Carlo methods, which generate random variates from given distributions. Monte Carlo methods, of course, can also be applied in traditional statistics. The unknown parameters, are introduced as functions of the measurements, and the Monte Carlo methods give the covariance matrix and the expectation of these functions. A confidence region is derived where the unknown parameters are situated with a given probability. Following a method of traditional statistics, hypotheses are tested by determining whether a value for an unknown parameter lies inside or outside the confidence region. The error propagation of a random vector by the Monte Carlo methods is presented as an application. If the random vector results from a nonlinearly transformed vector, its covariance matrix and its expectation follow from the Monte Carlo estimate. This saves a considerable amount of derivatives to be computed, and errors of the linearization are avoided. The Monte Carlo method is therefore efficient. If the functions of the measurements are given by a sum of two or more random vectors with different multivariate distributions, the resulting distribution is generally not known. TheMonte Carlo methods are then needed to obtain the covariance matrix and the expectation of the sum.

  8. Monte Carlo Simulation Tool Installation and Operation Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguayo Navarrete, Estanislao; Ankney, Austin S.; Berguson, Timothy J.

    2013-09-02

    This document provides information on software and procedures for Monte Carlo simulations based on the Geant4 toolkit, the ROOT data analysis software and the CRY cosmic ray library. These tools have been chosen for its application to shield design and activation studies as part of the simulation task for the Majorana Collaboration. This document includes instructions for installation, operation and modification of the simulation code in a high cyber-security computing environment, such as the Pacific Northwest National Laboratory network. It is intended as a living document, and will be periodically updated. It is a starting point for information collection bymore » an experimenter, and is not the definitive source. Users should consult with one of the authors for guidance on how to find the most current information for their needs.« less

  9. Three-Dimensional Color Code Thresholds via Statistical-Mechanical Mapping

    NASA Astrophysics Data System (ADS)

    Kubica, Aleksander; Beverland, Michael E.; Brandão, Fernando; Preskill, John; Svore, Krysta M.

    2018-05-01

    Three-dimensional (3D) color codes have advantages for fault-tolerant quantum computing, such as protected quantum gates with relatively low overhead and robustness against imperfect measurement of error syndromes. Here we investigate the storage threshold error rates for bit-flip and phase-flip noise in the 3D color code (3DCC) on the body-centered cubic lattice, assuming perfect syndrome measurements. In particular, by exploiting a connection between error correction and statistical mechanics, we estimate the threshold for 1D stringlike and 2D sheetlike logical operators to be p3DCC (1 )≃1.9 % and p3DCC (2 )≃27.6 % . We obtain these results by using parallel tempering Monte Carlo simulations to study the disorder-temperature phase diagrams of two new 3D statistical-mechanical models: the four- and six-body random coupling Ising models.

  10. Three-Dimensional Color Code Thresholds via Statistical-Mechanical Mapping.

    PubMed

    Kubica, Aleksander; Beverland, Michael E; Brandão, Fernando; Preskill, John; Svore, Krysta M

    2018-05-04

    Three-dimensional (3D) color codes have advantages for fault-tolerant quantum computing, such as protected quantum gates with relatively low overhead and robustness against imperfect measurement of error syndromes. Here we investigate the storage threshold error rates for bit-flip and phase-flip noise in the 3D color code (3DCC) on the body-centered cubic lattice, assuming perfect syndrome measurements. In particular, by exploiting a connection between error correction and statistical mechanics, we estimate the threshold for 1D stringlike and 2D sheetlike logical operators to be p_{3DCC}^{(1)}≃1.9% and p_{3DCC}^{(2)}≃27.6%. We obtain these results by using parallel tempering Monte Carlo simulations to study the disorder-temperature phase diagrams of two new 3D statistical-mechanical models: the four- and six-body random coupling Ising models.

  11. A Monte-Carlo Benchmark of TRIPOLI-4® and MCNP on ITER neutronics

    NASA Astrophysics Data System (ADS)

    Blanchet, David; Pénéliau, Yannick; Eschbach, Romain; Fontaine, Bruno; Cantone, Bruno; Ferlet, Marc; Gauthier, Eric; Guillon, Christophe; Letellier, Laurent; Proust, Maxime; Mota, Fernando; Palermo, Iole; Rios, Luis; Guern, Frédéric Le; Kocan, Martin; Reichle, Roger

    2017-09-01

    Radiation protection and shielding studies are often based on the extensive use of 3D Monte-Carlo neutron and photon transport simulations. ITER organization hence recommends the use of MCNP-5 code (version 1.60), in association with the FENDL-2.1 neutron cross section data library, specifically dedicated to fusion applications. The MCNP reference model of the ITER tokamak, the `C-lite', is being continuously developed and improved. This article proposes to develop an alternative model, equivalent to the 'C-lite', but for the Monte-Carlo code TRIPOLI-4®. A benchmark study is defined to test this new model. Since one of the most critical areas for ITER neutronics analysis concerns the assessment of radiation levels and Shutdown Dose Rates (SDDR) behind the Equatorial Port Plugs (EPP), the benchmark is conducted to compare the neutron flux through the EPP. This problem is quite challenging with regard to the complex geometry and considering the important neutron flux attenuation ranging from 1014 down to 108 n•cm-2•s-1. Such code-to-code comparison provides independent validation of the Monte-Carlo simulations, improving the confidence in neutronic results.

  12. Enhancement of the Probabilistic CEramic Matrix Composite ANalyzer (PCEMCAN) Computer Code

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin

    2000-01-01

    This report represents a final technical report for Order No. C-78019-J entitled "Enhancement of the Probabilistic Ceramic Matrix Composite Analyzer (PCEMCAN) Computer Code." The scope of the enhancement relates to including the probabilistic evaluation of the D-Matrix terms in MAT2 and MAT9 material properties card (available in CEMCAN code) for the MSC/NASTRAN. Technical activities performed during the time period of June 1, 1999 through September 3, 1999 have been summarized, and the final version of the enhanced PCEMCAN code and revisions to the User's Manual is delivered along with. Discussions related to the performed activities were made to the NASA Project Manager during the performance period. The enhanced capabilities have been demonstrated using sample problems.

  13. High-efficiency wavefunction updates for large scale Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Kent, Paul; McDaniel, Tyler; Li, Ying Wai; D'Azevedo, Ed

    Within ab intio Quantum Monte Carlo (QMC) simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunctions. The evaluation of each Monte Carlo move requires finding the determinant of a dense matrix, which is traditionally iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. For calculations with thousands of electrons, this operation dominates the execution profile. We propose a novel rank- k delayed update scheme. This strategy enables probability evaluation for multiple successive Monte Carlo moves, with application of accepted moves to the matrices delayed until after a predetermined number of moves, k. Accepted events grouped in this manner are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency. This procedure does not change the underlying Monte Carlo sampling or the sampling efficiency. For large systems and algorithms such as diffusion Monte Carlo where the acceptance ratio is high, order of magnitude speedups can be obtained on both multi-core CPU and on GPUs, making this algorithm highly advantageous for current petascale and future exascale computations.

  14. Orthovoltage radiation therapy treatment planning using Monte Carlo simulation: treatment of neuroendocrine carcinoma of the maxillary sinus

    NASA Astrophysics Data System (ADS)

    Gao, Wanbao; Raeside, David E.

    1997-12-01

    Dose distributions that result from treating a patient with orthovoltage beams are best determined with a treatment planning system that uses the Monte Carlo method, and such systems are not readily available. In the present work, the Monte Carlo method was used to develop a computer code for determining absorbed dose distributions in orthovoltage radiation therapy. The code was used in planning treatment of a patient with a neuroendocrine carcinoma of the maxillary sinus. Two lateral high-energy photon beams supplemented by an anterior orthovoltage photon beam were utilized in the treatment plan. For the clinical case and radiation beams considered, a reasonably uniform dose distribution is achieved within the target volume, while the dose to the lens of each eye is 4 - 8% of the prescribed dose. Therefore, an orthovoltage photon beam, when properly filtered and optimally combined with megavoltage beams, can be effective in the treatment of cancers below the skin, providing that accurate treatment planning is carried out to establish with accuracy and precision the doses to critical structures.

  15. TU-AB-BRC-12: Optimized Parallel MonteCarlo Dose Calculations for Secondary MU Checks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, S; Nazareth, D; Bellor, M

    Purpose: Secondary MU checks are an important tool used during a physics review of a treatment plan. Commercial software packages offer varying degrees of theoretical dose calculation accuracy, depending on the modality involved. Dose calculations of VMAT plans are especially prone to error due to the large approximations involved. Monte Carlo (MC) methods are not commonly used due to their long run times. We investigated two methods to increase the computational efficiency of MC dose simulations with the BEAMnrc code. Distributed computing resources, along with optimized code compilation, will allow for accurate and efficient VMAT dose calculations. Methods: The BEAMnrcmore » package was installed on a high performance computing cluster accessible to our clinic. MATLAB and PYTHON scripts were developed to convert a clinical VMAT DICOM plan into BEAMnrc input files. The BEAMnrc installation was optimized by running the VMAT simulations through profiling tools which indicated the behavior of the constituent routines in the code, e.g. the bremsstrahlung splitting routine, and the specified random number generator. This information aided in determining the most efficient compiling parallel configuration for the specific CPU’s available on our cluster, resulting in the fastest VMAT simulation times. Our method was evaluated with calculations involving 10{sup 8} – 10{sup 9} particle histories which are sufficient to verify patient dose using VMAT. Results: Parallelization allowed the calculation of patient dose on the order of 10 – 15 hours with 100 parallel jobs. Due to the compiler optimization process, further speed increases of 23% were achieved when compared with the open-source compiler BEAMnrc packages. Conclusion: Analysis of the BEAMnrc code allowed us to optimize the compiler configuration for VMAT dose calculations. In future work, the optimized MC code, in conjunction with the parallel processing capabilities of BEAMnrc, will be applied to provide

  16. Bayesian modelling of uncertainties of Monte Carlo radiative-transfer simulations

    NASA Astrophysics Data System (ADS)

    Beaujean, Frederik; Eggers, Hans C.; Kerzendorf, Wolfgang E.

    2018-04-01

    One of the big challenges in astrophysics is the comparison of complex simulations to observations. As many codes do not directly generate observables (e.g. hydrodynamic simulations), the last step in the modelling process is often a radiative-transfer treatment. For this step, the community relies increasingly on Monte Carlo radiative transfer due to the ease of implementation and scalability with computing power. We show how to estimate the statistical uncertainty given the output of just a single radiative-transfer simulation in which the number of photon packets follows a Poisson distribution and the weight (e.g. energy or luminosity) of a single packet may follow an arbitrary distribution. Our Bayesian approach produces a posterior distribution that is valid for any number of packets in a bin, even zero packets, and is easy to implement in practice. Our analytic results for large number of packets show that we generalise existing methods that are valid only in limiting cases. The statistical problem considered here appears in identical form in a wide range of Monte Carlo simulations including particle physics and importance sampling. It is particularly powerful in extracting information when the available data are sparse or quantities are small.

  17. Experimental validation of a direct simulation by Monte Carlo molecular gas flow model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shufflebotham, P.K.; Bartel, T.J.; Berney, B.

    1995-07-01

    The Sandia direct simulation Monte Carlo (DSMC) molecular/transition gas flow simulation code has significant potential as a computer-aided design tool for the design of vacuum systems in low pressure plasma processing equipment. The purpose of this work was to verify the accuracy of this code through direct comparison to experiment. To test the DSMC model, a fully instrumented, axisymmetric vacuum test cell was constructed, and spatially resolved pressure measurements made in N{sub 2} at flows from 50 to 500 sccm. In a ``blind`` test, the DSMC code was used to model the experimental conditions directly, and the results compared tomore » the measurements. It was found that the model predicted all the experimental findings to a high degree of accuracy. Only one modeling issue was uncovered. The axisymmetric model showed localized low pressure spots along the axis next to surfaces. Although this artifact did not significantly alter the accuracy of the results, it did add noise to the axial data. {copyright} {ital 1995} {ital American} {ital Vacuum} {ital Society}« less

  18. Users' Manual for Computer Code SPIRALI Incompressible, Turbulent Spiral Grooved Cylindrical and Face Seals

    NASA Technical Reports Server (NTRS)

    Walowit, Jed A.; Shapiro, Wilbur

    2005-01-01

    The SPIRALI code predicts the performance characteristics of incompressible cylindrical and face seals with or without the inclusion of spiral grooves. Performance characteristics include load capacity (for face seals), leakage flow, power requirements and dynamic characteristics in the form of stiffness, damping and apparent mass coefficients in 4 degrees of freedom for cylindrical seals and 3 degrees of freedom for face seals. These performance characteristics are computed as functions of seal and groove geometry, load or film thickness, running and disturbance speeds, fluid viscosity, and boundary pressures. A derivation of the equations governing the performance of turbulent, incompressible, spiral groove cylindrical and face seals along with a description of their solution is given. The computer codes are described, including an input description, sample cases, and comparisons with results of other codes.

  19. Use of the FLUKA Monte Carlo code for 3D patient-specific dosimetry on PET-CT and SPECT-CT images*

    PubMed Central

    Botta, F; Mairani, A; Hobbs, R F; Vergara Gil, A; Pacilio, M; Parodi, K; Cremonesi, M; Coca Pérez, M A; Di Dia, A; Ferrari, M; Guerriero, F; Battistoni, G; Pedroli, G; Paganelli, G; Torres Aroche, L A; Sgouros, G

    2014-01-01

    Patient-specific absorbed dose calculation for nuclear medicine therapy is a topic of increasing interest. 3D dosimetry at the voxel level is one of the major improvements for the development of more accurate calculation techniques, as compared to the standard dosimetry at the organ level. This study aims to use the FLUKA Monte Carlo code to perform patient-specific 3D dosimetry through direct Monte Carlo simulation on PET-CT and SPECT-CT images. To this aim, dedicated routines were developed in the FLUKA environment. Two sets of simulations were performed on model and phantom images. Firstly, the correct handling of PET and SPECT images was tested under the assumption of homogeneous water medium by comparing FLUKA results with those obtained with the voxel kernel convolution method and with other Monte Carlo-based tools developed to the same purpose (the EGS-based 3D-RD software and the MCNP5-based MCID). Afterwards, the correct integration of the PET/SPECT and CT information was tested, performing direct simulations on PET/CT images for both homogeneous (water) and non-homogeneous (water with air, lung and bone inserts) phantoms. Comparison was performed with the other Monte Carlo tools performing direct simulation as well. The absorbed dose maps were compared at the voxel level. In the case of homogeneous water, by simulating 108 primary particles a 2% average difference with respect to the kernel convolution method was achieved; such difference was lower than the statistical uncertainty affecting the FLUKA results. The agreement with the other tools was within 3–4%, partially ascribable to the differences among the simulation algorithms. Including the CT-based density map, the average difference was always within 4% irrespective of the medium (water, air, bone), except for a maximum 6% value when comparing FLUKA and 3D-RD in air. The results confirmed that the routines were properly developed, opening the way for the use of FLUKA for patient-specific, image

  20. General review of the MOSTAS computer code for wind turbines

    NASA Technical Reports Server (NTRS)

    Dungundji, J.; Wendell, J. H.

    1981-01-01

    The MOSTAS computer code for wind turbine analysis is reviewed, and techniques and methods used in its analyses are described. Impressions of its strengths and weakness, and recommendations for its application, modification, and further development are made. Basic techniques used in wind turbine stability and response analyses for systems with constant and periodic coefficients are reviewed.

  1. Improvements to the fastex flutter analysis computer code

    NASA Technical Reports Server (NTRS)

    Taylor, Ronald F.

    1987-01-01

    Modifications to the FASTEX flutter analysis computer code (UDFASTEX) are described. The objectives were to increase the problem size capacity of FASTEX, reduce run times by modification of the modal interpolation procedure, and to add new user features. All modifications to the program are operable on the VAX 11/700 series computers under the VAX operating system. Interfaces were provided to aid in the inclusion of alternate aerodynamic and flutter eigenvalue calculations. Plots can be made of the flutter velocity, display and frequency data. A preliminary capability was also developed to plot contours of unsteady pressure amplitude and phase. The relevant equations of motion, modal interpolation procedures, and control system considerations are described and software developments are summarized. Additional information documenting input instructions, procedures, and details of the plate spline algorithm is found in the appendices.

  2. Influence of simulation parameters on the speed and accuracy of Monte Carlo calculations using PENEPMA

    NASA Astrophysics Data System (ADS)

    Llovet, X.; Salvat, F.

    2018-01-01

    The accuracy of Monte Carlo simulations of EPMA measurements is primarily determined by that of the adopted interaction models and atomic relaxation data. The code PENEPMA implements the most reliable general models available, and it is known to provide a realistic description of electron transport and X-ray emission. Nonetheless, efficiency (i.e., the simulation speed) of the code is determined by a number of simulation parameters that define the details of the electron tracking algorithm, which may also have an effect on the accuracy of the results. In addition, to reduce the computer time needed to obtain X-ray spectra with a given statistical accuracy, PENEPMA allows the use of several variance-reduction techniques, defined by a set of specific parameters. In this communication we analyse and discuss the effect of using different values of the simulation and variance-reduction parameters on the speed and accuracy of EPMA simulations. We also discuss the effectiveness of using multi-core computers along with a simple practical strategy implemented in PENEPMA.

  3. Diagnosing Undersampling Biases in Monte Carlo Eigenvalue and Flux Tally Estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perfetti, Christopher M.; Rearden, Bradley T.; Marshall, William J.

    2017-02-08

    Here, this study focuses on understanding the phenomena in Monte Carlo simulations known as undersampling, in which Monte Carlo tally estimates may not encounter a sufficient number of particles during each generation to obtain unbiased tally estimates. Steady-state Monte Carlo simulations were performed using the KENO Monte Carlo tools within the SCALE code system for models of several burnup credit applications with varying degrees of spatial and isotopic complexities, and the incidence and impact of undersampling on eigenvalue and flux estimates were examined. Using an inadequate number of particle histories in each generation was found to produce a maximum bias of ~100 pcm in eigenvalue estimates and biases that exceeded 10% in fuel pin flux tally estimates. Having quantified the potential magnitude of undersampling biases in eigenvalue and flux tally estimates in these systems, this study then investigated whether Markov Chain Monte Carlo convergence metrics could be integrated into Monte Carlo simulations to predict the onset and magnitude of undersampling biases. Five potential metrics for identifying undersampling biases were implemented in the SCALE code system and evaluated for their ability to predict undersampling biases by comparing the test metric scores with the observed undersampling biases. Finally, of the five convergence metrics that were investigated, three (the Heidelberger-Welch relative half-width, the Gelman-Rubin more » $$\\hat{R}_c$$ diagnostic, and tally entropy) showed the potential to accurately predict the behavior of undersampling biases in the responses examined.« less

  4. A fast technique for computing syndromes of BCH and RS codes. [deep space network

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.; Miller, R. L.

    1979-01-01

    A combination of the Chinese Remainder Theorem and Winograd's algorithm is used to compute transforms of odd length over GF(2 to the m power). Such transforms are used to compute the syndromes needed for decoding CBH and RS codes. The present scheme requires substantially fewer multiplications and additions than the conventional method of computing the syndromes directly.

  5. Monte Carlo modelling the dosimetric effects of electrode material on diamond detectors.

    PubMed

    Baluti, Florentina; Deloar, Hossain M; Lansley, Stuart P; Meyer, Juergen

    2015-03-01

    Diamond detectors for radiation dosimetry were modelled using the EGSnrc Monte Carlo code to investigate the influence of electrode material and detector orientation on the absorbed dose. The small dimensions of the electrode/diamond/electrode detector structure required very thin voxels and the use of non-standard DOSXYZnrc Monte Carlo model parameters. The interface phenomena was investigated by simulating a 6 MV beam and detectors with different electrode materials, namely Al, Ag, Cu and Au, with thickens of 0.1 µm for the electrodes and 0.1 mm for the diamond, in both perpendicular and parallel detector orientation with regards to the incident beam. The smallest perturbations were observed for the parallel detector orientation and Al electrodes (Z = 13). In summary, EGSnrc Monte Carlo code is well suited for modelling small detector geometries. The Monte Carlo model developed is a useful tool to investigate the dosimetric effects caused by different electrode materials. To minimise perturbations cause by the detector electrodes, it is recommended that the electrodes should be made from a low-atomic number material and placed parallel to the beam direction.

  6. ICAN Computer Code Adapted for Building Materials

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.

    1997-01-01

    The NASA Lewis Research Center has been involved in developing composite micromechanics and macromechanics theories over the last three decades. These activities have resulted in several composite mechanics theories and structural analysis codes whose applications range from material behavior design and analysis to structural component response. One of these computer codes, the Integrated Composite Analyzer (ICAN), is designed primarily to address issues related to designing polymer matrix composites and predicting their properties - including hygral, thermal, and mechanical load effects. Recently, under a cost-sharing cooperative agreement with a Fortune 500 corporation, Master Builders Inc., ICAN was adapted to analyze building materials. The high costs and technical difficulties involved with the fabrication of continuous-fiber-reinforced composites sometimes limit their use. Particulate-reinforced composites can be thought of as a viable alternative. They are as easily processed to near-net shape as monolithic materials, yet have the improved stiffness, strength, and fracture toughness that is characteristic of continuous-fiber-reinforced composites. For example, particlereinforced metal-matrix composites show great potential for a variety of automotive applications, such as disk brake rotors, connecting rods, cylinder liners, and other hightemperature applications. Building materials, such as concrete, can be thought of as one of the oldest materials in this category of multiphase, particle-reinforced materials. The adaptation of ICAN to analyze particle-reinforced composite materials involved the development of new micromechanics-based theories. A derivative of the ICAN code, ICAN/PART, was developed and delivered to Master Builders Inc. as a part of the cooperative activity.

  7. Correlated Production and Analog Transport of Fission Neutrons and Photons using Fission Models FREYA, FIFRELIN and the Monte Carlo Code TRIPOLI-4® .

    NASA Astrophysics Data System (ADS)

    Verbeke, Jérôme M.; Petit, Odile; Chebboubi, Abdelhazize; Litaize, Olivier

    2018-01-01

    Fission modeling in general-purpose Monte Carlo transport codes often relies on average nuclear data provided by international evaluation libraries. As such, only average fission multiplicities are available and correlations between fission neutrons and photons are missing. Whereas uncorrelated fission physics is usually sufficient for standard reactor core and radiation shielding calculations, correlated fission secondaries are required for specialized nuclear instrumentation and detector modeling. For coincidence counting detector optimization for instance, precise simulation of fission neutrons and photons that remain correlated in time from birth to detection is essential. New developments were recently integrated into the Monte Carlo transport code TRIPOLI-4 to model fission physics more precisely, the purpose being to access event-by-event fission events from two different fission models: FREYA and FIFRELIN. TRIPOLI-4 simulations can now be performed, either by connecting via an API to the LLNL fission library including FREYA, or by reading external fission event data files produced by FIFRELIN beforehand. These new capabilities enable us to easily compare results from Monte Carlo transport calculations using the two fission models in a nuclear instrumentation application. In the first part of this paper, broad underlying principles of the two fission models are recalled. We then present experimental measurements of neutron angular correlations for 252Cf(sf) and 240Pu(sf). The correlations were measured for several neutron kinetic energy thresholds. In the latter part of the paper, simulation results are compared to experimental data. Spontaneous fissions in 252Cf and 240Pu are modeled by FREYA or FIFRELIN. Emitted neutrons and photons are subsequently transported to an array of scintillators by TRIPOLI-4 in analog mode to preserve their correlations. Angular correlations between fission neutrons obtained independently from these TRIPOLI-4 simulations, using

  8. Calculating Potential Energy Curves with Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Powell, Andrew D.; Dawes, Richard

    2014-06-01

    Quantum Monte Carlo (QMC) is a computational technique that can be applied to the electronic Schrödinger equation for molecules. QMC methods such as Variational Monte Carlo (VMC) and Diffusion Monte Carlo (DMC) have demonstrated the capability of capturing large fractions of the correlation energy, thus suggesting their possible use for high-accuracy quantum chemistry calculations. QMC methods scale particularly well with respect to parallelization making them an attractive consideration in anticipation of next-generation computing architectures which will involve massive parallelization with millions of cores. Due to the statistical nature of the approach, in contrast to standard quantum chemistry methods, uncertainties (error-bars) are associated with each calculated energy. This study focuses on the cost, feasibility and practical application of calculating potential energy curves for small molecules with QMC methods. Trial wave functions were constructed with the multi-configurational self-consistent field (MCSCF) method from GAMESS-US.[1] The CASINO Monte Carlo quantum chemistry package [2] was used for all of the DMC calculations. An overview of our progress in this direction will be given. References: M. W. Schmidt et al. J. Comput. Chem. 14, 1347 (1993). R. J. Needs et al. J. Phys.: Condensed Matter 22, 023201 (2010).

  9. Deterministic theory of Monte Carlo variance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueki, T.; Larsen, E.W.

    1996-12-31

    The theoretical estimation of variance in Monte Carlo transport simulations, particularly those using variance reduction techniques, is a substantially unsolved problem. In this paper, the authors describe a theory that predicts the variance in a variance reduction method proposed by Dwivedi. Dwivedi`s method combines the exponential transform with angular biasing. The key element of this theory is a new modified transport problem, containing the Monte Carlo weight w as an extra independent variable, which simulates Dwivedi`s Monte Carlo scheme. The (deterministic) solution of this modified transport problem yields an expression for the variance. The authors give computational results that validatemore » this theory.« less

  10. Heat pipe design handbook, part 2. [digital computer code specifications

    NASA Technical Reports Server (NTRS)

    Skrabek, E. A.

    1972-01-01

    The utilization of a digital computer code for heat pipe analysis and design (HPAD) is described which calculates the steady state hydrodynamic heat transport capability of a heat pipe with a particular wick configuration, the working fluid being a function of wick cross-sectional area. Heat load, orientation, operating temperature, and heat pipe geometry are specified. Both one 'g' and zero 'g' environments are considered, and, at the user's option, the code will also perform a weight analysis and will calculate heat pipe temperature drops. The central porous slab, circumferential porous wick, arterial wick, annular wick, and axial rectangular grooves are the wick configurations which HPAD has the capability of analyzing. For Vol. 1, see N74-22569.

  11. Nuclear reactor transient analysis via a quasi-static kinetics Monte Carlo method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jo, YuGwon; Cho, Bumhee; Cho, Nam Zin, E-mail: nzcho@kaist.ac.kr

    2015-12-31

    The predictor-corrector quasi-static (PCQS) method is applied to the Monte Carlo (MC) calculation for reactor transient analysis. To solve the transient fixed-source problem of the PCQS method, fission source iteration is used and a linear approximation of fission source distributions during a macro-time step is introduced to provide delayed neutron source. The conventional particle-tracking procedure is modified to solve the transient fixed-source problem via MC calculation. The PCQS method with MC calculation is compared with the direct time-dependent method of characteristics (MOC) on a TWIGL two-group problem for verification of the computer code. Then, the results on a continuous-energy problemmore » are presented.« less

  12. Computer code for single-point thermodynamic analysis of hydrogen/oxygen expander-cycle rocket engines

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.; Jones, Scott M.

    1991-01-01

    This analysis and this computer code apply to full, split, and dual expander cycles. Heat regeneration from the turbine exhaust to the pump exhaust is allowed. The combustion process is modeled as one of chemical equilibrium in an infinite-area or a finite-area combustor. Gas composition in the nozzle may be either equilibrium or frozen during expansion. This report, which serves as a users guide for the computer code, describes the system, the analysis methodology, and the program input and output. Sample calculations are included to show effects of key variables such as nozzle area ratio and oxidizer-to-fuel mass ratio.

  13. Combining Topological Hardware and Topological Software: Color-Code Quantum Computing with Topological Superconductor Networks

    NASA Astrophysics Data System (ADS)

    Litinski, Daniel; Kesselring, Markus S.; Eisert, Jens; von Oppen, Felix

    2017-07-01

    We present a scalable architecture for fault-tolerant topological quantum computation using networks of voltage-controlled Majorana Cooper pair boxes and topological color codes for error correction. Color codes have a set of transversal gates which coincides with the set of topologically protected gates in Majorana-based systems, namely, the Clifford gates. In this way, we establish color codes as providing a natural setting in which advantages offered by topological hardware can be combined with those arising from topological error-correcting software for full-fledged fault-tolerant quantum computing. We provide a complete description of our architecture, including the underlying physical ingredients. We start by showing that in topological superconductor networks, hexagonal cells can be employed to serve as physical qubits for universal quantum computation, and we present protocols for realizing topologically protected Clifford gates. These hexagonal-cell qubits allow for a direct implementation of open-boundary color codes with ancilla-free syndrome read-out and logical T gates via magic-state distillation. For concreteness, we describe how the necessary operations can be implemented using networks of Majorana Cooper pair boxes, and we give a feasibility estimate for error correction in this architecture. Our approach is motivated by nanowire-based networks of topological superconductors, but it could also be realized in alternative settings such as quantum-Hall-superconductor hybrids.

  14. HYDRA-II: A hydrothermal analysis computer code: Volume 3, Verification/validation assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCann, R.A.; Lowery, P.S.

    1987-10-01

    HYDRA-II is a hydrothermal computer code capable of three-dimensional analysis of coupled conduction, convection, and thermal radiation problems. This code is especially appropriate for simulating the steady-state performance of spent fuel storage systems. The code has been evaluated for this application for the US Department of Energy's Commercial Spent Fuel Management Program. HYDRA-II provides a finite difference solution in cartesian coordinates to the equations governing the conservation of mass, momentum, and energy. A cylindrical coordinate system may also be used to enclose the cartesian coordinate system. This exterior coordinate system is useful for modeling cylindrical cask bodies. The difference equationsmore » for conservation of momentum are enhanced by the incorporation of directional porosities and permeabilities that aid in modeling solid structures whose dimensions may be smaller than the computational mesh. The equation for conservation of energy permits modeling of orthotropic physical properties and film resistances. Several automated procedures are available to model radiation transfer within enclosures and from fuel rod to fuel rod. The documentation of HYDRA-II is presented in three separate volumes. Volume I - Equations and Numerics describes the basic differential equations, illustrates how the difference equations are formulated, and gives the solution procedures employed. Volume II - User's Manual contains code flow charts, discusses the code structure, provides detailed instructions for preparing an input file, and illustrates the operation of the code by means of a model problem. This volume, Volume III - Verification/Validation Assessments, provides a comparison between the analytical solution and the numerical simulation for problems with a known solution. This volume also documents comparisons between the results of simulations of single- and multiassembly storage systems and actual experimental data. 11 refs., 55 figs., 13 tabs.« less

  15. Deterministically estimated fission source distributions for Monte Carlo k-eigenvalue problems

    DOE PAGES

    Biondo, Elliott D.; Davidson, Gregory G.; Pandya, Tara M.; ...

    2018-04-30

    The standard Monte Carlo (MC) k-eigenvalue algorithm involves iteratively converging the fission source distribution using a series of potentially time-consuming inactive cycles before quantities of interest can be tallied. One strategy for reducing the computational time requirements of these inactive cycles is the Sourcerer method, in which a deterministic eigenvalue calculation is performed to obtain an improved initial guess for the fission source distribution. This method has been implemented in the Exnihilo software suite within SCALE using the SPNSPN or SNSN solvers in Denovo and the Shift MC code. The efficacy of this method is assessed with different Denovo solutionmore » parameters for a series of typical k-eigenvalue problems including small criticality benchmarks, full-core reactors, and a fuel cask. Here it is found that, in most cases, when a large number of histories per cycle are required to obtain a detailed flux distribution, the Sourcerer method can be used to reduce the computational time requirements of the inactive cycles.« less

  16. Deterministically estimated fission source distributions for Monte Carlo k-eigenvalue problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biondo, Elliott D.; Davidson, Gregory G.; Pandya, Tara M.

    The standard Monte Carlo (MC) k-eigenvalue algorithm involves iteratively converging the fission source distribution using a series of potentially time-consuming inactive cycles before quantities of interest can be tallied. One strategy for reducing the computational time requirements of these inactive cycles is the Sourcerer method, in which a deterministic eigenvalue calculation is performed to obtain an improved initial guess for the fission source distribution. This method has been implemented in the Exnihilo software suite within SCALE using the SPNSPN or SNSN solvers in Denovo and the Shift MC code. The efficacy of this method is assessed with different Denovo solutionmore » parameters for a series of typical k-eigenvalue problems including small criticality benchmarks, full-core reactors, and a fuel cask. Here it is found that, in most cases, when a large number of histories per cycle are required to obtain a detailed flux distribution, the Sourcerer method can be used to reduce the computational time requirements of the inactive cycles.« less

  17. Application of the TEMPEST computer code to canister-filling heat transfer problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farnsworth, R.K.; Faletti, D.W.; Budden, M.J.

    Pacific Northwest Laboratory (PNL) researchers used the TEMPEST computer code to simulate thermal cooldown behavior of nuclear waste glass after it was poured into steel canisters for long-term storage. The objective of this work was to determine the accuracy and applicability of the TEMPEST code when used to compute canister thermal histories. First, experimental data were obtained to provide the basis for comparing TEMPEST-generated predictions. Five canisters were instrumented with appropriately located radial and axial thermocouples. The canister were filled using the pilot-scale ceramic melter (PSCM) at PNL. Each canister was filled in either a continous or a batch fillingmore » mode. One of the canisters was also filled within a turntable simulant (a group of cylindrical shells with heat transfer resistances similar to those in an actual melter turntable). This was necessary to provide a basis for assessing the ability of the TEMPEST code to also model the transient cooling of canisters in a melter turntable. The continous-fill model, Version M, was found to predict temperatures with more accuracy. The turntable simulant experiment demonstrated that TEMPEST can adequately model the asymmetric temperature field caused by the turntable geometry. Further, TEMPEST can acceptably predict the canister cooling history within a turntable, despite code limitations in computing simultaneous radiation and convection heat transfer between shells, along with uncertainty in stainless-steel surface emissivities. Based on the successful performance of TEMPEST Version M, development was initiated to incorporate 1) full viscous glass convection, 2) a dynamically adaptive grid that automatically follows the glass/air interface throughout the transient, and 3) a full enclosure radiation model to allow radiation heat transfer to non-nearest neighbor cells. 5 refs., 47 figs., 17 tabs.« less

  18. PEPSI — a Monte Carlo generator for polarized leptoproduction

    NASA Astrophysics Data System (ADS)

    Mankiewicz, L.; Schäfer, A.; Veltri, M.

    1992-09-01

    We describe PEPSI (Polarized Electron Proton Scattering Interactions), a Monte Carlo program for polarized deep inelastic leptoproduction mediated by electromagnetic interaction, and explain how to use it. The code is a modification of the LEPTO 4.3 Lund Monte Carlo for unpolarized scattering. The hard virtual gamma-parton scattering is generated according to the polarization-dependent QCD cross-section of the first order in α S. PEPSI requires the standard polarization-independent JETSET routines to simulate the fragmentation into final hadrons.

  19. SU-F-T-12: Monte Carlo Dosimetry of the 60Co Bebig High Dose Rate Source for Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campos, L T; Almeida, C E V de

    Purpose: The purpose of this work is to obtain the dosimetry parameters in accordance with the AAPM TG-43U1 formalism with Monte Carlo calculations regarding the BEBIG 60Co high-dose-rate brachytherapy. The geometric design and material details of the source was provided by the manufacturer and was used to define the Monte Carlo geometry. Methods: The dosimetry studies included the calculation of the air kerma strength Sk, collision kerma in water along the transverse axis with an unbounded phantom, dose rate constant and radial dose function. The Monte Carlo code system that was used was EGSnrc with a new cavity code, whichmore » is a part of EGS++ that allows calculating the radial dose function around the source. The XCOM photon cross-section library was used. Variance reduction techniques were used to speed up the calculation and to considerably reduce the computer time. To obtain the dose rate distributions of the source in an unbounded liquid water phantom, the source was immersed at the center of a cube phantom of 100 cm3. Results: The obtained dose rate constant for the BEBIG 60Co source was 1.108±0.001 cGyh-1U-1, which is consistent with the values in the literature. The radial dose functions were compared with the values of the consensus data set in the literature, and they are consistent with the published data for this energy range. Conclusion: The dose rate constant is consistent with the results of Granero et al. and Selvam and Bhola within 1%. Dose rate data are compared to GEANT4 and DORZnrc Monte Carlo code. However, the radial dose function is different by up to 10% for the points that are notably near the source on the transversal axis because of the high-energy photons from 60Co, which causes an electronic disequilibrium at the interface between the source capsule and the liquid water for distances up to 1 cm.« less

  20. Nexus: a modular workflow management system for quantum simulation codes

    DOE PAGES

    Krogel, Jaron T.

    2015-08-24

    The management of simulation workflows is a significant task for the individual computational researcher. Automation of the required tasks involved in simulation work can decrease the overall time to solution and reduce sources of human error. A new simulation workflow management system, Nexus, is presented to address these issues. Nexus is capable of automated job management on workstations and resources at several major supercomputing centers. Its modular design allows many quantum simulation codes to be supported within the same framework. Current support includes quantum Monte Carlo calculations with QMCPACK, density functional theory calculations with Quantum Espresso or VASP, and quantummore » chemical calculations with GAMESS. Users can compose workflows through a transparent, text-based interface, resembling the input file of a typical simulation code. A usage example is provided to illustrate the process.« less

  1. Multi-chain Markov chain Monte Carlo methods for computationally expensive models

    NASA Astrophysics Data System (ADS)

    Huang, M.; Ray, J.; Ren, H.; Hou, Z.; Bao, J.

    2017-12-01

    Markov chain Monte Carlo (MCMC) methods are used to infer model parameters from observational data. The parameters are inferred as probability densities, thus capturing estimation error due to sparsity of the data, and the shortcomings of the model. Multiple communicating chains executing the MCMC method have the potential to explore the parameter space better, and conceivably accelerate the convergence to the final distribution. We present results from tests conducted with the multi-chain method to show how the acceleration occurs i.e., for loose convergence tolerances, the multiple chains do not make much of a difference. The ensemble of chains also seems to have the ability to accelerate the convergence of a few chains that might start from suboptimal starting points. Finally, we show the performance of the chains in the estimation of O(10) parameters using computationally expensive forward models such as the Community Land Model, where the sampling burden is distributed over multiple chains.

  2. Helium ions at the heidelberg ion beam therapy center: comparisons between FLUKA Monte Carlo code predictions and dosimetric measurements.

    PubMed

    Tessonnier, T; Mairani, A; Brons, S; Sala, P; Cerutti, F; Ferrari, A; Haberer, T; Debus, J; Parodi, K

    2017-08-01

    In the field of particle therapy helium ion beams could offer an alternative for radiotherapy treatments, owing to their interesting physical and biological properties intermediate between protons and carbon ions. We present in this work the comparisons and validations of the Monte Carlo FLUKA code against in-depth dosimetric measurements acquired at the Heidelberg Ion Beam Therapy Center (HIT). Depth dose distributions in water with and without ripple filter, lateral profiles at different depths in water and a spread-out Bragg peak were investigated. After experimentally-driven tuning of the less known initial beam characteristics in vacuum (beam lateral size and momentum spread) and simulation parameters (water ionization potential), comparisons of depth dose distributions were performed between simulations and measurements, which showed overall good agreement with range differences below 0.1 mm and dose-weighted average dose-differences below 2.3% throughout the entire energy range. Comparisons of lateral dose profiles showed differences in full-width-half-maximum lower than 0.7 mm. Measurements of the spread-out Bragg peak indicated differences with simulations below 1% in the high dose regions and 3% in all other regions, with a range difference less than 0.5 mm. Despite the promising results, some discrepancies between simulations and measurements were observed, particularly at high energies. These differences were attributed to an underestimation of dose contributions from secondary particles at large angles, as seen in a triple Gaussian parametrization of the lateral profiles along the depth. However, the results allowed us to validate FLUKA simulations against measurements, confirming its suitability for 4 He ion beam modeling in preparation of clinical establishment at HIT. Future activities building on this work will include treatment plan comparisons using validated biological models between proton and helium ions, either within a Monte Carlo

  3. Helium ions at the heidelberg ion beam therapy center: comparisons between FLUKA Monte Carlo code predictions and dosimetric measurements

    NASA Astrophysics Data System (ADS)

    Tessonnier, T.; Mairani, A.; Brons, S.; Sala, P.; Cerutti, F.; Ferrari, A.; Haberer, T.; Debus, J.; Parodi, K.

    2017-08-01

    In the field of particle therapy helium ion beams could offer an alternative for radiotherapy treatments, owing to their interesting physical and biological properties intermediate between protons and carbon ions. We present in this work the comparisons and validations of the Monte Carlo FLUKA code against in-depth dosimetric measurements acquired at the Heidelberg Ion Beam Therapy Center (HIT). Depth dose distributions in water with and without ripple filter, lateral profiles at different depths in water and a spread-out Bragg peak were investigated. After experimentally-driven tuning of the less known initial beam characteristics in vacuum (beam lateral size and momentum spread) and simulation parameters (water ionization potential), comparisons of depth dose distributions were performed between simulations and measurements, which showed overall good agreement with range differences below 0.1 mm and dose-weighted average dose-differences below 2.3% throughout the entire energy range. Comparisons of lateral dose profiles showed differences in full-width-half-maximum lower than 0.7 mm. Measurements of the spread-out Bragg peak indicated differences with simulations below 1% in the high dose regions and 3% in all other regions, with a range difference less than 0.5 mm. Despite the promising results, some discrepancies between simulations and measurements were observed, particularly at high energies. These differences were attributed to an underestimation of dose contributions from secondary particles at large angles, as seen in a triple Gaussian parametrization of the lateral profiles along the depth. However, the results allowed us to validate FLUKA simulations against measurements, confirming its suitability for 4He ion beam modeling in preparation of clinical establishment at HIT. Future activities building on this work will include treatment plan comparisons using validated biological models between proton and helium ions, either within a Monte Carlo

  4. Study on efficiency of time computation in x-ray imaging simulation base on Monte Carlo algorithm using graphics processing unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setiani, Tia Dwi, E-mail: tiadwisetiani@gmail.com; Suprijadi; Nuclear Physics and Biophysics Reaserch Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jalan Ganesha 10 Bandung, 40132

    Monte Carlo (MC) is one of the powerful techniques for simulation in x-ray imaging. MC method can simulate the radiation transport within matter with high accuracy and provides a natural way to simulate radiation transport in complex systems. One of the codes based on MC algorithm that are widely used for radiographic images simulation is MC-GPU, a codes developed by Andrea Basal. This study was aimed to investigate the time computation of x-ray imaging simulation in GPU (Graphics Processing Unit) compared to a standard CPU (Central Processing Unit). Furthermore, the effect of physical parameters to the quality of radiographic imagesmore » and the comparison of image quality resulted from simulation in the GPU and CPU are evaluated in this paper. The simulations were run in CPU which was simulated in serial condition, and in two GPU with 384 cores and 2304 cores. In simulation using GPU, each cores calculates one photon, so, a large number of photon were calculated simultaneously. Results show that the time simulations on GPU were significantly accelerated compared to CPU. The simulations on the 2304 core of GPU were performed about 64 -114 times faster than on CPU, while the simulation on the 384 core of GPU were performed about 20 – 31 times faster than in a single core of CPU. Another result shows that optimum quality of images from the simulation was gained at the history start from 10{sup 8} and the energy from 60 Kev to 90 Kev. Analyzed by statistical approach, the quality of GPU and CPU images are relatively the same.« less

  5. Monte Carlo algorithms for Brownian phylogenetic models.

    PubMed

    Horvilleur, Benjamin; Lartillot, Nicolas

    2014-11-01

    Brownian models have been introduced in phylogenetics for describing variation in substitution rates through time, with applications to molecular dating or to the comparative analysis of variation in substitution patterns among lineages. Thus far, however, the Monte Carlo implementations of these models have relied on crude approximations, in which the Brownian process is sampled only at the internal nodes of the phylogeny or at the midpoints along each branch, and the unknown trajectory between these sampled points is summarized by simple branchwise average substitution rates. A more accurate Monte Carlo approach is introduced, explicitly sampling a fine-grained discretization of the trajectory of the (potentially multivariate) Brownian process along the phylogeny. Generic Monte Carlo resampling algorithms are proposed for updating the Brownian paths along and across branches. Specific computational strategies are developed for efficient integration of the finite-time substitution probabilities across branches induced by the Brownian trajectory. The mixing properties and the computational complexity of the resulting Markov chain Monte Carlo sampler scale reasonably with the discretization level, allowing practical applications with up to a few hundred discretization points along the entire depth of the tree. The method can be generalized to other Markovian stochastic processes, making it possible to implement a wide range of time-dependent substitution models with well-controlled computational precision. The program is freely available at www.phylobayes.org. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Monte Carlo calculations of lung dose in ORNL phantom for boron neutron capture therapy.

    PubMed

    Krstic, D; Markovic, V M; Jovanovic, Z; Milenkovic, B; Nikezic, D; Atanackovic, J

    2014-10-01

    Monte Carlo simulations were performed to evaluate dose for possible treatment of cancers by boron neutron capture therapy (BNCT). The computational model of male Oak Ridge National Laboratory (ORNL) phantom was used to simulate tumours in the lung. Calculations have been performed by means of the MCNP5/X code. In this simulation, two opposite neutron beams were considered, in order to obtain uniform neutron flux distribution inside the lung. The obtained results indicate that the lung cancer could be treated by BNCT under the assumptions of calculations. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Teaching Ionic Solvation Structure with a Monte Carlo Liquid Simulation Program

    ERIC Educational Resources Information Center

    Serrano, Agostinho; Santos, Flavia M. T.; Greca, Ileana M.

    2004-01-01

    The use of molecular dynamics and Monte Carlo methods has provided efficient means to stimulate the behavior of molecular liquids and solutions. A Monte Carlo simulation program is used to compute the structure of liquid water and of water as a solvent to Na(super +), Cl(super -), and Ar on a personal computer to show that it is easily feasible to…

  8. Development of Parallel Computing Framework to Enhance Radiation Transport Code Capabilities for Rare Isotope Beam Facility Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostin, Mikhail; Mokhov, Nikolai; Niita, Koji

    A parallel computing framework has been developed to use with general-purpose radiation transport codes. The framework was implemented as a C++ module that uses MPI for message passing. It is intended to be used with older radiation transport codes implemented in Fortran77, Fortran 90 or C. The module is significantly independent of radiation transport codes it can be used with, and is connected to the codes by means of a number of interface functions. The framework was developed and tested in conjunction with the MARS15 code. It is possible to use it with other codes such as PHITS, FLUKA andmore » MCNP after certain adjustments. Besides the parallel computing functionality, the framework offers a checkpoint facility that allows restarting calculations with a saved checkpoint file. The checkpoint facility can be used in single process calculations as well as in the parallel regime. The framework corrects some of the known problems with the scheduling and load balancing found in the original implementations of the parallel computing functionality in MARS15 and PHITS. The framework can be used efficiently on homogeneous systems and networks of workstations, where the interference from the other users is possible.« less

  9. Solution of 3-dimensional time-dependent viscous flows. Part 2: Development of the computer code

    NASA Technical Reports Server (NTRS)

    Weinberg, B. C.; Mcdonald, H.

    1980-01-01

    There is considerable interest in developing a numerical scheme for solving the time dependent viscous compressible three dimensional flow equations to aid in the design of helicopter rotors. The development of a computer code to solve a three dimensional unsteady approximate form of the Navier-Stokes equations employing a linearized block emplicit technique in conjunction with a QR operator scheme is described. Results of calculations of several Cartesian test cases are presented. The computer code can be applied to more complex flow fields such as these encountered on rotating airfoils.

  10. Radiative transfer and spectroscopic databases: A line-sampling Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Galtier, Mathieu; Blanco, Stéphane; Dauchet, Jérémi; El Hafi, Mouna; Eymet, Vincent; Fournier, Richard; Roger, Maxime; Spiesser, Christophe; Terrée, Guillaume

    2016-03-01

    Dealing with molecular-state transitions for radiative transfer purposes involves two successive steps that both reach the complexity level at which physicists start thinking about statistical approaches: (1) constructing line-shaped absorption spectra as the result of very numerous state-transitions, (2) integrating over optical-path domains. For the first time, we show here how these steps can be addressed simultaneously using the null-collision concept. This opens the door to the design of Monte Carlo codes directly estimating radiative transfer observables from spectroscopic databases. The intermediate step of producing accurate high-resolution absorption spectra is no longer required. A Monte Carlo algorithm is proposed and applied to six one-dimensional test cases. It allows the computation of spectrally integrated intensities (over 25 cm-1 bands or the full IR range) in a few seconds, regardless of the retained database and line model. But free parameters need to be selected and they impact the convergence. A first possible selection is provided in full detail. We observe that this selection is highly satisfactory for quite distinct atmospheric and combustion configurations, but a more systematic exploration is still in progress.

  11. Random Numbers and Monte Carlo Methods

    NASA Astrophysics Data System (ADS)

    Scherer, Philipp O. J.

    Many-body problems often involve the calculation of integrals of very high dimension which cannot be treated by standard methods. For the calculation of thermodynamic averages Monte Carlo methods are very useful which sample the integration volume at randomly chosen points. After summarizing some basic statistics, we discuss algorithms for the generation of pseudo-random numbers with given probability distribution which are essential for all Monte Carlo methods. We show how the efficiency of Monte Carlo integration can be improved by sampling preferentially the important configurations. Finally the famous Metropolis algorithm is applied to classical many-particle systems. Computer experiments visualize the central limit theorem and apply the Metropolis method to the traveling salesman problem.

  12. HEPLIB `91: International users meeting on the support and environments of high energy physics computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstad, H.

    The purpose of this meeting is to discuss the current and future HEP computing support and environments from the perspective of new horizons in accelerator, physics, and computing technologies. Topics of interest to the Meeting include (but are limited to): the forming of the HEPLIB world user group for High Energy Physic computing; mandate, desirables, coordination, organization, funding; user experience, international collaboration; the roles of national labs, universities, and industry; range of software, Monte Carlo, mathematics, physics, interactive analysis, text processors, editors, graphics, data base systems, code management tools; program libraries, frequency of updates, distribution; distributed and interactive computing, datamore » base systems, user interface, UNIX operating systems, networking, compilers, Xlib, X-Graphics; documentation, updates, availability, distribution; code management in large collaborations, keeping track of program versions; and quality assurance, testing, conventions, standards.« less

  13. HEPLIB 91: International users meeting on the support and environments of high energy physics computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstad, H.

    The purpose of this meeting is to discuss the current and future HEP computing support and environments from the perspective of new horizons in accelerator, physics, and computing technologies. Topics of interest to the Meeting include (but are limited to): the forming of the HEPLIB world user group for High Energy Physic computing; mandate, desirables, coordination, organization, funding; user experience, international collaboration; the roles of national labs, universities, and industry; range of software, Monte Carlo, mathematics, physics, interactive analysis, text processors, editors, graphics, data base systems, code management tools; program libraries, frequency of updates, distribution; distributed and interactive computing, datamore » base systems, user interface, UNIX operating systems, networking, compilers, Xlib, X-Graphics; documentation, updates, availability, distribution; code management in large collaborations, keeping track of program versions; and quality assurance, testing, conventions, standards.« less

  14. SU-F-18C-09: Assessment of OSL Dosimeter Technology in the Validation of a Monte Carlo Radiation Transport Code for CT Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carver, D; Kost, S; Pickens, D

    Purpose: To assess the utility of optically stimulated luminescent (OSL) dosimeter technology in calibrating and validating a Monte Carlo radiation transport code for computed tomography (CT). Methods: Exposure data were taken using both a standard CT 100-mm pencil ionization chamber and a series of 150-mm OSL CT dosimeters. Measurements were made at system isocenter in air as well as in standard 16-cm (head) and 32-cm (body) CTDI phantoms at isocenter and at the 12 o'clock positions. Scans were performed on a Philips Brilliance 64 CT scanner for 100 and 120 kVp at 300 mAs with a nominal beam width ofmore » 40 mm. A radiation transport code to simulate the CT scanner conditions was developed using the GEANT4 physics toolkit. The imaging geometry and associated parameters were simulated for each ionization chamber and phantom combination. Simulated absorbed doses were compared to both CTDI{sub 100} values determined from the ion chamber and to CTDI{sub 100} values reported from the OSLs. The dose profiles from each simulation were also compared to the physical OSL dose profiles. Results: CTDI{sub 100} values reported by the ion chamber and OSLs are generally in good agreement (average percent difference of 9%), and provide a suitable way to calibrate doses obtained from simulation to real absorbed doses. Simulated and real CTDI{sub 100} values agree to within 10% or less, and the simulated dose profiles also predict the physical profiles reported by the OSLs. Conclusion: Ionization chambers are generally considered the standard for absolute dose measurements. However, OSL dosimeters may also serve as a useful tool with the significant benefit of also assessing the radiation dose profile. This may offer an advantage to those developing simulations for assessing radiation dosimetry such as verification of spatial dose distribution and beam width.« less

  15. Fast quantum Monte Carlo on a GPU

    NASA Astrophysics Data System (ADS)

    Lutsyshyn, Y.

    2015-02-01

    We present a scheme for the parallelization of quantum Monte Carlo method on graphical processing units, focusing on variational Monte Carlo simulation of bosonic systems. We use asynchronous execution schemes with shared memory persistence, and obtain an excellent utilization of the accelerator. The CUDA code is provided along with a package that simulates liquid helium-4. The program was benchmarked on several models of Nvidia GPU, including Fermi GTX560 and M2090, and the Kepler architecture K20 GPU. Special optimization was developed for the Kepler cards, including placement of data structures in the register space of the Kepler GPUs. Kepler-specific optimization is discussed.

  16. Monte Carlo simulations for angular and spatial distributions in therapeutic-energy proton beams

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Chun; Pan, C. Y.; Chiang, K. J.; Yuan, M. C.; Chu, C. H.; Tsai, Y. W.; Teng, P. K.; Lin, C. H.; Chao, T. C.; Lee, C. C.; Tung, C. J.; Chen, A. E.

    2017-11-01

    The purpose of this study is to compare the angular and spatial distributions of therapeutic-energy proton beams obtained from the FLUKA, GEANT4 and MCNP6 Monte Carlo codes. The Monte Carlo simulations of proton beams passing through two thin targets and a water phantom were investigated to compare the primary and secondary proton fluence distributions and dosimetric differences among these codes. The angular fluence distributions, central axis depth-dose profiles, and lateral distributions of the Bragg peak cross-field were calculated to compare the proton angular and spatial distributions and energy deposition. Benchmark verifications from three different Monte Carlo simulations could be used to evaluate the residual proton fluence for the mean range and to estimate the depth and lateral dose distributions and the characteristic depths and lengths along the central axis as the physical indices corresponding to the evaluation of treatment effectiveness. The results showed a general agreement among codes, except that some deviations were found in the penumbra region. These calculated results are also particularly helpful for understanding primary and secondary proton components for stray radiation calculation and reference proton standard determination, as well as for determining lateral dose distribution performance in proton small-field dosimetry. By demonstrating these calculations, this work could serve as a guide to the recent field of Monte Carlo methods for therapeutic-energy protons.

  17. Computational characterization of HPGe detectors usable for a wide variety of source geometries by using Monte Carlo simulation and a multi-objective evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Guerra, J. G.; Rubiano, J. G.; Winter, G.; Guerra, A. G.; Alonso, H.; Arnedo, M. A.; Tejera, A.; Martel, P.; Bolivar, J. P.

    2017-06-01

    In this work, we have developed a computational methodology for characterizing HPGe detectors by implementing in parallel a multi-objective evolutionary algorithm, together with a Monte Carlo simulation code. The evolutionary algorithm is used for searching the geometrical parameters of a model of detector by minimizing the differences between the efficiencies calculated by Monte Carlo simulation and two reference sets of Full Energy Peak Efficiencies (FEPEs) corresponding to two given sample geometries, a beaker of small diameter laid over the detector window and a beaker of large capacity which wrap the detector. This methodology is a generalization of a previously published work, which was limited to beakers placed over the window of the detector with a diameter equal or smaller than the crystal diameter, so that the crystal mount cap (which surround the lateral surface of the crystal), was not considered in the detector model. The generalization has been accomplished not only by including such a mount cap in the model, but also using multi-objective optimization instead of mono-objective, with the aim of building a model sufficiently accurate for a wider variety of beakers commonly used for the measurement of environmental samples by gamma spectrometry, like for instance, Marinellis, Petris, or any other beaker with a diameter larger than the crystal diameter, for which part of the detected radiation have to pass through the mount cap. The proposed methodology has been applied to an HPGe XtRa detector, providing a model of detector which has been successfully verificated for different source-detector geometries and materials and experimentally validated using CRMs.

  18. GPU Computing in Bayesian Inference of Realized Stochastic Volatility Model

    NASA Astrophysics Data System (ADS)

    Takaishi, Tetsuya

    2015-01-01

    The realized stochastic volatility (RSV) model that utilizes the realized volatility as additional information has been proposed to infer volatility of financial time series. We consider the Bayesian inference of the RSV model by the Hybrid Monte Carlo (HMC) algorithm. The HMC algorithm can be parallelized and thus performed on the GPU for speedup. The GPU code is developed with CUDA Fortran. We compare the computational time in performing the HMC algorithm on GPU (GTX 760) and CPU (Intel i7-4770 3.4GHz) and find that the GPU can be up to 17 times faster than the CPU. We also code the program with OpenACC and find that appropriate coding can achieve the similar speedup with CUDA Fortran.

  19. GPU-BASED MONTE CARLO DUST RADIATIVE TRANSFER SCHEME APPLIED TO ACTIVE GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heymann, Frank; Siebenmorgen, Ralf, E-mail: fheymann@pa.uky.edu

    2012-05-20

    A three-dimensional parallel Monte Carlo (MC) dust radiative transfer code is presented. To overcome the huge computing-time requirements of MC treatments, the computational power of vectorized hardware is used, utilizing either multi-core computer power or graphics processing units. The approach is a self-consistent way to solve the radiative transfer equation in arbitrary dust configurations. The code calculates the equilibrium temperatures of two populations of large grains and stochastic heated polycyclic aromatic hydrocarbons. Anisotropic scattering is treated applying the Heney-Greenstein phase function. The spectral energy distribution (SED) of the object is derived at low spatial resolution by a photon counting proceduremore » and at high spatial resolution by a vectorized ray tracer. The latter allows computation of high signal-to-noise images of the objects at any frequencies and arbitrary viewing angles. We test the robustness of our approach against other radiative transfer codes. The SED and dust temperatures of one- and two-dimensional benchmarks are reproduced at high precision. The parallelization capability of various MC algorithms is analyzed and included in our treatment. We utilize the Lucy algorithm for the optical thin case where the Poisson noise is high, the iteration-free Bjorkman and Wood method to reduce the calculation time, and the Fleck and Canfield diffusion approximation for extreme optical thick cells. The code is applied to model the appearance of active galactic nuclei (AGNs) at optical and infrared wavelengths. The AGN torus is clumpy and includes fluffy composite grains of various sizes made up of silicates and carbon. The dependence of the SED on the number of clumps in the torus and the viewing angle is studied. The appearance of the 10 {mu}m silicate features in absorption or emission is discussed. The SED of the radio-loud quasar 3C 249.1 is fit by the AGN model and a cirrus component to account for the far

  20. Monte Carlo dose calculation using a cell processor based PlayStation 3 system

    NASA Astrophysics Data System (ADS)

    Chow, James C. L.; Lam, Phil; Jaffray, David A.

    2012-02-01

    This study investigates the performance of the EGSnrc computer code coupled with a Cell-based hardware in Monte Carlo simulation of radiation dose in radiotherapy. Performance evaluations of two processor-intensive functions namely, HOWNEAR and RANMAR_GET in the EGSnrc code were carried out basing on the 20-80 rule (Pareto principle). The execution speeds of the two functions were measured by the profiler gprof specifying the number of executions and total time spent on the functions. A testing architecture designed for Cell processor was implemented in the evaluation using a PlayStation3 (PS3) system. The evaluation results show that the algorithms examined are readily parallelizable on the Cell platform, provided that an architectural change of the EGSnrc was made. However, as the EGSnrc performance was limited by the PowerPC Processing Element in the PS3, PC coupled with graphics processing units or GPCPU may provide a more viable avenue for acceleration.