Sample records for carlo impurity solver

  1. Continuous-time quantum Monte Carlo impurity solvers

    NASA Astrophysics Data System (ADS)

    Gull, Emanuel; Werner, Philipp; Fuchs, Sebastian; Surer, Brigitte; Pruschke, Thomas; Troyer, Matthias

    2011-04-01

    Continuous-time quantum Monte Carlo impurity solvers are algorithms that sample the partition function of an impurity model using diagrammatic Monte Carlo techniques. The present paper describes codes that implement the interaction expansion algorithm originally developed by Rubtsov, Savkin, and Lichtenstein, as well as the hybridization expansion method developed by Werner, Millis, Troyer, et al. These impurity solvers are part of the ALPS-DMFT application package and are accompanied by an implementation of dynamical mean-field self-consistency equations for (single orbital single site) dynamical mean-field problems with arbitrary densities of states. Program summaryProgram title: dmft Catalogue identifier: AEIL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: ALPS LIBRARY LICENSE version 1.1 No. of lines in distributed program, including test data, etc.: 899 806 No. of bytes in distributed program, including test data, etc.: 32 153 916 Distribution format: tar.gz Programming language: C++ Operating system: The ALPS libraries have been tested on the following platforms and compilers: Linux with GNU Compiler Collection (g++ version 3.1 and higher), and Intel C++ Compiler (icc version 7.0 and higher) MacOS X with GNU Compiler (g++ Apple-version 3.1, 3.3 and 4.0) IBM AIX with Visual Age C++ (xlC version 6.0) and GNU (g++ version 3.1 and higher) compilers Compaq Tru64 UNIX with Compq C++ Compiler (cxx) SGI IRIX with MIPSpro C++ Compiler (CC) HP-UX with HP C++ Compiler (aCC) Windows with Cygwin or coLinux platforms and GNU Compiler Collection (g++ version 3.1 and higher) RAM: 10 MB-1 GB Classification: 7.3 External routines: ALPS [1], BLAS/LAPACK, HDF5 Nature of problem: (See [2].) Quantum impurity models describe an atom or molecule embedded in a host material with which it can exchange electrons. They are basic to nanoscience as representations of quantum dots and molecular conductors and play an increasingly important role in the theory of "correlated electron" materials as auxiliary problems whose solution gives the "dynamical mean field" approximation to the self-energy and local correlation functions. Solution method: Quantum impurity models require a method of solution which provides access to both high and low energy scales and is effective for wide classes of physically realistic models. The continuous-time quantum Monte Carlo algorithms for which we present implementations here meet this challenge. Continuous-time quantum impurity methods are based on partition function expansions of quantum impurity models that are stochastically sampled to all orders using diagrammatic quantum Monte Carlo techniques. For a review of quantum impurity models and their applications and of continuous-time quantum Monte Carlo methods for impurity models we refer the reader to [2]. Additional comments: Use of dmft requires citation of this paper. Use of any ALPS program requires citation of the ALPS [1] paper. Running time: 60 s-8 h per iteration.

  2. Recommender engine for continuous-time quantum Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Huang, Li; Yang, Yi-feng; Wang, Lei

    2017-03-01

    Recommender systems play an essential role in the modern business world. They recommend favorable items such as books, movies, and search queries to users based on their past preferences. Applying similar ideas and techniques to Monte Carlo simulations of physical systems boosts their efficiency without sacrificing accuracy. Exploiting the quantum to classical mapping inherent in the continuous-time quantum Monte Carlo methods, we construct a classical molecular gas model to reproduce the quantum distributions. We then utilize powerful molecular simulation techniques to propose efficient quantum Monte Carlo updates. The recommender engine approach provides a general way to speed up the quantum impurity solvers.

  3. Bold-line Monte Carlo and the nonequilibrium physics of strongly correlated many-body systems

    NASA Astrophysics Data System (ADS)

    Cohen, Guy

    2015-03-01

    This talk summarizes real time bold-line diagrammatic Monte-Carlo approaches to quantum impurity models, which make significant headway against the sign problem by summing over corrections to self-consistent diagrammatic expansions rather than a bare diagrammatic series. When the bold-line method is combined with reduced dynamics techniques both local single-time properties and two time correlators such as Green functions can be computed at very long timescales, enabling studies of nonequilibrium steady state behavior of quantum impurity models and creating new solvers for nonequilibrium dynamical mean field theory. This work is supported by NSF DMR 1006282, NSF CHE-1213247, DOE ER 46932, TG-DMR120085 and TG-DMR130036, and the Yad Hanadiv-Rothschild Foundation.

  4. iQIST v0.7: An open source continuous-time quantum Monte Carlo impurity solver toolkit

    NASA Astrophysics Data System (ADS)

    Huang, Li

    2017-12-01

    In this paper, we present a new version of the iQIST software package, which is capable of solving various quantum impurity models by using the hybridization expansion (or strong coupling expansion) continuous-time quantum Monte Carlo algorithm. In the revised version, the software architecture is completely redesigned. New basis (intermediate representation or singular value decomposition representation) for the single-particle and two-particle Green's functions is introduced. A lot of useful physical observables are added, such as the charge susceptibility, fidelity susceptibility, Binder cumulant, and autocorrelation time. Especially, we optimize measurement for the two-particle Green's functions. Both the particle-hole and particle-particle channels are supported. In addition, the block structure of the two-particle Green's functions is exploited to accelerate the calculation. Finally, we fix some known bugs and limitations. The computational efficiency of the code is greatly enhanced.

  5. Non-Equilibrium Dynamics with Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Dong, Qiaoyuan

    This work is motivated by the fact that the investigation of non-equilibrium phenomena in strongly correlated electron systems has developed into one of the most active and exciting branches of condensed matter physics as it provides rich new insights that could not be obtained from the study of equilibrium situations. However, a theoretical description of those phenomena is missing. Therefore, in this thesis, we develop a numerical method that can be used to study two minimal models--the Hubbard model and the Anderson impurity model with general parameter range and time dependence. We begin by introducing the theoretical framework and the general features of the Hubbard model. We then describe the dynamical mean field theory (DMFT), which was first invented by Georges in 1992. It provides a feasible way to approach strongly correlated electron systems and reduces the complexity of the calculations via a mapping of lattice models onto quantum impurity models subject to a self-consistency condition. We employ the non-equilibrium extension of DMFT and map the Hubbard model to the single impurity Anderson model (SIAM). Since the fundamental component of the DMFT method is a solver of the single impurity Anderson model, we continue with a description of the formalism to study the real-time dynamics of the impurity model staring at its thermal equilibrium state. We utilize the non-equilibrium strong-coupling perturbation theory and derive semi-analytical approximation methods such as the non-crossing approximation (NCA) and the one-crossing approximation (OCA). We then use the Quantum Monte-Carlo method (QMC) as a numerically exact method and present proper measurements of local observables, current and Green's functions. We perform simulations of the current after a quantum quench from equilibrium by rapidly applying a bias voltage in a wide range of initial temperatures. The current exhibits short equilibrium times and saturates upon the decrease of temperature at all times, indicating Kondo behavior both in the transient regime and in the steady state. However, this bare QMC solver suffers from a dynamical sign problem for long time propagations. To overcome the limitations of this bare treatment, we introduce the "Inchworm algorithm'', based on iteratively reusing the information obtained in previous steps to extend the propagation to longer times and stabilize the calculations. We show that this algorithm greatly reduces the required order for each simulation and re-scales the exponential challenge to quadratic in time. We introduce a method to compute Green's functions, spectral functions, and currents for inchworm Monte Carlo and show how systematic error assessments in real time can be obtained. We illustrate the capabilities of the algorithm with a study of the behavior of quantum impurities after an instantaneous voltage quench from a thermal equilibrium state. We conclude with the applications of the unbiased inchworm impurity solver to DMFT calculations. We employ the methods for a study of the one-band paramagnetic Hubbard model on the Bethe lattice in equilibrium, where the DMFT approximation becomes exact. We begin with a brief introduction of the Mott metal insulator phase diagram. We present the results of both real time Green's functions and spectral functions from our nonequilibrium calculations. We observe the metal-insulator crossover as the on-site interaction is increased and the formation of a quasi-particle peak as the temperature is lowered. We also illustrate the convergence of our algorithms in different aspects.

  6. Numerical renormalization group calculation of impurity internal energy and specific heat of quantum impurity models

    NASA Astrophysics Data System (ADS)

    Merker, L.; Costi, T. A.

    2012-08-01

    We introduce a method to obtain the specific heat of quantum impurity models via a direct calculation of the impurity internal energy requiring only the evaluation of local quantities within a single numerical renormalization group (NRG) calculation for the total system. For the Anderson impurity model we show that the impurity internal energy can be expressed as a sum of purely local static correlation functions and a term that involves also the impurity Green function. The temperature dependence of the latter can be neglected in many cases, thereby allowing the impurity specific heat Cimp to be calculated accurately from local static correlation functions; specifically via Cimp=(∂Eionic)/(∂T)+(1)/(2)(∂Ehyb)/(∂T), where Eionic and Ehyb are the energies of the (embedded) impurity and the hybridization energy, respectively. The term involving the Green function can also be evaluated in cases where its temperature dependence is non-negligible, adding an extra term to Cimp. For the nondegenerate Anderson impurity model, we show by comparison with exact Bethe ansatz calculations that the results recover accurately both the Kondo induced peak in the specific heat at low temperatures as well as the high-temperature peak due to the resonant level. The approach applies to multiorbital and multichannel Anderson impurity models with arbitrary local Coulomb interactions. An application to the Ohmic two-state system and the anisotropic Kondo model is also given, with comparisons to Bethe ansatz calculations. The approach could also be of interest within other impurity solvers, for example, within quantum Monte Carlo techniques.

  7. Comparative DMFT study of the eg-orbital Hubbard model in thin films

    NASA Astrophysics Data System (ADS)

    Rüegg, Andreas; Hung, Hsiang-Hsuan; Gull, Emanuel; Fiete, Gregory A.

    2014-02-01

    Heterostructures of transition-metal oxides have emerged as a new route to engineer electronic systems with desired functionalities. Motivated by these developments, we study a two-orbital Hubbard model in a thin-film geometry confined along the cubic [001] direction using the dynamical mean-field theory. We contrast the results of two approximate impurity solvers (exact diagonalization and one-crossing approximation) to the results of the numerically exact continuous-time quantum Monte Carlo solver. Consistent with earlier studies, we find that the one-crossing approximation performs well in the insulating regime, while the advantage of the exact-diagonalization-based solver is more pronounced in the metallic regime. We then investigate various aspects of strongly correlated eg-orbital systems in thin-film geometries. In particular, we show how the interfacial orbital polarization dies off quickly a few layers from the interface and how the film thickness affects the location of the interaction-driven Mott transition. In addition, we explore the changes in the electronic structure with varying carrier concentration and identify large variations of the orbital polarization in the strongly correlated regime.

  8. Efficient implementation of the continuous-time hybridization expansion quantum impurity solver

    NASA Astrophysics Data System (ADS)

    Hafermann, Hartmut; Werner, Philipp; Gull, Emanuel

    2013-04-01

    Strongly correlated quantum impurity problems appear in a wide variety of contexts ranging from nanoscience and surface physics to material science and the theory of strongly correlated lattice models, where they appear as auxiliary systems within dynamical mean-field theory. Accurate and unbiased solutions must usually be obtained numerically, and continuous-time quantum Monte Carlo algorithms, a family of algorithms based on the stochastic sampling of partition function expansions, perform well for such systems. With the present paper we provide an efficient and generic implementation of the hybridization expansion quantum impurity solver, based on the segment representation. We provide a complete implementation featuring most of the recently developed extensions and optimizations. Our implementation allows one to treat retarded interactions and provides generalized measurement routines based on improved estimators for the self-energy and for vertex functions. The solver is embedded in the ALPS-DMFT application package. Catalogue identifier: AEOL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOL_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Use of the hybridization expansion impurity solvers requires citation of this paper. Use of any ALPS program requires citation of the ALPS [1] paper. No. of lines in distributed program, including test data, etc.: 650044 No. of bytes in distributed program, including test data, etc.: 20553265 Distribution format: tar.gz Programming language: C++/Python. Computer: Desktop PC, high-performance computers. Operating system: Unix, Linux, OSX, Windows. Has the code been vectorized or parallelized?: Yes, MPI parallelized. RAM: 1 GB Classification: 7.3. External routines: ALPS [1, 2, 3], BLAS [4, 5], LAPACK [6], HDF5 [7] Nature of problem: Quantum impurity models were originally introduced to describe a magnetic transition metal ion in a non-magnetic host metal. They are widely used today. In nanoscience they serve as representations of quantum dots and molecular conductors. In condensed matter physics, they are playing an increasingly important role in the description of strongly correlated electron materials, where the complicated many-body problem is mapped onto an auxiliary quantum impurity model in the context of dynamical mean-field theory, and its cluster and diagrammatic extensions. They still constitutes a non-trivial many-body problem, which takes into account the (possibly retarded) interaction between electrons occupying the impurity site. Electrons are allowed to dynamically hop on and off the impurity site, which is described by a time-dependent hybridization function. Solution method: The quantum impurity model is solved using a continuous-time quantum Monte Carlo algorithm which is based on a perturbation expansion of the partition function in the impurity-bath hybridization. Monte Carlo configurations are represented as segments on the imaginary time interval and individual terms correspond to Feynman diagrams which are stochastically sampled to all orders using a Metropolis algorithm. For a detailed review on the method, we refer the reader to [8]. Running time: 1-8 h. B. Bauer, L. D. Carr, H. G. Evertz, A. Feiguin, J. Freire, S. Fuchs, L. Gamper, J. Gukelberger, E. Gull, S. Guertler, A. Hehn, R. Igarashi, S. V. Isakov, D. Koop, P. N. Ma, P. Mates, H. Matsuo, O. Parcollet, G. Pawlowski, J. D. Picon, L. Pollet, E. Santos, V. W. Scarola, U. Schollwöck, C. Silva, B. Surer, S. Todo, S. Trebst, M. Troyer, M. L. Wall, P. Werner and S. Wessel, Journal of Statistical Mechanics: Theory and Experiment 2011, P05001 (2011). F. Alet, P. Dayal, A. Grzesik, A. Honecker, M. Körner, A. Läuchli, S. R. Manmana, I. P. McCulloch, F. Michel, R. M. Noack, G. Schmid, U. Schollwöck, F. Stöckli, S. Todo, S. Trebst, M. Troyer, P. Werner, S. Wessel, J. Phys. Soc. Japan 74S (2005) 30. A. Albuquerque, F. Alet, P. Corboz, P. Dayal, A. Feiguin, S. Fuchs, L. Gamper, E. Gull, S. Gürtler, A. Honecker, R. Igarashi, M. Körner, A. Kozhevnikov, A. Láuchli, S. Manmana, M. Matsumoto, I. McCulloch, F. Michel, R. Noack, G. Pawlowski, L. Pollet, T. Pruschke, U. Schollwöck, S. Todo, S. Trebst, M. Troyer, P. Werner and S. Wessel, J. Magn. Magn. Mater. 310, 1187 (2007), proceedings of the 17th International Conference on Magnetism The International Conference on Magnetism. C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, ACM Transactions on Mathematical Software 5, 324 (1979). L. S. Blackford, J. Demmel, I. Du, G. Henry, M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, and R. C. Whaley, ACM Trans. Math. Softw. 28, 135 (2002). E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’ Guide, 3rd ed. (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999). The HDF Group, Hierarchical data format version 5, http://www.hdfgroup.org/HDF5 (2000-2010). E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer and P. Werner, Rev. Mod. Phys. 83, 349 (2011).

  9. NiO: correlated band structure of a charge-transfer insulator.

    PubMed

    Kunes, J; Anisimov, V I; Skornyakov, S L; Lukoyanov, A V; Vollhardt, D

    2007-10-12

    The band structure of the prototypical charge-transfer insulator NiO is computed by using a combination of an ab initio band structure method and the dynamical mean-field theory with a quantum Monte-Carlo impurity solver. Employing a Hamiltonian which includes both Ni d and O p orbitals we find excellent agreement with the energy bands determined from angle-resolved photoemission spectroscopy. This brings an important progress in a long-standing problem of solid-state theory. Most notably we obtain the low-energy Zhang-Rice bands with strongly k-dependent orbital character discussed previously in the context of low-energy model theories.

  10. Numerically Exact Long Time Magnetization Dynamics Near the Nonequilibrium Kondo Regime

    NASA Astrophysics Data System (ADS)

    Cohen, Guy; Gull, Emanuel; Reichman, David; Millis, Andrew; Rabani, Eran

    2013-03-01

    The dynamical and steady-state spin response of the nonequilibrium Anderson impurity model to magnetic fields, bias voltages, and temperature is investigated by a numerically exact method which allows access to unprecedentedly long times. The method is based on using real, continuous time bold Monte Carlo techniques--quantum Monte Carlo sampling of diagrammatic corrections to a partial re-summation--in order to compute the kernel of a memory function, which is then used to determine the reduced density matrix. The method owes its effectiveness to the fact that the memory kernel is dominated by relatively short-time properties even when the system's dynamics are long-ranged. We make predictions regarding the non-monotonic temperature dependence of the system at high bias voltage and the oscillatory quench dynamics at high magnetic fields. We also discuss extensions of the method to the computation of transport properties and correlation functions, and its suitability as an impurity solver free from the need for analytical continuation in the context of dynamical mean field theory. This work is supported by the US Department of Energy under grant DE-SC0006613, by NSF-DMR-1006282 and by the US-Israel Binational Science Foundation. GC is grateful to the Yad Hanadiv-Rothschild Foundation for the award of a Rothschild Fellowship.

  11. A real-frequency solver for the Anderson impurity model based on bath optimization and cluster perturbation theory

    NASA Astrophysics Data System (ADS)

    Zingl, Manuel; Nuss, Martin; Bauernfeind, Daniel; Aichhorn, Markus

    2018-05-01

    Recently solvers for the Anderson impurity model (AIM) working directly on the real-frequency axis have gained much interest. A simple and yet frequently used impurity solver is exact diagonalization (ED), which is based on a discretization of the AIM bath degrees of freedom. Usually, the bath parameters cannot be obtained directly on the real-frequency axis, but have to be determined by a fit procedure on the Matsubara axis. In this work we present an approach where the bath degrees of freedom are first discretized directly on the real-frequency axis using a large number of bath sites (≈ 50). Then, the bath is optimized by unitary transformations such that it separates into two parts that are weakly coupled. One part contains the impurity site and its interacting Green's functions can be determined with ED. The other (larger) part is a non-interacting system containing all the remaining bath sites. Finally, the Green's function of the full AIM is calculated via coupling these two parts with cluster perturbation theory.

  12. Monte Carlo method for magnetic impurities in metals

    NASA Technical Reports Server (NTRS)

    Hirsch, J. E.; Fye, R. M.

    1986-01-01

    The paper discusses a Monte Carlo algorithm to study properties of dilute magnetic alloys; the method can treat a small number of magnetic impurities interacting wiith the conduction electrons in a metal. Results for the susceptibility of a single Anderson impurity in the symmetric case show the expected universal behavior at low temperatures. Some results for two Anderson impurities are also discussed.

  13. An Unsplit Monte-Carlo solver for the resolution of the linear Boltzmann equation coupled to (stiff) Bateman equations

    NASA Astrophysics Data System (ADS)

    Bernede, Adrien; Poëtte, Gaël

    2018-02-01

    In this paper, we are interested in the resolution of the time-dependent problem of particle transport in a medium whose composition evolves with time due to interactions. As a constraint, we want to use of Monte-Carlo (MC) scheme for the transport phase. A common resolution strategy consists in a splitting between the MC/transport phase and the time discretization scheme/medium evolution phase. After going over and illustrating the main drawbacks of split solvers in a simplified configuration (monokinetic, scalar Bateman problem), we build a new Unsplit MC (UMC) solver improving the accuracy of the solutions, avoiding numerical instabilities, and less sensitive to time discretization. The new solver is essentially based on a Monte Carlo scheme with time dependent cross sections implying the on-the-fly resolution of a reduced model for each MC particle describing the time evolution of the matter along their flight path.

  14. Nuclide Depletion Capabilities in the Shift Monte Carlo Code

    DOE PAGES

    Davidson, Gregory G.; Pandya, Tara M.; Johnson, Seth R.; ...

    2017-12-21

    A new depletion capability has been developed in the Exnihilo radiation transport code suite. This capability enables massively parallel domain-decomposed coupling between the Shift continuous-energy Monte Carlo solver and the nuclide depletion solvers in ORIGEN to perform high-performance Monte Carlo depletion calculations. This paper describes this new depletion capability and discusses its various features, including a multi-level parallel decomposition, high-order transport-depletion coupling, and energy-integrated power renormalization. Several test problems are presented to validate the new capability against other Monte Carlo depletion codes, and the parallel performance of the new capability is analyzed.

  15. Strong correlation effects in theoretical STM studies of magnetic adatoms

    NASA Astrophysics Data System (ADS)

    Dang, Hung T.; dos Santos Dias, Manuel; Liebsch, Ansgar; Lounis, Samir

    2016-03-01

    We present a theoretical study for the scanning tunneling microscopy (STM) spectra of surface-supported magnetic nanostructures, incorporating strong correlation effects. As concrete examples, we study Co and Mn adatoms on the Cu(111) surface, which are expected to represent the opposite limits of Kondo physics and local moment behavior, using a combination of density functional theory and both quantum Monte Carlo and exact diagonalization impurity solvers. We examine in detail the effects of temperature T , correlation strength U , and impurity d electron occupancy Nd on the local density of states. We also study the effective coherence energy scale, i.e., the Kondo temperature TK, which can be extracted from the STM spectra. Theoretical STM spectra are computed as a function of STM tip position relative to each adatom. Because of the multiorbital nature of the adatoms, the STM spectra are shown to consist of a complicated superposition of orbital contributions, with different orbital symmetries, self-energies, and Kondo temperatures. For a Mn adatom, which is close to half-filling, the STM spectra are featureless near the Fermi level. On the other hand, the quasiparticle peak for a Co adatom gives rise to strongly position-dependent Fano line shapes.

  16. EUPDF: An Eulerian-Based Monte Carlo Probability Density Function (PDF) Solver. User's Manual

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    1998-01-01

    EUPDF is an Eulerian-based Monte Carlo PDF solver developed for application with sprays, combustion, parallel computing and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and spray solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type. The manual provides the user with the coding required to couple the PDF code to any given flow code and a basic understanding of the EUPDF code structure as well as the models involved in the PDF formulation. The source code of EUPDF will be available with the release of the National Combustion Code (NCC) as a complete package.

  17. Impurities in a non-axisymmetric plasma. Transport and effect on bootstrap current

    DOE PAGES

    Mollén, A.; Landreman, M.; Smith, H. M.; ...

    2015-11-20

    Impurities cause radiation losses and plasma dilution, and in stellarator plasmas the neoclassical ambipolar radial electric field is often unfavorable for avoiding strong impurity peaking. In this work we use a new continuum drift-kinetic solver, the SFINCS code (the Stellarator Fokker-Planck Iterative Neoclassical Conservative Solver) [M. Landreman et al., Phys. Plasmas 21 (2014) 042503] which employs the full linearized Fokker-Planck-Landau operator, to calculate neoclassical impurity transport coefficients for a Wendelstein 7-X (W7-X) magnetic configuration. We compare SFINCS calculations with theoretical asymptotes in the high collisionality limit. We observe and explain a 1/nu-scaling of the inter-species radial transport coefficient at lowmore » collisionality, arising due to the field term in the inter-species collision operator, and which is not found with simplified collision models even when momentum correction is applied. However, this type of scaling disappears if a radial electric field is present. We use SFINCS to analyze how the impurity content affects the neoclassical impurity dynamics and the bootstrap current. We show that a change in plasma effective charge Z eff of order unity can affect the bootstrap current enough to cause a deviation in the divertor strike point locations.« less

  18. Study of impurity effects on CFETR steady-state scenario by self-consistent integrated modeling

    NASA Astrophysics Data System (ADS)

    Shi, Nan; Chan, Vincent S.; Jian, Xiang; Li, Guoqiang; Chen, Jiale; Gao, Xiang; Shi, Shengyu; Kong, Defeng; Liu, Xiaoju; Mao, Shifeng; Xu, Guoliang

    2017-12-01

    Impurity effects on fusion performance of China fusion engineering test reactor (CFETR) due to extrinsic seeding are investigated. An integrated 1.5D modeling workflow evolves plasma equilibrium and all transport channels to steady state. The one modeling framework for integrated tasks framework is used to couple the transport solver, MHD equilibrium solver, and source and sink calculations. A self-consistent impurity profile constructed using a steady-state background plasma, which satisfies quasi-neutrality and true steady state, is presented for the first time. Studies are performed based on an optimized fully non-inductive scenario with varying concentrations of Argon (Ar) seeding. It is found that fusion performance improves before dropping off with increasing {{Z}\\text{eff}} , while the confinement remains at high level. Further analysis of transport for these plasmas shows that low-k ion temperature gradient modes dominate the turbulence. The decrease in linear growth rate and resultant fluxes of all channels with increasing {{Z}\\text{eff}} can be traced to impurity profile change by transport. The improvement in confinement levels off at higher {{Z}\\text{eff}} . Over the regime of study there is a competition between the suppressed transport and increasing radiation that leads to a peak in the fusion performance at {{Z}\\text{eff}} (~2.78 for CFETR). Extrinsic impurity seeding to control divertor heat load will need to be optimized around this value for best fusion performance.

  19. A Comparison of Monte Carlo and Deterministic Solvers for keff and Sensitivity Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haeck, Wim; Parsons, Donald Kent; White, Morgan Curtis

    Verification and validation of our solutions for calculating the neutron reactivity for nuclear materials is a key issue to address for many applications, including criticality safety, research reactors, power reactors, and nuclear security. Neutronics codes solve variations of the Boltzmann transport equation. The two main variants are Monte Carlo versus deterministic solutions, e.g. the MCNP [1] versus PARTISN [2] codes, respectively. There have been many studies over the decades that examined the accuracy of such solvers and the general conclusion is that when the problems are well-posed, either solver can produce accurate results. However, the devil is always in themore » details. The current study examines the issue of self-shielding and the stress it puts on deterministic solvers. Most Monte Carlo neutronics codes use continuous-energy descriptions of the neutron interaction data that are not subject to this effect. The issue of self-shielding occurs because of the discretisation of data used by the deterministic solutions. Multigroup data used in these solvers are the average cross section and scattering parameters over an energy range. Resonances in cross sections can occur that change the likelihood of interaction by one to three orders of magnitude over a small energy range. Self-shielding is the numerical effect that the average cross section in groups with strong resonances can be strongly affected as neutrons within that material are preferentially absorbed or scattered out of the resonance energies. This affects both the average cross section and the scattering matrix.« less

  20. Impurity in a Bose-Einstein condensate: Study of the attractive and repulsive branch using quantum Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Ardila, L. A. Peña; Giorgini, S.

    2015-09-01

    We investigate the properties of an impurity immersed in a dilute Bose gas at zero temperature using quantum Monte Carlo methods. The interactions between bosons are modeled by a hard-sphere potential with scattering length a , whereas the interactions between the impurity and the bosons are modeled by a short-range, square-well potential where both the sign and the strength of the scattering length b can be varied by adjusting the well depth. We characterize the attractive and the repulsive polaron branch by calculating the binding energy and the effective mass of the impurity. Furthermore, we investigate the structural properties of the bath, such as the impurity-boson contact parameter and the change of the density profile around the impurity. At the unitary limit of the impurity-boson interaction, we find that the effective mass of the impurity remains smaller than twice its bare mass, while the binding energy scales with ℏ2n2 /3/m , where n is the density of the bath and m is the common mass of the impurity and the bosons in the bath. The implications for the phase diagram of binary Bose-Bose mixtures at low concentrations are also discussed.

  1. LSPRAY-IV: A Lagrangian Spray Module

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    2012-01-01

    LSPRAY-IV is a Lagrangian spray solver developed for application with parallel computing and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and/or Monte Carlo Probability Density Function (PDF) solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type for the gas flow grid representation. It is mainly designed to predict the flow, thermal and transport properties of a rapidly vaporizing spray. Some important research areas covered as a part of the code development are: (1) the extension of combined CFD/scalar-Monte- Carlo-PDF method to spray modeling, (2) the multi-component liquid spray modeling, and (3) the assessment of various atomization models used in spray calculations. The current version contains the extension to the modeling of superheated sprays. The manual provides the user with an understanding of various models involved in the spray formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers.

  2. A High-Order Low-Order Algorithm with Exponentially Convergent Monte Carlo for Thermal Radiative Transfer

    DOE PAGES

    Bolding, Simon R.; Cleveland, Mathew Allen; Morel, Jim E.

    2016-10-21

    In this paper, we have implemented a new high-order low-order (HOLO) algorithm for solving thermal radiative transfer problems. The low-order (LO) system is based on the spatial and angular moments of the transport equation and a linear-discontinuous finite-element spatial representation, producing equations similar to the standard S 2 equations. The LO solver is fully implicit in time and efficiently resolves the nonlinear temperature dependence at each time step. The high-order (HO) solver utilizes exponentially convergent Monte Carlo (ECMC) to give a globally accurate solution for the angular intensity to a fixed-source pure-absorber transport problem. This global solution is used tomore » compute consistency terms, which require the HO and LO solutions to converge toward the same solution. The use of ECMC allows for the efficient reduction of statistical noise in the Monte Carlo solution, reducing inaccuracies introduced through the LO consistency terms. Finally, we compare results with an implicit Monte Carlo code for one-dimensional gray test problems and demonstrate the efficiency of ECMC over standard Monte Carlo in this HOLO algorithm.« less

  3. Mixing Single Scattering Properties in Vector Radiative Transfer for Deterministic and Stochastic Solutions

    NASA Astrophysics Data System (ADS)

    Mukherjee, L.; Zhai, P.; Hu, Y.; Winker, D. M.

    2016-12-01

    Among the primary factors, which determine the polarized radiation, field of a turbid medium are the single scattering properties of the medium. When multiple types of scatterers are present, the single scattering properties of the scatterers need to be properly mixed in order to find the solutions to the vector radiative transfer theory (VRT). The VRT solvers can be divided into two types: deterministic and stochastic. The deterministic solver can only accept one set of single scattering property in its smallest discretized spatial volume. When the medium contains more than one kind of scatterer, their single scattering properties are averaged, and then used as input for the deterministic solver. The stochastic solver, can work with different kinds of scatterers explicitly. In this work, two different mixing schemes are studied using the Successive Order of Scattering (SOS) method and Monte Carlo (MC) methods. One scheme is used for deterministic and the other is used for the stochastic Monte Carlo method. It is found that the solutions from the two VRT solvers using two different mixing schemes agree with each other extremely well. This confirms the equivalence to the two mixing schemes and also provides a benchmark for the VRT solution for the medium studied.

  4. PDF approach for compressible turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Hsu, A. T.; Tsai, Y.-L. P.; Raju, M. S.

    1993-01-01

    The objective of the present work is to develop a probability density function (pdf) turbulence model for compressible reacting flows for use with a CFD flow solver. The probability density function of the species mass fraction and enthalpy are obtained by solving a pdf evolution equation using a Monte Carlo scheme. The pdf solution procedure is coupled with a compressible CFD flow solver which provides the velocity and pressure fields. A modeled pdf equation for compressible flows, capable of capturing shock waves and suitable to the present coupling scheme, is proposed and tested. Convergence of the combined finite-volume Monte Carlo solution procedure is discussed, and an averaging procedure is developed to provide smooth Monte-Carlo solutions to ensure convergence. Two supersonic diffusion flames are studied using the proposed pdf model and the results are compared with experimental data; marked improvements over CFD solutions without pdf are observed. Preliminary applications of pdf to 3D flows are also reported.

  5. A Lattice Kinetic Monte Carlo Solver for First-Principles Microkinetic Trend Studies

    DOE PAGES

    Hoffmann, Max J.; Bligaard, Thomas

    2018-01-22

    Here, mean-field microkinetic models in combination with Brønsted–Evans–Polanyi like scaling relations have proven highly successful in identifying catalyst materials with good or promising reactivity and selectivity. Analysis of the microkinetic model by means of lattice kinetic Monte Carlo promises a faithful description of a range of atomistic features involving short-range ordering of species in the vicinity of an active site. In this paper, we use the “fruit fly” example reaction of CO oxidation on fcc(111) transition and coinage metals to motivate and develop a lattice kinetic Monte Carlo solver suitable for the numerically challenging case of vastly disparate rate constants.more » As a result, we show that for the case of infinitely fast diffusion and absence of adsorbate-adsorbate interaction it is, in fact, possible to match the prediction of the mean-field-theory method and the lattice kinetic Monte Carlo method. As a corollary, we conclude that lattice kinetic Monte Carlo simulations of surface chemical reactions are most likely to provide additional insight over mean-field simulations if diffusion limitations or adsorbate–adsorbate interactions have a significant influence on the mixing of the adsorbates.« less

  6. A Lattice Kinetic Monte Carlo Solver for First-Principles Microkinetic Trend Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, Max J.; Bligaard, Thomas

    Here, mean-field microkinetic models in combination with Brønsted–Evans–Polanyi like scaling relations have proven highly successful in identifying catalyst materials with good or promising reactivity and selectivity. Analysis of the microkinetic model by means of lattice kinetic Monte Carlo promises a faithful description of a range of atomistic features involving short-range ordering of species in the vicinity of an active site. In this paper, we use the “fruit fly” example reaction of CO oxidation on fcc(111) transition and coinage metals to motivate and develop a lattice kinetic Monte Carlo solver suitable for the numerically challenging case of vastly disparate rate constants.more » As a result, we show that for the case of infinitely fast diffusion and absence of adsorbate-adsorbate interaction it is, in fact, possible to match the prediction of the mean-field-theory method and the lattice kinetic Monte Carlo method. As a corollary, we conclude that lattice kinetic Monte Carlo simulations of surface chemical reactions are most likely to provide additional insight over mean-field simulations if diffusion limitations or adsorbate–adsorbate interactions have a significant influence on the mixing of the adsorbates.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolding, Simon R.; Cleveland, Mathew Allen; Morel, Jim E.

    In this paper, we have implemented a new high-order low-order (HOLO) algorithm for solving thermal radiative transfer problems. The low-order (LO) system is based on the spatial and angular moments of the transport equation and a linear-discontinuous finite-element spatial representation, producing equations similar to the standard S 2 equations. The LO solver is fully implicit in time and efficiently resolves the nonlinear temperature dependence at each time step. The high-order (HO) solver utilizes exponentially convergent Monte Carlo (ECMC) to give a globally accurate solution for the angular intensity to a fixed-source pure-absorber transport problem. This global solution is used tomore » compute consistency terms, which require the HO and LO solutions to converge toward the same solution. The use of ECMC allows for the efficient reduction of statistical noise in the Monte Carlo solution, reducing inaccuracies introduced through the LO consistency terms. Finally, we compare results with an implicit Monte Carlo code for one-dimensional gray test problems and demonstrate the efficiency of ECMC over standard Monte Carlo in this HOLO algorithm.« less

  8. New DMFT capabilities in CASTEP

    NASA Astrophysics Data System (ADS)

    Plekhanov, Evgeny; Sacksteder, Vincent; Hasnip, Phil; Probert, Matt; Clark, Stewart; Weber, Cedric; Refson, Keith

    We present the first implementation of Dynamical Mean-Field Theory in UK's major ab-initio code CASTEP. This implementation: i) is modular; ii) allows great flexibility in choosing local basis set for downfolding/upfolding of self-energy; iii) permits wide choice of impurity solvers (including external solver libraries); and iv) gives the user a possibility to use several self-consistency schemes and calculate total energy and forces. We explain in details the theoretical framework used. We benchmark our implementation on several strongly-correlated insulating systems with d- and f-shells: γ-Ce and Ce2O3 by using Hubbard I and CTHYB-QMC solvers. Our results appear to be in excellent agreement with the reference data published previously in the literature. EPSRC-funded project ''Strong Correlation meets Materials Modelling: DMFT and GW in CASTEP''.

  9. Multigrid accelerated simulations for Twisted Mass fermions

    NASA Astrophysics Data System (ADS)

    Bacchio, Simone; Alexandrou, Constantia; Finkerath, Jacob

    2018-03-01

    Simulations at physical quark masses are affected by the critical slowing down of the solvers. Multigrid preconditioning has proved to deal effectively with this problem. Multigrid accelerated simulations at the physical value of the pion mass are being performed to generate Nf = 2 and Nf = 2 + 1 + 1 gauge ensembles using twisted mass fermions. The adaptive aggregation-based domain decomposition multigrid solver, referred to as DD-αAMG method, is employed for these simulations. Our simulation strategy consists of an hybrid approach of different solvers, involving the Conjugate Gradient (CG), multi-mass-shift CG and DD-αAMG solvers. We present an analysis of the multigrid performance during the simulations discussing the stability of the method. This significant speeds up the Hybrid Monte Carlo simulation by more than a factor 4 at physical pion mass compared to the usage of the CG solver.

  10. Effect of partially ionized impurities and radiation on the effective critical electric field for runaway generation

    NASA Astrophysics Data System (ADS)

    Hesslow, L.; Embréus, O.; Wilkie, G. J.; Papp, G.; Fülöp, T.

    2018-07-01

    We derive a formula for the effective critical electric field for runaway generation and decay that accounts for the presence of partially ionized impurities in combination with synchrotron and bremsstrahlung radiation losses. We show that the effective critical field is drastically larger than the classical Connor–Hastie field, and even exceeds the value obtained by replacing the free electron density by the total electron density (including both free and bound electrons). Using a kinetic equation solver with an inductive electric field, we show that the runaway current decay after an impurity injection is expected to be linear in time and proportional to the effective critical electric field in highly inductive tokamak devices. This is relevant for the efficacy of mitigation strategies for runaway electrons since it reduces the required amount of injected impurities to achieve a certain current decay rate.

  11. A hybrid (Monte Carlo/deterministic) approach for multi-dimensional radiation transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bal, Guillaume, E-mail: gb2030@columbia.edu; Davis, Anthony B., E-mail: Anthony.B.Davis@jpl.nasa.gov; Kavli Institute for Theoretical Physics, Kohn Hall, University of California, Santa Barbara, CA 93106-4030

    2011-08-20

    Highlights: {yields} We introduce a variance reduction scheme for Monte Carlo (MC) transport. {yields} The primary application is atmospheric remote sensing. {yields} The technique first solves the adjoint problem using a deterministic solver. {yields} Next, the adjoint solution is used as an importance function for the MC solver. {yields} The adjoint problem is solved quickly since it ignores the volume. - Abstract: A novel hybrid Monte Carlo transport scheme is demonstrated in a scene with solar illumination, scattering and absorbing 2D atmosphere, a textured reflecting mountain, and a small detector located in the sky (mounted on a satellite or amore » airplane). It uses a deterministic approximation of an adjoint transport solution to reduce variance, computed quickly by ignoring atmospheric interactions. This allows significant variance and computational cost reductions when the atmospheric scattering and absorption coefficient are small. When combined with an atmospheric photon-redirection scheme, significant variance reduction (equivalently acceleration) is achieved in the presence of atmospheric interactions.« less

  12. Hypersonic simulations using open-source CFD and DSMC solvers

    NASA Astrophysics Data System (ADS)

    Casseau, V.; Scanlon, T. J.; John, B.; Emerson, D. R.; Brown, R. E.

    2016-11-01

    Hypersonic hybrid hydrodynamic-molecular gas flow solvers are required to satisfy the two essential requirements of any high-speed reacting code, these being physical accuracy and computational efficiency. The James Weir Fluids Laboratory at the University of Strathclyde is currently developing an open-source hybrid code which will eventually reconcile the direct simulation Monte-Carlo method, making use of the OpenFOAM application called dsmcFoam, and the newly coded open-source two-temperature computational fluid dynamics solver named hy2Foam. In conjunction with employing the CVDV chemistry-vibration model in hy2Foam, novel use is made of the QK rates in a CFD solver. In this paper, further testing is performed, in particular with the CFD solver, to ensure its efficacy before considering more advanced test cases. The hy2Foam and dsmcFoam codes have shown to compare reasonably well, thus providing a useful basis for other codes to compare against.

  13. Methods for modeling non-equilibrium degenerate statistics and quantum-confined scattering in 3D ensemble Monte Carlo transport simulations

    NASA Astrophysics Data System (ADS)

    Crum, Dax M.; Valsaraj, Amithraj; David, John K.; Register, Leonard F.; Banerjee, Sanjay K.

    2016-12-01

    Particle-based ensemble semi-classical Monte Carlo (MC) methods employ quantum corrections (QCs) to address quantum confinement and degenerate carrier populations to model tomorrow's ultra-scaled metal-oxide-semiconductor-field-effect-transistors. Here, we present the most complete treatment of quantum confinement and carrier degeneracy effects in a three-dimensional (3D) MC device simulator to date, and illustrate their significance through simulation of n-channel Si and III-V FinFETs. Original contributions include our treatment of far-from-equilibrium degenerate statistics and QC-based modeling of surface-roughness scattering, as well as considering quantum-confined phonon and ionized-impurity scattering in 3D. Typical MC simulations approximate degenerate carrier populations as Fermi distributions to model the Pauli-blocking (PB) of scattering to occupied final states. To allow for increasingly far-from-equilibrium non-Fermi carrier distributions in ultra-scaled and III-V devices, we instead generate the final-state occupation probabilities used for PB by sampling the local carrier populations as function of energy and energy valley. This process is aided by the use of fractional carriers or sub-carriers, which minimizes classical carrier-carrier scattering intrinsically incompatible with degenerate statistics. Quantum-confinement effects are addressed through quantum-correction potentials (QCPs) generated from coupled Schrödinger-Poisson solvers, as commonly done. However, we use these valley- and orientation-dependent QCPs not just to redistribute carriers in real space, or even among energy valleys, but also to calculate confinement-dependent phonon, ionized-impurity, and surface-roughness scattering rates. FinFET simulations are used to illustrate the contributions of each of these QCs. Collectively, these quantum effects can substantially reduce and even eliminate otherwise expected benefits of considered In0.53Ga0.47 As FinFETs over otherwise identical Si FinFETs despite higher thermal velocities in In0.53Ga0.47 As. It also may be possible to extend these basic uses of QCPs, however calculated, to still more computationally efficient drift-diffusion and hydrodynamic simulations, and the basic concepts even to compact device modeling.

  14. Depletion Calculations Based on Perturbations. Application to the Study of a Rep-Like Assembly at Beginning of Cycle with TRIPOLI-4®.

    NASA Astrophysics Data System (ADS)

    Dieudonne, Cyril; Dumonteil, Eric; Malvagi, Fausto; M'Backé Diop, Cheikh

    2014-06-01

    For several years, Monte Carlo burnup/depletion codes have appeared, which couple Monte Carlo codes to simulate the neutron transport to deterministic methods, which handle the medium depletion due to the neutron flux. Solving Boltzmann and Bateman equations in such a way allows to track fine 3-dimensional effects and to get rid of multi-group hypotheses done by deterministic solvers. The counterpart is the prohibitive calculation time due to the Monte Carlo solver called at each time step. In this paper we present a methodology to avoid the repetitive and time-expensive Monte Carlo simulations, and to replace them by perturbation calculations: indeed the different burnup steps may be seen as perturbations of the isotopic concentration of an initial Monte Carlo simulation. In a first time we will present this method, and provide details on the perturbative technique used, namely the correlated sampling. In a second time the implementation of this method in the TRIPOLI-4® code will be discussed, as well as the precise calculation scheme a meme to bring important speed-up of the depletion calculation. Finally, this technique will be used to calculate the depletion of a REP-like assembly, studied at beginning of its cycle. After having validated the method with a reference calculation we will show that it can speed-up by nearly an order of magnitude standard Monte-Carlo depletion codes.

  15. A New LES/PDF Method for Computational Modeling of Turbulent Reacting Flows

    NASA Astrophysics Data System (ADS)

    Turkeri, Hasret; Muradoglu, Metin; Pope, Stephen B.

    2013-11-01

    A new LES/PDF method is developed for computational modeling of turbulent reacting flows. The open source package, OpenFOAM, is adopted as the LES solver and combined with the particle-based Monte Carlo method to solve the LES/PDF model equations. The dynamic Smagorinsky model is employed to account for the subgrid-scale motions. The LES solver is first validated for the Sandia Flame D using a steady flamelet method in which the chemical compositions, density and temperature fields are parameterized by the mean mixture fraction and its variance. In this approach, the modeled transport equations for the mean mixture fraction and the square of the mixture fraction are solved and the variance is then computed from its definition. The results are found to be in a good agreement with the experimental data. Then the LES solver is combined with the particle-based Monte Carlo algorithm to form a complete solver for the LES/PDF model equations. The in situ adaptive tabulation (ISAT) algorithm is incorporated into the LES/PDF method for efficient implementation of detailed chemical kinetics. The LES/PDF method is also applied to the Sandia Flame D using the GRI-Mech 3.0 chemical mechanism and the results are compared with the experimental data and the earlier PDF simulations. The Scientific and Technical Research Council of Turkey (TUBITAK), Grant No. 111M067.

  16. Impurity self-energy in the strongly-correlated Bose systems

    NASA Astrophysics Data System (ADS)

    Panochko, Galyna; Pastukhov, Volodymyr; Vakarchuk, Ivan

    2018-02-01

    We proposed the nonperturbative scheme for the calculation of the impurity spectrum in the Bose system at zero temperature. The method is based on the path-integral formulation and describes an impurity as a zero-density ideal Fermi gas interacting with Bose system for which the action is written in terms of density fluctuations. On the example of the 3He atom immersed in the liquid helium-4 a good consistency with experimental data and results of Monte Carlo simulations is shown.

  17. Correlation between Charge Contrast Imaging and the Distribution of Some Trace Level Impurities in Gibbsite

    NASA Astrophysics Data System (ADS)

    Baroni, Travis C.; Griffin, Brendan J.; Browne, James R.; Lincoln, Frank J.

    2000-01-01

    Charge contrast images (CCI) of synthetic gibbsite obtained on an environmental scanning electron microscope gives information on the crystallization process. Furthermore, X-ray mapping of the same grains shows that impurities are localized during the initial stages of growth and that the resulting composition images have features similar to these observed in CCI. This suggests a possible correlation between impurity distributions and the emission detected during CCI. X-ray line profiles, simulating the spatial distribution of impurities derived from the Monte Carlo program CASINO, have been compared with experimental line profiles and give an estimate of the localization. The model suggests that a main impurity, Ca, is depleted from the solution within approximately 3 4 [mu]m of growth.

  18. LSPRAY-III: A Lagrangian Spray Module

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    2008-01-01

    LSPRAY-III is a Lagrangian spray solver developed for application with parallel computing and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and/or Monte Carlo Probability Density Function (PDF) solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type for the gas flow grid representation. It is mainly designed to predict the flow, thermal and transport properties of a rapidly vaporizing spray because of its importance in aerospace application. The manual provides the user with an understanding of various models involved in the spray formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers. With the development of LSPRAY-III, we have advanced the state-of-the-art in spray computations in several important ways.

  19. LSPRAY-II: A Lagrangian Spray Module

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    2004-01-01

    LSPRAY-II is a Lagrangian spray solver developed for application with parallel computing and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and/or Monte Carlo Probability Density Function (PDF) solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type for the gas flow grid representation. It is mainly designed to predict the flow, thermal and transport properties of a rapidly vaporizing spray because of its importance in aerospace application. The manual provides the user with an understanding of various models involved in the spray formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers. With the development of LSPRAY-II, we have advanced the state-of-the-art in spray computations in several important ways.

  20. LSPRAY-V: A Lagrangian Spray Module

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    2015-01-01

    LSPRAY-V is a Lagrangian spray solver developed for application with unstructured grids and massively parallel computers. It is mainly designed to predict the flow, thermal and transport properties of a rapidly vaporizing spray encountered over a wide range of operating conditions in modern aircraft engine development. It could easily be coupled with any existing gas-phase flow and/or Monte Carlo Probability Density Function (PDF) solvers. The manual provides the user with an understanding of various models involved in the spray formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers. With the development of LSPRAY-V, we have advanced the state-of-the-art in spray computations in several important ways.

  1. Ordered phases in the Holstein-Hubbard model: Interplay of strong Coulomb interaction and electron-phonon coupling

    NASA Astrophysics Data System (ADS)

    Murakami, Yuta; Werner, Philipp; Tsuji, Naoto; Aoki, Hideo

    2013-09-01

    We study the Holstein-Hubbard model at half filling to explore ordered phases including superconductivity (SC), antiferromagnetism (AF), and charge order (CO) in situations where the electron-electron and electron-phonon interactions are strong (comparable to the electronic bandwidth). The model is solved in the dynamical mean-field approximation with a continuous-time quantum Monte Carlo impurity solver. We determine the superconducting transition temperature Tc and the SC order parameter and show that the phonon-induced retardation or the strong Coulomb interaction leads to a significant reduction and shift of the Tc dome against the effective electron-electron interaction Ueff given by the Hubbard U reduced by the phonon-mediated attraction in the static limit. This behavior is analyzed by comparison to an effective static model in the polaron representation with a renormalized bandwidth. In addition, we discuss the superconducting gap Δ and 2Δ/Tc to reveal the effect of the retardation and the Coulomb interaction. We also determine the finite-temperature phase diagram including AF and CO. In the moderate-coupling regime, there is a hysteretic region of AF and CO around Ueff=0, while the two phases are separated by a paramagnetic metal in the weak-coupling regime and a paramagnetic insulator in the strong-coupling regime.

  2. EUPDF-II: An Eulerian Joint Scalar Monte Carlo PDF Module : User's Manual

    NASA Technical Reports Server (NTRS)

    Raju, M. S.; Liu, Nan-Suey (Technical Monitor)

    2004-01-01

    EUPDF-II provides the solution for the species and temperature fields based on an evolution equation for PDF (Probability Density Function) and it is developed mainly for application with sprays, combustion, parallel computing, and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase CFD and spray solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type. The manual provides the user with an understanding of the various models involved in the PDF formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers. The source code of EUPDF-II will be available with National Combustion Code (NCC) as a complete package.

  3. Sodium dopants in helium clusters: Structure, equilibrium and submersion kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvo, F.

    Alkali impurities bind to helium nanodroplets very differently depending on their size and charge state, large neutral or charged dopants being wetted by the droplet whereas small neutral impurities prefer to reside aside. Using various computational modeling tools such as quantum Monte Carlo and path-integral molecular dynamics simulations, we have revisited some aspects of the physical chemistry of helium droplets interacting with sodium impurities, including the onset of snowball formation in presence of many-body polarization forces, the transition from non-wetted to wetted behavior in larger sodium clusters, and the kinetics of submersion of small dopants after sudden ionization.

  4. Oscillatory interaction between O impurities and Al adatoms on Al(111) and its effect on nucleation and growth.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Henri; Linke, Udo; Feibelman, Peter Julian

    2003-07-01

    We present a combined experimental and theoretical study of submonolayer growth in the presence of predeposited immobile impurities. Scanning tunneling microscopy measurements of Al/Al(1 1 1) epitaxy in the presence of oxygen adsorbates show that immobile O impurities influence all aspects of the early stages of homoepitaxial growth on Al(1 1 1). Possible scenarios for modified growth are investigated using kinetic Monte Carlo simulations. Dependences of island density on temperature, impurity concentration and strength and type of adatom-impurity interaction are compared. The comparison shows that the morphology of the growing Al film cannot result from only one interaction type: attractivemore » or repulsive. An oscillatory interaction, suggested by ab initio calculations, is proposed to explain the behavior of the system.« less

  5. Parallel Solver for Diffuse Optical Tomography on Realistic Head Models With Scattering and Clear Regions.

    PubMed

    Placati, Silvio; Guermandi, Marco; Samore, Andrea; Scarselli, Eleonora Franchi; Guerrieri, Roberto

    2016-09-01

    Diffuse optical tomography is an imaging technique, based on evaluation of how light propagates within the human head to obtain the functional information about the brain. Precision in reconstructing such an optical properties map is highly affected by the accuracy of the light propagation model implemented, which needs to take into account the presence of clear and scattering tissues. We present a numerical solver based on the radiosity-diffusion model, integrating the anatomical information provided by a structural MRI. The solver is designed to run on parallel heterogeneous platforms based on multiple GPUs and CPUs. We demonstrate how the solver provides a 7 times speed-up over an isotropic-scattered parallel Monte Carlo engine based on a radiative transport equation for a domain composed of 2 million voxels, along with a significant improvement in accuracy. The speed-up greatly increases for larger domains, allowing us to compute the light distribution of a full human head ( ≈ 3 million voxels) in 116 s for the platform used.

  6. Energetics of Single Substitutional Impurities in NiTi

    NASA Technical Reports Server (NTRS)

    Good, Brian S.; Noebe, Ronald

    2003-01-01

    Shape-memory alloys are of considerable current interest, with applications ranging from stents to Mars rover components. In this work, we present results on the energetics of single substitutional impurities in B2 NiTi. Specifically, energies of Pd, Pt, Zr and Hf impurities at both Ni and Ti sites are computed. All energies are computed using the CASTEP ab initio code, and, for comparison, using the quantum approximate energy method of Bozzolo, Ferrante and Smith. Atomistic relaxation in the vicinity of the impurities is investigated via quantum approximate Monte Carlo simulation, and in cases where the relaxation is found to be important, the resulting relaxations are applied to the ab initio calculations. We compare our results with available experimental work.

  7. Bose polaron problem: Effect of mass imbalance on binding energy

    NASA Astrophysics Data System (ADS)

    Ardila, L. A. Peña; Giorgini, S.

    2016-12-01

    By means of quantum Monte Carlo methods we calculate the binding energy of an impurity immersed in a Bose-Einstein condensate at T =0 . The focus is on the attractive branch of the Bose polaron and on the role played by the mass imbalance between the impurity and the surrounding particles. For an impurity resonantly coupled to the bath, we investigate the dependence of the binding energy on the mass ratio and on the interaction strength within the medium. In particular, we determine the equation of state in the case of a static (infinite mass) impurity, where three-body correlations are irrelevant and the result is expected to be a universal function of the gas parameter. For the mass ratio corresponding to 40K impurities in a gas of 87Rb atoms, we provide an explicit comparison with the experimental findings of a recent study carried out at JILA.

  8. Role of codeposited impurities during growth. I. Explaining distinctive experimental morphology on Cu(0 0 1)

    NASA Astrophysics Data System (ADS)

    Hamouda, Ajmi Bh.; Sathiyanarayanan, Rajesh; Pimpinelli, Alberto; Einstein, T. L.

    2011-01-01

    A unified explanation of the physics underlying all the distinctive features of the growth instabilities observed on Cu vicinals has long eluded theorists. Recently, kinetic Monte Carlo studies showed that codeposition of impurities during growth could account for the key distinctive experimental observations [Hamouda , Phys. Rev. BPLRBAQ0556-280510.1103/PhysRevB.77.245430 77, 245430 (2008)]. To identify the responsible impurity atom, we compute the nearest-neighbor binding energies (ENN) and terrace diffusion barriers (Ed) for several candidate impurity atoms on Cu(0 0 1) using DFT-based VASP. Our calculations show that codeposition (with Cu) of midtransition elements, such as Fe, Mn, and W, could—in conjunction with substantial Ehrlich-Schwoebel barriers—cause the observed instabilities; when the experimental setup is considered, W emerges to be the most likely candidate. We discuss the role of impurities in nanostructuring of surfaces.

  9. On the use of reverse Brownian motion to accelerate hybrid simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakarji, Joseph; Tartakovsky, Daniel M., E-mail: tartakovsky@stanford.edu

    Multiscale and multiphysics simulations are two rapidly developing fields of scientific computing. Efficient coupling of continuum (deterministic or stochastic) constitutive solvers with their discrete (stochastic, particle-based) counterparts is a common challenge in both kinds of simulations. We focus on interfacial, tightly coupled simulations of diffusion that combine continuum and particle-based solvers. The latter employs the reverse Brownian motion (rBm), a Monte Carlo approach that allows one to enforce inhomogeneous Dirichlet, Neumann, or Robin boundary conditions and is trivially parallelizable. We discuss numerical approaches for improving the accuracy of rBm in the presence of inhomogeneous Neumann boundary conditions and alternative strategiesmore » for coupling the rBm solver with its continuum counterpart. Numerical experiments are used to investigate the convergence, stability, and computational efficiency of the proposed hybrid algorithm.« less

  10. SU-F-T-111: Investigation of the Attila Deterministic Solver as a Supplement to Monte Carlo for Calculating Out-Of-Field Radiotherapy Dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mille, M; Lee, C; Failla, G

    Purpose: To use the Attila deterministic solver as a supplement to Monte Carlo for calculating out-of-field organ dose in support of epidemiological studies looking at the risks of second cancers. Supplemental dosimetry tools are needed to speed up dose calculations for studies involving large-scale patient cohorts. Methods: Attila is a multi-group discrete ordinates code which can solve the 3D photon-electron coupled linear Boltzmann radiation transport equation on a finite-element mesh. Dose is computed by multiplying the calculated particle flux in each mesh element by a medium-specific energy deposition cross-section. The out-of-field dosimetry capability of Attila is investigated by comparing averagemore » organ dose to that which is calculated by Monte Carlo simulation. The test scenario consists of a 6 MV external beam treatment of a female patient with a tumor in the left breast. The patient is simulated by a whole-body adult reference female computational phantom. Monte Carlo simulations were performed using MCNP6 and XVMC. Attila can export a tetrahedral mesh for MCNP6, allowing for a direct comparison between the two codes. The Attila and Monte Carlo methods were also compared in terms of calculation speed and complexity of simulation setup. A key perquisite for this work was the modeling of a Varian Clinac 2100 linear accelerator. Results: The solid mesh of the torso part of the adult female phantom for the Attila calculation was prepared using the CAD software SpaceClaim. Preliminary calculations suggest that Attila is a user-friendly software which shows great promise for our intended application. Computational performance is related to the number of tetrahedral elements included in the Attila calculation. Conclusion: Attila is being explored as a supplement to the conventional Monte Carlo radiation transport approach for performing retrospective patient dosimetry. The goal is for the dosimetry to be sufficiently accurate for use in retrospective epidemiological investigations.« less

  11. On neoclassical impurity transport in stellarator geometry

    NASA Astrophysics Data System (ADS)

    García-Regaña, J. M.; Kleiber, R.; Beidler, C. D.; Turkin, Y.; Maaßberg, H.; Helander, P.

    2013-07-01

    The impurity dynamics in stellarators has become an issue of moderate concern due to the inherent tendency of the impurities to accumulate in the core when the neoclassical ambipolar radial electric field points radially inwards (ion root regime). This accumulation can lead to collapse of the plasma due to radiative losses, and thus limit high performance plasma discharges in non-axisymmetric devices. A quantitative description of the neoclassical impurity transport is complicated by the breakdown of the assumption of small E × B drift and trapping due to the electrostatic potential variation on a flux surface \\tilde{\\Phi} compared with those due to the magnetic field gradient. This work examines the impact of this potential variation on neoclassical impurity transport in the Large Helical Device heliotron. It shows that the neoclassical impurity transport can be strongly affected by \\tilde{\\Phi} . The central numerical tool used is the δf particle in cell Monte Carlo code EUTERPE. The \\tilde{\\Phi} used in the calculations is provided by the neoclassical code GSRAKE. The possibility of obtaining a more general \\tilde{\\Phi} self-consistently with EUTERPE is also addressed and a preliminary calculation is presented.

  12. Estimation of snow albedo reduction by light absorbing impurities using Monte Carlo radiative transfer model

    NASA Astrophysics Data System (ADS)

    Sengupta, D.; Gao, L.; Wilcox, E. M.; Beres, N. D.; Moosmüller, H.; Khlystov, A.

    2017-12-01

    Radiative forcing and climate change greatly depends on earth's surface albedo and its temporal and spatial variation. The surface albedo varies greatly depending on the surface characteristics ranging from 5-10% for calm ocean waters to 80% for some snow-covered areas. Clean and fresh snow surfaces have the highest albedo and are most sensitive to contamination with light absorbing impurities that can greatly reduce surface albedo and change overall radiative forcing estimates. Accurate estimation of snow albedo as well as understanding of feedbacks on climate from changes in snow-covered areas is important for radiative forcing, snow energy balance, predicting seasonal snowmelt, and run off rates. Such information is essential to inform timely decision making of stakeholders and policy makers. Light absorbing particles deposited onto the snow surface can greatly alter snow albedo and have been identified as a major contributor to regional climate forcing if seasonal snow cover is involved. However, uncertainty associated with quantification of albedo reduction by these light absorbing particles is high. Here, we use Mie theory (under the assumption of spherical snow grains) to reconstruct the single scattering parameters of snow (i.e., single scattering albedo ῶ and asymmetry parameter g) from observation-based size distribution information and retrieved refractive index values. The single scattering parameters of impurities are extracted with the same approach from datasets obtained during laboratory combustion of biomass samples. Instead of using plane-parallel approximation methods to account for multiple scattering, we have used the simple "Monte Carlo ray/photon tracing approach" to calculate the snow albedo. This simple approach considers multiple scattering to be the "collection" of single scattering events. Using this approach, we vary the effective snow grain size and impurity concentrations to explore the evolution of snow albedo over a wide wavelength range (300 nm - 2000 nm). Results will be compared with the SNICAR model to better understand the differences in snow albedo computation between plane-parallel methods and the statistical Monte Carlo methods.

  13. Green's Functions from Real-Time Bold-Line Monte Carlo Calculations: Spectral Properties of the Nonequilibrium Anderson Impurity Model

    NASA Astrophysics Data System (ADS)

    Cohen, Guy; Gull, Emanuel; Reichman, David R.; Millis, Andrew J.

    2014-04-01

    The nonequilibrium spectral properties of the Anderson impurity model with a chemical potential bias are investigated within a numerically exact real-time quantum Monte Carlo formalism. The two-time correlation function is computed in a form suitable for nonequilibrium dynamical mean field calculations. Additionally, the evolution of the model's spectral properties are simulated in an alternative representation, defined by a hypothetical but experimentally realizable weakly coupled auxiliary lead. The voltage splitting of the Kondo peak is confirmed and the dynamics of its formation after a coupling or gate quench are studied. This representation is shown to contain additional information about the dot's population dynamics. Further, we show that the voltage-dependent differential conductance gives a reasonable qualitative estimate of the equilibrium spectral function, but significant qualitative differences are found including incorrect trends and spurious temperature dependent effects.

  14. Bond Order Correlations in the 2D Hubbard Model

    NASA Astrophysics Data System (ADS)

    Moore, Conrad; Abu Asal, Sameer; Yang, Shuxiang; Moreno, Juana; Jarrell, Mark

    We use the dynamical cluster approximation to study the bond correlations in the Hubbard model with next nearest neighbor (nnn) hopping to explore the region of the phase diagram where the Fermi liquid phase is separated from the pseudogap phase by the Lifshitz line at zero temperature. We implement the Hirsch-Fye cluster solver that has the advantage of providing direct access to the computation of the bond operators via the decoupling field. In the pseudogap phase, the parallel bond order susceptibility is shown to persist at zero temperature while it vanishes for the Fermi liquid phase which allows the shape of the Lifshitz line to be mapped as a function of filling and nnn hopping. Our cluster solver implements NVIDIA's CUDA language to accelerate the linear algebra of the Quantum Monte Carlo to help alleviate the sign problem by allowing for more Monte Carlo updates to be performed in a reasonable amount of computation time. Work supported by the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional support from the Louisiana Board of Regents.

  15. Large tangential electric fields in plasmas close to temperature screening

    NASA Astrophysics Data System (ADS)

    Velasco, J. L.; Calvo, I.; García-Regaña, J. M.; Parra, F. I.; Satake, S.; Alonso, J. A.; the LHD team

    2018-07-01

    Low collisionality stellarator plasmas usually display a large negative radial electric field that has been expected to cause accumulation of impurities due to their high charge number. In this paper, two combined effects that can potentially modify this scenario are discussed. First, it is shown that, in low collisionality plasmas, the kinetic contribution of the electrons to the radial electric field can make it negative but small, bringing the plasma close to impurity temperature screening (i.e., to a situation in which the ion temperature gradient is the main drive of impurity transport and causes outward flux); in plasmas of very low collisionality, such as those of the large helical device displaying impurity hole (Ida et al (The LHD Experimental Group) 2009 Phys. Plasmas 16 056111; Yoshinuma et al (The LHD Experimental Group) 2009 Nucl. Fusion 49 062002), screening may actually occur. Second, the component of the electric field that is tangent to the flux surface (in other words, the variation of the electrostatic potential on the flux surface), although smaller than the radial component, has recently been suggested to be an additional relevant drive for radial impurity transport. Here, it is explained that, especially when the radial electric field is small, the tangential magnetic drift has to be kept in order to correctly compute the tangential electric field, that can be larger than previously expected. This can have a strong impact on impurity transport, as we illustrate by means of simulations using the newly developed code kinetic orbit-averaging-solver for stellarators, although it is not enough to explain by itself the behavior of the fluxes in situations like the impurity hole.

  16. Kinetic neoclassical transport in the H-mode pedestal

    DOE PAGES

    Battaglia, D. J.; Burrell, K. H.; Chang, C. S.; ...

    2014-07-16

    Multi-species kinetic neoclassical transport through the QH-mode pedestal and scrapeoff layer on DIII-D is calculated using XGC0, a 5D full-f particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. We achieved quantitative agreement between the fluxdriven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles by adding random-walk particle diffusion to the guiding-center drift motion. Furthermore, we computed the radial electric field (Er) that maintains ambipolar transport across flux surfaces and to the wall self-consistently on closed and open magnetic field lines, and is in excellent agreement with experiment. The Ermore » inside the separatrix is the unique solution that balances the outward flux of thermal tail deuterium ions against the outward neoclassical electron flux and inward pinch of impurity and colder deuterium ions. Particle transport in the pedestal is primarily due to anomalous transport, while the ion heat and momentum transport is primarily due to the neoclassical transport. The full-f treatment quantifies the non-Maxwellian energy distributions that describe a number of experimental observations in low-collisionallity pedestals on DIII-D, including intrinsic co-Ip parallel flows in the pedestal, ion temperature anisotropy and large impurity temperatures in the scrape-off layer.« less

  17. Electronic structure of vitamin B12 within the framework of the Haldane-Anderson impurity model

    NASA Astrophysics Data System (ADS)

    Kandemir, Zafer; Mayda, Selma; Bulut, Nejat

    2015-03-01

    We study the electronic structure of vitamin B12 (cyanocobalamine C63H88CoN14O14P) by using the framework of the multi-orbital single-impurity Haldane-Anderson model of a transition-metal impurity in a semiconductor host. Here, our purpose is to understand the many-body effects originating from the transition-metal impurity. In this approach, the cobalt 3 d orbitals are treated as the impurity states placed in a semiconductor host which consists of the rest of the molecule. The parameters of the resulting effective Haldane-Anderson model are obtained within the Hartree-Fock approximation for the electronic structure of the molecule. The quantum Monte Carlo technique is then used to calculate the one-electron and magnetic correlation functions of this effective Haldane-Anderson model for vitamin B12. We find that new states form inside the semiconductor gap due to the on-site Coulomb interaction at the impurity 3 d orbitals and that these states become the highest occupied molecular orbitals. In addition, we present results on the charge distribution and spin correlations around the Co atom. We compare the results of this approach with those obtained by the density-functional theory calculations.

  18. Application of a Modular Particle-Continuum Method to Partially Rarefied, Hypersonic Flow

    NASA Astrophysics Data System (ADS)

    Deschenes, Timothy R.; Boyd, Iain D.

    2011-05-01

    The Modular Particle-Continuum (MPC) method is used to simulate partially-rarefied, hypersonic flow over a sting-mounted planetary probe configuration. This hybrid method uses computational fluid dynamics (CFD) to solve the Navier-Stokes equations in regions that are continuum, while using direct simulation Monte Carlo (DSMC) in portions of the flow that are rarefied. The MPC method uses state-based coupling to pass information between the two flow solvers and decouples both time-step and mesh densities required by each solver. It is parallelized for distributed memory systems using dynamic domain decomposition and internal energy modes can be consistently modeled to be out of equilibrium with the translational mode in both solvers. The MPC results are compared to both full DSMC and CFD predictions and available experimental measurements. By using DSMC in only regions where the flow is nonequilibrium, the MPC method is able to reproduce full DSMC results down to the level of velocity and rotational energy probability density functions while requiring a fraction of the computational time.

  19. TemperSAT: A new efficient fair-sampling random k-SAT solver

    NASA Astrophysics Data System (ADS)

    Fang, Chao; Zhu, Zheng; Katzgraber, Helmut G.

    The set membership problem is of great importance to many applications and, in particular, database searches for target groups. Recently, an approach to speed up set membership searches based on the NP-hard constraint-satisfaction problem (random k-SAT) has been developed. However, the bottleneck of the approach lies in finding the solution to a large SAT formula efficiently and, in particular, a large number of independent solutions is needed to reduce the probability of false positives. Unfortunately, traditional random k-SAT solvers such as WalkSAT are biased when seeking solutions to the Boolean formulas. By porting parallel tempering Monte Carlo to the sampling of binary optimization problems, we introduce a new algorithm (TemperSAT) whose performance is comparable to current state-of-the-art SAT solvers for large k with the added benefit that theoretically it can find many independent solutions quickly. We illustrate our results by comparing to the currently fastest implementation of WalkSAT, WalkSATlm.

  20. Orbital effect of the magnetic field in dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    Acheche, S.; Arsenault, L.-F.; Tremblay, A.-M. S.

    2017-12-01

    The availability of large magnetic fields at international facilities and of simulated magnetic fields that can reach the flux-quantum-per-unit-area level in cold atoms calls for systematic studies of orbital effects of the magnetic field on the self-energy of interacting systems. Here we demonstrate theoretically that orbital effects of magnetic fields can be treated within single-site dynamical mean-field theory with a translationally invariant quantum impurity problem. As an example, we study the one-band Hubbard model on the square lattice using iterated perturbation theory as an impurity solver. We recover the expected quantum oscillations in the scattering rate, and we show that the magnetic fields allow the interaction-induced effective mass to be measured through the single-particle density of states accessible in tunneling experiments. The orbital effect of magnetic fields on scattering becomes particularly important in the Hofstadter butterfly regime.

  1. Impurities near an antiferromagnetic-singlet quantum critical point

    DOE PAGES

    Mendes-Santos, T.; Costa, N. C.; Batrouni, G.; ...

    2017-02-15

    Heavy-fermion systems and other strongly correlated electron materials often exhibit a competition between antiferromagnetic (AF) and singlet ground states. We examine the effect of impurities in the vicinity of such an AF-singlet quantum critical point (QCP), through an appropriately defined “impurity susceptibility” χimp, using exact quantum Monte Carlo simulations. Our key finding is a connection within a single calculational framework between AF domains induced on the singlet side of the transition and the behavior of the nuclear magnetic resonance (NMR) relaxation rate 1/T1. Furthermore, we show that local NMR measurements provide a diagnostic for the location of the QCP, whichmore » agrees remarkably well with the vanishing of the AF order parameter and large values of χimp.« less

  2. Monte Carlo simulation of parameter confidence intervals for non-linear regression analysis of biological data using Microsoft Excel.

    PubMed

    Lambert, Ronald J W; Mytilinaios, Ioannis; Maitland, Luke; Brown, Angus M

    2012-08-01

    This study describes a method to obtain parameter confidence intervals from the fitting of non-linear functions to experimental data, using the SOLVER and Analysis ToolPaK Add-In of the Microsoft Excel spreadsheet. Previously we have shown that Excel can fit complex multiple functions to biological data, obtaining values equivalent to those returned by more specialized statistical or mathematical software. However, a disadvantage of using the Excel method was the inability to return confidence intervals for the computed parameters or the correlations between them. Using a simple Monte-Carlo procedure within the Excel spreadsheet (without recourse to programming), SOLVER can provide parameter estimates (up to 200 at a time) for multiple 'virtual' data sets, from which the required confidence intervals and correlation coefficients can be obtained. The general utility of the method is exemplified by applying it to the analysis of the growth of Listeria monocytogenes, the growth inhibition of Pseudomonas aeruginosa by chlorhexidine and the further analysis of the electrophysiological data from the compound action potential of the rodent optic nerve. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Monte Carlo capabilities of the SCALE code system

    DOE PAGES

    Rearden, Bradley T.; Petrie, Jr., Lester M.; Peplow, Douglas E.; ...

    2014-09-12

    SCALE is a broadly used suite of tools for nuclear systems modeling and simulation that provides comprehensive, verified and validated, user-friendly capabilities for criticality safety, reactor physics, radiation shielding, and sensitivity and uncertainty analysis. For more than 30 years, regulators, licensees, and research institutions around the world have used SCALE for nuclear safety analysis and design. SCALE provides a “plug-and-play” framework that includes three deterministic and three Monte Carlo radiation transport solvers that can be selected based on the desired solution, including hybrid deterministic/Monte Carlo simulations. SCALE includes the latest nuclear data libraries for continuous-energy and multigroup radiation transport asmore » well as activation, depletion, and decay calculations. SCALE’s graphical user interfaces assist with accurate system modeling, visualization, and convenient access to desired results. SCALE 6.2 will provide several new capabilities and significant improvements in many existing features, especially with expanded continuous-energy Monte Carlo capabilities for criticality safety, shielding, depletion, and sensitivity and uncertainty analysis. Finally, an overview of the Monte Carlo capabilities of SCALE is provided here, with emphasis on new features for SCALE 6.2.« less

  4. Berezinskii-Kosterlitz-Thouless phase transition for the dilute planar rotator model on a triangular lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Yunzhou; Yi Lin; Wysin, G. M.

    2008-10-15

    The Berezinskii-Kosterlitz-Thouless (BKT) phase transition for the dilute planar rotator model on a triangular lattice is studied by using a hybrid Monte Carlo method. The phase-transition temperatures for different nonmagnetic impurity densities are obtained by three approaches: finite-size scaling of plane magnetic susceptibility, helicity modulus, and Binder's fourth cumulant. It is found that the phase-transition temperature decreases with increasing impurity density {rho} and the BKT phase transition vanishes when the magnetic occupancy falls to the site percolation threshold: 1-{rho}{sub c}=p{sub c}=0.5.

  5. Trapped one-dimensional ideal Fermi gas with a single impurity

    NASA Astrophysics Data System (ADS)

    Astrakharchik, G. E.; Brouzos, I.

    2013-08-01

    Ground-state properties of a single impurity in a one-dimensional Fermi gas are investigated in uniform and trapped geometries. The energy of a trapped system is obtained (i) by generalizing the McGuire expression from a uniform to trapped system (ii) within the local density approximation (iii) using the perturbative approach in the case of a weakly interacting impurity and (iv) diffusion Monte Carlo method. We demonstrate that there is a closed formula based on the exact solution of the homogeneous case which provides a precise estimation for the energy of a trapped system even for a small number of fermions and arbitrary coupling constant of the impurity. Using this expression, we analyze energy contributions from kinetic, interaction, and potential components, as well as spatial properties such as the system size and the pair-correlation function. Finally, we calculate the frequency of the breathing mode. Our analysis is directly connected and applicable to the recent experiments in microtraps.

  6. Using hybrid implicit Monte Carlo diffusion to simulate gray radiation hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleveland, Mathew A., E-mail: cleveland7@llnl.gov; Gentile, Nick

    This work describes how to couple a hybrid Implicit Monte Carlo Diffusion (HIMCD) method with a Lagrangian hydrodynamics code to evaluate the coupled radiation hydrodynamics equations. This HIMCD method dynamically applies Implicit Monte Carlo Diffusion (IMD) [1] to regions of a problem that are opaque and diffusive while applying standard Implicit Monte Carlo (IMC) [2] to regions where the diffusion approximation is invalid. We show that this method significantly improves the computational efficiency as compared to a standard IMC/Hydrodynamics solver, when optically thick diffusive material is present, while maintaining accuracy. Two test cases are used to demonstrate the accuracy andmore » performance of HIMCD as compared to IMC and IMD. The first is the Lowrie semi-analytic diffusive shock [3]. The second is a simple test case where the source radiation streams through optically thin material and heats a thick diffusive region of material causing it to rapidly expand. We found that HIMCD proves to be accurate, robust, and computationally efficient for these test problems.« less

  7. Constraining past seawater δ18O and temperature records developed from foraminiferal geochemistry

    NASA Astrophysics Data System (ADS)

    Quinn, T. M.; Thirumalai, K.; Marino, G.

    2016-12-01

    Paired measurements of magnesium-to-calcium ratios (Mg/Ca) and the stable oxygen isotopic composition (δ18O) in foraminifera have significantly advanced our knowledge of the climate system by providing information on past temperature and seawater δ18O (δ18Osw, a proxy for salinity and ice volume). However, multiple sources of uncertainty exist in transferring these downcore geochemical data into quantitative paleoclimate reconstructions. Here, we develop a computational toolkit entitled Paleo-Seawater Uncertainty Solver (PSU Solver) that performs bootstrap Monte Carlo simulations to constrain these various sources of uncertainty. PSU Solver calculates temperature and δ18Osw, and their respective confidence intervals using an iterative approach with user-defined errors, calibrations, and sea-level curves. Our probabilistic approach yields reduced uncertainty constraints compared to theoretical considerations and commonly used propagation exercises. We demonstrate the applicability of PSU Solver for published records covering three timescales: the late Holocene, the last deglaciation, and the last glacial period. We show that the influence of salinity on Mg/Ca can considerably alter the structure and amplitude of change in the resulting reconstruction and can impact the interpretation of paleoceanographic time series. We also highlight the sensitivity of the records to various inputs of sea-level curves, transfer functions, and uncertainty constraints. PSU Solver offers an expeditious yet rigorous approach to test the robustness of past climate variability inferred from paired Mg/Ca-δ18O measurements.

  8. Cobalt adatoms on graphene: Effects of anisotropies on the correlated electronic structure

    NASA Astrophysics Data System (ADS)

    Mozara, R.; Valentyuk, M.; Krivenko, I.; Şaşıoǧlu, E.; Kolorenč, J.; Lichtenstein, A. I.

    2018-02-01

    Impurities on surfaces experience a geometric symmetry breaking induced not only by the on-site crystal-field splitting and the orbital-dependent hybridization, but also by different screening of the Coulomb interaction in different directions. We present a many-body study of the Anderson impurity model representing a Co adatom on graphene, taking into account all anisotropies of the effective Coulomb interaction, which we obtained by the constrained random-phase approximation. The most pronounced differences are naturally displayed by the many-body self-energy projected onto the single-particle states. For the solution of the Anderson impurity model and analytical continuation of the Matsubara data, we employed new implementations of the continuous-time hybridization expansion quantum Monte Carlo and the stochastic optimization method, and we verified the results in parallel with the exact diagonalization method.

  9. Neoclassical impurity transport in stellarator geometry

    NASA Astrophysics Data System (ADS)

    García-Regaña, J. M.; Beidler, C. D.; Kleiber, R.; Turkin, Y.; Maaßberg, H.; Helander, P.; Kauffmann, K.

    2012-03-01

    The appearance of a (neoclassical) inward radial electric field in stellarators is known to cause, under certain plasma conditions, the accumulation of impurities in the core, and sometimes the subsequent plasma radiative collapse. Quantitatively neoclassical theory has barely covered the impurity transport due to the conventional neglect of the assumed first order electrostatic potential and density, φ1 and n1 respectively, in the drift kinetic ordering. This practice, which ignores the fulfilment of the quasi-neutrality condition, carries intrinsically the assumption Z|e|φ1/kBT1, with Z the atomic number, |e| the unit charge, kB the Boltzmann constant and T the temperature. This inequality, valid for the bulk plasma, is violated by high Z impurities. In this work the δf PIC Monte Carlo code EUTERPE [1] together with the GSRAKE code [2] are used to obtain the first numerical output of neoclassical impurity dynamics retaining φ1 and n1 in the drift kinetic equation. The case of the LHD stellarator is considered.[4pt] [1] V. Kornilov et al, Nucl. Fusion 45 238, 2005.[0pt] [2] D. Beidler and W. D. D'haeseleer, Plasma Phys. Control. Fusion 37 463, 1995.

  10. Multilevel Monte Carlo for two phase flow and Buckley–Leverett transport in random heterogeneous porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müller, Florian, E-mail: florian.mueller@sam.math.ethz.ch; Jenny, Patrick, E-mail: jenny@ifd.mavt.ethz.ch; Meyer, Daniel W., E-mail: meyerda@ethz.ch

    2013-10-01

    Monte Carlo (MC) is a well known method for quantifying uncertainty arising for example in subsurface flow problems. Although robust and easy to implement, MC suffers from slow convergence. Extending MC by means of multigrid techniques yields the multilevel Monte Carlo (MLMC) method. MLMC has proven to greatly accelerate MC for several applications including stochastic ordinary differential equations in finance, elliptic stochastic partial differential equations and also hyperbolic problems. In this study, MLMC is combined with a streamline-based solver to assess uncertain two phase flow and Buckley–Leverett transport in random heterogeneous porous media. The performance of MLMC is compared tomore » MC for a two dimensional reservoir with a multi-point Gaussian logarithmic permeability field. The influence of the variance and the correlation length of the logarithmic permeability on the MLMC performance is studied.« less

  11. Randomly diluted eg orbital-ordered systems.

    PubMed

    Tanaka, T; Matsumoto, M; Ishihara, S

    2005-12-31

    Dilution effects on the long-range ordered state of the doubly degenerate e(g) orbital are investigated. Quenched impurities without the orbital degree of freedom are introduced in the orbital model where the long-range order is realized by the order-from-disorder mechanism. It is shown by Monte Carlo simulations and the cluster-expansion method that a decrease in the orbital-ordering temperature by dilution is substantially larger than that in the randomly diluted spin models. Tilting of orbital pseudospins around impurities is the essence of this dilution effect. The present theory provides a new viewpoint for the recent resonant x-ray scattering experiments in KCu(1-x)Zn(x)F(3).

  12. Nanoparticle Contrast Agents for Enhanced Microwave Imaging and Thermal Treatment of Breast Cancer

    DTIC Science & Technology

    2010-10-01

    continue to increase in step with de - creasing critical dimensions, electrodynamic effects directly influence high-frequency device performance, and...computational burden is significant. The Cellular Monte Carlo (CMC) method, originally de - veloped by Kometer et al. [50], was designed to reduce this...combination of a full-wave FDTD solver with a de - vice simulator based upon a stochastic transport kernel is conceptually straightforward, but the

  13. dsmcFoam+: An OpenFOAM based direct simulation Monte Carlo solver

    NASA Astrophysics Data System (ADS)

    White, C.; Borg, M. K.; Scanlon, T. J.; Longshaw, S. M.; John, B.; Emerson, D. R.; Reese, J. M.

    2018-03-01

    dsmcFoam+ is a direct simulation Monte Carlo (DSMC) solver for rarefied gas dynamics, implemented within the OpenFOAM software framework, and parallelised with MPI. It is open-source and released under the GNU General Public License in a publicly available software repository that includes detailed documentation and tutorial DSMC gas flow cases. This release of the code includes many features not found in standard dsmcFoam, such as molecular vibrational and electronic energy modes, chemical reactions, and subsonic pressure boundary conditions. Since dsmcFoam+ is designed entirely within OpenFOAM's C++ object-oriented framework, it benefits from a number of key features: the code emphasises extensibility and flexibility so it is aimed first and foremost as a research tool for DSMC, allowing new models and test cases to be developed and tested rapidly. All DSMC cases are as straightforward as setting up any standard OpenFOAM case, as dsmcFoam+ relies upon the standard OpenFOAM dictionary based directory structure. This ensures that useful pre- and post-processing capabilities provided by OpenFOAM remain available even though the fully Lagrangian nature of a DSMC simulation is not typical of most OpenFOAM applications. We show that dsmcFoam+ compares well to other well-known DSMC codes and to analytical solutions in terms of benchmark results.

  14. Subdiffusion kinetics of nanoprecipitate growth and destruction in solid solutions

    NASA Astrophysics Data System (ADS)

    Sibatov, R. T.; Svetukhin, V. V.

    2015-06-01

    Based on fractional differential generalizations of the Ham and Aaron-Kotler precipitation models, we study the kinetics of subdiffusion-limited growth and dissolution of new-phase precipitates. We obtain the time dependence of the number of impurities and dimensions of new-phase precipitates. The solutions agree with the Monte Carlo simulation results.

  15. Object kinetic Monte Carlo model for neutron and ion irradiation in tungsten: Impact of transmutation and carbon impurities

    NASA Astrophysics Data System (ADS)

    Castin, N.; Bonny, G.; Bakaev, A.; Ortiz, C. J.; Sand, A. E.; Terentyev, D.

    2018-03-01

    We upgrade our object kinetic Monte Carlo (OKMC) model, aimed at describing the microstructural evolution in tungsten (W) under neutron and ion irradiation. Two main improvements are proposed based on recently published atomistic data: (a) interstitial carbon impurities, and their interaction with radiation-induced defects (point defect clusters and loops), are more accurately parameterized thanks to ab initio findings; (b) W transmutation to rhenium (Re) upon neutron irradiation, impacting the diffusivity of radiation defects, is included, also relying on recent atomistic data. These essential amendments highly improve the portability of our OKMC model, providing a description for the formation of SIA-type loops under different irradiation conditions. The model is applied to simulate neutron and ion irradiation in pure W samples, in a wide range of fluxes and temperatures. We demonstrate that it performs a realistic prediction of the population of TEM-visible voids and loops, as compared to experimental evidence. The impact of the transmutation of W to Re, and of carbon trapping, is assessed.

  16. Particle in cell/Monte Carlo collision analysis of the problem of identification of impurities in the gas by the plasma electron spectroscopy method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusoglu Sarikaya, C.; Rafatov, I., E-mail: rafatov@metu.edu.tr; Kudryavtsev, A. A.

    2016-06-15

    The work deals with the Particle in Cell/Monte Carlo Collision (PIC/MCC) analysis of the problem of detection and identification of impurities in the nonlocal plasma of gas discharge using the Plasma Electron Spectroscopy (PLES) method. For this purpose, 1d3v PIC/MCC code for numerical simulation of glow discharge with nonlocal electron energy distribution function is developed. The elastic, excitation, and ionization collisions between electron-neutral pairs and isotropic scattering and charge exchange collisions between ion-neutral pairs and Penning ionizations are taken into account. Applicability of the numerical code is verified under the Radio-Frequency capacitively coupled discharge conditions. The efficiency of the codemore » is increased by its parallelization using Open Message Passing Interface. As a demonstration of the PLES method, parallel PIC/MCC code is applied to the direct current glow discharge in helium doped with a small amount of argon. Numerical results are consistent with the theoretical analysis of formation of nonlocal EEDF and existing experimental data.« less

  17. Self-learning Monte Carlo with deep neural networks

    NASA Astrophysics Data System (ADS)

    Shen, Huitao; Liu, Junwei; Fu, Liang

    2018-05-01

    The self-learning Monte Carlo (SLMC) method is a general algorithm to speedup MC simulations. Its efficiency has been demonstrated in various systems by introducing an effective model to propose global moves in the configuration space. In this paper, we show that deep neural networks can be naturally incorporated into SLMC, and without any prior knowledge can learn the original model accurately and efficiently. Demonstrated in quantum impurity models, we reduce the complexity for a local update from O (β2) in Hirsch-Fye algorithm to O (β lnβ ) , which is a significant speedup especially for systems at low temperatures.

  18. Investigation of non-uniformity and inclusions in 6LiInSe2 utilizing laser induced breakdown spectroscopy (LIBS)

    NASA Astrophysics Data System (ADS)

    Wiggins, Brenden; Tupitsyn, Eugene; Bhattacharya, Pijush; Rowe, Emmanuel; Lukosi, Eric; Chvala, Ondrej; Burger, Arnold; Stowe, Ashley

    2013-09-01

    Impurity analysis and compositional distribution studies have been conducted on a crystal of LiInSe2, a compound semiconductor which recently has been shown to respond to ionizing radiation. IR microscopy and laser induced breakdown spectroscopy (LIBS) revealed the presence of inclusions within the crystal lattice. These precipitates were revealed to be alkali and alkaline earth elemental impurities with non-uniform spatial distribution in the crystal. LIBS compositional maps correlate the presence of these impurities with visual color differences in the crystal as well as a significant shift of the band gap. Further, LIBS revealed variation in the ratio of I-III-VI2 elemental constituents throughout the crystal. Analysis of compositional variation and impurities will aid in discerning optimal synthesis and crystal growth parameters to maximize the mobility-lifetime product and charge collection efficiency in the LiInSe2 crystal. Preliminary charge trapping calculations have also been conducted with the Monte Carlo N-particle eXtended (MCNPx) package indicating preferential trapping of holes during irradiation with thermal neutrons.

  19. Development of a 1.5D plasma transport code for coupling to full orbit runaway electron simulations

    NASA Astrophysics Data System (ADS)

    Lore, J. D.; Del Castillo-Negrete, D.; Baylor, L.; Carbajal, L.

    2017-10-01

    A 1.5D (1D radial transport + 2D equilibrium geometry) plasma transport code is being developed to simulate runaway electron generation, mitigation, and avoidance by coupling to the full-orbit kinetic electron transport code KORC. The 1.5D code solves the time-dependent 1D flux surface averaged transport equations with sources for plasma density, pressure, and poloidal magnetic flux, along with the Grad-Shafranov equilibrium equation for the 2D flux surface geometry. Disruption mitigation is simulated by introducing an impurity neutral gas `pellet', with impurity densities and electron cooling calculated from ionization, recombination, and line emission rate coefficients. Rapid cooling of the electrons increases the resistivity, inducing an electric field which can be used as an input to KORC. The runaway electron current is then included in the parallel Ohm's law in the transport equations. The 1.5D solver will act as a driver for coupled simulations to model effects such as timescales for thermal quench, runaway electron generation, and pellet impurity mixtures for runaway avoidance. Current progress on the code and details of the numerical algorithms will be presented. Work supported by the US DOE under DE-AC05-00OR22725.

  20. Bayesian Optimization Under Mixed Constraints with A Slack-Variable Augmented Lagrangian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picheny, Victor; Gramacy, Robert B.; Wild, Stefan M.

    An augmented Lagrangian (AL) can convert a constrained optimization problem into a sequence of simpler (e.g., unconstrained) problems, which are then usually solved with local solvers. Recently, surrogate-based Bayesian optimization (BO) sub-solvers have been successfully deployed in the AL framework for a more global search in the presence of inequality constraints; however, a drawback was that expected improvement (EI) evaluations relied on Monte Carlo. Here we introduce an alternative slack variable AL, and show that in this formulation the EI may be evaluated with library routines. The slack variables furthermore facilitate equality as well as inequality constraints, and mixtures thereof.more » We show our new slack “ALBO” compares favorably to the original. Its superiority over conventional alternatives is reinforced on several mixed constraint examples.« less

  1. RadVel: General toolkit for modeling Radial Velocities

    NASA Astrophysics Data System (ADS)

    Fulton, Benjamin J.; Petigura, Erik A.; Blunt, Sarah; Sinukoff, Evan

    2018-01-01

    RadVel models Keplerian orbits in radial velocity (RV) time series. The code is written in Python with a fast Kepler's equation solver written in C. It provides a framework for fitting RVs using maximum a posteriori optimization and computing robust confidence intervals by sampling the posterior probability density via Markov Chain Monte Carlo (MCMC). RadVel can perform Bayesian model comparison and produces publication quality plots and LaTeX tables.

  2. An evaluation of solution algorithms and numerical approximation methods for modeling an ion exchange process

    NASA Astrophysics Data System (ADS)

    Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H.; Miller, Cass T.

    2010-07-01

    The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte-Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward difference formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte-Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications.

  3. Simulating Asymmetric Top Impurities in Superfluid Clusters: A para-Water Dopant in para-Hydrogen.

    PubMed

    Zeng, Tao; Li, Hui; Roy, Pierre-Nicholas

    2013-01-03

    We present the first simulation study of bosonic clusters doped with an asymmetric top molecule. The path-integral Monte Carlo method with the latest methodological advance in treating rigid-body rotation [Noya, E. G.; Vega, C.; McBride, C. J. Chem. Phys.2011, 134, 054117] is employed to study a para-water impurity in para-hydrogen clusters with up to 20 para-hydrogen molecules. The growth pattern of the doped clusters is similar in nature to that of pure clusters. The para-water molecule appears to rotate freely in the cluster. The presence of para-water substantially quenches the superfluid response of para-hydrogen with respect to the space-fixed frame.

  4. Computational Challenges of 3D Radiative Transfer in Atmospheric Models

    NASA Astrophysics Data System (ADS)

    Jakub, Fabian; Bernhard, Mayer

    2017-04-01

    The computation of radiative heating and cooling rates is one of the most expensive components in todays atmospheric models. The high computational cost stems not only from the laborious integration over a wide range of the electromagnetic spectrum but also from the fact that solving the integro-differential radiative transfer equation for monochromatic light is already rather involved. This lead to the advent of numerous approximations and parameterizations to reduce the cost of the solver. One of the most prominent one is the so called independent pixel approximations (IPA) where horizontal energy transfer is neglected whatsoever and radiation may only propagate in the vertical direction (1D). Recent studies implicate that the IPA introduces significant errors in high resolution simulations and affects the evolution and development of convective systems. However, using fully 3D solvers such as for example MonteCarlo methods is not even on state of the art supercomputers feasible. The parallelization of atmospheric models is often realized by a horizontal domain decomposition, and hence, horizontal transfer of energy necessitates communication. E.g. a cloud's shadow at a low zenith angle will cast a long shadow and potentially needs to communication through a multitude of processors. Especially light in the solar spectral range may travel long distances through the atmosphere. Concerning highly parallel simulations, it is vital that 3D radiative transfer solvers put a special emphasis on parallel scalability. We will present an introduction to intricacies computing 3D radiative heating and cooling rates as well as report on the parallel performance of the TenStream solver. The TenStream is a 3D radiative transfer solver using the PETSc framework to iteratively solve a set of partial differential equation. We investigate two matrix preconditioners, (a) geometric algebraic multigrid preconditioning(MG+GAMG) and (b) block Jacobi incomplete LU (ILU) factorization. The TenStream solver is tested for up to 4096 cores and shows a parallel scaling efficiency of 80-90% on various supercomputers.

  5. LSPRAY: Lagrangian Spray Solver for Applications With Parallel Computing and Unstructured Gas-Phase Flow Solvers

    NASA Technical Reports Server (NTRS)

    Raju, Manthena S.

    1998-01-01

    Sprays occur in a wide variety of industrial and power applications and in the processing of materials. A liquid spray is a phase flow with a gas as the continuous phase and a liquid as the dispersed phase (in the form of droplets or ligaments). Interactions between the two phases, which are coupled through exchanges of mass, momentum, and energy, can occur in different ways at different times and locations involving various thermal, mass, and fluid dynamic factors. An understanding of the flow, combustion, and thermal properties of a rapidly vaporizing spray requires careful modeling of the rate-controlling processes associated with the spray's turbulent transport, mixing, chemical kinetics, evaporation, and spreading rates, as well as other phenomena. In an attempt to advance the state-of-the-art in multidimensional numerical methods, we at the NASA Lewis Research Center extended our previous work on sprays to unstructured grids and parallel computing. LSPRAY, which was developed by M.S. Raju of Nyma, Inc., is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and/or Monte Carlo probability density function (PDF) solver. The LSPRAY solver accommodates the use of an unstructured mesh with mixed triangular, quadrilateral, and/or tetrahedral elements in the gas-phase solvers. It is used specifically for fuel sprays within gas turbine combustors, but it has many other uses. The spray model used in LSPRAY provided favorable results when applied to stratified-charge rotary combustion (Wankel) engines and several other confined and unconfined spray flames. The source code will be available with the National Combustion Code (NCC) as a complete package.

  6. Exact Dynamics via Poisson Process: a unifying Monte Carlo paradigm

    NASA Astrophysics Data System (ADS)

    Gubernatis, James

    2014-03-01

    A common computational task is solving a set of ordinary differential equations (o.d.e.'s). A little known theorem says that the solution of any set of o.d.e.'s is exactly solved by the expectation value over a set of arbitary Poisson processes of a particular function of the elements of the matrix that defines the o.d.e.'s. The theorem thus provides a new starting point to develop real and imaginary-time continous-time solvers for quantum Monte Carlo algorithms, and several simple observations enable various quantum Monte Carlo techniques and variance reduction methods to transfer to a new context. I will state the theorem, note a transformation to a very simple computational scheme, and illustrate the use of some techniques from the directed-loop algorithm in context of the wavefunction Monte Carlo method that is used to solve the Lindblad master equation for the dynamics of open quantum systems. I will end by noting that as the theorem does not depend on the source of the o.d.e.'s coming from quantum mechanics, it also enables the transfer of continuous-time methods from quantum Monte Carlo to the simulation of various classical equations of motion heretofore only solved deterministically.

  7. Multiscale solvers and systematic upscaling in computational physics

    NASA Astrophysics Data System (ADS)

    Brandt, A.

    2005-07-01

    Multiscale algorithms can overcome the scale-born bottlenecks that plague most computations in physics. These algorithms employ separate processing at each scale of the physical space, combined with interscale iterative interactions, in ways which use finer scales very sparingly. Having been developed first and well known as multigrid solvers for partial differential equations, highly efficient multiscale techniques have more recently been developed for many other types of computational tasks, including: inverse PDE problems; highly indefinite (e.g., standing wave) equations; Dirac equations in disordered gauge fields; fast computation and updating of large determinants (as needed in QCD); fast integral transforms; integral equations; astrophysics; molecular dynamics of macromolecules and fluids; many-atom electronic structures; global and discrete-state optimization; practical graph problems; image segmentation and recognition; tomography (medical imaging); fast Monte-Carlo sampling in statistical physics; and general, systematic methods of upscaling (accurate numerical derivation of large-scale equations from microscopic laws).

  8. Probability density function approach for compressible turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Hsu, A. T.; Tsai, Y.-L. P.; Raju, M. S.

    1994-01-01

    The objective of the present work is to extend the probability density function (PDF) tubulence model to compressible reacting flows. The proability density function of the species mass fractions and enthalpy are obtained by solving a PDF evolution equation using a Monte Carlo scheme. The PDF solution procedure is coupled with a compression finite-volume flow solver which provides the velocity and pressure fields. A modeled PDF equation for compressible flows, capable of treating flows with shock waves and suitable to the present coupling scheme, is proposed and tested. Convergence of the combined finite-volume Monte Carlo solution procedure is discussed. Two super sonic diffusion flames are studied using the proposed PDF model and the results are compared with experimental data; marked improvements over solutions without PDF are observed.

  9. Filling-driven Mott transition in SU(N ) Hubbard models

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Sup B.; von Delft, Jan; Weichselbaum, Andreas

    2018-04-01

    We study the filling-driven Mott transition involving the metallic and paramagnetic insulating phases in SU (N ) Fermi-Hubbard models, using the dynamical mean-field theory and the numerical renormalization group as its impurity solver. The compressibility shows a striking temperature dependence: near the critical end-point temperature, it is strongly enhanced in the metallic phase close to the insulating phase. We demonstrate that this compressibility enhancement is associated with the thermal suppression of the quasiparticle peak in the local spectral functions. We also explain that the asymmetric shape of the quasiparticle peak originates from the asymmetry in the dynamics of the generalized doublons and holons.

  10. First ERO2.0 modeling of Be erosion and non-local transport in JET ITER-like wall

    NASA Astrophysics Data System (ADS)

    Romazanov, J.; Borodin, D.; Kirschner, A.; Brezinsek, S.; Silburn, S.; Huber, A.; Huber, V.; Bufferand, H.; Firdaouss, M.; Brömmel, D.; Steinbusch, B.; Gibbon, P.; Lasa, A.; Borodkina, I.; Eksaeva, A.; Linsmeier, Ch; Contributors, JET

    2017-12-01

    ERO is a Monte-Carlo code for modeling plasma-wall interaction and 3D plasma impurity transport for applications in fusion research. The code has undergone a significant upgrade (ERO2.0) which allows increasing the simulation volume in order to cover the entire plasma edge of a fusion device, allowing a more self-consistent treatment of impurity transport and comparison with a larger number and variety of experimental diagnostics. In this contribution, the physics-relevant technical innovations of the new code version are described and discussed. The new capabilities of the code are demonstrated by modeling of beryllium (Be) erosion of the main wall during JET limiter discharges. Results for erosion patterns along the limiter surfaces and global Be transport including incident particle distributions are presented. A novel synthetic diagnostic, which mimics experimental wide-angle 2D camera images, is presented and used for validating various aspects of the code, including erosion, magnetic shadowing, non-local impurity transport, and light emission simulation.

  11. Interleaved numerical renormalization group as an efficient multiband impurity solver

    NASA Astrophysics Data System (ADS)

    Stadler, K. M.; Mitchell, A. K.; von Delft, J.; Weichselbaum, A.

    2016-06-01

    Quantum impurity problems can be solved using the numerical renormalization group (NRG), which involves discretizing the free conduction electron system and mapping to a "Wilson chain." It was shown recently that Wilson chains for different electronic species can be interleaved by use of a modified discretization, dramatically increasing the numerical efficiency of the RG scheme [Phys. Rev. B 89, 121105(R) (2014), 10.1103/PhysRevB.89.121105]. Here we systematically examine the accuracy and efficiency of the "interleaved" NRG (iNRG) method in the context of the single impurity Anderson model, the two-channel Kondo model, and a three-channel Anderson-Hund model. The performance of iNRG is explicitly compared with "standard" NRG (sNRG): when the average number of states kept per iteration is the same in both calculations, the accuracy of iNRG is equivalent to that of sNRG but the computational costs are significantly lower in iNRG when the same symmetries are exploited. Although iNRG weakly breaks SU(N ) channel symmetry (if present), both accuracy and numerical cost are entirely competitive with sNRG exploiting full symmetries. iNRG is therefore shown to be a viable and technically simple alternative to sNRG for high-symmetry models. Moreover, iNRG can be used to solve a range of lower-symmetry multiband problems that are inaccessible to sNRG.

  12. Hot zero power reactor calculations using the Insilico code

    DOE PAGES

    Hamilton, Steven P.; Evans, Thomas M.; Davidson, Gregory G.; ...

    2016-03-18

    In this paper we describe the reactor physics simulation capabilities of the insilico code. A description of the various capabilities of the code is provided, including detailed discussion of the geometry, meshing, cross section processing, and neutron transport options. Numerical results demonstrate that the insilico SP N solver with pin-homogenized cross section generation is capable of delivering highly accurate full-core simulation of various PWR problems. Comparison to both Monte Carlo calculations and measured plant data is provided.

  13. Theoretical investigations of open-shell systems: 1. Spectral simulation of the 2s(2)p(2) (2)D <- 2s(2)2p (2)P(o) valence transition in the boron diargon cluster, and 2. Quantum Monte Carlo calculations of boron in solid molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Krumrine, Jennifer Rebecca

    This dissertation is concerned in part with the construction of accurate pairwise potentials, based on reliable ab initio potential energy surfaces (PES's), which are fully anisotropic in the sense that multiple PES's are accessible to systems with orientational electronic properties. We have carried out several investigations of B (2s 22p 2Po) with spherical ligands: (1)an investigation of the electronic spectrum of the BAr2 complex and (2)two related studies of the equilibrium properties and spectral simulation of B embedded in solid pH 2. Our investigations suggest that it cannot be assumed that nuclear motion in an open-shell system occurs on a single PES. The 2s2p2 2 D <-- 2s22p 2Po valence transition in the BAr 2 cluster is investigated. The electronic transition within BAr 2 is modeled theoretically; the excited potential energy surfaces of the five-fold degenerate B(2s2p2 2D) state within the ternary complex are computed using a pairwise-additive model. A collaborative path integral molecular dynamics investigation of the equilibrium properties of boron trapped in solid para-hydrogen (pH2) and a path integral Monte Carlo spectral simulation. Using fully anisotropic pair potentials, coupling of the electronic and nuclear degrees of freedom is observed, and is found to be an essential feature in understanding the behavior and determining the energy of the impure solid, especially in highly anisotropic matrices. We employ the variational Monte Carlo method to further study the behavior of ground state B embedded in solid pH2. When a boron atom exists in a substitutional site in a lattice, the anisotropic distortion of the local lattice plays a minimal role in the energetics. However, when a nearest neighbor vacancy is present along with the boron impurity, two phenomena are found to influence the behavior of the impure quantum solid: (1)orientation of the 2p orbital to minimize the energy of the impurity and (2)distortion of the local lattice structure to promote an energetically favorable nuclear configuration. This research was supported by the Joint Program for Atomic, Molecular and Optical Science sponsored by the University of Maryland at College Park and the National Insititute of Standards and Technology, and by the U.S. Air Force Office of Scientific Research. (Abstract shortened by UMI.)

  14. Reference hypernetted chain theory for ferrofluid bilayer: Distribution functions compared with Monte Carlo

    NASA Astrophysics Data System (ADS)

    Polyakov, Evgeny A.; Vorontsov-Velyaminov, Pavel N.

    2014-08-01

    Properties of ferrofluid bilayer (modeled as a system of two planar layers separated by a distance h and each layer carrying a soft sphere dipolar liquid) are calculated in the framework of inhomogeneous Ornstein-Zernike equations with reference hypernetted chain closure (RHNC). The bridge functions are taken from a soft sphere (1/r12) reference system in the pressure-consistent closure approximation. In order to make the RHNC problem tractable, the angular dependence of the correlation functions is expanded into special orthogonal polynomials according to Lado. The resulting equations are solved using the Newton-GRMES algorithm as implemented in the public-domain solver NITSOL. Orientational densities and pair distribution functions of dipoles are compared with Monte Carlo simulation results. A numerical algorithm for the Fourier-Hankel transform of any positive integer order on a uniform grid is presented.

  15. Density functional plus dynamical mean-field theory of the metal-insulator transition in early transition-metal oxides

    NASA Astrophysics Data System (ADS)

    Dang, Hung T.; Ai, Xinyuan; Millis, Andrew J.; Marianetti, Chris A.

    2014-09-01

    The combination of density functional theory and single-site dynamical mean-field theory, using both Hartree and full continuous-time quantum Monte Carlo impurity solvers, is used to study the metal-insulator phase diagram of perovskite transition-metal oxides of the form ABO3 with a rare-earth ion A =Sr, La, Y and transition metal B =Ti, V, Cr. The correlated subspace is constructed from atomiclike d orbitals defined using maximally localized Wannier functions derived from the full p-d manifold; for comparison, results obtained using a projector method are also given. Paramagnetic DFT + DMFT computations using full charge self-consistency along with the standard "fully localized limit" (FLL) double counting are shown to incorrectly predict that LaTiO3, YTiO3, LaVO3, and SrMnO3 are metals. A more general examination of the dependence of physical properties on the mean p-d energy splitting, the occupancy of the correlated d states, the double-counting correction, and the lattice structure demonstrates the importance of charge-transfer physics even in the early transition-metal oxides and elucidates the factors underlying the failure of the standard approximations. If the double counting is chosen to produce a p-d splitting consistent with experimental spectra, single-site dynamical mean-field theory provides a reasonable account of the materials properties. The relation of the results to those obtained from "d-only" models in which the correlation problem is based on the frontier orbital p-d antibonding bands is determined. It is found that if an effective interaction U is properly chosen the d-only model provides a good account of the physics of the d1 and d2 materials.

  16. Imaging study of using radiopharmaceuticals labeled with cyclotron-produced 99mTc.

    PubMed

    Hou, X; Tanguay, J; Vuckovic, M; Buckley, K; Schaffer, P; Bénard, F; Ruth, T J; Celler, A

    2016-12-07

    Cyclotron-produced 99m Tc (CPTc) has been recognized as an attractive and practical substitution of reactor/generator based 99m Tc. However, the small amount of 92-98 Mo in the irradiation of enriched 100 Mo could lead to the production of other radioactive technetium isotopes (Tc-impurities) which cannot be chemically separated. Thus, these impurities could contribute to patient dose and affect image quality. The potential radiation dose caused by these Tc-impurities produced using different targets, irradiation conditions, and corresponding to different injection times have been investigated, leading us to create dose-based limits of these parameters for producing clinically acceptable CPTc. However, image quality has been not considered. The aim of the present work is to provide a comprehensive and quantitative analysis of image quality for CPTc. The impact of Tc-impurities in CPTc on image resolution, background noise, and contrast is investigated by performing both Monte-Carlo simulations and phantom experiments. Various targets, irradiation, and acquisition conditions are employed for investigating the image-based limits of CPTc production parameters. Additionally, the relationship between patient dose and image quality of CPTc samples is studied. Only those samples which meet both dose- and image-based limits should be accepted in future clinical studies.

  17. Imaging study of using radiopharmaceuticals labeled with cyclotron-produced 99mTc

    NASA Astrophysics Data System (ADS)

    Hou, X.; Tanguay, J.; Vuckovic, M.; Buckley, K.; Schaffer, P.; Bénard, F.; Ruth, T. J.; Celler, A.

    2016-12-01

    Cyclotron-produced 99mTc (CPTc) has been recognized as an attractive and practical substitution of reactor/generator based 99mTc. However, the small amount of 92-98Mo in the irradiation of enriched 100Mo could lead to the production of other radioactive technetium isotopes (Tc-impurities) which cannot be chemically separated. Thus, these impurities could contribute to patient dose and affect image quality. The potential radiation dose caused by these Tc-impurities produced using different targets, irradiation conditions, and corresponding to different injection times have been investigated, leading us to create dose-based limits of these parameters for producing clinically acceptable CPTc. However, image quality has been not considered. The aim of the present work is to provide a comprehensive and quantitative analysis of image quality for CPTc. The impact of Tc-impurities in CPTc on image resolution, background noise, and contrast is investigated by performing both Monte-Carlo simulations and phantom experiments. Various targets, irradiation, and acquisition conditions are employed for investigating the image-based limits of CPTc production parameters. Additionally, the relationship between patient dose and image quality of CPTc samples is studied. Only those samples which meet both dose- and image-based limits should be accepted in future clinical studies.

  18. Multi-D Full Boltzmann Neutrino Hydrodynamic Simulations in Core Collapse Supernovae and their detailed comparison with Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Nagakura, Hiroki; Richers, Sherwood; Ott, Christian; Iwakami, Wakana; Furusawa, Shun; Sumiyoshi, Kohsuke; Yamada, Shoichi

    2017-01-01

    We have developed a multi-d radiation-hydrodynamic code which solves first-principles Boltzmann equation for neutrino transport. It is currently applicable specifically for core-collapse supernovae (CCSNe), but we will extend their applicability to further extreme phenomena such as black hole formation and coalescence of double neutron stars. In this meeting, I will discuss about two things; (1) detailed comparison with a Monte-Carlo neutrino transport (2) axisymmetric CCSNe simulations. The project (1) gives us confidence of our code. The Monte-Carlo code has been developed by Caltech group and it is specialized to obtain a steady state. Among CCSNe community, this is the first attempt to compare two different methods for multi-d neutrino transport. I will show the result of these comparison. For the project (2), I particularly focus on the property of neutrino distribution function in the semi-transparent region where only first-principle Boltzmann solver can appropriately handle the neutrino transport. In addition to these analyses, I will also discuss the ``explodability'' by neutrino heating mechanism.

  19. Quantitative comparisons between experimentally measured 2D carbon radiation and Monte Carlo impurity (MCI) code simulations

    NASA Astrophysics Data System (ADS)

    Evans, T. E.; Finkenthal, D. F.; Fenstermacher, M. E.; Leonard, A. W.; Porter, G. D.; West, W. P.

    Experimentally measured carbon line emissions and total radiated power distributions from the DIII-D divertor and scrape-off layer (SOL) are compared to those calculated with the Monte Carlo impurity (MCI) model. A UEDGE [T.D. Rognlien et al., J. Nucl. Mater. 196-198 (1992) 347] background plasma is used in MCI with the Roth and Garcia-Rosales (RG-R) chemical sputtering model [J. Roth, C. García-Rosales, Nucl. Fusion 36 (1992) 196] and/or one of six physical sputtering models. While results from these simulations do not reproduce all of the features seen in the experimentally measured radiation patterns, the total radiated power calculated in MCI is in relatively good agreement with that measured by the DIII-D bolometric system when the Smith78 [D.L. Smith, J. Nucl. Mater. 75 (1978) 20] physical sputtering model is coupled to RG-R chemical sputtering in an unaltered UEDGE plasma. Alternatively, MCI simulations done with UEDGE background ion temperatures along the divertor target plates adjusted to better match those measured in the experiment resulted in three physical sputtering models which when coupled to the RG-R model gave a total radiated power that was within 10% of measured value.

  20. Equivalence of internal and external mixture schemes of single scattering properties in vector radiative transfer

    PubMed Central

    Mukherjee, Lipi; Zhai, Peng-Wang; Hu, Yongxiang; Winker, David M.

    2018-01-01

    Polarized radiation fields in a turbid medium are influenced by single-scattering properties of scatterers. It is common that media contain two or more types of scatterers, which makes it essential to properly mix single-scattering properties of different types of scatterers in the vector radiative transfer theory. The vector radiative transfer solvers can be divided into two basic categories: the stochastic and deterministic methods. The stochastic method is basically the Monte Carlo method, which can handle scatterers with different scattering properties explicitly. This mixture scheme is called the external mixture scheme in this paper. The deterministic methods, however, can only deal with a single set of scattering properties in the smallest discretized spatial volume. The single-scattering properties of different types of scatterers have to be averaged before they are input to deterministic solvers. This second scheme is called the internal mixture scheme. The equivalence of these two different mixture schemes of scattering properties has not been demonstrated so far. In this paper, polarized radiation fields for several scattering media are solved using the Monte Carlo and successive order of scattering (SOS) methods and scattering media contain two types of scatterers: Rayleigh scatterers (molecules) and Mie scatterers (aerosols). The Monte Carlo and SOS methods employ external and internal mixture schemes of scatterers, respectively. It is found that the percentage differences between radiances solved by these two methods with different mixture schemes are of the order of 0.1%. The differences of Q/I, U/I, and V/I are of the order of 10−5 ~ 10−4, where I, Q, U, and V are the Stokes parameters. Therefore, the equivalence between these two mixture schemes is confirmed to the accuracy level of the radiative transfer numerical benchmarks. This result provides important guidelines for many radiative transfer applications that involve the mixture of different scattering and absorptive particles. PMID:29047543

  1. Continuous-time quantum Monte Carlo calculation of multiorbital vertex asymptotics

    NASA Astrophysics Data System (ADS)

    Kaufmann, Josef; Gunacker, Patrik; Held, Karsten

    2017-07-01

    We derive the equations for calculating the high-frequency asymptotics of the local two-particle vertex function for a multiorbital impurity model. These relate the asymptotics for a general local interaction to equal-time two-particle Green's functions, which we sample using continuous-time quantum Monte Carlo simulations with a worm algorithm. As specific examples we study the single-orbital Hubbard model and the three t2 g orbitals of SrVO3 within dynamical mean-field theory (DMFT). We demonstrate how the knowledge of the high-frequency asymptotics reduces the statistical uncertainties of the vertex and further eliminates finite-box-size effects. The proposed method benefits the calculation of nonlocal susceptibilities in DMFT and diagrammatic extensions of DMFT.

  2. SU-E-T-22: A Deterministic Solver of the Boltzmann-Fokker-Planck Equation for Dose Calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, X; Gao, H; Paganetti, H

    2015-06-15

    Purpose: The Boltzmann-Fokker-Planck equation (BFPE) accurately models the migration of photons/charged particles in tissues. While the Monte Carlo (MC) method is popular for solving BFPE in a statistical manner, we aim to develop a deterministic BFPE solver based on various state-of-art numerical acceleration techniques for rapid and accurate dose calculation. Methods: Our BFPE solver is based on the structured grid that is maximally parallelizable, with the discretization in energy, angle and space, and its cross section coefficients are derived or directly imported from the Geant4 database. The physical processes that are taken into account are Compton scattering, photoelectric effect, pairmore » production for photons, and elastic scattering, ionization and bremsstrahlung for charged particles.While the spatial discretization is based on the diamond scheme, the angular discretization synergizes finite element method (FEM) and spherical harmonics (SH). Thus, SH is used to globally expand the scattering kernel and FFM is used to locally discretize the angular sphere. As a Result, this hybrid method (FEM-SH) is both accurate in dealing with forward-peaking scattering via FEM, and efficient for multi-energy-group computation via SH. In addition, FEM-SH enables the analytical integration in energy variable of delta scattering kernel for elastic scattering with reduced truncation error from the numerical integration based on the classic SH-based multi-energy-group method. Results: The accuracy of the proposed BFPE solver was benchmarked against Geant4 for photon dose calculation. In particular, FEM-SH had improved accuracy compared to FEM, while both were within 2% of the results obtained with Geant4. Conclusion: A deterministic solver of the Boltzmann-Fokker-Planck equation is developed for dose calculation, and benchmarked against Geant4. Xiang Hong and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang Talent Program (#14PJ1404500)« less

  3. Improved kinetic neoclassical transport calculation for a low-collisionality QH-mode pedestal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battaglia, D. J.; Burrell, K. H.; Chang, C. S.

    The role of neoclassical, anomalous and neutral transport to the overall H-mode pedestal and scrape-off layer (SOL) structure in an ELM-free QH-mode discharge on DIII-D is explored using XGC0, a 5D full-f multi-species particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. The work in this paper builds on previous work aimed at achieving quantitative agreement between the flux-driven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles. Improved quantitative agreement is achieved by performing the calculations with a more realistic electron mass, larger neutral density and including finite-Larmor-radius corrections self-consistentlymore » in the drift-kinetic motion of the particles. Consequently, the simulations provide stronger evidence that the radial electric field (E r) in the pedestal is primarily established by the required balance between the loss of high-energy tail main ions against a pinch of colder main ions and impurities. The kinetic loss of a small population of ions carrying a large proportion of energy and momentum leads to a separation of the particle and energy transport rates and introduces a source of intrinsic edge torque. Ion orbit loss and finite orbit width effects drive the energy distributions away from Maxwellian, and describe the anisotropy, poloidal asymmetry and local minimum near the separatrix observed in the T i profile.« less

  4. Improved kinetic neoclassical transport calculation for a low-collisionality QH-mode pedestal

    DOE PAGES

    Battaglia, D. J.; Burrell, K. H.; Chang, C. S.; ...

    2016-07-15

    The role of neoclassical, anomalous and neutral transport to the overall H-mode pedestal and scrape-off layer (SOL) structure in an ELM-free QH-mode discharge on DIII-D is explored using XGC0, a 5D full-f multi-species particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. The work in this paper builds on previous work aimed at achieving quantitative agreement between the flux-driven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles. Improved quantitative agreement is achieved by performing the calculations with a more realistic electron mass, larger neutral density and including finite-Larmor-radius corrections self-consistentlymore » in the drift-kinetic motion of the particles. Consequently, the simulations provide stronger evidence that the radial electric field (E r) in the pedestal is primarily established by the required balance between the loss of high-energy tail main ions against a pinch of colder main ions and impurities. The kinetic loss of a small population of ions carrying a large proportion of energy and momentum leads to a separation of the particle and energy transport rates and introduces a source of intrinsic edge torque. Ion orbit loss and finite orbit width effects drive the energy distributions away from Maxwellian, and describe the anisotropy, poloidal asymmetry and local minimum near the separatrix observed in the T i profile.« less

  5. Monte Carlo modelling of Schottky diode for rectenna simulation

    NASA Astrophysics Data System (ADS)

    Bernuchon, E.; Aniel, F.; Zerounian, N.; Grimault-Jacquin, A. S.

    2017-09-01

    Before designing a detector circuit, the electrical parameters extraction of the Schottky diode is a critical step. This article is based on a Monte-Carlo (MC) solver of the Boltzmann Transport Equation (BTE) including different transport mechanisms at the metal-semiconductor contact such as image force effect or tunneling. The weight of tunneling and thermionic current is quantified according to different degrees of tunneling modelling. The I-V characteristic highlights the dependence of the ideality factor and the current saturation with bias. Harmonic Balance (HB) simulation on a rectifier circuit within Advanced Design System (ADS) software shows that considering non-linear ideality factor and saturation current for the electrical model of the Schottky diode does not seem essential. Indeed, bias independent values extracted in forward regime on I-V curve are sufficient. However, the non-linear series resistance extracted from a small signal analysis (SSA) strongly influences the conversion efficiency at low input powers.

  6. NAS Experiences of Porting CM Fortran Codes to HPF on IBM SP2 and SGI Power Challenge

    NASA Technical Reports Server (NTRS)

    Saini, Subhash

    1995-01-01

    Current Connection Machine (CM) Fortran codes developed for the CM-2 and the CM-5 represent an important class of parallel applications. Several users have employed CM Fortran codes in production mode on the CM-2 and the CM-5 for the last five to six years, constituting a heavy investment in terms of cost and time. With Thinking Machines Corporation's decision to withdraw from the hardware business and with the decommissioning of many CM-2 and CM-5 machines, the best way to protect the substantial investment in CM Fortran codes is to port the codes to High Performance Fortran (HPF) on highly parallel systems. HPF is very similar to CM Fortran and thus represents a natural transition. Conversion issues involved in porting CM Fortran codes on the CM-5 to HPF are presented. In particular, the differences between data distribution directives and the CM Fortran Utility Routines Library, as well as the equivalent functionality in the HPF Library are discussed. Several CM Fortran codes (Cannon algorithm for matrix-matrix multiplication, Linear solver Ax=b, 1-D convolution for 2-D datasets, Laplace's Equation solver, and Direct Simulation Monte Carlo (DSMC) codes have been ported to Subset HPF on the IBM SP2 and the SGI Power Challenge. Speedup ratios versus number of processors for the Linear solver and DSMC code are presented.

  7. Adsorption site analysis of impurity embedded single-walled carbon nanotube bundles

    USGS Publications Warehouse

    Agnihotri, S.; Mota, J.P.B.; Rostam-Abadi, M.; Rood, M.J.

    2006-01-01

    Bundle morphology and adsorptive contributions from nanotubes and impurities are studied both experimentally and by simulation using a computer-aided methodology, which employs a small physisorbed probe molecule to explore the porosity of nanotube samples. Grand canonical Monte Carlo simulation of nitrogen adsorption on localized sites of a bundle is carried out to predict adsorption in its accessible internal pore volume and on its external surface as a function of tube diameter. External adsorption is split into the contributions from the clean surface of the outermost nanotubes of the bundle and from the surface of the impurities. The site-specific isotherms are then combined into a global isotherm for a given sample using knowledge of its tube-diameter distribution obtained by Raman spectroscopy. The structural parameters of the sample, such as the fraction of open-ended nanotubes and the contributions from impurities and nanotube bundles to total external surface area, are determined by fitting the experimental nitrogen adsorption data to the simulated isotherm. The degree of closure between experimental and calculated adsorption isotherms for samples manufactured by two different methods, to provide different nanotube morphology and contamination level, further strengthens the validity and resulting interpretations based on the proposed approach. The average number of nanotubes per bundle and average bundle size, within a sample, are also quantified. The proposed method allows for extrapolation of adsorption properties to conditions where the purification process is 100% effective at removing all impurities and opening access to all intrabundle adsorption sites. ?? 2006 Elsevier Ltd. All rights reserved.

  8. Excitonic magnet in external field: Complex order parameter and spin currents

    NASA Astrophysics Data System (ADS)

    Geffroy, D.; Hariki, A.; Kuneš, J.

    2018-04-01

    We investigate spin-triplet exciton condensation in the two-orbital Hubbard model close to half-filling by means of dynamical mean-field theory. Employing an impurity solver that handles complex off-diagonal hybridization functions, we study the behavior of excitonic condensate in stoichiometric and doped systems subject to external magnetic field. We find a general tendency of the triplet order parameter to lie perpendicular with the applied field and identify exceptions from this rule. For solutions exhibiting k -odd spin textures, we discuss the Bloch theorem, which, in the absence of spin-orbit coupling, forbids the appearance of spontaneous net spin current. We demonstrate that the Bloch theorem is not obeyed by the dynamical mean-field theory.

  9. Mass-imbalanced Hubbard model in optical lattice with site-dependent interactions

    NASA Astrophysics Data System (ADS)

    Le, Duc-Anh; Tran, Thi-Thu-Trang; Hoang, Anh-Tuan; Nguyen, Toan-Thang; Tran, Minh-Tien

    2018-03-01

    We study the half-filled mass-imbalanced Hubbard model with spatially alternating interactions on an optical bipartite lattice by means of the dynamical mean-field theory. The Mott transition is investigated via the spin-dependent density of states and double occupancies. The phase diagrams for the homogeneous phases at zero temperature are constructed numerically. The boundary between metallic and insulating phases at zero temperature is analytically derived within the dynamical mean field theory using the equation of motion approach as the impurity solver. We found that the metallic region is reduced with increasing interaction anisotropy or mass imbalance. Our results are closely relevant to current researches in ultracold fermion experiments and can be verified through experimental observations.

  10. Dosimetric validation of the Acuros XB Advanced Dose Calculation algorithm: fundamental characterization in water

    NASA Astrophysics Data System (ADS)

    Fogliata, Antonella; Nicolini, Giorgia; Clivio, Alessandro; Vanetti, Eugenio; Mancosu, Pietro; Cozzi, Luca

    2011-05-01

    This corrigendum intends to clarify some important points that were not clearly or properly addressed in the original paper, and for which the authors apologize. The original description of the first Acuros algorithm is from the developers, published in Physics in Medicine and Biology by Vassiliev et al (2010) in the paper entitled 'Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams'. The main equations describing the algorithm reported in our paper, implemented as the 'Acuros XB Advanced Dose Calculation Algorithm' in the Varian Eclipse treatment planning system, were originally described (for the original Acuros algorithm) in the above mentioned paper by Vassiliev et al. The intention of our description in our paper was to give readers an overview of the algorithm, not pretending to have authorship of the algorithm itself (used as implemented in the planning system). Unfortunately our paper was not clear, particularly in not allocating full credit to the work published by Vassiliev et al on the original Acuros algorithm. Moreover, it is important to clarify that we have not adapted any existing algorithm, but have used the Acuros XB implementation in the Eclipse planning system from Varian. In particular, the original text of our paper should have been as follows: On page 1880 the sentence 'A prototype LBTE solver, called Attila (Wareing et al 2001), was also applied to external photon beam dose calculations (Gifford et al 2006, Vassiliev et al 2008, 2010). Acuros XB builds upon many of the methods in Attila, but represents a ground-up rewrite of the solver where the methods were adapted especially for external photon beam dose calculations' should be corrected to 'A prototype LBTE solver, called Attila (Wareing et al 2001), was also applied to external photon beam dose calculations (Gifford et al 2006, Vassiliev et al 2008). A new algorithm called Acuros, developed by the Transpire Inc. group, was built upon many of the methods in Attila, but represents a ground-up rewrite of the solver where the methods were especially adapted for external photon beam dose calculations, and described in Vassiliev et al (2010). Acuros XB is the Varian implementation of the original Acuros algorithm in the Eclipse planning system'. On page 1881, the sentence 'Monte Carlo and explicit LBTE solution, with sufficient refinement, will converge on the same solution. However, both methods produce errors (inaccuracies). In explicit LBTE solution methods, errors are primarily systematic, and result from discretization of the solution variables in space, angle, and energy. In both Monte Carlo and explicit LBTE solvers, a trade-off exists between speed and accuracy: reduced computational time may be achieved when less stringent accuracy criteria are specified, and vice versa' should cite the reference Vassiliev et al (2010). On page 1882, the beginning of the sub-paragraph The radiation transport model should start with 'The following description of the Acuros XB algorithm is as outlined by Vassiliev et al (2010) and reports the main steps of the radiation transport model as implemented in Eclipse'. The authors apologize for this lack of clarity in our published paper, and trust that this corrigendum gives full credit to Vassiliev et al in their earlier paper, with respect to previous work on the Acuros algorithm. However we wish to note that the entire contents of the data and results published in our paper are original and the work of the listed authors. References Gifford K A, Horton J L Jr, Wareing T A, Failla G and Mourtada F 2006 Comparison of a finite-element multigroup discrete-ordinates code with Monte Carlo for radiotherapy calculations Phys. Med. Biol. 51 2253-65 Vassiliev O N, Wareing T A, Davis I M, McGhee J, Barnett D, Horton J L, Gifford K, Failla G, Titt U and Mourtada F 2008 Feasibility of a multigroup deterministic solution method for three-dimensional radiotherapy dose calculations Int. J. Radiat. Oncol. Biol. Phys. 72 220-7 Vassiliev O N, Wareing T A, McGhee J, Failla G, Salehpour M R and Mourtada F 2010 Validation of a new grid based Boltzmann equation solver for dose calculation in radiotherapy with photon beams Phys. Med. Biol. 55 581-98 Wareing T A, McGhee J M, Morel J E and Pautz S D 2001 Discontinuous finite element Sn methods on three-dimensional unstructured grids Nucl. Sci. Eng. 138 256-68

  11. Evaluation of an analytic linear Boltzmann transport equation solver for high-density inhomogeneities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lloyd, S. A. M.; Ansbacher, W.; Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 3P6

    2013-01-15

    Purpose: Acuros external beam (Acuros XB) is a novel dose calculation algorithm implemented through the ECLIPSE treatment planning system. The algorithm finds a deterministic solution to the linear Boltzmann transport equation, the same equation commonly solved stochastically by Monte Carlo methods. This work is an evaluation of Acuros XB, by comparison with Monte Carlo, for dose calculation applications involving high-density materials. Existing non-Monte Carlo clinical dose calculation algorithms, such as the analytic anisotropic algorithm (AAA), do not accurately model dose perturbations due to increased electron scatter within high-density volumes. Methods: Acuros XB, AAA, and EGSnrc based Monte Carlo are usedmore » to calculate dose distributions from 18 MV and 6 MV photon beams delivered to a cubic water phantom containing a rectangular high density (4.0-8.0 g/cm{sup 3}) volume at its center. The algorithms are also used to recalculate a clinical prostate treatment plan involving a unilateral hip prosthesis, originally evaluated using AAA. These results are compared graphically and numerically using gamma-index analysis. Radio-chromic film measurements are presented to augment Monte Carlo and Acuros XB dose perturbation data. Results: Using a 2% and 1 mm gamma-analysis, between 91.3% and 96.8% of Acuros XB dose voxels containing greater than 50% the normalized dose were in agreement with Monte Carlo data for virtual phantoms involving 18 MV and 6 MV photons, stainless steel and titanium alloy implants and for on-axis and oblique field delivery. A similar gamma-analysis of AAA against Monte Carlo data showed between 80.8% and 87.3% agreement. Comparing Acuros XB and AAA evaluations of a clinical prostate patient plan involving a unilateral hip prosthesis, Acuros XB showed good overall agreement with Monte Carlo while AAA underestimated dose on the upstream medial surface of the prosthesis due to electron scatter from the high-density material. Film measurements support the dose perturbations demonstrated by Monte Carlo and Acuros XB data. Conclusions: Acuros XB is shown to perform as well as Monte Carlo methods and better than existing clinical algorithms for dose calculations involving high-density volumes.« less

  12. Van Hove singularities in the paramagnetic phase of the Hubbard model: DMFT study

    NASA Astrophysics Data System (ADS)

    Žitko, Rok; Bonča, Janez; Pruschke, Thomas

    2009-12-01

    Using the dynamical mean-field theory (DMFT) with the numerical renormalization-group impurity solver we study the paramagnetic phase of the Hubbard model with the density of states (DOS) corresponding to the three-dimensional (3D) cubic lattice and the two-dimensional (2D) square lattice, as well as a DOS with inverse square-root singularity. We show that the electron correlations rapidly smooth out the square-root van Hove singularities (kinks) in the spectral function for the 3D lattice and that the Mott metal-insulator transition (MIT) as well as the magnetic-field-induced MIT differ only little from the well-known results for the Bethe lattice. The consequences of the logarithmic singularity in the DOS for the 2D lattice are more dramatic. At half filling, the divergence pinned at the Fermi level is not washed out, only its integrated weight decreases as the interaction is increased. While the Mott transition is still of the usual kind, the magnetic-field-induced MIT falls into a different universality class as there is no field-induced localization of quasiparticles. In the case of a power-law singularity in the DOS at the Fermi level, the power-law singularity persists in the presence of interaction, albeit with a different exponent, and the effective impurity model in the DMFT turns out to be a pseudogap Anderson impurity model with a hybridization function which vanishes at the Fermi level. The system is then a generalized Fermi liquid. At finite doping, regular Fermi-liquid behavior is recovered.

  13. Green's functions in equilibrium and nonequilibrium from real-time bold-line Monte Carlo

    NASA Astrophysics Data System (ADS)

    Cohen, Guy; Gull, Emanuel; Reichman, David R.; Millis, Andrew J.

    2014-03-01

    Green's functions for the Anderson impurity model are obtained within a numerically exact formalism. We investigate the limits of analytical continuation for equilibrium systems, and show that with real time methods even sharp high-energy features can be reliably resolved. Continuing to an Anderson impurity in a junction, we evaluate two-time correlation functions, spectral properties, and transport properties, showing how the correspondence between the spectral function and the differential conductance breaks down when nonequilibrium effects are taken into account. Finally, a long-standing dispute regarding this model has involved the voltage splitting of the Kondo peak, an effect which was predicted over a decade ago by approximate analytical methods but never successfully confirmed by numerics. We settle the issue by demonstrating in an unbiased manner that this splitting indeed occurs. Yad Hanadiv-Rothschild Foundation, TG-DMR120085, TG-DMR130036, NSF CHE-1213247, NSF DMR 1006282, DOE ER 46932.

  14. Assessment of different radiative transfer equation solvers for combined natural convection and radiation heat transfer problems

    NASA Astrophysics Data System (ADS)

    Sun, Yujia; Zhang, Xiaobing; Howell, John R.

    2017-06-01

    This work investigates the performance of the DOM, FVM, P1, SP3 and P3 methods for 2D combined natural convection and radiation heat transfer for an absorbing, emitting medium. The Monte Carlo method is used to solve the RTE coupled with the energy equation, and its results are used as benchmark solutions. Effects of the Rayleigh number, Planck number and optical thickness are considered, all covering several orders of magnitude. Temperature distributions, heat transfer rate and computational performance in terms of accuracy and computing time are presented and analyzed.

  15. Intrusive Method for Uncertainty Quantification in a Multiphase Flow Solver

    NASA Astrophysics Data System (ADS)

    Turnquist, Brian; Owkes, Mark

    2016-11-01

    Uncertainty quantification (UQ) is a necessary, interesting, and often neglected aspect of fluid flow simulations. To determine the significance of uncertain initial and boundary conditions, a multiphase flow solver is being created which extends a single phase, intrusive, polynomial chaos scheme into multiphase flows. Reliably estimating the impact of input uncertainty on design criteria can help identify and minimize unwanted variability in critical areas, and has the potential to help advance knowledge in atomizing jets, jet engines, pharmaceuticals, and food processing. Use of an intrusive polynomial chaos method has been shown to significantly reduce computational cost over non-intrusive collocation methods such as Monte-Carlo. This method requires transforming the model equations into a weak form through substitution of stochastic (random) variables. Ultimately, the model deploys a stochastic Navier Stokes equation, a stochastic conservative level set approach including reinitialization, as well as stochastic normals and curvature. By implementing these approaches together in one framework, basic problems may be investigated which shed light on model expansion, uncertainty theory, and fluid flow in general. NSF Grant Number 1511325.

  16. Fast animation of lightning using an adaptive mesh.

    PubMed

    Kim, Theodore; Lin, Ming C

    2007-01-01

    We present a fast method for simulating, animating, and rendering lightning using adaptive grids. The "dielectric breakdown model" is an elegant algorithm for electrical pattern formation that we extend to enable animation of lightning. The simulation can be slow, particularly in 3D, because it involves solving a large Poisson problem. Losasso et al. recently proposed an octree data structure for simulating water and smoke, and we show that this discretization can be applied to the problem of lightning simulation as well. However, implementing the incomplete Cholesky conjugate gradient (ICCG) solver for this problem can be daunting, so we provide an extensive discussion of implementation issues. ICCG solvers can usually be accelerated using "Eisenstat's trick," but the trick cannot be directly applied to the adaptive case. Fortunately, we show that an "almost incomplete Cholesky" factorization can be computed so that Eisenstat's trick can still be used. We then present a fast rendering method based on convolution that is competitive with Monte Carlo ray tracing but orders of magnitude faster, and we also show how to further improve the visual results using jittering.

  17. SPH simulations of WBC adhesion to the endothelium: the role of haemodynamics and endothelial binding kinetics.

    PubMed

    Gholami, Babak; Comerford, Andrew; Ellero, Marco

    2015-11-01

    A multiscale Lagrangian particle solver introduced in our previous work is extended to model physiologically realistic near-wall cell dynamics. Three-dimensional simulation of particle trajectories is combined with realistic receptor-ligand adhesion behaviour to cover full cell interactions in the vicinity of the endothelium. The selected stochastic adhesion model, which is based on a Monte Carlo acceptance-rejection method, fits in our Lagrangian framework and does not compromise performance. Additionally, appropriate inflow/outflow boundary conditions are implemented for our SPH solver to enable realistic pulsatile flow simulation. The model is tested against in-vitro data from a 3D geometry with a stenosis and sudden expansion. In both steady and pulsatile flow conditions, results show close agreement with the experimental ones. Furthermore we demonstrate, in agreement with experimental observations, that haemodynamics alone does not account for adhesion of white blood cells, in this case U937 monocytic human cells. Our findings suggest that the current framework is fully capable of modelling cell dynamics in large arteries in a realistic and efficient manner.

  18. Local gas injection as a scrape-off layer diagnostic on the Alcator C-Mod tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jablonski, David F.

    1996-05-01

    A capillary puffing array has been installed on Alcator C-Mod which allows localized introduction of gaseous species in the scrape-off layer. This system has been utilized in experiments to elucidate both global and local properties of edge transport. Deuterium fueling and recycling impurity screening are observed to be characterized by non-dimensional screening efficiencies which are independent of the location of introduction. In contrast, the behavior of non-recycling impurities is seen to be characterized by a screening time which is dependent on puff location. The work of this thesis has focused on the use of the capillary array with a cameramore » system which can view impurity line emission plumes formed in the region of an injection location. The ionic plumes observed extend along the magnetic field line with a comet-like asymmetry, indicative of background plasma ion flow. The flow is observed to be towards the nearest strike-point, independent of x-point location, magnetic field direction, and other plasma parameters. While the axes of the plumes are generally along the field line, deviations are seen which indicate cross-field ion drifts. A quasi-two dimensional fluid model has been constructed to use the plume shapes of the first charge state impurity ions to extract information about the local background plasma, specifically the temperature, parallel flow velocity, and radial electric field. Through comparisons of model results with those of a three dimensional Monte Carlo code, and comparisons of plume extracted parameters with scanning probe measurements, the efficacy of the model is demonstrated. Plume analysis not only leads to understandings of local edge impurity transport, but also presents a novel diagnostic technique.« less

  19. Hardware accelerated high performance neutron transport computation based on AGENT methodology

    NASA Astrophysics Data System (ADS)

    Xiao, Shanjie

    The spatial heterogeneity of the next generation Gen-IV nuclear reactor core designs brings challenges to the neutron transport analysis. The Arbitrary Geometry Neutron Transport (AGENT) AGENT code is a three-dimensional neutron transport analysis code being developed at the Laboratory for Neutronics and Geometry Computation (NEGE) at Purdue University. It can accurately describe the spatial heterogeneity in a hierarchical structure through the R-function solid modeler. The previous version of AGENT coupled the 2D transport MOC solver and the 1D diffusion NEM solver to solve the three dimensional Boltzmann transport equation. In this research, the 2D/1D coupling methodology was expanded to couple two transport solvers, the radial 2D MOC solver and the axial 1D MOC solver, for better accuracy. The expansion was benchmarked with the widely applied C5G7 benchmark models and two fast breeder reactor models, and showed good agreement with the reference Monte Carlo results. In practice, the accurate neutron transport analysis for a full reactor core is still time-consuming and thus limits its application. Therefore, another content of my research is focused on designing a specific hardware based on the reconfigurable computing technique in order to accelerate AGENT computations. It is the first time that the application of this type is used to the reactor physics and neutron transport for reactor design. The most time consuming part of the AGENT algorithm was identified. Moreover, the architecture of the AGENT acceleration system was designed based on the analysis. Through the parallel computation on the specially designed, highly efficient architecture, the acceleration design on FPGA acquires high performance at the much lower working frequency than CPUs. The whole design simulations show that the acceleration design would be able to speedup large scale AGENT computations about 20 times. The high performance AGENT acceleration system will drastically shortening the computation time for 3D full-core neutron transport analysis, making the AGENT methodology unique and advantageous, and thus supplies the possibility to extend the application range of neutron transport analysis in either industry engineering or academic research.

  20. Aerothermodynamic Analyses of Towed Ballutes

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Buck, Greg; Moss, James N.; Nielsen, Eric; Berger, Karen; Jones, William T.; Rudavsky, Rena

    2006-01-01

    A ballute (balloon-parachute) is an inflatable, aerodynamic drag device for application to planetary entry vehicles. Two challenging aspects of aerothermal simulation of towed ballutes are considered. The first challenge, simulation of a complete system including inflatable tethers and a trailing toroidal ballute, is addressed using the unstructured-grid, Navier-Stokes solver FUN3D. Auxiliary simulations of a semi-infinite cylinder using the rarefied flow, Direct Simulation Monte Carlo solver, DSV2, provide additional insight into limiting behavior of the aerothermal environment around tethers directly exposed to the free stream. Simulations reveal pressures higher than stagnation and corresponding large heating rates on the tether as it emerges from the spacecraft base flow and passes through the spacecraft bow shock. The footprint of the tether shock on the toroidal ballute is also subject to heating amplification. Design options to accommodate or reduce these environments are discussed. The second challenge addresses time-accurate simulation to detect the onset of unsteady flow interactions as a function of geometry and Reynolds number. Video of unsteady interactions measured in the Langley Aerothermodynamic Laboratory 20-Inch Mach 6 Air Tunnel and CFD simulations using the structured grid, Navier-Stokes solver LAURA are compared for flow over a rigid spacecraft-sting-toroid system. The experimental data provides qualitative information on the amplitude and onset of unsteady motion which is captured in the numerical simulations. The presence of severe unsteady fluid - structure interactions is undesirable and numerical simulation must be able to predict the onset of such motion.

  1. Automated statistical experimental design approach for rapid separation of coenzyme Q10 and identification of its biotechnological process related impurities using UHPLC and UHPLC-APCI-MS.

    PubMed

    Talluri, Murali V N Kumar; Kalariya, Pradipbhai D; Dharavath, Shireesha; Shaikh, Naeem; Garg, Prabha; Ramisetti, Nageswara Rao; Ragampeta, Srinivas

    2016-09-01

    A novel ultra high performance liquid chromatography method development strategy was ameliorated by applying quality by design approach. The developed systematic approach was divided into five steps (i) Analytical Target Profile, (ii) Critical Quality Attributes, (iii) Risk Assessments of Critical parameters using design of experiments (screening and optimization phases), (iv) Generation of design space, and (v) Process Capability Analysis (Cp) for robustness study using Monte Carlo simulation. The complete quality-by-design-based method development was made automated and expedited by employing sub-2 μm particles column with an ultra high performance liquid chromatography system. Successful chromatographic separation of the Coenzyme Q10 from its biotechnological process related impurities was achieved on a Waters Acquity phenyl hexyl (100 mm × 2.1 mm, 1.7 μm) column with gradient elution of 10 mM ammonium acetate buffer (pH 4.0) and a mixture of acetonitrile/2-propanol (1:1) as the mobile phase. Through this study, fast and organized method development workflow was developed and robustness of the method was also demonstrated. The method was validated for specificity, linearity, accuracy, precision, and robustness in compliance to the International Conference on Harmonization, Q2 (R1) guidelines. The impurities were identified by atmospheric pressure chemical ionization-mass spectrometry technique. Further, the in silico toxicity of impurities was analyzed using TOPKAT and DEREK software. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Boundary modelling of the stellarator Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Renner, H.; Strumberger, E.; Kisslinger, J.; Nührenberg, J.; Wobig, H.

    1997-02-01

    To justify the design of the divertor plates in W7-X the magnetic fields of finite-β HELIAS equilibria for the so-called high-mirror case have been computed for various average β-values up to < β > = 0.04 with the NEMEC free-boundary equilibrium code [S.P. Hirshman, W.I. van Rij and W.I. Merkel, Comput. Phys. Commun. 43 (1986) 143] in combination with the newly developed MFBE (magnetic field solver for finite-beta equilibria) code. In a second study the unloading of the target plates by radiation was investigated. The B2 code [B.J. Braams, Ph.D. Thesis, Rijksuniversiteit Utrecht (1986)] was applied for the first time to stellarators to provide of a self-consistent modelling of the SOL including effects of neutrals and impurities.

  3. Deterministically estimated fission source distributions for Monte Carlo k-eigenvalue problems

    DOE PAGES

    Biondo, Elliott D.; Davidson, Gregory G.; Pandya, Tara M.; ...

    2018-04-30

    The standard Monte Carlo (MC) k-eigenvalue algorithm involves iteratively converging the fission source distribution using a series of potentially time-consuming inactive cycles before quantities of interest can be tallied. One strategy for reducing the computational time requirements of these inactive cycles is the Sourcerer method, in which a deterministic eigenvalue calculation is performed to obtain an improved initial guess for the fission source distribution. This method has been implemented in the Exnihilo software suite within SCALE using the SPNSPN or SNSN solvers in Denovo and the Shift MC code. The efficacy of this method is assessed with different Denovo solutionmore » parameters for a series of typical k-eigenvalue problems including small criticality benchmarks, full-core reactors, and a fuel cask. Here it is found that, in most cases, when a large number of histories per cycle are required to obtain a detailed flux distribution, the Sourcerer method can be used to reduce the computational time requirements of the inactive cycles.« less

  4. Deterministically estimated fission source distributions for Monte Carlo k-eigenvalue problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biondo, Elliott D.; Davidson, Gregory G.; Pandya, Tara M.

    The standard Monte Carlo (MC) k-eigenvalue algorithm involves iteratively converging the fission source distribution using a series of potentially time-consuming inactive cycles before quantities of interest can be tallied. One strategy for reducing the computational time requirements of these inactive cycles is the Sourcerer method, in which a deterministic eigenvalue calculation is performed to obtain an improved initial guess for the fission source distribution. This method has been implemented in the Exnihilo software suite within SCALE using the SPNSPN or SNSN solvers in Denovo and the Shift MC code. The efficacy of this method is assessed with different Denovo solutionmore » parameters for a series of typical k-eigenvalue problems including small criticality benchmarks, full-core reactors, and a fuel cask. Here it is found that, in most cases, when a large number of histories per cycle are required to obtain a detailed flux distribution, the Sourcerer method can be used to reduce the computational time requirements of the inactive cycles.« less

  5. Structural Stability and Defect Energetics of ZnO from Diffusion Quantum Monte Carlo

    DOE PAGES

    Santana Palacio, Juan A.; Krogel, Jaron T.; Kim, Jeongnim; ...

    2015-04-28

    We have applied the many-body ab-initio diffusion quantum Monte Carlo (DMC) method to study Zn and ZnO crystals under pressure, and the energetics of the oxygen vacancy, zinc interstitial and hydrogen impurities in ZnO. We show that DMC is an accurate and practical method that can be used to characterize multiple properties of materials that are challenging for density functional theory approximations. DMC agrees with experimental measurements to within 0.3 eV, including the band-gap of ZnO, the ionization potential of O and Zn, and the atomization energy of O2, ZnO dimer, and wurtzite ZnO. DMC predicts the oxygen vacancy asmore » a deep donor with a formation energy of 5.0(2) eV under O-rich conditions and thermodynamic transition levels located between 1.8 and 2.5 eV from the valence band maximum. Our DMC results indicate that the concentration of zinc interstitial and hydrogen impurities in ZnO should be low under n-type, and Zn- and H-rich conditions because these defects have formation energies above 1.4 eV under these conditions. Comparison of DMC and hybrid functionals shows that these DFT approximations can be parameterized to yield a general correct qualitative description of ZnO. However, the formation energy of defects in ZnO evaluated with DMC and hybrid functionals can differ by more than 0.5 eV.« less

  6. A numerical analysis of plasma non-uniformity in the parallel plate VHF-CCP and the comparison among various model

    NASA Astrophysics Data System (ADS)

    Sawada, Ikuo

    2012-10-01

    We measured the radial distribution of electron density in a 200 mm parallel plate CCP and compared it with results from numerical simulations. The experiments were conducted with pure Ar gas with pressures ranging from 15 to 100 mTorr and 60 MHz applied at the top electrode with powers from 500 to 2000W. The measured electron profile is peaked in the center, and the relative non-uniformity is higher at 100 mTorr than at 15 mTorr. We compare the experimental results with simulations with both HPEM and Monte-Carlo/PIC codes. In HPEM simulations, we used either fluid or electron Monte-Carlo module, and the Poisson or the Electromagnetic solver. None of the models were able to duplicate the experimental results quantitatively. However, HPEM with the electron Monte-Carlo module and PIC qualitatively matched the experimental results. We will discuss the results from these models and how they illuminate the mechanism of enhanced electron central peak.[4pt] [1] T. Oshita, M. Matsukuma, S.Y. Kang, I. Sawada: The effect of non-uniform RF voltage in a CCP discharge, The 57^th JSAP Spring Meeting 2010[4pt] [2] I. Sawada, K. Matsuzaki, S.Y. Kang, T. Ohshita, M. Kawakami, S. Segawa: 1-st IC-PLANTS, 2008

  7. A study of hydrogen diffusion flames using PDF turbulence model

    NASA Technical Reports Server (NTRS)

    Hsu, Andrew T.

    1991-01-01

    The application of probability density function (pdf) turbulence models is addressed. For the purpose of accurate prediction of turbulent combustion, an algorithm that combines a conventional computational fluid dynamic (CFD) flow solver with the Monte Carlo simulation of the pdf evolution equation was developed. The algorithm was validated using experimental data for a heated turbulent plane jet. The study of H2-F2 diffusion flames was carried out using this algorithm. Numerical results compared favorably with experimental data. The computations show that the flame center shifts as the equivalence ratio changes, and that for the same equivalence ratio, similarity solutions for flames exist.

  8. A study of hydrogen diffusion flames using PDF turbulence model

    NASA Technical Reports Server (NTRS)

    Hsu, Andrew T.

    1991-01-01

    The application of probability density function (pdf) turbulence models is addressed in this work. For the purpose of accurate prediction of turbulent combustion, an algorithm that combines a conventional CFD flow solver with the Monte Carlo simulation of the pdf evolution equation has been developed. The algorithm has been validated using experimental data for a heated turbulent plane jet. The study of H2-F2 diffusion flames has been carried out using this algorithm. Numerical results compared favorably with experimental data. The computuations show that the flame center shifts as the equivalence ratio changes, and that for the same equivalence ratio, similarity solutions for flames exist.

  9. Implicit filtered P{sub N} for high-energy density thermal radiation transport using discontinuous Galerkin finite elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laboure, Vincent M., E-mail: vincent.laboure@tamu.edu; McClarren, Ryan G., E-mail: rgm@tamu.edu; Hauck, Cory D., E-mail: hauckc@ornl.gov

    2016-09-15

    In this work, we provide a fully-implicit implementation of the time-dependent, filtered spherical harmonics (FP{sub N}) equations for non-linear, thermal radiative transfer. We investigate local filtering strategies and analyze the effect of the filter on the conditioning of the system, showing in particular that the filter improves the convergence properties of the iterative solver. We also investigate numerically the rigorous error estimates derived in the linear setting, to determine whether they hold also for the non-linear case. Finally, we simulate a standard test problem on an unstructured mesh and make comparisons with implicit Monte Carlo (IMC) calculations.

  10. Modified Monte Carlo method for study of electron transport in degenerate electron gas in the presence of electron-electron interactions, application to graphene

    NASA Astrophysics Data System (ADS)

    Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek

    2017-07-01

    Standard computational methods used to take account of the Pauli Exclusion Principle into Monte Carlo (MC) simulations of electron transport in semiconductors may give unphysical results in low field regime, where obtained electron distribution function takes values exceeding unity. Modified algorithms were already proposed and allow to correctly account for electron scattering on phonons or impurities. Present paper extends this approach and proposes improved simulation scheme allowing including Pauli exclusion principle for electron-electron (e-e) scattering into MC simulations. Simulations with significantly reduced computational cost recreate correct values of the electron distribution function. Proposed algorithm is applied to study transport properties of degenerate electrons in graphene with e-e interactions. This required adapting the treatment of e-e scattering in the case of linear band dispersion relation. Hence, this part of the simulation algorithm is described in details.

  11. Extending Strong Scaling of Quantum Monte Carlo to the Exascale

    NASA Astrophysics Data System (ADS)

    Shulenburger, Luke; Baczewski, Andrew; Luo, Ye; Romero, Nichols; Kent, Paul

    Quantum Monte Carlo is one of the most accurate and most computationally expensive methods for solving the electronic structure problem. In spite of its significant computational expense, its massively parallel nature is ideally suited to petascale computers which have enabled a wide range of applications to relatively large molecular and extended systems. Exascale capabilities have the potential to enable the application of QMC to significantly larger systems, capturing much of the complexity of real materials such as defects and impurities. However, both memory and computational demands will require significant changes to current algorithms to realize this possibility. This talk will detail both the causes of the problem and potential solutions. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corp, a wholly owned subsidiary of Lockheed Martin Corp, for the US Department of Energys National Nuclear Security Administration under contract DE-AC04-94AL85000.

  12. Dynamical mean-field theory on the real-frequency axis: p -d hybridization and atomic physics in SrMnO3

    NASA Astrophysics Data System (ADS)

    Bauernfeind, Daniel; Triebl, Robert; Zingl, Manuel; Aichhorn, Markus; Evertz, Hans Gerd

    2018-03-01

    We investigate the electronic structure of SrMnO3 with density functional theory plus dynamical mean-field theory (DMFT). Within this scheme the selection of the correlated subspace and the construction of the corresponding Wannier functions is a crucial step. Due to the crystal-field splitting of the Mn-3 d orbitals and their separation from the O -2 p bands, SrMnO3 is a material where on first sight a three-band d -only model should be sufficient. However, in the present work we demonstrate that the resulting spectrum is considerably influenced by the number of correlated orbitals and the number of bands included in the Wannier function construction. For example, in a d -d p model we observe a splitting of the t2 g lower Hubbard band into a more complex spectral structure, not observable in d -only models. To illustrate these high-frequency differences we employ the recently developed fork tensor product state (FTPS) impurity solver, as it provides the necessary spectral resolution on the real-frequency axis. We find that the spectral structure of a five-band d -d p model is in good agreement with PES and XAS experiments. Our results demonstrate that the FTPS solver is capable of performing full five-band DMFT calculations directly on the real-frequency axis.

  13. Correlation effects in superconducting quantum dot systems

    NASA Astrophysics Data System (ADS)

    Pokorný, Vladislav; Žonda, Martin

    2018-05-01

    We study the effect of electron correlations on a system consisting of a single-level quantum dot with local Coulomb interaction attached to two superconducting leads. We use the single-impurity Anderson model with BCS superconducting baths to study the interplay between the proximity induced electron pairing and the local Coulomb interaction. We show how to solve the model using the continuous-time hybridization-expansion quantum Monte Carlo method. The results obtained for experimentally relevant parameters are compared with results of self-consistent second order perturbation theory as well as with the numerical renormalization group method.

  14. Microscopic theory of cation exchange in CdSe nanocrystals.

    PubMed

    Ott, Florian D; Spiegel, Leo L; Norris, David J; Erwin, Steven C

    2014-10-10

    Although poorly understood, cation-exchange reactions are increasingly used to dope or transform colloidal semiconductor nanocrystals (quantum dots). We use density-functional theory and kinetic Monte Carlo simulations to develop a microscopic theory that explains structural, optical, and electronic changes observed experimentally in Ag-cation-exchanged CdSe nanocrystals. We find that Coulomb interactions, both between ionized impurities and with the polarized nanocrystal surface, play a key role in cation exchange. Our theory also resolves several experimental puzzles related to photoluminescence and electrical behavior in CdSe nanocrystals doped with Ag.

  15. Influence of dislocation strain fields on the diffusion of interstitial iron impurities in silicon

    NASA Astrophysics Data System (ADS)

    Ziebarth, Benedikt; Mrovec, Matous; Elsässer, Christian; Gumbsch, Peter

    2015-09-01

    The efficiency of silicon (Si)-based solar cells is strongly affected by crystal defects and impurities. Metallic impurities, in particular interstitial iron (Fe) atoms, cause large electric losses because they act as recombination centers for photogenerated charge carriers. Here, we present a systematic first-principles density functional theory (DFT) study focusing on the influence of hydrostatic, uniaxial, and shear strains on the thermodynamic stability and the diffusivity of Fe impurities in crystalline Si. Our calculations show that the formation energy of neutral Fe interstitials in tetrahedral interstitial sites is almost unaffected by uniform deformations of the Si crystal up to strains of 5%. In contrast, the migration barrier varies significantly with strain, especially for hydrostatic deformation. In order to determine effective diffusion coefficients for different strain states, a kinetic Monte Carlo (kMC) model was set up based on the activation energy barriers and frequency factors obtained from the DFT simulations. By using the strain dependence of the migration barrier, we examined the migration of Fe interstitials in the vicinity of perfect 1 /2 <110 > screw and 60∘ mixed dislocations, and 1 /6 <112 > 90∘ and 30∘ partial dislocations. While the strain field of the perfect screw dislocation always enhances the local Fe diffusion, the existence of tensile and compressive regions around the 60∘ mixed dislocation results in a strong anisotropic diffusion profile with significantly faster and slower diffusivities on its tensile and compressive sides. The influences of the partial dislocations are qualitatively similar to that of the 60∘ mixed dislocation.

  16. Crossover from impurity to valence band in diluted magnetic semiconductors: Role of Coulomb attraction by acceptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popescu, Florentin; Sen, Cengiz; Dagotto, Elbio R

    2007-01-01

    The crossover between an impurity band (IB) and a valence band (VB) regime as a function of the magnetic impurity concentration in a model for diluted magnetic semiconductors (DMSs) is studied systematically by taking into consideration the Coulomb attraction between the carriers and the magnetic impurities. The density of states and the ferromagnetic transition temperature of a spin-fermion model applied to DMSs are evaluated using dynamical mean-field theory and Monte Carlo (MC) calculations. It is shown that the addition of a square-well-like attractive potential can generate an IB at small enough Mn doping x for values of the p-d exchangemore » J that are not strong enough to generate one by themselves. We observe that the IB merges with the VB when x>=xc where xc is a function of J and the Coulomb strength V. Using MC simulations, we demonstrate that the range of the Coulomb attraction plays an important role. While the on-site attraction, which has been used in previous numerical simulations, effectively renormalizes J for all values of x, an unphysical result, a nearest-neighbor range attraction renormalizes J only at very low dopings, i.e., until the bound holes wave functions start to overlap. Thus, our results indicate that the Coulomb attraction can be neglected to study Mn-doped GaSb, GaAs, and GaP in the relevant doping regimes, but it should be included in the case of Mn-doped GaN, which is expected to be in the IB regime.« less

  17. Etude des performances de solveurs deterministes sur un coeur rapide a caloporteur sodium

    NASA Astrophysics Data System (ADS)

    Bay, Charlotte

    The reactors of next generation, in particular SFR model, represent a true challenge for current codes and solvers, used mainly for thermic cores. There is no guarantee that their competences could be straight adapted to fast neutron spectrum, or to major design differences. Thus it is necessary to assess the validity of solvers and their potential shortfall in the case of fast neutron reactors. As part of an internship with CEA (France), and at the instigation of EPM Nuclear Institute, this study concerns the following codes : DRAGON/DONJON, ERANOS, PARIS and APOLLO3. The precision assessment has been performed using Monte Carlo code TRIPOLI4. Only core calculation was of interest, namely numerical methods competences in precision and rapidity. Lattice code was not part of the study, that is to say nuclear data, self-shielding, or isotopic compositions. Nor was tackled burnup or time evolution effects. The study consists in two main steps : first evaluating the sensitivity of each solver to calculation parameters, and obtain its optimal calculation set ; then compare their competences in terms of precision and rapidity, by collecting usual quantities (effective multiplication factor, reaction rates map), but also more specific quantities which are crucial to the SFR design, namely control rod worth and sodium void effect. The calculation time is also a key factor. Whatever conclusion or recommendation that could be drawn from this study, they must first of all be applied within similar frameworks, that is to say small fast neutron cores with hexagonal geometry. Eventual adjustments for big cores will have to be demonstrated in developments of this study.

  18. BCA-kMC Hybrid Simulation for Hydrogen and Helium Implantation in Material under Plasma Irradiation

    NASA Astrophysics Data System (ADS)

    Kato, Shuichi; Ito, Atsushi; Sasao, Mamiko; Nakamura, Hiroaki; Wada, Motoi

    2015-09-01

    Ion implantation by plasma irradiation into materials achieves the very high concentration of impurity. The high concentration of impurity causes the deformation and the destruction of the material. This is the peculiar phenomena in the plasma-material interaction (PMI). The injection process of plasma particles are generally simulated by using the binary collision approximation (BCA) and the molecular dynamics (MD), while the diffusion of implanted atoms have been traditionally solved by the diffusion equation, in which the implanted atoms is replaced by the continuous concentration field. However, the diffusion equation has insufficient accuracy in the case of low concentration, and in the case of local high concentration such as the hydrogen blistering and the helium bubble. The above problem is overcome by kinetic Monte Carlo (kMC) which represents the diffusion of the implanted atoms as jumps on interstitial sites in a material. In this paper, we propose the new approach ``BCA-kMC hybrid simulation'' for the hydrogen and helium implantation under the plasma irradiation.

  19. The thermoelectric properties of strongly correlated systems

    NASA Astrophysics Data System (ADS)

    Cai, Jianwei

    Strongly correlated systems are among the most interesting and complicated systems in physics. Large Seebeck coefficients are found in some of these systems, which highlight the possibility for thermoelectric applications. In this thesis, we study the thermoelectric properties of these strongly correlated systems with various methods. We derived analytic formulas for the resistivity and Seebeck coefficient of the periodic Anderson model based on the dynamic mean field theory. These formulas were possible as the self energy of the single impurity Anderson model could be given by an analytic ansatz derived from experiments and numerical calculations instead of complicated numerical calculations. The results show good agreement with the experimental data of rare-earth compound in a restricted temperature range. These formulas help to understand the properties of periodic Anderson model. Based on the study of rare-earth compounds, we proposed a design for the thermoelectric meta-material. This manmade material is made of quantum dots linked by conducting linkers. The quantum dots act as the rare-earth atoms with heavier mass. We set up a model similar to the periodic Anderson model for this new material. The new model was studied with the perturbation theory for energy bands. The dynamic mean field theory with numerical renormalization group as the impurity solver was used to study the transport properties. With these studies, we confirmed the improved thermoelectric properties of the designed material.

  20. Tractable flux-driven temperature, density, and rotation profile evolution with the quasilinear gyrokinetic transport model QuaLiKiz

    NASA Astrophysics Data System (ADS)

    Citrin, J.; Bourdelle, C.; Casson, F. J.; Angioni, C.; Bonanomi, N.; Camenen, Y.; Garbet, X.; Garzotti, L.; Görler, T.; Gürcan, O.; Koechl, F.; Imbeaux, F.; Linder, O.; van de Plassche, K.; Strand, P.; Szepesi, G.; Contributors, JET

    2017-12-01

    Quasilinear turbulent transport models are a successful tool for prediction of core tokamak plasma profiles in many regimes. Their success hinges on the reproduction of local nonlinear gyrokinetic fluxes. We focus on significant progress in the quasilinear gyrokinetic transport model QuaLiKiz (Bourdelle et al 2016 Plasma Phys. Control. Fusion 58 014036), which employs an approximated solution of the mode structures to significantly speed up computation time compared to full linear gyrokinetic solvers. Optimisation of the dispersion relation solution algorithm within integrated modelling applications leads to flux calculations × {10}6-7 faster than local nonlinear simulations. This allows tractable simulation of flux-driven dynamic profile evolution including all transport channels: ion and electron heat, main particles, impurities, and momentum. Furthermore, QuaLiKiz now includes the impact of rotation and temperature anisotropy induced poloidal asymmetry on heavy impurity transport, important for W-transport applications. Application within the JETTO integrated modelling code results in 1 s of JET plasma simulation within 10 h using 10 CPUs. Simultaneous predictions of core density, temperature, and toroidal rotation profiles for both JET hybrid and baseline experiments are presented, covering both ion and electron turbulence scales. The simulations are successfully compared to measured profiles, with agreement mostly in the 5%-25% range according to standard figures of merit. QuaLiKiz is now open source and available at www.qualikiz.com.

  1. multiUQ: An intrusive uncertainty quantification tool for gas-liquid multiphase flows

    NASA Astrophysics Data System (ADS)

    Turnquist, Brian; Owkes, Mark

    2017-11-01

    Uncertainty quantification (UQ) can improve our understanding of the sensitivity of gas-liquid multiphase flows to variability about inflow conditions and fluid properties, creating a valuable tool for engineers. While non-intrusive UQ methods (e.g., Monte Carlo) are simple and robust, the cost associated with these techniques can render them unrealistic. In contrast, intrusive UQ techniques modify the governing equations by replacing deterministic variables with stochastic variables, adding complexity, but making UQ cost effective. Our numerical framework, called multiUQ, introduces an intrusive UQ approach for gas-liquid flows, leveraging a polynomial chaos expansion of the stochastic variables: density, momentum, pressure, viscosity, and surface tension. The gas-liquid interface is captured using a conservative level set approach, including a modified reinitialization equation which is robust and quadrature free. A least-squares method is leveraged to compute the stochastic interface normal and curvature needed in the continuum surface force method for surface tension. The solver is tested by applying uncertainty to one or two variables and verifying results against the Monte Carlo approach. NSF Grant #1511325.

  2. A DMFT+CTQMC Investigation of Strange Metallicity in Local Quantum Critical Scenario

    NASA Astrophysics Data System (ADS)

    Acharya, Swagata; Laad, M. S.; Taraphder, A.

    2016-10-01

    “Strange” metallicity is now a pseudonym for a novel metallic state exhibiting anomalous infra-red (branch-cut) continuum features in one- and two-particle responses. Here, we employ dynamical mean-field theory (DMFT) using low-temperature continuous-time- quantum Monte-Carlo (CTQMC) solver for an extended periodic Anderson model (EPAM) model to investigate unusual magnetic fluctuations in the strange metal. We show how extinction of Landau quasiparticles in the orbital selective Mott phase (OSMP) leads to (i) qualitative explication of strange transport features and (ii) anomalous quantum critical magnetic fluctuations due to critical liquid-like features in dynamical spin fluctuations, in excellent accord with data in some f-electron systems.

  3. Performance of quantum annealing on random Ising problems implemented using the D-Wave Two

    NASA Astrophysics Data System (ADS)

    Wang, Zhihui; Job, Joshua; Rønnow, Troels F.; Troyer, Matthias; Lidar, Daniel A.; USC Collaboration; ETH Collaboration

    2014-03-01

    Detecting a possible speedup of quantum annealing compared to classical algorithms is a pressing task in experimental adiabatic quantum computing. In this talk, we discuss the performance of the D-Wave Two quantum annealing device on Ising spin glass problems. The expected time to solution for the device to solve random instances with up to 503 spins and with specified coupling ranges is evaluated while carefully addressing the issue of statistical errors. We perform a systematic comparison of the expected time to solution between the D-Wave Two and classical stochastic solvers, specifically simulated annealing, and simulated quantum annealing based on quantum Monte Carlo, and discuss the question of speedup.

  4. Application of Analytical Quality by Design concept for bilastine and its degradation impurities determination by hydrophilic interaction liquid chromatographic method.

    PubMed

    Terzić, Jelena; Popović, Igor; Stajić, Ana; Tumpa, Anja; Jančić-Stojanović, Biljana

    2016-06-05

    This paper deals with the development of hydrophilic interaction liquid chromatographic (HILIC) method for the analysis of bilastine and its degradation impurities following Analytical Quality by Design approach. It is the first time that the method for bilastine and its impurities is proposed. The main objective was to identify the conditions where an adequate separation in minimal analysis duration could be achieved within a robust region. Critical process parameters which have the most influence on method performance were defined as acetonitrile content in the mobile phase, pH of the aqueous phase and ammonium acetate concentration in the aqueous phase. Box-Behnken design was applied for establishing a relationship between critical process parameters and critical quality attributes. The defined mathematical models and Monte Carlo simulations were used to identify the design space. Fractional factorial design was applied for experimental robustness testing and the method is validated to verify the adequacy of selected optimal conditions: the analytical column Luna(®) HILIC (100mm×4.6mm, 5μm particle size); mobile phase consisted of acetonitrile-aqueous phase (50mM ammonium acetate, pH adjusted to 5.3 with glacial acetic acid) (90.5:9.5, v/v); column temperature 30°C, mobile phase flow rate 1mLmin(-1), wavelength of detection 275nm. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Optical characterization of multi-scale morphologically complex heterogeneous media - Application to snow with soot impurities

    NASA Astrophysics Data System (ADS)

    Dai, Xiaoyu; Haussener, Sophia

    2018-02-01

    A multi-scale methodology for the radiative transfer analysis of heterogeneous media composed of morphologically-complex components on two distinct scales is presented. The methodology incorporates the exact morphology at the various scales and utilizes volume-averaging approaches with the corresponding effective properties to couple the scales. At the continuum level, the volume-averaged coupled radiative transfer equations are solved utilizing (i) effective radiative transport properties obtained by direct Monte Carlo simulations at the pore level, and (ii) averaged bulk material properties obtained at particle level by Lorenz-Mie theory or discrete dipole approximation calculations. This model is applied to a soot-contaminated snow layer, and is experimentally validated with reflectance measurements of such layers. A quantitative and decoupled understanding of the morphological effect on the radiative transport is achieved, and a significant influence of the dual-scale morphology on the macroscopic optical behavior is observed. Our results show that with a small amount of soot particles, of the order of 1ppb in volume fraction, the reduction in reflectance of a snow layer with large ice grains can reach up to 77% (at a wavelength of 0.3 μm). Soot impurities modeled as compact agglomerates yield 2-3% lower reduction of the reflectance in a thick show layer compared to snow with soot impurities modeled as chain-like agglomerates. Soot impurities modeled as equivalent spherical particles underestimate the reflectance reduction by 2-8%. This study implies that the morphology of the heterogeneities in a media significantly affects the macroscopic optical behavior and, specifically for the soot-contaminated snow, indicates the non-negligible role of soot on the absorption behavior of snow layers. It can be equally used in technical applications for the assessment and optimization of optical performance in multi-scale media.

  6. Improvement of a stability-indicating method by Quality-by-Design versus Quality-by-Testing: a case of a learning process.

    PubMed

    Hubert, C; Lebrun, P; Houari, S; Ziemons, E; Rozet, E; Hubert, Ph

    2014-01-01

    The understanding of the method is a major concern when developing a stability-indicating method and even more so when dealing with impurity assays from complex matrices. In the presented case study, a Quality-by-Design approach was applied in order to optimize a routinely used method. An analytical issue occurring at the last stage of a long-term stability study involving unexpected impurities perturbing the monitoring of characterized impurities needed to be resolved. A compliant Quality-by-Design (QbD) methodology based on a Design of Experiments (DoE) approach was evaluated within the framework of a Liquid Chromatography (LC) method. This approach allows the investigation of Critical Process Parameters (CPPs), which have an impact on Critical Quality Attributes (CQAs) and, consequently, on LC selectivity. Using polynomial regression response modeling as well as Monte Carlo simulations for error propagation, Design Space (DS) was computed in order to determine robust working conditions for the developed stability-indicating method. This QbD compliant development was conducted in two phases allowing the use of the Design Space knowledge acquired during the first phase to define the experimental domain of the second phase, which constitutes a learning process. The selected working condition was then fully validated using accuracy profiles based on statistical tolerance intervals in order to evaluate the reliability of the results generated by this LC/ESI-MS stability-indicating method. A comparison was made between the traditional Quality-by-Testing (QbT) approach and the QbD strategy, highlighting the benefit of this QbD strategy in the case of an unexpected impurities issue. On this basis, the advantages of a systematic use of the QbD methodology were discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Numerical investigation of plasma edge transport and limiter heat fluxes in Wendelstein 7-X startup plasmas with EMC3-EIRENE

    NASA Astrophysics Data System (ADS)

    Effenberg, F.; Feng, Y.; Schmitz, O.; Frerichs, H.; Bozhenkov, S. A.; Hölbe, H.; König, R.; Krychowiak, M.; Pedersen, T. Sunn; Reiter, D.; Stephey, L.; W7-X Team

    2017-03-01

    The results of a first systematic assessment of plasma edge transport processes for the limiter startup configuration at Wendelstein 7-X are presented. This includes an investigation of transport from intrinsic and externally injected impurities and their impact on the power balance and limiter heat fluxes. The fully 3D coupled plasma fluid and kinetic neutral transport Monte Carlo code EMC3-EIRENE is used. The analysis of the magnetic topology shows that the poloidally and toroidally localized limiters cause a 3D helical scrape-off layer (SOL) consisting of magnetic flux tubes of three different connection lengths L C. The transport in the helical SOL is governed by L C as topological scale length for the parallel plasma loss channel to the limiters. A clear modulation of the plasma pressure with L C is seen. The helical flux tube topology results in counter streaming sonic plasma flows. The heterogeneous SOL plasma structure yields an uneven limiter heat load distribution with localized peaking. Assuming spatially constant anomalous transport coefficients, increasing plasma density yields a reduction of the maximum peak heat loads from 12 MWm-2 to 7.5 MWm-2 and a broadening of the deposited heat fluxes. The impact of impurities on the limiter heat loads is studied by assuming intrinsic carbon impurities eroded from the limiter surfaces with a gross chemical sputtering yield of 2 % . The resulting radiative losses account for less than 10% of the input power in the power balance with marginal impact on the limiter heat loads. It is shown that a significant mitigation of peak heat loads, 40-50%, can be achieved with controlled impurity seeding with nitrogen and neon, which is a method of particular interest for the later island divertor phase.

  8. A medical image-based graphical platform -- features, applications and relevance for brachytherapy.

    PubMed

    Fonseca, Gabriel P; Reniers, Brigitte; Landry, Guillaume; White, Shane; Bellezzo, Murillo; Antunes, Paula C G; de Sales, Camila P; Welteman, Eduardo; Yoriyaz, Hélio; Verhaegen, Frank

    2014-01-01

    Brachytherapy dose calculation is commonly performed using the Task Group-No 43 Report-Updated protocol (TG-43U1) formalism. Recently, a more accurate approach has been proposed that can handle tissue composition, tissue density, body shape, applicator geometry, and dose reporting either in media or water. Some model-based dose calculation algorithms are based on Monte Carlo (MC) simulations. This work presents a software platform capable of processing medical images and treatment plans, and preparing the required input data for MC simulations. The A Medical Image-based Graphical platfOrm-Brachytherapy module (AMIGOBrachy) is a user interface, coupled to the MCNP6 MC code, for absorbed dose calculations. The AMIGOBrachy was first validated in water for a high-dose-rate (192)Ir source. Next, dose distributions were validated in uniform phantoms consisting of different materials. Finally, dose distributions were obtained in patient geometries. Results were compared against a treatment planning system including a linear Boltzmann transport equation (LBTE) solver capable of handling nonwater heterogeneities. The TG-43U1 source parameters are in good agreement with literature with more than 90% of anisotropy values within 1%. No significant dependence on the tissue composition was observed comparing MC results against an LBTE solver. Clinical cases showed differences up to 25%, when comparing MC results against TG-43U1. About 92% of the voxels exhibited dose differences lower than 2% when comparing MC results against an LBTE solver. The AMIGOBrachy can improve the accuracy of the TG-43U1 dose calculation by using a more accurate MC dose calculation algorithm. The AMIGOBrachy can be incorporated in clinical practice via a user-friendly graphical interface. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  9. Commissioning of a grid-based Boltzmann solver for cervical cancer brachytherapy treatment planning with shielded colpostats.

    PubMed

    Mikell, Justin K; Klopp, Ann H; Price, Michael; Mourtada, Firas

    2013-01-01

    We sought to commission a gynecologic shielded colpostat analytic model provided from a treatment planning system (TPS) library. We have reported retrospectively the dosimetric impact of this applicator model in a cohort of patients. A commercial TPS with a grid-based Boltzmann solver (GBBS) was commissioned for (192)Ir high-dose-rate (HDR) brachytherapy for cervical cancer with stainless steel-shielded colpostats. Verification of the colpostat analytic model was verified using a radiograph and vendor schematics. MCNPX v2.6 Monte Carlo simulations were performed to compare dose distributions around the applicator in water with the TPS GBBS dose predictions. Retrospectively, the dosimetric impact was assessed over 24 cervical cancer patients' HDR plans. Applicator (TPS ID #AL13122005) shield dimensions were within 0.4 mm of the independent shield dimensions verification. GBBS profiles in planes bisecting the cap around the applicator agreed with Monte Carlo simulations within 2% at most locations; differing screw representations resulted in differences of up to 9%. For the retrospective study, the GBBS doses differed from TG-43 as follows (mean value ± standard deviation [min, max]): International Commission on Radiation units [ICRU]rectum (-8.4 ± 2.5% [-14.1, -4.1%]), ICRUbladder (-7.2 ± 3.6% [-15.7, -2.1%]), D2cc-rectum (-6.2 ± 2.6% [-11.9, -0.8%]), D2cc-sigmoid (-5.6 ± 2.6% [-9.3, -2.0%]), and D2cc-bladder (-3.4 ± 1.9% [-7.2, -1.1%]). As brachytherapy TPSs implement advanced model-based dose calculations, the analytic applicator models stored in TPSs should be independently validated before clinical use. For this cohort, clinically meaningful differences (>5%) from TG-43 were observed. Accurate dosimetric modeling of shielded applicators may help to refine organ toxicity studies. Copyright © 2013 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  10. On the onset of void swelling in pure tungsten under neutron irradiation: An object kinetic Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Castin, N.; Bakaev, A.; Bonny, G.; Sand, A. E.; Malerba, L.; Terentyev, D.

    2017-09-01

    We propose an object kinetic Monte Carlo (OKMC) model for describing the microstructural evolution in pure tungsten under neutron irradiation. We here focus on low doses (under 1 dpa), and we neglect transmutation in first approximation. The emphasis is mainly centred on an adequate description of neutron irradiation, the subsequent introduction of primary defects, and their thermal diffusion properties. Besides grain boundaries and the dislocation network, our model includes the contribution of carbon impurities, which are shown to have a strong influence on the onset of void swelling. Our parametric study analyses the quality of our model in detail, and confronts its predictions with experimental microstructural observations with satisfactory agreement. We highlight the importance for an accurate determination of the dissolved carbon content in the tungsten matrix, and we advocate for an accurate description of atomic collision cascades, in light of the sensitivity of our results with respect to correlated recombination.

  11. Monte Carlo Calculations of Suprathermal Alpha Particles Trajectories in the Rippled Field of TFTR

    NASA Astrophysics Data System (ADS)

    Punjabi, Alkesh; Lam, Maria; Boozer, Allen

    1996-11-01

    We study the transport of suprathermal alpha particles and their energy deposition into electrons, deuterons, tritons and carbon-12 impurity in the rippled field of TFTR. The Monte Carlo code (Punjabi A., Boozer A., Lam M., Kim M., and Burke K., J. Plasma Phys.), 44, 405 (1990) developed by Punjabi and Boozer for the transport of plasma particles due to MHD modes in toroidal plasmas is used in conjunction with the SHAF code (White R. B., and Boozer A., PPPL -3094) (1995) of White. we integrate drift Hamiltonian equation of motion in non-canonical, rectangular, Boozer coordinates. The deposition of alpha energy into electrons, deuterons, tritons and C-12 particles is calculated and recorded. The effects of energy and pitch angle scattering are included. The result of this study will be presented. This work is supported by the US DOE. The assistance provided by Professors R. B. White and S. Zweben of PPPL is gratefully acknowledged.

  12. First-Principles Study on the Ferromagnetism and Curie Temperature of Mn-Doped AlX and InX (X=N, P, As, and Sb)

    NASA Astrophysics Data System (ADS)

    Sato, Kazunori; Dederichs, Peter H.; Katayama-Yoshida, Hiroshi

    2007-02-01

    We investigate the electronic structure and magnetic properties of AlN-, AlP-, AlAs-, AlSb-, InN-, InP-, InAs-, and InSb-based dilute magnetic semiconductors (DMS) with Mn impurities from first-principles. The electronic structure of DMS is calculated by using the Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) method in connection with the local density approximation (LDA) and the LDA+U method. Describing the magnetic properties by a classical Heisenberg model, effective exchange interactions are calculated by applying magnetic force theorem for two impurities embedded in the CPA medium. With the calculated exchange interactions, TC is estimated by using the mean field approximation, the random phase approximation and the Monte Carlo simulation. It is found that the p-d exchange model [Dietl et al.: Science 287 (2000) 1019] is adequate for a limited class of DMS and insufficient to describe the ferromagnetism in wide gap semiconductor based DMS such as (Ga,Mn)N and the presently investigated (Al,Mn)N and (In,Mn)N.

  13. Chaotropic salts in liquid chromatographic method development for the determination of pramipexole and its impurities following quality-by-design principles.

    PubMed

    Vemić, Ana; Rakić, Tijana; Malenović, Anđelija; Medenica, Mirjana

    2015-01-01

    The aim of this paper is to present a development of liquid chromatographic method when chaotropic salts are used as mobile phase additives following the QbD principles. The effect of critical process parameters (column chemistry, salt nature and concentration, acetonitrile content and column temperature) on the critical quality attributes (retention of the first and last eluting peak and separation of the critical peak pairs) was studied applying the design of experiments-design space methodology (DoE-DS). D-optimal design is chosen in order to simultaneously examine both categorical and numerical factors in minimal number of experiments. Two ways for the achievement of quality assurance were performed and compared. Namely, the uncertainty originating from the models was assessed by Monte Carlo simulations propagating the error equal to the variance of the model residuals and propagating the error originating from the model coefficients' calculation. The baseline separation of pramipexole and its five impurities is achieved fulfilling all the required criteria while the method validation proved its reliability. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Multi-scale modeling to relate Be surface temperatures, concentrations and molecular sputtering yields

    NASA Astrophysics Data System (ADS)

    Lasa, Ane; Safi, Elnaz; Nordlund, Kai

    2015-11-01

    Recent experiments and Molecular Dynamics (MD) simulations show erosion rates of Be exposed to deuterium (D) plasma varying with surface temperature and the correlated D concentration. Little is understood how these three parameters relate for Be surfaces, despite being essential for reliable prediction of impurity transport and plasma facing material lifetime in current (JET) and future (ITER) devices. A multi-scale exercise is presented here to relate Be surface temperatures, concentrations and sputtering yields. Kinetic Monte Carlo (MC) code MMonCa is used to estimate equilibrium D concentrations in Be at different temperatures. Then, mixed Be-D surfaces - that correspond to the KMC profiles - are generated in MD, to calculate Be-D molecular erosion yields due to D irradiation. With this new database implemented in the 3D MC impurity transport code ERO, modeling scenarios studying wall erosion, such as RF-induced enhanced limiter erosion or main wall surface temperature scans run at JET, can be revisited with higher confidence. Work supported by U.S. DOE under Contract DE-AC05-00OR22725.

  15. Ion heat transport in improved confinement MST plasmas

    NASA Astrophysics Data System (ADS)

    Xing, Zichuan; Nornberg, Mark; den Hartog, Daniel J.; Kumar, Santhosh; Anderson, Jay K.

    2016-10-01

    Ion power balance in improved confinement (PPCD) plasmas in MST is dominated by electron collisional heating balanced by charge exchange transport. Neoclassical effects on ions in the RFP are inherently small and PPCD plasmas have reduced turbulence and stochasticity. Thus PPCD plasmas provide a good starting point for a transport model developed to account for collisional equilibration between species, classical conductive energy transport, and energy loss due to charge exchange collisions. This model also allows a possible noncollisional anomalous term to be isolated for study, and correlations between residual magnetic fluctuations during PPCD plasmas and anomalous heating and transport will be investigated. Recent modeling with DEGAS2 Monte Carlo neutral simulation suggests higher core neutral temperature than previously estimated with more simplistic assumptions. However, the working model does not fully account for the electron density increase in the core during PPCD, which is higher than expected from classical particle transport, and neutral and impurity ionization. Other possible mechanisms are considered and analyzed, including more complex impurity charge-state balance and pinch effects. Work supported by the US DOE. DEGAS2 is provided by PPPL.

  16. An Overview of the NCC Spray/Monte-Carlo-PDF Computations

    NASA Technical Reports Server (NTRS)

    Raju, M. S.; Liu, Nan-Suey (Technical Monitor)

    2000-01-01

    This paper advances the state-of-the-art in spray computations with some of our recent contributions involving scalar Monte Carlo PDF (Probability Density Function), unstructured grids and parallel computing. It provides a complete overview of the scalar Monte Carlo PDF and Lagrangian spray computer codes developed for application with unstructured grids and parallel computing. Detailed comparisons for the case of a reacting non-swirling spray clearly highlight the important role that chemistry/turbulence interactions play in the modeling of reacting sprays. The results from the PDF and non-PDF methods were found to be markedly different and the PDF solution is closer to the reported experimental data. The PDF computations predict that some of the combustion occurs in a predominantly premixed-flame environment and the rest in a predominantly diffusion-flame environment. However, the non-PDF solution predicts wrongly for the combustion to occur in a vaporization-controlled regime. Near the premixed flame, the Monte Carlo particle temperature distribution shows two distinct peaks: one centered around the flame temperature and the other around the surrounding-gas temperature. Near the diffusion flame, the Monte Carlo particle temperature distribution shows a single peak. In both cases, the computed PDF's shape and strength are found to vary substantially depending upon the proximity to the flame surface. The results bring to the fore some of the deficiencies associated with the use of assumed-shape PDF methods in spray computations. Finally, we end the paper by demonstrating the computational viability of the present solution procedure for its use in 3D combustor calculations by summarizing the results of a 3D test case with periodic boundary conditions. For the 3D case, the parallel performance of all the three solvers (CFD, PDF, and spray) has been found to be good when the computations were performed on a 24-processor SGI Origin work-station.

  17. Electron swarm properties under the influence of a very strong attachment in SF6 and CF3I obtained by Monte Carlo rescaling procedures

    NASA Astrophysics Data System (ADS)

    Mirić, J.; Bošnjaković, D.; Simonović, I.; Petrović, Z. Lj; Dujko, S.

    2016-12-01

    Electron attachment often imposes practical difficulties in Monte Carlo simulations, particularly under conditions of extensive losses of seed electrons. In this paper, we discuss two rescaling procedures for Monte Carlo simulations of electron transport in strongly attaching gases: (1) discrete rescaling, and (2) continuous rescaling. The two procedures are implemented in our Monte Carlo code with an aim of analyzing electron transport processes and attachment induced phenomena in sulfur-hexafluoride (SF6) and trifluoroiodomethane (CF3I). Though calculations have been performed over the entire range of reduced electric fields E/n 0 (where n 0 is the gas number density) where experimental data are available, the emphasis is placed on the analysis below critical (electric gas breakdown) fields and under conditions when transport properties are greatly affected by electron attachment. The present calculations of electron transport data for SF6 and CF3I at low E/n 0 take into account the full extent of the influence of electron attachment and spatially selective electron losses along the profile of electron swarm and attempts to produce data that may be used to model this range of conditions. The results of Monte Carlo simulations are compared to those predicted by the publicly available two term Boltzmann solver BOLSIG+. A multitude of kinetic phenomena in electron transport has been observed and discussed using physical arguments. In particular, we discuss two important phenomena: (1) the reduction of the mean energy with increasing E/n 0 for electrons in \\text{S}{{\\text{F}}6} and (2) the occurrence of negative differential conductivity (NDC) in the bulk drift velocity only for electrons in both \\text{S}{{\\text{F}}6} and CF3I. The electron energy distribution function, spatial variations of the rate coefficient for electron attachment and average energy as well as spatial profile of the swarm are calculated and used to understand these phenomena.

  18. Kinetic Monte Carlo simulations of fluorine and vacancies concentration at the CeO2(111) surface

    NASA Astrophysics Data System (ADS)

    Mattiello, S.; Kolling, S.; Heiliger, C.

    2017-09-01

    Recently, a new identification of the experimental depressions of scanning tunnelling microscopy images on the {{CeO}}2(111) surface as fluorine impurities has been proposed in Kullgren et al (2014 Phys. Rev. Lett. 112 156102). In particular, the high immobility of the depressions seems to be in contradiction with the low diffusion barrier for the oxygen vacancies. Consequently, the oxygen vacancies concentration has to disappear. The first aim of this paper is to confirm dynamically the recent interpretation of the experimental finding. For this purpose, we investigate the competition between fluorine and oxygen vacancies using two dimensional kinetic Monte Carlo simulations (kMC) as compared to an appropriate Langmuir model. We calculate the concentration of the vacancies and of the fluorine for the surface (111) of {{CeO}}2 for a UHV condition as a function of the fluorine-oxygen mixture in the gas phase as well as of the binding energies of fluorine and oxygen. We found that at a temperature of T=573 {{K}}, at which the experimental measurements were conducted, vacancies cannot exist. This confirms the possibility of fluorine impurities in Kullgren et al (2014 Phys. Rev. Lett. 112 156102). The second aim of the present paper is to perform a first dynamical estimation of the fluorine binding energy value {E}{Fl} that allows one to describe the experimental data in Pieper et al (2012 Phys. Chem. Chem. Phys. 14 15361). Using 2D-kMC simulations, we found {E}{Fl}\\in [-5.53,-5.27] {eV} which can be used for comparison to density functional theory calculations in further works.

  19. Point-Defect Nature of the Ultraviolet Absorption Band in AlN

    NASA Astrophysics Data System (ADS)

    Alden, D.; Harris, J. S.; Bryan, Z.; Baker, J. N.; Reddy, P.; Mita, S.; Callsen, G.; Hoffmann, A.; Irving, D. L.; Collazo, R.; Sitar, Z.

    2018-05-01

    We present an approach where point defects and defect complexes are identified using power-dependent photoluminescence excitation spectroscopy, impurity data from SIMS, and density-functional-theory (DFT)-based calculations accounting for the total charge balance in the crystal. Employing the capabilities of such an experimental computational approach, in this work, the ultraviolet-C absorption band at 4.7 eV, as well as the 2.7- and 3.9-eV luminescence bands in AlN single crystals grown via physical vapor transport (PVT) are studied in detail. Photoluminescence excitation spectroscopy measurements demonstrate the relationship between the defect luminescent bands centered at 3.9 and 2.7 eV to the commonly observed absorption band centered at 4.7 eV. Accordingly, the thermodynamic transition energy for the absorption band at 4.7 eV and the luminescence band at 3.9 eV is estimated at 4.2 eV, in agreement with the thermodynamic transition energy for the CN- point defect. Finally, the 2.7-eV PL band is the result of a donor-acceptor pair transition between the VN and CN point defects since nitrogen vacancies are predicted to be present in the crystal in concentrations similar to carbon-employing charge-balance-constrained DFT calculations. Power-dependent photoluminescence measurements reveal the presence of the deep donor state with a thermodynamic transition energy of 5.0 eV, which we hypothesize to be nitrogen vacancies in agreement with predictions based on theory. The charge state, concentration, and type of impurities in the crystal are calculated considering a fixed amount of impurities and using a DFT-based defect solver, which considers their respective formation energies and the total charge balance in the crystal. The presented results show that nitrogen vacancies are the most likely candidate for the deep donor state involved in the donor-acceptor pair transition with peak emission at 2.7 eV for the conditions relevant to PVT growth.

  20. Unified Numerical Solver for Device Metastabilities in CdTe Thin-Film PV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasileska, Dragica

    Thin-film modules of all technologies often suffer from performance degradation over time. Some of the performance changes are reversible and some are not, which makes deployment, testing, and energy-yield prediction more challenging. Manufacturers de-vote significant empirical efforts to study these phenomena and to improve semiconduc-tor device stability. Still, understanding the underlying reasons of these instabilities re-mains clouded due to the lack of ability to characterize materials at atomistic levels and the lack of interpretation from the most fundamental material science. The most com-monly alleged causes of metastability in CdTe device, such as “migration of Cu,” have been investigated rigorously overmore » the past fifteen years. Still, the discussion often ended prematurely with stating observed correlations between stress conditions and changes in atomic profiles of impurities or CV doping concentration. Multiple hypotheses sug-gesting degradation of CdTe solar cell devices due to interaction and evolution of point defects and complexes were proposed, and none of them received strong theoretical or experimental confirmation. It should be noted that atomic impurity profiles in CdTe pro-vide very little intelligence on active doping concentrations. The same elements could form different energy states, which could be either donors or acceptors, depending on their position in crystalline lattice. Defects interact with other extrinsic and intrinsic de-fects; for example, changing the state of an impurity from an interstitial donor to a sub-stitutional acceptor often is accompanied by generation of a compensating intrinsic in-terstitial donor defect. Moreover, all defects, intrinsic and extrinsic, interact with the elec-trical potential and free carriers so that charged defects may drift in the electric field and the local electrical potential affects the formation energy of the point defects. Such complexity of interactions in CdTe makes understanding of temporal changes in device performance even more challenging and a closed solution that can treat the entire sys-tem and its interactions is required.« less

  1. Introduction of Parallel GPGPU Acceleration Algorithms for the Solution of Radiative Transfer

    NASA Technical Reports Server (NTRS)

    Godoy, William F.; Liu, Xu

    2011-01-01

    General-purpose computing on graphics processing units (GPGPU) is a recent technique that allows the parallel graphics processing unit (GPU) to accelerate calculations performed sequentially by the central processing unit (CPU). To introduce GPGPU to radiative transfer, the Gauss-Seidel solution of the well-known expressions for 1-D and 3-D homogeneous, isotropic media is selected as a test case. Different algorithms are introduced to balance memory and GPU-CPU communication, critical aspects of GPGPU. Results show that speed-ups of one to two orders of magnitude are obtained when compared to sequential solutions. The underlying value of GPGPU is its potential extension in radiative solvers (e.g., Monte Carlo, discrete ordinates) at a minimal learning curve.

  2. Exact calculation of the time convolutionless master equation generator: Application to the nonequilibrium resonant level model

    NASA Astrophysics Data System (ADS)

    Kidon, Lyran; Wilner, Eli Y.; Rabani, Eran

    2015-12-01

    The generalized quantum master equation provides a powerful tool to describe the dynamics in quantum impurity models driven away from equilibrium. Two complementary approaches, one based on Nakajima-Zwanzig-Mori time-convolution (TC) and the other on the Tokuyama-Mori time-convolutionless (TCL) formulations provide a starting point to describe the time-evolution of the reduced density matrix. A key in both approaches is to obtain the so called "memory kernel" or "generator," going beyond second or fourth order perturbation techniques. While numerically converged techniques are available for the TC memory kernel, the canonical approach to obtain the TCL generator is based on inverting a super-operator in the full Hilbert space, which is difficult to perform and thus, nearly all applications of the TCL approach rely on a perturbative scheme of some sort. Here, the TCL generator is expressed using a reduced system propagator which can be obtained from system observables alone and requires the calculation of super-operators and their inverse in the reduced Hilbert space rather than the full one. This makes the formulation amenable to quantum impurity solvers or to diagrammatic techniques, such as the nonequilibrium Green's function. We implement the TCL approach for the resonant level model driven away from equilibrium and compare the time scales for the decay of the generator with that of the memory kernel in the TC approach. Furthermore, the effects of temperature, source-drain bias, and gate potential on the TCL/TC generators are discussed.

  3. The study of PDF turbulence models in combustion

    NASA Technical Reports Server (NTRS)

    Hsu, Andrew T.

    1991-01-01

    In combustion computations, it is known that the predictions of chemical reaction rates are poor if conventional turbulence models are used. The probability density function (pdf) method seems to be the only alternative that uses local instantaneous values of the temperature, density, etc., in predicting chemical reaction rates, and thus is the only viable approach for more accurate turbulent combustion calculations. The fact that the pdf equation has a very large dimensionality renders finite difference schemes extremely demanding on computer memories and thus impractical. A logical alternative is the Monte Carlo scheme. Since CFD has a certain maturity as well as acceptance, it seems that the use of a combined CFD and Monte Carlo scheme is more beneficial. Therefore, a scheme is chosen that uses a conventional CFD flow solver in calculating the flow field properties such as velocity, pressure, etc., while the chemical reaction part is solved using a Monte Carlo scheme. The discharge of a heated turbulent plane jet into quiescent air was studied. Experimental data for this problem shows that when the temperature difference between the jet and the surrounding air is small, buoyancy effect can be neglected and the temperature can be treated as a passive scalar. The fact that jet flows have a self-similar solution lends convenience in the modeling study. Futhermore, the existence of experimental data for turbulent shear stress and temperature variance make the case ideal for the testing of pdf models wherein these values can be directly evaluated.

  4. Numerically exact full counting statistics of the nonequilibrium Anderson impurity model

    NASA Astrophysics Data System (ADS)

    Ridley, Michael; Singh, Viveka N.; Gull, Emanuel; Cohen, Guy

    2018-03-01

    The time-dependent full counting statistics of charge transport through an interacting quantum junction is evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions on the time-dependent charge cumulants, first-passage time distributions, and n -electron transfer distributions. We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by correlations between single-electron transfer events.

  5. Numerically exact full counting statistics of the nonequilibrium Anderson impurity model

    DOE PAGES

    Ridley, Michael; Singh, Viveka N.; Gull, Emanuel; ...

    2018-03-06

    The time-dependent full counting statistics of charge transport through an interacting quantum junction is evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions on the time-dependent charge cumulants, first-passage time distributions, and n-electron transfer distributions. We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by correlations between single-electron transfer events

  6. Numerically exact full counting statistics of the nonequilibrium Anderson impurity model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridley, Michael; Singh, Viveka N.; Gull, Emanuel

    The time-dependent full counting statistics of charge transport through an interacting quantum junction is evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions on the time-dependent charge cumulants, first-passage time distributions, and n-electron transfer distributions. We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by correlations between single-electron transfer events

  7. Spectral modeling of radiation in combustion systems

    NASA Astrophysics Data System (ADS)

    Pal, Gopalendu

    Radiation calculations are important in combustion due to the high temperatures encountered but has not been studied in sufficient detail in the case of turbulent flames. Radiation calculations for such problems require accurate, robust, and computationally efficient models for the solution of radiative transfer equation (RTE), and spectral properties of radiation. One more layer of complexity is added in predicting the overall heat transfer in turbulent combustion systems due to nonlinear interactions between turbulent fluctuations and radiation. The present work is aimed at the development of finite volume-based high-accuracy thermal radiation modeling, including spectral radiation properties in order to accurately capture turbulence-radiation interactions (TRI) and predict heat transfer in turbulent combustion systems correctly and efficiently. The turbulent fluctuations of temperature and chemical species concentrations have strong effects on spectral radiative intensities, and TRI create a closure problem when the governing partial differential equations are averaged. Recently, several approaches have been proposed to take TRI into account. Among these attempts the most promising approaches are the probability density function (PDF) methods, which can treat nonlinear coupling between turbulence and radiative emission exactly, i.e., "emission TRI". The basic idea of the PDF method is to treat physical variables as random variables and to solve the PDF transport equation stochastically. The actual reacting flow field is represented by a large number of discrete stochastic particles each carrying their own random variable values and evolving with time. The mean value of any function of those random variables, such as the chemical source term, can be evaluated exactly by taking the ensemble average of particles. The local emission term belongs to this class and thus, can be evaluated directly and exactly from particle ensembles. However, the local absorption term involves interactions between the local particle and energy emitted by all other particles and, hence, cannot be obtained from particle ensembles directly. To close the nonlinear coupling between turbulence and absorption, i.e., "absorption TRI", an optically thin fluctuation approximation can be applied to virtually all combustion problems and obtain acceptable accuracy. In the present study a composition-PDF method is applied, in which only the temperature and the species concentrations are treated as random variables. A closely coupled hybrid finite-volume/Monte Carlo scheme is adopted, in which the Monte Carlo method is used to solve the composition-PDF for chemical reactions and the finite volume method is used to solve for the flow field and radiation. Spherical harmonics method-based finite volume solvers (P-1 and P-3) are developed using the data structures of the high fidelity open-source code flow software OpenFOAM. Spectral radiative properties of the participating medium are modeled using full-spectrum k-distribution methods. Advancements of basic k-distribution methods are performed for nongray nonhomogeneous gas- and particulate-phase (soot, fuel droplets, ash, etc.) participating media using multi-scale and multi-group based approaches. These methods achieve close-to benchmark line-by-line (LBL) accuracy in strongly inhomogeneous media at a tiny fraction of LBL's computational cost. A portable spectral module is developed, which includes all the basic to advanced k-distribution methods along with the precompiled accurate and compact k-distribution databases. The P-1 /P-3 RTE solver coupled with the spectral module is used in conjunction with the combined Reynolds-averaged Navier-Stokes (RANS) and composition-PDF-based turbulence-chemistry solver to investigate TRI in multiphase turbulent combustion systems. The combustion solvers developed in this study is employed to simulate several turbulent jet flames, such as Sandia Flame D, and artificial nonsooting and sooting flames derived from Flame D. The effects of combustion chemistry, radiation and TRI on total heat transfer and pollutant (such as NO x) generation are studied for the above flames. The accuracy of the overall combustion solver is assessed by comparing it with the experimental data for Flame D. Comparison of the accuracy and the computational cost among various spectral models and RTE solvers is extensively done on the artificial flames derived from Flame D to demonstrate the necessity of accurate modeling of radiation in combustion problems.

  8. A hybrid method with deviational particles for spatial inhomogeneous plasma

    NASA Astrophysics Data System (ADS)

    Yan, Bokai

    2016-03-01

    In this work we propose a Hybrid method with Deviational Particles (HDP) for a plasma modeled by the inhomogeneous Vlasov-Poisson-Landau system. We split the distribution into a Maxwellian part evolved by a grid based fluid solver and a deviation part simulated by numerical particles. These particles, named deviational particles, could be both positive and negative. We combine the Monte Carlo method proposed in [31], a Particle in Cell method and a Macro-Micro decomposition method [3] to design an efficient hybrid method. Furthermore, coarse particles are employed to accelerate the simulation. A particle resampling technique on both deviational particles and coarse particles is also investigated and improved. This method is applicable in all regimes and significantly more efficient compared to a PIC-DSMC method near the fluid regime.

  9. TRIQS: A toolbox for research on interacting quantum systems

    NASA Astrophysics Data System (ADS)

    Parcollet, Olivier; Ferrero, Michel; Ayral, Thomas; Hafermann, Hartmut; Krivenko, Igor; Messio, Laura; Seth, Priyanka

    2015-11-01

    We present the TRIQS library, a Toolbox for Research on Interacting Quantum Systems. It is an open-source, computational physics library providing a framework for the quick development of applications in the field of many-body quantum physics, and in particular, strongly-correlated electronic systems. It supplies components to develop codes in a modern, concise and efficient way: e.g. Green's function containers, a generic Monte Carlo class, and simple interfaces to HDF5. TRIQS is a C++/Python library that can be used from either language. It is distributed under the GNU General Public License (GPLv3). State-of-the-art applications based on the library, such as modern quantum many-body solvers and interfaces between density-functional-theory codes and dynamical mean-field theory (DMFT) codes are distributed along with it.

  10. Full Core TREAT Kinetics Demonstration Using Rattlesnake/BISON Coupling Within MAMMOTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortensi, Javier; DeHart, Mark D.; Gleicher, Frederick N.

    2015-08-01

    This report summarizes key aspects of research in evaluation of modeling needs for TREAT transient simulation. Using a measured TREAT critical measurement and a transient for a small, experimentally simplified core, Rattlesnake and MAMMOTH simulations are performed building from simple infinite media to a full core model. Cross sections processing methods are evaluated, various homogenization approaches are assessed and the neutronic behavior of the core studied to determine key modeling aspects. The simulation of the minimum critical core with the diffusion solver shows very good agreement with the reference Monte Carlo simulation and the experiment. The full core transient simulationmore » with thermal feedback shows a significantly lower power peak compared to the documented experimental measurement, which is not unexpected in the early stages of model development.« less

  11. Temporal parallelization of edge plasma simulations using the parareal algorithm and the SOLPS code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samaddar, Debasmita; Coster, D. P.; Bonnin, X.

    We show that numerical modelling of edge plasma physics may be successfully parallelized in time. The parareal algorithm has been employed for this purpose and the SOLPS code package coupling the B2.5 finite-volume fluid plasma solver with the kinetic Monte-Carlo neutral code Eirene has been used as a test bed. The complex dynamics of the plasma and neutrals in the scrape-off layer (SOL) region makes this a unique application. It is demonstrated that a significant computational gain (more than an order of magnitude) may be obtained with this technique. The use of the IPS framework for event-based parareal implementation optimizesmore » resource utilization and has been shown to significantly contribute to the computational gain.« less

  12. Temporal parallelization of edge plasma simulations using the parareal algorithm and the SOLPS code

    DOE PAGES

    Samaddar, Debasmita; Coster, D. P.; Bonnin, X.; ...

    2017-07-31

    We show that numerical modelling of edge plasma physics may be successfully parallelized in time. The parareal algorithm has been employed for this purpose and the SOLPS code package coupling the B2.5 finite-volume fluid plasma solver with the kinetic Monte-Carlo neutral code Eirene has been used as a test bed. The complex dynamics of the plasma and neutrals in the scrape-off layer (SOL) region makes this a unique application. It is demonstrated that a significant computational gain (more than an order of magnitude) may be obtained with this technique. The use of the IPS framework for event-based parareal implementation optimizesmore » resource utilization and has been shown to significantly contribute to the computational gain.« less

  13. The effects of particle recycling on the divertor plasma: A particle-in-cell with Monte Carlo collision simulation

    NASA Astrophysics Data System (ADS)

    Chang, Mingyu; Sang, Chaofeng; Sun, Zhenyue; Hu, Wanpeng; Wang, Dezhen

    2018-05-01

    A Particle-In-Cell (PIC) with Monte Carlo Collision (MCC) model is applied to study the effects of particle recycling on divertor plasma in the present work. The simulation domain is the scrape-off layer of the tokamak in one-dimension along the magnetic field line. At the divertor plate, the reflected deuterium atoms (D) and thermally released deuterium molecules (D2) are considered. The collisions between the plasma particles (e and D+) and recycled neutral particles (D and D2) are described by the MCC method. It is found that the recycled neutral particles have a great impact on divertor plasma. The effects of different collisions on the plasma are simulated and discussed. Moreover, the impacts of target materials on the plasma are simulated by comparing the divertor with Carbon (C) and Tungsten (W) targets. The simulation results show that the energy and momentum losses of the C target are larger than those of the W target in the divertor region even without considering the impurity particles, whereas the W target has a more remarkable influence on the core plasma.

  14. A comparative study of transport properties of monolayer graphene and AlGaN-GaN heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozdemir, M. D.; Atasever, O.; Ozdemir, B.

    2015-07-15

    The electronic transport properties of monolayer graphene are presented with an Ensemble Monte Carlo method where a rejection technique is used to account for the occupancy of the final states after scattering. Acoustic and optic phonon scatterings are considered for intrinsic graphene and in addition, ionized impurity and surface roughness scatterings are considered for the case of dirty graphene. The effect of screening is considered in the ionized impurity scattering of electrons. The time dependence of drift velocity of carriers is obtained where overshoot and undershoot effects are observed for certain values of applied field and material parameters for intrinsicmore » graphene. The field dependence of drift velocity of carriers showed negative differential resistance and disappeared as acoustic scattering becomes dominant for intrinsic graphene. The variation of electron mobility with temperature is calculated for intrinsic (suspended) and dirty monolayer graphene sheets separately and they are compared. These are also compared with the mobility of two dimensional electrons at an AlGaN/GaN heterostructure. It is observed that interface roughness may become very effective in limiting the mobility of electrons in graphene.« less

  15. A Comparative Study of Randomized Constraint Solvers for Random-Symbolic Testing

    NASA Technical Reports Server (NTRS)

    Takaki, Mitsuo; Cavalcanti, Diego; Gheyi, Rohit; Iyoda, Juliano; dAmorim, Marcelo; Prudencio, Ricardo

    2009-01-01

    The complexity of constraints is a major obstacle for constraint-based software verification. Automatic constraint solvers are fundamentally incomplete: input constraints often build on some undecidable theory or some theory the solver does not support. This paper proposes and evaluates several randomized solvers to address this issue. We compare the effectiveness of a symbolic solver (CVC3), a random solver, three hybrid solvers (i.e., mix of random and symbolic), and two heuristic search solvers. We evaluate the solvers on two benchmarks: one consisting of manually generated constraints and another generated with a concolic execution of 8 subjects. In addition to fully decidable constraints, the benchmarks include constraints with non-linear integer arithmetic, integer modulo and division, bitwise arithmetic, and floating-point arithmetic. As expected symbolic solving (in particular, CVC3) subsumes the other solvers for the concolic execution of subjects that only generate decidable constraints. For the remaining subjects the solvers are complementary.

  16. Validity of the local approximation in iron pnictides and chalcogenides

    DOE PAGES

    Sémon, Patrick; Haule, Kristjan; Kotliar, Gabriel

    2017-05-08

    We introduce a methodology to treat different degrees of freedom at different levels of approximation. We use cluster DMFT (dynamical mean field theory) for the t 2g electrons and single site DMFT for the e g electrons to study the normal state of the iron pnictides and chalcogenides. Furthermore, in the regime of moderate mass renormalizations, the self-energy is very local, justifying the success of single site DMFT for these materials and for other Hunds metals. Here we solve the corresponding impurity model with CTQMC (continuous time quantum Monte Carlo) and find that the minus sign problem is not severemore » in regimes of moderate mass renormalization.« less

  17. Efficient three-dimensional Poisson solvers in open rectangular conducting pipe

    NASA Astrophysics Data System (ADS)

    Qiang, Ji

    2016-06-01

    Three-dimensional (3D) Poisson solver plays an important role in the study of space-charge effects on charged particle beam dynamics in particle accelerators. In this paper, we propose three new 3D Poisson solvers for a charged particle beam in an open rectangular conducting pipe. These three solvers include a spectral integrated Green function (IGF) solver, a 3D spectral solver, and a 3D integrated Green function solver. These solvers effectively handle the longitudinal open boundary condition using a finite computational domain that contains the beam itself. This saves the computational cost of using an extra larger longitudinal domain in order to set up an appropriate finite boundary condition. Using an integrated Green function also avoids the need to resolve rapid variation of the Green function inside the beam. The numerical operational cost of the spectral IGF solver and the 3D IGF solver scales as O(N log(N)) , where N is the number of grid points. The cost of the 3D spectral solver scales as O(Nn N) , where Nn is the maximum longitudinal mode number. We compare these three solvers using several numerical examples and discuss the advantageous regime of each solver in the physical application.

  18. Exact calculation of the time convolutionless master equation generator: Application to the nonequilibrium resonant level model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kidon, Lyran; The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978; Wilner, Eli Y.

    2015-12-21

    The generalized quantum master equation provides a powerful tool to describe the dynamics in quantum impurity models driven away from equilibrium. Two complementary approaches, one based on Nakajima–Zwanzig–Mori time-convolution (TC) and the other on the Tokuyama–Mori time-convolutionless (TCL) formulations provide a starting point to describe the time-evolution of the reduced density matrix. A key in both approaches is to obtain the so called “memory kernel” or “generator,” going beyond second or fourth order perturbation techniques. While numerically converged techniques are available for the TC memory kernel, the canonical approach to obtain the TCL generator is based on inverting a super-operatormore » in the full Hilbert space, which is difficult to perform and thus, nearly all applications of the TCL approach rely on a perturbative scheme of some sort. Here, the TCL generator is expressed using a reduced system propagator which can be obtained from system observables alone and requires the calculation of super-operators and their inverse in the reduced Hilbert space rather than the full one. This makes the formulation amenable to quantum impurity solvers or to diagrammatic techniques, such as the nonequilibrium Green’s function. We implement the TCL approach for the resonant level model driven away from equilibrium and compare the time scales for the decay of the generator with that of the memory kernel in the TC approach. Furthermore, the effects of temperature, source-drain bias, and gate potential on the TCL/TC generators are discussed.« less

  19. Examples of Linking Codes Within GeoFramework

    NASA Astrophysics Data System (ADS)

    Tan, E.; Choi, E.; Thoutireddy, P.; Aivazis, M.; Lavier, L.; Quenette, S.; Gurnis, M.

    2003-12-01

    Geological processes usually encompass a broad spectrum of length and time scales. Traditionally, a modeling code (solver) is written to solve a problem with specific length and time scales in mind. The utility of the solver beyond the designated purpose is usually limited. Furthermore, two distinct solvers, even if each can solve complementary parts of a new problem, are difficult to link together to solve the problem as a whole. For example, Lagrangian deformation model with visco-elastoplastic crust is used to study deformation near plate boundary. Ideally, the driving force of the deformation should be derived from underlying mantle convection, and it requires linking the Lagrangian deformation model with a Eulerian mantle convection model. As our understanding of geological processes evolves, the need of integrated modeling codes, which should reuse existing codes as much as possible, begins to surface. GeoFramework project addresses this need by developing a suite of reusable and re-combinable tools for the Earth science community. GeoFramework is based on and extends Pyre, a Python-based modeling framework, recently developed to link solid (Lagrangian) and fluid (Eulerian) models, as well as mesh generators, visualization packages, and databases, with one another for engineering applications. Under the framework, a solver is aware of the existence of other solvers and can interact with each other via exchanging information across adjacent boundary. A solver needs to conform a standard interface and provide its own implementation for exchanging boundary information. The framework also provides facilities to control the coordination between interacting solvers. We will show an example of linking two solvers within GeoFramework. CitcomS is a finite element code which solves for thermal convection within a 3D spherical shell. CitcomS can solve for problems either within a full spherical (global) domain or a restricted (regional) domain of a full sphere by using different meshers. We can embed a regional CitcomS solver within a global CitcomS solver. We not that linking instances of the same solver is conceptually equivalent to linking to different solvers. The global solver has a coarser grid and a longer stable time step than the regional solver. Therefore, a global-solver time step consists of several regional-solver time steps. The time-marching scheme is described below. First, the global solver is advanced one global-solver time step. Then, the regional solver is advanced for several regional-solver time steps until it catches up global solver. Within each regional-solver time step, the velocity field of the global solver is interpolated in time and then is imposed to the regional solver as boundary conditions. Finally, the temperature field of the regional solver is extrapolated in space and is fed back to the global. These two solvers are linked and synchronized by the time-marching scheme. An effort to embed a visco-elastoplastic representation of the crust within viscous mantle flow is underway.

  20. Comparing direct and iterative equation solvers in a large structural analysis software system

    NASA Technical Reports Server (NTRS)

    Poole, E. L.

    1991-01-01

    Two direct Choleski equation solvers and two iterative preconditioned conjugate gradient (PCG) equation solvers used in a large structural analysis software system are described. The two direct solvers are implementations of the Choleski method for variable-band matrix storage and sparse matrix storage. The two iterative PCG solvers include the Jacobi conjugate gradient method and an incomplete Choleski conjugate gradient method. The performance of the direct and iterative solvers is compared by solving several representative structural analysis problems. Some key factors affecting the performance of the iterative solvers relative to the direct solvers are identified.

  1. Recommended direct simulation Monte Carlo collision model parameters for modeling ionized air transport processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swaminathan-Gopalan, Krishnan; Stephani, Kelly A., E-mail: ksteph@illinois.edu

    2016-02-15

    A systematic approach for calibrating the direct simulation Monte Carlo (DSMC) collision model parameters to achieve consistency in the transport processes is presented. The DSMC collision cross section model parameters are calibrated for high temperature atmospheric conditions by matching the collision integrals from DSMC against ab initio based collision integrals that are currently employed in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and Data Parallel Line Relaxation (DPLR) high temperature computational fluid dynamics solvers. The DSMC parameter values are computed for the widely used Variable Hard Sphere (VHS) and the Variable Soft Sphere (VSS) models using the collision-specific pairing approach.more » The recommended best-fit VHS/VSS parameter values are provided over a temperature range of 1000-20 000 K for a thirteen-species ionized air mixture. Use of the VSS model is necessary to achieve consistency in transport processes of ionized gases. The agreement of the VSS model transport properties with the transport properties as determined by the ab initio collision integral fits was found to be within 6% in the entire temperature range, regardless of the composition of the mixture. The recommended model parameter values can be readily applied to any gas mixture involving binary collisional interactions between the chemical species presented for the specified temperature range.« less

  2. Hybrid parallel code acceleration methods in full-core reactor physics calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courau, T.; Plagne, L.; Ponicot, A.

    2012-07-01

    When dealing with nuclear reactor calculation schemes, the need for three dimensional (3D) transport-based reference solutions is essential for both validation and optimization purposes. Considering a benchmark problem, this work investigates the potential of discrete ordinates (Sn) transport methods applied to 3D pressurized water reactor (PWR) full-core calculations. First, the benchmark problem is described. It involves a pin-by-pin description of a 3D PWR first core, and uses a 8-group cross-section library prepared with the DRAGON cell code. Then, a convergence analysis is performed using the PENTRAN parallel Sn Cartesian code. It discusses the spatial refinement and the associated angular quadraturemore » required to properly describe the problem physics. It also shows that initializing the Sn solution with the EDF SPN solver COCAGNE reduces the number of iterations required to converge by nearly a factor of 6. Using a best estimate model, PENTRAN results are then compared to multigroup Monte Carlo results obtained with the MCNP5 code. Good consistency is observed between the two methods (Sn and Monte Carlo), with discrepancies that are less than 25 pcm for the k{sub eff}, and less than 2.1% and 1.6% for the flux at the pin-cell level and for the pin-power distribution, respectively. (authors)« less

  3. DSMC simulations of vapor transport toward development of the lithium vapor box divertor concept

    NASA Astrophysics Data System (ADS)

    Jagoe, Christopher; Schwartz, Jacob; Goldston, Robert

    2016-10-01

    The lithium vapor divertor box concept attempts to achieve volumetric dissipation of the high heat efflux from a fusion power system. The vapor extracts the heat of the incoming plasma by ionization and radiation, while remaining localized in the vapor box due to differential pumping based on rapid condensation. Preliminary calculations with lithium vapor at densities appropriate for an NSTX-U-scale machine give Knudsen numbers between 0.01 and 1, outside both the range of continuum fluid dynamics and of collisionless Monte Carlo. The direct-simulation Monte Carlo (DSMC) method, however, can simulate rarefied gas flows in this regime. Using the solver contained in the OpenFOAM package, pressure-driven flows of water vapor will be analyzed. The use of water vapor in the relevant range of Knudsen number allows for a flexible similarity experiment to verify the reliability of the code before moving to tests with lithium. The simulation geometry consists of chains of boxes on a temperature gradient, connected by slots with widths that are a representative fraction of the dimensions of the box. We expect choked flow, sonic shocks, and order-of-magnitude pressure and density drops from box to box, but this expectation will be tested in the simulation and then experiment. This work is supported by the Princeton Environmental Institute.

  4. Using MCBEND for neutron or gamma-ray deterministic calculations

    NASA Astrophysics Data System (ADS)

    Geoff, Dobson; Adam, Bird; Brendan, Tollit; Paul, Smith

    2017-09-01

    MCBEND 11 is the latest version of the general radiation transport Monte Carlo code from AMEC Foster Wheeler's ANSWERS® Software Service. MCBEND is well established in the UK shielding community for radiation shielding and dosimetry assessments. MCBEND supports a number of acceleration techniques, for example the use of an importance map in conjunction with Splitting/Russian Roulette. MCBEND has a well established automated tool to generate this importance map, commonly referred to as the MAGIC module using a diffusion adjoint solution. This method is fully integrated with the MCBEND geometry and material specification, and can easily be run as part of a normal MCBEND calculation. An often overlooked feature of MCBEND is the ability to use this method for forward scoping calculations, which can be run as a very quick deterministic method. Additionally, the development of the Visual Workshop environment for results display provides new capabilities for the use of the forward calculation as a productivity tool. In this paper, we illustrate the use of the combination of the old and new in order to provide an enhanced analysis capability. We also explore the use of more advanced deterministic methods for scoping calculations used in conjunction with MCBEND, with a view to providing a suite of methods to accompany the main Monte Carlo solver.

  5. Comparisons of sets of electron-neutral scattering cross sections and calculated swarm parameters in Kr and Xe

    NASA Astrophysics Data System (ADS)

    Bordage, M. C.; Hagelaar, G. J. M.; Pitchford, L. C.; Biagi, S. F.; Puech, V.

    2011-10-01

    Xenon is used in a number of application areas ranging from light sources to x-ray detectors for imaging in medicine, border security and high-energy particle physics. There is a correspondingly large body of data available for electron scattering cross sections and swarm parameters in Xe, whereas data for Kr are more limited. In this communication we show intercomparisons of the cross section sets in Xe and Kr presently available on the LXCat site. Swarm parameters calculated using these cross sections sets are compared with experimental data, also available on the LXCat site. As was found for Ar, diffusion coefficients calculated using these cross section data in a 2-term Boltzmann solver are higher than Monte Carlo results by about 30% over a range of E/N from 1 to 100 Td. We find otherwise good agreement in Xe between 2-term and Monte Carlo results and between measured and calculated values of electron mobility, ionization rates and light emission (dimer) at atmospheric pressure. The available cross section data in Kr yield swarm parameters in agreement with the limited experimental data. The cross section compilations and measured swarm parameters used in this work are available on-line at www.lxcat.laplace. univ-tlse.fr.

  6. Numerical methods for the stochastic Landau-Lifshitz Navier-Stokes equations.

    PubMed

    Bell, John B; Garcia, Alejandro L; Williams, Sarah A

    2007-07-01

    The Landau-Lifshitz Navier-Stokes (LLNS) equations incorporate thermal fluctuations into macroscopic hydrodynamics by using stochastic fluxes. This paper examines explicit Eulerian discretizations of the full LLNS equations. Several computational fluid dynamics approaches are considered (including MacCormack's two-step Lax-Wendroff scheme and the piecewise parabolic method) and are found to give good results for the variance of momentum fluctuations. However, neither of these schemes accurately reproduces the fluctuations in energy or density. We introduce a conservative centered scheme with a third-order Runge-Kutta temporal integrator that does accurately produce fluctuations in density, energy, and momentum. A variety of numerical tests, including the random walk of a standing shock wave, are considered and results from the stochastic LLNS solver are compared with theory, when available, and with molecular simulations using a direct simulation Monte Carlo algorithm.

  7. Low-energy Model for Strongly Correlated Oxides

    NASA Astrophysics Data System (ADS)

    Liu, Shiu

    We provide a detailed derivation of the low-energy model for site-diluted strongly correlated oxides, an example being Zn-diluted La2CuO 4, in the limit of low doping together with a study of the ground-state properties of that model. The generally complicated Hamiltonian on the energy scale of the most relevant atomic orbitals is systematically downfolded to an effective model containing only spin-spin interactions using several techniques. In our study, beginning with the site-diluted three-band Hubbard model for La2ZnxCu(1- x)O4, we first determine the hybridized electronic states of CuO4 and ZnO4 plaquettes within the CuO2 planes utilizing Wannier-orthogonalization of oxygen orbitals and cell-perturbation of the Hamiltonian of each plaquett. Qualitatively, we find that the hybridization of zinc and oxygen orbitals can result in an impurity state with the energy epsilon, which is lower than the effective Hubbard gap U. Then we apply canonical transformation in the limit of the effective hopping integral t << epsilon, U, to obtain the low-energy, spin-only Hamiltonian, which includes terms of the order t2/U, t4/epsilon3, and t 4/Uepsilon2. In other words, besides the usual diluted nearest-neighbor superexchange J-terms of order t2/U, the low-energy model contains impurity-mediated, further-neighbor frustrating interactions among the Cu spins surrounding Zn-sites in an otherwise unfrustrated antiferromagnetic background. These terms, denoted as J'Zn and J''Zn , are of order t4/epsilon3 and can be substantial when epsilon ˜ U/2, the latter value corresponding to the realistic CuO2 parameters. The other further-neighbor Cu spin interactions are of order t 4/U3, which are neglected in both pure and diluted systems, because they are much lesser than J'Zn and J''Zn and independent of impurity concentration. In order to verify this spin-only model, we subsequently apply the T-matrix approach to study the effect of impurities on the antiferromagnetic order parameter. Previous theoretical T-matrix and quantum Monte Carlo (QMC) studies, which include only the dilution effect of impurities, show a large discrepancy with experimental neutron scattering and nuclear quadrupole resonance (NQR) data in the doping dependence of the staggered magnetization at low doping. We demonstrate that this discrepancy is eliminated by including zinc orbitals in the three-band Hubbard model and by including impurity-induced frustrations into the effective spin model with realistic CuO2 parameters. Recent experimental study shows a significantly stronger suppression of spin stiffness in the case of Zn-doped La2CuO4 compared to the Mg-doped case and thus gives a strong support to our theory. Different site-diluting dopants with different electron configurations affect the magnetism of the whole system differently. We argue that the available impurity orbitals are crucial in deriving theoretical models for the site-diluted systems and the proposed impurity-induced frustrations should be important in other strongly correlated oxides and charge-transfer insulators.

  8. Recent Advances in Agglomerated Multigrid

    NASA Technical Reports Server (NTRS)

    Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.; Hammond, Dana P.

    2013-01-01

    We report recent advancements of the agglomerated multigrid methodology for complex flow simulations on fully unstructured grids. An agglomerated multigrid solver is applied to a wide range of test problems from simple two-dimensional geometries to realistic three- dimensional configurations. The solver is evaluated against a single-grid solver and, in some cases, against a structured-grid multigrid solver. Grid and solver issues are identified and overcome, leading to significant improvements over single-grid solvers.

  9. Parallel Solver for H(div) Problems Using Hybridization and AMG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Chak S.; Vassilevski, Panayot S.

    2016-01-15

    In this paper, a scalable parallel solver is proposed for H(div) problems discretized by arbitrary order finite elements on general unstructured meshes. The solver is based on hybridization and algebraic multigrid (AMG). Unlike some previously studied H(div) solvers, the hybridization solver does not require discrete curl and gradient operators as additional input from the user. Instead, only some element information is needed in the construction of the solver. The hybridization results in a H1-equivalent symmetric positive definite system, which is then rescaled and solved by AMG solvers designed for H1 problems. Weak and strong scaling of the method are examinedmore » through several numerical tests. Our numerical results show that the proposed solver provides a promising alternative to ADS, a state-of-the-art solver [12], for H(div) problems. In fact, it outperforms ADS for higher order elements.« less

  10. Multidimensional Riemann problem with self-similar internal structure - part III - a multidimensional analogue of the HLLI Riemann solver for conservative hyperbolic systems

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Nkonga, Boniface

    2017-10-01

    Just as the quality of a one-dimensional approximate Riemann solver is improved by the inclusion of internal sub-structure, the quality of a multidimensional Riemann solver is also similarly improved. Such multidimensional Riemann problems arise when multiple states come together at the vertex of a mesh. The interaction of the resulting one-dimensional Riemann problems gives rise to a strongly-interacting state. We wish to endow this strongly-interacting state with physically-motivated sub-structure. The fastest way of endowing such sub-structure consists of making a multidimensional extension of the HLLI Riemann solver for hyperbolic conservation laws. Presenting such a multidimensional analogue of the HLLI Riemann solver with linear sub-structure for use on structured meshes is the goal of this work. The multidimensional MuSIC Riemann solver documented here is universal in the sense that it can be applied to any hyperbolic conservation law. The multidimensional Riemann solver is made to be consistent with constraints that emerge naturally from the Galerkin projection of the self-similar states within the wave model. When the full eigenstructure in both directions is used in the present Riemann solver, it becomes a complete Riemann solver in a multidimensional sense. I.e., all the intermediate waves are represented in the multidimensional wave model. The work also presents, for the very first time, an important analysis of the dissipation characteristics of multidimensional Riemann solvers. The present Riemann solver results in the most efficient implementation of a multidimensional Riemann solver with sub-structure. Because it preserves stationary linearly degenerate waves, it might also help with well-balancing. Implementation-related details are presented in pointwise fashion for the one-dimensional HLLI Riemann solver as well as the multidimensional MuSIC Riemann solver.

  11. Local error estimates for adaptive simulation of the Reaction–Diffusion Master Equation via operator splitting

    PubMed Central

    Hellander, Andreas; Lawson, Michael J; Drawert, Brian; Petzold, Linda

    2015-01-01

    The efficiency of exact simulation methods for the reaction-diffusion master equation (RDME) is severely limited by the large number of diffusion events if the mesh is fine or if diffusion constants are large. Furthermore, inherent properties of exact kinetic-Monte Carlo simulation methods limit the efficiency of parallel implementations. Several approximate and hybrid methods have appeared that enable more efficient simulation of the RDME. A common feature to most of them is that they rely on splitting the system into its reaction and diffusion parts and updating them sequentially over a discrete timestep. This use of operator splitting enables more efficient simulation but it comes at the price of a temporal discretization error that depends on the size of the timestep. So far, existing methods have not attempted to estimate or control this error in a systematic manner. This makes the solvers hard to use for practitioners since they must guess an appropriate timestep. It also makes the solvers potentially less efficient than if the timesteps are adapted to control the error. Here, we derive estimates of the local error and propose a strategy to adaptively select the timestep when the RDME is simulated via a first order operator splitting. While the strategy is general and applicable to a wide range of approximate and hybrid methods, we exemplify it here by extending a previously published approximate method, the Diffusive Finite-State Projection (DFSP) method, to incorporate temporal adaptivity. PMID:26865735

  12. Local error estimates for adaptive simulation of the Reaction-Diffusion Master Equation via operator splitting.

    PubMed

    Hellander, Andreas; Lawson, Michael J; Drawert, Brian; Petzold, Linda

    2014-06-01

    The efficiency of exact simulation methods for the reaction-diffusion master equation (RDME) is severely limited by the large number of diffusion events if the mesh is fine or if diffusion constants are large. Furthermore, inherent properties of exact kinetic-Monte Carlo simulation methods limit the efficiency of parallel implementations. Several approximate and hybrid methods have appeared that enable more efficient simulation of the RDME. A common feature to most of them is that they rely on splitting the system into its reaction and diffusion parts and updating them sequentially over a discrete timestep. This use of operator splitting enables more efficient simulation but it comes at the price of a temporal discretization error that depends on the size of the timestep. So far, existing methods have not attempted to estimate or control this error in a systematic manner. This makes the solvers hard to use for practitioners since they must guess an appropriate timestep. It also makes the solvers potentially less efficient than if the timesteps are adapted to control the error. Here, we derive estimates of the local error and propose a strategy to adaptively select the timestep when the RDME is simulated via a first order operator splitting. While the strategy is general and applicable to a wide range of approximate and hybrid methods, we exemplify it here by extending a previously published approximate method, the Diffusive Finite-State Projection (DFSP) method, to incorporate temporal adaptivity.

  13. Elucidating the electron transport in semiconductors via Monte Carlo simulations: an inquiry-driven learning path for engineering undergraduates

    NASA Astrophysics Data System (ADS)

    Persano Adorno, Dominique; Pizzolato, Nicola; Fazio, Claudio

    2015-09-01

    Within the context of higher education for science or engineering undergraduates, we present an inquiry-driven learning path aimed at developing a more meaningful conceptual understanding of the electron dynamics in semiconductors in the presence of applied electric fields. The electron transport in a nondegenerate n-type indium phosphide bulk semiconductor is modelled using a multivalley Monte Carlo approach. The main characteristics of the electron dynamics are explored under different values of the driving electric field, lattice temperature and impurity density. Simulation results are presented by following a question-driven path of exploration, starting from the validation of the model and moving up to reasoned inquiries about the observed characteristics of electron dynamics. Our inquiry-driven learning path, based on numerical simulations, represents a viable example of how to integrate a traditional lecture-based teaching approach with effective learning strategies, providing science or engineering undergraduates with practical opportunities to enhance their comprehension of the physics governing the electron dynamics in semiconductors. Finally, we present a general discussion about the advantages and disadvantages of using an inquiry-based teaching approach within a learning environment based on semiconductor simulations.

  14. Electron mobility in monoclinic β-Ga2O3—Effect of plasmon-phonon coupling, anisotropy, and confinement

    NASA Astrophysics Data System (ADS)

    Ghosh, Krishnendu; Singisetti, Uttam

    2017-11-01

    This work reports an investigation of electron transport in monoclinic \\beta-Ga2O3 based on a combination of density functional perturbation theory based lattice dynamical computations, coupling calculation of lattice modes with collective plasmon oscillations and Boltzmann theory based transport calculations. The strong entanglement of the plasmon with the different longitudinal optical (LO) modes make the role LO-plasmon coupling crucial for transport. The electron density dependence of the electron mobility in \\beta-Ga2O3 is studied in bulk material form and also in the form of two-dimensional electron gas. Under high electron density a bulk mobility of 182 cm2/ V.s is predicted while in 2DEG form the corresponding mobility is about 418 cm2/V.s when remote impurities are present at the interface and improves further as the remote impurity center moves away from the interface. The trend of the electron mobility shows promise for realizing high electron mobility in dopant isolated electron channels. The experimentally observed small anisotropy in mobility is traced through a transient Monte Carlo simulation. It is found that the anisotropy of the IR active phonon modes is responsible for giving rise to the anisotropy in low-field electron mobility.

  15. A Monte Carlo simulation to study a design of a gamma-ray detector for neutron resonance densitometry

    NASA Astrophysics Data System (ADS)

    Tsuchiya, H.; Harada, H.; Koizumi, M.; Kitatani, F.; Takamine, J.; Kureta, M.; Iimura, H.

    2013-11-01

    Neutron resonance densitometry (NRD) has been proposed to quantify nuclear materials in melted fuel (MF) that will be removed from the Fukushima Daiichi nuclear power plant. The problem is complex due to the expected presence of strong neutron absorbing impurities such as 10B and high radiation field that is mainly caused by 137Cs. To identify the impurities under the high radiation field, NRD is based on a combination of neutron resonance transmission analysis (NRTA) and neutron resonance capture analysis (NRCA). We investigated with Geant4 the performance of a gamma-ray detector for NRCA in NRD. The gamma-ray detector has a well shape, consisting of cylindrical and tube type LaBr3 scintillators. We show how it measures 478 keV gamma rays derived from 10B(n, αγ) reaction in MF under a high 137Cs-radiation environment. It was found that the gamma-ray detector was able to well suppress the Compton edge of 662-keV gamma rays of 137Cs and had a high peak-to-Compton continuum ratio, by using the tube type scintillator as a back-catcher detector. Then, we demonstrate that with this ability, detection of 478-keV gamma rays from 10B is accomplished in realistic measuring time.

  16. Investigation of the spectral properties and magnetism of BiFeO3 by dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    Paul, Souvik; Iuşan, Diana; Thunström, Patrik; Kvashnin, Yaroslav O.; Hellsvik, Johan; Pereiro, Manuel; Delin, Anna; Knut, Ronny; Phuyal, Dibya; Lindblad, Andreas; Karis, Olof; Sanyal, Biplab; Eriksson, Olle

    2018-03-01

    Using the local density approximation plus dynamical mean-field theory (LDA+DMFT), we have computed the valence-band photoelectron spectra and magnetic excitation spectra of BiFeO3, one of the most studied multiferroics. Within the DMFT approach, the local impurity problem is tackled by the exact diagonalization solver. The solution of the impurity problem within the LDA+DMFT method for the paramagnetic and magnetically ordered phases produces result in agreement with the experimental data on electronic and magnetic structures. For comparison, we also present results obtained by the LDA +U approach which is commonly used to compute the physical properties of this compound. Our LDA+DMFT derived electronic spectra match adequately with the experimental hard x-ray photoelectron spectroscopy and resonant photoelectron spectroscopy for Fe 3 d states, whereas the LDA +U method fails to capture the general features of the measured spectra. This indicates the importance of accurately incorporating the dynamical aspect of electronic correlation among Fe 3 d orbitals to reproduce the experimental excitation spectra. Specifically, the LDA+DMFT derived density of states exhibits a significant amount of Fe 3 d states at the position of Bi lone pairs, implying that the latter are not alone in the spectral scenario. This fact might modify our interpretation about the origin of ferroelectric polarization in this material. Our study demonstrates that the combination of orbital cross sections for the constituent elements and broadening schemes for the spectral functions are crucial to explain the detailed structures of the experimental electronic spectra. Our magnetic excitation spectra computed from the LDA+DMFT result conform well with the inelastic neutron scattering data.

  17. QuTiP 2: A Python framework for the dynamics of open quantum systems

    NASA Astrophysics Data System (ADS)

    Johansson, J. R.; Nation, P. D.; Nori, Franco

    2013-04-01

    We present version 2 of QuTiP, the Quantum Toolbox in Python. Compared to the preceding version [J.R. Johansson, P.D. Nation, F. Nori, Comput. Phys. Commun. 183 (2012) 1760.], we have introduced numerous new features, enhanced performance, and made changes in the Application Programming Interface (API) for improved functionality and consistency within the package, as well as increased compatibility with existing conventions used in other scientific software packages for Python. The most significant new features include efficient solvers for arbitrary time-dependent Hamiltonians and collapse operators, support for the Floquet formalism, and new solvers for Bloch-Redfield and Floquet-Markov master equations. Here we introduce these new features, demonstrate their use, and give a summary of the important backward-incompatible API changes introduced in this version. Catalog identifier: AEMB_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMB_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 33625 No. of bytes in distributed program, including test data, etc.: 410064 Distribution format: tar.gz Programming language: Python. Computer: i386, x86-64. Operating system: Linux, Mac OSX. RAM: 2+ Gigabytes Classification: 7. External routines: NumPy, SciPy, Matplotlib, Cython Catalog identifier of previous version: AEMB_v1_0 Journal reference of previous version: Comput. Phys. Comm. 183 (2012) 1760 Does the new version supercede the previous version?: Yes Nature of problem: Dynamics of open quantum systems Solution method: Numerical solutions to Lindblad, Floquet-Markov, and Bloch-Redfield master equations, as well as the Monte Carlo wave function method. Reasons for new version: Compared to the preceding version we have introduced numerous new features, enhanced performance, and made changes in the Application Programming Interface (API) for improved functionality and consistency within the package, as well as increased compatibility with existing conventions used in other scientific software packages for Python. The most significant new features include efficient solvers for arbitrary time-dependent Hamiltonians and collapse operators, support for the Floquet formalism, and new solvers for Bloch-Redfield and Floquet-Markov master equations. Restrictions: Problems must meet the criteria for using the master equation in Lindblad, Floquet-Markov, or Bloch-Redfield form. Running time: A few seconds up to several tens of hours, depending on size of the underlying Hilbert space.

  18. Quantification of uncertainty for fluid flow in heterogeneous petroleum reservoirs

    NASA Astrophysics Data System (ADS)

    Zhang, Dongxiao

    Detailed description of the heterogeneity of oil/gas reservoirs is needed to make performance predictions of oil/gas recovery. However, only limited measurements at a few locations are usually available. This combination of significant spatial heterogeneity with incomplete information about it leads to uncertainty about the values of reservoir properties and thus, to uncertainty in estimates of production potential. The theory of stochastic processes provides a natural method for evaluating these uncertainties. In this study, we present a stochastic analysis of transient, single phase flow in heterogeneous reservoirs. We derive general equations governing the statistical moments of flow quantities by perturbation expansions. These moments can be used to construct confidence intervals for the flow quantities (e.g., pressure and flow rate). The moment equations are deterministic and can be solved numerically with existing solvers. The proposed moment equation approach has certain advantages over the commonly used Monte Carlo approach.

  19. A partially reflecting random walk on spheres algorithm for electrical impedance tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maire, Sylvain, E-mail: maire@univ-tln.fr; Simon, Martin, E-mail: simon@math.uni-mainz.de

    2015-12-15

    In this work, we develop a probabilistic estimator for the voltage-to-current map arising in electrical impedance tomography. This novel so-called partially reflecting random walk on spheres estimator enables Monte Carlo methods to compute the voltage-to-current map in an embarrassingly parallel manner, which is an important issue with regard to the corresponding inverse problem. Our method uses the well-known random walk on spheres algorithm inside subdomains where the diffusion coefficient is constant and employs replacement techniques motivated by finite difference discretization to deal with both mixed boundary conditions and interface transmission conditions. We analyze the global bias and the variance ofmore » the new estimator both theoretically and experimentally. Subsequently, the variance of the new estimator is considerably reduced via a novel control variate conditional sampling technique which yields a highly efficient hybrid forward solver coupling probabilistic and deterministic algorithms.« less

  20. Patch planting of hard spin-glass problems: Getting ready for the next generation of optimization approaches

    NASA Astrophysics Data System (ADS)

    Wang, Wenlong; Mandrà, Salvatore; Katzgraber, Helmut

    We propose a patch planting heuristic that allows us to create arbitrarily-large Ising spin-glass instances on any topology and with any type of disorder, and where the exact ground-state energy of the problem is known by construction. By breaking up the problem into patches that can be treated either with exact or heuristic solvers, we can reconstruct the optimum of the original, considerably larger, problem. The scaling of the computational complexity of these instances with various patch numbers and sizes is investigated and compared with random instances using population annealing Monte Carlo and quantum annealing on the D-Wave 2X quantum annealer. The method can be useful for benchmarking of novel computing technologies and algorithms. NSF-DMR-1208046 and the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via MIT Lincoln Laboratory Air Force Contract No. FA8721-05-C-0002.

  1. Review of blunt body wake flows at hypersonic low density conditions

    NASA Technical Reports Server (NTRS)

    Moss, J. N.; Price, J. M.

    1996-01-01

    Recent results of experimental and computational studies concerning hypersonic flows about blunted cones including their near wake are reviewed. Attention is focused on conditions where rarefaction effects are present, particularly in the wake. The experiments have been performed for a common model configuration (70 deg spherically-blunted cone) in five hypersonic facilities that encompass a significant range of rarefaction and nonequilibrium effects. Computational studies using direct simulation Monte Carlo (DSMC) and Navier-Stokes solvers have been applied to selected experiments performed in each of the facilities. In addition, computations have been made for typical flight conditions in both Earth and Mars atmospheres, hence more energetic flows than produced in the ground-based tests. Also, comparisons of DSMC calculations and forebody measurements made for the Japanese Orbital Reentry Experiment (OREX) vehicle (a 50 deg spherically-blunted cone) are presented to bridge the spectrum of ground to flight conditions.

  2. Eigenvalue Solvers for Modeling Nuclear Reactors on Leadership Class Machines

    DOE PAGES

    Slaybaugh, R. N.; Ramirez-Zweiger, M.; Pandya, Tara; ...

    2018-02-20

    In this paper, three complementary methods have been implemented in the code Denovo that accelerate neutral particle transport calculations with methods that use leadership-class computers fully and effectively: a multigroup block (MG) Krylov solver, a Rayleigh quotient iteration (RQI) eigenvalue solver, and a multigrid in energy (MGE) preconditioner. The MG Krylov solver converges more quickly than Gauss Seidel and enables energy decomposition such that Denovo can scale to hundreds of thousands of cores. RQI should converge in fewer iterations than power iteration (PI) for large and challenging problems. RQI creates shifted systems that would not be tractable without the MGmore » Krylov solver. It also creates ill-conditioned matrices. The MGE preconditioner reduces iteration count significantly when used with RQI and takes advantage of the new energy decomposition such that it can scale efficiently. Each individual method has been described before, but this is the first time they have been demonstrated to work together effectively. The combination of solvers enables the RQI eigenvalue solver to work better than the other available solvers for large reactors problems on leadership-class machines. Using these methods together, RQI converged in fewer iterations and in less time than PI for a full pressurized water reactor core. These solvers also performed better than an Arnoldi eigenvalue solver for a reactor benchmark problem when energy decomposition is needed. The MG Krylov, MGE preconditioner, and RQI solver combination also scales well in energy. Finally, this solver set is a strong choice for very large and challenging problems.« less

  3. Eigenvalue Solvers for Modeling Nuclear Reactors on Leadership Class Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slaybaugh, R. N.; Ramirez-Zweiger, M.; Pandya, Tara

    In this paper, three complementary methods have been implemented in the code Denovo that accelerate neutral particle transport calculations with methods that use leadership-class computers fully and effectively: a multigroup block (MG) Krylov solver, a Rayleigh quotient iteration (RQI) eigenvalue solver, and a multigrid in energy (MGE) preconditioner. The MG Krylov solver converges more quickly than Gauss Seidel and enables energy decomposition such that Denovo can scale to hundreds of thousands of cores. RQI should converge in fewer iterations than power iteration (PI) for large and challenging problems. RQI creates shifted systems that would not be tractable without the MGmore » Krylov solver. It also creates ill-conditioned matrices. The MGE preconditioner reduces iteration count significantly when used with RQI and takes advantage of the new energy decomposition such that it can scale efficiently. Each individual method has been described before, but this is the first time they have been demonstrated to work together effectively. The combination of solvers enables the RQI eigenvalue solver to work better than the other available solvers for large reactors problems on leadership-class machines. Using these methods together, RQI converged in fewer iterations and in less time than PI for a full pressurized water reactor core. These solvers also performed better than an Arnoldi eigenvalue solver for a reactor benchmark problem when energy decomposition is needed. The MG Krylov, MGE preconditioner, and RQI solver combination also scales well in energy. Finally, this solver set is a strong choice for very large and challenging problems.« less

  4. Scoping analysis of the Advanced Test Reactor using SN2ND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolters, E.; Smith, M.; SC)

    2012-07-26

    A detailed set of calculations was carried out for the Advanced Test Reactor (ATR) using the SN2ND solver of the UNIC code which is part of the SHARP multi-physics code being developed under the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program in DOE-NE. The primary motivation of this work is to assess whether high fidelity deterministic transport codes can tackle coupled dynamics simulations of the ATR. The successful use of such codes in a coupled dynamics simulation can impact what experiments are performed and what power levels are permitted during those experiments at the ATR. The advantages of themore » SN2ND solver over comparable neutronics tools are its superior parallel performance and demonstrated accuracy on large scale homogeneous and heterogeneous reactor geometries. However, it should be noted that virtually no effort from this project was spent constructing a proper cross section generation methodology for the ATR usable in the SN2ND solver. While attempts were made to use cross section data derived from SCALE, the minimal number of compositional cross section sets were generated to be consistent with the reference Monte Carlo input specification. The accuracy of any deterministic transport solver is impacted by such an approach and clearly it causes substantial errors in this work. The reasoning behind this decision is justified given the overall funding dedicated to the task (two months) and the real focus of the work: can modern deterministic tools actually treat complex facilities like the ATR with heterogeneous geometry modeling. SN2ND has been demonstrated to solve problems with upwards of one trillion degrees of freedom which translates to tens of millions of finite elements, hundreds of angles, and hundreds of energy groups, resulting in a very high-fidelity model of the system unachievable by most deterministic transport codes today. A space-angle convergence study was conducted to determine the meshing and angular cubature requirements for the ATR, and also to demonstrate the feasibility of performing this analysis with a deterministic transport code capable of modeling heterogeneous geometries. The work performed indicates that a minimum of 260,000 linear finite elements combined with a L3T11 cubature (96 angles on the sphere) is required for both eigenvalue and flux convergence of the ATR. A critical finding was that the fuel meat and water channels must each be meshed with at least 3 'radial zones' for accurate flux convergence. A small number of 3D calculations were also performed to show axial mesh and eigenvalue convergence for a full core problem. Finally, a brief analysis was performed with different cross sections sets generated from DRAGON and SCALE, and the findings show that more effort will be required to improve the multigroup cross section generation process. The total number of degrees of freedom for a converged 27 group, 2D ATR problem is {approx}340 million. This number increases to {approx}25 billion for a 3D ATR problem. This scoping study shows that both 2D and 3D calculations are well within the capabilities of the current SN2ND solver, given the availability of a large-scale computing center such as BlueGene/P. However, dynamics calculations are not realistic without the implementation of improvements in the solver.« less

  5. Impact ionization processes in the steady state of a driven Mott-insulating layer coupled to metallic leads

    NASA Astrophysics Data System (ADS)

    Sorantin, Max E.; Dorda, Antonius; Held, Karsten; Arrigoni, Enrico

    2018-03-01

    We study a simple model of photovoltaic energy harvesting across a Mott-insulating gap consisting of a correlated layer connected to two metallic leads held at different chemical potentials. We address, in particular, the issue of impact ionization, whereby a particle photoexcited to the high-energy part of the upper Hubbard band uses its extra energy to produce a second particle-hole excitation. We find a drastic increase of the photocurrent upon entering the frequency regime where impact ionization is possible. At large values of the Mott gap, where impact ionization is energetically not allowed, we observe a suppression of the current and a piling up of charge in the high-energy part of the upper Hubbard band. Our study is based on a Floquet dynamical mean-field theory treatment of the steady state with the so-called auxiliary master equation approach as impurity solver. We verify that an additional approximation, taking the self-energy diagonal in the Floquet indices, is appropriate for the parameter range we are considering.

  6. General purpose nonlinear system solver based on Newton-Krylov method.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2013-12-01

    KINSOL is part of a software family called SUNDIALS: SUite of Nonlinear and Differential/Algebraic equation Solvers [1]. KINSOL is a general-purpose nonlinear system solver based on Newton-Krylov and fixed-point solver technologies [2].

  7. An HLLC Riemann solver for resistive relativistic magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Miranda-Aranguren, S.; Aloy, M. A.; Rembiasz, T.

    2018-05-01

    We present a new approximate Riemann solver for the augmented system of equations of resistive relativistic magnetohydrodynamics that belongs to the family of Harten-Lax-van Leer contact wave (HLLC) solvers. In HLLC solvers, the solution is approximated by two constant states flanked by two shocks separated by a contact wave. The accuracy of the new approximate solver is calibrated through 1D and 2D test problems.

  8. A computational study of the use of an optimization-based method for simulating large multibody systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petra, C.; Gavrea, B.; Anitescu, M.

    2009-01-01

    The present work aims at comparing the performance of several quadratic programming (QP) solvers for simulating large-scale frictional rigid-body systems. Traditional time-stepping schemes for simulation of multibody systems are formulated as linear complementarity problems (LCPs) with copositive matrices. Such LCPs are generally solved by means of Lemke-type algorithms and solvers such as the PATH solver proved to be robust. However, for large systems, the PATH solver or any other pivotal algorithm becomes unpractical from a computational point of view. The convex relaxation proposed by one of the authors allows the formulation of the integration step as a QPD, for whichmore » a wide variety of state-of-the-art solvers are available. In what follows we report the results obtained solving that subproblem when using the QP solvers MOSEK, OOQP, TRON, and BLMVM. OOQP is presented with both the symmetric indefinite solver MA27 and our Cholesky reformulation using the CHOLMOD package. We investigate computational performance and address the correctness of the results from a modeling point of view. We conclude that the OOQP solver, particularly with the CHOLMOD linear algebra solver, has predictable performance and memory use patterns and is far more competitive for these problems than are the other solvers.« less

  9. Calibrating and training of neutron based NSA techniques with less SNM standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geist, William H; Swinhoe, Martyn T; Bracken, David S

    2010-01-01

    Accessing special nuclear material (SNM) standards for the calibration of and training on nondestructive assay (NDA) instruments has become increasingly difficult in light of enhanced safeguards and security regulations. Limited or nonexistent access to SNM has affected neutron based NDA techniques more than gamma ray techniques because the effects of multiplication require a range of masses to accurately measure the detector response. Neutron based NDA techniques can also be greatly affected by the matrix and impurity characteristics of the item. The safeguards community has been developing techniques for calibrating instrumentation and training personnel with dwindling numbers of SNM standards. Montemore » Carlo methods have become increasingly important for design and calibration of instrumentation. Monte Carlo techniques have the ability to accurately predict the detector response for passive techniques. The Monte Carlo results are usually benchmarked to neutron source measurements such as californium. For active techniques, the modeling becomes more difficult because of the interaction of the interrogation source with the detector and nuclear material; and the results cannot be simply benchmarked with neutron sources. A Monte Carlo calculated calibration curve for a training course in Indonesia of material test reactor (MTR) fuel elements assayed with an active well coincidence counter (AWCC) will be presented as an example. Performing training activities with reduced amounts of nuclear material makes it difficult to demonstrate how the multiplication and matrix properties of the item affects the detector response and limits the knowledge that can be obtained with hands-on training. A neutron pulse simulator (NPS) has been developed that can produce a pulse stream representative of a real pulse stream output from a detector measuring SNM. The NPS has been used by the International Atomic Energy Agency (IAEA) for detector testing and training applications at the Agency due to the lack of appropriate SNM standards. This paper will address the effect of reduced access to SNM for calibration and training of neutron NDA applications along with the advantages and disadvantages of some solutions that do not use standards, such as the Monte Carlo techniques and the NPS.« less

  10. Effective optimization using sample persistence: A case study on quantum annealers and various Monte Carlo optimization methods

    NASA Astrophysics Data System (ADS)

    Karimi, Hamed; Rosenberg, Gili; Katzgraber, Helmut G.

    2017-10-01

    We present and apply a general-purpose, multistart algorithm for improving the performance of low-energy samplers used for solving optimization problems. The algorithm iteratively fixes the value of a large portion of the variables to values that have a high probability of being optimal. The resulting problems are smaller and less connected, and samplers tend to give better low-energy samples for these problems. The algorithm is trivially parallelizable since each start in the multistart algorithm is independent, and could be applied to any heuristic solver that can be run multiple times to give a sample. We present results for several classes of hard problems solved using simulated annealing, path-integral quantum Monte Carlo, parallel tempering with isoenergetic cluster moves, and a quantum annealer, and show that the success metrics and the scaling are improved substantially. When combined with this algorithm, the quantum annealer's scaling was substantially improved for native Chimera graph problems. In addition, with this algorithm the scaling of the time to solution of the quantum annealer is comparable to the Hamze-de Freitas-Selby algorithm on the weak-strong cluster problems introduced by Boixo et al. Parallel tempering with isoenergetic cluster moves was able to consistently solve three-dimensional spin glass problems with 8000 variables when combined with our method, whereas without our method it could not solve any.

  11. Rapid scatter estimation for CBCT using the Boltzmann transport equation

    NASA Astrophysics Data System (ADS)

    Sun, Mingshan; Maslowski, Alex; Davis, Ian; Wareing, Todd; Failla, Gregory; Star-Lack, Josh

    2014-03-01

    Scatter in cone-beam computed tomography (CBCT) is a significant problem that degrades image contrast, uniformity and CT number accuracy. One means of estimating and correcting for detected scatter is through an iterative deconvolution process known as scatter kernel superposition (SKS). While the SKS approach is efficient, clinically significant errors on the order 2-4% (20-40 HU) still remain. We have previously shown that the kernel method can be improved by perturbing the kernel parameters based on reference data provided by limited Monte Carlo simulations of a first-pass reconstruction. In this work, we replace the Monte Carlo modeling with a deterministic Boltzmann solver (AcurosCTS) to generate the reference scatter data in a dramatically reduced time. In addition, the algorithm is improved so that instead of adjusting kernel parameters, we directly perturb the SKS scatter estimates. Studies were conducted on simulated data and on a large pelvis phantom scanned on a tabletop system. The new method reduced average reconstruction errors (relative to a reference scan) from 2.5% to 1.8%, and significantly improved visualization of low contrast objects. In total, 24 projections were simulated with an AcurosCTS execution time of 22 sec/projection using an 8-core computer. We have ported AcurosCTS to the GPU, and current run-times are approximately 4 sec/projection using two GPU's running in parallel.

  12. A Simple "Boxed Molecular Kinetics" Approach To Accelerate Rare Events in the Stochastic Kinetic Master Equation.

    PubMed

    Shannon, Robin; Glowacki, David R

    2018-02-15

    The chemical master equation is a powerful theoretical tool for analyzing the kinetics of complex multiwell potential energy surfaces in a wide range of different domains of chemical kinetics spanning combustion, atmospheric chemistry, gas-surface chemistry, solution phase chemistry, and biochemistry. There are two well-established methodologies for solving the chemical master equation: a stochastic "kinetic Monte Carlo" approach and a matrix-based approach. In principle, the results yielded by both approaches are identical; the decision of which approach is better suited to a particular study depends on the details of the specific system under investigation. In this Article, we present a rigorous method for accelerating stochastic approaches by several orders of magnitude, along with a method for unbiasing the accelerated results to recover the "true" value. The approach we take in this paper is inspired by the so-called "boxed molecular dynamics" (BXD) method, which has previously only been applied to accelerate rare events in molecular dynamics simulations. Here we extend BXD to design a simple algorithmic strategy for accelerating rare events in stochastic kinetic simulations. Tests on a number of systems show that the results obtained using the BXD rare event strategy are in good agreement with unbiased results. To carry out these tests, we have implemented a kinetic Monte Carlo approach in MESMER, which is a cross-platform, open-source, and freely available master equation solver.

  13. Empirical force field-based kinetic Monte Carlo simulation of precipitate evolution and growth in Al-Cu alloys

    NASA Astrophysics Data System (ADS)

    Joshi, Kaushik; Chaudhuri, Santanu

    2016-10-01

    Ability to accelerate the morphological evolution of nanoscale precipitates is a fundamental challenge for atomistic simulations. Kinetic Monte Carlo (KMC) methodology is an effective approach for accelerating the evolution of nanoscale systems that are dominated by so-called rare events. The quality and accuracy of energy landscape used in KMC calculations can be significantly improved using DFT-informed interatomic potentials. Using newly developed computational framework that uses molecular simulator LAMMPS as a library function inside KMC solver SPPARKS, we investigated formation and growth of Guiner-Preston (GP) zones in dilute Al-Cu alloys at different temperature and copper concentrations. The KMC simulations with angular dependent potential (ADP) predict formation of coherent disc-shaped monolayers of copper atoms (GPI zones) in early stage. Such monolayers are then gradually transformed into energetically favored GPII phase that has two aluminum layers sandwiched between copper layers. We analyzed the growth kinetics of KMC trajectory using Johnson-Mehl-Avrami (JMA) theory and obtained a phase transformation index close to 1.0. In the presence of grain boundaries, the KMC calculations predict the segregation of copper atoms near the grain boundaries instead of formation of GP zones. The computational framework presented in this work is based on open source potentials and MD simulator and can predict morphological changes during the evolution of the alloys in the bulk and around grain boundaries.

  14. Radiation characteristics of water droplets in a fire-inspired environment: A Monte Carlo ray tracing study

    NASA Astrophysics Data System (ADS)

    Wu, Bifen; Zhao, Xinyu

    2018-06-01

    The effects of radiation of water mists in a fire-inspired environment are numerically investigated for different complexities of radiative media in a three-dimensional cubic enclosure. A Monte Carlo ray tracing (MCRT) method is employed to solve the radiative transfer equation (RTE). The anisotropic scattering behaviors of water mists are modeled by a combination of the Mie theory and the Henyey-Greestein relation. A tabulation method considering the size and wavelength dependencies is established for water droplets, to reduce the computational cost associated with the evaluation of the nongray spectral properties of water mists. Validation and verification of the coupled MCRT solver are performed using a one-dimensional slab with gray gas in comparison with the analytical solutions. Parametric studies are then performed using a three-dimensional cubic box to examine radiation of two monodispersed and one polydispersed water mist systems. The tabulation method can reduce the computational cost by a factor of one hundred. Results obtained without any scattering model better conform with results obtained from the anisotropic model than the isotropic scattering model, when a highly directional emissive source is applied. For isotropic emissive sources, isotropic and anisotropic scattering models predict comparable results. The addition of different volume fractions of soot shows that soot may have a negative impact on the effectiveness of water mists in absorbing radiation when its volume fraction exceeds certain threshold.

  15. SMITHERS: An object-oriented modular mapping methodology for MCNP-based neutronic–thermal hydraulic multiphysics

    DOE PAGES

    Richard, Joshua; Galloway, Jack; Fensin, Michael; ...

    2015-04-04

    A novel object-oriented modular mapping methodology for externally coupled neutronics–thermal hydraulics multiphysics simulations was developed. The Simulator using MCNP with Integrated Thermal-Hydraulics for Exploratory Reactor Studies (SMITHERS) code performs on-the-fly mapping of material-wise power distribution tallies implemented by MCNP-based neutron transport/depletion solvers for use in estimating coolant temperature and density distributions with a separate thermal-hydraulic solver. The key development of SMITHERS is that it reconstructs the hierarchical geometry structure of the material-wise power generation tallies from the depletion solver automatically, with only a modicum of additional information required from the user. In addition, it performs the basis mapping from themore » combinatorial geometry of the depletion solver to the required geometry of the thermal-hydraulic solver in a generalizable manner, such that it can transparently accommodate varying levels of thermal-hydraulic solver geometric fidelity, from the nodal geometry of multi-channel analysis solvers to the pin-cell level of discretization for sub-channel analysis solvers.« less

  16. Stochastic Partial Differential Equation Solver for Hydroacoustic Modeling: Improvements to Paracousti Sound Propagation Solver

    NASA Astrophysics Data System (ADS)

    Preston, L. A.

    2017-12-01

    Marine hydrokinetic (MHK) devices offer a clean, renewable alternative energy source for the future. Responsible utilization of MHK devices, however, requires that the effects of acoustic noise produced by these devices on marine life and marine-related human activities be well understood. Paracousti is a 3-D full waveform acoustic modeling suite that can accurately propagate MHK noise signals in the complex bathymetry found in the near-shore to open ocean environment and considers real properties of the seabed, water column, and air-surface interface. However, this is a deterministic simulation that assumes the environment and source are exactly known. In reality, environmental and source characteristics are often only known in a statistical sense. Thus, to fully characterize the expected noise levels within the marine environment, this uncertainty in environmental and source factors should be incorporated into the acoustic simulations. One method is to use Monte Carlo (MC) techniques where simulation results from a large number of deterministic solutions are aggregated to provide statistical properties of the output signal. However, MC methods can be computationally prohibitive since they can require tens of thousands or more simulations to build up an accurate representation of those statistical properties. An alternative method, using the technique of stochastic partial differential equations (SPDE), allows computation of the statistical properties of output signals at a small fraction of the computational cost of MC. We are developing a SPDE solver for the 3-D acoustic wave propagation problem called Paracousti-UQ to help regulators and operators assess the statistical properties of environmental noise produced by MHK devices. In this presentation, we present the SPDE method and compare statistical distributions of simulated acoustic signals in simple models to MC simulations to show the accuracy and efficiency of the SPDE method. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  17. FoSSI: the family of simplified solver interfaces for the rapid development of parallel numerical atmosphere and ocean models

    NASA Astrophysics Data System (ADS)

    Frickenhaus, Stephan; Hiller, Wolfgang; Best, Meike

    The portable software FoSSI is introduced that—in combination with additional free solver software packages—allows for an efficient and scalable parallel solution of large sparse linear equations systems arising in finite element model codes. FoSSI is intended to support rapid model code development, completely hiding the complexity of the underlying solver packages. In particular, the model developer need not be an expert in parallelization and is yet free to switch between different solver packages by simple modifications of the interface call. FoSSI offers an efficient and easy, yet flexible interface to several parallel solvers, most of them available on the web, such as PETSC, AZTEC, MUMPS, PILUT and HYPRE. FoSSI makes use of the concept of handles for vectors, matrices, preconditioners and solvers, that is frequently used in solver libraries. Hence, FoSSI allows for a flexible treatment of several linear equations systems and associated preconditioners at the same time, even in parallel on separate MPI-communicators. The second special feature in FoSSI is the task specifier, being a combination of keywords, each configuring a certain phase in the solver setup. This enables the user to control a solver over one unique subroutine. Furthermore, FoSSI has rather similar features for all solvers, making a fast solver intercomparison or exchange an easy task. FoSSI is a community software, proven in an adaptive 2D-atmosphere model and a 3D-primitive equation ocean model, both formulated in finite elements. The present paper discusses perspectives of an OpenMP-implementation of parallel iterative solvers based on domain decomposition methods. This approach to OpenMP solvers is rather attractive, as the code for domain-local operations of factorization, preconditioning and matrix-vector product can be readily taken from a sequential implementation that is also suitable to be used in an MPI-variant. Code development in this direction is in an advanced state under the name ScOPES: the Scalable Open Parallel sparse linear Equations Solver.

  18. Material radioassay and selection for the XENON1T dark matter experiment

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; Di Gangi, P.; Di Giovanni, A.; Diglio, S.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Itay, R.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Le Calloch, M.; Lin, Q.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Piro, M.-C.; Pizzella, V.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Saldanha, R.; dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. v.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Upole, N.; Wang, H.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.; Laubenstein, M.; Nisi, S.

    2017-12-01

    The XENON1T dark matter experiment aims to detect weakly interacting massive particles (WIMPs) through low-energy interactions with xenon atoms. To detect such a rare event necessitates the use of radiopure materials to minimize the number of background events within the expected WIMP signal region. In this paper we report the results of an extensive material radioassay campaign for the XENON1T experiment. Using gamma-ray spectroscopy and mass spectrometry techniques, systematic measurements of trace radioactive impurities in over one hundred samples within a wide range of materials were performed. The measured activities allowed for stringent selection and placement of materials during the detector construction phase and provided the input for XENON1T detection sensitivity estimates through Monte Carlo simulations.

  19. Tortuosity Computations of Porous Materials using the Direct Simulation Monte Carlo

    NASA Technical Reports Server (NTRS)

    Borner, A.; Ferguson, C.; Panerai, F.; Mansour, Nagi N.

    2017-01-01

    Low-density carbon fiber preforms, used as thermal protection systems (TPS) materials for planetary entry systems, have permeable, highly porous microstructures consisting of interlaced fibers. Internal gas transport in TPS is important in modeling the penetration of hot boundary-layer gases and the in-depth transport of pyrolysis and ablation products. The gas effective diffusion coefficient of a porous material must be known before the gas transport can be modeled in material response solvers; however, there are very little available data for rigid fibrous insulators used in heritage TPS.The tortuosity factor, which reflects the efficiency of the percolation paths, can be computed from the effective diffusion coefficient of a gas inside a porous material and is based on the micro-structure of the material. It is well known, that the tortuosity factor is a strong function of the Knudsen number. Due to the small characteristic scales of porous media used in TPS applications (typical pore size of the order of 50 micron), the transport of gases can occur in the rarefied and transitional regimes, at Knudsen numbers above 1. A proper way to model the gas dynamics at these conditions consists in solving the Boltzmann equation using particle-based methods that account for movement and collisions of atoms and molecules.In this work we adopt, for the first time, the Direct Simulation Monte Carlo (DSMC) method to compute the tortuosity factor of fibrous media in the rarefied regime. To enable realistic simulations of the actual transport of gases in the porous medium, digitized computational grids are obtained from X-ray micro-tomography imaging of real TPS materials. The SPARTA DSMC solver is used for simulations. Effective diffusion coefficients and tortuosity factors are obtained by computing the mean-square displacement of diffusing particles.We first apply the method to compute the tortuosity factors as a function of the Knudsen number for computationally designed materials such as random cylindrical fibers and packed bed of spheres with prescribed porosity. Results are compared to literature values obtained using random walk methods in the rarefied and transitional regime and a finite-volume method for the continuum regime. We then compute tortuosity factors for a real carbon fiber material with a transverse isotropic structure (FiberForm), quantifying differences between through-thickness and in-plain tortuosities at various Knudsen regimes.

  20. A Newton-Krylov solver for fast spin-up of online ocean tracers

    NASA Astrophysics Data System (ADS)

    Lindsay, Keith

    2017-01-01

    We present a Newton-Krylov based solver to efficiently spin up tracers in an online ocean model. We demonstrate that the solver converges, that tracer simulations initialized with the solution from the solver have small drift, and that the solver takes orders of magnitude less computational time than the brute force spin-up approach. To demonstrate the application of the solver, we use it to efficiently spin up the tracer ideal age with respect to the circulation from different time intervals in a long physics run. We then evaluate how the spun-up ideal age tracer depends on the duration of the physics run, i.e., on how equilibrated the circulation is.

  1. Modeling of photon migration in the human lung using a finite volume solver

    NASA Astrophysics Data System (ADS)

    Sikorski, Zbigniew; Furmanczyk, Michal; Przekwas, Andrzej J.

    2006-02-01

    The application of the frequency domain and steady-state diffusive optical spectroscopy (DOS) and steady-state near infrared spectroscopy (NIRS) to diagnosis of the human lung injury challenges many elements of these techniques. These include the DOS/NIRS instrument performance and accurate models of light transport in heterogeneous thorax tissue. The thorax tissue not only consists of different media (e.g. chest wall with ribs, lungs) but its optical properties also vary with time due to respiration and changes in thorax geometry with contusion (e.g. pneumothorax or hemothorax). This paper presents a finite volume solver developed to model photon migration in the diffusion approximation in heterogeneous complex 3D tissues. The code applies boundary conditions that account for Fresnel reflections. We propose an effective diffusion coefficient for the void volumes (pneumothorax) based on the assumption of the Lambertian diffusion of photons entering the pleural cavity and accounting for the local pleural cavity thickness. The code has been validated using the MCML Monte Carlo code as a benchmark. The code environment enables a semi-automatic preparation of 3D computational geometry from medical images and its rapid automatic meshing. We present the application of the code to analysis/optimization of the hybrid DOS/NIRS/ultrasound technique in which ultrasound provides data on the localization of thorax tissue boundaries. The code effectiveness (3D complex case computation takes 1 second) enables its use to quantitatively relate detected light signal to absorption and reduced scattering coefficients that are indicators of the pulmonary physiologic state (hemoglobin concentration and oxygenation).

  2. Application of PDF methods to compressible turbulent flows

    NASA Astrophysics Data System (ADS)

    Delarue, B. J.; Pope, S. B.

    1997-09-01

    A particle method applying the probability density function (PDF) approach to turbulent compressible flows is presented. The method is applied to several turbulent flows, including the compressible mixing layer, and good agreement is obtained with experimental data. The PDF equation is solved using a Lagrangian/Monte Carlo method. To accurately account for the effects of compressibility on the flow, the velocity PDF formulation is extended to include thermodynamic variables such as the pressure and the internal energy. The mean pressure, the determination of which has been the object of active research over the last few years, is obtained directly from the particle properties. It is therefore not necessary to link the PDF solver with a finite-volume type solver. The stochastic differential equations (SDE) which model the evolution of particle properties are based on existing second-order closures for compressible turbulence, limited in application to low turbulent Mach number flows. Tests are conducted in decaying isotropic turbulence to compare the performances of the PDF method with the Reynolds-stress closures from which it is derived, and in homogeneous shear flows, at which stage comparison with direct numerical simulation (DNS) data is conducted. The model is then applied to the plane compressible mixing layer, reproducing the well-known decrease in the spreading rate with increasing compressibility. It must be emphasized that the goal of this paper is not as much to assess the performance of models of compressibility effects, as it is to present an innovative and consistent PDF formulation designed for turbulent inhomogeneous compressible flows, with the aim of extending it further to deal with supersonic reacting flows.

  3. Oasis: A high-level/high-performance open source Navier-Stokes solver

    NASA Astrophysics Data System (ADS)

    Mortensen, Mikael; Valen-Sendstad, Kristian

    2015-03-01

    Oasis is a high-level/high-performance finite element Navier-Stokes solver written from scratch in Python using building blocks from the FEniCS project (fenicsproject.org). The solver is unstructured and targets large-scale applications in complex geometries on massively parallel clusters. Oasis utilizes MPI and interfaces, through FEniCS, to the linear algebra backend PETSc. Oasis advocates a high-level, programmable user interface through the creation of highly flexible Python modules for new problems. Through the high-level Python interface the user is placed in complete control of every aspect of the solver. A version of the solver, that is using piecewise linear elements for both velocity and pressure, is shown to reproduce very well the classical, spectral, turbulent channel simulations of Moser et al. (1999). The computational speed is strongly dominated by the iterative solvers provided by the linear algebra backend, which is arguably the best performance any similar implicit solver using PETSc may hope for. Higher order accuracy is also demonstrated and new solvers may be easily added within the same framework.

  4. The Use of Sparse Direct Solver in Vector Finite Element Modeling for Calculating Two Dimensional (2-D) Magnetotelluric Responses in Transverse Electric (TE) Mode

    NASA Astrophysics Data System (ADS)

    Yihaa Roodhiyah, Lisa’; Tjong, Tiffany; Nurhasan; Sutarno, D.

    2018-04-01

    The late research, linear matrices of vector finite element in two dimensional(2-D) magnetotelluric (MT) responses modeling was solved by non-sparse direct solver in TE mode. Nevertheless, there is some weakness which have to be improved especially accuracy in the low frequency (10-3 Hz-10-5 Hz) which is not achieved yet and high cost computation in dense mesh. In this work, the solver which is used is sparse direct solver instead of non-sparse direct solverto overcome the weaknesses of solving linear matrices of vector finite element metod using non-sparse direct solver. Sparse direct solver will be advantageous in solving linear matrices of vector finite element method because of the matrix properties which is symmetrical and sparse. The validation of sparse direct solver in solving linear matrices of vector finite element has been done for a homogen half-space model and vertical contact model by analytical solution. Thevalidation result of sparse direct solver in solving linear matrices of vector finite element shows that sparse direct solver is more stable than non-sparse direct solver in computing linear problem of vector finite element method especially in low frequency. In the end, the accuracy of 2D MT responses modelling in low frequency (10-3 Hz-10-5 Hz) has been reached out under the efficient allocation memory of array and less computational time consuming.

  5. Asymptotically and exactly energy balanced augmented flux-ADER schemes with application to hyperbolic conservation laws with geometric source terms

    NASA Astrophysics Data System (ADS)

    Navas-Montilla, A.; Murillo, J.

    2016-07-01

    In this work, an arbitrary order HLL-type numerical scheme is constructed using the flux-ADER methodology. The proposed scheme is based on an augmented Derivative Riemann solver that was used for the first time in Navas-Montilla and Murillo (2015) [1]. Such solver, hereafter referred to as Flux-Source (FS) solver, was conceived as a high order extension of the augmented Roe solver and led to the generation of a novel numerical scheme called AR-ADER scheme. Here, we provide a general definition of the FS solver independently of the Riemann solver used in it. Moreover, a simplified version of the solver, referred to as Linearized-Flux-Source (LFS) solver, is presented. This novel version of the FS solver allows to compute the solution without requiring reconstruction of derivatives of the fluxes, nevertheless some drawbacks are evidenced. In contrast to other previously defined Derivative Riemann solvers, the proposed FS and LFS solvers take into account the presence of the source term in the resolution of the Derivative Riemann Problem (DRP), which is of particular interest when dealing with geometric source terms. When applied to the shallow water equations, the proposed HLLS-ADER and AR-ADER schemes can be constructed to fulfill the exactly well-balanced property, showing that an arbitrary quadrature of the integral of the source inside the cell does not ensure energy balanced solutions. As a result of this work, energy balanced flux-ADER schemes that provide the exact solution for steady cases and that converge to the exact solution with arbitrary order for transient cases are constructed.

  6. Monte Carlo simulation of ion-material interactions in nuclear fusion devices

    NASA Astrophysics Data System (ADS)

    Nieto Perez, M.; Avalos-Zuñiga, R.; Ramos, G.

    2017-06-01

    One of the key aspects regarding the technological development of nuclear fusion reactors is the understanding of the interaction between high-energy ions coming from the confined plasma and the materials that the plasma-facing components are made of. Among the multiple issues important to plasma-wall interactions in fusion devices, physical erosion and composition changes induced by energetic particle bombardment are considered critical due to possible material flaking, changes to surface roughness, impurity transport and the alteration of physicochemical properties of the near surface region due to phenomena such as redeposition or implantation. A Monte Carlo code named MATILDA (Modeling of Atomic Transport in Layered Dynamic Arrays) has been developed over the years to study phenomena related to ion beam bombardment such as erosion rate, composition changes, interphase mixing and material redeposition, which are relevant issues to plasma-aided manufacturing of microelectronics, components on object exposed to intense solar wind, fusion reactor technology and other important industrial fields. In the present work, the code is applied to study three cases of plasma material interactions relevant to fusion devices in order to highlight the code's capabilities: (1) the Be redeposition process on the ITER divertor, (2) physical erosion enhancement in castellated surfaces and (3) damage to multilayer mirrors used on EUV diagnostics in fusion devices due to particle bombardment.

  7. First-principles study of the Kondo physics of a single Pu impurity in a Th host

    DOE PAGES

    Zhu, Jian -Xin; Albers, R. C.; Haule, K.; ...

    2015-04-23

    Based on its condensed-matter properties, crystal structure, and metallurgy, which includes a phase diagram with six allotropic phases, plutonium is one of the most complicated pure elements in its solid state. Its anomalous properties, which are indicative of a very strongly correlated state, are related to its special position in the periodic table, which is at the boundary between the light actinides that have itinerant 5f electrons and the heavy actinides that have localized 5f electrons. As a foundational study to probe the role of local electronic correlations in Pu, we use the local-density approximation together with a continuous-time quantummore » Monte Carlo simulation to investigate the electronic structure of a single Pu atom that is either substitutionally embedded in the bulk and or adsorbed on the surface of a Th host. This is a simpler case than the solid phases of Pu metal. With the Pu impurity atom we have found a Kondo resonance peak, which is an important signature of electronic correlations, in the local density of states around the Fermi energy. We show that the peak width of this resonance is narrower for Pu atoms at the surface of Th than for those in the bulk due to a weakened Pu - 5f hybridization with the ligands at the surface.« less

  8. Benchmark Evaluation of Start-Up and Zero-Power Measurements at the High-Temperature Engineering Test Reactor

    DOE PAGES

    Bess, John D.; Fujimoto, Nozomu

    2014-10-09

    Benchmark models were developed to evaluate six cold-critical and two warm-critical, zero-power measurements of the HTTR. Additional measurements of a fully-loaded subcritical configuration, core excess reactivity, shutdown margins, six isothermal temperature coefficients, and axial reaction-rate distributions were also evaluated as acceptable benchmark experiments. Insufficient information is publicly available to develop finely-detailed models of the HTTR as much of the design information is still proprietary. However, the uncertainties in the benchmark models are judged to be of sufficient magnitude to encompass any biases and bias uncertainties incurred through the simplification process used to develop the benchmark models. Dominant uncertainties in themore » experimental keff for all core configurations come from uncertainties in the impurity content of the various graphite blocks that comprise the HTTR. Monte Carlo calculations of keff are between approximately 0.9 % and 2.7 % greater than the benchmark values. Reevaluation of the HTTR models as additional information becomes available could improve the quality of this benchmark and possibly reduce the computational biases. High-quality characterization of graphite impurities would significantly improve the quality of the HTTR benchmark assessment. Simulation of the other reactor physics measurements are in good agreement with the benchmark experiment values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments.« less

  9. Reliability of the one-crossing approximation in describing the Mott transition

    NASA Astrophysics Data System (ADS)

    Vildosola, V.; Pourovskii, L. V.; Manuel, L. O.; Roura-Bas, P.

    2015-12-01

    We assess the reliability of the one-crossing approximation (OCA) approach in a quantitative description of the Mott transition in the framework of the dynamical mean field theory (DMFT). The OCA approach has been applied in conjunction with DMFT to a number of heavy-fermion, actinide, transition metal compounds and nanoscale systems. However, several recent studies in the framework of impurity models pointed out serious deficiencies of OCA and raised questions regarding its reliability. Here we consider a single band Hubbard model on the Bethe lattice at finite temperatures and compare the results of OCA to those of a numerically exact quantum Monte Carlo (QMC) method. The temperature-local repulsion U phase diagram for the particle-hole symmetric case obtained by OCA is in good agreement with that of QMC, with the metal-insulator transition captured very well. We find, however, that the insulator to metal transition is shifted to higher values of U and, simultaneously, correlations in the metallic phase are significantly overestimated. This counter-intuitive behaviour is due to simultaneous underestimations of the Kondo scale in the metallic phase and the size of the insulating gap. We trace the underestimation of the insulating gap to that of the second moment of the high-frequency expansion of the impurity spectral density. Calculations of the system away from the particle-hole symmetric case are also presented and discussed.

  10. High Maneuverability Airframe: Investigation of Fin and Canard Sizing for Optimum Maneuverability

    DTIC Science & Technology

    2014-09-01

    overset grids (unified- grid); 5) total variation diminishing discretization based on a new multidimensional interpolation framework; 6) Riemann solvers to...Aerodynamics .........................................................................................3 3.1.1 Solver ...describes the methodology used for the simulations. 3.1.1 Solver The double-precision solver of a commercially available code, CFD ++ v12.1.1, 9

  11. A fast direct solver for a class of two-dimensional separable elliptic equations on the sphere

    NASA Technical Reports Server (NTRS)

    Moorthi, Shrinivas; Higgins, R. Wayne

    1992-01-01

    An efficient, direct, second-order solver for the discrete solution of two-dimensional separable elliptic equations on the sphere is presented. The method involves a Fourier transformation in longitude and a direct solution of the resulting coupled second-order finite difference equations in latitude. The solver is made efficient by vectorizing over longitudinal wavenumber and by using a vectorized fast Fourier transform routine. It is evaluated using a prescribed solution method and compared with a multigrid solver and the standard direct solver from FISHPAK.

  12. Development of axisymmetric lattice Boltzmann flux solver for complex multiphase flows

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Shu, Chang; Yang, Li-Ming; Yuan, Hai-Zhuan

    2018-05-01

    This paper presents an axisymmetric lattice Boltzmann flux solver (LBFS) for simulating axisymmetric multiphase flows. In the solver, the two-dimensional (2D) multiphase LBFS is applied to reconstruct macroscopic fluxes excluding axisymmetric effects. Source terms accounting for axisymmetric effects are introduced directly into the governing equations. As compared to conventional axisymmetric multiphase lattice Boltzmann (LB) method, the present solver has the kinetic feature for flux evaluation and avoids complex derivations of external forcing terms. In addition, the present solver also saves considerable computational efforts in comparison with three-dimensional (3D) computations. The capability of the proposed solver in simulating complex multiphase flows is demonstrated by studying single bubble rising in a circular tube. The obtained results compare well with the published data.

  13. Differences in the Processes of Solving Physics Problems between Good Physics Problem Solvers and Poor Physics Problem Solvers.

    ERIC Educational Resources Information Center

    Finegold, M.; Mass, R.

    1985-01-01

    Good problem solvers and poor problem solvers in advanced physics (N=8) were significantly different in their ability in translating, planning, and physical reasoning, as well as in problem solving time; no differences in reliance on algebraic solutions and checking problems were noted. Implications for physics teaching are discussed. (DH)

  14. Acceleration of FDTD mode solver by high-performance computing techniques.

    PubMed

    Han, Lin; Xi, Yanping; Huang, Wei-Ping

    2010-06-21

    A two-dimensional (2D) compact finite-difference time-domain (FDTD) mode solver is developed based on wave equation formalism in combination with the matrix pencil method (MPM). The method is validated for calculation of both real guided and complex leaky modes of typical optical waveguides against the bench-mark finite-difference (FD) eigen mode solver. By taking advantage of the inherent parallel nature of the FDTD algorithm, the mode solver is implemented on graphics processing units (GPUs) using the compute unified device architecture (CUDA). It is demonstrated that the high-performance computing technique leads to significant acceleration of the FDTD mode solver with more than 30 times improvement in computational efficiency in comparison with the conventional FDTD mode solver running on CPU of a standard desktop computer. The computational efficiency of the accelerated FDTD method is in the same order of magnitude of the standard finite-difference eigen mode solver and yet require much less memory (e.g., less than 10%). Therefore, the new method may serve as an efficient, accurate and robust tool for mode calculation of optical waveguides even when the conventional eigen value mode solvers are no longer applicable due to memory limitation.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gearhart, Jared Lee; Adair, Kristin Lynn; Durfee, Justin David.

    When developing linear programming models, issues such as budget limitations, customer requirements, or licensing may preclude the use of commercial linear programming solvers. In such cases, one option is to use an open-source linear programming solver. A survey of linear programming tools was conducted to identify potential open-source solvers. From this survey, four open-source solvers were tested using a collection of linear programming test problems and the results were compared to IBM ILOG CPLEX Optimizer (CPLEX) [1], an industry standard. The solvers considered were: COIN-OR Linear Programming (CLP) [2], [3], GNU Linear Programming Kit (GLPK) [4], lp_solve [5] and Modularmore » In-core Nonlinear Optimization System (MINOS) [6]. As no open-source solver outperforms CPLEX, this study demonstrates the power of commercial linear programming software. CLP was found to be the top performing open-source solver considered in terms of capability and speed. GLPK also performed well but cannot match the speed of CLP or CPLEX. lp_solve and MINOS were considerably slower and encountered issues when solving several test problems.« less

  16. Generalized conjugate-gradient methods for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing

    1991-01-01

    A generalized conjugate-gradient method is used to solve the two-dimensional, compressible Navier-Stokes equations of fluid flow. The equations are discretized with an implicit, upwind finite-volume formulation. Preconditioning techniques are incorporated into the new solver to accelerate convergence of the overall iterative method. The superiority of the new solver is demonstrated by comparisons with a conventional line Gauss-Siedel Relaxation solver. Computational test results for transonic flow (trailing edge flow in a transonic turbine cascade) and hypersonic flow (M = 6.0 shock-on-shock phenoena on a cylindrical leading edge) are presented. When applied to the transonic cascade case, the new solver is 4.4 times faster in terms of number of iterations and 3.1 times faster in terms of CPU time than the Relaxation solver. For the hypersonic shock case, the new solver is 3.0 times faster in terms of number of iterations and 2.2 times faster in terms of CPU time than the Relaxation solver.

  17. Shape reanalysis and sensitivities utilizing preconditioned iterative boundary solvers

    NASA Technical Reports Server (NTRS)

    Guru Prasad, K.; Kane, J. H.

    1992-01-01

    The computational advantages associated with the utilization of preconditined iterative equation solvers are quantified for the reanalysis of perturbed shapes using continuum structural boundary element analysis (BEA). Both single- and multi-zone three-dimensional problems are examined. Significant reductions in computer time are obtained by making use of previously computed solution vectors and preconditioners in subsequent analyses. The effectiveness of this technique is demonstrated for the computation of shape response sensitivities required in shape optimization. Computer times and accuracies achieved using the preconditioned iterative solvers are compared with those obtained via direct solvers and implicit differentiation of the boundary integral equations. It is concluded that this approach employing preconditioned iterative equation solvers in reanalysis and sensitivity analysis can be competitive with if not superior to those involving direct solvers.

  18. Analysis Tools for CFD Multigrid Solvers

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Thomas, James L.; Diskin, Boris

    2004-01-01

    Analysis tools are needed to guide the development and evaluate the performance of multigrid solvers for the fluid flow equations. Classical analysis tools, such as local mode analysis, often fail to accurately predict performance. Two-grid analysis tools, herein referred to as Idealized Coarse Grid and Idealized Relaxation iterations, have been developed and evaluated within a pilot multigrid solver. These new tools are applicable to general systems of equations and/or discretizations and point to problem areas within an existing multigrid solver. Idealized Relaxation and Idealized Coarse Grid are applied in developing textbook-efficient multigrid solvers for incompressible stagnation flow problems.

  19. On the implicit density based OpenFOAM solver for turbulent compressible flows

    NASA Astrophysics Data System (ADS)

    Fürst, Jiří

    The contribution deals with the development of coupled implicit density based solver for compressible flows in the framework of open source package OpenFOAM. However the standard distribution of OpenFOAM contains several ready-made segregated solvers for compressible flows, the performance of those solvers is rather week in the case of transonic flows. Therefore we extend the work of Shen [15] and we develop an implicit semi-coupled solver. The main flow field variables are updated using lower-upper symmetric Gauss-Seidel method (LU-SGS) whereas the turbulence model variables are updated using implicit Euler method.

  20. A 3D approximate maximum likelihood localization solver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-09-23

    A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with acoustic transmitters and vocalizing marine mammals to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives and support Marine Renewable Energy. An approximate maximum likelihood solver was developed using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature.

  1. A Riemann solver for single-phase and two-phase shallow flow models based on relaxation. Relations with Roe and VFRoe solvers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelanti, Marica, E-mail: Marica.Pelanti@ens.f; Bouchut, Francois, E-mail: francois.bouchut@univ-mlv.f; Mangeney, Anne, E-mail: mangeney@ipgp.jussieu.f

    2011-02-01

    We present a Riemann solver derived by a relaxation technique for classical single-phase shallow flow equations and for a two-phase shallow flow model describing a mixture of solid granular material and fluid. Our primary interest is the numerical approximation of this two-phase solid/fluid model, whose complexity poses numerical difficulties that cannot be efficiently addressed by existing solvers. In particular, we are concerned with ensuring a robust treatment of dry bed states. The relaxation system used by the proposed solver is formulated by introducing auxiliary variables that replace the momenta in the spatial gradients of the original model systems. The resultingmore » relaxation solver is related to Roe solver in that its Riemann solution for the flow height and relaxation variables is formally computed as Roe's Riemann solution. The relaxation solver has the advantage of a certain degree of freedom in the specification of the wave structure through the choice of the relaxation parameters. This flexibility can be exploited to handle robustly vacuum states, which is a well known difficulty of standard Roe's method, while maintaining Roe's low diffusivity. For the single-phase model positivity of flow height is rigorously preserved. For the two-phase model positivity of volume fractions in general is not ensured, and a suitable restriction on the CFL number might be needed. Nonetheless, numerical experiments suggest that the proposed two-phase flow solver efficiently models wet/dry fronts and vacuum formation for a large range of flow conditions. As a corollary of our study, we show that for single-phase shallow flow equations the relaxation solver is formally equivalent to the VFRoe solver with conservative variables of Gallouet and Masella [T. Gallouet, J.-M. Masella, Un schema de Godunov approche C.R. Acad. Sci. Paris, Serie I, 323 (1996) 77-84]. The relaxation interpretation allows establishing positivity conditions for this VFRoe method.« less

  2. Quantum state transfer in double-quantum-well devices

    NASA Technical Reports Server (NTRS)

    Jakumeit, Jurgen; Tutt, Marcel; Pavlidis, Dimitris

    1994-01-01

    A Monte Carlo simulation of double-quantum-well (DQW) devices is presented in view of analyzing the quantum state transfer (QST) effect. Different structures, based on the AlGaAs/GaAs system, were simulated at 77 and 300 K and optimized in terms of electron transfer and device speed. The analysis revealed the dominant role of the impurity scattering for the QST. Different approaches were used for the optimization of QST devices and basic physical limitations were found in the electron transfer between the QWs. The maximum transfer of electrons from a high to a low mobility well was at best 20%. Negative differential resistance is hampered by the almost linear rather than threshold dependent relation of electron transfer on electric field. By optimizing the doping profile the operation frequency limit could be extended to 260 GHz.

  3. Bose Condensation at He-4 Interfaces

    NASA Technical Reports Server (NTRS)

    Draeger, E. W.; Ceperley, D. M.

    2003-01-01

    Path Integral Monte Carlo was used to calculate the Bose-Einstein condensate fraction at the surface of a helium film at T = 0:77 K, as a function of density. Moving from the center of the slab to the surface, the condensate fraction was found to initially increase with decreasing density to a maximum value of 0.9, before decreasing. Long wavelength density correlations were observed in the static structure factor at the surface of the slab. A surface dispersion relation was calculated from imaginary-time density-density correlations. Similar calculations of the superfluid density throughout He-4 droplets doped with linear impurities (HCN)(sub n) are presented. After deriving a local estimator for the superfluid density distribution, we find a decreased superfluid response in the first solvation layer. This effective normal fluid exhibits temperature dependence similar to that of a two-dimensional helium system.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borowik, Piotr, E-mail: pborow@poczta.onet.pl; Thobel, Jean-Luc, E-mail: jean-luc.thobel@iemn.univ-lille1.fr; Adamowicz, Leszek, E-mail: adamo@if.pw.edu.pl

    Standard computational methods used to take account of the Pauli Exclusion Principle into Monte Carlo (MC) simulations of electron transport in semiconductors may give unphysical results in low field regime, where obtained electron distribution function takes values exceeding unity. Modified algorithms were already proposed and allow to correctly account for electron scattering on phonons or impurities. Present paper extends this approach and proposes improved simulation scheme allowing including Pauli exclusion principle for electron–electron (e–e) scattering into MC simulations. Simulations with significantly reduced computational cost recreate correct values of the electron distribution function. Proposed algorithm is applied to study transport propertiesmore » of degenerate electrons in graphene with e–e interactions. This required adapting the treatment of e–e scattering in the case of linear band dispersion relation. Hence, this part of the simulation algorithm is described in details.« less

  5. Selectivity of adsorption of gases on doped graphene

    NASA Astrophysics Data System (ADS)

    Nnabugwu, Jordan; Maiga, Sidi; Gatica, Silvina

    We report our results on the selectivity of carbon dioxide being adsorbed onto doped graphene. Using the Ideal Adsorption Solution theory (IAST) we calculate the selectivity using the uptake pressures of pure gases. We focus on the adsorption of atmospheric gases such as carbon dioxide (CO2) , Nitrogen (N2) , and Methane (CH4) on a pure and doped monolayer graphene slab placed at the bottom of a simulation cell. Grand Canonical Monte Carlo (GCMC) simulations allow us to calculate the amount of gases adsorbed at a given temperature and pressure of the system. We found that including impurities of varying strength and concentration can increase significantly the selectivity at room temperature. Financial support from the National Science Foundation Research Experiences for Undergraduates Program for the REU Site in Physics at Howard University (NSF Award No. PHY-1358727) is gratefully acknowledged.

  6. Atomistic mechanisms of ReRAM cell operation and reliability

    NASA Astrophysics Data System (ADS)

    Pandey, Sumeet C.

    2018-01-01

    We present results from first-principles-based modeling that captures functionally important physical phenomena critical to cell materials selection, operation, and reliability for resistance-switching memory technologies. An atomic-scale description of retention, the low- and high-resistance states (RS), and the sources of intrinsic cell-level variability in ReRAM is discussed. Through the results obtained from density functional theory, non-equilibrium Green’s function, molecular dynamics, and kinetic Monte Carlo simulations; the role of variable-charge vacancy defects and metal impurities in determining the RS, the LRS-stability, and electron-conduction in such RS is reported. Although, the statistical electrical characteristics of the oxygen-vacancy (Ox-ReRAM) and conductive-bridging RAM (M-ReRAM) are notably different, the underlying similar electrochemical phenomena describing retention and formation/dissolution of RS are being discussed.

  7. NHDS: The New Hampshire Dispersion Relation Solver

    NASA Astrophysics Data System (ADS)

    Verscharen, Daniel; Chandran, Benjamin D. G.

    2018-04-01

    NHDS is the New Hampshire Dispersion Relation Solver. This article describes the numerics of the solver and its capabilities. The code is available for download on https://github.com/danielver02/NHDS.

  8. A High-Order Direct Solver for Helmholtz Equations with Neumann Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Sun, Xian-He; Zhuang, Yu

    1997-01-01

    In this study, a compact finite-difference discretization is first developed for Helmholtz equations on rectangular domains. Special treatments are then introduced for Neumann and Neumann-Dirichlet boundary conditions to achieve accuracy and separability. Finally, a Fast Fourier Transform (FFT) based technique is used to yield a fast direct solver. Analytical and experimental results show this newly proposed solver is comparable to the conventional second-order elliptic solver when accuracy is not a primary concern, and is significantly faster than that of the conventional solver if a highly accurate solution is required. In addition, this newly proposed fourth order Helmholtz solver is parallel in nature. It is readily available for parallel and distributed computers. The compact scheme introduced in this study is likely extendible for sixth-order accurate algorithms and for more general elliptic equations.

  9. The international river interface cooperative: Public domain flow and morphodynamics software for education and applications

    NASA Astrophysics Data System (ADS)

    Nelson, Jonathan M.; Shimizu, Yasuyuki; Abe, Takaaki; Asahi, Kazutake; Gamou, Mineyuki; Inoue, Takuya; Iwasaki, Toshiki; Kakinuma, Takaharu; Kawamura, Satomi; Kimura, Ichiro; Kyuka, Tomoko; McDonald, Richard R.; Nabi, Mohamed; Nakatsugawa, Makoto; Simões, Francisco R.; Takebayashi, Hiroshi; Watanabe, Yasunori

    2016-07-01

    This paper describes a new, public-domain interface for modeling flow, sediment transport and morphodynamics in rivers and other geophysical flows. The interface is named after the International River Interface Cooperative (iRIC), the group that constructed the interface and many of the current solvers included in iRIC. The interface is entirely free to any user and currently houses thirteen models ranging from simple one-dimensional models through three-dimensional large-eddy simulation models. Solvers are only loosely coupled to the interface so it is straightforward to modify existing solvers or to introduce other solvers into the system. Six of the most widely-used solvers are described in detail including example calculations to serve as an aid for users choosing what approach might be most appropriate for their own applications. The example calculations range from practical computations of bed evolution in natural rivers to highly detailed predictions of the development of small-scale bedforms on an initially flat bed. The remaining solvers are also briefly described. Although the focus of most solvers is coupled flow and morphodynamics, several of the solvers are also specifically aimed at providing flood inundation predictions over large spatial domains. Potential users can download the application, solvers, manuals, and educational materials including detailed tutorials at www.-i-ric.org. The iRIC development group encourages scientists and engineers to use the tool and to consider adding their own methods to the iRIC suite of tools.

  10. Preconditioned conjugate-gradient methods for low-speed flow calculations

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing

    1993-01-01

    An investigation is conducted into the viability of using a generalized Conjugate Gradient-like method as an iterative solver to obtain steady-state solutions of very low-speed fluid flow problems. Low-speed flow at Mach 0.1 over a backward-facing step is chosen as a representative test problem. The unsteady form of the two dimensional, compressible Navier-Stokes equations is integrated in time using discrete time-steps. The Navier-Stokes equations are cast in an implicit, upwind finite-volume, flux split formulation. The new iterative solver is used to solve a linear system of equations at each step of the time-integration. Preconditioning techniques are used with the new solver to enhance the stability and convergence rate of the solver and are found to be critical to the overall success of the solver. A study of various preconditioners reveals that a preconditioner based on the Lower-Upper Successive Symmetric Over-Relaxation iterative scheme is more efficient than a preconditioner based on Incomplete L-U factorizations of the iteration matrix. The performance of the new preconditioned solver is compared with a conventional Line Gauss-Seidel Relaxation (LGSR) solver. Overall speed-up factors of 28 (in terms of global time-steps required to converge to a steady-state solution) and 20 (in terms of total CPU time on one processor of a CRAY-YMP) are found in favor of the new preconditioned solver, when compared with the LGSR solver.

  11. Preconditioned Conjugate Gradient methods for low speed flow calculations

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing

    1993-01-01

    An investigation is conducted into the viability of using a generalized Conjugate Gradient-like method as an iterative solver to obtain steady-state solutions of very low-speed fluid flow problems. Low-speed flow at Mach 0.1 over a backward-facing step is chosen as a representative test problem. The unsteady form of the two dimensional, compressible Navier-Stokes equations are integrated in time using discrete time-steps. The Navier-Stokes equations are cast in an implicit, upwind finite-volume, flux split formulation. The new iterative solver is used to solve a linear system of equations at each step of the time-integration. Preconditioning techniques are used with the new solver to enhance the stability and the convergence rate of the solver and are found to be critical to the overall success of the solver. A study of various preconditioners reveals that a preconditioner based on the lower-upper (L-U)-successive symmetric over-relaxation iterative scheme is more efficient than a preconditioner based on incomplete L-U factorizations of the iteration matrix. The performance of the new preconditioned solver is compared with a conventional line Gauss-Seidel relaxation (LGSR) solver. Overall speed-up factors of 28 (in terms of global time-steps required to converge to a steady-state solution) and 20 (in terms of total CPU time on one processor of a CRAY-YMP) are found in favor of the new preconditioned solver, when compared with the LGSR solver.

  12. The international river interface cooperative: Public domain flow and morphodynamics software for education and applications

    USGS Publications Warehouse

    Nelson, Jonathan M.; Shimizu, Yasuyuki; Abe, Takaaki; Asahi, Kazutake; Gamou, Mineyuki; Inoue, Takuya; Iwasaki, Toshiki; Kakinuma, Takaharu; Kawamura, Satomi; Kimura, Ichiro; Kyuka, Tomoko; McDonald, Richard R.; Nabi, Mohamed; Nakatsugawa, Makoto; Simoes, Francisco J.; Takebayashi, Hiroshi; Watanabe, Yasunori

    2016-01-01

    This paper describes a new, public-domain interface for modeling flow, sediment transport and morphodynamics in rivers and other geophysical flows. The interface is named after the International River Interface Cooperative (iRIC), the group that constructed the interface and many of the current solvers included in iRIC. The interface is entirely free to any user and currently houses thirteen models ranging from simple one-dimensional models through three-dimensional large-eddy simulation models. Solvers are only loosely coupled to the interface so it is straightforward to modify existing solvers or to introduce other solvers into the system. Six of the most widely-used solvers are described in detail including example calculations to serve as an aid for users choosing what approach might be most appropriate for their own applications. The example calculations range from practical computations of bed evolution in natural rivers to highly detailed predictions of the development of small-scale bedforms on an initially flat bed. The remaining solvers are also briefly described. Although the focus of most solvers is coupled flow and morphodynamics, several of the solvers are also specifically aimed at providing flood inundation predictions over large spatial domains. Potential users can download the application, solvers, manuals, and educational materials including detailed tutorials at www.-i-ric.org. The iRIC development group encourages scientists and engineers to use the tool and to consider adding their own methods to the iRIC suite of tools.

  13. Multiply scaled constrained nonlinear equation solvers. [for nonlinear heat conduction problems

    NASA Technical Reports Server (NTRS)

    Padovan, Joe; Krishna, Lala

    1986-01-01

    To improve the numerical stability of nonlinear equation solvers, a partitioned multiply scaled constraint scheme is developed. This scheme enables hierarchical levels of control for nonlinear equation solvers. To complement the procedure, partitioned convergence checks are established along with self-adaptive partitioning schemes. Overall, such procedures greatly enhance the numerical stability of the original solvers. To demonstrate and motivate the development of the scheme, the problem of nonlinear heat conduction is considered. In this context the main emphasis is given to successive substitution-type schemes. To verify the improved numerical characteristics associated with partitioned multiply scaled solvers, results are presented for several benchmark examples.

  14. Shallow-water sloshing in a moving vessel with variable cross-section and wetting-drying using an extension of George's well-balanced finite volume solver

    NASA Astrophysics Data System (ADS)

    Alemi Ardakani, Hamid; Bridges, Thomas J.; Turner, Matthew R.

    2016-06-01

    A class of augmented approximate Riemann solvers due to George (2008) [12] is extended to solve the shallow-water equations in a moving vessel with variable bottom topography and variable cross-section with wetting and drying. A class of Roe-type upwind solvers for the system of balance laws is derived which respects the steady-state solutions. The numerical solutions of the new adapted augmented f-wave solvers are validated against the Roe-type solvers. The theory is extended to solve the shallow-water flows in moving vessels with arbitrary cross-section with influx-efflux boundary conditions motivated by the shallow-water sloshing in the ocean wave energy converter (WEC) proposed by Offshore Wave Energy Ltd. (OWEL) [1]. A fractional step approach is used to handle the time-dependent forcing functions. The numerical solutions are compared to an extended new Roe-type solver for the system of balance laws with a time-dependent source function. The shallow-water sloshing finite volume solver can be coupled to a Runge-Kutta integrator for the vessel motion.

  15. Final Technical Report for Quantum Embedding for Correlated Electronic Structure in Large Systems and the Condensed Phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Garnet Kin-Lic

    2017-04-30

    This is the final technical report. We briefly describe some selected results below. Developments in density matrix embedding. DMET is a quantum embedding theory that we introduced at the beginning of the last funding period, around 2012-2013. Since the first DMET papers, which demonstrated proof-of- principle calculations on the Hubbard model and hydrogen rings, we have carried out a number of different developments, including: Extending the DMET technology to compute broken symmetry phases, including magnetic phases and super- conductivity (Pub. 13); Calibrating the accuracy of DMET and its cluster size convergence against other methods, and formulation of a dynamical clustermore » analog (Pubs. 4, 10) (see Fig. 1); Implementing DMET for ab-initio molecular calculations, and exploring different self-consistency criteria (Pubs. 9, 14); Using embedding to defi ne quantum classical interfaces Pub. 2; Formulating DMET for spectral functions (Pub. 7) (see Fig. 1); Extending DMET to coupled fermion-boson problems (Pub. 12). Together with these embedding developments, we have also implemented a wide variety of impurity solvers within our DMET framework, including DMRG (Pub. 3), AFQMC (Pub. 10), and coupled cluster theory (CC) (Pub. 9).« less

  16. MODFLOW-2000, The U.S. Geological Survey Modular Ground-Water Model -- GMG Linear Equation Solver Package Documentation

    USGS Publications Warehouse

    Wilson, John D.; Naff, Richard L.

    2004-01-01

    A geometric multigrid solver (GMG), based in the preconditioned conjugate gradient algorithm, has been developed for solving systems of equations resulting from applying the cell-centered finite difference algorithm to flow in porous media. This solver has been adapted to the U.S. Geological Survey ground-water flow model MODFLOW-2000. The documentation herein is a description of the solver and the adaptation to MODFLOW-2000.

  17. Experimental validation of a coupled neutron-photon inverse radiation transport solver

    NASA Astrophysics Data System (ADS)

    Mattingly, John; Mitchell, Dean J.; Harding, Lee T.

    2011-10-01

    Sandia National Laboratories has developed an inverse radiation transport solver that applies nonlinear regression to coupled neutron-photon deterministic transport models. The inverse solver uses nonlinear regression to fit a radiation transport model to gamma spectrometry and neutron multiplicity counting measurements. The subject of this paper is the experimental validation of that solver. This paper describes a series of experiments conducted with a 4.5 kg sphere of α-phase, weapons-grade plutonium. The source was measured bare and reflected by high-density polyethylene (HDPE) spherical shells with total thicknesses between 1.27 and 15.24 cm. Neutron and photon emissions from the source were measured using three instruments: a gross neutron counter, a portable neutron multiplicity counter, and a high-resolution gamma spectrometer. These measurements were used as input to the inverse radiation transport solver to evaluate the solver's ability to correctly infer the configuration of the source from its measured radiation signatures.

  18. BCYCLIC: A parallel block tridiagonal matrix cyclic solver

    NASA Astrophysics Data System (ADS)

    Hirshman, S. P.; Perumalla, K. S.; Lynch, V. E.; Sanchez, R.

    2010-09-01

    A block tridiagonal matrix is factored with minimal fill-in using a cyclic reduction algorithm that is easily parallelized. Storage of the factored blocks allows the application of the inverse to multiple right-hand sides which may not be known at factorization time. Scalability with the number of block rows is achieved with cyclic reduction, while scalability with the block size is achieved using multithreaded routines (OpenMP, GotoBLAS) for block matrix manipulation. This dual scalability is a noteworthy feature of this new solver, as well as its ability to efficiently handle arbitrary (non-powers-of-2) block row and processor numbers. Comparison with a state-of-the art parallel sparse solver is presented. It is expected that this new solver will allow many physical applications to optimally use the parallel resources on current supercomputers. Example usage of the solver in magneto-hydrodynamic (MHD), three-dimensional equilibrium solvers for high-temperature fusion plasmas is cited.

  19. High-performance equation solvers and their impact on finite element analysis

    NASA Technical Reports Server (NTRS)

    Poole, Eugene L.; Knight, Norman F., Jr.; Davis, D. Dale, Jr.

    1990-01-01

    The role of equation solvers in modern structural analysis software is described. Direct and iterative equation solvers which exploit vectorization on modern high-performance computer systems are described and compared. The direct solvers are two Cholesky factorization methods. The first method utilizes a novel variable-band data storage format to achieve very high computation rates and the second method uses a sparse data storage format designed to reduce the number of operations. The iterative solvers are preconditioned conjugate gradient methods. Two different preconditioners are included; the first uses a diagonal matrix storage scheme to achieve high computation rates and the second requires a sparse data storage scheme and converges to the solution in fewer iterations that the first. The impact of using all of the equation solvers in a common structural analysis software system is demonstrated by solving several representative structural analysis problems.

  20. High-performance equation solvers and their impact on finite element analysis

    NASA Technical Reports Server (NTRS)

    Poole, Eugene L.; Knight, Norman F., Jr.; Davis, D. D., Jr.

    1992-01-01

    The role of equation solvers in modern structural analysis software is described. Direct and iterative equation solvers which exploit vectorization on modern high-performance computer systems are described and compared. The direct solvers are two Cholesky factorization methods. The first method utilizes a novel variable-band data storage format to achieve very high computation rates and the second method uses a sparse data storage format designed to reduce the number od operations. The iterative solvers are preconditioned conjugate gradient methods. Two different preconditioners are included; the first uses a diagonal matrix storage scheme to achieve high computation rates and the second requires a sparse data storage scheme and converges to the solution in fewer iterations that the first. The impact of using all of the equation solvers in a common structural analysis software system is demonstrated by solving several representative structural analysis problems.

  1. Decentralized Patrolling Under Constraints in Dynamic Environments.

    PubMed

    Shaofei Chen; Feng Wu; Lincheng Shen; Jing Chen; Ramchurn, Sarvapali D

    2016-12-01

    We investigate a decentralized patrolling problem for dynamic environments where information is distributed alongside threats. In this problem, agents obtain information at a location, but may suffer attacks from the threat at that location. In a decentralized fashion, each agent patrols in a designated area of the environment and interacts with a limited number of agents. Therefore, the goal of these agents is to coordinate to gather as much information as possible while limiting the damage incurred. Hence, we model this class of problem as a transition-decoupled partially observable Markov decision process with health constraints. Furthermore, we propose scalable decentralized online algorithms based on Monte Carlo tree search and a factored belief vector. We empirically evaluate our algorithms on decentralized patrolling problems and benchmark them against the state-of-the-art online planning solver. The results show that our approach outperforms the state-of-the-art by more than 56% for six agents patrolling problems and can scale up to 24 agents in reasonable time.

  2. Simulation and Analyses of Stage Separation Two-Stage Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Neirynck, Thomas A.; Hotchko, Nathaniel J.; Tartabini, Paul V.; Scallion, William I.; Murphy, Kelly J.; Covell, Peter F.

    2005-01-01

    NASA has initiated the development of methodologies, techniques and tools needed for analysis and simulation of stage separation of next generation reusable launch vehicles. As a part of this activity, ConSep simulation tool is being developed which is a MATLAB-based front-and-back-end to the commercially available ADAMS(registered Trademark) solver, an industry standard package for solving multi-body dynamic problems. This paper discusses the application of ConSep to the simulation and analysis of staging maneuvers of two-stage-to-orbit (TSTO) Bimese reusable launch vehicles, one staging at Mach 3 and the other at Mach 6. The proximity and isolated aerodynamic database were assembled using the data from wind tunnel tests conducted at NASA Langley Research Center. The effects of parametric variations in mass, inertia, flight path angle, altitude from their nominal values at staging were evaluated. Monte Carlo runs were performed for Mach 3 staging to evaluate the sensitivity to uncertainties in aerodynamic coefficients.

  3. Simulation and Analyses of Stage Separation of Two-Stage Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Neirynck, Thomas A.; Hotchko, Nathaniel J.; Tartabini, Paul V.; Scallion, William I.; Murphy, K. J.; Covell, Peter F.

    2007-01-01

    NASA has initiated the development of methodologies, techniques and tools needed for analysis and simulation of stage separation of next generation reusable launch vehicles. As a part of this activity, ConSep simulation tool is being developed which is a MATLAB-based front-and-back-end to the commercially available ADAMS(Registerd TradeMark) solver, an industry standard package for solving multi-body dynamic problems. This paper discusses the application of ConSep to the simulation and analysis of staging maneuvers of two-stage-to-orbit (TSTO) Bimese reusable launch vehicles, one staging at Mach 3 and the other at Mach 6. The proximity and isolated aerodynamic database were assembled using the data from wind tunnel tests conducted at NASA Langley Research Center. The effects of parametric variations in mass, inertia, flight path angle, altitude from their nominal values at staging were evaluated. Monte Carlo runs were performed for Mach 3 staging to evaluate the sensitivity to uncertainties in aerodynamic coefficients.

  4. Three-dimensional implementation of the Low Diffusion method for continuum flow simulations

    NASA Astrophysics Data System (ADS)

    Mirza, A.; Nizenkov, P.; Pfeiffer, M.; Fasoulas, S.

    2017-11-01

    Concepts of a particle-based continuum method have existed for many years. The ultimate goal is to couple such a method with the Direct Simulation Monte Carlo (DSMC) in order to bridge the gap of numerical tools in the treatment of the transitional flow regime between near-equilibrium and rarefied gas flows. For this purpose, the Low Diffusion (LD) method, introduced first by Burt and Boyd, offers a promising solution. In this paper, the LD method is revisited and the implementation in a modern particle solver named PICLas is given. The modifications of the LD routines enable three-dimensional continuum flow simulations. The implementation is successfully verified through a series of test cases: simple stationary shock, oblique shock simulation and thermal Couette flow. Additionally, the capability of this method is demonstrated by the simulation of a hypersonic nitrogen flow around a 70°-blunted cone. Overall results are in very good agreement with experimental data. Finally, the scalability of PICLas using LD on a high performance cluster is presented.

  5. Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Benjamin, E-mail: collinsbs@ornl.gov; Stimpson, Shane, E-mail: stimpsonsg@ornl.gov; Kelley, Blake W., E-mail: kelleybl@umich.edu

    2016-12-01

    A consistent “2D/1D” neutron transport method is derived from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. This paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. Several applications have been performed on both leadership-class and industry-classmore » computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.« less

  6. Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT

    DOE PAGES

    Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; ...

    2016-08-25

    We derived a consistent “2D/1D” neutron transport method from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. Our paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. We also performed several applications on both leadership-class and industry-classmore » computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wollaber, Allan Benton; Park, HyeongKae; Lowrie, Robert Byron

    Recent efforts at Los Alamos National Laboratory to develop a moment-based, scale-bridging [or high-order (HO)–low-order (LO)] algorithm for solving large varieties of the transport (kinetic) systems have shown promising results. A part of our ongoing effort is incorporating this methodology into the framework of the Eulerian Applications Project to achieve algorithmic acceleration of radiationhydrodynamics simulations in production software. By starting from the thermal radiative transfer equations with a simple material-motion correction, we derive a discretely consistent energy balance equation (LO equation). We demonstrate that the corresponding LO system for the Monte Carlo HO solver is closely related to the originalmore » LO system without material-motion corrections. We test the implementation on a radiative shock problem and show consistency between the energy densities and temperatures in the HO and LO solutions as well as agreement with the semianalytic solution. We also test the approach on a more challenging two-dimensional problem and demonstrate accuracy enhancements and algorithmic speedups. This paper extends a recent conference paper by including multigroup effects.« less

  8. Sparse regularization for EIT reconstruction incorporating structural information derived from medical imaging.

    PubMed

    Gong, Bo; Schullcke, Benjamin; Krueger-Ziolek, Sabine; Mueller-Lisse, Ullrich; Moeller, Knut

    2016-06-01

    Electrical impedance tomography (EIT) reconstructs the conductivity distribution of a domain using electrical data on its boundary. This is an ill-posed inverse problem usually solved on a finite element mesh. For this article, a special regularization method incorporating structural information of the targeted domain is proposed and evaluated. Structural information was obtained either from computed tomography images or from preliminary EIT reconstructions by a modified k-means clustering. The proposed regularization method integrates this structural information into the reconstruction as a soft constraint preferring sparsity in group level. A first evaluation with Monte Carlo simulations indicated that the proposed solver is more robust to noise and the resulting images show fewer artifacts. This finding is supported by real data analysis. The structure based regularization has the potential to balance structural a priori information with data driven reconstruction. It is robust to noise, reduces artifacts and produces images that reflect anatomy and are thus easier to interpret for physicians.

  9. Effect of multiphase radiation on coal combustion in a pulverized coal jet flame

    NASA Astrophysics Data System (ADS)

    Wu, Bifen; Roy, Somesh P.; Zhao, Xinyu; Modest, Michael F.

    2017-08-01

    The accurate modeling of coal combustion requires detailed radiative heat transfer models for both gaseous combustion products and solid coal particles. A multiphase Monte Carlo ray tracing (MCRT) radiation solver is developed in this work to simulate a laboratory-scale pulverized coal flame. The MCRT solver considers radiative interactions between coal particles and three major combustion products (CO2, H2O, and CO). A line-by-line spectral database for the gas phase and a size-dependent nongray correlation for the solid phase are employed to account for the nongray effects. The flame structure is significantly altered by considering nongray radiation and the lift-off height of the flame increases by approximately 35%, compared to the simulation without radiation. Radiation is also found to affect the evolution of coal particles considerably as it takes over as the dominant mode of heat transfer for medium-to-large coal particles downstream of the flame. To investigate the respective effects of spectral models for the gas and solid phases, a Planck-mean-based gray gas model and a size-independent gray particle model are applied in a frozen-field analysis of a steady-state snapshot of the flame. The gray gas approximation considerably underestimates the radiative source terms for both the gas phase and the solid phase. The gray coal approximation also leads to under-prediction of the particle emission and absorption. However, the level of under-prediction is not as significant as that resulting from the employment of the gray gas model. Finally, the effect of the spectral property of ash on radiation is also investigated and found to be insignificant for the present target flame.

  10. Hybrid finite-volume/transported PDF method for the simulation of turbulent reactive flows

    NASA Astrophysics Data System (ADS)

    Raman, Venkatramanan

    A novel computational scheme is formulated for simulating turbulent reactive flows in complex geometries with detailed chemical kinetics. A Probability Density Function (PDF) based method that handles the scalar transport equation is coupled with an existing Finite Volume (FV) Reynolds-Averaged Navier-Stokes (RANS) flow solver. The PDF formulation leads to closed chemical source terms and facilitates the use of detailed chemical mechanisms without approximations. The particle-based PDF scheme is modified to handle complex geometries and grid structures. Grid-independent particle evolution schemes that scale linearly with the problem size are implemented in the Monte-Carlo PDF solver. A novel algorithm, in situ adaptive tabulation (ISAT) is employed to ensure tractability of complex chemistry involving a multitude of species. Several non-reacting test cases are performed to ascertain the efficiency and accuracy of the method. Simulation results from a turbulent jet-diffusion flame case are compared against experimental data. The effect of micromixing model, turbulence model and reaction scheme on flame predictions are discussed extensively. Finally, the method is used to analyze the Dow Chlorination Reactor. Detailed kinetics involving 37 species and 158 reactions as well as a reduced form with 16 species and 21 reactions are used. The effect of inlet configuration on reactor behavior and product distribution is analyzed. Plant-scale reactors exhibit quenching phenomena that cannot be reproduced by conventional simulation methods. The FV-PDF method predicts quenching accurately and provides insight into the dynamics of the reactor near extinction. The accuracy of the fractional time-stepping technique in discussed in the context of apparent multiple-steady states observed in a non-premixed feed configuration of the chlorination reactor.

  11. Modelling of a Solar Thermal Power Plant for Benchmarking Blackbox Optimization Solvers

    NASA Astrophysics Data System (ADS)

    Lemyre Garneau, Mathieu

    A new family of problems is provided to serve as a benchmark for blackbox optimization solvers. The problems are single or bi-objective and vary in complexity in terms of the number of variables used (from 5 to 29), the type of variables (integer, real, category), the number of constraints (from 5 to 17) and their types (binary or continuous). In order to provide problems exhibiting dynamics that reflect real engineering challenges, they are extracted from an original numerical model of a concentrated solar power (CSP) power plant with molten salt thermal storage. The model simulates the performance of the power plant by using a high level modeling of each of its main components, namely, an heliostats field, a central cavity receiver, a molten salt heat storage, a steam generator and an idealized powerblock. The heliostats field layout is determined through a simple automatic strategy that finds the best individual positions on the field by considering their respective cosine efficiency, atmospheric scattering and spillage losses as a function of the design parameters. A Monte-Carlo integral method is used to evaluate the heliostats field's optical performance throughout the day so that shadowing effects between heliostats are considered, and the results of this evaluation provide the inputs to simulate the levels and temperatures of the thermal storage. The molten salt storage inventory is used to transfer thermal energy to the powerblock, which simulates a simple Rankine cycle with a single steam turbine. Auxiliary models are used to provide additional optimization constraints on the investment cost, parasitic losses or components failure. The results of preliminary optimizations performed with the NOMAD software using default settings are provided to show the validity of the problems.

  12. Implementation of density-based solver for all speeds in the framework of OpenFOAM

    NASA Astrophysics Data System (ADS)

    Shen, Chun; Sun, Fengxian; Xia, Xinlin

    2014-10-01

    In the framework of open source CFD code OpenFOAM, a density-based solver for all speeds flow field is developed. In this solver the preconditioned all speeds AUSM+(P) scheme is adopted and the dual time scheme is implemented to complete the unsteady process. Parallel computation could be implemented to accelerate the solving process. Different interface reconstruction algorithms are implemented, and their accuracy with respect to convection is compared. Three benchmark tests of lid-driven cavity flow, flow crossing over a bump, and flow over a forward-facing step are presented to show the accuracy of the AUSM+(P) solver for low-speed incompressible flow, transonic flow, and supersonic/hypersonic flow. Firstly, for the lid driven cavity flow, the computational results obtained by different interface reconstruction algorithms are compared. It is indicated that the one dimensional reconstruction scheme adopted in this solver possesses high accuracy and the solver developed in this paper can effectively catch the features of low incompressible flow. Then via the test cases regarding the flow crossing over bump and over forward step, the ability to capture characteristics of the transonic and supersonic/hypersonic flows are confirmed. The forward-facing step proves to be the most challenging for the preconditioned solvers with and without the dual time scheme. Nonetheless, the solvers described in this paper reproduce the main features of this flow, including the evolution of the initial transient.

  13. Accurate evaporation rates of pure and doped water clusters in vacuum: A statistico-dynamical approach

    NASA Astrophysics Data System (ADS)

    Calvo, F.; Douady, J.; Spiegelman, F.

    2010-01-01

    Unimolecular evaporation of selected pure (H2O)n and heterogeneous (H2O)n-1X+ water clusters containing a single hydronium or ammonium impurity is investigated in the framework of phase space theory (PST) in its orbiting transition state version. Using the many-body polarizable Kozack-Jordan potential and its extensions for X+=H3O+ and NH4+, the thermal evaporation of clusters containing 21 and 50 molecules is simulated at several total energies. Numerous molecular dynamics (MD) trajectories at high internal energies provide estimates of the decay rate constant, as well as the kinetic energy and angular momentum released upon dissociation. Additional Monte Carlo simulations are carried out to determine the anharmonic densities of vibrational states, which combined with suitable forms for the rotational densities of states provide expressions for the energy-resolved differential rates. Successful comparison between the MD results and the independent predictions of PST for the distributions of kinetic energy and angular momentum released shows that the latter statistical approach is quantitative. Using MD data as a reference, the absolute evaporation rates are calculated from PST over broad energy and temperature ranges. Based on these results, the presence of an ionic impurity is generally found to decrease the rate, however the effect is much more significant in the 21-molecule clusters. Our calculations also suggest that due to backbendings in the microcanonical densities of states the variations of the evaporation rates may not be strictly increasing with energy or temperature.

  14. Global magnetosphere simulations using constrained-transport Hall-MHD with CWENO reconstruction

    NASA Astrophysics Data System (ADS)

    Lin, L.; Germaschewski, K.; Maynard, K. M.; Abbott, S.; Bhattacharjee, A.; Raeder, J.

    2013-12-01

    We present a new CWENO (Centrally-Weighted Essentially Non-Oscillatory) reconstruction based MHD solver for the OpenGGCM global magnetosphere code. The solver was built using libMRC, a library for creating efficient parallel PDE solvers on structured grids. The use of libMRC gives us access to its core functionality of providing an automated code generation framework which takes a user provided PDE right hand side in symbolic form to generate an efficient, computer architecture specific, parallel code. libMRC also supports block-structured adaptive mesh refinement and implicit-time stepping through integration with the PETSc library. We validate the new CWENO Hall-MHD solver against existing solvers both in standard test problems as well as in global magnetosphere simulations.

  15. A method for including external feed in depletion calculations with CRAM and implementation into ORIGEN

    DOE PAGES

    Isotalo, Aarno E.; Wieselquist, William A.

    2015-05-15

    A method for including external feed with polynomial time dependence in depletion calculations with the Chebyshev Rational Approximation Method (CRAM) is presented and the implementation of CRAM to the ORIGEN module of the SCALE suite is described. In addition to being able to handle time-dependent feed rates, the new solver also adds the capability to perform adjoint calculations. Results obtained with the new CRAM solver and the original depletion solver of ORIGEN are compared to high precision reference calculations, which shows the new solver to be orders of magnitude more accurate. Lastly, in most cases, the new solver is upmore » to several times faster due to not requiring similar substepping as the original one.« less

  16. User's Manual for PCSMS (Parallel Complex Sparse Matrix Solver). Version 1.

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.

    2000-01-01

    PCSMS (Parallel Complex Sparse Matrix Solver) is a computer code written to make use of the existing real sparse direct solvers to solve complex, sparse matrix linear equations. PCSMS converts complex matrices into real matrices and use real, sparse direct matrix solvers to factor and solve the real matrices. The solution vector is reconverted to complex numbers. Though, this utility is written for Silicon Graphics (SGI) real sparse matrix solution routines, it is general in nature and can be easily modified to work with any real sparse matrix solver. The User's Manual is written to make the user acquainted with the installation and operation of the code. Driver routines are given to aid the users to integrate PCSMS routines in their own codes.

  17. Monte Carlo simulations of the X Y vectorial Blume-Emery-Griffiths model in multilayer films for 3He-4He mixtures

    NASA Astrophysics Data System (ADS)

    Santos-Filho, J. B.; Plascak, J. A.

    2017-09-01

    The X Y vectorial generalization of the Blume-Emery-Griffiths (X Y -VBEG) model, which is suitable to be applied to the study of 3He-4He mixtures, is treated on thin films structure and its thermodynamical properties are analyzed as a function of the film thickness. We employ extensive and up-to-date Monte Carlo simulations consisting of hybrid algorithms combining lattice-gas moves, Metropolis, Wolff, and super-relaxation procedures to overcome the critical slowing down and correlations among different spin configurations of the system. We also make use of single histogram techniques to get the behavior of the thermodynamical quantities close to the corresponding transition temperatures. Thin films of the X Y -VBEG model present a quite rich phase diagram with Berezinskii-Kosterlitz-Thouless (BKT) transitions, BKT endpoints, and isolated critical points. As one varies the impurity concentrations along the layers, and in the limit of infinite film thickness, there is a coalescence of the BKT transition endpoint and the isolated critical point into a single, unique tricritical point. In addition, when mimicking the behavior of thin films of 3He-4He mixtures, one obtains that the concentration of 3He atoms decreases from the outer layers to the inner layers of the film, meaning that the superfluid particles tend to locate in the bulk of the system.

  18. Computational flow predictions for hypersonic drag devices

    NASA Technical Reports Server (NTRS)

    Tokarcik, Susan A.; Venkatapathy, Ethiraj

    1993-01-01

    The effectiveness of two types of hypersonic decelerators is examined: mechanically deployable flares and inflatable ballutes. Computational fluid dynamics (CFD) is used to predict the flowfield around a solid rocket motor (SRM) with a deployed decelerator. The computations are performed with an ideal gas solver using an effective specific heat ratio of 1.15. The results from the ideal gas solver are compared to computational results from a thermochemical nonequilibrium solver. The surface pressure coefficient, the drag, and the extend of the compression corner separation zone predicted by the ideal gas solver compare well with those predicted by the nonequilibrium solver. The ideal gas solver is computationally inexpensive and is shown to be well suited for preliminary design studies. The computed solutions are used to determine the size and shape of the decelerator that are required to achieve a drag coefficient of 5. Heat transfer rates to the SRM and the decelerators are predicted to estimate the amount of thermal protection required.

  19. A potential-energy scaling model to simulate the initial stages of thin-film growth

    NASA Technical Reports Server (NTRS)

    Heinbockel, J. H.; Outlaw, R. A.; Walker, G. H.

    1983-01-01

    A solid on solid (SOS) Monte Carlo computer simulation employing a potential energy scaling technique was used to model the initial stages of thin film growth. The model monitors variations in the vertical interaction potential that occur due to the arrival or departure of selected adatoms or impurities at all sites in the 400 sq. ft. array. Boltzmann ordered statistics are used to simulate fluctuations in vibrational energy at each site in the array, and the resulting site energy is compared with threshold levels of possible atomic events. In addition to adsorption, desorption, and surface migration, adatom incorporation and diffusion of a substrate atom to the surface are also included. The lateral interaction of nearest, second nearest, and third nearest neighbors is also considered. A series of computer experiments are conducted to illustrate the behavior of the model.

  20. Carbon Radiation Studies in the DIII-D Divertor with the Monte Carlo Impurity (MCI) Code

    NASA Astrophysics Data System (ADS)

    Evans, T. E.; Leonard, A. W.; West, W. P.; Finkenthal, D. F.; Fenstermacher, M. E.; Porter, G. D.; Chu, Y.

    1998-11-01

    Carbon sputtering and transport are modeled in the DIII--D divertor with the MCI code. Calculated 2-D radiation patterns are compared with measured radiation distributions. The results are particularly sensitive to Ti near the divertor target plates. For example, increasing the ion temperature from 8 eV to 20 eV in MCI raises P_rad^div from 1626 to 2862 kW. Although this presents difficulties in assessing which sputtering model best describes the plasma-surface interaction physics (because of experimental uncertainties in T_i), processes which either produce too much or too little radiated power compared to the measured value of 1718 kW can be eliminated. Based on this, the number of viable sputtering options has been reduced from 12 to 4. For the conditions studied, three of these options involve both physical and chemical sputtering, and one requires only physical sputtering.

  1. Driving a Superconductor to Insulator Transition with Random Gauge Fields.

    PubMed

    Nguyen, H Q; Hollen, S M; Shainline, J; Xu, J M; Valles, J M

    2016-11-30

    Typically the disorder that alters the interference of particle waves to produce Anderson localization is potential scattering from randomly placed impurities. Here we show that disorder in the form of random gauge fields that act directly on particle phases can also drive localization. We present evidence of a superfluid bose glass to insulator transition at a critical level of this gauge field disorder in a nano-patterned array of amorphous Bi islands. This transition shows signs of metallic transport near the critical point characterized by a resistance , indicative of a quantum phase transition. The critical disorder depends on interisland coupling in agreement with recent Quantum Monte Carlo simulations. We discuss how this disorder tuned SIT differs from the common frustration tuned SIT that also occurs in magnetic fields. Its discovery enables new high fidelity comparisons between theoretical and experimental studies of disorder effects on quantum critical systems.

  2. Initial Neutronics Analyses for HEU to LEU Fuel Conversion of the Transient Reactor Test Facility (TREAT) at the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kontogeorgakos, D.; Derstine, K.; Wright, A.

    2013-06-01

    The purpose of the TREAT reactor is to generate large transient neutron pulses in test samples without over-heating the core to simulate fuel assembly accident conditions. The power transients in the present HEU core are inherently self-limiting such that the core prevents itself from overheating even in the event of a reactivity insertion accident. The objective of this study was to support the assessment of the feasibility of the TREAT core conversion based on the present reactor performance metrics and the technical specifications of the HEU core. The LEU fuel assembly studied had the same overall design, materials (UO 2more » particles finely dispersed in graphite) and impurities content as the HEU fuel assembly. The Monte Carlo N–Particle code (MCNP) and the point kinetics code TREKIN were used in the analyses.« less

  3. Gasdynamic Inlet Isolation in Rotating Detonation Engine

    DTIC Science & Technology

    2010-12-01

    2D Total Variation Diminishing (TVD): Continuous Riemann Solver Minimum Dissipation: LHS & RHS Activate pressure switch : Supersonic Activate...Total Variation Diminishing (TVD) limiter: Continuous Riemann Solver Minimum Dissipation: LHS & RHS Activate pressure switch : Supersonic Activate...Continuous 94 Riemann Solver Minimum Dissipation: LHS & RHS Activate pressure switch : Supersonic Activate pressure gradient switch: Normal

  4. MACSYMA's symbolic ordinary differential equation solver

    NASA Technical Reports Server (NTRS)

    Golden, J. P.

    1977-01-01

    The MACSYMA's symbolic ordinary differential equation solver ODE2 is described. The code for this routine is delineated, which is of interest because it is written in top-level MACSYMA language, and may serve as a good example of programming in that language. Other symbolic ordinary differential equation solvers are mentioned.

  5. Application of an unstructured grid flow solver to planes, trains and automobiles

    NASA Technical Reports Server (NTRS)

    Spragle, Gregory S.; Smith, Wayne A.; Yadlin, Yoram

    1993-01-01

    Rampant, an unstructured flow solver developed at Fluent Inc., is used to compute three-dimensional, viscous, turbulent, compressible flow fields within complex solution domains. Rampant is an explicit, finite-volume flow solver capable of computing flow fields using either triangular (2d) or tetrahedral (3d) unstructured grids. Local time stepping, implicit residual smoothing, and multigrid techniques are used to accelerate the convergence of the explicit scheme. The paper describes the Rampant flow solver and presents flow field solutions about a plane, train, and automobile.

  6. Finite difference method accelerated with sparse solvers for structural analysis of the metal-organic complexes

    NASA Astrophysics Data System (ADS)

    Guda, A. A.; Guda, S. A.; Soldatov, M. A.; Lomachenko, K. A.; Bugaev, A. L.; Lamberti, C.; Gawelda, W.; Bressler, C.; Smolentsev, G.; Soldatov, A. V.; Joly, Y.

    2016-05-01

    Finite difference method (FDM) implemented in the FDMNES software [Phys. Rev. B, 2001, 63, 125120] was revised. Thorough analysis shows, that the calculated diagonal in the FDM matrix consists of about 96% zero elements. Thus a sparse solver would be more suitable for the problem instead of traditional Gaussian elimination for the diagonal neighbourhood. We have tried several iterative sparse solvers and the direct one MUMPS solver with METIS ordering turned out to be the best. Compared to the Gaussian solver present method is up to 40 times faster and allows XANES simulations for complex systems already on personal computers. We show applicability of the software for metal-organic [Fe(bpy)3]2+ complex both for low spin and high spin states populated after laser excitation.

  7. Computation of three-dimensional multiphase flow dynamics by Fully-Coupled Immersed Flow (FCIF) solver

    NASA Astrophysics Data System (ADS)

    Miao, Sha; Hendrickson, Kelli; Liu, Yuming

    2017-12-01

    This work presents a Fully-Coupled Immersed Flow (FCIF) solver for the three-dimensional simulation of fluid-fluid interaction by coupling two distinct flow solvers using an Immersed Boundary (IB) method. The FCIF solver captures dynamic interactions between two fluids with disparate flow properties, while retaining the desirable simplicity of non-boundary-conforming grids. For illustration, we couple an IB-based unsteady Reynolds Averaged Navier Stokes (uRANS) simulator with a depth-integrated (long-wave) solver for the application of slug development with turbulent gas and laminar liquid. We perform a series of validations including turbulent/laminar flows over prescribed wavy boundaries and freely-evolving viscous fluids. These confirm the effectiveness and accuracy of both one-way and two-way coupling in the FCIF solver. Finally, we present a simulation example of the evolution from a stratified turbulent/laminar flow through the initiation of a slug that nearly bridges the channel. The results show both the interfacial wave dynamics excited by the turbulent gas forcing and the influence of the liquid on the gas turbulence. These results demonstrate that the FCIF solver effectively captures the essential physics of gas-liquid interaction and can serve as a useful tool for the mechanistic study of slug generation in two-phase gas/liquid flows in channels and pipes.

  8. SediFoam: A general-purpose, open-source CFD-DEM solver for particle-laden flow with emphasis on sediment transport

    NASA Astrophysics Data System (ADS)

    Sun, Rui; Xiao, Heng

    2016-04-01

    With the growth of available computational resource, CFD-DEM (computational fluid dynamics-discrete element method) becomes an increasingly promising and feasible approach for the study of sediment transport. Several existing CFD-DEM solvers are applied in chemical engineering and mining industry. However, a robust CFD-DEM solver for the simulation of sediment transport is still desirable. In this work, the development of a three-dimensional, massively parallel, and open-source CFD-DEM solver SediFoam is detailed. This solver is built based on open-source solvers OpenFOAM and LAMMPS. OpenFOAM is a CFD toolbox that can perform three-dimensional fluid flow simulations on unstructured meshes; LAMMPS is a massively parallel DEM solver for molecular dynamics. Several validation tests of SediFoam are performed using cases of a wide range of complexities. The results obtained in the present simulations are consistent with those in the literature, which demonstrates the capability of SediFoam for sediment transport applications. In addition to the validation test, the parallel efficiency of SediFoam is studied to test the performance of the code for large-scale and complex simulations. The parallel efficiency tests show that the scalability of SediFoam is satisfactory in the simulations using up to O(107) particles.

  9. GSRP/David Marshall: Fully Automated Cartesian Grid CFD Application for MDO in High Speed Flows

    NASA Technical Reports Server (NTRS)

    2003-01-01

    With the renewed interest in Cartesian gridding methodologies for the ease and speed of gridding complex geometries in addition to the simplicity of the control volumes used in the computations, it has become important to investigate ways of extending the existing Cartesian grid solver functionalities. This includes developing methods of modeling the viscous effects in order to utilize Cartesian grids solvers for accurate drag predictions and addressing the issues related to the distributed memory parallelization of Cartesian solvers. This research presents advances in two areas of interest in Cartesian grid solvers, viscous effects modeling and MPI parallelization. The development of viscous effects modeling using solely Cartesian grids has been hampered by the widely varying control volume sizes associated with the mesh refinement and the cut cells associated with the solid surface. This problem is being addressed by using physically based modeling techniques to update the state vectors of the cut cells and removing them from the finite volume integration scheme. This work is performed on a new Cartesian grid solver, NASCART-GT, with modifications to its cut cell functionality. The development of MPI parallelization addresses issues associated with utilizing Cartesian solvers on distributed memory parallel environments. This work is performed on an existing Cartesian grid solver, CART3D, with modifications to its parallelization methodology.

  10. Performance Models for the Spike Banded Linear System Solver

    DOE PAGES

    Manguoglu, Murat; Saied, Faisal; Sameh, Ahmed; ...

    2011-01-01

    With availability of large-scale parallel platforms comprised of tens-of-thousands of processors and beyond, there is significant impetus for the development of scalable parallel sparse linear system solvers and preconditioners. An integral part of this design process is the development of performance models capable of predicting performance and providing accurate cost models for the solvers and preconditioners. There has been some work in the past on characterizing performance of the iterative solvers themselves. In this paper, we investigate the problem of characterizing performance and scalability of banded preconditioners. Recent work has demonstrated the superior convergence properties and robustness of banded preconditioners,more » compared to state-of-the-art ILU family of preconditioners as well as algebraic multigrid preconditioners. Furthermore, when used in conjunction with efficient banded solvers, banded preconditioners are capable of significantly faster time-to-solution. Our banded solver, the Truncated Spike algorithm is specifically designed for parallel performance and tolerance to deep memory hierarchies. Its regular structure is also highly amenable to accurate performance characterization. Using these characteristics, we derive the following results in this paper: (i) we develop parallel formulations of the Truncated Spike solver, (ii) we develop a highly accurate pseudo-analytical parallel performance model for our solver, (iii) we show excellent predication capabilities of our model – based on which we argue the high scalability of our solver. Our pseudo-analytical performance model is based on analytical performance characterization of each phase of our solver. These analytical models are then parameterized using actual runtime information on target platforms. An important consequence of our performance models is that they reveal underlying performance bottlenecks in both serial and parallel formulations. All of our results are validated on diverse heterogeneous multiclusters – platforms for which performance prediction is particularly challenging. Finally, we provide predict the scalability of the Spike algorithm using up to 65,536 cores with our model. In this paper we extend the results presented in the Ninth International Symposium on Parallel and Distributed Computing.« less

  11. Integrating Eye Trackers with Handwriting Tablets to Discover Difficulties of Solving Geometry Problems

    ERIC Educational Resources Information Center

    Lin, John J. H.; Lin, Sunny S. J.

    2018-01-01

    To deepen our understanding of those aspects of problems that cause the most difficulty for solvers, this study integrated eye-tracking with handwriting devices to investigate problem solvers' online processes while solving geometry problems. We are interested in whether the difference between successful and unsuccessful solvers can be identified…

  12. Numerical Simulations of Aero-Optical Distortions Around Various Turret Geometries

    DTIC Science & Technology

    2013-06-12

    arbi trary cell topologies. The spatial operator uses the exact Riemann Solver of Gottlieb and Groth, least squares gradient cal- culations using QR...Unstructured Euler/Navier-Stokes Flow Solver ," in A/AA Paper 1999-0786, 1999. [9] J. J. Gottlieb and C. P. T. Groth, "Assessment of Riemann Solvers

  13. USM3D Unstructured Grid Solutions for CAWAPI at NASA LaRC

    NASA Technical Reports Server (NTRS)

    Lamar, John E.; Abdol-Hamid, Khaled S.

    2007-01-01

    In support the Cranked Arrow Wing Aerodynamic Project International (CAWAPI) to improve the Technology Readiness Level of flow solvers by comparing results with measured F-16XL-1 flight data, NASA Langley employed the TetrUSS unstructured grid solver, USM3D, to obtain solutions for all seven flight conditions of interest. A newly available solver version that incorporates a number of turbulence models, including the two-equation linear and non-linear k-epsilon, was used in this study. As a first test, a choice was made to utilize only a single grid resolution with the solver for the simulation of the different flight conditions. Comparisons are presented with three turbulence models in USM3D, flight data for surface pressure, boundary-layer profiles, and skin-friction results, as well as limited predictions from other solvers. A result of these comparisons is that the USM3D solver can be used in an engineering environment to predict flow physics on a complex configuration at flight Reynolds numbers with a two-equation linear k-epsilon turbulence model.

  14. Towards a Coupled Vortex Particle and Acoustic Boundary Element Solver to Predict the Noise Production of Bio-Inspired Propulsion

    NASA Astrophysics Data System (ADS)

    Wagenhoffer, Nathan; Moored, Keith; Jaworski, Justin

    2016-11-01

    The design of quiet and efficient bio-inspired propulsive concepts requires a rapid, unified computational framework that integrates the coupled fluid dynamics with the noise generation. Such a framework is developed where the fluid motion is modeled with a two-dimensional unsteady boundary element method that includes a vortex-particle wake. The unsteady surface forces from the potential flow solver are then passed to an acoustic boundary element solver to predict the radiated sound in low-Mach-number flows. The use of the boundary element method for both the hydrodynamic and acoustic solvers permits dramatic computational acceleration by application of the fast multiple method. The reduced order of calculations due to the fast multipole method allows for greater spatial resolution of the vortical wake per unit of computational time. The coupled flow-acoustic solver is validated against canonical vortex-sound problems. The capability of the coupled solver is demonstrated by analyzing the performance and noise production of an isolated bio-inspired swimmer and of tandem swimmers.

  15. Summer Proceedings 2016: The Center for Computing Research at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carleton, James Brian; Parks, Michael L.

    Solving sparse linear systems from the discretization of elliptic partial differential equations (PDEs) is an important building block in many engineering applications. Sparse direct solvers can solve general linear systems, but are usually slower and use much more memory than effective iterative solvers. To overcome these two disadvantages, a hierarchical solver (LoRaSp) based on H2-matrices was introduced in [22]. Here, we have developed a parallel version of the algorithm in LoRaSp to solve large sparse matrices on distributed memory machines. On a single processor, the factorization time of our parallel solver scales almost linearly with the problem size for three-dimensionalmore » problems, as opposed to the quadratic scalability of many existing sparse direct solvers. Moreover, our solver leads to almost constant numbers of iterations, when used as a preconditioner for Poisson problems. On more than one processor, our algorithm has significant speedups compared to sequential runs. With this parallel algorithm, we are able to solve large problems much faster than many existing packages as demonstrated by the numerical experiments.« less

  16. Kinetic analysis of thermally relativistic flow with dissipation. II. Relativistic Boltzmann equation versus its kinetic models

    NASA Astrophysics Data System (ADS)

    Yano, Ryosuke; Matsumoto, Jun; Suzuki, Kojiro

    2011-06-01

    Thermally relativistic flow with dissipation was analyzed by solving the rarefied supersonic flow of thermally relativistic matter around a triangle prism by Yano and Suzuki [Phys. Rev. DPRVDAQ1550-7998 83, 023517 (2011)10.1103/PhysRevD.83.023517], where the Anderson-Witting (AW) model was used as a solver. In this paper, we solve the same problem, which was analyzed by Yano and Suzuki, using the relativistic Boltzmann equation (RBE). To solve the RBE, the conventional direct simulation Monte Carlo method for the nonrelativistic Boltzmann equation is extended to a new direct simulation Monte Carlo method for the RBE. Additionally, we solve the modified Marle (MM) model proposed by Yano-Suzuki-Kuroda for comparisons. The solution of the thermally relativistic shock layer around the triangle prism obtained using the relativistic Boltzmann equation is considered by focusing on profiles of macroscopic quantities, such as the density, velocity, temperature, heat flux and dynamic pressure along the stagnation streamline (SSL). Differences among profiles of the number density, velocity and temperature along the SSL obtained using the RBE, the AW and MM. models are described in the framework of the relativistic Navier-Stokes-Fourier law. Finally, distribution functions on the SSL obtained using the RBE are compared with those obtained using the AW and MM models. The distribution function inside the shock wave obtained using the RBE does not indicate a bimodal form, which is obtained using the AW and MM models, but a smooth deceleration of thermally relativistic matter inside a shock wave.

  17. Simulating propagation of coherent light in random media using the Fredholm type integral equation

    NASA Astrophysics Data System (ADS)

    Kraszewski, Maciej; Pluciński, Jerzy

    2017-06-01

    Studying propagation of light in random scattering materials is important for both basic and applied research. Such studies often require usage of numerical method for simulating behavior of light beams in random media. However, if such simulations require consideration of coherence properties of light, they may become a complex numerical problems. There are well established methods for simulating multiple scattering of light (e.g. Radiative Transfer Theory and Monte Carlo methods) but they do not treat coherence properties of light directly. Some variations of these methods allows to predict behavior of coherent light but only for an averaged realization of the scattering medium. This limits their application in studying many physical phenomena connected to a specific distribution of scattering particles (e.g. laser speckle). In general, numerical simulation of coherent light propagation in a specific realization of random medium is a time- and memory-consuming problem. The goal of the presented research was to develop new efficient method for solving this problem. The method, presented in our earlier works, is based on solving the Fredholm type integral equation, which describes multiple light scattering process. This equation can be discretized and solved numerically using various algorithms e.g. by direct solving the corresponding linear equations system, as well as by using iterative or Monte Carlo solvers. Here we present recent development of this method including its comparison with well-known analytical results and a finite-difference type simulations. We also present extension of the method for problems of multiple scattering of a polarized light on large spherical particles that joins presented mathematical formalism with Mie theory.

  18. A coupled sharp-interface immersed boundary-finite-element method for flow-structure interaction with application to human phonation.

    PubMed

    Zheng, X; Xue, Q; Mittal, R; Beilamowicz, S

    2010-11-01

    A new flow-structure interaction method is presented, which couples a sharp-interface immersed boundary method flow solver with a finite-element method based solid dynamics solver. The coupled method provides robust and high-fidelity solution for complex flow-structure interaction (FSI) problems such as those involving three-dimensional flow and viscoelastic solids. The FSI solver is used to simulate flow-induced vibrations of the vocal folds during phonation. Both two- and three-dimensional models have been examined and qualitative, as well as quantitative comparisons, have been made with established results in order to validate the solver. The solver is used to study the onset of phonation in a two-dimensional laryngeal model and the dynamics of the glottal jet in a three-dimensional model and results from these studies are also presented.

  19. Fault tolerance in an inner-outer solver: A GVR-enabled case study

    DOE PAGES

    Zhang, Ziming; Chien, Andrew A.; Teranishi, Keita

    2015-04-18

    Resilience is a major challenge for large-scale systems. It is particularly important for iterative linear solvers, since they take much of the time of many scientific applications. We show that single bit flip errors in the Flexible GMRES iterative linear solver can lead to high computational overhead or even failure to converge to the right answer. Informed by these results, we design and evaluate several strategies for fault tolerance in both inner and outer solvers appropriate across a range of error rates. We implement them, extending Trilinos’ solver library with the Global View Resilience (GVR) programming model, which provides multi-streammore » snapshots, multi-version data structures with portable and rich error checking/recovery. Lastly, experimental results validate correct execution with low performance overhead under varied error conditions.« less

  20. Identification and characterization of potential impurities of donepezil.

    PubMed

    Krishna Reddy, K V S R; Moses Babu, J; Kumar, P Anil; Chandrashekar, E R R; Mathad, Vijayavitthal T; Eswaraiah, S; Reddy, M Satyanarayana; Vyas, K

    2004-09-03

    Five unknown impurities ranging from 0.05 to 0.2% in donepezil were detected by a simple isocratic reversed-phase high performance liquid chromatography (HPLC). These impurities were isolated from crude sample of donepezil using isocratic reversed-phase preparative high performance liquid chromatography. Based on the spectral data (IR, NMR and MS), the structures of these impurities were characterised as 5,6-dimethoxy-2-(4-pyridylmethyl)-1-indanone (impurity I), 4-(5,6-dimethoxy-2,3-dihydro-1H-2-indenylmethyl) piperidine (impurity II), 2-(1-benzyl-4-piperdylmethyl)-5,6-dimethoxy-1-indanol (impurity III) 1-benzyl-4(5,6-dimethoxy-2,3-dihydro-1H-2-indenylmethyl) piperidine (impurity IV) and 1,1-dibenzyl-4(5,6-dimethoxy-1-oxo-2,3-dihydro-2H-2-indenylmethyl)hexahydropyridinium bromide (impurity V). The synthesis of these impurities and their formation was discussed.

  1. An iterative solver for the 3D Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Belonosov, Mikhail; Dmitriev, Maxim; Kostin, Victor; Neklyudov, Dmitry; Tcheverda, Vladimir

    2017-09-01

    We develop a frequency-domain iterative solver for numerical simulation of acoustic waves in 3D heterogeneous media. It is based on the application of a unique preconditioner to the Helmholtz equation that ensures convergence for Krylov subspace iteration methods. Effective inversion of the preconditioner involves the Fast Fourier Transform (FFT) and numerical solution of a series of boundary value problems for ordinary differential equations. Matrix-by-vector multiplication for iterative inversion of the preconditioned matrix involves inversion of the preconditioner and pointwise multiplication of grid functions. Our solver has been verified by benchmarking against exact solutions and a time-domain solver.

  2. Impurity effects in transition metal silicides

    NASA Technical Reports Server (NTRS)

    Lien, C.-D.; Nicolet, M.-A.

    1984-01-01

    Impurities can affect the properties of silicides directly by virtue of their presence. Impurities can also influence the processes by which silicides are formed. The effect of impurities on the reaction of transition metal films with a silicon substrate induced by thermal annealing are well documented. The interpretation of these results is discussed. It is shown that impurity redistribution is a major factor in determining how significant the effect of an impurity is. Redistribution observed for dopant impurities is also discussed.

  3. Modeling hemodynamics in intracranial aneurysms: Comparing accuracy of CFD solvers based on finite element and finite volume schemes.

    PubMed

    Botti, Lorenzo; Paliwal, Nikhil; Conti, Pierangelo; Antiga, Luca; Meng, Hui

    2018-06-01

    Image-based computational fluid dynamics (CFD) has shown potential to aid in the clinical management of intracranial aneurysms (IAs) but its adoption in the clinical practice has been missing, partially due to lack of accuracy assessment and sensitivity analysis. To numerically solve the flow-governing equations CFD solvers generally rely on two spatial discretization schemes: Finite Volume (FV) and Finite Element (FE). Since increasingly accurate numerical solutions are obtained by different means, accuracies and computational costs of FV and FE formulations cannot be compared directly. To this end, in this study we benchmark two representative CFD solvers in simulating flow in a patient-specific IA model: (1) ANSYS Fluent, a commercial FV-based solver and (2) VMTKLab multidGetto, a discontinuous Galerkin (dG) FE-based solver. The FV solver's accuracy is improved by increasing the spatial mesh resolution (134k, 1.1m, 8.6m and 68.5m tetrahedral element meshes). The dGFE solver accuracy is increased by increasing the degree of polynomials (first, second, third and fourth degree) on the base 134k tetrahedral element mesh. Solutions from best FV and dGFE approximations are used as baseline for error quantification. On average, velocity errors for second-best approximations are approximately 1cm/s for a [0,125]cm/s velocity magnitude field. Results show that high-order dGFE provide better accuracy per degree of freedom but worse accuracy per Jacobian non-zero entry as compared to FV. Cross-comparison of velocity errors demonstrates asymptotic convergence of both solvers to the same numerical solution. Nevertheless, the discrepancy between under-resolved velocity fields suggests that mesh independence is reached following different paths. This article is protected by copyright. All rights reserved.

  4. Application of PDSLin to the magnetic reconnection problem

    NASA Astrophysics Data System (ADS)

    Yuan, Xuefei; Li, Xiaoye S.; Yamazaki, Ichitaro; Jardin, Stephen C.; Koniges, Alice E.; Keyes, David E.

    2013-01-01

    Magnetic reconnection is a fundamental process in a magnetized plasma at both low and high magnetic Lundquist numbers (the ratio of the resistive diffusion time to the Alfvén wave transit time), which occurs in a wide variety of laboratory and space plasmas, e.g. magnetic fusion experiments, the solar corona and the Earth's magnetotail. An implicit time advance for the two-fluid magnetic reconnection problem is known to be difficult because of the large condition number of the associated matrix. This is especially troublesome when the collisionless ion skin depth is large so that the Whistler waves, which cause the fast reconnection, dominate the physics (Yuan et al 2012 J. Comput. Phys. 231 5822-53). For small system sizes, a direct solver such as SuperLU can be employed to obtain an accurate solution as long as the condition number is bounded by the reciprocal of the floating-point machine precision. However, SuperLU scales effectively only to hundreds of processors or less. For larger system sizes, it has been shown that physics-based (Chacón and Knoll 2003 J. Comput. Phys. 188 573-92) or other preconditioners can be applied to provide adequate solver performance. In recent years, we have been developing a new algebraic hybrid linear solver, PDSLin (Parallel Domain decomposition Schur complement-based Linear solver) (Yamazaki and Li 2010 Proc. VECPAR pp 421-34 and Yamazaki et al 2011 Technical Report). In this work, we compare numerical results from a direct solver and the proposed hybrid solver for the magnetic reconnection problem and demonstrate that the new hybrid solver is scalable to thousands of processors while maintaining the same robustness as a direct solver.

  5. MAFIA Version 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiland, T.; Bartsch, M.; Becker, U.

    1997-02-01

    MAFIA Version 4.0 is an almost completely new version of the general purpose electromagnetic simulator known since 13 years. The major improvements concern the new graphical user interface based on state of the art technology as well as a series of new solvers for new physics problems. MAFIA now covers heat distribution, electro-quasistatics, S-parameters in frequency domain, particle beam tracking in linear accelerators, acoustics and even elastodynamics. The solvers that were available in earlier versions have also been improved and/or extended, as for example the complex eigenmode solver, the 2D--3D coupled PIC solvers. Time domain solvers have new waveguide boundarymore » conditions with an extremely low reflection even near cutoff frequency, concentrated elements are available as well as a variety of signal processing options. Probably the most valuable addition are recursive sub-grid capabilities that enable modeling of very small details in large structures. {copyright} {ital 1997 American Institute of Physics.}« less

  6. MAFIA Version 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiland, T.; Bartsch, M.; Becker, U.

    1997-02-01

    MAFIA Version 4.0 is an almost completely new version of the general purpose electromagnetic simulator known since 13 years. The major improvements concern the new graphical user interface based on state of the art technology as well as a series of new solvers for new physics problems. MAFIA now covers heat distribution, electro-quasistatics, S-parameters in frequency domain, particle beam tracking in linear accelerators, acoustics and even elastodynamics. The solvers that were available in earlier versions have also been improved and/or extended, as for example the complex eigenmode solver, the 2D-3D coupled PIC solvers. Time domain solvers have new waveguide boundarymore » conditions with an extremely low reflection even near cutoff frequency, concentrated elements are available as well as a variety of signal processing options. Probably the most valuable addition are recursive sub-grid capabilities that enable modeling of very small details in large structures.« less

  7. A 3D approximate maximum likelihood solver for localization of fish implanted with acoustic transmitters

    DOE PAGES

    Li, Xinya; Deng, Z. Daniel; USA, Richland Washington; ...

    2014-11-27

    Better understanding of fish behavior is vital for recovery of many endangered species including salmon. The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed to observe the out-migratory behavior of juvenile salmonids tagged by surgical implantation of acoustic micro-transmitters and to estimate the survival when passing through dams on the Snake and Columbia Rivers. A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with JSATS acoustic transmitters, to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives. An approximate maximum likelihood solver was developedmore » using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature.« less

  8. A 3D approximate maximum likelihood solver for localization of fish implanted with acoustic transmitters

    NASA Astrophysics Data System (ADS)

    Li, Xinya; Deng, Z. Daniel; Sun, Yannan; Martinez, Jayson J.; Fu, Tao; McMichael, Geoffrey A.; Carlson, Thomas J.

    2014-11-01

    Better understanding of fish behavior is vital for recovery of many endangered species including salmon. The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed to observe the out-migratory behavior of juvenile salmonids tagged by surgical implantation of acoustic micro-transmitters and to estimate the survival when passing through dams on the Snake and Columbia Rivers. A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with JSATS acoustic transmitters, to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives. An approximate maximum likelihood solver was developed using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature.

  9. A 3D approximate maximum likelihood solver for localization of fish implanted with acoustic transmitters

    PubMed Central

    Li, Xinya; Deng, Z. Daniel; Sun, Yannan; Martinez, Jayson J.; Fu, Tao; McMichael, Geoffrey A.; Carlson, Thomas J.

    2014-01-01

    Better understanding of fish behavior is vital for recovery of many endangered species including salmon. The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed to observe the out-migratory behavior of juvenile salmonids tagged by surgical implantation of acoustic micro-transmitters and to estimate the survival when passing through dams on the Snake and Columbia Rivers. A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with JSATS acoustic transmitters, to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives. An approximate maximum likelihood solver was developed using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature. PMID:25427517

  10. A 3D approximate maximum likelihood solver for localization of fish implanted with acoustic transmitters.

    PubMed

    Li, Xinya; Deng, Z Daniel; Sun, Yannan; Martinez, Jayson J; Fu, Tao; McMichael, Geoffrey A; Carlson, Thomas J

    2014-11-27

    Better understanding of fish behavior is vital for recovery of many endangered species including salmon. The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed to observe the out-migratory behavior of juvenile salmonids tagged by surgical implantation of acoustic micro-transmitters and to estimate the survival when passing through dams on the Snake and Columbia Rivers. A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with JSATS acoustic transmitters, to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives. An approximate maximum likelihood solver was developed using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature.

  11. Numerical Analysis of the Cavity Flow subjected to Passive Controls Techniques

    NASA Astrophysics Data System (ADS)

    Melih Guleren, Kursad; Turk, Seyfettin; Mirza Demircan, Osman; Demir, Oguzhan

    2018-03-01

    Open-source flow solvers are getting more and more popular for the analysis of challenging flow problems in aeronautical and mechanical engineering applications. They are offered under the GNU General Public License and can be run, examined, shared and modified according to user’s requirements. SU2 and OpenFOAM are the two most popular open-source solvers in Computational Fluid Dynamics (CFD) community. In the present study, some passive control methods on the high-speed cavity flows are numerically simulated using these open-source flow solvers along with one commercial flow solver called ANSYS/Fluent. The results are compared with the available experimental data. The solver SU2 are seen to predict satisfactory the mean streamline velocity but not turbulent kinetic energy and overall averaged sound pressure level (OASPL). Whereas OpenFOAM predicts all these parameters nearly as the same levels of ANSYS/Fluent.

  12. A Lagrangian meshfree method applied to linear and nonlinear elasticity.

    PubMed

    Walker, Wade A

    2017-01-01

    The repeated replacement method (RRM) is a Lagrangian meshfree method which we have previously applied to the Euler equations for compressible fluid flow. In this paper we present new enhancements to RRM, and we apply the enhanced method to both linear and nonlinear elasticity. We compare the results of ten test problems to those of analytic solvers, to demonstrate that RRM can successfully simulate these elastic systems without many of the requirements of traditional numerical methods such as numerical derivatives, equation system solvers, or Riemann solvers. We also show the relationship between error and computational effort for RRM on these systems, and compare RRM to other methods to highlight its strengths and weaknesses. And to further explain the two elastic equations used in the paper, we demonstrate the mathematical procedure used to create Riemann and Sedov-Taylor solvers for them, and detail the numerical techniques needed to embody those solvers in code.

  13. On Riemann solvers and kinetic relations for isothermal two-phase flows with surface tension

    NASA Astrophysics Data System (ADS)

    Rohde, Christian; Zeiler, Christoph

    2018-06-01

    We consider a sharp interface approach for the inviscid isothermal dynamics of compressible two-phase flow that accounts for phase transition and surface tension effects. Kinetic relations are frequently used to fix the mass exchange and entropy dissipation rate across the interface. The complete unidirectional dynamics can then be understood by solving generalized two-phase Riemann problems. We present new well-posedness theorems for the Riemann problem and corresponding computable Riemann solvers that cover quite general equations of state, metastable input data and curvature effects. The new Riemann solver is used to validate different kinetic relations on physically relevant problems including a comparison with experimental data. Riemann solvers are building blocks for many numerical schemes that are used to track interfaces in two-phase flow. It is shown that the new Riemann solver enables reliable and efficient computations for physical situations that could not be treated before.

  14. Efficient numerical calculation of MHD equilibria with magnetic islands, with particular application to saturated neoclassical tearing modes

    NASA Astrophysics Data System (ADS)

    Raburn, Daniel Louis

    We have developed a preconditioned, globalized Jacobian-free Newton-Krylov (JFNK) solver for calculating equilibria with magnetic islands. The solver has been developed in conjunction with the Princeton Iterative Equilibrium Solver (PIES) and includes two notable enhancements over a traditional JFNK scheme: (1) globalization of the algorithm by a sophisticated backtracking scheme, which optimizes between the Newton and steepest-descent directions; and, (2) adaptive preconditioning, wherein information regarding the system Jacobian is reused between Newton iterations to form a preconditioner for our GMRES-like linear solver. We have developed a formulation for calculating saturated neoclassical tearing modes (NTMs) which accounts for the incomplete loss of a bootstrap current due to gradients of multiple physical quantities. We have applied the coupled PIES-JFNK solver to calculate saturated island widths on several shots from the Tokamak Fusion Test Reactor (TFTR) and have found reasonable agreement with experimental measurement.

  15. A 3D approximate maximum likelihood solver for localization of fish implanted with acoustic transmitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xinya; Deng, Z. Daniel; USA, Richland Washington

    Better understanding of fish behavior is vital for recovery of many endangered species including salmon. The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed to observe the out-migratory behavior of juvenile salmonids tagged by surgical implantation of acoustic micro-transmitters and to estimate the survival when passing through dams on the Snake and Columbia Rivers. A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with JSATS acoustic transmitters, to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives. An approximate maximum likelihood solver was developedmore » using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature.« less

  16. A Lagrangian meshfree method applied to linear and nonlinear elasticity

    PubMed Central

    2017-01-01

    The repeated replacement method (RRM) is a Lagrangian meshfree method which we have previously applied to the Euler equations for compressible fluid flow. In this paper we present new enhancements to RRM, and we apply the enhanced method to both linear and nonlinear elasticity. We compare the results of ten test problems to those of analytic solvers, to demonstrate that RRM can successfully simulate these elastic systems without many of the requirements of traditional numerical methods such as numerical derivatives, equation system solvers, or Riemann solvers. We also show the relationship between error and computational effort for RRM on these systems, and compare RRM to other methods to highlight its strengths and weaknesses. And to further explain the two elastic equations used in the paper, we demonstrate the mathematical procedure used to create Riemann and Sedov-Taylor solvers for them, and detail the numerical techniques needed to embody those solvers in code. PMID:29045443

  17. Impurity-induced divertor plasma oscillations

    DOE PAGES

    Smirnov, R. D.; Kukushkin, A. S.; Krasheninnikov, S. I.; ...

    2016-01-07

    Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ionmore » transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. As a result, the implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.« less

  18. The Effect of New Vocabulary on Problem Solving in Novice Physics Students.

    ERIC Educational Resources Information Center

    Sobolewski, Stanley J.

    One of the difficulties encountered by novice problem solvers in introductory physics is in the area of problem solving. It has been shown in other studies that poor problem solvers are affected by the surface aspects of the problem in contrast with more efficient problem solvers who are capable of constructing a mental model of the physical…

  19. Adaptive Discontinuous Evolution Galerkin Method for Dry Atmospheric Flow

    DTIC Science & Technology

    2013-04-02

    standard one-dimensional approximate Riemann solver used for the flux integration demonstrate better stability, accuracy as well as reliability of the...discontinuous evolution Galerkin method for dry atmospheric convection. Comparisons with the standard one-dimensional approximate Riemann solver used...instead of a standard one- dimensional approximate Riemann solver , the flux integration within the discontinuous Galerkin method is now realized by

  20. Parallel performance investigations of an unstructured mesh Navier-Stokes solver

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.

    2000-01-01

    A Reynolds-averaged Navier-Stokes solver based on unstructured mesh techniques for analysis of high-lift configurations is described. The method makes use of an agglomeration multigrid solver for convergence acceleration. Implicit line-smoothing is employed to relieve the stiffness associated with highly stretched meshes. A GMRES technique is also implemented to speed convergence at the expense of additional memory usage. The solver is cache efficient and fully vectorizable, and is parallelized using a two-level hybrid MPI-OpenMP implementation suitable for shared and/or distributed memory architectures, as well as clusters of shared memory machines. Convergence and scalability results are illustrated for various high-lift cases.

  1. Numerical comparison of Riemann solvers for astrophysical hydrodynamics

    NASA Astrophysics Data System (ADS)

    Klingenberg, Christian; Schmidt, Wolfram; Waagan, Knut

    2007-11-01

    The idea of this work is to compare a new positive and entropy stable approximate Riemann solver by Francois Bouchut with a state-of the-art algorithm for astrophysical fluid dynamics. We implemented the new Riemann solver into an astrophysical PPM-code, the Prometheus code, and also made a version with a different, more theoretically grounded higher order algorithm than PPM. We present shock tube tests, two-dimensional instability tests and forced turbulence simulations in three dimensions. We find subtle differences between the codes in the shock tube tests, and in the statistics of the turbulence simulations. The new Riemann solver increases the computational speed without significant loss of accuracy.

  2. Application of fast Fourier transforms to the direct solution of a class of two-dimensional separable elliptic equations on the sphere

    NASA Technical Reports Server (NTRS)

    Moorthi, Shrinivas; Higgins, R. W.

    1993-01-01

    An efficient, direct, second-order solver for the discrete solution of a class of two-dimensional separable elliptic equations on the sphere (which generally arise in implicit and semi-implicit atmospheric models) is presented. The method involves a Fourier transformation in longitude and a direct solution of the resulting coupled second-order finite-difference equations in latitude. The solver is made efficient by vectorizing over longitudinal wave-number and by using a vectorized fast Fourier transform routine. It is evaluated using a prescribed solution method and compared with a multigrid solver and the standard direct solver from FISHPAK.

  3. A high performance linear equation solver on the VPP500 parallel supercomputer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakanishi, Makoto; Ina, Hiroshi; Miura, Kenichi

    1994-12-31

    This paper describes the implementation of two high performance linear equation solvers developed for the Fujitsu VPP500, a distributed memory parallel supercomputer system. The solvers take advantage of the key architectural features of VPP500--(1) scalability for an arbitrary number of processors up to 222 processors, (2) flexible data transfer among processors provided by a crossbar interconnection network, (3) vector processing capability on each processor, and (4) overlapped computation and transfer. The general linear equation solver based on the blocked LU decomposition method achieves 120.0 GFLOPS performance with 100 processors in the LIN-PACK Highly Parallel Computing benchmark.

  4. Methods for Solving Gas Damping Problems in Perforated Microstructures Using a 2D Finite-Element Solver

    PubMed Central

    Veijola, Timo; Råback, Peter

    2007-01-01

    We present a straightforward method to solve gas damping problems for perforated structures in two dimensions (2D) utilising a Perforation Profile Reynolds (PPR) solver. The PPR equation is an extended Reynolds equation that includes additional terms modelling the leakage flow through the perforations, and variable diffusivity and compressibility profiles. The solution method consists of two phases: 1) determination of the specific admittance profile and relative diffusivity (and relative compressibility) profiles due to the perforation, and 2) solution of the PPR equation with a FEM solver in 2D. Rarefied gas corrections in the slip-flow region are also included. Analytic profiles for circular and square holes with slip conditions are presented in the paper. To verify the method, square perforated dampers with 16–64 holes were simulated with a three-dimensional (3D) Navier-Stokes solver, a homogenised extended Reynolds solver, and a 2D PPR solver. Cases for both translational (in normal to the surfaces) and torsional motion were simulated. The presented method extends the region of accurate simulation of perforated structures to cases where the homogenisation method is inaccurate and the full 3D Navier-Stokes simulation is too time-consuming.

  5. Application of NASA General-Purpose Solver to Large-Scale Computations in Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Storaasli, Olaf O.

    2004-01-01

    Of several iterative and direct equation solvers evaluated previously for computations in aeroacoustics, the most promising was the NASA-developed General-Purpose Solver (winner of NASA's 1999 software of the year award). This paper presents detailed, single-processor statistics of the performance of this solver, which has been tailored and optimized for large-scale aeroacoustic computations. The statistics, compiled using an SGI ORIGIN 2000 computer with 12 Gb available memory (RAM) and eight available processors, are the central processing unit time, RAM requirements, and solution error. The equation solver is capable of solving 10 thousand complex unknowns in as little as 0.01 sec using 0.02 Gb RAM, and 8.4 million complex unknowns in slightly less than 3 hours using all 12 Gb. This latter solution is the largest aeroacoustics problem solved to date with this technique. The study was unable to detect any noticeable error in the solution, since noise levels predicted from these solution vectors are in excellent agreement with the noise levels computed from the exact solution. The equation solver provides a means for obtaining numerical solutions to aeroacoustics problems in three dimensions.

  6. LAVA Simulations for the 3rd AIAA CFD High Lift Prediction Workshop with Body Fitted Grids

    NASA Technical Reports Server (NTRS)

    Jensen, James C.; Stich, Gerrit-Daniel; Housman, Jeffrey A.; Denison, Marie; Kiris, Cetin C.

    2018-01-01

    In response to the 3rd AIAA CFD High Lift Prediction Workshop, the workshop cases were analyzed using Reynolds-averaged Navier-Stokes flow solvers within the Launch Ascent and Vehicle Aerodynamics (LAVA) solver framework. For the workshop cases the advantages and limitations of both overset-structured an unstructured polyhedral meshes were assessed. The workshop included 3 cases: a 2D airfoil validation case, a mesh convergence study using the High Lift Common Research Model, and a nacelle/pylon integration study using the JAXA (Japan Aerospace Exploration Agency) Standard Model. The 2D airfoil case from the workshop is used to verify the implementation of the Spalart-Allmaras turbulence model along with some of its variants within the solver. The High Lift Common Research Model case is used to assess solver performance and accuracy at varying mesh resolutions, as well as identify the minimum mesh fidelity required for LAVA on this class of problem. The JAXA Standard Model case is used to assess the solver's sensitivity to the turbulence model and to compare the structured and unstructured mesh paradigms. These workshop cases have helped establish best practices for high lift flow configurations for the LAVA solver.

  7. Performance of Nonlinear Finite-Difference Poisson-Boltzmann Solvers

    PubMed Central

    Cai, Qin; Hsieh, Meng-Juei; Wang, Jun; Luo, Ray

    2014-01-01

    We implemented and optimized seven finite-difference solvers for the full nonlinear Poisson-Boltzmann equation in biomolecular applications, including four relaxation methods, one conjugate gradient method, and two inexact Newton methods. The performance of the seven solvers was extensively evaluated with a large number of nucleic acids and proteins. Worth noting is the inexact Newton method in our analysis. We investigated the role of linear solvers in its performance by incorporating the incomplete Cholesky conjugate gradient and the geometric multigrid into its inner linear loop. We tailored and optimized both linear solvers for faster convergence rate. In addition, we explored strategies to optimize the successive over-relaxation method to reduce its convergence failures without too much sacrifice in its convergence rate. Specifically we attempted to adaptively change the relaxation parameter and to utilize the damping strategy from the inexact Newton method to improve the successive over-relaxation method. Our analysis shows that the nonlinear methods accompanied with a functional-assisted strategy, such as the conjugate gradient method and the inexact Newton method, can guarantee convergence in the tested molecules. Especially the inexact Newton method exhibits impressive performance when it is combined with highly efficient linear solvers that are tailored for its special requirement. PMID:24723843

  8. The piecewise parabolic method for Riemann problems in nonlinear elasticity.

    PubMed

    Zhang, Wei; Wang, Tao; Bai, Jing-Song; Li, Ping; Wan, Zhen-Hua; Sun, De-Jun

    2017-10-18

    We present the application of Harten-Lax-van Leer (HLL)-type solvers on Riemann problems in nonlinear elasticity which undergoes high-load conditions. In particular, the HLLD ("D" denotes Discontinuities) Riemann solver is proved to have better robustness and efficiency for resolving complex nonlinear wave structures compared with the HLL and HLLC ("C" denotes Contact) solvers, especially in the shock-tube problem including more than five waves. Also, Godunov finite volume scheme is extended to higher order of accuracy by means of piecewise parabolic method (PPM), which could be used with HLL-type solvers and employed to construct the fluxes. Moreover, in the case of multi material components, level set algorithm is applied to track the interface between different materials, while the interaction of interfaces is realized through HLLD Riemann solver combined with modified ghost method. As seen from the results of both the solid/solid "stick" problem with the same material at the two sides of contact interface and the solid/solid "slip" problem with different materials at the two sides, this scheme composed of HLLD solver, PPM and level set algorithm can capture the material interface effectively and suppress spurious oscillations therein significantly.

  9. Dynamical recovery of SU(2) symmetry in the mass-quenched Hubbard model

    NASA Astrophysics Data System (ADS)

    Du, Liang; Fiete, Gregory A.

    2018-02-01

    We use nonequilibrium dynamical mean-field theory with iterative perturbation theory as an impurity solver to study the recovery of SU(2) symmetry in real time following a hopping integral parameter quench from a mass-imbalanced to a mass-balanced single-band Hubbard model at half filling. A dynamical order parameter γ (t ) is defined to characterize the evolution of the system towards SU(2) symmetry. By comparing the momentum-dependent occupation from an equilibrium calculation [with the SU(2) symmetric Hamiltonian after the quench at an effective temperature] with the data from our nonequilibrium calculation, we conclude that the SU(2) symmetry recovered state is a thermalized state. Further evidence from the evolution of the density of states supports this conclusion. We find the order parameter in the weak Coulomb interaction regime undergoes an approximate exponential decay. We numerically investigate the interplay of the relevant parameters (initial temperature, Coulomb interaction strength, initial mass-imbalance ratio) and their combined effect on the thermalization behavior. Finally, we study evolution of the order parameter as the hopping parameter is changed with either a linear ramp or a pulse. Our results can be useful in strategies to engineer the relaxation behavior of interacting quantum many-particle systems.

  10. Collisional Ion and Electron Scale Gyrokinetic Simulations in the Tokamak Pedestal

    NASA Astrophysics Data System (ADS)

    Belli, E. A.; Candy, J.; Snyder, P. B.

    2016-10-01

    A new gyrokinetic solver, CGYRO, has been developed for precise studies of high collisionality regimes, such as the H-mode pedestal and L-mode edge. Building on GYRO and NEO, CGYRO uses the same velocity-space coordinates as NEO to optimize the accuracy of the collision dynamics and allow for advanced operators beyond the standard Lorentz pitch-angle scattering model. These advanced operators include energy diffusion and finite-FLR collisional effects. The code is optimized for multiscale (coupled electron and ion turbulence scales) simulations, employing a new spatial discretization and array distribution scheme that targets scalability on next-generation (exascale) HPC systems. In this work, CGYRO is used to study the complex spectrum of modes in the pedestal region. The onset of the linear KBM with full collisional effects is assessed to develop an improved KBM/RBM model for EPED. The analysis is extended to high k to explore the role of electron-scale (ETG-range) physics. Comparisons with new analytic collisional theories are made. Inclusion of sonic toroidal rotation (including full centrifugal effects) for studies including heavy wall impurities is also reported. Work supported in part by the US DOE under DE-FC02-06ER54873 and DE-FC02-08ER54963.

  11. Three-dimensional tomographic imaging for dynamic radiation behavior study using infrared imaging video bolometers in large helical device plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sano, Ryuichi; Iwama, Naofumi; Peterson, Byron J.

    A three-dimensional (3D) tomography system using four InfraRed imaging Video Bolometers (IRVBs) has been designed with a helical periodicity assumption for the purpose of plasma radiation measurement in the large helical device. For the spatial inversion of large sized arrays, the system has been numerically and experimentally examined using the Tikhonov regularization with the criterion of minimum generalized cross validation, which is the standard solver of inverse problems. The 3D transport code EMC3-EIRENE for impurity behavior and related radiation has been used to produce phantoms for numerical tests, and the relative calibration of the IRVB images has been carried outmore » with a simple function model of the decaying plasma in a radiation collapse. The tomography system can respond to temporal changes in the plasma profile and identify the 3D dynamic behavior of radiation, such as the radiation enhancement that starts from the inboard side of the torus, during the radiation collapse. The reconstruction results are also consistent with the output signals of a resistive bolometer. These results indicate that the designed 3D tomography system is available for the 3D imaging of radiation. The first 3D direct tomographic measurement of a magnetically confined plasma has been achieved.« less

  12. Development of RP UPLC-TOF/MS, stability indicating method for omeprazole and its related substances by applying two level factorial design; and identification and synthesis of non-pharmacopoeial impurities.

    PubMed

    Jadhav, Sushant Bhimrao; Kumar, C Kiran; Bandichhor, Rakeshwar; Bhosale, P N

    2016-01-25

    A new UPLC-TOF/MS compatible, reverse phase-stability indicating method was developed for determination of Omeprazole (OMP) and its related substances in pharmaceutical dosage forms by implementing Design of Experiment (DoE) i.e. two level full factorial Design (2(3)+3 center points=11 experiments) to understand the Critical Method Parameters (CMP) and its relation with Critical Method Attribute (CMA); to ensure robustness of the method. The separation of eleven specified impurities including conversion product of OMP related compound F (13) and G (14) i.e. Impurity-I (1), OMP related compound-I (11) and OMP 4-chloro analog (12) was achieved in a single method on Acquity BEH shield RP18 100 × 2.1 mm, 1.7 μm column, with inlet filter (0.2 μm) using gradient elution and detector wavelength at 305 nm and validated in accordance with ICH guidelines and found to be accurate, precise, reproducible, robust and specific. The drug was found to degrade extensively in heat, humidity and acidic conditions and forms unknown degradation products during stability studies. The same method was used for LC-MS analysis to identify m/z and fragmentation of maximum unknown impurities (Non-Pharmacopoeial) i.e. Impurity-I (1), Impurity-III (3), Impurity-V (5) and Impurity-VIII (9) formed during stability studies. Based on the results, degradation pathway for the drug has been proposed and synthesis of identified impurities i.e. impurities (Impurity-I (1), Impurity-III (3), Impurity-V (5) and Impurity-VIII (9)) are discussed in detail to ensure in-depth understanding of OMP and its related impurities and optimum performance during lifetime of the product. Copyright © 2015. Published by Elsevier B.V.

  13. Application of quality by design concept to develop a dual gradient elution stability-indicating method for cloxacillin forced degradation studies using combined mixture-process variable models.

    PubMed

    Zhang, Xia; Hu, Changqin

    2017-09-08

    Penicillins are typical of complex ionic samples which likely contain large number of degradation-related impurities (DRIs) with different polarities and charge properties. It is often a challenge to develop selective and robust high performance liquid chromatography (HPLC) methods for the efficient separation of all DRIs. In this study, an analytical quality by design (AQbD) approach was proposed for stability-indicating method development of cloxacillin. The structures, retention and UV characteristics rules of penicillins and their impurities were summarized and served as useful prior knowledge. Through quality risk assessment and screen design, 3 critical process parameters (CPPs) were defined, including 2 mixture variables (MVs) and 1 process variable (PV). A combined mixture-process variable (MPV) design was conducted to evaluate the 3 CPPs simultaneously and a response surface methodology (RSM) was used to achieve the optimal experiment parameters. A dual gradient elution was performed to change buffer pH, mobile-phase type and strength simultaneously. The design spaces (DSs) was evaluated using Monte Carlo simulation to give their possibility of meeting the specifications of CQAs. A Plackett-Burman design was performed to test the robustness around the working points and to decide the normal operating ranges (NORs). Finally, validation was performed following International Conference on Harmonisation (ICH) guidelines. To our knowledge, this is the first study of using MPV design and dual gradient elution to develop HPLC methods and improve separations for complex ionic samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Quality by Design approach in the development of hydrophilic interaction liquid chromatographic method for the analysis of iohexol and its impurities.

    PubMed

    Jovanović, Marko; Rakić, Tijana; Tumpa, Anja; Jančić Stojanović, Biljana

    2015-06-10

    This study presents the development of hydrophilic interaction liquid chromatographic method for the analysis of iohexol, its endo-isomer and three impurities following Quality by Design (QbD) approach. The main objective of the method was to identify the conditions where adequate separation quality in minimal analysis duration could be achieved within a robust region that guarantees the stability of method performance. The relationship between critical process parameters (acetonitrile content in the mobile phase, pH of the water phase and ammonium acetate concentration in the water phase) and critical quality attributes is created applying design of experiments methodology. The defined mathematical models and Monte Carlo simulation are used to evaluate the risk of uncertainty in models prediction and incertitude in adjusting the process parameters and to identify the design space. The borders of the design space are experimentally verified and confirmed that the quality of the method is preserved in this region. Moreover, Plackett-Burman design is applied for experimental robustness testing and method is fully validated to verify the adequacy of selected optimal conditions: the analytical column ZIC HILIC (100 mm × 4.6 mm, 5 μm particle size); mobile phase consisted of acetonitrile-water phase (72 mM ammonium acetate, pH adjusted to 6.5 with glacial acetic acid) (86.7:13.3) v/v; column temperature 25 °C, mobile phase flow rate 1 mL min(-1), wavelength of detection 254 nm. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Advanced Signal Processing for Integrated LES-RANS Simulations: Anti-aliasing Filters

    NASA Technical Reports Server (NTRS)

    Schlueter, J. U.

    2003-01-01

    Currently, a wide variety of flow phenomena are addressed with numerical simulations. Many flow solvers are optimized to simulate a limited spectrum of flow effects effectively, such as single parts of a flow system, but are either inadequate or too expensive to be applied to a very complex problem. As an example, the flow through a gas turbine can be considered. In the compressor and the turbine section, the flow solver has to be able to handle the moving blades, model the wall turbulence, and predict the pressure and density distribution properly. This can be done by a flow solver based on the Reynolds-Averaged Navier-Stokes (RANS) approach. On the other hand, the flow in the combustion chamber is governed by large scale turbulence, chemical reactions, and the presence of fuel spray. Experience shows that these phenomena require an unsteady approach. Hence, for the combustor, the use of a Large Eddy Simulation (LES) flow solver is desirable. While many design problems of a single flow passage can be addressed by separate computations, only the simultaneous computation of all parts can guarantee the proper prediction of multi-component phenomena, such as compressor/combustor instability and combustor/turbine hot-streak migration. Therefore, a promising strategy to perform full aero-thermal simulations of gas-turbine engines is the use of a RANS flow solver for the compressor sections, an LES flow solver for the combustor, and again a RANS flow solver for the turbine section.

  16. Least-Squares Spectral Element Solutions to the CAA Workshop Benchmark Problems

    NASA Technical Reports Server (NTRS)

    Lin, Wen H.; Chan, Daniel C.

    1997-01-01

    This paper presents computed results for some of the CAA benchmark problems via the acoustic solver developed at Rocketdyne CFD Technology Center under the corporate agreement between Boeing North American, Inc. and NASA for the Aerospace Industry Technology Program. The calculations are considered as benchmark testing of the functionality, accuracy, and performance of the solver. Results of these computations demonstrate that the solver is capable of solving the propagation of aeroacoustic signals. Testing of sound generation and on more realistic problems is now pursued for the industrial applications of this solver. Numerical calculations were performed for the second problem of Category 1 of the current workshop problems for an acoustic pulse scattered from a rigid circular cylinder, and for two of the first CAA workshop problems, i. e., the first problem of Category 1 for the propagation of a linear wave and the first problem of Category 4 for an acoustic pulse reflected from a rigid wall in a uniform flow of Mach 0.5. The aim for including the last two problems in this workshop is to test the effectiveness of some boundary conditions set up in the solver. Numerical results of the last two benchmark problems have been compared with their corresponding exact solutions and the comparisons are excellent. This demonstrates the high fidelity of the solver in handling wave propagation problems. This feature lends the method quite attractive in developing a computational acoustic solver for calculating the aero/hydrodynamic noise in a violent flow environment.

  17. RELATIVISTIC MAGNETOHYDRODYNAMICS: RENORMALIZED EIGENVECTORS AND FULL WAVE DECOMPOSITION RIEMANN SOLVER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anton, Luis; MartI, Jose M; Ibanez, Jose M

    2010-05-01

    We obtain renormalized sets of right and left eigenvectors of the flux vector Jacobians of the relativistic MHD equations, which are regular and span a complete basis in any physical state including degenerate ones. The renormalization procedure relies on the characterization of the degeneracy types in terms of the normal and tangential components of the magnetic field to the wave front in the fluid rest frame. Proper expressions of the renormalized eigenvectors in conserved variables are obtained through the corresponding matrix transformations. Our work completes previous analysis that present different sets of right eigenvectors for non-degenerate and degenerate states, andmore » can be seen as a relativistic generalization of earlier work performed in classical MHD. Based on the full wave decomposition (FWD) provided by the renormalized set of eigenvectors in conserved variables, we have also developed a linearized (Roe-type) Riemann solver. Extensive testing against one- and two-dimensional standard numerical problems allows us to conclude that our solver is very robust. When compared with a family of simpler solvers that avoid the knowledge of the full characteristic structure of the equations in the computation of the numerical fluxes, our solver turns out to be less diffusive than HLL and HLLC, and comparable in accuracy to the HLLD solver. The amount of operations needed by the FWD solver makes it less efficient computationally than those of the HLL family in one-dimensional problems. However, its relative efficiency increases in multidimensional simulations.« less

  18. Impact of nongray multiphase radiation in pulverized coal combustion

    NASA Astrophysics Data System (ADS)

    Roy, Somesh; Wu, Bifen; Modest, Michael; Zhao, Xinyu

    2016-11-01

    Detailed modeling of radiation is important for accurate modeling of pulverized coal combustion. Because of high temperature and optical properties, radiative heat transfer from coal particles is often more dominant than convective heat transfer. In this work a multiphase photon Monte Carlo radiation solver is used to investigate and to quantify the effect of nongray radiation in a laboratory-scale pulverized coal flame. The nongray radiative properties of carrier phase (gas) is modeled using HITEMP database. Three major species - CO, CO2, and H2O - are treated as participating gases. Two optical models are used to evaluate radiative properties of coal particles: a formulation based on the large particle limit and a size-dependent correlation. Effect of scattering due to coal particle is also investigated using both isotropic scattering and anisotropic scattering using a Henyey-Greenstein function. Lastly, since the optical properties of ash is very different from that of coal, the effect of ash content on the radiative properties of coal particle is examined. This work used Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number ACI-1053575.

  19. Multigroup Radiation-Hydrodynamics with a High-Order, Low-Order Method

    DOE PAGES

    Wollaber, Allan Benton; Park, HyeongKae; Lowrie, Robert Byron; ...

    2016-12-09

    Recent efforts at Los Alamos National Laboratory to develop a moment-based, scale-bridging [or high-order (HO)–low-order (LO)] algorithm for solving large varieties of the transport (kinetic) systems have shown promising results. A part of our ongoing effort is incorporating this methodology into the framework of the Eulerian Applications Project to achieve algorithmic acceleration of radiationhydrodynamics simulations in production software. By starting from the thermal radiative transfer equations with a simple material-motion correction, we derive a discretely consistent energy balance equation (LO equation). We demonstrate that the corresponding LO system for the Monte Carlo HO solver is closely related to the originalmore » LO system without material-motion corrections. We test the implementation on a radiative shock problem and show consistency between the energy densities and temperatures in the HO and LO solutions as well as agreement with the semianalytic solution. We also test the approach on a more challenging two-dimensional problem and demonstrate accuracy enhancements and algorithmic speedups. This paper extends a recent conference paper by including multigroup effects.« less

  20. Data Assimilation and Propagation of Uncertainty in Multiscale Cardiovascular Simulation

    NASA Astrophysics Data System (ADS)

    Schiavazzi, Daniele; Marsden, Alison

    2015-11-01

    Cardiovascular modeling is the application of computational tools to predict hemodynamics. State-of-the-art techniques couple a 3D incompressible Navier-Stokes solver with a boundary circulation model and can predict local and peripheral hemodynamics, analyze the post-operative performance of surgical designs and complement clinical data collection minimizing invasive and risky measurement practices. The ability of these tools to make useful predictions is directly related to their accuracy in representing measured physiologies. Tuning of model parameters is therefore a topic of paramount importance and should include clinical data uncertainty, revealing how this uncertainty will affect the predictions. We propose a fully Bayesian, multi-level approach to data assimilation of uncertain clinical data in multiscale circulation models. To reduce the computational cost, we use a stable, condensed approximation of the 3D model build by linear sparse regression of the pressure/flow rate relationship at the outlets. Finally, we consider the problem of non-invasively propagating the uncertainty in model parameters to the resulting hemodynamics and compare Monte Carlo simulation with Stochastic Collocation approaches based on Polynomial or Multi-resolution Chaos expansions.

  1. SCALE Code System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rearden, Bradley T.; Jessee, Matthew Anderson

    The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministicmore » and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.« less

  2. Launch Vehicle Propulsion Design with Multiple Selection Criteria

    NASA Technical Reports Server (NTRS)

    Shelton, Joey D.; Frederick, Robert A.; Wilhite, Alan W.

    2005-01-01

    The approach and techniques described herein define an optimization and evaluation approach for a liquid hydrogen/liquid oxygen single-stage-to-orbit system. The method uses Monte Carlo simulations, genetic algorithm solvers, a propulsion thermo-chemical code, power series regression curves for historical data, and statistical models in order to optimize a vehicle system. The system, including parameters for engine chamber pressure, area ratio, and oxidizer/fuel ratio, was modeled and optimized to determine the best design for seven separate design weight and cost cases by varying design and technology parameters. Significant model results show that a 53% increase in Design, Development, Test and Evaluation cost results in a 67% reduction in Gross Liftoff Weight. Other key findings show the sensitivity of propulsion parameters, technology factors, and cost factors and how these parameters differ when cost and weight are optimized separately. Each of the three key propulsion parameters; chamber pressure, area ratio, and oxidizer/fuel ratio, are optimized in the seven design cases and results are plotted to show impacts to engine mass and overall vehicle mass.

  3. SCALE Code System 6.2.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rearden, Bradley T.; Jessee, Matthew Anderson

    The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministicmore » and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.« less

  4. Evaluation of nonequilibrium boundary conditions for hypersonic rarefied gas flows

    NASA Astrophysics Data System (ADS)

    Le, N. T. P.; Greenshields, Ch. J.; Reese, J. M.

    2012-01-01

    A new Computational Fluid Dynamics (CFD) solver for high-speed viscous §ows in the OpenFOAM code is validated against published experimental data and Direct Simulation Monte Carlo (DSMC) results. The laminar §at plate and circular cylinder cases are studied for Mach numbers, Ma, ranging from 6 to 12.7, and with argon and nitrogen as working gases. Simulation results for the laminar §at plate cases show that the combination of accommodation coefficient values σu = 0.7 and σT = 1.0 in the Maxwell/Smoluchowski conditions, and the coefficient values A1 = 1.5 and A2 = 1.0 in the second-order velocity slip condition, give best agreement with experimental data of surface pressure. The values σu = 0.7 and σT = 1.0 also give good agreement with DSMC data of surface pressure at the stagnation point in the circular cylinder case at Kn = 0.25. The Langmuir surface adsorption condition is also tested for the laminar §at plate case, but initial results were not as good as the Maxwell/Smoluchowski boundary conditions.

  5. A Novel Centrality Measure for Network-wide Cyber Vulnerability Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathanur, Arun V.; Haglin, David J.

    In this work we propose a novel formulation that models the attack and compromise on a cyber network as a combination of two parts - direct compromise of a host and the compromise occurring through the spread of the attack on the network from a compromised host. The model parameters for the nodes are a concise representation of the host profiles that can include the risky behaviors of the associated human users while the model parameters for the edges are based on the existence of vulnerabilities between each pair of connected hosts. The edge models relate to the summary representationsmore » of the corresponding attack-graphs. This results in a formulation based on Random Walk with Restart (RWR) and the resulting centrality metric can be solved for in an efficient manner through the use of sparse linear solvers. Thus the formulation goes beyond mere topological considerations in centrality computations by summarizing the host profiles and the attack graphs into the model parameters. The computational efficiency of the method also allows us to also quantify the uncertainty in the centrality measure through Monte Carlo analysis.« less

  6. 3D PIC-MCC simulations of discharge inception around a sharp anode in nitrogen/oxygen mixtures

    NASA Astrophysics Data System (ADS)

    Teunissen, Jannis; Ebert, Ute

    2016-08-01

    We investigate how photoionization, electron avalanches and space charge affect the inception of nanosecond pulsed discharges. Simulations are performed with a 3D PIC-MCC (particle-in-cell, Monte Carlo collision) model with adaptive mesh refinement for the field solver. This model, whose source code is available online, is described in the first part of the paper. Then we present simulation results in a needle-to-plane geometry, using different nitrogen/oxygen mixtures at atmospheric pressure. In these mixtures non-local photoionization is important for the discharge growth. The typical length scale for this process depends on the oxygen concentration. With 0.2% oxygen the discharges grow quite irregularly, due to the limited supply of free electrons around them. With 2% or more oxygen the development is much smoother. An almost spherical ionized region can form around the electrode tip, which increases in size with the electrode voltage. Eventually this inception cloud destabilizes into streamer channels. In our simulations, discharge velocities are almost independent of the oxygen concentration. We discuss the physical mechanisms behind these phenomena and compare our simulations with experimental observations.

  7. Parallel Element Agglomeration Algebraic Multigrid and Upscaling Library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, Andrew T.; Benson, Thomas R.; Lee, Chak Shing

    ParELAG is a parallel C++ library for numerical upscaling of finite element discretizations and element-based algebraic multigrid solvers. It provides optimal complexity algorithms to build multilevel hierarchies and solvers that can be used for solving a wide class of partial differential equations (elliptic, hyperbolic, saddle point problems) on general unstructured meshes. Additionally, a novel multilevel solver for saddle point problems with divergence constraint is implemented.

  8. Solvers' Making of Drawings in Mathematical Problem Solving and Their Understanding of the Problem Situations

    ERIC Educational Resources Information Center

    Nunokawa, Kazuhiko

    2004-01-01

    The purpose of this paper was to investigate how it becomes possible for solvers to make drawings to advance their problem solving processes, in order to understand the use of drawings in mathematical problem solving more deeply. For this purpose, three examples in which drawings made by the solver played a critical role in the solutions have been…

  9. Galerkin CFD solvers for use in a multi-disciplinary suite for modeling advanced flight vehicles

    NASA Astrophysics Data System (ADS)

    Moffitt, Nicholas J.

    This work extends existing Galerkin CFD solvers for use in a multi-disciplinary suite. The suite is proposed as a means of modeling advanced flight vehicles, which exhibit strong coupling between aerodynamics, structural dynamics, controls, rigid body motion, propulsion, and heat transfer. Such applications include aeroelastics, aeroacoustics, stability and control, and other highly coupled applications. The suite uses NASA STARS for modeling structural dynamics and heat transfer. Aerodynamics, propulsion, and rigid body dynamics are modeled in one of the five CFD solvers below. Euler2D and Euler3D are Galerkin CFD solvers created at OSU by Cowan (2003). These solvers are capable of modeling compressible inviscid aerodynamics with modal elastics and rigid body motion. This work reorganized these solvers to improve efficiency during editing and at run time. Simple and efficient propulsion models were added, including rocket, turbojet, and scramjet engines. Viscous terms were added to the previous solvers to create NS2D and NS3D. The viscous contributions were demonstrated in the inertial and non-inertial frames. Variable viscosity (Sutherland's equation) and heat transfer boundary conditions were added to both solvers but not verified in this work. Two turbulence models were implemented in NS2D and NS3D: Spalart-Allmarus (SA) model of Deck, et al. (2002) and Menter's SST model (1994). A rotation correction term (Shur, et al., 2000) was added to the production of turbulence. Local time stepping and artificial dissipation were adapted to each model. CFDsol is a Taylor-Galerkin solver with an SA turbulence model. This work improved the time accuracy, far field stability, viscous terms, Sutherland?s equation, and SA model with NS3D as a guideline and added the propulsion models from Euler3D to CFDsol. Simple geometries were demonstrated to utilize current meshing and processing capabilities. Air-breathing hypersonic flight vehicles (AHFVs) represent the ultimate application of the suite. The current models are accurate at low supersonic speed and reasonable for engineering approximation at hypersonic speeds. Improvements to extend the models fully into the hypersonic regime are given in the Recommendations section.

  10. Impurity-induced tuning of quantum-well States in spin-dependent resonant tunneling.

    PubMed

    Kalitsov, Alan; Coho, A; Kioussis, Nicholas; Vedyayev, Anatoly; Chshiev, M; Granovsky, A

    2004-07-23

    We report exact model calculations of the spin-dependent tunneling in double magnetic tunnel junctions in the presence of impurities in the well. We show that the impurity can tune selectively the spin channels giving rise to a wide variety of interesting and novel transport phenomena. The tunneling magnetoresistance, the spin polarization, and the local current can be dramatically enhanced or suppressed by impurities. The underlying mechanism is the impurity-induced shift of the quantum well states (QWSs), which depends on the impurity potential, impurity position, and the symmetry of the QWS. Copyright 2004 The American Physical Society

  11. Effects of Impurities and Processing on Silicon Solar Cells, Phase 3

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R.; Blais, P. D.; Rohatgi, A.; Campbell, R. B.; Rai-Choudhury, P.; Stapleton, R. E.; Mollenkopf, H. C.; Mccormick, J. R.

    1979-01-01

    Results of the 14th quarterly report are presented for a program designed to assess the effects of impurities, thermochemical processes and any impurity process interactions on the performance of terrestrial silicon solar cells. The Phase 3 effort encompasses: (1) potential interactions between impurities and thermochemical processing of silicon; (2) impurity-cell performance relationships in n-base silicon; (3) effect of contaminants introduced during silicon production, refining or crystal growth on cell performance; (4) effects of nonuniform impurity distributions in large area silicon wafers; and (5) a preliminary study of the permanence of impurity effects in silicon solar cells.

  12. Process and system for removing impurities from a gas

    DOEpatents

    Henningsen, Gunnar; Knowlton, Teddy Merrill; Findlay, John George; Schlather, Jerry Neal; Turk, Brian S

    2014-04-15

    A fluidized reactor system for removing impurities from a gas and an associated process are provided. The system includes a fluidized absorber for contacting a feed gas with a sorbent stream to reduce the impurity content of the feed gas; a fluidized solids regenerator for contacting an impurity loaded sorbent stream with a regeneration gas to reduce the impurity content of the sorbent stream; a first non-mechanical gas seal forming solids transfer device adapted to receive an impurity loaded sorbent stream from the absorber and transport the impurity loaded sorbent stream to the regenerator at a controllable flow rate in response to an aeration gas; and a second non-mechanical gas seal forming solids transfer device adapted to receive a sorbent stream of reduced impurity content from the regenerator and transfer the sorbent stream of reduced impurity content to the absorber without changing the flow rate of the sorbent stream.

  13. Development of Impurity Profiling Methods Using Modern Analytical Techniques.

    PubMed

    Ramachandra, Bondigalla

    2017-01-02

    This review gives a brief introduction about the process- and product-related impurities and emphasizes on the development of novel analytical methods for their determination. It describes the application of modern analytical techniques, particularly the ultra-performance liquid chromatography (UPLC), liquid chromatography-mass spectrometry (LC-MS), high-resolution mass spectrometry (HRMS), gas chromatography-mass spectrometry (GC-MS) and high-performance thin layer chromatography (HPTLC). In addition to that, the application of nuclear magnetic resonance (NMR) spectroscopy was also discussed for the characterization of impurities and degradation products. The significance of the quality, efficacy and safety of drug substances/products, including the source of impurities, kinds of impurities, adverse effects by the presence of impurities, quality control of impurities, necessity for the development of impurity profiling methods, identification of impurities and regulatory aspects has been discussed. Other important aspects that have been discussed are forced degradation studies and the development of stability indicating assay methods.

  14. Motion of a Distinguishable Impurity in the Bose Gas: Arrested Expansion Without a Lattice and Impurity Snaking

    NASA Astrophysics Data System (ADS)

    Robinson, Neil J.; Caux, Jean-Sébastien; Konik, Robert M.

    2016-04-01

    We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion—a period of quasistationary behavior. When the impurity is injected with a finite center-of-mass momentum, the impurity moves through the background gas in a snaking manner, arising from a quantum Newton's cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas.

  15. Motion of a distinguishable Impurity in the Bose gas: Arrested expansion without a lattice and impurity snaking

    DOE PAGES

    Neil J. Robinson; Caux, Jean -Sebastien; Konik, Robert M.

    2016-04-07

    We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion—a period of quasistationary behavior. In conclusion, when the impurity is injected with a finite center-of-mass momentum,more » the impurity moves through the background gas in a snaking manner, arising from a quantum Newton’s cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas.« less

  16. Mathematical and Numerical Aspects of the Adaptive Fast Multipole Poisson-Boltzmann Solver

    DOE PAGES

    Zhang, Bo; Lu, Benzhuo; Cheng, Xiaolin; ...

    2013-01-01

    This paper summarizes the mathematical and numerical theories and computational elements of the adaptive fast multipole Poisson-Boltzmann (AFMPB) solver. We introduce and discuss the following components in order: the Poisson-Boltzmann model, boundary integral equation reformulation, surface mesh generation, the nodepatch discretization approach, Krylov iterative methods, the new version of fast multipole methods (FMMs), and a dynamic prioritization technique for scheduling parallel operations. For each component, we also remark on feasible approaches for further improvements in efficiency, accuracy and applicability of the AFMPB solver to large-scale long-time molecular dynamics simulations. Lastly, the potential of the solver is demonstrated with preliminary numericalmore » results.« less

  17. Analytical advances in pharmaceutical impurity profiling.

    PubMed

    Holm, René; Elder, David P

    2016-05-25

    Impurities will be present in all drug substances and drug products, i.e. nothing is 100% pure if one looks in enough depth. The current regulatory guidance on impurities accepts this, and for drug products with a dose of less than 2g/day identification of impurities is set at 0.1% levels and above (ICH Q3B(R2), 2006). For some impurities, this is a simple undertaking as generally available analytical techniques can address the prevailing analytical challenges; whereas, for others this may be much more challenging requiring more sophisticated analytical approaches. The present review provides an insight into current development of analytical techniques to investigate and quantify impurities in drug substances and drug products providing discussion of progress particular within the field of chromatography to ensure separation of and quantification of those related impurities. Further, a section is devoted to the identification of classical impurities, but in addition, inorganic (metal residues) and solid state impurities are also discussed. Risk control strategies for pharmaceutical impurities aligned with several of the ICH guidelines, are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Impurity-directed transport within a finite disordered lattice

    NASA Astrophysics Data System (ADS)

    Magnetta, Bradley J.; Ordonez, Gonzalo; Garmon, Savannah

    2018-02-01

    We consider a finite, disordered 1D quantum lattice with a side-attached impurity. We study theoretically the transport of a single electron from the impurity into the lattice, at zero temperature. The transport is dominated by Anderson localization and, in general, the electron motion has a random character due to the lattice disorder. However, we show that by adjusting the impurity energy the electron can attain quasi-periodic motions, oscillating between the impurity and a small region of the lattice. This region corresponds to the spatial extent of a localized state with an energy matched by that of the impurity. By precisely tuning the impurity energy, the electron can be set to oscillate between the impurity and a region far from the impurity, even distances larger than the Anderson localization length. The electron oscillations result from the interference of hybridized states, which have some resemblance to Pendry's necklace states (Pendry, 1987) [21]. The dependence of the electron motion on the impurity energy gives a potential mechanism for selectively routing an electron towards different regions of a 1D disordered lattice.

  19. Performance of uncertainty quantification methodologies and linear solvers in cardiovascular simulations

    NASA Astrophysics Data System (ADS)

    Seo, Jongmin; Schiavazzi, Daniele; Marsden, Alison

    2017-11-01

    Cardiovascular simulations are increasingly used in clinical decision making, surgical planning, and disease diagnostics. Patient-specific modeling and simulation typically proceeds through a pipeline from anatomic model construction using medical image data to blood flow simulation and analysis. To provide confidence intervals on simulation predictions, we use an uncertainty quantification (UQ) framework to analyze the effects of numerous uncertainties that stem from clinical data acquisition, modeling, material properties, and boundary condition selection. However, UQ poses a computational challenge requiring multiple evaluations of the Navier-Stokes equations in complex 3-D models. To achieve efficiency in UQ problems with many function evaluations, we implement and compare a range of iterative linear solver and preconditioning techniques in our flow solver. We then discuss applications to patient-specific cardiovascular simulation and how the problem/boundary condition formulation in the solver affects the selection of the most efficient linear solver. Finally, we discuss performance improvements in the context of uncertainty propagation. Support from National Institute of Health (R01 EB018302) is greatly appreciated.

  20. A new solver for granular avalanche simulation: Indoor experiment verification and field scale case study

    NASA Astrophysics Data System (ADS)

    Wang, XiaoLiang; Li, JiaChun

    2017-12-01

    A new solver based on the high-resolution scheme with novel treatments of source terms and interface capture for the Savage-Hutter model is developed to simulate granular avalanche flows. The capability to simulate flow spread and deposit processes is verified through indoor experiments of a two-dimensional granular avalanche. Parameter studies show that reduction in bed friction enhances runout efficiency, and that lower earth pressure restraints enlarge the deposit spread. The April 9, 2000, Yigong avalanche in Tibet, China, is simulated as a case study by this new solver. The predicted results, including evolution process, deposit spread, and hazard impacts, generally agree with site observations. It is concluded that the new solver for the Savage-Hutter equation provides a comprehensive software platform for granular avalanche simulation at both experimental and field scales. In particular, the solver can be a valuable tool for providing necessary information for hazard forecasts, disaster mitigation, and countermeasure decisions in mountainous areas.

  1. Application of an Unstructured Grid Navier-Stokes Solver to a Generic Helicopter Boby: Comparison of Unstructured Grid Results with Structured Grid Results and Experimental Results

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.

    1999-01-01

    An unstructured-grid Navier-Stokes solver was used to predict the surface pressure distribution, the off-body flow field, the surface flow pattern, and integrated lift and drag coefficients on the ROBIN configuration (a generic helicopter) without a rotor at four angles of attack. The results are compared to those predicted by two structured- grid Navier-Stokes solvers and to experimental surface pressure distributions. The surface pressure distributions from the unstructured-grid Navier-Stokes solver are in good agreement with the results from the structured-grid Navier-Stokes solvers. Agreement with the experimental pressure coefficients is good over the forward portion of the body. However, agreement is poor on the lower portion of the mid-section of the body. Comparison of the predicted surface flow patterns showed similar regions of separated flow. Predicted lift and drag coefficients were in fair agreement with each other.

  2. An Implicit Solver on A Parallel Block-Structured Adaptive Mesh Grid for FLASH

    NASA Astrophysics Data System (ADS)

    Lee, D.; Gopal, S.; Mohapatra, P.

    2012-07-01

    We introduce a fully implicit solver for FLASH based on a Jacobian-Free Newton-Krylov (JFNK) approach with an appropriate preconditioner. The main goal of developing this JFNK-type implicit solver is to provide efficient high-order numerical algorithms and methodology for simulating stiff systems of differential equations on large-scale parallel computer architectures. A large number of natural problems in nonlinear physics involve a wide range of spatial and time scales of interest. A system that encompasses such a wide magnitude of scales is described as "stiff." A stiff system can arise in many different fields of physics, including fluid dynamics/aerodynamics, laboratory/space plasma physics, low Mach number flows, reactive flows, radiation hydrodynamics, and geophysical flows. One of the big challenges in solving such a stiff system using current-day computational resources lies in resolving time and length scales varying by several orders of magnitude. We introduce FLASH's preliminary implementation of a time-accurate JFNK-based implicit solver in the framework of FLASH's unsplit hydro solver.

  3. Preconditioned implicit solvers for the Navier-Stokes equations on distributed-memory machines

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Liou, Meng-Sing; Dyson, Rodger W.

    1994-01-01

    The GMRES method is parallelized, and combined with local preconditioning to construct an implicit parallel solver to obtain steady-state solutions for the Navier-Stokes equations of fluid flow on distributed-memory machines. The new implicit parallel solver is designed to preserve the convergence rate of the equivalent 'serial' solver. A static domain-decomposition is used to partition the computational domain amongst the available processing nodes of the parallel machine. The SPMD (Single-Program Multiple-Data) programming model is combined with message-passing tools to develop the parallel code on a 32-node Intel Hypercube and a 512-node Intel Delta machine. The implicit parallel solver is validated for internal and external flow problems, and is found to compare identically with flow solutions obtained on a Cray Y-MP/8. A peak computational speed of 2300 MFlops/sec has been achieved on 512 nodes of the Intel Delta machine,k for a problem size of 1024 K equations (256 K grid points).

  4. Modifications of steam condensation model implemented in commercial solver

    NASA Astrophysics Data System (ADS)

    Sova, Libor; Jun, Gukchol; ŠÅ¥astný, Miroslav

    2017-09-01

    Nucleation theory and droplet grow theory and methods how they are incorporated into numerical solvers are crucial factors for proper wet steam modelling. Unfortunately, they are still covered by cloud of uncertainty and therefore some calibration of these models according to reliable experimental results is important for practical analyses of steam turbines. This article demonstrates how is possible to calibrate wet steam model incorporated into commercial solver ANSYS CFX.

  5. Implementation of a parallel unstructured Euler solver on the CM-5

    NASA Technical Reports Server (NTRS)

    Morano, Eric; Mavriplis, D. J.

    1995-01-01

    An efficient unstructured 3D Euler solver is parallelized on a Thinking Machine Corporation Connection Machine 5, distributed memory computer with vectoring capability. In this paper, the single instruction multiple data (SIMD) strategy is employed through the use of the CM Fortran language and the CMSSL scientific library. The performance of the CMSSL mesh partitioner is evaluated and the overall efficiency of the parallel flow solver is discussed.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, William E.; Siirola, John Daniel

    We describe new capabilities for modeling MPEC problems within the Pyomo modeling software. These capabilities include new modeling components that represent complementar- ity conditions, modeling transformations for re-expressing models with complementarity con- ditions in other forms, and meta-solvers that apply transformations and numeric optimization solvers to optimize MPEC problems. We illustrate the breadth of Pyomo's modeling capabil- ities for MPEC problems, and we describe how Pyomo's meta-solvers can perform local and global optimization of MPEC problems.

  7. LEM-CF Premixed Tool Kit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-01-19

    The purpose of LEM-CF Premixed Tool Kit is to process premixed flame simulation data from the LEM-CF solver (https://fileshare.craft-tech.com/clusters/view/lem-cf) into a large-eddy simulation (LES) subgrid model database. These databases may be used with a user-defined-function (UDF) that is included in the Tool Kit. The subgrid model UDF may be used with the ANSYS FLUENT flow solver or other commercial flow solvers.

  8. Conducting Automated Test Assembly Using the Premium Solver Platform Version 7.0 with Microsoft Excel and the Large-Scale LP/QP Solver Engine Add-In

    ERIC Educational Resources Information Center

    Cor, Ken; Alves, Cecilia; Gierl, Mark J.

    2008-01-01

    This review describes and evaluates a software add-in created by Frontline Systems, Inc., that can be used with Microsoft Excel 2007 to solve large, complex test assembly problems. The combination of Microsoft Excel 2007 with the Frontline Systems Premium Solver Platform is significant because Microsoft Excel is the most commonly used spreadsheet…

  9. Boosting Stochastic Problem Solvers Through Online Self-Analysis of Performance

    DTIC Science & Technology

    2003-07-21

    Boosting Stochastic Problem Solvers Through Online Self-Analysis of Performance Vincent A. Cicirello CMU-RI-TR-03-27 Submitted in partial fulfillment...AND SUBTITLE Boosting Stochastic Problem Solvers Through Online Self-Analysis of Performance 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...lead to the development of a search control framework, called QD-BEACON that uses online -generated statistical models of search performance to

  10. Mathematical Fluid Dynamic Modeling of Plasma Stall-Spin Departure Control

    DTIC Science & Technology

    2007-04-01

    filter (4), is appropriate for further CSN modeling of the vortical flow. The CNS solver reproduces symmetric and asymmetric vortex fields (Figure 11...calculations conducted for laminar flow showed that the CNS solver reproduces symmetric and asymmetric vortex fields and can be used for estimation of the...Galilean-invariant leeward vortex filter. The modified k-F EASM model was incorporated into our CSN solver. Parametric calculations showed that numerical

  11. A Conformal, Fully-Conservative Approach for Predicting Blast Effects on Ground Vehicles

    DTIC Science & Technology

    2014-04-01

    time integration  Approximate Riemann Fluxes (HLLE, HLLC) ◦ Robust mixture model for multi-material flows  Multiple Equations of State ◦ Perfect Gas...Loci/CHEM: Chemically reacting compressible flow solver . ◦ Currently in production use by NASA for the simulation of rocket motors, plumes, and...vehicles  Loci/DROPLET: Eulerian and Lagrangian multiphase solvers  Loci/STREAM: pressure-based solver ◦ Developed by Streamline Numerics and

  12. PBEQ-Solver for online visualization of electrostatic potential of biomolecules.

    PubMed

    Jo, Sunhwan; Vargyas, Miklos; Vasko-Szedlar, Judit; Roux, Benoît; Im, Wonpil

    2008-07-01

    PBEQ-Solver provides a web-based graphical user interface to read biomolecular structures, solve the Poisson-Boltzmann (PB) equations and interactively visualize the electrostatic potential. PBEQ-Solver calculates (i) electrostatic potential and solvation free energy, (ii) protein-protein (DNA or RNA) electrostatic interaction energy and (iii) pKa of a selected titratable residue. All the calculations can be performed in both aqueous solvent and membrane environments (with a cylindrical pore in the case of membrane). PBEQ-Solver uses the PBEQ module in the biomolecular simulation program CHARMM to solve the finite-difference PB equation of molecules specified by users. Users can interactively inspect the calculated electrostatic potential on the solvent-accessible surface as well as iso-electrostatic potential contours using a novel online visualization tool based on MarvinSpace molecular visualization software, a Java applet integrated within CHARMM-GUI (http://www.charmm-gui.org). To reduce the computational time on the server, and to increase the efficiency in visualization, all the PB calculations are performed with coarse grid spacing (1.5 A before and 1 A after focusing). PBEQ-Solver suggests various physical parameters for PB calculations and users can modify them if necessary. PBEQ-Solver is available at http://www.charmm-gui.org/input/pbeqsolver.

  13. A CFD Heterogeneous Parallel Solver Based on Collaborating CPU and GPU

    NASA Astrophysics Data System (ADS)

    Lai, Jianqi; Tian, Zhengyu; Li, Hua; Pan, Sha

    2018-03-01

    Since Graphic Processing Unit (GPU) has a strong ability of floating-point computation and memory bandwidth for data parallelism, it has been widely used in the areas of common computing such as molecular dynamics (MD), computational fluid dynamics (CFD) and so on. The emergence of compute unified device architecture (CUDA), which reduces the complexity of compiling program, brings the great opportunities to CFD. There are three different modes for parallel solution of NS equations: parallel solver based on CPU, parallel solver based on GPU and heterogeneous parallel solver based on collaborating CPU and GPU. As we can see, GPUs are relatively rich in compute capacity but poor in memory capacity and the CPUs do the opposite. We need to make full use of the GPUs and CPUs, so a CFD heterogeneous parallel solver based on collaborating CPU and GPU has been established. Three cases are presented to analyse the solver’s computational accuracy and heterogeneous parallel efficiency. The numerical results agree well with experiment results, which demonstrate that the heterogeneous parallel solver has high computational precision. The speedup on a single GPU is more than 40 for laminar flow, it decreases for turbulent flow, but it still can reach more than 20. What’s more, the speedup increases as the grid size becomes larger.

  14. Influence of impurities on the high temperature conductivity of SrTiO3

    NASA Astrophysics Data System (ADS)

    Bowes, Preston C.; Baker, Jonathon N.; Harris, Joshua S.; Behrhorst, Brian D.; Irving, Douglas L.

    2018-01-01

    In studies of high temperature electrical conductivity (HiTEC) of dielectrics, the impurity in the highest concentration is assumed to form a single defect that controls HiTEC. However, carrier concentrations are typically at or below the level of background impurities, and all impurities may complex with native defects. Canonical defect models ignore complex formation and lump defects from multiple impurities into a single effective defect to reduce the number of associated reactions. To evaluate the importance of background impurities and defect complexes on HiTEC, a grand canonical defect model was developed with input from density functional theory calculations using hybrid exchange correlation functionals. The influence of common background impurities and first nearest neighbor complexes with oxygen vacancies (vO) was studied for three doping cases: nominally undoped, donor doped, and acceptor doped SrTiO3. In each case, conductivity depended on the ensemble of impurity defects simulated with the extent of the dependence governed by the character of the dominant impurity and its tendency to complex with vO. Agreement between simulated and measured conductivity profiles as a function of temperature and oxygen partial pressure improved significantly when background impurities were included in the nominally undoped case. Effects of the impurities simulated were reduced in the Nb and Al doped cases as both elements did not form complexes and were present in concentrations well exceeding all other active impurities. The influence of individual impurities on HiTEC in SrTiO3 was isolated and discussed and motivates further experiments on singly doped SrTiO3.

  15. Modeling of frequency-domain scalar wave equation with the average-derivative optimal scheme based on a multigrid-preconditioned iterative solver

    NASA Astrophysics Data System (ADS)

    Cao, Jian; Chen, Jing-Bo; Dai, Meng-Xue

    2018-01-01

    An efficient finite-difference frequency-domain modeling of seismic wave propagation relies on the discrete schemes and appropriate solving methods. The average-derivative optimal scheme for the scalar wave modeling is advantageous in terms of the storage saving for the system of linear equations and the flexibility for arbitrary directional sampling intervals. However, using a LU-decomposition-based direct solver to solve its resulting system of linear equations is very costly for both memory and computational requirements. To address this issue, we consider establishing a multigrid-preconditioned BI-CGSTAB iterative solver fit for the average-derivative optimal scheme. The choice of preconditioning matrix and its corresponding multigrid components is made with the help of Fourier spectral analysis and local mode analysis, respectively, which is important for the convergence. Furthermore, we find that for the computation with unequal directional sampling interval, the anisotropic smoothing in the multigrid precondition may affect the convergence rate of this iterative solver. Successful numerical applications of this iterative solver for the homogenous and heterogeneous models in 2D and 3D are presented where the significant reduction of computer memory and the improvement of computational efficiency are demonstrated by comparison with the direct solver. In the numerical experiments, we also show that the unequal directional sampling interval will weaken the advantage of this multigrid-preconditioned iterative solver in the computing speed or, even worse, could reduce its accuracy in some cases, which implies the need for a reasonable control of directional sampling interval in the discretization.

  16. Use of general purpose graphics processing units with MODFLOW

    USGS Publications Warehouse

    Hughes, Joseph D.; White, Jeremy T.

    2013-01-01

    To evaluate the use of general-purpose graphics processing units (GPGPUs) to improve the performance of MODFLOW, an unstructured preconditioned conjugate gradient (UPCG) solver has been developed. The UPCG solver uses a compressed sparse row storage scheme and includes Jacobi, zero fill-in incomplete, and modified-incomplete lower-upper (LU) factorization, and generalized least-squares polynomial preconditioners. The UPCG solver also includes options for sequential and parallel solution on the central processing unit (CPU) using OpenMP. For simulations utilizing the GPGPU, all basic linear algebra operations are performed on the GPGPU; memory copies between the central processing unit CPU and GPCPU occur prior to the first iteration of the UPCG solver and after satisfying head and flow criteria or exceeding a maximum number of iterations. The efficiency of the UPCG solver for GPGPU and CPU solutions is benchmarked using simulations of a synthetic, heterogeneous unconfined aquifer with tens of thousands to millions of active grid cells. Testing indicates GPGPU speedups on the order of 2 to 8, relative to the standard MODFLOW preconditioned conjugate gradient (PCG) solver, can be achieved when (1) memory copies between the CPU and GPGPU are optimized, (2) the percentage of time performing memory copies between the CPU and GPGPU is small relative to the calculation time, (3) high-performance GPGPU cards are utilized, and (4) CPU-GPGPU combinations are used to execute sequential operations that are difficult to parallelize. Furthermore, UPCG solver testing indicates GPGPU speedups exceed parallel CPU speedups achieved using OpenMP on multicore CPUs for preconditioners that can be easily parallelized.

  17. Impurities in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.

    1985-01-01

    Metallic impurities, both singly and in combinations, affect the performance of silicon solar cells. Czochralski silicon web crystals were grown with controlled additions of secondary impurities. The primary electrical dopants were boron and phosphorus. The silicon test ingots were grown under controlled and carefully monitored conditions from high-purity charge and dopant material to minimize unintentional contamination. Following growth, each crystal was characterized by chemical, microstructural, electrical, and solar cell tests to provide a detailed and internally consistent description of the relationships between silicon impurity concentration and solar cell performance. Deep-level spectroscopy measurements were used to measure impurity concentrations at levels below the detectability of other techniques and to study thermally-induced changes in impurity activity. For the majority of contaminants, impurity-induced performance loss is due to a reduction of the base diffusion length. From these observations, a semi-empirical model which predicts cell performance as a function of metal impurity concentration was formulated. The model was then used successfully to predict the behavior of solar cells bearing as many as 11 different impurities.

  18. Gaseous trace impurity analyzer and method

    DOEpatents

    Edwards, Jr., David; Schneider, William

    1980-01-01

    Simple apparatus for analyzing trace impurities in a gas, such as helium or hydrogen, comprises means for drawing a measured volume of the gas as sample into a heated zone. A segregable portion of the zone is then chilled to condense trace impurities in the gas in the chilled portion. The gas sample is evacuated from the heated zone including the chilled portion. Finally, the chilled portion is warmed to vaporize the condensed impurities in the order of their boiling points. As the temperature of the chilled portion rises, pressure will develop in the evacuated, heated zone by the vaporization of an impurity. The temperature at which the pressure increase occurs identifies that impurity and the pressure increase attained until the vaporization of the next impurity causes a further pressure increase is a measure of the quantity of the preceding impurity.

  19. Impurity bound states in mesoscopic topological superconducting loops

    NASA Astrophysics Data System (ADS)

    Jin, Yan-Yan; Zha, Guo-Qiao; Zhou, Shi-Ping

    2018-06-01

    We study numerically the effect induced by magnetic impurities in topological s-wave superconducting loops with spin-orbit interaction based on spin-generalized Bogoliubov-de Gennes equations. In the case of a single magnetic impurity, it is found that the midgap bound states can cross the Fermi level at an appropriate impurity strength and the circulating spin current jumps at the crossing point. The evolution of the zero-energy mode can be effectively tuned by the located site of a single magnetic impurity. For the effect of many magnetic impurities, two independent midway or edge impurities cannot lead to the overlap of zero modes. The multiple zero-energy modes can be effectively realized by embedding a single Josephson junction with impurity scattering into the system, and the spin current displays oscillatory feature with increasing the layer thickness.

  20. QuTiP: An open-source Python framework for the dynamics of open quantum systems

    NASA Astrophysics Data System (ADS)

    Johansson, J. R.; Nation, P. D.; Nori, Franco

    2012-08-01

    We present an object-oriented open-source framework for solving the dynamics of open quantum systems written in Python. Arbitrary Hamiltonians, including time-dependent systems, may be built up from operators and states defined by a quantum object class, and then passed on to a choice of master equation or Monte Carlo solvers. We give an overview of the basic structure for the framework before detailing the numerical simulation of open system dynamics. Several examples are given to illustrate the build up to a complete calculation. Finally, we measure the performance of our library against that of current implementations. The framework described here is particularly well suited to the fields of quantum optics, superconducting circuit devices, nanomechanics, and trapped ions, while also being ideal for use in classroom instruction. Catalogue identifier: AEMB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 16 482 No. of bytes in distributed program, including test data, etc.: 213 438 Distribution format: tar.gz Programming language: Python Computer: i386, x86-64 Operating system: Linux, Mac OSX, Windows RAM: 2+ Gigabytes Classification: 7 External routines: NumPy (http://numpy.scipy.org/), SciPy (http://www.scipy.org/), Matplotlib (http://matplotlib.sourceforge.net/) Nature of problem: Dynamics of open quantum systems. Solution method: Numerical solutions to Lindblad master equation or Monte Carlo wave function method. Restrictions: Problems must meet the criteria for using the master equation in Lindblad form. Running time: A few seconds up to several tens of minutes, depending on size of underlying Hilbert space.

  1. Full-orbit and backward Monte Carlo simulation of runaway electrons

    NASA Astrophysics Data System (ADS)

    Del-Castillo-Negrete, Diego

    2017-10-01

    High-energy relativistic runaway electrons (RE) can be produced during magnetic disruptions due to electric fields generated during the thermal and current quench of the plasma. Understanding this problem is key for the safe operation of ITER because, if not avoided or mitigated, RE can severely damage the plasma facing components. In this presentation we report on RE simulation efforts centered in two complementary approaches: (i) Full orbit (6-D phase space) relativistic numerical simulations in general (integrable or chaotic) 3-D magnetic and electric fields, including radiation damping and collisions, using the recently developed particle-based Kinetic Orbit Runaway electron Code (KORC) and (ii) Backward Monte-Carlo (MC) simulations based on a recently developed efficient backward stochastic differential equations (BSDE) solver. Following a description of the corresponding numerical methods, we present applications to: (i) RE synchrotron radiation (SR) emission using KORC and (ii) Computation of time-dependent runaway probability distributions, RE production rates, and expected slowing-down and runaway times using BSDE. We study the dependence of these statistical observables on the electric and magnetic field, and the ion effective charge. SR is a key energy dissipation mechanism in the high-energy regime, and it is also extensively used as an experimental diagnostic of RE. Using KORC we study full orbit effects on SR and discuss a recently developed SR synthetic diagnostic that incorporates the full angular dependence of SR, and the location and basic optics of the camera. It is shown that oversimplifying the angular dependence of SR and/or ignoring orbit effects can significantly modify the shape and overestimate the amplitude of the spectra. Applications to DIII-D RE experiments are discussed.

  2. Optical simulations of organic light-emitting diodes through a combination of rigorous electromagnetic solvers and Monte Carlo ray-tracing methods

    NASA Astrophysics Data System (ADS)

    Bahl, Mayank; Zhou, Gui-Rong; Heller, Evan; Cassarly, William; Jiang, Mingming; Scarmozzino, Rob; Gregory, G. Groot

    2014-09-01

    Over the last two decades there has been extensive research done to improve the design of Organic Light Emitting Diodes (OLEDs) so as to enhance light extraction efficiency, improve beam shaping, and allow color tuning through techniques such as the use of patterned substrates, photonic crystal (PCs) gratings, back reflectors, surface texture, and phosphor down-conversion. Computational simulation has been an important tool for examining these increasingly complex designs. It has provided insights for improving OLED performance as a result of its ability to explore limitations, predict solutions, and demonstrate theoretical results. Depending upon the focus of the design and scale of the problem, simulations are carried out using rigorous electromagnetic (EM) wave optics based techniques, such as finite-difference time-domain (FDTD) and rigorous coupled wave analysis (RCWA), or through ray optics based technique such as Monte Carlo ray-tracing. The former are typically used for modeling nanostructures on the OLED die, and the latter for modeling encapsulating structures, die placement, back-reflection, and phosphor down-conversion. This paper presents the use of a mixed-level simulation approach which unifies the use of EM wave-level and ray-level tools. This approach uses rigorous EM wave based tools to characterize the nanostructured die and generate both a Bidirectional Scattering Distribution function (BSDF) and a far-field angular intensity distribution. These characteristics are then incorporated into the ray-tracing simulator to obtain the overall performance. Such mixed-level approach allows for comprehensive modeling of the optical characteristic of OLEDs and can potentially lead to more accurate performance than that from individual modeling tools alone.

  3. On-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processes.

    PubMed

    Guo, Xin; Minakata, Daisuke; Crittenden, John

    2015-08-04

    We have developed an on-the-fly kinetic Monte Carlo (KMC) model to predict the degradation mechanisms and fates of intermediates and byproducts that are produced during aqueous-phase advanced oxidation processes (AOPs). The on-the-fly KMC model is composed of a reaction pathway generator, a reaction rate constant estimator, a mechanistic reduction module, and a KMC solver. The novelty of this work is that we develop the pathway as we march forward in time rather than developing the pathway before we use the KMC method to solve the equations. As a result, we have fewer reactions to consider, and we have greater computational efficiency. We have verified this on-the-fly KMC model for the degradation of polyacrylamide (PAM) using UV light and titanium dioxide (i.e., UV/TiO2). Using the on-the-fly KMC model, we were able to predict the time-dependent profiles of the average molecular weight for PAM. The model provided detailed and quantitative insights into the time evolution of the molecular weight distribution and reaction mechanism. We also verified our on-the-fly KMC model for the destruction of (1) acetone, (2) trichloroethylene (TCE), and (3) polyethylene glycol (PEG) for the ultraviolet light and hydrogen peroxide AOP. We demonstrated that the on-the-fly KMC model can achieve the same accuracy as the computer-based first-principles KMC (CF-KMC) model, which has already been validated in our earlier work. The on-the-fly KMC is particularly suitable for molecules with large molecular weights (e.g., polymers) because the degradation mechanisms for large molecules can result in hundreds of thousands to even millions of reactions. The ordinary differential equations (ODEs) that describe the degradation pathways cannot be solved using traditional numerical methods, but the KMC can solve these equations.

  4. Consistent radiative transfer modeling of active and passive observations of precipitation

    NASA Astrophysics Data System (ADS)

    Adams, Ian

    2016-04-01

    Spaceborne platforms such as the Tropical Rainfall Measurement Mission (TRMM) and the Global Precipitation Measurement (GPM) mission exploit a combination of active and passive sensors to provide a greater understanding of the three-dimensional structure of precipitation. While "operationalized" retrieval algorithms require fast forward models, the ability to perform higher fidelity simulations is necessary in order to understand the physics of remote sensing problems by testing assumptions and developing parameterizations for the fast models. To ensure proper synergy between active and passive modeling, forward models must be consistent when modeling the responses of radars and radiometers. This work presents a self-consistent transfer model for simulating radar reflectivities and millimeter wave brightness temperatures for precipitating scenes. To accomplish this, we extended the Atmospheric Radiative Transfer Simulator (ARTS) version 2.3 to solve the radiative transfer equation for active sensors and multiple scattering conditions. Early versions of ARTS (1.1) included a passive Monte Carlo solver, and ARTS is capable of handling atmospheres of up to three dimensions with ellipsoidal planetary geometries. The modular nature of ARTS facilitates extensibility, and the well-developed ray-tracing tools are suited for implementation of Monte Carlo algorithms. Finally, since ARTS handles the full Stokes vector, co- and cross-polarized reflectivity products are possible for scenarios that include nonspherical particles, with or without preferential alignment. The accuracy of the forward model will be demonstrated with precipitation events observed by TRMM and GPM, and the effects of multiple scattering will be detailed. The three-dimensional nature of the radiative transfer model will be useful for understanding the effects of nonuniform beamfill and multiple scattering for spatially heterogeneous precipitation events. The targets of this forward model are GPM (the Dual-wavelength Precipitation Radar (DPR) and GPM Microwave Imager (GMI)).

  5. Effect of impurities and processing on silicon solar cells. Volume 1: Characterization methods for impurities in silicon and impurity effects data base

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R.; Rohatgi, A.; Campbell, R. B.; Blais, P. D.; Rai-Choudhury, P.; Stapleton, R. E.; Mollenkopf, H. C.; Mccormick, J. R.

    1980-01-01

    Two major topics are treated: methods to measure and evaluate impurity effects in silicon and comprehensive tabulations of data derived during the study. Discussions of deep level spectroscopy, detailed dark I-V measurements, recombination lifetime determination, scanned laser photo-response, conventional solar cell I-V techniques, and descriptions of silicon chemical analysis are presented and discussed. The tabulated data include lists of impurity segregation coefficients, ingot impurity analyses and estimated concentrations, typical deep level impurity spectra, photoconductive and open circuit decay lifetimes for individual metal-doped ingots, and a complete tabulation of the cell I-V characteristics of nearly 200 ingots.

  6. Performance Improvements to the Naval Postgraduate School Turbopropulsion Labs Transonic Axially Splittered Rotor

    DTIC Science & Technology

    2013-12-01

    Implementation of current NPS TPL design procedure that uses COTS software (MATLAB, SolidWorks, and ANSYS - CFX ) for the geometric rendering and...procedure that uses commercial-off-the-shelf software (MATLAB, SolidWorks, and ANSYS - CFX ) for the geometric rendering and analysis was modified and... CFX The CFD simulation program in ANSYS Workbench. CFX -Pre CFX boundary conditions and solver settings module. CFX -Solver CFX solver program. CFX

  7. Avoiding Communication in the Lanczos Bidiagonalization Routine and Associated Least Squares QR Solver

    DTIC Science & Technology

    2015-04-12

    Avoiding communication in the Lanczos bidiagonalization routine and associated Least Squares QR solver Erin Carson Electrical Engineering and...Bidiagonalization Routine and Associated Least Squares QR Solver 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...throughout scienti c codes , are often the bottlenecks in application perfor- mance due to a low computation/communication ratio. In this paper we develop

  8. General Equation Set Solver for Compressible and Incompressible Turbomachinery Flows

    NASA Technical Reports Server (NTRS)

    Sondak, Douglas L.; Dorney, Daniel J.

    2002-01-01

    Turbomachines for propulsion applications operate with many different working fluids and flow conditions. The flow may be incompressible, such as in the liquid hydrogen pump in a rocket engine, or supersonic, such as in the turbine which may drive the hydrogen pump. Separate codes have traditionally been used for incompressible and compressible flow solvers. The General Equation Set (GES) method can be used to solve both incompressible and compressible flows, and it is not restricted to perfect gases, as are many compressible-flow turbomachinery solvers. An unsteady GES turbomachinery flow solver has been developed and applied to both air and water flows through turbines. It has been shown to be an excellent alternative to maintaining two separate codes.

  9. Modularization and Validation of FUN3D as a CREATE-AV Helios Near-Body Solver

    NASA Technical Reports Server (NTRS)

    Jain, Rohit; Biedron, Robert T.; Jones, William T.; Lee-Rausch, Elizabeth M.

    2016-01-01

    Under a recent collaborative effort between the US Army Aeroflightdynamics Directorate (AFDD) and NASA Langley, NASA's general unstructured CFD solver, FUN3D, was modularized as a CREATE-AV Helios near-body unstructured grid solver. The strategies adopted in Helios/FUN3D integration effort are described. A validation study of the new capability is performed for rotorcraft cases spanning hover prediction, airloads prediction, coupling with computational structural dynamics, counter-rotating dual-rotor configurations, and free-flight trim. The integration of FUN3D, along with the previously integrated NASA OVERFLOW solver, lays the ground for future interaction opportunities where capabilities of one component could be leveraged with those of others in a relatively seamless fashion within CREATE-AV Helios.

  10. An approximate Riemann solver for hypervelocity flows

    NASA Technical Reports Server (NTRS)

    Jacobs, Peter A.

    1991-01-01

    We describe an approximate Riemann solver for the computation of hypervelocity flows in which there are strong shocks and viscous interactions. The scheme has three stages, the first of which computes the intermediate states assuming isentropic waves. A second stage, based on the strong shock relations, may then be invoked if the pressure jump across either wave is large. The third stage interpolates the interface state from the two initial states and the intermediate states. The solver is used as part of a finite-volume code and is demonstrated on two test cases. The first is a high Mach number flow over a sphere while the second is a flow over a slender cone with an adiabatic boundary layer. In both cases the solver performs well.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chao; Pouransari, Hadi; Rajamanickam, Sivasankaran

    We present a parallel hierarchical solver for general sparse linear systems on distributed-memory machines. For large-scale problems, this fully algebraic algorithm is faster and more memory-efficient than sparse direct solvers because it exploits the low-rank structure of fill-in blocks. Depending on the accuracy of low-rank approximations, the hierarchical solver can be used either as a direct solver or as a preconditioner. The parallel algorithm is based on data decomposition and requires only local communication for updating boundary data on every processor. Moreover, the computation-to-communication ratio of the parallel algorithm is approximately the volume-to-surface-area ratio of the subdomain owned by everymore » processor. We also provide various numerical results to demonstrate the versatility and scalability of the parallel algorithm.« less

  12. Suppression of Superfluid Density and the Pseudogap State in the Cuprates by Impurities

    DOE PAGES

    Erdenemunkh, Unurbat; Koopman, Brian; Fu, Ling; ...

    2016-12-16

    Here, we use scanning tunneling microscopy (STM) to study magnetic Fe impurities intentionally doped into the high-temperature superconductor Bi 2Sr 2CaCu 2O 8+δ. Our spectroscopic measurements reveal that Fe impurities introduce low-lying resonances in the density of states at Ω 1 ≈ 4 meV and Ω 2 ≈ 15 meV , allowing us to determine that, despite having a large magnetic moment, potential scattering of quasiparticles by Fe impurities dominates magnetic scattering. In addition, using high-resolution spatial characterizations of the local density of states near and away from Fe impurities, we detail the spatial extent of impurity-affected regions as wellmore » as provide a local view of impurity-induced effects on the superconducting and pseudogap states. Lastly, our studies of Fe impurities, when combined with a reinterpretation of earlier STM work in the context of a two-gap scenario, allow us to present a unified view of the atomic-scale effects of elemental impurities on the pseudogap and superconducting states in hole-doped cuprates; this may help resolve a previously assumed dichotomy between the effects of magnetic and nonmagnetic impurities in these materials.« less

  13. Study of the structures of photodegradation impurities and pathways of photodegradation of cilnidipine by liquid chromatography/Q-Orbitrap mass spectrometry.

    PubMed

    Zeng, Hongxia; Wang, Fan; Zhu, Bingqi; Zhong, Weihui; Shan, Weiguang; Wang, Jian

    2016-08-15

    The structures of photodegradation impurities in cilnidipine were studied by liquid chromatography/Q-Orbitrap mass spectrometry (LC/Q-Orbitrap MS) for the further improvement of the official monographs in Pharmacopoeias. The complete fragmentation patterns of impurities were investigated to obtain their structural information. Two pathways of photodegradation of cilnidipine were also explored to clarify the source of impurities in cilnidipine. Chromatographic separation was performed on a Boston Group C18 column (250 mm × 4.6 mm, 5 μm). The mobile phase consisted of acetonitrile/H2 O at a ratio of 75:25 (v/v). In order to determine the m/z values of the molecular ions and formulas of all detected impurities, full scan LC/MS in both positive and negative ion modes was firstly performed using a Thermo LC system coupled with a Q-Orbitrap high-resolution mass spectrometer. LC/MS/MS analysis was also carried out on target compounds to obtain as much structural information as possible. Five novel photodegradation impurities of cilnidipine were separated and identified based on the high-resolution MS/MS data. Impurity III was synthesized and its structure was confirmed by (1) H-NMR and (13) C-NMR data. Two photodegradation pathways to produce different photodegradation impurities were also revealed in this study. Among those impurities, impurities II and III were the main impurities which existed in the cilnidipine available on the market. Impurity II (the Z-isomer) was mainly produced when cilnidipine powder was directly exposed to daylight while impurity III (containing a piperidine ring) was mainly produced when cilnidipine was exposed to daylight in an ethanolic solution. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. The Effects of Impurities on Protein Crystal Growth and Nucleation: A Preliminary Study

    NASA Technical Reports Server (NTRS)

    Schall, Constance A.

    1998-01-01

    Kubota and Mullin (1995) devised a simple model to account for the effects of impurities on crystal growth of small inorganic and organic molecules in aqueous solutions. Experimentally, the relative step velocity and crystal growth of these molecules asymptotically approach zero or non-zero values with increasing concentrations of impurities. Alternatively, the step velocity and crystal growth can linearly approach zero as the impurity concentration increases. The Kubota-Mullin model assumes that the impurity exhibits Langmuirian adsorption onto the crystal surface. Decreases in step velocities and subsequent growth rates are related to the fractional coverage (theta) of the crystal surface by adsorbed impurities; theta = Kx / (I +Kx), x = mole fraction of impurity in solution. In the presence of impurities, the relative step velocity, V/Vo, and the relative growth rate of a crystal face, G/Go, are proposed to conform to the following equations: V/Vo approx. = G/Go = 1 - (alpha)(theta). The adsorption of impurity is assumed to be rapid and in quasi-equilibrium with the crystal surface sites available. When the value of alpha, an effectiveness factor, is one the growth will asymptotically approach zero with increasing concentrations of impurity. At values less than one, growth approaches a non-zero value asymptotically. When alpha is much greater than one, there will be a linear relationship between impurity concentration and growth rates. Kubota and Mullin expect alpha to decrease with increasing supersaturation and shrinking size of a two dimensional nucleus. It is expected that impurity effects on protein crystal growth will exhibit behavior similar to that of impurities in small molecule growth. A number of proteins were added to purified chicken egg white lysozyme, the effect on crystal nucleation and growth assessed.

  15. Incorporation of impurity to a tetragonal lysozyme crystal

    NASA Astrophysics Data System (ADS)

    Kurihara, Kazuo; Miyashita, Satoru; Sazaki, Gen; Nakada, Toshitaka; Durbin, Stephen D.; Komatsu, Hiroshi; Ohba, Tetsuhiko; Ohki, Kazuo

    1999-01-01

    Concentration of a phosphor-labeled impurity (ovalbumin) incorporated into protein (hen egg white lysozyme) crystals during growth was measured by fluorescence.This technique enabled us to measure the local impurity concentration in a crystal quantitatively. Impurity concentration increased with growth rate, which could not be explained by two conventional models (equilibrium adsorption model and Burton-Prim-Slichter model); a modified model is proposed. Impurity concentration also increased with the pH of the solution. This result is discussed considering the electrostatic interaction between the impurity and the crystallizing species.

  16. The effect of magnetic field on the impurity binding energy of shallow donor impurities in a Ga1−xInxNyAs1−y/GaAs quantum well

    PubMed Central

    2012-01-01

    Using a variational approach, we have investigated the effects of the magnetic field, the impurity position, and the nitrogen and indium concentrations on impurity binding energy in a Ga1−xInxNyAs1−y/GaAs quantum well. Our calculations have revealed the dependence of impurity binding on the applied magnetic field, the impurity position, and the nitrogen and indium concentrations. PMID:23095253

  17. Modeling and analysis of hybrid pixel detector deficiencies for scientific applications

    NASA Astrophysics Data System (ADS)

    Fahim, Farah; Deptuch, Grzegorz W.; Hoff, James R.; Mohseni, Hooman

    2015-08-01

    Semiconductor hybrid pixel detectors often consist of a pixellated sensor layer bump bonded to a matching pixelated readout integrated circuit (ROIC). The sensor can range from high resistivity Si to III-V materials, whereas a Si CMOS process is typically used to manufacture the ROIC. Independent, device physics and electronic design automation (EDA) tools are used to determine sensor characteristics and verify functional performance of ROICs respectively with significantly different solvers. Some physics solvers provide the capability of transferring data to the EDA tool. However, single pixel transient simulations are either not feasible due to convergence difficulties or are prohibitively long. A simplified sensor model, which includes a current pulse in parallel with detector equivalent capacitor, is often used; even then, spice type top-level (entire array) simulations range from days to weeks. In order to analyze detector deficiencies for a particular scientific application, accurately defined transient behavioral models of all the functional blocks are required. Furthermore, various simulations, such as transient, noise, Monte Carlo, inter-pixel effects, etc. of the entire array need to be performed within a reasonable time frame without trading off accuracy. The sensor and the analog front-end can be modeling using a real number modeling language, as complex mathematical functions or detailed data can be saved to text files, for further top-level digital simulations. Parasitically aware digital timing is extracted in a standard delay format (sdf) from the pixel digital back-end layout as well as the periphery of the ROIC. For any given input, detector level worst-case and best-case simulations are performed using a Verilog simulation environment to determine the output. Each top-level transient simulation takes no more than 10-15 minutes. The impact of changing key parameters such as sensor Poissonian shot noise, analog front-end bandwidth, jitter due to clock distribution etc. can be accurately analyzed to determine ROIC architectural viability and bottlenecks. Hence the impact of the detector parameters on the scientific application can be studied.

  18. Some Developments of the Equilibrium Particle Simulation Method for the Direct Simulation of Compressible Flows

    NASA Technical Reports Server (NTRS)

    Macrossan, M. N.

    1995-01-01

    The direct simulation Monte Carlo (DSMC) method is the established technique for the simulation of rarefied gas flows. In some flows of engineering interest, such as occur for aero-braking spacecraft in the upper atmosphere, DSMC can become prohibitively expensive in CPU time because some regions of the flow, particularly on the windward side of blunt bodies, become collision dominated. As an alternative to using a hybrid DSMC and continuum gas solver (Euler or Navier-Stokes solver) this work is aimed at making the particle simulation method efficient in the high density regions of the flow. A high density, infinite collision rate limit of DSMC, the Equilibrium Particle Simulation method (EPSM) was proposed some 15 years ago. EPSM is developed here for the flow of a gas consisting of many different species of molecules and is shown to be computationally efficient (compared to DSMC) for high collision rate flows. It thus offers great potential as part of a hybrid DSMC/EPSM code which could handle flows in the transition regime between rarefied gas flows and fully continuum flows. As a first step towards this goal a pure EPSM code is described. The next step of combining DSMC and EPSM is not attempted here but should be straightforward. EPSM and DSMC are applied to Taylor-Couette flow with Kn = 0.02 and 0.0133 and S(omega) = 3). Toroidal vortices develop for both methods but some differences are found, as might be expected for the given flow conditions. EPSM appears to be less sensitive to the sequence of random numbers used in the simulation than is DSMC and may also be more dissipative. The question of the origin and the magnitude of the dissipation in EPSM is addressed. It is suggested that this analysis is also relevant to DSMC when the usual accuracy requirements on the cell size and decoupling time step are relaxed in the interests of computational efficiency.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fahim, Farah; Deptuch, Grzegorz W.; Hoff, James R.

    Semiconductor hybrid pixel detectors often consist of a pixellated sensor layer bump bonded to a matching pixelated readout integrated circuit (ROIC). The sensor can range from high resistivity Si to III-V materials, whereas a Si CMOS process is typically used to manufacture the ROIC. Independent, device physics and electronic design automation (EDA) tools are used to determine sensor characteristics and verify functional performance of ROICs respectively with significantly different solvers. Some physics solvers provide the capability of transferring data to the EDA tool. However, single pixel transient simulations are either not feasible due to convergence difficulties or are prohibitively long.more » A simplified sensor model, which includes a current pulse in parallel with detector equivalent capacitor, is often used; even then, spice type top-level (entire array) simulations range from days to weeks. In order to analyze detector deficiencies for a particular scientific application, accurately defined transient behavioral models of all the functional blocks are required. Furthermore, various simulations, such as transient, noise, Monte Carlo, inter-pixel effects, etc. of the entire array need to be performed within a reasonable time frame without trading off accuracy. The sensor and the analog front-end can be modeling using a real number modeling language, as complex mathematical functions or detailed data can be saved to text files, for further top-level digital simulations. Parasitically aware digital timing is extracted in a standard delay format (sdf) from the pixel digital back-end layout as well as the periphery of the ROIC. For any given input, detector level worst-case and best-case simulations are performed using a Verilog simulation environment to determine the output. Each top-level transient simulation takes no more than 10-15 minutes. The impact of changing key parameters such as sensor Poissonian shot noise, analog front-end bandwidth, jitter due to clock distribution etc. can be accurately analyzed to determine ROIC architectural viability and bottlenecks. Hence the impact of the detector parameters on the scientific application can be studied.« less

  20. EUPDF: Eulerian Monte Carlo Probability Density Function Solver for Applications With Parallel Computing, Unstructured Grids, and Sprays

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    1998-01-01

    The success of any solution methodology used in the study of gas-turbine combustor flows depends a great deal on how well it can model the various complex and rate controlling processes associated with the spray's turbulent transport, mixing, chemical kinetics, evaporation, and spreading rates, as well as convective and radiative heat transfer and other phenomena. The phenomena to be modeled, which are controlled by these processes, often strongly interact with each other at different times and locations. In particular, turbulence plays an important role in determining the rates of mass and heat transfer, chemical reactions, and evaporation in many practical combustion devices. The influence of turbulence in a diffusion flame manifests itself in several forms, ranging from the so-called wrinkled, or stretched, flamelets regime to the distributed combustion regime, depending upon how turbulence interacts with various flame scales. Conventional turbulence models have difficulty treating highly nonlinear reaction rates. A solution procedure based on the composition joint probability density function (PDF) approach holds the promise of modeling various important combustion phenomena relevant to practical combustion devices (such as extinction, blowoff limits, and emissions predictions) because it can account for nonlinear chemical reaction rates without making approximations. In an attempt to advance the state-of-the-art in multidimensional numerical methods, we at the NASA Lewis Research Center extended our previous work on the PDF method to unstructured grids, parallel computing, and sprays. EUPDF, which was developed by M.S. Raju of Nyma, Inc., was designed to be massively parallel and could easily be coupled with any existing gas-phase and/or spray solvers. EUPDF can use an unstructured mesh with mixed triangular, quadrilateral, and/or tetrahedral elements. The application of the PDF method showed favorable results when applied to several supersonic-diffusion flames and spray flames. The EUPDF source code will be available with the National Combustion Code (NCC) as a complete package.

  1. Selection of polynomial chaos bases via Bayesian model uncertainty methods with applications to sparse approximation of PDEs with stochastic inputs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karagiannis, Georgios, E-mail: georgios.karagiannis@pnnl.gov; Lin, Guang, E-mail: guang.lin@pnnl.gov

    2014-02-15

    Generalized polynomial chaos (gPC) expansions allow us to represent the solution of a stochastic system using a series of polynomial chaos basis functions. The number of gPC terms increases dramatically as the dimension of the random input variables increases. When the number of the gPC terms is larger than that of the available samples, a scenario that often occurs when the corresponding deterministic solver is computationally expensive, evaluation of the gPC expansion can be inaccurate due to over-fitting. We propose a fully Bayesian approach that allows for global recovery of the stochastic solutions, in both spatial and random domains, bymore » coupling Bayesian model uncertainty and regularization regression methods. It allows the evaluation of the PC coefficients on a grid of spatial points, via (1) the Bayesian model average (BMA) or (2) the median probability model, and their construction as spatial functions on the spatial domain via spline interpolation. The former accounts for the model uncertainty and provides Bayes-optimal predictions; while the latter provides a sparse representation of the stochastic solutions by evaluating the expansion on a subset of dominating gPC bases. Moreover, the proposed methods quantify the importance of the gPC bases in the probabilistic sense through inclusion probabilities. We design a Markov chain Monte Carlo (MCMC) sampler that evaluates all the unknown quantities without the need of ad-hoc techniques. The proposed methods are suitable for, but not restricted to, problems whose stochastic solutions are sparse in the stochastic space with respect to the gPC bases while the deterministic solver involved is expensive. We demonstrate the accuracy and performance of the proposed methods and make comparisons with other approaches on solving elliptic SPDEs with 1-, 14- and 40-random dimensions.« less

  2. Path-integral simulation of solids.

    PubMed

    Herrero, C P; Ramírez, R

    2014-06-11

    The path-integral formulation of the statistical mechanics of quantum many-body systems is described, with the purpose of introducing practical techniques for the simulation of solids. Monte Carlo and molecular dynamics methods for distinguishable quantum particles are presented, with particular attention to the isothermal-isobaric ensemble. Applications of these computational techniques to different types of solids are reviewed, including noble-gas solids (helium and heavier elements), group-IV materials (diamond and elemental semiconductors), and molecular solids (with emphasis on hydrogen and ice). Structural, vibrational, and thermodynamic properties of these materials are discussed. Applications also include point defects in solids (structure and diffusion), as well as nuclear quantum effects in solid surfaces and adsorbates. Different phenomena are discussed, as solid-to-solid and orientational phase transitions, rates of quantum processes, classical-to-quantum crossover, and various finite-temperature anharmonic effects (thermal expansion, isotopic effects, electron-phonon interactions). Nuclear quantum effects are most remarkable in the presence of light atoms, so that especial emphasis is laid on solids containing hydrogen as a constituent element or as an impurity.

  3. Evidence of impurity and boundary effects on magnetic monopole dynamics in spin ice

    NASA Astrophysics Data System (ADS)

    Revell, H. M.; Yaraskavitch, L. R.; Mason, J. D.; Ross, K. A.; Noad, H. M. L.; Dabkowska, H. A.; Gaulin, B. D.; Henelius, P.; Kycia, J. B.

    2013-01-01

    Electrical resistance is a crucial and well-understood property of systems ranging from computer microchips to nerve impulse propagation in the human body. Here we study the motion of magnetic charges in spin ice and find that extra spins inserted in Dy2Ti2O7 trap magnetic monopole excitations and provide the first example of how defects in a spin-ice material obstruct the flow of monopoles--a magnetic version of residual resistance. We measure the time-dependent magnetic relaxation in Dy2Ti2O7 and show that it decays with a stretched exponential followed by a very slow long-time tail. In a Monte Carlo simulation governed by Metropolis dynamics we show that surface effects and a very low level of stuffed spins (0.30%)--magnetic Dy ions substituted for non-magnetic Ti ions--cause these signatures in the relaxation. In addition, we find evidence that the rapidly diverging experimental timescale is due to a temperature-dependent attempt rate proportional to the monopole density.

  4. Modeling Island-Growth Capture Zone Distributions (CZD) with the Generalized Wigner Distribution (GWD): New Developments in Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Pimpinelli, Alberto; Einstein, T. L.; González, Diego Luis; Sathiyanarayanan, Rajesh; Hamouda, Ajmi Bh.

    2011-03-01

    Earlier we showed [PRL 99, 226102 (2007)] that the CZD in growth could be well described by P (s) = asβ exp (-bs2) , where s is the CZ area divided by its average value. Painstaking simulations by Amar's [PRE 79, 011602 (2009)] and Evans's [PRL 104, 149601 (2010)] groups showed inadequacies in our mean field Fokker-Planck argument relating β to the critical nucleus size. We refine our derivation to retrieve their β ~ i + 2 [PRL 104, 149602 (2010)]. We discuss applications of this formula and methodology to experiments on Ge/Si(001) and on various organics on Si O2 , as well as to kinetic Monte Carlo studies homoepitaxial growth on Cu(100) with codeposited impurities of different sorts. In contrast to theory, there can be significant changes to β with coverage. Some experiments also show temperature dependence. Supported by NSF-MRSEC at UMD, Grant DMR 05-20471.

  5. X-ray fluorescence surface contaminant analyzer: A feasibility study

    NASA Technical Reports Server (NTRS)

    Eldridge, Hudson B.

    1988-01-01

    The bonding of liner material to the inner metal surfaces of solid rocket booster cases is adversely affected by minute amounts of impurities on the metal surface. Suitable non-destructive methods currently used for detecting these surface contaminants do not provide the means of identifying their elemental composition. The feasibility of using isotopic source excited energy dispersive X-ray fluorescence as a possible technique for elemental analysis of such contaminants is investigated. A survey is made of the elemental compositions of both D-6ac steel, a common construction material for the booster cases, and Conoco HD-2 grease, a common surface contamination. Source and detector choices that maximize signal to noise ratio in a Recessed Source Geometry are made. A Monte Carlo simulation is then made of the optimized device incorporating the latest available X-ray constants at the energy of the chosen source to determine the device's response to a D-6ac steel surface contained with Conoco HD-2 grease.

  6. Organic photovoltaics: elucidating the ultra-fast exciton dissociation mechanism in disordered materials.

    PubMed

    Heitzer, Henry M; Savoie, Brett M; Marks, Tobin J; Ratner, Mark A

    2014-07-14

    Organic photovoltaics (OPVs) offer the opportunity for cheap, lightweight and mass-producible devices. However, an incomplete understanding of the charge generation process, in particular the timescale of dynamics and role of exciton diffusion, has slowed further progress in the field. We report a new Kinetic Monte Carlo model for the exciton dissociation mechanism in OPVs that addresses the origin of ultra-fast (<1 ps) dissociation by incorporating exciton delocalization. The model reproduces experimental results, such as the diminished rapid dissociation with increasing domain size, and also lends insight into the interplay between mixed domains, domain geometry, and exciton delocalization. Additionally, the model addresses the recent dispute on the origin of ultra-fast exciton dissociation by comparing the effects of exciton delocalization and impure domains on the photo-dynamics.This model provides insight into exciton dynamics that can advance our understanding of OPV structure-function relationships. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Quantum interference on electron scattering in graphene by carbon impurities in underlying h -BN

    NASA Astrophysics Data System (ADS)

    Kaneko, Tomoaki; Koshino, Mikito; Saito, Riichiro

    2017-03-01

    Electronic structures and transport properties of graphene on h -BN with carbon impurities are investigated by first-principles calculation and the tight-binding model. We show that the coupling between the impurity level and the graphene's Dirac cone sensitively depends on the impurity position, and in particular, it nearly vanishes when the impurity is located right below the center of the six membered ring of graphene. The Bloch phase factor at the Brillouin zone edge plays a decisive role in the cancellation of the hopping integrals. The impurity position dependence on the electronic structures of graphene on h -BN is investigated by the first-principles calculation, and its qualitative feature is well explained by a tight-binding model with graphene and a single impurity site. We also propose a simple one-dimensional chain-impurity model to analytically describe the role of the quantum interference in the position-dependent coupling.

  8. Impurity-limited resistance and phase interference of localized impurities under quasi-one dimensional nano-structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sano, Nobuyuki, E-mail: sano@esys.tsukuba.ac.jp

    2015-12-28

    The impurity-limited resistance and the effect of the phase interference among localized multiple impurities in the quasi-one dimensional (quasi-1D) nanowire structures are systematically investigated under the framework of the scattering theory. We derive theoretical expressions of the impurity-limited resistance in the nanowire under the linear response regime from the Landauer formula and from the Boltzmann transport equation (BTE) with the relaxation time approximation. We show that the formula from the BTE exactly coincides with that from the Landauer approach with the weak-scattering limit when the energy spectrum of the in-coming electrons from the reservoirs is narrow and, thus, point outmore » a possibility that the distinction of the impurity-limited resistances derived from the Landauer formula and that of the BTE could be made clear. The derived formulas are applied to the quasi-1D nanowires doped with multiple localized impurities with short-range scattering potential and the validity of various approximations on the resistance are discussed. It is shown that impurity scattering becomes so strong under the nanowire structures that the weak-scattering limit breaks down in most cases. Thus, both phase interference and phase randomization simultaneously play a crucial role in determining the impurity-limited resistance even under the fully coherent framework. When the impurity separation along the wire axis direction is small, the constructive phase interference dominates and the resistance is much greater than the average resistance. As the separation becomes larger, however, it approaches the series resistance of the single-impurity resistance due to the phase randomization. Furthermore, under the uniform configuration of impurities, the space-average resistance of multiple impurities at room temperature is very close to the series resistance of the single-impurity resistance, and thus, each impurity could be regarded as an independent scattering center. The physical origin of this “self-averaging” under the fully coherent environments is attributed to the broadness of the energy spectrum of the in-coming electrons from the reservoirs.« less

  9. Behavior of some singly ionized, heavy-ion impurities during compression in a theta-pinch plasma

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1975-01-01

    The introduction of a small percentage of an impurity gas containing a desired element into a theta-pinch plasma is a standard procedure used to investigate the spectra and atomic processes of the element. This procedure assumes that the mixing ratio of impurity-to-fill gases remains constant during the collapse and heating phase. Spectroscopic investigations of the constant-mixing-ratio assumption for a 2% neon and argon impurity verifies the assumption only for the neon impurity. However, for the 2% argon impurity, only 20 to 25% of the argon is in the high-temperature compressed plasma. It is concluded that the constant-mixing-ratio assumption is not applicable to the argon impurity.

  10. A two-dimensional Riemann solver with self-similar sub-structure - Alternative formulation based on least squares projection

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Vides, Jeaniffer; Gurski, Katharine; Nkonga, Boniface; Dumbser, Michael; Garain, Sudip; Audit, Edouard

    2016-01-01

    Just as the quality of a one-dimensional approximate Riemann solver is improved by the inclusion of internal sub-structure, the quality of a multidimensional Riemann solver is also similarly improved. Such multidimensional Riemann problems arise when multiple states come together at the vertex of a mesh. The interaction of the resulting one-dimensional Riemann problems gives rise to a strongly-interacting state. We wish to endow this strongly-interacting state with physically-motivated sub-structure. The self-similar formulation of Balsara [16] proves especially useful for this purpose. While that work is based on a Galerkin projection, in this paper we present an analogous self-similar formulation that is based on a different interpretation. In the present formulation, we interpret the shock jumps at the boundary of the strongly-interacting state quite literally. The enforcement of the shock jump conditions is done with a least squares projection (Vides, Nkonga and Audit [67]). With that interpretation, we again show that the multidimensional Riemann solver can be endowed with sub-structure. However, we find that the most efficient implementation arises when we use a flux vector splitting and a least squares projection. An alternative formulation that is based on the full characteristic matrices is also presented. The multidimensional Riemann solvers that are demonstrated here use one-dimensional HLLC Riemann solvers as building blocks. Several stringent test problems drawn from hydrodynamics and MHD are presented to show that the method works. Results from structured and unstructured meshes demonstrate the versatility of our method. The reader is also invited to watch a video introduction to multidimensional Riemann solvers on http://www.nd.edu/ dbalsara/Numerical-PDE-Course.

  11. Computationally efficient simulation of unsteady aerodynamics using POD on the fly

    NASA Astrophysics Data System (ADS)

    Moreno-Ramos, Ruben; Vega, José M.; Varas, Fernando

    2016-12-01

    Modern industrial aircraft design requires a large amount of sufficiently accurate aerodynamic and aeroelastic simulations. Current computational fluid dynamics (CFD) solvers with aeroelastic capabilities, such as the NASA URANS unstructured solver FUN3D, require very large computational resources. Since a very large amount of simulation is necessary, the CFD cost is just unaffordable in an industrial production environment and must be significantly reduced. Thus, a more inexpensive, yet sufficiently precise solver is strongly needed. An opportunity to approach this goal could follow some recent results (Terragni and Vega 2014 SIAM J. Appl. Dyn. Syst. 13 330-65 Rapun et al 2015 Int. J. Numer. Meth. Eng. 104 844-68) on an adaptive reduced order model that combines ‘on the fly’ a standard numerical solver (to compute some representative snapshots), proper orthogonal decomposition (POD) (to extract modes from the snapshots), Galerkin projection (onto the set of POD modes), and several additional ingredients such as projecting the equations using a limited amount of points and fairly generic mode libraries. When applied to the complex Ginzburg-Landau equation, the method produces acceleration factors (comparing with standard numerical solvers) of the order of 20 and 300 in one and two space dimensions, respectively. Unfortunately, the extension of the method to unsteady, compressible flows around deformable geometries requires new approaches to deal with deformable meshes, high-Reynolds numbers, and compressibility. A first step in this direction is presented considering the unsteady compressible, two-dimensional flow around an oscillating airfoil using a CFD solver in a rigidly moving mesh. POD on the Fly gives results whose accuracy is comparable to that of the CFD solver used to compute the snapshots.

  12. Comparison of High-Order and Low-Order Methods for Large-Eddy Simulation of a Compressible Shear Layer

    NASA Technical Reports Server (NTRS)

    Mankbadi, Mina R.; Georgiadis, Nicholas J.; DeBonis, James R.

    2015-01-01

    The objective of this work is to compare a high-order solver with a low-order solver for performing Large-Eddy Simulations (LES) of a compressible mixing layer. The high-order method is the Wave-Resolving LES (WRLES) solver employing a Dispersion Relation Preserving (DRP) scheme. The low-order solver is the Wind-US code, which employs the second-order Roe Physical scheme. Both solvers are used to perform LES of the turbulent mixing between two supersonic streams at a convective Mach number of 0.46. The high-order and low-order methods are evaluated at two different levels of grid resolution. For a fine grid resolution, the low-order method produces a very similar solution to the highorder method. At this fine resolution the effects of numerical scheme, subgrid scale modeling, and filtering were found to be negligible. Both methods predict turbulent stresses that are in reasonable agreement with experimental data. However, when the grid resolution is coarsened, the difference between the two solvers becomes apparent. The low-order method deviates from experimental results when the resolution is no longer adequate. The high-order DRP solution shows minimal grid dependence. The effects of subgrid scale modeling and spatial filtering were found to be negligible at both resolutions. For the high-order solver on the fine mesh, a parametric study of the spanwise width was conducted to determine its effect on solution accuracy. An insufficient spanwise width was found to impose an artificial spanwise mode and limit the resolved spanwise modes. We estimate that the spanwise depth needs to be 2.5 times larger than the largest coherent structures to capture the largest spanwise mode and accurately predict turbulent mixing.

  13. Comparison of High-Order and Low-Order Methods for Large-Eddy Simulation of a Compressible Shear Layer

    NASA Technical Reports Server (NTRS)

    Mankbadi, M. R.; Georgiadis, N. J.; DeBonis, J. R.

    2015-01-01

    The objective of this work is to compare a high-order solver with a low-order solver for performing large-eddy simulations (LES) of a compressible mixing layer. The high-order method is the Wave-Resolving LES (WRLES) solver employing a Dispersion Relation Preserving (DRP) scheme. The low-order solver is the Wind-US code, which employs the second-order Roe Physical scheme. Both solvers are used to perform LES of the turbulent mixing between two supersonic streams at a convective Mach number of 0.46. The high-order and low-order methods are evaluated at two different levels of grid resolution. For a fine grid resolution, the low-order method produces a very similar solution to the high-order method. At this fine resolution the effects of numerical scheme, subgrid scale modeling, and filtering were found to be negligible. Both methods predict turbulent stresses that are in reasonable agreement with experimental data. However, when the grid resolution is coarsened, the difference between the two solvers becomes apparent. The low-order method deviates from experimental results when the resolution is no longer adequate. The high-order DRP solution shows minimal grid dependence. The effects of subgrid scale modeling and spatial filtering were found to be negligible at both resolutions. For the high-order solver on the fine mesh, a parametric study of the spanwise width was conducted to determine its effect on solution accuracy. An insufficient spanwise width was found to impose an artificial spanwise mode and limit the resolved spanwise modes. We estimate that the spanwise depth needs to be 2.5 times larger than the largest coherent structures to capture the largest spanwise mode and accurately predict turbulent mixing.

  14. Inclusion behavior of Cs, Sr, and Ba impurities in LiCl crystal formed by layer-melt crystallization: Combined first-principles calculation and experimental study

    NASA Astrophysics Data System (ADS)

    Choi, Jung-Hoon; Cho, Yung-Zun; Lee, Tae-Kyo; Eun, Hee-Chul; Kim, Jun-Hong; Kim, In-Tae; Park, Geun-Il; Kang, Jeung-Ku

    2013-05-01

    The pyroprocessing which uses a dry method to recycle spent oxide fuel generates a waste LiCl salt containing radioactive elements. To reuse LiCl salt, the radioactive impurities has to be separated by the purification process such as layer-melt crystallization. To enhance impurity separation efficiency, it is important to understand the inclusion mechanism of impurities within the LiCl crystal. Herein, we report the inclusion properties of impurities in LiCl crystals. First of all, the substitution enthalpies of Cs+, Sr2+, and Ba2+ impurities with 0-6 at% in LiCl crystal were evaluated via first-principles calculations. Also, the molten LiCl containing 1 mol of Cs+, Sr2+, and Ba2+ impurities was crystallized through the experimental layer-melt crystallization method. These substitution enthalpy and experiment clarify that a high substitution enthalpy should result in the high separation efficiency for an impurity. Furthermore, we find that the electron density map gives a clue to the mechanism for inclusion of impurities into LiCl crystal.

  15. Validation of the Chemistry Module for the Euler Solver in Unified Flow Solver

    DTIC Science & Technology

    2012-03-01

    traveling through the atmosphere there are three types of flow regimes that exist; the first is the continuum regime, second is the rarified regime and...The second method has been used in a program called Unified Flow Solver (UFS). UFS is currently being developed under collaborative efforts the Air...thermal non-equilibrium case and finally to a thermo-chemical non- equilibrium case. The data from the simulations will be compared to a second code

  16. Model Checking with Multi-Threaded IC3 Portfolios

    DTIC Science & Technology

    2015-01-15

    different runs varies randomly depending on the thread interleaving. The use of a portfolio of solvers to maximize the likelihood of a quick solution is...empirically show (cf. Sec. 5.2) that the predictions based on this formula have high accuracy. Note that each solver in the portfolio potentially searches...speedup of over 300. We also show that widening the proof search of ic3 by randomizing its SAT solver is not as effective as paral- lelization

  17. Execution of a parallel edge-based Navier-Stokes solver on commodity graphics processor units

    NASA Astrophysics Data System (ADS)

    Corral, Roque; Gisbert, Fernando; Pueblas, Jesus

    2017-02-01

    The implementation of an edge-based three-dimensional Reynolds Average Navier-Stokes solver for unstructured grids able to run on multiple graphics processing units (GPUs) is presented. Loops over edges, which are the most time-consuming part of the solver, have been written to exploit the massively parallel capabilities of GPUs. Non-blocking communications between parallel processes and between the GPU and the central processor unit (CPU) have been used to enhance code scalability. The code is written using a mixture of C++ and OpenCL, to allow the execution of the source code on GPUs. The Message Passage Interface (MPI) library is used to allow the parallel execution of the solver on multiple GPUs. A comparative study of the solver parallel performance is carried out using a cluster of CPUs and another of GPUs. It is shown that a single GPU is up to 64 times faster than a single CPU core. The parallel scalability of the solver is mainly degraded due to the loss of computing efficiency of the GPU when the size of the case decreases. However, for large enough grid sizes, the scalability is strongly improved. A cluster featuring commodity GPUs and a high bandwidth network is ten times less costly and consumes 33% less energy than a CPU-based cluster with an equivalent computational power.

  18. The novel high-performance 3-D MT inverse solver

    NASA Astrophysics Data System (ADS)

    Kruglyakov, Mikhail; Geraskin, Alexey; Kuvshinov, Alexey

    2016-04-01

    We present novel, robust, scalable, and fast 3-D magnetotelluric (MT) inverse solver. The solver is written in multi-language paradigm to make it as efficient, readable and maintainable as possible. Separation of concerns and single responsibility concepts go through implementation of the solver. As a forward modelling engine a modern scalable solver extrEMe, based on contracting integral equation approach, is used. Iterative gradient-type (quasi-Newton) optimization scheme is invoked to search for (regularized) inverse problem solution, and adjoint source approach is used to calculate efficiently the gradient of the misfit. The inverse solver is able to deal with highly detailed and contrasting models, allows for working (separately or jointly) with any type of MT responses, and supports massive parallelization. Moreover, different parallelization strategies implemented in the code allow optimal usage of available computational resources for a given problem statement. To parameterize an inverse domain the so-called mask parameterization is implemented, which means that one can merge any subset of forward modelling cells in order to account for (usually) irregular distribution of observation sites. We report results of 3-D numerical experiments aimed at analysing the robustness, performance and scalability of the code. In particular, our computational experiments carried out at different platforms ranging from modern laptops to HPC Piz Daint (6th supercomputer in the world) demonstrate practically linear scalability of the code up to thousands of nodes.

  19. A comparison of viscous-plastic sea ice solvers with and without replacement pressure

    NASA Astrophysics Data System (ADS)

    Kimmritz, Madlen; Losch, Martin; Danilov, Sergey

    2017-07-01

    Recent developments of the explicit elastic-viscous-plastic (EVP) solvers call for a new comparison with implicit solvers for the equations of viscous-plastic sea ice dynamics. In Arctic sea ice simulations, the modified and the adaptive EVP solvers, and the implicit Jacobian-free Newton-Krylov (JFNK) solver are compared against each other. The adaptive EVP method shows convergence rates that are generally similar or even better than those of the modified EVP method, but the convergence of the EVP methods is found to depend dramatically on the use of the replacement pressure (RP). Apparently, using the RP can affect the pseudo-elastic waves in the EVP methods by introducing extra non-physical oscillations so that, in the extreme case, convergence to the VP solution can be lost altogether. The JFNK solver also suffers from higher failure rates with RP implying that with RP the momentum equations are stiffer and more difficult to solve. For practical purposes, both EVP methods can be used efficiently with an unexpectedly low number of sub-cycling steps without compromising the solutions. The differences between the RP solutions and the NoRP solutions (when the RP is not being used) can be reduced with lower thresholds of viscous regularization at the cost of increasing stiffness of the equations, and hence the computational costs of solving them.

  20. Solving regularly and singularly perturbed reaction-diffusion equations in three space dimensions

    NASA Astrophysics Data System (ADS)

    Moore, Peter K.

    2007-06-01

    In [P.K. Moore, Effects of basis selection and h-refinement on error estimator reliability and solution efficiency for higher-order methods in three space dimensions, Int. J. Numer. Anal. Mod. 3 (2006) 21-51] a fixed, high-order h-refinement finite element algorithm, Href, was introduced for solving reaction-diffusion equations in three space dimensions. In this paper Href is coupled with continuation creating an automatic method for solving regularly and singularly perturbed reaction-diffusion equations. The simple quasilinear Newton solver of Moore, (2006) is replaced by the nonlinear solver NITSOL [M. Pernice, H.F. Walker, NITSOL: a Newton iterative solver for nonlinear systems, SIAM J. Sci. Comput. 19 (1998) 302-318]. Good initial guesses for the nonlinear solver are obtained using continuation in the small parameter ɛ. Two strategies allow adaptive selection of ɛ. The first depends on the rate of convergence of the nonlinear solver and the second implements backtracking in ɛ. Finally a simple method is used to select the initial ɛ. Several examples illustrate the effectiveness of the algorithm.

  1. New preconditioning strategy for Jacobian-free solvers for variably saturated flows with Richards’ equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipnikov, Konstantin; Moulton, David; Svyatskiy, Daniil

    2016-04-29

    We develop a new approach for solving the nonlinear Richards’ equation arising in variably saturated flow modeling. The growing complexity of geometric models for simulation of subsurface flows leads to the necessity of using unstructured meshes and advanced discretization methods. Typically, a numerical solution is obtained by first discretizing PDEs and then solving the resulting system of nonlinear discrete equations with a Newton-Raphson-type method. Efficiency and robustness of the existing solvers rely on many factors, including an empiric quality control of intermediate iterates, complexity of the employed discretization method and a customized preconditioner. We propose and analyze a new preconditioningmore » strategy that is based on a stable discretization of the continuum Jacobian. We will show with numerical experiments for challenging problems in subsurface hydrology that this new preconditioner improves convergence of the existing Jacobian-free solvers 3-20 times. Furthermore, we show that the Picard method with this preconditioner becomes a more efficient nonlinear solver than a few widely used Jacobian-free solvers.« less

  2. A fast mass spring model solver for high-resolution elastic objects

    NASA Astrophysics Data System (ADS)

    Zheng, Mianlun; Yuan, Zhiyong; Zhu, Weixu; Zhang, Guian

    2017-03-01

    Real-time simulation of elastic objects is of great importance for computer graphics and virtual reality applications. The fast mass spring model solver can achieve visually realistic simulation in an efficient way. Unfortunately, this method suffers from resolution limitations and lack of mechanical realism for a surface geometry model, which greatly restricts its application. To tackle these problems, in this paper we propose a fast mass spring model solver for high-resolution elastic objects. First, we project the complex surface geometry model into a set of uniform grid cells as cages through *cages mean value coordinate method to reflect its internal structure and mechanics properties. Then, we replace the original Cholesky decomposition method in the fast mass spring model solver with a conjugate gradient method, which can make the fast mass spring model solver more efficient for detailed surface geometry models. Finally, we propose a graphics processing unit accelerated parallel algorithm for the conjugate gradient method. Experimental results show that our method can realize efficient deformation simulation of 3D elastic objects with visual reality and physical fidelity, which has a great potential for applications in computer animation.

  3. A new fast direct solver for the boundary element method

    NASA Astrophysics Data System (ADS)

    Huang, S.; Liu, Y. J.

    2017-09-01

    A new fast direct linear equation solver for the boundary element method (BEM) is presented in this paper. The idea of the new fast direct solver stems from the concept of the hierarchical off-diagonal low-rank matrix. The hierarchical off-diagonal low-rank matrix can be decomposed into the multiplication of several diagonal block matrices. The inverse of the hierarchical off-diagonal low-rank matrix can be calculated efficiently with the Sherman-Morrison-Woodbury formula. In this paper, a more general and efficient approach to approximate the coefficient matrix of the BEM with the hierarchical off-diagonal low-rank matrix is proposed. Compared to the current fast direct solver based on the hierarchical off-diagonal low-rank matrix, the proposed method is suitable for solving general 3-D boundary element models. Several numerical examples of 3-D potential problems with the total number of unknowns up to above 200,000 are presented. The results show that the new fast direct solver can be applied to solve large 3-D BEM models accurately and with better efficiency compared with the conventional BEM.

  4. An approximate Riemann solver for real gas parabolized Navier-Stokes equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urbano, Annafederica, E-mail: annafederica.urbano@uniroma1.it; Nasuti, Francesco, E-mail: francesco.nasuti@uniroma1.it

    2013-01-15

    Under specific assumptions, parabolized Navier-Stokes equations are a suitable mean to study channel flows. A special case is that of high pressure flow of real gases in cooling channels where large crosswise gradients of thermophysical properties occur. To solve the parabolized Navier-Stokes equations by a space marching approach, the hyperbolicity of the system of governing equations is obtained, even for very low Mach number flow, by recasting equations such that the streamwise pressure gradient is considered as a source term. For this system of equations an approximate Roe's Riemann solver is developed as the core of a Godunov type finitemore » volume algorithm. The properties of the approximated Riemann solver, which is a modification of Roe's Riemann solver for the parabolized Navier-Stokes equations, are presented and discussed with emphasis given to its original features introduced to handle fluids governed by a generic real gas EoS. Sample solutions are obtained for low Mach number high compressible flows of transcritical methane, heated in straight long channels, to prove the solver ability to describe flows dominated by complex thermodynamic phenomena.« less

  5. A fast direct solver for boundary value problems on locally perturbed geometries

    NASA Astrophysics Data System (ADS)

    Zhang, Yabin; Gillman, Adrianna

    2018-03-01

    Many applications including optimal design and adaptive discretization techniques involve solving several boundary value problems on geometries that are local perturbations of an original geometry. This manuscript presents a fast direct solver for boundary value problems that are recast as boundary integral equations. The idea is to write the discretized boundary integral equation on a new geometry as a low rank update to the discretized problem on the original geometry. Using the Sherman-Morrison formula, the inverse can be expressed in terms of the inverse of the original system applied to the low rank factors and the right hand side. Numerical results illustrate for problems where perturbation is localized the fast direct solver is three times faster than building a new solver from scratch.

  6. WIND Flow Solver Released

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.

    1999-01-01

    The WIND code is a general-purpose, structured, multizone, compressible flow solver that can be used to analyze steady or unsteady flow for a wide range of geometric configurations and over a wide range of flow conditions. WIND is the latest product of the NPARC Alliance, a formal partnership between the NASA Lewis Research Center and the Air Force Arnold Engineering Development Center (AEDC). WIND Version 1.0 was released in February 1998, and Version 2.0 will be released in February 1999. The WIND code represents a merger of the capabilities of three existing computational fluid dynamics codes--NPARC (the original NPARC Alliance flow solver), NXAIR (an Air Force code used primarily for unsteady store separation problems), and NASTD (the primary flow solver at McDonnell Douglas, now part of Boeing).

  7. Efficiency optimization of a fast Poisson solver in beam dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zheng, Dawei; Pöplau, Gisela; van Rienen, Ursula

    2016-01-01

    Calculating the solution of Poisson's equation relating to space charge force is still the major time consumption in beam dynamics simulations and calls for further improvement. In this paper, we summarize a classical fast Poisson solver in beam dynamics simulations: the integrated Green's function method. We introduce three optimization steps of the classical Poisson solver routine: using the reduced integrated Green's function instead of the integrated Green's function; using the discrete cosine transform instead of discrete Fourier transform for the Green's function; using a novel fast convolution routine instead of an explicitly zero-padded convolution. The new Poisson solver routine preserves the advantages of fast computation and high accuracy. This provides a fast routine for high performance calculation of the space charge effect in accelerators.

  8. Benchmarking Defmod, an open source FEM code for modeling episodic fault rupture

    NASA Astrophysics Data System (ADS)

    Meng, Chunfang

    2017-03-01

    We present Defmod, an open source (linear) finite element code that enables us to efficiently model the crustal deformation due to (quasi-)static and dynamic loadings, poroelastic flow, viscoelastic flow and frictional fault slip. Ali (2015) provides the original code introducing an implicit solver for (quasi-)static problem, and an explicit solver for dynamic problem. The fault constraint is implemented via Lagrange Multiplier. Meng (2015) combines these two solvers into a hybrid solver that uses failure criteria and friction laws to adaptively switch between the (quasi-)static state and dynamic state. The code is capable of modeling episodic fault rupture driven by quasi-static loadings, e.g. due to reservoir fluid withdraw or injection. Here, we focus on benchmarking the Defmod results against some establish results.

  9. Optical solver for a system of ordinary differential equations based on an external feedback assisted microring resonator.

    PubMed

    Hou, Jie; Dong, Jianji; Zhang, Xinliang

    2017-06-15

    Systems of ordinary differential equations (SODEs) are crucial for describing the dynamic behaviors in various systems such as modern control systems which require observability and controllability. In this Letter, we propose and experimentally demonstrate an all-optical SODE solver based on the silicon-on-insulator platform. We use an add/drop microring resonator to construct two different ordinary differential equations (ODEs) and then introduce two external feedback waveguides to realize the coupling between these ODEs, thus forming the SODE solver. A temporal coupled mode theory is used to deduce the expression of the SODE. A system experiment is carried out for further demonstration. For the input 10 GHz NRZ-like pulses, the measured output waveforms of the SODE solver agree well with the calculated results.

  10. Shock-driven fluid-structure interaction for civil design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Stephen L; Deiterding, Ralf

    The multiphysics fluid-structure interaction simulation of shock-loaded structures requires the dynamic coupling of a shock-capturing flow solver to a solid mechanics solver for large deformations. The Virtual Test Facility combines a Cartesian embedded boundary approach with dynamic mesh adaptation in a generic software framework of flow solvers using hydrodynamic finite volume upwind schemes that are coupled to various explicit finite element solid dynamics solvers (Deiterding et al., 2006). This paper gives a brief overview of the computational approach and presents first simulations that utilize the general purpose solid dynamics code DYNA3D for complex 3D structures of interest in civil engineering.more » Results from simulations of a reinforced column, highway bridge, multistory building, and nuclear reactor building are presented.« less

  11. Stability-indicating HPLC-DAD/UV-ESI/MS impurity profiling of the anti-malarial drug lumefantrine.

    PubMed

    Verbeken, Mathieu; Suleman, Sultan; Baert, Bram; Vangheluwe, Elien; Van Dorpe, Sylvia; Burvenich, Christian; Duchateau, Luc; Jansen, Frans H; De Spiegeleer, Bart

    2011-02-28

    Lumefantrine (benflumetol) is a fluorene derivative belonging to the aryl amino alcohol class of anti-malarial drugs and is commercially available in fixed combination products with β-artemether. Impurity characterization of such drugs, which are widely consumed in tropical countries for malaria control programmes, is of paramount importance. However, until now, no exhaustive impurity profile of lumefantrine has been established, encompassing process-related and degradation impurities in active pharmaceutical ingredients (APIs) and finished pharmaceutical products (FPPs). Using HPLC-DAD/UV-ESI/ion trap/MS, a comprehensive impurity profile was established based upon analysis of market samples as well as stress, accelerated and long-term stability results. In-silico toxicological predictions for these lumefantrine related impurities were made using Toxtree® and Derek®. Several new impurities are identified, of which the desbenzylketo derivative (DBK) is proposed as a new specified degradant. DBK and the remaining unspecified lumefantrine related impurities are predicted, using Toxtree® and Derek®, to have a toxicity risk comparable to the toxicity risk of the API lumefantrine itself. From unstressed, stressed and accelerated stability samples of lumefantrine API and FPPs, nine compounds were detected and characterized to be lumefantrine related impurities. One new lumefantrine related compound, DBK, was identified and characterized as a specified degradation impurity of lumefantrine in real market samples (FPPs). The in-silico toxicological investigation (Toxtree® and Derek®) indicated overall a toxicity risk for lumefantrine related impurities comparable to that of the API lumefantrine itself.

  12. A pharmacology guided approach for setting limits on product-related impurities for bispecific antibody manufacturing.

    PubMed

    Rajan, Sharmila; Sonoda, Junichiro; Tully, Timothy; Williams, Ambrose J; Yang, Feng; Macchi, Frank; Hudson, Terry; Chen, Mark Z; Liu, Shannon; Valle, Nicole; Cowan, Kyra; Gelzleichter, Thomas

    2018-04-13

    bFKB1 is a humanized bispecific IgG1 antibody, created by conjoining an anti-Fibroblast Growth Factor Receptor 1 (FGFR1) half-antibody to an anti-Klothoβ (KLB) half-antibody, using the knobs-into-holes strategy. bFKB1 acts as a highly selective agonist for the FGFR1/KLB receptor complex and is intended to ameliorate obesity-associated metabolic defects by mimicking the activity of the hormone FGF21. An important aspect of the biologics product manufacturing process is to establish meaningful product specifications regarding the tolerable levels of impurities that copurify with the drug product. The aim of the current study was to determine acceptable levels of product-related impurities for bFKB1. To determine the tolerable levels of these impurities, we dosed obese mice with bFKB1 enriched with various levels of either HMW impurities or anti-FGFR1-related impurities, and measured biomarkers for KLB-independent FGFR1 signaling. Here, we show that product-related impurities of bFKB1, in particular, high molecular weight (HMW) impurities and anti-FGFR1-related impurities, when purposefully enriched, stimulate FGFR1 in a KLB-independent manner. By taking this approach, the tolerable levels of product-related impurities were successfully determined. Our study demonstrates a general pharmacology-guided approach to setting a product specification for a bispecific antibody whose homomultimer-related impurities could lead to undesired biological effects. Copyright © 2018. Published by Elsevier Inc.

  13. Impurity-induced moments in underdoped cuprates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khaliullin, G.; Kilian, R.; Krivenko, S.

    1997-11-01

    We examine the effect of a nonmagnetic impurity in a two-dimensional spin liquid in the spin-gap phase, employing a drone-fermion representation of spin-1/2 operators. The properties of the local moment induced in the vicinity of the impurity are investigated and an expression for the nuclear-magnetic-resonance Knight shift is derived, which we compare with experimental results. Introducing a second impurity into the spin liquid an antiferromagnetic interaction between the moments is found when the two impurities are located on different sublattices. The presence of many impurities leads to a screening of this interaction as is shown by means of a coherent-potentialmore » approximation. Further, the Kondo screening of an impurity-induced local spin by charge carriers is discussed. {copyright} {ital 1997} {ital The American Physical Society}« less

  14. Impurity doping effects on the orbital thermodynamic properties of hydrogenated graphene, graphane, in Harrison model

    NASA Astrophysics Data System (ADS)

    Yarmohammadi, Mohsen

    2016-12-01

    Using the Harrison model and Green's function technique, impurity doping effects on the orbital density of states (DOS), electronic heat capacity (EHC) and magnetic susceptibility (MS) of a monolayer hydrogenated graphene, chair-like graphane, are investigated. The effect of scattering between electrons and dilute charged impurities is discussed in terms of the self-consistent Born approximation. Our results show that the graphane is a semiconductor and its band gap decreases with impurity. As a remarkable point, comparatively EHC reaches almost linearly to Schottky anomaly and does not change at low temperatures in the presence of impurity. Generally, EHC and MS increases with impurity doping. Surprisingly, impurity doping only affects the salient behavior of py orbital contribution of carbon atoms due to the symmetry breaking.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraga, Carlos G.; Sego, Landon H.; Hoggard, Jamin C.

    Dimethyl methylphosphonate (DMMP) was used as a chemical threat agent (CTA) simulant for a first look at the effects of real-world factors on the recovery and exploitation of a CTA’s impurity profile for source matching. Four stocks of DMMP having different impurity profiles were disseminated as aerosols onto cotton, painted wall board, and nylon coupons according to a thorough experimental design. The DMMP-exposed coupons were then solvent extracted and analyzed for DMMP impurities by comprehensive 2-D gas chromatography/mass spectrometry (GC×GC/MS). The similarities between the coupon DMMP impurity profiles and the known (reference) DMMP profiles were measured by dot products ofmore » the coupon profiles and known profiles and by score values obtained from principal component analysis. One stock, with a high impurity-profile selectivity value of 0.9 out of 1, had 100% of its respective coupons correctly classified and no false positives from other coupons. Coupons from the other three stocks with low selectivity values (0.0073, 0.012, and 0.018) could not be sufficiently distinguished from one another for reliable matching to their respective stocks. The results from this work support that: (1) extraction solvents, if not appropriately selected, can have some of the same impurities present in a CTA reducing a CTA’s useable impurity profile, (2) low selectivity among a CTA’s known impurity profiles will likely make definitive source matching impossible in some real-world conditions, (3) no detrimental chemical-matrix interference was encountered during the analysis of actual office media, (4) a short elapsed time between release and sample storage is advantageous for the recovery of the impurity profile because it minimizes volatilization of forensic impurities, and (5) forensic impurity profiles weighted towards higher volatility impurities are more likely to be altered by volatilization following CTA exposure.« less

  16. Impurity rejection in the crystallization of ABT-510 as a method to establish starting material specifications.

    PubMed

    Tolle, John C; Becker, Calvin L; Califano, Jean C; Chang, Jane L; Gernhardt, Kevin; Napier, James J; Wittenberger, Steven J; Yuan, Judy

    2009-01-01

    Understanding impurity rejection in a drug substance crystallization process is valuable for establishing purity specifications for the starting materials used in the process. Impurity rejection has been determined for all known ABT-510 impurities and for many of the reasonable & conceivable impurities. Based on this study, a very high purity specification (e.g., > 99.7%) can be set for ABT-510 with a high level of confidence.

  17. BOOK REVIEW: Advanced Topics in Computational Partial Differential Equations: Numerical Methods and Diffpack Programming

    NASA Astrophysics Data System (ADS)

    Katsaounis, T. D.

    2005-02-01

    The scope of this book is to present well known simple and advanced numerical methods for solving partial differential equations (PDEs) and how to implement these methods using the programming environment of the software package Diffpack. A basic background in PDEs and numerical methods is required by the potential reader. Further, a basic knowledge of the finite element method and its implementation in one and two space dimensions is required. The authors claim that no prior knowledge of the package Diffpack is required, which is true, but the reader should be at least familiar with an object oriented programming language like C++ in order to better comprehend the programming environment of Diffpack. Certainly, a prior knowledge or usage of Diffpack would be a great advantage to the reader. The book consists of 15 chapters, each one written by one or more authors. Each chapter is basically divided into two parts: the first part is about mathematical models described by PDEs and numerical methods to solve these models and the second part describes how to implement the numerical methods using the programming environment of Diffpack. Each chapter closes with a list of references on its subject. The first nine chapters cover well known numerical methods for solving the basic types of PDEs. Further, programming techniques on the serial as well as on the parallel implementation of numerical methods are also included in these chapters. The last five chapters are dedicated to applications, modelled by PDEs, in a variety of fields. The first chapter is an introduction to parallel processing. It covers fundamentals of parallel processing in a simple and concrete way and no prior knowledge of the subject is required. Examples of parallel implementation of basic linear algebra operations are presented using the Message Passing Interface (MPI) programming environment. Here, some knowledge of MPI routines is required by the reader. Examples solving in parallel simple PDEs using Diffpack and MPI are also presented. Chapter 2 presents the overlapping domain decomposition method for solving PDEs. It is well known that these methods are suitable for parallel processing. The first part of the chapter covers the mathematical formulation of the method as well as algorithmic and implementational issues. The second part presents a serial and a parallel implementational framework within the programming environment of Diffpack. The chapter closes by showing how to solve two application examples with the overlapping domain decomposition method using Diffpack. Chapter 3 is a tutorial about how to incorporate the multigrid solver in Diffpack. The method is illustrated by examples such as a Poisson solver, a general elliptic problem with various types of boundary conditions and a nonlinear Poisson type problem. In chapter 4 the mixed finite element is introduced. Technical issues concerning the practical implementation of the method are also presented. The main difficulties of the efficient implementation of the method, especially in two and three space dimensions on unstructured grids, are presented and addressed in the framework of Diffpack. The implementational process is illustrated by two examples, namely the system formulation of the Poisson problem and the Stokes problem. Chapter 5 is closely related to chapter 4 and addresses the problem of how to solve efficiently the linear systems arising by the application of the mixed finite element method. The proposed method is block preconditioning. Efficient techniques for implementing the method within Diffpack are presented. Optimal block preconditioners are used to solve the system formulation of the Poisson problem, the Stokes problem and the bidomain model for the electrical activity in the heart. The subject of chapter 6 is systems of PDEs. Linear and nonlinear systems are discussed. Fully implicit and operator splitting methods are presented. Special attention is paid to how existing solvers for scalar equations in Diffpack can be used to derive fully implicit solvers for systems. The proposed techniques are illustrated in terms of two applications, namely a system of PDEs modelling pipeflow and a two-phase porous media flow. Stochastic PDEs is the topic of chapter 7. The first part of the chapter is a simple introduction to stochastic PDEs; basic analytical properties are presented for simple models like transport phenomena and viscous drag forces. The second part considers the numerical solution of stochastic PDEs. Two basic techniques are presented, namely Monte Carlo and perturbation methods. The last part explains how to implement and incorporate these solvers into Diffpack. Chapter 8 describes how to operate Diffpack from Python scripts. The main goal here is to provide all the programming and technical details in order to glue the programming environment of Diffpack with visualization packages through Python and in general take advantage of the Python interfaces. Chapter 9 attempts to show how to use numerical experiments to measure the performance of various PDE solvers. The authors gathered a rather impressive list, a total of 14 PDE solvers. Solvers for problems like Poisson, Navier--Stokes, elasticity, two-phase flows and methods such as finite difference, finite element, multigrid, and gradient type methods are presented. The authors provide a series of numerical results combining various solvers with various methods in order to gain insight into their computational performance and efficiency. In Chapter 10 the authors consider a computationally challenging problem, namely the computation of the electrical activity of the human heart. After a brief introduction on the biology of the problem the authors present the mathematical models involved and a numerical method for solving them within the framework of Diffpack. Chapter 11 and 12 are closely related; actually they could have been combined in a single chapter. Chapter 11 introduces several mathematical models used in finance, based on the Black--Scholes equation. Chapter 12 considers several numerical methods like Monte Carlo, lattice methods, finite difference and finite element methods. Implementation of these methods within Diffpack is presented in the last part of the chapter. Chapter 13 presents how the finite element method is used for the modelling and analysis of elastic structures. The authors describe the structural elements of Diffpack which include popular elements such as beams and plates and examples are presented on how to use them to simulate elastic structures. Chapter 14 describes an application problem, namely the extrusion of aluminum. This is a rather\\endcolumn complicated process which involves non-Newtonian flow, heat transfer and elasticity. The authors describe the systems of PDEs modelling the underlying process and use a finite element method to obtain a numerical solution. The implementation of the numerical method in Diffpack is presented along with some applications. The last chapter, chapter 15, focuses on mathematical and numerical models of systems of PDEs governing geological processes in sedimentary basins. The underlying mathematical model is solved using the finite element method within a fully implicit scheme. The authors discuss the implementational issues involved within Diffpack and they present results from several examples. In summary, the book focuses on the computational and implementational issues involved in solving partial differential equations. The potential reader should have a basic knowledge of PDEs and the finite difference and finite element methods. The examples presented are solved within the programming framework of Diffpack and the reader should have prior experience with the particular software in order to take full advantage of the book. Overall the book is well written, the subject of each chapter is well presented and can serve as a reference for graduate students, researchers and engineers who are interested in the numerical solution of partial differential equations modelling various applications.

  18. Steady potential solver for unsteady aerodynamic analyses

    NASA Technical Reports Server (NTRS)

    Hoyniak, Dan

    1994-01-01

    Development of a steady flow solver for use with LINFLO was the objective of this report. The solver must be compatible with LINFLO, be composed of composite mesh, and have transonic capability. The approaches used were: (1) steady flow potential equations written in nonconservative form; (2) Newton's Method; (3) implicit, least-squares, interpolation method to obtain finite difference equations; and (4) matrix inversion routines from LINFLO. This report was given during the NASA LeRC Workshop on Forced Response in Turbomachinery in August of 1993.

  19. Evaluation of out-of-core computer programs for the solution of symmetric banded linear equations. [simultaneous equations

    NASA Technical Reports Server (NTRS)

    Dunham, R. S.

    1976-01-01

    FORTRAN coded out-of-core equation solvers that solve using direct methods symmetric banded systems of simultaneous algebraic equations. Banded, frontal and column (skyline) solvers were studied as well as solvers that can partition the working area and thus could fit into any available core. Comparison timings are presented for several typical two dimensional and three dimensional continuum type grids of elements with and without midside nodes. Extensive conclusions are also given.

  20. Program Package for 3d PIC Model of Plasma Fiber

    NASA Astrophysics Data System (ADS)

    Kulhánek, Petr; Břeň, David

    2007-08-01

    A fully three dimensional Particle in Cell model of the plasma fiber had been developed. The code is written in FORTRAN 95, implementation CVF (Compaq Visual Fortran) under Microsoft Visual Studio user interface. Five particle solvers and two field solvers are included in the model. The solvers have relativistic and non-relativistic variants. The model can deal both with periodical and non-periodical boundary conditions. The mechanism of the surface turbulences generation in the plasma fiber was successfully simulated with the PIC program package.

  1. Parallel-vector out-of-core equation solver for computational mechanics

    NASA Technical Reports Server (NTRS)

    Qin, J.; Agarwal, T. K.; Storaasli, O. O.; Nguyen, D. T.; Baddourah, M. A.

    1993-01-01

    A parallel/vector out-of-core equation solver is developed for shared-memory computers, such as the Cray Y-MP machine. The input/ output (I/O) time is reduced by using the a synchronous BUFFER IN and BUFFER OUT, which can be executed simultaneously with the CPU instructions. The parallel and vector capability provided by the supercomputers is also exploited to enhance the performance. Numerical applications in large-scale structural analysis are given to demonstrate the efficiency of the present out-of-core solver.

  2. The development of an intelligent interface to a computational fluid dynamics flow-solver code

    NASA Technical Reports Server (NTRS)

    Williams, Anthony D.

    1988-01-01

    Researchers at NASA Lewis are currently developing an 'intelligent' interface to aid in the development and use of large, computational fluid dynamics flow-solver codes for studying the internal fluid behavior of aerospace propulsion systems. This paper discusses the requirements, design, and implementation of an intelligent interface to Proteus, a general purpose, 3-D, Navier-Stokes flow solver. The interface is called PROTAIS to denote its introduction of artificial intelligence (AI) concepts to the Proteus code.

  3. The development of an intelligent interface to a computational fluid dynamics flow-solver code

    NASA Technical Reports Server (NTRS)

    Williams, Anthony D.

    1988-01-01

    Researchers at NASA Lewis are currently developing an 'intelligent' interface to aid in the development and use of large, computational fluid dynamics flow-solver codes for studying the internal fluid behavior of aerospace propulsion systems. This paper discusses the requirements, design, and implementation of an intelligent interface to Proteus, a general purpose, three-dimensional, Navier-Stokes flow solver. The interface is called PROTAIS to denote its introduction of artificial intelligence (AI) concepts to the Proteus code.

  4. An AMR capable finite element diffusion solver for ALE hydrocodes [An AMR capable diffusion solver for ALE-AMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, A. C.; Bailey, D. S.; Kaiser, T. B.

    2015-02-01

    Here, we present a novel method for the solution of the diffusion equation on a composite AMR mesh. This approach is suitable for including diffusion based physics modules to hydrocodes that support ALE and AMR capabilities. To illustrate, we proffer our implementations of diffusion based radiation transport and heat conduction in a hydrocode called ALE-AMR. Numerical experiments conducted with the diffusion solver and associated physics packages yield 2nd order convergence in the L 2 norm.

  5. A fast Poisson solver for unsteady incompressible Navier-Stokes equations on the half-staggered grid

    NASA Technical Reports Server (NTRS)

    Golub, G. H.; Huang, L. C.; Simon, H.; Tang, W. -P.

    1995-01-01

    In this paper, a fast Poisson solver for unsteady, incompressible Navier-Stokes equations with finite difference methods on the non-uniform, half-staggered grid is presented. To achieve this, new algorithms for diagonalizing a semi-definite pair are developed. Our fast solver can also be extended to the three dimensional case. The motivation and related issues in using this second kind of staggered grid are also discussed. Numerical testing has indicated the effectiveness of this algorithm.

  6. Convergence Acceleration of a Navier-Stokes Solver for Efficient Static Aeroelastic Computations

    NASA Technical Reports Server (NTRS)

    Obayashi, Shigeru; Guruswamy, Guru P.

    1995-01-01

    New capabilities have been developed for a Navier-Stokes solver to perform steady-state simulations more efficiently. The flow solver for solving the Navier-Stokes equations is based on a combination of the lower-upper factored symmetric Gauss-Seidel implicit method and the modified Harten-Lax-van Leer-Einfeldt upwind scheme. A numerically stable and efficient pseudo-time-marching method is also developed for computing steady flows over flexible wings. Results are demonstrated for transonic flows over rigid and flexible wings.

  7. BRAIN initiative: fast and parallel solver for real-time monitoring of the eddy current in the brain for TMS applications.

    PubMed

    Sabouni, Abas; Pouliot, Philippe; Shmuel, Amir; Lesage, Frederic

    2014-01-01

    This paper introduce a fast and efficient solver for simulating the induced (eddy) current distribution in the brain during transcranial magnetic stimulation procedure. This solver has been integrated with MRI and neuronavigation software to accurately model the electromagnetic field and show eddy current in the head almost in real-time. To examine the performance of the proposed technique, we used a 3D anatomically accurate MRI model of the 25 year old female subject.

  8. Analysis of potential genotoxic impurities in rabeprazole active pharmaceutical ingredient via Liquid Chromatography-tandem Mass Spectrometry, following quality-by-design principles for method development.

    PubMed

    Iliou, Katerina; Malenović, Anđelija; Loukas, Yannis L; Dotsikas, Yannis

    2018-02-05

    A novel Liquid Chromatography-tandem mass spectrometry (LC-MS/MS) method is presented for the quantitative determination of two potential genotoxic impurities (PGIs) in rabeprazole active pharmaceutical ingredient (API). In order to overcome the analytical challenges in the trace analysis of PGIs, a development procedure supported by Quality-by-Design (QbD) principles was evaluated. The efficient separation between rabeprazole and the two PGIs in the shortest analysis time was set as the defined analytical target profile (ATP) and to this purpose utilization of a switching valve allowed the flow to be sent to waste when rabeprazole was eluted. The selected critical quality attributes (CQAs) were the separation criterion s between the critical peak pair and the capacity factor k of the last eluted compound. The effect of the following critical process parameters (CPPs) on the CQAs was studied: %ACN content, the pH and the concentration of the buffer salt in the mobile phase, as well as the stationary phase of the analytical column. D-Optimal design was implemented to set the plan of experiments with UV detector. In order to define the design space, Monte Carlo simulations with 5000 iterations were performed. Acceptance criteria were met for C 8 column (50×4mm, 5μm) , and the region having probability π≥95% to achieve satisfactory values of all defined CQAs was computed. The working point was selected with the mobile phase consisting ‎of ACN, ammonium formate 11mM at a ratio 31/69v/v with pH=6,8 for the water phase. The LC protocol was transferred to LC-MS/MS and validated according to ICH guidelines. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Carbon diffusion paths and segregation at high-angle tilt grain boundaries in α-Fe studied by using a kinetic activation-relation technique

    NASA Astrophysics Data System (ADS)

    Restrepo, Oscar A.; Mousseau, Normand; Trochet, Mickaël; El-Mellouhi, Fedwa; Bouhali, Othmane; Becquart, Charlotte S.

    2018-02-01

    Carbon diffusion and segregation in iron is fundamental to steel production but is also associated with corrosion. Using the kinetic activation-relaxation technique (k-ART), a kinetic Monte Carlo (KMC) algorithm with an on-the-fly catalog that allows to obtain diffusion properties over large time scales taking into account long-range elastic effects coupled with an EAM force field, we study the motion of a carbon impurity in four Fe systems with high-angle grain boundaries (GB), focusing on the impact of these extended defects on the long-time diffusion of C. Short and long-time stability of the various GBs is first analyzed, which allows us to conclude that the Σ 3 (1 1 1 ) θ =109 .53∘<110 > GB is unstable, with Fe migration barriers of ˜0.1 eV or less, and C acts as a pinning center. Focusing on three stable GBs, in all cases, these extended defects trap C in energy states lower than found in the crystal. Yet, contrary to general understanding, we show, through simulations extending to 0.1 s, that even tough C diffusion takes place predominantly in the GB, it is not necessarily faster than in the bulk and can even be slower by one to two orders of magnitude depending on the GB type. Analysis of the energy landscape provided by k-ART also shows that the free cavity volume around the impurity is not a strong predictor of diffusion barrier height. Overall, results show rather complex diffusion kinetics intimately dependent on the local environment.

  10. Modelling of plasma-wall interaction and impurity transport in fusion devices and prompt deposition of tungsten as application

    NASA Astrophysics Data System (ADS)

    Kirschner, A.; Tskhakaya, D.; Brezinsek, S.; Borodin, D.; Romazanov, J.; Ding, R.; Eksaeva, A.; Linsmeier, Ch

    2018-01-01

    Main processes of plasma-wall interaction and impurity transport in fusion devices and their impact on the availability of the devices are presented and modelling tools, in particular the three-dimensional Monte-Carlo code ERO, are introduced. The capability of ERO is demonstrated on the example of tungsten erosion and deposition modelling. The dependence of tungsten deposition on plasma temperature and density is studied by simulations with a simplified geometry assuming (almost) constant plasma parameters. The amount of deposition increases with increasing electron temperature and density. Up to 100% of eroded tungsten can be promptly deposited near to the location of erosion at very high densities (˜1 × 1014 cm-3 expected e.g. in the divertor of ITER). The effect of the sheath characteristics on tungsten prompt deposition is investigated by using particle-in-cell (PIC) simulations to spatially resolve the plasma parameters inside the sheath. Applying PIC data instead of non-resolved sheath leads in general to smaller tungsten deposition, which is mainly due to a density and temperature decrease towards the surface within the sheath. Two-dimensional tungsten erosion/deposition simulations, assuming symmetry in toroidal direction but poloidally spatially varying plasma parameter profiles, have been carried out for the JET divertor. The simulations reveal, similar to experimental findings, that tungsten gross erosion is dominated in H-mode plasmas by the intra-ELM phases. However, due to deposition, the net tungsten erosion can be similar within intra- and inter-ELM phases if the inter-ELM electron temperature is high enough. Also, the simulated deposition fraction of about 84% in between ELMs is in line with spectroscopic observations from which a lower limit of 50% has been estimated.

  11. Analytical Quality by Design in pharmaceutical quality assurance: Development of a capillary electrophoresis method for the analysis of zolmitriptan and its impurities.

    PubMed

    Orlandini, Serena; Pasquini, Benedetta; Caprini, Claudia; Del Bubba, Massimo; Pinzauti, Sergio; Furlanetto, Sandra

    2015-11-01

    A fast and selective CE method for the determination of zolmitriptan (ZOL) and its five potential impurities has been developed applying the analytical Quality by Design principles. Voltage, temperature, buffer concentration, and pH were investigated as critical process parameters that can influence the critical quality attributes, represented by critical resolution values between peak pairs, analysis time, and peak efficiency of ZOL-dimer. A symmetric screening matrix was employed for investigating the knowledge space, and a Box-Behnken design was used to evaluate the main, interaction, and quadratic effects of the critical process parameters on the critical quality attributes. Contour plots were drawn highlighting important interactions between buffer concentration and pH, and the gained information was merged into the sweet spot plots. Design space (DS) was established by the combined use of response surface methodology and Monte Carlo simulations, introducing a probability concept and thus allowing the quality of the analytical performances to be assured in a defined domain. The working conditions (with the interval defining the DS) were as follows: BGE, 138 mM (115-150 mM) phosphate buffer pH 2.74 (2.54-2.94); temperature, 25°C (24-25°C); voltage, 30 kV. A control strategy was planned based on method robustness and system suitability criteria. The main advantages of applying the Quality by Design concept consisted of a great increase of knowledge of the analytical system, obtained throughout multivariate techniques, and of the achievement of analytical assurance of quality, derived by probability-based definition of DS. The developed method was finally validated and applied to the analysis of ZOL tablets. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Preliminary effects of real-world factors on the recovery and exploitation of forensic impurity profiles of a nerve-agent simulant from office media.

    PubMed

    Fraga, Carlos G; Sego, Landon H; Hoggard, Jamin C; Acosta, Gabriel A Pérez; Viglino, Emilie A; Wahl, Jon H; Synovec, Robert E

    2012-12-28

    Dimethyl methylphosphonate (DMMP) was used as a chemical threat agent (CTA) simulant for a first look at the effects of real-world factors on the recovery and exploitation of a CTA's impurity profile for source matching. Four stocks of DMMP having different impurity profiles were disseminated as aerosols onto cotton, painted wall board, and nylon coupons according to a thorough experimental design. The DMMP-exposed coupons were then solvent extracted and analyzed for DMMP impurities by comprehensive 2D gas chromatography/mass spectrometry (GC×GC/MS). The similarities between the coupon DMMP impurity profiles and the known (reference) DMMP profiles were measured by dot products of the coupon profiles and known profiles and by score values obtained from principal component analysis. One stock, with a high impurity-profile selectivity value of 0.9 out of 1, had 100% of its respective coupons correctly classified and no false positives from other coupons. Coupons from the other three stocks with low selectivity values (0.0073, 0.012, and 0.018) could not be sufficiently distinguished from one another for reliable matching to their respective stocks. The results from this work support that: (1) extraction solvents, if not appropriately selected, can have some of the same impurities present in a CTA reducing a CTA's useable impurity profile, (2) low selectivity among a CTA's known impurity profiles will likely make definitive source matching impossible in some real-world conditions, (3) no detrimental chemical-matrix interference was encountered during the analysis of actual office media, (4) a short elapsed time between release and sample storage is advantageous for the recovery of the impurity profile because it minimizes volatilization of forensic impurities, and (5) forensic impurity profiles weighted toward higher volatility impurities are more likely to be altered by volatilization following CTA exposure. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Classical confinement and outward convection of impurity ions in the MST RFP

    NASA Astrophysics Data System (ADS)

    Kumar, S. T. A.; Den Hartog, D. J.; Mirnov, V. V.; Caspary, K. J.; Magee, R. M.; Brower, D. L.; Chapman, B. E.; Craig, D.; Ding, W. X.; Eilerman, S.; Fiksel, G.; Lin, L.; Nornberg, M.; Parke, E.; Reusch, J. A.; Sarff, J. S.

    2012-05-01

    Impurity ion dynamics measured with simultaneously high spatial and temporal resolution reveal classical ion transport in the reversed-field pinch. The boron, carbon, oxygen, and aluminum impurity ion density profiles are obtained in the Madison Symmetric Torus [R. N. Dexter et al., Fusion Technol. 19, 131 (1991)] using a fast, active charge-exchange-recombination-spectroscopy diagnostic. Measurements are made during improved-confinement plasmas obtained using inductive control of tearing instability to mitigate stochastic transport. At the onset of the transition to improved confinement, the impurity ion density profile becomes hollow, with a slow decay in the core region concurrent with an increase in the outer region, implying an outward convection of impurities. Impurity transport from Coulomb collisions in the reversed-field pinch is classical for all collisionality regimes, and analysis shows that the observed hollow profile and outward convection can be explained by the classical temperature screening mechanism. The profile agrees well with classical expectations. Experiments performed with impurity pellet injection provide further evidence for classical impurity ion confinement.

  14. Stability of Weyl metals under impurity scattering

    NASA Astrophysics Data System (ADS)

    Huang, Zhoushen; Das, Tanmoy; Balatsky, Alexander V.; Arovas, Daniel P.

    2013-04-01

    We investigate the effects of bulk impurities on the electronic spectrum of Weyl semimetals, a recently identified class of Dirac-type materials. Using a T-matrix approach, we study resonant scattering due to a localized impurity in tight-binding versions of the continuum models recently discussed by [Burkov, Hook, and Balents, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.84.235126 84, 235126 (2011)], describing perturbed four-component Dirac fermions in the vicinity of a critical point. The impurity potential is described by a strength g as well as a matrix structure Λ. Unlike the case in d-wave superconductors, where a zero energy resonance can always be induced by varying the scalar and/or magnetic impurity strength, we find that for certain types of impurity (Λ), the Weyl node is protected and that a scalar impurity will induce an intragap resonance over a wide range of scattering strength. A general framework is developed to address this question, as well as to determine the dependence of resonance energy on the impurity strength.

  15. Adsorption mechanisms of the nonequilibrium incorporation of admixtures in a growing crystal

    NASA Astrophysics Data System (ADS)

    Franke, V. D.; Punin, Yu. O.; Smetannikova, O. G.; Kenunen, D. S.

    2007-12-01

    The nonequilibrium partition of components between a crystal and solution is mainly controlled by impurity adsorption on the surface of the growing crystal. The specificity of adsorption on the faces of various simple forms leads to the sectorial zoning of crystals. This effect was studied experimentally for several crystallizing systems with different impurities, including isomorphous, 2d-isomorphous, and nonisomorphous, readily adsorbed impurities. In all systems, the sectorial selectivity of impurity incorporation into host crystals has been detected with partition coefficients many times higher than in the case of equilibrium partition. Specific capture of impurities by certain faces is accompanied by inhibition of their growth and modification of habit. The decrease in nonequilibrium partition coefficients with degree of oversaturation provides entrapment of impurities in the growing crystals. Thereby, the adsorption mechanism works in much the same mode for impurities of quite different nature. The behavior of partition coefficient differs drastically from impurity capturing by diffusion mechanism.

  16. The Computer Bulletin Board.

    ERIC Educational Resources Information Center

    Batt, Russell H., Ed.

    1990-01-01

    Described is how spreadsheet and problem solver microcomputer programs may assist students in performing mathematical calculations. Discussed is the application of the equation solver "MathCAD" to various areas in the undergraduate curriculum. (KR)

  17. AQUASOL: An efficient solver for the dipolar Poisson–Boltzmann–Langevin equation

    PubMed Central

    Koehl, Patrice; Delarue, Marc

    2010-01-01

    The Poisson–Boltzmann (PB) formalism is among the most popular approaches to modeling the solvation of molecules. It assumes a continuum model for water, leading to a dielectric permittivity that only depends on position in space. In contrast, the dipolar Poisson–Boltzmann–Langevin (DPBL) formalism represents the solvent as a collection of orientable dipoles with nonuniform concentration; this leads to a nonlinear permittivity function that depends both on the position and on the local electric field at that position. The differences in the assumptions underlying these two models lead to significant differences in the equations they generate. The PB equation is a second order, elliptic, nonlinear partial differential equation (PDE). Its response coefficients correspond to the dielectric permittivity and are therefore constant within each subdomain of the system considered (i.e., inside and outside of the molecules considered). While the DPBL equation is also a second order, elliptic, nonlinear PDE, its response coefficients are nonlinear functions of the electrostatic potential. Many solvers have been developed for the PB equation; to our knowledge, none of these can be directly applied to the DPBL equation. The methods they use may adapt to the difference; their implementations however are PBE specific. We adapted the PBE solver originally developed by Holst and Saied [J. Comput. Chem. 16, 337 (1995)] to the problem of solving the DPBL equation. This solver uses a truncated Newton method with a multigrid preconditioner. Numerical evidences suggest that it converges for the DPBL equation and that the convergence is superlinear. It is found however to be slow and greedy in memory requirement for problems commonly encountered in computational biology and computational chemistry. To circumvent these problems, we propose two variants, a quasi-Newton solver based on a simplified, inexact Jacobian and an iterative self-consistent solver that is based directly on the PBE solver. While both methods are not guaranteed to converge, numerical evidences suggest that they do and that their convergence is also superlinear. Both variants are significantly faster than the solver based on the exact Jacobian, with a much smaller memory footprint. All three methods have been implemented in a new code named AQUASOL, which is freely available. PMID:20151727

  18. AQUASOL: An efficient solver for the dipolar Poisson-Boltzmann-Langevin equation.

    PubMed

    Koehl, Patrice; Delarue, Marc

    2010-02-14

    The Poisson-Boltzmann (PB) formalism is among the most popular approaches to modeling the solvation of molecules. It assumes a continuum model for water, leading to a dielectric permittivity that only depends on position in space. In contrast, the dipolar Poisson-Boltzmann-Langevin (DPBL) formalism represents the solvent as a collection of orientable dipoles with nonuniform concentration; this leads to a nonlinear permittivity function that depends both on the position and on the local electric field at that position. The differences in the assumptions underlying these two models lead to significant differences in the equations they generate. The PB equation is a second order, elliptic, nonlinear partial differential equation (PDE). Its response coefficients correspond to the dielectric permittivity and are therefore constant within each subdomain of the system considered (i.e., inside and outside of the molecules considered). While the DPBL equation is also a second order, elliptic, nonlinear PDE, its response coefficients are nonlinear functions of the electrostatic potential. Many solvers have been developed for the PB equation; to our knowledge, none of these can be directly applied to the DPBL equation. The methods they use may adapt to the difference; their implementations however are PBE specific. We adapted the PBE solver originally developed by Holst and Saied [J. Comput. Chem. 16, 337 (1995)] to the problem of solving the DPBL equation. This solver uses a truncated Newton method with a multigrid preconditioner. Numerical evidences suggest that it converges for the DPBL equation and that the convergence is superlinear. It is found however to be slow and greedy in memory requirement for problems commonly encountered in computational biology and computational chemistry. To circumvent these problems, we propose two variants, a quasi-Newton solver based on a simplified, inexact Jacobian and an iterative self-consistent solver that is based directly on the PBE solver. While both methods are not guaranteed to converge, numerical evidences suggest that they do and that their convergence is also superlinear. Both variants are significantly faster than the solver based on the exact Jacobian, with a much smaller memory footprint. All three methods have been implemented in a new code named AQUASOL, which is freely available.

  19. Power Radiated from ITER and CIT by Impurities

    DOE R&D Accomplishments Database

    Cummings, J.; Cohen, S. A.; Hulse, R.; Post, D. E.; Redi, M. H.; Perkins, J.

    1990-07-01

    The MIST code has been used to model impurity radiation from the edge and core plasmas in ITER and CIT. A broad range of parameters have been varied, including Z{sub eff}, impurity species, impurity transport coefficients, and plasma temperature and density profiles, especially at the edge. For a set of these parameters representative of the baseline ITER ignition scenario, it is seen that impurity radiation, which is produced in roughly equal amounts by the edge and core regions, can make a major improvement in divertor operation without compromising core energy confinement. Scalings of impurity radiation with atomic number and machine size are also discussed.

  20. Combined effects of an intense laser field, electric field and hydrostatic pressure on donor impurity states in zinc-blende InGaN/GaN quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Guangxin; Zhou, Rui; Duan, Xiuzhi

    2016-07-01

    The shallow-donor impurity states in cylindrical zinc-blende (ZB) In x Ga1- x N/GaN quantum dots (QDs) have been theoretically investigated, considering the combined effects of an intense laser field (ILF), an external electric field, and hydrostatic pressure. The numerical results show that for an on-center impurity in ZB In x Ga1- x N/GaN QD, (1) the ground-state binding energy of the donor impurity is a decreasing function of the laser-dressing parameter and/or the QD's height; (2) as the QD's radius decreases, the binding energy of the donor impurity increases at first, reaches a maximum value, and then drops rapidly; (3) the binding energy of the donor impurity is a decreasing function of the external electric field due to the Stark effect; (4) the binding energy of the donor impurity increases as the applied hydrostatic pressure becomes large. In addition, the position of the impurity ion was also found to have an important influence on the binding energy of the donor impurity. The physical reasons have been analyzed in detail.

  1. Clusterization Effects in III-V Nitrides: Nitrogen Vacancies, and Si and Mg Impurities in Aluminum Nitride and Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Gubanov, V. A.; Pentaleri, E. A.; Boekema, C.; Fong, C. Y.; Klein, B. M.

    1997-03-01

    We have investigated clusterization of nitrogen vacancies and Si and Mg doping impurities in zinc-blende aluminum nitride (c-AlN) and gallium nitride (c-GaN) by the tight-binding LMTO technique. The calculations used 128-site supercells. Si and Mg atoms replacing ions in both the cation and anion sublattices of the host lattices of the host crystals have been considered. The Mg impurity at cation sites is found to form partially occupied states at the valence-band edge, and may result in p-type conductivity. When Si substitutes for Ga, the impurity band is formed at the conduction-band edge, resulting in n-type conductivity. Si impurities at cation sites, and Mg impurity at anion sites are able to form resonance states in the gap. The influence of impurity clusterization in the host lattice and interstitial sites on electronic properties of c-AlN and c-GaN crystals are modeled. The changes in vacancy- and impurity-state energies, bonding type, localization, density of states at the Fermi level in different host lattices, their dependence on impurity/vacancy concentration are analyzed and compared with the experimental data.

  2. Identification and control of unspecified impurity in trimetazidine dihydrochloride tablet formulation

    NASA Astrophysics Data System (ADS)

    Jefri; Puspitasari, A. D.; Talpaneni, J. S. R.; Tjandrawinata, R. R.

    2018-04-01

    Trimetazidine dihydrochloride is an anti-ischemic metabolic agent which is used as drug for angina pectoris treatment. The drug substance monograph is available in European Pharmacopoeia and British Pharmacopoeia, while the drug product monograph is not available in any of the pharmacopoeias. During development of trimetazidine dihydrochloride tablet formulation, we found increase of an unspecified impurity during preliminary stability study. The unspecified impurity was identified by high performance liquid chromatography coupled with mass spectrometry (LC-MS) and the molecular weight obtained was matching with the molecular weight of N-formyl trimetazidine (m/z 295). Further experiments were performed to confirm the suspected result by injecting the impurity standard and spiking formic acid into the drug substance. The retention time of N-formyl trimetazidine was similar to the unspecified impurity in drug product. Even spiking of formic acid into drug substance showed that the suspected impurity increased with increasing concentration of formic acid. The proposed mechanism of impurity formation is via amidation of piperazine moiety of trimetazidine by formic acid which present as residual solvent in tablet binder used in the formulation. Subsequently, the impurity in our product was controlled by choosing the primary packaging which could minimize the formation of impurity.

  3. Measurements of Impurity Particle Transport Associated with Drift-Wave Turbulence in MST

    NASA Astrophysics Data System (ADS)

    Nishizawa, Takashi; Nornberg, Mark; Boguski, John; Craig, Darren; den Hartog, Daniel; Pueschel, M. J.; Sarff, John; Terry, Paul; Williams, Zach; Xing, Zichuan

    2017-10-01

    Understanding and controlling impurity transport in a toroidal magnetized plasma is one of the critical issues that need to be addressed in order to achieve controlled fusion. Gyrokinetic modeling shows turbulence can drive impurity transport, but direct measurements of the turbulent flux have not been made. Particle balance is typically used to infer the presence of turbulent impurity transport. We report, for the first time in a toroidal plasma, direct measurements of turbulence-driven impurity transport. Trapped electron mode (TEM) turbulence appears in MST plasmas when MHD tearing fluctuations are suppressed. Impurity ion-Doppler spectroscopy is used to correlate impurity density and radial velocity fluctuations associated with TEM. Small Doppler shifts associated with the radial velocity fluctuations (rms 1km/s) are resolved with the use of a new linearized spectrum correlation analysis method, which improves the rejection of Poisson noise. The method employs frequency-domain correlation analysis to expose the fluctuation and transport spectrum. The C+ 2 impurity transport velocity driven by turbulence is found to be 48m/s (inward), which is sufficiently large to impact an impurity flux balance in MST improved-confinement plasmas. This work is supported by the US DOE.

  4. Device for sampling and enriching impurities in hydrogen comprising hydrogen-permeable membrane

    DOEpatents

    Ahmed, Shabbir; Papadias, Dionissios D.; Lee, Sheldon D. H.; Kumar, Romesh

    2017-01-31

    Provided herein are methods and devices to enrich trace quantities of impurities in gaseous mixtures, such as hydrogen fuel. The methods and devices rely on concentration of impurities so as to allow the detection of the impurities using commonly-available detection methods.

  5. Liquid sodium dip seal maintenance system

    DOEpatents

    Briggs, Richard L.; Meacham, Sterling A.

    1980-01-01

    A system for spraying liquid sodium onto impurities associated with liquid dip seals of nuclear reactors. The liquid sodium mixing with the impurities dissolves the impurities in the liquid sodium. The liquid sodium having dissolved and diluted the impurities carries the impurities away from the site thereby cleaning the liquid dip seal and surrounding area. The system also allows wetting of the metallic surfaces of the dip seal thereby reducing migration of radioactive particles across the wetted boundary.

  6. Electronic Structure of p- and n-Type Doping Impurities in Cubic Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Pentaleri, E. A.; Gubanov, V. A.; Fong, C. Y.; Klein, B. M.

    1996-03-01

    LMTO-TB calculations were performed to investigate the electronic structure of C, Be, Mg, Si, Zn, and Cd substitutional impurities in cubic GaN (c-GaN). The calculations used 128-site supercells consisting of 64-atoms. Empty spheres of two types occupied the remaining sites. Semi-core Ga 3d states were treated explicitly as valence states. Both amphoteric substitutions were considered for C and Si impurities, while only cation-site substitutions were considered for Be, Mg, Zn, and Cd. All metal impurities formed partially occupied impurity states at the VB edge, which may result in p-type conductivity. C and Si impurities substituted at anion sites form sharp resonances in the gap, and are inactive in creating either p- or n-type carriers. Likewise, cation-site C substitutions introduce to the middle of the band gap strongly localized states that are inactive in carrier formation. Cation-site Si substitutions form an impurity sub-band at the CB edge, leading to n-type conductivity. The DOS at the Fermi level for each impurity-doped c-GaN crystal is used to estimate the most effective p-type doping impurities. The wave-function composition, space, and energy localization is analyzed for different impurities via projections onto the orbital basis and atomic coordinational spheres, and by examining calculated charge-density distributions.

  7. A quasi-linear analysis of the impurity effect on turbulent momentum transport and residual stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, S. H., E-mail: shko@nfri.re.kr; Jhang, Hogun; Singh, R.

    2015-08-15

    We study the impact of impurities on turbulence driven intrinsic rotation (via residual stress) in the context of the quasi-linear theory. A two-fluid formulation for main and impurity ions is employed to study ion temperature gradient modes in sheared slab geometry modified by the presence of impurities. An effective form of the parallel Reynolds stress is derived in the center of mass frame of a coupled main ion-impurity system. Analyses show that the contents and the radial profile of impurities have a strong influence on the residual stress. In particular, an impurity profile aligned with that of main ions ismore » shown to cause a considerable reduction of the residual stress, which may lead to the reduction of turbulence driven intrinsic rotation.« less

  8. 19 CFR 151.46 - Allowance for detectable moisture and impurities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Allowance for detectable moisture and impurities... Petroleum and Petroleum Products § 151.46 Allowance for detectable moisture and impurities. An allowance for all detectable moisture and impurities present in or upon imported petroleum or petroleum products...

  9. 19 CFR 151.46 - Allowance for detectable moisture and impurities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 2 2013-04-01 2013-04-01 false Allowance for detectable moisture and impurities... Petroleum and Petroleum Products § 151.46 Allowance for detectable moisture and impurities. An allowance for all detectable moisture and impurities present in or upon imported petroleum or petroleum products...

  10. 19 CFR 151.46 - Allowance for detectable moisture and impurities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 2 2014-04-01 2014-04-01 false Allowance for detectable moisture and impurities... Petroleum and Petroleum Products § 151.46 Allowance for detectable moisture and impurities. An allowance for all detectable moisture and impurities present in or upon imported petroleum or petroleum products...

  11. 19 CFR 151.46 - Allowance for detectable moisture and impurities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 2 2012-04-01 2012-04-01 false Allowance for detectable moisture and impurities... Petroleum and Petroleum Products § 151.46 Allowance for detectable moisture and impurities. An allowance for all detectable moisture and impurities present in or upon imported petroleum or petroleum products...

  12. 19 CFR 151.46 - Allowance for detectable moisture and impurities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 2 2011-04-01 2011-04-01 false Allowance for detectable moisture and impurities... Petroleum and Petroleum Products § 151.46 Allowance for detectable moisture and impurities. An allowance for all detectable moisture and impurities present in or upon imported petroleum or petroleum products...

  13. Sherlock Holmes, Master Problem Solver.

    ERIC Educational Resources Information Center

    Ballew, Hunter

    1994-01-01

    Shows the connections between Sherlock Holmes's investigative methods and mathematical problem solving, including observations, characteristics of the problem solver, importance of data, questioning the obvious, learning from experience, learning from errors, and indirect proof. (MKR)

  14. Efficient Implementation of Multigrid Solvers on Message-Passing Parrallel Systems

    NASA Technical Reports Server (NTRS)

    Lou, John

    1994-01-01

    We discuss our implementation strategies for finite difference multigrid partial differential equation (PDE) solvers on message-passing systems. Our target parallel architecture is Intel parallel computers: the Delta and Paragon system.

  15. Using SPARK as a Solver for Modelica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetter, Michael; Wetter, Michael; Haves, Philip

    Modelica is an object-oriented acausal modeling language that is well positioned to become a de-facto standard for expressing models of complex physical systems. To simulate a model expressed in Modelica, it needs to be translated into executable code. For generating run-time efficient code, such a translation needs to employ algebraic formula manipulations. As the SPARK solver has been shown to be competitive for generating such code but currently cannot be used with the Modelica language, we report in this paper how SPARK's symbolic and numerical algorithms can be implemented in OpenModelica, an open-source implementation of a Modelica modeling and simulationmore » environment. We also report benchmark results that show that for our air flow network simulation benchmark, the SPARK solver is competitive with Dymola, which is believed to provide the best solver for Modelica.« less

  16. Using a multifrontal sparse solver in a high performance, finite element code

    NASA Technical Reports Server (NTRS)

    King, Scott D.; Lucas, Robert; Raefsky, Arthur

    1990-01-01

    We consider the performance of the finite element method on a vector supercomputer. The computationally intensive parts of the finite element method are typically the individual element forms and the solution of the global stiffness matrix both of which are vectorized in high performance codes. To further increase throughput, new algorithms are needed. We compare a multifrontal sparse solver to a traditional skyline solver in a finite element code on a vector supercomputer. The multifrontal solver uses the Multiple-Minimum Degree reordering heuristic to reduce the number of operations required to factor a sparse matrix and full matrix computational kernels (e.g., BLAS3) to enhance vector performance. The net result in an order-of-magnitude reduction in run time for a finite element application on one processor of a Cray X-MP.

  17. An efficient spectral crystal plasticity solver for GPU architectures

    NASA Astrophysics Data System (ADS)

    Malahe, Michael

    2018-03-01

    We present a spectral crystal plasticity (CP) solver for graphics processing unit (GPU) architectures that achieves a tenfold increase in efficiency over prior GPU solvers. The approach makes use of a database containing a spectral decomposition of CP simulations performed using a conventional iterative solver over a parameter space of crystal orientations and applied velocity gradients. The key improvements in efficiency come from reducing global memory transactions, exposing more instruction-level parallelism, reducing integer instructions and performing fast range reductions on trigonometric arguments. The scheme also makes more efficient use of memory than prior work, allowing for larger problems to be solved on a single GPU. We illustrate these improvements with a simulation of 390 million crystal grains on a consumer-grade GPU, which executes at a rate of 2.72 s per strain step.

  18. The unstaggered extension to GFDL's FV3 dynamical core on the cubed-sphere

    NASA Astrophysics Data System (ADS)

    Chen, X.; Lin, S. J.; Harris, L.

    2017-12-01

    Finite-volume schemes have become popular for atmospheric transport since they provide intrinsic mass conservation to constituent species. Many CFD codes use unstaggered discretizations for finite volume methods with an approximate Riemann solver. However, this approach is inefficient for geophysical flows due to the complexity of the Riemann solver. We introduce a Low Mach number Approximate Riemann Solver (LMARS) simplified using assumptions appropriate for atmospheric flows: the wind speed is much slower than the sound speed, weak discontinuities, and locally uniform sound wave velocity. LMARS makes possible a Riemann-solver-based dynamical core comparable in computational efficiency to many current dynamical cores. We will present a 3D finite-volume dynamical core using LMARS in a cubed-sphere geometry with a vertically Lagrangian discretization. Results from standard idealized test cases will be discussed.

  19. Integrated multidisciplinary CAD/CAE environment for micro-electro-mechanical systems (MEMS)

    NASA Astrophysics Data System (ADS)

    Przekwas, Andrzej J.

    1999-03-01

    Computational design of MEMS involves several strongly coupled physical disciplines, including fluid mechanics, heat transfer, stress/deformation dynamics, electronics, electro/magneto statics, calorics, biochemistry and others. CFDRC is developing a new generation multi-disciplinary CAD systems for MEMS using high-fidelity field solvers on unstructured, solution-adaptive grids for a full range of disciplines. The software system, ACE + MEMS, includes all essential CAD tools; geometry/grid generation for multi- discipline, multi-equation solvers, GUI, tightly coupled configurable 3D field solvers for FVM, FEM and BEM and a 3D visualization/animation tool. The flow/heat transfer/calorics/chemistry equations are solved with unstructured adaptive FVM solver, stress/deformation are computed with a FEM STRESS solver and a FAST BEM solver is used to solve linear heat transfer, electro/magnetostatics and elastostatics equations on adaptive polygonal surface grids. Tight multidisciplinary coupling and automatic interoperability between the tools was achieved by designing a comprehensive database structure and APIs for complete model definition. The virtual model definition is implemented in data transfer facility, a publicly available tool described in this paper. The paper presents overall description of the software architecture and MEMS design flow in ACE + MEMS. It describes current status, ongoing effort and future plans for the software. The paper also discusses new concepts of mixed-level and mixed- dimensionality capability in which 1D microfluidic networks are simulated concurrently with 3D high-fidelity models of discrete components.

  20. A robust and contact resolving Riemann solver on unstructured mesh, Part I, Euler method

    NASA Astrophysics Data System (ADS)

    Shen, Zhijun; Yan, Wei; Yuan, Guangwei

    2014-07-01

    This article presents a new cell-centered numerical method for compressible flows on arbitrary unstructured meshes. A multi-dimensional Riemann solver based on the HLLC method (denoted by HLLC-2D solver) is established. The work is an extension from the cell-centered Lagrangian scheme of Maire et al. [27] to the Eulerian framework. Similarly to the work in [27], a two-dimensional contact velocity defined on a grid node is introduced, and the motivation is to keep an edge flux consistency with the node velocity connected to the edge intrinsically. The main new feature of the algorithm is to relax the condition that the contact pressures must be same in the traditional HLLC solver. The discontinuous fluxes are constructed across each wave sampling direction rather than only along the contact wave direction. The two-dimensional contact velocity of the grid node is determined via enforcing conservation of mass, momentum and total energy, and thus the new method satisfies these conservation properties at nodes rather than on grid edges. Other good properties of the HLLC-2d solver, such as the positivity and the contact preserving, are described, and the two-dimensional high-order extension is constructed employing MUSCL type reconstruction procedure. Numerical results based on both quadrilateral and triangular grids are presented to demonstrate the robustness and the accuracy of this new solver, which shows it has better performance than the existing HLLC method.

  1. TOUGH3: A new efficient version of the TOUGH suite of multiphase flow and transport simulators

    NASA Astrophysics Data System (ADS)

    Jung, Yoojin; Pau, George Shu Heng; Finsterle, Stefan; Pollyea, Ryan M.

    2017-11-01

    The TOUGH suite of nonisothermal multiphase flow and transport simulators has been updated by various developers over many years to address a vast range of challenging subsurface problems. The increasing complexity of the simulated processes as well as the growing size of model domains that need to be handled call for an improvement in the simulator's computational robustness and efficiency. Moreover, modifications have been frequently introduced independently, resulting in multiple versions of TOUGH that (1) led to inconsistencies in feature implementation and usage, (2) made code maintenance and development inefficient, and (3) caused confusion to users and developers. TOUGH3-a new base version of TOUGH-addresses these issues. It consolidates both the serial (TOUGH2 V2.1) and parallel (TOUGH2-MP V2.0) implementations, enabling simulations to be performed on desktop computers and supercomputers using a single code. New PETSc parallel linear solvers are added to the existing serial solvers of TOUGH2 and the Aztec solver used in TOUGH2-MP. The PETSc solvers generally perform better than the Aztec solvers in parallel and the internal TOUGH3 linear solver in serial. TOUGH3 also incorporates many new features, addresses bugs, and improves the flexibility of data handling. Due to the improved capabilities and usability, TOUGH3 is more robust and efficient for solving tough and computationally demanding problems in diverse scientific and practical applications related to subsurface flow modeling.

  2. Detailed analysis of the effects of stencil spatial variations with arbitrary high-order finite-difference Maxwell solver

    DOE PAGES

    Vincenti, H.; Vay, J. -L.

    2015-11-22

    Due to discretization effects and truncation to finite domains, many electromagnetic simulations present non-physical modifications of Maxwell's equations in space that may generate spurious signals affecting the overall accuracy of the result. Such modifications for instance occur when Perfectly Matched Layers (PMLs) are used at simulation domain boundaries to simulate open media. Another example is the use of arbitrary order Maxwell solver with domain decomposition technique that may under some condition involve stencil truncations at subdomain boundaries, resulting in small spurious errors that do eventually build up. In each case, a careful evaluation of the characteristics and magnitude of themore » errors resulting from these approximations, and their impact at any frequency and angle, requires detailed analytical and numerical studies. To this end, we present a general analytical approach that enables the evaluation of numerical discretization errors of fully three-dimensional arbitrary order finite-difference Maxwell solver, with arbitrary modification of the local stencil in the simulation domain. The analytical model is validated against simulations of domain decomposition technique and PMLs, when these are used with very high-order Maxwell solver, as well as in the infinite order limit of pseudo-spectral solvers. Results confirm that the new analytical approach enables exact predictions in each case. It also confirms that the domain decomposition technique can be used with very high-order Maxwell solver and a reasonably low number of guard cells with negligible effects on the whole accuracy of the simulation.« less

  3. Analysis of the Effects of Impurities in Silicon. [to determine solar cell efficiency

    NASA Technical Reports Server (NTRS)

    Wohlgemuth, J. H.; Lafky, W. M.; Burkholder, J. H.

    1979-01-01

    A solar cell fabrication and analysis program to determine the effects on the resultant solar cell efficiency of impurities incorporated into silicon is conducted. Flight quality technologies and quality assurance are employed to assure that variations in cell performance are due to the impurities incorporated in the silicon. The type and level of impurity doping in each test lot is given and the mechanism responsible for the degradation of cell performance is identified and correlated to the doped impurities.

  4. Phase transition in one Josephson junction with a side-coupled magnetic impurity

    NASA Astrophysics Data System (ADS)

    Zhi, Li-Ming; Wang, Xiao-Qi; Jiang, Cui; Yi, Guang-Yu; Gong, Wei-Jiang

    2018-04-01

    This work focuses on one Josephson junction with a side-coupled magnetic impurity. And then, the Josephson phase transition is theoretically investigated, with the help of the exact diagonalization approach. It is found that even in the absence of intradot Coulomb interaction, the magnetic impurity can efficiently induce the phenomenon of Josephson phase transition, which is tightly related to the spin correlation manners (i.e., ferromagnetic or antiferromagnetic) between the impurity and the junction. Moreover, the impurity plays different roles when it couples to the dot and superconductor, respectively. This work can be helpful in describing the influence of one magnetic impurity on the supercurrent through the Josephson junction.

  5. The effect of secondary impurities on solar cell performance

    NASA Technical Reports Server (NTRS)

    Hill, D. E.; Gutsche, H. W.; Wang, M. S.; Gupta, K. P.; Tucker, W. F.; Dowdy, J. D.; Crepin, R. J.

    1976-01-01

    Czochralski and float zone sigle crystals of silicon were doped with the primary impurities B or P so that a resistivity of 0.5 ohm cm resulted, and in addition doped with certain secondary impurities including Al, C, Cr, Cu, Fe, Mg, Mn, Na, Ni, O, Ti, V, and Zr. The actual presence of these impurities was confirmed by analysis of the crystals. Solar cell performance was evaluated and found to be degraded most significantly by Ti, V, and Zr and to some extent by most of the secondary impurities considered. These results are of significance to the low cost silicon program, since any such process would have to yield at least tolerable levels of these impurities.

  6. Volatile Impurities in the Plutonium Immobilization Ceramic Wasteform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozzi, A.D.

    1999-10-15

    Approximately 18 of the 50 metric tons of plutonium identified for disposition contain significant quantities of impurities. A ceramic waste form is the chosen option for immobilization of the excess plutonium. The impurities associated with the stored plutonium have been identified (CaCl2, MgF2, Pb, etc.). For this study, only volatile species are investigated. The impurities are added individually. Cerium is used as the surrogate for plutonium. Three compositions, including the baseline composition, were used to verify the ability of the ceramic wasteform to accommodate impurities. The criteria for evaluation of the effect of the impurities were the apparent porosity andmore » phase assemblage of sintered pellets.« less

  7. Scalable domain decomposition solvers for stochastic PDEs in high performance computing

    DOE PAGES

    Desai, Ajit; Khalil, Mohammad; Pettit, Chris; ...

    2017-09-21

    Stochastic spectral finite element models of practical engineering systems may involve solutions of linear systems or linearized systems for non-linear problems with billions of unknowns. For stochastic modeling, it is therefore essential to design robust, parallel and scalable algorithms that can efficiently utilize high-performance computing to tackle such large-scale systems. Domain decomposition based iterative solvers can handle such systems. And though these algorithms exhibit excellent scalabilities, significant algorithmic and implementational challenges exist to extend them to solve extreme-scale stochastic systems using emerging computing platforms. Intrusive polynomial chaos expansion based domain decomposition algorithms are extended here to concurrently handle high resolutionmore » in both spatial and stochastic domains using an in-house implementation. Sparse iterative solvers with efficient preconditioners are employed to solve the resulting global and subdomain level local systems through multi-level iterative solvers. We also use parallel sparse matrix–vector operations to reduce the floating-point operations and memory requirements. Numerical and parallel scalabilities of these algorithms are presented for the diffusion equation having spatially varying diffusion coefficient modeled by a non-Gaussian stochastic process. Scalability of the solvers with respect to the number of random variables is also investigated.« less

  8. Revisiting Parallel Cyclic Reduction and Parallel Prefix-Based Algorithms for Block Tridiagonal System of Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seal, Sudip K; Perumalla, Kalyan S; Hirshman, Steven Paul

    2013-01-01

    Simulations that require solutions of block tridiagonal systems of equations rely on fast parallel solvers for runtime efficiency. Leading parallel solvers that are highly effective for general systems of equations, dense or sparse, are limited in scalability when applied to block tridiagonal systems. This paper presents scalability results as well as detailed analyses of two parallel solvers that exploit the special structure of block tridiagonal matrices to deliver superior performance, often by orders of magnitude. A rigorous analysis of their relative parallel runtimes is shown to reveal the existence of a critical block size that separates the parameter space spannedmore » by the number of block rows, the block size and the processor count, into distinct regions that favor one or the other of the two solvers. Dependence of this critical block size on the above parameters as well as on machine-specific constants is established. These formal insights are supported by empirical results on up to 2,048 cores of a Cray XT4 system. To the best of our knowledge, this is the highest reported scalability for parallel block tridiagonal solvers to date.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vay, Jean-Luc, E-mail: jlvay@lbl.gov; Haber, Irving; Godfrey, Brendan B.

    Pseudo-spectral electromagnetic solvers (i.e. representing the fields in Fourier space) have extraordinary precision. In particular, Haber et al. presented in 1973 a pseudo-spectral solver that integrates analytically the solution over a finite time step, under the usual assumption that the source is constant over that time step. Yet, pseudo-spectral solvers have not been widely used, due in part to the difficulty for efficient parallelization owing to global communications associated with global FFTs on the entire computational domains. A method for the parallelization of electromagnetic pseudo-spectral solvers is proposed and tested on single electromagnetic pulses, and on Particle-In-Cell simulations of themore » wakefield formation in a laser plasma accelerator. The method takes advantage of the properties of the Discrete Fourier Transform, the linearity of Maxwell’s equations and the finite speed of light for limiting the communications of data within guard regions between neighboring computational domains. Although this requires a small approximation, test results show that no significant error is made on the test cases that have been presented. The proposed method opens the way to solvers combining the favorable parallel scaling of standard finite-difference methods with the accuracy advantages of pseudo-spectral methods.« less

  10. Fluid-structure interaction involving large deformations: 3D simulations and applications to biological systems

    NASA Astrophysics Data System (ADS)

    Tian, Fang-Bao; Dai, Hu; Luo, Haoxiang; Doyle, James F.; Rousseau, Bernard

    2014-02-01

    Three-dimensional fluid-structure interaction (FSI) involving large deformations of flexible bodies is common in biological systems, but accurate and efficient numerical approaches for modeling such systems are still scarce. In this work, we report a successful case of combining an existing immersed-boundary flow solver with a nonlinear finite-element solid-mechanics solver specifically for three-dimensional FSI simulations. This method represents a significant enhancement from the similar methods that are previously available. Based on the Cartesian grid, the viscous incompressible flow solver can handle boundaries of large displacements with simple mesh generation. The solid-mechanics solver has separate subroutines for analyzing general three-dimensional bodies and thin-walled structures composed of frames, membranes, and plates. Both geometric nonlinearity associated with large displacements and material nonlinearity associated with large strains are incorporated in the solver. The FSI is achieved through a strong coupling and partitioned approach. We perform several validation cases, and the results may be used to expand the currently limited database of FSI benchmark study. Finally, we demonstrate the versatility of the present method by applying it to the aerodynamics of elastic wings of insects and the flow-induced vocal fold vibration.

  11. Scalable domain decomposition solvers for stochastic PDEs in high performance computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, Ajit; Khalil, Mohammad; Pettit, Chris

    Stochastic spectral finite element models of practical engineering systems may involve solutions of linear systems or linearized systems for non-linear problems with billions of unknowns. For stochastic modeling, it is therefore essential to design robust, parallel and scalable algorithms that can efficiently utilize high-performance computing to tackle such large-scale systems. Domain decomposition based iterative solvers can handle such systems. And though these algorithms exhibit excellent scalabilities, significant algorithmic and implementational challenges exist to extend them to solve extreme-scale stochastic systems using emerging computing platforms. Intrusive polynomial chaos expansion based domain decomposition algorithms are extended here to concurrently handle high resolutionmore » in both spatial and stochastic domains using an in-house implementation. Sparse iterative solvers with efficient preconditioners are employed to solve the resulting global and subdomain level local systems through multi-level iterative solvers. We also use parallel sparse matrix–vector operations to reduce the floating-point operations and memory requirements. Numerical and parallel scalabilities of these algorithms are presented for the diffusion equation having spatially varying diffusion coefficient modeled by a non-Gaussian stochastic process. Scalability of the solvers with respect to the number of random variables is also investigated.« less

  12. On some Aitken-like acceleration of the Schwarz method

    NASA Astrophysics Data System (ADS)

    Garbey, M.; Tromeur-Dervout, D.

    2002-12-01

    In this paper we present a family of domain decomposition based on Aitken-like acceleration of the Schwarz method seen as an iterative procedure with a linear rate of convergence. We first present the so-called Aitken-Schwarz procedure for linear differential operators. The solver can be a direct solver when applied to the Helmholtz problem with five-point finite difference scheme on regular grids. We then introduce the Steffensen-Schwarz variant which is an iterative domain decomposition solver that can be applied to linear and nonlinear problems. We show that these solvers have reasonable numerical efficiency compared to classical fast solvers for the Poisson problem or multigrids for more general linear and nonlinear elliptic problems. However, the salient feature of our method is that our algorithm has high tolerance to slow network in the context of distributed parallel computing and is attractive, generally speaking, to use with computer architecture for which performance is limited by the memory bandwidth rather than the flop performance of the CPU. This is nowadays the case for most parallel. computer using the RISC processor architecture. We will illustrate this highly desirable property of our algorithm with large-scale computing experiments.

  13. Solving the Fluid Pressure Poisson Equation Using Multigrid-Evaluation and Improvements.

    PubMed

    Dick, Christian; Rogowsky, Marcus; Westermann, Rudiger

    2016-11-01

    In many numerical simulations of fluids governed by the incompressible Navier-Stokes equations, the pressure Poisson equation needs to be solved to enforce mass conservation. Multigrid solvers show excellent convergence in simple scenarios, yet they can converge slowly in domains where physically separated regions are combined at coarser scales. Moreover, existing multigrid solvers are tailored to specific discretizations of the pressure Poisson equation, and they cannot easily be adapted to other discretizations. In this paper we analyze the convergence properties of existing multigrid solvers for the pressure Poisson equation in different simulation domains, and we show how to further improve the multigrid convergence rate by using a graph-based extension to determine the coarse grid hierarchy. The proposed multigrid solver is generic in that it can be applied to different kinds of discretizations of the pressure Poisson equation, by using solely the specification of the simulation domain and pre-assembled computational stencils. We analyze the proposed solver in combination with finite difference and finite volume discretizations of the pressure Poisson equation. Our evaluations show that, despite the common assumption, multigrid schemes can exploit their potential even in the most complicated simulation scenarios, yet this behavior is obtained at the price of higher memory consumption.

  14. A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments.

    PubMed

    Fisicaro, G; Genovese, L; Andreussi, O; Marzari, N; Goedecker, S

    2016-01-07

    The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes.

  15. A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisicaro, G., E-mail: giuseppe.fisicaro@unibas.ch; Goedecker, S.; Genovese, L.

    2016-01-07

    The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and themore » linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes.« less

  16. Divergence-Free SPH for Incompressible and Viscous Fluids.

    PubMed

    Bender, Jan; Koschier, Dan

    2017-03-01

    In this paper we present a novel Smoothed Particle Hydrodynamics (SPH) method for the efficient and stable simulation of incompressible fluids. The most efficient SPH-based approaches enforce incompressibility either on position or velocity level. However, the continuity equation for incompressible flow demands to maintain a constant density and a divergence-free velocity field. We propose a combination of two novel implicit pressure solvers enforcing both a low volume compression as well as a divergence-free velocity field. While a compression-free fluid is essential for realistic physical behavior, a divergence-free velocity field drastically reduces the number of required solver iterations and increases the stability of the simulation significantly. Thanks to the improved stability, our method can handle larger time steps than previous approaches. This results in a substantial performance gain since the computationally expensive neighborhood search has to be performed less frequently. Moreover, we introduce a third optional implicit solver to simulate highly viscous fluids which seamlessly integrates into our solver framework. Our implicit viscosity solver produces realistic results while introducing almost no numerical damping. We demonstrate the efficiency, robustness and scalability of our method in a variety of complex simulations including scenarios with millions of turbulent particles or highly viscous materials.

  17. Fluid–structure interaction involving large deformations: 3D simulations and applications to biological systems

    PubMed Central

    Tian, Fang-Bao; Dai, Hu; Luo, Haoxiang; Doyle, James F.; Rousseau, Bernard

    2013-01-01

    Three-dimensional fluid–structure interaction (FSI) involving large deformations of flexible bodies is common in biological systems, but accurate and efficient numerical approaches for modeling such systems are still scarce. In this work, we report a successful case of combining an existing immersed-boundary flow solver with a nonlinear finite-element solid-mechanics solver specifically for three-dimensional FSI simulations. This method represents a significant enhancement from the similar methods that are previously available. Based on the Cartesian grid, the viscous incompressible flow solver can handle boundaries of large displacements with simple mesh generation. The solid-mechanics solver has separate subroutines for analyzing general three-dimensional bodies and thin-walled structures composed of frames, membranes, and plates. Both geometric nonlinearity associated with large displacements and material nonlinearity associated with large strains are incorporated in the solver. The FSI is achieved through a strong coupling and partitioned approach. We perform several validation cases, and the results may be used to expand the currently limited database of FSI benchmark study. Finally, we demonstrate the versatility of the present method by applying it to the aerodynamics of elastic wings of insects and the flow-induced vocal fold vibration. PMID:24415796

  18. Numerical renormalization group method for entanglement negativity at finite temperature

    NASA Astrophysics Data System (ADS)

    Shim, Jeongmin; Sim, H.-S.; Lee, Seung-Sup B.

    2018-04-01

    We develop a numerical method to compute the negativity, an entanglement measure for mixed states, between the impurity and the bath in quantum impurity systems at finite temperature. We construct a thermal density matrix by using the numerical renormalization group (NRG), and evaluate the negativity by implementing the NRG approximation that reduces computational cost exponentially. We apply the method to the single-impurity Kondo model and the single-impurity Anderson model. In the Kondo model, the negativity exhibits a power-law scaling at temperature much lower than the Kondo temperature and a sudden death at high temperature. In the Anderson model, the charge fluctuation of the impurity contributes to the negativity even at zero temperature when the on-site Coulomb repulsion of the impurity is finite, while at low temperature the negativity between the impurity spin and the bath exhibits the same power-law scaling behavior as in the Kondo model.

  19. Binding energy and photoionization cross-section of hydrogen-like donor impurity in strongly oblate ellipsoidal quantum dot

    NASA Astrophysics Data System (ADS)

    Hayrapetyan, D. B.; Ohanyan, G. L.; Baghdasaryan, D. A.; Sarkisyan, H. A.; Baskoutas, S.; Kazaryan, E. M.

    2018-01-01

    Hydrogen-like donor impurity states in strongly oblate ellipsoidal quantum dot have been studied. The hydrogen-like donor impurity states are investigated within the framework of variational method. The trial wave function constructed on the base of wave functions of the system without impurity. The dependence of the energy and binding energy for the ground and first excited states on the geometrical parameters of the ellipsoidal quantum dot and on the impurity position have been calculated. The behavior of the oscillator strength for different angles of incident light and geometrical parameters have been revealed. Photoionization cross-section of the electron transitions from the impurity ground state to the size-quantized ground and first excited states have been studied. The effects of impurity position and the geometrical parameters of the ellipsoidal quantum dot on the photoionization cross section dependence on the photon energy have been considered.

  20. Silicon materials task of the Low Cost Solar Array Project: Effect of impurities and processing on silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R.; Rohatgi, A.; Hanes, M. H.; Rai-Choudhury, P.; Mollenkopf, H. C.

    1982-01-01

    The effects of impurities and processing on the characteristics of silicon and terrestrial silicon solar cells were defined in order to develop cost benefit relationships for the use of cheaper, less pure solar grades of silicon. The amount of concentrations of commonly encountered impurities that can be tolerated in typical p or n base solar cells was established, then a preliminary analytical model from which the cell performance could be projected depending on the kinds and amounts of contaminants in the silicon base material was developed. The impurity data base was expanded to include construction materials, and the impurity performace model was refined to account for additional effects such as base resistivity, grain boundary interactions, thermal processing, synergic behavior, and nonuniform impurity distributions. A preliminary assessment of long term (aging) behavior of impurities was also undertaken.

Top