NASA Astrophysics Data System (ADS)
Yu, Leiming; Nina-Paravecino, Fanny; Kaeli, David; Fang, Qianqian
2018-01-01
We present a highly scalable Monte Carlo (MC) three-dimensional photon transport simulation platform designed for heterogeneous computing systems. Through the development of a massively parallel MC algorithm using the Open Computing Language framework, this research extends our existing graphics processing unit (GPU)-accelerated MC technique to a highly scalable vendor-independent heterogeneous computing environment, achieving significantly improved performance and software portability. A number of parallel computing techniques are investigated to achieve portable performance over a wide range of computing hardware. Furthermore, multiple thread-level and device-level load-balancing strategies are developed to obtain efficient simulations using multiple central processing units and GPUs.
CloudMC: a cloud computing application for Monte Carlo simulation.
Miras, H; Jiménez, R; Miras, C; Gomà, C
2013-04-21
This work presents CloudMC, a cloud computing application-developed in Windows Azure®, the platform of the Microsoft® cloud-for the parallelization of Monte Carlo simulations in a dynamic virtual cluster. CloudMC is a web application designed to be independent of the Monte Carlo code in which the simulations are based-the simulations just need to be of the form: input files → executable → output files. To study the performance of CloudMC in Windows Azure®, Monte Carlo simulations with penelope were performed on different instance (virtual machine) sizes, and for different number of instances. The instance size was found to have no effect on the simulation runtime. It was also found that the decrease in time with the number of instances followed Amdahl's law, with a slight deviation due to the increase in the fraction of non-parallelizable time with increasing number of instances. A simulation that would have required 30 h of CPU on a single instance was completed in 48.6 min when executed on 64 instances in parallel (speedup of 37 ×). Furthermore, the use of cloud computing for parallel computing offers some advantages over conventional clusters: high accessibility, scalability and pay per usage. Therefore, it is strongly believed that cloud computing will play an important role in making Monte Carlo dose calculation a reality in future clinical practice.
Souris, Kevin; Lee, John Aldo; Sterpin, Edmond
2016-04-01
Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods hinders their use in clinical routine. This work aims to develop a fast multipurpose Monte Carlo simulation tool for proton therapy using massively parallel central processing unit (CPU) architectures. A new Monte Carlo, called MCsquare (many-core Monte Carlo), has been designed and optimized for the last generation of Intel Xeon processors and Intel Xeon Phi coprocessors. These massively parallel architectures offer the flexibility and the computational power suitable to MC methods. The class-II condensed history algorithm of MCsquare provides a fast and yet accurate method of simulating heavy charged particles such as protons, deuterons, and alphas inside voxelized geometries. Hard ionizations, with energy losses above a user-specified threshold, are simulated individually while soft events are regrouped in a multiple scattering theory. Elastic and inelastic nuclear interactions are sampled from ICRU 63 differential cross sections, thereby allowing for the computation of prompt gamma emission profiles. MCsquare has been benchmarked with the gate/geant4 Monte Carlo application for homogeneous and heterogeneous geometries. Comparisons with gate/geant4 for various geometries show deviations within 2%-1 mm. In spite of the limited memory bandwidth of the coprocessor simulation time is below 25 s for 10(7) primary 200 MeV protons in average soft tissues using all Xeon Phi and CPU resources embedded in a single desktop unit. MCsquare exploits the flexibility of CPU architectures to provide a multipurpose MC simulation tool. Optimized code enables the use of accurate MC calculation within a reasonable computation time, adequate for clinical practice. MCsquare also simulates prompt gamma emission and can thus be used also for in vivo range verification.
MC3: Multi-core Markov-chain Monte Carlo code
NASA Astrophysics Data System (ADS)
Cubillos, Patricio; Harrington, Joseph; Lust, Nate; Foster, AJ; Stemm, Madison; Loredo, Tom; Stevenson, Kevin; Campo, Chris; Hardin, Matt; Hardy, Ryan
2016-10-01
MC3 (Multi-core Markov-chain Monte Carlo) is a Bayesian statistics tool that can be executed from the shell prompt or interactively through the Python interpreter with single- or multiple-CPU parallel computing. It offers Markov-chain Monte Carlo (MCMC) posterior-distribution sampling for several algorithms, Levenberg-Marquardt least-squares optimization, and uniform non-informative, Jeffreys non-informative, or Gaussian-informative priors. MC3 can share the same value among multiple parameters and fix the value of parameters to constant values, and offers Gelman-Rubin convergence testing and correlated-noise estimation with time-averaging or wavelet-based likelihood estimation methods.
Kim, Sangroh; Yoshizumi, Terry; Toncheva, Greta; Yoo, Sua; Yin, Fang-Fang; Frush, Donald
2010-05-01
To address the lack of accurate dose estimation method in cone beam computed tomography (CBCT), we performed point dose metal oxide semiconductor field-effect transistor (MOSFET) measurements and Monte Carlo (MC) simulations. A Varian On-Board Imager (OBI) was employed to measure point doses in the polymethyl methacrylate (PMMA) CT phantoms with MOSFETs for standard and low dose modes. A MC model of the OBI x-ray tube was developed using BEAMnrc/EGSnrc MC system and validated by the half value layer, x-ray spectrum and lateral and depth dose profiles. We compared the weighted computed tomography dose index (CTDIw) between MOSFET measurements and MC simulations. The CTDIw was found to be 8.39 cGy for the head scan and 4.58 cGy for the body scan from the MOSFET measurements in standard dose mode, and 1.89 cGy for the head and 1.11 cGy for the body in low dose mode, respectively. The CTDIw from MC compared well to the MOSFET measurements within 5% differences. In conclusion, a MC model for Varian CBCT has been established and this approach may be easily extended from the CBCT geometry to multi-detector CT geometry.
Peer-to-peer Monte Carlo simulation of photon migration in topical applications of biomedical optics
NASA Astrophysics Data System (ADS)
Doronin, Alexander; Meglinski, Igor
2012-09-01
In the framework of further development of the unified approach of photon migration in complex turbid media, such as biological tissues we present a peer-to-peer (P2P) Monte Carlo (MC) code. The object-oriented programming is used for generalization of MC model for multipurpose use in various applications of biomedical optics. The online user interface providing multiuser access is developed using modern web technologies, such as Microsoft Silverlight, ASP.NET. The emerging P2P network utilizing computers with different types of compute unified device architecture-capable graphics processing units (GPUs) is applied for acceleration and to overcome the limitations, imposed by multiuser access in the online MC computational tool. The developed P2P MC was validated by comparing the results of simulation of diffuse reflectance and fluence rate distribution for semi-infinite scattering medium with known analytical results, results of adding-doubling method, and with other GPU-based MC techniques developed in the past. The best speedup of processing multiuser requests in a range of 4 to 35 s was achieved using single-precision computing, and the double-precision computing for floating-point arithmetic operations provides higher accuracy.
Doronin, Alexander; Meglinski, Igor
2012-09-01
In the framework of further development of the unified approach of photon migration in complex turbid media, such as biological tissues we present a peer-to-peer (P2P) Monte Carlo (MC) code. The object-oriented programming is used for generalization of MC model for multipurpose use in various applications of biomedical optics. The online user interface providing multiuser access is developed using modern web technologies, such as Microsoft Silverlight, ASP.NET. The emerging P2P network utilizing computers with different types of compute unified device architecture-capable graphics processing units (GPUs) is applied for acceleration and to overcome the limitations, imposed by multiuser access in the online MC computational tool. The developed P2P MC was validated by comparing the results of simulation of diffuse reflectance and fluence rate distribution for semi-infinite scattering medium with known analytical results, results of adding-doubling method, and with other GPU-based MC techniques developed in the past. The best speedup of processing multiuser requests in a range of 4 to 35 s was achieved using single-precision computing, and the double-precision computing for floating-point arithmetic operations provides higher accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souris, Kevin, E-mail: kevin.souris@uclouvain.be; Lee, John Aldo; Sterpin, Edmond
2016-04-15
Purpose: Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods hinders their use in clinical routine. This work aims to develop a fast multipurpose Monte Carlo simulation tool for proton therapy using massively parallel central processing unit (CPU) architectures. Methods: A new Monte Carlo, called MCsquare (many-core Monte Carlo), has been designed and optimized for the last generation of Intel Xeon processors and Intel Xeon Phi coprocessors. These massively parallel architectures offer the flexibility and the computational power suitable to MC methods. The class-II condensed history algorithmmore » of MCsquare provides a fast and yet accurate method of simulating heavy charged particles such as protons, deuterons, and alphas inside voxelized geometries. Hard ionizations, with energy losses above a user-specified threshold, are simulated individually while soft events are regrouped in a multiple scattering theory. Elastic and inelastic nuclear interactions are sampled from ICRU 63 differential cross sections, thereby allowing for the computation of prompt gamma emission profiles. MCsquare has been benchmarked with the GATE/GEANT4 Monte Carlo application for homogeneous and heterogeneous geometries. Results: Comparisons with GATE/GEANT4 for various geometries show deviations within 2%–1 mm. In spite of the limited memory bandwidth of the coprocessor simulation time is below 25 s for 10{sup 7} primary 200 MeV protons in average soft tissues using all Xeon Phi and CPU resources embedded in a single desktop unit. Conclusions: MCsquare exploits the flexibility of CPU architectures to provide a multipurpose MC simulation tool. Optimized code enables the use of accurate MC calculation within a reasonable computation time, adequate for clinical practice. MCsquare also simulates prompt gamma emission and can thus be used also for in vivo range verification.« less
NASA Astrophysics Data System (ADS)
Cai, Han-Jie; Zhang, Zhi-Lei; Fu, Fen; Li, Jian-Yang; Zhang, Xun-Chao; Zhang, Ya-Ling; Yan, Xue-Song; Lin, Ping; Xv, Jian-Ya; Yang, Lei
2018-02-01
The dense granular flow spallation target is a new target concept chosen for the Accelerator-Driven Subcritical (ADS) project in China. For the R&D of this kind of target concept, a dedicated Monte Carlo (MC) program named GMT was developed to perform the simulation study of the beam-target interaction. Owing to the complexities of the target geometry, the computational cost of the MC simulation of particle tracks is highly expensive. Thus, improvement of computational efficiency will be essential for the detailed MC simulation studies of the dense granular target. Here we present the special design of the GMT program and its high efficiency performance. In addition, the speedup potential of the GPU-accelerated spallation models is discussed.
Using Computer-Based "Experiments" in the Analysis of Chemical Reaction Equilibria
ERIC Educational Resources Information Center
Li, Zhao; Corti, David S.
2018-01-01
The application of the Reaction Monte Carlo (RxMC) algorithm to standard textbook problems in chemical reaction equilibria is discussed. The RxMC method is a molecular simulation algorithm for studying the equilibrium properties of reactive systems, and therefore provides the opportunity to develop computer-based "experiments" for the…
Monte Carlo verification of radiotherapy treatments with CloudMC.
Miras, Hector; Jiménez, Rubén; Perales, Álvaro; Terrón, José Antonio; Bertolet, Alejandro; Ortiz, Antonio; Macías, José
2018-06-27
A new implementation has been made on CloudMC, a cloud-based platform presented in a previous work, in order to provide services for radiotherapy treatment verification by means of Monte Carlo in a fast, easy and economical way. A description of the architecture of the application and the new developments implemented is presented together with the results of the tests carried out to validate its performance. CloudMC has been developed over Microsoft Azure cloud. It is based on a map/reduce implementation for Monte Carlo calculations distribution over a dynamic cluster of virtual machines in order to reduce calculation time. CloudMC has been updated with new methods to read and process the information related to radiotherapy treatment verification: CT image set, treatment plan, structures and dose distribution files in DICOM format. Some tests have been designed in order to determine, for the different tasks, the most suitable type of virtual machines from those available in Azure. Finally, the performance of Monte Carlo verification in CloudMC is studied through three real cases that involve different treatment techniques, linac models and Monte Carlo codes. Considering computational and economic factors, D1_v2 and G1 virtual machines were selected as the default type for the Worker Roles and the Reducer Role respectively. Calculation times up to 33 min and costs of 16 € were achieved for the verification cases presented when a statistical uncertainty below 2% (2σ) was required. The costs were reduced to 3-6 € when uncertainty requirements are relaxed to 4%. Advantages like high computational power, scalability, easy access and pay-per-usage model, make Monte Carlo cloud-based solutions, like the one presented in this work, an important step forward to solve the long-lived problem of truly introducing the Monte Carlo algorithms in the daily routine of the radiotherapy planning process.
NOTE: Acceleration of Monte Carlo-based scatter compensation for cardiac SPECT
NASA Astrophysics Data System (ADS)
Sohlberg, A.; Watabe, H.; Iida, H.
2008-07-01
Single proton emission computed tomography (SPECT) images are degraded by photon scatter making scatter compensation essential for accurate reconstruction. Reconstruction-based scatter compensation with Monte Carlo (MC) modelling of scatter shows promise for accurate scatter correction, but it is normally hampered by long computation times. The aim of this work was to accelerate the MC-based scatter compensation using coarse grid and intermittent scatter modelling. The acceleration methods were compared to un-accelerated implementation using MC-simulated projection data of the mathematical cardiac torso (MCAT) phantom modelling 99mTc uptake and clinical myocardial perfusion studies. The results showed that when combined the acceleration methods reduced the reconstruction time for 10 ordered subset expectation maximization (OS-EM) iterations from 56 to 11 min without a significant reduction in image quality indicating that the coarse grid and intermittent scatter modelling are suitable for MC-based scatter compensation in cardiac SPECT.
Space Object Collision Probability via Monte Carlo on the Graphics Processing Unit
NASA Astrophysics Data System (ADS)
Vittaldev, Vivek; Russell, Ryan P.
2017-09-01
Fast and accurate collision probability computations are essential for protecting space assets. Monte Carlo (MC) simulation is the most accurate but computationally intensive method. A Graphics Processing Unit (GPU) is used to parallelize the computation and reduce the overall runtime. Using MC techniques to compute the collision probability is common in literature as the benchmark. An optimized implementation on the GPU, however, is a challenging problem and is the main focus of the current work. The MC simulation takes samples from the uncertainty distributions of the Resident Space Objects (RSOs) at any time during a time window of interest and outputs the separations at closest approach. Therefore, any uncertainty propagation method may be used and the collision probability is automatically computed as a function of RSO collision radii. Integration using a fixed time step and a quartic interpolation after every Runge Kutta step ensures that no close approaches are missed. Two orders of magnitude speedups over a serial CPU implementation are shown, and speedups improve moderately with higher fidelity dynamics. The tool makes the MC approach tractable on a single workstation, and can be used as a final product, or for verifying surrogate and analytical collision probability methods.
Fast CPU-based Monte Carlo simulation for radiotherapy dose calculation.
Ziegenhein, Peter; Pirner, Sven; Ph Kamerling, Cornelis; Oelfke, Uwe
2015-08-07
Monte-Carlo (MC) simulations are considered to be the most accurate method for calculating dose distributions in radiotherapy. Its clinical application, however, still is limited by the long runtimes conventional implementations of MC algorithms require to deliver sufficiently accurate results on high resolution imaging data. In order to overcome this obstacle we developed the software-package PhiMC, which is capable of computing precise dose distributions in a sub-minute time-frame by leveraging the potential of modern many- and multi-core CPU-based computers. PhiMC is based on the well verified dose planning method (DPM). We could demonstrate that PhiMC delivers dose distributions which are in excellent agreement to DPM. The multi-core implementation of PhiMC scales well between different computer architectures and achieves a speed-up of up to 37[Formula: see text] compared to the original DPM code executed on a modern system. Furthermore, we could show that our CPU-based implementation on a modern workstation is between 1.25[Formula: see text] and 1.95[Formula: see text] faster than a well-known GPU implementation of the same simulation method on a NVIDIA Tesla C2050. Since CPUs work on several hundreds of GB RAM the typical GPU memory limitation does not apply for our implementation and high resolution clinical plans can be calculated.
Mukumoto, Nobutaka; Tsujii, Katsutomo; Saito, Susumu; Yasunaga, Masayoshi; Takegawa, Hideki; Yamamoto, Tokihiro; Numasaki, Hodaka; Teshima, Teruki
2009-10-01
To develop an infrastructure for the integrated Monte Carlo verification system (MCVS) to verify the accuracy of conventional dose calculations, which often fail to accurately predict dose distributions, mainly due to inhomogeneities in the patient's anatomy, for example, in lung and bone. The MCVS consists of the graphical user interface (GUI) based on a computational environment for radiotherapy research (CERR) with MATLAB language. The MCVS GUI acts as an interface between the MCVS and a commercial treatment planning system to import the treatment plan, create MC input files, and analyze MC output dose files. The MCVS consists of the EGSnrc MC codes, which include EGSnrc/BEAMnrc to simulate the treatment head and EGSnrc/DOSXYZnrc to calculate the dose distributions in the patient/phantom. In order to improve computation time without approximations, an in-house cluster system was constructed. The phase-space data of a 6-MV photon beam from a Varian Clinac unit was developed and used to establish several benchmarks under homogeneous conditions. The MC results agreed with the ionization chamber measurements to within 1%. The MCVS GUI could import and display the radiotherapy treatment plan created by the MC method and various treatment planning systems, such as RTOG and DICOM-RT formats. Dose distributions could be analyzed by using dose profiles and dose volume histograms and compared on the same platform. With the cluster system, calculation time was improved in line with the increase in the number of central processing units (CPUs) at a computation efficiency of more than 98%. Development of the MCVS was successful for performing MC simulations and analyzing dose distributions.
Accelerated GPU based SPECT Monte Carlo simulations.
Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris
2016-06-07
Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: (99m) Tc, (111)In and (131)I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational efficiency of SPECT imaging simulations.
Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure.
Wang, Henry; Ma, Yunzhi; Pratx, Guillem; Xing, Lei
2011-09-07
Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47× speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed.
NASA Astrophysics Data System (ADS)
Lu, D.; Ricciuto, D. M.; Evans, K. J.
2017-12-01
Data-worth analysis plays an essential role in improving the understanding of the subsurface system, in developing and refining subsurface models, and in supporting rational water resources management. However, data-worth analysis is computationally expensive as it requires quantifying parameter uncertainty, prediction uncertainty, and both current and potential data uncertainties. Assessment of these uncertainties in large-scale stochastic subsurface simulations using standard Monte Carlo (MC) sampling or advanced surrogate modeling is extremely computationally intensive, sometimes even infeasible. In this work, we propose efficient Bayesian analysis of data-worth using a multilevel Monte Carlo (MLMC) method. Compared to the standard MC that requires a significantly large number of high-fidelity model executions to achieve a prescribed accuracy in estimating expectations, the MLMC can substantially reduce the computational cost with the use of multifidelity approximations. As the data-worth analysis involves a great deal of expectation estimations, the cost savings from MLMC in the assessment can be very outstanding. While the proposed MLMC-based data-worth analysis is broadly applicable, we use it to a highly heterogeneous oil reservoir simulation to select an optimal candidate data set that gives the largest uncertainty reduction in predicting mass flow rates at four production wells. The choices made by the MLMC estimation are validated by the actual measurements of the potential data, and consistent with the estimation obtained from the standard MC. But compared to the standard MC, the MLMC greatly reduces the computational costs in the uncertainty reduction estimation, with up to 600 days cost savings when one processor is used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthew Ellis; Derek Gaston; Benoit Forget
In recent years the use of Monte Carlo methods for modeling reactors has become feasible due to the increasing availability of massively parallel computer systems. One of the primary challenges yet to be fully resolved, however, is the efficient and accurate inclusion of multiphysics feedback in Monte Carlo simulations. The research in this paper presents a preliminary coupling of the open source Monte Carlo code OpenMC with the open source Multiphysics Object-Oriented Simulation Environment (MOOSE). The coupling of OpenMC and MOOSE will be used to investigate efficient and accurate numerical methods needed to include multiphysics feedback in Monte Carlo codes.more » An investigation into the sensitivity of Doppler feedback to fuel temperature approximations using a two dimensional 17x17 PWR fuel assembly is presented in this paper. The results show a functioning multiphysics coupling between OpenMC and MOOSE. The coupling utilizes Functional Expansion Tallies to accurately and efficiently transfer pin power distributions tallied in OpenMC to unstructured finite element meshes used in MOOSE. The two dimensional PWR fuel assembly case also demonstrates that for a simplified model the pin-by-pin doppler feedback can be adequately replicated by scaling a representative pin based on pin relative powers.« less
GATE Monte Carlo simulation in a cloud computing environment
NASA Astrophysics Data System (ADS)
Rowedder, Blake Austin
The GEANT4-based GATE is a unique and powerful Monte Carlo (MC) platform, which provides a single code library allowing the simulation of specific medical physics applications, e.g. PET, SPECT, CT, radiotherapy, and hadron therapy. However, this rigorous yet flexible platform is used only sparingly in the clinic due to its lengthy calculation time. By accessing the powerful computational resources of a cloud computing environment, GATE's runtime can be significantly reduced to clinically feasible levels without the sizable investment of a local high performance cluster. This study investigated a reliable and efficient execution of GATE MC simulations using a commercial cloud computing services. Amazon's Elastic Compute Cloud was used to launch several nodes equipped with GATE. Job data was initially broken up on the local computer, then uploaded to the worker nodes on the cloud. The results were automatically downloaded and aggregated on the local computer for display and analysis. Five simulations were repeated for every cluster size between 1 and 20 nodes. Ultimately, increasing cluster size resulted in a decrease in calculation time that could be expressed with an inverse power model. Comparing the benchmark results to the published values and error margins indicated that the simulation results were not affected by the cluster size and thus that integrity of a calculation is preserved in a cloud computing environment. The runtime of a 53 minute long simulation was decreased to 3.11 minutes when run on a 20-node cluster. The ability to improve the speed of simulation suggests that fast MC simulations are viable for imaging and radiotherapy applications. With high power computing continuing to lower in price and accessibility, implementing Monte Carlo techniques with cloud computing for clinical applications will continue to become more attractive.
Gorshkov, Anton V; Kirillin, Mikhail Yu
2015-08-01
Over two decades, the Monte Carlo technique has become a gold standard in simulation of light propagation in turbid media, including biotissues. Technological solutions provide further advances of this technique. The Intel Xeon Phi coprocessor is a new type of accelerator for highly parallel general purpose computing, which allows execution of a wide range of applications without substantial code modification. We present a technical approach of porting our previously developed Monte Carlo (MC) code for simulation of light transport in tissues to the Intel Xeon Phi coprocessor. We show that employing the accelerator allows reducing computational time of MC simulation and obtaining simulation speed-up comparable to GPU. We demonstrate the performance of the developed code for simulation of light transport in the human head and determination of the measurement volume in near-infrared spectroscopy brain sensing.
An efficient Bayesian data-worth analysis using a multilevel Monte Carlo method
NASA Astrophysics Data System (ADS)
Lu, Dan; Ricciuto, Daniel; Evans, Katherine
2018-03-01
Improving the understanding of subsurface systems and thus reducing prediction uncertainty requires collection of data. As the collection of subsurface data is costly, it is important that the data collection scheme is cost-effective. Design of a cost-effective data collection scheme, i.e., data-worth analysis, requires quantifying model parameter, prediction, and both current and potential data uncertainties. Assessment of these uncertainties in large-scale stochastic subsurface hydrological model simulations using standard Monte Carlo (MC) sampling or surrogate modeling is extremely computationally intensive, sometimes even infeasible. In this work, we propose an efficient Bayesian data-worth analysis using a multilevel Monte Carlo (MLMC) method. Compared to the standard MC that requires a significantly large number of high-fidelity model executions to achieve a prescribed accuracy in estimating expectations, the MLMC can substantially reduce computational costs using multifidelity approximations. Since the Bayesian data-worth analysis involves a great deal of expectation estimation, the cost saving of the MLMC in the assessment can be outstanding. While the proposed MLMC-based data-worth analysis is broadly applicable, we use it for a highly heterogeneous two-phase subsurface flow simulation to select an optimal candidate data set that gives the largest uncertainty reduction in predicting mass flow rates at four production wells. The choices made by the MLMC estimation are validated by the actual measurements of the potential data, and consistent with the standard MC estimation. But compared to the standard MC, the MLMC greatly reduces the computational costs.
Li, Yongbao; Tian, Zhen; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun
2017-01-07
Monte Carlo (MC)-based spot dose calculation is highly desired for inverse treatment planning in proton therapy because of its accuracy. Recent studies on biological optimization have also indicated the use of MC methods to compute relevant quantities of interest, e.g. linear energy transfer. Although GPU-based MC engines have been developed to address inverse optimization problems, their efficiency still needs to be improved. Also, the use of a large number of GPUs in MC calculation is not favorable for clinical applications. The previously proposed adaptive particle sampling (APS) method can improve the efficiency of MC-based inverse optimization by using the computationally expensive MC simulation more effectively. This method is more efficient than the conventional approach that performs spot dose calculation and optimization in two sequential steps. In this paper, we propose a computational library to perform MC-based spot dose calculation on GPU with the APS scheme. The implemented APS method performs a non-uniform sampling of the particles from pencil beam spots during the optimization process, favoring those from the high intensity spots. The library also conducts two computationally intensive matrix-vector operations frequently used when solving an optimization problem. This library design allows a streamlined integration of the MC-based spot dose calculation into an existing proton therapy inverse planning process. We tested the developed library in a typical inverse optimization system with four patient cases. The library achieved the targeted functions by supporting inverse planning in various proton therapy schemes, e.g. single field uniform dose, 3D intensity modulated proton therapy, and distal edge tracking. The efficiency was 41.6 ± 15.3% higher than the use of a GPU-based MC package in a conventional calculation scheme. The total computation time ranged between 2 and 50 min on a single GPU card depending on the problem size.
NASA Astrophysics Data System (ADS)
Li, Yongbao; Tian, Zhen; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun
2017-01-01
Monte Carlo (MC)-based spot dose calculation is highly desired for inverse treatment planning in proton therapy because of its accuracy. Recent studies on biological optimization have also indicated the use of MC methods to compute relevant quantities of interest, e.g. linear energy transfer. Although GPU-based MC engines have been developed to address inverse optimization problems, their efficiency still needs to be improved. Also, the use of a large number of GPUs in MC calculation is not favorable for clinical applications. The previously proposed adaptive particle sampling (APS) method can improve the efficiency of MC-based inverse optimization by using the computationally expensive MC simulation more effectively. This method is more efficient than the conventional approach that performs spot dose calculation and optimization in two sequential steps. In this paper, we propose a computational library to perform MC-based spot dose calculation on GPU with the APS scheme. The implemented APS method performs a non-uniform sampling of the particles from pencil beam spots during the optimization process, favoring those from the high intensity spots. The library also conducts two computationally intensive matrix-vector operations frequently used when solving an optimization problem. This library design allows a streamlined integration of the MC-based spot dose calculation into an existing proton therapy inverse planning process. We tested the developed library in a typical inverse optimization system with four patient cases. The library achieved the targeted functions by supporting inverse planning in various proton therapy schemes, e.g. single field uniform dose, 3D intensity modulated proton therapy, and distal edge tracking. The efficiency was 41.6 ± 15.3% higher than the use of a GPU-based MC package in a conventional calculation scheme. The total computation time ranged between 2 and 50 min on a single GPU card depending on the problem size.
Li, Yongbao; Tian, Zhen; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun
2016-01-01
Monte Carlo (MC)-based spot dose calculation is highly desired for inverse treatment planning in proton therapy because of its accuracy. Recent studies on biological optimization have also indicated the use of MC methods to compute relevant quantities of interest, e.g. linear energy transfer. Although GPU-based MC engines have been developed to address inverse optimization problems, their efficiency still needs to be improved. Also, the use of a large number of GPUs in MC calculation is not favorable for clinical applications. The previously proposed adaptive particle sampling (APS) method can improve the efficiency of MC-based inverse optimization by using the computationally expensive MC simulation more effectively. This method is more efficient than the conventional approach that performs spot dose calculation and optimization in two sequential steps. In this paper, we propose a computational library to perform MC-based spot dose calculation on GPU with the APS scheme. The implemented APS method performs a non-uniform sampling of the particles from pencil beam spots during the optimization process, favoring those from the high intensity spots. The library also conducts two computationally intensive matrix-vector operations frequently used when solving an optimization problem. This library design allows a streamlined integration of the MC-based spot dose calculation into an existing proton therapy inverse planning process. We tested the developed library in a typical inverse optimization system with four patient cases. The library achieved the targeted functions by supporting inverse planning in various proton therapy schemes, e.g. single field uniform dose, 3D intensity modulated proton therapy, and distal edge tracking. The efficiency was 41.6±15.3% higher than the use of a GPU-based MC package in a conventional calculation scheme. The total computation time ranged between 2 and 50 min on a single GPU card depending on the problem size. PMID:27991456
USDA-ARS?s Scientific Manuscript database
Computer Monte-Carlo (MC) simulations (Geant4) of neutron propagation and acquisition of gamma response from soil samples was applied to evaluate INS system performance characteristic [sensitivity, minimal detectable level (MDL)] for soil carbon measurement. The INS system model with best performanc...
Svatos, M.; Zankowski, C.; Bednarz, B.
2016-01-01
Purpose: The future of radiation therapy will require advanced inverse planning solutions to support single-arc, multiple-arc, and “4π” delivery modes, which present unique challenges in finding an optimal treatment plan over a vast search space, while still preserving dosimetric accuracy. The successful clinical implementation of such methods would benefit from Monte Carlo (MC) based dose calculation methods, which can offer improvements in dosimetric accuracy when compared to deterministic methods. The standard method for MC based treatment planning optimization leverages the accuracy of the MC dose calculation and efficiency of well-developed optimization methods, by precalculating the fluence to dose relationship within a patient with MC methods and subsequently optimizing the fluence weights. However, the sequential nature of this implementation is computationally time consuming and memory intensive. Methods to reduce the overhead of the MC precalculation have been explored in the past, demonstrating promising reductions of computational time overhead, but with limited impact on the memory overhead due to the sequential nature of the dose calculation and fluence optimization. The authors propose an entirely new form of “concurrent” Monte Carlo treat plan optimization: a platform which optimizes the fluence during the dose calculation, reduces wasted computation time being spent on beamlets that weakly contribute to the final dose distribution, and requires only a low memory footprint to function. In this initial investigation, the authors explore the key theoretical and practical considerations of optimizing fluence in such a manner. Methods: The authors present a novel derivation and implementation of a gradient descent algorithm that allows for optimization during MC particle transport, based on highly stochastic information generated through particle transport of very few histories. A gradient rescaling and renormalization algorithm, and the concept of momentum from stochastic gradient descent were used to address obstacles unique to performing gradient descent fluence optimization during MC particle transport. The authors have applied their method to two simple geometrical phantoms, and one clinical patient geometry to examine the capability of this platform to generate conformal plans as well as assess its computational scaling and efficiency, respectively. Results: The authors obtain a reduction of at least 50% in total histories transported in their investigation compared to a theoretical unweighted beamlet calculation and subsequent fluence optimization method, and observe a roughly fixed optimization time overhead consisting of ∼10% of the total computation time in all cases. Finally, the authors demonstrate a negligible increase in memory overhead of ∼7–8 MB to allow for optimization of a clinical patient geometry surrounded by 36 beams using their platform. Conclusions: This study demonstrates a fluence optimization approach, which could significantly improve the development of next generation radiation therapy solutions while incurring minimal additional computational overhead. PMID:27277051
Evaluation and optimization of sampling errors for the Monte Carlo Independent Column Approximation
NASA Astrophysics Data System (ADS)
Räisänen, Petri; Barker, W. Howard
2004-07-01
The Monte Carlo Independent Column Approximation (McICA) method for computing domain-average broadband radiative fluxes is unbiased with respect to the full ICA, but its flux estimates contain conditional random noise. McICA's sampling errors are evaluated here using a global climate model (GCM) dataset and a correlated-k distribution (CKD) radiation scheme. Two approaches to reduce McICA's sampling variance are discussed. The first is to simply restrict all of McICA's samples to cloudy regions. This avoids wasting precious few samples on essentially homogeneous clear skies. Clear-sky fluxes need to be computed separately for this approach, but this is usually done in GCMs for diagnostic purposes anyway. Second, accuracy can be improved by repeated sampling, and averaging those CKD terms with large cloud radiative effects. Although this naturally increases computational costs over the standard CKD model, random errors for fluxes and heating rates are reduced by typically 50% to 60%, for the present radiation code, when the total number of samples is increased by 50%. When both variance reduction techniques are applied simultaneously, globally averaged flux and heating rate random errors are reduced by a factor of #3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y; UT Southwestern Medical Center, Dallas, TX; Tian, Z
2015-06-15
Purpose: Intensity-modulated proton therapy (IMPT) is increasingly used in proton therapy. For IMPT optimization, Monte Carlo (MC) is desired for spots dose calculations because of its high accuracy, especially in cases with a high level of heterogeneity. It is also preferred in biological optimization problems due to the capability of computing quantities related to biological effects. However, MC simulation is typically too slow to be used for this purpose. Although GPU-based MC engines have become available, the achieved efficiency is still not ideal. The purpose of this work is to develop a new optimization scheme to include GPU-based MC intomore » IMPT. Methods: A conventional approach using MC in IMPT simply calls the MC dose engine repeatedly for each spot dose calculations. However, this is not the optimal approach, because of the unnecessary computations on some spots that turned out to have very small weights after solving the optimization problem. GPU-memory writing conflict occurring at a small beam size also reduces computational efficiency. To solve these problems, we developed a new framework that iteratively performs MC dose calculations and plan optimizations. At each dose calculation step, the particles were sampled from different spots altogether with Metropolis algorithm, such that the particle number is proportional to the latest optimized spot intensity. Simultaneously transporting particles from multiple spots also mitigated the memory writing conflict problem. Results: We have validated the proposed MC-based optimization schemes in one prostate case. The total computation time of our method was ∼5–6 min on one NVIDIA GPU card, including both spot dose calculation and plan optimization, whereas a conventional method naively using the same GPU-based MC engine were ∼3 times slower. Conclusion: A fast GPU-based MC dose calculation method along with a novel optimization workflow is developed. The high efficiency makes it attractive for clinical usages.« less
Towards real-time photon Monte Carlo dose calculation in the cloud
NASA Astrophysics Data System (ADS)
Ziegenhein, Peter; Kozin, Igor N.; Kamerling, Cornelis Ph; Oelfke, Uwe
2017-06-01
Near real-time application of Monte Carlo (MC) dose calculation in clinic and research is hindered by the long computational runtimes of established software. Currently, fast MC software solutions are available utilising accelerators such as graphical processing units (GPUs) or clusters based on central processing units (CPUs). Both platforms are expensive in terms of purchase costs and maintenance and, in case of the GPU, provide only limited scalability. In this work we propose a cloud-based MC solution, which offers high scalability of accurate photon dose calculations. The MC simulations run on a private virtual supercomputer that is formed in the cloud. Computational resources can be provisioned dynamically at low cost without upfront investment in expensive hardware. A client-server software solution has been developed which controls the simulations and transports data to and from the cloud efficiently and securely. The client application integrates seamlessly into a treatment planning system. It runs the MC simulation workflow automatically and securely exchanges simulation data with the server side application that controls the virtual supercomputer. Advanced encryption standards were used to add an additional security layer, which encrypts and decrypts patient data on-the-fly at the processor register level. We could show that our cloud-based MC framework enables near real-time dose computation. It delivers excellent linear scaling for high-resolution datasets with absolute runtimes of 1.1 seconds to 10.9 seconds for simulating a clinical prostate and liver case up to 1% statistical uncertainty. The computation runtimes include the transportation of data to and from the cloud as well as process scheduling and synchronisation overhead. Cloud-based MC simulations offer a fast, affordable and easily accessible alternative for near real-time accurate dose calculations to currently used GPU or cluster solutions.
Towards real-time photon Monte Carlo dose calculation in the cloud.
Ziegenhein, Peter; Kozin, Igor N; Kamerling, Cornelis Ph; Oelfke, Uwe
2017-06-07
Near real-time application of Monte Carlo (MC) dose calculation in clinic and research is hindered by the long computational runtimes of established software. Currently, fast MC software solutions are available utilising accelerators such as graphical processing units (GPUs) or clusters based on central processing units (CPUs). Both platforms are expensive in terms of purchase costs and maintenance and, in case of the GPU, provide only limited scalability. In this work we propose a cloud-based MC solution, which offers high scalability of accurate photon dose calculations. The MC simulations run on a private virtual supercomputer that is formed in the cloud. Computational resources can be provisioned dynamically at low cost without upfront investment in expensive hardware. A client-server software solution has been developed which controls the simulations and transports data to and from the cloud efficiently and securely. The client application integrates seamlessly into a treatment planning system. It runs the MC simulation workflow automatically and securely exchanges simulation data with the server side application that controls the virtual supercomputer. Advanced encryption standards were used to add an additional security layer, which encrypts and decrypts patient data on-the-fly at the processor register level. We could show that our cloud-based MC framework enables near real-time dose computation. It delivers excellent linear scaling for high-resolution datasets with absolute runtimes of 1.1 seconds to 10.9 seconds for simulating a clinical prostate and liver case up to 1% statistical uncertainty. The computation runtimes include the transportation of data to and from the cloud as well as process scheduling and synchronisation overhead. Cloud-based MC simulations offer a fast, affordable and easily accessible alternative for near real-time accurate dose calculations to currently used GPU or cluster solutions.
NASA Astrophysics Data System (ADS)
Provata, Astero; Prassas, Vassilis D.; Theodorou, Doros N.
1997-10-01
A thin liquid film of lattice fluid in equilibrium with its vapor is studied in 2 and 3 dimensions with canonical Monte Carlo simulation (MC) and Self-Consistent Field Theory (SCF) in the temperature range 0.45Tc to Tc, where Tc the liquid-gas critical temperature. Extending the approach of Oates et al. [Philos. Mag. B 61, 337 (1990)] to anisotropic systems, we develop a method for the MC computation of the transverse and normal pressure profiles, hence of the surface tension, based on virtual removals of individual sites or blocks of sites from the system. Results from implementation of this new method, obtained at very modest computational cost, are in reasonable agreement with exact values and other MC estimates of the surface tension of the 2-d and 3-d model systems, respectively. SCF estimates of the interfacial density profiles, the surface tension, the vapor pressure curve and the binodal curve compare well with MC results away from Tc, but show the expected deviations at high temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Z; Gao, M
Purpose: Monte Carlo simulation plays an important role for proton Pencil Beam Scanning (PBS) technique. However, MC simulation demands high computing power and is limited to few large proton centers that can afford a computer cluster. We study the feasibility of utilizing cloud computing in the MC simulation of PBS beams. Methods: A GATE/GEANT4 based MC simulation software was installed on a commercial cloud computing virtual machine (Linux 64-bits, Amazon EC2). Single spot Integral Depth Dose (IDD) curves and in-air transverse profiles were used to tune the source parameters to simulate an IBA machine. With the use of StarCluster softwaremore » developed at MIT, a Linux cluster with 2–100 nodes can be conveniently launched in the cloud. A proton PBS plan was then exported to the cloud where the MC simulation was run. Results: The simulated PBS plan has a field size of 10×10cm{sup 2}, 20cm range, 10cm modulation, and contains over 10,000 beam spots. EC2 instance type m1.medium was selected considering the CPU/memory requirement and 40 instances were used to form a Linux cluster. To minimize cost, master node was created with on-demand instance and worker nodes were created with spot-instance. The hourly cost for the 40-node cluster was $0.63 and the projected cost for a 100-node cluster was $1.41. Ten million events were simulated to plot PDD and profile, with each job containing 500k events. The simulation completed within 1 hour and an overall statistical uncertainty of < 2% was achieved. Good agreement between MC simulation and measurement was observed. Conclusion: Cloud computing is a cost-effective and easy to maintain platform to run proton PBS MC simulation. When proton MC packages such as GATE and TOPAS are combined with cloud computing, it will greatly facilitate the pursuing of PBS MC studies, especially for newly established proton centers or individual researchers.« less
Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure
NASA Astrophysics Data System (ADS)
Wang, Henry; Ma, Yunzhi; Pratx, Guillem; Xing, Lei
2011-09-01
Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47× speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed. This work was presented in part at the 2010 Annual Meeting of the American Association of Physicists in Medicine (AAPM), Philadelphia, PA.
Nuclear reactor transient analysis via a quasi-static kinetics Monte Carlo method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jo, YuGwon; Cho, Bumhee; Cho, Nam Zin, E-mail: nzcho@kaist.ac.kr
2015-12-31
The predictor-corrector quasi-static (PCQS) method is applied to the Monte Carlo (MC) calculation for reactor transient analysis. To solve the transient fixed-source problem of the PCQS method, fission source iteration is used and a linear approximation of fission source distributions during a macro-time step is introduced to provide delayed neutron source. The conventional particle-tracking procedure is modified to solve the transient fixed-source problem via MC calculation. The PCQS method with MC calculation is compared with the direct time-dependent method of characteristics (MOC) on a TWIGL two-group problem for verification of the computer code. Then, the results on a continuous-energy problemmore » are presented.« less
A hybrid (Monte Carlo/deterministic) approach for multi-dimensional radiation transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bal, Guillaume, E-mail: gb2030@columbia.edu; Davis, Anthony B., E-mail: Anthony.B.Davis@jpl.nasa.gov; Kavli Institute for Theoretical Physics, Kohn Hall, University of California, Santa Barbara, CA 93106-4030
2011-08-20
Highlights: {yields} We introduce a variance reduction scheme for Monte Carlo (MC) transport. {yields} The primary application is atmospheric remote sensing. {yields} The technique first solves the adjoint problem using a deterministic solver. {yields} Next, the adjoint solution is used as an importance function for the MC solver. {yields} The adjoint problem is solved quickly since it ignores the volume. - Abstract: A novel hybrid Monte Carlo transport scheme is demonstrated in a scene with solar illumination, scattering and absorbing 2D atmosphere, a textured reflecting mountain, and a small detector located in the sky (mounted on a satellite or amore » airplane). It uses a deterministic approximation of an adjoint transport solution to reduce variance, computed quickly by ignoring atmospheric interactions. This allows significant variance and computational cost reductions when the atmospheric scattering and absorption coefficient are small. When combined with an atmospheric photon-redirection scheme, significant variance reduction (equivalently acceleration) is achieved in the presence of atmospheric interactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, Y; Li, Y; Tian, Z
2015-06-15
Purpose: Pencil-beam or superposition-convolution type dose calculation algorithms are routinely used in inverse plan optimization for intensity modulated radiation therapy (IMRT). However, due to their limited accuracy in some challenging cases, e.g. lung, the resulting dose may lose its optimality after being recomputed using an accurate algorithm, e.g. Monte Carlo (MC). It is the objective of this study to evaluate the feasibility and advantages of a new method to include MC in the treatment planning process. Methods: We developed a scheme to iteratively perform MC-based beamlet dose calculations and plan optimization. In the MC stage, a GPU-based dose engine wasmore » used and the particle number sampled from a beamlet was proportional to its optimized fluence from the previous step. We tested this scheme in four lung cancer IMRT cases. For each case, the original plan dose, plan dose re-computed by MC, and dose optimized by our scheme were obtained. Clinically relevant dosimetric quantities in these three plans were compared. Results: Although the original plan achieved a satisfactory PDV dose coverage, after re-computing doses using MC method, it was found that the PTV D95% were reduced by 4.60%–6.67%. After re-optimizing these cases with our scheme, the PTV coverage was improved to the same level as in the original plan, while the critical OAR coverages were maintained to clinically acceptable levels. Regarding the computation time, it took on average 144 sec per case using only one GPU card, including both MC-based beamlet dose calculation and treatment plan optimization. Conclusion: The achieved dosimetric gains and high computational efficiency indicate the feasibility and advantages of the proposed MC-based IMRT optimization method. Comprehensive validations in more patient cases are in progress.« less
Kim, Sangroh; Yoshizumi, Terry T; Toncheva, Greta; Frush, Donald P; Yin, Fang-Fang
2010-03-01
The purpose of this study was to establish a dose estimation tool with Monte Carlo (MC) simulations. A 5-y-old paediatric anthropomorphic phantom was computed tomography (CT) scanned to create a voxelised phantom and used as an input for the abdominal cone-beam CT in a BEAMnrc/EGSnrc MC system. An X-ray tube model of the Varian On-Board Imager((R)) was built in the MC system. To validate the model, the absorbed doses at each organ location for standard-dose and low-dose modes were measured in the physical phantom with MOSFET detectors; effective doses were also calculated. In the results, the MC simulations were comparable to the MOSFET measurements. This voxelised phantom approach could produce a more accurate dose estimation than the stylised phantom method. This model can be easily applied to multi-detector CT dosimetry.
NASA Technical Reports Server (NTRS)
Platt, M. E.; Lewis, E. E.; Boehm, F.
1991-01-01
A Monte Carlo Fortran computer program was developed that uses two variance reduction techniques for computing system reliability applicable to solving very large highly reliable fault-tolerant systems. The program is consistent with the hybrid automated reliability predictor (HARP) code which employs behavioral decomposition and complex fault-error handling models. This new capability is called MC-HARP which efficiently solves reliability models with non-constant failures rates (Weibull). Common mode failure modeling is also a specialty.
Fast GPU-based Monte Carlo code for SPECT/CT reconstructions generates improved 177Lu images.
Rydén, T; Heydorn Lagerlöf, J; Hemmingsson, J; Marin, I; Svensson, J; Båth, M; Gjertsson, P; Bernhardt, P
2018-01-04
Full Monte Carlo (MC)-based SPECT reconstructions have a strong potential for correcting for image degrading factors, but the reconstruction times are long. The objective of this study was to develop a highly parallel Monte Carlo code for fast, ordered subset expectation maximum (OSEM) reconstructions of SPECT/CT images. The MC code was written in the Compute Unified Device Architecture language for a computer with four graphics processing units (GPUs) (GeForce GTX Titan X, Nvidia, USA). This enabled simulations of parallel photon emissions from the voxels matrix (128 3 or 256 3 ). Each computed tomography (CT) number was converted to attenuation coefficients for photo absorption, coherent scattering, and incoherent scattering. For photon scattering, the deflection angle was determined by the differential scattering cross sections. An angular response function was developed and used to model the accepted angles for photon interaction with the crystal, and a detector scattering kernel was used for modeling the photon scattering in the detector. Predefined energy and spatial resolution kernels for the crystal were used. The MC code was implemented in the OSEM reconstruction of clinical and phantom 177 Lu SPECT/CT images. The Jaszczak image quality phantom was used to evaluate the performance of the MC reconstruction in comparison with attenuated corrected (AC) OSEM reconstructions and attenuated corrected OSEM reconstructions with resolution recovery corrections (RRC). The performance of the MC code was 3200 million photons/s. The required number of photons emitted per voxel to obtain a sufficiently low noise level in the simulated image was 200 for a 128 3 voxel matrix. With this number of emitted photons/voxel, the MC-based OSEM reconstruction with ten subsets was performed within 20 s/iteration. The images converged after around six iterations. Therefore, the reconstruction time was around 3 min. The activity recovery for the spheres in the Jaszczak phantom was clearly improved with MC-based OSEM reconstruction, e.g., the activity recovery was 88% for the largest sphere, while it was 66% for AC-OSEM and 79% for RRC-OSEM. The GPU-based MC code generated an MC-based SPECT/CT reconstruction within a few minutes, and reconstructed patient images of 177 Lu-DOTATATE treatments revealed clearly improved resolution and contrast.
Efficiency in nonequilibrium molecular dynamics Monte Carlo simulations
Radak, Brian K.; Roux, Benoît
2016-10-07
Hybrid algorithms combining nonequilibrium molecular dynamics and Monte Carlo (neMD/MC) offer a powerful avenue for improving the sampling efficiency of computer simulations of complex systems. These neMD/MC algorithms are also increasingly finding use in applications where conventional approaches are impractical, such as constant-pH simulations with explicit solvent. However, selecting an optimal nonequilibrium protocol for maximum efficiency often represents a non-trivial challenge. This work evaluates the efficiency of a broad class of neMD/MC algorithms and protocols within the theoretical framework of linear response theory. The approximations are validated against constant pH-MD simulations and shown to provide accurate predictions of neMD/MC performance.more » An assessment of a large set of protocols confirms (both theoretically and empirically) that a linear work protocol gives the best neMD/MC performance. Lastly, a well-defined criterion for optimizing the time parameters of the protocol is proposed and demonstrated with an adaptive algorithm that improves the performance on-the-fly with minimal cost.« less
NASA Astrophysics Data System (ADS)
Liu, Tianyu; Du, Xining; Ji, Wei; Xu, X. George; Brown, Forrest B.
2014-06-01
For nuclear reactor analysis such as the neutron eigenvalue calculations, the time consuming Monte Carlo (MC) simulations can be accelerated by using graphics processing units (GPUs). However, traditional MC methods are often history-based, and their performance on GPUs is affected significantly by the thread divergence problem. In this paper we describe the development of a newly designed event-based vectorized MC algorithm for solving the neutron eigenvalue problem. The code was implemented using NVIDIA's Compute Unified Device Architecture (CUDA), and tested on a NVIDIA Tesla M2090 GPU card. We found that although the vectorized MC algorithm greatly reduces the occurrence of thread divergence thus enhancing the warp execution efficiency, the overall simulation speed is roughly ten times slower than the history-based MC code on GPUs. Profiling results suggest that the slow speed is probably due to the memory access latency caused by the large amount of global memory transactions. Possible solutions to improve the code efficiency are discussed.
Concepts and Plans towards fast large scale Monte Carlo production for the ATLAS Experiment
NASA Astrophysics Data System (ADS)
Ritsch, E.; Atlas Collaboration
2014-06-01
The huge success of the physics program of the ATLAS experiment at the Large Hadron Collider (LHC) during Run 1 relies upon a great number of simulated Monte Carlo events. This Monte Carlo production takes the biggest part of the computing resources being in use by ATLAS as of now. In this document we describe the plans to overcome the computing resource limitations for large scale Monte Carlo production in the ATLAS Experiment for Run 2, and beyond. A number of fast detector simulation, digitization and reconstruction techniques are being discussed, based upon a new flexible detector simulation framework. To optimally benefit from these developments, a redesigned ATLAS MC production chain is presented at the end of this document.
NASA Astrophysics Data System (ADS)
Zhang, Guannan; Del-Castillo-Negrete, Diego
2017-10-01
Kinetic descriptions of RE are usually based on the bounced-averaged Fokker-Planck model that determines the PDFs of RE. Despite of the simplification involved, the Fokker-Planck equation can rarely be solved analytically and direct numerical approaches (e.g., continuum and particle-based Monte Carlo (MC)) can be time consuming specially in the computation of asymptotic-type observable including the runaway probability, the slowing-down and runaway mean times, and the energy limit probability. Here we present a novel backward MC approach to these problems based on backward stochastic differential equations (BSDEs). The BSDE model can simultaneously describe the PDF of RE and the runaway probabilities by means of the well-known Feynman-Kac theory. The key ingredient of the backward MC algorithm is to place all the particles in a runaway state and simulate them backward from the terminal time to the initial time. As such, our approach can provide much faster convergence than the brute-force MC methods, which can significantly reduce the number of particles required to achieve a prescribed accuracy. Moreover, our algorithm can be parallelized as easy as the direct MC code, which paves the way for conducting large-scale RE simulation. This work is supported by DOE FES and ASCR under the Contract Numbers ERKJ320 and ERAT377.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Y M; Bush, K; Han, B
Purpose: Accurate and fast dose calculation is a prerequisite of precision radiation therapy in modern photon and particle therapy. While Monte Carlo (MC) dose calculation provides high dosimetric accuracy, the drastically increased computational time hinders its routine use. Deterministic dose calculation methods are fast, but problematic in the presence of tissue density inhomogeneity. We leverage the useful features of deterministic methods and MC to develop a hybrid dose calculation platform with autonomous utilization of MC and deterministic calculation depending on the local geometry, for optimal accuracy and speed. Methods: Our platform utilizes a Geant4 based “localized Monte Carlo” (LMC) methodmore » that isolates MC dose calculations only to volumes that have potential for dosimetric inaccuracy. In our approach, additional structures are created encompassing heterogeneous volumes. Deterministic methods calculate dose and energy fluence up to the volume surfaces, where the energy fluence distribution is sampled into discrete histories and transported using MC. Histories exiting the volume are converted back into energy fluence, and transported deterministically. By matching boundary conditions at both interfaces, deterministic dose calculation account for dose perturbations “downstream” of localized heterogeneities. Hybrid dose calculation was performed for water and anthropomorphic phantoms. Results: We achieved <1% agreement between deterministic and MC calculations in the water benchmark for photon and proton beams, and dose differences of 2%–15% could be observed in heterogeneous phantoms. The saving in computational time (a factor ∼4–7 compared to a full Monte Carlo dose calculation) was found to be approximately proportional to the volume of the heterogeneous region. Conclusion: Our hybrid dose calculation approach takes advantage of the computational efficiency of deterministic method and accuracy of MC, providing a practical tool for high performance dose calculation in modern RT. The approach is generalizable to all modalities where heterogeneities play a large role, notably particle therapy.« less
Hybrid computer optimization of systems with random parameters
NASA Technical Reports Server (NTRS)
White, R. C., Jr.
1972-01-01
A hybrid computer Monte Carlo technique for the simulation and optimization of systems with random parameters is presented. The method is applied to the simultaneous optimization of the means and variances of two parameters in the radar-homing missile problem treated by McGhee and Levine.
Assessing the convergence of LHS Monte Carlo simulations of wastewater treatment models.
Benedetti, Lorenzo; Claeys, Filip; Nopens, Ingmar; Vanrolleghem, Peter A
2011-01-01
Monte Carlo (MC) simulation appears to be the only currently adopted tool to estimate global sensitivities and uncertainties in wastewater treatment modelling. Such models are highly complex, dynamic and non-linear, requiring long computation times, especially in the scope of MC simulation, due to the large number of simulations usually required. However, no stopping rule to decide on the number of simulations required to achieve a given confidence in the MC simulation results has been adopted so far in the field. In this work, a pragmatic method is proposed to minimize the computation time by using a combination of several criteria. It makes no use of prior knowledge about the model, is very simple, intuitive and can be automated: all convenient features in engineering applications. A case study is used to show an application of the method, and the results indicate that the required number of simulations strongly depends on the model output(s) selected, and on the type and desired accuracy of the analysis conducted. Hence, no prior indication is available regarding the necessary number of MC simulations, but the proposed method is capable of dealing with these variations and stopping the calculations after convergence is reached.
Morikami, Kenji; Itezono, Yoshiko; Nishimoto, Masahiro; Ohta, Masateru
2014-01-01
Compounds with a medium-sized flexible ring often show atropisomerism that is caused by the high-energy barriers between long-lived conformers that can be isolated and often have different biological properties to each other. In this study, the frequency of the transition between the two stable conformers, aS and aR, of thienotriazolodiazepine compounds with flexible 7-membered rings was estimated computationally by Monte Carlo (MC) simulations and validated experimentally by NMR experiments. To estimate the energy barriers for transitions as precisely as possible, the potential energy (PE) surfaces used in the MC simulations were calculated by molecular orbital (MO) methods. To accomplish the MC simulations with the MO-based PE surfaces in a practical central processing unit (CPU) time, the MO-based PE of each conformer was pre-calculated and stored before the MC simulations, and then only referred to during the MC simulations. The activation energies for transitions calculated by the MC simulations agreed well with the experimental ΔG determined by the NMR experiments. The analysis of the transition trajectories of the MC simulations revealed that the transition occurred not only through the transition states, but also through many different transition paths. Our computational methods gave us quantitative estimates of atropisomerism of the thienotriazolodiazepine compounds in a practical period of time, and the method could be applicable for other slow-dynamics phenomena that cannot be investigated by other atomistic simulations.
Development of accelerated Raman and fluorescent Monte Carlo method
NASA Astrophysics Data System (ADS)
Dumont, Alexander P.; Patil, Chetan
2018-02-01
Monte Carlo (MC) modeling of photon propagation in turbid media is an essential tool for understanding optical interactions between light and tissue. Insight gathered from outputs of MC models assists in mapping between detected optical signals and bulk tissue optical properties, and as such, has proven useful for inverse calculations of tissue composition and optimization of the design of optical probes. MC models of Raman scattering have previously been implemented without consideration to background autofluorescence, despite its presence in raw measurements. Modeling both Raman and fluorescence profiles at high spectral resolution requires a significant increase in computation, but is more appropriate for investigating issues such as detection limits. We present a new Raman Fluorescence MC model developed atop an existing GPU parallelized MC framework that can run more than 300x times faster than CPU methods. The robust acceleration allows for the efficient production of both Raman and fluorescence outputs from the MC model. In addition, this model can handle arbitrary sample morphologies of excitation and collection geometries to more appropriately mimic experimental settings. We will present the model framework and initial results.
Parallel and Portable Monte Carlo Particle Transport
NASA Astrophysics Data System (ADS)
Lee, S. R.; Cummings, J. C.; Nolen, S. D.; Keen, N. D.
1997-08-01
We have developed a multi-group, Monte Carlo neutron transport code in C++ using object-oriented methods and the Parallel Object-Oriented Methods and Applications (POOMA) class library. This transport code, called MC++, currently computes k and α eigenvalues of the neutron transport equation on a rectilinear computational mesh. It is portable to and runs in parallel on a wide variety of platforms, including MPPs, clustered SMPs, and individual workstations. It contains appropriate classes and abstractions for particle transport and, through the use of POOMA, for portable parallelism. Current capabilities are discussed, along with physics and performance results for several test problems on a variety of hardware, including all three Accelerated Strategic Computing Initiative (ASCI) platforms. Current parallel performance indicates the ability to compute α-eigenvalues in seconds or minutes rather than days or weeks. Current and future work on the implementation of a general transport physics framework (TPF) is also described. This TPF employs modern C++ programming techniques to provide simplified user interfaces, generic STL-style programming, and compile-time performance optimization. Physics capabilities of the TPF will be extended to include continuous energy treatments, implicit Monte Carlo algorithms, and a variety of convergence acceleration techniques such as importance combing.
Orthogonal Multi-Carrier DS-CDMA with Frequency-Domain Equalization
NASA Astrophysics Data System (ADS)
Tanaka, Ken; Tomeba, Hiromichi; Adachi, Fumiyuki
Orthogonal multi-carrier direct sequence code division multiple access (orthogonal MC DS-CDMA) is a combination of orthogonal frequency division multiplexing (OFDM) and time-domain spreading, while multi-carrier code division multiple access (MC-CDMA) is a combination of OFDM and frequency-domain spreading. In MC-CDMA, a good bit error rate (BER) performance can be achieved by using frequency-domain equalization (FDE), since the frequency diversity gain is obtained. On the other hand, the conventional orthogonal MC DS-CDMA fails to achieve any frequency diversity gain. In this paper, we propose a new orthogonal MC DS-CDMA that can obtain the frequency diversity gain by applying FDE. The conditional BER analysis is presented. The theoretical average BER performance in a frequency-selective Rayleigh fading channel is evaluated by the Monte-Carlo numerical computation method using the derived conditional BER and is confirmed by computer simulation of the orthogonal MC DS-CDMA signal transmission.
Dosimetric quality control of Eclipse treatment planning system using pelvic digital test object
NASA Astrophysics Data System (ADS)
Benhdech, Yassine; Beaumont, Stéphane; Guédon, Jeanpierre; Crespin, Sylvain
2011-03-01
Last year, we demonstrated the feasibility of a new method to perform dosimetric quality control of Treatment Planning Systems in radiotherapy, this method is based on Monte-Carlo simulations and uses anatomical Digital Test Objects (DTOs). The pelvic DTO was used in order to assess this new method on an ECLIPSE VARIAN Treatment Planning System. Large dose variations were observed particularly in air and bone equivalent material. In this current work, we discuss the results of the previous paper and provide an explanation for observed dose differences, the VARIAN Eclipse (Anisotropic Analytical) algorithm was investigated. Monte Carlo simulations (MC) were performed with a PENELOPE code version 2003. To increase efficiency of MC simulations, we have used our parallelized version based on the standard MPI (Message Passing Interface). The parallel code has been run on a 32- processor SGI cluster. The study was carried out using pelvic DTOs and was performed for low- and high-energy photon beams (6 and 18MV) on 2100CD VARIAN linear accelerator. A square field (10x10 cm2) was used. Assuming the MC data as reference, χ index analyze was carried out. For this study, a distance to agreement (DTA) was set to 7mm while the dose difference was set to 5% as recommended in the TRS-430 and TG-53 (on the beam axis in 3-D inhomogeneities). When using Monte Carlo PENELOPE, the absorbed dose is computed to the medium, however the TPS computes dose to water. We have used the method described by Siebers et al. based on Bragg-Gray cavity theory to convert MC simulated dose to medium to dose to water. Results show a strong consistency between ECLIPSE and MC calculations on the beam axis.
Monte Carlo modeling of a conventional X-ray computed tomography scanner for gel dosimetry purposes.
Hayati, Homa; Mesbahi, Asghar; Nazarpoor, Mahmood
2016-01-01
Our purpose in the current study was to model an X-ray CT scanner with the Monte Carlo (MC) method for gel dosimetry. In this study, a conventional CT scanner with one array detector was modeled with use of the MCNPX MC code. The MC calculated photon fluence in detector arrays was used for image reconstruction of a simple water phantom as well as polyacrylamide polymer gel (PAG) used for radiation therapy. Image reconstruction was performed with the filtered back-projection method with a Hann filter and the Spline interpolation method. Using MC results, we obtained the dose-response curve for images of irradiated gel at different absorbed doses. A spatial resolution of about 2 mm was found for our simulated MC model. The MC-based CT images of the PAG gel showed a reliable increase in the CT number with increasing absorbed dose for the studied gel. Also, our results showed that the current MC model of a CT scanner can be used for further studies on the parameters that influence the usability and reliability of results, such as the photon energy spectra and exposure techniques in X-ray CT gel dosimetry.
Monte Carlo Techniques for Nuclear Systems - Theory Lectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Forrest B.
These are lecture notes for a Monte Carlo class given at the University of New Mexico. The following topics are covered: course information; nuclear eng. review & MC; random numbers and sampling; computational geometry; collision physics; tallies and statistics; eigenvalue calculations I; eigenvalue calculations II; eigenvalue calculations III; variance reduction; parallel Monte Carlo; parameter studies; fission matrix and higher eigenmodes; doppler broadening; Monte Carlo depletion; HTGR modeling; coupled MC and T/H calculations; fission energy deposition. Solving particle transport problems with the Monte Carlo method is simple - just simulate the particle behavior. The devil is in the details, however. Thesemore » lectures provide a balanced approach to the theory and practice of Monte Carlo simulation codes. The first lectures provide an overview of Monte Carlo simulation methods, covering the transport equation, random sampling, computational geometry, collision physics, and statistics. The next lectures focus on the state-of-the-art in Monte Carlo criticality simulations, covering the theory of eigenvalue calculations, convergence analysis, dominance ratio calculations, bias in Keff and tallies, bias in uncertainties, a case study of a realistic calculation, and Wielandt acceleration techniques. The remaining lectures cover advanced topics, including HTGR modeling and stochastic geometry, temperature dependence, fission energy deposition, depletion calculations, parallel calculations, and parameter studies. This portion of the class focuses on using MCNP to perform criticality calculations for reactor physics and criticality safety applications. It is an intermediate level class, intended for those with at least some familiarity with MCNP. Class examples provide hands-on experience at running the code, plotting both geometry and results, and understanding the code output. The class includes lectures & hands-on computer use for a variety of Monte Carlo calculations. Beginning MCNP users are encouraged to review LA-UR-09-00380, "Criticality Calculations with MCNP: A Primer (3nd Edition)" (available at http:// mcnp.lanl.gov under "Reference Collection") prior to the class. No Monte Carlo class can be complete without having students write their own simple Monte Carlo routines for basic random sampling, use of the random number generator, and simplified particle transport simulation.« less
Monte Carlo simulation of photon migration in a cloud computing environment with MapReduce
Pratx, Guillem; Xing, Lei
2011-01-01
Monte Carlo simulation is considered the most reliable method for modeling photon migration in heterogeneous media. However, its widespread use is hindered by the high computational cost. The purpose of this work is to report on our implementation of a simple MapReduce method for performing fault-tolerant Monte Carlo computations in a massively-parallel cloud computing environment. We ported the MC321 Monte Carlo package to Hadoop, an open-source MapReduce framework. In this implementation, Map tasks compute photon histories in parallel while a Reduce task scores photon absorption. The distributed implementation was evaluated on a commercial compute cloud. The simulation time was found to be linearly dependent on the number of photons and inversely proportional to the number of nodes. For a cluster size of 240 nodes, the simulation of 100 billion photon histories took 22 min, a 1258 × speed-up compared to the single-threaded Monte Carlo program. The overall computational throughput was 85,178 photon histories per node per second, with a latency of 100 s. The distributed simulation produced the same output as the original implementation and was resilient to hardware failure: the correctness of the simulation was unaffected by the shutdown of 50% of the nodes. PMID:22191916
Data decomposition of Monte Carlo particle transport simulations via tally servers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romano, Paul K.; Siegel, Andrew R.; Forget, Benoit
An algorithm for decomposing large tally data in Monte Carlo particle transport simulations is developed, analyzed, and implemented in a continuous-energy Monte Carlo code, OpenMC. The algorithm is based on a non-overlapping decomposition of compute nodes into tracking processors and tally servers. The former are used to simulate the movement of particles through the domain while the latter continuously receive and update tally data. A performance model for this approach is developed, suggesting that, for a range of parameters relevant to LWR analysis, the tally server algorithm should perform with minimal overhead on contemporary supercomputers. An implementation of the algorithmmore » in OpenMC is then tested on the Intrepid and Titan supercomputers, supporting the key predictions of the model over a wide range of parameters. We thus conclude that the tally server algorithm is a successful approach to circumventing classical on-node memory constraints en route to unprecedentedly detailed Monte Carlo reactor simulations.« less
NASA Astrophysics Data System (ADS)
Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek
2017-07-01
Standard computational methods used to take account of the Pauli Exclusion Principle into Monte Carlo (MC) simulations of electron transport in semiconductors may give unphysical results in low field regime, where obtained electron distribution function takes values exceeding unity. Modified algorithms were already proposed and allow to correctly account for electron scattering on phonons or impurities. Present paper extends this approach and proposes improved simulation scheme allowing including Pauli exclusion principle for electron-electron (e-e) scattering into MC simulations. Simulations with significantly reduced computational cost recreate correct values of the electron distribution function. Proposed algorithm is applied to study transport properties of degenerate electrons in graphene with e-e interactions. This required adapting the treatment of e-e scattering in the case of linear band dispersion relation. Hence, this part of the simulation algorithm is described in details.
ICF target 2D modeling using Monte Carlo SNB electron thermal transport in DRACO
NASA Astrophysics Data System (ADS)
Chenhall, Jeffrey; Cao, Duc; Moses, Gregory
2016-10-01
The iSNB (implicit Schurtz Nicolai Busquet multigroup diffusion electron thermal transport method is adapted into a Monte Carlo (MC) transport method to better model angular and long mean free path non-local effects. The MC model was first implemented in the 1D LILAC code to verify consistency with the iSNB model. Implementation of the MC SNB model in the 2D DRACO code enables higher fidelity non-local thermal transport modeling in 2D implosions such as polar drive experiments on NIF. The final step is to optimize the MC model by hybridizing it with a MC version of the iSNB diffusion method. The hybrid method will combine the efficiency of a diffusion method in intermediate mean free path regions with the accuracy of a transport method in long mean free path regions allowing for improved computational efficiency while maintaining accuracy. Work to date on the method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.
Monte Carlo simulations in radiotherapy dosimetry.
Andreo, Pedro
2018-06-27
The use of the Monte Carlo (MC) method in radiotherapy dosimetry has increased almost exponentially in the last decades. Its widespread use in the field has converted this computer simulation technique in a common tool for reference and treatment planning dosimetry calculations. This work reviews the different MC calculations made on dosimetric quantities, like stopping-power ratios and perturbation correction factors required for reference ionization chamber dosimetry, as well as the fully realistic MC simulations currently available on clinical accelerators, detectors and patient treatment planning. Issues are raised that include the necessity for consistency in the data throughout the entire dosimetry chain in reference dosimetry, and how Bragg-Gray theory breaks down for small photon fields. Both aspects are less critical for MC treatment planning applications, but there are important constraints like tissue characterization and its patient-to-patient variability, which together with the conversion between dose-to-water and dose-to-tissue, are analysed in detail. Although these constraints are common to all methods and algorithms used in different types of treatment planning systems, they make uncertainties involved in MC treatment planning to still remain "uncertain".
Kalantzis, Georgios; Tachibana, Hidenobu
2014-01-01
For microdosimetric calculations event-by-event Monte Carlo (MC) methods are considered the most accurate. The main shortcoming of those methods is the extensive requirement for computational time. In this work we present an event-by-event MC code of low projectile energy electron and proton tracks for accelerated microdosimetric MC simulations on a graphic processing unit (GPU). Additionally, a hybrid implementation scheme was realized by employing OpenMP and CUDA in such a way that both GPU and multi-core CPU were utilized simultaneously. The two implementation schemes have been tested and compared with the sequential single threaded MC code on the CPU. Performance comparison was established on the speed-up for a set of benchmarking cases of electron and proton tracks. A maximum speedup of 67.2 was achieved for the GPU-based MC code, while a further improvement of the speedup up to 20% was achieved for the hybrid approach. The results indicate the capability of our CPU-GPU implementation for accelerated MC microdosimetric calculations of both electron and proton tracks without loss of accuracy. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC)
NASA Astrophysics Data System (ADS)
Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B.; Jia, Xun
2015-09-01
Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia’s CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon-electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783-97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE’s random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48-0.53% for the electron beam cases and 0.15-0.17% for the photon beam cases. In terms of efficiency, goMC was ~4-16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was validated by successfully running it on a variety of different computing devices including an NVidia GPU card, two AMD GPU cards and an Intel CPU processor. Computational efficiency among these platforms was compared.
A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC).
Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B; Jia, Xun
2015-10-07
Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia's CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon-electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783-97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE's random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48-0.53% for the electron beam cases and 0.15-0.17% for the photon beam cases. In terms of efficiency, goMC was ~4-16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was validated by successfully running it on a variety of different computing devices including an NVidia GPU card, two AMD GPU cards and an Intel CPU processor. Computational efficiency among these platforms was compared.
SU-E-T-29: A Web Application for GPU-Based Monte Carlo IMRT/VMAT QA with Delivered Dose Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Folkerts, M; University of California, San Diego, La Jolla, CA; Graves, Y
Purpose: To enable an existing web application for GPU-based Monte Carlo (MC) 3D dosimetry quality assurance (QA) to compute “delivered dose” from linac logfile data. Methods: We added significant features to an IMRT/VMAT QA web application which is based on existing technologies (HTML5, Python, and Django). This tool interfaces with python, c-code libraries, and command line-based GPU applications to perform a MC-based IMRT/VMAT QA. The web app automates many complicated aspects of interfacing clinical DICOM and logfile data with cutting-edge GPU software to run a MC dose calculation. The resultant web app is powerful, easy to use, and is ablemore » to re-compute both plan dose (from DICOM data) and delivered dose (from logfile data). Both dynalog and trajectorylog file formats are supported. Users upload zipped DICOM RP, CT, and RD data and set the expected statistic uncertainty for the MC dose calculation. A 3D gamma index map, 3D dose distribution, gamma histogram, dosimetric statistics, and DVH curves are displayed to the user. Additional the user may upload the delivery logfile data from the linac to compute a 'delivered dose' calculation and corresponding gamma tests. A comprehensive PDF QA report summarizing the results can also be downloaded. Results: We successfully improved a web app for a GPU-based QA tool that consists of logfile parcing, fluence map generation, CT image processing, GPU based MC dose calculation, gamma index calculation, and DVH calculation. The result is an IMRT and VMAT QA tool that conducts an independent dose calculation for a given treatment plan and delivery log file. The system takes both DICOM data and logfile data to compute plan dose and delivered dose respectively. Conclusion: We sucessfully improved a GPU-based MC QA tool to allow for logfile dose calculation. The high efficiency and accessibility will greatly facilitate IMRT and VMAT QA.« less
NASA Astrophysics Data System (ADS)
Alexander, A.; DeBlois, F.; Stroian, G.; Al-Yahya, K.; Heath, E.; Seuntjens, J.
2007-07-01
Radiotherapy research lacks a flexible computational research environment for Monte Carlo (MC) and patient-specific treatment planning. The purpose of this study was to develop a flexible software package on low-cost hardware with the aim of integrating new patient-specific treatment planning with MC dose calculations suitable for large-scale prospective and retrospective treatment planning studies. We designed the software package 'McGill Monte Carlo treatment planning' (MMCTP) for the research development of MC and patient-specific treatment planning. The MMCTP design consists of a graphical user interface (GUI), which runs on a simple workstation connected through standard secure-shell protocol to a cluster for lengthy MC calculations. Treatment planning information (e.g., images, structures, beam geometry properties and dose distributions) is converted into a convenient MMCTP local file storage format designated, the McGill RT format. MMCTP features include (a) DICOM_RT, RTOG and CADPlan CART format imports; (b) 2D and 3D visualization views for images, structure contours, and dose distributions; (c) contouring tools; (d) DVH analysis, and dose matrix comparison tools; (e) external beam editing; (f) MC transport calculation from beam source to patient geometry for photon and electron beams. The MC input files, which are prepared from the beam geometry properties and patient information (e.g., images and structure contours), are uploaded and run on a cluster using shell commands controlled from the MMCTP GUI. The visualization, dose matrix operation and DVH tools offer extensive options for plan analysis and comparison between MC plans and plans imported from commercial treatment planning systems. The MMCTP GUI provides a flexible research platform for the development of patient-specific MC treatment planning for photon and electron external beam radiation therapy. The impact of this tool lies in the fact that it allows for systematic, platform-independent, large-scale MC treatment planning for different treatment sites. Patient recalculations were performed to validate the software and ensure proper functionality.
Improving the sampling efficiency of Monte Carlo molecular simulations: an evolutionary approach
NASA Astrophysics Data System (ADS)
Leblanc, Benoit; Braunschweig, Bertrand; Toulhoat, Hervé; Lutton, Evelyne
We present a new approach in order to improve the convergence of Monte Carlo (MC) simulations of molecular systems belonging to complex energetic landscapes: the problem is redefined in terms of the dynamic allocation of MC move frequencies depending on their past efficiency, measured with respect to a relevant sampling criterion. We introduce various empirical criteria with the aim of accounting for the proper convergence in phase space sampling. The dynamic allocation is performed over parallel simulations by means of a new evolutionary algorithm involving 'immortal' individuals. The method is bench marked with respect to conventional procedures on a model for melt linear polyethylene. We record significant improvement in sampling efficiencies, thus in computational load, while the optimal sets of move frequencies are liable to allow interesting physical insights into the particular systems simulated. This last aspect should provide a new tool for designing more efficient new MC moves.
Siebers, Jeffrey V
2008-04-04
Monte Carlo (MC) is rarely used for IMRT plan optimization outside of research centres due to the extensive computational resources or long computation times required to complete the process. Time can be reduced by degrading the statistical precision of the MC dose calculation used within the optimization loop. However, this eventually introduces optimization convergence errors (OCEs). This study determines the statistical noise levels tolerated during MC-IMRT optimization under the condition that the optimized plan has OCEs <100 cGy (1.5% of the prescription dose) for MC-optimized IMRT treatment plans.Seven-field prostate IMRT treatment plans for 10 prostate patients are used in this study. Pre-optimization is performed for deliverable beams with a pencil-beam (PB) dose algorithm. Further deliverable-based optimization proceeds using: (1) MC-based optimization, where dose is recomputed with MC after each intensity update or (2) a once-corrected (OC) MC-hybrid optimization, where a MC dose computation defines beam-by-beam dose correction matrices that are used during a PB-based optimization. Optimizations are performed with nominal per beam MC statistical precisions of 2, 5, 8, 10, 15, and 20%. Following optimizer convergence, beams are re-computed with MC using 2% per beam nominal statistical precision and the 2 PTV and 10 OAR dose indices used in the optimization objective function are tallied. For both the MC-optimization and OC-optimization methods, statistical equivalence tests found that OCEs are less than 1.5% of the prescription dose for plans optimized with nominal statistical uncertainties of up to 10% per beam. The achieved statistical uncertainty in the patient for the 10% per beam simulations from the combination of the 7 beams is ~3% with respect to maximum dose for voxels with D>0.5D(max). The MC dose computation time for the OC-optimization is only 6.2 minutes on a single 3 Ghz processor with results clinically equivalent to high precision MC computations.
Monte Carlo MP2 on Many Graphical Processing Units.
Doran, Alexander E; Hirata, So
2016-10-11
In the Monte Carlo second-order many-body perturbation (MC-MP2) method, the long sum-of-product matrix expression of the MP2 energy, whose literal evaluation may be poorly scalable, is recast into a single high-dimensional integral of functions of electron pair coordinates, which is evaluated by the scalable method of Monte Carlo integration. The sampling efficiency is further accelerated by the redundant-walker algorithm, which allows a maximal reuse of electron pairs. Here, a multitude of graphical processing units (GPUs) offers a uniquely ideal platform to expose multilevel parallelism: fine-grain data-parallelism for the redundant-walker algorithm in which millions of threads compute and share orbital amplitudes on each GPU; coarse-grain instruction-parallelism for near-independent Monte Carlo integrations on many GPUs with few and infrequent interprocessor communications. While the efficiency boost by the redundant-walker algorithm on central processing units (CPUs) grows linearly with the number of electron pairs and tends to saturate when the latter exceeds the number of orbitals, on a GPU it grows quadratically before it increases linearly and then eventually saturates at a much larger number of pairs. This is because the orbital constructions are nearly perfectly parallelized on a GPU and thus completed in a near-constant time regardless of the number of pairs. In consequence, an MC-MP2/cc-pVDZ calculation of a benzene dimer is 2700 times faster on 256 GPUs (using 2048 electron pairs) than on two CPUs, each with 8 cores (which can use only up to 256 pairs effectively). We also numerically determine that the cost to achieve a given relative statistical uncertainty in an MC-MP2 energy increases as O(n 3 ) or better with system size n, which may be compared with the O(n 5 ) scaling of the conventional implementation of deterministic MP2. We thus establish the scalability of MC-MP2 with both system and computer sizes.
NASA Astrophysics Data System (ADS)
Tarasov, A. P.; Egorov, A. I.; Rogatkin, D. A.
2017-07-01
Using multidetector computed tomography, thicknesses of bone squame and soft tissues of human head were assessed. MC simulation revealed impropriety of source-detector separation distances for 3 oximeters, which can cause extracerebral contamination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cawkwell, Marc Jon
2016-09-09
The MC3 code is used to perform Monte Carlo simulations in the isothermal-isobaric ensemble (constant number of particles, temperature, and pressure) on molecular crystals. The molecules within the periodic simulation cell are treated as rigid bodies, alleviating the requirement for a complex interatomic potential. Intermolecular interactions are described using generic, atom-centered pair potentials whose parameterization is taken from the literature [D. E. Williams, J. Comput. Chem., 22, 1154 (2001)] and electrostatic interactions arising from atom-centered, fixed, point partial charges. The primary uses of the MC3 code are the computation of i) the temperature and pressure dependence of lattice parameters andmore » thermal expansion coefficients, ii) tensors of elastic constants and compliances via the Parrinello and Rahman’s fluctuation formula [M. Parrinello and A. Rahman, J. Chem. Phys., 76, 2662 (1982)], and iii) the investigation of polymorphic phase transformations. The MC3 code is written in Fortran90 and requires LAPACK and BLAS linear algebra libraries to be linked during compilation. Computationally expensive loops are accelerated using OpenMP.« less
Li, Yongbao; Tian, Zhen; Shi, Feng; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun
2015-04-07
Intensity-modulated radiation treatment (IMRT) plan optimization needs beamlet dose distributions. Pencil-beam or superposition/convolution type algorithms are typically used because of their high computational speed. However, inaccurate beamlet dose distributions may mislead the optimization process and hinder the resulting plan quality. To solve this problem, the Monte Carlo (MC) simulation method has been used to compute all beamlet doses prior to the optimization step. The conventional approach samples the same number of particles from each beamlet. Yet this is not the optimal use of MC in this problem. In fact, there are beamlets that have very small intensities after solving the plan optimization problem. For those beamlets, it may be possible to use fewer particles in dose calculations to increase efficiency. Based on this idea, we have developed a new MC-based IMRT plan optimization framework that iteratively performs MC dose calculation and plan optimization. At each dose calculation step, the particle numbers for beamlets were adjusted based on the beamlet intensities obtained through solving the plan optimization problem in the last iteration step. We modified a GPU-based MC dose engine to allow simultaneous computations of a large number of beamlet doses. To test the accuracy of our modified dose engine, we compared the dose from a broad beam and the summed beamlet doses in this beam in an inhomogeneous phantom. Agreement within 1% for the maximum difference and 0.55% for the average difference was observed. We then validated the proposed MC-based optimization schemes in one lung IMRT case. It was found that the conventional scheme required 10(6) particles from each beamlet to achieve an optimization result that was 3% difference in fluence map and 1% difference in dose from the ground truth. In contrast, the proposed scheme achieved the same level of accuracy with on average 1.2 × 10(5) particles per beamlet. Correspondingly, the computation time including both MC dose calculations and plan optimizations was reduced by a factor of 4.4, from 494 to 113 s, using only one GPU card.
Efficient Application of Continuous Fractional Component Monte Carlo in the Reaction Ensemble
2017-01-01
A new formulation of the Reaction Ensemble Monte Carlo technique (RxMC) combined with the Continuous Fractional Component Monte Carlo method is presented. This method is denoted by serial Rx/CFC. The key ingredient is that fractional molecules of either reactants or reaction products are present and that chemical reactions always involve fractional molecules. Serial Rx/CFC has the following advantages compared to other approaches: (1) One directly obtains chemical potentials of all reactants and reaction products. Obtained chemical potentials can be used directly as an independent check to ensure that chemical equilibrium is achieved. (2) Independent biasing is applied to the fractional molecules of reactants and reaction products. Therefore, the efficiency of the algorithm is significantly increased, compared to the other approaches. (3) Changes in the maximum scaling parameter of intermolecular interactions can be chosen differently for reactants and reaction products. (4) The number of fractional molecules is reduced. As a proof of principle, our method is tested for Lennard-Jones systems at various pressures and for various chemical reactions. Excellent agreement was found both for average densities and equilibrium mixture compositions computed using serial Rx/CFC, RxMC/CFCMC previously introduced by Rosch and Maginn (Journal of Chemical Theory and Computation, 2011, 7, 269–279), and the conventional RxMC approach. The serial Rx/CFC approach is also tested for the reaction of ammonia synthesis at various temperatures and pressures. Excellent agreement was found between results obtained from serial Rx/CFC, experimental results from literature, and thermodynamic modeling using the Peng–Robinson equation of state. The efficiency of reaction trial moves is improved by a factor of 2 to 3 (depending on the system) compared to the RxMC/CFCMC formulation by Rosch and Maginn. PMID:28737933
Atomistic Monte Carlo Simulation of Lipid Membranes
Wüstner, Daniel; Sklenar, Heinz
2014-01-01
Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and bilayer patches. We use our recently devised chain breakage/closure (CBC) local move set in the bond-/torsion angle space with the constant-bond-length approximation (CBLA) for the phospholipid dipalmitoylphosphatidylcholine (DPPC). We demonstrate rapid conformational equilibration for a single DPPC molecule, as assessed by calculation of molecular energies and entropies. We also show transition from a crystalline-like to a fluid DPPC bilayer by the CBC local-move MC method, as indicated by the electron density profile, head group orientation, area per lipid, and whole-lipid displacements. We discuss the potential of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol. PMID:24469314
Nedea, S V; van Steenhoven, A A; Markvoort, A J; Spijker, P; Giordano, D
2014-05-01
The influence of gas-surface interactions of a dilute gas confined between two parallel walls on the heat flux predictions is investigated using a combined Monte Carlo (MC) and molecular dynamics (MD) approach. The accommodation coefficients are computed from the temperature of incident and reflected molecules in molecular dynamics and used as effective coefficients in Maxwell-like boundary conditions in Monte Carlo simulations. Hydrophobic and hydrophilic wall interactions are studied, and the effect of the gas-surface interaction potential on the heat flux and other characteristic parameters like density and temperature is shown. The heat flux dependence on the accommodation coefficient is shown for different fluid-wall mass ratios. We find that the accommodation coefficient is increasing considerably when the mass ratio is decreased. An effective map of the heat flux depending on the accommodation coefficient is given and we show that MC heat flux predictions using Maxwell boundary conditions based on the accommodation coefficient give good results when compared to pure molecular dynamics heat predictions. The accommodation coefficients computed for a dilute gas for different gas-wall interaction parameters and mass ratios are transferred to compute the heat flux predictions for a dense gas. Comparison of the heat fluxes derived using explicit MD, MC with Maxwell-like boundary conditions based on the accommodation coefficients, and pure Maxwell boundary conditions are discussed. A map of the heat flux dependence on the accommodation coefficients for a dense gas, and the effective accommodation coefficients for different gas-wall interactions are given. In the end, this approach is applied to study the gas-surface interactions of argon and xenon molecules on a platinum surface. The derived accommodation coefficients are compared with values of experimental results.
Chetty, Indrin J; Curran, Bruce; Cygler, Joanna E; DeMarco, John J; Ezzell, Gary; Faddegon, Bruce A; Kawrakow, Iwan; Keall, Paul J; Liu, Helen; Ma, C M Charlie; Rogers, D W O; Seuntjens, Jan; Sheikh-Bagheri, Daryoush; Siebers, Jeffrey V
2007-12-01
The Monte Carlo (MC) method has been shown through many research studies to calculate accurate dose distributions for clinical radiotherapy, particularly in heterogeneous patient tissues where the effects of electron transport cannot be accurately handled with conventional, deterministic dose algorithms. Despite its proven accuracy and the potential for improved dose distributions to influence treatment outcomes, the long calculation times previously associated with MC simulation rendered this method impractical for routine clinical treatment planning. However, the development of faster codes optimized for radiotherapy calculations and improvements in computer processor technology have substantially reduced calculation times to, in some instances, within minutes on a single processor. These advances have motivated several major treatment planning system vendors to embark upon the path of MC techniques. Several commercial vendors have already released or are currently in the process of releasing MC algorithms for photon and/or electron beam treatment planning. Consequently, the accessibility and use of MC treatment planning algorithms may well become widespread in the radiotherapy community. With MC simulation, dose is computed stochastically using first principles; this method is therefore quite different from conventional dose algorithms. Issues such as statistical uncertainties, the use of variance reduction techniques, the ability to account for geometric details in the accelerator treatment head simulation, and other features, are all unique components of a MC treatment planning algorithm. Successful implementation by the clinical physicist of such a system will require an understanding of the basic principles of MC techniques. The purpose of this report, while providing education and review on the use of MC simulation in radiotherapy planning, is to set out, for both users and developers, the salient issues associated with clinical implementation and experimental verification of MC dose algorithms. As the MC method is an emerging technology, this report is not meant to be prescriptive. Rather, it is intended as a preliminary report to review the tenets of the MC method and to provide the framework upon which to build a comprehensive program for commissioning and routine quality assurance of MC-based treatment planning systems.
The Multi-Step CADIS method for shutdown dose rate calculations and uncertainty propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, Ahmad M.; Peplow, Douglas E.; Grove, Robert E.
2015-12-01
Shutdown dose rate (SDDR) analysis requires (a) a neutron transport calculation to estimate neutron flux fields, (b) an activation calculation to compute radionuclide inventories and associated photon sources, and (c) a photon transport calculation to estimate final SDDR. In some applications, accurate full-scale Monte Carlo (MC) SDDR simulations are needed for very large systems with massive amounts of shielding materials. However, these simulations are impractical because calculation of space- and energy-dependent neutron fluxes throughout the structural materials is needed to estimate distribution of radioisotopes causing the SDDR. Biasing the neutron MC calculation using an importance function is not simple becausemore » it is difficult to explicitly express the response function, which depends on subsequent computational steps. Furthermore, the typical SDDR calculations do not consider how uncertainties in MC neutron calculation impact SDDR uncertainty, even though MC neutron calculation uncertainties usually dominate SDDR uncertainty.« less
Qin, Nan; Shen, Chenyang; Tsai, Min-Yu; Pinto, Marco; Tian, Zhen; Dedes, Georgios; Pompos, Arnold; Jiang, Steve B; Parodi, Katia; Jia, Xun
2018-01-01
One of the major benefits of carbon ion therapy is enhanced biological effectiveness at the Bragg peak region. For intensity modulated carbon ion therapy (IMCT), it is desirable to use Monte Carlo (MC) methods to compute the properties of each pencil beam spot for treatment planning, because of their accuracy in modeling physics processes and estimating biological effects. We previously developed goCMC, a graphics processing unit (GPU)-oriented MC engine for carbon ion therapy. The purpose of the present study was to build a biological treatment plan optimization system using goCMC. The repair-misrepair-fixation model was implemented to compute the spatial distribution of linear-quadratic model parameters for each spot. A treatment plan optimization module was developed to minimize the difference between the prescribed and actual biological effect. We used a gradient-based algorithm to solve the optimization problem. The system was embedded in the Varian Eclipse treatment planning system under a client-server architecture to achieve a user-friendly planning environment. We tested the system with a 1-dimensional homogeneous water case and 3 3-dimensional patient cases. Our system generated treatment plans with biological spread-out Bragg peaks covering the targeted regions and sparing critical structures. Using 4 NVidia GTX 1080 GPUs, the total computation time, including spot simulation, optimization, and final dose calculation, was 0.6 hour for the prostate case (8282 spots), 0.2 hour for the pancreas case (3795 spots), and 0.3 hour for the brain case (6724 spots). The computation time was dominated by MC spot simulation. We built a biological treatment plan optimization system for IMCT that performs simulations using a fast MC engine, goCMC. To the best of our knowledge, this is the first time that full MC-based IMCT inverse planning has been achieved in a clinically viable time frame. Copyright © 2017 Elsevier Inc. All rights reserved.
Deterministically estimated fission source distributions for Monte Carlo k-eigenvalue problems
Biondo, Elliott D.; Davidson, Gregory G.; Pandya, Tara M.; ...
2018-04-30
The standard Monte Carlo (MC) k-eigenvalue algorithm involves iteratively converging the fission source distribution using a series of potentially time-consuming inactive cycles before quantities of interest can be tallied. One strategy for reducing the computational time requirements of these inactive cycles is the Sourcerer method, in which a deterministic eigenvalue calculation is performed to obtain an improved initial guess for the fission source distribution. This method has been implemented in the Exnihilo software suite within SCALE using the SPNSPN or SNSN solvers in Denovo and the Shift MC code. The efficacy of this method is assessed with different Denovo solutionmore » parameters for a series of typical k-eigenvalue problems including small criticality benchmarks, full-core reactors, and a fuel cask. Here it is found that, in most cases, when a large number of histories per cycle are required to obtain a detailed flux distribution, the Sourcerer method can be used to reduce the computational time requirements of the inactive cycles.« less
Deterministically estimated fission source distributions for Monte Carlo k-eigenvalue problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biondo, Elliott D.; Davidson, Gregory G.; Pandya, Tara M.
The standard Monte Carlo (MC) k-eigenvalue algorithm involves iteratively converging the fission source distribution using a series of potentially time-consuming inactive cycles before quantities of interest can be tallied. One strategy for reducing the computational time requirements of these inactive cycles is the Sourcerer method, in which a deterministic eigenvalue calculation is performed to obtain an improved initial guess for the fission source distribution. This method has been implemented in the Exnihilo software suite within SCALE using the SPNSPN or SNSN solvers in Denovo and the Shift MC code. The efficacy of this method is assessed with different Denovo solutionmore » parameters for a series of typical k-eigenvalue problems including small criticality benchmarks, full-core reactors, and a fuel cask. Here it is found that, in most cases, when a large number of histories per cycle are required to obtain a detailed flux distribution, the Sourcerer method can be used to reduce the computational time requirements of the inactive cycles.« less
Solar Proton Transport within an ICRU Sphere Surrounded by a Complex Shield: Combinatorial Geometry
NASA Technical Reports Server (NTRS)
Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.
2015-01-01
The 3DHZETRN code, with improved neutron and light ion (Z (is) less than 2) transport procedures, was recently developed and compared to Monte Carlo (MC) simulations using simplified spherical geometries. It was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in general combinatorial geometry. A more complex shielding structure with internal parts surrounding a tissue sphere is considered and compared against MC simulations. It is shown that even in the more complex geometry, 3DHZETRN agrees well with the MC codes and maintains a high degree of computational efficiency.
SU-E-T-503: IMRT Optimization Using Monte Carlo Dose Engine: The Effect of Statistical Uncertainty.
Tian, Z; Jia, X; Graves, Y; Uribe-Sanchez, A; Jiang, S
2012-06-01
With the development of ultra-fast GPU-based Monte Carlo (MC) dose engine, it becomes clinically realistic to compute the dose-deposition coefficients (DDC) for IMRT optimization using MC simulation. However, it is still time-consuming if we want to compute DDC with small statistical uncertainty. This work studies the effects of the statistical error in DDC matrix on IMRT optimization. The MC-computed DDC matrices are simulated here by adding statistical uncertainties at a desired level to the ones generated with a finite-size pencil beam algorithm. A statistical uncertainty model for MC dose calculation is employed. We adopt a penalty-based quadratic optimization model and gradient descent method to optimize fluence map and then recalculate the corresponding actual dose distribution using the noise-free DDC matrix. The impacts of DDC noise are assessed in terms of the deviation of the resulted dose distributions. We have also used a stochastic perturbation theory to theoretically estimate the statistical errors of dose distributions on a simplified optimization model. A head-and-neck case is used to investigate the perturbation to IMRT plan due to MC's statistical uncertainty. The relative errors of the final dose distributions of the optimized IMRT are found to be much smaller than those in the DDC matrix, which is consistent with our theoretical estimation. When history number is decreased from 108 to 106, the dose-volume-histograms are still very similar to the error-free DVHs while the error in DDC is about 3.8%. The results illustrate that the statistical errors in the DDC matrix have a relatively small effect on IMRT optimization in dose domain. This indicates we can use relatively small number of histories to obtain the DDC matrix with MC simulation within a reasonable amount of time, without considerably compromising the accuracy of the optimized treatment plan. This work is supported by Varian Medical Systems through a Master Research Agreement. © 2012 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Doronin, Alexander; Meglinski, Igor
2017-02-01
Current report considers development of a unified Monte Carlo (MC) -based computational model for simulation of propagation of Laguerre-Gaussian (LG) beams in turbid tissue-like scattering medium. With a primary goal to proof the concept of using complex light for tissue diagnosis we explore propagation of LG beams in comparison with Gaussian beams for both linear and circular polarization. MC simulations of radially and azimuthally polarized LG beams in turbid media have been performed, classic phenomena such as preservation of the orbital angular momentum, optical memory and helicity flip are observed, detailed comparison is presented and discussed.
Xu, Yuan; Bai, Ti; Yan, Hao; Ouyang, Luo; Pompos, Arnold; Wang, Jing; Zhou, Linghong; Jiang, Steve B.; Jia, Xun
2015-01-01
Cone-beam CT (CBCT) has become the standard image guidance tool for patient setup in image-guided radiation therapy. However, due to its large illumination field, scattered photons severely degrade its image quality. While kernel-based scatter correction methods have been used routinely in the clinic, it is still desirable to develop Monte Carlo (MC) simulation-based methods due to their accuracy. However, the high computational burden of the MC method has prevented routine clinical application. This paper reports our recent development of a practical method of MC-based scatter estimation and removal for CBCT. In contrast with conventional MC approaches that estimate scatter signals using a scatter-contaminated CBCT image, our method used a planning CT image for MC simulation, which has the advantages of accurate image intensity and absence of image truncation. In our method, the planning CT was first rigidly registered with the CBCT. Scatter signals were then estimated via MC simulation. After scatter signals were removed from the raw CBCT projections, a corrected CBCT image was reconstructed. The entire workflow was implemented on a GPU platform for high computational efficiency. Strategies such as projection denoising, CT image downsampling, and interpolation along the angular direction were employed to further enhance the calculation speed. We studied the impact of key parameters in the workflow on the resulting accuracy and efficiency, based on which the optimal parameter values were determined. Our method was evaluated in numerical simulation, phantom, and real patient cases. In the simulation cases, our method reduced mean HU errors from 44 HU to 3 HU and from 78 HU to 9 HU in the full-fan and the half-fan cases, respectively. In both the phantom and the patient cases, image artifacts caused by scatter, such as ring artifacts around the bowtie area, were reduced. With all the techniques employed, we achieved computation time of less than 30 sec including the time for both the scatter estimation and CBCT reconstruction steps. The efficacy of our method and its high computational efficiency make our method attractive for clinical use. PMID:25860299
Yoo, Do Hyeon; Shin, Wook-Geun; Lee, Jaekook; Yeom, Yeon Soo; Kim, Chan Hyeong; Chang, Byung-Uck; Min, Chul Hee
2017-11-01
After the Fukushima accident in Japan, the Korean Government implemented the "Act on Protective Action Guidelines Against Radiation in the Natural Environment" to regulate unnecessary radiation exposure to the public. However, despite the law which came into effect in July 2012, an appropriate method to evaluate the equivalent and effective doses from naturally occurring radioactive material (NORM) in consumer products is not available. The aim of the present study is to develop and validate an effective dose coefficient database enabling the simple and correct evaluation of the effective dose due to the usage of NORM-added consumer products. To construct the database, we used a skin source method with a computational human phantom and Monte Carlo (MC) simulation. For the validation, the effective dose was compared between the database using interpolation method and the original MC method. Our result showed a similar equivalent dose across the 26 organs and a corresponding average dose between the database and the MC calculations of < 5% difference. The differences in the effective doses were even less, and the result generally show that equivalent and effective doses can be quickly calculated with the database with sufficient accuracy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Acceleration of Monte Carlo SPECT simulation using convolution-based forced detection
NASA Astrophysics Data System (ADS)
de Jong, H. W. A. M.; Slijpen, E. T. P.; Beekman, F. J.
2001-02-01
Monte Carlo (MC) simulation is an established tool to calculate photon transport through tissue in Emission Computed Tomography (ECT). Since the first appearance of MC a large variety of variance reduction techniques (VRT) have been introduced to speed up these notoriously slow simulations. One example of a very effective and established VRT is known as forced detection (FD). In standard FD the path from the photon's scatter position to the camera is chosen stochastically from the appropriate probability density function (PDF), modeling the distance-dependent detector response. In order to speed up MC the authors propose a convolution-based FD (CFD) which involves replacing the sampling of the PDF by a convolution with a kernel which depends on the position of the scatter event. The authors validated CFD for parallel-hole Single Photon Emission Computed Tomography (SPECT) using a digital thorax phantom. Comparison of projections estimated with CFD and standard FD shows that both estimates converge to practically identical projections (maximum bias 0.9% of peak projection value), despite the slightly different photon paths used in CFD and standard FD. Projections generated with CFD converge, however, to a noise-free projection up to one or two orders of magnitude faster, which is extremely useful in many applications such as model-based image reconstruction.
A model for the accurate computation of the lateral scattering of protons in water
NASA Astrophysics Data System (ADS)
Bellinzona, E. V.; Ciocca, M.; Embriaco, A.; Ferrari, A.; Fontana, A.; Mairani, A.; Parodi, K.; Rotondi, A.; Sala, P.; Tessonnier, T.
2016-02-01
A pencil beam model for the calculation of the lateral scattering in water of protons for any therapeutic energy and depth is presented. It is based on the full Molière theory, taking into account the energy loss and the effects of mixtures and compounds. Concerning the electromagnetic part, the model has no free parameters and is in very good agreement with the FLUKA Monte Carlo (MC) code. The effects of the nuclear interactions are parametrized with a two-parameter tail function, adjusted on MC data calculated with FLUKA. The model, after the convolution with the beam and the detector response, is in agreement with recent proton data in water from HIT. The model gives results with the same accuracy of the MC codes based on Molière theory, with a much shorter computing time.
A model for the accurate computation of the lateral scattering of protons in water.
Bellinzona, E V; Ciocca, M; Embriaco, A; Ferrari, A; Fontana, A; Mairani, A; Parodi, K; Rotondi, A; Sala, P; Tessonnier, T
2016-02-21
A pencil beam model for the calculation of the lateral scattering in water of protons for any therapeutic energy and depth is presented. It is based on the full Molière theory, taking into account the energy loss and the effects of mixtures and compounds. Concerning the electromagnetic part, the model has no free parameters and is in very good agreement with the FLUKA Monte Carlo (MC) code. The effects of the nuclear interactions are parametrized with a two-parameter tail function, adjusted on MC data calculated with FLUKA. The model, after the convolution with the beam and the detector response, is in agreement with recent proton data in water from HIT. The model gives results with the same accuracy of the MC codes based on Molière theory, with a much shorter computing time.
Solar proton exposure of an ICRU sphere within a complex structure Part I: Combinatorial geometry.
Wilson, John W; Slaba, Tony C; Badavi, Francis F; Reddell, Brandon D; Bahadori, Amir A
2016-06-01
The 3DHZETRN code, with improved neutron and light ion (Z≤2) transport procedures, was recently developed and compared to Monte Carlo (MC) simulations using simplified spherical geometries. It was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in general combinatorial geometry. A more complex shielding structure with internal parts surrounding a tissue sphere is considered and compared against MC simulations. It is shown that even in the more complex geometry, 3DHZETRN agrees well with the MC codes and maintains a high degree of computational efficiency. Published by Elsevier Ltd.
MC21 analysis of the MIT PWR benchmark: Hot zero power results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly Iii, D. J.; Aviles, B. N.; Herman, B. R.
2013-07-01
MC21 Monte Carlo results have been compared with hot zero power measurements from an operating pressurized water reactor (PWR), as specified in a new full core PWR performance benchmark from the MIT Computational Reactor Physics Group. Included in the comparisons are axially integrated full core detector measurements, axial detector profiles, control rod bank worths, and temperature coefficients. Power depressions from grid spacers are seen clearly in the MC21 results. Application of Coarse Mesh Finite Difference (CMFD) acceleration within MC21 has been accomplished, resulting in a significant reduction of inactive batches necessary to converge the fission source. CMFD acceleration has alsomore » been shown to work seamlessly with the Uniform Fission Site (UFS) variance reduction method. (authors)« less
Gartner, Thomas E; Epps, Thomas H; Jayaraman, Arthi
2016-11-08
We describe an extension of the Gibbs ensemble molecular dynamics (GEMD) method for studying phase equilibria. Our modifications to GEMD allow for direct control over particle transfer between phases and improve the method's numerical stability. Additionally, we found that the modified GEMD approach had advantages in computational efficiency in comparison to a hybrid Monte Carlo (MC)/MD Gibbs ensemble scheme in the context of the single component Lennard-Jones fluid. We note that this increase in computational efficiency does not compromise the close agreement of phase equilibrium results between the two methods. However, numerical instabilities in the GEMD scheme hamper GEMD's use near the critical point. We propose that the computationally efficient GEMD simulations can be used to map out the majority of the phase window, with hybrid MC/MD used as a follow up for conditions under which GEMD may be unstable (e.g., near-critical behavior). In this manner, we can capitalize on the contrasting strengths of these two methods to enable the efficient study of phase equilibria for systems that present challenges for a purely stochastic GEMC method, such as dense or low temperature systems, and/or those with complex molecular topologies.
Weare, Jonathan; Dinner, Aaron R.; Roux, Benoît
2016-01-01
A multiple time-step integrator based on a dual Hamiltonian and a hybrid method combining molecular dynamics (MD) and Monte Carlo (MC) is proposed to sample systems in the canonical ensemble. The Dual Hamiltonian Multiple Time-Step (DHMTS) algorithm is based on two similar Hamiltonians: a computationally expensive one that serves as a reference and a computationally inexpensive one to which the workload is shifted. The central assumption is that the difference between the two Hamiltonians is slowly varying. Earlier work has shown that such dual Hamiltonian multiple time-step schemes effectively precondition nonlinear differential equations for dynamics by reformulating them into a recursive root finding problem that can be solved by propagating a correction term through an internal loop, analogous to RESPA. Of special interest in the present context, a hybrid MD-MC version of the DHMTS algorithm is introduced to enforce detailed balance via a Metropolis acceptance criterion and ensure consistency with the Boltzmann distribution. The Metropolis criterion suppresses the discretization errors normally associated with the propagation according to the computationally inexpensive Hamiltonian, treating the discretization error as an external work. Illustrative tests are carried out to demonstrate the effectiveness of the method. PMID:26918826
Lu, Dan; Zhang, Guannan; Webster, Clayton G.; ...
2016-12-30
In this paper, we develop an improved multilevel Monte Carlo (MLMC) method for estimating cumulative distribution functions (CDFs) of a quantity of interest, coming from numerical approximation of large-scale stochastic subsurface simulations. Compared with Monte Carlo (MC) methods, that require a significantly large number of high-fidelity model executions to achieve a prescribed accuracy when computing statistical expectations, MLMC methods were originally proposed to significantly reduce the computational cost with the use of multifidelity approximations. The improved performance of the MLMC methods depends strongly on the decay of the variance of the integrand as the level increases. However, the main challengemore » in estimating CDFs is that the integrand is a discontinuous indicator function whose variance decays slowly. To address this difficult task, we approximate the integrand using a smoothing function that accelerates the decay of the variance. In addition, we design a novel a posteriori optimization strategy to calibrate the smoothing function, so as to balance the computational gain and the approximation error. The combined proposed techniques are integrated into a very general and practical algorithm that can be applied to a wide range of subsurface problems for high-dimensional uncertainty quantification, such as a fine-grid oil reservoir model considered in this effort. The numerical results reveal that with the use of the calibrated smoothing function, the improved MLMC technique significantly reduces the computational complexity compared to the standard MC approach. Finally, we discuss several factors that affect the performance of the MLMC method and provide guidance for effective and efficient usage in practice.« less
NASA Astrophysics Data System (ADS)
Wilson, Robert H.; Vishwanath, Karthik; Mycek, Mary-Ann
2009-02-01
Monte Carlo (MC) simulations are considered the "gold standard" for mathematical description of photon transport in tissue, but they can require large computation times. Therefore, it is important to develop simple and efficient methods for accelerating MC simulations, especially when a large "library" of related simulations is needed. A semi-analytical method involving MC simulations and a path-integral (PI) based scaling technique generated time-resolved reflectance curves from layered tissue models. First, a zero-absorption MC simulation was run for a tissue model with fixed scattering properties in each layer. Then, a closed-form expression for the average classical path of a photon in tissue was used to determine the percentage of time that the photon spent in each layer, to create a weighted Beer-Lambert factor to scale the time-resolved reflectance of the simulated zero-absorption tissue model. This method is a unique alternative to other scaling techniques in that it does not require the path length or number of collisions of each photon to be stored during the initial simulation. Effects of various layer thicknesses and absorption and scattering coefficients on the accuracy of the method will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taleei, R; Qin, N; Jiang, S
2016-06-15
Purpose: Biological treatment plan optimization is of great interest for proton therapy. It requires extensive Monte Carlo (MC) simulations to compute physical dose and biological quantities. Recently, a gPMC package was developed for rapid MC dose calculations on a GPU platform. This work investigated its suitability for proton therapy biological optimization in terms of accuracy and efficiency. Methods: We performed simulations of a proton pencil beam with energies of 75, 150 and 225 MeV in a homogeneous water phantom using gPMC and FLUKA. Physical dose and energy spectra for each ion type on the central beam axis were scored. Relativemore » Biological Effectiveness (RBE) was calculated using repair-misrepair-fixation model. Microdosimetry calculations were performed using Monte Carlo Damage Simulation (MCDS). Results: Ranges computed by the two codes agreed within 1 mm. Physical dose difference was less than 2.5 % at the Bragg peak. RBE-weighted dose agreed within 5 % at the Bragg peak. Differences in microdosimetric quantities such as dose average lineal energy transfer and specific energy were < 10%. The simulation time per source particle with FLUKA was 0.0018 sec, while gPMC was ∼ 600 times faster. Conclusion: Physical dose computed by FLUKA and gPMC were in a good agreement. The RBE differences along the central axis were small, and RBE-weighted dose difference was found to be acceptable. The combined accuracy and efficiency makes gPMC suitable for proton therapy biological optimization.« less
Production Management System for AMS Computing Centres
NASA Astrophysics Data System (ADS)
Choutko, V.; Demakov, O.; Egorov, A.; Eline, A.; Shan, B. S.; Shi, R.
2017-10-01
The Alpha Magnetic Spectrometer [1] (AMS) has collected over 95 billion cosmic ray events since it was installed on the International Space Station (ISS) on May 19, 2011. To cope with enormous flux of events, AMS uses 12 computing centers in Europe, Asia and North America, which have different hardware and software configurations. The centers are participating in data reconstruction, Monte-Carlo (MC) simulation [2]/Data and MC production/as well as in physics analysis. Data production management system has been developed to facilitate data and MC production tasks in AMS computing centers, including job acquiring, submitting, monitoring, transferring, and accounting. It was designed to be modularized, light-weighted, and easy-to-be-deployed. The system is based on Deterministic Finite Automaton [3] model, and implemented by script languages, Python and Perl, and the built-in sqlite3 database on Linux operating systems. Different batch management systems, file system storage, and transferring protocols are supported. The details of the integration with Open Science Grid are presented as well.
NASA Astrophysics Data System (ADS)
Cros, Maria; Joemai, Raoul M. S.; Geleijns, Jacob; Molina, Diego; Salvadó, Marçal
2017-08-01
This study aims to develop and test software for assessing and reporting doses for standard patients undergoing computed tomography (CT) examinations in a 320 detector-row cone-beam scanner. The software, called SimDoseCT, is based on the Monte Carlo (MC) simulation code, which was developed to calculate organ doses and effective doses in ICRP anthropomorphic adult reference computational phantoms for acquisitions with the Aquilion ONE CT scanner (Toshiba). MC simulation was validated by comparing CTDI measurements within standard CT dose phantoms with results from simulation under the same conditions. SimDoseCT consists of a graphical user interface connected to a MySQL database, which contains the look-up-tables that were generated with MC simulations for volumetric acquisitions at different scan positions along the phantom using any tube voltage, bow tie filter, focal spot and nine different beam widths. Two different methods were developed to estimate organ doses and effective doses from acquisitions using other available beam widths in the scanner. A correction factor was used to estimate doses in helical acquisitions. Hence, the user can select any available protocol in the Aquilion ONE scanner for a standard adult male or female and obtain the dose results through the software interface. Agreement within 9% between CTDI measurements and simulations allowed the validation of the MC program. Additionally, the algorithm for dose reporting in SimDoseCT was validated by comparing dose results from this tool with those obtained from MC simulations for three volumetric acquisitions (head, thorax and abdomen). The comparison was repeated using eight different collimations and also for another collimation in a helical abdomen examination. The results showed differences of 0.1 mSv or less for absolute dose in most organs and also in the effective dose calculation. The software provides a suitable tool for dose assessment in standard adult patients undergoing CT examinations in a 320 detector-row cone-beam scanner.
Cros, Maria; Joemai, Raoul M S; Geleijns, Jacob; Molina, Diego; Salvadó, Marçal
2017-07-17
This study aims to develop and test software for assessing and reporting doses for standard patients undergoing computed tomography (CT) examinations in a 320 detector-row cone-beam scanner. The software, called SimDoseCT, is based on the Monte Carlo (MC) simulation code, which was developed to calculate organ doses and effective doses in ICRP anthropomorphic adult reference computational phantoms for acquisitions with the Aquilion ONE CT scanner (Toshiba). MC simulation was validated by comparing CTDI measurements within standard CT dose phantoms with results from simulation under the same conditions. SimDoseCT consists of a graphical user interface connected to a MySQL database, which contains the look-up-tables that were generated with MC simulations for volumetric acquisitions at different scan positions along the phantom using any tube voltage, bow tie filter, focal spot and nine different beam widths. Two different methods were developed to estimate organ doses and effective doses from acquisitions using other available beam widths in the scanner. A correction factor was used to estimate doses in helical acquisitions. Hence, the user can select any available protocol in the Aquilion ONE scanner for a standard adult male or female and obtain the dose results through the software interface. Agreement within 9% between CTDI measurements and simulations allowed the validation of the MC program. Additionally, the algorithm for dose reporting in SimDoseCT was validated by comparing dose results from this tool with those obtained from MC simulations for three volumetric acquisitions (head, thorax and abdomen). The comparison was repeated using eight different collimations and also for another collimation in a helical abdomen examination. The results showed differences of 0.1 mSv or less for absolute dose in most organs and also in the effective dose calculation. The software provides a suitable tool for dose assessment in standard adult patients undergoing CT examinations in a 320 detector-row cone-beam scanner.
GPU-accelerated Monte Carlo convolution/superposition implementation for dose calculation.
Zhou, Bo; Yu, Cedric X; Chen, Danny Z; Hu, X Sharon
2010-11-01
Dose calculation is a key component in radiation treatment planning systems. Its performance and accuracy are crucial to the quality of treatment plans as emerging advanced radiation therapy technologies are exerting ever tighter constraints on dose calculation. A common practice is to choose either a deterministic method such as the convolution/superposition (CS) method for speed or a Monte Carlo (MC) method for accuracy. The goal of this work is to boost the performance of a hybrid Monte Carlo convolution/superposition (MCCS) method by devising a graphics processing unit (GPU) implementation so as to make the method practical for day-to-day usage. Although the MCCS algorithm combines the merits of MC fluence generation and CS fluence transport, it is still not fast enough to be used as a day-to-day planning tool. To alleviate the speed issue of MC algorithms, the authors adopted MCCS as their target method and implemented a GPU-based version. In order to fully utilize the GPU computing power, the MCCS algorithm is modified to match the GPU hardware architecture. The performance of the authors' GPU-based implementation on an Nvidia GTX260 card is compared to a multithreaded software implementation on a quad-core system. A speedup in the range of 6.7-11.4x is observed for the clinical cases used. The less than 2% statistical fluctuation also indicates that the accuracy of the authors' GPU-based implementation is in good agreement with the results from the quad-core CPU implementation. This work shows that GPU is a feasible and cost-efficient solution compared to other alternatives such as using cluster machines or field-programmable gate arrays for satisfying the increasing demands on computation speed and accuracy of dose calculation. But there are also inherent limitations of using GPU for accelerating MC-type applications, which are also analyzed in detail in this article.
Optimisation of 12 MeV electron beam simulation using variance reduction technique
NASA Astrophysics Data System (ADS)
Jayamani, J.; Termizi, N. A. S. Mohd; Kamarulzaman, F. N. Mohd; Aziz, M. Z. Abdul
2017-05-01
Monte Carlo (MC) simulation for electron beam radiotherapy consumes a long computation time. An algorithm called variance reduction technique (VRT) in MC was implemented to speed up this duration. This work focused on optimisation of VRT parameter which refers to electron range rejection and particle history. EGSnrc MC source code was used to simulate (BEAMnrc code) and validate (DOSXYZnrc code) the Siemens Primus linear accelerator model with the non-VRT parameter. The validated MC model simulation was repeated by applying VRT parameter (electron range rejection) that controlled by global electron cut-off energy 1,2 and 5 MeV using 20 × 107 particle history. 5 MeV range rejection generated the fastest MC simulation with 50% reduction in computation time compared to non-VRT simulation. Thus, 5 MeV electron range rejection utilized in particle history analysis ranged from 7.5 × 107 to 20 × 107. In this study, 5 MeV electron cut-off with 10 × 107 particle history, the simulation was four times faster than non-VRT calculation with 1% deviation. Proper understanding and use of VRT can significantly reduce MC electron beam calculation duration at the same time preserving its accuracy.
Spin polarisation of tt¯γγ production at NLO+PS with GoSam interfaced to MadGraph5_aMC@NLO
van Deurzen, Hans; Frederix, Rikkert; Hirschi, Valentin; ...
2016-04-22
Here, we present an interface between the multipurpose Monte Carlo tool MadGraph5_aMC@NLO and the automated amplitude generator GoSam. As a first application of this novel framework, we compute the NLO corrections to pp→ tt¯H and pp→ tt¯γγ matched to a parton shower. In the phenomenological analyses of these processes, we focus our attention on observables which are sensitive to the polarisation of the top quarks.
Spin polarisation of tt¯γγ production at NLO+PS with GoSam interfaced to MadGraph5_aMC@NLO
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Deurzen, Hans; Frederix, Rikkert; Hirschi, Valentin
Here, we present an interface between the multipurpose Monte Carlo tool MadGraph5_aMC@NLO and the automated amplitude generator GoSam. As a first application of this novel framework, we compute the NLO corrections to pp→ tt¯H and pp→ tt¯γγ matched to a parton shower. In the phenomenological analyses of these processes, we focus our attention on observables which are sensitive to the polarisation of the top quarks.
Chi, Yujie; Tian, Zhen; Jia, Xun
2016-08-07
Monte Carlo (MC) particle transport simulation on a graphics-processing unit (GPU) platform has been extensively studied recently due to the efficiency advantage achieved via massive parallelization. Almost all of the existing GPU-based MC packages were developed for voxelized geometry. This limited application scope of these packages. The purpose of this paper is to develop a module to model parametric geometry and integrate it in GPU-based MC simulations. In our module, each continuous region was defined by its bounding surfaces that were parameterized by quadratic functions. Particle navigation functions in this geometry were developed. The module was incorporated to two previously developed GPU-based MC packages and was tested in two example problems: (1) low energy photon transport simulation in a brachytherapy case with a shielded cylinder applicator and (2) MeV coupled photon/electron transport simulation in a phantom containing several inserts of different shapes. In both cases, the calculated dose distributions agreed well with those calculated in the corresponding voxelized geometry. The averaged dose differences were 1.03% and 0.29%, respectively. We also used the developed package to perform simulations of a Varian VS 2000 brachytherapy source and generated a phase-space file. The computation time under the parameterized geometry depended on the memory location storing the geometry data. When the data was stored in GPU's shared memory, the highest computational speed was achieved. Incorporation of parameterized geometry yielded a computation time that was ~3 times of that in the corresponding voxelized geometry. We also developed a strategy to use an auxiliary index array to reduce frequency of geometry calculations and hence improve efficiency. With this strategy, the computational time ranged in 1.75-2.03 times of the voxelized geometry for coupled photon/electron transport depending on the voxel dimension of the auxiliary index array, and in 0.69-1.23 times for photon only transport.
Cho, Nathan; Tsiamas, Panagiotis; Velarde, Esteban; Tryggestad, Erik; Jacques, Robert; Berbeco, Ross; McNutt, Todd; Kazanzides, Peter; Wong, John
2018-05-01
The Small Animal Radiation Research Platform (SARRP) has been developed for conformal microirradiation with on-board cone beam CT (CBCT) guidance. The graphics processing unit (GPU)-accelerated Superposition-Convolution (SC) method for dose computation has been integrated into the treatment planning system (TPS) for SARRP. This paper describes the validation of the SC method for the kilovoltage energy by comparing with EBT2 film measurements and Monte Carlo (MC) simulations. MC data were simulated by EGSnrc code with 3 × 10 8 -1.5 × 10 9 histories, while 21 photon energy bins were used to model the 220 kVp x-rays in the SC method. Various types of phantoms including plastic water, cork, graphite, and aluminum were used to encompass the range of densities of mouse organs. For the comparison, percentage depth dose (PDD) of SC, MC, and film measurements were analyzed. Cross beam (x,y) dosimetric profiles of SC and film measurements are also presented. Correction factors (CFz) to convert SC to MC dose-to-medium are derived from the SC and MC simulations in homogeneous phantoms of aluminum and graphite to improve the estimation. The SC method produces dose values that are within 5% of film measurements and MC simulations in the flat regions of the profile. The dose is less accurate at the edges, due to factors such as geometric uncertainties of film placement and difference in dose calculation grids. The GPU-accelerated Superposition-Convolution dose computation method was successfully validated with EBT2 film measurements and MC calculations. The SC method offers much faster computation speed than MC and provides calculations of both dose-to-water in medium and dose-to-medium in medium. © 2018 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Y. M., E-mail: ymingy@gmail.com; Bednarz, B.; Svatos, M.
Purpose: The future of radiation therapy will require advanced inverse planning solutions to support single-arc, multiple-arc, and “4π” delivery modes, which present unique challenges in finding an optimal treatment plan over a vast search space, while still preserving dosimetric accuracy. The successful clinical implementation of such methods would benefit from Monte Carlo (MC) based dose calculation methods, which can offer improvements in dosimetric accuracy when compared to deterministic methods. The standard method for MC based treatment planning optimization leverages the accuracy of the MC dose calculation and efficiency of well-developed optimization methods, by precalculating the fluence to dose relationship withinmore » a patient with MC methods and subsequently optimizing the fluence weights. However, the sequential nature of this implementation is computationally time consuming and memory intensive. Methods to reduce the overhead of the MC precalculation have been explored in the past, demonstrating promising reductions of computational time overhead, but with limited impact on the memory overhead due to the sequential nature of the dose calculation and fluence optimization. The authors propose an entirely new form of “concurrent” Monte Carlo treat plan optimization: a platform which optimizes the fluence during the dose calculation, reduces wasted computation time being spent on beamlets that weakly contribute to the final dose distribution, and requires only a low memory footprint to function. In this initial investigation, the authors explore the key theoretical and practical considerations of optimizing fluence in such a manner. Methods: The authors present a novel derivation and implementation of a gradient descent algorithm that allows for optimization during MC particle transport, based on highly stochastic information generated through particle transport of very few histories. A gradient rescaling and renormalization algorithm, and the concept of momentum from stochastic gradient descent were used to address obstacles unique to performing gradient descent fluence optimization during MC particle transport. The authors have applied their method to two simple geometrical phantoms, and one clinical patient geometry to examine the capability of this platform to generate conformal plans as well as assess its computational scaling and efficiency, respectively. Results: The authors obtain a reduction of at least 50% in total histories transported in their investigation compared to a theoretical unweighted beamlet calculation and subsequent fluence optimization method, and observe a roughly fixed optimization time overhead consisting of ∼10% of the total computation time in all cases. Finally, the authors demonstrate a negligible increase in memory overhead of ∼7–8 MB to allow for optimization of a clinical patient geometry surrounded by 36 beams using their platform. Conclusions: This study demonstrates a fluence optimization approach, which could significantly improve the development of next generation radiation therapy solutions while incurring minimal additional computational overhead.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perfetti, Christopher M; Rearden, Bradley T
2014-01-01
This work introduces a new approach for calculating sensitivity coefficients for generalized neutronic responses to nuclear data uncertainties using continuous-energy Monte Carlo methods. The approach presented in this paper, known as the GEAR-MC method, allows for the calculation of generalized sensitivity coefficients for multiple responses in a single Monte Carlo calculation with no nuclear data perturbations or knowledge of nuclear covariance data. The theory behind the GEAR-MC method is presented here, and proof of principle is demonstrated by using the GEAR-MC method to calculate sensitivity coefficients for responses in several 3D, continuous-energy Monte Carlo applications.
Liu, Peigui; Elshall, Ahmed S.; Ye, Ming; ...
2016-02-05
Evaluating marginal likelihood is the most critical and computationally expensive task, when conducting Bayesian model averaging to quantify parametric and model uncertainties. The evaluation is commonly done by using Laplace approximations to evaluate semianalytical expressions of the marginal likelihood or by using Monte Carlo (MC) methods to evaluate arithmetic or harmonic mean of a joint likelihood function. This study introduces a new MC method, i.e., thermodynamic integration, which has not been attempted in environmental modeling. Instead of using samples only from prior parameter space (as in arithmetic mean evaluation) or posterior parameter space (as in harmonic mean evaluation), the thermodynamicmore » integration method uses samples generated gradually from the prior to posterior parameter space. This is done through a path sampling that conducts Markov chain Monte Carlo simulation with different power coefficient values applied to the joint likelihood function. The thermodynamic integration method is evaluated using three analytical functions by comparing the method with two variants of the Laplace approximation method and three MC methods, including the nested sampling method that is recently introduced into environmental modeling. The thermodynamic integration method outperforms the other methods in terms of their accuracy, convergence, and consistency. The thermodynamic integration method is also applied to a synthetic case of groundwater modeling with four alternative models. The application shows that model probabilities obtained using the thermodynamic integration method improves predictive performance of Bayesian model averaging. As a result, the thermodynamic integration method is mathematically rigorous, and its MC implementation is computationally general for a wide range of environmental problems.« less
Constant-pH Hybrid Nonequilibrium Molecular Dynamics–Monte Carlo Simulation Method
2016-01-01
A computational method is developed to carry out explicit solvent simulations of complex molecular systems under conditions of constant pH. In constant-pH simulations, preidentified ionizable sites are allowed to spontaneously protonate and deprotonate as a function of time in response to the environment and the imposed pH. The method, based on a hybrid scheme originally proposed by H. A. Stern (J. Chem. Phys.2007, 126, 164112), consists of carrying out short nonequilibrium molecular dynamics (neMD) switching trajectories to generate physically plausible configurations with changed protonation states that are subsequently accepted or rejected according to a Metropolis Monte Carlo (MC) criterion. To ensure microscopic detailed balance arising from such nonequilibrium switches, the atomic momenta are altered according to the symmetric two-ends momentum reversal prescription. To achieve higher efficiency, the original neMD–MC scheme is separated into two steps, reducing the need for generating a large number of unproductive and costly nonequilibrium trajectories. In the first step, the protonation state of a site is randomly attributed via a Metropolis MC process on the basis of an intrinsic pKa; an attempted nonequilibrium switch is generated only if this change in protonation state is accepted. This hybrid two-step inherent pKa neMD–MC simulation method is tested with single amino acids in solution (Asp, Glu, and His) and then applied to turkey ovomucoid third domain and hen egg-white lysozyme. Because of the simple linear increase in the computational cost relative to the number of titratable sites, the present method is naturally able to treat extremely large systems. PMID:26300709
Dosimetry applications in GATE Monte Carlo toolkit.
Papadimitroulas, Panagiotis
2017-09-01
Monte Carlo (MC) simulations are a well-established method for studying physical processes in medical physics. The purpose of this review is to present GATE dosimetry applications on diagnostic and therapeutic simulated protocols. There is a significant need for accurate quantification of the absorbed dose in several specific applications such as preclinical and pediatric studies. GATE is an open-source MC toolkit for simulating imaging, radiotherapy (RT) and dosimetry applications in a user-friendly environment, which is well validated and widely accepted by the scientific community. In RT applications, during treatment planning, it is essential to accurately assess the deposited energy and the absorbed dose per tissue/organ of interest, as well as the local statistical uncertainty. Several types of realistic dosimetric applications are described including: molecular imaging, radio-immunotherapy, radiotherapy and brachytherapy. GATE has been efficiently used in several applications, such as Dose Point Kernels, S-values, Brachytherapy parameters, and has been compared against various MC codes which are considered as standard tools for decades. Furthermore, the presented studies show reliable modeling of particle beams when comparing experimental with simulated data. Examples of different dosimetric protocols are reported for individualized dosimetry and simulations combining imaging and therapy dose monitoring, with the use of modern computational phantoms. Personalization of medical protocols can be achieved by combining GATE MC simulations with anthropomorphic computational models and clinical anatomical data. This is a review study, covering several dosimetric applications of GATE, and the different tools used for modeling realistic clinical acquisitions with accurate dose assessment. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biondo, Elliott D; Ibrahim, Ahmad M; Mosher, Scott W
2015-01-01
Detailed radiation transport calculations are necessary for many aspects of the design of fusion energy systems (FES) such as ensuring occupational safety, assessing the activation of system components for waste disposal, and maintaining cryogenic temperatures within superconducting magnets. Hybrid Monte Carlo (MC)/deterministic techniques are necessary for this analysis because FES are large, heavily shielded, and contain streaming paths that can only be resolved with MC. The tremendous complexity of FES necessitates the use of CAD geometry for design and analysis. Previous ITER analysis has required the translation of CAD geometry to MCNP5 form in order to use the AutomateD VAriaNcemore » reducTion Generator (ADVANTG) for hybrid MC/deterministic transport. In this work, ADVANTG was modified to support CAD geometry, allowing hybrid (MC)/deterministic transport to be done automatically and eliminating the need for this translation step. This was done by adding a new ray tracing routine to ADVANTG for CAD geometries using the Direct Accelerated Geometry Monte Carlo (DAGMC) software library. This new capability is demonstrated with a prompt dose rate calculation for an ITER computational benchmark problem using both the Consistent Adjoint Driven Importance Sampling (CADIS) method an the Forward Weighted (FW)-CADIS method. The variance reduction parameters produced by ADVANTG are shown to be the same using CAD geometry and standard MCNP5 geometry. Significant speedups were observed for both neutrons (as high as a factor of 7.1) and photons (as high as a factor of 59.6).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakabe, D; Ohno, T; Araki, F
Purpose: The purpose of this study was to evaluate the combined organ dose of digital subtraction angiography (DSA) and computed tomography (CT) using a Monte Carlo (MC) simulation on the abdominal intervention. Methods: The organ doses for DSA and CT were obtained with MC simulation and actual measurements using fluorescent-glass dosimeters at 7 abdominal portions in an Alderson-Rando phantom. DSA was performed from three directions: posterior anterior (PA), right anterior oblique (RAO), and left anterior oblique (LAO). The organ dose with MC simulation was compared with actual radiation dose measurements. Calculations for the MC simulation were carried out with themore » GMctdospp (IMPS, Germany) software based on the EGSnrc MC code. Finally, the combined organ dose for DSA and CT was calculated from the MC simulation using the X-ray conditions of a patient with a diagnosis of hepatocellular carcinoma. Results: For DSA from the PA direction, the organ doses for the actual measurements and MC simulation were 2.2 and 2.4 mGy/100 mAs at the liver, respectively, and 3.0 and 3.1 mGy/100 mAs at the spinal cord, while for CT, the organ doses were 15.2 and 15.1 mGy/100 mAs at the liver, and 14.6 and 13.5 mGy/100 mAs at the spinal cord. The maximum difference in organ dose between the actual measurements and the MC simulation was 11.0% of the spleen at PA, 8.2% of the spinal cord at RAO, and 6.1% of left kidney at LAO with DSA and 9.3% of the stomach with CT. The combined organ dose (4 DSAs and 6 CT scans) with the use of actual patient conditions was found to be 197.4 mGy for the liver and 205.1 mGy for the spinal cord. Conclusion: Our method makes it possible to accurately assess the organ dose to patients for abdominal intervention with combined DSA and CT.« less
NASA Astrophysics Data System (ADS)
Busi, Matteo; Olsen, Ulrik L.; Knudsen, Erik B.; Frisvad, Jeppe R.; Kehres, Jan; Dreier, Erik S.; Khalil, Mohamad; Haldrup, Kristoffer
2018-03-01
Spectral computed tomography is an emerging imaging method that involves using recently developed energy discriminating photon-counting detectors (PCDs). This technique enables measurements at isolated high-energy ranges, in which the dominating undergoing interaction between the x-ray and the sample is the incoherent scattering. The scattered radiation causes a loss of contrast in the results, and its correction has proven to be a complex problem, due to its dependence on energy, material composition, and geometry. Monte Carlo simulations can utilize a physical model to estimate the scattering contribution to the signal, at the cost of high computational time. We present a fast Monte Carlo simulation tool, based on McXtrace, to predict the energy resolved radiation being scattered and absorbed by objects of complex shapes. We validate the tool through measurements using a CdTe single PCD (Multix ME-100) and use it for scattering correction in a simulation of a spectral CT. We found the correction to account for up to 7% relative amplification in the reconstructed linear attenuation. It is a useful tool for x-ray CT to obtain a more accurate material discrimination, especially in the high-energy range, where the incoherent scattering interactions become prevailing (>50 keV).
Manohar, Nivedh; Jones, Bernard L.; Cho, Sang Hyun
2014-01-01
Purpose: To develop an accurate and comprehensive Monte Carlo (MC) model of an experimental benchtop polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) setup and apply this MC model to optimize incident x-ray spectrum for improving production/detection of x-ray fluorescence photons from gold nanoparticles (GNPs). Methods: A detailed MC model, based on an experimental XFCT system, was created using the Monte Carlo N-Particle (MCNP) transport code. The model was validated by comparing MC results including x-ray fluorescence (XRF) and scatter photon spectra with measured data obtained under identical conditions using 105 kVp cone-beam x-rays filtered by either 1 mm of lead (Pb) or 0.9 mm of tin (Sn). After validation, the model was used to investigate the effects of additional filtration of the incident beam with Pb and Sn. Supplementary incident x-ray spectra, representing heavier filtration (Pb: 2 and 3 mm; Sn: 1, 2, and 3 mm) were computationally generated and used with the model to obtain XRF/scatter spectra. Quasimonochromatic incident x-ray spectra (81, 85, 90, 95, and 100 keV with 10 keV full width at half maximum) were also investigated to determine the ideal energy for distinguishing gold XRF signal from the scatter background. Fluorescence signal-to-dose ratio (FSDR) and fluorescence-normalized scan time (FNST) were used as metrics to assess results. Results: Calculated XRF/scatter spectra for 1-mm Pb and 0.9-mm Sn filters matched (r ≥ 0.996) experimental measurements. Calculated spectra representing additional filtration for both filter materials showed that the spectral hardening improved the FSDR at the expense of requiring a much longer FNST. In general, using Sn instead of Pb, at a given filter thickness, allowed an increase of up to 20% in FSDR, more prominent gold XRF peaks, and up to an order of magnitude decrease in FNST. Simulations using quasimonochromatic spectra suggested that increasing source x-ray energy, in the investigated range of 81–100 keV, increased the FSDR up to a factor of 20, compared to 1 mm Pb, and further facilitated separation of gold XRF peaks from the scatter background. Conclusions: A detailed MC model of an experimental benchtop XFCT system has been developed and validated. In exemplary calculations to illustrate the usefulness of this model, it was shown that potential use of quasimonochromatic spectra or judicious choice of filter material/thickness to tailor the spectrum of a polychromatic x-ray source can significantly improve the performance of benchtop XFCT, while considering trade-offs between FSDR and FNST. As demonstrated, the current MC model is a reliable and powerful computational tool that can greatly expedite the further development of a benchtop XFCT system for routine preclinical molecular imaging with GNPs and other metal probes. PMID:25281958
Manohar, Nivedh; Jones, Bernard L; Cho, Sang Hyun
2014-10-01
To develop an accurate and comprehensive Monte Carlo (MC) model of an experimental benchtop polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) setup and apply this MC model to optimize incident x-ray spectrum for improving production/detection of x-ray fluorescence photons from gold nanoparticles (GNPs). A detailed MC model, based on an experimental XFCT system, was created using the Monte Carlo N-Particle (MCNP) transport code. The model was validated by comparing MC results including x-ray fluorescence (XRF) and scatter photon spectra with measured data obtained under identical conditions using 105 kVp cone-beam x-rays filtered by either 1 mm of lead (Pb) or 0.9 mm of tin (Sn). After validation, the model was used to investigate the effects of additional filtration of the incident beam with Pb and Sn. Supplementary incident x-ray spectra, representing heavier filtration (Pb: 2 and 3 mm; Sn: 1, 2, and 3 mm) were computationally generated and used with the model to obtain XRF/scatter spectra. Quasimonochromatic incident x-ray spectra (81, 85, 90, 95, and 100 keV with 10 keV full width at half maximum) were also investigated to determine the ideal energy for distinguishing gold XRF signal from the scatter background. Fluorescence signal-to-dose ratio (FSDR) and fluorescence-normalized scan time (FNST) were used as metrics to assess results. Calculated XRF/scatter spectra for 1-mm Pb and 0.9-mm Sn filters matched (r ≥ 0.996) experimental measurements. Calculated spectra representing additional filtration for both filter materials showed that the spectral hardening improved the FSDR at the expense of requiring a much longer FNST. In general, using Sn instead of Pb, at a given filter thickness, allowed an increase of up to 20% in FSDR, more prominent gold XRF peaks, and up to an order of magnitude decrease in FNST. Simulations using quasimonochromatic spectra suggested that increasing source x-ray energy, in the investigated range of 81-100 keV, increased the FSDR up to a factor of 20, compared to 1 mm Pb, and further facilitated separation of gold XRF peaks from the scatter background. A detailed MC model of an experimental benchtop XFCT system has been developed and validated. In exemplary calculations to illustrate the usefulness of this model, it was shown that potential use of quasimonochromatic spectra or judicious choice of filter material/thickness to tailor the spectrum of a polychromatic x-ray source can significantly improve the performance of benchtop XFCT, while considering trade-offs between FSDR and FNST. As demonstrated, the current MC model is a reliable and powerful computational tool that can greatly expedite the further development of a benchtop XFCT system for routine preclinical molecular imaging with GNPs and other metal probes.
A Study of Neutron Leakage in Finite Objects
NASA Technical Reports Server (NTRS)
Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.
2015-01-01
A computationally efficient 3DHZETRN code capable of simulating High charge (Z) and Energy (HZE) and light ions (including neutrons) under space-like boundary conditions with enhanced neutron and light ion propagation was recently developed for simple shielded objects. Monte Carlo (MC) benchmarks were used to verify the 3DHZETRN methodology in slab and spherical geometry, and it was shown that 3DHZETRN agrees with MC codes to the degree that various MC codes agree among themselves. One limitation in the verification process is that all of the codes (3DHZETRN and three MC codes) utilize different nuclear models/databases. In the present report, the new algorithm, with well-defined convergence criteria, is used to quantify the neutron leakage from simple geometries to provide means of verifying 3D effects and to provide guidance for further code development.
Paracousti-UQ: A Stochastic 3-D Acoustic Wave Propagation Algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preston, Leiph
Acoustic full waveform algorithms, such as Paracousti, provide deterministic solutions in complex, 3-D variable environments. In reality, environmental and source characteristics are often only known in a statistical sense. Thus, to fully characterize the expected sound levels within an environment, this uncertainty in environmental and source factors should be incorporated into the acoustic simulations. Performing Monte Carlo (MC) simulations is one method of assessing this uncertainty, but it can quickly become computationally intractable for realistic problems. An alternative method, using the technique of stochastic partial differential equations (SPDE), allows computation of the statistical properties of output signals at a fractionmore » of the computational cost of MC. Paracousti-UQ solves the SPDE system of 3-D acoustic wave propagation equations and provides estimates of the uncertainty of the output simulated wave field (e.g., amplitudes, waveforms) based on estimated probability distributions of the input medium and source parameters. This report describes the derivation of the stochastic partial differential equations, their implementation, and comparison of Paracousti-UQ results with MC simulations using simple models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liangzhe Zhang; Anthony D. Rollett; Timothy Bartel
2012-02-01
A calibrated Monte Carlo (cMC) approach, which quantifies grain boundary kinetics within a generic setting, is presented. The influence of misorientation is captured by adding a scaling coefficient in the spin flipping probability equation, while the contribution of different driving forces is weighted using a partition function. The calibration process relies on the established parametric links between Monte Carlo (MC) and sharp-interface models. The cMC algorithm quantifies microstructural evolution under complex thermomechanical environments and remedies some of the difficulties associated with conventional MC models. After validation, the cMC approach is applied to quantify the texture development of polycrystalline materials withmore » influences of misorientation and inhomogeneous bulk energy across grain boundaries. The results are in good agreement with theory and experiments.« less
NASA Astrophysics Data System (ADS)
Awatey, M. T.; Irving, J.; Oware, E. K.
2016-12-01
Markov chain Monte Carlo (McMC) inversion frameworks are becoming increasingly popular in geophysics due to their ability to recover multiple equally plausible geologic features that honor the limited noisy measurements. Standard McMC methods, however, become computationally intractable with increasing dimensionality of the problem, for example, when working with spatially distributed geophysical parameter fields. We present a McMC approach based on a sparse proper orthogonal decomposition (POD) model parameterization that implicitly incorporates the physics of the underlying process. First, we generate training images (TIs) via Monte Carlo simulations of the target process constrained to a conceptual model. We then apply POD to construct basis vectors from the TIs. A small number of basis vectors can represent most of the variability in the TIs, leading to dimensionality reduction. A projection of the starting model into the reduced basis space generates the starting POD coefficients. At each iteration, only coefficients within a specified sampling window are resimulated assuming a Gaussian prior. The sampling window grows at a specified rate as the number of iteration progresses starting from the coefficients corresponding to the highest ranked basis to those of the least informative basis. We found this gradual increment in the sampling window to be more stable compared to resampling all the coefficients right from the first iteration. We demonstrate the performance of the algorithm with both synthetic and lab-scale electrical resistivity imaging of saline tracer experiments, employing the same set of basis vectors for all inversions. We consider two scenarios of unimodal and bimodal plumes. The unimodal plume is consistent with the hypothesis underlying the generation of the TIs whereas bimodality in plume morphology was not theorized. We show that uncertainty quantification using McMC can proceed in the reduced dimensionality space while accounting for the physics of the underlying process.
NASA Astrophysics Data System (ADS)
Liu, Shaoying; King, Michael A.; Brill, Aaron B.; Stabin, Michael G.; Farncombe, Troy H.
2008-02-01
Monte Carlo (MC) is a well-utilized tool for simulating photon transport in single photon emission computed tomography (SPECT) due to its ability to accurately model physical processes of photon transport. As a consequence of this accuracy, it suffers from a relatively low detection efficiency and long computation time. One technique used to improve the speed of MC modeling is the effective and well-established variance reduction technique (VRT) known as forced detection (FD). With this method, photons are followed as they traverse the object under study but are then forced to travel in the direction of the detector surface, whereby they are detected at a single detector location. Another method, called convolution-based forced detection (CFD), is based on the fundamental idea of FD with the exception that detected photons are detected at multiple detector locations and determined with a distance-dependent blurring kernel. In order to further increase the speed of MC, a method named multiple projection convolution-based forced detection (MP-CFD) is presented. Rather than forcing photons to hit a single detector, the MP-CFD method follows the photon transport through the object but then, at each scatter site, forces the photon to interact with a number of detectors at a variety of angles surrounding the object. This way, it is possible to simulate all the projection images of a SPECT simulation in parallel, rather than as independent projections. The result of this is vastly improved simulation time as much of the computation load of simulating photon transport through the object is done only once for all projection angles. The results of the proposed MP-CFD method agrees well with the experimental data in measurements of point spread function (PSF), producing a correlation coefficient (r2) of 0.99 compared to experimental data. The speed of MP-CFD is shown to be about 60 times faster than a regular forced detection MC program with similar results.
Head-and-neck IMRT treatments assessed with a Monte Carlo dose calculation engine.
Seco, J; Adams, E; Bidmead, M; Partridge, M; Verhaegen, F
2005-03-07
IMRT is frequently used in the head-and-neck region, which contains materials of widely differing densities (soft tissue, bone, air-cavities). Conventional methods of dose computation for these complex, inhomogeneous IMRT cases involve significant approximations. In the present work, a methodology for the development, commissioning and implementation of a Monte Carlo (MC) dose calculation engine for intensity modulated radiotherapy (MC-IMRT) is proposed which can be used by radiotherapy centres interested in developing MC-IMRT capabilities for research or clinical evaluations. The method proposes three levels for developing, commissioning and maintaining a MC-IMRT dose calculation engine: (a) development of a MC model of the linear accelerator, (b) validation of MC model for IMRT and (c) periodic quality assurance (QA) of the MC-IMRT system. The first step, level (a), in developing an MC-IMRT system is to build a model of the linac that correctly predicts standard open field measurements for percentage depth-dose and off-axis ratios. Validation of MC-IMRT, level (b), can be performed in a rando phantom and in a homogeneous water equivalent phantom. Ultimately, periodic quality assurance of the MC-IMRT system is needed to verify the MC-IMRT dose calculation system, level (c). Once the MC-IMRT dose calculation system is commissioned it can be applied to more complex clinical IMRT treatments. The MC-IMRT system implemented at the Royal Marsden Hospital was used for IMRT calculations for a patient undergoing treatment for primary disease with nodal involvement in the head-and-neck region (primary treated to 65 Gy and nodes to 54 Gy), while sparing the spinal cord, brain stem and parotid glands. Preliminary MC results predict a decrease of approximately 1-2 Gy in the median dose of both the primary tumour and nodal volumes (compared with both pencil beam and collapsed cone). This is possibly due to the large air-cavity (the larynx of the patient) situated in the centre of the primary PTV and the approximations present in the dose calculation.
McStas 1.1: a tool for building neutron Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Lefmann, K.; Nielsen, K.; Tennant, A.; Lake, B.
2000-03-01
McStas is a project to develop general tools for the creation of simulations of neutron scattering experiments. In this paper, we briefly introduce McStas and describe a particular application of the program: the Monte Carlo calculation of the resolution function of a standard triple-axis neutron scattering instrument. The method compares well with the analytical calculations of Popovici.
NASA Astrophysics Data System (ADS)
Fairbanks, Hillary R.; Doostan, Alireza; Ketelsen, Christian; Iaccarino, Gianluca
2017-07-01
Multilevel Monte Carlo (MLMC) is a recently proposed variation of Monte Carlo (MC) simulation that achieves variance reduction by simulating the governing equations on a series of spatial (or temporal) grids with increasing resolution. Instead of directly employing the fine grid solutions, MLMC estimates the expectation of the quantity of interest from the coarsest grid solutions as well as differences between each two consecutive grid solutions. When the differences corresponding to finer grids become smaller, hence less variable, fewer MC realizations of finer grid solutions are needed to compute the difference expectations, thus leading to a reduction in the overall work. This paper presents an extension of MLMC, referred to as multilevel control variates (MLCV), where a low-rank approximation to the solution on each grid, obtained primarily based on coarser grid solutions, is used as a control variate for estimating the expectations involved in MLMC. Cost estimates as well as numerical examples are presented to demonstrate the advantage of this new MLCV approach over the standard MLMC when the solution of interest admits a low-rank approximation and the cost of simulating finer grids grows fast.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Y; Southern Medical University, Guangzhou; Tian, Z
Purpose: Monte Carlo (MC) simulation is an important tool to solve radiotherapy and medical imaging problems. Low computational efficiency hinders its wide applications. Conventionally, MC is performed in a particle-by -particle fashion. The lack of control on particle trajectory is a main cause of low efficiency in some applications. Take cone beam CT (CBCT) projection simulation as an example, significant amount of computations were wasted on transporting photons that do not reach the detector. To solve this problem, we propose an innovative MC simulation scheme with a path-by-path sampling method. Methods: Consider a photon path starting at the x-ray source.more » After going through a set of interactions, it ends at the detector. In the proposed scheme, we sampled an entire photon path each time. Metropolis-Hasting algorithm was employed to accept/reject a sampled path based on a calculated acceptance probability, in order to maintain correct relative probabilities among different paths, which are governed by photon transport physics. We developed a package gMMC on GPU with this new scheme implemented. The performance of gMMC was tested in a sample problem of CBCT projection simulation for a homogeneous object. The results were compared to those obtained using gMCDRR, a GPU-based MC tool with the conventional particle-by-particle simulation scheme. Results: Calculated scattered photon signals in gMMC agreed with those from gMCDRR with a relative difference of 3%. It took 3.1 hr. for gMCDRR to simulate 7.8e11 photons and 246.5 sec for gMMC to simulate 1.4e10 paths. Under this setting, both results attained the same ∼2% statistical uncertainty. Hence, a speed-up factor of ∼45.3 was achieved by this new path-by-path simulation scheme, where all the computations were spent on those photons contributing to the detector signal. Conclusion: We innovatively proposed a novel path-by-path simulation scheme that enabled a significant efficiency enhancement for MC particle transport simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setiani, Tia Dwi, E-mail: tiadwisetiani@gmail.com; Suprijadi; Nuclear Physics and Biophysics Reaserch Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jalan Ganesha 10 Bandung, 40132
Monte Carlo (MC) is one of the powerful techniques for simulation in x-ray imaging. MC method can simulate the radiation transport within matter with high accuracy and provides a natural way to simulate radiation transport in complex systems. One of the codes based on MC algorithm that are widely used for radiographic images simulation is MC-GPU, a codes developed by Andrea Basal. This study was aimed to investigate the time computation of x-ray imaging simulation in GPU (Graphics Processing Unit) compared to a standard CPU (Central Processing Unit). Furthermore, the effect of physical parameters to the quality of radiographic imagesmore » and the comparison of image quality resulted from simulation in the GPU and CPU are evaluated in this paper. The simulations were run in CPU which was simulated in serial condition, and in two GPU with 384 cores and 2304 cores. In simulation using GPU, each cores calculates one photon, so, a large number of photon were calculated simultaneously. Results show that the time simulations on GPU were significantly accelerated compared to CPU. The simulations on the 2304 core of GPU were performed about 64 -114 times faster than on CPU, while the simulation on the 384 core of GPU were performed about 20 – 31 times faster than in a single core of CPU. Another result shows that optimum quality of images from the simulation was gained at the history start from 10{sup 8} and the energy from 60 Kev to 90 Kev. Analyzed by statistical approach, the quality of GPU and CPU images are relatively the same.« less
Dosimetric investigation of proton therapy on CT-based patient data using Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Chongsan, T.; Liamsuwan, T.; Tangboonduangjit, P.
2016-03-01
The aim of radiotherapy is to deliver high radiation dose to the tumor with low radiation dose to healthy tissues. Protons have Bragg peaks that give high radiation dose to the tumor but low exit dose or dose tail. Therefore, proton therapy is promising for treating deep- seated tumors and tumors locating close to organs at risk. Moreover, the physical characteristic of protons is suitable for treating cancer in pediatric patients. This work developed a computational platform for calculating proton dose distribution using the Monte Carlo (MC) technique and patient's anatomical data. The studied case is a pediatric patient with a primary brain tumor. PHITS will be used for MC simulation. Therefore, patient-specific CT-DICOM files were converted to the PHITS input. A MATLAB optimization program was developed to create a beam delivery control file for this study. The optimization program requires the proton beam data. All these data were calculated in this work using analytical formulas and the calculation accuracy was tested, before the beam delivery control file is used for MC simulation. This study will be useful for researchers aiming to investigate proton dose distribution in patients but do not have access to proton therapy machines.
Quan, Guotao; Gong, Hui; Deng, Yong; Fu, Jianwei; Luo, Qingming
2011-02-01
High-speed fluorescence molecular tomography (FMT) reconstruction for 3-D heterogeneous media is still one of the most challenging problems in diffusive optical fluorescence imaging. In this paper, we propose a fast FMT reconstruction method that is based on Monte Carlo (MC) simulation and accelerated by a cluster of graphics processing units (GPUs). Based on the Message Passing Interface standard, we modified the MC code for fast FMT reconstruction, and different Green's functions representing the flux distribution in media are calculated simultaneously by different GPUs in the cluster. A load-balancing method was also developed to increase the computational efficiency. By applying the Fréchet derivative, a Jacobian matrix is formed to reconstruct the distribution of the fluorochromes using the calculated Green's functions. Phantom experiments have shown that only 10 min are required to get reconstruction results with a cluster of 6 GPUs, rather than 6 h with a cluster of multiple dual opteron CPU nodes. Because of the advantages of high accuracy and suitability for 3-D heterogeneity media with refractive-index-unmatched boundaries from the MC simulation, the GPU cluster-accelerated method provides a reliable approach to high-speed reconstruction for FMT imaging.
NASA Astrophysics Data System (ADS)
Kurosu, Keita; Takashina, Masaaki; Koizumi, Masahiko; Das, Indra J.; Moskvin, Vadim P.
2014-10-01
Although three general-purpose Monte Carlo (MC) simulation tools: Geant4, FLUKA and PHITS have been used extensively, differences in calculation results have been reported. The major causes are the implementation of the physical model, preset value of the ionization potential or definition of the maximum step size. In order to achieve artifact free MC simulation, an optimized parameters list for each simulation system is required. Several authors have already proposed the optimized lists, but those studies were performed with a simple system such as only a water phantom. Since particle beams have a transport, interaction and electromagnetic processes during beam delivery, establishment of an optimized parameters-list for whole beam delivery system is therefore of major importance. The purpose of this study was to determine the optimized parameters list for GATE and PHITS using proton treatment nozzle computational model. The simulation was performed with the broad scanning proton beam. The influences of the customizing parameters on the percentage depth dose (PDD) profile and the proton range were investigated by comparison with the result of FLUKA, and then the optimal parameters were determined. The PDD profile and the proton range obtained from our optimized parameters list showed different characteristics from the results obtained with simple system. This led to the conclusion that the physical model, particle transport mechanics and different geometry-based descriptions need accurate customization in planning computational experiments for artifact-free MC simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Müller, Florian, E-mail: florian.mueller@sam.math.ethz.ch; Jenny, Patrick, E-mail: jenny@ifd.mavt.ethz.ch; Meyer, Daniel W., E-mail: meyerda@ethz.ch
2013-10-01
Monte Carlo (MC) is a well known method for quantifying uncertainty arising for example in subsurface flow problems. Although robust and easy to implement, MC suffers from slow convergence. Extending MC by means of multigrid techniques yields the multilevel Monte Carlo (MLMC) method. MLMC has proven to greatly accelerate MC for several applications including stochastic ordinary differential equations in finance, elliptic stochastic partial differential equations and also hyperbolic problems. In this study, MLMC is combined with a streamline-based solver to assess uncertain two phase flow and Buckley–Leverett transport in random heterogeneous porous media. The performance of MLMC is compared tomore » MC for a two dimensional reservoir with a multi-point Gaussian logarithmic permeability field. The influence of the variance and the correlation length of the logarithmic permeability on the MLMC performance is studied.« less
SU-G-TeP4-04: An Automated Monte Carlo Based QA Framework for Pencil Beam Scanning Treatments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, J; Jee, K; Clasie, B
2016-06-15
Purpose: Prior to treating new PBS field, multiple (three) patient-field-specific QA measurements are performed: two 2D dose distributions at shallow depth (M1) and at the tumor depth (M2) with treatment hardware at zero gantry angle; one 2D dose distribution at iso-center (M3) without patient specific devices at the planned gantry angle. This patient-specific QA could be simplified by the use of MC model. The results of MC model commissioning for a spot-scanning system and the fully automated TOPAS/MC-based QA framework will be presented. Methods: We have developed in-house MC interface to access a TPS (Astroid) database from a computer clustermore » remotely. Once a plan is identified, the interface downloads information for the MC simulations, such as patient images, apertures points, and fluence maps and initiates calculations in both the patient and QA geometries. The resulting calculations are further analyzed to evaluate the TPS dose accuracy and the PBS delivery. Results: The Monte Carlo model of our system was validated within 2.0 % accuracy over the whole range of the dose distribution (proximal/shallow part, as well as target dose part) due to the location of the measurements. The averaged range difference after commissioning was 0.25 mm over entire treatment ranges, e.g., 6.5 cm to 31.6 cm. Conclusion: As M1 depths range typically from 1 cm to 4 cm from the phantom surface, The Monte Carlo model of our system was validated within +− 2.0 % in absolute dose level over a whole treatment range. The averaged range difference after commissioning was 0.25 mm over entire treatment ranges, e.g., 6.5 cm to 31.6 cm. This work was supported by NIH/NCI under CA U19 21239.« less
Thomson, R; Kawrakow, I
2012-06-01
Widely-used classical trajectory Monte Carlo simulations of low energy electron transport neglect the quantum nature of electrons; however, at sub-1 keV energies quantum effects have the potential to become significant. This work compares quantum and classical simulations within a simplified model of electron transport in water. Electron transport is modeled in water droplets using quantum mechanical (QM) and classical trajectory Monte Carlo (MC) methods. Water droplets are modeled as collections of point scatterers representing water molecules from which electrons may be isotropically scattered. The role of inelastic scattering is investigated by introducing absorption. QM calculations involve numerically solving a system of coupled equations for the electron wavefield incident on each scatterer. A minimum distance between scatterers is introduced to approximate structured water. The average QM water droplet incoherent cross section is compared with the MC cross section; a relative error (RE) on the MC results is computed. RE varies with electron energy, average and minimum distances between scatterers, and scattering amplitude. The mean free path is generally the relevant length scale for estimating RE. The introduction of a minimum distance between scatterers increases RE substantially (factors of 5 to 10), suggesting that the structure of water must be modeled for accurate simulations. Inelastic scattering does not improve agreement between QM and MC simulations: for the same magnitude of elastic scattering, the introduction of inelastic scattering increases RE. Droplet cross sections are sensitive to droplet size and shape; considerable variations in RE are observed with changing droplet size and shape. At sub-1 keV energies, quantum effects may become non-negligible for electron transport in condensed media. Electron transport is strongly affected by the structure of the medium. Inelastic scatter does not improve agreement between QM and MC simulations of low energy electron transport in condensed media. © 2012 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Tiwari, Vaibhav
2018-07-01
The population analysis and estimation of merger rates of compact binaries is one of the important topics in gravitational wave astronomy. The primary ingredient in these analyses is the population-averaged sensitive volume. Typically, sensitive volume, of a given search to a given simulated source population, is estimated by drawing signals from the population model and adding them to the detector data as injections. Subsequently injections, which are simulated gravitational waveforms, are searched for by the search pipelines and their signal-to-noise ratio (SNR) is determined. Sensitive volume is estimated, by using Monte-Carlo (MC) integration, from the total number of injections added to the data, the number of injections that cross a chosen threshold on SNR and the astrophysical volume in which the injections are placed. So far, only fixed population models have been used in the estimation of binary black holes (BBH) merger rates. However, as the scope of population analysis broaden in terms of the methodologies and source properties considered, due to an increase in the number of observed gravitational wave (GW) signals, the procedure will need to be repeated multiple times at a large computational cost. In this letter we address the problem by performing a weighted MC integration. We show how a single set of generic injections can be weighted to estimate the sensitive volume for multiple population models; thereby greatly reducing the computational cost. The weights in this MC integral are the ratios of the output probabilities, determined by the population model and standard cosmology, and the injection probability, determined by the distribution function of the generic injections. Unlike analytical/semi-analytical methods, which usually estimate sensitive volume using single detector sensitivity, the method is accurate within statistical errors, comes at no added cost and requires minimal computational resources.
NASA Astrophysics Data System (ADS)
Sempau, Josep; Wilderman, Scott J.; Bielajew, Alex F.
2000-08-01
A new Monte Carlo (MC) algorithm, the `dose planning method' (DPM), and its associated computer program for simulating the transport of electrons and photons in radiotherapy class problems employing primary electron beams, is presented. DPM is intended to be a high-accuracy MC alternative to the current generation of treatment planning codes which rely on analytical algorithms based on an approximate solution of the photon/electron Boltzmann transport equation. For primary electron beams, DPM is capable of computing 3D dose distributions (in 1 mm3 voxels) which agree to within 1% in dose maximum with widely used and exhaustively benchmarked general-purpose public-domain MC codes in only a fraction of the CPU time. A representative problem, the simulation of 1 million 10 MeV electrons impinging upon a water phantom of 1283 voxels of 1 mm on a side, can be performed by DPM in roughly 3 min on a modern desktop workstation. DPM achieves this performance by employing transport mechanics and electron multiple scattering distribution functions which have been derived to permit long transport steps (of the order of 5 mm) which can cross heterogeneity boundaries. The underlying algorithm is a `mixed' class simulation scheme, with differential cross sections for hard inelastic collisions and bremsstrahlung events described in an approximate manner to simplify their sampling. The continuous energy loss approximation is employed for energy losses below some predefined thresholds, and photon transport (including Compton, photoelectric absorption and pair production) is simulated in an analogue manner. The δ-scattering method (Woodcock tracking) is adopted to minimize the computational costs of transporting photons across voxels.
NASA Astrophysics Data System (ADS)
Bootsma, Gregory J.
X-ray scatter in cone-beam computed tomography (CBCT) is known to reduce image quality by introducing image artifacts, reducing contrast, and limiting computed tomography (CT) number accuracy. The extent of the effect of x-ray scatter on CBCT image quality is determined by the shape and magnitude of the scatter distribution in the projections. A method to allay the effects of scatter is imperative to enable application of CBCT to solve a wider domain of clinical problems. The work contained herein proposes such a method. A characterization of the scatter distribution through the use of a validated Monte Carlo (MC) model is carried out. The effects of imaging parameters and compensators on the scatter distribution are investigated. The spectral frequency components of the scatter distribution in CBCT projection sets are analyzed using Fourier analysis and found to reside predominately in the low frequency domain. The exact frequency extents of the scatter distribution are explored for different imaging configurations and patient geometries. Based on the Fourier analysis it is hypothesized the scatter distribution can be represented by a finite sum of sine and cosine functions. The fitting of MC scatter distribution estimates enables the reduction of the MC computation time by diminishing the number of photon tracks required by over three orders of magnitude. The fitting method is incorporated into a novel scatter correction method using an algorithm that simultaneously combines multiple MC scatter simulations. Running concurrent MC simulations while simultaneously fitting the results allows for the physical accuracy and flexibility of MC methods to be maintained while enhancing the overall efficiency. CBCT projection set scatter estimates, using the algorithm, are computed on the order of 1--2 minutes instead of hours or days. Resulting scatter corrected reconstructions show a reduction in artifacts and improvement in tissue contrast and voxel value accuracy.
NASA Astrophysics Data System (ADS)
Baptista, M.; Di Maria, S.; Vieira, S.; Vaz, P.
2017-11-01
Cone-Beam Computed Tomography (CBCT) enables high-resolution volumetric scanning of the bone and soft tissue anatomy under investigation at the treatment accelerator. This technique is extensively used in Image Guided Radiation Therapy (IGRT) for pre-treatment verification of patient position and target volume localization. When employed daily and several times per patient, CBCT imaging may lead to high cumulative imaging doses to the healthy tissues surrounding the exposed organs. This work aims at (1) evaluating the dose distribution during a CBCT scan and (2) calculating the organ doses involved in this image guiding procedure for clinically available scanning protocols. Both Monte Carlo (MC) simulations and measurements were performed. To model and simulate the kV imaging system mounted on a linear accelerator (Edge™, Varian Medical Systems) the state-of-the-art MC radiation transport program MCNPX 2.7.0 was used. In order to validate the simulation results, measurements of the Computed Tomography Dose Index (CTDI) were performed, using standard PMMA head and body phantoms, with 150 mm length and a standard pencil ionizing chamber (IC) 100 mm long. Measurements for head and pelvis scanning protocols, usually adopted in clinical environment were acquired, using two acquisition modes (full-fan and half fan). To calculate the organ doses, the implemented MC model of the CBCT scanner together with a male voxel phantom ("Golem") was used. The good agreement between the MCNPX simulations and the CTDIw measurements (differences up to 17%) presented in this work reveals that the CBCT MC model was successfully validated, taking into account the several uncertainties. The adequacy of the computational model to map dose distributions during a CBCT scan is discussed in order to identify ways to reduce the total CBCT imaging dose. The organ dose assessment highlights the need to evaluate the therapeutic and the CBCT imaging doses, in a more balanced approach, and the importance of improving awareness regarding the increased risk, arising from repeated exposures.
A GPU-accelerated and Monte Carlo-based intensity modulated proton therapy optimization system.
Ma, Jiasen; Beltran, Chris; Seum Wan Chan Tseung, Hok; Herman, Michael G
2014-12-01
Conventional spot scanning intensity modulated proton therapy (IMPT) treatment planning systems (TPSs) optimize proton spot weights based on analytical dose calculations. These analytical dose calculations have been shown to have severe limitations in heterogeneous materials. Monte Carlo (MC) methods do not have these limitations; however, MC-based systems have been of limited clinical use due to the large number of beam spots in IMPT and the extremely long calculation time of traditional MC techniques. In this work, the authors present a clinically applicable IMPT TPS that utilizes a very fast MC calculation. An in-house graphics processing unit (GPU)-based MC dose calculation engine was employed to generate the dose influence map for each proton spot. With the MC generated influence map, a modified least-squares optimization method was used to achieve the desired dose volume histograms (DVHs). The intrinsic CT image resolution was adopted for voxelization in simulation and optimization to preserve spatial resolution. The optimizations were computed on a multi-GPU framework to mitigate the memory limitation issues for the large dose influence maps that resulted from maintaining the intrinsic CT resolution. The effects of tail cutoff and starting condition were studied and minimized in this work. For relatively large and complex three-field head and neck cases, i.e., >100,000 spots with a target volume of ∼ 1000 cm(3) and multiple surrounding critical structures, the optimization together with the initial MC dose influence map calculation was done in a clinically viable time frame (less than 30 min) on a GPU cluster consisting of 24 Nvidia GeForce GTX Titan cards. The in-house MC TPS plans were comparable to a commercial TPS plans based on DVH comparisons. A MC-based treatment planning system was developed. The treatment planning can be performed in a clinically viable time frame on a hardware system costing around 45,000 dollars. The fast calculation and optimization make the system easily expandable to robust and multicriteria optimization.
Monte Carlo role in radiobiological modelling of radiotherapy outcomes
NASA Astrophysics Data System (ADS)
El Naqa, Issam; Pater, Piotr; Seuntjens, Jan
2012-06-01
Radiobiological models are essential components of modern radiotherapy. They are increasingly applied to optimize and evaluate the quality of different treatment planning modalities. They are frequently used in designing new radiotherapy clinical trials by estimating the expected therapeutic ratio of new protocols. In radiobiology, the therapeutic ratio is estimated from the expected gain in tumour control probability (TCP) to the risk of normal tissue complication probability (NTCP). However, estimates of TCP/NTCP are currently based on the deterministic and simplistic linear-quadratic formalism with limited prediction power when applied prospectively. Given the complex and stochastic nature of the physical, chemical and biological interactions associated with spatial and temporal radiation induced effects in living tissues, it is conjectured that methods based on Monte Carlo (MC) analysis may provide better estimates of TCP/NTCP for radiotherapy treatment planning and trial design. Indeed, over the past few decades, methods based on MC have demonstrated superior performance for accurate simulation of radiation transport, tumour growth and particle track structures; however, successful application of modelling radiobiological response and outcomes in radiotherapy is still hampered with several challenges. In this review, we provide an overview of some of the main techniques used in radiobiological modelling for radiotherapy, with focus on the MC role as a promising computational vehicle. We highlight the current challenges, issues and future potentials of the MC approach towards a comprehensive systems-based framework in radiobiological modelling for radiotherapy.
NASA Astrophysics Data System (ADS)
Dani, Ibtissam; Tahiri, Najim; Ez-Zahraouy, Hamid; Benyoussef, Abdelilah
2014-08-01
The effect of the bi-quadratic exchange coupling anisotropy on the phase diagram of the spin-1 Blume-Emery-Griffiths model on simple-cubic lattice is investigated using mean field theory (MFT) and Monte Carlo simulation (MC). It is found that the anisotropy of the biquadratic coupling favors the stability of the ferromagnetic phase. By decreasing the parallel and/or perpendicular bi-quadratic coupling, the ferrimagnetic and the antiquadrupolar phases broaden in contrast, the ferromagnetic and the disordered phases become narrow. The behavior of magnetization and quadrupolar moment as a function of temperature is also computed, especially in the ferrimagnetic phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souris, K; Lee, J; Sterpin, E
2014-06-15
Purpose: Recent studies have demonstrated the capability of graphics processing units (GPUs) to compute dose distributions using Monte Carlo (MC) methods within clinical time constraints. However, GPUs have a rigid vectorial architecture that favors the implementation of simplified particle transport algorithms, adapted to specific tasks. Our new, fast, and multipurpose MC code, named MCsquare, runs on Intel Xeon Phi coprocessors. This technology offers 60 independent cores, and therefore more flexibility to implement fast and yet generic MC functionalities, such as prompt gamma simulations. Methods: MCsquare implements several models and hence allows users to make their own tradeoff between speed andmore » accuracy. A 200 MeV proton beam is simulated in a heterogeneous phantom using Geant4 and two configurations of MCsquare. The first one is the most conservative and accurate. The method of fictitious interactions handles the interfaces and secondary charged particles emitted in nuclear interactions are fully simulated. The second, faster configuration simplifies interface crossings and simulates only secondary protons after nuclear interaction events. Integral depth-dose and transversal profiles are compared to those of Geant4. Moreover, the production profile of prompt gammas is compared to PENH results. Results: Integral depth dose and transversal profiles computed by MCsquare and Geant4 are within 3%. The production of secondaries from nuclear interactions is slightly inaccurate at interfaces for the fastest configuration of MCsquare but this is unlikely to have any clinical impact. The computation time varies between 90 seconds for the most conservative settings to merely 59 seconds in the fastest configuration. Finally prompt gamma profiles are also in very good agreement with PENH results. Conclusion: Our new, fast, and multi-purpose Monte Carlo code simulates prompt gammas and calculates dose distributions in less than a minute, which complies with clinical time constraints. It has been successfully validated with Geant4. This work has been financialy supported by InVivoIGT, a public/private partnership between UCL and IBA.« less
NASA Astrophysics Data System (ADS)
Schiavi, A.; Senzacqua, M.; Pioli, S.; Mairani, A.; Magro, G.; Molinelli, S.; Ciocca, M.; Battistoni, G.; Patera, V.
2017-09-01
Ion beam therapy is a rapidly growing technique for tumor radiation therapy. Ions allow for a high dose deposition in the tumor region, while sparing the surrounding healthy tissue. For this reason, the highest possible accuracy in the calculation of dose and its spatial distribution is required in treatment planning. On one hand, commonly used treatment planning software solutions adopt a simplified beam-body interaction model by remapping pre-calculated dose distributions into a 3D water-equivalent representation of the patient morphology. On the other hand, Monte Carlo (MC) simulations, which explicitly take into account all the details in the interaction of particles with human tissues, are considered to be the most reliable tool to address the complexity of mixed field irradiation in a heterogeneous environment. However, full MC calculations are not routinely used in clinical practice because they typically demand substantial computational resources. Therefore MC simulations are usually only used to check treatment plans for a restricted number of difficult cases. The advent of general-purpose programming GPU cards prompted the development of trimmed-down MC-based dose engines which can significantly reduce the time needed to recalculate a treatment plan with respect to standard MC codes in CPU hardware. In this work, we report on the development of fred, a new MC simulation platform for treatment planning in ion beam therapy. The code can transport particles through a 3D voxel grid using a class II MC algorithm. Both primary and secondary particles are tracked and their energy deposition is scored along the trajectory. Effective models for particle-medium interaction have been implemented, balancing accuracy in dose deposition with computational cost. Currently, the most refined module is the transport of proton beams in water: single pencil beam dose-depth distributions obtained with fred agree with those produced by standard MC codes within 1-2% of the Bragg peak in the therapeutic energy range. A comparison with measurements taken at the CNAO treatment center shows that the lateral dose tails are reproduced within 2% in the field size factor test up to 20 cm. The tracing kernel can run on GPU hardware, achieving 10 million primary s-1 on a single card. This performance allows one to recalculate a proton treatment plan at 1% of the total particles in just a few minutes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatzidakis, Stylianos; Greulich, Christopher
A cosmic ray Muon Flexible Framework for Spectral GENeration for Monte Carlo Applications (MUFFSgenMC) has been developed to support state-of-the-art cosmic ray muon tomographic applications. The flexible framework allows for easy and fast creation of source terms for popular Monte Carlo applications like GEANT4 and MCNP. This code framework simplifies the process of simulations used for cosmic ray muon tomography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borowik, Piotr, E-mail: pborow@poczta.onet.pl; Thobel, Jean-Luc, E-mail: jean-luc.thobel@iemn.univ-lille1.fr; Adamowicz, Leszek, E-mail: adamo@if.pw.edu.pl
Standard computational methods used to take account of the Pauli Exclusion Principle into Monte Carlo (MC) simulations of electron transport in semiconductors may give unphysical results in low field regime, where obtained electron distribution function takes values exceeding unity. Modified algorithms were already proposed and allow to correctly account for electron scattering on phonons or impurities. Present paper extends this approach and proposes improved simulation scheme allowing including Pauli exclusion principle for electron–electron (e–e) scattering into MC simulations. Simulations with significantly reduced computational cost recreate correct values of the electron distribution function. Proposed algorithm is applied to study transport propertiesmore » of degenerate electrons in graphene with e–e interactions. This required adapting the treatment of e–e scattering in the case of linear band dispersion relation. Hence, this part of the simulation algorithm is described in details.« less
NASA Astrophysics Data System (ADS)
Dünser, Simon; Meyer, Daniel W.
2016-06-01
In most groundwater aquifers, dispersion of tracers is dominated by flow-field inhomogeneities resulting from the underlying heterogeneous conductivity or transmissivity field. This effect is referred to as macrodispersion. Since in practice, besides a few point measurements the complete conductivity field is virtually never available, a probabilistic treatment is needed. To quantify the uncertainty in tracer concentrations from a given geostatistical model for the conductivity, Monte Carlo (MC) simulation is typically used. To avoid the excessive computational costs of MC, the polar Markovian velocity process (PMVP) model was recently introduced delivering predictions at about three orders of magnitude smaller computing times. In artificial test cases, the PMVP model has provided good results in comparison with MC. In this study, we further validate the model in a more challenging and realistic setup. The setup considered is derived from the well-known benchmark macrodispersion experiment (MADE), which is highly heterogeneous and non-stationary with a large number of unevenly scattered conductivity measurements. Validations were done against reference MC and good overall agreement was found. Moreover, simulations of a simplified setup with a single measurement were conducted in order to reassess the model's most fundamental assumptions and to provide guidance for model improvements.
An unbiased Hessian representation for Monte Carlo PDFs.
Carrazza, Stefano; Forte, Stefano; Kassabov, Zahari; Latorre, José Ignacio; Rojo, Juan
We develop a methodology for the construction of a Hessian representation of Monte Carlo sets of parton distributions, based on the use of a subset of the Monte Carlo PDF replicas as an unbiased linear basis, and of a genetic algorithm for the determination of the optimal basis. We validate the methodology by first showing that it faithfully reproduces a native Monte Carlo PDF set (NNPDF3.0), and then, that if applied to Hessian PDF set (MMHT14) which was transformed into a Monte Carlo set, it gives back the starting PDFs with minimal information loss. We then show that, when applied to a large Monte Carlo PDF set obtained as combination of several underlying sets, the methodology leads to a Hessian representation in terms of a rather smaller set of parameters (MC-H PDFs), thereby providing an alternative implementation of the recently suggested Meta-PDF idea and a Hessian version of the recently suggested PDF compression algorithm (CMC-PDFs). The mc2hessian conversion code is made publicly available together with (through LHAPDF6) a Hessian representations of the NNPDF3.0 set, and the MC-H PDF set.
NASA Astrophysics Data System (ADS)
Romano, Paul Kollath
Monte Carlo particle transport methods are being considered as a viable option for high-fidelity simulation of nuclear reactors. While Monte Carlo methods offer several potential advantages over deterministic methods, there are a number of algorithmic shortcomings that would prevent their immediate adoption for full-core analyses. In this thesis, algorithms are proposed both to ameliorate the degradation in parallel efficiency typically observed for large numbers of processors and to offer a means of decomposing large tally data that will be needed for reactor analysis. A nearest-neighbor fission bank algorithm was proposed and subsequently implemented in the OpenMC Monte Carlo code. A theoretical analysis of the communication pattern shows that the expected cost is O( N ) whereas traditional fission bank algorithms are O(N) at best. The algorithm was tested on two supercomputers, the Intrepid Blue Gene/P and the Titan Cray XK7, and demonstrated nearly linear parallel scaling up to 163,840 processor cores on a full-core benchmark problem. An algorithm for reducing network communication arising from tally reduction was analyzed and implemented in OpenMC. The proposed algorithm groups only particle histories on a single processor into batches for tally purposes---in doing so it prevents all network communication for tallies until the very end of the simulation. The algorithm was tested, again on a full-core benchmark, and shown to reduce network communication substantially. A model was developed to predict the impact of load imbalances on the performance of domain decomposed simulations. The analysis demonstrated that load imbalances in domain decomposed simulations arise from two distinct phenomena: non-uniform particle densities and non-uniform spatial leakage. The dominant performance penalty for domain decomposition was shown to come from these physical effects rather than insufficient network bandwidth or high latency. The model predictions were verified with measured data from simulations in OpenMC on a full-core benchmark problem. Finally, a novel algorithm for decomposing large tally data was proposed, analyzed, and implemented/tested in OpenMC. The algorithm relies on disjoint sets of compute processes and tally servers. The analysis showed that for a range of parameters relevant to LWR analysis, the tally server algorithm should perform with minimal overhead. Tests were performed on Intrepid and Titan and demonstrated that the algorithm did indeed perform well over a wide range of parameters. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)
Multilevel UQ strategies for large-scale multiphysics applications: PSAAP II solar receiver
NASA Astrophysics Data System (ADS)
Jofre, Lluis; Geraci, Gianluca; Iaccarino, Gianluca
2017-06-01
Uncertainty quantification (UQ) plays a fundamental part in building confidence in predictive science. Of particular interest is the case of modeling and simulating engineering applications where, due to the inherent complexity, many uncertainties naturally arise, e.g. domain geometry, operating conditions, errors induced by modeling assumptions, etc. In this regard, one of the pacing items, especially in high-fidelity computational fluid dynamics (CFD) simulations, is the large amount of computing resources typically required to propagate incertitude through the models. Upcoming exascale supercomputers will significantly increase the available computational power. However, UQ approaches cannot entrust their applicability only on brute force Monte Carlo (MC) sampling; the large number of uncertainty sources and the presence of nonlinearities in the solution will make straightforward MC analysis unaffordable. Therefore, this work explores the multilevel MC strategy, and its extension to multi-fidelity and time convergence, to accelerate the estimation of the effect of uncertainties. The approach is described in detail, and its performance demonstrated on a radiated turbulent particle-laden flow case relevant to solar energy receivers (PSAAP II: Particle-laden turbulence in a radiation environment). Investigation funded by DoE's NNSA under PSAAP II.
GPU-BASED MONTE CARLO DUST RADIATIVE TRANSFER SCHEME APPLIED TO ACTIVE GALACTIC NUCLEI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heymann, Frank; Siebenmorgen, Ralf, E-mail: fheymann@pa.uky.edu
2012-05-20
A three-dimensional parallel Monte Carlo (MC) dust radiative transfer code is presented. To overcome the huge computing-time requirements of MC treatments, the computational power of vectorized hardware is used, utilizing either multi-core computer power or graphics processing units. The approach is a self-consistent way to solve the radiative transfer equation in arbitrary dust configurations. The code calculates the equilibrium temperatures of two populations of large grains and stochastic heated polycyclic aromatic hydrocarbons. Anisotropic scattering is treated applying the Heney-Greenstein phase function. The spectral energy distribution (SED) of the object is derived at low spatial resolution by a photon counting proceduremore » and at high spatial resolution by a vectorized ray tracer. The latter allows computation of high signal-to-noise images of the objects at any frequencies and arbitrary viewing angles. We test the robustness of our approach against other radiative transfer codes. The SED and dust temperatures of one- and two-dimensional benchmarks are reproduced at high precision. The parallelization capability of various MC algorithms is analyzed and included in our treatment. We utilize the Lucy algorithm for the optical thin case where the Poisson noise is high, the iteration-free Bjorkman and Wood method to reduce the calculation time, and the Fleck and Canfield diffusion approximation for extreme optical thick cells. The code is applied to model the appearance of active galactic nuclei (AGNs) at optical and infrared wavelengths. The AGN torus is clumpy and includes fluffy composite grains of various sizes made up of silicates and carbon. The dependence of the SED on the number of clumps in the torus and the viewing angle is studied. The appearance of the 10 {mu}m silicate features in absorption or emission is discussed. The SED of the radio-loud quasar 3C 249.1 is fit by the AGN model and a cirrus component to account for the far-infrared emission.« less
NASA Astrophysics Data System (ADS)
Devpura, S.; Siddiqui, M. S.; Chen, D.; Liu, D.; Li, H.; Kumar, S.; Gordon, J.; Ajlouni, M.; Movsas, B.; Chetty, I. J.
2014-03-01
The purpose of this study was to systematically evaluate dose distributions computed with 5 different dose algorithms for patients with lung cancers treated using stereotactic ablative body radiotherapy (SABR). Treatment plans for 133 lung cancer patients, initially computed with a 1D-pencil beam (equivalent-path-length, EPL-1D) algorithm, were recalculated with 4 other algorithms commissioned for treatment planning, including 3-D pencil-beam (EPL-3D), anisotropic analytical algorithm (AAA), collapsed cone convolution superposition (CCC), and Monte Carlo (MC). The plan prescription dose was 48 Gy in 4 fractions normalized to the 95% isodose line. Tumors were classified according to location: peripheral tumors surrounded by lung (lung-island, N=39), peripheral tumors attached to the rib-cage or chest wall (lung-wall, N=44), and centrally-located tumors (lung-central, N=50). Relative to the EPL-1D algorithm, PTV D95 and mean dose values computed with the other 4 algorithms were lowest for "lung-island" tumors with smallest field sizes (3-5 cm). On the other hand, the smallest differences were noted for lung-central tumors treated with largest field widths (7-10 cm). Amongst all locations, dose distribution differences were most strongly correlated with tumor size for lung-island tumors. For most cases, convolution/superposition and MC algorithms were in good agreement. Mean lung dose (MLD) values computed with the EPL-1D algorithm were highly correlated with that of the other algorithms (correlation coefficient =0.99). The MLD values were found to be ~10% lower for small lung-island tumors with the model-based (conv/superposition and MC) vs. the correction-based (pencil-beam) algorithms with the model-based algorithms predicting greater low dose spread within the lungs. This study suggests that pencil beam algorithms should be avoided for lung SABR planning. For the most challenging cases, small tumors surrounded entirely by lung tissue (lung-island type), a Monte-Carlo-based algorithm may be warranted.
NEURAL NETWORK MODELLING OF CARDIAC DOSE CONVERSION COEFFICIENT FOR ARBITRARY X-RAY SPECTRA.
Kadri, O; Manai, K
2016-12-01
In this article, an approach to compute the dose conversion coefficients (DCCs) is described for the computational voxel phantom 'High-Definition Reference Korean-Man' (HDRK-Man) using artificial neural networks (ANN). For this purpose, the voxel phantom was implemented into the Monte Carlo (MC) transport toolkit GEANT4, and the DCCs for more than 30 tissues and organs, due to a broad parallel beam of monoenergetic photons with energy ranging from 15 to 150 keV by a step of 5 keV, were calculated. To study the influence of patient size on DCC values, DCC calculation was performed, for a representative body size population, using five different sizes covering the range of 80-120 % magnification of the original HDRK-Man. The focus of the present study was on the computation of DCC for the human heart. ANN calculation and MC simulation results were compared, and good agreement was observed showing that ANNs can be used as an efficient tool for modelling DCCs for the computational voxel phantom. ANN approach appears to be a significant advance over the time-consuming MC methods for DCC calculation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makkia, R; Pelletier, C; Jung, J
Purpose: To reconstruct major organ doses for the Wilms tumor pediatric patients treated with radiation therapy using pediatric computational phantoms, treatment planning system (TPS), and Monte Carlo (MC) dose calculation methods. Methods: A total of ten female and male pediatric patients (15–88 months old) were selected from the National Wilms Tumor Study cohort and ten pediatric computational phantoms corresponding to the patient’s height and weight were selected for the organ dose reconstruction. Treatment plans were reconstructed on the computational phantoms in a Pinnacle TPS (v9.10) referring to treatment records and exported into DICOM-RT files, which were then used to generatemore » the input files for XVMC MC code. The mean doses to major organs and the dose received by 50% of the heart were calculated and compared between TPS and MC calculations. The same calculations were conducted by replacing the computational human phantoms with a series of diagnostic patient CT images selected by matching the height and weight of the patients to validate the anatomical accuracy of the computational phantoms. Results: Dose to organs located within the treatment fields from the computational phantoms and the diagnostic patient CT images agreed within 2% for all cases for both TPS and MC calculations. The maximum difference of organ doses was 55.9 % (thyroid), but the absolute dose difference in this case was 0.33 Gy which was 0.96% of the prescription dose. The doses to ovaries and testes from MC in out-of-field provided more discrepancy (the maximum difference of 13.2% and 50.8%, respectively). The maximum difference of the 50% heart volume dose between the phantoms and the patient CT images was 40.0%. Conclusion: This study showed the pediatric computational phantoms are applicable to organ doses reconstruction for the radiotherapy patients whose three-dimensional radiological images are not available.« less
Multilevel Monte Carlo and improved timestepping methods in atmospheric dispersion modelling
NASA Astrophysics Data System (ADS)
Katsiolides, Grigoris; Müller, Eike H.; Scheichl, Robert; Shardlow, Tony; Giles, Michael B.; Thomson, David J.
2018-02-01
A common way to simulate the transport and spread of pollutants in the atmosphere is via stochastic Lagrangian dispersion models. Mathematically, these models describe turbulent transport processes with stochastic differential equations (SDEs). The computational bottleneck is the Monte Carlo algorithm, which simulates the motion of a large number of model particles in a turbulent velocity field; for each particle, a trajectory is calculated with a numerical timestepping method. Choosing an efficient numerical method is particularly important in operational emergency-response applications, such as tracking radioactive clouds from nuclear accidents or predicting the impact of volcanic ash clouds on international aviation, where accurate and timely predictions are essential. In this paper, we investigate the application of the Multilevel Monte Carlo (MLMC) method to simulate the propagation of particles in a representative one-dimensional dispersion scenario in the atmospheric boundary layer. MLMC can be shown to result in asymptotically superior computational complexity and reduced computational cost when compared to the Standard Monte Carlo (StMC) method, which is currently used in atmospheric dispersion modelling. To reduce the absolute cost of the method also in the non-asymptotic regime, it is equally important to choose the best possible numerical timestepping method on each level. To investigate this, we also compare the standard symplectic Euler method, which is used in many operational models, with two improved timestepping algorithms based on SDE splitting methods.
NASA Astrophysics Data System (ADS)
Kurosu, Keita; Das, Indra J.; Moskvin, Vadim P.
2016-01-01
Spot scanning, owing to its superior dose-shaping capability, provides unsurpassed dose conformity, in particular for complex targets. However, the robustness of the delivered dose distribution and prescription has to be verified. Monte Carlo (MC) simulation has the potential to generate significant advantages for high-precise particle therapy, especially for medium containing inhomogeneities. However, the inherent choice of computational parameters in MC simulation codes of GATE, PHITS and FLUKA that is observed for uniform scanning proton beam needs to be evaluated. This means that the relationship between the effect of input parameters and the calculation results should be carefully scrutinized. The objective of this study was, therefore, to determine the optimal parameters for the spot scanning proton beam for both GATE and PHITS codes by using data from FLUKA simulation as a reference. The proton beam scanning system of the Indiana University Health Proton Therapy Center was modeled in FLUKA, and the geometry was subsequently and identically transferred to GATE and PHITS. Although the beam transport is managed by spot scanning system, the spot location is always set at the center of a water phantom of 600 × 600 × 300 mm3, which is placed after the treatment nozzle. The percentage depth dose (PDD) is computed along the central axis using 0.5 × 0.5 × 0.5 mm3 voxels in the water phantom. The PDDs and the proton ranges obtained with several computational parameters are then compared to those of FLUKA, and optimal parameters are determined from the accuracy of the proton range, suppressed dose deviation, and computational time minimization. Our results indicate that the optimized parameters are different from those for uniform scanning, suggesting that the gold standard for setting computational parameters for any proton therapy application cannot be determined consistently since the impact of setting parameters depends on the proton irradiation technique. We therefore conclude that customization parameters must be set with reference to the optimized parameters of the corresponding irradiation technique in order to render them useful for achieving artifact-free MC simulation for use in computational experiments and clinical treatments.
Analytical, experimental, and Monte Carlo system response matrix for pinhole SPECT reconstruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguiar, Pablo, E-mail: pablo.aguiar.fernandez@sergas.es; Pino, Francisco; Silva-Rodríguez, Jesús
2014-03-15
Purpose: To assess the performance of two approaches to the system response matrix (SRM) calculation in pinhole single photon emission computed tomography (SPECT) reconstruction. Methods: Evaluation was performed using experimental data from a low magnification pinhole SPECT system that consisted of a rotating flat detector with a monolithic scintillator crystal. The SRM was computed following two approaches, which were based on Monte Carlo simulations (MC-SRM) and analytical techniques in combination with an experimental characterization (AE-SRM). The spatial response of the system, obtained by using the two approaches, was compared with experimental data. The effect of the MC-SRM and AE-SRM approachesmore » on the reconstructed image was assessed in terms of image contrast, signal-to-noise ratio, image quality, and spatial resolution. To this end, acquisitions were carried out using a hot cylinder phantom (consisting of five fillable rods with diameters of 5, 4, 3, 2, and 1 mm and a uniform cylindrical chamber) and a custom-made Derenzo phantom, with center-to-center distances between adjacent rods of 1.5, 2.0, and 3.0 mm. Results: Good agreement was found for the spatial response of the system between measured data and results derived from MC-SRM and AE-SRM. Only minor differences for point sources at distances smaller than the radius of rotation and large incidence angles were found. Assessment of the effect on the reconstructed image showed a similar contrast for both approaches, with values higher than 0.9 for rod diameters greater than 1 mm and higher than 0.8 for rod diameter of 1 mm. The comparison in terms of image quality showed that all rods in the different sections of a custom-made Derenzo phantom could be distinguished. The spatial resolution (FWHM) was 0.7 mm at iteration 100 using both approaches. The SNR was lower for reconstructed images using MC-SRM than for those reconstructed using AE-SRM, indicating that AE-SRM deals better with the projection noise than MC-SRM. Conclusions: The authors' findings show that both approaches provide good solutions to the problem of calculating the SRM in pinhole SPECT reconstruction. The AE-SRM was faster to create and handle the projection noise better than MC-SRM. Nevertheless, the AE-SRM required a tedious experimental characterization of the intrinsic detector response. Creation of the MC-SRM required longer computation time and handled the projection noise worse than the AE-SRM. Nevertheless, the MC-SRM inherently incorporates extensive modeling of the system and therefore experimental characterization was not required.« less
Neutron track length estimator for GATE Monte Carlo dose calculation in radiotherapy.
Elazhar, H; Deschler, T; Létang, J M; Nourreddine, A; Arbor, N
2018-06-20
The out-of-field dose in radiation therapy is a growing concern in regards to the late side-effects and secondary cancer induction. In high-energy x-ray therapy, the secondary neutrons generated through photonuclear reactions in the accelerator are part of this secondary dose. The neutron dose is currently not estimated by the treatment planning system while it appears to be preponderant for distances greater than 50 cm from the isocenter. Monte Carlo simulation has become the gold standard for accurately calculating the neutron dose under specific treatment conditions but the method is also known for having a slow statistical convergence, which makes it difficult to be used on a clinical basis. The neutron track length estimator, a neutron variance reduction technique inspired by the track length estimator method has thus been developped for the first time in the Monte Carlo code GATE to allow a fast computation of the neutron dose in radiotherapy. The details of its implementation, as well as the comparison of its performances against the analog MC method, are presented here. A gain of time from 15 to 400 can be obtained by our method, with a mean difference in the dose calculation of about 1% in comparison with the analog MC method.
NASA Astrophysics Data System (ADS)
Jung, Hyunuk; Shin, Jungsuk; Chung, Kwangzoo; Han, Youngyih; Kim, Jinsung; Choi, Doo Ho
2015-05-01
The aim of this study was to develop an independent dose verification system by using a Monte Carlo (MC) calculation method for intensity modulated radiation therapy (IMRT) conducted by using a Varian Novalis Tx (Varian Medical Systems, Palo Alto, CA, USA) equipped with a highdefinition multi-leaf collimator (HD-120 MLC). The Geant4 framework was used to implement a dose calculation system that accurately predicted the delivered dose. For this purpose, the Novalis Tx Linac head was modeled according to the specifications acquired from the manufacturer. Subsequently, MC simulations were performed by varying the mean energy, energy spread, and electron spot radius to determine optimum values of irradiation with 6-MV X-ray beams by using the Novalis Tx system. Computed percentage depth dose curves (PDDs) and lateral profiles were compared to the measurements obtained by using an ionization chamber (CC13). To validate the IMRT simulation by using the MC model we developed, we calculated a simple IMRT field and compared the result with the EBT3 film measurements in a water-equivalent solid phantom. Clinical cases, such as prostate cancer treatment plans, were then selected, and MC simulations were performed. The accuracy of the simulation was assessed against the EBT3 film measurements by using a gamma-index criterion. The optimal MC model parameters to specify the beam characteristics were a 6.8-MeV mean energy, a 0.5-MeV energy spread, and a 3-mm electron radius. The accuracy of these parameters was determined by comparison of MC simulations with measurements. The PDDs and the lateral profiles of the MC simulation deviated from the measurements by 1% and 2%, respectively, on average. The computed simple MLC fields agreed with the EBT3 measurements with a 95% passing rate with 3%/3-mm gamma-index criterion. Additionally, in applying our model to clinical IMRT plans, we found that the MC calculations and the EBT3 measurements agreed well with a passing rate of greater than 95% on average with a 3%/3-mm gamma-index criterion. In summary, the Novalis Tx Linac head equipped with a HD-120 MLC was successfully modeled by using a Geant4 platform, and the accuracy of the Geant4 platform was successfully validated by comparisons with measurements. The MC model we have developed can be a useful tool for pretreatment quality assurance of IMRT plans and for commissioning of radiotherapy treatment planning.
A compression algorithm for the combination of PDF sets.
Carrazza, Stefano; Latorre, José I; Rojo, Juan; Watt, Graeme
The current PDF4LHC recommendation to estimate uncertainties due to parton distribution functions (PDFs) in theoretical predictions for LHC processes involves the combination of separate predictions computed using PDF sets from different groups, each of which comprises a relatively large number of either Hessian eigenvectors or Monte Carlo (MC) replicas. While many fixed-order and parton shower programs allow the evaluation of PDF uncertainties for a single PDF set at no additional CPU cost, this feature is not universal, and, moreover, the a posteriori combination of the predictions using at least three different PDF sets is still required. In this work, we present a strategy for the statistical combination of individual PDF sets, based on the MC representation of Hessian sets, followed by a compression algorithm for the reduction of the number of MC replicas. We illustrate our strategy with the combination and compression of the recent NNPDF3.0, CT14 and MMHT14 NNLO PDF sets. The resulting compressed Monte Carlo PDF sets are validated at the level of parton luminosities and LHC inclusive cross sections and differential distributions. We determine that around 100 replicas provide an adequate representation of the probability distribution for the original combined PDF set, suitable for general applications to LHC phenomenology.
NASA Astrophysics Data System (ADS)
Andersen, Mie; Plaisance, Craig P.; Reuter, Karsten
2017-10-01
First-principles screening studies aimed at predicting the catalytic activity of transition metal (TM) catalysts have traditionally been based on mean-field (MF) microkinetic models, which neglect the effect of spatial correlations in the adsorbate layer. Here we critically assess the accuracy of such models for the specific case of CO methanation over stepped metals by comparing to spatially resolved kinetic Monte Carlo (kMC) simulations. We find that the typical low diffusion barriers offered by metal surfaces can be significantly increased at step sites, which results in persisting correlations in the adsorbate layer. As a consequence, MF models may overestimate the catalytic activity of TM catalysts by several orders of magnitude. The potential higher accuracy of kMC models comes at a higher computational cost, which can be especially challenging for surface reactions on metals due to a large disparity in the time scales of different processes. In order to overcome this issue, we implement and test a recently developed algorithm for achieving temporal acceleration of kMC simulations. While the algorithm overall performs quite well, we identify some challenging cases which may lead to a breakdown of acceleration algorithms and discuss possible directions for future algorithm development.
NASA Astrophysics Data System (ADS)
Bernede, Adrien; Poëtte, Gaël
2018-02-01
In this paper, we are interested in the resolution of the time-dependent problem of particle transport in a medium whose composition evolves with time due to interactions. As a constraint, we want to use of Monte-Carlo (MC) scheme for the transport phase. A common resolution strategy consists in a splitting between the MC/transport phase and the time discretization scheme/medium evolution phase. After going over and illustrating the main drawbacks of split solvers in a simplified configuration (monokinetic, scalar Bateman problem), we build a new Unsplit MC (UMC) solver improving the accuracy of the solutions, avoiding numerical instabilities, and less sensitive to time discretization. The new solver is essentially based on a Monte Carlo scheme with time dependent cross sections implying the on-the-fly resolution of a reduced model for each MC particle describing the time evolution of the matter along their flight path.
Development of the 3DHZETRN code for space radiation protection
NASA Astrophysics Data System (ADS)
Wilson, John; Badavi, Francis; Slaba, Tony; Reddell, Brandon; Bahadori, Amir; Singleterry, Robert
Space radiation protection requires computationally efficient shield assessment methods that have been verified and validated. The HZETRN code is the engineering design code used for low Earth orbit dosimetric analysis and astronaut record keeping with end-to-end validation to twenty percent in Space Shuttle and International Space Station operations. HZETRN treated diffusive leakage only at the distal surface limiting its application to systems with a large radius of curvature. A revision of HZETRN that included forward and backward diffusion allowed neutron leakage to be evaluated at both the near and distal surfaces. That revision provided a deterministic code of high computational efficiency that was in substantial agreement with Monte Carlo (MC) codes in flat plates (at least to the degree that MC codes agree among themselves). In the present paper, the 3DHZETRN formalism capable of evaluation in general geometry is described. Benchmarking will help quantify uncertainty with MC codes (Geant4, FLUKA, MCNP6, and PHITS) in simple shapes such as spheres within spherical shells and boxes. Connection of the 3DHZETRN to general geometry will be discussed.
Constant-pH Molecular Dynamics Simulations for Large Biomolecular Systems
Radak, Brian K.; Chipot, Christophe; Suh, Donghyuk; ...
2017-11-07
We report that an increasingly important endeavor is to develop computational strategies that enable molecular dynamics (MD) simulations of biomolecular systems with spontaneous changes in protonation states under conditions of constant pH. The present work describes our efforts to implement the powerful constant-pH MD simulation method, based on a hybrid nonequilibrium MD/Monte Carlo (neMD/MC) technique within the highly scalable program NAMD. The constant-pH hybrid neMD/MC method has several appealing features; it samples the correct semigrand canonical ensemble rigorously, the computational cost increases linearly with the number of titratable sites, and it is applicable to explicit solvent simulations. The present implementationmore » of the constant-pH hybrid neMD/MC in NAMD is designed to handle a wide range of biomolecular systems with no constraints on the choice of force field. Furthermore, the sampling efficiency can be adaptively improved on-the-fly by adjusting algorithmic parameters during the simulation. Finally, illustrative examples emphasizing medium- and large-scale applications on next-generation supercomputing architectures are provided.« less
Constant-pH Molecular Dynamics Simulations for Large Biomolecular Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radak, Brian K.; Chipot, Christophe; Suh, Donghyuk
We report that an increasingly important endeavor is to develop computational strategies that enable molecular dynamics (MD) simulations of biomolecular systems with spontaneous changes in protonation states under conditions of constant pH. The present work describes our efforts to implement the powerful constant-pH MD simulation method, based on a hybrid nonequilibrium MD/Monte Carlo (neMD/MC) technique within the highly scalable program NAMD. The constant-pH hybrid neMD/MC method has several appealing features; it samples the correct semigrand canonical ensemble rigorously, the computational cost increases linearly with the number of titratable sites, and it is applicable to explicit solvent simulations. The present implementationmore » of the constant-pH hybrid neMD/MC in NAMD is designed to handle a wide range of biomolecular systems with no constraints on the choice of force field. Furthermore, the sampling efficiency can be adaptively improved on-the-fly by adjusting algorithmic parameters during the simulation. Finally, illustrative examples emphasizing medium- and large-scale applications on next-generation supercomputing architectures are provided.« less
NMR diffusion simulation based on conditional random walk.
Gudbjartsson, H; Patz, S
1995-01-01
The authors introduce here a new, very fast, simulation method for free diffusion in a linear magnetic field gradient, which is an extension of the conventional Monte Carlo (MC) method or the convolution method described by Wong et al. (in 12th SMRM, New York, 1993, p.10). In earlier NMR-diffusion simulation methods, such as the finite difference method (FD), the Monte Carlo method, and the deterministic convolution method, the outcome of the calculations depends on the simulation time step. In the authors' method, however, the results are independent of the time step, although, in the convolution method the step size has to be adequate for spins to diffuse to adjacent grid points. By always selecting the largest possible time step the computation time can therefore be reduced. Finally the authors point out that in simple geometric configurations their simulation algorithm can be used to reduce computation time in the simulation of restricted diffusion.
NASA Astrophysics Data System (ADS)
Ishii, Ayako; Ohnishi, Naofumi; Nagakura, Hiroki; Ito, Hirotaka; Yamada, Shoichi
2017-11-01
We developed a three-dimensional radiative transfer code for an ultra-relativistic background flow-field by using the Monte Carlo (MC) method in the context of gamma-ray burst (GRB) emission. For obtaining reliable simulation results in the coupled computation of MC radiation transport with relativistic hydrodynamics which can reproduce GRB emission, we validated radiative transfer computation in the ultra-relativistic regime and assessed the appropriate simulation conditions. The radiative transfer code was validated through two test calculations: (1) computing in different inertial frames and (2) computing in flow-fields with discontinuous and smeared shock fronts. The simulation results of the angular distribution and spectrum were compared among three different inertial frames and in good agreement with each other. If the time duration for updating the flow-field was sufficiently small to resolve a mean free path of a photon into ten steps, the results were thoroughly converged. The spectrum computed in the flow-field with a discontinuous shock front obeyed a power-law in frequency whose index was positive in the range from 1 to 10 MeV. The number of photons in the high-energy side decreased with the smeared shock front because the photons were less scattered immediately behind the shock wave due to the small electron number density. The large optical depth near the shock front was needed for obtaining high-energy photons through bulk Compton scattering. Even one-dimensional structure of the shock wave could affect the results of radiation transport computation. Although we examined the effect of the shock structure on the emitted spectrum with a large number of cells, it is hard to employ so many computational cells per dimension in multi-dimensional simulations. Therefore, a further investigation with a smaller number of cells is required for obtaining realistic high-energy photons with multi-dimensional computations.
Monte Carlo simulations to replace film dosimetry in IMRT verification.
Goetzfried, Thomas; Rickhey, Mark; Treutwein, Marius; Koelbl, Oliver; Bogner, Ludwig
2011-01-01
Patient-specific verification of intensity-modulated radiation therapy (IMRT) plans can be done by dosimetric measurements or by independent dose or monitor unit calculations. The aim of this study was the clinical evaluation of IMRT verification based on a fast Monte Carlo (MC) program with regard to possible benefits compared to commonly used film dosimetry. 25 head-and-neck IMRT plans were recalculated by a pencil beam based treatment planning system (TPS) using an appropriate quality assurance (QA) phantom. All plans were verified both by film and diode dosimetry and compared to MC simulations. The irradiated films, the results of diode measurements and the computed dose distributions were evaluated, and the data were compared on the basis of gamma maps and dose-difference histograms. Average deviations in the high-dose region between diode measurements and point dose calculations performed with the TPS and MC program were 0.7 ± 2.7% and 1.2 ± 3.1%, respectively. For film measurements, the mean gamma values with 3% dose difference and 3mm distance-to-agreement were 0.74 ± 0.28 (TPS as reference) with dose deviations up to 10%. Corresponding values were significantly reduced to 0.34 ± 0.09 for MC dose calculation. The total time needed for both verification procedures is comparable, however, by far less labor intensive in the case of MC simulations. The presented study showed that independent dose calculation verification of IMRT plans with a fast MC program has the potential to eclipse film dosimetry more and more in the near future. Thus, the linac-specific QA part will necessarily become more important. In combination with MC simulations and due to the simple set-up, point-dose measurements for dosimetric plausibility checks are recommended at least in the IMRT introduction phase. Copyright © 2010. Published by Elsevier GmbH.
D'Amours, Michel; Pouliot, Jean; Dagnault, Anne; Verhaegen, Frank; Beaulieu, Luc
2011-12-01
Brachytherapy planning software relies on the Task Group report 43 dosimetry formalism. This formalism, based on a water approximation, neglects various heterogeneous materials present during treatment. Various studies have suggested that these heterogeneities should be taken into account to improve the treatment quality. The present study sought to demonstrate the feasibility of incorporating Monte Carlo (MC) dosimetry within an inverse planning algorithm to improve the dose conformity and increase the treatment quality. The method was based on precalculated dose kernels in full patient geometries, representing the dose distribution of a brachytherapy source at a single dwell position using MC simulations and the Geant4 toolkit. These dose kernels are used by the inverse planning by simulated annealing tool to produce a fast MC-based plan. A test was performed for an interstitial brachytherapy breast treatment using two different high-dose-rate brachytherapy sources: the microSelectron iridium-192 source and the electronic brachytherapy source Axxent operating at 50 kVp. A research version of the inverse planning by simulated annealing algorithm was combined with MC to provide a method to fully account for the heterogeneities in dose optimization, using the MC method. The effect of the water approximation was found to depend on photon energy, with greater dose attenuation for the lower energies of the Axxent source compared with iridium-192. For the latter, an underdosage of 5.1% for the dose received by 90% of the clinical target volume was found. A new method to optimize afterloading brachytherapy plans that uses MC dosimetric information was developed. Including computed tomography-based information in MC dosimetry in the inverse planning process was shown to take into account the full range of scatter and heterogeneity conditions. This led to significant dose differences compared with the Task Group report 43 approach for the Axxent source. Copyright © 2011 Elsevier Inc. All rights reserved.
Chen, Yunjie; Roux, Benoît
2014-09-21
Hybrid schemes combining the strength of molecular dynamics (MD) and Metropolis Monte Carlo (MC) offer a promising avenue to improve the sampling efficiency of computer simulations of complex systems. A number of recently proposed hybrid methods consider new configurations generated by driving the system via a non-equilibrium MD (neMD) trajectory, which are subsequently treated as putative candidates for Metropolis MC acceptance or rejection. To obey microscopic detailed balance, it is necessary to alter the momentum of the system at the beginning and/or the end of the neMD trajectory. This strict rule then guarantees that the random walk in configurational space generated by such hybrid neMD-MC algorithm will yield the proper equilibrium Boltzmann distribution. While a number of different constructs are possible, the most commonly used prescription has been to simply reverse the momenta of all the particles at the end of the neMD trajectory ("one-end momentum reversal"). Surprisingly, it is shown here that the choice of momentum reversal prescription can have a considerable effect on the rate of convergence of the hybrid neMD-MC algorithm, with the simple one-end momentum reversal encountering particularly acute problems. In these neMD-MC simulations, different regions of configurational space end up being essentially isolated from one another due to a very small transition rate between regions. In the worst-case scenario, it is almost as if the configurational space does not constitute a single communicating class that can be sampled efficiently by the algorithm, and extremely long neMD-MC simulations are needed to obtain proper equilibrium probability distributions. To address this issue, a novel momentum reversal prescription, symmetrized with respect to both the beginning and the end of the neMD trajectory ("symmetric two-ends momentum reversal"), is introduced. Illustrative simulations demonstrate that the hybrid neMD-MC algorithm robustly yields a correct equilibrium probability distribution with this prescription.
NASA Astrophysics Data System (ADS)
Chen, Yunjie; Roux, Benoît
2014-09-01
Hybrid schemes combining the strength of molecular dynamics (MD) and Metropolis Monte Carlo (MC) offer a promising avenue to improve the sampling efficiency of computer simulations of complex systems. A number of recently proposed hybrid methods consider new configurations generated by driving the system via a non-equilibrium MD (neMD) trajectory, which are subsequently treated as putative candidates for Metropolis MC acceptance or rejection. To obey microscopic detailed balance, it is necessary to alter the momentum of the system at the beginning and/or the end of the neMD trajectory. This strict rule then guarantees that the random walk in configurational space generated by such hybrid neMD-MC algorithm will yield the proper equilibrium Boltzmann distribution. While a number of different constructs are possible, the most commonly used prescription has been to simply reverse the momenta of all the particles at the end of the neMD trajectory ("one-end momentum reversal"). Surprisingly, it is shown here that the choice of momentum reversal prescription can have a considerable effect on the rate of convergence of the hybrid neMD-MC algorithm, with the simple one-end momentum reversal encountering particularly acute problems. In these neMD-MC simulations, different regions of configurational space end up being essentially isolated from one another due to a very small transition rate between regions. In the worst-case scenario, it is almost as if the configurational space does not constitute a single communicating class that can be sampled efficiently by the algorithm, and extremely long neMD-MC simulations are needed to obtain proper equilibrium probability distributions. To address this issue, a novel momentum reversal prescription, symmetrized with respect to both the beginning and the end of the neMD trajectory ("symmetric two-ends momentum reversal"), is introduced. Illustrative simulations demonstrate that the hybrid neMD-MC algorithm robustly yields a correct equilibrium probability distribution with this prescription.
Santander, Julian E; Tsapatsis, Michael; Auerbach, Scott M
2013-04-16
We have constructed and applied an algorithm to simulate the behavior of zeolite frameworks during liquid adsorption. We applied this approach to compute the adsorption isotherms of furfural-water and hydroxymethyl furfural (HMF)-water mixtures adsorbing in silicalite zeolite at 300 K for comparison with experimental data. We modeled these adsorption processes under two different statistical mechanical ensembles: the grand canonical (V-Nz-μg-T or GC) ensemble keeping volume fixed, and the P-Nz-μg-T (osmotic) ensemble allowing volume to fluctuate. To optimize accuracy and efficiency, we compared pure Monte Carlo (MC) sampling to hybrid MC-molecular dynamics (MD) simulations. For the external furfural-water and HMF-water phases, we assumed the ideal solution approximation and employed a combination of tabulated data and extended ensemble simulations for computing solvation free energies. We found that MC sampling in the V-Nz-μg-T ensemble (i.e., standard GCMC) does a poor job of reproducing both the Henry's law regime and the saturation loadings of these systems. Hybrid MC-MD sampling of the V-Nz-μg-T ensemble, which includes framework vibrations at fixed total volume, provides better results in the Henry's law region, but this approach still does not reproduce experimental saturation loadings. Pure MC sampling of the osmotic ensemble was found to approach experimental saturation loadings more closely, whereas hybrid MC-MD sampling of the osmotic ensemble quantitatively reproduces such loadings because the MC-MD approach naturally allows for locally anisotropic volume changes wherein some pores expand whereas others contract.
NASA Astrophysics Data System (ADS)
Golonka, P.; Pierzchała, T.; Waş, Z.
2004-02-01
Theoretical predictions in high energy physics are routinely provided in the form of Monte Carlo generators. Comparisons of predictions from different programs and/or different initialization set-ups are often necessary. MC-TESTER can be used for such tests of decays of intermediate states (particles or resonances) in a semi-automated way. Our test consists of two steps. Different Monte Carlo programs are run; events with decays of a chosen particle are searched, decay trees are analyzed and appropriate information is stored. Then, at the analysis step, a list of all found decay modes is defined and branching ratios are calculated for both runs. Histograms of all scalar Lorentz-invariant masses constructed from the decay products are plotted and compared for each decay mode found in both runs. For each plot a measure of the difference of the distributions is calculated and its maximal value over all histograms for each decay channel is printed in a summary table. As an example of MC-TESTER application, we include a test with the τ lepton decay Monte Carlo generators, TAUOLA and PYTHIA. The HEPEVT (or LUJETS) common block is used as exclusive source of information on the generated events. Program summaryTitle of the program:MC-TESTER, version 1.1 Catalogue identifier: ADSM Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSM Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer: PC, two Intel Xeon 2.0 GHz processors, 512MB RAM Operating system: Linux Red Hat 6.1, 7.2, and also 8.0 Programming language used:C++, FORTRAN77: gcc 2.96 or 2.95.2 (also 3.2) compiler suite with g++ and g77 Size of the package: 7.3 MB directory including example programs (2 MB compressed distribution archive), without ROOT libraries (additional 43 MB). No. of bytes in distributed program, including test data, etc.: 2 024 425 Distribution format: tar gzip file Additional disk space required: Depends on the analyzed particle: 40 MB in the case of τ lepton decays (30 decay channels, 594 histograms, 82-pages booklet). Keywords: particle physics, decay simulation, Monte Carlo methods, invariant mass distributions, programs comparison Nature of the physical problem: The decays of individual particles are well defined modules of a typical Monte Carlo program chain in high energy physics. A fast, semi-automatic way of comparing results from different programs is often desirable, for the development of new programs, to check correctness of the installations or for discussion of uncertainties. Method of solution: A typical HEP Monte Carlo program stores the generated events in the event records such as HEPEVT or PYJETS. MC-TESTER scans, event by event, the contents of the record and searches for the decays of the particle under study. The list of the found decay modes is successively incremented and histograms of all invariant masses which can be calculated from the momenta of the particle decay products are defined and filled. The outputs from the two runs of distinct programs can be later compared. A booklet of comparisons is created: for every decay channel, all histograms present in the two outputs are plotted and parameter quantifying shape difference is calculated. Its maximum over every decay channel is printed in the summary table. Restrictions on the complexity of the problem: For a list of limitations see Section 6. Typical running time: Varies substantially with the analyzed decay particle. On a PC/Linux with 2.0 GHz processors MC-TESTER increases the run time of the τ-lepton Monte Carlo program TAUOLA by 4.0 seconds for every 100 000 analyzed events (generation itself takes 26 seconds). The analysis step takes 13 seconds; ? processing takes additionally 10 seconds. Generation step runs may be executed simultaneously on multi-processor machines. Accessibility: web page: http://cern.ch/Piotr.Golonka/MC/MC-TESTER e-mails: Piotr.Golonka@CERN.CH, T.Pierzchala@friend.phys.us.edu.pl, Zbigniew.Was@CERN.CH.
Pandya, Tara M.; Johnson, Seth R.; Evans, Thomas M.; ...
2015-12-21
This paper discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package developed and maintained at Oak Ridge National Laboratory. It has been developed to scale well from laptop to small computing clusters to advanced supercomputers. Special features of Shift include hybrid capabilities for variance reduction such as CADIS and FW-CADIS, and advanced parallel decomposition and tally methods optimized for scalability on supercomputing architectures. Shift has been validated and verified against various reactor physics benchmarks and compares well to other state-of-the-art Monte Carlo radiation transport codes such as MCNP5, CE KENO-VI, and OpenMC. Somemore » specific benchmarks used for verification and validation include the CASL VERA criticality test suite and several Westinghouse AP1000 ® problems. These benchmark and scaling studies show promising results.« less
Monte Carlo-based treatment planning system calculation engine for microbeam radiation therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Rovira, I.; Sempau, J.; Prezado, Y.
Purpose: Microbeam radiation therapy (MRT) is a synchrotron radiotherapy technique that explores the limits of the dose-volume effect. Preclinical studies have shown that MRT irradiations (arrays of 25-75-{mu}m-wide microbeams spaced by 200-400 {mu}m) are able to eradicate highly aggressive animal tumor models while healthy tissue is preserved. These promising results have provided the basis for the forthcoming clinical trials at the ID17 Biomedical Beamline of the European Synchrotron Radiation Facility (ESRF). The first step includes irradiation of pets (cats and dogs) as a milestone before treatment of human patients. Within this context, accurate dose calculations are required. The distinct featuresmore » of both beam generation and irradiation geometry in MRT with respect to conventional techniques require the development of a specific MRT treatment planning system (TPS). In particular, a Monte Carlo (MC)-based calculation engine for the MRT TPS has been developed in this work. Experimental verification in heterogeneous phantoms and optimization of the computation time have also been performed. Methods: The penelope/penEasy MC code was used to compute dose distributions from a realistic beam source model. Experimental verification was carried out by means of radiochromic films placed within heterogeneous slab-phantoms. Once validation was completed, dose computations in a virtual model of a patient, reconstructed from computed tomography (CT) images, were performed. To this end, decoupling of the CT image voxel grid (a few cubic millimeter volume) to the dose bin grid, which has micrometer dimensions in the transversal direction of the microbeams, was performed. Optimization of the simulation parameters, the use of variance-reduction (VR) techniques, and other methods, such as the parallelization of the simulations, were applied in order to speed up the dose computation. Results: Good agreement between MC simulations and experimental results was achieved, even at the interfaces between two different media. Optimization of the simulation parameters and the use of VR techniques saved a significant amount of computation time. Finally, parallelization of the simulations improved even further the calculation time, which reached 1 day for a typical irradiation case envisaged in the forthcoming clinical trials in MRT. An example of MRT treatment in a dog's head is presented, showing the performance of the calculation engine. Conclusions: The development of the first MC-based calculation engine for the future TPS devoted to MRT has been accomplished. This will constitute an essential tool for the future clinical trials on pets at the ESRF. The MC engine is able to calculate dose distributions in micrometer-sized bins in complex voxelized CT structures in a reasonable amount of time. Minimization of the computation time by using several approaches has led to timings that are adequate for pet radiotherapy at synchrotron facilities. The next step will consist in its integration into a user-friendly graphical front-end.« less
Monte Carlo-based treatment planning system calculation engine for microbeam radiation therapy.
Martinez-Rovira, I; Sempau, J; Prezado, Y
2012-05-01
Microbeam radiation therapy (MRT) is a synchrotron radiotherapy technique that explores the limits of the dose-volume effect. Preclinical studies have shown that MRT irradiations (arrays of 25-75-μm-wide microbeams spaced by 200-400 μm) are able to eradicate highly aggressive animal tumor models while healthy tissue is preserved. These promising results have provided the basis for the forthcoming clinical trials at the ID17 Biomedical Beamline of the European Synchrotron Radiation Facility (ESRF). The first step includes irradiation of pets (cats and dogs) as a milestone before treatment of human patients. Within this context, accurate dose calculations are required. The distinct features of both beam generation and irradiation geometry in MRT with respect to conventional techniques require the development of a specific MRT treatment planning system (TPS). In particular, a Monte Carlo (MC)-based calculation engine for the MRT TPS has been developed in this work. Experimental verification in heterogeneous phantoms and optimization of the computation time have also been performed. The penelope/penEasy MC code was used to compute dose distributions from a realistic beam source model. Experimental verification was carried out by means of radiochromic films placed within heterogeneous slab-phantoms. Once validation was completed, dose computations in a virtual model of a patient, reconstructed from computed tomography (CT) images, were performed. To this end, decoupling of the CT image voxel grid (a few cubic millimeter volume) to the dose bin grid, which has micrometer dimensions in the transversal direction of the microbeams, was performed. Optimization of the simulation parameters, the use of variance-reduction (VR) techniques, and other methods, such as the parallelization of the simulations, were applied in order to speed up the dose computation. Good agreement between MC simulations and experimental results was achieved, even at the interfaces between two different media. Optimization of the simulation parameters and the use of VR techniques saved a significant amount of computation time. Finally, parallelization of the simulations improved even further the calculation time, which reached 1 day for a typical irradiation case envisaged in the forthcoming clinical trials in MRT. An example of MRT treatment in a dog's head is presented, showing the performance of the calculation engine. The development of the first MC-based calculation engine for the future TPS devoted to MRT has been accomplished. This will constitute an essential tool for the future clinical trials on pets at the ESRF. The MC engine is able to calculate dose distributions in micrometer-sized bins in complex voxelized CT structures in a reasonable amount of time. Minimization of the computation time by using several approaches has led to timings that are adequate for pet radiotherapy at synchrotron facilities. The next step will consist in its integration into a user-friendly graphical front-end.
Monte Carlo calculations of positron emitter yields in proton radiotherapy.
Seravalli, E; Robert, C; Bauer, J; Stichelbaut, F; Kurz, C; Smeets, J; Van Ngoc Ty, C; Schaart, D R; Buvat, I; Parodi, K; Verhaegen, F
2012-03-21
Positron emission tomography (PET) is a promising tool for monitoring the three-dimensional dose distribution in charged particle radiotherapy. PET imaging during or shortly after proton treatment is based on the detection of annihilation photons following the ß(+)-decay of radionuclides resulting from nuclear reactions in the irradiated tissue. Therapy monitoring is achieved by comparing the measured spatial distribution of irradiation-induced ß(+)-activity with the predicted distribution based on the treatment plan. The accuracy of the calculated distribution depends on the correctness of the computational models, implemented in the employed Monte Carlo (MC) codes that describe the interactions of the charged particle beam with matter and the production of radionuclides and secondary particles. However, no well-established theoretical models exist for predicting the nuclear interactions and so phenomenological models are typically used based on parameters derived from experimental data. Unfortunately, the experimental data presently available are insufficient to validate such phenomenological hadronic interaction models. Hence, a comparison among the models used by the different MC packages is desirable. In this work, starting from a common geometry, we compare the performances of MCNPX, GATE and PHITS MC codes in predicting the amount and spatial distribution of proton-induced activity, at therapeutic energies, to the already experimentally validated PET modelling based on the FLUKA MC code. In particular, we show how the amount of ß(+)-emitters produced in tissue-like media depends on the physics model and cross-sectional data used to describe the proton nuclear interactions, thus calling for future experimental campaigns aiming at supporting improvements of MC modelling for clinical application of PET monitoring. © 2012 Institute of Physics and Engineering in Medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hee Jung; Department of Biomedical Engineering, Seoul National University, Seoul; Department of Radiation Oncology, Soonchunhyang University Hospital, Seoul
2015-01-01
To investigate how accurately treatment planning systems (TPSs) account for the tongue-and-groove (TG) effect, Monte Carlo (MC) simulations and radiochromic film (RCF) measurements were performed for comparison with TPS results. Two commercial TPSs computed the TG effect for Varian Millennium 120 multileaf collimator (MLC). The TG effect on off-axis dose profile at 3 depths of solid water was estimated as the maximum depth and the full width at half maximum (FWHM) of the dose dip at an interleaf position. When compared with the off-axis dose of open field, the maximum depth of the dose dip for MC and RCF rangedmore » from 10.1% to 20.6%; the maximum depth of the dose dip gradually decreased by up to 8.7% with increasing depths of 1.5 to 10 cm and also by up to 4.1% with increasing off-axis distances of 0 to 13 cm. However, TPS results showed at most a 2.7% decrease for the same depth range and a negligible variation for the same off-axis distances. The FWHM of the dose dip was approximately 0.19 cm for MC and 0.17 cm for RCF, but 0.30 cm for Eclipse TPS and 0.45 cm for Pinnacle TPS. Accordingly, the integrated value of TG dose dip for TPS was larger than that for MC and RCF and almost invariant along the depths and off-axis distances. We concluded that the TG dependence on depth and off-axis doses shown in the MC and RCF results could not be appropriately modeled by the TPS versions in this study.« less
Evaluation of six TPS algorithms in computing entrance and exit doses.
Tan, Yun I; Metwaly, Mohamed; Glegg, Martin; Baggarley, Shaun; Elliott, Alex
2014-05-08
Entrance and exit doses are commonly measured in in vivo dosimetry for comparison with expected values, usually generated by the treatment planning system (TPS), to verify accuracy of treatment delivery. This report aims to evaluate the accuracy of six TPS algorithms in computing entrance and exit doses for a 6 MV beam. The algorithms tested were: pencil beam convolution (Eclipse PBC), analytical anisotropic algorithm (Eclipse AAA), AcurosXB (Eclipse AXB), FFT convolution (XiO Convolution), multigrid superposition (XiO Superposition), and Monte Carlo photon (Monaco MC). Measurements with ionization chamber (IC) and diode detector in water phantoms were used as a reference. Comparisons were done in terms of central axis point dose, 1D relative profiles, and 2D absolute gamma analysis. Entrance doses computed by all TPS algorithms agreed to within 2% of the measured values. Exit doses computed by XiO Convolution, XiO Superposition, Eclipse AXB, and Monaco MC agreed with the IC measured doses to within 2%-3%. Meanwhile, Eclipse PBC and Eclipse AAA computed exit doses were higher than the IC measured doses by up to 5.3% and 4.8%, respectively. Both algorithms assume that full backscatter exists even at the exit level, leading to an overestimation of exit doses. Despite good agreements at the central axis for Eclipse AXB and Monaco MC, 1D relative comparisons showed profiles mismatched at depths beyond 11.5 cm. Overall, the 2D absolute gamma (3%/3 mm) pass rates were better for Monaco MC, while Eclipse AXB failed mostly at the outer 20% of the field area. The findings of this study serve as a useful baseline for the implementation of entrance and exit in vivo dosimetry in clinical departments utilizing any of these six common TPS algorithms for reference comparison.
TH-A-18C-04: Ultrafast Cone-Beam CT Scatter Correction with GPU-Based Monte Carlo Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Y; Southern Medical University, Guangzhou; Bai, T
2014-06-15
Purpose: Scatter artifacts severely degrade image quality of cone-beam CT (CBCT). We present an ultrafast scatter correction framework by using GPU-based Monte Carlo (MC) simulation and prior patient CT image, aiming at automatically finish the whole process including both scatter correction and reconstructions within 30 seconds. Methods: The method consists of six steps: 1) FDK reconstruction using raw projection data; 2) Rigid Registration of planning CT to the FDK results; 3) MC scatter calculation at sparse view angles using the planning CT; 4) Interpolation of the calculated scatter signals to other angles; 5) Removal of scatter from the raw projections;more » 6) FDK reconstruction using the scatter-corrected projections. In addition to using GPU to accelerate MC photon simulations, we also use a small number of photons and a down-sampled CT image in simulation to further reduce computation time. A novel denoising algorithm is used to eliminate MC scatter noise caused by low photon numbers. The method is validated on head-and-neck cases with simulated and clinical data. Results: We have studied impacts of photo histories, volume down sampling factors on the accuracy of scatter estimation. The Fourier analysis was conducted to show that scatter images calculated at 31 angles are sufficient to restore those at all angles with <0.1% error. For the simulated case with a resolution of 512×512×100, we simulated 10M photons per angle. The total computation time is 23.77 seconds on a Nvidia GTX Titan GPU. The scatter-induced shading/cupping artifacts are substantially reduced, and the average HU error of a region-of-interest is reduced from 75.9 to 19.0 HU. Similar results were found for a real patient case. Conclusion: A practical ultrafast MC-based CBCT scatter correction scheme is developed. The whole process of scatter correction and reconstruction is accomplished within 30 seconds. This study is supported in part by NIH (1R01CA154747-01), The Core Technology Research in Strategic Emerging Industry, Guangdong, China (2011A081402003)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chesneau, H; Lazaro, D; Blideanu, V
Purpose: The intensive use of Cone-Beam Computed Tomography (CBCT) during radiotherapy treatments raise some questions about the dose to healthy tissues delivered during image acquisitions. We hence developed a Monte Carlo (MC)-based tool to predict doses to organs delivered by the Elekta XVI kV-CBCT. This work aims at assessing the dosimetric accuracy of the MC tool, in all tissue types. Methods: The kV-CBCT MC model was developed using the PENELOPE code. The beam properties were validated against measured lateral and depth dose profiles in water, and energy spectra measured with a CdTe detector. The CBCT simulator accuracy then required verificationmore » in clinical conditions. For this, we compared calculated and experimental dose values obtained with OSL nanoDots and XRQA2 films inserted in CIRS anthropomorphic phantoms (male, female, and 5-year old child). Measurements were performed at different locations, including bone and lung structures, and for several acquisition protocols: lung, head-and-neck, and pelvis. OSLs and film measurements were corrected when possible for energy dependence, by taking into account for spectral variations between calibration and measurement conditions. Results: Comparisons between measured and MC dose values are summarized in table 1. A mean difference of 8.6% was achieved for OSLs when the energy correction was applied, and 89.3% of the 84 dose points were within uncertainty intervals, including those in bones and lungs. Results with XRQA2 are not as good, because incomplete information about electronic equilibrium in film layers hampered the application of a simple energy correction procedure. Furthermore, measured and calculated doses (Fig.1) are in agreement with the literature. Conclusion: The MC-based tool developed was validated with an extensive set of measurements, and enables the organ dose calculation with accuracy. It can now be used to compute and report doses to organs for clinical cases, and also to drive strategies to optimize imaging protocols.« less
Patient-specific CT dosimetry calculation: a feasibility study.
Fearon, Thomas; Xie, Huchen; Cheng, Jason Y; Ning, Holly; Zhuge, Ying; Miller, Robert W
2011-11-15
Current estimation of radiation dose from computed tomography (CT) scans on patients has relied on the measurement of Computed Tomography Dose Index (CTDI) in standard cylindrical phantoms, and calculations based on mathematical representations of "standard man". Radiation dose to both adult and pediatric patients from a CT scan has been a concern, as noted in recent reports. The purpose of this study was to investigate the feasibility of adapting a radiation treatment planning system (RTPS) to provide patient-specific CT dosimetry. A radiation treatment planning system was modified to calculate patient-specific CT dose distributions, which can be represented by dose at specific points within an organ of interest, as well as organ dose-volumes (after image segmentation) for a GE Light Speed Ultra Plus CT scanner. The RTPS calculation algorithm is based on a semi-empirical, measured correction-based algorithm, which has been well established in the radiotherapy community. Digital representations of the physical phantoms (virtual phantom) were acquired with the GE CT scanner in axial mode. Thermoluminescent dosimeter (TLDs) measurements in pediatric anthropomorphic phantoms were utilized to validate the dose at specific points within organs of interest relative to RTPS calculations and Monte Carlo simulations of the same virtual phantoms (digital representation). Congruence of the calculated and measured point doses for the same physical anthropomorphic phantom geometry was used to verify the feasibility of the method. The RTPS algorithm can be extended to calculate the organ dose by calculating a dose distribution point-by-point for a designated volume. Electron Gamma Shower (EGSnrc) codes for radiation transport calculations developed by National Research Council of Canada (NRCC) were utilized to perform the Monte Carlo (MC) simulation. In general, the RTPS and MC dose calculations are within 10% of the TLD measurements for the infant and child chest scans. With respect to the dose comparisons for the head, the RTPS dose calculations are slightly higher (10%-20%) than the TLD measurements, while the MC results were within 10% of the TLD measurements. The advantage of the algebraic dose calculation engine of the RTPS is a substantially reduced computation time (minutes vs. days) relative to Monte Carlo calculations, as well as providing patient-specific dose estimation. It also provides the basis for a more elaborate reporting of dosimetric results, such as patient specific organ dose volumes after image segmentation.
Design and performance of the virtualization platform for offline computing on the ATLAS TDAQ Farm
NASA Astrophysics Data System (ADS)
Ballestrero, S.; Batraneanu, S. M.; Brasolin, F.; Contescu, C.; Di Girolamo, A.; Lee, C. J.; Pozo Astigarraga, M. E.; Scannicchio, D. A.; Twomey, M. S.; Zaytsev, A.
2014-06-01
With the LHC collider at CERN currently going through the period of Long Shutdown 1 there is an opportunity to use the computing resources of the experiments' large trigger farms for other data processing activities. In the case of the ATLAS experiment, the TDAQ farm, consisting of more than 1500 compute nodes, is suitable for running Monte Carlo (MC) production jobs that are mostly CPU and not I/O bound. This contribution gives a thorough review of the design and deployment of a virtualized platform running on this computing resource and of its use to run large groups of CernVM based virtual machines operating as a single CERN-P1 WLCG site. This platform has been designed to guarantee the security and the usability of the ATLAS private network, and to minimize interference with TDAQ's usage of the farm. Openstack has been chosen to provide a cloud management layer. The experience gained in the last 3.5 months shows that the use of the TDAQ farm for the MC simulation contributes to the ATLAS data processing at the level of a large Tier-1 WLCG site, despite the opportunistic nature of the underlying computing resources being used.
Comparison of Monte Carlo and analytical dose computations for intensity modulated proton therapy
NASA Astrophysics Data System (ADS)
Yepes, Pablo; Adair, Antony; Grosshans, David; Mirkovic, Dragan; Poenisch, Falk; Titt, Uwe; Wang, Qianxia; Mohan, Radhe
2018-02-01
To evaluate the effect of approximations in clinical analytical calculations performed by a treatment planning system (TPS) on dosimetric indices in intensity modulated proton therapy. TPS calculated dose distributions were compared with dose distributions as estimated by Monte Carlo (MC) simulations, calculated with the fast dose calculator (FDC) a system previously benchmarked to full MC. This study analyzed a total of 525 patients for four treatment sites (brain, head-and-neck, thorax and prostate). Dosimetric indices (D02, D05, D20, D50, D95, D98, EUD and Mean Dose) and a gamma-index analysis were utilized to evaluate the differences. The gamma-index passing rates for a 3%/3 mm criterion for voxels with a dose larger than 10% of the maximum dose had a median larger than 98% for all sites. The median difference for all dosimetric indices for target volumes was less than 2% for all cases. However, differences for target volumes as large as 10% were found for 2% of the thoracic patients. For organs at risk (OARs), the median absolute dose difference was smaller than 2 Gy for all indices and cohorts. However, absolute dose differences as large as 10 Gy were found for some small volume organs in brain and head-and-neck patients. This analysis concludes that for a fraction of the patients studied, TPS may overestimate the dose in the target by as much as 10%, while for some OARs the dose could be underestimated by as much as 10 Gy. Monte Carlo dose calculations may be needed to ensure more accurate dose computations to improve target coverage and sparing of OARs in proton therapy.
TU-AB-BRC-12: Optimized Parallel MonteCarlo Dose Calculations for Secondary MU Checks
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, S; Nazareth, D; Bellor, M
Purpose: Secondary MU checks are an important tool used during a physics review of a treatment plan. Commercial software packages offer varying degrees of theoretical dose calculation accuracy, depending on the modality involved. Dose calculations of VMAT plans are especially prone to error due to the large approximations involved. Monte Carlo (MC) methods are not commonly used due to their long run times. We investigated two methods to increase the computational efficiency of MC dose simulations with the BEAMnrc code. Distributed computing resources, along with optimized code compilation, will allow for accurate and efficient VMAT dose calculations. Methods: The BEAMnrcmore » package was installed on a high performance computing cluster accessible to our clinic. MATLAB and PYTHON scripts were developed to convert a clinical VMAT DICOM plan into BEAMnrc input files. The BEAMnrc installation was optimized by running the VMAT simulations through profiling tools which indicated the behavior of the constituent routines in the code, e.g. the bremsstrahlung splitting routine, and the specified random number generator. This information aided in determining the most efficient compiling parallel configuration for the specific CPU’s available on our cluster, resulting in the fastest VMAT simulation times. Our method was evaluated with calculations involving 10{sup 8} – 10{sup 9} particle histories which are sufficient to verify patient dose using VMAT. Results: Parallelization allowed the calculation of patient dose on the order of 10 – 15 hours with 100 parallel jobs. Due to the compiler optimization process, further speed increases of 23% were achieved when compared with the open-source compiler BEAMnrc packages. Conclusion: Analysis of the BEAMnrc code allowed us to optimize the compiler configuration for VMAT dose calculations. In future work, the optimized MC code, in conjunction with the parallel processing capabilities of BEAMnrc, will be applied to provide accurate and efficient secondary MU checks.« less
Monte Carlo dose calculations for high-dose-rate brachytherapy using GPU-accelerated processing.
Tian, Z; Zhang, M; Hrycushko, B; Albuquerque, K; Jiang, S B; Jia, X
2016-01-01
Current clinical brachytherapy dose calculations are typically based on the Association of American Physicists in Medicine Task Group report 43 (TG-43) guidelines, which approximate patient geometry as an infinitely large water phantom. This ignores patient and applicator geometries and heterogeneities, causing dosimetric errors. Although Monte Carlo (MC) dose calculation is commonly recognized as the most accurate method, its associated long computational time is a major bottleneck for routine clinical applications. This article presents our recent developments of a fast MC dose calculation package for high-dose-rate (HDR) brachytherapy, gBMC, built on a graphics processing unit (GPU) platform. gBMC-simulated photon transport in voxelized geometry with physics in (192)Ir HDR brachytherapy energy range considered. A phase-space file was used as a source model. GPU-based parallel computation was used to simultaneously transport multiple photons, one on a GPU thread. We validated gBMC by comparing the dose calculation results in water with that computed TG-43. We also studied heterogeneous phantom cases and a patient case and compared gBMC results with Acuros BV results. Radial dose function in water calculated by gBMC showed <0.6% relative difference from that of the TG-43 data. Difference in anisotropy function was <1%. In two heterogeneous slab phantoms and one shielded cylinder applicator case, average dose discrepancy between gBMC and Acuros BV was <0.87%. For a tandem and ovoid patient case, good agreement between gBMC and Acruos BV results was observed in both isodose lines and dose-volume histograms. In terms of the efficiency, it took ∼47.5 seconds for gBMC to reach 0.15% statistical uncertainty within the 5% isodose line for the patient case. The accuracy and efficiency of a new GPU-based MC dose calculation package, gBMC, for HDR brachytherapy make it attractive for clinical applications. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
SU-C-BRC-06: OpenCL-Based Cross-Platform Monte Carlo Simulation Package for Carbon Ion Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, N; Tian, Z; Pompos, A
2016-06-15
Purpose: Monte Carlo (MC) simulation is considered to be the most accurate method for calculation of absorbed dose and fundamental physical quantities related to biological effects in carbon ion therapy. Its long computation time impedes clinical and research applications. We have developed an MC package, goCMC, on parallel processing platforms, aiming at achieving accurate and efficient simulations for carbon therapy. Methods: goCMC was developed under OpenCL framework. It supported transport simulation in voxelized geometry with kinetic energy up to 450 MeV/u. Class II condensed history algorithm was employed for charged particle transport with stopping power computed via Bethe-Bloch equation. Secondarymore » electrons were not transported with their energy locally deposited. Energy straggling and multiple scattering were modeled. Production of secondary charged particles from nuclear interactions was implemented based on cross section and yield data from Geant4. They were transported via the condensed history scheme. goCMC supported scoring various quantities of interest e.g. physical dose, particle fluence, spectrum, linear energy transfer, and positron emitting nuclei. Results: goCMC has been benchmarked against Geant4 with different phantoms and beam energies. For 100 MeV/u, 250 MeV/u and 400 MeV/u beams impinging to a water phantom, range difference was 0.03 mm, 0.20 mm and 0.53 mm, and mean dose difference was 0.47%, 0.72% and 0.79%, respectively. goCMC can run on various computing devices. Depending on the beam energy and voxel size, it took 20∼100 seconds to simulate 10{sup 7} carbons on an AMD Radeon GPU card. The corresponding CPU time for Geant4 with the same setup was 60∼100 hours. Conclusion: We have developed an OpenCL-based cross-platform carbon MC simulation package, goCMC. Its accuracy, efficiency and portability make goCMC attractive for research and clinical applications in carbon therapy.« less
NASA Astrophysics Data System (ADS)
Davidson, N.; Golonka, P.; Przedziński, T.; Waş, Z.
2011-03-01
Theoretical predictions in high energy physics are routinely provided in the form of Monte Carlo generators. Comparisons of predictions from different programs and/or different initialization set-ups are often necessary. MC-TESTER can be used for such tests of decays of intermediate states (particles or resonances) in a semi-automated way. Since 2002 new functionalities were introduced into the package. In particular, it now works with the HepMC event record, the standard for C++ programs. The complete set-up for benchmarking the interfaces, such as interface between τ-lepton production and decay, including QED bremsstrahlung effects is shown. The example is chosen to illustrate the new options introduced into the program. From the technical perspective, our paper documents software updates and supplements previous documentation. As in the past, our test consists of two steps. Distinct Monte Carlo programs are run separately; events with decays of a chosen particle are searched, and information is stored by MC-TESTER. Then, at the analysis step, information from a pair of runs may be compared and represented in the form of tables and plots. Updates introduced in the program up to version 1.24.4 are also documented. In particular, new configuration scripts or script to combine results from multitude of runs into single information file to be used in analysis step are explained. Program summaryProgram title: MC-TESTER, version 1.23 and version 1.24.4 Catalog identifier: ADSM_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSM_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 250 548 No. of bytes in distributed program, including test data, etc.: 4 290 610 Distribution format: tar.gz Programming language: C++, FORTRAN77 Tested and compiled with: gcc 3.4.6, 4.2.4 and 4.3.2 with g77/gfortran Computer: Tested on various platforms Operating system: Tested on operating systems: Linux SLC 4.6 and SLC 5, Fedora 8, Ubuntu 8.2 etc. Classification: 11.9 External routines: HepMC ( https://savannah.cern.ch/projects/hepmc/), PYTHIA8 ( http://home.thep.lu.se/~torbjorn/Pythia.html), LaTeX ( http://www.latex-project.org/) Catalog identifier of previous version: ADSM_v1_0 Journal reference of previous version: Comput. Phys. Comm. 157 (2004) 39 Does the new version supersede the previous version?: Yes Nature of problem: The decays of individual particles are well defined modules of a typical Monte Carlo program chain in high energy physics. A fast, semi-automatic way of comparing results from different programs is often desirable for the development of new programs, in order to check correctness of the installations or for discussion of uncertainties. Solution method: A typical HEP Monte Carlo program stores the generated events in event records such as HepMC, HEPEVT or PYJETS. MC-TESTER scans, event by event, the contents of the record and searches for the decays of the particle under study. The list of the found decay modes is successively incremented and histograms of all invariant masses which can be calculated from the momenta of the particle decay products are defined and filled. The outputs from the two runs of distinct programs can be later compared. A booklet of comparisons is created: for every decay channel, all histograms present in the two outputs are plotted and parameter quantifying shape difference is calculated. Its maximum over every decay channel is printed in the summary table. Reasons for new version: Interface for HepMC Event Record is introduced. Setup for benchmarking the interfaces, such as τ-lepton production and decay, including QED bremsstrahlung effects is introduced as well. This required significant changes in the algorithm. As a consequence, a new version of the code was introduced. Restrictions: Only the first 200 decay channels that were found will initialize histograms and if the multiplicity of decay products in a given channel was larger than 7, histograms will not be created for that channel. Additional comments: New features: HepMC interface, use of lists in definition of histograms and decay channels, filters for decay products or secondary decays to be omitted, bug fixing, extended flexibility in representation of program output, installation configuration scripts, merging multiple output files from separate generations. Running time: Varies substantially with the analyzed decay particle, but generally speed estimation of the old version remains valid. On a PC/Linux with 2.0 GHz processors MC-TESTER increases the run time of the τ-lepton Monte Carlo program TAUOLA by 4.0 seconds for every 100 000 analyzed events (generation itself takes 26 seconds). The analysis step takes 13 seconds; LATEX processing takes additionally 10 seconds. Generation step runs may be executed simultaneously on multiprocessor machines.
Calibration of the Top-Quark Monte Carlo Mass.
Kieseler, Jan; Lipka, Katerina; Moch, Sven-Olaf
2016-04-22
We present a method to establish, experimentally, the relation between the top-quark mass m_{t}^{MC} as implemented in Monte Carlo generators and the Lagrangian mass parameter m_{t} in a theoretically well-defined renormalization scheme. We propose a simultaneous fit of m_{t}^{MC} and an observable sensitive to m_{t}, which does not rely on any prior assumptions about the relation between m_{t} and m_{t}^{MC}. The measured observable is independent of m_{t}^{MC} and can be used subsequently for a determination of m_{t}. The analysis strategy is illustrated with examples for the extraction of m_{t} from inclusive and differential cross sections for hadroproduction of top quarks.
Jones, Bernard L; Cho, Sang Hyun
2011-06-21
A recent study investigated the feasibility to develop a bench-top x-ray fluorescence computed tomography (XFCT) system capable of determining the spatial distribution and concentration of gold nanoparticles (GNPs) in vivo using a diagnostic energy range polychromatic (i.e. 110 kVp) pencil-beam source. In this follow-up study, we examined the feasibility of a polychromatic cone-beam implementation of XFCT by Monte Carlo (MC) simulations using the MCNP5 code. In the current MC model, cylindrical columns with various sizes (5-10 mm in diameter) containing water loaded with GNPs (0.1-2% gold by weight) were inserted into a 5 cm diameter cylindrical polymethyl methacrylate phantom. The phantom was then irradiated by a lead-filtered 110 kVp x-ray source, and the resulting gold fluorescence and Compton-scattered photons were collected by a series of energy-sensitive tallies after passing through lead parallel-hole collimators. A maximum-likelihood iterative reconstruction algorithm was implemented to reconstruct the image of GNP-loaded objects within the phantom. The effects of attenuation of both the primary beam through the phantom and the gold fluorescence photons en route to the detector were corrected during the image reconstruction. Accurate images of the GNP-containing phantom were successfully reconstructed for three different phantom configurations, with both spatial distribution and relative concentration of GNPs well identified. The pixel intensity of regions containing GNPs was linearly proportional to the gold concentration. The current MC study strongly suggests the possibility of developing a bench-top, polychromatic, cone-beam XFCT system for in vivo imaging.
NASA Astrophysics Data System (ADS)
Brolin, Gustav; Sjögreen Gleisner, Katarina; Ljungberg, Michael
2013-05-01
In dynamic renal scintigraphy, the main interest is the radiopharmaceutical redistribution as a function of time. Quality control (QC) of renal procedures often relies on phantom experiments to compare image-based results with the measurement setup. A phantom with a realistic anatomy and time-varying activity distribution is therefore desirable. This work describes a pharmacokinetic (PK) compartment model for 99mTc-MAG3, used for defining a dynamic whole-body activity distribution within a digital phantom (XCAT) for accurate Monte Carlo (MC)-based images for QC. Each phantom structure is assigned a time-activity curve provided by the PK model, employing parameter values consistent with MAG3 pharmacokinetics. This approach ensures that the total amount of tracer in the phantom is preserved between time points, and it allows for modifications of the pharmacokinetics in a controlled fashion. By adjusting parameter values in the PK model, different clinically realistic scenarios can be mimicked, regarding, e.g., the relative renal uptake and renal transit time. Using the MC code SIMIND, a complete set of renography images including effects of photon attenuation, scattering, limited spatial resolution and noise, are simulated. The obtained image data can be used to evaluate quantitative techniques and computer software in clinical renography.
Numerical simulation studies for optical properties of biomaterials
NASA Astrophysics Data System (ADS)
Krasnikov, I.; Seteikin, A.
2016-11-01
Biophotonics involves understanding how light interacts with biological matter, from molecules and cells, to tissues and even whole organisms. Light can be used to probe biomolecular events, such as gene expression and protein-protein interaction, with impressively high sensitivity and specificity. The spatial and temporal distribution of biochemical constituents can also be visualized with light and, thus, the corresponding physiological dynamics in living cells, tissues, and organisms in real time. Computer-based Monte Carlo (MC) models of light transport in turbid media take a different approach. In this paper, the optical and structural properties of biomaterials discussed. We explain the numerical simulationmethod used for studying the optical properties of biomaterials. Applications of the Monte-Carlo method in photodynamic therapy, skin tissue optics, and bioimaging described.
Zhang, Zhe; Schindler, Christina E. M.; Lange, Oliver F.; Zacharias, Martin
2015-01-01
The high-resolution refinement of docked protein-protein complexes can provide valuable structural and mechanistic insight into protein complex formation complementing experiment. Monte Carlo (MC) based approaches are frequently applied to sample putative interaction geometries of proteins including also possible conformational changes of the binding partners. In order to explore efficiency improvements of the MC sampling, several enhanced sampling techniques, including temperature or Hamiltonian replica exchange and well-tempered ensemble approaches, have been combined with the MC method and were evaluated on 20 protein complexes using unbound partner structures. The well-tempered ensemble method combined with a 2-dimensional temperature and Hamiltonian replica exchange scheme (WTE-H-REMC) was identified as the most efficient search strategy. Comparison with prolonged MC searches indicates that the WTE-H-REMC approach requires approximately 5 times fewer MC steps to identify near native docking geometries compared to conventional MC searches. PMID:26053419
NASA Astrophysics Data System (ADS)
Zhang, Shuying; Zhou, Xiaoqing; Qin, Zhuanping; Zhao, Huijuan
2011-02-01
This article aims at the development of the fast inverse Monte Carlo (MC) simulation for the reconstruction of optical properties (absorption coefficient μs and scattering coefficient μs) of cylindrical tissue, such as a cervix, from the measurement of near infrared diffuse light on frequency domain. Frequency domain information (amplitude and phase) is extracted from the time domain MC with a modified method. To shorten the computation time in reconstruction of optical properties, efficient and fast forward MC has to be achieved. To do this, firstly, databases of the frequency-domain information under a range of μa and μs were pre-built by combining MC simulation with Lambert-Beer's law. Then, a double polynomial model was adopted to quickly obtain the frequency-domain information in any optical properties. Based on the fast forward MC, the optical properties can be quickly obtained in a nonlinear optimization scheme. Reconstruction resulting from simulated data showed that the developed inverse MC method has the advantages in both the reconstruction accuracy and computation time. The relative errors in reconstruction of the μs and μs are less than +/-6% and +/-12% respectively, while another coefficient (μs or μs) is in a fixed value. When both μs and μs are unknown, the relative errors in reconstruction of the reduced scattering coefficient and absorption coefficient are mainly less than +/-10% in range of 45< μs <80 cm-1 and 0.25< a μ <0.55 cm-1. With the rapid reconstruction strategy developed in this article the computation time for reconstructing one set of the optical properties is less than 0.5 second. Endoscopic measurement on two tubular solid phantoms were also carried out to evaluate the system and the inversion scheme. The results demonstrated that less than 20% relative error can be achieved.
NASA Astrophysics Data System (ADS)
Tomellini, M.; Fanfoni, M.
1999-10-01
On the basis of the quasi-static approximation and for simultaneous nucleation the adatom lifetime, τ, during film growth at solid surfaces has been computed by Monte Carlo (MC) simulation. The quantity DN0τ, N0 and D being respectively the cluster density and the adatom diffusion coefficient, is found to depend upon the portion of surface covered by clusters and, very weakly, on N0. Moreover, a stochastic approach based on the Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory has been developed to obtain the analytical expression of the MC curve. The collision factor of the mean island has been calculated and compared with those previously obtained from the uniform depletion approximation and the lattice approximation.
On Fitting a Multivariate Two-Part Latent Growth Model
Xu, Shu; Blozis, Shelley A.; Vandewater, Elizabeth A.
2017-01-01
A 2-part latent growth model can be used to analyze semicontinuous data to simultaneously study change in the probability that an individual engages in a behavior, and if engaged, change in the behavior. This article uses a Monte Carlo (MC) integration algorithm to study the interrelationships between the growth factors of 2 variables measured longitudinally where each variable can follow a 2-part latent growth model. A SAS macro implementing Mplus is developed to estimate the model to take into account the sampling uncertainty of this simulation-based computational approach. A sample of time-use data is used to show how maximum likelihood estimates can be obtained using a rectangular numerical integration method and an MC integration method. PMID:29333054
NASA Astrophysics Data System (ADS)
Magro, G.; Dahle, T. J.; Molinelli, S.; Ciocca, M.; Fossati, P.; Ferrari, A.; Inaniwa, T.; Matsufuji, N.; Ytre-Hauge, K. S.; Mairani, A.
2017-05-01
Particle therapy facilities often require Monte Carlo (MC) simulations to overcome intrinsic limitations of analytical treatment planning systems (TPS) related to the description of the mixed radiation field and beam interaction with tissue inhomogeneities. Some of these uncertainties may affect the computation of effective dose distributions; therefore, particle therapy dedicated MC codes should provide both absorbed and biological doses. Two biophysical models are currently applied clinically in particle therapy: the local effect model (LEM) and the microdosimetric kinetic model (MKM). In this paper, we describe the coupling of the NIRS (National Institute for Radiological Sciences, Japan) clinical dose to the FLUKA MC code. We moved from the implementation of the model itself to its application in clinical cases, according to the NIRS approach, where a scaling factor is introduced to rescale the (carbon-equivalent) biological dose to a clinical dose level. A high level of agreement was found with published data by exploring a range of values for the MKM input parameters, while some differences were registered in forward recalculations of NIRS patient plans, mainly attributable to differences with the analytical TPS dose engine (taken as reference) in describing the mixed radiation field (lateral spread and fragmentation). We presented a tool which is being used at the Italian National Center for Oncological Hadrontherapy to support the comparison study between the NIRS clinical dose level and the LEM dose specification.
Parallelization of a Monte Carlo particle transport simulation code
NASA Astrophysics Data System (ADS)
Hadjidoukas, P.; Bousis, C.; Emfietzoglou, D.
2010-05-01
We have developed a high performance version of the Monte Carlo particle transport simulation code MC4. The original application code, developed in Visual Basic for Applications (VBA) for Microsoft Excel, was first rewritten in the C programming language for improving code portability. Several pseudo-random number generators have been also integrated and studied. The new MC4 version was then parallelized for shared and distributed-memory multiprocessor systems using the Message Passing Interface. Two parallel pseudo-random number generator libraries (SPRNG and DCMT) have been seamlessly integrated. The performance speedup of parallel MC4 has been studied on a variety of parallel computing architectures including an Intel Xeon server with 4 dual-core processors, a Sun cluster consisting of 16 nodes of 2 dual-core AMD Opteron processors and a 200 dual-processor HP cluster. For large problem size, which is limited only by the physical memory of the multiprocessor server, the speedup results are almost linear on all systems. We have validated the parallel implementation against the serial VBA and C implementations using the same random number generator. Our experimental results on the transport and energy loss of electrons in a water medium show that the serial and parallel codes are equivalent in accuracy. The present improvements allow for studying of higher particle energies with the use of more accurate physical models, and improve statistics as more particles tracks can be simulated in low response time.
Khajeh, Masoud; Safigholi, Habib
2015-01-01
A miniature X-ray source has been optimized for electronic brachytherapy. The cooling fluid for this device is water. Unlike the radionuclide brachytherapy sources, this source is able to operate at variable voltages and currents to match the dose with the tumor depth. First, Monte Carlo (MC) optimization was performed on the tungsten target-buffer thickness layers versus energy such that the minimum X-ray attenuation occurred. Second optimization was done on the selection of the anode shape based on the Monte Carlo in water TG-43U1 anisotropy function. This optimization was carried out to get the dose anisotropy functions closer to unity at any angle from 0° to 170°. Three anode shapes including cylindrical, spherical, and conical were considered. Moreover, by Computational Fluid Dynamic (CFD) code the optimal target-buffer shape and different nozzle shapes for electronic brachytherapy were evaluated. The characterization criteria of the CFD were the minimum temperature on the anode shape, cooling water, and pressure loss from inlet to outlet. The optimal anode was conical in shape with a conical nozzle. Finally, the TG-43U1 parameters of the optimal source were compared with the literature. PMID:26966563
Next-generation acceleration and code optimization for light transport in turbid media using GPUs
Alerstam, Erik; Lo, William Chun Yip; Han, Tianyi David; Rose, Jonathan; Andersson-Engels, Stefan; Lilge, Lothar
2010-01-01
A highly optimized Monte Carlo (MC) code package for simulating light transport is developed on the latest graphics processing unit (GPU) built for general-purpose computing from NVIDIA - the Fermi GPU. In biomedical optics, the MC method is the gold standard approach for simulating light transport in biological tissue, both due to its accuracy and its flexibility in modelling realistic, heterogeneous tissue geometry in 3-D. However, the widespread use of MC simulations in inverse problems, such as treatment planning for PDT, is limited by their long computation time. Despite its parallel nature, optimizing MC code on the GPU has been shown to be a challenge, particularly when the sharing of simulation result matrices among many parallel threads demands the frequent use of atomic instructions to access the slow GPU global memory. This paper proposes an optimization scheme that utilizes the fast shared memory to resolve the performance bottleneck caused by atomic access, and discusses numerous other optimization techniques needed to harness the full potential of the GPU. Using these techniques, a widely accepted MC code package in biophotonics, called MCML, was successfully accelerated on a Fermi GPU by approximately 600x compared to a state-of-the-art Intel Core i7 CPU. A skin model consisting of 7 layers was used as the standard simulation geometry. To demonstrate the possibility of GPU cluster computing, the same GPU code was executed on four GPUs, showing a linear improvement in performance with an increasing number of GPUs. The GPU-based MCML code package, named GPU-MCML, is compatible with a wide range of graphics cards and is released as an open-source software in two versions: an optimized version tuned for high performance and a simplified version for beginners (http://code.google.com/p/gpumcml). PMID:21258498
A Probabilistic Collocation Based Iterative Kalman Filter for Landfill Data Assimilation
NASA Astrophysics Data System (ADS)
Qiang, Z.; Zeng, L.; Wu, L.
2016-12-01
Due to the strong spatial heterogeneity of landfill, uncertainty is ubiquitous in gas transport process in landfill. To accurately characterize the landfill properties, the ensemble Kalman filter (EnKF) has been employed to assimilate the measurements, e.g., the gas pressure. As a Monte Carlo (MC) based method, the EnKF usually requires a large ensemble size, which poses a high computational cost for large scale problems. In this work, we propose a probabilistic collocation based iterative Kalman filter (PCIKF) to estimate permeability in a liquid-gas coupling model. This method employs polynomial chaos expansion (PCE) to represent and propagate the uncertainties of model parameters and states, and an iterative form of Kalman filter to assimilate the current gas pressure data. To further reduce the computation cost, the functional ANOVA (analysis of variance) decomposition is conducted, and only the first order ANOVA components are remained for PCE. Illustrated with numerical case studies, this proposed method shows significant superiority in computation efficiency compared with the traditional MC based iterative EnKF. The developed method has promising potential in reliable prediction and management of landfill gas production.
Top Quark Mass Calibration for Monte Carlo Event Generators.
Butenschoen, Mathias; Dehnadi, Bahman; Hoang, André H; Mateu, Vicent; Preisser, Moritz; Stewart, Iain W
2016-12-02
The most precise top quark mass measurements use kinematic reconstruction methods, determining the top mass parameter of a Monte Carlo event generator m_{t}^{MC}. Because of hadronization and parton-shower dynamics, relating m_{t}^{MC} to a field theory mass is difficult. We present a calibration procedure to determine this relation using hadron level QCD predictions for observables with kinematic mass sensitivity. Fitting e^{+}e^{-} 2-jettiness calculations at next-to-leading-logarithmic and next-to-next-to-leading-logarithmic order to pythia 8.205, m_{t}^{MC} differs from the pole mass by 900 and 600 MeV, respectively, and agrees with the MSR mass within uncertainties, m_{t}^{MC}≃m_{t,1 GeV}^{MSR}.
Bayesian inversion using a geologically realistic and discrete model space
NASA Astrophysics Data System (ADS)
Jaeggli, C.; Julien, S.; Renard, P.
2017-12-01
Since the early days of groundwater modeling, inverse methods play a crucial role. Many research and engineering groups aim to infer extensive knowledge of aquifer parameters from a sparse set of observations. Despite decades of dedicated research on this topic, there are still several major issues to be solved. In the hydrogeological framework, one is often confronted with underground structures that present very sharp contrasts of geophysical properties. In particular, subsoil structures such as karst conduits, channels, faults, or lenses, strongly influence groundwater flow and transport behavior of the underground. For this reason it can be essential to identify their location and shape very precisely. Unfortunately, when inverse methods are specially trained to consider such complex features, their computation effort often becomes unaffordably high. The following work is an attempt to solve this dilemma. We present a new method that is, in some sense, a compromise between the ergodicity of Markov chain Monte Carlo (McMC) methods and the efficient handling of data by the ensemble based Kalmann filters. The realistic and complex random fields are generated by a Multiple-Point Statistics (MPS) tool. Nonetheless, it is applicable with any conditional geostatistical simulation tool. Furthermore, the algorithm is independent of any parametrization what becomes most important when two parametric systems are equivalent (permeability and resistivity, speed and slowness, etc.). When compared to two existing McMC schemes, the computational effort was divided by a factor of 12.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiangjiang; Li, Weixuan; Lin, Guang
In decision-making for groundwater management and contamination remediation, it is important to accurately evaluate the probability of the occurrence of a failure event. For small failure probability analysis, a large number of model evaluations are needed in the Monte Carlo (MC) simulation, which is impractical for CPU-demanding models. One approach to alleviate the computational cost caused by the model evaluations is to construct a computationally inexpensive surrogate model instead. However, using a surrogate approximation can cause an extra error in the failure probability analysis. Moreover, constructing accurate surrogates is challenging for high-dimensional models, i.e., models containing many uncertain input parameters.more » To address these issues, we propose an efficient two-stage MC approach for small failure probability analysis in high-dimensional groundwater contaminant transport modeling. In the first stage, a low-dimensional representation of the original high-dimensional model is sought with Karhunen–Loève expansion and sliced inverse regression jointly, which allows for the easy construction of a surrogate with polynomial chaos expansion. Then a surrogate-based MC simulation is implemented. In the second stage, the small number of samples that are close to the failure boundary are re-evaluated with the original model, which corrects the bias introduced by the surrogate approximation. The proposed approach is tested with a numerical case study and is shown to be 100 times faster than the traditional MC approach in achieving the same level of estimation accuracy.« less
Solar Proton Transport Within an ICRU Sphere Surrounded by a Complex Shield: Ray-trace Geometry
NASA Technical Reports Server (NTRS)
Slaba, Tony C.; Wilson, John W.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.
2015-01-01
A computationally efficient 3DHZETRN code with enhanced neutron and light ion (Z is less than or equal to 2) propagation was recently developed for complex, inhomogeneous shield geometry described by combinatorial objects. Comparisons were made between 3DHZETRN results and Monte Carlo (MC) simulations at locations within the combinatorial geometry, and it was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in ray-trace geometry. This latest extension enables the code to be used within current engineering design practices utilizing fully detailed vehicle and habitat geometries. Through convergence testing, it is shown that fidelity in an actual shield geometry can be maintained in the discrete ray-trace description by systematically increasing the number of discrete rays used. It is also shown that this fidelity is carried into transport procedures and resulting exposure quantities without sacrificing computational efficiency.
Solar proton exposure of an ICRU sphere within a complex structure part II: Ray-trace geometry.
Slaba, Tony C; Wilson, John W; Badavi, Francis F; Reddell, Brandon D; Bahadori, Amir A
2016-06-01
A computationally efficient 3DHZETRN code with enhanced neutron and light ion (Z ≤ 2) propagation was recently developed for complex, inhomogeneous shield geometry described by combinatorial objects. Comparisons were made between 3DHZETRN results and Monte Carlo (MC) simulations at locations within the combinatorial geometry, and it was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in ray-trace geometry. This latest extension enables the code to be used within current engineering design practices utilizing fully detailed vehicle and habitat geometries. Through convergence testing, it is shown that fidelity in an actual shield geometry can be maintained in the discrete ray-trace description by systematically increasing the number of discrete rays used. It is also shown that this fidelity is carried into transport procedures and resulting exposure quantities without sacrificing computational efficiency. Published by Elsevier Ltd.
Methods for Monte Carlo simulations of biomacromolecules
Vitalis, Andreas; Pappu, Rohit V.
2010-01-01
The state-of-the-art for Monte Carlo (MC) simulations of biomacromolecules is reviewed. Available methodologies for sampling conformational equilibria and associations of biomacromolecules in the canonical ensemble, given a continuum description of the solvent environment, are reviewed. Detailed sections are provided dealing with the choice of degrees of freedom, the efficiencies of MC algorithms and algorithmic peculiarities, as well as the optimization of simple movesets. The issue of introducing correlations into elementary MC moves, and the applicability of such methods to simulations of biomacromolecules is discussed. A brief discussion of multicanonical methods and an overview of recent simulation work highlighting the potential of MC methods are also provided. It is argued that MC simulations, while underutilized biomacromolecular simulation community, hold promise for simulations of complex systems and phenomena that span multiple length scales, especially when used in conjunction with implicit solvation models or other coarse graining strategies. PMID:20428473
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manohar, Nivedh; Jones, Bernard L.; Cho, Sang Hyun, E-mail: scho@mdanderson.org
Purpose: To develop an accurate and comprehensive Monte Carlo (MC) model of an experimental benchtop polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) setup and apply this MC model to optimize incident x-ray spectrum for improving production/detection of x-ray fluorescence photons from gold nanoparticles (GNPs). Methods: A detailed MC model, based on an experimental XFCT system, was created using the Monte Carlo N-Particle (MCNP) transport code. The model was validated by comparing MC results including x-ray fluorescence (XRF) and scatter photon spectra with measured data obtained under identical conditions using 105 kVp cone-beam x-rays filtered by either 1 mm of leadmore » (Pb) or 0.9 mm of tin (Sn). After validation, the model was used to investigate the effects of additional filtration of the incident beam with Pb and Sn. Supplementary incident x-ray spectra, representing heavier filtration (Pb: 2 and 3 mm; Sn: 1, 2, and 3 mm) were computationally generated and used with the model to obtain XRF/scatter spectra. Quasimonochromatic incident x-ray spectra (81, 85, 90, 95, and 100 keV with 10 keV full width at half maximum) were also investigated to determine the ideal energy for distinguishing gold XRF signal from the scatter background. Fluorescence signal-to-dose ratio (FSDR) and fluorescence-normalized scan time (FNST) were used as metrics to assess results. Results: Calculated XRF/scatter spectra for 1-mm Pb and 0.9-mm Sn filters matched (r ≥ 0.996) experimental measurements. Calculated spectra representing additional filtration for both filter materials showed that the spectral hardening improved the FSDR at the expense of requiring a much longer FNST. In general, using Sn instead of Pb, at a given filter thickness, allowed an increase of up to 20% in FSDR, more prominent gold XRF peaks, and up to an order of magnitude decrease in FNST. Simulations using quasimonochromatic spectra suggested that increasing source x-ray energy, in the investigated range of 81–100 keV, increased the FSDR up to a factor of 20, compared to 1 mm Pb, and further facilitated separation of gold XRF peaks from the scatter background. Conclusions: A detailed MC model of an experimental benchtop XFCT system has been developed and validated. In exemplary calculations to illustrate the usefulness of this model, it was shown that potential use of quasimonochromatic spectra or judicious choice of filter material/thickness to tailor the spectrum of a polychromatic x-ray source can significantly improve the performance of benchtop XFCT, while considering trade-offs between FSDR and FNST. As demonstrated, the current MC model is a reliable and powerful computational tool that can greatly expedite the further development of a benchtop XFCT system for routine preclinical molecular imaging with GNPs and other metal probes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bootsma, G. J., E-mail: Gregory.Bootsma@rmp.uhn.on.ca; Verhaegen, F.; Medical Physics Unit, Department of Oncology, McGill University, Montreal, Quebec H3G 1A4
2015-01-15
Purpose: X-ray scatter is a significant impediment to image quality improvements in cone-beam CT (CBCT). The authors present and demonstrate a novel scatter correction algorithm using a scatter estimation method that simultaneously combines multiple Monte Carlo (MC) CBCT simulations through the use of a concurrently evaluated fitting function, referred to as concurrent MC fitting (CMCF). Methods: The CMCF method uses concurrently run MC CBCT scatter projection simulations that are a subset of the projection angles used in the projection set, P, to be corrected. The scattered photons reaching the detector in each MC simulation are simultaneously aggregated by an algorithmmore » which computes the scatter detector response, S{sub MC}. S{sub MC} is fit to a function, S{sub F}, and if the fit of S{sub F} is within a specified goodness of fit (GOF), the simulations are terminated. The fit, S{sub F}, is then used to interpolate the scatter distribution over all pixel locations for every projection angle in the set P. The CMCF algorithm was tested using a frequency limited sum of sines and cosines as the fitting function on both simulated and measured data. The simulated data consisted of an anthropomorphic head and a pelvis phantom created from CT data, simulated with and without the use of a compensator. The measured data were a pelvis scan of a phantom and patient taken on an Elekta Synergy platform. The simulated data were used to evaluate various GOF metrics as well as determine a suitable fitness value. The simulated data were also used to quantitatively evaluate the image quality improvements provided by the CMCF method. A qualitative analysis was performed on the measured data by comparing the CMCF scatter corrected reconstruction to the original uncorrected and corrected by a constant scatter correction reconstruction, as well as a reconstruction created using a set of projections taken with a small cone angle. Results: Pearson’s correlation, r, proved to be a suitable GOF metric with strong correlation with the actual error of the scatter fit, S{sub F}. Fitting the scatter distribution to a limited sum of sine and cosine functions using a low-pass filtered fast Fourier transform provided a computationally efficient and accurate fit. The CMCF algorithm reduces the number of photon histories required by over four orders of magnitude. The simulated experiments showed that using a compensator reduced the computational time by a factor between 1.5 and 1.75. The scatter estimates for the simulated and measured data were computed between 35–93 s and 114–122 s, respectively, using 16 Intel Xeon cores (3.0 GHz). The CMCF scatter correction improved the contrast-to-noise ratio by 10%–50% and reduced the reconstruction error to under 3% for the simulated phantoms. Conclusions: The novel CMCF algorithm significantly reduces the computation time required to estimate the scatter distribution by reducing the statistical noise in the MC scatter estimate and limiting the number of projection angles that must be simulated. Using the scatter estimate provided by the CMCF algorithm to correct both simulated and real projection data showed improved reconstruction image quality.« less
Monte Carlo simulations of neutron-scattering instruments using McStas
NASA Astrophysics Data System (ADS)
Nielsen, K.; Lefmann, K.
2000-06-01
Monte Carlo simulations have become an essential tool for improving the performance of neutron-scattering instruments, since the level of sophistication in the design of instruments is defeating purely analytical methods. The program McStas, being developed at Risø National Laboratory, includes an extension language that makes it easy to adapt it to the particular requirements of individual instruments, and thus provides a powerful and flexible tool for constructing such simulations. McStas has been successfully applied in such areas as neutron guide design, flux optimization, non-Gaussian resolution functions of triple-axis spectrometers, and time-focusing in time-of-flight instruments.
CT-based MCNPX dose calculations for gynecology brachytherapy employing a Henschke applicator
NASA Astrophysics Data System (ADS)
Yu, Pei-Chieh; Nien, Hsin-Hua; Tung, Chuan-Jong; Lee, Hsing-Yi; Lee, Chung-Chi; Wu, Ching-Jung; Chao, Tsi-Chian
2017-11-01
The purpose of this study is to investigate the dose perturbation caused by the metal ovoid structures of a Henschke applicator using Monte Carlo simulation in a realistic phantom. The Henschke applicator has been widely used for gynecologic patients treated by brachytherapy in Taiwan. However, the commercial brachytherapy planning system (BPS) did not properly evaluate the dose perturbation caused by its metal ovoid structures. In this study, Monte Carlo N-Particle Transport Code eXtended (MCNPX) was used to evaluate the brachytherapy dose distribution of a Henschke applicator embedded in a Plastic water phantom and a heterogeneous patient computed tomography (CT) phantom. The dose comparison between the MC simulations and film measurements for a Plastic water phantom with Henschke applicator were in good agreement. However, MC dose with the Henschke applicator showed significant deviation (-80.6%±7.5%) from those without Henschke applicator. Furthermore, the dose discrepancy in the heterogeneous patient CT phantom and Plastic water phantom CT geometries with Henschke applicator showed 0 to -26.7% dose discrepancy (-8.9%±13.8%). This study demonstrates that the metal ovoid structures of Henschke applicator cannot be disregard in brachytherapy dose calculation.
3D quantitative photoacoustic image reconstruction using Monte Carlo method and linearization
NASA Astrophysics Data System (ADS)
Okawa, Shinpei; Hirasawa, Takeshi; Tsujita, Kazuhiro; Kushibiki, Toshihiro; Ishihara, Miya
2018-02-01
To quantify the functional and structural information of peripheral blood vessels for diagnoses of diseases which affects peripheral blood vessels such as diabetes and peripheral vascular disease, a 3D quantitative photoacoustic tomography (QPAT) reconstructing the optical properties such as the absorption coefficient reflecting microvascular structures and hemoglobin concentration and oxygenation saturation is studied. QPAT image reconstruction algorithms based on radiative transfer equation (RTE) and photon diffusion equation (PDE) have been proposed. However, it is not easy to use RTE in the clinical practice because of the huge computational load and long calculation time. On the other hand, it is always considered problematic to use PDE, because it does not approximate RTE well near the illuminating position. In this study, we developed the 3D QPAT image reconstruction using Monte Carlo (MC) method which approximates RTE better than PDE to reconstruct the optical properties in the region near the illuminating surface. To reduce the calculation time, we applied linearization. The QPAT image reconstruction algorithm with MC method and linearization was examined in numerical simulations and phantom experiment by use of a scanning system with a single probe consisting of P(VDF-TrFE) piezo electric film and optical fiber.
Top Quark Mass Calibration for Monte Carlo Event Generators
Butenschoen, Mathias; Dehnadi, Bahman; Hoang, André H.; ...
2016-11-29
The most precise top quark mass measurements use kinematic reconstruction methods, determining the top mass parameter of a Monte Carlo event generator mmore » $$MC\\atop{t}$$. Because of hadronization and parton-shower dynamics, relating m$$MC\\atop{t}$$ to a field theory mass is difficult. Here, we present a calibration procedure to determine this relation using hadron level QCD predictions for observables with kinematic mass sensitivity. Fitting e +e −2-jettiness calculations at next-to-leading-logarithmic and next-to-next-to-leading-logarithmic order to PYTHIA 8.205, m$$MC\\atop{t}$$ differs from the pole mass by 900 and 600 MeV, respectively, and agrees with the MSR mass within uncertainties, m$$MC\\atop{t}$$ ≃ m$$MSR\\atop{t,1 GeV}$$.« less
Efficient Implementation of MrBayes on Multi-GPU
Zhou, Jianfu; Liu, Xiaoguang; Wang, Gang
2013-01-01
MrBayes, using Metropolis-coupled Markov chain Monte Carlo (MCMCMC or (MC)3), is a popular program for Bayesian inference. As a leading method of using DNA data to infer phylogeny, the (MC)3 Bayesian algorithm and its improved and parallel versions are now not fast enough for biologists to analyze massive real-world DNA data. Recently, graphics processor unit (GPU) has shown its power as a coprocessor (or rather, an accelerator) in many fields. This article describes an efficient implementation a(MC)3 (aMCMCMC) for MrBayes (MC)3 on compute unified device architecture. By dynamically adjusting the task granularity to adapt to input data size and hardware configuration, it makes full use of GPU cores with different data sets. An adaptive method is also developed to split and combine DNA sequences to make full use of a large number of GPU cards. Furthermore, a new “node-by-node” task scheduling strategy is developed to improve concurrency, and several optimizing methods are used to reduce extra overhead. Experimental results show that a(MC)3 achieves up to 63× speedup over serial MrBayes on a single machine with one GPU card, and up to 170× speedup with four GPU cards, and up to 478× speedup with a 32-node GPU cluster. a(MC)3 is dramatically faster than all the previous (MC)3 algorithms and scales well to large GPU clusters. PMID:23493260
Efficient implementation of MrBayes on multi-GPU.
Bao, Jie; Xia, Hongju; Zhou, Jianfu; Liu, Xiaoguang; Wang, Gang
2013-06-01
MrBayes, using Metropolis-coupled Markov chain Monte Carlo (MCMCMC or (MC)(3)), is a popular program for Bayesian inference. As a leading method of using DNA data to infer phylogeny, the (MC)(3) Bayesian algorithm and its improved and parallel versions are now not fast enough for biologists to analyze massive real-world DNA data. Recently, graphics processor unit (GPU) has shown its power as a coprocessor (or rather, an accelerator) in many fields. This article describes an efficient implementation a(MC)(3) (aMCMCMC) for MrBayes (MC)(3) on compute unified device architecture. By dynamically adjusting the task granularity to adapt to input data size and hardware configuration, it makes full use of GPU cores with different data sets. An adaptive method is also developed to split and combine DNA sequences to make full use of a large number of GPU cards. Furthermore, a new "node-by-node" task scheduling strategy is developed to improve concurrency, and several optimizing methods are used to reduce extra overhead. Experimental results show that a(MC)(3) achieves up to 63× speedup over serial MrBayes on a single machine with one GPU card, and up to 170× speedup with four GPU cards, and up to 478× speedup with a 32-node GPU cluster. a(MC)(3) is dramatically faster than all the previous (MC)(3) algorithms and scales well to large GPU clusters.
Relative frequencies of constrained events in stochastic processes: An analytical approach.
Rusconi, S; Akhmatskaya, E; Sokolovski, D; Ballard, N; de la Cal, J C
2015-10-01
The stochastic simulation algorithm (SSA) and the corresponding Monte Carlo (MC) method are among the most common approaches for studying stochastic processes. They relies on knowledge of interevent probability density functions (PDFs) and on information about dependencies between all possible events. Analytical representations of a PDF are difficult to specify in advance, in many real life applications. Knowing the shapes of PDFs, and using experimental data, different optimization schemes can be applied in order to evaluate probability density functions and, therefore, the properties of the studied system. Such methods, however, are computationally demanding, and often not feasible. We show that, in the case where experimentally accessed properties are directly related to the frequencies of events involved, it may be possible to replace the heavy Monte Carlo core of optimization schemes with an analytical solution. Such a replacement not only provides a more accurate estimation of the properties of the process, but also reduces the simulation time by a factor of order of the sample size (at least ≈10(4)). The proposed analytical approach is valid for any choice of PDF. The accuracy, computational efficiency, and advantages of the method over MC procedures are demonstrated in the exactly solvable case and in the evaluation of branching fractions in controlled radical polymerization (CRP) of acrylic monomers. This polymerization can be modeled by a constrained stochastic process. Constrained systems are quite common, and this makes the method useful for various applications.
NASA Astrophysics Data System (ADS)
Chen, Tzikang J.; Shiao, Michael
2016-04-01
This paper verified a generic and efficient assessment concept for probabilistic fatigue life management. The concept is developed based on an integration of damage tolerance methodology, simulations methods1, 2, and a probabilistic algorithm RPI (recursive probability integration)3-9 considering maintenance for damage tolerance and risk-based fatigue life management. RPI is an efficient semi-analytical probabilistic method for risk assessment subjected to various uncertainties such as the variability in material properties including crack growth rate, initial flaw size, repair quality, random process modeling of flight loads for failure analysis, and inspection reliability represented by probability of detection (POD). In addition, unlike traditional Monte Carlo simulations (MCS) which requires a rerun of MCS when maintenance plan is changed, RPI can repeatedly use a small set of baseline random crack growth histories excluding maintenance related parameters from a single MCS for various maintenance plans. In order to fully appreciate the RPI method, a verification procedure was performed. In this study, MC simulations in the orders of several hundred billions were conducted for various flight conditions, material properties, and inspection scheduling, POD and repair/replacement strategies. Since the MC simulations are time-consuming methods, the simulations were conducted parallelly on DoD High Performance Computers (HPC) using a specialized random number generator for parallel computing. The study has shown that RPI method is several orders of magnitude more efficient than traditional Monte Carlo simulations.
Chow, J; Leung, M; Van Dyk, J
2008-07-01
This study provides new information on the evaluation of the lung dose calculation algorithms as a function of the relative electron density of lung, ρ e,lung . Doses calculated using the collapsed cone convolution (CCC) and adaptive convolution (AC) algorithm in lung with the Pinnacle 3 system were compared to those calculated using the Monte Carlo (MC) simulation (EGSnrc-based code). Three groups of lung phantoms, namely, "Slab", "Column" and "Cube" with different ρ e,lung (0.05-0.7), positions, volumes and shapes of lung in water were used. 6 and 18MV photon beams with 4×4 and 10×10cm 2 field sizes produced by a Varian 21EX Linac were used in the MC dose calculations. Results show that the CCC algorithm agrees well with AC to within ±1% for doses calculated in the lung phantoms, indicating that the AC, with 3-4 times less computing time required than CCC, is a good substitute for the CCC method. Comparing the CCC and AC with MC, dose deviations are found when ρ e,lung are ⩽0.1-0.3. The degree of deviation depends on the photon beam energy and field size, and is relatively large when high-energy photon beams with small field are used. For the penumbra widths (20%-80%), the CCC and AC agree well with MC for the "Slab" and "Cube" phantoms with the lung volumes at the central beam axis (CAX). However, deviations >2mm occur in the "Column" phantoms, with two lung volumes separated by a water column along the CAX, using the 18MV (4×4cm 2 ) photon beams with ρ e,lung ⩽0.1. © 2008 American Association of Physicists in Medicine.
MCViNE- An object oriented Monte Carlo neutron ray tracing simulation package
Lin, J. Y. Y.; Smith, Hillary L.; Granroth, Garrett E.; ...
2015-11-28
MCViNE (Monte-Carlo VIrtual Neutron Experiment) is an open-source Monte Carlo (MC) neutron ray-tracing software for performing computer modeling and simulations that mirror real neutron scattering experiments. We exploited the close similarity between how instrument components are designed and operated and how such components can be modeled in software. For example we used object oriented programming concepts for representing neutron scatterers and detector systems, and recursive algorithms for implementing multiple scattering. Combining these features together in MCViNE allows one to handle sophisticated neutron scattering problems in modern instruments, including, for example, neutron detection by complex detector systems, and single and multiplemore » scattering events in a variety of samples and sample environments. In addition, MCViNE can use simulation components from linear-chain-based MC ray tracing packages which facilitates porting instrument models from those codes. Furthermore it allows for components written solely in Python, which expedites prototyping of new components. These developments have enabled detailed simulations of neutron scattering experiments, with non-trivial samples, for time-of-flight inelastic instruments at the Spallation Neutron Source. Examples of such simulations for powder and single-crystal samples with various scattering kernels, including kernels for phonon and magnon scattering, are presented. As a result, with simulations that closely reproduce experimental results, scattering mechanisms can be turned on and off to determine how they contribute to the measured scattering intensities, improving our understanding of the underlying physics.« less
Kinetic Monte Carlo Simulation of Oxygen and Cation Diffusion in Yttria-Stabilized Zirconia
NASA Technical Reports Server (NTRS)
Good, Brian
2011-01-01
Yttria-stabilized zirconia (YSZ) is of interest to the aerospace community, notably for its application as a thermal barrier coating for turbine engine components. In such an application, diffusion of both oxygen ions and cations is of concern. Oxygen diffusion can lead to deterioration of a coated part, and often necessitates an environmental barrier coating. Cation diffusion in YSZ is much slower than oxygen diffusion. However, such diffusion is a mechanism by which creep takes place, potentially affecting the mechanical integrity and phase stability of the coating. In other applications, the high oxygen diffusivity of YSZ is useful, and makes the material of interest for use as a solid-state electrolyte in fuel cells. The kinetic Monte Carlo (kMC) method offers a number of advantages compared with the more widely known molecular dynamics simulation method. In particular, kMC is much more efficient for the study of processes, such as diffusion, that involve infrequent events. We describe the results of kinetic Monte Carlo computer simulations of oxygen and cation diffusion in YSZ. Using diffusive energy barriers from ab initio calculations and from the literature, we present results on the temperature dependence of oxygen and cation diffusivity, and on the dependence of the diffusivities on yttria concentration and oxygen sublattice vacancy concentration. We also present results of the effect on diffusivity of oxygen vacancies in the vicinity of the barrier cations that determine the oxygen diffusion energy barriers.
Gete, Ermias; Duzenli, Cheryl; Teke, Tony
2014-01-01
A Monte Carlo (MC) validation of the vendor‐supplied Varian TrueBeam 6 MV flattened (6X) phase‐space file and the first implementation of the Siebers‐Keall MC MLC model as applied to the HD120 MLC (for 6X flat and 6X flattening filterfree (6X FFF) beams) are described. The MC model is validated in the context of VMAT patient‐specific quality assurance. The Monte Carlo commissioning process involves: 1) validating the calculated open‐field percentage depth doses (PDDs), profiles, and output factors (OF), 2) adapting the Siebers‐Keall MLC model to match the new HD120‐MLC geometry and material composition, 3) determining the absolute dose conversion factor for the MC calculation, and 4) validating this entire linac/MLC in the context of dose calculation verification for clinical VMAT plans. MC PDDs for the 6X beams agree with the measured data to within 2.0% for field sizes ranging from 2 × 2 to 40 × 40 cm2. Measured and MC profiles show agreement in the 50% field width and the 80%‐20% penumbra region to within 1.3 mm for all square field sizes. MC OFs for the 2 to 40 cm2 square fields agree with measurement to within 1.6%. Verification of VMAT SABR lung, liver, and vertebra plans demonstrate that measured and MC ion chamber doses agree within 0.6% for the 6X beam and within 2.0% for the 6X FFF beam. A 3D gamma factor analysis demonstrates that for the 6X beam, > 99% of voxels meet the pass criteria (3%/3 mm). For the 6X FFF beam, > 94% of voxels meet this criteria. The TrueBeam accelerator delivering 6X and 6X FFF beams with the HD120 MLC can be modeled in Monte Carlo to provide an independent 3D dose calculation for clinical VMAT plans. This quality assurance tool has been used clinically to verify over 140 6X and 16 6X FFF TrueBeam treatment plans. PACS number: 87.55.K‐ PMID:24892341
NASA Astrophysics Data System (ADS)
Ustinov, E. A.
2017-01-01
The paper aims at a comparison of techniques based on the kinetic Monte Carlo (kMC) and the conventional Metropolis Monte Carlo (MC) methods as applied to the hard-sphere (HS) fluid and solid. In the case of the kMC, an alternative representation of the chemical potential is explored [E. A. Ustinov and D. D. Do, J. Colloid Interface Sci. 366, 216 (2012)], which does not require any external procedure like the Widom test particle insertion method. A direct evaluation of the chemical potential of the fluid and solid without thermodynamic integration is achieved by molecular simulation in an elongated box with an external potential imposed on the system in order to reduce the particle density in the vicinity of the box ends. The existence of rarefied zones allows one to determine the chemical potential of the crystalline phase and substantially increases its accuracy for the disordered dense phase in the central zone of the simulation box. This method is applicable to both the Metropolis MC and the kMC, but in the latter case, the chemical potential is determined with higher accuracy at the same conditions and the number of MC steps. Thermodynamic functions of the disordered fluid and crystalline face-centered cubic (FCC) phase for the hard-sphere system have been evaluated with the kinetic MC and the standard MC coupled with the Widom procedure over a wide range of density. The melting transition parameters have been determined by the point of intersection of the pressure-chemical potential curves for the disordered HS fluid and FCC crystal using the Gibbs-Duhem equation as a constraint. A detailed thermodynamic analysis of the hard-sphere fluid has provided a rigorous verification of the approach, which can be extended to more complex systems.
Patient‐specific CT dosimetry calculation: a feasibility study
Xie, Huchen; Cheng, Jason Y.; Ning, Holly; Zhuge, Ying; Miller, Robert W.
2011-01-01
Current estimation of radiation dose from computed tomography (CT) scans on patients has relied on the measurement of Computed Tomography Dose Index (CTDI) in standard cylindrical phantoms, and calculations based on mathematical representations of “standard man”. Radiation dose to both adult and pediatric patients from a CT scan has been a concern, as noted in recent reports. The purpose of this study was to investigate the feasibility of adapting a radiation treatment planning system (RTPS) to provide patient‐specific CT dosimetry. A radiation treatment planning system was modified to calculate patient‐specific CT dose distributions, which can be represented by dose at specific points within an organ of interest, as well as organ dose‐volumes (after image segmentation) for a GE Light Speed Ultra Plus CT scanner. The RTPS calculation algorithm is based on a semi‐empirical, measured correction‐based algorithm, which has been well established in the radiotherapy community. Digital representations of the physical phantoms (virtual phantom) were acquired with the GE CT scanner in axial mode. Thermoluminescent dosimeter (TLDs) measurements in pediatric anthropomorphic phantoms were utilized to validate the dose at specific points within organs of interest relative to RTPS calculations and Monte Carlo simulations of the same virtual phantoms (digital representation). Congruence of the calculated and measured point doses for the same physical anthropomorphic phantom geometry was used to verify the feasibility of the method. The RTPS algorithm can be extended to calculate the organ dose by calculating a dose distribution point‐by‐point for a designated volume. Electron Gamma Shower (EGSnrc) codes for radiation transport calculations developed by National Research Council of Canada (NRCC) were utilized to perform the Monte Carlo (MC) simulation. In general, the RTPS and MC dose calculations are within 10% of the TLD measurements for the infant and child chest scans. With respect to the dose comparisons for the head, the RTPS dose calculations are slightly higher (10%–20%) than the TLD measurements, while the MC results were within 10% of the TLD measurements. The advantage of the algebraic dose calculation engine of the RTPS is a substantially reduced computation time (minutes vs. days) relative to Monte Carlo calculations, as well as providing patient‐specific dose estimation. It also provides the basis for a more elaborate reporting of dosimetric results, such as patient specific organ dose volumes after image segmentation. PACS numbers: 87.55.D‐, 87.57.Q‐, 87.53.Bn, 87.55.K‐ PMID:22089016
NASA Astrophysics Data System (ADS)
Saini, Jatinder; Maes, Dominic; Egan, Alexander; Bowen, Stephen R.; St. James, Sara; Janson, Martin; Wong, Tony; Bloch, Charles
2017-10-01
RaySearch Americas Inc. (NY) has introduced a commercial Monte Carlo dose algorithm (RS-MC) for routine clinical use in proton spot scanning. In this report, we provide a validation of this algorithm against phantom measurements and simulations in the GATE software package. We also compared the performance of the RayStation analytical algorithm (RS-PBA) against the RS-MC algorithm. A beam model (G-MC) for a spot scanning gantry at our proton center was implemented in the GATE software package. The model was validated against measurements in a water phantom and was used for benchmarking the RS-MC. Validation of the RS-MC was performed in a water phantom by measuring depth doses and profiles for three spread-out Bragg peak (SOBP) beams with normal incidence, an SOBP with oblique incidence, and an SOBP with a range shifter and large air gap. The RS-MC was also validated against measurements and simulations in heterogeneous phantoms created by placing lung or bone slabs in a water phantom. Lateral dose profiles near the distal end of the beam were measured with a microDiamond detector and compared to the G-MC simulations, RS-MC and RS-PBA. Finally, the RS-MC and RS-PBA were validated against measured dose distributions in an Alderson-Rando (AR) phantom. Measurements were made using Gafchromic film in the AR phantom and compared to doses using the RS-PBA and RS-MC algorithms. For SOBP depth doses in a water phantom, all three algorithms matched the measurements to within ±3% at all points and a range within 1 mm. The RS-PBA algorithm showed up to a 10% difference in dose at the entrance for the beam with a range shifter and >30 cm air gap, while the RS-MC and G-MC were always within 3% of the measurement. For an oblique beam incident at 45°, the RS-PBA algorithm showed up to 6% local dose differences and broadening of distal fall-off by 5 mm. Both the RS-MC and G-MC accurately predicted the depth dose to within ±3% and distal fall-off to within 2 mm. In an anthropomorphic phantom, the gamma index (dose tolerance = 3%, distance-to-agreement = 3 mm) was greater than 90% for six out of seven planes using the RS-MC, and three out seven for the RS-PBA. The RS-MC algorithm demonstrated improved dosimetric accuracy over the RS-PBA in the presence of homogenous, heterogeneous and anthropomorphic phantoms. The computation performance of the RS-MC was similar to the RS-PBA algorithm. For complex disease sites like breast, head and neck, and lung cancer, the RS-MC algorithm will provide significantly more accurate treatment planning.
Saini, Jatinder; Maes, Dominic; Egan, Alexander; Bowen, Stephen R; St James, Sara; Janson, Martin; Wong, Tony; Bloch, Charles
2017-09-12
RaySearch Americas Inc. (NY) has introduced a commercial Monte Carlo dose algorithm (RS-MC) for routine clinical use in proton spot scanning. In this report, we provide a validation of this algorithm against phantom measurements and simulations in the GATE software package. We also compared the performance of the RayStation analytical algorithm (RS-PBA) against the RS-MC algorithm. A beam model (G-MC) for a spot scanning gantry at our proton center was implemented in the GATE software package. The model was validated against measurements in a water phantom and was used for benchmarking the RS-MC. Validation of the RS-MC was performed in a water phantom by measuring depth doses and profiles for three spread-out Bragg peak (SOBP) beams with normal incidence, an SOBP with oblique incidence, and an SOBP with a range shifter and large air gap. The RS-MC was also validated against measurements and simulations in heterogeneous phantoms created by placing lung or bone slabs in a water phantom. Lateral dose profiles near the distal end of the beam were measured with a microDiamond detector and compared to the G-MC simulations, RS-MC and RS-PBA. Finally, the RS-MC and RS-PBA were validated against measured dose distributions in an Alderson-Rando (AR) phantom. Measurements were made using Gafchromic film in the AR phantom and compared to doses using the RS-PBA and RS-MC algorithms. For SOBP depth doses in a water phantom, all three algorithms matched the measurements to within ±3% at all points and a range within 1 mm. The RS-PBA algorithm showed up to a 10% difference in dose at the entrance for the beam with a range shifter and >30 cm air gap, while the RS-MC and G-MC were always within 3% of the measurement. For an oblique beam incident at 45°, the RS-PBA algorithm showed up to 6% local dose differences and broadening of distal fall-off by 5 mm. Both the RS-MC and G-MC accurately predicted the depth dose to within ±3% and distal fall-off to within 2 mm. In an anthropomorphic phantom, the gamma index (dose tolerance = 3%, distance-to-agreement = 3 mm) was greater than 90% for six out of seven planes using the RS-MC, and three out seven for the RS-PBA. The RS-MC algorithm demonstrated improved dosimetric accuracy over the RS-PBA in the presence of homogenous, heterogeneous and anthropomorphic phantoms. The computation performance of the RS-MC was similar to the RS-PBA algorithm. For complex disease sites like breast, head and neck, and lung cancer, the RS-MC algorithm will provide significantly more accurate treatment planning.
Ustinov, E A; Do, D D
2012-08-21
We present for the first time in the literature a new scheme of kinetic Monte Carlo method applied on a grand canonical ensemble, which we call hereafter GC-kMC. It was shown recently that the kinetic Monte Carlo (kMC) scheme is a very effective tool for the analysis of equilibrium systems. It had been applied in a canonical ensemble to describe vapor-liquid equilibrium of argon over a wide range of temperatures, gas adsorption on a graphite open surface and in graphitic slit pores. However, in spite of the conformity of canonical and grand canonical ensembles, the latter is more relevant in the correct description of open systems; for example, the hysteresis loop observed in adsorption of gases in pores under sub-critical conditions can only be described with a grand canonical ensemble. Therefore, the present paper is aimed at an extension of the kMC to open systems. The developed GC-kMC was proved to be consistent with the results obtained with the canonical kMC (C-kMC) for argon adsorption on a graphite surface at 77 K and in graphitic slit pores at 87.3 K. We showed that in slit micropores the hexagonal packing in the layers adjacent to the pore walls is observed at high loadings even at temperatures above the triple point of the bulk phase. The potential and applicability of the GC-kMC are further shown with the correct description of the heat of adsorption and the pressure tensor of the adsorbed phase.
SU-E-I-28: Evaluating the Organ Dose From Computed Tomography Using Monte Carlo Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, T; Araki, F
Purpose: To evaluate organ doses from computed tomography (CT) using Monte Carlo (MC) calculations. Methods: A Philips Brilliance CT scanner (64 slice) was simulated using the GMctdospp (IMPS, Germany) based on the EGSnrc user code. The X-ray spectra and a bowtie filter for MC simulations were determined to coincide with measurements of half-value layer (HVL) and off-center ratio (OCR) profile in air. The MC dose was calibrated from absorbed dose measurements using a Farmer chamber and a cylindrical water phantom. The dose distribution from CT was calculated using patient CT images and organ doses were evaluated from dose volume histograms.more » Results: The HVLs of Al at 80, 100, and 120 kV were 6.3, 7.7, and 8.7 mm, respectively. The calculated HVLs agreed with measurements within 0.3%. The calculated and measured OCR profiles agreed within 3%. For adult head scans (CTDIvol) =51.4 mGy), mean doses for brain stem, eye, and eye lens were 23.2, 34.2, and 37.6 mGy, respectively. For pediatric head scans (CTDIvol =35.6 mGy), mean doses for brain stem, eye, and eye lens were 19.3, 24.5, and 26.8 mGy, respectively. For adult chest scans (CTDIvol=19.0 mGy), mean doses for lung, heart, and spinal cord were 21.1, 22.0, and 15.5 mGy, respectively. For adult abdominal scans (CTDIvol=14.4 mGy), the mean doses for kidney, liver, pancreas, spleen, and spinal cord were 17.4, 16.5, 16.8, 16.8, and 13.1 mGy, respectively. For pediatric abdominal scans (CTDIvol=6.76 mGy), mean doses for kidney, liver, pancreas, spleen, and spinal cord were 8.24, 8.90, 8.17, 8.31, and 6.73 mGy, respectively. In head scan, organ doses were considerably different from CTDIvol values. Conclusion: MC dose distributions calculated by using patient CT images are useful to evaluate organ doses absorbed to individual patients.« less
NASA Astrophysics Data System (ADS)
Park, Kwangwoo; Bak, Jino; Park, Sungho; Choi, Wonhoon; Park, Suk Won
2016-02-01
A semiempirical method based on the averaging effect of the sensitive volumes of different air-filled ionization chambers (ICs) was employed to approximate the correction factors for beam quality produced from the difference in the sizes of the reference field and small fields. We measured the output factors using several cylindrical ICs and calculated the correction factors using a mathematical method similar to deconvolution; in the method, we modeled the variable and inhomogeneous energy fluence function within the chamber cavity. The parameters of the modeled function and the correction factors were determined by solving a developed system of equations as well as on the basis of the measurement data and the geometry of the chambers. Further, Monte Carlo (MC) computations were performed using the Monaco® treatment planning system to validate the proposed method. The determined correction factors (k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} ) were comparable to the values derived from the MC computations performed using Monaco®. For example, for a 6 MV photon beam and a field size of 1 × 1 cm2, k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} was calculated to be 1.125 for a PTW 31010 chamber and 1.022 for a PTW 31016 chamber. On the other hand, the k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} values determined from the MC computations were 1.121 and 1.031, respectively; the difference between the proposed method and the MC computation is less than 2%. In addition, we determined the k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} values for PTW 30013, PTW 31010, PTW 31016, IBA FC23-C, and IBA CC13 chambers as well. We devised a method for determining k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} from both the measurement of the output factors and model-based mathematical computation. The proposed method can be useful in case the MC simulation would not be applicable for the clinical settings.
Evaluation of six TPS algorithms in computing entrance and exit doses
Metwaly, Mohamed; Glegg, Martin; Baggarley, Shaun P.; Elliott, Alex
2014-01-01
Entrance and exit doses are commonly measured in in vivo dosimetry for comparison with expected values, usually generated by the treatment planning system (TPS), to verify accuracy of treatment delivery. This report aims to evaluate the accuracy of six TPS algorithms in computing entrance and exit doses for a 6 MV beam. The algorithms tested were: pencil beam convolution (Eclipse PBC), analytical anisotropic algorithm (Eclipse AAA), AcurosXB (Eclipse AXB), FFT convolution (XiO Convolution), multigrid superposition (XiO Superposition), and Monte Carlo photon (Monaco MC). Measurements with ionization chamber (IC) and diode detector in water phantoms were used as a reference. Comparisons were done in terms of central axis point dose, 1D relative profiles, and 2D absolute gamma analysis. Entrance doses computed by all TPS algorithms agreed to within 2% of the measured values. Exit doses computed by XiO Convolution, XiO Superposition, Eclipse AXB, and Monaco MC agreed with the IC measured doses to within 2%‐3%. Meanwhile, Eclipse PBC and Eclipse AAA computed exit doses were higher than the IC measured doses by up to 5.3% and 4.8%, respectively. Both algorithms assume that full backscatter exists even at the exit level, leading to an overestimation of exit doses. Despite good agreements at the central axis for Eclipse AXB and Monaco MC, 1D relative comparisons showed profiles mismatched at depths beyond 11.5 cm. Overall, the 2D absolute gamma (3%/3 mm) pass rates were better for Monaco MC, while Eclipse AXB failed mostly at the outer 20% of the field area. The findings of this study serve as a useful baseline for the implementation of entrance and exit in vivo dosimetry in clinical departments utilizing any of these six common TPS algorithms for reference comparison. PACS numbers: 87.55.‐x, 87.55.D‐, 87.55.N‐, 87.53.Bn PMID:24892349
Improved Hybrid Modeling of Spent Fuel Storage Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bibber, Karl van
This work developed a new computational method for improving the ability to calculate the neutron flux in deep-penetration radiation shielding problems that contain areas with strong streaming. The “gold standard” method for radiation transport is Monte Carlo (MC) as it samples the physics exactly and requires few approximations. Historically, however, MC was not useful for shielding problems because of the computational challenge of following particles through dense shields. Instead, deterministic methods, which are superior in term of computational effort for these problems types but are not as accurate, were used. Hybrid methods, which use deterministic solutions to improve MC calculationsmore » through a process called variance reduction, can make it tractable from a computational time and resource use perspective to use MC for deep-penetration shielding. Perhaps the most widespread and accessible of these methods are the Consistent Adjoint Driven Importance Sampling (CADIS) and Forward-Weighted CADIS (FW-CADIS) methods. For problems containing strong anisotropies, such as power plants with pipes through walls, spent fuel cask arrays, active interrogation, and locations with small air gaps or plates embedded in water or concrete, hybrid methods are still insufficiently accurate. In this work, a new method for generating variance reduction parameters for strongly anisotropic, deep penetration radiation shielding studies was developed. This method generates an alternate form of the adjoint scalar flux quantity, Φ Ω, which is used by both CADIS and FW-CADIS to generate variance reduction parameters for local and global response functions, respectively. The new method, called CADIS-Ω, was implemented in the Denovo/ADVANTG software. Results indicate that the flux generated by CADIS-Ω incorporates localized angular anisotropies in the flux more effectively than standard methods. CADIS-Ω outperformed CADIS in several test problems. This initial work indicates that CADIS- may be highly useful for shielding problems with strong angular anisotropies. This is a benefit to the public by increasing accuracy for lower computational effort for many problems that have energy, security, and economic importance.« less
Deflation as a method of variance reduction for estimating the trace of a matrix inverse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gambhir, Arjun Singh; Stathopoulos, Andreas; Orginos, Kostas
Many fields require computing the trace of the inverse of a large, sparse matrix. The typical method used for such computations is the Hutchinson method which is a Monte Carlo (MC) averaging over matrix quadratures. To improve its convergence, several variance reductions techniques have been proposed. In this paper, we study the effects of deflating the near null singular value space. We make two main contributions. First, we analyze the variance of the Hutchinson method as a function of the deflated singular values and vectors. Although this provides good intuition in general, by assuming additionally that the singular vectors aremore » random unitary matrices, we arrive at concise formulas for the deflated variance that include only the variance and mean of the singular values. We make the remarkable observation that deflation may increase variance for Hermitian matrices but not for non-Hermitian ones. This is a rare, if not unique, property where non-Hermitian matrices outperform Hermitian ones. The theory can be used as a model for predicting the benefits of deflation. Second, we use deflation in the context of a large scale application of "disconnected diagrams" in Lattice QCD. On lattices, Hierarchical Probing (HP) has previously provided an order of magnitude of variance reduction over MC by removing "error" from neighboring nodes of increasing distance in the lattice. Although deflation used directly on MC yields a limited improvement of 30% in our problem, when combined with HP they reduce variance by a factor of over 150 compared to MC. For this, we pre-computated 1000 smallest singular values of an ill-conditioned matrix of size 25 million. Furthermore, using PRIMME and a domain-specific Algebraic Multigrid preconditioner, we perform one of the largest eigenvalue computations in Lattice QCD at a fraction of the cost of our trace computation.« less
Deflation as a method of variance reduction for estimating the trace of a matrix inverse
Gambhir, Arjun Singh; Stathopoulos, Andreas; Orginos, Kostas
2017-04-06
Many fields require computing the trace of the inverse of a large, sparse matrix. The typical method used for such computations is the Hutchinson method which is a Monte Carlo (MC) averaging over matrix quadratures. To improve its convergence, several variance reductions techniques have been proposed. In this paper, we study the effects of deflating the near null singular value space. We make two main contributions. First, we analyze the variance of the Hutchinson method as a function of the deflated singular values and vectors. Although this provides good intuition in general, by assuming additionally that the singular vectors aremore » random unitary matrices, we arrive at concise formulas for the deflated variance that include only the variance and mean of the singular values. We make the remarkable observation that deflation may increase variance for Hermitian matrices but not for non-Hermitian ones. This is a rare, if not unique, property where non-Hermitian matrices outperform Hermitian ones. The theory can be used as a model for predicting the benefits of deflation. Second, we use deflation in the context of a large scale application of "disconnected diagrams" in Lattice QCD. On lattices, Hierarchical Probing (HP) has previously provided an order of magnitude of variance reduction over MC by removing "error" from neighboring nodes of increasing distance in the lattice. Although deflation used directly on MC yields a limited improvement of 30% in our problem, when combined with HP they reduce variance by a factor of over 150 compared to MC. For this, we pre-computated 1000 smallest singular values of an ill-conditioned matrix of size 25 million. Furthermore, using PRIMME and a domain-specific Algebraic Multigrid preconditioner, we perform one of the largest eigenvalue computations in Lattice QCD at a fraction of the cost of our trace computation.« less
NASA Astrophysics Data System (ADS)
Smekens, F.; Létang, J. M.; Noblet, C.; Chiavassa, S.; Delpon, G.; Freud, N.; Rit, S.; Sarrut, D.
2014-12-01
We propose the split exponential track length estimator (seTLE), a new kerma-based method combining the exponential variant of the TLE and a splitting strategy to speed up Monte Carlo (MC) dose computation for low energy photon beams. The splitting strategy is applied to both the primary and the secondary emitted photons, triggered by either the MC events generator for primaries or the photon interactions generator for secondaries. Split photons are replaced by virtual particles for fast dose calculation using the exponential TLE. Virtual particles are propagated by ray-tracing in voxelized volumes and by conventional MC navigation elsewhere. Hence, the contribution of volumes such as collimators, treatment couch and holding devices can be taken into account in the dose calculation. We evaluated and analysed the seTLE method for two realistic small animal radiotherapy treatment plans. The effect of the kerma approximation, i.e. the complete deactivation of electron transport, was investigated. The efficiency of seTLE against splitting multiplicities was also studied. A benchmark with analog MC and TLE was carried out in terms of dose convergence and efficiency. The results showed that the deactivation of electrons impacts the dose at the water/bone interface in high dose regions. The maximum and mean dose differences normalized to the dose at the isocenter were, respectively of 14% and 2% . Optimal splitting multiplicities were found to be around 300. In all situations, discrepancies in integral dose were below 0.5% and 99.8% of the voxels fulfilled a 1%/0.3 mm gamma index criterion. Efficiency gains of seTLE varied from 3.2 × 105 to 7.7 × 105 compared to analog MC and from 13 to 15 compared to conventional TLE. In conclusion, seTLE provides results similar to the TLE while increasing the efficiency by a factor between 13 and 15, which makes it particularly well-suited to typical small animal radiation therapy applications.
NASA Astrophysics Data System (ADS)
Guerra, Pedro; Udías, José M.; Herranz, Elena; Santos-Miranda, Juan Antonio; Herraiz, Joaquín L.; Valdivieso, Manlio F.; Rodríguez, Raúl; Calama, Juan A.; Pascau, Javier; Calvo, Felipe A.; Illana, Carlos; Ledesma-Carbayo, María J.; Santos, Andrés
2014-12-01
This work analysed the feasibility of using a fast, customized Monte Carlo (MC) method to perform accurate computation of dose distributions during pre- and intraplanning of intraoperative electron radiation therapy (IOERT) procedures. The MC method that was implemented, which has been integrated into a specific innovative simulation and planning tool, is able to simulate the fate of thousands of particles per second, and it was the aim of this work to determine the level of interactivity that could be achieved. The planning workflow enabled calibration of the imaging and treatment equipment, as well as manipulation of the surgical frame and insertion of the protection shields around the organs at risk and other beam modifiers. In this way, the multidisciplinary team involved in IOERT has all the tools necessary to perform complex MC dosage simulations adapted to their equipment in an efficient and transparent way. To assess the accuracy and reliability of this MC technique, dose distributions for a monoenergetic source were compared with those obtained using a general-purpose software package used widely in medical physics applications. Once accuracy of the underlying simulator was confirmed, a clinical accelerator was modelled and experimental measurements in water were conducted. A comparison was made with the output from the simulator to identify the conditions under which accurate dose estimations could be obtained in less than 3 min, which is the threshold imposed to allow for interactive use of the tool in treatment planning. Finally, a clinically relevant scenario, namely early-stage breast cancer treatment, was simulated with pre- and intraoperative volumes to verify that it was feasible to use the MC tool intraoperatively and to adjust dose delivery based on the simulation output, without compromising accuracy. The workflow provided a satisfactory model of the treatment head and the imaging system, enabling proper configuration of the treatment planning system and providing good accuracy in the dosage simulation.
PyMC: Bayesian Stochastic Modelling in Python
Patil, Anand; Huard, David; Fonnesbeck, Christopher J.
2010-01-01
This user guide describes a Python package, PyMC, that allows users to efficiently code a probabilistic model and draw samples from its posterior distribution using Markov chain Monte Carlo techniques. PMID:21603108
Monte Carlo Simulations: Number of Iterations and Accuracy
2015-07-01
iterations because of its added complexity compared to the WM . We recommend that the WM be used for a priori estimates of the number of MC ...inaccurate.15 Although the WM and the WSM have generally proven useful in estimating the number of MC iterations and addressing the accuracy of the MC ...Theorem 3 3. A Priori Estimate of Number of MC Iterations 7 4. MC Result Accuracy 11 5. Using Percentage Error of the Mean to Estimate Number of MC
A Comparison of Experimental EPMA Data and Monte Carlo Simulations
NASA Technical Reports Server (NTRS)
Carpenter, P. K.
2004-01-01
Monte Carlo (MC) modeling shows excellent prospects for simulating electron scattering and x-ray emission from complex geometries, and can be compared to experimental measurements using electron-probe microanalysis (EPMA) and phi(rho z) correction algorithms. Experimental EPMA measurements made on NIST SRM 481 (AgAu) and 482 (CuAu) alloys, at a range of accelerating potential and instrument take-off angles, represent a formal microanalysis data set that has been used to develop phi(rho z) correction algorithms. The accuracy of MC calculations obtained using the NIST, WinCasino, WinXray, and Penelope MC packages will be evaluated relative to these experimental data. There is additional information contained in the extended abstract.
Coupled reactors analysis: New needs and advances using Monte Carlo methodology
Aufiero, M.; Palmiotti, G.; Salvatores, M.; ...
2016-08-20
Coupled reactors and the coupling features of large or heterogeneous core reactors can be investigated with the Avery theory that allows a physics understanding of the main features of these systems. However, the complex geometries that are often encountered in association with coupled reactors, require a detailed geometry description that can be easily provided by modern Monte Carlo (MC) codes. This implies a MC calculation of the coupling parameters defined by Avery and of the sensitivity coefficients that allow further detailed physics analysis. The results presented in this paper show that the MC code SERPENT has been successfully modifed tomore » meet the required capabilities.« less
Top Quark Mass Calibration for Monte Carlo Event Generators
NASA Astrophysics Data System (ADS)
Butenschoen, Mathias; Dehnadi, Bahman; Hoang, André H.; Mateu, Vicent; Preisser, Moritz; Stewart, Iain W.
2016-12-01
The most precise top quark mass measurements use kinematic reconstruction methods, determining the top mass parameter of a Monte Carlo event generator mtMC. Because of hadronization and parton-shower dynamics, relating mtMC to a field theory mass is difficult. We present a calibration procedure to determine this relation using hadron level QCD predictions for observables with kinematic mass sensitivity. Fitting e+e- 2-jettiness calculations at next-to-leading-logarithmic and next-to-next-to-leading-logarithmic order to pythia 8.205, mtMC differs from the pole mass by 900 and 600 MeV, respectively, and agrees with the MSR mass within uncertainties, mtMC≃mt,1 GeV MSR .
Kinetic Monte Carlo (kMC) simulation of carbon co-implant on pre-amorphization process.
Park, Soonyeol; Cho, Bumgoo; Yang, Seungsu; Won, Taeyoung
2010-05-01
We report our kinetic Monte Carlo (kMC) study of the effect of carbon co-implant on the pre-amorphization implant (PAL) process. We employed BCA (Binary Collision Approximation) approach for the acquisition of the initial as-implant dopant profile and kMC method for the simulation of diffusion process during the annealing process. The simulation results implied that carbon co-implant suppresses the boron diffusion due to the recombination with interstitials. Also, we could compare the boron diffusion with carbon diffusion by calculating carbon reaction with interstitial. And we can find that boron diffusion is affected from the carbon co-implant energy by enhancing the trapping of interstitial between boron and interstitial.
A reversible-jump Markov chain Monte Carlo algorithm for 1D inversion of magnetotelluric data
NASA Astrophysics Data System (ADS)
Mandolesi, Eric; Ogaya, Xenia; Campanyà, Joan; Piana Agostinetti, Nicola
2018-04-01
This paper presents a new computer code developed to solve the 1D magnetotelluric (MT) inverse problem using a Bayesian trans-dimensional Markov chain Monte Carlo algorithm. MT data are sensitive to the depth-distribution of rock electric conductivity (or its reciprocal, resistivity). The solution provided is a probability distribution - the so-called posterior probability distribution (PPD) for the conductivity at depth, together with the PPD of the interface depths. The PPD is sampled via a reversible-jump Markov Chain Monte Carlo (rjMcMC) algorithm, using a modified Metropolis-Hastings (MH) rule to accept or discard candidate models along the chains. As the optimal parameterization for the inversion process is generally unknown a trans-dimensional approach is used to allow the dataset itself to indicate the most probable number of parameters needed to sample the PPD. The algorithm is tested against two simulated datasets and a set of MT data acquired in the Clare Basin (County Clare, Ireland). For the simulated datasets the correct number of conductive layers at depth and the associated electrical conductivity values is retrieved, together with reasonable estimates of the uncertainties on the investigated parameters. Results from the inversion of field measurements are compared with results obtained using a deterministic method and with well-log data from a nearby borehole. The PPD is in good agreement with the well-log data, showing as a main structure a high conductive layer associated with the Clare Shale formation. In this study, we demonstrate that our new code go beyond algorithms developend using a linear inversion scheme, as it can be used: (1) to by-pass the subjective choices in the 1D parameterizations, i.e. the number of horizontal layers in the 1D parameterization, and (2) to estimate realistic uncertainties on the retrieved parameters. The algorithm is implemented using a simple MPI approach, where independent chains run on isolated CPU, to take full advantage of parallel computer architectures. In case of a large number of data, a master/slave appoach can be used, where the master CPU samples the parameter space and the slave CPUs compute forward solutions.
Uncertainty propagation for statistical impact prediction of space debris
NASA Astrophysics Data System (ADS)
Hoogendoorn, R.; Mooij, E.; Geul, J.
2018-01-01
Predictions of the impact time and location of space debris in a decaying trajectory are highly influenced by uncertainties. The traditional Monte Carlo (MC) method can be used to perform accurate statistical impact predictions, but requires a large computational effort. A method is investigated that directly propagates a Probability Density Function (PDF) in time, which has the potential to obtain more accurate results with less computational effort. The decaying trajectory of Delta-K rocket stages was used to test the methods using a six degrees-of-freedom state model. The PDF of the state of the body was propagated in time to obtain impact-time distributions. This Direct PDF Propagation (DPP) method results in a multi-dimensional scattered dataset of the PDF of the state, which is highly challenging to process. No accurate results could be obtained, because of the structure of the DPP data and the high dimensionality. Therefore, the DPP method is less suitable for practical uncontrolled entry problems and the traditional MC method remains superior. Additionally, the MC method was used with two improved uncertainty models to obtain impact-time distributions, which were validated using observations of true impacts. For one of the two uncertainty models, statistically more valid impact-time distributions were obtained than in previous research.
Monte Carlo based electron treatment planning and cutout output factor calculations
NASA Astrophysics Data System (ADS)
Mitrou, Ellis
Electron radiotherapy (RT) offers a number of advantages over photons. The high surface dose, combined with a rapid dose fall-off beyond the target volume presents a net increase in tumor control probability and decreases the normal tissue complication for superficial tumors. Electron treatments are normally delivered clinically without previously calculated dose distributions due to the complexity of the electron transport involved and greater error in planning accuracy. This research uses Monte Carlo (MC) methods to model clinical electron beams in order to accurately calculate electron beam dose distributions in patients as well as calculate cutout output factors, reducing the need for a clinical measurement. The present work is incorporated into a research MC calculation system: McGill Monte Carlo Treatment Planning (MMCTP) system. Measurements of PDDs, profiles and output factors in addition to 2D GAFCHROMICRTM EBT2 film measurements in heterogeneous phantoms were obtained to commission the electron beam model. The use of MC for electron TP will provide more accurate treatments and yield greater knowledge of the electron dose distribution within the patient. The calculation of output factors could invoke a clinical time saving of up to 1 hour per patient.
NASA Astrophysics Data System (ADS)
Lin, Hui; Liu, Tianyu; Su, Lin; Bednarz, Bryan; Caracappa, Peter; Xu, X. George
2017-09-01
Monte Carlo (MC) simulation is well recognized as the most accurate method for radiation dose calculations. For radiotherapy applications, accurate modelling of the source term, i.e. the clinical linear accelerator is critical to the simulation. The purpose of this paper is to perform source modelling and examine the accuracy and performance of the models on Intel Many Integrated Core coprocessors (aka Xeon Phi) and Nvidia GPU using ARCHER and explore the potential optimization methods. Phase Space-based source modelling for has been implemented. Good agreements were found in a tomotherapy prostate patient case and a TrueBeam breast case. From the aspect of performance, the whole simulation for prostate plan and breast plan cost about 173s and 73s with 1% statistical error.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadoura, Ahmad, E-mail: ahmad.kadoura@kaust.edu.sa, E-mail: adil.siripatana@kaust.edu.sa, E-mail: shuyu.sun@kaust.edu.sa, E-mail: omar.knio@kaust.edu.sa; Sun, Shuyu, E-mail: ahmad.kadoura@kaust.edu.sa, E-mail: adil.siripatana@kaust.edu.sa, E-mail: shuyu.sun@kaust.edu.sa, E-mail: omar.knio@kaust.edu.sa; Siripatana, Adil, E-mail: ahmad.kadoura@kaust.edu.sa, E-mail: adil.siripatana@kaust.edu.sa, E-mail: shuyu.sun@kaust.edu.sa, E-mail: omar.knio@kaust.edu.sa
In this work, two Polynomial Chaos (PC) surrogates were generated to reproduce Monte Carlo (MC) molecular simulation results of the canonical (single-phase) and the NVT-Gibbs (two-phase) ensembles for a system of normalized structureless Lennard-Jones (LJ) particles. The main advantage of such surrogates, once generated, is the capability of accurately computing the needed thermodynamic quantities in a few seconds, thus efficiently replacing the computationally expensive MC molecular simulations. Benefiting from the tremendous computational time reduction, the PC surrogates were used to conduct large-scale optimization in order to propose single-site LJ models for several simple molecules. Experimental data, a set of supercriticalmore » isotherms, and part of the two-phase envelope, of several pure components were used for tuning the LJ parameters (ε, σ). Based on the conducted optimization, excellent fit was obtained for different noble gases (Ar, Kr, and Xe) and other small molecules (CH{sub 4}, N{sub 2}, and CO). On the other hand, due to the simplicity of the LJ model used, dramatic deviations between simulation and experimental data were observed, especially in the two-phase region, for more complex molecules such as CO{sub 2} and C{sub 2} H{sub 6}.« less
NASA Astrophysics Data System (ADS)
Spezi, Emiliano; Leal, Antonio
2013-04-01
The Third European Workshop on Monte Carlo Treatment Planning (MCTP2012) was held from 15-18 May, 2012 in Seville, Spain. The event was organized by the Universidad de Sevilla with the support of the European Workgroup on Monte Carlo Treatment Planning (EWG-MCTP). MCTP2012 followed two successful meetings, one held in Ghent (Belgium) in 2006 (Reynaert 2007) and one in Cardiff (UK) in 2009 (Spezi 2010). The recurrence of these workshops together with successful events held in parallel by McGill University in Montreal (Seuntjens et al 2012), show consolidated interest from the scientific community in Monte Carlo (MC) treatment planning. The workshop was attended by a total of 90 participants, mainly coming from a medical physics background. A total of 48 oral presentations and 15 posters were delivered in specific scientific sessions including dosimetry, code development, imaging, modelling of photon and electron radiation transport, external beam radiation therapy, nuclear medicine, brachitherapy and hadrontherapy. A copy of the programme is available on the workshop's website (www.mctp2012.com). In this special section of Physics in Medicine and Biology we report six papers that were selected following the journal's rigorous peer review procedure. These papers actually provide a good cross section of the areas of application of MC in treatment planning that were discussed at MCTP2012. Czarnecki and Zink (2013) and Wagner et al (2013) present the results of their work in small field dosimetry. Czarnecki and Zink (2013) studied field size and detector dependent correction factors for diodes and ion chambers within a clinical 6MV photon beam generated by a Siemens linear accelerator. Their modelling work based on the BEAMnrc/EGSnrc codes and experimental measurements revealed that unshielded diodes were the best choice for small field dosimetry because of their independence from the electron beam spot size and correction factor close to unity. Wagner et al (2013) investigated the recombination effect on liquid ionization chambers for stereotactic radiotherapy, a field of increasing importance in external beam radiotherapy. They modelled both radiation source (Cyberknife unit) and detector with the BEAMnrc/EGSnrc codes and quantified the dependence of the response of this type of detectors on factors such as the volume effect and the electrode. They also recommended that these dependences be accounted for in measurements involving small fields. In the field of external beam radiotherapy, Chakarova et al (2013) showed how total body irradiation (TBI) could be improved by simulating patient treatments with MC. In particular, BEAMnrc/EGSnrc based simulations highlighted the importance of optimizing individual compensators for TBI treatments. In the same area of application, Mairani et al (2013) reported on a new tool for treatment planning in proton therapy based on the FLUKA MC code. The software, used to model both proton therapy beam and patient anatomy, supports single-field and multiple-field optimization and can be used to optimize physical and relative biological effectiveness (RBE)-weighted dose distribution, using both constant and variable RBE models. In the field of nuclear medicine Marcatili et al (2013) presented RAYDOSE, a Geant4-based code specifically developed for applications in molecular radiotherapy (MRT). RAYDOSE has been designed to work in MRT trials using sequential positron emission tomography (PET) or single-photon emission tomography (SPECT) imaging to model patient specific time-dependent metabolic uptake and to calculate the total 3D dose distribution. The code was validated through experimental measurements in homogeneous and heterogeneous phantoms. Finally, in the field of code development Miras et al (2013) reported on CloudMC, a Windows Azure-based application for the parallelization of MC calculations in a dynamic cluster environment. Although the performance of CloudMC has been tested with the PENELOPE MC code, the authors report that software has been designed in a way that it should be independent of the type of MC code, provided that simulation meets a number of operational criteria. We wish to thank Elekta/CMS Inc., the University of Seville, the Junta of Andalusia and the European Regional Development Fund for their financial support. We would like also to acknowledge the members of EWG-MCTP for their help in peer-reviewing all the abstracts, and all the invited speakers who kindly agreed to deliver keynote presentations in their area of expertise. A final word of thanks to our colleagues who worked on the reviewing process of the papers selected for this special section and to the IOP Publishing staff who made it possible. MCTP2012 was accredited by the European Federation of Organisations for Medical Physics as a CPD event for medical physicists. Emiliano Spezi and Antonio Leal Guest Editors References Chakarova R, Müntzing K, Krantz M, E Hedin E and Hertzman S 2013 Monte Carlo optimization of total body irradiation in a phantom and patient geometry Phys. Med. Biol. 58 2461-69 Czarnecki D and Zink K 2013 Monte Carlo calculated correction factors for diodes and ion chambers in small photon fields Phys. Med. Biol. 58 2431-44 Mairani A, Böhlen T T, Schiavi A, Tessonnier T, Molinelli S, Brons S, Battistoni G, Parodi K and Patera V 2013 A Monte Carlo-based treatment planning tool for proton therapy Phys. Med. Biol. 58 2471-90 Marcatili S, Pettinato C, Daniels S, Lewis G, Edwards P, Fanti S and Spezi E 2013 Development and validation of RAYDOSE: a Geant4 based application for molecular radiotherapy Phys. Med. Biol. 58 2491-508 Miras H, Jiménez R, Miras C and Gomà C 2013 CloudMC: A cloud computing application for Monte Carlo simulation Phys. Med. Biol. 58 N125-33 Reynaert N 2007 First European Workshop on Monte Carlo Treatment Planning J. Phys.: Conf. Ser. 74 011001 Seuntjens J, Beaulieu L, El Naqa I and Després P 2012 Special section: Selected papers from the Fourth International Workshop on Recent Advances in Monte Carlo Techniques for Radiation Therapy Phys. Med. Biol. 57 (11) E01 Spezi E 2010 Special section: Selected papers from the Second European Workshop on Monte Carlo Treatment Planning (MCTP2009) Phys. Med. Biol. 55 (16) E01 Wagner A, Crop F, Lacornerie T, Vandevelde F and Reynaert N 2013 Use of a liquid ionization chamber for stereotactic radiotherapy dosimetry Phys. Med. Biol. 58 2445-59
NASA Astrophysics Data System (ADS)
Bourasseau, Emeric; Dubois, Vincent; Desbiens, Nicolas; Maillet, Jean-Bernard
2007-06-01
The simultaneous use of the Reaction Ensemble Monte Carlo (ReMC) method and the Adaptative Erpenbeck EOS (AE-EOS) method allows us to calculate direclty the thermodynamical and chemical equilibrium of a mixture on the hugoniot curve. The ReMC method allow to reach chemical equilibrium of detonation products and the AE-EOS method constraints ths system to satisfy the Hugoniot relation. Once the Crussard curve of detonation products has been established, CJ state properties may be calculated. An additional NPT simulation is performed at CJ conditions in order to compute derivative thermodynamic quantities like Cp, Cv, Gruneisen gama, sound velocity, and compressibility factor. Several explosives has been studied, of which PETN, nitromethane, tetranitromethane, and hexanitroethane. In these first simulations, solid carbon is eventually treated using an EOS.
LCG MCDB—a knowledgebase of Monte-Carlo simulated events
NASA Astrophysics Data System (ADS)
Belov, S.; Dudko, L.; Galkin, E.; Gusev, A.; Pokorski, W.; Sherstnev, A.
2008-02-01
In this paper we report on LCG Monte-Carlo Data Base (MCDB) and software which has been developed to operate MCDB. The main purpose of the LCG MCDB project is to provide a storage and documentation system for sophisticated event samples simulated for the LHC Collaborations by experts. In many cases, the modern Monte-Carlo simulation of physical processes requires expert knowledge in Monte-Carlo generators or significant amount of CPU time to produce the events. MCDB is a knowledgebase mainly dedicated to accumulate simulated events of this type. The main motivation behind LCG MCDB is to make the sophisticated MC event samples available for various physical groups. All the data from MCDB is accessible in several convenient ways. LCG MCDB is being developed within the CERN LCG Application Area Simulation project. Program summaryProgram title: LCG Monte-Carlo Data Base Catalogue identifier: ADZX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public Licence No. of lines in distributed program, including test data, etc.: 30 129 No. of bytes in distributed program, including test data, etc.: 216 943 Distribution format: tar.gz Programming language: Perl Computer: CPU: Intel Pentium 4, RAM: 1 Gb, HDD: 100 Gb Operating system: Scientific Linux CERN 3/4 RAM: 1 073 741 824 bytes (1 Gb) Classification: 9 External routines:perl >= 5.8.5; Perl modules DBD-mysql >= 2.9004, File::Basename, GD::SecurityImage, GD::SecurityImage::AC, Linux::Statistics, XML::LibXML > 1.6, XML::SAX, XML::NamespaceSupport; Apache HTTP Server >= 2.0.59; mod auth external >= 2.2.9; edg-utils-system RPM package; gd >= 2.0.28; rpm package CASTOR-client >= 2.1.2-4; arc-server (optional) Nature of problem: Often, different groups of experimentalists prepare similar samples of particle collision events or turn to the same group of authors of Monte-Carlo (MC) generators to prepare the events. For example, the same MC samples of Standard Model (SM) processes can be employed for the investigations either in the SM analyses (as a signal) or in searches for new phenomena in Beyond Standard Model analyses (as a background). If the samples are made available publicly and equipped with corresponding and comprehensive documentation, it can speed up cross checks of the samples themselves and physical models applied. Some event samples require a lot of computing resources for preparation. So, a central storage of the samples prevents possible waste of researcher time and computing resources, which can be used to prepare the same events many times. Solution method: Creation of a special knowledgebase (MCDB) designed to keep event samples for the LHC experimental and phenomenological community. The knowledgebase is realized as a separate web-server ( http://mcdb.cern.ch). All event samples are kept on types at CERN. Documentation describing the events is the main contents of MCDB. Users can browse the knowledgebase, read and comment articles (documentation), and download event samples. Authors can upload new event samples, create new articles, and edit own articles. Restrictions: The software is adopted to solve the problems, described in the article and there are no any additional restrictions. Unusual features: The software provides a framework to store and document large files with flexible authentication and authorization system. Different external storages with large capacity can be used to keep the files. The WEB Content Management System provides all of the necessary interfaces for the authors of the files, end-users and administrators. Running time: Real time operations. References: [1] The main LCG MCDB server, http://mcdb.cern.ch/. [2] P. Bartalini, L. Dudko, A. Kryukov, I.V. Selyuzhenkov, A. Sherstnev, A. Vologdin, LCG Monte-Carlo data base, hep-ph/0404241. [3] J.P. Baud, B. Couturier, C. Curran, J.D. Durand, E. Knezo, S. Occhetti, O. Barring, CASTOR: status and evolution, cs.oh/0305047.
Identification of transmissivity fields using a Bayesian strategy and perturbative approach
NASA Astrophysics Data System (ADS)
Zanini, Andrea; Tanda, Maria Giovanna; Woodbury, Allan D.
2017-10-01
The paper deals with the crucial problem of the groundwater parameter estimation that is the basis for efficient modeling and reclamation activities. A hierarchical Bayesian approach is developed: it uses the Akaike's Bayesian Information Criteria in order to estimate the hyperparameters (related to the covariance model chosen) and to quantify the unknown noise variance. The transmissivity identification proceeds in two steps: the first, called empirical Bayesian interpolation, uses Y* (Y = lnT) observations to interpolate Y values on a specified grid; the second, called empirical Bayesian update, improve the previous Y estimate through the addition of hydraulic head observations. The relationship between the head and the lnT has been linearized through a perturbative solution of the flow equation. In order to test the proposed approach, synthetic aquifers from literature have been considered. The aquifers in question contain a variety of boundary conditions (both Dirichelet and Neuman type) and scales of heterogeneities (σY2 = 1.0 and σY2 = 5.3). The estimated transmissivity fields were compared to the true one. The joint use of Y* and head measurements improves the estimation of Y considering both degrees of heterogeneity. Even if the variance of the strong transmissivity field can be considered high for the application of the perturbative approach, the results show the same order of approximation of the non-linear methods proposed in literature. The procedure allows to compute the posterior probability distribution of the target quantities and to quantify the uncertainty in the model prediction. Bayesian updating has advantages related both to the Monte-Carlo (MC) and non-MC approaches. In fact, as the MC methods, Bayesian updating allows computing the direct posterior probability distribution of the target quantities and as non-MC methods it has computational times in the order of seconds.
Fernandez, M Castrillon; Venencia, C; Garrigó, E; Caussa, L
2012-06-01
To compare measured and calculated doses using Pencil Beam (PB) and Monte Carlo (MC) algorithm on a CIRS thorax phantom for SBRT lung treatments. A 6MV photon beam generated by a Primus linac with an Optifocus MLC (Siemens) was used. Dose calculation was done using iPlan v4.1.2 TPS (BrainLAB) by PB and MC (dose to water and dose to medium) algorithms. The commissioning of both algorithms was done reproducing experimental measurements in water. A CIRS thorax phantom was used to compare doses using a Farmer type ion chamber (PTW) and EDR2 radiographic films (KODAK). The ionization chamber, into a tissue equivalent insert, was placed in two position of lung tissue and was irradiated using three treatments plans. Axial dose distributions were measured for four treatments plans using conformal and IMRT technique. Dose distribution comparisons were done by dose profiles and gamma index (3%/3mm). For the studied beam configurations, ion chamber measurements shows that PB overestimate the dose up to 8.5%, whereas MC has a maximum variation of 1.6%. Dosimetric analysis using dose profiles shows that PB overestimates the dose in the region corresponding to the lung up to 16%. For axial dose distribution comparison the percentage of pixels with gamma index bigger than one for MC and PB was, plan 1: 95.6% versus 87.4%, plan 2: 91.2% versus 77.6%, plan 3: 99.7% versus 93.1% and for plan 4: 98.8% versus 91.7%. It was confirmed that the lower dosimetric errors calculated applying MC algorithm appears when the spatial resolution and variance decrease at the expense of increased computation time. The agreement between measured and calculated doses, in a phantom with lung heterogeneities, is better with MC algorithm. PB algorithm overestimates the doses in lung tissue, which could have a clinical impact in SBRT lung treatments. © 2012 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Fragoso, Margarida; Wen, Ning; Kumar, Sanath; Liu, Dezhi; Ryu, Samuel; Movsas, Benjamin; Munther, Ajlouni; Chetty, Indrin J.
2010-08-01
Modern cancer treatment techniques, such as intensity-modulated radiation therapy (IMRT) and stereotactic body radiation therapy (SBRT), have greatly increased the demand for more accurate treatment planning (structure definition, dose calculation, etc) and dose delivery. The ability to use fast and accurate Monte Carlo (MC)-based dose calculations within a commercial treatment planning system (TPS) in the clinical setting is now becoming more of a reality. This study describes the dosimetric verification and initial clinical evaluation of a new commercial MC-based photon beam dose calculation algorithm, within the iPlan v.4.1 TPS (BrainLAB AG, Feldkirchen, Germany). Experimental verification of the MC photon beam model was performed with film and ionization chambers in water phantoms and in heterogeneous solid-water slabs containing bone and lung-equivalent materials for a 6 MV photon beam from a Novalis (BrainLAB) linear accelerator (linac) with a micro-multileaf collimator (m3 MLC). The agreement between calculated and measured dose distributions in the water phantom verification tests was, on average, within 2%/1 mm (high dose/high gradient) and was within ±4%/2 mm in the heterogeneous slab geometries. Example treatment plans in the lung show significant differences between the MC and one-dimensional pencil beam (PB) algorithms within iPlan, especially for small lesions in the lung, where electronic disequilibrium effects are emphasized. Other user-specific features in the iPlan system, such as options to select dose to water or dose to medium, and the mean variance level, have been investigated. Timing results for typical lung treatment plans show the total computation time (including that for processing and I/O) to be less than 10 min for 1-2% mean variance (running on a single PC with 8 Intel Xeon X5355 CPUs, 2.66 GHz). Overall, the iPlan MC algorithm is demonstrated to be an accurate and efficient dose algorithm, incorporating robust tools for MC-based SBRT treatment planning in the routine clinical setting.
Wan Chan Tseung, H; Ma, J; Beltran, C
2015-06-01
Very fast Monte Carlo (MC) simulations of proton transport have been implemented recently on graphics processing units (GPUs). However, these MCs usually use simplified models for nonelastic proton-nucleus interactions. Our primary goal is to build a GPU-based proton transport MC with detailed modeling of elastic and nonelastic proton-nucleus collisions. Using the cuda framework, the authors implemented GPU kernels for the following tasks: (1) simulation of beam spots from our possible scanning nozzle configurations, (2) proton propagation through CT geometry, taking into account nuclear elastic scattering, multiple scattering, and energy loss straggling, (3) modeling of the intranuclear cascade stage of nonelastic interactions when they occur, (4) simulation of nuclear evaporation, and (5) statistical error estimates on the dose. To validate our MC, the authors performed (1) secondary particle yield calculations in proton collisions with therapeutically relevant nuclei, (2) dose calculations in homogeneous phantoms, (3) recalculations of complex head and neck treatment plans from a commercially available treatment planning system, and compared with (GEANT)4.9.6p2/TOPAS. Yields, energy, and angular distributions of secondaries from nonelastic collisions on various nuclei are in good agreement with the (GEANT)4.9.6p2 Bertini and Binary cascade models. The 3D-gamma pass rate at 2%-2 mm for treatment plan simulations is typically 98%. The net computational time on a NVIDIA GTX680 card, including all CPU-GPU data transfers, is ∼ 20 s for 1 × 10(7) proton histories. Our GPU-based MC is the first of its kind to include a detailed nuclear model to handle nonelastic interactions of protons with any nucleus. Dosimetric calculations are in very good agreement with (GEANT)4.9.6p2/TOPAS. Our MC is being integrated into a framework to perform fast routine clinical QA of pencil-beam based treatment plans, and is being used as the dose calculation engine in a clinically applicable MC-based IMPT treatment planning system. The detailed nuclear modeling will allow us to perform very fast linear energy transfer and neutron dose estimates on the GPU.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randeniya, S; Mirkovic, D; Titt, U
2014-06-01
Purpose: In intensity modulated proton therapy (IMPT), energy dependent, protons per monitor unit (MU) calibration factors are important parameters that determine absolute dose values from energy deposition data obtained from Monte Carlo (MC) simulations. Purpose of this study was to assess the sensitivity of MC-computed absolute dose distributions to the protons/MU calibration factors in IMPT. Methods: A “verification plan” (i.e., treatment beams applied individually to water phantom) of a head and neck patient plan was calculated using MC technique. The patient plan had three beams; one posterior-anterior (PA); two anterior oblique. Dose prescription was 66 Gy in 30 fractions. Ofmore » the total MUs, 58% was delivered in PA beam, 25% and 17% in other two. Energy deposition data obtained from the MC simulation were converted to Gy using energy dependent protons/MU calibrations factors obtained from two methods. First method is based on experimental measurements and MC simulations. Second is based on hand calculations, based on how many ion pairs were produced per proton in the dose monitor and how many ion pairs is equal to 1 MU (vendor recommended method). Dose distributions obtained from method one was compared with those from method two. Results: Average difference of 8% in protons/MU calibration factors between method one and two converted into 27 % difference in absolute dose values for PA beam; although dose distributions preserved the shape of 3D dose distribution qualitatively, they were different quantitatively. For two oblique beams, significant difference in absolute dose was not observed. Conclusion: Results demonstrate that protons/MU calibration factors can have a significant impact on absolute dose values in IMPT depending on the fraction of MUs delivered. When number of MUs increases the effect due to the calibration factors amplify. In determining protons/MU calibration factors, experimental method should be preferred in MC dose calculations. Research supported by National Cancer Institute grant P01CA021239.« less
Computer Simulation of Electron Thermalization in CsI and CsI(Tl)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhiguo; Xie, YuLong; Cannon, Bret D.
2011-09-15
A Monte Carlo (MC) model was developed and implemented to simulate the thermalization of electrons in inorganic scintillator materials. The model incorporates electron scattering with both longitudinal optical and acoustic phonons. In this paper, the MC model was applied to simulate electron thermalization in CsI, both pure and doped with a range of thallium concentrations. The inclusion of internal electric fields was shown to increase the fraction of recombined electron-hole pairs and to broaden the thermalization distance and thermalization time distributions. The MC simulations indicate that electron thermalization, following {gamma}-ray excitation, takes place within approximately 10 ps in CsI andmore » that electrons can travel distances up to several hundreds of nanometers. Electron thermalization was studied for a range of incident {gamma}-ray energies using electron-hole pair spatial distributions generated by the MC code NWEGRIM (NorthWest Electron and Gamma Ray Interaction in Matter). These simulations revealed that the partition of thermalized electrons between different species (e.g., recombined with self-trapped holes or trapped at thallium sites) vary with the incident energy. Implications for the phenomenon of nonlinearity in scintillator light yield are discussed.« less
NASA Astrophysics Data System (ADS)
Dib, Alain; Kavvas, M. Levent
2018-03-01
The characteristic form of the Saint-Venant equations is solved in a stochastic setting by using a newly proposed Fokker-Planck Equation (FPE) methodology. This methodology computes the ensemble behavior and variability of the unsteady flow in open channels by directly solving for the flow variables' time-space evolutionary probability distribution. The new methodology is tested on a stochastic unsteady open-channel flow problem, with an uncertainty arising from the channel's roughness coefficient. The computed statistical descriptions of the flow variables are compared to the results obtained through Monte Carlo (MC) simulations in order to evaluate the performance of the FPE methodology. The comparisons show that the proposed methodology can adequately predict the results of the considered stochastic flow problem, including the ensemble averages, variances, and probability density functions in time and space. Unlike the large number of simulations performed by the MC approach, only one simulation is required by the FPE methodology. Moreover, the total computational time of the FPE methodology is smaller than that of the MC approach, which could prove to be a particularly crucial advantage in systems with a large number of uncertain parameters. As such, the results obtained in this study indicate that the proposed FPE methodology is a powerful and time-efficient approach for predicting the ensemble average and variance behavior, in both space and time, for an open-channel flow process under an uncertain roughness coefficient.
Random number generators for large-scale parallel Monte Carlo simulations on FPGA
NASA Astrophysics Data System (ADS)
Lin, Y.; Wang, F.; Liu, B.
2018-05-01
Through parallelization, field programmable gate array (FPGA) can achieve unprecedented speeds in large-scale parallel Monte Carlo (LPMC) simulations. FPGA presents both new constraints and new opportunities for the implementations of random number generators (RNGs), which are key elements of any Monte Carlo (MC) simulation system. Using empirical and application based tests, this study evaluates all of the four RNGs used in previous FPGA based MC studies and newly proposed FPGA implementations for two well-known high-quality RNGs that are suitable for LPMC studies on FPGA. One of the newly proposed FPGA implementations: a parallel version of additive lagged Fibonacci generator (Parallel ALFG) is found to be the best among the evaluated RNGs in fulfilling the needs of LPMC simulations on FPGA.
McSKY: A hybrid Monte-Carlo lime-beam code for shielded gamma skyshine calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shultis, J.K.; Faw, R.E.; Stedry, M.H.
1994-07-01
McSKY evaluates skyshine dose from an isotropic, monoenergetic, point photon source collimated into either a vertical cone or a vertical structure with an N-sided polygon cross section. The code assumes an overhead shield of two materials, through the user can specify zero shield thickness for an unshielded calculation. The code uses a Monte-Carlo algorithm to evaluate transport through source shields and the integral line source to describe photon transport through the atmosphere. The source energy must be between 0.02 and 100 MeV. For heavily shielded sources with energies above 20 MeV, McSKY results must be used cautiously, especially at detectormore » locations near the source.« less
Loudos, George K; Papadimitroulas, Panagiotis G; Kagadis, George C
2014-01-01
Monte Carlo (MC) simulations play a crucial role in nuclear medical imaging since they can provide the ground truth for clinical acquisitions, by integrating and quantifing all physical parameters that affect image quality. The last decade a number of realistic computational anthropomorphic models have been developed to serve imaging, as well as other biomedical engineering applications. The combination of MC techniques with realistic computational phantoms can provide a powerful tool for pre and post processing in imaging, data analysis and dosimetry. This work aims to create a global database for simulated Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) exams and the methodology, as well as the first elements are presented. Simulations are performed using the well validated GATE opensource toolkit, standard anthropomorphic phantoms and activity distribution of various radiopharmaceuticals, derived from literature. The resulting images, projections and sinograms of each study are provided in the database and can be further exploited to evaluate processing and reconstruction algorithms. Patient studies using different characteristics are included in the database and different computational phantoms were tested for the same acquisitions. These include the XCAT, Zubal and the Virtual Family, which some of which are used for the first time in nuclear imaging. The created database will be freely available and our current work is towards its extension by simulating additional clinical pathologies.
Peter, Emanuel K; Shea, Joan-Emma; Pivkin, Igor V
2016-05-14
In this paper, we present a coarse replica exchange molecular dynamics (REMD) approach, based on kinetic Monte Carlo (kMC). The new development significantly can reduce the amount of replicas and the computational cost needed to enhance sampling in protein simulations. We introduce 2 different methods which primarily differ in the exchange scheme between the parallel ensembles. We apply this approach on folding of 2 different β-stranded peptides: the C-terminal β-hairpin fragment of GB1 and TrpZip4. Additionally, we use the new simulation technique to study the folding of TrpCage, a small fast folding α-helical peptide. Subsequently, we apply the new methodology on conformation changes in signaling of the light-oxygen voltage (LOV) sensitive domain from Avena sativa (AsLOV2). Our results agree well with data reported in the literature. In simulations of dialanine, we compare the statistical sampling of the 2 techniques with conventional REMD and analyze their performance. The new techniques can reduce the computational cost of REMD significantly and can be used in enhanced sampling simulations of biomolecules.
Monte Carlo dose calculation in dental amalgam phantom
Aziz, Mohd. Zahri Abdul; Yusoff, A. L.; Osman, N. D.; Abdullah, R.; Rabaie, N. A.; Salikin, M. S.
2015-01-01
It has become a great challenge in the modern radiation treatment to ensure the accuracy of treatment delivery in electron beam therapy. Tissue inhomogeneity has become one of the factors for accurate dose calculation, and this requires complex algorithm calculation like Monte Carlo (MC). On the other hand, computed tomography (CT) images used in treatment planning system need to be trustful as they are the input in radiotherapy treatment. However, with the presence of metal amalgam in treatment volume, the CT images input showed prominent streak artefact, thus, contributed sources of error. Hence, metal amalgam phantom often creates streak artifacts, which cause an error in the dose calculation. Thus, a streak artifact reduction technique was applied to correct the images, and as a result, better images were observed in terms of structure delineation and density assigning. Furthermore, the amalgam density data were corrected to provide amalgam voxel with accurate density value. As for the errors of dose uncertainties due to metal amalgam, they were reduced from 46% to as low as 2% at d80 (depth of the 80% dose beyond Zmax) using the presented strategies. Considering the number of vital and radiosensitive organs in the head and the neck regions, this correction strategy is suggested in reducing calculation uncertainties through MC calculation. PMID:26500401
NASA Astrophysics Data System (ADS)
Waseda, O.; Goldenstein, H.; Silva, G. F. B. Lenz e.; Neiva, A.; Chantrenne, P.; Morthomas, J.; Perez, M.; Becquart, C. S.; Veiga, R. G. A.
2017-10-01
The thermal stability of nanocrystalline Ni due to small additions of Mo or W (up to 1 at%) was investigated in computer simulations by means of a combined Monte Carlo (MC)/molecular dynamics (MD) two-steps approach. In the first step, energy-biased on-lattice MC revealed segregation of the alloying elements to grain boundaries. However, the condition for the thermodynamic stability of these nanocrystalline Ni alloys (zero grain boundary energy) was not fulfilled. Subsequently, MD simulations were carried out for up to 0.5 μs at 1000 K. At this temperature, grain growth was hindered for minimum global concentrations of 0.5 at% W and 0.7 at% Mo, thus preserving most of the nanocrystalline structure. This is in clear contrast to a pure Ni model system, for which the transformation into a monocrystal was observed in MD simulations within 0.2 μs at the same temperature. These results suggest that grain boundary segregation of low-soluble alloying elements in low-alloyed systems can produce high-temperature metastable nanocrystalline materials. MD simulations carried out at 1200 K for 1 at% Mo/W showed significant grain boundary migration accompanied by some degree of solute diffusion, thus providing additional evidence that solute drag mostly contributed to the nanostructure stability observed at lower temperature.
NASA Astrophysics Data System (ADS)
Majaron, Boris; Milanič, Matija; Premru, Jan
2015-01-01
In three-dimensional (3-D) modeling of light transport in heterogeneous biological structures using the Monte Carlo (MC) approach, space is commonly discretized into optically homogeneous voxels by a rectangular spatial grid. Any round or oblique boundaries between neighboring tissues thus become serrated, which raises legitimate concerns about the realism of modeling results with regard to reflection and refraction of light on such boundaries. We analyze the related effects by systematic comparison with an augmented 3-D MC code, in which analytically defined tissue boundaries are treated in a rigorous manner. At specific locations within our test geometries, energy deposition predicted by the two models can vary by 10%. Even highly relevant integral quantities, such as linear density of the energy absorbed by modeled blood vessels, differ by up to 30%. Most notably, the values predicted by the customary model vary strongly and quite erratically with the spatial discretization step and upon minor repositioning of the computational grid. Meanwhile, the augmented model shows no such unphysical behavior. Artifacts of the former approach do not converge toward zero with ever finer spatial discretization, confirming that it suffers from inherent deficiencies due to inaccurate treatment of reflection and refraction at round tissue boundaries.
A comparison of Monte-Carlo simulations using RESTRAX and McSTAS with experiment on IN14
NASA Astrophysics Data System (ADS)
Wildes, A. R.; S̆aroun, J.; Farhi, E.; Anderson, I.; Høghøj, P.; Brochier, A.
2000-03-01
Monte-Carlo simulations of a focusing supermirror guide after the monochromator on the IN14 cold neutron three-axis spectrometer, I.L.L. were carried out using the instrument simulation programs RESTRAX and McSTAS. The simulations were compared to experiment to check their accuracy. Comparisons of the flux ratios over both a 100 and a 1600 mm 2 area at the sample position compare well, and there is a very close agreement between simulation and experiment for the energy spread of the incident beam.
SCALE 6.2 Continuous-Energy TSUNAMI-3D Capabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perfetti, Christopher M; Rearden, Bradley T
2015-01-01
The TSUNAMI (Tools for Sensitivity and UNcertainty Analysis Methodology Implementation) capabilities within the SCALE code system make use of sensitivity coefficients for an extensive number of criticality safety applications, such as quantifying the data-induced uncertainty in the eigenvalue of critical systems, assessing the neutronic similarity between different systems, quantifying computational biases, and guiding nuclear data adjustment studies. The need to model geometrically complex systems with improved ease of use and fidelity and the desire to extend TSUNAMI analysis to advanced applications have motivated the development of a SCALE 6.2 module for calculating sensitivity coefficients using three-dimensional (3D) continuous-energy (CE) Montemore » Carlo methods: CE TSUNAMI-3D. This paper provides an overview of the theory, implementation, and capabilities of the CE TSUNAMI-3D sensitivity analysis methods. CE TSUNAMI contains two methods for calculating sensitivity coefficients in eigenvalue sensitivity applications: (1) the Iterated Fission Probability (IFP) method and (2) the Contributon-Linked eigenvalue sensitivity/Uncertainty estimation via Track length importance CHaracterization (CLUTCH) method. This work also presents the GEneralized Adjoint Response in Monte Carlo method (GEAR-MC), a first-of-its-kind approach for calculating adjoint-weighted, generalized response sensitivity coefficients—such as flux responses or reaction rate ratios—in CE Monte Carlo applications. The accuracy and efficiency of the CE TSUNAMI-3D eigenvalue sensitivity methods are assessed from a user perspective in a companion publication, and the accuracy and features of the CE TSUNAMI-3D GEAR-MC methods are detailed in this paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bostani, Maryam, E-mail: mbostani@mednet.ucla.edu; McMillan, Kyle; Cagnon, Chris H.
2014-11-01
Purpose: Monte Carlo (MC) simulation methods have been widely used in patient dosimetry in computed tomography (CT), including estimating patient organ doses. However, most simulation methods have undergone a limited set of validations, often using homogeneous phantoms with simple geometries. As clinical scanning has become more complex and the use of tube current modulation (TCM) has become pervasive in the clinic, MC simulations should include these techniques in their methodologies and therefore should also be validated using a variety of phantoms with different shapes and material compositions to result in a variety of differently modulated tube current profiles. The purposemore » of this work is to perform the measurements and simulations to validate a Monte Carlo model under a variety of test conditions where fixed tube current (FTC) and TCM were used. Methods: A previously developed MC model for estimating dose from CT scans that models TCM, built using the platform of MCNPX, was used for CT dose quantification. In order to validate the suitability of this model to accurately simulate patient dose from FTC and TCM CT scan, measurements and simulations were compared over a wide range of conditions. Phantoms used for testing range from simple geometries with homogeneous composition (16 and 32 cm computed tomography dose index phantoms) to more complex phantoms including a rectangular homogeneous water equivalent phantom, an elliptical shaped phantom with three sections (where each section was a homogeneous, but different material), and a heterogeneous, complex geometry anthropomorphic phantom. Each phantom requires varying levels of x-, y- and z-modulation. Each phantom was scanned on a multidetector row CT (Sensation 64) scanner under the conditions of both FTC and TCM. Dose measurements were made at various surface and depth positions within each phantom. Simulations using each phantom were performed for FTC, detailed x–y–z TCM, and z-axis-only TCM to obtain dose estimates. This allowed direct comparisons between measured and simulated dose values under each condition of phantom, location, and scan to be made. Results: For FTC scans, the percent root mean square (RMS) difference between measurements and simulations was within 5% across all phantoms. For TCM scans, the percent RMS of the difference between measured and simulated values when using detailed TCM and z-axis-only TCM simulations was 4.5% and 13.2%, respectively. For the anthropomorphic phantom, the difference between TCM measurements and detailed TCM and z-axis-only TCM simulations was 1.2% and 8.9%, respectively. For FTC measurements and simulations, the percent RMS of the difference was 5.0%. Conclusions: This work demonstrated that the Monte Carlo model developed provided good agreement between measured and simulated values under both simple and complex geometries including an anthropomorphic phantom. This work also showed the increased dose differences for z-axis-only TCM simulations, where considerable modulation in the x–y plane was present due to the shape of the rectangular water phantom. Results from this investigation highlight details that need to be included in Monte Carlo simulations of TCM CT scans in order to yield accurate, clinically viable assessments of patient dosimetry.« less
SHIELD-HIT12A - a Monte Carlo particle transport program for ion therapy research
NASA Astrophysics Data System (ADS)
Bassler, N.; Hansen, D. C.; Lühr, A.; Thomsen, B.; Petersen, J. B.; Sobolevsky, N.
2014-03-01
Purpose: The Monte Carlo (MC) code SHIELD-HIT simulates the transport of ions through matter. Since SHIELD-HIT08 we added numerous features that improves speed, usability and underlying physics and thereby the user experience. The "-A" fork of SHIELD-HIT also aims to attach SHIELD-HIT to a heavy ion dose optimization algorithm to provide MC-optimized treatment plans that include radiobiology. Methods: SHIELD-HIT12A is written in FORTRAN and carefully retains platform independence. A powerful scoring engine is implemented scoring relevant quantities such as dose and track-average LET. It supports native formats compatible with the heavy ion treatment planning system TRiP. Stopping power files follow ICRU standard and are generated using the libdEdx library, which allows the user to choose from a multitude of stopping power tables. Results: SHIELD-HIT12A runs on Linux and Windows platforms. We experienced that new users quickly learn to use SHIELD-HIT12A and setup new geometries. Contrary to previous versions of SHIELD-HIT, the 12A distribution comes along with easy-to-use example files and an English manual. A new implementation of Vavilov straggling resulted in a massive reduction of computation time. Scheduled for later release are CT import and photon-electron transport. Conclusions: SHIELD-HIT12A is an interesting alternative ion transport engine. Apart from being a flexible particle therapy research tool, it can also serve as a back end for a MC ion treatment planning system. More information about SHIELD-HIT12A and a demo version can be found on http://www.shieldhit.org.
SU-F-BRD-09: A Random Walk Model Algorithm for Proton Dose Calculation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, W; Farr, J
2015-06-15
Purpose: To develop a random walk model algorithm for calculating proton dose with balanced computation burden and accuracy. Methods: Random walk (RW) model is sometimes referred to as a density Monte Carlo (MC) simulation. In MC proton dose calculation, the use of Gaussian angular distribution of protons due to multiple Coulomb scatter (MCS) is convenient, but in RW the use of Gaussian angular distribution requires an extremely large computation and memory. Thus, our RW model adopts spatial distribution from the angular one to accelerate the computation and to decrease the memory usage. From the physics and comparison with the MCmore » simulations, we have determined and analytically expressed those critical variables affecting the dose accuracy in our RW model. Results: Besides those variables such as MCS, stopping power, energy spectrum after energy absorption etc., which have been extensively discussed in literature, the following variables were found to be critical in our RW model: (1) inverse squared law that can significantly reduce the computation burden and memory, (2) non-Gaussian spatial distribution after MCS, and (3) the mean direction of scatters at each voxel. In comparison to MC results, taken as reference, for a water phantom irradiated by mono-energetic proton beams from 75 MeV to 221.28 MeV, the gamma test pass rate was 100% for the 2%/2mm/10% criterion. For a highly heterogeneous phantom consisting of water embedded by a 10 cm cortical bone and a 10 cm lung in the Bragg peak region of the proton beam, the gamma test pass rate was greater than 98% for the 3%/3mm/10% criterion. Conclusion: We have determined key variables in our RW model for proton dose calculation. Compared with commercial pencil beam algorithms, our RW model much improves the dose accuracy in heterogeneous regions, and is about 10 times faster than MC simulations.« less
Jin, Lihui; Eldib, Ahmed; Li, Jinsheng; Emam, Ismail; Fan, Jiajin; Wang, Lu; Ma, C-M
2014-01-06
The dosimetric advantage of modulated electron radiotherapy (MERT) has been explored by many investigators and is considered to be an advanced radiation therapy technique in the utilization of electrons. A computer-controlled electron multileaf collimator (MLC) prototype, newly designed to be added onto a Varian linac to deliver MERT, was investigated both experimentally and by Monte Carlo simulations. Four different electron energies, 6, 9, 12, and 15 MeV, were employed for this investigation. To ensure that this device was capable of delivering the electron beams properly, measurements were performed to examine the electron MLC (eMLC) leaf leakage and to determine the appropriate jaw positioning for an eMLC-shaped field in order to eliminate a secondary radiation peak that could otherwise appear outside of an intended radiation field in the case of inappropriate jaw positioning due to insufficient radiation blockage from the jaws. Phase space data were obtained by Monte Carlo (MC) simulation and recorded at the plane just above the jaws for each of the energies (6, 9, 12, and 15 MeV). As an input source, phase space data were used in MC dose calculations for various sizes of the eMLC shaped field (10 × 10 cm2, 3.4 × 3.4 cm2, and 2 × 2 cm2) with respect to a water phantom at source-to-surface distance (SSD) = 94 cm, while the jaws, eMLC leaves, and some accessories associated with the eMLC assembly as well were modeled as modifiers in the calculations. The calculated results were then compared with measurements from a water scanning system. The results showed that jaw settings with 5 mm margins beyond the field shaped by the eMLC were appropriate to eliminate the secondary radiation peak while not widening the beam penumbra; the eMLC leaf leakage measurements ranged from 0.3% to 1.8% for different energies based on in-phantom measurements, which should be quite acceptable for MERT. Comparisons between MC dose calculations and measurements showed agreement within 1%/1 mm based on percentage depth doses (PDDs) and off-axis dose profiles for a range of field sizes for each of the electron energies. Our current work has demonstrated that the eMLC and other relevant components in the linac were correctly modeled and simulated via our in-house MC codes, and the eMLC is capable of accurately delivering electron beams for various eMLC-shaped field sizes with appropriate jaw settings. In the next stage, patient-specific verification with a full MERT plan should be performed.
Optimization of beam shaping assembly based on D-T neutron generator and dose evaluation for BNCT
NASA Astrophysics Data System (ADS)
Naeem, Hamza; Chen, Chaobin; Zheng, Huaqing; Song, Jing
2017-04-01
The feasibility of developing an epithermal neutron beam for a boron neutron capture therapy (BNCT) facility based on a high intensity D-T fusion neutron generator (HINEG) and using the Monte Carlo code SuperMC (Super Monte Carlo simulation program for nuclear and radiation process) is proposed in this study. The Monte Carlo code SuperMC is used to determine and optimize the final configuration of the beam shaping assembly (BSA). The optimal BSA design in a cylindrical geometry which consists of a natural uranium sphere (14 cm) as a neutron multiplier, AlF3 and TiF3 as moderators (20 cm each), Cd (1 mm) as a thermal neutron filter, Bi (5 cm) as a gamma shield, and Pb as a reflector and collimator to guide neutrons towards the exit window. The epithermal neutron beam flux of the proposed model is 5.73 × 109 n/cm2s, and other dosimetric parameters for the BNCT reported by IAEA-TECDOC-1223 have been verified. The phantom dose analysis shows that the designed BSA is accurate, efficient and suitable for BNCT applications. Thus, the Monte Carlo code SuperMC is concluded to be capable of simulating the BSA and the dose calculation for BNCT, and high epithermal flux can be achieved using proposed BSA.
Sakota, Daisuke; Takatani, Setsuo
2012-05-01
Optical properties of flowing blood were analyzed using a photon-cell interactive Monte Carlo (pciMC) model with the physical properties of the flowing red blood cells (RBCs) such as cell size, shape, refractive index, distribution, and orientation as the parameters. The scattering of light by flowing blood at the He-Ne laser wavelength of 632.8 nm was significantly affected by the shear rate. The light was scattered more in the direction of flow as the flow rate increased. Therefore, the light intensity transmitted forward in the direction perpendicular to flow axis decreased. The pciMC model can duplicate the changes in the photon propagation due to moving RBCs with various orientations. The resulting RBC's orientation that best simulated the experimental results was with their long axis perpendicular to the direction of blood flow. Moreover, the scattering probability was dependent on the orientation of the RBCs. Finally, the pciMC code was used to predict the hematocrit of flowing blood with accuracy of approximately 1.0 HCT%. The photon-cell interactive Monte Carlo (pciMC) model can provide optical properties of flowing blood and will facilitate the development of the non-invasive monitoring of blood in extra corporeal circulatory systems.
NASA Astrophysics Data System (ADS)
Zhou, Abel; White, Graeme L.; Davidson, Rob
2018-02-01
Anti-scatter grids are commonly used in x-ray imaging systems to reduce scatter radiation reaching the image receptor. Anti-scatter grid performance and validation can be simulated through use of Monte Carlo (MC) methods. Our recently reported work has modified existing MC codes resulting in improved performance when simulating x-ray imaging. The aim of this work is to validate the transmission of x-ray photons in grids from the recently reported new MC codes against experimental results and results previously reported in other literature. The results of this work show that the scatter-to-primary ratio (SPR), the transmissions of primary (T p), scatter (T s), and total (T t) radiation determined using this new MC code system have strong agreement with the experimental results and the results reported in the literature. T p, T s, T t, and SPR determined in this new MC simulation code system are valid. These results also show that the interference effect on Rayleigh scattering should not be neglected in both mammographic and general grids’ evaluation. Our new MC simulation code system has been shown to be valid and can be used for analysing and evaluating the designs of grids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, H; Brindle, J; Hepel, J
2015-06-15
Purpose: To analyze and evaluate dose distribution between Ray Tracing (RT) and Monte Carlo (MC) algorithms of 0.5% uncertainty on a critical structure of spinal cord and gross target volume and planning target volume. Methods: Twenty four spinal tumor patients were treated with stereotactic body radiotherapy (SBRT) by CyberKnife in 2013 and 2014. The MC algorithm with 0.5% of uncertainty is used to recalculate the dose distribution for the treatment plan of the patients using the same beams, beam directions, and monitor units (MUs). Results: The prescription doses are uniformly larger for MC plans than RT except one case. Upmore » to a factor of 1.19 for 0.25cc threshold volume and 1.14 for 1.2cc threshold volume of dose differences are observed for the spinal cord. Conclusion: The MC recalculated dose distributions are larger than the original MC calculations for the spinal tumor cases. Based on the accuracy of the MC calculations, more radiation dose might be delivered to the tumor targets and spinal cords with the increase prescription dose.« less
Development and application of CATIA-GDML geometry builder
NASA Astrophysics Data System (ADS)
Belogurov, S.; Berchun, Yu; Chernogorov, A.; Malzacher, P.; Ovcharenko, E.; Schetinin, V.
2014-06-01
Due to conceptual difference between geometry descriptions in Computer-Aided Design (CAD) systems and particle transport Monte Carlo (MC) codes direct conversion of detector geometry in either direction is not feasible. The paper presents an update on functionality and application practice of the CATIA-GDML geometry builder first introduced at CHEP2010. This set of CATIAv5 tools has been developed for building a MC optimized GEANT4/ROOT compatible geometry based on the existing CAD model. The model can be exported via Geometry Description Markup Language (GDML). The builder allows also import and visualization of GEANT4/ROOT geometries in CATIA. The structure of a GDML file, including replicated volumes, volume assemblies and variables, is mapped into a part specification tree. A dedicated file template, a wide range of primitives, tools for measurement and implicit calculation of parameters, different types of multiple volume instantiation, mirroring, positioning and quality check have been implemented. Several use cases are discussed.
Grebner, Christoph; Becker, Johannes; Weber, Daniel; Bellinger, Daniel; Tafipolski, Maxim; Brückner, Charlotte; Engels, Bernd
2014-09-15
The presented program package, Conformational Analysis and Search Tool (CAST) allows the accurate treatment of large and flexible (macro) molecular systems. For the determination of thermally accessible minima CAST offers the newly developed TabuSearch algorithm, but algorithms such as Monte Carlo (MC), MC with minimization, and molecular dynamics are implemented as well. For the determination of reaction paths, CAST provides the PathOpt, the Nudge Elastic band, and the umbrella sampling approach. Access to free energies is possible through the free energy perturbation approach. Along with a number of standard force fields, a newly developed symmetry-adapted perturbation theory-based force field is included. Semiempirical computations are possible through DFTB+ and MOPAC interfaces. For calculations based on density functional theory, a Message Passing Interface (MPI) interface to the Graphics Processing Unit (GPU)-accelerated TeraChem program is available. The program is available on request. Copyright © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Verhaegen, Frank; Seuntjens, Jan
2008-03-01
Monte Carlo particle transport techniques offer exciting tools for radiotherapy research, where they play an increasingly important role. Topics of research related to clinical applications range from treatment planning, motion and registration studies, brachytherapy, verification imaging and dosimetry. The International Workshop on Monte Carlo Techniques in Radiotherapy Delivery and Verification took place in a hotel in Montreal in French Canada, from 29 May-1 June 2007, and was the third workshop to be held on a related topic, which now seems to have become a tri-annual event. About one hundred workers from many different countries participated in the four-day meeting. Seventeen experts in the field were invited to review topics and present their latest work. About half of the audience was made up by young graduate students. In a very full program, 57 papers were presented and 10 posters were on display during most of the meeting. On the evening of the third day a boat trip around the island of Montreal allowed participants to enjoy the city views, and to sample the local cuisine. The topics covered at the workshop included the latest developments in the most popular Monte Carlo transport algorithms, fast Monte Carlo, statistical issues, source modeling, MC treatment planning, modeling of imaging devices for treatment verification, registration and deformation of images and a sizeable number of contributions on brachytherapy. In this volume you will find 27 short papers resulting from the workshop on a variety of topics, some of them on very new stuff such as graphics processing units for fast computing, PET modeling, dual-energy CT, calculations in dynamic phantoms, tomotherapy devices, . . . . We acknowledge the financial support of the National Cancer Institute of Canada, the Institute of Cancer Research of the Canadian Institutes of Health Research, the Association Québécoise des Physicien(ne)s Médicaux Clinique, the Institute of Physics, and MedicalPhysicsWeb. At McGill we thank the following departments for support: the Cancer Axis of the Research Institute of the McGill University Health Center, the Faculties of Medicine and Science, the Departments of Oncology and Physics and the Medical Physics Unit. The following companies are thanked: TomoTherapy and Standard Imaging. The American Association of Physicists in Medicine and the International Atomic Energy Agency are gratefully acknowledged for endorsing the meeting. A final word of thanks goes out to all of those who contributed to the successful Workshop: first of all our administrative assistant Ms Margery Knewstubb, the website developer Dr François DeBlois, the two heads of the logistics team, Ms Emily Poon and Ms Emily Heath, our local medical physics students and staff, the IOP staff and the authors who shared their new and exciting work with us. Editors: Frank Verhaegen and Jan Seuntjens (McGill University) Associate editors: Luc Beaulieu, Iwan Kawrakow, Tony Popescu and David Rogers
Fermi gases with imaginary mass imbalance and the sign problem in Monte-Carlo calculations
NASA Astrophysics Data System (ADS)
Roscher, Dietrich; Braun, Jens; Chen, Jiunn-Wei; Drut, Joaquín E.
2014-05-01
Fermi gases in strongly coupled regimes are inherently challenging for many-body methods. Although progress has been made analytically, quantitative results require ab initio numerical approaches, such as Monte-Carlo (MC) calculations. However, mass-imbalanced and spin-imbalanced gases are not accessible to MC calculations due to the infamous sign problem. For finite spin imbalance, the problem can be circumvented using imaginary polarizations and analytic continuation, and large parts of the phase diagram then become accessible. We propose to apply this strategy to the mass-imbalanced case, which opens up the possibility to study the associated phase diagram with MC calculations. We perform a first mean-field analysis which suggests that zero-temperature studies, as well as detecting a potential (tri)critical point, are feasible.
2006-10-01
The objective was to construct a bridge between existing and future microscopic simulation codes ( kMC , MD, MC, BD, LB etc.) and traditional, continuum...kinetic Monte Carlo, kMC , equilibrium MC, Lattice-Boltzmann, LB, Brownian Dynamics, BD, or general agent-based, AB) simulators. It also, fortuitously...cond-mat/0310460 at arXiv.org. 27. Coarse Projective kMC Integration: Forward/Reverse Initial and Boundary Value Problems", R. Rico-Martinez, C. W
Speckle-field propagation in 'frozen' turbulence: brightness function approach
NASA Astrophysics Data System (ADS)
Dudorov, Vadim V.; Vorontsov, Mikhail A.; Kolosov, Valeriy V.
2006-08-01
Speckle-field long- and short-exposure spatial correlation characteristics for target-in-the-loop (TIL) laser beam propagation and scattering in atmospheric turbulence are analyzed through the use of two different approaches: the conventional Monte Carlo (MC) technique and the recently developed brightness function (BF) method. Both the MC and the BF methods are applied to analysis of speckle-field characteristics averaged over target surface roughness realizations under conditions of 'frozen' turbulence. This corresponds to TIL applications where speckle-field fluctuations associated with target surface roughness realization updates occur within a time scale that can be significantly shorter than the characteristic atmospheric turbulence time. Computational efficiency and accuracy of both methods are compared on the basis of a known analytical solution for the long-exposure mutual correlation function. It is shown that in the TIL propagation scenarios considered the BF method provides improved accuracy and requires significantly less computational time than the conventional MC technique. For TIL geometry with a Gaussian outgoing beam and Lambertian target surface, both analytical and numerical estimations for the speckle-field long-exposure correlation length are obtained. Short-exposure speckle-field correlation characteristics corresponding to propagation in 'frozen' turbulence are estimated using the BF method. It is shown that atmospheric turbulence-induced static refractive index inhomogeneities do not significantly affect the characteristic correlation length of the speckle field, whereas long-exposure spatial correlation characteristics are strongly dependent on turbulence strength.
Speckle-field propagation in 'frozen' turbulence: brightness function approach.
Dudorov, Vadim V; Vorontsov, Mikhail A; Kolosov, Valeriy V
2006-08-01
Speckle-field long- and short-exposure spatial correlation characteristics for target-in-the-loop (TIL) laser beam propagation and scattering in atmospheric turbulence are analyzed through the use of two different approaches: the conventional Monte Carlo (MC) technique and the recently developed brightness function (BF) method. Both the MC and the BF methods are applied to analysis of speckle-field characteristics averaged over target surface roughness realizations under conditions of 'frozen' turbulence. This corresponds to TIL applications where speckle-field fluctuations associated with target surface roughness realization updates occur within a time scale that can be significantly shorter than the characteristic atmospheric turbulence time. Computational efficiency and accuracy of both methods are compared on the basis of a known analytical solution for the long-exposure mutual correlation function. It is shown that in the TIL propagation scenarios considered the BF method provides improved accuracy and requires significantly less computational time than the conventional MC technique. For TIL geometry with a Gaussian outgoing beam and Lambertian target surface, both analytical and numerical estimations for the speckle-field long-exposure correlation length are obtained. Short-exposure speckle-field correlation characteristics corresponding to propagation in 'frozen' turbulence are estimated using the BF method. It is shown that atmospheric turbulence-induced static refractive index inhomogeneities do not significantly affect the characteristic correlation length of the speckle field, whereas long-exposure spatial correlation characteristics are strongly dependent on turbulence strength.
Pediatric personalized CT-dosimetry Monte Carlo simulations, using computational phantoms
NASA Astrophysics Data System (ADS)
Papadimitroulas, P.; Kagadis, G. C.; Ploussi, A.; Kordolaimi, S.; Papamichail, D.; Karavasilis, E.; Syrgiamiotis, V.; Loudos, G.
2015-09-01
The last 40 years Monte Carlo (MC) simulations serve as a “gold standard” tool for a wide range of applications in the field of medical physics and tend to be essential in daily clinical practice. Regarding diagnostic imaging applications, such as computed tomography (CT), the assessment of deposited energy is of high interest, so as to better analyze the risks and the benefits of the procedure. The last few years a big effort is done towards personalized dosimetry, especially in pediatric applications. In the present study the GATE toolkit was used and computational pediatric phantoms have been modeled for the assessment of CT examinations dosimetry. The pediatric models used come from the XCAT and IT'IS series. The X-ray spectrum of a Brightspeed CT scanner was simulated and validated with experimental data. Specifically, a DCT-10 ionization chamber was irradiated twice using 120 kVp with 100 mAs and 200 mAs, for 1 sec in 1 central axial slice (thickness = 10mm). The absorbed dose was measured in air resulting in differences lower than 4% between the experimental and simulated data. The simulations were acquired using ˜1010 number of primaries in order to achieve low statistical uncertainties. Dose maps were also saved for quantification of the absorbed dose in several children critical organs during CT acquisition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynoso, F; Cho, S
Purpose: To develop and validate a Monte Carlo (MC) model of a Phillips RT-250 orthovoltage unit to test various beam spectrum modulation strategies for in vitro/vivo studies. A model of this type would enable the production of unconventional beams from a typical orthovoltage unit for novel therapeutic applications such as gold nanoparticle-aided radiotherapy. Methods: The MCNP5 code system was used to create a MC model of the head of RT-250 and a 30 × 30 × 30 cm{sup 3} water phantom. For the x-ray machine head, the current model includes the vacuum region, beryllium window, collimators, inherent filters and exteriormore » steel housing. For increased computational efficiency, the primary x-ray spectrum from the target was calculated from a well-validated analytical software package. Calculated percentage-depth-dose (PDD) values and photon spectra were validated against experimental data from film and Compton-scatter spectrum measurements. Results: The model was validated for three common settings of the machine namely, 250 kVp (0.25 mm Cu), 125 kVp (2 mm Al), and 75 kVp (2 mm Al). The MC results for the PDD curves were compared with film measurements and showed good agreement for all depths with a maximum difference of 4 % around dmax and under 2.5 % for all other depths. The primary photon spectra were also measured and compared with the MC results showing reasonable agreement between the two, validating the input spectra and the final spectra as predicted by the current MC model. Conclusion: The current MC model accurately predicted the dosimetric and spectral characteristics of each beam from the RT-250 orthovoltage unit, demonstrating its applicability and reliability for beam spectrum modulation tasks. It accomplished this without the need to model the bremsstrahlung xray production from the target, while significantly improved on computational efficiency by at least two orders of magnitude. Supported by DOD/PCRP grant W81XWH-12-1-0198.« less
A novel Monte Carlo algorithm for simulating crystals with McStas
NASA Astrophysics Data System (ADS)
Alianelli, L.; Sánchez del Río, M.; Felici, R.; Andersen, K. H.; Farhi, E.
2004-07-01
We developed an original Monte Carlo algorithm for the simulation of Bragg diffraction by mosaic, bent and gradient crystals. It has practical applications, as it can be used for simulating imperfect crystals (monochromators, analyzers and perhaps samples) in neutron ray-tracing packages, like McStas. The code we describe here provides a detailed description of the particle interaction with the microscopic homogeneous regions composing the crystal, therefore it can be used also for the calculation of quantities having a conceptual interest, as multiple scattering, or for the interpretation of experiments aiming at characterizing crystals, like diffraction topographs.
A method for photon beam Monte Carlo multileaf collimator particle transport
NASA Astrophysics Data System (ADS)
Siebers, Jeffrey V.; Keall, Paul J.; Kim, Jong Oh; Mohan, Radhe
2002-09-01
Monte Carlo (MC) algorithms are recognized as the most accurate methodology for patient dose assessment. For intensity-modulated radiation therapy (IMRT) delivered with dynamic multileaf collimators (DMLCs), accurate dose calculation, even with MC, is challenging. Accurate IMRT MC dose calculations require inclusion of the moving MLC in the MC simulation. Due to its complex geometry, full transport through the MLC can be time consuming. The aim of this work was to develop an MLC model for photon beam MC IMRT dose computations. The basis of the MC MLC model is that the complex MLC geometry can be separated into simple geometric regions, each of which readily lends itself to simplified radiation transport. For photons, only attenuation and first Compton scatter interactions are considered. The amount of attenuation material an individual particle encounters while traversing the entire MLC is determined by adding the individual amounts from each of the simplified geometric regions. Compton scatter is sampled based upon the total thickness traversed. Pair production and electron interactions (scattering and bremsstrahlung) within the MLC are ignored. The MLC model was tested for 6 MV and 18 MV photon beams by comparing it with measurements and MC simulations that incorporate the full physics and geometry for fields blocked by the MLC and with measurements for fields with the maximum possible tongue-and-groove and tongue-or-groove effects, for static test cases and for sliding windows of various widths. The MLC model predicts the field size dependence of the MLC leakage radiation within 0.1% of the open-field dose. The entrance dose and beam hardening behind a closed MLC are predicted within +/-1% or 1 mm. Dose undulations due to differences in inter- and intra-leaf leakage are also correctly predicted. The MC MLC model predicts leaf-edge tongue-and-groove dose effect within +/-1% or 1 mm for 95% of the points compared at 6 MV and 88% of the points compared at 18 MV. The dose through a static leaf tip is also predicted generally within +/-1% or 1 mm. Tests with sliding windows of various widths confirm the accuracy of the MLC model for dynamic delivery and indicate that accounting for a slight leaf position error (0.008 cm for our MLC) will improve the accuracy of the model. The MLC model developed is applicable to both dynamic MLC and segmental MLC IMRT beam delivery and will be useful for patient IMRT dose calculations, pre-treatment verification of IMRT delivery and IMRT portal dose transmission dosimetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirkovic, D; Titt, U; Mohan, R
2016-06-15
Purpose: To evaluate effects of motion and variable relative biological effectiveness (RBE) in a lung cancer patient treated with passively scattered proton therapy using dose volume histograms associated with patient dose computed using three different methods. Methods: A proton treatment plan of a lung cancer patient optimized using clinical treatment planning system (TPS) was used to construct a detailed Monte Carlo (MC) model of the beam delivery system and the patient specific aperture and compensator. A phase space file containing all particles transported through the beam line was collected at the distal surface of the range compensator and subsequently transportedmore » through two different patient models. The first model was based on the average CT used by the TPS and the second model included all 10 phases of the corresponding 4DCT. The physical dose and proton linear energy transfer (LET) were computed in each voxel of two models and used to compute constant and variable RBE MC dose on average CT and 4D CT. The MC computed doses were compared to the TPS dose using dose volume histograms for relevant structures. Results: The results show significant differences in doses to the target and critical structures suggesting the need for more accurate proton dose computation methods. In particular, the 4D dose shows reduced coverage of the target and higher dose to the spinal cord, while variable RBE dose shows higher lung dose. Conclusion: The methodology developed in this pilot study is currently used for the analysis of a cohort of ∼90 lung patients from a clinical trial comparing proton and photon therapy for lung cancer. The results from this study will help us in determining the clinical significance of more accurate dose computation models in proton therapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y; Department of Engineering Physics, Tsinghua University, Beijing; Tian, Z
Purpose: Acuros BV has become available to perform accurate dose calculations in high-dose-rate (HDR) brachytherapy with phantom heterogeneity considered by solving the Boltzmann transport equation. In this work, we performed validation studies regarding the dose calculation accuracy of Acuros BV in cases with a shielded cylinder applicator using Monte Carlo (MC) simulations. Methods: Fifteen cases were considered in our studies, covering five different diameters of the applicator and three different shielding degrees. For each case, a digital phantom was created in Varian BrachyVision with the cylinder applicator inserted in the middle of a large water phantom. A treatment plan withmore » eight dwell positions was generated for these fifteen cases. Dose calculations were performed with Acuros BV. We then generated a voxelized phantom of the same geometry, and the materials were modeled according to the vendor’s specifications. MC dose calculations were then performed using our in-house developed fast MC dose engine for HDR brachytherapy (gBMC) on a GPU platform, which is able to simulate both photon transport and electron transport in a voxelized geometry. A phase-space file for the Ir-192 HDR source was used as a source model for MC simulations. Results: Satisfactory agreements between the dose distributions calculated by Acuros BV and those calculated by gBMC were observed in all cases. Quantitatively, we computed point-wise dose difference within the region that receives a dose higher than 10% of the reference dose, defined to be the dose at 5mm outward away from the applicator surface. The mean dose difference was ∼0.45%–0.51% and the 95-percentile maximum difference was ∼1.24%–1.47%. Conclusion: Acuros BV is able to accurately perform dose calculations in HDR brachytherapy with a shielded cylinder applicator.« less
Integration of OpenMC methods into MAMMOTH and Serpent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerby, Leslie; DeHart, Mark; Tumulak, Aaron
OpenMC, a Monte Carlo particle transport simulation code focused on neutron criticality calculations, contains several methods we wish to emulate in MAMMOTH and Serpent. First, research coupling OpenMC and the Multiphysics Object-Oriented Simulation Environment (MOOSE) has shown promising results. Second, the utilization of Functional Expansion Tallies (FETs) allows for a more efficient passing of multiphysics data between OpenMC and MOOSE. Both of these capabilities have been preliminarily implemented into Serpent. Results are discussed and future work recommended.
Monte Carlo-based QA for IMRT of head and neck cancers
NASA Astrophysics Data System (ADS)
Tang, F.; Sham, J.; Ma, C.-M.; Li, J.-S.
2007-06-01
It is well-known that the presence of large air cavity in a dense medium (or patient) introduces significant electronic disequilibrium when irradiated with megavoltage X-ray field. This condition may worsen by the possible use of tiny beamlets in intensity-modulated radiation therapy (IMRT). Commercial treatment planning systems (TPSs), in particular those based on the pencil-beam method, do not provide accurate dose computation for the lungs and other cavity-laden body sites such as the head and neck. In this paper we present the use of Monte Carlo (MC) technique for dose re-calculation of IMRT of head and neck cancers. In our clinic, a turn-key software system is set up for MC calculation and comparison with TPS-calculated treatment plans as part of the quality assurance (QA) programme for IMRT delivery. A set of 10 off-the-self PCs is employed as the MC calculation engine with treatment plan parameters imported from the TPS via a graphical user interface (GUI) which also provides a platform for launching remote MC simulation and subsequent dose comparison with the TPS. The TPS-segmented intensity maps are used as input for the simulation hence skipping the time-consuming simulation of the multi-leaf collimator (MLC). The primary objective of this approach is to assess the accuracy of the TPS calculations in the presence of air cavities in the head and neck whereas the accuracy of leaf segmentation is verified by fluence measurement using a fluoroscopic camera-based imaging device. This measurement can also validate the correct transfer of intensity maps to the record and verify system. Comparisons between TPS and MC calculations of 6 MV IMRT for typical head and neck treatments review regional consistency in dose distribution except at and around the sinuses where our pencil-beam-based TPS sometimes over-predicts the dose by up to 10%, depending on the size of the cavities. In addition, dose re-buildup of up to 4% is observed at the posterior nasopharyngeal mucosa for some treatments with heavily-weighted anterior fields.
NASA Astrophysics Data System (ADS)
Montanari, Davide; Scolari, Enrica; Silvestri, Chiara; Jiang Graves, Yan; Yan, Hao; Cervino, Laura; Rice, Roger; Jiang, Steve B.; Jia, Xun
2014-03-01
Cone beam CT (CBCT) has been widely used for patient setup in image-guided radiation therapy (IGRT). Radiation dose from CBCT scans has become a clinical concern. The purposes of this study are (1) to commission a graphics processing unit (GPU)-based Monte Carlo (MC) dose calculation package gCTD for Varian On-Board Imaging (OBI) system and test the calculation accuracy, and (2) to quantitatively evaluate CBCT dose from the OBI system in typical IGRT scan protocols. We first conducted dose measurements in a water phantom. X-ray source model parameters used in gCTD are obtained through a commissioning process. gCTD accuracy is demonstrated by comparing calculations with measurements in water and in CTDI phantoms. Twenty-five brain cancer patients are used to study dose in a standard-dose head protocol, and 25 prostate cancer patients are used to study dose in pelvis protocol and pelvis spotlight protocol. Mean dose to each organ is calculated. Mean dose to 2% voxels that have the highest dose is also computed to quantify the maximum dose. It is found that the mean dose value to an organ varies largely among patients. Moreover, dose distribution is highly non-homogeneous inside an organ. The maximum dose is found to be 1-3 times higher than the mean dose depending on the organ, and is up to eight times higher for the entire body due to the very high dose region in bony structures. High computational efficiency has also been observed in our studies, such that MC dose calculation time is less than 5 min for a typical case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kieselmann, J; Bartzsch, S; Oelfke, U
Purpose: Microbeam Radiation Therapy is a preclinical method in radiation oncology that modulates radiation fields on a micrometre scale. Dose calculation is challenging due to arising dose gradients and therapeutically important dose ranges. Monte Carlo (MC) simulations, often used as gold standard, are computationally expensive and hence too slow for the optimisation of treatment parameters in future clinical applications. On the other hand, conventional kernel based dose calculation leads to inaccurate results close to material interfaces. The purpose of this work is to overcome these inaccuracies while keeping computation times low. Methods: A point kernel superposition algorithm is modified tomore » account for tissue inhomogeneities. Instead of conventional ray tracing approaches, methods from differential geometry are applied and the space around the primary photon interaction is locally warped. The performance of this approach is compared to MC simulations and a simple convolution algorithm (CA) for two different phantoms and photon spectra. Results: While peak doses of all dose calculation methods agreed within less than 4% deviations, the proposed approach surpassed a simple convolution algorithm in accuracy by a factor of up to 3 in the scatter dose. In a treatment geometry similar to possible future clinical situations differences between Monte Carlo and the differential geometry algorithm were less than 3%. At the same time the calculation time did not exceed 15 minutes. Conclusion: With the developed method it was possible to improve the dose calculation based on the CA method with respect to accuracy especially at sharp tissue boundaries. While the calculation is more extensive than for the CA method and depends on field size, the typical calculation time for a 20×20 mm{sup 2} field on a 3.4 GHz and 8 GByte RAM processor remained below 15 minutes. Parallelisation and optimisation of the algorithm could lead to further significant calculation time reductions.« less
NASA Astrophysics Data System (ADS)
Petoukhova, A. L.; van Wingerden, K.; Wiggenraad, R. G. J.; van de Vaart, P. J. M.; van Egmond, J.; Franken, E. M.; van Santvoort, J. P. C.
2010-08-01
This study presents data for verification of the iPlan RT Monte Carlo (MC) dose algorithm (BrainLAB, Feldkirchen, Germany). MC calculations were compared with pencil beam (PB) calculations and verification measurements in phantoms with lung-equivalent material, air cavities or bone-equivalent material to mimic head and neck and thorax and in an Alderson anthropomorphic phantom. Dosimetric accuracy of MC for the micro-multileaf collimator (MLC) simulation was tested in a homogeneous phantom. All measurements were performed using an ionization chamber and Kodak EDR2 films with Novalis 6 MV photon beams. Dose distributions measured with film and calculated with MC in the homogeneous phantom are in excellent agreement for oval, C and squiggle-shaped fields and for a clinical IMRT plan. For a field with completely closed MLC, MC is much closer to the experimental result than the PB calculations. For fields larger than the dimensions of the inhomogeneities the MC calculations show excellent agreement (within 3%/1 mm) with the experimental data. MC calculations in the anthropomorphic phantom show good agreement with measurements for conformal beam plans and reasonable agreement for dynamic conformal arc and IMRT plans. For 6 head and neck and 15 lung patients a comparison of the MC plan with the PB plan was performed. Our results demonstrate that MC is able to accurately predict the dose in the presence of inhomogeneities typical for head and neck and thorax regions with reasonable calculation times (5-20 min). Lateral electron transport was well reproduced in MC calculations. We are planning to implement MC calculations for head and neck and lung cancer patients.
NASA Astrophysics Data System (ADS)
Yamashita, T.; Akagi, T.; Aso, T.; Kimura, A.; Sasaki, T.
2012-11-01
The pencil beam algorithm (PBA) is reasonably accurate and fast. It is, therefore, the primary method used in routine clinical treatment planning for proton radiotherapy; still, it needs to be validated for use in highly inhomogeneous regions. In our investigation of the effect of patient inhomogeneity, PBA was compared with Monte Carlo (MC). A software framework was developed for the MC simulation of radiotherapy based on Geant4. Anatomical sites selected for the comparison were the head/neck, liver, lung and pelvis region. The dose distributions calculated by the two methods in selected examples were compared, as well as a dose volume histogram (DVH) derived from the dose distributions. The comparison of the off-center ratio (OCR) at the iso-center showed good agreement between the PBA and MC, while discrepancies were seen around the distal fall-off regions. While MC showed a fine structure on the OCR in the distal fall-off region, the PBA showed smoother distribution. The fine structures in MC calculation appeared downstream of very low-density regions. Comparison of DVHs showed that most of the target volumes were similarly covered, while some OARs located around the distal region received a higher dose when calculated by MC than the PBA.
NASA Astrophysics Data System (ADS)
Davidson, S.; Cui, J.; Followill, D.; Ibbott, G.; Deasy, J.
2008-02-01
The Dose Planning Method (DPM) is one of several 'fast' Monte Carlo (MC) computer codes designed to produce an accurate dose calculation for advanced clinical applications. We have developed a flexible machine modeling process and validation tests for open-field and IMRT calculations. To complement the DPM code, a practical and versatile source model has been developed, whose parameters are derived from a standard set of planning system commissioning measurements. The primary photon spectrum and the spectrum resulting from the flattening filter are modeled by a Fatigue function, cut-off by a multiplying Fermi function, which effectively regularizes the difficult energy spectrum determination process. Commonly-used functions are applied to represent the off-axis softening, increasing primary fluence with increasing angle ('the horn effect'), and electron contamination. The patient dependent aspect of the MC dose calculation utilizes the multi-leaf collimator (MLC) leaf sequence file exported from the treatment planning system DICOM output, coupled with the source model, to derive the particle transport. This model has been commissioned for Varian 2100C 6 MV and 18 MV photon beams using percent depth dose, dose profiles, and output factors. A 3-D conformal plan and an IMRT plan delivered to an anthropomorphic thorax phantom were used to benchmark the model. The calculated results were compared to Pinnacle v7.6c results and measurements made using radiochromic film and thermoluminescent detectors (TLD).
Monte Carlo calculation of proton stopping power and ranges in water for therapeutic energies
NASA Astrophysics Data System (ADS)
Bozkurt, Ahmet
2017-09-01
Monte Carlo is a statistical technique for obtaining numerical solutions to physical or mathematical problems that are analytically impractical, if not impossible, to solve. For charged particle transport problems, it presents many advantages over deterministic methods since such problems require a realistic description of the problem geometry, as well as detailed tracking of every source particle. Thus, MC can be considered as a powerful alternative to the well-known Bethe-Bloche equation where an equation with various corrections is used to obtain stopping power and ranges of electrons, positrons, protons, alphas, etc. This study presents how a stochastic method such as MC can be utilized to obtain certain quantities of practical importance related to charged particle transport. Sample simulation geometries were formed for water medium where disk shaped thin detectors were employed to compute average values of absorbed dose and flux at specific distances. For each detector cell, these quantities were utilized to evaluate the values of the range and the stopping power, as well as the shape of Bragg curve, for mono-energetic point source pencil beams of protons. The results were found to be ±2% compared to the data from the NIST compilation. It is safe to conclude that this approach can be extended to determine dosimetric quantities for other media, energies and charged particle types.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, Imad, E-mail: iali@ouhsc.edu; Ahmad, Salahuddin
2013-10-01
To compare the doses calculated using the BrainLAB pencil beam (PB) and Monte Carlo (MC) algorithms for tumors located in various sites including the lung and evaluate quality assurance procedures required for the verification of the accuracy of dose calculation. The dose-calculation accuracy of PB and MC was also assessed quantitatively with measurement using ionization chamber and Gafchromic films placed in solid water and heterogeneous phantoms. The dose was calculated using PB convolution and MC algorithms in the iPlan treatment planning system from BrainLAB. The dose calculation was performed on the patient's computed tomography images with lesions in various treatmentmore » sites including 5 lungs, 5 prostates, 4 brains, 2 head and necks, and 2 paraspinal tissues. A combination of conventional, conformal, and intensity-modulated radiation therapy plans was used in dose calculation. The leaf sequence from intensity-modulated radiation therapy plans or beam shapes from conformal plans and monitor units and other planning parameters calculated by the PB were identical for calculating dose with MC. Heterogeneity correction was considered in both PB and MC dose calculations. Dose-volume parameters such as V95 (volume covered by 95% of prescription dose), dose distributions, and gamma analysis were used to evaluate the calculated dose by PB and MC. The measured doses by ionization chamber and EBT GAFCHROMIC film in solid water and heterogeneous phantoms were used to quantitatively asses the accuracy of dose calculated by PB and MC. The dose-volume histograms and dose distributions calculated by PB and MC in the brain, prostate, paraspinal, and head and neck were in good agreement with one another (within 5%) and provided acceptable planning target volume coverage. However, dose distributions of the patients with lung cancer had large discrepancies. For a plan optimized with PB, the dose coverage was shown as clinically acceptable, whereas in reality, the MC showed a systematic lack of dose coverage. The dose calculated by PB for lung tumors was overestimated by up to 40%. An interesting feature that was observed is that despite large discrepancies in dose-volume histogram coverage of the planning target volume between PB and MC, the point doses at the isocenter (center of the lesions) calculated by both algorithms were within 7% even for lung cases. The dose distributions measured with EBT GAFCHROMIC films in heterogeneous phantoms showed large discrepancies of nearly 15% lower than PB at interfaces between heterogeneous media, where these lower doses measured by the film were in agreement with those by MC. The doses (V95) calculated by MC and PB agreed within 5% for treatment sites with small tissue heterogeneities such as the prostate, brain, head and neck, and paraspinal tumors. Considerable discrepancies, up to 40%, were observed in the dose-volume coverage between MC and PB in lung tumors, which may affect clinical outcomes. The discrepancies between MC and PB increased for 15 MV compared with 6 MV indicating the importance of implementation of accurate clinical treatment planning such as MC. The comparison of point doses is not representative of the discrepancies in dose coverage and might be misleading in evaluating the accuracy of dose calculation between PB and MC. Thus, the clinical quality assurance procedures required to verify the accuracy of dose calculation using PB and MC need to consider measurements of 2- and 3-dimensional dose distributions rather than a single point measurement using heterogeneous phantoms instead of homogenous water-equivalent phantoms.« less
NASA Astrophysics Data System (ADS)
Sakota, Daisuke; Takatani, Setsuo
2011-07-01
We have sought for non-invasive diagnosis of blood during the extracorporeal circulation support. To achieve the goal, we have newly developed a photon-cell interactive Monte Carlo (pciMC) model for optical propagation through blood. The pciMC actually describes the interaction of photons with 3-dimentional biconcave RBCs. The scattering is described by micro-scopical RBC boundary condition based on geometric optics. By using pciMC, we modeled the RBCs inside the extracorporeal circuit will be oriented by the blood flow. The RBCs' orientation was defined as their long axis being directed to the center of the circulation tube. Simultaneously the RBCs were allowed to randomly rotate about the long axis direction. As a result, as flow rate increased, the orientation rate increased and converged to approximately 22% at 0.5 L/min flow rate and above. And finally, by using this model, the pciMC non-invasively and absolutely predicted Hct and hemoglobin with the accuracies of 0.84+/-0.82 [HCT%] and 0.42+/-0.28 [g/dL] respectively against measurements by a blood gas analyzer.
A Detailed FLUKA-2005 Monte Carlo Simulation for the ATIC Detector
NASA Technical Reports Server (NTRS)
Gunasingha, R. M.; Fazely, A. R.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Chang, J.; Christl, M.; Ganel, O.; Guzik, T. G.
2006-01-01
We have performed a detailed Monte Carlo (MC) calculation for the Advanced thin Ionization Calorimeter (ATIC) detector using the MC code FLUKA-2005 which is capable of simulating particles up to 10 PeV. The ATIC detector has completed two successful balloon flights from McMurdo, Antarctica lasting a total of more than 35 days. ATIC is designed as a multiple, long duration balloon Bight, investigation of the cosmic ray spectra from below 50 GeV to near 100 TeV total energy; using a fully active Bismuth Germanate @GO) calorimeter. It is equipped with a large mosaic of silicon detector pixels capable of charge identification and as a particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the middle and below a 0.75 nuclear interaction length graphite target. Our calculations are part of an analysis package of both A- and energy-dependences of different nuclei interacting with the ATIC detector. The MC simulates the responses of different components of the detector such as the Simatrix, the scintillator hodoscopes and the BGO calorimeter to various nuclei. We also show comparisons of the FLUKA-2005 MC calculations with a GEANT calculation and data for protons, He and CNO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snow, Dr., Joel
This final report is presented by Langston University (LU) for the project entitled "Langston University High Energy Physics" (LUHEP) under the direction of principal investigator (PI) and project director Professor Joel Snow. The project encompassed high energy physics research performed at hadron colliders. The PI is a collaborator on the DZero experiment at Fermi National Accelerator Laboratory in Batavia, IL, USA and the ATLAS experiment at CERN in Geneva, Switzerland and was during the entire project period from April 1, 1999 until May 14, 2012. Both experiments seek to understand the fundamental constituents of the physical universe and the forcesmore » that govern their interactions. In 1999 as member of the Online Systems group for Run 2 the PI developed a cross-platform Python-based, Graphical User Interface (GUI) application for monitoring and control of EPICS based devices for control room use. This served as a model for other developers to enhance and build on for further monitoring and control tasks written in Python. Subsequently the PI created and developed a cross-platform C++ GUI utilizing a networked client-server paradigm and based on ROOT, the object oriented analysis framework from CERN. The GUI served as a user interface to the Examine tasks running in the D\\O\\ control room which monitored the status and integrity of data taking for Run 2. The PI developed the histogram server/control interface to the GUI client for the EXAMINE processes. The histogram server was built from the ROOT framework and was integrated into the D\\O\\ framework used for online monitoring programs and offline analysis. The PI developed the first implementation of displaying histograms dynamically generated by ROOT in a Web Browser. The PI's work resulted in several talks and papers at international conferences and workshops. The PI established computing software infrastructure at LU and U. Oklahoma (OU) to do analysis of DZero production data and produce simulation data for the experiment. Eventually this included the FNAL SAM data grid system, the SAMGrid (SG) infrastructure, and the Open Science Grid software stacks for computing and storage elements. At the end of 2003 Snow took on the role of global Monte Carlo production coordinator for the DØ experiment. A role which continues til this day. In January of 2004 Snow started working with the SAMGrid development team to help debug, deploy, and integrate SAMGrid with DØ Monte Carlo production. Snow installed and configured SG execution and client sites at LUHEP and OUHEP, and a SG scheduler site at LUHEP. The PI developed a python based GUI (DAJ) that acts as a front end for job submission to SAMGrid. The GUI interfaces to the DZero Mone Carlo (MC) request system that uses SAM to manage MC requests by the physics analysis groups. DAJ significantly simplified SG job submission and was deployed in DZero in an effort to increase the user base of SG. The following year was the advent of SAMGrid job submission to the Open Science Grid (OSG) and LHC Computing Grid (LCG) through a forwarding mechanism. The PI oversaw the integration of these grids into the existing production infrastructure. The PI developed an automatic MC (Automc) request processing system capable of operating without user intervention (other than getting grid credentials), and able to submit to any number of sites on various grids. The system manages production at all but 2 sites. The system was deployed at Fermilab and remains operating there today. The PI's work in distributed computing resulted in several talks at international conferences. UTA, OU, and LU were chosen as the collaborating institutions that form the Southwest Tier 2 Center (SWT2) for ATLAS. During the project period the PI contributed to the online and offline software infrastructure through his work with the Run 2 online group, and played a major role in Monte Carlo production for DZero. During the part of the project period in which the PI served as MC production coordinator MC production increased very significantly. In the first year of the PI's tenure as production coordinator production was 159M events and 6.7~TB of data. During the last year of the project period production was 2,342~M events and 262~TB of data. That is a factor of 15 increase in events and 39 in data volume. The increase occurred with improvements in computer hardware and networks, through the use of grid technology on diverse resources, and through increased automation and efficiency of the production process. LU HEP developed and deployed the automatic MC request processing system in use at FNAL. The complementary strategies of automation and grid production served DZero well. Fermilab has recognized LU HEP's contribution to DZero by allowing the PI to devote full time to research activities by appointing him a guest scientist for the last six years of the project period.« less
'spup' - an R package for uncertainty propagation in spatial environmental modelling
NASA Astrophysics Data System (ADS)
Sawicka, Kasia; Heuvelink, Gerard
2016-04-01
Computer models have become a crucial tool in engineering and environmental sciences for simulating the behaviour of complex static and dynamic systems. However, while many models are deterministic, the uncertainty in their predictions needs to be estimated before they are used for decision support. Currently, advances in uncertainty propagation and assessment have been paralleled by a growing number of software tools for uncertainty analysis, but none has gained recognition for a universal applicability, including case studies with spatial models and spatial model inputs. Due to the growing popularity and applicability of the open source R programming language we undertook a project to develop an R package that facilitates uncertainty propagation analysis in spatial environmental modelling. In particular, the 'spup' package provides functions for examining the uncertainty propagation starting from input data and model parameters, via the environmental model onto model predictions. The functions include uncertainty model specification, stochastic simulation and propagation of uncertainty using Monte Carlo (MC) techniques, as well as several uncertainty visualization functions. Uncertain environmental variables are represented in the package as objects whose attribute values may be uncertain and described by probability distributions. Both numerical and categorical data types are handled. Spatial auto-correlation within an attribute and cross-correlation between attributes is also accommodated for. For uncertainty propagation the package has implemented the MC approach with efficient sampling algorithms, i.e. stratified random sampling and Latin hypercube sampling. The design includes facilitation of parallel computing to speed up MC computation. The MC realizations may be used as an input to the environmental models called from R, or externally. Selected static and interactive visualization methods that are understandable by non-experts with limited background in statistics can be used to summarize and visualize uncertainty about the measured input, model parameters and output of the uncertainty propagation. We demonstrate that the 'spup' package is an effective and easy tool to apply and can be used in multi-disciplinary research and model-based decision support.
'spup' - an R package for uncertainty propagation analysis in spatial environmental modelling
NASA Astrophysics Data System (ADS)
Sawicka, Kasia; Heuvelink, Gerard
2017-04-01
Computer models have become a crucial tool in engineering and environmental sciences for simulating the behaviour of complex static and dynamic systems. However, while many models are deterministic, the uncertainty in their predictions needs to be estimated before they are used for decision support. Currently, advances in uncertainty propagation and assessment have been paralleled by a growing number of software tools for uncertainty analysis, but none has gained recognition for a universal applicability and being able to deal with case studies with spatial models and spatial model inputs. Due to the growing popularity and applicability of the open source R programming language we undertook a project to develop an R package that facilitates uncertainty propagation analysis in spatial environmental modelling. In particular, the 'spup' package provides functions for examining the uncertainty propagation starting from input data and model parameters, via the environmental model onto model predictions. The functions include uncertainty model specification, stochastic simulation and propagation of uncertainty using Monte Carlo (MC) techniques, as well as several uncertainty visualization functions. Uncertain environmental variables are represented in the package as objects whose attribute values may be uncertain and described by probability distributions. Both numerical and categorical data types are handled. Spatial auto-correlation within an attribute and cross-correlation between attributes is also accommodated for. For uncertainty propagation the package has implemented the MC approach with efficient sampling algorithms, i.e. stratified random sampling and Latin hypercube sampling. The design includes facilitation of parallel computing to speed up MC computation. The MC realizations may be used as an input to the environmental models called from R, or externally. Selected visualization methods that are understandable by non-experts with limited background in statistics can be used to summarize and visualize uncertainty about the measured input, model parameters and output of the uncertainty propagation. We demonstrate that the 'spup' package is an effective and easy tool to apply and can be used in multi-disciplinary research and model-based decision support.
TU-EF-304-03: 4D Monte Carlo Robustness Test for Proton Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souris, K; Sterpin, E; Lee, J
Purpose: Breathing motion and approximate dose calculation engines may increase proton range uncertainties. We address these two issues using a comprehensive 4D robustness evaluation tool based on an efficient Monte Carlo (MC) engine, which can simulate breathing with no significant increase in computation time. Methods: To assess the robustness of the treatment plan, multiple scenarios of uncertainties are simulated, taking into account the systematic and random setup errors, range uncertainties, and organ motion. Our fast MC dose engine, called MCsquare, implements optimized models on a massively-parallel computation architecture and allows us to accurately simulate a scenario in less than onemore » minute. The deviations of the uncertainty scenarios are then reported on a DVH-band and compared to the nominal plan.The robustness evaluation tool is illustrated in a lung case by comparing three 60Gy treatment plans. First, a plan is optimized on a PTV obtained by extending the CTV with an 8mm margin, in order to take into account systematic geometrical uncertainties, like in our current practice in radiotherapy. No specific strategy is employed to correct for tumor and organ motions. The second plan involves a PTV generated from the ITV, which encompasses the tumor volume in all breathing phases. The last plan results from robust optimization performed on the ITV, with robustness parameters of 3% for tissue density and 8 mm for positioning errors. Results: The robustness test revealed that the first two plans could not properly cover the target in the presence of uncertainties. CTV-coverage (D95) in the three plans ranged respectively between 39.4–55.5Gy, 50.2–57.5Gy, and 55.1–58.6Gy. Conclusion: A realistic robustness verification tool based on a fast MC dose engine has been developed. This test is essential to assess the quality of proton therapy plan and very useful to study various planning strategies for mobile tumors. This work is partly funded by IBA (Louvain-la-Neuve, Belgium)« less
Mermigkis, Panagiotis G; Tsalikis, Dimitrios G; Mavrantzas, Vlasis G
2015-10-28
A kinetic Monte Carlo (kMC) simulation algorithm is developed for computing the effective diffusivity of water molecules in a poly(methyl methacrylate) (PMMA) matrix containing carbon nanotubes (CNTs) at several loadings. The simulations are conducted on a cubic lattice to the bonds of which rate constants are assigned governing the elementary jump events of water molecules from one lattice site to another. Lattice sites belonging to PMMA domains of the membrane are assigned different rates than lattice sites belonging to CNT domains. Values of these two rate constants are extracted from available numerical data for water diffusivity within a PMMA matrix and a CNT pre-computed on the basis of independent atomistic molecular dynamics simulations, which show that water diffusivity in CNTs is 3 orders of magnitude faster than in PMMA. Our discrete-space, continuum-time kMC simulation results for several PMMA-CNT nanocomposite membranes (characterized by different values of CNT length L and diameter D and by different loadings of the matrix in CNTs) demonstrate that the overall or effective diffusivity, D(eff), of water in the entire polymeric membrane is of the same order of magnitude as its diffusivity in PMMA domains and increases only linearly with the concentration C (vol. %) in nanotubes. For a constant value of the concentration C, D(eff) is found to vary practically linearly also with the CNT aspect ratio L/D. The kMC data allow us to propose a simple bilinear expression for D(eff) as a function of C and L/D that can describe the numerical data for water mobility in the membrane extremely accurately. Additional simulations with two different CNT configurations (completely random versus aligned) show that CNT orientation in the polymeric matrix has only a minor effect on D(eff) (as long as CNTs do not fully penetrate the membrane). We have also extensively analyzed and quantified sublinear (anomalous) diffusive phenomena over small to moderate times and correlated them with the time needed for penetrant water molecules to explore the available large, fast-diffusing CNT pores before Fickian diffusion is reached.
NASA Astrophysics Data System (ADS)
Mermigkis, Panagiotis G.; Tsalikis, Dimitrios G.; Mavrantzas, Vlasis G.
2015-10-01
A kinetic Monte Carlo (kMC) simulation algorithm is developed for computing the effective diffusivity of water molecules in a poly(methyl methacrylate) (PMMA) matrix containing carbon nanotubes (CNTs) at several loadings. The simulations are conducted on a cubic lattice to the bonds of which rate constants are assigned governing the elementary jump events of water molecules from one lattice site to another. Lattice sites belonging to PMMA domains of the membrane are assigned different rates than lattice sites belonging to CNT domains. Values of these two rate constants are extracted from available numerical data for water diffusivity within a PMMA matrix and a CNT pre-computed on the basis of independent atomistic molecular dynamics simulations, which show that water diffusivity in CNTs is 3 orders of magnitude faster than in PMMA. Our discrete-space, continuum-time kMC simulation results for several PMMA-CNT nanocomposite membranes (characterized by different values of CNT length L and diameter D and by different loadings of the matrix in CNTs) demonstrate that the overall or effective diffusivity, Deff, of water in the entire polymeric membrane is of the same order of magnitude as its diffusivity in PMMA domains and increases only linearly with the concentration C (vol. %) in nanotubes. For a constant value of the concentration C, Deff is found to vary practically linearly also with the CNT aspect ratio L/D. The kMC data allow us to propose a simple bilinear expression for Deff as a function of C and L/D that can describe the numerical data for water mobility in the membrane extremely accurately. Additional simulations with two different CNT configurations (completely random versus aligned) show that CNT orientation in the polymeric matrix has only a minor effect on Deff (as long as CNTs do not fully penetrate the membrane). We have also extensively analyzed and quantified sublinear (anomalous) diffusive phenomena over small to moderate times and correlated them with the time needed for penetrant water molecules to explore the available large, fast-diffusing CNT pores before Fickian diffusion is reached.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Z; Shi, F; Gu, X
2016-06-15
Purpose: This proof-of-concept study is to develop a real-time Monte Carlo (MC) based treatment-dose reconstruction and monitoring system for radiotherapy, especially for the treatments with complicated delivery, to catch treatment delivery errors at the earliest possible opportunity and interrupt the treatment only when an unacceptable dosimetric deviation from our expectation occurs. Methods: First an offline scheme is launched to pre-calculate the expected dose from the treatment plan, used as ground truth for real-time monitoring later. Then an online scheme with three concurrent threads is launched while treatment delivering, to reconstruct and monitor the patient dose in a temporally resolved fashionmore » in real-time. Thread T1 acquires machine status every 20 ms to calculate and accumulate fluence map (FM). Once our accumulation threshold is reached, T1 transfers the FM to T2 for dose reconstruction ad starts to accumulate a new FM. A GPU-based MC dose calculation is performed on T2 when MC dose engine is ready and a new FM is available. The reconstructed instantaneous dose is directed to T3 for dose accumulation and real-time visualization. Multiple dose metrics (e.g. maximum and mean dose for targets and organs) are calculated from the current accumulated dose and compared with the pre-calculated expected values. Once the discrepancies go beyond our tolerance, an error message will be send to interrupt the treatment delivery. Results: A VMAT Head-and-neck patient case was used to test the performance of our system. Real-time machine status acquisition was simulated here. The differences between the actual dose metrics and the expected ones were 0.06%–0.36%, indicating an accurate delivery. ∼10Hz frequency of dose reconstruction and monitoring was achieved, with 287.94s online computation time compared to 287.84s treatment delivery time. Conclusion: Our study has demonstrated the feasibility of computing a dose distribution in a temporally resolved fashion in real-time and quantitatively and dosimetrically monitoring the treatment delivery.« less
NASA Astrophysics Data System (ADS)
Brdar, S.; Seifert, A.
2018-01-01
We present a novel Monte-Carlo ice microphysics model, McSnow, to simulate the evolution of ice particles due to deposition, aggregation, riming, and sedimentation. The model is an application and extension of the super-droplet method of Shima et al. (2009) to the more complex problem of rimed ice particles and aggregates. For each individual super-particle, the ice mass, rime mass, rime volume, and the number of monomers are predicted establishing a four-dimensional particle-size distribution. The sensitivity of the model to various assumptions is discussed based on box model and one-dimensional simulations. We show that the Monte-Carlo method provides a feasible approach to tackle this high-dimensional problem. The largest uncertainty seems to be related to the treatment of the riming processes. This calls for additional field and laboratory measurements of partially rimed snowflakes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisenbach, Markus; Li, Ying Wai
We report a new multicanonical Monte Carlo (MC) algorithm to obtain the density of states (DOS) for physical systems with continuous state variables in statistical mechanics. Our algorithm is able to obtain an analytical form for the DOS expressed in a chosen basis set, instead of a numerical array of finite resolution as in previous variants of this class of MC methods such as the multicanonical (MUCA) sampling and Wang-Landau (WL) sampling. This is enabled by storing the visited states directly in a data set and avoiding the explicit collection of a histogram. This practice also has the advantage ofmore » avoiding undesirable artificial errors caused by the discretization and binning of continuous state variables. Our results show that this scheme is capable of obtaining converged results with a much reduced number of Monte Carlo steps, leading to a significant speedup over existing algorithms.« less
Mathematical modelling of scanner-specific bowtie filters for Monte Carlo CT dosimetry
NASA Astrophysics Data System (ADS)
Kramer, R.; Cassola, V. F.; Andrade, M. E. A.; de Araújo, M. W. C.; Brenner, D. J.; Khoury, H. J.
2017-02-01
The purpose of bowtie filters in CT scanners is to homogenize the x-ray intensity measured by the detectors in order to improve the image quality and at the same time to reduce the dose to the patient because of the preferential filtering near the periphery of the fan beam. For CT dosimetry, especially for Monte Carlo calculations of organ and tissue absorbed doses to patients, it is important to take the effect of bowtie filters into account. However, material composition and dimensions of these filters are proprietary. Consequently, a method for bowtie filter simulation independent of access to proprietary data and/or to a specific scanner would be of interest to many researchers involved in CT dosimetry. This study presents such a method based on the weighted computer tomography dose index, CTDIw, defined in two cylindrical PMMA phantoms of 16 cm and 32 cm diameter. With an EGSnrc-based Monte Carlo (MC) code, ratios CTDIw/CTDI100,a were calculated for a specific CT scanner using PMMA bowtie filter models based on sigmoid Boltzmann functions combined with a scanner filter factor (SFF) which is modified during calculations until the calculated MC CTDIw/CTDI100,a matches ratios CTDIw/CTDI100,a, determined by measurements or found in publications for that specific scanner. Once the scanner-specific value for an SFF has been found, the bowtie filter algorithm can be used in any MC code to perform CT dosimetry for that specific scanner. The bowtie filter model proposed here was validated for CTDIw/CTDI100,a considering 11 different CT scanners and for CTDI100,c, CTDI100,p and their ratio considering 4 different CT scanners. Additionally, comparisons were made for lateral dose profiles free in air and using computational anthropomorphic phantoms. CTDIw/CTDI100,a determined with this new method agreed on average within 0.89% (max. 3.4%) and 1.64% (max. 4.5%) with corresponding data published by CTDosimetry (www.impactscan.org) for the CTDI HEAD and BODY phantoms, respectively. Comparison with results calculated using proprietary data for the PHILIPS Brilliance 64 scanner showed agreement on average within 2.5% (max. 5.8%) and with data measured for that scanner within 2.1% (max. 3.7%). Ratios of CTDI100,c/CTDI100, p for this study and corresponding data published by CTDosimetry (www.impactscan.org) agree on average within about 11% (max. 28.6%). Lateral dose profiles calculated with the proposed bowtie filter and with proprietary data agreed within 2% (max. 5.9%), and both calculated data agreed within 5.4% (max. 11.2%) with measured results. Application of the proposed bowtie filter and of the exactly modelled filter to human phantom Monte Carlo calculations show agreement on the average within less than 5% (max. 7.9%) for organ and tissue absorbed doses.
Ojala, J; Hyödynmaa, S; Barańczyk, R; Góra, E; Waligórski, M P R
2014-03-01
Electron radiotherapy is applied to treat the chest wall close to the mediastinum. The performance of the GGPB and eMC algorithms implemented in the Varian Eclipse treatment planning system (TPS) was studied in this region for 9 and 16 MeV beams, against Monte Carlo (MC) simulations, point dosimetry in a water phantom and dose distributions calculated in virtual phantoms. For the 16 MeV beam, the accuracy of these algorithms was also compared over the lung-mediastinum interface region of an anthropomorphic phantom, against MC calculations and thermoluminescence dosimetry (TLD). In the phantom with a lung-equivalent slab the results were generally congruent, the eMC results for the 9 MeV beam slightly overestimating the lung dose, and the GGPB results for the 16 MeV beam underestimating the lung dose. Over the lung-mediastinum interface, for 9 and 16 MeV beams, the GGPB code underestimated the lung dose and overestimated the dose in water close to the lung, compared to the congruent eMC and MC results. In the anthropomorphic phantom, results of TLD measurements and MC and eMC calculations agreed, while the GGPB code underestimated the lung dose. Good agreement between TLD measurements and MC calculations attests to the accuracy of "full" MC simulations as a reference for benchmarking TPS codes. Application of the GGPB code in chest wall radiotherapy may result in significant underestimation of the lung dose and overestimation of dose to the mediastinum, affecting plan optimization over volumes close to the lung-mediastinum interface, such as the lung or heart. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lépinoux, J.; Sigli, C.
2018-01-01
In a recent paper, the authors showed how the clusters free energies are constrained by the coagulation probability, and explained various anomalies observed during the precipitation kinetics in concentrated alloys. This coagulation probability appeared to be a too complex function to be accurately predicted knowing only the cluster distribution in Cluster Dynamics (CD). Using atomistic Monte Carlo (MC) simulations, it is shown that during a transformation at constant temperature, after a short transient regime, the transformation occurs at quasi-equilibrium. It is proposed to use MC simulations until the system quasi-equilibrates then to switch to CD which is mean field but not limited by a box size like MC. In this paper, we explain how to take into account the information available before the quasi-equilibrium state to establish guidelines to safely predict the cluster free energies.
NASA Astrophysics Data System (ADS)
Kostyuchenko, V. I.; Makarova, A. S.; Ryazantsev, O. B.; Samarin, S. I.; Uglov, A. S.
2014-06-01
A great breakthrough in proton therapy has happened in the new century: several tens of dedicated centers are now operated throughout the world and their number increases every year. An important component of proton therapy is a treatment planning system. To make calculations faster, these systems usually use analytical methods whose reliability and accuracy do not allow the advantages of this method of treatment to implement to the full extent. Predictions by the Monte Carlo (MC) method are a "gold" standard for the verification of calculations with these systems. At the Institute of Experimental and Theoretical Physics (ITEP) which is one of the eldest proton therapy centers in the world, an MC code is an integral part of their treatment planning system. This code which is called IThMC was developed by scientists from RFNC-VNIITF (Snezhinsk) under ISTC Project 3563.
NASA Astrophysics Data System (ADS)
Prettyman, T. H.; Gardner, R. P.; Verghese, K.
1993-08-01
A new specific purpose Monte Carlo code called McENL for modeling the time response of epithermal neutron lifetime tools is described. The weight windows technique, employing splitting and Russian roulette, is used with an automated importance function based on the solution of an adjoint diffusion model to improve the code efficiency. Complete composition and density correlated sampling is also included in the code, and can be used to study the effect on tool response of small variations in the formation, borehole, or logging tool composition and density. An illustration of the latter application is given for the density of a thermal neutron filter. McENL was benchmarked against test-pit data for the Mobil pulsed neutron porosity tool and was found to be very accurate. Results of the experimental validation and details of code performance are presented.
Kim, K B; Shanyfelt, L M; Hahn, D W
2006-01-01
Dense-medium scattering is explored in the context of providing a quantitative measurement of turbidity, with specific application to corneal haze. A multiple-wavelength scattering technique is proposed to make use of two-color scattering response ratios, thereby providing a means for data normalization. A combination of measurements and simulations are reported to assess this technique, including light-scattering experiments for a range of polystyrene suspensions. Monte Carlo (MC) simulations were performed using a multiple-scattering algorithm based on full Mie scattering theory. The simulations were in excellent agreement with the polystyrene suspension experiments, thereby validating the MC model. The MC model was then used to simulate multiwavelength scattering in a corneal tissue model. Overall, the proposed multiwavelength scattering technique appears to be a feasible approach to quantify dense-medium scattering such as the manifestation of corneal haze, although more complex modeling of keratocyte scattering, and animal studies, are necessary.
PD2P: PanDA Dynamic Data Placement for ATLAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maeno, T.; De, K.; Panitkin, S.
2012-12-13
The PanDA (Production and Distributed Analysis) system plays a key role in the ATLAS distributed computing infrastructure. PanDA is the ATLAS workload management system for processing all Monte-Carlo (MC) simulation and data reprocessing jobs in addition to user and group analysis jobs. The PanDA Dynamic Data Placement (PD2P) system has been developed to cope with difficulties of data placement for ATLAS. We will describe the design of the new system, its performance during the past year of data taking, dramatic improvements it has brought about in the efficient use of storage and processing resources, and plans for the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, P.; Tambasco, M.; LaFontaine, R.
2014-08-15
Our goal is to compare the dosimetric accuracy of the Pinnacle-3 9.2 Collapsed Cone Convolution Superposition (CCCS) and the iPlan 4.1 Monte Carlo (MC) and Pencil Beam (PB) algorithms in an anthropomorphic lung phantom using measurement as the gold standard. Ion chamber measurements were taken for 6, 10, and 18 MV beams in a CIRS E2E SBRT Anthropomorphic Lung Phantom, which mimics lung, spine, ribs, and tissue. The plan implemented six beams with a 5×5 cm{sup 2} field size, delivering a total dose of 48 Gy. Data from the planning systems were computed at the treatment isocenter in the leftmore » lung, and two off-axis points, the spinal cord and the right lung. The measurements were taken using a pinpoint chamber. The best results between data from the algorithms and our measurements occur at the treatment isocenter. For the 6, 10, and 18 MV beams, iPlan 4.1 MC software performs the best with 0.3%, 0.2%, and 4.2% absolute percent difference from measurement, respectively. Differences between our measurements and algorithm data are much greater for the off-axis points. The best agreement seen for the right lung and spinal cord is 11.4% absolute percent difference with 6 MV iPlan 4.1 PB and 18 MV iPlan 4.1 MC, respectively. As energy increases absolute percent difference from measured data increases up to 54.8% for the 18 MV CCCS algorithm. This study suggests that iPlan 4.1 MC computes peripheral dose and target dose in the lung more accurately than the iPlan 4.1 PB and Pinnicale CCCS algorithms.« less
Computational Characterization of Type I collagen-based Extra-cellular Matrix
NASA Astrophysics Data System (ADS)
Liang, Long; Jones, Christopher Allen Rucksack; Lin, Daniel; Jiao, Yang; Sun, Bo
2015-03-01
A model of extracellular matrix (ECM) of collagen fibers has been built, in which cells could communicate with distant partners via fiber-mediated long-range-transmitted stress states. The ECM is modeled as a spring-like fiber network derived from skeletonized confocal microscopy data. Different local and global perturbations have been performed on the network, each followed by an optimized global Monte-Carlo (MC) energy minimization leading to the deformed network in response to the perturbations. In the optimization, a highly efficient local energy update procedure is employed and force-directed MC moves are used, which results in a convergence to the energy minimum state 20 times faster than the commonly used random displacement trial moves in MC. Further analysis and visualization of the distribution and correlation of the resulting force network reveal that local perturbations can give rise to global impacts: the force chains formed with a linear extent much further than the characteristic length scale associated with the perturbation sites and average fiber length. This behavior provides a strong evidence for our hypothesis of fiber-mediated long-range force transmission in ECM networks and the resulting long-range cell-cell mechanical signaling. ASU Seed Grant.
New simulation model of multicomponent crystal growth and inhibition.
Wathen, Brent; Kuiper, Michael; Walker, Virginia; Jia, Zongchao
2004-04-02
We review a novel computational model for the study of crystal structures both on their own and in conjunction with inhibitor molecules. The model advances existing Monte Carlo (MC) simulation techniques by extending them from modeling 3D crystal surface patches to modeling entire 3D crystals, and by including the use of "complex" multicomponent molecules within the simulations. These advances makes it possible to incorporate the 3D shape and non-uniform surface properties of inhibitors into simulations, and to study what effect these inhibitor properties have on the growth of whole crystals containing up to tens of millions of molecules. The application of this extended MC model to the study of antifreeze proteins (AFPs) and their effects on ice formation is reported, including the success of the technique in achieving AFP-induced ice-growth inhibition with concurrent changes to ice morphology that mimic experimental results. Simulations of ice-growth inhibition suggest that the degree of inhibition afforded by an AFP is a function of its ice-binding position relative to the underlying anisotropic growth pattern of ice. This extended MC technique is applicable to other crystal and crystal-inhibitor systems, including more complex crystal systems such as clathrates.
Kirkwood-Buff integrals of finite systems: shape effects
NASA Astrophysics Data System (ADS)
Dawass, Noura; Krüger, Peter; Simon, Jean-Marc; Vlugt, Thijs J. H.
2018-06-01
The Kirkwood-Buff (KB) theory provides an important connection between microscopic density fluctuations in liquids and macroscopic properties. Recently, Krüger et al. derived equations for KB integrals for finite subvolumes embedded in a reservoir. Using molecular simulation of finite systems, KB integrals can be computed either from density fluctuations inside such subvolumes, or from integrals of radial distribution functions (RDFs). Here, based on the second approach, we establish a framework to compute KB integrals for subvolumes with arbitrary convex shapes. This requires a geometric function w(x) which depends on the shape of the subvolume, and the relative position inside the subvolume. We present a numerical method to compute w(x) based on Umbrella Sampling Monte Carlo (MC). We compute KB integrals of a liquid with a model RDF for subvolumes with different shapes. KB integrals approach the thermodynamic limit in the same way: for sufficiently large volumes, KB integrals are a linear function of area over volume, which is independent of the shape of the subvolume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haugen, Carl C.; Forget, Benoit; Smith, Kord S.
Most high performance computing systems being deployed currently and envisioned for the future are based on making use of heavy parallelism across many computational nodes and many concurrent cores. These types of heavily parallel systems often have relatively little memory per core but large amounts of computing capability. This places a significant constraint on how data storage is handled in many Monte Carlo codes. This is made even more significant in fully coupled multiphysics simulations, which requires simulations of many physical phenomena be carried out concurrently on individual processing nodes, which further reduces the amount of memory available for storagemore » of Monte Carlo data. As such, there has been a move towards on-the-fly nuclear data generation to reduce memory requirements associated with interpolation between pre-generated large nuclear data tables for a selection of system temperatures. Methods have been previously developed and implemented in MIT’s OpenMC Monte Carlo code for both the resolved resonance regime and the unresolved resonance regime, but are currently absent for the thermal energy regime. While there are many components involved in generating a thermal neutron scattering cross section on-the-fly, this work will focus on a proposed method for determining the energy and direction of a neutron after a thermal incoherent inelastic scattering event. This work proposes a rejection sampling based method using the thermal scattering kernel to determine the correct outgoing energy and angle. The goal of this project is to be able to treat the full S (a, ß) kernel for graphite, to assist in high fidelity simulations of the TREAT reactor at Idaho National Laboratory. The method is, however, sufficiently general to be applicable in other thermal scattering materials, and can be initially validated with the continuous analytic free gas model.« less
Charge Structure and Counterion Distribution in Hexagonal DNA Liquid Crystal
Dai, Liang; Mu, Yuguang; Nordenskiöld, Lars; Lapp, Alain; van der Maarel, Johan R. C.
2007-01-01
A hexagonal liquid crystal of DNA fragments (double-stranded, 150 basepairs) with tetramethylammonium (TMA) counterions was investigated with small angle neutron scattering (SANS). We obtained the structure factors pertaining to the DNA and counterion density correlations with contrast matching in the water. Molecular dynamics (MD) computer simulation of a hexagonal assembly of nine DNA molecules showed that the inter-DNA distance fluctuates with a correlation time around 2 ns and a standard deviation of 8.5% of the interaxial spacing. The MD simulation also showed a minimal effect of the fluctuations in inter-DNA distance on the radial counterion density profile and significant penetration of the grooves by TMA. The radial density profile of the counterions was also obtained from a Monte Carlo (MC) computer simulation of a hexagonal array of charged rods with fixed interaxial spacing. Strong ordering of the counterions between the DNA molecules and the absence of charge fluctuations at longer wavelengths was shown by the SANS number and charge structure factors. The DNA-counterion and counterion structure factors are interpreted with the correlation functions derived from the Poisson-Boltzmann equation, MD, and MC simulation. Best agreement is observed between the experimental structure factors and the prediction based on the Poisson-Boltzmann equation and/or MC simulation. The SANS results show that TMA is too large to penetrate the grooves to a significant extent, in contrast to what is shown by MD simulation. PMID:17098791
Building proteins from C alpha coordinates using the dihedral probability grid Monte Carlo method.
Mathiowetz, A. M.; Goddard, W. A.
1995-01-01
Dihedral probability grid Monte Carlo (DPG-MC) is a general-purpose method of conformational sampling that can be applied to many problems in peptide and protein modeling. Here we present the DPG-MC method and apply it to predicting complete protein structures from C alpha coordinates. This is useful in such endeavors as homology modeling, protein structure prediction from lattice simulations, or fitting protein structures to X-ray crystallographic data. It also serves as an example of how DPG-MC can be applied to systems with geometric constraints. The conformational propensities for individual residues are used to guide conformational searches as the protein is built from the amino-terminus to the carboxyl-terminus. Results for a number of proteins show that both the backbone and side chain can be accurately modeled using DPG-MC. Backbone atoms are generally predicted with RMS errors of about 0.5 A (compared to X-ray crystal structure coordinates) and all atoms are predicted to an RMS error of 1.7 A or better. PMID:7549885
NASA Astrophysics Data System (ADS)
Fragoso, M.; Love, P. A.; Verhaegen, F.; Nalder, C.; Bidmead, A. M.; Leach, M.; Webb, S.
2004-12-01
In this study, the dose distribution delivered by low dose rate Cs-137 brachytherapy sources was investigated using Monte Carlo (MC) techniques and polymer gel dosimetry. The results obtained were compared with a commercial treatment planning system (TPS). The 20 mm and the 30 mm diameter Selectron vaginal applicator set (Nucletron) were used for this study. A homogeneous and a heterogeneous—with an air cavity—polymer gel phantom was used to measure the dose distribution from these sources. The same geometrical set-up was used for the MC calculations. Beyond the applicator tip, differences in dose as large as 20% were found between the MC and TPS. This is attributed to the presence of stainless steel in the applicator and source set, which are not considered by the TPS calculations. Beyond the air cavity, differences in dose of around 5% were noted, due to the TPS assuming a homogeneous water medium. The polymer gel results were in good agreement with the MC calculations for all the cases investigated.
Cellular dosimetry calculations for Strontium-90 using Monte Carlo code PENELOPE.
Hocine, Nora; Farlay, Delphine; Boivin, Georges; Franck, Didier; Agarande, Michelle
2014-11-01
To improve risk assessments associated with chronic exposure to Strontium-90 (Sr-90), for both the environment and human health, it is necessary to know the energy distribution in specific cells or tissue. Monte Carlo (MC) simulation codes are extremely useful tools for calculating deposition energy. The present work was focused on the validation of the MC code PENetration and Energy LOss of Positrons and Electrons (PENELOPE) and the assessment of dose distribution to bone marrow cells from punctual Sr-90 source localized within the cortical bone part. S-values (absorbed dose per unit cumulated activity) calculations using Monte Carlo simulations were performed by using PENELOPE and Monte Carlo N-Particle eXtended (MCNPX). Cytoplasm, nucleus, cell surface, mouse femur bone and Sr-90 radiation source were simulated. Cells are assumed to be spherical with the radii of the cell and cell nucleus ranging from 2-10 μm. The Sr-90 source is assumed to be uniformly distributed in cell nucleus, cytoplasm and cell surface. The comparison of S-values calculated with PENELOPE to MCNPX results and the Medical Internal Radiation Dose (MIRD) values agreed very well since the relative deviations were less than 4.5%. The dose distribution to mouse bone marrow cells showed that the cells localized near the cortical part received the maximum dose. The MC code PENELOPE may prove useful for cellular dosimetry involving radiation transport through materials other than water, or for complex distributions of radionuclides and geometries.
Samant, Asawari; Ogunnaike, Babatunde A; Vlachos, Dionisios G
2007-05-24
The fundamental role that intrinsic stochasticity plays in cellular functions has been shown via numerous computational and experimental studies. In the face of such evidence, it is important that intracellular networks are simulated with stochastic algorithms that can capture molecular fluctuations. However, separation of time scales and disparity in species population, two common features of intracellular networks, make stochastic simulation of such networks computationally prohibitive. While recent work has addressed each of these challenges separately, a generic algorithm that can simultaneously tackle disparity in time scales and population scales in stochastic systems is currently lacking. In this paper, we propose the hybrid, multiscale Monte Carlo (HyMSMC) method that fills in this void. The proposed HyMSMC method blends stochastic singular perturbation concepts, to deal with potential stiffness, with a hybrid of exact and coarse-grained stochastic algorithms, to cope with separation in population sizes. In addition, we introduce the computational singular perturbation (CSP) method as a means of systematically partitioning fast and slow networks and computing relaxation times for convergence. We also propose a new criteria of convergence of fast networks to stochastic low-dimensional manifolds, which further accelerates the algorithm. We use several prototype and biological examples, including a gene expression model displaying bistability, to demonstrate the efficiency, accuracy and applicability of the HyMSMC method. Bistable models serve as stringent tests for the success of multiscale MC methods and illustrate limitations of some literature methods.
Diagnosing Undersampling in Monte Carlo Eigenvalue and Flux Tally Estimates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perfetti, Christopher M; Rearden, Bradley T
2015-01-01
This study explored the impact of undersampling on the accuracy of tally estimates in Monte Carlo (MC) calculations. Steady-state MC simulations were performed for models of several critical systems with varying degrees of spatial and isotopic complexity, and the impact of undersampling on eigenvalue and fuel pin flux/fission estimates was examined. This study observed biases in MC eigenvalue estimates as large as several percent and biases in fuel pin flux/fission tally estimates that exceeded tens, and in some cases hundreds, of percent. This study also investigated five statistical metrics for predicting the occurrence of undersampling biases in MC simulations. Threemore » of the metrics (the Heidelberger-Welch RHW, the Geweke Z-Score, and the Gelman-Rubin diagnostics) are commonly used for diagnosing the convergence of Markov chains, and two of the methods (the Contributing Particles per Generation and Tally Entropy) are new convergence metrics developed in the course of this study. These metrics were implemented in the KENO MC code within the SCALE code system and were evaluated for their reliability at predicting the onset and magnitude of undersampling biases in MC eigenvalue and flux tally estimates in two of the critical models. Of the five methods investigated, the Heidelberger-Welch RHW, the Gelman-Rubin diagnostics, and Tally Entropy produced test metrics that correlated strongly to the size of the observed undersampling biases, indicating their potential to effectively predict the size and prevalence of undersampling biases in MC simulations.« less
Carlacci, Louis; Millard, Charles B; Olson, Mark A
2004-10-01
The X-ray crystal structure of the reaction product of acetylcholinesterase (AChE) with the inhibitor diisopropylphosphorofluoridate (DFP) showed significant structural displacement in a loop segment of residues 287-290. To understand this conformational selection, a Monte Carlo (MC) simulation study was performed of the energy landscape for the loop segment. A computational strategy was applied by using a combined simulated annealing and room temperature Metropolis sampling approach with solvent polarization modeled by a generalized Born (GB) approximation. Results from thermal annealing reveal a landscape topology of broader basin opening and greater distribution of energies for the displaced loop conformation, while the ensemble average of conformations at 298 K favored a shift in populations toward the native by a free-energy difference in good agreement with the estimated experimental value. Residue motions along a reaction profile of loop conformational reorganization are proposed where Arg-289 is critical in determining electrostatic effects of solvent interaction versus Coulombic charging.
Beigi, Manije; Afarande, Fatemeh; Ghiasi, Hosein
2016-01-01
The aim of this study was to compare two bunkers designed by only protocols recommendations and Monte Carlo (MC) based upon data derived for an 18 MV Varian 2100Clinac accelerator. High energy radiation therapy is associated with fast and thermal photoneutrons. Adequate shielding against the contaminant neutron has been recommended by IAEA and NCRP new protocols. The latest protocols released by the IAEA (safety report No. 47) and NCRP report No. 151 were used for the bunker designing calculations. MC method based upon data was also derived. Two bunkers using protocols and MC upon data were designed and discussed. From designed door's thickness, the door designed by the MC simulation and Wu-McGinley analytical method was closer in both BPE and lead thickness. In the case of the primary and secondary barriers, MC simulation resulted in 440.11 mm for the ordinary concrete, total concrete thickness of 1709 mm was required. Calculating the same parameters value with the recommended analytical methods resulted in 1762 mm for the required thickness using 445 mm as recommended by TVL for the concrete. Additionally, for the secondary barrier the thickness of 752.05 mm was obtained. Our results showed MC simulation and the followed protocols recommendations in dose calculation are in good agreement in the radiation contamination dose calculation. Difference between the two analytical and MC simulation methods revealed that the application of only one method for the bunker design may lead to underestimation or overestimation in dose and shielding calculations.
NASA Astrophysics Data System (ADS)
El Kanawati, W.; Létang, J. M.; Dauvergne, D.; Pinto, M.; Sarrut, D.; Testa, É.; Freud, N.
2015-10-01
A Monte Carlo (MC) variance reduction technique is developed for prompt-γ emitters calculations in proton therapy. Prompt-γ emitted through nuclear fragmentation reactions and exiting the patient during proton therapy could play an important role to help monitoring the treatment. However, the estimation of the number and the energy of emitted prompt-γ per primary proton with MC simulations is a slow process. In order to estimate the local distribution of prompt-γ emission in a volume of interest for a given proton beam of the treatment plan, a MC variance reduction technique based on a specific track length estimator (TLE) has been developed. First an elemental database of prompt-γ emission spectra is established in the clinical energy range of incident protons for all elements in the composition of human tissues. This database of the prompt-γ spectra is built offline with high statistics. Regarding the implementation of the prompt-γ TLE MC tally, each proton deposits along its track the expectation of the prompt-γ spectra from the database according to the proton kinetic energy and the local material composition. A detailed statistical study shows that the relative efficiency mainly depends on the geometrical distribution of the track length. Benchmarking of the proposed prompt-γ TLE MC technique with respect to an analogous MC technique is carried out. A large relative efficiency gain is reported, ca. 105.
Calculated X-ray Intensities Using Monte Carlo Algorithms: A Comparison to Experimental EPMA Data
NASA Technical Reports Server (NTRS)
Carpenter, P. K.
2005-01-01
Monte Carlo (MC) modeling has been used extensively to simulate electron scattering and x-ray emission from complex geometries. Here are presented comparisons between MC results and experimental electron-probe microanalysis (EPMA) measurements as well as phi(rhoz) correction algorithms. Experimental EPMA measurements made on NIST SRM 481 (AgAu) and 482 (CuAu) alloys, at a range of accelerating potential and instrument take-off angles, represent a formal microanalysis data set that has been widely used to develop phi(rhoz) correction algorithms. X-ray intensity data produced by MC simulations represents an independent test of both experimental and phi(rhoz) correction algorithms. The alpha-factor method has previously been used to evaluate systematic errors in the analysis of semiconductor and silicate minerals, and is used here to compare the accuracy of experimental and MC-calculated x-ray data. X-ray intensities calculated by MC are used to generate a-factors using the certificated compositions in the CuAu binary relative to pure Cu and Au standards. MC simulations are obtained using the NIST, WinCasino, and WinXray algorithms; derived x-ray intensities have a built-in atomic number correction, and are further corrected for absorption and characteristic fluorescence using the PAP phi(rhoz) correction algorithm. The Penelope code additionally simulates both characteristic and continuum x-ray fluorescence and thus requires no further correction for use in calculating alpha-factors.
Automated parton-shower variations in PYTHIA 8
Mrenna, S.; Skands, P.
2016-10-03
In the era of precision physics measurements at the LHC, efficient and exhaustive estimations of theoretical uncertainties play an increasingly crucial role. In the context of Monte Carlo (MC) event generators, the estimation of such uncertainties traditionally requires independent MC runs for each variation, for a linear increase in total run time. In this work, we report on an automated evaluation of the dominant (renormalization-scale and nonsingular) perturbative uncertainties in the pythia 8 event generator, with only a modest computational overhead. Each generated event is accompanied by a vector of alternative weights (one for each uncertainty variation), with each set separatelymore » preserving the total cross section. Explicit scale-compensating terms can be included, reflecting known coefficients of higher-order splitting terms and reducing the effect of the variations. In conclusion, the formalism also allows for the enhancement of rare partonic splittings, such as g→bb¯ and q→qγ, to obtain weighted samples enriched in these splittings while preserving the correct physical Sudakov factors.« less
Study on photon transport problem based on the platform of molecular optical simulation environment.
Peng, Kuan; Gao, Xinbo; Liang, Jimin; Qu, Xiaochao; Ren, Nunu; Chen, Xueli; Ma, Bin; Tian, Jie
2010-01-01
As an important molecular imaging modality, optical imaging has attracted increasing attention in the recent years. Since the physical experiment is usually complicated and expensive, research methods based on simulation platforms have obtained extensive attention. We developed a simulation platform named Molecular Optical Simulation Environment (MOSE) to simulate photon transport in both biological tissues and free space for optical imaging based on noncontact measurement. In this platform, Monte Carlo (MC) method and the hybrid radiosity-radiance theorem are used to simulate photon transport in biological tissues and free space, respectively, so both contact and noncontact measurement modes of optical imaging can be simulated properly. In addition, a parallelization strategy for MC method is employed to improve the computational efficiency. In this paper, we study the photon transport problems in both biological tissues and free space using MOSE. The results are compared with Tracepro, simplified spherical harmonics method (SP(n)), and physical measurement to verify the performance of our study method on both accuracy and efficiency.
Study on Photon Transport Problem Based on the Platform of Molecular Optical Simulation Environment
Peng, Kuan; Gao, Xinbo; Liang, Jimin; Qu, Xiaochao; Ren, Nunu; Chen, Xueli; Ma, Bin; Tian, Jie
2010-01-01
As an important molecular imaging modality, optical imaging has attracted increasing attention in the recent years. Since the physical experiment is usually complicated and expensive, research methods based on simulation platforms have obtained extensive attention. We developed a simulation platform named Molecular Optical Simulation Environment (MOSE) to simulate photon transport in both biological tissues and free space for optical imaging based on noncontact measurement. In this platform, Monte Carlo (MC) method and the hybrid radiosity-radiance theorem are used to simulate photon transport in biological tissues and free space, respectively, so both contact and noncontact measurement modes of optical imaging can be simulated properly. In addition, a parallelization strategy for MC method is employed to improve the computational efficiency. In this paper, we study the photon transport problems in both biological tissues and free space using MOSE. The results are compared with Tracepro, simplified spherical harmonics method (S P n), and physical measurement to verify the performance of our study method on both accuracy and efficiency. PMID:20445737
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yee, Ben Chung; Wollaber, Allan Benton; Haut, Terry Scot
The high-order low-order (HOLO) method is a recently developed moment-based acceleration scheme for solving time-dependent thermal radiative transfer problems, and has been shown to exhibit orders of magnitude speedups over traditional time-stepping schemes. However, a linear stability analysis by Haut et al. (2015 Haut, T. S., Lowrie, R. B., Park, H., Rauenzahn, R. M., Wollaber, A. B. (2015). A linear stability analysis of the multigroup High-Order Low-Order (HOLO) method. In Proceedings of the Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method; Nashville, TN, April 19–23, 2015. American Nuclear Society.)more » revealed that the current formulation of the multigroup HOLO method was unstable in certain parameter regions. Since then, we have replaced the intensity-weighted opacity in the first angular moment equation of the low-order (LO) system with the Rosseland opacity. Furthermore, this results in a modified HOLO method (HOLO-R) that is significantly more stable.« less
A stable 1D multigroup high-order low-order method
Yee, Ben Chung; Wollaber, Allan Benton; Haut, Terry Scot; ...
2016-07-13
The high-order low-order (HOLO) method is a recently developed moment-based acceleration scheme for solving time-dependent thermal radiative transfer problems, and has been shown to exhibit orders of magnitude speedups over traditional time-stepping schemes. However, a linear stability analysis by Haut et al. (2015 Haut, T. S., Lowrie, R. B., Park, H., Rauenzahn, R. M., Wollaber, A. B. (2015). A linear stability analysis of the multigroup High-Order Low-Order (HOLO) method. In Proceedings of the Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method; Nashville, TN, April 19–23, 2015. American Nuclear Society.)more » revealed that the current formulation of the multigroup HOLO method was unstable in certain parameter regions. Since then, we have replaced the intensity-weighted opacity in the first angular moment equation of the low-order (LO) system with the Rosseland opacity. Furthermore, this results in a modified HOLO method (HOLO-R) that is significantly more stable.« less
A systematic framework for Monte Carlo simulation of remote sensing errors map in carbon assessments
S. Healey; P. Patterson; S. Urbanski
2014-01-01
Remotely sensed observations can provide unique perspective on how management and natural disturbance affect carbon stocks in forests. However, integration of these observations into formal decision support will rely upon improved uncertainty accounting. Monte Carlo (MC) simulations offer a practical, empirical method of accounting for potential remote sensing errors...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazalova-Carter, Magdalena; Liu, Michael; Palma, Bianey
2015-04-15
Purpose: To measure radiation dose in a water-equivalent medium from very high-energy electron (VHEE) beams and make comparisons to Monte Carlo (MC) simulation results. Methods: Dose in a polystyrene phantom delivered by an experimental VHEE beam line was measured with Gafchromic films for three 50 MeV and two 70 MeV Gaussian beams of 4.0–6.9 mm FWHM and compared to corresponding MC-simulated dose distributions. MC dose in the polystyrene phantom was calculated with the EGSnrc/BEAMnrc and DOSXYZnrc codes based on the experimental setup. Additionally, the effect of 2% beam energy measurement uncertainty and possible non-zero beam angular spread on MC dosemore » distributions was evaluated. Results: MC simulated percentage depth dose (PDD) curves agreed with measurements within 4% for all beam sizes at both 50 and 70 MeV VHEE beams. Central axis PDD at 8 cm depth ranged from 14% to 19% for the 5.4–6.9 mm 50 MeV beams and it ranged from 14% to 18% for the 4.0–4.5 mm 70 MeV beams. MC simulated relative beam profiles of regularly shaped Gaussian beams evaluated at depths of 0.64 to 7.46 cm agreed with measurements to within 5%. A 2% beam energy uncertainty and 0.286° beam angular spread corresponded to a maximum 3.0% and 3.8% difference in depth dose curves of the 50 and 70 MeV electron beams, respectively. Absolute dose differences between MC simulations and film measurements of regularly shaped Gaussian beams were between 10% and 42%. Conclusions: The authors demonstrate that relative dose distributions for VHEE beams of 50–70 MeV can be measured with Gafchromic films and modeled with Monte Carlo simulations to an accuracy of 5%. The reported absolute dose differences likely caused by imperfect beam steering and subsequent charge loss revealed the importance of accurate VHEE beam control and diagnostics.« less
A clinical study of lung cancer dose calculation accuracy with Monte Carlo simulation.
Zhao, Yanqun; Qi, Guohai; Yin, Gang; Wang, Xianliang; Wang, Pei; Li, Jian; Xiao, Mingyong; Li, Jie; Kang, Shengwei; Liao, Xiongfei
2014-12-16
The accuracy of dose calculation is crucial to the quality of treatment planning and, consequently, to the dose delivered to patients undergoing radiation therapy. Current general calculation algorithms such as Pencil Beam Convolution (PBC) and Collapsed Cone Convolution (CCC) have shortcomings in regard to severe inhomogeneities, particularly in those regions where charged particle equilibrium does not hold. The aim of this study was to evaluate the accuracy of the PBC and CCC algorithms in lung cancer radiotherapy using Monte Carlo (MC) technology. Four treatment plans were designed using Oncentra Masterplan TPS for each patient. Two intensity-modulated radiation therapy (IMRT) plans were developed using the PBC and CCC algorithms, and two three-dimensional conformal therapy (3DCRT) plans were developed using the PBC and CCC algorithms. The DICOM-RT files of the treatment plans were exported to the Monte Carlo system to recalculate. The dose distributions of GTV, PTV and ipsilateral lung calculated by the TPS and MC were compared. For 3DCRT and IMRT plans, the mean dose differences for GTV between the CCC and MC increased with decreasing of the GTV volume. For IMRT, the mean dose differences were found to be higher than that of 3DCRT. The CCC algorithm overestimated the GTV mean dose by approximately 3% for IMRT. For 3DCRT plans, when the volume of the GTV was greater than 100 cm(3), the mean doses calculated by CCC and MC almost have no difference. PBC shows large deviations from the MC algorithm. For the dose to the ipsilateral lung, the CCC algorithm overestimated the dose to the entire lung, and the PBC algorithm overestimated V20 but underestimated V5; the difference in V10 was not statistically significant. PBC substantially overestimates the dose to the tumour, but the CCC is similar to the MC simulation. It is recommended that the treatment plans for lung cancer be developed using an advanced dose calculation algorithm other than PBC. MC can accurately calculate the dose distribution in lung cancer and can provide a notably effective tool for benchmarking the performance of other dose calculation algorithms within patients.
Postimplant dosimetry using a Monte Carlo dose calculation engine: a new clinical standard.
Carrier, Jean-François; D'Amours, Michel; Verhaegen, Frank; Reniers, Brigitte; Martin, André-Guy; Vigneault, Eric; Beaulieu, Luc
2007-07-15
To use the Monte Carlo (MC) method as a dose calculation engine for postimplant dosimetry. To compare the results with clinically approved data for a sample of 28 patients. Two effects not taken into account by the clinical calculation, interseed attenuation and tissue composition, are being specifically investigated. An automated MC program was developed. The dose distributions were calculated for the target volume and organs at risk (OAR) for 28 patients. Additional MC techniques were developed to focus specifically on the interseed attenuation and tissue effects. For the clinical target volume (CTV) D(90) parameter, the mean difference between the clinical technique and the complete MC method is 10.7 Gy, with cases reaching up to 17 Gy. For all cases, the clinical technique overestimates the deposited dose in the CTV. This overestimation is mainly from a combination of two effects: the interseed attenuation (average, 6.8 Gy) and tissue composition (average, 4.1 Gy). The deposited dose in the OARs is also overestimated in the clinical calculation. The clinical technique systematically overestimates the deposited dose in the prostate and in the OARs. To reduce this systematic inaccuracy, the MC method should be considered in establishing a new standard for clinical postimplant dosimetry and dose-outcome studies in a near future.
Comparison of Fluka-2006 Monte Carlo Simulation and Flight Data for the ATIC Detector
NASA Technical Reports Server (NTRS)
Gunasingha, R.M.; Fazely, A.R.; Adams, J.H.; Ahn, H.S.; Bashindzhagyan, G.L.; Chang, J.; Christl, M.; Ganel, O.; Guzik, T.G.; Isbert, J.;
2007-01-01
We have performed a detailed Monte Carlo (MC) simulation for the Advanced Thin Ionization Calorimeter (ATIC) detector using the MC code FLUKA-2006 which is capable of simulating particles up to 10 PeV. The ATIC detector has completed two successful balloon flights from McMurdo, Antarctica lasting a total of more than 35 days. ATIC is designed as a multiple, long duration balloon flight, investigation of the cosmic ray spectra from below 50 GeV to near 100 TeV total energy; using a fully active Bismuth Germanate(BGO) calorimeter. It is equipped with a large mosaic of.silicon detector pixels capable of charge identification, and, for particle tracking, three projective layers of x-y scintillator hodoscopes, located above, in the middle and below a 0.75 nuclear interaction length graphite target. Our simulations are part of an analysis package of both nuclear (A) and energy dependences for different nuclei interacting in the ATIC detector. The MC simulates the response of different components of the detector such as the Si-matrix, the scintillator hodoscopes and the BGO calorimeter to various nuclei. We present comparisons of the FLUKA-2006 MC calculations with GEANT calculations and with the ATIC CERN data and ATIC flight data.
Farace, Paolo; Righetto, Roberto; Deffet, Sylvain; Meijers, Arturs; Vander Stappen, Francois
2016-12-01
To introduce a fast ray-tracing algorithm in pencil proton radiography (PR) with a multilayer ionization chamber (MLIC) for in vivo range error mapping. Pencil beam PR was obtained by delivering spots uniformly positioned in a square (45 × 45 mm 2 field-of-view) of 9 × 9 spots capable of crossing the phantoms (210 MeV). The exit beam was collected by a MLIC to sample the integral depth dose (IDD MLIC ). PRs of an electron-density and of a head phantom were acquired by moving the couch to obtain multiple 45 × 45 mm 2 frames. To map the corresponding range errors, the two-dimensional set of IDD MLIC was compared with (i) the integral depth dose computed by the treatment planning system (TPS) by both analytic (IDD TPS ) and Monte Carlo (IDD MC ) algorithms in a volume of water simulating the MLIC at the CT, and (ii) the integral depth dose directly computed by a simple ray-tracing algorithm (IDD direct ) through the same CT data. The exact spatial position of the spot pattern was numerically adjusted testing different in-plane positions and selecting the one that minimized the range differences between IDD direct and IDD MLIC . Range error mapping was feasible by both the TPS and the ray-tracing methods, but very sensitive to even small misalignments. In homogeneous regions, the range errors computed by the direct ray-tracing algorithm matched the results obtained by both the analytic and the Monte Carlo algorithms. In both phantoms, lateral heterogeneities were better modeled by the ray-tracing and the Monte Carlo algorithms than by the analytic TPS computation. Accordingly, when the pencil beam crossed lateral heterogeneities, the range errors mapped by the direct algorithm matched better the Monte Carlo maps than those obtained by the analytic algorithm. Finally, the simplicity of the ray-tracing algorithm allowed to implement a prototype procedure for automated spatial alignment. The ray-tracing algorithm can reliably replace the TPS method in MLIC PR for in vivo range verification and it can be a key component to develop software tools for spatial alignment and correction of CT calibration.
A Monte Carlo simulation study of associated liquid crystals
NASA Astrophysics Data System (ADS)
Berardi, R.; Fehervari, M.; Zannoni, C.
We have performed a Monte Carlo simulation study of a system of ellipsoidal particles with donor-acceptor sites modelling complementary hydrogen-bonding groups in real molecules. We have considered elongated Gay-Berne particles with terminal interaction sites allowing particles to associate and form dimers. The changes in the phase transitions and in the molecular organization and the interplay between orientational ordering and dimer formation are discussed. Particle flip and dimer moves have been used to increase the convergency rate of the Monte Carlo (MC) Markov chain.
Qin, Yujiao; Zhong, Hualiang; Wen, Ning; Snyder, Karen; Huang, Yimei; Chetty, Indrin J
2016-11-08
The goal of this study was to investigate small field output factors (OFs) for flat-tening filter-free (FFF) beams on a dedicated stereotactic linear accelerator-based system. From this data, the collimator exchange effect was quantified, and detector-specific correction factors were generated. Output factors for 16 jaw-collimated small fields (from 0.5 to 2 cm) were measured using five different detectors including an ion chamber (CC01), a stereotactic field diode (SFD), a diode detector (Edge), Gafchromic film (EBT3), and a plastic scintillator detector (PSD, W1). Chamber, diodes, and PSD measurements were performed in a Wellhofer water tank, while films were irradiated in solid water at 100 cm source-to-surface distance and 10 cm depth. The collimator exchange effect was quantified for rectangular fields. Monte Carlo (MC) simulations of the measured configurations were also performed using the EGSnrc/DOSXYZnrc code. Output factors measured by the PSD and verified against film and MC calculations were chosen as the benchmark measurements. Compared with plastic scintillator detector (PSD), the small volume ion chamber (CC01) underestimated output factors by an average of -1.0% ± 4.9% (max. = -11.7% for 0.5 × 0.5 cm2 square field). The stereotactic diode (SFD) overestimated output factors by 2.5% ± 0.4% (max. = 3.3% for 0.5 × 1 cm2 rectangular field). The other diode detector (Edge) also overestimated the OFs by an average of 4.2% ± 0.9% (max. = 6.0% for 1 × 1 cm2 square field). Gafchromic film (EBT3) measure-ments and MC calculations agreed with the scintillator detector measurements within 0.6% ± 1.8% and 1.2% ± 1.5%, respectively. Across all the X and Y jaw combinations, the average collimator exchange effect was computed: 1.4% ± 1.1% (CC01), 5.8% ± 5.4% (SFD), 5.1% ± 4.8% (Edge diode), 3.5% ± 5.0% (Monte Carlo), 3.8% ± 4.7% (film), and 5.5% ± 5.1% (PSD). Small field detectors should be used with caution with a clear understanding of their behaviors, especially for FFF beams and small, elongated fields. The scintillator detector exhibited good agreement against Gafchromic film measurements and MC simulations over the range of field sizes studied. The collimator exchange effect was found to be impor-tant at these small field sizes. Detector-specific correction factors were computed using the scintillator measurements as the benchmark. © 2016 The Authors.
Verleker, Akshay Prabhu; Shaffer, Michael; Fang, Qianqian; Choi, Mi-Ran; Clare, Susan; Stantz, Keith M
2016-12-01
A three-dimensional photon dosimetry in tissues is critical in designing optical therapeutic protocols to trigger light-activated drug release. The objective of this study is to investigate the feasibility of a Monte Carlo-based optical therapy planning software by developing dosimetry tools to characterize and cross-validate the local photon fluence in brain tissue, as part of a long-term strategy to quantify the effects of photoactivated drug release in brain tumors. An existing GPU-based 3D Monte Carlo (MC) code was modified to simulate near-infrared photon transport with differing laser beam profiles within phantoms of skull bone (B), white matter (WM), and gray matter (GM). A novel titanium-based optical dosimetry probe with isotropic acceptance was used to validate the local photon fluence, and an empirical model of photon transport was developed to significantly decrease execution time for clinical application. Comparisons between the MC and the dosimetry probe measurements were on an average 11.27%, 13.25%, and 11.81% along the illumination beam axis, and 9.4%, 12.06%, 8.91% perpendicular to the beam axis for WM, GM, and B phantoms, respectively. For a heterogeneous head phantom, the measured % errors were 17.71% and 18.04% along and perpendicular to beam axis. The empirical algorithm was validated by probe measurements and matched the MC results (R20.99), with average % error of 10.1%, 45.2%, and 22.1% relative to probe measurements, and 22.6%, 35.8%, and 21.9% relative to the MC, for WM, GM, and B phantoms, respectively. The simulation time for the empirical model was 6 s versus 8 h for the GPU-based Monte Carlo for a head phantom simulation. These tools provide the capability to develop and optimize treatment plans for optimal release of pharmaceuticals in the treatment of cancer. Future work will test and validate these novel delivery and release mechanisms in vivo.
Ion channeling study of defects in compound crystals using Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Turos, A.; Jozwik, P.; Nowicki, L.; Sathish, N.
2014-08-01
Ion channeling is a well-established technique for determination of structural properties of crystalline materials. Defect depth profiles have been usually determined basing on the two-beam model developed by Bøgh (1968) [1]. As long as the main research interest was focused on single element crystals it was considered as sufficiently accurate. New challenge emerged with growing technological importance of compound single crystals and epitaxial heterostructures. Overlap of partial spectra due to different sublattices and formation of complicated defect structures makes the two beam method hardly applicable. The solution is provided by Monte Carlo computer simulations. Our paper reviews principal aspects of this approach and the recent developments in the McChasy simulation code. The latter made it possible to distinguish between randomly displaced atoms (RDA) and extended defects (dislocations, loops, etc.). Hence, complex defect structures can be characterized by the relative content of these two components. The next refinement of the code consists of detailed parameterization of dislocations and dislocation loops. Defect profiles for variety of compound crystals (GaN, ZnO, SrTiO3) have been measured and evaluated using the McChasy code. Damage accumulation curves for RDA and extended defects revealed non monotonous defect buildup with some characteristic steps. Transition to each stage is governed by the different driving force. As shown by the complementary high resolution XRD measurements lattice strain plays here the crucial role and can be correlated with the concentration of extended defects.
Monitoring System for the GRID Monte Carlo Mass Production in the H1 Experiment at DESY
NASA Astrophysics Data System (ADS)
Bystritskaya, Elena; Fomenko, Alexander; Gogitidze, Nelly; Lobodzinski, Bogdan
2014-06-01
The H1 Virtual Organization (VO), as one of the small VOs, employs most components of the EMI or gLite Middleware. In this framework, a monitoring system is designed for the H1 Experiment to identify and recognize within the GRID the best suitable resources for execution of CPU-time consuming Monte Carlo (MC) simulation tasks (jobs). Monitored resources are Computer Elements (CEs), Storage Elements (SEs), WMS-servers (WMSs), CernVM File System (CVMFS) available to the VO HONE and local GRID User Interfaces (UIs). The general principle of monitoring GRID elements is based on the execution of short test jobs on different CE queues using submission through various WMSs and directly to the CREAM-CEs as well. Real H1 MC Production jobs with a small number of events are used to perform the tests. Test jobs are periodically submitted into GRID queues, the status of these jobs is checked, output files of completed jobs are retrieved, the result of each job is analyzed and the waiting time and run time are derived. Using this information, the status of the GRID elements is estimated and the most suitable ones are included in the automatically generated configuration files for use in the H1 MC production. The monitoring system allows for identification of problems in the GRID sites and promptly reacts on it (for example by sending GGUS (Global Grid User Support) trouble tickets). The system can easily be adapted to identify the optimal resources for tasks other than MC production, simply by changing to the relevant test jobs. The monitoring system is written mostly in Python and Perl with insertion of a few shell scripts. In addition to the test monitoring system we use information from real production jobs to monitor the availability and quality of the GRID resources. The monitoring tools register the number of job resubmissions, the percentage of failed and finished jobs relative to all jobs on the CEs and determine the average values of waiting and running time for the involved GRID queues. CEs which do not meet the set criteria can be removed from the production chain by including them in an exception table. All of these monitoring actions lead to a more reliable and faster execution of MC requests.
Does phenomenological kinetics provide an adequate description of heterogeneous catalytic reactions?
Temel, Burcin; Meskine, Hakim; Reuter, Karsten; Scheffler, Matthias; Metiu, Horia
2007-05-28
Phenomenological kinetics (PK) is widely used in the study of the reaction rates in heterogeneous catalysis, and it is an important aid in reactor design. PK makes simplifying assumptions: It neglects the role of fluctuations, assumes that there is no correlation between the locations of the reactants on the surface, and considers the reacting mixture to be an ideal solution. In this article we test to what extent these assumptions damage the theory. In practice the PK rate equations are used by adjusting the rate constants to fit the results of the experiments. However, there are numerous examples where a mechanism fitted the data and was shown later to be erroneous or where two mutually exclusive mechanisms fitted well the same set of data. Because of this, we compare the PK equations to "computer experiments" that use kinetic Monte Carlo (kMC) simulations. Unlike in real experiments, in kMC the structure of the surface, the reaction mechanism, and the rate constants are known. Therefore, any discrepancy between PK and kMC must be attributed to an intrinsic failure of PK. We find that the results obtained by solving the PK equations and those obtained from kMC, while using the same rate constants and the same reactions, do not agree. Moreover, when we vary the rate constants in the PK model to fit the turnover frequencies produced by kMC, we find that the fit is not adequate and that the rate constants that give the best fit are very different from the rate constants used in kMC. The discrepancy between PK and kMC for the model of CO oxidation used here is surprising since the kMC model contains no lateral interactions that would make the coverage of the reactants spatially inhomogeneous. Nevertheless, such inhomogeneities are created by the interplay between the rate of adsorption, of desorption, and of vacancy creation by the chemical reactions.
Beigi, Manije; Afarande, Fatemeh; Ghiasi, Hosein
2016-01-01
Aim The aim of this study was to compare two bunkers designed by only protocols recommendations and Monte Carlo (MC) based upon data derived for an 18 MV Varian 2100Clinac accelerator. Background High energy radiation therapy is associated with fast and thermal photoneutrons. Adequate shielding against the contaminant neutron has been recommended by IAEA and NCRP new protocols. Materials and methods The latest protocols released by the IAEA (safety report No. 47) and NCRP report No. 151 were used for the bunker designing calculations. MC method based upon data was also derived. Two bunkers using protocols and MC upon data were designed and discussed. Results From designed door's thickness, the door designed by the MC simulation and Wu–McGinley analytical method was closer in both BPE and lead thickness. In the case of the primary and secondary barriers, MC simulation resulted in 440.11 mm for the ordinary concrete, total concrete thickness of 1709 mm was required. Calculating the same parameters value with the recommended analytical methods resulted in 1762 mm for the required thickness using 445 mm as recommended by TVL for the concrete. Additionally, for the secondary barrier the thickness of 752.05 mm was obtained. Conclusion Our results showed MC simulation and the followed protocols recommendations in dose calculation are in good agreement in the radiation contamination dose calculation. Difference between the two analytical and MC simulation methods revealed that the application of only one method for the bunker design may lead to underestimation or overestimation in dose and shielding calculations. PMID:26900357
Absolute dose calculations for Monte Carlo simulations of radiotherapy beams.
Popescu, I A; Shaw, C P; Zavgorodni, S F; Beckham, W A
2005-07-21
Monte Carlo (MC) simulations have traditionally been used for single field relative comparisons with experimental data or commercial treatment planning systems (TPS). However, clinical treatment plans commonly involve more than one field. Since the contribution of each field must be accurately quantified, multiple field MC simulations are only possible by employing absolute dosimetry. Therefore, we have developed a rigorous calibration method that allows the incorporation of monitor units (MU) in MC simulations. This absolute dosimetry formalism can be easily implemented by any BEAMnrc/DOSXYZnrc user, and applies to any configuration of open and blocked fields, including intensity-modulated radiation therapy (IMRT) plans. Our approach involves the relationship between the dose scored in the monitor ionization chamber of a radiotherapy linear accelerator (linac), the number of initial particles incident on the target, and the field size. We found that for a 10 x 10 cm2 field of a 6 MV photon beam, 1 MU corresponds, in our model, to 8.129 x 10(13) +/- 1.0% electrons incident on the target and a total dose of 20.87 cGy +/- 1.0% in the monitor chambers of the virtual linac. We present an extensive experimental verification of our MC results for open and intensity-modulated fields, including a dynamic 7-field IMRT plan simulated on the CT data sets of a cylindrical phantom and of a Rando anthropomorphic phantom, which were validated by measurements using ionization chambers and thermoluminescent dosimeters (TLD). Our simulation results are in excellent agreement with experiment, with percentage differences of less than 2%, in general, demonstrating the accuracy of our Monte Carlo absolute dose calculations.
NASA Astrophysics Data System (ADS)
Almeida, Isabel P.; Schyns, Lotte E. J. R.; Vaniqui, Ana; van der Heyden, Brent; Dedes, George; Resch, Andreas F.; Kamp, Florian; Zindler, Jaap D.; Parodi, Katia; Landry, Guillaume; Verhaegen, Frank
2018-06-01
Proton beam ranges derived from dual-energy computed tomography (DECT) images from a dual-spiral radiotherapy (RT)-specific CT scanner were assessed using Monte Carlo (MC) dose calculations. Images from a dual-source and a twin-beam DECT scanner were also used to establish a comparison to the RT-specific scanner. Proton ranges extracted from conventional single-energy CT (SECT) were additionally performed to benchmark against literature values. Using two phantoms, a DECT methodology was tested as input for GEANT4 MC proton dose calculations. Proton ranges were calculated for different mono-energetic proton beams irradiating both phantoms; the results were compared to the ground truth based on the phantom compositions. The same methodology was applied in a head-and-neck cancer patient using both SECT and dual-spiral DECT scans from the RT-specific scanner. A pencil-beam-scanning plan was designed, which was subsequently optimized by MC dose calculations, and differences in proton range for the different image-based simulations were assessed. For phantoms, the DECT method yielded overall better material segmentation with >86% of the voxel correctly assigned for the dual-spiral and dual-source scanners, but only 64% for a twin-beam scanner. For the calibration phantom, the dual-spiral scanner yielded range errors below 1.2 mm (0.6% of range), like the errors yielded by the dual-source scanner (<1.1 mm, <0.5%). With the validation phantom, the dual-spiral scanner yielded errors below 0.8 mm (0.9%), whereas SECT yielded errors up to 1.6 mm (2%). For the patient case, where the absolute truth was missing, proton range differences between DECT and SECT were on average in ‑1.2 ± 1.2 mm (‑0.5% ± 0.5%). MC dose calculations were successfully performed on DECT images, where the dual-spiral scanner resulted in media segmentation and range accuracy as good as the dual-source CT. In the patient, the various methods showed relevant range differences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Botas, P; Heidelberg University, Heidelberg; Grassberger, C
Purpose: To demonstrate the feasibility of fast Monte Carlo (MC) treatment planning and verification using four-dimensional CT (4DCT) for adaptive IMPT for lung cancer patients. Methods: A validated GPU MC code, gPMC, has been linked to the patient database at our institution and employed to compute the dose-influence matrices (Dij) on the planning CT (pCT). The pCT is an average of the respiratory motion of the patient. The Dijs and patient structures were fed to the optimizer to calculate a treatment plan. To validate the plan against motion, a 4D dose distribution averaged over the possible starting phases is calculatedmore » using the 4DCT and a model of the time structure of the delivered spot map. The dose is accumulated using vector maps created by a GPU-accelerated deformable image registration program (DIR) from each phase of the 4DCT to the reference phase using the B-spline method. Calculation of the Dij matrices and the DIR are performed on a cluster, with each field and vector map calculated in parallel. Results: The Dij production takes ∼3.5s per beamlet for 10e6 protons, depending on the energy and the CT size. Generating a plan with 4D simulation of 1000 spots in 4 fields takes approximately 1h. To test the framework, IMPT plans for 10 lung cancer patients were generated for validation. Differences between the planned and the delivered dose of 19% in dose to some organs at risk and 1.4/21.1% in target mean dose/homogeneity with respect to the plan were observed, suggesting potential for improvement if adaptation is considered. Conclusion: A fast MC treatment planning framework has been developed that allows reliable plan design and verification for mobile targets and adaptation of treatment plans. This will significantly impact treatments for lung tumors, as 4D-MC dose calculations can now become part of planning strategies.« less
WE-EF-207-05: Monte Carlo Dosimetry for a Dedicated Cone-Beam CT Head Scanner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sisniega, A; Zbijewski, W; Xu, J
Purpose: Cone-Beam CT (CBCT) is an attractive platform for point-of-care imaging of traumatic brain injury and intracranial hemorrhage. This work implements and evaluates a fast Monte-Carlo (MC) dose estimation engine for development of a dedicated head CBCT scanner, optimization of acquisition protocols, geometry, bowtie filter designs, and patient-specific dosimetry. Methods: Dose scoring with a GPU-based MC CBCT simulator was validated on an imaging bench using a modified 16 cm CTDI phantom with 7 ion chamber shafts along the central ray for 80–100 kVp (+2 mm Al, +0.2 mm Cu). Dose distributions were computed in a segmented CBCT reconstruction of anmore » anthropomorphic head phantom with 4×10{sup 5} tracked photons per scan (5 min runtime). Circular orbits with angular span ranging from short scan (180° + fan angle) to full rotation (360°) were considered for fixed total mAs per scan. Two aluminum filters were investigated: aggressive bowtie, and moderate bowtie (matched to 16 cm and 32 cm water cylinder, respectively). Results: MC dose estimates showed strong agreement with measurements (RMSE<0.001 mGy/mAs). A moderate (aggressive) bowtie reduced the dose, per total mAs, by 20% (30%) at the center of the head, by 40% (50%) at the eye lens, and by 70% (80%) at the posterior skin entrance. For the no bowtie configuration, a short scan reduced the eye lens dose by 62% (from 0.08 mGy/mAs to 0.03 mGy/mAs) compared to full scan, although the dose to spinal bone marrow increased by 40%. For both bowties, the short scan resulted in a similar 40% increase in bone marrow dose, but the reduction in the eye lens was more pronounced: 70% (90%) for the moderate (aggressive) bowtie. Conclusions: Dose maps obtained with validated MC simulation demonstrated dose reduction in sensitive structures (eye lens and bone marrow) through combination of short-scan trajectories and bowtie filters. Xiaohui Wang and David Foos are employees of Carestream Health.« less
Raman Monte Carlo simulation for light propagation for tissue with embedded objects
NASA Astrophysics Data System (ADS)
Periyasamy, Vijitha; Jaafar, Humaira Bte; Pramanik, Manojit
2018-02-01
Monte Carlo (MC) stimulation is one of the prominent simulation technique and is rapidly becoming the model of choice to study light-tissue interaction. Monte Carlo simulation for light transport in multi-layered tissue (MCML) is adapted and modelled with different geometry by integrating embedded objects of various shapes (i.e., sphere, cylinder, cuboid and ellipsoid) into the multi-layered structure. These geometries would be useful in providing a realistic tissue structure such as modelling for lymph nodes, tumors, blood vessels, head and other simulation medium. MC simulations were performed on various geometric medium. Simulation of MCML with embedded object (MCML-EO) was improvised for propagation of the photon in the defined medium with Raman scattering. The location of Raman photon generation is recorded. Simulations were experimented on a modelled breast tissue with tumor (spherical and ellipsoidal) and blood vessels (cylindrical). Results were presented in both A-line and B-line scans for embedded objects to determine spatial location where Raman photons were generated. Studies were done for different Raman probabilities.
Subtle Monte Carlo Updates in Dense Molecular Systems.
Bottaro, Sandro; Boomsma, Wouter; E Johansson, Kristoffer; Andreetta, Christian; Hamelryck, Thomas; Ferkinghoff-Borg, Jesper
2012-02-14
Although Markov chain Monte Carlo (MC) simulation is a potentially powerful approach for exploring conformational space, it has been unable to compete with molecular dynamics (MD) in the analysis of high density structural states, such as the native state of globular proteins. Here, we introduce a kinetic algorithm, CRISP, that greatly enhances the sampling efficiency in all-atom MC simulations of dense systems. The algorithm is based on an exact analytical solution to the classic chain-closure problem, making it possible to express the interdependencies among degrees of freedom in the molecule as correlations in a multivariate Gaussian distribution. We demonstrate that our method reproduces structural variation in proteins with greater efficiency than current state-of-the-art Monte Carlo methods and has real-time simulation performance on par with molecular dynamics simulations. The presented results suggest our method as a valuable tool in the study of molecules in atomic detail, offering a potential alternative to molecular dynamics for probing long time-scale conformational transitions.
Lens implementation on the GATE Monte Carlo toolkit for optical imaging simulation
NASA Astrophysics Data System (ADS)
Kang, Han Gyu; Song, Seong Hyun; Han, Young Been; Kim, Kyeong Min; Hong, Seong Jong
2018-02-01
Optical imaging techniques are widely used for in vivo preclinical studies, and it is well known that the Geant4 Application for Emission Tomography (GATE) can be employed for the Monte Carlo (MC) modeling of light transport inside heterogeneous tissues. However, the GATE MC toolkit is limited in that it does not yet include optical lens implementation, even though this is required for a more realistic optical imaging simulation. We describe our implementation of a biconvex lens into the GATE MC toolkit to improve both the sensitivity and spatial resolution for optical imaging simulation. The lens implemented into the GATE was validated against the ZEMAX optical simulation using an US air force 1951 resolution target. The ray diagrams and the charge-coupled device images of the GATE optical simulation agreed with the ZEMAX optical simulation results. In conclusion, the use of a lens on the GATE optical simulation could improve the image quality of bioluminescence and fluorescence significantly as compared with pinhole optics.
Song, Sangha; Elgezua, Inko; Kobayashi, Yo; Fujie, Masakatsu G
2013-01-01
In biomedical, Monte-carlo simulation is commonly used for simulation of light diffusion in tissue. But, most of previous studies did not consider a radial beam LED as light source. Therefore, we considered characteristics of a radial beam LED and applied them on MC simulation as light source. In this paper, we consider 3 characteristics of radial beam LED. The first is an initial launch area of photons. The second is an incident angle of a photon at an initial photon launching area. The third is the refraction effect according to contact area between LED and a turbid medium. For the verification of the MC simulation, we compared simulation and experimental results. The average of the correlation coefficient between simulation and experimental results is 0.9954. Through this study, we show an effective method to simulate light diffusion on tissue with characteristics for radial beam LED based on MC simulation.
A technique for generating phase-space-based Monte Carlo beamlets in radiotherapy applications.
Bush, K; Popescu, I A; Zavgorodni, S
2008-09-21
As radiotherapy treatment planning moves toward Monte Carlo (MC) based dose calculation methods, the MC beamlet is becoming an increasingly common optimization entity. At present, methods used to produce MC beamlets have utilized a particle source model (PSM) approach. In this work we outline the implementation of a phase-space-based approach to MC beamlet generation that is expected to provide greater accuracy in beamlet dose distributions. In this approach a standard BEAMnrc phase space is sorted and divided into beamlets with particles labeled using the inheritable particle history variable. This is achieved with the use of an efficient sorting algorithm, capable of sorting a phase space of any size into the required number of beamlets in only two passes. Sorting a phase space of five million particles can be achieved in less than 8 s on a single-core 2.2 GHz CPU. The beamlets can then be transported separately into a patient CT dataset, producing separate dose distributions (doselets). Methods for doselet normalization and conversion of dose to absolute units of Gy for use in intensity modulated radiation therapy (IMRT) plan optimization are also described.
NASA Astrophysics Data System (ADS)
Ho, Phay; Knight, Christopher; Bostedt, Christoph; Young, Linda; Tegze, Miklos; Faigel, Gyula
2016-05-01
We have developed a large-scale atomistic computational method based on a combined Monte Carlo and Molecular Dynamics (MC/MD) method to simulate XFEL-induced radiation damage dynamics of complex materials. The MD algorithm is used to propagate the trajectories of electrons, ions and atoms forward in time and the quantum nature of interactions with an XFEL pulse is accounted for by a MC method to calculate probabilities of electronic transitions. Our code has good scalability with MPI/OpenMP parallelization, and it has been run on Mira, a petascale system at the Argonne Leardership Computing Facility, with particle number >50 million. Using this code, we have examined the impact of high-intensity 8-keV XFEL pulses on the x-ray diffraction patterns of argon clusters. The obtained patterns show strong pulse parameter dependence, providing evidence of significant lattice rearrangement and diffuse scattering. Real-space electronic reconstruction was performed using phase retrieval methods. We found that the structure of the argon cluster can be recovered with atomic resolution even in the presence of considerable radiation damage. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division.
MO-E-18C-02: Hands-On Monte Carlo Project Assignment as a Method to Teach Radiation Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pater, P; Vallieres, M; Seuntjens, J
2014-06-15
Purpose: To present a hands-on project on Monte Carlo methods (MC) recently added to the curriculum and to discuss the students' appreciation. Methods: Since 2012, a 1.5 hour lecture dedicated to MC fundamentals follows the detailed presentation of photon and electron interactions. Students also program all sampling steps (interaction length and type, scattering angle, energy deposit) of a MC photon transport code. A handout structured in a step-by-step fashion guides student in conducting consistency checks. For extra points, students can code a fully working MC simulation, that simulates a dose distribution for 50 keV photons. A kerma approximation to dosemore » deposition is assumed. A survey was conducted to which 10 out of the 14 attending students responded. It compared MC knowledge prior to and after the project, questioned the usefulness of radiation physics teaching through MC and surveyed possible project improvements. Results: According to the survey, 76% of students had no or a basic knowledge of MC methods before the class and 65% estimate to have a good to very good understanding of MC methods after attending the class. 80% of students feel that the MC project helped them significantly to understand simulations of dose distributions. On average, students dedicated 12.5 hours to the project and appreciated the balance between hand-holding and questions/implications. Conclusion: A lecture on MC methods with a hands-on MC programming project requiring about 14 hours was added to the graduate study curriculum since 2012. MC methods produce “gold standard” dose distributions and slowly enter routine clinical work and a fundamental understanding of MC methods should be a requirement for future students. Overall, the lecture and project helped students relate crosssections to dose depositions and presented numerical sampling methods behind the simulation of these dose distributions. Research funding from governments of Canada and Quebec. PP acknowledges partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council (Grant number: 432290)« less
On the definition of a Monte Carlo model for binary crystal growth.
Los, J H; van Enckevort, W J P; Meekes, H; Vlieg, E
2007-02-01
We show that consistency of the transition probabilities in a lattice Monte Carlo (MC) model for binary crystal growth with the thermodynamic properties of a system does not guarantee the MC simulations near equilibrium to be in agreement with the thermodynamic equilibrium phase diagram for that system. The deviations remain small for systems with small bond energies, but they can increase significantly for systems with large melting entropy, typical for molecular systems. These deviations are attributed to the surface kinetics, which is responsible for a metastable zone below the liquidus line where no growth occurs, even in the absence of a 2D nucleation barrier. Here we propose an extension of the MC model that introduces a freedom of choice in the transition probabilities while staying within the thermodynamic constraints. This freedom can be used to eliminate the discrepancy between the MC simulations and the thermodynamic equilibrium phase diagram. Agreement is achieved for that choice of the transition probabilities yielding the fastest decrease of the free energy (i.e., largest growth rate) of the system at a temperature slightly below the equilibrium temperature. An analytical model is developed, which reproduces quite well the MC results, enabling a straightforward determination of the optimal set of transition probabilities. Application of both the MC and analytical model to conditions well away from equilibrium, giving rise to kinetic phase diagrams, shows that the effect of kinetics on segregation is even stronger than that predicted by previous models.
Monte-Carlo simulation of a stochastic differential equation
NASA Astrophysics Data System (ADS)
Arif, ULLAH; Majid, KHAN; M, KAMRAN; R, KHAN; Zhengmao, SHENG
2017-12-01
For solving higher dimensional diffusion equations with an inhomogeneous diffusion coefficient, Monte Carlo (MC) techniques are considered to be more effective than other algorithms, such as finite element method or finite difference method. The inhomogeneity of diffusion coefficient strongly limits the use of different numerical techniques. For better convergence, methods with higher orders have been kept forward to allow MC codes with large step size. The main focus of this work is to look for operators that can produce converging results for large step sizes. As a first step, our comparative analysis has been applied to a general stochastic problem. Subsequently, our formulization is applied to the problem of pitch angle scattering resulting from Coulomb collisions of charge particles in the toroidal devices.
Latent uncertainties of the precalculated track Monte Carlo method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renaud, Marc-André; Seuntjens, Jan; Roberge, David
Purpose: While significant progress has been made in speeding up Monte Carlo (MC) dose calculation methods, they remain too time-consuming for the purpose of inverse planning. To achieve clinically usable calculation speeds, a precalculated Monte Carlo (PMC) algorithm for proton and electron transport was developed to run on graphics processing units (GPUs). The algorithm utilizes pregenerated particle track data from conventional MC codes for different materials such as water, bone, and lung to produce dose distributions in voxelized phantoms. While PMC methods have been described in the past, an explicit quantification of the latent uncertainty arising from the limited numbermore » of unique tracks in the pregenerated track bank is missing from the paper. With a proper uncertainty analysis, an optimal number of tracks in the pregenerated track bank can be selected for a desired dose calculation uncertainty. Methods: Particle tracks were pregenerated for electrons and protons using EGSnrc and GEANT4 and saved in a database. The PMC algorithm for track selection, rotation, and transport was implemented on the Compute Unified Device Architecture (CUDA) 4.0 programming framework. PMC dose distributions were calculated in a variety of media and compared to benchmark dose distributions simulated from the corresponding general-purpose MC codes in the same conditions. A latent uncertainty metric was defined and analysis was performed by varying the pregenerated track bank size and the number of simulated primary particle histories and comparing dose values to a “ground truth” benchmark dose distribution calculated to 0.04% average uncertainty in voxels with dose greater than 20% of D{sub max}. Efficiency metrics were calculated against benchmark MC codes on a single CPU core with no variance reduction. Results: Dose distributions generated using PMC and benchmark MC codes were compared and found to be within 2% of each other in voxels with dose values greater than 20% of the maximum dose. In proton calculations, a small (≤1 mm) distance-to-agreement error was observed at the Bragg peak. Latent uncertainty was characterized for electrons and found to follow a Poisson distribution with the number of unique tracks per energy. A track bank of 12 energies and 60000 unique tracks per pregenerated energy in water had a size of 2.4 GB and achieved a latent uncertainty of approximately 1% at an optimal efficiency gain over DOSXYZnrc. Larger track banks produced a lower latent uncertainty at the cost of increased memory consumption. Using an NVIDIA GTX 590, efficiency analysis showed a 807 × efficiency increase over DOSXYZnrc for 16 MeV electrons in water and 508 × for 16 MeV electrons in bone. Conclusions: The PMC method can calculate dose distributions for electrons and protons to a statistical uncertainty of 1% with a large efficiency gain over conventional MC codes. Before performing clinical dose calculations, models to calculate dose contributions from uncharged particles must be implemented. Following the successful implementation of these models, the PMC method will be evaluated as a candidate for inverse planning of modulated electron radiation therapy and scanned proton beams.« less
Latent uncertainties of the precalculated track Monte Carlo method.
Renaud, Marc-André; Roberge, David; Seuntjens, Jan
2015-01-01
While significant progress has been made in speeding up Monte Carlo (MC) dose calculation methods, they remain too time-consuming for the purpose of inverse planning. To achieve clinically usable calculation speeds, a precalculated Monte Carlo (PMC) algorithm for proton and electron transport was developed to run on graphics processing units (GPUs). The algorithm utilizes pregenerated particle track data from conventional MC codes for different materials such as water, bone, and lung to produce dose distributions in voxelized phantoms. While PMC methods have been described in the past, an explicit quantification of the latent uncertainty arising from the limited number of unique tracks in the pregenerated track bank is missing from the paper. With a proper uncertainty analysis, an optimal number of tracks in the pregenerated track bank can be selected for a desired dose calculation uncertainty. Particle tracks were pregenerated for electrons and protons using EGSnrc and geant4 and saved in a database. The PMC algorithm for track selection, rotation, and transport was implemented on the Compute Unified Device Architecture (cuda) 4.0 programming framework. PMC dose distributions were calculated in a variety of media and compared to benchmark dose distributions simulated from the corresponding general-purpose MC codes in the same conditions. A latent uncertainty metric was defined and analysis was performed by varying the pregenerated track bank size and the number of simulated primary particle histories and comparing dose values to a "ground truth" benchmark dose distribution calculated to 0.04% average uncertainty in voxels with dose greater than 20% of Dmax. Efficiency metrics were calculated against benchmark MC codes on a single CPU core with no variance reduction. Dose distributions generated using PMC and benchmark MC codes were compared and found to be within 2% of each other in voxels with dose values greater than 20% of the maximum dose. In proton calculations, a small (≤ 1 mm) distance-to-agreement error was observed at the Bragg peak. Latent uncertainty was characterized for electrons and found to follow a Poisson distribution with the number of unique tracks per energy. A track bank of 12 energies and 60000 unique tracks per pregenerated energy in water had a size of 2.4 GB and achieved a latent uncertainty of approximately 1% at an optimal efficiency gain over DOSXYZnrc. Larger track banks produced a lower latent uncertainty at the cost of increased memory consumption. Using an NVIDIA GTX 590, efficiency analysis showed a 807 × efficiency increase over DOSXYZnrc for 16 MeV electrons in water and 508 × for 16 MeV electrons in bone. The PMC method can calculate dose distributions for electrons and protons to a statistical uncertainty of 1% with a large efficiency gain over conventional MC codes. Before performing clinical dose calculations, models to calculate dose contributions from uncharged particles must be implemented. Following the successful implementation of these models, the PMC method will be evaluated as a candidate for inverse planning of modulated electron radiation therapy and scanned proton beams.
Concepts for dose determination in flat-detector CT
NASA Astrophysics Data System (ADS)
Kyriakou, Yiannis; Deak, Paul; Langner, Oliver; Kalender, Willi A.
2008-07-01
Flat-detector computed tomography (FD-CT) scanners provide large irradiation fields of typically 200 mm in the cranio-caudal direction. In consequence, dose assessment according to the current definition of the computed tomography dose index CTDIL=100 mm, where L is the integration length, would demand larger ionization chambers and phantoms which do not appear practical. We investigated the usefulness of the CTDI concept and practical dosimetry approaches for FD-CT by measurements and Monte Carlo (MC) simulations. An MC simulation tool (ImpactMC, VAMP GmbH, Erlangen, Germany) was used to assess the dose characteristics and was calibrated with measurements of air kerma. For validation purposes measurements were performed on an Axiom Artis C-arm system (Siemens Medical Solutions, Forchheim, Germany) equipped with a flat detector of 40 cm × 30 cm. The dose was assessed for 70 kV and 125 kV in cylindrical PMMA phantoms of 160 mm and 320 mm diameter with a varying phantom length from 150 to 900 mm. MC simulation results were compared to the values obtained with a calibrated ionization chambers of 100 mm and 250 mm length and to thermoluminesence (TLD) dose profiles. The MCs simulations were used to calculate the efficiency of the CTDIL determination with respect to the desired CTDI∞. Both the MC simulation results and the dose distributions obtained by MC simulation were in very good agreement with the CTDI measurements and with the reference TLD profiles, respectively, to within 5%. Standard CTDI phantoms which have a z-extent of 150 mm underestimate the dose at the center by up to 55%, whereas a z-extent of >=600 mm appears to be sufficient for FD-CT; the baseline value of the respective profile was within 1% to the reference baseline. As expected, the measurements with ionization chambers of 100 mm and 250 mm offer a limited accuracy, whereas an increased integration length of >=600 mm appeared to be necessary to approximate CTDI∞ in within 1%. MC simulations appear to offer a practical and accurate way of assessing conversion factors for arbitrary dosimetry setups using a standard pencil chamber to provide estimates of CTDI∞. This would eliminate the need for extra-long phantoms and ionization chambers or excessive amounts of TLDs.
EDITORIAL: International Workshop on Current Topics in Monte Carlo Treatment Planning
NASA Astrophysics Data System (ADS)
Verhaegen, Frank; Seuntjens, Jan
2005-03-01
The use of Monte Carlo particle transport simulations in radiotherapy was pioneered in the early nineteen-seventies, but it was not until the eighties that they gained recognition as an essential research tool for radiation dosimetry, health physics and later on for radiation therapy treatment planning. Since the mid-nineties, there has been a boom in the number of workers using MC techniques in radiotherapy, and the quantity of papers published on the subject. Research and applications of MC techniques in radiotherapy span a very wide range from fundamental studies of cross sections and development of particle transport algorithms, to clinical evaluation of treatment plans for a variety of radiotherapy modalities. The International Workshop on Current Topics in Monte Carlo Treatment Planning took place at Montreal General Hospital, which is part of McGill University, halfway up Mount Royal on Montreal Island. It was held from 3-5 May, 2004, right after the freezing winter has lost its grip on Canada. About 120 workers attended the Workshop, representing 18 countries. Most of the pioneers in the field were present but also a large group of young scientists. In a very full programme, 41 long papers were presented (of which 12 were invited) and 20 posters were on display during the whole meeting. The topics covered included the latest developments in MC algorithms, statistical issues, source modelling and MC treatment planning for photon, electron and proton treatments. The final day was entirely devoted to clinical implementation issues. Monte Carlo radiotherapy treatment planning has only now made a slow entrée in the clinical environment, taking considerably longer than envisaged ten years ago. Of the twenty-five papers in this dedicated special issue, about a quarter deal with this topic, with probably many more studies to follow in the near future. If anything, we hope the Workshop served as an accelerator for more clinical evaluation of MC applications. The remainder of the papers in this issue demonstrate that there is still plenty of work to be undertaken on other topics such as source modelling, calculation speed, data analysis, and development of user-friendly applications. We acknowledge the financial support of the National Cancer Institute of Canada, the Institute of Cancer Research of the Canadian Institutes of Health Research, the Research Grants Office and the Post Graduate Student Society of McGill University, and the Institute of Physics Publishing (IOPP). A final word of thanks goes out to all of those who contributed to the successful Workshop: our local medical physics students and staff, the many colleagues who acted as guest associate editors for the reviewing process, the IOPP staff, and the authors who generated new and exciting work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Titt, U; Suzuki, K
Purpose: The PTCH is preparing the ocular proton beam nozzle for clinical use. Currently commissioning measurements are being performed using films, diodes and ionization chambers. In parallel, a Monte Carlo model of the beam line was created for integration into the automated Monte Carlo treatment plan computation system, MC{sup 2}. This work aims to compare Monte Carlo predictions to measured proton doses in order to validate the Monte Carlo model. Methods: A complete model of the double scattering ocular beam line has been created and is capable of simulating proton beams with a comprehensive set of beam modifying devices, includingmore » eleven different range modulator wheels. Simulations of doses in water were scored and compare to ion chamber measurements of depth doses, lateral dose profiles extracted from half beam block exposures of films, and diode measurements of lateral penumbrae at various depths. Results: All comparison resulted in an average relative entrance dose difference of less than 3% and peak dose difference of less than 2%. All range differences were smaller than 0.2 mm. The differences in the lateral beam profiles were smaller than 0.2 mm, and the differences in the penumbrae were all smaller than 0.4%. Conclusion: All available data shows excellent agreement of simulations and measurements. More measurements will have to be performed in order to completely and systematically validate the model. Besides simulating and measuring PDDs and lateral profiles of all remaining range modulator wheels, the absolute dosimetry factors in terms of number of source protons per monitor unit have to be determined.« less
Development of Simulation Methods in the Gibbs Ensemble to Predict Polymer-Solvent Phase Equilibria
NASA Astrophysics Data System (ADS)
Gartner, Thomas; Epps, Thomas; Jayaraman, Arthi
Solvent vapor annealing (SVA) of polymer thin films is a promising method for post-deposition polymer film morphology control. The large number of important parameters relevant to SVA (polymer, solvent, and substrate chemistries, incoming film condition, annealing and solvent evaporation conditions) makes systematic experimental study of SVA a time-consuming endeavor, motivating the application of simulation and theory to the SVA system to provide both mechanistic insight and scans of this wide parameter space. However, to rigorously treat the phase equilibrium between polymer film and solvent vapor while still probing the dynamics of SVA, new simulation methods must be developed. In this presentation, we compare two methods to study polymer-solvent phase equilibrium-Gibbs Ensemble Molecular Dynamics (GEMD) and Hybrid Monte Carlo/Molecular Dynamics (Hybrid MC/MD). Liquid-vapor equilibrium results are presented for the Lennard Jones fluid and for coarse-grained polymer-solvent systems relevant to SVA. We found that the Hybrid MC/MD method is more stable and consistent than GEMD, but GEMD has significant advantages in computational efficiency. We propose that Hybrid MC/MD simulations be used for unfamiliar systems in certain choice conditions, followed by much faster GEMD simulations to map out the remainder of the phase window.
Qin, Nan; Botas, Pablo; Giantsoudi, Drosoula; Schuemann, Jan; Tian, Zhen; Jiang, Steve B.; Paganetti, Harald; Jia, Xun
2016-01-01
Monte Carlo (MC) simulation is commonly considered as the most accurate dose calculation method for proton therapy. Aiming at achieving fast MC dose calculations for clinical applications, we have previously developed a GPU-based MC tool, gPMC. In this paper, we report our recent updates on gPMC in terms of its accuracy, portability, and functionality, as well as comprehensive tests on this tool. The new version, gPMC v2.0, was developed under the OpenCL environment to enable portability across different computational platforms. Physics models of nuclear interactions were refined to improve calculation accuracy. Scoring functions of gPMC were expanded to enable tallying particle fluence, dose deposited by different particle types, and dose-averaged linear energy transfer (LETd). A multiple counter approach was employed to improve efficiency by reducing frequency of memory writing conflict at scoring. For dose calculation, accuracy improvements over gPMC v1.0 were observed in both water phantom cases and a patient case. For a prostate cancer case planned using high-energy proton beams, dose discrepancies in beam entrance and target region seen in gPMC v1.0 with respect to the gold standard tool for proton Monte Carlo simulations (TOPAS) results were substantially reduced and gamma test passing rate (1%/1mm) was improved from 82.7% to 93.1%. Average relative difference in LETd between gPMC and TOPAS was 1.7%. Average relative differences in dose deposited by primary, secondary, and other heavier particles were within 2.3%, 0.4%, and 0.2%. Depending on source proton energy and phantom complexity, it took 8 to 17 seconds on an AMD Radeon R9 290x GPU to simulate 107 source protons, achieving less than 1% average statistical uncertainty. As beam size was reduced from 10×10 cm2 to 1×1 cm2, time on scoring was only increased by 4.8% with eight counters, in contrast to a 40% increase using only one counter. With the OpenCL environment, the portability of gPMC v2.0 was enhanced. It was successfully executed on different CPUs and GPUs and its performance on different devices varied depending on processing power and hardware structure. PMID:27694712
William Salas; Steve Hagen
2013-01-01
This presentation will provide an overview of an approach for quantifying uncertainty in spatial estimates of carbon emission from land use change. We generate uncertainty bounds around our final emissions estimate using a randomized, Monte Carlo (MC)-style sampling technique. This approach allows us to combine uncertainty from different sources without making...
2009-03-26
annually ( McHugh , et al., 1998). USAF has used daylighting as an energy savings strategy in earlier studies (Holtz, 1990); and is pursuing it to meet...using renewable energy to generate electricity ( McHugh , et al., 1998). For example, traditional utility systems that are straining to meet peak...1998) found that lighting accounts for 40-50% of commercial energy consumption and McHugh , Burns, and Hittle (1998) stated that electric lighting and
MC 2 -3: Multigroup Cross Section Generation Code for Fast Reactor Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Changho; Yang, Won Sik
This paper presents the methods and performance of the MC2 -3 code, which is a multigroup cross-section generation code for fast reactor analysis, developed to improve the resonance self-shielding and spectrum calculation methods of MC2 -2 and to simplify the current multistep schemes generating region-dependent broad-group cross sections. Using the basic neutron data from ENDF/B data files, MC2 -3 solves the consistent P1 multigroup transport equation to determine the fundamental mode spectra for use in generating multigroup neutron cross sections. A homogeneous medium or a heterogeneous slab or cylindrical unit cell problem is solved in ultrafine (2082) or hyperfine (~400more » 000) group levels. In the resolved resonance range, pointwise cross sections are reconstructed with Doppler broadening at specified temperatures. The pointwise cross sections are directly used in the hyperfine group calculation, whereas for the ultrafine group calculation, self-shielded cross sections are prepared by numerical integration of the pointwise cross sections based upon the narrow resonance approximation. For both the hyperfine and ultrafine group calculations, unresolved resonances are self-shielded using the analytic resonance integral method. The ultrafine group calculation can also be performed for a two-dimensional whole-core problem to generate region-dependent broad-group cross sections. Verification tests have been performed using the benchmark problems for various fast critical experiments including Los Alamos National Laboratory critical assemblies; Zero-Power Reactor, Zero-Power Physics Reactor, and Bundesamt für Strahlenschutz experiments; Monju start-up core; and Advanced Burner Test Reactor. Verification and validation results with ENDF/B-VII.0 data indicated that eigenvalues from MC2 -3/DIF3D agreed well with Monte Carlo N-Particle5 MCNP5 or VIM Monte Carlo solutions within 200 pcm and regionwise one-group fluxes were in good agreement with Monte Carlo solutions.« less
Monte Carlo based, patient-specific RapidArc QA using Linac log files.
Teke, Tony; Bergman, Alanah M; Kwa, William; Gill, Bradford; Duzenli, Cheryl; Popescu, I Antoniu
2010-01-01
A Monte Carlo (MC) based QA process to validate the dynamic beam delivery accuracy for Varian RapidArc (Varian Medical Systems, Palo Alto, CA) using Linac delivery log files (DynaLog) is presented. Using DynaLog file analysis and MC simulations, the goal of this article is to (a) confirm that adequate sampling is used in the RapidArc optimization algorithm (177 static gantry angles) and (b) to assess the physical machine performance [gantry angle and monitor unit (MU) delivery accuracy]. Ten clinically acceptable RapidArc treatment plans were generated for various tumor sites and delivered to a water-equivalent cylindrical phantom on the treatment unit. Three Monte Carlo simulations were performed to calculate dose to the CT phantom image set: (a) One using a series of static gantry angles defined by 177 control points with treatment planning system (TPS) MLC control files (planning files), (b) one using continuous gantry rotation with TPS generated MLC control files, and (c) one using continuous gantry rotation with actual Linac delivery log files. Monte Carlo simulated dose distributions are compared to both ionization chamber point measurements and with RapidArc TPS calculated doses. The 3D dose distributions were compared using a 3D gamma-factor analysis, employing a 3%/3 mm distance-to-agreement criterion. The dose difference between MC simulations, TPS, and ionization chamber point measurements was less than 2.1%. For all plans, the MC calculated 3D dose distributions agreed well with the TPS calculated doses (gamma-factor values were less than 1 for more than 95% of the points considered). Machine performance QA was supplemented with an extensive DynaLog file analysis. A DynaLog file analysis showed that leaf position errors were less than 1 mm for 94% of the time and there were no leaf errors greater than 2.5 mm. The mean standard deviation in MU and gantry angle were 0.052 MU and 0.355 degrees, respectively, for the ten cases analyzed. The accuracy and flexibility of the Monte Carlo based RapidArc QA system were demonstrated. Good machine performance and accurate dose distribution delivery of RapidArc plans were observed. The sampling used in the TPS optimization algorithm was found to be adequate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altsybeev, Igor
2016-01-22
In the present work, Monte-Carlo toy model with repulsing quark-gluon strings in hadron-hadron collisions is described. String repulsion creates transverse boosts for the string decay products, giving modifications of observables. As an example, long-range correlations between mean transverse momenta of particles in two observation windows are studied in MC toy simulation of the heavy-ion collisions.
Ion-mediated interactions in suspensions of oppositely charged nanoparticles
NASA Astrophysics Data System (ADS)
Dahirel, Vincent; Hansen, Jean Pierre
2009-08-01
The structure of oppositely charged spherical nanoparticles (polyions), dispersed in ionic solutions with continuous solvent (primitive model), is investigated by Monte Carlo (MC) simulations, within explicit and implicit microion representations, over a range of polyion valences and densities, and microion concentrations. Systems with explicit microions are explored by semigrand canonical MC simulations, and allow density-dependent effective polyion pair potentials vαβeff(r ) to be extracted from measured partial pair distribution functions. Implicit microion MC simulations are based on pair potentials of mean force vαβ(2)(r ) computed by explicit microion simulations of two charged polyions, in the low density limit. In the vicinity of the liquid-gas separation expected for oppositely charged polyions, the implicit microion representation leads to an instability against density fluctuations for polyion valences |Z| significantly below those at which the instability sets in within the exact explicit microion representation. Far from this instability region, the vαβ(2)(r ) are found to be fairly close to but consistently more repulsive than the effective pair potentials vαβeff(r ). This is corroborated by additional calculations of three-body forces between polyion triplets, which are repulsive when one polyion is of opposite charge to the other two. The explicit microion MC data were exploited to determine the ratio of salt concentrations c and co within the dispersion and the reservoir (Donnan effect). c /co is found to first increase before finally decreasing as a function of the polyion packing fraction.
NASA Astrophysics Data System (ADS)
Baptista, M.; Teles, P.; Cardoso, G.; Vaz, P.
2014-11-01
Over the last decade, there was a substantial increase in the number of interventional cardiology procedures worldwide, and the corresponding ionizing radiation doses for both the medical staff and patients became a subject of concern. Interventional procedures in cardiology are normally very complex, resulting in long exposure times. Also, these interventions require the operator to work near the patient and, consequently, close to the primary X-ray beam. Moreover, due to the scattered radiation from the patient and the equipment, the medical staff is also exposed to a non-uniform radiation field that can lead to a significant exposure of sensitive body organs and tissues, such as the eye lens, the thyroid and the extremities. In order to better understand the spatial variation of the dose and dose rate distributions during an interventional cardiology procedure, the dose distribution around a C-arm fluoroscopic system, in operation in a cardiac cath lab at Portuguese Hospital, was estimated using both Monte Carlo (MC) simulations and dosimetric measurements. To model and simulate the cardiac cath lab, including the fluoroscopic equipment used to execute interventional procedures, the state-of-the-art MC radiation transport code MCNPX 2.7.0 was used. Subsequently, Thermo-Luminescent Detector (TLD) measurements were performed, in order to validate and support the simulation results obtained for the cath lab model. The preliminary results presented in this study reveal that the cardiac cath lab model was successfully validated, taking into account the good agreement between MC calculations and TLD measurements. The simulated results for the isodose curves related to the C-arm fluoroscopic system are also consistent with the dosimetric information provided by the equipment manufacturer (Siemens). The adequacy of the implemented computational model used to simulate complex procedures and map dose distributions around the operator and the medical staff is discussed, in view of the optimization principle (and the associated ALARA objective), one of the pillars of the international system of radiological protection.
Canopy polarized BRDF simulation based on non-stationary Monte Carlo 3-D vector RT modeling
NASA Astrophysics Data System (ADS)
Kallel, Abdelaziz; Gastellu-Etchegorry, Jean Philippe
2017-03-01
Vector radiative transfer (VRT) has been largely used to simulate polarized reflectance of atmosphere and ocean. However it is still not properly used to describe vegetation cover polarized reflectance. In this study, we try to propose a 3-D VRT model based on a modified Monte Carlo (MC) forward ray tracing simulation to analyze vegetation canopy reflectance. Two kinds of leaf scattering are taken into account: (i) Lambertian diffuse reflectance and transmittance and (ii) specular reflection. A new method to estimate the condition on leaf orientation to produce reflection is proposed, and its probability to occur, Pl,max, is computed. It is then shown that Pl,max is low, but when reflection happens, the corresponding radiance Stokes vector, Io, is very high. Such a phenomenon dramatically increases the MC variance and yields to an irregular reflectance distribution function. For better regularization, we propose a non-stationary MC approach that simulates reflection for each sunny leaf assuming that its orientation is randomly chosen according to its angular distribution. It is shown in this case that the average canopy reflection is proportional to Pl,max ·Io which produces a smooth distribution. Two experiments are conducted: (i) assuming leaf light polarization is only due to the Fresnel reflection and (ii) the general polarization case. In the former experiment, our results confirm that in the forward direction, canopy polarizes horizontally light. In addition, they show that in inclined forward direction, diagonal polarization can be observed. In the latter experiment, polarization is produced in all orientations. It is particularly pointed out that specular polarization explains just a part of the forward polarization. Diffuse scattering polarizes light horizontally and vertically in forward and backward directions, respectively. Weak circular polarization signal is also observed near the backscattering direction. Finally, validation of the non-polarized reflectance using the ROMC tool is done, and our model shows good agreement with the ROMC reference.
SU-E-T-558: Monte Carlo Photon Transport Simulations On GPU with Quadric Geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, Y; Tian, Z; Jiang, S
Purpose: Monte Carlo simulation on GPU has experienced rapid advancements over the past a few years and tremendous accelerations have been achieved. Yet existing packages were developed only in voxelized geometry. In some applications, e.g. radioactive seed modeling, simulations in more complicated geometry are needed. This abstract reports our initial efforts towards developing a quadric geometry module aiming at expanding the application scope of GPU-based MC simulations. Methods: We defined the simulation geometry consisting of a number of homogeneous bodies, each specified by its material composition and limiting surfaces characterized by quadric functions. A tree data structure was utilized tomore » define geometric relationship between different bodies. We modified our GPU-based photon MC transport package to incorporate this geometry. Specifically, geometry parameters were loaded into GPU’s shared memory for fast access. Geometry functions were rewritten to enable the identification of the body that contains the current particle location via a fast searching algorithm based on the tree data structure. Results: We tested our package in an example problem of HDR-brachytherapy dose calculation for shielded cylinder. The dose under the quadric geometry and that under the voxelized geometry agreed in 94.2% of total voxels within 20% isodose line based on a statistical t-test (95% confidence level), where the reference dose was defined to be the one at 0.5cm away from the cylinder surface. It took 243sec to transport 100million source photons under this quadric geometry on an NVidia Titan GPU card. Compared with simulation time of 99.6sec in the voxelized geometry, including quadric geometry reduced efficiency due to the complicated geometry-related computations. Conclusion: Our GPU-based MC package has been extended to support photon transport simulation in quadric geometry. Satisfactory accuracy was observed with a reduced efficiency. Developments for charged particle transport in this geometry are currently in progress.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saini, Amarjit S.; Zhang, Geoffrey G., E-mail: geoffrey.zhang@moffitt.org; Finkelstein, Steven E.
2011-07-15
Purpose: Vaginal balloon packing is a means to displace organs at risk during high dose rate brachytherapy of the uterine cervix. We tested the hypothesis that contrast-filled vaginal balloon packing reduces radiation dose to organs at risk, such as the bladder and rectum, in comparison to water- or air-filled balloons. Methods and Materials: In a phantom study, semispherical vaginal packing balloons were filled with air, saline solution, and contrast agents. A high dose rate iridium-192 source was placed on the anterior surface of the balloon, and the diode detector was placed on the posterior surface. Dose ratios were taken withmore » each material in the balloon. Monte Carlo (MC) simulations, by use of the MC computer program DOSXYZnrc, were performed to study dose reduction vs. balloon size and contrast material, including commercially available iodine- and gadolinium-based contrast agents. Results: Measured dose ratios on the phantom with the balloon radius of 3.4 cm were 0.922 {+-} 0.002 for contrast/saline solution and 0.808 {+-} 0.001 for contrast/air. The corresponding ratios by MC simulations were 0.895 {+-} 0.010 and 0.781 {+-} 0.010. The iodine concentration in the contrast was 23.3% by weight. The dose reduction of contrast-filled balloon ranges from 6% to 15% compared with water-filled balloon and 11% to 26% compared with air-filled balloon, with a balloon size range between 1.4 and 3.8 cm, and iodine concentration in contrast of 24.9%. The dose reduction was proportional to the contrast agent concentration. The gadolinium-based contrast agents showed less dose reduction because of much lower concentrations in their solutions. Conclusions: The dose to the posterior wall of the bladder and the anterior wall of the rectum can be reduced if the vaginal balloon is filled with contrast agent in comparison to vaginal balloons filled with saline solution or air.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillan, K; Bostani, M; McNitt-Gray, M
2015-06-15
Purpose: Most patient models used in Monte Carlo-based estimates of CT dose, including computational phantoms, do not have tube current modulation (TCM) data associated with them. While not a problem for fixed tube current simulations, this is a limitation when modeling the effects of TCM. Therefore, the purpose of this work was to develop and validate methods to estimate TCM schemes for any voxelized patient model. Methods: For 10 patients who received clinically-indicated chest (n=5) and abdomen/pelvis (n=5) scans on a Siemens CT scanner, both CT localizer radiograph (“topogram”) and image data were collected. Methods were devised to estimate themore » complete x-y-z TCM scheme using patient attenuation data: (a) available in the Siemens CT localizer radiograph/topogram itself (“actual-topo”) and (b) from a simulated topogram (“sim-topo”) derived from a projection of the image data. For comparison, the actual TCM scheme was extracted from the projection data of each patient. For validation, Monte Carlo simulations were performed using each TCM scheme to estimate dose to the lungs (chest scans) and liver (abdomen/pelvis scans). Organ doses from simulations using the actual TCM were compared to those using each of the estimated TCM methods (“actual-topo” and “sim-topo”). Results: For chest scans, the average differences between doses estimated using actual TCM schemes and estimated TCM schemes (“actual-topo” and “sim-topo”) were 3.70% and 4.98%, respectively. For abdomen/pelvis scans, the average differences were 5.55% and 6.97%, respectively. Conclusion: Strong agreement between doses estimated using actual and estimated TCM schemes validates the methods for simulating Siemens topograms and converting attenuation data into TCM schemes. This indicates that the methods developed in this work can be used to accurately estimate TCM schemes for any patient model or computational phantom, whether a CT localizer radiograph is available or not. Funding Support: NIH Grant R01-EB017095; Disclosures - Michael McNitt-Gray: Institutional Research Agreement, Siemens AG; Research Support, Siemens AG; Consultant, Flaherty Sensabaugh Bonasso PLLC; Consultant, Fulbright and Jaworski; Disclosures - Cynthia McCollough: Research Grant, Siemens Healthcare.« less
Tikhonov, Denis S; Sharapa, Dmitry I; Schwabedissen, Jan; Rybkin, Vladimir V
2016-10-12
In this study, we investigate the ability of classical molecular dynamics (MD) and Monte-Carlo (MC) simulations for modeling the intramolecular vibrational motion. These simulations were used to compute thermally-averaged geometrical structures and infrared vibrational intensities for a benchmark set previously studied by gas electron diffraction (GED): CS 2 , benzene, chloromethylthiocyanate, pyrazinamide and 9,12-I 2 -1,2-closo-C 2 B 10 H 10 . The MD sampling of NVT ensembles was performed using chains of Nose-Hoover thermostats (NH) as well as the generalized Langevin equation thermostat (GLE). The performance of the theoretical models based on the classical MD and MC simulations was compared with the experimental data and also with the alternative computational techniques: a conventional approach based on the Taylor expansion of potential energy surface, path-integral MD and MD with quantum-thermal bath (QTB) based on the generalized Langevin equation (GLE). A straightforward application of the classical simulations resulted, as expected, in poor accuracy of the calculated observables due to the complete neglect of quantum effects. However, the introduction of a posteriori quantum corrections significantly improved the situation. The application of these corrections for MD simulations of the systems with large-amplitude motions was demonstrated for chloromethylthiocyanate. The comparison of the theoretical vibrational spectra has revealed that the GLE thermostat used in this work is not applicable for this purpose. On the other hand, the NH chains yielded reasonably good results.
NASA Astrophysics Data System (ADS)
Chang, Chun-Hung; Myers, Erinn M.; Kennelly, Michael J.; Fried, Nathaniel M.
2017-01-01
Near-infrared laser energy in conjunction with applied tissue cooling is being investigated for thermal remodeling of the endopelvic fascia during minimally invasive treatment of female stress urinary incontinence. Previous computer simulations of light transport, heat transfer, and tissue thermal damage have shown that a transvaginal approach is more feasible than a transurethral approach. However, results were suboptimal, and some undesirable thermal insult to the vaginal wall was still predicted. This study uses experiments and computer simulations to explore whether application of an optical clearing agent (OCA) can further improve optical penetration depth and completely preserve the vaginal wall during subsurface treatment of the endopelvic fascia. Several different mixtures of OCA's were tested, and 100% glycerol was found to be the optimal agent. Optical transmission studies, optical coherence tomography, reflection spectroscopy, and computer simulations [including Monte Carlo (MC) light transport, heat transfer, and Arrhenius integral model of thermal damage] using glycerol were performed. The OCA produced a 61% increase in optical transmission through porcine vaginal wall at 37°C after 30 min. The MC model showed improved energy deposition in endopelvic fascia using glycerol. Without OCA, 62%, 37%, and 1% of energy was deposited in vaginal wall, endopelvic fascia, and urethral wall, respectively, compared with 50%, 49%, and 1% using OCA. Use of OCA also resulted in 0.5-mm increase in treatment depth, allowing potential thermal tissue remodeling at a depth of 3 mm with complete preservation of the vaginal wall.
NASA Astrophysics Data System (ADS)
Preston, L. A.
2017-12-01
Marine hydrokinetic (MHK) devices offer a clean, renewable alternative energy source for the future. Responsible utilization of MHK devices, however, requires that the effects of acoustic noise produced by these devices on marine life and marine-related human activities be well understood. Paracousti is a 3-D full waveform acoustic modeling suite that can accurately propagate MHK noise signals in the complex bathymetry found in the near-shore to open ocean environment and considers real properties of the seabed, water column, and air-surface interface. However, this is a deterministic simulation that assumes the environment and source are exactly known. In reality, environmental and source characteristics are often only known in a statistical sense. Thus, to fully characterize the expected noise levels within the marine environment, this uncertainty in environmental and source factors should be incorporated into the acoustic simulations. One method is to use Monte Carlo (MC) techniques where simulation results from a large number of deterministic solutions are aggregated to provide statistical properties of the output signal. However, MC methods can be computationally prohibitive since they can require tens of thousands or more simulations to build up an accurate representation of those statistical properties. An alternative method, using the technique of stochastic partial differential equations (SPDE), allows computation of the statistical properties of output signals at a small fraction of the computational cost of MC. We are developing a SPDE solver for the 3-D acoustic wave propagation problem called Paracousti-UQ to help regulators and operators assess the statistical properties of environmental noise produced by MHK devices. In this presentation, we present the SPDE method and compare statistical distributions of simulated acoustic signals in simple models to MC simulations to show the accuracy and efficiency of the SPDE method. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Vincent W.C., E-mail: htvinwu@polyu.edu.hk; Tse, Teddy K.H.; Ho, Cola L.M.
2013-07-01
Monte Carlo (MC) simulation is currently the most accurate dose calculation algorithm in radiotherapy planning but requires relatively long processing time. Faster model-based algorithms such as the anisotropic analytical algorithm (AAA) by the Eclipse treatment planning system and multigrid superposition (MGS) by the XiO treatment planning system are 2 commonly used algorithms. This study compared AAA and MGS against MC, as the gold standard, on brain, nasopharynx, lung, and prostate cancer patients. Computed tomography of 6 patients of each cancer type was used. The same hypothetical treatment plan using the same machine and treatment prescription was computed for each casemore » by each planning system using their respective dose calculation algorithm. The doses at reference points including (1) soft tissues only, (2) bones only, (3) air cavities only, (4) soft tissue-bone boundary (Soft/Bone), (5) soft tissue-air boundary (Soft/Air), and (6) bone-air boundary (Bone/Air), were measured and compared using the mean absolute percentage error (MAPE), which was a function of the percentage dose deviations from MC. Besides, the computation time of each treatment plan was recorded and compared. The MAPEs of MGS were significantly lower than AAA in all types of cancers (p<0.001). With regards to body density combinations, the MAPE of AAA ranged from 1.8% (soft tissue) to 4.9% (Bone/Air), whereas that of MGS from 1.6% (air cavities) to 2.9% (Soft/Bone). The MAPEs of MGS (2.6%±2.1) were significantly lower than that of AAA (3.7%±2.5) in all tissue density combinations (p<0.001). The mean computation time of AAA for all treatment plans was significantly lower than that of the MGS (p<0.001). Both AAA and MGS algorithms demonstrated dose deviations of less than 4.0% in most clinical cases and their performance was better in homogeneous tissues than at tissue boundaries. In general, MGS demonstrated relatively smaller dose deviations than AAA but required longer computation time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adnani, N
Purpose: To commission the Monaco Treatment Planning System for the Novalis Tx machine. Methods: The commissioning of Monte-Carlo (MC), Collapsed Cone (CC) and electron Monte-Carlo (eMC) beam models was performed through a series of measurements and calculations in medium and in water. In medium measurements relied Octavius 4D QA system with the 1000 SRS detector array for field sizes less than 4 cm × 4 cm and the 1500 detector array for larger field sizes. Heterogeneity corrections were validated using a custom built phantom. Prior to clinical implementation, an end to end testing of a Prostate and H&N VMAT plansmore » was performed. Results: Using a 0.5% uncertainty and 2 mm grid sizes, Tables I and II summarize the MC validation at 6 MV and 18 MV in both medium and water. Tables III and IV show similar comparisons for CC. Using the custom heterogeneity phantom setup of Figure 1 and IGRT guidance summarized in Figure 2, Table V lists the percent pass rate for a 2%, 2 mm gamma criteria at 6 and 18 MV for both MC and CC. The relationship between MC calculations settings of uncertainty and grid size and the gamma passing rate for a prostate and H&N case is shown in Table VI. Table VII lists the results of the eMC calculations compared to measured data for clinically available applicators and Table VIII for small field cutouts. Conclusion: MU calculations using MC are highly sensitive to uncertainty and grid size settings. The difference can be of the order of several per cents. MC is superior to CC for small fields and when using heterogeneity corrections, regardless of field size, making it more suitable for SRS, SBRT and VMAT deliveries. eMC showed good agreement with measurements down to 2 cm − 2 cm field size.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larraga-Gutierrez, J. M.; Garcia-Garduno, O. A.; Hernandez-Bojorquez, M.
2010-12-07
This work presents the beam data commissioning and dose calculation validation of the first Monte Carlo (MC) based treatment planning system (TPS) installed in Mexico. According to the manufacturer specifications, the beam data commissioning needed for this model includes: several in-air and water profiles, depth dose curves, head-scatter factors and output factors (6x6, 12x12, 18x18, 24x24, 42x42, 60x60, 80x80 and 100x100 mm{sup 2}). Radiographic and radiochromic films, diode and ionization chambers were used for data acquisition. MC dose calculations in a water phantom were used to validate the MC simulations using comparisons with measured data. Gamma index criteria 2%/2 mmmore » were used to evaluate the accuracy of MC calculations. MC calculated data show an excellent agreement for field sizes from 18x18 to 100x100 mm{sup 2}. Gamma analysis shows that in average, 95% and 100% of the data passes the gamma index criteria for these fields, respectively. For smaller fields (12x12 and 6x6 mm{sup 2}) only 92% of the data meet the criteria. Total scatter factors show a good agreement (<2.6%) between MC calculated and measured data, except for the smaller fields (12x12 and 6x6 mm{sup 2}) that show a error of 4.7%. MC dose calculations are accurate and precise for clinical treatment planning up to a field size of 18x18 mm{sup 2}. Special care must be taken for smaller fields.« less
Absolute dose calculations for Monte Carlo simulations of radiotherapy beams
NASA Astrophysics Data System (ADS)
Popescu, I. A.; Shaw, C. P.; Zavgorodni, S. F.; Beckham, W. A.
2005-07-01
Monte Carlo (MC) simulations have traditionally been used for single field relative comparisons with experimental data or commercial treatment planning systems (TPS). However, clinical treatment plans commonly involve more than one field. Since the contribution of each field must be accurately quantified, multiple field MC simulations are only possible by employing absolute dosimetry. Therefore, we have developed a rigorous calibration method that allows the incorporation of monitor units (MU) in MC simulations. This absolute dosimetry formalism can be easily implemented by any BEAMnrc/DOSXYZnrc user, and applies to any configuration of open and blocked fields, including intensity-modulated radiation therapy (IMRT) plans. Our approach involves the relationship between the dose scored in the monitor ionization chamber of a radiotherapy linear accelerator (linac), the number of initial particles incident on the target, and the field size. We found that for a 10 × 10 cm2 field of a 6 MV photon beam, 1 MU corresponds, in our model, to 8.129 × 1013 ± 1.0% electrons incident on the target and a total dose of 20.87 cGy ± 1.0% in the monitor chambers of the virtual linac. We present an extensive experimental verification of our MC results for open and intensity-modulated fields, including a dynamic 7-field IMRT plan simulated on the CT data sets of a cylindrical phantom and of a Rando anthropomorphic phantom, which were validated by measurements using ionization chambers and thermoluminescent dosimeters (TLD). Our simulation results are in excellent agreement with experiment, with percentage differences of less than 2%, in general, demonstrating the accuracy of our Monte Carlo absolute dose calculations.
Parallel Grand Canonical Monte Carlo (ParaGrandMC) Simulation Code
NASA Technical Reports Server (NTRS)
Yamakov, Vesselin I.
2016-01-01
This report provides an overview of the Parallel Grand Canonical Monte Carlo (ParaGrandMC) simulation code. This is a highly scalable parallel FORTRAN code for simulating the thermodynamic evolution of metal alloy systems at the atomic level, and predicting the thermodynamic state, phase diagram, chemical composition and mechanical properties. The code is designed to simulate multi-component alloy systems, predict solid-state phase transformations such as austenite-martensite transformations, precipitate formation, recrystallization, capillary effects at interfaces, surface absorption, etc., which can aid the design of novel metallic alloys. While the software is mainly tailored for modeling metal alloys, it can also be used for other types of solid-state systems, and to some degree for liquid or gaseous systems, including multiphase systems forming solid-liquid-gas interfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghoos, K., E-mail: kristel.ghoos@kuleuven.be; Dekeyser, W.; Samaey, G.
2016-10-01
The plasma and neutral transport in the plasma edge of a nuclear fusion reactor is usually simulated using coupled finite volume (FV)/Monte Carlo (MC) codes. However, under conditions of future reactors like ITER and DEMO, convergence issues become apparent. This paper examines the convergence behaviour and the numerical error contributions with a simplified FV/MC model for three coupling techniques: Correlated Sampling, Random Noise and Robbins Monro. Also, practical procedures to estimate the errors in complex codes are proposed. Moreover, first results with more complex models show that an order of magnitude speedup can be achieved without any loss in accuracymore » by making use of averaging in the Random Noise coupling technique.« less
NASA Astrophysics Data System (ADS)
Mohammadian-Behbahani, Mohammad-Reza; Saramad, Shahyar; Mohammadi, Mohammad
2017-05-01
A combination of Finite Difference Time Domain (FDTD) and Monte Carlo (MC) methods is proposed for simulation and analysis of ZnO microscintillators grown in polycarbonate membrane. A planar 10 keV X-ray source irradiating the detector is simulated by MC method, which provides the amount of absorbed X-ray energy in the assembly. The transport of generated UV scintillation light and its propagation in the detector was studied by the FDTD method. Detector responses to different probable scintillation sites and under different energies of X-ray source from 10 to 25 keV are reported. Finally, the tapered geometry for the scintillators is proposed, which shows enhanced spatial resolution in comparison to cylindrical geometry for imaging applications.
Kinetic Monte Carlo Simulation of Oxygen Diffusion in Ytterbium Disilicate
NASA Technical Reports Server (NTRS)
Good, Brian S.
2015-01-01
Silicon-based ceramic components for next-generation jet turbine engines offer potential weight savings, as well as higher operating temperatures, both of which lead to increased efficiency and lower fuel costs. Silicon carbide (SiC), in particular, offers low density, good strength at high temperatures, and good oxidation resistance in dry air. However, reaction of SiC with high-temperature water vapor, as found in the hot section of jet turbine engines in operation, can cause rapid surface recession, which limits the lifetime of such components. Environmental Barrier Coatings (EBCs) are therefore needed if long component lifetime is to be achieved. Rare earth silicates such as Yb2Si2O7 and Yb2SiO5 have been proposed for such applications; in an effort to better understand diffusion in such materials, we have performed kinetic Monte Carlo (kMC) simulations of oxygen diffusion in Ytterbium disilicate, Yb2- Si2O7. The diffusive process is assumed to take place via the thermally activated hopping of oxygen atoms among oxygen vacancy sites or among interstitial sites. Migration barrier energies are computed using density functional theory (DFT).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles A. Wemple; Joshua J. Cogliati
2005-04-01
A univel geometry, neutral particle Monte Carlo transport code, written entirely in the Java programming language, is under development for medical radiotherapy applications. The code uses ENDF-VI based continuous energy cross section data in a flexible XML format. Full neutron-photon coupling, including detailed photon production and photonuclear reactions, is included. Charged particle equilibrium is assumed within the patient model so that detailed transport of electrons produced by photon interactions may be neglected. External beam and internal distributed source descriptions for mixed neutron-photon sources are allowed. Flux and dose tallies are performed on a univel basis. A four-tap, shift-register-sequence random numbermore » generator is used. Initial verification and validation testing of the basic neutron transport routines is underway. The searchlight problem was chosen as a suitable first application because of the simplicity of the physical model. Results show excellent agreement with analytic solutions. Computation times for similar numbers of histories are comparable to other neutron MC codes written in C and FORTRAN.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
A, Popescu I; Lobo, J; Sawkey, D
2014-06-15
Purpose: To simulate and measure radiation backscattered into the monitor chamber of a TrueBeam linac; establish a rigorous framework for absolute dose calculations for TrueBeam Monte Carlo (MC) simulations through a novel approach, taking into account the backscattered radiation and the actual machine output during beam delivery; improve agreement between measured and simulated relative output factors. Methods: The ‘monitor backscatter factor’ is an essential ingredient of a well-established MC absolute dose formalism (the MC equivalent of the TG-51 protocol). This quantity was determined for the 6 MV, 6X FFF, and 10X FFF beams by two independent Methods: (1) MC simulationsmore » in the monitor chamber of the TrueBeam linac; (2) linac-generated beam record data for target current, logged for each beam delivery. Upper head MC simulations used a freelyavailable manufacturer-provided interface to a cloud-based platform, allowing use of the same head model as that used to generate the publicly-available TrueBeam phase spaces, without revealing the upper head design. The MC absolute dose formalism was expanded to allow direct use of target current data. Results: The relation between backscatter, number of electrons incident on the target for one monitor unit, and MC absolute dose was analyzed for open fields, as well as a jaw-tracking VMAT plan. The agreement between the two methods was better than 0.15%. It was demonstrated that the agreement between measured and simulated relative output factors improves across all field sizes when backscatter is taken into account. Conclusion: For the first time, simulated monitor chamber dose and measured target current for an actual TrueBeam linac were incorporated in the MC absolute dose formalism. In conjunction with the use of MC inputs generated from post-delivery trajectory-log files, the present method allows accurate MC dose calculations, without resorting to any of the simplifying assumptions previously made in the TrueBeam MC literature. This work has been partially funded by Varian Medical Systems.« less
Monte Carlo decision curve analysis using aggregate data.
Hozo, Iztok; Tsalatsanis, Athanasios; Djulbegovic, Benjamin
2017-02-01
Decision curve analysis (DCA) is an increasingly used method for evaluating diagnostic tests and predictive models, but its application requires individual patient data. The Monte Carlo (MC) method can be used to simulate probabilities and outcomes of individual patients and offers an attractive option for application of DCA. We constructed a MC decision model to simulate individual probabilities of outcomes of interest. These probabilities were contrasted against the threshold probability at which a decision-maker is indifferent between key management strategies: treat all, treat none or use predictive model to guide treatment. We compared the results of DCA with MC simulated data against the results of DCA based on actual individual patient data for three decision models published in the literature: (i) statins for primary prevention of cardiovascular disease, (ii) hospice referral for terminally ill patients and (iii) prostate cancer surgery. The results of MC DCA and patient data DCA were identical. To the extent that patient data DCA were used to inform decisions about statin use, referral to hospice or prostate surgery, the results indicate that MC DCA could have also been used. As long as the aggregate parameters on distribution of the probability of outcomes and treatment effects are accurately described in the published reports, the MC DCA will generate indistinguishable results from individual patient data DCA. We provide a simple, easy-to-use model, which can facilitate wider use of DCA and better evaluation of diagnostic tests and predictive models that rely only on aggregate data reported in the literature. © 2017 Stichting European Society for Clinical Investigation Journal Foundation.
Transient radiative transfer in a scattering slab considering polarization.
Yi, Hongliang; Ben, Xun; Tan, Heping
2013-11-04
The characteristics of the transient and polarization must be considered for a complete and correct description of short-pulse laser transfer in a scattering medium. A Monte Carlo (MC) method combined with a time shift and superposition principle is developed to simulate transient vector (polarized) radiative transfer in a scattering medium. The transient vector radiative transfer matrix (TVRTM) is defined to describe the transient polarization behavior of short-pulse laser propagating in the scattering medium. According to the definition of reflectivity, a new criterion of reflection at Fresnel surface is presented. In order to improve the computational efficiency and accuracy, a time shift and superposition principle is applied to the MC model for transient vector radiative transfer. The results for transient scalar radiative transfer and steady-state vector radiative transfer are compared with those in published literatures, respectively, and an excellent agreement between them is observed, which validates the correctness of the present model. Finally, transient radiative transfer is simulated considering the polarization effect of short-pulse laser in a scattering medium, and the distributions of Stokes vector in angular and temporal space are presented.
Calibration of Ge gamma-ray spectrometers for complex sample geometries and matrices
NASA Astrophysics Data System (ADS)
Semkow, T. M.; Bradt, C. J.; Beach, S. E.; Haines, D. K.; Khan, A. J.; Bari, A.; Torres, M. A.; Marrantino, J. C.; Syed, U.-F.; Kitto, M. E.; Hoffman, T. J.; Curtis, P.
2015-11-01
A comprehensive study of the efficiency calibration and calibration verification of Ge gamma-ray spectrometers was performed using semi-empirical, computational Monte-Carlo (MC), and transfer methods. The aim of this study was to evaluate the accuracy of the quantification of gamma-emitting radionuclides in complex matrices normally encountered in environmental and food samples. A wide range of gamma energies from 59.5 to 1836.0 keV and geometries from a 10-mL jar to 1.4-L Marinelli beaker were studied on four Ge spectrometers with the relative efficiencies between 102% and 140%. Density and coincidence summing corrections were applied. Innovative techniques were developed for the preparation of artificial complex matrices from materials such as acidified water, polystyrene, ethanol, sugar, and sand, resulting in the densities ranging from 0.3655 to 2.164 g cm-3. They were spiked with gamma activity traceable to international standards and used for calibration verifications. A quantitative method of tuning MC calculations to experiment was developed based on a multidimensional chi-square paraboloid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biondo, Elliott D.; Wilson, Paul P. H.
In fusion energy systems (FES) neutrons born from burning plasma activate system components. The photon dose rate after shutdown from resulting radionuclides must be quantified. This shutdown dose rate (SDR) is calculated by coupling neutron transport, activation analysis, and photon transport. The size, complexity, and attenuating configuration of FES motivate the use of hybrid Monte Carlo (MC)/deterministic neutron transport. The Multi-Step Consistent Adjoint Driven Importance Sampling (MS-CADIS) method can be used to optimize MC neutron transport for coupled multiphysics problems, including SDR analysis, using deterministic estimates of adjoint flux distributions. When used for SDR analysis, MS-CADIS requires the formulation ofmore » an adjoint neutron source that approximates the transmutation process. In this work, transmutation approximations are used to derive a solution for this adjoint neutron source. It is shown that these approximations are reasonably met for typical FES neutron spectra and materials over a range of irradiation scenarios. When these approximations are met, the Groupwise Transmutation (GT)-CADIS method, proposed here, can be used effectively. GT-CADIS is an implementation of the MS-CADIS method for SDR analysis that uses a series of single-energy-group irradiations to calculate the adjoint neutron source. For a simple SDR problem, GT-CADIS provides speedups of 200 100 relative to global variance reduction with the Forward-Weighted (FW)-CADIS method and 9 ± 5 • 104 relative to analog. As a result, this work shows that GT-CADIS is broadly applicable to FES problems and will significantly reduce the computational resources necessary for SDR analysis.« less
Biondo, Elliott D.; Wilson, Paul P. H.
2017-05-08
In fusion energy systems (FES) neutrons born from burning plasma activate system components. The photon dose rate after shutdown from resulting radionuclides must be quantified. This shutdown dose rate (SDR) is calculated by coupling neutron transport, activation analysis, and photon transport. The size, complexity, and attenuating configuration of FES motivate the use of hybrid Monte Carlo (MC)/deterministic neutron transport. The Multi-Step Consistent Adjoint Driven Importance Sampling (MS-CADIS) method can be used to optimize MC neutron transport for coupled multiphysics problems, including SDR analysis, using deterministic estimates of adjoint flux distributions. When used for SDR analysis, MS-CADIS requires the formulation ofmore » an adjoint neutron source that approximates the transmutation process. In this work, transmutation approximations are used to derive a solution for this adjoint neutron source. It is shown that these approximations are reasonably met for typical FES neutron spectra and materials over a range of irradiation scenarios. When these approximations are met, the Groupwise Transmutation (GT)-CADIS method, proposed here, can be used effectively. GT-CADIS is an implementation of the MS-CADIS method for SDR analysis that uses a series of single-energy-group irradiations to calculate the adjoint neutron source. For a simple SDR problem, GT-CADIS provides speedups of 200 100 relative to global variance reduction with the Forward-Weighted (FW)-CADIS method and 9 ± 5 • 104 relative to analog. As a result, this work shows that GT-CADIS is broadly applicable to FES problems and will significantly reduce the computational resources necessary for SDR analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhan, Lixin; Jiang, Runqing; Osei, Ernest K.
2014-08-15
Flattening filter free (FFF) beams have been adopted by many clinics and used for patient treatment. However, compared to the traditional flattened beams, we have limited knowledge of FFF beams. In this study, we successfully modeled the 6 MV FFF beam for Varian TrueBeam accelerator with the Monte Carlo (MC) method. Both the percentage depth dose and profiles match well to the Golden Beam Data (GBD) from Varian. MC simulations were then performed to predict the relative output factors. The in-water output ratio, Scp, was simulated in water phantom and data obtained agrees well with GBD. The in-air output ratio,more » Sc, was obtained by analyzing the phase space placed at isocenter, in air, and computing the ratio of water Kerma rates for different field sizes. The phantom scattering factor, Sp, can then be obtained from the traditional way of taking the ratio of Scp and Sc. We also simulated Sp using a recently proposed method based on only the primary beam dose delivery in water phantom. Because there is no concern of lateral electronic disequilibrium, this method is more suitable for small fields. The results from both methods agree well with each other. The flattened 6 MV beam was simulated and compared to 6 MV FFF. The comparison confirms that 6 MV FFF has less scattering from the Linac head and less phantom scattering contribution to the central axis dose, which will be helpful for improving accuracy in beam modeling and dose calculation in treatment planning systems.« less
Game of Life on the Equal Degree Random Lattice
NASA Astrophysics Data System (ADS)
Shao, Zhi-Gang; Chen, Tao
2010-12-01
An effective matrix method is performed to build the equal degree random (EDR) lattice, and then a cellular automaton game of life on the EDR lattice is studied by Monte Carlo (MC) simulation. The standard mean field approximation (MFA) is applied, and then the density of live cells is given ρ=0.37017 by MFA, which is consistent with the result ρ=0.37±0.003 by MC simulation.
Jung, Seongmoon; Sung, Wonmo; Ye, Sung-Joon
2017-01-01
This work aims to develop a Monte Carlo (MC) model for pinhole K-shell X-ray fluorescence (XRF) imaging of metal nanoparticles using polychromatic X-rays. The MC model consisted of two-dimensional (2D) position-sensitive detectors and fan-beam X-rays used to stimulate the emission of XRF photons from gadolinium (Gd) or gold (Au) nanoparticles. Four cylindrical columns containing different concentrations of nanoparticles ranging from 0.01% to 0.09% by weight (wt%) were placed in a 5 cm diameter cylindrical water phantom. The images of the columns had detectable contrast-to-noise ratios (CNRs) of 5.7 and 4.3 for 0.01 wt% Gd and for 0.03 wt% Au, respectively. Higher concentrations of nanoparticles yielded higher CNR. For 1×1011 incident particles, the radiation dose to the phantom was 19.9 mGy for 110 kVp X-rays (Gd imaging) and 26.1 mGy for 140 kVp X-rays (Au imaging). The MC model of a pinhole XRF can acquire direct 2D slice images of the object without image reconstruction. The MC model demonstrated that the pinhole XRF imaging system could be a potential bioimaging modality for nanomedicine. PMID:28860750
Yeo, Sang Chul; Lo, Yu Chieh; Li, Ju; Lee, Hyuck Mo
2014-10-07
Ammonia (NH3) nitridation on an Fe surface was studied by combining density functional theory (DFT) and kinetic Monte Carlo (kMC) calculations. A DFT calculation was performed to obtain the energy barriers (Eb) of the relevant elementary processes. The full mechanism of the exact reaction path was divided into five steps (adsorption, dissociation, surface migration, penetration, and diffusion) on an Fe (100) surface pre-covered with nitrogen. The energy barrier (Eb) depended on the N surface coverage. The DFT results were subsequently employed as a database for the kMC simulations. We then evaluated the NH3 nitridation rate on the N pre-covered Fe surface. To determine the conditions necessary for a rapid NH3 nitridation rate, the eight reaction events were considered in the kMC simulations: adsorption, desorption, dissociation, reverse dissociation, surface migration, penetration, reverse penetration, and diffusion. This study provides a real-time-scale simulation of NH3 nitridation influenced by nitrogen surface coverage that allowed us to theoretically determine a nitrogen coverage (0.56 ML) suitable for rapid NH3 nitridation. In this way, we were able to reveal the coverage dependence of the nitridation reaction using the combined DFT and kMC simulations.
Efficient Coupling of Fluid-Plasma and Monte-Carlo-Neutrals Models for Edge Plasma Transport
NASA Astrophysics Data System (ADS)
Dimits, A. M.; Cohen, B. I.; Friedman, A.; Joseph, I.; Lodestro, L. L.; Rensink, M. E.; Rognlien, T. D.; Sjogreen, B.; Stotler, D. P.; Umansky, M. V.
2017-10-01
UEDGE has been valuable for modeling transport in the tokamak edge and scrape-off layer due in part to its efficient fully implicit solution of coupled fluid neutrals and plasma models. We are developing an implicit coupling of the kinetic Monte-Carlo (MC) code DEGAS-2, as the neutrals model component, to the UEDGE plasma component, based on an extension of the Jacobian-free Newton-Krylov (JFNK) method to MC residuals. The coupling components build on the methods and coding already present in UEDGE. For the linear Krylov iterations, a procedure has been developed to ``extract'' a good preconditioner from that of UEDGE. This preconditioner may also be used to greatly accelerate the convergence rate of a relaxed fixed-point iteration, which may provide a useful ``intermediate'' algorithm. The JFNK method also requires calculation of Jacobian-vector products, for which any finite-difference procedure is inaccurate when a MC component is present. A semi-analytical procedure that retains the standard MC accuracy and fully kinetic neutrals physics is therefore being developed. Prepared for US DOE by LLNL under Contract DE-AC52-07NA27344 and LDRD project 15-ERD-059, by PPPL under Contract DE-AC02-09CH11466, and supported in part by the U.S. DOE, OFES.
The Ultimate Monte Carlo: Studying Cross-Sections With Cosmic Rays
NASA Technical Reports Server (NTRS)
Wilson, Thomas L.
2007-01-01
The high-energy physics community has been discussing for years the need to bring together the three principal disciplines that study hadron cross-section physics - ground-based accelerators, cosmic-ray experiments in space, and air shower research. Only recently have NASA investigators begun discussing the use of space-borne cosmic-ray payloads to bridge the gap between accelerator physics and air shower work using cosmic-ray measurements. The common tool used in these three realms of high-energy hadron physics is the Monte Carlo (MC). Yet the obvious has not been considered - using a single MC for simulating the entire relativistic energy range (GeV to EeV). The task is daunting due to large uncertainties in accelerator, space, and atmospheric cascade measurements. These include inclusive versus exclusive cross-section measurements, primary composition, interaction dynamics, and possible new physics beyond the standard model. However, the discussion of a common tool or ultimate MC might be the very thing that could begin to unify these independent groups into a common purpose. The Offline ALICE concept of a Virtual MC at CERN s Large Hadron Collider (LHC) will be discussed as a rudimentary beginning of this idea, and as a possible forum for carrying it forward in the future as LHC data emerges.
Monte Carlo simulations within avalanche rescue
NASA Astrophysics Data System (ADS)
Reiweger, Ingrid; Genswein, Manuel; Schweizer, Jürg
2016-04-01
Refining concepts for avalanche rescue involves calculating suitable settings for rescue strategies such as an adequate probing depth for probe line searches or an optimal time for performing resuscitation for a recovered avalanche victim in case of additional burials. In the latter case, treatment decisions have to be made in the context of triage. However, given the low number of incidents it is rarely possible to derive quantitative criteria based on historical statistics in the context of evidence-based medicine. For these rare, but complex rescue scenarios, most of the associated concepts, theories, and processes involve a number of unknown "random" parameters which have to be estimated in order to calculate anything quantitatively. An obvious approach for incorporating a number of random variables and their distributions into a calculation is to perform a Monte Carlo (MC) simulation. We here present Monte Carlo simulations for calculating the most suitable probing depth for probe line searches depending on search area and an optimal resuscitation time in case of multiple avalanche burials. The MC approach reveals, e.g., new optimized values for the duration of resuscitation that differ from previous, mainly case-based assumptions.
NASA Astrophysics Data System (ADS)
Limbu, Dil; Biswas, Parthapratim
We present a simple and efficient Monte-Carlo (MC) simulation of Iron (Fe) and Nickel (Ni) clusters with N =5-100 and amorphous Silicon (a-Si) starting from a random configuration. Using Sutton-Chen and Finnis-Sinclair potentials for Ni (in fcc lattice) and Fe (in bcc lattice), and Stillinger-Weber potential for a-Si, respectively, the total energy of the system is optimized by employing MC moves that include both the stochastic nature of MC simulations and the gradient of the potential function. For both iron and nickel clusters, the energy of the configurations is found to be very close to the values listed in the Cambridge Cluster Database, whereas the maximum force on each cluster is found to be much lower than the corresponding value obtained from the optimized structural configurations reported in the database. An extension of the method to model the amorphous state of Si is presented and the results are compared with experimental data and those obtained from other simulation methods. The work is partially supported by the NSF under Grant Number DMR 1507166.
"First-principles" kinetic Monte Carlo simulations revisited: CO oxidation over RuO2 (110).
Hess, Franziska; Farkas, Attila; Seitsonen, Ari P; Over, Herbert
2012-03-15
First principles-based kinetic Monte Carlo (kMC) simulations are performed for the CO oxidation on RuO(2) (110) under steady-state reaction conditions. The simulations include a set of elementary reaction steps with activation energies taken from three different ab initio density functional theory studies. Critical comparison of the simulation results reveals that already small variations in the activation energies lead to distinctly different reaction scenarios on the surface, even to the point where the dominating elementary reaction step is substituted by another one. For a critical assessment of the chosen energy parameters, it is not sufficient to compare kMC simulations only to experimental turnover frequency (TOF) as a function of the reactant feed ratio. More appropriate benchmarks for kMC simulations are the actual distribution of reactants on the catalyst's surface during steady-state reaction, as determined by in situ infrared spectroscopy and in situ scanning tunneling microscopy, and the temperature dependence of TOF in the from of Arrhenius plots. Copyright © 2012 Wiley Periodicals, Inc.
Monte Carlo and discrete-ordinate simulations of spectral radiances in a coupled air-tissue system.
Hestenes, Kjersti; Nielsen, Kristian P; Zhao, Lu; Stamnes, Jakob J; Stamnes, Knut
2007-04-20
We perform a detailed comparison study of Monte Carlo (MC) simulations and discrete-ordinate radiative-transfer (DISORT) calculations of spectral radiances in a 1D coupled air-tissue (CAT) system consisting of horizontal plane-parallel layers. The MC and DISORT models have the same physical basis, including coupling between the air and the tissue, and we use the same air and tissue input parameters for both codes. We find excellent agreement between radiances obtained with the two codes, both above and in the tissue. Our tests cover typical optical properties of skin tissue at the 280, 540, and 650 nm wavelengths. The normalized volume scattering function for internal structures in the skin is represented by the one-parameter Henyey-Greenstein function for large particles and the Rayleigh scattering function for small particles. The CAT-DISORT code is found to be approximately 1000 times faster than the CAT-MC code. We also show that the spectral radiance field is strongly dependent on the inherent optical properties of the skin tissue.
Kern, Christoph
2016-03-23
This report describes two software tools that, when used as front ends for the three-dimensional backward Monte Carlo atmospheric-radiative-transfer model (RTM) McArtim, facilitate the generation of lookup tables of volcanic-plume optical-transmittance characteristics in the ultraviolet/visible-spectral region. In particular, the differential optical depth and derivatives thereof (that is, weighting functions), with regard to a change in SO2 column density or aerosol optical thickness, can be simulated for a specific measurement geometry and a representative range of plume conditions. These tables are required for the retrieval of SO2 column density in volcanic plumes, using the simulated radiative-transfer/differential optical-absorption spectroscopic (SRT-DOAS) approach outlined by Kern and others (2012). This report, together with the software tools published online, is intended to make this sophisticated SRT-DOAS technique available to volcanologists and gas geochemists in an operational environment, without the need for an indepth treatment of the underlying principles or the low-level interface of the RTM McArtim.
Lens implementation on the GATE Monte Carlo toolkit for optical imaging simulation.
Kang, Han Gyu; Song, Seong Hyun; Han, Young Been; Kim, Kyeong Min; Hong, Seong Jong
2018-02-01
Optical imaging techniques are widely used for in vivo preclinical studies, and it is well known that the Geant4 Application for Emission Tomography (GATE) can be employed for the Monte Carlo (MC) modeling of light transport inside heterogeneous tissues. However, the GATE MC toolkit is limited in that it does not yet include optical lens implementation, even though this is required for a more realistic optical imaging simulation. We describe our implementation of a biconvex lens into the GATE MC toolkit to improve both the sensitivity and spatial resolution for optical imaging simulation. The lens implemented into the GATE was validated against the ZEMAX optical simulation using an US air force 1951 resolution target. The ray diagrams and the charge-coupled device images of the GATE optical simulation agreed with the ZEMAX optical simulation results. In conclusion, the use of a lens on the GATE optical simulation could improve the image quality of bioluminescence and fluorescence significantly as compared with pinhole optics. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
The Monte Carlo simulation of the Borexino detector
NASA Astrophysics Data System (ADS)
Agostini, M.; Altenmüller, K.; Appel, S.; Atroshchenko, V.; Bagdasarian, Z.; Basilico, D.; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Borodikhina, L.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Canepa, M.; Caprioli, S.; Carlini, M.; Cavalcante, P.; Chepurnov, A.; Choi, K.; D'Angelo, D.; Davini, S.; Derbin, A.; Ding, X. F.; Di Noto, L.; Drachnev, I.; Fomenko, K.; Formozov, A.; Franco, D.; Froborg, F.; Gabriele, F.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Houdy, T.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jany, A.; Jeschke, D.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Laubenstein, M.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Magnozzi, M.; Manuzio, G.; Marcocci, S.; Martyn, J.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Muratova, V.; Neumair, B.; Oberauer, L.; Opitz, B.; Ortica, F.; Pallavicini, M.; Papp, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Roncin, R.; Rossi, N.; Schönert, S.; Semenov, D.; Shakina, P.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stokes, L. F. F.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Unzhakov, E.; Vishneva, A.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.
2018-01-01
We describe the Monte Carlo (MC) simulation of the Borexino detector and the agreement of its output with data. The Borexino MC "ab initio" simulates the energy loss of particles in all detector components and generates the resulting scintillation photons and their propagation within the liquid scintillator volume. The simulation accounts for absorption, reemission, and scattering of the optical photons and tracks them until they either are absorbed or reach the photocathode of one of the photomultiplier tubes. Photon detection is followed by a comprehensive simulation of the readout electronics response. The MC is tuned using data collected with radioactive calibration sources deployed inside and around the scintillator volume. The simulation reproduces the energy response of the detector, its uniformity within the fiducial scintillator volume relevant to neutrino physics, and the time distribution of detected photons to better than 1% between 100 keV and several MeV. The techniques developed to simulate the Borexino detector and their level of refinement are of possible interest to the neutrino community, especially for current and future large-volume liquid scintillator experiments such as Kamland-Zen, SNO+, and Juno.
Designing new guides and instruments using McStas
NASA Astrophysics Data System (ADS)
Farhi, E.; Hansen, T.; Wildes, A.; Ghosh, R.; Lefmann, K.
With the increasing complexity of modern neutron-scattering instruments, the need for powerful tools to optimize their geometry and physical performances (flux, resolution, divergence, etc.) has become essential. As the usual analytical methods reach their limit of validity in the description of fine effects, the use of Monte Carlo simulations, which can handle these latter, has become widespread. The McStas program was developed at Riso National Laboratory in order to provide neutron scattering instrument scientists with an efficient and flexible tool for building Monte Carlo simulations of guides, neutron optics and instruments [1]. To date, the McStas package has been extensively used at the Institut Laue-Langevin, Grenoble, France, for various studies including cold and thermal guides with ballistic geometry, diffractometers, triple-axis, backscattering and time-of-flight spectrometers [2]. In this paper, we present some simulation results concerning different guide geometries that may be used in the future at the Institut Laue-Langevin. Gain factors ranging from two to five may be obtained for the integrated intensities, depending on the exact geometry, the guide coatings and the source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdel-Khalik, Hany S.; Zhang, Qiong
2014-05-20
The development of hybrid Monte-Carlo-Deterministic (MC-DT) approaches, taking place over the past few decades, have primarily focused on shielding and detection applications where the analysis requires a small number of responses, i.e. at the detector locations(s). This work further develops a recently introduced global variance reduction approach, denoted by the SUBSPACE approach is designed to allow the use of MC simulation, currently limited to benchmarking calculations, for routine engineering calculations. By way of demonstration, the SUBSPACE approach is applied to assembly level calculations used to generate the few-group homogenized cross-sections. These models are typically expensive and need to be executedmore » in the order of 10 3 - 10 5 times to properly characterize the few-group cross-sections for downstream core-wide calculations. Applicability to k-eigenvalue core-wide models is also demonstrated in this work. Given the favorable results obtained in this work, we believe the applicability of the MC method for reactor analysis calculations could be realized in the near future.« less
Independent calculation of monitor units for VMAT and SPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xin; Bush, Karl; Ding, Aiping
Purpose: Dose and monitor units (MUs) represent two important facets of a radiation therapy treatment. In current practice, verification of a treatment plan is commonly done in dose domain, in which a phantom measurement or forward dose calculation is performed to examine the dosimetric accuracy and the MU settings of a given treatment plan. While it is desirable to verify directly the MU settings, a computational framework for obtaining the MU values from a known dose distribution has yet to be developed. This work presents a strategy to calculate independently the MUs from a given dose distribution of volumetric modulatedmore » arc therapy (VMAT) and station parameter optimized radiation therapy (SPORT). Methods: The dose at a point can be expressed as a sum of contributions from all the station points (or control points). This relationship forms the basis of the proposed MU verification technique. To proceed, the authors first obtain the matrix elements which characterize the dosimetric contribution of the involved station points by computing the doses at a series of voxels, typically on the prescription surface of the VMAT/SPORT treatment plan, with unit MU setting for all the station points. An in-house Monte Carlo (MC) software is used for the dose matrix calculation. The MUs of the station points are then derived by minimizing the least-squares difference between doses computed by the treatment planning system (TPS) and that of the MC for the selected set of voxels on the prescription surface. The technique is applied to 16 clinical cases with a variety of energies, disease sites, and TPS dose calculation algorithms. Results: For all plans except the lung cases with large tissue density inhomogeneity, the independently computed MUs agree with that of TPS to within 2.7% for all the station points. In the dose domain, no significant difference between the MC and Eclipse Anisotropic Analytical Algorithm (AAA) dose distribution is found in terms of isodose contours, dose profiles, gamma index, and dose volume histogram (DVH) for these cases. For the lung cases, the MC-calculated MUs differ significantly from that of the treatment plan computed using AAA. However, the discrepancies are reduced to within 3% when the TPS dose calculation algorithm is switched to a transport equation-based technique (Acuros™). Comparison in the dose domain between the MC and Eclipse AAA/Acuros calculation yields conclusion consistent with the MU calculation. Conclusions: A computational framework relating the MU and dose domains has been established. The framework does not only enable them to verify the MU values of the involved station points of a VMAT plan directly in the MU domain but also provide a much needed mechanism to adaptively modify the MU values of the station points in accordance to a specific change in the dose domain.« less
Beda, Alessandro; Simpson, David M; Faes, Luca
2017-01-01
The growing interest in personalized medicine requires making inferences from descriptive indexes estimated from individual recordings of physiological signals, with statistical analyses focused on individual differences between/within subjects, rather than comparing supposedly homogeneous cohorts. To this end, methods to compute confidence limits of individual estimates of descriptive indexes are needed. This study introduces numerical methods to compute such confidence limits and perform statistical comparisons between indexes derived from autoregressive (AR) modeling of individual time series. Analytical approaches are generally not viable, because the indexes are usually nonlinear functions of the AR parameters. We exploit Monte Carlo (MC) and Bootstrap (BS) methods to reproduce the sampling distribution of the AR parameters and indexes computed from them. Here, these methods are implemented for spectral and information-theoretic indexes of heart-rate variability (HRV) estimated from AR models of heart-period time series. First, the MS and BC methods are tested in a wide range of synthetic HRV time series, showing good agreement with a gold-standard approach (i.e. multiple realizations of the "true" process driving the simulation). Then, real HRV time series measured from volunteers performing cognitive tasks are considered, documenting (i) the strong variability of confidence limits' width across recordings, (ii) the diversity of individual responses to the same task, and (iii) frequent disagreement between the cohort-average response and that of many individuals. We conclude that MC and BS methods are robust in estimating confidence limits of these AR-based indexes and thus recommended for short-term HRV analysis. Moreover, the strong inter-individual differences in the response to tasks shown by AR-based indexes evidence the need of individual-by-individual assessments of HRV features. Given their generality, MC and BS methods are promising for applications in biomedical signal processing and beyond, providing a powerful new tool for assessing the confidence limits of indexes estimated from individual recordings.
2017-01-01
The growing interest in personalized medicine requires making inferences from descriptive indexes estimated from individual recordings of physiological signals, with statistical analyses focused on individual differences between/within subjects, rather than comparing supposedly homogeneous cohorts. To this end, methods to compute confidence limits of individual estimates of descriptive indexes are needed. This study introduces numerical methods to compute such confidence limits and perform statistical comparisons between indexes derived from autoregressive (AR) modeling of individual time series. Analytical approaches are generally not viable, because the indexes are usually nonlinear functions of the AR parameters. We exploit Monte Carlo (MC) and Bootstrap (BS) methods to reproduce the sampling distribution of the AR parameters and indexes computed from them. Here, these methods are implemented for spectral and information-theoretic indexes of heart-rate variability (HRV) estimated from AR models of heart-period time series. First, the MS and BC methods are tested in a wide range of synthetic HRV time series, showing good agreement with a gold-standard approach (i.e. multiple realizations of the "true" process driving the simulation). Then, real HRV time series measured from volunteers performing cognitive tasks are considered, documenting (i) the strong variability of confidence limits' width across recordings, (ii) the diversity of individual responses to the same task, and (iii) frequent disagreement between the cohort-average response and that of many individuals. We conclude that MC and BS methods are robust in estimating confidence limits of these AR-based indexes and thus recommended for short-term HRV analysis. Moreover, the strong inter-individual differences in the response to tasks shown by AR-based indexes evidence the need of individual-by-individual assessments of HRV features. Given their generality, MC and BS methods are promising for applications in biomedical signal processing and beyond, providing a powerful new tool for assessing the confidence limits of indexes estimated from individual recordings. PMID:28968394
NASA Astrophysics Data System (ADS)
Ibrahima, Fayadhoi; Meyer, Daniel; Tchelepi, Hamdi
2016-04-01
Because geophysical data are inexorably sparse and incomplete, stochastic treatments of simulated responses are crucial to explore possible scenarios and assess risks in subsurface problems. In particular, nonlinear two-phase flows in porous media are essential, yet challenging, in reservoir simulation and hydrology. Adding highly heterogeneous and uncertain input, such as the permeability and porosity fields, transforms the estimation of the flow response into a tough stochastic problem for which computationally expensive Monte Carlo (MC) simulations remain the preferred option.We propose an alternative approach to evaluate the probability distribution of the (water) saturation for the stochastic Buckley-Leverett problem when the probability distributions of the permeability and porosity fields are available. We give a computationally efficient and numerically accurate method to estimate the one-point probability density (PDF) and cumulative distribution functions (CDF) of the (water) saturation. The distribution method draws inspiration from a Lagrangian approach of the stochastic transport problem and expresses the saturation PDF and CDF essentially in terms of a deterministic mapping and the distribution and statistics of scalar random fields. In a large class of applications these random fields can be estimated at low computational costs (few MC runs), thus making the distribution method attractive. Even though the method relies on a key assumption of fixed streamlines, we show that it performs well for high input variances, which is the case of interest. Once the saturation distribution is determined, any one-point statistics thereof can be obtained, especially the saturation average and standard deviation. Moreover, the probability of rare events and saturation quantiles (e.g. P10, P50 and P90) can be efficiently derived from the distribution method. These statistics can then be used for risk assessment, as well as data assimilation and uncertainty reduction in the prior knowledge of input distributions. We provide various examples and comparisons with MC simulations to illustrate the performance of the method.
NASA Astrophysics Data System (ADS)
Bieda, Bogusław; Grzesik, Katarzyna
2017-11-01
The study proposes an stochastic approach based on Monte Carlo (MC) simulation for life cycle assessment (LCA) method limited to life cycle inventory (LCI) study for rare earth elements (REEs) recovery from the secondary materials processes production applied to the New Krankberg Mine in Sweden. The MC method is recognizes as an important tool in science and can be considered the most effective quantification approach for uncertainties. The use of stochastic approach helps to characterize the uncertainties better than deterministic method. Uncertainty of data can be expressed through a definition of probability distribution of that data (e.g. through standard deviation or variance). The data used in this study are obtained from: (i) site-specific measured or calculated data, (ii) values based on literature, (iii) the ecoinvent process "rare earth concentrate, 70% REO, from bastnäsite, at beneficiation". Environmental emissions (e.g, particulates, uranium-238, thorium-232), energy and REE (La, Ce, Nd, Pr, Sm, Dy, Eu, Tb, Y, Sc, Yb, Lu, Tm, Y, Gd) have been inventoried. The study is based on a reference case for the year 2016. The combination of MC analysis with sensitivity analysis is the best solution for quantified the uncertainty in the LCI/LCA. The reliability of LCA results may be uncertain, to a certain degree, but this uncertainty can be noticed with the help of MC method.
Serban, M; Ruo, R; Sarfehnia, A; Parker, W; Evans, M
2012-07-01
Fast electron Monte Carlo systems have been developed commercially, and implemented for clinical practice in radiation therapy clinics. In this work the Varian eMC (electron Monte Carlo) algorithm was commissioned for clinical electron beams of energies between 6 MeV and 20 MeV. Beam outputs, PDDs and profiles were measured for 29 regular and irregular cutouts using the IC-10 (Wellhöfer) ionization chamber. Detailed percentage depth dose comparisons showed that the agreement between measurement and eMC for different characteristic points on the PDD are generally less than 1 mm and always less than 2 mm, with the eMC calculated values being lower than the measured values. Of the 145 measured output factors, 19 cases fail a ±2% agreement but only 8 cases fail a ±3% agreement between calculation and measurement. Comparison of central axis dose distributions for two electron energies (9, and 20 MeV) for a 10 × 10 cm 2 field, centrally shielded with Pb of width 0 cm (open), 1, 2 and 3 cm, shows agreement to within 3% except near the surface. Comparison of central axis dose distributions for 9 MeV in heterogeneous phantoms including bone and lung inserts showed agreement of 1 mm and 3 mm respectively with measured TLD data. The overall agreement between measurement and eMC calculation has enabled us to begin implementing this calculation model for clinical use. © 2012 American Association of Physicists in Medicine.
kmos: A lattice kinetic Monte Carlo framework
NASA Astrophysics Data System (ADS)
Hoffmann, Max J.; Matera, Sebastian; Reuter, Karsten
2014-07-01
Kinetic Monte Carlo (kMC) simulations have emerged as a key tool for microkinetic modeling in heterogeneous catalysis and other materials applications. Systems, where site-specificity of all elementary reactions allows a mapping onto a lattice of discrete active sites, can be addressed within the particularly efficient lattice kMC approach. To this end we describe the versatile kmos software package, which offers a most user-friendly implementation, execution, and evaluation of lattice kMC models of arbitrary complexity in one- to three-dimensional lattice systems, involving multiple active sites in periodic or aperiodic arrangements, as well as site-resolved pairwise and higher-order lateral interactions. Conceptually, kmos achieves a maximum runtime performance which is essentially independent of lattice size by generating code for the efficiency-determining local update of available events that is optimized for a defined kMC model. For this model definition and the control of all runtime and evaluation aspects kmos offers a high-level application programming interface. Usage proceeds interactively, via scripts, or a graphical user interface, which visualizes the model geometry, the lattice occupations and rates of selected elementary reactions, while allowing on-the-fly changes of simulation parameters. We demonstrate the performance and scaling of kmos with the application to kMC models for surface catalytic processes, where for given operation conditions (temperature and partial pressures of all reactants) central simulation outcomes are catalytic activity and selectivities, surface composition, and mechanistic insight into the occurrence of individual elementary processes in the reaction network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abouelnasr, MKF; Smit, B
2012-01-01
The self- and collective-diffusion behaviors of adsorbed methane, helium, and isobutane in zeolite frameworks LTA, MFI, AFI, and SAS were examined at various concentrations using a range of molecular simulation techniques including Molecular Dynamics (MD), Monte Carlo (MC), Bennett-Chandler (BC), and kinetic Monte Carlo (kMC). This paper has three main results. (1) A novel model for the process of adsorbate movement between two large cages was created, allowing the formulation of a mixing rule for the re-crossing coefficient between two cages of unequal loading. The predictions from this mixing rule were found to agree quantitatively with explicit simulations. (2) Amore » new approach to the dynamically corrected Transition State Theory method to analytically calculate self-diffusion properties was developed, explicitly accounting for nanoscale fluctuations in concentration. This approach was demonstrated to quantitatively agree with previous methods, but is uniquely suited to be adapted to a kMC simulation that can simulate the collective-diffusion behavior. (3) While at low and moderate loadings the self- and collective-diffusion behaviors in LTA are observed to coincide, at higher concentrations they diverge. A change in the adsorbate packing scheme was shown to cause this divergence, a trait which is replicated in a kMC simulation that explicitly models this behavior. These phenomena were further investigated for isobutane in zeolite MFI, where MD results showed a separation in self- and collective-diffusion behavior that was reproduced with kMC simulations.« less
Abouelnasr, Mahmoud K F; Smit, Berend
2012-09-07
The self- and collective-diffusion behaviors of adsorbed methane, helium, and isobutane in zeolite frameworks LTA, MFI, AFI, and SAS were examined at various concentrations using a range of molecular simulation techniques including Molecular Dynamics (MD), Monte Carlo (MC), Bennett-Chandler (BC), and kinetic Monte Carlo (kMC). This paper has three main results. (1) A novel model for the process of adsorbate movement between two large cages was created, allowing the formulation of a mixing rule for the re-crossing coefficient between two cages of unequal loading. The predictions from this mixing rule were found to agree quantitatively with explicit simulations. (2) A new approach to the dynamically corrected Transition State Theory method to analytically calculate self-diffusion properties was developed, explicitly accounting for nanoscale fluctuations in concentration. This approach was demonstrated to quantitatively agree with previous methods, but is uniquely suited to be adapted to a kMC simulation that can simulate the collective-diffusion behavior. (3) While at low and moderate loadings the self- and collective-diffusion behaviors in LTA are observed to coincide, at higher concentrations they diverge. A change in the adsorbate packing scheme was shown to cause this divergence, a trait which is replicated in a kMC simulation that explicitly models this behavior. These phenomena were further investigated for isobutane in zeolite MFI, where MD results showed a separation in self- and collective- diffusion behavior that was reproduced with kMC simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devpura, S; Li, H; Liu, C
Purpose: To correlate dose distributions computed using six algorithms for recurrent early stage non-small cell lung cancer (NSCLC) patients treated with stereotactic body radiotherapy (SBRT), with outcome (local failure). Methods: Of 270 NSCLC patients treated with 12Gyx4, 20 were found to have local recurrence prior to the 2-year time point. These patients were originally planned with 1-D pencil beam (1-D PB) algorithm. 4D imaging was performed to manage tumor motion. Regions of local failures were determined from follow-up PET-CT scans. Follow-up CT images were rigidly fused to the planning CT (pCT), and recurrent tumor volumes (Vrecur) were mapped to themore » pCT. Dose was recomputed, retrospectively, using five algorithms: 3-D PB, collapsed cone convolution (CCC), anisotropic analytical algorithm (AAA), AcurosXB, and Monte Carlo (MC). Tumor control probability (TCP) was computed using the Marsden model (1,2). Patterns of failure were classified as central, in-field, marginal, and distant for Vrecur ≥95% of prescribed dose, 95–80%, 80–20%, and ≤20%, respectively (3). Results: Average PTV D95 (dose covering 95% of the PTV) for 3-D PB, CCC, AAA, AcurosXB, and MC relative to 1-D PB were 95.3±2.1%, 84.1±7.5%, 84.9±5.7%, 86.3±6.0%, and 85.1±7.0%, respectively. TCP values for 1-D PB, 3-D PB, CCC, AAA, AcurosXB, and MC were 98.5±1.2%, 95.7±3.0, 79.6±16.1%, 79.7±16.5%, 81.1±17.5%, and 78.1±20%, respectively. Patterns of local failures were similar for 1-D and 3D PB plans, which predicted that the majority of failures occur in centraldistal regions, with only ∼15% occurring distantly. However, with convolution/superposition and MC type algorithms, the majority of failures (65%) were predicted to be distant, consistent with the literature. Conclusion: Based on MC and convolution/superposition type algorithms, average PTV D95 and TCP were ∼15% lower than the planned 1-D PB dose calculation. Patterns of failure results suggest that MC and convolution/superposition type algorithms predict different outcomes for patterns of failure relative to PB algorithms. Work supported in part by Varian Medical Systems, Palo Alto, CA.« less
Forward Monte Carlo Computations of Polarized Microwave Radiation
NASA Technical Reports Server (NTRS)
Battaglia, A.; Kummerow, C.
2000-01-01
Microwave radiative transfer computations continue to acquire greater importance as the emphasis in remote sensing shifts towards the understanding of microphysical properties of clouds and with these to better understand the non linear relation between rainfall rates and satellite-observed radiance. A first step toward realistic radiative simulations has been the introduction of techniques capable of treating 3-dimensional geometry being generated by ever more sophisticated cloud resolving models. To date, a series of numerical codes have been developed to treat spherical and randomly oriented axisymmetric particles. Backward and backward-forward Monte Carlo methods are, indeed, efficient in this field. These methods, however, cannot deal properly with oriented particles, which seem to play an important role in polarization signatures over stratiform precipitation. Moreover, beyond the polarization channel, the next generation of fully polarimetric radiometers challenges us to better understand the behavior of the last two Stokes parameters as well. In order to solve the vector radiative transfer equation, one-dimensional numerical models have been developed, These codes, unfortunately, consider the atmosphere as horizontally homogeneous with horizontally infinite plane parallel layers. The next development step for microwave radiative transfer codes must be fully polarized 3-D methods. Recently a 3-D polarized radiative transfer model based on the discrete ordinate method was presented. A forward MC code was developed that treats oriented nonspherical hydrometeors, but only for plane-parallel situations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Q; Lei, Y; Zheng, D
Purpose: To evaluate dose fall-off in normal tissue for lung stereotactic body radiation therapy (SBRT) cases planned with different prescription isodose levels (IDLs), by calculating the dose dropping speed (DDS) in normal tissue on plans computed with both Pencil Beam (PB) and Monte-Carlo (MC) algorithms. Methods: The DDS was calculated on 32 plans for 8 lung SBRT patients. For each patient, 4 dynamic conformal arc plans were individually optimized for prescription isodose levels (IDL) ranging from 60% to 90% of the maximum dose with 10% increments to conformally cover the PTV. Eighty non-overlapping rind structures each of 1mm thickness weremore » created layer by layer from each PTV surface. The average dose in each rind was calculated and fitted with a double exponential function (DEF) of the distance from the PTV surface, which models the steep- and moderate-slope portions of the average dose curve in normal tissue. The parameter characterizing the steep portion of the average dose curve in the DEF quantifies the DDS in the immediate normal tissue receiving high dose. Provided that the prescription dose covers the whole PTV, a greater DDS indicates better normal tissue sparing. The DDS were compared among plans with different prescription IDLs, for plans computed with both PB and MC algorithms. Results: For all patients, the DDS was found to be the lowest for 90% prescription IDL and reached a highest plateau region for 60% or 70% prescription. The trend was the same for both PB and MC plans. Conclusion: Among the range of prescription IDLs accepted by lung SBRT RTOG protocols, prescriptions to 60% and 70% IDLs were found to provide best normal tissue sparing.« less
NASA Astrophysics Data System (ADS)
Baek, Sunghye
2017-07-01
For more efficient and accurate computation of radiative flux, improvements have been achieved in two aspects, integration of the radiative transfer equation over space and angle. First, the treatment of the Monte Carlo-independent column approximation (MCICA) is modified focusing on efficiency using a reduced number of random samples ("G-packed") within a reconstructed and unified radiation package. The original McICA takes 20% of CPU time of radiation in the Global/Regional Integrated Model systems (GRIMs). The CPU time consumption of McICA is reduced by 70% without compromising accuracy. Second, parameterizations of shortwave two-stream approximations are revised to reduce errors with respect to the 16-stream discrete ordinate method. Delta-scaled two-stream approximation (TSA) is almost unanimously used in Global Circulation Model (GCM) but contains systematic errors which overestimate forward peak scattering as solar elevation decreases. These errors are alleviated by adjusting the parameterizations of each scattering element—aerosol, liquid, ice and snow cloud particles. Parameterizations are determined with 20,129 atmospheric columns of the GRIMs data and tested with 13,422 independent data columns. The result shows that the root-mean-square error (RMSE) over the all atmospheric layers is decreased by 39% on average without significant increase in computational time. Revised TSA developed and validated with a separate one-dimensional model is mounted on GRIMs for mid-term numerical weather forecasting. Monthly averaged global forecast skill scores are unchanged with revised TSA but the temperature at lower levels of the atmosphere (pressure ≥ 700 hPa) is slightly increased (< 0.5 K) with corrected atmospheric absorption.
Validation of an In-Water, Tower-Shading Correction Scheme
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Doyle, John P.; Zibordi, Giuseppe; vanderLinde, Dirk
2003-01-01
Large offshore structures used for the deployment of optical instruments can significantly perturb the intensity of the light field surrounding the optical measurement point, where different portions of the visible spectrum are subject to different shadowing effects. These effects degrade the quality of the acquired optical data and can reduce the accuracy of several derived quantities, such as those obtained by applying bio-optical algorithms directly to the shadow-perturbed data. As a result, optical remote sensing calibration and validation studies can be impaired if shadowing artifacts are not fully accounted for. In this work, the general in-water shadowing problem is examined for a particular case study. Backward Monte Carlo (MC) radiative transfer computations- performed in a vertically stratified, horizontally inhomogeneous, and realistic ocean-atmosphere system are shown to accurately simulate the shadow-induced relative percent errors affecting the radiance and irradiance data profiles acquired close to an oceanographic tower. Multiparameter optical data processing has provided adequate representation of experimental uncertainties allowing consistent comparison with simulations. The more detailed simulations at the subsurface depth appear to be essentially equivalent to those obtained assuming a simplified ocean-atmosphere system, except in highly stratified waters. MC computations performed in the simplified system can be assumed, therefore, to accurately simulate the optical measurements conducted under more complex sampling conditions (i.e., within waters presenting moderate stratification at most). A previously reported correction scheme, based on the simplified MC simulations, and developed for subsurface shadow-removal processing of in-water optical data taken close to the investigated oceanographic tower, is then validated adequately under most experimental conditions. It appears feasible to generalize the present tower-specific approach to solve other optical sensor shadowing problems pertaining to differently shaped deployment platforms, and also including surrounding structures and instrument casings.
Image based Monte Carlo Modeling for Computational Phantom
NASA Astrophysics Data System (ADS)
Cheng, Mengyun; Wang, Wen; Zhao, Kai; Fan, Yanchang; Long, Pengcheng; Wu, Yican
2014-06-01
The evaluation on the effects of ionizing radiation and the risk of radiation exposure on human body has been becoming one of the most important issues for radiation protection and radiotherapy fields, which is helpful to avoid unnecessary radiation and decrease harm to human body. In order to accurately evaluate the dose on human body, it is necessary to construct more realistic computational phantom. However, manual description and verfication of the models for Monte carlo(MC)simulation are very tedious, error-prone and time-consuming. In addiation, it is difficult to locate and fix the geometry error, and difficult to describe material information and assign it to cells. MCAM (CAD/Image-based Automatic Modeling Program for Neutronics and Radiation Transport Simulation) was developed as an interface program to achieve both CAD- and image-based automatic modeling by FDS Team (Advanced Nuclear Energy Research Team, http://www.fds.org.cn). The advanced version (Version 6) of MCAM can achieve automatic conversion from CT/segmented sectioned images to computational phantoms such as MCNP models. Imaged-based automatic modeling program(MCAM6.0) has been tested by several medical images and sectioned images. And it has been applied in the construction of Rad-HUMAN. Following manual segmentation and 3D reconstruction, a whole-body computational phantom of Chinese adult female called Rad-HUMAN was created by using MCAM6.0 from sectioned images of a Chinese visible human dataset. Rad-HUMAN contains 46 organs/tissues, which faithfully represented the average anatomical characteristics of the Chinese female. The dose conversion coefficients(Dt/Ka) from kerma free-in-air to absorbed dose of Rad-HUMAN were calculated. Rad-HUMAN can be applied to predict and evaluate dose distributions in the Treatment Plan System (TPS), as well as radiation exposure for human body in radiation protection.
NASA Astrophysics Data System (ADS)
Tian, Liang; Wilkinson, Richard; Yang, Zhibing; Power, Henry; Fagerlund, Fritjof; Niemi, Auli
2017-08-01
We explore the use of Gaussian process emulators (GPE) in the numerical simulation of CO2 injection into a deep heterogeneous aquifer. The model domain is a two-dimensional, log-normally distributed stochastic permeability field. We first estimate the cumulative distribution functions (CDFs) of the CO2 breakthrough time and the total CO2 mass using a computationally expensive Monte Carlo (MC) simulation. We then show that we can accurately reproduce these CDF estimates with a GPE, using only a small fraction of the computational cost required by traditional MC simulation. In order to build a GPE that can predict the simulator output from a permeability field consisting of 1000s of values, we use a truncated Karhunen-Loève (K-L) expansion of the permeability field, which enables the application of the Bayesian functional regression approach. We perform a cross-validation exercise to give an insight of the optimization of the experiment design for selected scenarios: we find that it is sufficient to use 100s values for the size of training set and that it is adequate to use as few as 15 K-L components. Our work demonstrates that GPE with truncated K-L expansion can be effectively applied to uncertainty analysis associated with modelling of multiphase flow and transport processes in heterogeneous media.
Crossover of cation partitioning in olivines: a combination of ab initio and Monte Carlo study
NASA Astrophysics Data System (ADS)
Chatterjee, Swastika; Bhattacharyya, Sirshendu; Sengupta, Surajit; Saha-Dasgupta, Tanusri
2011-04-01
We report studies based on a combination of ab initio electronic structure and Monte Carlo (MC) technique on the problem of cation partitioning among inequivalent octahedral sites, M1 and M2 in mixed olivines containing Mg2+ and Fe2+ ions. Our MC scheme uses interactions derived out of ab initio, density functional calculations carried out on measured crystal structure data. Our results show that there is no reversal of the preference of Fe for M1 over M2 as a function of temperature. Our findings do not agree with the experimental findings of Redfern et al. (Phys Chem Miner 27:630-637, 2000), but are in agreement with those of Heinemann et al. (Eur J Mineral 18:673-689, 2006) and Morozov et al. (Eur J Mineral 17:495-500, 2005).
Improved cache performance in Monte Carlo transport calculations using energy banding
NASA Astrophysics Data System (ADS)
Siegel, A.; Smith, K.; Felker, K.; Romano, P.; Forget, B.; Beckman, P.
2014-04-01
We present an energy banding algorithm for Monte Carlo (MC) neutral particle transport simulations which depend on large cross section lookup tables. In MC codes, read-only cross section data tables are accessed frequently, exhibit poor locality, and are typically too much large to fit in fast memory. Thus, performance is often limited by long latencies to RAM, or by off-node communication latencies when the data footprint is very large and must be decomposed on a distributed memory machine. The proposed energy banding algorithm allows maximal temporal reuse of data in band sizes that can flexibly accommodate different architectural features. The energy banding algorithm is general and has a number of benefits compared to the traditional approach. In the present analysis we explore its potential to achieve improvements in time-to-solution on modern cache-based architectures.
Perfetti, Christopher M.; Rearden, Bradley T.
2016-03-01
The sensitivity and uncertainty analysis tools of the ORNL SCALE nuclear modeling and simulation code system that have been developed over the last decade have proven indispensable for numerous application and design studies for nuclear criticality safety and reactor physics. SCALE contains tools for analyzing the uncertainty in the eigenvalue of critical systems, but cannot quantify uncertainty in important neutronic parameters such as multigroup cross sections, fuel fission rates, activation rates, and neutron fluence rates with realistic three-dimensional Monte Carlo simulations. A more complete understanding of the sources of uncertainty in these design-limiting parameters could lead to improvements in processmore » optimization, reactor safety, and help inform regulators when setting operational safety margins. A novel approach for calculating eigenvalue sensitivity coefficients, known as the CLUTCH method, was recently explored as academic research and has been found to accurately and rapidly calculate sensitivity coefficients in criticality safety applications. The work presented here describes a new method, known as the GEAR-MC method, which extends the CLUTCH theory for calculating eigenvalue sensitivity coefficients to enable sensitivity coefficient calculations and uncertainty analysis for a generalized set of neutronic responses using high-fidelity continuous-energy Monte Carlo calculations. Here, several criticality safety systems were examined to demonstrate proof of principle for the GEAR-MC method, and GEAR-MC was seen to produce response sensitivity coefficients that agreed well with reference direct perturbation sensitivity coefficients.« less
Development Optimization and Uncertainty Analysis Methods for Oil and Gas Reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ettehadtavakkol, Amin, E-mail: amin.ettehadtavakkol@ttu.edu; Jablonowski, Christopher; Lake, Larry
Uncertainty complicates the development optimization of oil and gas exploration and production projects, but methods have been devised to analyze uncertainty and its impact on optimal decision-making. This paper compares two methods for development optimization and uncertainty analysis: Monte Carlo (MC) simulation and stochastic programming. Two example problems for a gas field development and an oilfield development are solved and discussed to elaborate the advantages and disadvantages of each method. Development optimization involves decisions regarding the configuration of initial capital investment and subsequent operational decisions. Uncertainty analysis involves the quantification of the impact of uncertain parameters on the optimum designmore » concept. The gas field development problem is designed to highlight the differences in the implementation of the two methods and to show that both methods yield the exact same optimum design. The results show that both MC optimization and stochastic programming provide unique benefits, and that the choice of method depends on the goal of the analysis. While the MC method generates more useful information, along with the optimum design configuration, the stochastic programming method is more computationally efficient in determining the optimal solution. Reservoirs comprise multiple compartments and layers with multiphase flow of oil, water, and gas. We present a workflow for development optimization under uncertainty for these reservoirs, and solve an example on the design optimization of a multicompartment, multilayer oilfield development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewkow, N. R.; Kharchenko, V.
2014-08-01
The precipitation of energetic neutral atoms, produced through charge exchange collisions between solar wind ions and thermal atmospheric gases, is investigated for the Martian atmosphere. Connections between parameters of precipitating fast ions and resulting escape fluxes, altitude-dependent energy distributions of fast atoms and their coefficients of reflection from the Mars atmosphere, are established using accurate cross sections in Monte Carlo (MC) simulations. Distributions of secondary hot (SH) atoms and molecules, induced by precipitating particles, have been obtained and applied for computations of the non-thermal escape fluxes. A new collisional database on accurate energy-angular-dependent cross sections, required for description of themore » energy-momentum transfer in collisions of precipitating particles and production of non-thermal atmospheric atoms and molecules, is reported with analytic fitting equations. Three-dimensional MC simulations with accurate energy-angular-dependent cross sections have been carried out to track large ensembles of energetic atoms in a time-dependent manner as they propagate into the Martian atmosphere and transfer their energy to the ambient atoms and molecules. Results of the MC simulations on the energy-deposition altitude profiles, reflection coefficients, and time-dependent atmospheric heating, obtained for the isotropic hard sphere and anisotropic quantum cross sections, are compared. Atmospheric heating rates, thermalization depths, altitude profiles of production rates, energy distributions of SH atoms and molecules, and induced escape fluxes have been determined.« less
Mak, Chi H
2015-11-25
While single-stranded (ss) segments of DNAs and RNAs are ubiquitous in biology, details about their structures have only recently begun to emerge. To study ssDNA and RNAs, we have developed a new Monte Carlo (MC) simulation using a free energy model for nucleic acids that has the atomisitic accuracy to capture fine molecular details of the sugar-phosphate backbone. Formulated on the basis of a first-principle calculation of the conformational entropy of the nucleic acid chain, this free energy model correctly reproduced both the long and short length-scale structural properties of ssDNA and RNAs in a rigorous comparison against recent data from fluorescence resonance energy transfer, small-angle X-ray scattering, force spectroscopy and fluorescence correlation transport measurements on sequences up to ∼100 nucleotides long. With this new MC algorithm, we conducted a comprehensive investigation of the entropy landscape of small RNA stem-loop structures. From a simulated ensemble of ∼10(6) equilibrium conformations, the entropy for the initiation of different size RNA hairpin loops was computed and compared against thermodynamic measurements. Starting from seeded hairpin loops, constrained MC simulations were then used to estimate the entropic costs associated with propagation of the stem. The numerical results provide new direct molecular insights into thermodynaimc measurement from macroscopic calorimetry and melting experiments.
Monte Carlo simulation of inverse geometry x-ray fluoroscopy using a modified MC-GPU framework
Dunkerley, David A. P.; Tomkowiak, Michael T.; Slagowski, Jordan M.; McCabe, Bradley P.; Funk, Tobias; Speidel, Michael A.
2015-01-01
Scanning-Beam Digital X-ray (SBDX) is a technology for low-dose fluoroscopy that employs inverse geometry x-ray beam scanning. To assist with rapid modeling of inverse geometry x-ray systems, we have developed a Monte Carlo (MC) simulation tool based on the MC-GPU framework. MC-GPU version 1.3 was modified to implement a 2D array of focal spot positions on a plane, with individually adjustable x-ray outputs, each producing a narrow x-ray beam directed toward a stationary photon-counting detector array. Geometric accuracy and blurring behavior in tomosynthesis reconstructions were evaluated from simulated images of a 3D arrangement of spheres. The artifact spread function from simulation agreed with experiment to within 1.6% (rRMSD). Detected x-ray scatter fraction was simulated for two SBDX detector geometries and compared to experiments. For the current SBDX prototype (10.6 cm wide by 5.3 cm tall detector), x-ray scatter fraction measured 2.8–6.4% (18.6–31.5 cm acrylic, 100 kV), versus 2.1–4.5% in MC simulation. Experimental trends in scatter versus detector size and phantom thickness were observed in simulation. For dose evaluation, an anthropomorphic phantom was imaged using regular and regional adaptive exposure (RAE) scanning. The reduction in kerma-area-product resulting from RAE scanning was 45% in radiochromic film measurements, versus 46% in simulation. The integral kerma calculated from TLD measurement points within the phantom was 57% lower when using RAE, versus 61% lower in simulation. This MC tool may be used to estimate tomographic blur, detected scatter, and dose distributions when developing inverse geometry x-ray systems. PMID:26113765
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Sei-Kwon; Yoon, Jai-Woong; Hwang, Taejin
A metallic contact eye shield has sometimes been used for eyelid treatment, but dose distribution has never been reported for a patient case. This study aimed to show the shield-incorporated CT-based dose distribution using the Pinnacle system and Monte Carlo (MC) calculation for 3 patient cases. For the artifact-free CT scan, an acrylic shield machined as the same size as that of the tungsten shield was used. For the MC calculation, BEAMnrc and DOSXYZnrc were used for the 6-MeV electron beam of the Varian 21EX, in which information for the tungsten, stainless steel, and aluminum material for the eye shieldmore » was used. The same plan was generated on the Pinnacle system and both were compared. The use of the acrylic shield produced clear CT images, enabling delineation of the regions of interest, and yielded CT-based dose calculation for the metallic shield. Both the MC and the Pinnacle systems showed a similar dose distribution downstream of the eye shield, reflecting the blocking effect of the metallic eye shield. The major difference between the MC and the Pinnacle results was the target eyelid dose upstream of the shield such that the Pinnacle system underestimated the dose by 19 to 28% and 11 to 18% for the maximum and the mean doses, respectively. The pattern of dose difference between the MC and the Pinnacle systems was similar to that in the previous phantom study. In conclusion, the metallic eye shield was successfully incorporated into the CT-based planning, and the accurate dose calculation requires MC simulation.« less
Usmani, Muhammad Nauman; Takegawa, Hideki; Takashina, Masaaki; Numasaki, Hodaka; Suga, Masaki; Anetai, Yusuke; Kurosu, Keita; Koizumi, Masahiko; Teshima, Teruki
2014-11-01
Technical developments in radiotherapy (RT) have created a need for systematic quality assurance (QA) to ensure that clinical institutions deliver prescribed radiation doses consistent with the requirements of clinical protocols. For QA, an ideal dose verification system should be independent of the treatment-planning system (TPS). This paper describes the development and reproducibility evaluation of a Monte Carlo (MC)-based standard LINAC model as a preliminary requirement for independent verification of dose distributions. The BEAMnrc MC code is used for characterization of the 6-, 10- and 15-MV photon beams for a wide range of field sizes. The modeling of the LINAC head components is based on the specifications provided by the manufacturer. MC dose distributions are tuned to match Varian Golden Beam Data (GBD). For reproducibility evaluation, calculated beam data is compared with beam data measured at individual institutions. For all energies and field sizes, the MC and GBD agreed to within 1.0% for percentage depth doses (PDDs), 1.5% for beam profiles and 1.2% for total scatter factors (Scps.). Reproducibility evaluation showed that the maximum average local differences were 1.3% and 2.5% for PDDs and beam profiles, respectively. MC and institutions' mean Scps agreed to within 2.0%. An MC-based standard LINAC model developed to independently verify dose distributions for QA of multi-institutional clinical trials and routine clinical practice has proven to be highly accurate and reproducible and can thus help ensure that prescribed doses delivered are consistent with the requirements of clinical protocols. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Monte Carlo simulation of inverse geometry x-ray fluoroscopy using a modified MC-GPU framework.
Dunkerley, David A P; Tomkowiak, Michael T; Slagowski, Jordan M; McCabe, Bradley P; Funk, Tobias; Speidel, Michael A
2015-02-21
Scanning-Beam Digital X-ray (SBDX) is a technology for low-dose fluoroscopy that employs inverse geometry x-ray beam scanning. To assist with rapid modeling of inverse geometry x-ray systems, we have developed a Monte Carlo (MC) simulation tool based on the MC-GPU framework. MC-GPU version 1.3 was modified to implement a 2D array of focal spot positions on a plane, with individually adjustable x-ray outputs, each producing a narrow x-ray beam directed toward a stationary photon-counting detector array. Geometric accuracy and blurring behavior in tomosynthesis reconstructions were evaluated from simulated images of a 3D arrangement of spheres. The artifact spread function from simulation agreed with experiment to within 1.6% (rRMSD). Detected x-ray scatter fraction was simulated for two SBDX detector geometries and compared to experiments. For the current SBDX prototype (10.6 cm wide by 5.3 cm tall detector), x-ray scatter fraction measured 2.8-6.4% (18.6-31.5 cm acrylic, 100 kV), versus 2.1-4.5% in MC simulation. Experimental trends in scatter versus detector size and phantom thickness were observed in simulation. For dose evaluation, an anthropomorphic phantom was imaged using regular and regional adaptive exposure (RAE) scanning. The reduction in kerma-area-product resulting from RAE scanning was 45% in radiochromic film measurements, versus 46% in simulation. The integral kerma calculated from TLD measurement points within the phantom was 57% lower when using RAE, versus 61% lower in simulation. This MC tool may be used to estimate tomographic blur, detected scatter, and dose distributions when developing inverse geometry x-ray systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richers, Sherwood; Nagakura, Hiroki; Ott, Christian D.
The mechanism driving core-collapse supernovae is sensitive to the interplay between matter and neutrino radiation. However, neutrino radiation transport is very difficult to simulate, and several radiation transport methods of varying levels of approximation are available. We carefully compare for the first time in multiple spatial dimensions the discrete ordinates (DO) code of Nagakura, Yamada, and Sumiyoshi and the Monte Carlo (MC) code Sedonu, under the assumptions of a static fluid background, flat spacetime, elastic scattering, and full special relativity. We find remarkably good agreement in all spectral, angular, and fluid interaction quantities, lending confidence to both methods. The DOmore » method excels in determining the heating and cooling rates in the optically thick region. The MC method predicts sharper angular features due to the effectively infinite angular resolution, but struggles to drive down noise in quantities where subtractive cancellation is prevalent, such as the net gain in the protoneutron star and off-diagonal components of the Eddington tensor. We also find that errors in the angular moments of the distribution functions induced by neglecting velocity dependence are subdominant to those from limited momentum-space resolution. We briefly compare directly computed second angular moments to those predicted by popular algebraic two-moment closures, and we find that the errors from the approximate closures are comparable to the difference between the DO and MC methods. Included in this work is an improved Sedonu code, which now implements a fully special relativistic, time-independent version of the grid-agnostic MC random walk approximation.« less
Richers, Sherwood; Nagakura, Hiroki; Ott, Christian D.; ...
2017-10-03
The mechanism driving core-collapse supernovae is sensitive to the interplay between matter and neutrino radiation. However, neutrino radiation transport is very difficult to simulate, and several radiation transport methods of varying levels of approximation are available. In this paper, we carefully compare for the first time in multiple spatial dimensions the discrete ordinates (DO) code of Nagakura, Yamada, and Sumiyoshi and the Monte Carlo (MC) code Sedonu, under the assumptions of a static fluid background, flat spacetime, elastic scattering, and full special relativity. We find remarkably good agreement in all spectral, angular, and fluid interaction quantities, lending confidence to bothmore » methods. The DO method excels in determining the heating and cooling rates in the optically thick region. The MC method predicts sharper angular features due to the effectively infinite angular resolution, but struggles to drive down noise in quantities where subtractive cancellation is prevalent, such as the net gain in the protoneutron star and off-diagonal components of the Eddington tensor. We also find that errors in the angular moments of the distribution functions induced by neglecting velocity dependence are subdominant to those from limited momentum-space resolution. We briefly compare directly computed second angular moments to those predicted by popular algebraic two-moment closures, and we find that the errors from the approximate closures are comparable to the difference between the DO and MC methods. Finally, included in this work is an improved Sedonu code, which now implements a fully special relativistic, time-independent version of the grid-agnostic MC random walk approximation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richers, Sherwood; Nagakura, Hiroki; Ott, Christian D.
The mechanism driving core-collapse supernovae is sensitive to the interplay between matter and neutrino radiation. However, neutrino radiation transport is very difficult to simulate, and several radiation transport methods of varying levels of approximation are available. In this paper, we carefully compare for the first time in multiple spatial dimensions the discrete ordinates (DO) code of Nagakura, Yamada, and Sumiyoshi and the Monte Carlo (MC) code Sedonu, under the assumptions of a static fluid background, flat spacetime, elastic scattering, and full special relativity. We find remarkably good agreement in all spectral, angular, and fluid interaction quantities, lending confidence to bothmore » methods. The DO method excels in determining the heating and cooling rates in the optically thick region. The MC method predicts sharper angular features due to the effectively infinite angular resolution, but struggles to drive down noise in quantities where subtractive cancellation is prevalent, such as the net gain in the protoneutron star and off-diagonal components of the Eddington tensor. We also find that errors in the angular moments of the distribution functions induced by neglecting velocity dependence are subdominant to those from limited momentum-space resolution. We briefly compare directly computed second angular moments to those predicted by popular algebraic two-moment closures, and we find that the errors from the approximate closures are comparable to the difference between the DO and MC methods. Finally, included in this work is an improved Sedonu code, which now implements a fully special relativistic, time-independent version of the grid-agnostic MC random walk approximation.« less
NASA Astrophysics Data System (ADS)
Richers, Sherwood; Nagakura, Hiroki; Ott, Christian D.; Dolence, Joshua; Sumiyoshi, Kohsuke; Yamada, Shoichi
2017-10-01
The mechanism driving core-collapse supernovae is sensitive to the interplay between matter and neutrino radiation. However, neutrino radiation transport is very difficult to simulate, and several radiation transport methods of varying levels of approximation are available. We carefully compare for the first time in multiple spatial dimensions the discrete ordinates (DO) code of Nagakura, Yamada, and Sumiyoshi and the Monte Carlo (MC) code Sedonu, under the assumptions of a static fluid background, flat spacetime, elastic scattering, and full special relativity. We find remarkably good agreement in all spectral, angular, and fluid interaction quantities, lending confidence to both methods. The DO method excels in determining the heating and cooling rates in the optically thick region. The MC method predicts sharper angular features due to the effectively infinite angular resolution, but struggles to drive down noise in quantities where subtractive cancellation is prevalent, such as the net gain in the protoneutron star and off-diagonal components of the Eddington tensor. We also find that errors in the angular moments of the distribution functions induced by neglecting velocity dependence are subdominant to those from limited momentum-space resolution. We briefly compare directly computed second angular moments to those predicted by popular algebraic two-moment closures, and we find that the errors from the approximate closures are comparable to the difference between the DO and MC methods. Included in this work is an improved Sedonu code, which now implements a fully special relativistic, time-independent version of the grid-agnostic MC random walk approximation.
Xiang, Hong F; Song, Jun S; Chin, David W H; Cormack, Robert A; Tishler, Roy B; Makrigiorgos, G Mike; Court, Laurence E; Chin, Lee M
2007-04-01
This work is intended to investigate the application and accuracy of micro-MOSFET for superficial dose measurement under clinically used MV x-ray beams. Dose response of micro-MOSFET in the build-up region and on surface under MV x-ray beams were measured and compared to Monte Carlo calculations. First, percentage-depth-doses were measured with micro-MOSFET under 6 and 10 MV beams of normal incidence onto a flat solid water phantom. Micro-MOSFET data were compared with the measurements from a parallel plate ionization chamber and Monte Carlo dose calculation in the build-up region. Then, percentage-depth-doses were measured for oblique beams at 0 degrees-80 degrees onto the flat solid water phantom with micro-MOSFET placed at depths of 2 cm, 1 cm, and 2 mm below the surface. Measurements were compared to Monte Carlo calculations under these settings. Finally, measurements were performed with micro-MOSFET embedded in the first 1 mm layer of bolus placed on a flat phantom and a curved phantom of semi-cylindrical shape. Results were compared to superficial dose calculated from Monte Carlo for a 2 mm thin layer that extends from the surface to a depth of 2 mm. Results were (1) Comparison of measurements with MC calculation in the build-up region showed that micro-MOSFET has a water-equivalence thickness (WET) of 0.87 mm for 6 MV beam and 0.99 mm for 10 MV beam from the flat side, and a WET of 0.72 mm for 6 MV beam and 0.76 mm for 10 MV beam from the epoxy side. (2) For normal beam incidences, percentage depth dose agree within 3%-5% among micro-MOSFET measurements, parallel-plate ionization chamber measurements, and MC calculations. (3) For oblique incidence on the flat phantom with micro-MOSFET placed at depths of 2 cm, 1 cm, and 2 mm, measurements were consistent with MC calculations within a typical uncertainty of 3%-5%. (4) For oblique incidence on the flat phantom and a curved-surface phantom, measurements with micro-MOSFET placed at 1.0 mm agrees with the MC calculation within 6%, including uncertainties of micro-MOSFET measurements of 2%-3% (1 standard deviation), MOSFET angular dependence of 3.0%-3.5%, and 1%-2% systematical error due to phantom setup geometry asymmetry. Micro-MOSFET can be used for skin dose measurements in 6 and 10 MV beams with an estimated accuracy of +/- 6%.
Modeling bioluminescent photon transport in tissue based on Radiosity-diffusion model
NASA Astrophysics Data System (ADS)
Sun, Li; Wang, Pu; Tian, Jie; Zhang, Bo; Han, Dong; Yang, Xin
2010-03-01
Bioluminescence tomography (BLT) is one of the most important non-invasive optical molecular imaging modalities. The model for the bioluminescent photon propagation plays a significant role in the bioluminescence tomography study. Due to the high computational efficiency, diffusion approximation (DA) is generally applied in the bioluminescence tomography. But the diffusion equation is valid only in highly scattering and weakly absorbing regions and fails in non-scattering or low-scattering tissues, such as a cyst in the breast, the cerebrospinal fluid (CSF) layer of the brain and synovial fluid layer in the joints. A hybrid Radiosity-diffusion model is proposed for dealing with the non-scattering regions within diffusing domains in this paper. This hybrid method incorporates a priori information of the geometry of non-scattering regions, which can be acquired by magnetic resonance imaging (MRI) or x-ray computed tomography (CT). Then the model is implemented using a finite element method (FEM) to ensure the high computational efficiency. Finally, we demonstrate that the method is comparable with Mont Carlo (MC) method which is regarded as a 'gold standard' for photon transportation simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Côté, Nicolas; Bedwani, Stéphane; Carrier, Jean-François, E-mail: jean-francois.carrier.chum@ssss.gouv.qc.ca
Purpose: An improvement in tissue assignment for low-dose rate brachytherapy (LDRB) patients using more accurate Monte Carlo (MC) dose calculation was accomplished with a metallic artifact reduction (MAR) method specific to dual-energy computed tomography (DECT). Methods: The proposed MAR algorithm followed a four-step procedure. The first step involved applying a weighted blend of both DECT scans (I {sub H/L}) to generate a new image (I {sub Mix}). This action minimized Hounsfield unit (HU) variations surrounding the brachytherapy seeds. In the second step, the mean HU of the prostate in I {sub Mix} was calculated and shifted toward the mean HUmore » of the two original DECT images (I {sub H/L}). The third step involved smoothing the newly shifted I {sub Mix} and the two original I {sub H/L}, followed by a subtraction of both, generating an image that represented the metallic artifact (I {sub A,(H/L)}) of reduced noise levels. The final step consisted of subtracting the original I {sub H/L} from the newly generated I {sub A,(H/L)} and obtaining a final image corrected for metallic artifacts. Following the completion of the algorithm, a DECT stoichiometric method was used to extract the relative electronic density (ρ{sub e}) and effective atomic number (Z {sub eff}) at each voxel of the corrected scans. Tissue assignment could then be determined with these two newly acquired physical parameters. Each voxel was assigned the tissue bearing the closest resemblance in terms of ρ{sub e} and Z {sub eff}, comparing with values from the ICRU 42 database. A MC study was then performed to compare the dosimetric impacts of alternative MAR algorithms. Results: An improvement in tissue assignment was observed with the DECT MAR algorithm, compared to the single-energy computed tomography (SECT) approach. In a phantom study, tissue misassignment was found to reach 0.05% of voxels using the DECT approach, compared with 0.40% using the SECT method. Comparison of the DECT and SECT D {sub 90} dose parameter (volume receiving 90% of the dose) indicated that D {sub 90} could be underestimated by up to 2.3% using the SECT method. Conclusions: The DECT MAR approach is a simple alternative to reduce metallic artifacts found in LDRB patient scans. Images can be processed quickly and do not require the determination of x-ray spectra. Substantial information on density and atomic number can also be obtained. Furthermore, calcifications within the prostate are detected by the tissue assignment algorithm. This enables more accurate, patient-specific MC dose calculations.« less
Kumar, Sudhir; Deshpande, Deepak D; Nahum, Alan E
2016-04-07
Cavity theory is fundamental to understanding and predicting dosimeter response. Conventional cavity theories have been shown to be consistent with one another by deriving the electron (+positron) and photon fluence spectra with the FLURZnrc user-code (EGSnrc Monte-Carlo system) in large volumes under quasi-CPE for photon beams of 1 MeV and 10 MeV in three materials (water, aluminium and copper) and then using these fluence spectra to evaluate and then inter-compare the Bragg-Gray, Spencer-Attix and 'large photon' 'cavity integrals'. The behaviour of the 'Spencer-Attix dose' (aka restricted cema), D S-A(▵), in a 1-MeV photon field in water has been investigated for a wide range of values of the cavity-size parameter ▵: D S-A(▵) decreases far below the Monte-Carlo dose (D MC) for ▵ greater than ≈ 30 keV due to secondary electrons with starting energies below ▵ not being 'counted'. We show that for a quasi-scatter-free geometry (D S-A(▵)/D MC) is closely equal to the proportion of energy transferred to Compton electrons with initial (kinetic) energies above ▵, derived from the Klein-Nishina (K-N) differential cross section. (D S-A(▵)/D MC) can be used to estimate the maximum size of a detector behaving as a Bragg-Gray cavity in a photon-irradiated medium as a function of photon-beam quality (under quasi CPE) e.g. a typical air-filled ion chamber is 'Bragg-Gray' at (monoenergetic) beam energies ⩾260 keV. Finally, by varying the density of a silicon cavity (of 2.26 mm diameter and 2.0 mm thickness) in water, the response of different cavity 'sizes' was simulated; the Monte-Carlo-derived ratio D w/D Si for 6 MV and 15 MV photons varied from very close to the Spencer-Attix value at 'gas' densities, agreed well with Burlin cavity theory as ρ increased, and approached large photon behaviour for ρ ≈ 10 g cm(-3). The estimate of ▵ for the Si cavity was improved by incorporating a Monte-Carlo-derived correction for electron 'detours'. Excellent agreement was obtained between the Burlin 'd' factor for the Si cavity and D S-A(▵)/D MC at different (detour-corrected) ▵, thereby suggesting a further application for the D S-A(▵)/D MC ratio.
Chang, Chun-Hung; Myers, Erinn M.; Kennelly, Michael J.; Fried, Nathaniel M.
2017-01-01
Abstract. Near-infrared laser energy in conjunction with applied tissue cooling is being investigated for thermal remodeling of the endopelvic fascia during minimally invasive treatment of female stress urinary incontinence. Previous computer simulations of light transport, heat transfer, and tissue thermal damage have shown that a transvaginal approach is more feasible than a transurethral approach. However, results were suboptimal, and some undesirable thermal insult to the vaginal wall was still predicted. This study uses experiments and computer simulations to explore whether application of an optical clearing agent (OCA) can further improve optical penetration depth and completely preserve the vaginal wall during subsurface treatment of the endopelvic fascia. Several different mixtures of OCA’s were tested, and 100% glycerol was found to be the optimal agent. Optical transmission studies, optical coherence tomography, reflection spectroscopy, and computer simulations [including Monte Carlo (MC) light transport, heat transfer, and Arrhenius integral model of thermal damage] using glycerol were performed. The OCA produced a 61% increase in optical transmission through porcine vaginal wall at 37°C after 30 min. The MC model showed improved energy deposition in endopelvic fascia using glycerol. Without OCA, 62%, 37%, and 1% of energy was deposited in vaginal wall, endopelvic fascia, and urethral wall, respectively, compared with 50%, 49%, and 1% using OCA. Use of OCA also resulted in 0.5-mm increase in treatment depth, allowing potential thermal tissue remodeling at a depth of 3 mm with complete preservation of the vaginal wall. PMID:28301637
NASA Astrophysics Data System (ADS)
Jung, Hyunuk; Kum, Oyeon; Han, Youngyih; Park, Byungdo; Cheong, Kwang-Ho
2014-12-01
For a better understanding of the accuracy of state-of-the-art-radiation therapies, 2-dimensional dosimetry in a patient-like environment will be helpful. Therefore, the dosimetry of EBT3 films in non-water-equivalent tissues was investigated, and the accuracy of commercially-used dose-calculation algorithms was evaluated with EBT3 measurement. Dose distributions were measured with EBT3 films for an in-house-designed phantom that contained a lung or a bone substitute, i.e., an air cavity (3 × 3 × 3 cm3) or teflon (2 × 2 × 2 cm3 or 3 × 3 × 3 cm3), respectively. The phantom was irradiated with 6-MV X-rays with field sizes of 2 × 2, 3 × 3, and 5 × 5 cm2. The accuracy of EBT3 dosimetry was evaluated by comparing the measured dose with the dose obtained from Monte Carlo (MC) simulations. A dose-to-bone-equivalent material was obtained by multiplying the EBT3 measurements by the stopping power ratio (SPR). The EBT3 measurements were then compared with the predictions from four algorithms: Monte Carlo (MC) in iPlan, acuros XB (AXB), analytical anisotropic algorithm (AAA) in Eclipse, and superposition-convolution (SC) in Pinnacle. For the air cavity, the EBT3 measurements agreed with the MC calculation to within 2% on average. For teflon, the EBT3 measurements differed by 9.297% (±0.9229%) on average from the Monte Carlo calculation before dose conversion, and by 0.717% (±0.6546%) after applying the SPR. The doses calculated by using the MC, AXB, AAA, and SC algorithms for the air cavity differed from the EBT3 measurements on average by 2.174, 2.863, 18.01, and 8.391%, respectively; for teflon, the average differences were 3.447, 4.113, 7.589, and 5.102%. The EBT3 measurements corrected with the SPR agreed with 2% on average both within and beyond the heterogeneities with MC results, thereby indicating that EBT3 dosimetry can be used in heterogeneous media. The MC and the AXB dose calculation algorithms exhibited clinically-acceptable accuracy (<5%) in heterogeneities.
Instrumental resolution of the chopper spectrometer 4SEASONS evaluated by Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Kajimoto, Ryoichi; Sato, Kentaro; Inamura, Yasuhiro; Fujita, Masaki
2018-05-01
We performed simulations of the resolution function of the 4SEASONS spectrometer at J-PARC by using the Monte Carlo simulation package McStas. The simulations showed reasonably good agreement with analytical calculations of energy and momentum resolutions by using a simplified description. We implemented new functionalities in Utsusemi, the standard data analysis tool used in 4SEASONS, to enable visualization of the simulated resolution function and predict its shape for specific experimental configurations.
MCMEG: Simulations of both PDD and TPR for 6 MV LINAC photon beam using different MC codes
NASA Astrophysics Data System (ADS)
Fonseca, T. C. F.; Mendes, B. M.; Lacerda, M. A. S.; Silva, L. A. C.; Paixão, L.; Bastos, F. M.; Ramirez, J. V.; Junior, J. P. R.
2017-11-01
The Monte Carlo Modelling Expert Group (MCMEG) is an expert network specializing in Monte Carlo radiation transport and the modelling and simulation applied to the radiation protection and dosimetry research field. For the first inter-comparison task the group launched an exercise to model and simulate a 6 MV LINAC photon beam using the Monte Carlo codes available within their laboratories and validate their simulated results by comparing them with experimental measurements carried out in the National Cancer Institute (INCA) in Rio de Janeiro, Brazil. The experimental measurements were performed using an ionization chamber with calibration traceable to a Secondary Standard Dosimetry Laboratory (SSDL). The detector was immersed in a water phantom at different depths and was irradiated with a radiation field size of 10×10 cm2. This exposure setup was used to determine the dosimetric parameters Percentage Depth Dose (PDD) and Tissue Phantom Ratio (TPR). The validation process compares the MC calculated results to the experimental measured PDD20,10 and TPR20,10. Simulations were performed reproducing the experimental TPR20,10 quality index which provides a satisfactory description of both the PDD curve and the transverse profiles at the two depths measured. This paper reports in detail the modelling process using MCNPx, MCNP6, EGSnrc and Penelope Monte Carlo codes, the source and tally descriptions, the validation processes and the results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, K; Leung, R; Law, G
Background: Commercial treatment planning system Pinnacle3 (Philips, Fitchburg, WI, USA) employs a convolution-superposition algorithm for volumetric-modulated arc radiotherapy (VMAT) optimization and dose calculation. Study of Monte Carlo (MC) dose recalculation of VMAT plans for advanced-stage nasopharyngeal cancers (NPC) is currently limited. Methods: Twenty-nine VMAT prescribed 70Gy, 60Gy, and 54Gy to the planning target volumes (PTVs) were included. These clinical plans achieved with a CS dose engine on Pinnacle3 v9.0 were recalculated by the Monaco TPS v5.0 (Elekta, Maryland Heights, MO, USA) with a XVMC-based MC dose engine. The MC virtual source model was built using the same measurement beam datasetmore » as for the Pinnacle beam model. All MC recalculation were based on absorbed dose to medium in medium (Dm,m). Differences in dose constraint parameters per our institution protocol (Supplementary Table 1) were analyzed. Results: Only differences in maximum dose to left brachial plexus, left temporal lobe and PTV54Gy were found to be statistically insignificant (p> 0.05). Dosimetric differences of other tumor targets and normal organs are found in supplementary Table 1. Generally, doses outside the PTV in the normal organs are lower with MC than with CS. This is also true in the PTV54-70Gy doses but higher dose in the nasal cavity near the bone interfaces is consistently predicted by MC, possibly due to the increased backscattering of short-range scattered photons and the secondary electrons that is not properly modeled by the CS. The straight shoulders of the PTV dose volume histograms (DVH) initially resulted from the CS optimization are merely preserved after MC recalculation. Conclusion: Significant dosimetric differences in VMAT NPC plans were observed between CS and MC calculations. Adjustments of the planning dose constraints to incorporate the physics differences from conventional CS algorithm should be made when VMAT optimization is carried out directly with MC dose engine.« less
Amoush, Ahmad; Wilkinson, Douglas A.
2015-01-01
This work is a comparative study of the dosimetry calculated by Plaque Simulator, a treatment planning system for eye plaque brachytherapy, to the dosimetry calculated using Monte Carlo simulation for an Eye Physics model EP917 eye plaque. Monte Carlo (MC) simulation using MCNPX 2.7 was used to calculate the central axis dose in water for an EP917 eye plaque fully loaded with 17 IsoAid Advantage 125I seeds. In addition, the dosimetry parameters Λ, gL(r), and F(r,θ) were calculated for the IsoAid Advantage model IAI‐125 125I seed and benchmarked against published data. Bebig Plaque Simulator (PS) v5.74 was used to calculate the central axis dose based on the AAPM Updated Task Group 43 (TG‐43U1) dose formalism. The calculated central axis dose from MC and PS was then compared. When the MC dosimetry parameters for the IsoAid Advantage 125I seed were compared with the consensus values, Λ agreed with the consensus value to within 2.3%. However, much larger differences were found between MC calculated gL(r) and F(r,θ) and the consensus values. The differences between MC‐calculated dosimetry parameters are much smaller when compared with recently published data. The differences between the calculated central axis absolute dose from MC and PS ranged from 5% to 10% for distances between 1 and 12 mm from the outer scleral surface. When the dosimetry parameters for the 125I seed from this study were used in PS, the calculated absolute central axis dose differences were reduced by 2.3% from depths of 4 to 12 mm from the outer scleral surface. We conclude that PS adequately models the central dose profile of this plaque using its defaults for the IsoAid model IAI‐125 at distances of 1 to 7 mm from the outer scleral surface. However, improved dose accuracy can be obtained by using updated dosimetry parameters for the IsoAid model IAI‐125 125I seed. PACS number: 87.55.K‐ PMID:26699577
Recent advances and future prospects for Monte Carlo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Forrest B
2010-01-01
The history of Monte Carlo methods is closely linked to that of computers: The first known Monte Carlo program was written in 1947 for the ENIAC; a pre-release of the first Fortran compiler was used for Monte Carlo In 1957; Monte Carlo codes were adapted to vector computers in the 1980s, clusters and parallel computers in the 1990s, and teraflop systems in the 2000s. Recent advances include hierarchical parallelism, combining threaded calculations on multicore processors with message-passing among different nodes. With the advances In computmg, Monte Carlo codes have evolved with new capabilities and new ways of use. Production codesmore » such as MCNP, MVP, MONK, TRIPOLI and SCALE are now 20-30 years old (or more) and are very rich in advanced featUres. The former 'method of last resort' has now become the first choice for many applications. Calculations are now routinely performed on office computers, not just on supercomputers. Current research and development efforts are investigating the use of Monte Carlo methods on FPGAs. GPUs, and many-core processors. Other far-reaching research is exploring ways to adapt Monte Carlo methods to future exaflop systems that may have 1M or more concurrent computational processes.« less
Estimating the Standard Error of Robust Regression Estimates.
1987-03-01
error is 0(n4/5). In another Monte Carlo study, McKean and Schrader (1984) found that the tests resulting from studentizing ; by _3d/1/2 with d =0(n4 /5...44 4 -:~~-~*v: -. *;~ ~ ~*t .~ # ~ 44 % * ~ .%j % % % * . ., ~ -%. -14- Sheather, S. J. and McKean, J. W. (1987). A comparison of testing and...Wiley, New York. Welsch, R. E. (1980). Regression Sensitivity Analysis and Bounded- Influence Estimation, in Evaluation of Econometric Models eds. J
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagaoka, Masataka; Core Research for Evolutional Science and Technology; ESICB, Kyoto University, Kyodai Katsura, Nishikyo-ku, Kyoto 615-8520
A new efficient hybrid Monte Carlo (MC)/molecular dynamics (MD) reaction method with a rare event-driving mechanism is introduced as a practical ‘atomistic’ molecular simulation of large-scale chemically reactive systems. Starting its demonstrative application to the racemization reaction of (R)-2-chlorobutane in N,N-dimethylformamide solution, several other applications are shown from the practical viewpoint of molecular controlling of complex chemical reactions, stereochemistry and aggregate structures. Finally, I would like to mention the future applications of the hybrid MC/MD reaction method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeo, Sang Chul; Lee, Hyuck Mo, E-mail: hmlee@kaist.ac.kr; Lo, Yu Chieh
2014-10-07
Ammonia (NH{sub 3}) nitridation on an Fe surface was studied by combining density functional theory (DFT) and kinetic Monte Carlo (kMC) calculations. A DFT calculation was performed to obtain the energy barriers (E{sub b}) of the relevant elementary processes. The full mechanism of the exact reaction path was divided into five steps (adsorption, dissociation, surface migration, penetration, and diffusion) on an Fe (100) surface pre-covered with nitrogen. The energy barrier (E{sub b}) depended on the N surface coverage. The DFT results were subsequently employed as a database for the kMC simulations. We then evaluated the NH{sub 3} nitridation rate onmore » the N pre-covered Fe surface. To determine the conditions necessary for a rapid NH{sub 3} nitridation rate, the eight reaction events were considered in the kMC simulations: adsorption, desorption, dissociation, reverse dissociation, surface migration, penetration, reverse penetration, and diffusion. This study provides a real-time-scale simulation of NH{sub 3} nitridation influenced by nitrogen surface coverage that allowed us to theoretically determine a nitrogen coverage (0.56 ML) suitable for rapid NH{sub 3} nitridation. In this way, we were able to reveal the coverage dependence of the nitridation reaction using the combined DFT and kMC simulations.« less
McStas-model of the delft SESANS
NASA Astrophysics Data System (ADS)
Knudsen, E.; Udby, L.; Willendrup, P. K.; Lefmann, K.; Bouwman, W. G.
2011-06-01
We present simulation results taking first virtual data from a model of the Spin-Echo Small Angle Scattering (SESANS) instrument situated in Delft, in the framework of the McStas Monte Carlo software package. The main focus has been on making a model of the Delft SESANS instrument, and we can now present the first virtual data from it, using a refracting prism-like sample model. In consequence, polarisation instrumentation is now included natively in the McStas kernel, including options for magnetic fields and a number of utility components. This development has brought us to a point where realistic models of polarisation-enabled instrumentation can be built.
Wen, Jiayi; Zhou, Shenggao; Xu, Zhenli; Li, Bo
2013-01-01
Competitive adsorption of counterions of multiple species to charged surfaces is studied by a size-effect included mean-field theory and Monte Carlo (MC) simulations. The mean-field electrostatic free-energy functional of ionic concentrations, constrained by Poisson’s equation, is numerically minimized by an augmented Lagrangian multiplier method. Unrestricted primitive models and canonical ensemble MC simulations with the Metropolis criterion are used to predict the ionic distributions around a charged surface. It is found that, for a low surface charge density, the adsorption of ions with a higher valence is preferable, agreeing with existing studies. For a highly charged surface, both of the mean-field theory and MC simulations demonstrate that the counterions bind tightly around the charged surface, resulting in a stratification of counterions of different species. The competition between mixed entropy and electrostatic energetics leads to a compromise that the ionic species with a higher valence-to-volume ratio has a larger probability to form the first layer of stratification. In particular, the MC simulations confirm the crucial role of ionic valence-to-volume ratios in the competitive adsorption to charged surfaces that had been previously predicted by the mean-field theory. The charge inversion for ionic systems with salt is predicted by the MC simulations but not by the mean-field theory. This work provides a better understanding of competitive adsorption of counterions to charged surfaces and calls for further studies on the ionic size effect with application to large-scale biomolecular modeling. PMID:22680474
Wen, Jiayi; Zhou, Shenggao; Xu, Zhenli; Li, Bo
2012-04-01
Competitive adsorption of counterions of multiple species to charged surfaces is studied by a size-effect-included mean-field theory and Monte Carlo (MC) simulations. The mean-field electrostatic free-energy functional of ionic concentrations, constrained by Poisson's equation, is numerically minimized by an augmented Lagrangian multiplier method. Unrestricted primitive models and canonical ensemble MC simulations with the Metropolis criterion are used to predict the ionic distributions around a charged surface. It is found that, for a low surface charge density, the adsorption of ions with a higher valence is preferable, agreeing with existing studies. For a highly charged surface, both the mean-field theory and the MC simulations demonstrate that the counterions bind tightly around the charged surface, resulting in a stratification of counterions of different species. The competition between mixed entropy and electrostatic energetics leads to a compromise that the ionic species with a higher valence-to-volume ratio has a larger probability to form the first layer of stratification. In particular, the MC simulations confirm the crucial role of ionic valence-to-volume ratios in the competitive adsorption to charged surfaces that had been previously predicted by the mean-field theory. The charge inversion for ionic systems with salt is predicted by the MC simulations but not by the mean-field theory. This work provides a better understanding of competitive adsorption of counterions to charged surfaces and calls for further studies on the ionic size effect with application to large-scale biomolecular modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moskvin, V; Pirlepesov, F; Tsiamas, P
Purpose: This study provides an overview of the design and commissioning of the Monte Carlo (MC) model of the spot-scanning proton therapy nozzle and its implementation for the patient plan simulation. Methods: The Hitachi PROBEAT V scanning nozzle was simulated based on vendor specifications using the TOPAS extension of Geant4 code. FLUKA MC simulation was also utilized to provide supporting data for the main simulation. Validation of the MC model was performed using vendor provided data and measurements collected during acceptance/commissioning of the proton therapy machine. Actual patient plans using CT based treatment geometry were simulated and compared to themore » dose distributions produced by the treatment planning system (Varian Eclipse 13.6), and patient quality assurance measurements. In-house MATLAB scripts are used for converting DICOM data into TOPAS input files. Results: Comparison analysis of integrated depth doses (IDDs), therapeutic ranges (R90), and spot shape/sizes at different distances from the isocenter, indicate good agreement between MC and measurements. R90 agreement is within 0.15 mm across all energy tunes. IDDs and spot shapes/sizes differences are within statistical error of simulation (less than 1.5%). The MC simulated data, validated with physical measurements, were used for the commissioning of the treatment planning system. Patient geometry simulations were conducted based on the Eclipse produced DICOM plans. Conclusion: The treatment nozzle and standard option beam model were implemented in the TOPAS framework to simulate a highly conformal discrete spot-scanning proton beam system.« less
Fiorini, Francesca; Schreuder, Niek; Van den Heuvel, Frank
2018-02-01
Cyclotron-based pencil beam scanning (PBS) proton machines represent nowadays the majority and most affordable choice for proton therapy facilities, however, their representation in Monte Carlo (MC) codes is more complex than passively scattered proton system- or synchrotron-based PBS machines. This is because degraders are used to decrease the energy from the cyclotron maximum energy to the desired energy, resulting in a unique spot size, divergence, and energy spread depending on the amount of degradation. This manuscript outlines a generalized methodology to characterize a cyclotron-based PBS machine in a general-purpose MC code. The code can then be used to generate clinically relevant plans starting from commercial TPS plans. The described beam is produced at the Provision Proton Therapy Center (Knoxville, TN, USA) using a cyclotron-based IBA Proteus Plus equipment. We characterized the Provision beam in the MC FLUKA using the experimental commissioning data. The code was then validated using experimental data in water phantoms for single pencil beams and larger irregular fields. Comparisons with RayStation TPS plans are also presented. Comparisons of experimental, simulated, and planned dose depositions in water plans show that same doses are calculated by both programs inside the target areas, while penumbrae differences are found at the field edges. These differences are lower for the MC, with a γ(3%-3 mm) index never below 95%. Extensive explanations on how MC codes can be adapted to simulate cyclotron-based scanning proton machines are given with the aim of using the MC as a TPS verification tool to check and improve clinical plans. For all the tested cases, we showed that dose differences with experimental data are lower for the MC than TPS, implying that the created FLUKA beam model is better able to describe the experimental beam. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Statham, P.; Llovet, X.; Duncumb, P.
2012-03-01
We have assessed the reliability of different Monte Carlo simulation programmes using the two available Bastin-Heijligers databases of thin-film measurements by EPMA. The MC simulation programmes tested include Curgenven-Duncumb MSMC, NISTMonte, Casino and PENELOPE. Plots of the ratio of calculated to measured k-ratios ("kcalc/kmeas") against various parameters reveal error trends that are not apparent in simple error histograms. The results indicate that the MC programmes perform quite differently on the same dataset. However, they appear to show a similar pronounced trend with a "hockey stick" shape in the "kcalc/kmeas versus kmeas" plots. The most sophisticated programme PENELOPE gives the closest correspondence with experiment but still shows a tendency to underestimate experimental k-ratios by 10 % for films that are thin compared to the electron range. We have investigated potential causes for this systematic behaviour and extended the study to data not collected by Bastin and Heijligers.
NASA Astrophysics Data System (ADS)
Huang, Yanping; Dong, Xiuqin; Yu, Yingzhe; Zhang, Minhua
2017-11-01
On the basis of the activation barriers and reaction energies from DFT calculations, kinetic Monte Carlo (kMC) simulations of vinyl acetate (VA) synthesis from ethylene acetoxylation on Pd(100) and Pd/Au(100) were carried out. Through kMC simulation, it was found that VA synthesis from ethylene acetoxylation proceeds via Moiseev mechanism on both Pd(100) and Pd/Au(100). The addition of Au into Pd can suppress ethylene dehydrogenation while it can promote acetic acid dehydrogenation, which can eventually facilitate VA synthesis as a whole. The addition of Au into Pd can further improve the conversion and selectivity of VA synthesis from ethylene acetoxylation. When the reaction network is analyzed, besides the energetics of each elementary reaction, the surface coverage of each species and the occupancy of the surface sites on the catalyst should also be taken into consideration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokhrel, D; Badkul, R; Jiang, H
2014-06-15
Purpose: SBRT with hypofractionated dose schemata has emerged a compelling treatment modality for medically inoperable early stage lung cancer patients. It requires more accurate dose calculation and treatment delivery technique. This report presents the relationship between tumor control probability(TCP) and size-adjusted biological effective dose(sBED) of tumor volume for MC lung SBRT patients. Methods: Fifteen patients who were treated with MC-based lung SBRT to 50Gy in 5 fractions to PTVV100%=95% were studied. ITVs were delineated on MIP images of 4DCT-scans. PTVs diameter(ITV+5mm margins) ranged from 2.7–4.9cm (mean 3.7cm). Plans were generated using non-coplanar conformal arcs/beams using iPlan XVMC algorithm (BrainLABiPlan ver.4.1.2)more » for Novalis-TX with HD-MLCs and 6MVSRS(1000MU/min) mode, following RTOG-0813 dosimetric guidelines. To understand the known uncertainties of conventional heterogeneities-corrected/uncorrected pencil beam (PBhete/ PB-homo) algorithms, dose distributions were re-calculated with PBhete/ PB-homo using same beam configurations, MLCs and monitor units. Biologically effective dose(BED10) was computed using LQ-model with α/β=10Gy for meanPTV and meanITV. BED10-c*L, gave size-adjusted BED(sBED), where c=10Gy/cm and L=PTV diameter in centimeter. The TCP model was adopted from Ohri et al.(IJROBP, 2012): TCP = exp[sBEDTCD50]/ k /(1.0 + exp[sBED-TCD50]/k), where k=31Gy corresponding to TCD50=0Gy; and more realistic MC-based TCP was computed for PTV(V99%). Results: Mean PTV PB-hete TCP value was 6% higher, but, mean PTV PB-homo TCP value was 4% lower compared to mean PTV MC TCP. Mean ITV PB-hete/PB-homo TCP values were comparable (within ±3.0%) to mean ITV MC TCP. The mean PTV(V99%)had BED10=90.9±3.7%(median=92.2%),sBED=54.1±8.2%(median=53.5%) corresponding to mean MC TCP value of 84.8±3.3%(median=84.9%) at 2- year local control. Conclusion: The TCP model which incorporates BED10 and tumor diameter indicates that radiobiological effect of target volume and dose calculation algorithm significantly affects TCP for lung SBRT patients. Dose calculation using MC-based algorithm is more realistic with tissue heterogeneities and is routinely performed in our clinic. Patients will be followed up to determine whether TCP prediction correlate clinical outcomes.« less
NASA Astrophysics Data System (ADS)
Ravenna, Matteo; Lebedev, Sergei
2018-04-01
Seismic anisotropy provides important information on the deformation history of the Earth's interior. Rayleigh and Love surface-waves are sensitive to and can be used to determine both radial and azimuthal shear-wave anisotropies at depth, but parameter trade-offs give rise to substantial model non-uniqueness. Here, we explore the trade-offs between isotropic and anisotropic structure parameters and present a suite of methods for the inversion of surface-wave, phase-velocity curves for radial and azimuthal anisotropies. One Markov chain Monte Carlo (McMC) implementation inverts Rayleigh and Love dispersion curves for a radially anisotropic shear velocity profile of the crust and upper mantle. Another McMC implementation inverts Rayleigh phase velocities and their azimuthal anisotropy for profiles of vertically polarized shear velocity and its depth-dependent azimuthal anisotropy. The azimuthal anisotropy inversion is fully non-linear, with the forward problem solved numerically at different azimuths for every model realization, which ensures that any linearization biases are avoided. The computations are performed in parallel, in order to reduce the computing time. The often challenging issue of data noise estimation is addressed by means of a Hierarchical Bayesian approach, with the variance of the noise treated as an unknown during the radial anisotropy inversion. In addition to the McMC inversions, we also present faster, non-linear gradient-search inversions for the same anisotropic structure. The results of the two approaches are mutually consistent; the advantage of the McMC inversions is that they provide a measure of uncertainty of the models. Applying the method to broad-band data from the Baikal-central Mongolia region, we determine radial anisotropy from the crust down to the transition-zone depths. Robust negative anisotropy (Vsh < Vsv) in the asthenosphere, at 100-300 km depths, presents strong new evidence for a vertical component of asthenospheric flow. This is consistent with an upward flow from below the thick lithosphere of the Siberian Craton to below the thinner lithosphere of central Mongolia, likely to give rise to decompression melting and the scattered, sporadic volcanism observed in the Baikal Rift area, as proposed previously. Inversion of phase-velocity data from west-central Italy for azimuthal anisotropy reveals a clear change in the shear-wave fast-propagation direction at 70-100 km depths, near the lithosphere-asthenosphere boundary. The orientation of the fabric in the lithosphere is roughly E-W, parallel to the direction of stretching over the last 10 m.y. The orientation of the fabric in the asthenosphere is NW-SE, matching the fast directions inferred from shear-wave splitting and probably indicating the direction of the asthenospheric flow.
NASA Astrophysics Data System (ADS)
Isobe, Masaharu
Hard sphere/disk systems are among the simplest models and have been used to address numerous fundamental problems in the field of statistical physics. The pioneering numerical works on the solid-fluid phase transition based on Monte Carlo (MC) and molecular dynamics (MD) methods published in 1957 represent historical milestones, which have had a significant influence on the development of computer algorithms and novel tools to obtain physical insights. This chapter addresses the works of Alder's breakthrough regarding hard sphere/disk simulation: (i) event-driven molecular dynamics, (ii) long-time tail, (iii) molasses tail, and (iv) two-dimensional melting/crystallization. From a numerical viewpoint, there are serious issues that must be overcome for further breakthrough. Here, we present a brief review of recent progress in this area.
Acceptance and commissioning of a treatment planning system based on Monte Carlo calculations.
Lopez-Tarjuelo, J; Garcia-Molla, R; Juan-Senabre, X J; Quiros-Higueras, J D; Santos-Serra, A; de Marco-Blancas, N; Calzada-Feliu, S
2014-04-01
The Monaco Treatment Planning System (TPS), based on a virtual energy fluence model of the photon beam head components of the linac and a dose computation engine made with Monte Carlo (MC) algorithm X-Ray Voxel MC (XVMC), has been tested before being put into clinical use. An Elekta Synergy with 6 MV was characterized using routine equipment. After the machine's model was installed, a set of functionality, geometric, dosimetric and data transfer tests were performed. The dosimetric tests included dose calculations in water, heterogeneous phantoms and Intensity Modulated Radiation Therapy (IMRT) verifications. Data transfer tests were run for every imaging device, TPS and the electronic medical record linked to Monaco. Functionality and geometric tests were run properly. Dose calculations in water were in accordance with measurements so that, in 95% of cases, differences were up to 1.9%. Dose calculation in heterogeneous media showed expected results found in the literature. IMRT verification results with an ionization chamber led to dose differences lower than 2.5% for points inside a standard gradient. When an 2-D array was used, all the fields passed the g (3%, 3 mm) test with a percentage of succeeding points between 90% and 95%, of which the majority of the mentioned fields had a percentage of succeeding points between 95% and 100%. Data transfer caused problems that had to be solved by means of changing our workflow. In general, tests led to satisfactory results. Monaco performance complied with published international recommendations and scored highly in the dosimetric ambit. However, the problems detected when the TPS was put to work together with our current equipment showed that this kind of product must be completely commissioned, without neglecting data workflow, before treating the first patient.
NASA Astrophysics Data System (ADS)
Karamat, Muhammad I.; Farncombe, Troy H.
2015-10-01
Simultaneous multi-isotope Single Photon Emission Computed Tomography (SPECT) imaging has a number of applications in cardiac, brain, and cancer imaging. The major concern however, is the significant crosstalk contamination due to photon scatter between the different isotopes. The current study focuses on a method of crosstalk compensation between two isotopes in simultaneous dual isotope SPECT acquisition applied to cancer imaging using 99mTc and 111In. We have developed an iterative image reconstruction technique that simulates the photon down-scatter from one isotope into the acquisition window of a second isotope. Our approach uses an accelerated Monte Carlo (MC) technique for the forward projection step in an iterative reconstruction algorithm. The MC estimated scatter contamination of a radionuclide contained in a given projection view is then used to compensate for the photon contamination in the acquisition window of other nuclide. We use a modified ordered subset-expectation maximization (OS-EM) algorithm named simultaneous ordered subset-expectation maximization (Sim-OSEM), to perform this step. We have undertaken a number of simulation tests and phantom studies to verify this approach. The proposed reconstruction technique was also evaluated by reconstruction of experimentally acquired phantom data. Reconstruction using Sim-OSEM showed very promising results in terms of contrast recovery and uniformity of object background compared to alternative reconstruction methods implementing alternative scatter correction schemes (i.e., triple energy window or separately acquired projection data). In this study the evaluation is based on the quality of reconstructed images and activity estimated using Sim-OSEM. In order to quantitate the possible improvement in spatial resolution and signal to noise ratio (SNR) observed in this study, further simulation and experimental studies are required.
Self-Consistent Monte Carlo Study of the Coulomb Interaction under Nano-Scale Device Structures
NASA Astrophysics Data System (ADS)
Sano, Nobuyuki
2011-03-01
It has been pointed that the Coulomb interaction between the electrons is expected to be of crucial importance to predict reliable device characteristics. In particular, the device performance is greatly degraded due to the plasmon excitation represented by dynamical potential fluctuations in high-doped source and drain regions by the channel electrons. We employ the self-consistent 3D Monte Carlo (MC) simulations, which could reproduce both the correct mobility under various electron concentrations and the collective plasma waves, to study the physical impact of dynamical potential fluctuations on device performance under the Double-gate MOSFETs. The average force experienced by an electron due to the Coulomb interaction inside the device is evaluated by performing the self-consistent MC simulations and the fixed-potential MC simulations without the Coulomb interaction. Also, the band-tailing associated with the local potential fluctuations in high-doped source region is quantitatively evaluated and it is found that the band-tailing becomes strongly dependent of position in real space even inside the uniform source region. This work was partially supported by Grants-in-Aid for Scientific Research B (No. 2160160) from the Ministry of Education, Culture, Sports, Science and Technology in Japan.
NASA Astrophysics Data System (ADS)
Muraro, S.; Battistoni, G.; Belcari, N.; Bisogni, M. G.; Camarlinghi, N.; Cristoforetti, L.; Del Guerra, A.; Ferrari, A.; Fracchiolla, F.; Morrocchi, M.; Righetto, R.; Sala, P.; Schwarz, M.; Sportelli, G.; Topi, A.; Rosso, V.
2017-12-01
Ion beam irradiations can deliver conformal dose distributions minimizing damage to healthy tissues thanks to their characteristic dose profiles. Nevertheless, the location of the Bragg peak can be affected by different sources of range uncertainties: a critical issue is the treatment verification. During the treatment delivery, nuclear interactions between the ions and the irradiated tissues generate β+ emitters: the detection of this activity signal can be used to perform the treatment monitoring if an expected activity distribution is available for comparison. Monte Carlo (MC) codes are widely used in the particle therapy community to evaluate the radiation transport and interaction with matter. In this work, FLUKA MC code was used to simulate the experimental conditions of irradiations performed at the Proton Therapy Center in Trento (IT). Several mono-energetic pencil beams were delivered on phantoms mimicking human tissues. The activity signals were acquired with a PET system (DoPET) based on two planar heads, and designed to be installed along the beam line to acquire data also during the irradiation. Different acquisitions are analyzed and compared with the MC predictions, with a special focus on validating the PET detectors response for activity range verification.
Jobs masonry in LHCb with elastic Grid Jobs
NASA Astrophysics Data System (ADS)
Stagni, F.; Charpentier, Ph
2015-12-01
In any distributed computing infrastructure, a job is normally forbidden to run for an indefinite amount of time. This limitation is implemented using different technologies, the most common one being the CPU time limit implemented by batch queues. It is therefore important to have a good estimate of how much CPU work a job will require: otherwise, it might be killed by the batch system, or by whatever system is controlling the jobs’ execution. In many modern interwares, the jobs are actually executed by pilot jobs, that can use the whole available time in running multiple consecutive jobs. If at some point the available time in a pilot is too short for the execution of any job, it should be released, while it could have been used efficiently by a shorter job. Within LHCbDIRAC, the LHCb extension of the DIRAC interware, we developed a simple way to fully exploit computing capabilities available to a pilot, even for resources with limited time capabilities, by adding elasticity to production MonteCarlo (MC) simulation jobs. With our approach, independently of the time available, LHCbDIRAC will always have the possibility to execute a MC job, whose length will be adapted to the available amount of time: therefore the same job, running on different computing resources with different time limits, will produce different amounts of events. The decision on the number of events to be produced is made just in time at the start of the job, when the capabilities of the resource are known. In order to know how many events a MC job will be instructed to produce, LHCbDIRAC simply requires three values: the CPU-work per event for that type of job, the power of the machine it is running on, and the time left for the job before being killed. Knowing these values, we can estimate the number of events the job will be able to simulate with the available CPU time. This paper will demonstrate that, using this simple but effective solution, LHCb manages to make a more efficient use of the available resources, and that it can easily use new types of resources. An example is represented by resources provided by batch queues, where low-priority MC jobs can be used as "masonry" jobs in multi-jobs pilots. A second example is represented by opportunistic resources with limited available time.
Probability of misclassifying biological elements in surface waters.
Loga, Małgorzata; Wierzchołowska-Dziedzic, Anna
2017-11-24
Measurement uncertainties are inherent to assessment of biological indices of water bodies. The effect of these uncertainties on the probability of misclassification of ecological status is the subject of this paper. Four Monte-Carlo (M-C) models were applied to simulate the occurrence of random errors in the measurements of metrics corresponding to four biological elements of surface waters: macrophytes, phytoplankton, phytobenthos, and benthic macroinvertebrates. Long series of error-prone measurement values of these metrics, generated by M-C models, were used to identify cases in which values of any of the four biological indices lay outside of the "true" water body class, i.e., outside the class assigned from the actual physical measurements. Fraction of such cases in the M-C generated series was used to estimate the probability of misclassification. The method is particularly useful for estimating the probability of misclassification of the ecological status of surface water bodies in the case of short sequences of measurements of biological indices. The results of the Monte-Carlo simulations show a relatively high sensitivity of this probability to measurement errors of the river macrophyte index (MIR) and high robustness to measurement errors of the benthic macroinvertebrate index (MMI). The proposed method of using Monte-Carlo models to estimate the probability of misclassification has significant potential for assessing the uncertainty of water body status reported to the EC by the EU member countries according to WFD. The method can be readily applied also in risk assessment of water management decisions before adopting the status dependent corrective actions.
Suitability of point kernel dose calculation techniques in brachytherapy treatment planning
Lakshminarayanan, Thilagam; Subbaiah, K. V.; Thayalan, K.; Kannan, S. E.
2010-01-01
Brachytherapy treatment planning system (TPS) is necessary to estimate the dose to target volume and organ at risk (OAR). TPS is always recommended to account for the effect of tissue, applicator and shielding material heterogeneities exist in applicators. However, most brachytherapy TPS software packages estimate the absorbed dose at a point, taking care of only the contributions of individual sources and the source distribution, neglecting the dose perturbations arising from the applicator design and construction. There are some degrees of uncertainties in dose rate estimations under realistic clinical conditions. In this regard, an attempt is made to explore the suitability of point kernels for brachytherapy dose rate calculations and develop new interactive brachytherapy package, named as BrachyTPS, to suit the clinical conditions. BrachyTPS is an interactive point kernel code package developed to perform independent dose rate calculations by taking into account the effect of these heterogeneities, using two regions build up factors, proposed by Kalos. The primary aim of this study is to validate the developed point kernel code package integrated with treatment planning computational systems against the Monte Carlo (MC) results. In the present work, three brachytherapy applicators commonly used in the treatment of uterine cervical carcinoma, namely (i) Board of Radiation Isotope and Technology (BRIT) low dose rate (LDR) applicator and (ii) Fletcher Green type LDR applicator (iii) Fletcher Williamson high dose rate (HDR) applicator, are studied to test the accuracy of the software. Dose rates computed using the developed code are compared with the relevant results of the MC simulations. Further, attempts are also made to study the dose rate distribution around the commercially available shielded vaginal applicator set (Nucletron). The percentage deviations of BrachyTPS computed dose rate values from the MC results are observed to be within plus/minus 5.5% for BRIT LDR applicator, found to vary from 2.6 to 5.1% for Fletcher green type LDR applicator and are up to −4.7% for Fletcher-Williamson HDR applicator. The isodose distribution plots also show good agreements with the results of previous literatures. The isodose distributions around the shielded vaginal cylinder computed using BrachyTPS code show better agreement (less than two per cent deviation) with MC results in the unshielded region compared to shielded region, where the deviations are observed up to five per cent. The present study implies that the accurate and fast validation of complicated treatment planning calculations is possible with the point kernel code package. PMID:20589118
Dose calculation of dynamic trajectory radiotherapy using Monte Carlo.
Manser, P; Frauchiger, D; Frei, D; Volken, W; Terribilini, D; Fix, M K
2018-04-06
Using volumetric modulated arc therapy (VMAT) delivery technique gantry position, multi-leaf collimator (MLC) as well as dose rate change dynamically during the application. However, additional components can be dynamically altered throughout the dose delivery such as the collimator or the couch. Thus, the degrees of freedom increase allowing almost arbitrary dynamic trajectories for the beam. While the dose delivery of such dynamic trajectories for linear accelerators is technically possible, there is currently no dose calculation and validation tool available. Thus, the aim of this work is to develop a dose calculation and verification tool for dynamic trajectories using Monte Carlo (MC) methods. The dose calculation for dynamic trajectories is implemented in the previously developed Swiss Monte Carlo Plan (SMCP). SMCP interfaces the treatment planning system Eclipse with a MC dose calculation algorithm and is already able to handle dynamic MLC and gantry rotations. Hence, the additional dynamic components, namely the collimator and the couch, are described similarly to the dynamic MLC by defining data pairs of positions of the dynamic component and the corresponding MU-fractions. For validation purposes, measurements are performed with the Delta4 phantom and film measurements using the developer mode on a TrueBeam linear accelerator. These measured dose distributions are then compared with the corresponding calculations using SMCP. First, simple academic cases applying one-dimensional movements are investigated and second, more complex dynamic trajectories with several simultaneously moving components are compared considering academic cases as well as a clinically motivated prostate case. The dose calculation for dynamic trajectories is successfully implemented into SMCP. The comparisons between the measured and calculated dose distributions for the simple as well as for the more complex situations show an agreement which is generally within 3% of the maximum dose or 3mm. The required computation time for the dose calculation remains the same when the additional dynamic moving components are included. The results obtained for the dose comparisons for simple and complex situations suggest that the extended SMCP is an accurate dose calculation and efficient verification tool for dynamic trajectory radiotherapy. This work was supported by Varian Medical Systems. Copyright © 2018. Published by Elsevier GmbH.
Monte Carlo isotopic inventory analysis for complex nuclear systems
NASA Astrophysics Data System (ADS)
Phruksarojanakun, Phiphat
Monte Carlo Inventory Simulation Engine (MCise) is a newly developed method for calculating isotopic inventory of materials. It offers the promise of modeling materials with complex processes and irradiation histories, which pose challenges for current, deterministic tools, and has strong analogies to Monte Carlo (MC) neutral particle transport. The analog method, including considerations for simple, complex and loop flows, is fully developed. In addition, six variance reduction tools provide unique capabilities of MCise to improve statistical precision of MC simulations. Forced Reaction forces an atom to undergo a desired number of reactions in a given irradiation environment. Biased Reaction Branching primarily focuses on improving statistical results of the isotopes that are produced from rare reaction pathways. Biased Source Sampling aims at increasing frequencies of sampling rare initial isotopes as the starting particles. Reaction Path Splitting increases the population by splitting the atom at each reaction point, creating one new atom for each decay or transmutation product. Delta Tracking is recommended for high-frequency pulsing to reduce the computing time. Lastly, Weight Window is introduced as a strategy to decrease large deviations of weight due to the uses of variance reduction techniques. A figure of merit is necessary to compare the efficiency of different variance reduction techniques. A number of possibilities for figure of merit are explored, two of which are robust and subsequently used. One is based on the relative error of a known target isotope (1/R 2T) and the other on the overall detection limit corrected by the relative error (1/DkR 2T). An automated Adaptive Variance-reduction Adjustment (AVA) tool is developed to iteratively define parameters for some variance reduction techniques in a problem with a target isotope. Sample problems demonstrate that AVA improves both precision and accuracy of a target result in an efficient manner. Potential applications of MCise include molten salt fueled reactors and liquid breeders in fusion blankets. As an example, the inventory analysis of a liquid actinide fuel in the In-Zinerator, a sub-critical power reactor driven by a fusion source, is examined. The result reassures MCise as a reliable tool for inventory analysis of complex nuclear systems.
Tao, Guohua; Miller, William H
2012-09-28
An efficient time-dependent (TD) Monte Carlo (MC) importance sampling method has recently been developed [G. Tao and W. H. Miller, J. Chem. Phys. 135, 024104 (2011)] for the evaluation of time correlation functions using the semiclassical (SC) initial value representation (IVR) methodology. In this TD-SC-IVR method, the MC sampling uses information from both time-evolved phase points as well as their initial values, and only the "important" trajectories are sampled frequently. Even though the TD-SC-IVR was shown in some benchmark examples to be much more efficient than the traditional time-independent sampling method (which uses only initial conditions), the calculation of the SC prefactor-which is computationally expensive, especially for large systems-is still required for accepted trajectories. In the present work, we present an approximate implementation of the TD-SC-IVR method that is completely prefactor-free; it gives the time correlation function as a classical-like magnitude function multiplied by a phase function. Application of this approach to flux-flux correlation functions (which yield reaction rate constants) for the benchmark H + H(2) system shows very good agreement with exact quantum results. Limitations of the approximate approach are also discussed.
Cross section measurements for production of positron emitters for PET imaging in carbon therapy
NASA Astrophysics Data System (ADS)
Salvador, S.; Colin, J.; Cussol, D.; Divay, C.; Fontbonne, J.-M.; Labalme, M.
2017-04-01
In light ion beam therapy, positron (β+) emitters are produced by the tissue nuclei through nuclear interactions with the beam ions. They can be used for the verification of the delivered dose using positron emission tomography by comparing the spatial distribution of the β+ emitters activity to a computer simulation taking into account the patient morphology and the treatment plan. However, the accuracy of the simulation greatly depends on the method used to generate the nuclear interactions producing these emitters. In the case of Monte Carlo (MC) simulations, the nuclear interaction models still lack the required accuracy due to insufficient experimental cross section data. This is particularly true for carbon therapy where literature data on fragmentation cross sections of a carbon beam with targets of medical interest are very scarce. Therefore, we performed at GANIL in July 2016 measurements on β+ emitter production cross sections with a carbon beam at 25, 50, and 95 MeV/nucleon on thin targets (C, N, O, and PMMA). We extracted the production cross section of C,1110, 13N, and O,1514 that are essential to constrain or develop MC nuclear fragmentation models.
Constant-pH molecular dynamics using stochastic titration
NASA Astrophysics Data System (ADS)
Baptista, António M.; Teixeira, Vitor H.; Soares, Cláudio M.
2002-09-01
A new method is proposed for performing constant-pH molecular dynamics (MD) simulations, that is, MD simulations where pH is one of the external thermodynamic parameters, like the temperature or the pressure. The protonation state of each titrable site in the solute is allowed to change during a molecular mechanics (MM) MD simulation, the new states being obtained from a combination of continuum electrostatics (CE) calculations and Monte Carlo (MC) simulation of protonation equilibrium. The coupling between the MM/MD and CE/MC algorithms is done in a way that ensures a proper Markov chain, sampling from the intended semigrand canonical distribution. This stochastic titration method is applied to succinic acid, aimed at illustrating the method and examining the choice of its adjustable parameters. The complete titration of succinic acid, using constant-pH MD simulations at different pH values, gives a clear picture of the coupling between the trans/gauche isomerization and the protonation process, making it possible to reconcile some apparently contradictory results of previous studies. The present constant-pH MD method is shown to require a moderate increase of computational cost when compared to the usual MD method.
Advanced proton beam dosimetry part II: Monte Carlo vs. pencil beam-based planning for lung cancer.
Maes, Dominic; Saini, Jatinder; Zeng, Jing; Rengan, Ramesh; Wong, Tony; Bowen, Stephen R
2018-04-01
Proton pencil beam (PB) dose calculation algorithms have limited accuracy within heterogeneous tissues of lung cancer patients, which may be addressed by modern commercial Monte Carlo (MC) algorithms. We investigated clinical pencil beam scanning (PBS) dose differences between PB and MC-based treatment planning for lung cancer patients. With IRB approval, a comparative dosimetric analysis between RayStation MC and PB dose engines was performed on ten patient plans. PBS gantry plans were generated using single-field optimization technique to maintain target coverage under range and setup uncertainties. Dose differences between PB-optimized (PBopt), MC-recalculated (MCrecalc), and MC-optimized (MCopt) plans were recorded for the following region-of-interest metrics: clinical target volume (CTV) V95, CTV homogeneity index (HI), total lung V20, total lung V RX (relative lung volume receiving prescribed dose or higher), and global maximum dose. The impact of PB-based and MC-based planning on robustness to systematic perturbation of range (±3% density) and setup (±3 mm isotropic) was assessed. Pairwise differences in dose parameters were evaluated through non-parametric Friedman and Wilcoxon sign-rank testing. In this ten-patient sample, CTV V95 decreased significantly from 99-100% for PBopt to 77-94% for MCrecalc and recovered to 99-100% for MCopt (P<10 -5 ). The median CTV HI (D95/D5) decreased from 0.98 for PBopt to 0.91 for MCrecalc and increased to 0.95 for MCopt (P<10 -3 ). CTV D95 robustness to range and setup errors improved under MCopt (ΔD95 =-1%) compared to MCrecalc (ΔD95 =-6%, P=0.006). No changes in lung dosimetry were observed for large volumes receiving low to intermediate doses (e.g., V20), while differences between PB-based and MC-based planning were noted for small volumes receiving high doses (e.g., V RX ). Global maximum patient dose increased from 106% for PBopt to 109% for MCrecalc and 112% for MCopt (P<10 -3 ). MC dosimetry revealed a reduction in target dose coverage under PB-based planning that was regained under MC-based planning along with improved plan robustness. MC-based optimization and dose calculation should be integrated into clinical planning workflows of lung cancer patients receiving actively scanned proton therapy.
Advanced proton beam dosimetry part II: Monte Carlo vs. pencil beam-based planning for lung cancer
Maes, Dominic; Saini, Jatinder; Zeng, Jing; Rengan, Ramesh; Wong, Tony
2018-01-01
Background Proton pencil beam (PB) dose calculation algorithms have limited accuracy within heterogeneous tissues of lung cancer patients, which may be addressed by modern commercial Monte Carlo (MC) algorithms. We investigated clinical pencil beam scanning (PBS) dose differences between PB and MC-based treatment planning for lung cancer patients. Methods With IRB approval, a comparative dosimetric analysis between RayStation MC and PB dose engines was performed on ten patient plans. PBS gantry plans were generated using single-field optimization technique to maintain target coverage under range and setup uncertainties. Dose differences between PB-optimized (PBopt), MC-recalculated (MCrecalc), and MC-optimized (MCopt) plans were recorded for the following region-of-interest metrics: clinical target volume (CTV) V95, CTV homogeneity index (HI), total lung V20, total lung VRX (relative lung volume receiving prescribed dose or higher), and global maximum dose. The impact of PB-based and MC-based planning on robustness to systematic perturbation of range (±3% density) and setup (±3 mm isotropic) was assessed. Pairwise differences in dose parameters were evaluated through non-parametric Friedman and Wilcoxon sign-rank testing. Results In this ten-patient sample, CTV V95 decreased significantly from 99–100% for PBopt to 77–94% for MCrecalc and recovered to 99–100% for MCopt (P<10−5). The median CTV HI (D95/D5) decreased from 0.98 for PBopt to 0.91 for MCrecalc and increased to 0.95 for MCopt (P<10−3). CTV D95 robustness to range and setup errors improved under MCopt (ΔD95 =−1%) compared to MCrecalc (ΔD95 =−6%, P=0.006). No changes in lung dosimetry were observed for large volumes receiving low to intermediate doses (e.g., V20), while differences between PB-based and MC-based planning were noted for small volumes receiving high doses (e.g., VRX). Global maximum patient dose increased from 106% for PBopt to 109% for MCrecalc and 112% for MCopt (P<10−3). Conclusions MC dosimetry revealed a reduction in target dose coverage under PB-based planning that was regained under MC-based planning along with improved plan robustness. MC-based optimization and dose calculation should be integrated into clinical planning workflows of lung cancer patients receiving actively scanned proton therapy. PMID:29876310
Kim, Sangroh; Yoshizumi, Terry T; Yin, Fang-Fang; Chetty, Indrin J
2013-04-21
Currently, the BEAMnrc/EGSnrc Monte Carlo (MC) system does not provide a spiral CT source model for the simulation of spiral CT scanning. We developed and validated a spiral CT phase-space source model in the BEAMnrc/EGSnrc system. The spiral phase-space source model was implemented in the DOSXYZnrc user code of the BEAMnrc/EGSnrc system by analyzing the geometry of spiral CT scan-scan range, initial angle, rotational direction, pitch, slice thickness, etc. Table movement was simulated by changing the coordinates of the isocenter as a function of beam angles. Some parameters such as pitch, slice thickness and translation per rotation were also incorporated into the model to make the new phase-space source model, designed specifically for spiral CT scan simulations. The source model was hard-coded by modifying the 'ISource = 8: Phase-Space Source Incident from Multiple Directions' in the srcxyznrc.mortran and dosxyznrc.mortran files in the DOSXYZnrc user code. In order to verify the implementation, spiral CT scans were simulated in a CT dose index phantom using the validated x-ray tube model of a commercial CT simulator for both the original multi-direction source (ISOURCE = 8) and the new phase-space source model in the DOSXYZnrc system. Then the acquired 2D and 3D dose distributions were analyzed with respect to the input parameters for various pitch values. In addition, surface-dose profiles were also measured for a patient CT scan protocol using radiochromic film and were compared with the MC simulations. The new phase-space source model was found to simulate the spiral CT scanning in a single simulation run accurately. It also produced the equivalent dose distribution of the ISOURCE = 8 model for the same CT scan parameters. The MC-simulated surface profiles were well matched to the film measurement overall within 10%. The new spiral CT phase-space source model was implemented in the BEAMnrc/EGSnrc system. This work will be beneficial in estimating the spiral CT scan dose in the BEAMnrc/EGSnrc system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, C; Nguyen, G; Chung, Y
Purpose: Ureteroscopy involves fluoroscopy which potentially results in considerable amount of radiation dose to the patient. Purpose of this study was two-fold: (a) to develop the effective dose computational model for obese and non-obese patients undergoing left and right ureteroscopy, and (b) to evaluate the utility of a commercial Monte Carlo software for dose assessment in ureteroscopy. Methods: Organ dose measurements were performed on an adult male anthropomorphic phantom, representing the non-obese patients, with 20 high-sensitivity MOSFET detectors and two 0.18cc ionization chambers placed in selected organs. Fat-equivalent paddings were placed around the abdominal region to simulate for obese patients.more » Effective dose (ED) was calculated using ICRP 103 tissue weighting factors and normalized to the effective dose rate in miliSivert per second (mSv/s). In addition, a commercial Monte Carlo (MC) dose estimation program was used to estimate ED for the non-obese model, with table attenuation correction applied to simulate clinical procedure. Results: For the equipment and protocols involved in this study, the MOSFETderived ED rates for the obese patient model (‘Left’: 0.0092±0.0004 mSv/s; ‘Right’: 0.0086±0.0004 mSv/s) was found to be more than twice as much as that to the non-obese patient model (‘Left’: 0.0041±0.0003 mSv/s; ‘Right’: 0.0036±0.0007 mSv/s). The MC-derived ED rates for the non-obese patient model (‘Left’: 0.0041 mSv/s; ‘Right’: 0.0036 mSv/s; with statistical uncertainty of 1%) showed a good agreement with the MOSFET method. Conclusion: The significant difference in ED rate between the obese and non-obese patient models shows the limitation of directly applying commercial softwares for obese patients and leading to considerable underestimation of ED. Although commercial softwares offer a convenient means of dose estimation, but the utility may be limited to standard-man geometry as the software does not account for table attenuation, obese patient geometry, and differences between the anthropomorphic phantom and MC mathematical phantom.« less
NASA Astrophysics Data System (ADS)
Kim, Sangroh; Yoshizumi, Terry T.; Yin, Fang-Fang; Chetty, Indrin J.
2013-04-01
Currently, the BEAMnrc/EGSnrc Monte Carlo (MC) system does not provide a spiral CT source model for the simulation of spiral CT scanning. We developed and validated a spiral CT phase-space source model in the BEAMnrc/EGSnrc system. The spiral phase-space source model was implemented in the DOSXYZnrc user code of the BEAMnrc/EGSnrc system by analyzing the geometry of spiral CT scan—scan range, initial angle, rotational direction, pitch, slice thickness, etc. Table movement was simulated by changing the coordinates of the isocenter as a function of beam angles. Some parameters such as pitch, slice thickness and translation per rotation were also incorporated into the model to make the new phase-space source model, designed specifically for spiral CT scan simulations. The source model was hard-coded by modifying the ‘ISource = 8: Phase-Space Source Incident from Multiple Directions’ in the srcxyznrc.mortran and dosxyznrc.mortran files in the DOSXYZnrc user code. In order to verify the implementation, spiral CT scans were simulated in a CT dose index phantom using the validated x-ray tube model of a commercial CT simulator for both the original multi-direction source (ISOURCE = 8) and the new phase-space source model in the DOSXYZnrc system. Then the acquired 2D and 3D dose distributions were analyzed with respect to the input parameters for various pitch values. In addition, surface-dose profiles were also measured for a patient CT scan protocol using radiochromic film and were compared with the MC simulations. The new phase-space source model was found to simulate the spiral CT scanning in a single simulation run accurately. It also produced the equivalent dose distribution of the ISOURCE = 8 model for the same CT scan parameters. The MC-simulated surface profiles were well matched to the film measurement overall within 10%. The new spiral CT phase-space source model was implemented in the BEAMnrc/EGSnrc system. This work will be beneficial in estimating the spiral CT scan dose in the BEAMnrc/EGSnrc system.
Chen, Yunjie; Roux, Benoît
2015-08-11
Molecular dynamics (MD) trajectories based on a classical equation of motion provide a straightforward, albeit somewhat inefficient approach, to explore and sample the configurational space of a complex molecular system. While a broad range of techniques can be used to accelerate and enhance the sampling efficiency of classical simulations, only algorithms that are consistent with the Boltzmann equilibrium distribution yield a proper statistical mechanical computational framework. Here, a multiscale hybrid algorithm relying simultaneously on all-atom fine-grained (FG) and coarse-grained (CG) representations of a system is designed to improve sampling efficiency by combining the strength of nonequilibrium molecular dynamics (neMD) and Metropolis Monte Carlo (MC). This CG-guided hybrid neMD-MC algorithm comprises six steps: (1) a FG configuration of an atomic system is dynamically propagated for some period of time using equilibrium MD; (2) the resulting FG configuration is mapped onto a simplified CG model; (3) the CG model is propagated for a brief time interval to yield a new CG configuration; (4) the resulting CG configuration is used as a target to guide the evolution of the FG system; (5) the FG configuration (from step 1) is driven via a nonequilibrium MD (neMD) simulation toward the CG target; (6) the resulting FG configuration at the end of the neMD trajectory is then accepted or rejected according to a Metropolis criterion before returning to step 1. A symmetric two-ends momentum reversal prescription is used for the neMD trajectories of the FG system to guarantee that the CG-guided hybrid neMD-MC algorithm obeys microscopic detailed balance and rigorously yields the equilibrium Boltzmann distribution. The enhanced sampling achieved with the method is illustrated with a model system with hindered diffusion and explicit-solvent peptide simulations. Illustrative tests indicate that the method can yield a speedup of about 80 times for the model system and up to 21 times for polyalanine and (AAQAA)3 in water.
2015-01-01
Molecular dynamics (MD) trajectories based on a classical equation of motion provide a straightforward, albeit somewhat inefficient approach, to explore and sample the configurational space of a complex molecular system. While a broad range of techniques can be used to accelerate and enhance the sampling efficiency of classical simulations, only algorithms that are consistent with the Boltzmann equilibrium distribution yield a proper statistical mechanical computational framework. Here, a multiscale hybrid algorithm relying simultaneously on all-atom fine-grained (FG) and coarse-grained (CG) representations of a system is designed to improve sampling efficiency by combining the strength of nonequilibrium molecular dynamics (neMD) and Metropolis Monte Carlo (MC). This CG-guided hybrid neMD-MC algorithm comprises six steps: (1) a FG configuration of an atomic system is dynamically propagated for some period of time using equilibrium MD; (2) the resulting FG configuration is mapped onto a simplified CG model; (3) the CG model is propagated for a brief time interval to yield a new CG configuration; (4) the resulting CG configuration is used as a target to guide the evolution of the FG system; (5) the FG configuration (from step 1) is driven via a nonequilibrium MD (neMD) simulation toward the CG target; (6) the resulting FG configuration at the end of the neMD trajectory is then accepted or rejected according to a Metropolis criterion before returning to step 1. A symmetric two-ends momentum reversal prescription is used for the neMD trajectories of the FG system to guarantee that the CG-guided hybrid neMD-MC algorithm obeys microscopic detailed balance and rigorously yields the equilibrium Boltzmann distribution. The enhanced sampling achieved with the method is illustrated with a model system with hindered diffusion and explicit-solvent peptide simulations. Illustrative tests indicate that the method can yield a speedup of about 80 times for the model system and up to 21 times for polyalanine and (AAQAA)3 in water. PMID:26574442
NASA Astrophysics Data System (ADS)
Crum, Dax M.; Valsaraj, Amithraj; David, John K.; Register, Leonard F.; Banerjee, Sanjay K.
2016-12-01
Particle-based ensemble semi-classical Monte Carlo (MC) methods employ quantum corrections (QCs) to address quantum confinement and degenerate carrier populations to model tomorrow's ultra-scaled metal-oxide-semiconductor-field-effect-transistors. Here, we present the most complete treatment of quantum confinement and carrier degeneracy effects in a three-dimensional (3D) MC device simulator to date, and illustrate their significance through simulation of n-channel Si and III-V FinFETs. Original contributions include our treatment of far-from-equilibrium degenerate statistics and QC-based modeling of surface-roughness scattering, as well as considering quantum-confined phonon and ionized-impurity scattering in 3D. Typical MC simulations approximate degenerate carrier populations as Fermi distributions to model the Pauli-blocking (PB) of scattering to occupied final states. To allow for increasingly far-from-equilibrium non-Fermi carrier distributions in ultra-scaled and III-V devices, we instead generate the final-state occupation probabilities used for PB by sampling the local carrier populations as function of energy and energy valley. This process is aided by the use of fractional carriers or sub-carriers, which minimizes classical carrier-carrier scattering intrinsically incompatible with degenerate statistics. Quantum-confinement effects are addressed through quantum-correction potentials (QCPs) generated from coupled Schrödinger-Poisson solvers, as commonly done. However, we use these valley- and orientation-dependent QCPs not just to redistribute carriers in real space, or even among energy valleys, but also to calculate confinement-dependent phonon, ionized-impurity, and surface-roughness scattering rates. FinFET simulations are used to illustrate the contributions of each of these QCs. Collectively, these quantum effects can substantially reduce and even eliminate otherwise expected benefits of considered In0.53Ga0.47 As FinFETs over otherwise identical Si FinFETs despite higher thermal velocities in In0.53Ga0.47 As. It also may be possible to extend these basic uses of QCPs, however calculated, to still more computationally efficient drift-diffusion and hydrodynamic simulations, and the basic concepts even to compact device modeling.
Wu, Xiao-Lin; Sun, Chuanyu; Beissinger, Timothy M; Rosa, Guilherme Jm; Weigel, Kent A; Gatti, Natalia de Leon; Gianola, Daniel
2012-09-25
Most Bayesian models for the analysis of complex traits are not analytically tractable and inferences are based on computationally intensive techniques. This is true of Bayesian models for genome-enabled selection, which uses whole-genome molecular data to predict the genetic merit of candidate animals for breeding purposes. In this regard, parallel computing can overcome the bottlenecks that can arise from series computing. Hence, a major goal of the present study is to bridge the gap to high-performance Bayesian computation in the context of animal breeding and genetics. Parallel Monte Carlo Markov chain algorithms and strategies are described in the context of animal breeding and genetics. Parallel Monte Carlo algorithms are introduced as a starting point including their applications to computing single-parameter and certain multiple-parameter models. Then, two basic approaches for parallel Markov chain Monte Carlo are described: one aims at parallelization within a single chain; the other is based on running multiple chains, yet some variants are discussed as well. Features and strategies of the parallel Markov chain Monte Carlo are illustrated using real data, including a large beef cattle dataset with 50K SNP genotypes. Parallel Markov chain Monte Carlo algorithms are useful for computing complex Bayesian models, which does not only lead to a dramatic speedup in computing but can also be used to optimize model parameters in complex Bayesian models. Hence, we anticipate that use of parallel Markov chain Monte Carlo will have a profound impact on revolutionizing the computational tools for genomic selection programs.
2012-01-01
Background Most Bayesian models for the analysis of complex traits are not analytically tractable and inferences are based on computationally intensive techniques. This is true of Bayesian models for genome-enabled selection, which uses whole-genome molecular data to predict the genetic merit of candidate animals for breeding purposes. In this regard, parallel computing can overcome the bottlenecks that can arise from series computing. Hence, a major goal of the present study is to bridge the gap to high-performance Bayesian computation in the context of animal breeding and genetics. Results Parallel Monte Carlo Markov chain algorithms and strategies are described in the context of animal breeding and genetics. Parallel Monte Carlo algorithms are introduced as a starting point including their applications to computing single-parameter and certain multiple-parameter models. Then, two basic approaches for parallel Markov chain Monte Carlo are described: one aims at parallelization within a single chain; the other is based on running multiple chains, yet some variants are discussed as well. Features and strategies of the parallel Markov chain Monte Carlo are illustrated using real data, including a large beef cattle dataset with 50K SNP genotypes. Conclusions Parallel Markov chain Monte Carlo algorithms are useful for computing complex Bayesian models, which does not only lead to a dramatic speedup in computing but can also be used to optimize model parameters in complex Bayesian models. Hence, we anticipate that use of parallel Markov chain Monte Carlo will have a profound impact on revolutionizing the computational tools for genomic selection programs. PMID:23009363
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onizuka, R; Araki, F; Ohno, T
2016-06-15
Purpose: To investigate the Monte Carlo (MC)-based dose verification for VMAT plans by a treatment planning system (TPS). Methods: The AAPM TG-119 test structure set was used for VMAT plans by the Pinnacle3 (convolution/superposition), using a Synergy radiation head of a 6 MV beam with the Agility MLC. The Synergy was simulated with the EGSnrc/BEAMnrc code, and VMAT dose distributions were calculated with the EGSnrc/DOSXYZnrc code by the same irradiation conditions as TPS. VMAT dose distributions of TPS and MC were compared with those of EBT3 film, by 2-D gamma analysis of ±3%/3 mm criteria with a threshold of 30%more » of prescribed doses. VMAT dose distributions between TPS and MC were also compared by DVHs and 3-D gamma analysis of ±3%/3 mm criteria with a threshold of 10%, and 3-D passing rates for PTVs and OARs were analyzed. Results: TPS dose distributions differed from those of film, especially for Head & neck. The dose difference between TPS and film results from calculation accuracy for complex motion of MLCs like tongue and groove effect. In contrast, MC dose distributions were in good agreement with those of film. This is because MC can model fully the MLC configuration and accurately reproduce the MLC motion between control points in VMAT plans. D95 of PTV for Prostate, Head & neck, C-shaped, and Multi Target was 97.2%, 98.1%, 101.6%, and 99.7% for TPS and 95.7%, 96.0%, 100.6%, and 99.1% for MC, respectively. Similarly, 3-D gamma passing rates of each PTV for TPS vs. MC were 100%, 89.5%, 99.7%, and 100%, respectively. 3-D passing rates of TPS reduced for complex VMAT fields like Head & neck because MLCs are not modeled completely for TPS. Conclusion: MC-calculated VMAT dose distributions is useful for the 3-D dose verification of VMAT plans by TPS.« less
Slimani, Faiçal A A; Hamdi, Mahdjoub; Bentourkia, M'hamed
2018-05-01
Monte Carlo (MC) simulation is widely recognized as an important technique to study the physics of particle interactions in nuclear medicine and radiation therapy. There are different codes dedicated to dosimetry applications and widely used today in research or in clinical application, such as MCNP, EGSnrc and Geant4. However, such codes made the physics easier but the programming remains a tedious task even for physicists familiar with computer programming. In this paper we report the development of a new interface GEANT4 Dose And Radiation Interactions (G4DARI) based on GEANT4 for absorbed dose calculation and for particle tracking in humans, small animals and complex phantoms. The calculation of the absorbed dose is performed based on 3D CT human or animal images in DICOM format, from images of phantoms or from solid volumes which can be made from any pure or composite material to be specified by its molecular formula. G4DARI offers menus to the user and tabs to be filled with values or chemical formulas. The interface is described and as application, we show results obtained in a lung tumor in a digital mouse irradiated with seven energy beams, and in a patient with glioblastoma irradiated with five photon beams. In conclusion, G4DARI can be easily used by any researcher without the need to be familiar with computer programming, and it will be freely available as an application package. Copyright © 2018 Elsevier Ltd. All rights reserved.
Integral Equation Study of Molecular Fluids and Liquid Crystals in Two Dimensions
NASA Astrophysics Data System (ADS)
Ward, David Atlee
The Ornstein-Zernike (OZ) equation is solved with a Percus-Yevick (PY) closure for the hard ellipse and hard planar dumbell fluids in two dimensions. The correlation functions, including the orientation correlation function, are expanded in a set of orthogonal functions and the coefficients are solved for using an iterative algorithm developed by Lado. The pressure, compressibility, and orientation coefficients are computed for a variety of densities and molecular elongations. The hard planar dumbell fluid shows no orientational ordering. The PY values for the pressure differ from the corresponding Monte Carlo (MC) values by as much as 8% for the cases studied. The hard ellipse fluid exhibits some orientational ordering. Ordering is much more pronounced for ellipses with an axis ratio larger than 2.0. Pressure values computed for the hard ellipse fluid from the PY theory differ from the corresponding MC values by as much as 11% for the cases studied. As the PY solutions do exhibit a nematic character in the hard ellipse fluid, we find it to be a viable reference system for further studies of the nematic liquid crystal phase, though the isotropic-nematic (I-N) phase transition found by Vieillard-Baron was not observed in the PY solutions. The Maier-Saupe theory was reformulated based on the density functional formalism of Sluckin and Shukla. Using PY data of the hard ellipse as input for the direct correlation function in the isotropic phase, the orientational distribution was calculated. The values obtained showed only extremely weak nematic behavior.
NASA Astrophysics Data System (ADS)
Manganaro, L.; Russo, G.; Bourhaleb, F.; Fausti, F.; Giordanengo, S.; Monaco, V.; Sacchi, R.; Vignati, A.; Cirio, R.; Attili, A.
2018-04-01
One major rationale for the application of heavy ion beams in tumour therapy is their increased relative biological effectiveness (RBE). The complex dependencies of the RBE on dose, biological endpoint, position in the field etc require the use of biophysical models in treatment planning and clinical analysis. This study aims to introduce a new software, named ‘Survival’, to facilitate the radiobiological computations needed in ion therapy. The simulation toolkit was written in C++ and it was developed with a modular architecture in order to easily incorporate different radiobiological models. The following models were successfully implemented: the local effect model (LEM, version I, II and III) and variants of the microdosimetric-kinetic model (MKM). Different numerical evaluation approaches were also implemented: Monte Carlo (MC) numerical methods and a set of faster analytical approximations. Among the possible applications, the toolkit was used to reproduce the RBE versus LET for different ions (proton, He, C, O, Ne) and different cell lines (CHO, HSG). Intercomparison between different models (LEM and MKM) and computational approaches (MC and fast approximations) were performed. The developed software could represent an important tool for the evaluation of the biological effectiveness of charged particles in ion beam therapy, in particular when coupled with treatment simulations. Its modular architecture facilitates benchmarking and inter-comparison between different models and evaluation approaches. The code is open source (GPL2 license) and available at https://github.com/batuff/Survival.
Dose in x-ray computed tomography
NASA Astrophysics Data System (ADS)
Kalender, Willi A.
2014-02-01
Radiation dose in x-ray computed tomography (CT) has become a topic of high interest due to the increasing numbers of CT examinations performed worldwide. This review aims to present an overview of current concepts for both scanner output metrics and for patient dosimetry and will comment on their strengths and weaknesses. Controversial issues such as the appropriateness of the CT dose index (CTDI) are discussed in detail. A review of approaches to patient dose assessment presently in practice, of the dose levels encountered and options for further dose optimization are also given and discussed. Patient dose assessment remains a topic for further improvement and for international consensus. All approaches presently in use are based on Monte Carlo (MC) simulations. Estimates for effective dose are established, but they are crude and not patient-specific; organ dose estimates are rarely available. Patient- and organ-specific dose estimates can be provided with adequate accuracy and independent of CTDI phantom measurements by fast MC simulations. Such information, in particular on 3D dose distributions, is important and helpful in optimization efforts. Dose optimization has been performed very successfully in recent years and even resulted in applications with effective dose values of below 1 mSv. In general, a trend towards lower dose values based on technical innovations has to be acknowledged. Effective dose values are down to clearly below 10 mSv on average, and there are a number of applications such as cardiac and pediatric CT which are performed routinely below 1 mSv on modern equipment.
NASA Astrophysics Data System (ADS)
Quintero-Chavarria, E.; Ochoa Gutierrez, L. H.
2016-12-01
Applications of the Self-potential Method in the fields of Hydrogeology and Environmental Sciences have had significant developments during the last two decades with a strong use on groundwater flows identification. Although only few authors deal with the forward problem's solution -especially in geophysics literature- different inversion procedures are currently being developed but in most cases they are compared with unconventional groundwater velocity fields and restricted to structured meshes. This research solves the forward problem based on the finite element method using the St. Venant's Principle to transform a point dipole, which is the field generated by a single vector, into a distribution of electrical monopoles. Then, two simple aquifer models were generated with specific boundary conditions and head potentials, velocity fields and electric potentials in the medium were computed. With the model's surface electric potential, the inverse problem is solved to retrieve the source of electric potential (vector field associated to groundwater flow) using deterministic and stochastic approaches. The first approach was carried out by implementing a Tikhonov regularization with a stabilized operator adapted to the finite element mesh while for the second a hierarchical Bayesian model based on Markov chain Monte Carlo (McMC) and Markov Random Fields (MRF) was constructed. For all implemented methods, the result between the direct and inverse models was contrasted in two ways: 1) shape and distribution of the vector field, and 2) magnitude's histogram. Finally, it was concluded that inversion procedures are improved when the velocity field's behavior is considered, thus, the deterministic method is more suitable for unconfined aquifers than confined ones. McMC has restricted applications and requires a lot of information (particularly in potentials fields) while MRF has a remarkable response especially when dealing with confined aquifers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chow, J
Purpose: This study evaluated the efficiency of 4D lung radiation treatment planning using Monte Carlo simulation on the cloud. The EGSnrc Monte Carlo code was used in dose calculation on the 4D-CT image set. Methods: 4D lung radiation treatment plan was created by the DOSCTP linked to the cloud, based on the Amazon elastic compute cloud platform. Dose calculation was carried out by Monte Carlo simulation on the 4D-CT image set on the cloud, and results were sent to the FFD4D image deformation program for dose reconstruction. The dependence of computing time for treatment plan on the number of computemore » node was optimized with variations of the number of CT image set in the breathing cycle and dose reconstruction time of the FFD4D. Results: It is found that the dependence of computing time on the number of compute node was affected by the diminishing return of the number of node used in Monte Carlo simulation. Moreover, the performance of the 4D treatment planning could be optimized by using smaller than 10 compute nodes on the cloud. The effects of the number of image set and dose reconstruction time on the dependence of computing time on the number of node were not significant, as more than 15 compute nodes were used in Monte Carlo simulations. Conclusion: The issue of long computing time in 4D treatment plan, requiring Monte Carlo dose calculations in all CT image sets in the breathing cycle, can be solved using the cloud computing technology. It is concluded that the optimized number of compute node selected in simulation should be between 5 and 15, as the dependence of computing time on the number of node is significant.« less
NASA Astrophysics Data System (ADS)
Katsoulakis, Markos A.; Vlachos, Dionisios G.
2003-11-01
We derive a hierarchy of successively coarse-grained stochastic processes and associated coarse-grained Monte Carlo (CGMC) algorithms directly from the microscopic processes as approximations in larger length scales for the case of diffusion of interacting particles on a lattice. This hierarchy of models spans length scales between microscopic and mesoscopic, satisfies a detailed balance, and gives self-consistent fluctuation mechanisms whose noise is asymptotically identical to the microscopic MC. Rigorous, detailed asymptotics justify and clarify these connections. Gradient continuous time microscopic MC and CGMC simulations are compared under far from equilibrium conditions to illustrate the validity of our theory and delineate the errors obtained by rigorous asymptotics. Information theory estimates are employed for the first time to provide rigorous error estimates between the solutions of microscopic MC and CGMC, describing the loss of information during the coarse-graining process. Simulations under periodic boundary conditions are used to verify the information theory error estimates. It is shown that coarse-graining in space leads also to coarse-graining in time by q2, where q is the level of coarse-graining, and overcomes in part the hydrodynamic slowdown. Operation counting and CGMC simulations demonstrate significant CPU savings in continuous time MC simulations that vary from q3 for short potentials to q4 for long potentials. Finally, connections of the new coarse-grained stochastic processes to stochastic mesoscopic and Cahn-Hilliard-Cook models are made.
Sampling Enrichment toward Target Structures Using Hybrid Molecular Dynamics-Monte Carlo Simulations
Yang, Kecheng; Różycki, Bartosz; Cui, Fengchao; Shi, Ce; Chen, Wenduo; Li, Yunqi
2016-01-01
Sampling enrichment toward a target state, an analogue of the improvement of sampling efficiency (SE), is critical in both the refinement of protein structures and the generation of near-native structure ensembles for the exploration of structure-function relationships. We developed a hybrid molecular dynamics (MD)-Monte Carlo (MC) approach to enrich the sampling toward the target structures. In this approach, the higher SE is achieved by perturbing the conventional MD simulations with a MC structure-acceptance judgment, which is based on the coincidence degree of small angle x-ray scattering (SAXS) intensity profiles between the simulation structures and the target structure. We found that the hybrid simulations could significantly improve SE by making the top-ranked models much closer to the target structures both in the secondary and tertiary structures. Specifically, for the 20 mono-residue peptides, when the initial structures had the root-mean-squared deviation (RMSD) from the target structure smaller than 7 Å, the hybrid MD-MC simulations afforded, on average, 0.83 Å and 1.73 Å in RMSD closer to the target than the parallel MD simulations at 310K and 370K, respectively. Meanwhile, the average SE values are also increased by 13.2% and 15.7%. The enrichment of sampling becomes more significant when the target states are gradually detectable in the MD-MC simulations in comparison with the parallel MD simulations, and provide >200% improvement in SE. We also performed a test of the hybrid MD-MC approach in the real protein system, the results showed that the SE for 3 out of 5 real proteins are improved. Overall, this work presents an efficient way of utilizing solution SAXS to improve protein structure prediction and refinement, as well as the generation of near native structures for function annotation. PMID:27227775
An improved Monte-Carlo model of the Varian EPID separating support arm and rear-housing backscatter
NASA Astrophysics Data System (ADS)
Monville, M. E.; Kuncic, Z.; Greer, P. B.
2014-03-01
Previous investigators of EPID dosimetric properties have ascribed the backscatter, that contaminates dosimetric EPID images, to its supporting arm. Accordingly, Monte-Carlo (MC) EPID models have approximated the backscatter signal from the layers under the detector and the robotic support arm using either uniform or non-uniform solid water slabs, or through convolutions with back-scatter kernels. The aim of this work is to improve the existent MC models by measuring and modelling the separate backscatter contributions of the robotic arm and the rear plastic housing of the EPID. The EPID plastic housing is non-uniform with a 11.9 cm wide indented section that runs across the cross-plane direction in the superior half of the EPID which is 1.75 cm closer to the EPID sensitive layer than the rest of the housing. The thickness of the plastic housing is 0.5 cm. Experiments were performed with and without the housing present by removing all components of the EPID from the housing. The robotic support arm was not present for these measurements. A MC model of the linear accelerator and the EPID was modified to include the rear-housing indentation and results compared to the measurement. The rear housing was found to contribute a maximum of 3% additional signal. The rear housing contribution to the image is non-uniform in the in-plane direction with 2% asymmetry across the central 20 cm of an image irradiating the entire detector. The MC model was able to reproduce this non-uniform contribution. The EPID rear housing contributes a non-uniform backscatter component to the EPID image, which has not been previously characterized. This has been incorporated into an improved MC model of the EPID.
Yang, Kecheng; Różycki, Bartosz; Cui, Fengchao; Shi, Ce; Chen, Wenduo; Li, Yunqi
2016-01-01
Sampling enrichment toward a target state, an analogue of the improvement of sampling efficiency (SE), is critical in both the refinement of protein structures and the generation of near-native structure ensembles for the exploration of structure-function relationships. We developed a hybrid molecular dynamics (MD)-Monte Carlo (MC) approach to enrich the sampling toward the target structures. In this approach, the higher SE is achieved by perturbing the conventional MD simulations with a MC structure-acceptance judgment, which is based on the coincidence degree of small angle x-ray scattering (SAXS) intensity profiles between the simulation structures and the target structure. We found that the hybrid simulations could significantly improve SE by making the top-ranked models much closer to the target structures both in the secondary and tertiary structures. Specifically, for the 20 mono-residue peptides, when the initial structures had the root-mean-squared deviation (RMSD) from the target structure smaller than 7 Å, the hybrid MD-MC simulations afforded, on average, 0.83 Å and 1.73 Å in RMSD closer to the target than the parallel MD simulations at 310K and 370K, respectively. Meanwhile, the average SE values are also increased by 13.2% and 15.7%. The enrichment of sampling becomes more significant when the target states are gradually detectable in the MD-MC simulations in comparison with the parallel MD simulations, and provide >200% improvement in SE. We also performed a test of the hybrid MD-MC approach in the real protein system, the results showed that the SE for 3 out of 5 real proteins are improved. Overall, this work presents an efficient way of utilizing solution SAXS to improve protein structure prediction and refinement, as well as the generation of near native structures for function annotation.
TH-E-18A-01: Developments in Monte Carlo Methods for Medical Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badal, A; Zbijewski, W; Bolch, W
Monte Carlo simulation methods are widely used in medical physics research and are starting to be implemented in clinical applications such as radiation therapy planning systems. Monte Carlo simulations offer the capability to accurately estimate quantities of interest that are challenging to measure experimentally while taking into account the realistic anatomy of an individual patient. Traditionally, practical application of Monte Carlo simulation codes in diagnostic imaging was limited by the need for large computational resources or long execution times. However, recent advancements in high-performance computing hardware, combined with a new generation of Monte Carlo simulation algorithms and novel postprocessing methods,more » are allowing for the computation of relevant imaging parameters of interest such as patient organ doses and scatter-to-primaryratios in radiographic projections in just a few seconds using affordable computational resources. Programmable Graphics Processing Units (GPUs), for example, provide a convenient, affordable platform for parallelized Monte Carlo executions that yield simulation times on the order of 10{sup 7} xray/ s. Even with GPU acceleration, however, Monte Carlo simulation times can be prohibitive for routine clinical practice. To reduce simulation times further, variance reduction techniques can be used to alter the probabilistic models underlying the x-ray tracking process, resulting in lower variance in the results without biasing the estimates. Other complementary strategies for further reductions in computation time are denoising of the Monte Carlo estimates and estimating (scoring) the quantity of interest at a sparse set of sampling locations (e.g. at a small number of detector pixels in a scatter simulation) followed by interpolation. Beyond reduction of the computational resources required for performing Monte Carlo simulations in medical imaging, the use of accurate representations of patient anatomy is crucial to the virtual generation of medical images and accurate estimation of radiation dose and other imaging parameters. For this, detailed computational phantoms of the patient anatomy must be utilized and implemented within the radiation transport code. Computational phantoms presently come in one of three format types, and in one of four morphometric categories. Format types include stylized (mathematical equation-based), voxel (segmented CT/MR images), and hybrid (NURBS and polygon mesh surfaces). Morphometric categories include reference (small library of phantoms by age at 50th height/weight percentile), patient-dependent (larger library of phantoms at various combinations of height/weight percentiles), patient-sculpted (phantoms altered to match the patient's unique outer body contour), and finally, patient-specific (an exact representation of the patient with respect to both body contour and internal anatomy). The existence and availability of these phantoms represents a very important advance for the simulation of realistic medical imaging applications using Monte Carlo methods. New Monte Carlo simulation codes need to be thoroughly validated before they can be used to perform novel research. Ideally, the validation process would involve comparison of results with those of an experimental measurement, but accurate replication of experimental conditions can be very challenging. It is very common to validate new Monte Carlo simulations by replicating previously published simulation results of similar experiments. This process, however, is commonly problematic due to the lack of sufficient information in the published reports of previous work so as to be able to replicate the simulation in detail. To aid in this process, the AAPM Task Group 195 prepared a report in which six different imaging research experiments commonly performed using Monte Carlo simulations are described and their results provided. The simulation conditions of all six cases are provided in full detail, with all necessary data on material composition, source, geometry, scoring and other parameters provided. The results of these simulations when performed with the four most common publicly available Monte Carlo packages are also provided in tabular form. The Task Group 195 Report will be useful for researchers needing to validate their Monte Carlo work, and for trainees needing to learn Monte Carlo simulation methods. In this symposium we will review the recent advancements in highperformance computing hardware enabling the reduction in computational resources needed for Monte Carlo simulations in medical imaging. We will review variance reduction techniques commonly applied in Monte Carlo simulations of medical imaging systems and present implementation strategies for efficient combination of these techniques with GPU acceleration. Trade-offs involved in Monte Carlo acceleration by means of denoising and “sparse sampling” will be discussed. A method for rapid scatter correction in cone-beam CT (<5 min/scan) will be presented as an illustration of the simulation speeds achievable with optimized Monte Carlo simulations. We will also discuss the development, availability, and capability of the various combinations of computational phantoms for Monte Carlo simulation of medical imaging systems. Finally, we will review some examples of experimental validation of Monte Carlo simulations and will present the AAPM Task Group 195 Report. Learning Objectives: Describe the advances in hardware available for performing Monte Carlo simulations in high performance computing environments. Explain variance reduction, denoising and sparse sampling techniques available for reduction of computational time needed for Monte Carlo simulations of medical imaging. List and compare the computational anthropomorphic phantoms currently available for more accurate assessment of medical imaging parameters in Monte Carlo simulations. Describe experimental methods used for validation of Monte Carlo simulations in medical imaging. Describe the AAPM Task Group 195 Report and its use for validation and teaching of Monte Carlo simulations in medical imaging.« less
NOTE: Monte Carlo evaluation of kerma in an HDR brachytherapy bunker
NASA Astrophysics Data System (ADS)
Pérez-Calatayud, J.; Granero, D.; Ballester, F.; Casal, E.; Crispin, V.; Puchades, V.; León, A.; Verdú, G.
2004-12-01
In recent years, the use of high dose rate (HDR) after-loader machines has greatly increased due to the shift from traditional Cs-137/Ir-192 low dose rate (LDR) to HDR brachytherapy. The method used to calculate the required concrete and, where appropriate, lead shielding in the door is based on analytical methods provided by documents published by the ICRP, the IAEA and the NCRP. The purpose of this study is to perform a more realistic kerma evaluation at the entrance maze door of an HDR bunker using the Monte Carlo code GEANT4. The Monte Carlo results were validated experimentally. The spectrum at the maze entrance door, obtained with Monte Carlo, has an average energy of about 110 keV, maintaining a similar value along the length of the maze. The comparison of results from the aforementioned values with the Monte Carlo ones shows that results obtained using the albedo coefficient from the ICRP document more closely match those given by the Monte Carlo method, although the maximum value given by MC calculations is 30% greater.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, J; Micka, J; Culberson, W
Purpose: To determine the in-air azimuthal anisotropy and in-water dose distribution for the 1 cm length of the CivaString {sup 103}Pd brachytherapy source through measurements and Monte Carlo (MC) simulations. American Association of Physicists in Medicine Task Group No. 43 (TG-43) dosimetry parameters were also determined for this source. Methods: The in-air azimuthal anisotropy of the source was measured with a NaI scintillation detector and simulated with the MCNP5 radiation transport code. Measured and simulated results were normalized to their respective mean values and compared. The TG-43 dose-rate constant, line-source radial dose function, and 2D anisotropy function for this sourcemore » were determined from LiF:Mg,Ti thermoluminescent dosimeter (TLD) measurements and MC simulations. The impact of {sup 103}Pd well-loading variability on the in-water dose distribution was investigated using MC simulations by comparing the dose distribution for a source model with four wells of equal strength to that for a source model with strengths increased by 1% for two of the four wells. Results: NaI scintillation detector measurements and MC simulations of the in-air azimuthal anisotropy showed that ≥95% of the normalized data were within 1.2% of the mean value. TLD measurements and MC simulations of the TG-43 dose-rate constant, line-source radial dose function, and 2D anisotropy function agreed to within the experimental TLD uncertainties (k=2). MC simulations showed that a 1% variability in {sup 103}Pd well-loading resulted in changes of <0.1%, <0.1%, and <0.3% in the TG-43 dose-rate constant, radial dose distribution, and polar dose distribution, respectively. Conclusion: The CivaString source has a high degree of azimuthal symmetry as indicated by the NaI scintillation detector measurements and MC simulations of the in-air azimuthal anisotropy. TG-43 dosimetry parameters for this source were determined from TLD measurements and MC simulations. {sup 103}Pd well-loading variability results in minimal variations in the in-water dose distribution according to MC simulations. This work was partially supported by CivaTech Oncology, Inc. through an educational grant for Joshua Reed, John Micka, Wesley Culberson, and Larry DeWerd and through research support for Mark Rivard.« less
A virtual source model for Monte Carlo simulation of helical tomotherapy.
Yuan, Jiankui; Rong, Yi; Chen, Quan
2015-01-08
The purpose of this study was to present a Monte Carlo (MC) simulation method based on a virtual source, jaw, and MLC model to calculate dose in patient for helical tomotherapy without the need of calculating phase-space files (PSFs). Current studies on the tomotherapy MC simulation adopt a full MC model, which includes extensive modeling of radiation source, primary and secondary jaws, and multileaf collimator (MLC). In the full MC model, PSFs need to be created at different scoring planes to facilitate the patient dose calculations. In the present work, the virtual source model (VSM) we established was based on the gold standard beam data of a tomotherapy unit, which can be exported from the treatment planning station (TPS). The TPS-generated sinograms were extracted from the archived patient XML (eXtensible Markup Language) files. The fluence map for the MC sampling was created by incorporating the percentage leaf open time (LOT) with leaf filter, jaw penumbra, and leaf latency contained from sinogram files. The VSM was validated for various geometry setups and clinical situations involving heterogeneous media and delivery quality assurance (DQA) cases. An agreement of < 1% was obtained between the measured and simulated results for percent depth doses (PDDs) and open beam profiles for all three jaw settings in the VSM commissioning. The accuracy of the VSM leaf filter model was verified in comparing the measured and simulated results for a Picket Fence pattern. An agreement of < 2% was achieved between the presented VSM and a published full MC model for heterogeneous phantoms. For complex clinical head and neck (HN) cases, the VSM-based MC simulation of DQA plans agreed with the film measurement with 98% of planar dose pixels passing on the 2%/2 mm gamma criteria. For patient treatment plans, results showed comparable dose-volume histograms (DVHs) for planning target volumes (PTVs) and organs at risk (OARs). Deviations observed in this study were consistent with literature. The VSM-based MC simulation approach can be feasibly built from the gold standard beam model of a tomotherapy unit. The accuracy of the VSM was validated against measurements in homogeneous media, as well as published full MC model in heterogeneous media.
A virtual source model for Monte Carlo simulation of helical tomotherapy
Yuan, Jiankui; Rong, Yi
2015-01-01
The purpose of this study was to present a Monte Carlo (MC) simulation method based on a virtual source, jaw, and MLC model to calculate dose in patient for helical tomotherapy without the need of calculating phase‐space files (PSFs). Current studies on the tomotherapy MC simulation adopt a full MC model, which includes extensive modeling of radiation source, primary and secondary jaws, and multileaf collimator (MLC). In the full MC model, PSFs need to be created at different scoring planes to facilitate the patient dose calculations. In the present work, the virtual source model (VSM) we established was based on the gold standard beam data of a tomotherapy unit, which can be exported from the treatment planning station (TPS). The TPS‐generated sinograms were extracted from the archived patient XML (eXtensible Markup Language) files. The fluence map for the MC sampling was created by incorporating the percentage leaf open time (LOT) with leaf filter, jaw penumbra, and leaf latency contained from sinogram files. The VSM was validated for various geometry setups and clinical situations involving heterogeneous media and delivery quality assurance (DQA) cases. An agreement of <1% was obtained between the measured and simulated results for percent depth doses (PDDs) and open beam profiles for all three jaw settings in the VSM commissioning. The accuracy of the VSM leaf filter model was verified in comparing the measured and simulated results for a Picket Fence pattern. An agreement of <2% was achieved between the presented VSM and a published full MC model for heterogeneous phantoms. For complex clinical head and neck (HN) cases, the VSM‐based MC simulation of DQA plans agreed with the film measurement with 98% of planar dose pixels passing on the 2%/2 mm gamma criteria. For patient treatment plans, results showed comparable dose‐volume histograms (DVHs) for planning target volumes (PTVs) and organs at risk (OARs). Deviations observed in this study were consistent with literature. The VSM‐based MC simulation approach can be feasibly built from the gold standard beam model of a tomotherapy unit. The accuracy of the VSM was validated against measurements in homogeneous media, as well as published full MC model in heterogeneous media. PACS numbers: 87.53.‐j, 87.55.K‐ PMID:25679157
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan Chan Tseung, H; Ma, J; Ma, D
2015-06-15
Purpose: To demonstrate the feasibility of fast Monte Carlo (MC) based biological planning for the treatment of thyroid tumors in spot-scanning proton therapy. Methods: Recently, we developed a fast and accurate GPU-based MC simulation of proton transport that was benchmarked against Geant4.9.6 and used as the dose calculation engine in a clinically-applicable GPU-accelerated IMPT optimizer. Besides dose, it can simultaneously score the dose-averaged LET (LETd), which makes fast biological dose (BD) estimates possible. To convert from LETd to BD, we used a linear relation based on cellular irradiation data. Given a thyroid patient with a 93cc tumor volume, we createdmore » a 2-field IMPT plan in Eclipse (Varian Medical Systems). This plan was re-calculated with our MC to obtain the BD distribution. A second 5-field plan was made with our in-house optimizer, using pre-generated MC dose and LETd maps. Constraints were placed to maintain the target dose to within 25% of the prescription, while maximizing the BD. The plan optimization and calculation of dose and LETd maps were performed on a GPU cluster. The conventional IMPT and biologically-optimized plans were compared. Results: The mean target physical and biological doses from our biologically-optimized plan were, respectively, 5% and 14% higher than those from the MC re-calculation of the IMPT plan. Dose sparing to critical structures in our plan was also improved. The biological optimization, including the initial dose and LETd map calculations, can be completed in a clinically viable time (∼30 minutes) on a cluster of 25 GPUs. Conclusion: Taking advantage of GPU acceleration, we created a MC-based, biologically optimized treatment plan for a thyroid patient. Compared to a standard IMPT plan, a 5% increase in the target’s physical dose resulted in ∼3 times as much increase in the BD. Biological planning was thus effective in escalating the target BD.« less
SU-F-T-74: Experimental Validation of Monaco Electron Monte Carlo Dose Calculation for Small Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varadhan; Way, S; Arentsen, L
2016-06-15
Purpose: To verify experimentally the accuracy of Monaco (Elekta) electron Monte Carlo (eMC) algorithm to calculate small field size depth doses, monitor units and isodose distributions. Methods: Beam modeling of eMC algorithm was performed for electron energies of 6, 9, 12 15 and 18 Mev for a Elekta Infinity Linac and all available ( 6, 10, 14 20 and 25 cone) applicator sizes. Electron cutouts of incrementally smaller field sizes (20, 40, 60 and 80% blocked from open cone) were fabricated. Dose calculation was performed using a grid size smaller than one-tenth of the R{sub 80–20} electron distal falloff distancemore » and number of particle histories was set at 500,000 per cm{sup 2}. Percent depth dose scans and beam profiles at dmax, d{sub 90} and d{sub 80} depths were measured for each cutout and energy with Wellhoffer (IBA) Blue Phantom{sup 2} scanning system and compared against eMC calculated doses. Results: The measured dose and output factors of incrementally reduced cutout sizes (to 3cm diameter) agreed with eMC calculated doses within ± 2.5%. The profile comparisons at dmax, d{sub 90} and d{sub 80} depths and percent depth doses at reduced field sizes agreed within 2.5% or 2mm. Conclusion: Our results indicate that the Monaco eMC algorithm can accurately predict depth doses, isodose distributions, and monitor units in homogeneous water phantom for field sizes as small as 3.0 cm diameter for energies in the 6 to 18 MeV range at 100 cm SSD. Consequently, the old rule of thumb to approximate limiting cutout size for an electron field determined by the lateral scatter equilibrium (E (MeV)/2.5 in centimeters of water) does not apply to Monaco eMC algorithm.« less
NASA Astrophysics Data System (ADS)
Spezi, Emiliano
2010-08-01
Sixty years after the paper 'The Monte Carlo method' by N Metropolis and S Ulam in The Journal of the American Statistical Association (Metropolis and Ulam 1949), use of the most accurate algorithm for computer modelling of radiotherapy linear accelerators, radiation detectors and three dimensional patient dose was discussed in Wales (UK). The Second European Workshop on Monte Carlo Treatment Planning (MCTP2009) was held at the National Museum of Wales in Cardiff. The event, organized by Velindre NHS Trust, Cardiff University and Cancer Research Wales, lasted two and a half days, during which leading experts and contributing authors presented and discussed the latest advances in the field of Monte Carlo treatment planning (MCTP). MCTP2009 was highly successful, judging from the number of participants which was in excess of 140. Of the attendees, 24% came from the UK, 46% from the rest of Europe, 12% from North America and 18% from the rest of the World. Fifty-three oral presentations and 24 posters were delivered in a total of 12 scientific sessions. MCTP2009 follows the success of previous similar initiatives (Verhaegen and Seuntjens 2005, Reynaert 2007, Verhaegen and Seuntjens 2008), and confirms the high level of interest in Monte Carlo technology for radiotherapy treatment planning. The 13 articles selected for this special section (following Physics in Medicine and Biology's usual rigorous peer-review procedure) give a good picture of the high quality of the work presented at MCTP2009. The book of abstracts can be downloaded from http://www.mctp2009.org. I wish to thank the IOP Medical Physics and Computational Physics Groups for their financial support, Elekta Ltd and Dosisoft for sponsoring MCTP2009, and leading manufacturers such as BrainLab, Nucletron and Varian for showcasing their latest MC-based radiotherapy solutions during a dedicated technical session. I am also very grateful to the eight invited speakers who kindly accepted to give keynote presentations which contributed significantly to raising the quality of the event and capturing the interest of the medical physics community. I also wish to thank all those who contributed to the success of MCTP2009: the members of the local Organizing Committee and the Workshop Management Team who managed the event very efficiently, the members of the European Working Group in Monte Carlo Treatment Planning (EWG-MCTP) who acted as Guest Associate Editors for the MCTP2009 abstracts reviewing process, and all the authors who generated new, high quality work. Finally, I hope that you find the contents of this special section enjoyable and informative. Emiliano Spezi Chairman of MCTP2009 Organizing Committee and Guest Editor References Metropolis N and Ulam S 1949 The Monte Carlo method J. Amer. Stat. Assoc. 44 335-41 Reynaert N 2007 First European Workshop on Monte Carlo Treatment Planning J. Phys.: Conf. Ser. 74 011001 Verhaegen F and Seuntjens J 2005 International Workshop on Current Topics in Monte Carlo Treatment Planning Phys. Med. Biol. 50 Verhaegen F and Seuntjens J 2008 International Workshop on Monte Carlo Techniques in Radiotherapy Delivery and Verification J. Phys.: Conf. Ser. 102 011001
NASA Technical Reports Server (NTRS)
Bentz, Daniel N.; Betush, William; Jackson, Kenneth A.
2003-01-01
In this paper we report on two related topics: Kinetic Monte Carlo simulations of the steady state growth of rod eutectics from the melt, and a study of the surface roughness of binary alloys. We have implemented a three dimensional kinetic Monte Carlo (kMC) simulation with diffusion by pair exchange only in the liquid phase. Entropies of fusion are first chosen to fit the surface roughness of the pure materials, and the bond energies are derived from the equilibrium phase diagram, by treating the solid and liquid as regular and ideal solutions respectively. A simple cubic lattice oriented in the {100} direction is used. Growth of the rods is initiated from columns of pure B material embedded in an A matrix, arranged in a close packed array with semi-periodic boundary conditions. The simulation cells typically have dimensions of 50 by 87 by 200 unit cells. Steady state growth is compliant with the Jackson-Hunt model. In the kMC simulations, using the spin-one Ising model, growth of each phase is faceted or nonfaceted phases depending on the entropy of fusion. There have been many studies of the surface roughening transition in single component systems, but none for binary alloy systems. The location of the surface roughening transition for the phases of a eutectic alloy determines whether the eutectic morphology will be regular or irregular. We have conducted a study of surface roughness on the spin-one Ising Model with diffusion using kMC. The surface roughness was found to scale with the melting temperature of the alloy as given by the liquidus line on the equilibrium phase diagram. The density of missing lateral bonds at the surface was used as a measure of surface roughness.
On the Monte Carlo simulation of electron transport in the sub-1 keV energy range.
Thomson, Rowan M; Kawrakow, Iwan
2011-08-01
The validity of "classic" Monte Carlo (MC) simulations of electron and positron transport at sub-1 keV energies is investigated in the context of quantum theory. Quantum theory dictates that uncertainties on the position and energy-momentum four-vectors of radiation quanta obey Heisenberg's uncertainty relation; however, these uncertainties are neglected in "classical" MC simulations of radiation transport in which position and momentum are known precisely. Using the quantum uncertainty relation and electron mean free path, the magnitudes of uncertainties on electron position and momentum are calculated for different kinetic energies; a validity bound on the classical simulation of electron transport is derived. In order to satisfy the Heisenberg uncertainty principle, uncertainties of 5% must be assigned to position and momentum for 1 keV electrons in water; at 100 eV, these uncertainties are 17 to 20% and are even larger at lower energies. In gaseous media such as air, these uncertainties are much smaller (less than 1% for electrons with energy 20 eV or greater). The classical Monte Carlo transport treatment is questionable for sub-1 keV electrons in condensed water as uncertainties on position and momentum must be large (relative to electron momentum and mean free path) to satisfy the quantum uncertainty principle. Simulations which do not account for these uncertainties are not faithful representations of the physical processes, calling into question the results of MC track structure codes simulating sub-1 keV electron transport. Further, the large difference in the scale at which quantum effects are important in gaseous and condensed media suggests that track structure measurements in gases are not necessarily representative of track structure in condensed materials on a micrometer or a nanometer scale.
NASA Astrophysics Data System (ADS)
Lerendegui-Marco, J.; Cortés-Giraldo, M. A.; Guerrero, C.; Quesada, J. M.; Meo, S. Lo; Massimi, C.; Barbagallo, M.; Colonna, N.; Mancussi, D.; Mingrone, F.; Sabaté-Gilarte, M.; Vannini, G.; Vlachoudis, V.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bacak, M.; Balibrea, J.; Bečvář, F.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brown, A.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Cortés, G.; Cosentino, L.; Damone, L. A.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Göbel, K.; Gómez-Hornillos, M. B.; García, A. R.; Gawlik, A.; Gilardoni, S.; Glodariu, T.; Gonçalves, I. F.; González, E.; Griesmayer, E.; Gunsing, F.; Harada, H.; Heinitz, S.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Kalamara, A.; Kavrigin, P.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Kurtulgil, D.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lonsdale, S. J.; Macina, D.; Marganiec, J.; Martínez, T.; Masi, A.; Mastinu, P.; Mastromarco, M.; Maugeri, E. A.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Musumarra, A.; Negret, A.; Nolte, R.; Oprea, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, I.; Praena, J.; Radeck, D.; Rauscher, T.; Reifarth, R.; Rout, P. C.; Rubbia, C.; Ryan, J. A.; Saxena, A.; Schillebeeckx, P.; Schumann, D.; Smith, A. G.; Sosnin, N. V.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Valenta, S.; Variale, V.; Vaz, P.; Ventura, A.; Vlastou, R.; Wallner, A.; Warren, S.; Woods, P. J.; Wright, T.; Žugec, P.
2017-09-01
Monte Carlo (MC) simulations are an essential tool to determine fundamental features of a neutron beam, such as the neutron flux or the γ-ray background, that sometimes can not be measured or at least not in every position or energy range. Until recently, the most widely used MC codes in this field had been MCNPX and FLUKA. However, the Geant4 toolkit has also become a competitive code for the transport of neutrons after the development of the native Geant4 format for neutron data libraries, G4NDL. In this context, we present the Geant4 simulations of the neutron spallation target of the n_TOF facility at CERN, done with version 10.1.1 of the toolkit. The first goal was the validation of the intra-nuclear cascade models implemented in the code using, as benchmark, the characteristics of the neutron beam measured at the first experimental area (EAR1), especially the neutron flux and energy distribution, and the time distribution of neutrons of equal kinetic energy, the so-called Resolution Function. The second goal was the development of a Monte Carlo tool aimed to provide useful calculations for both the analysis and planning of the upcoming measurements at the new experimental area (EAR2) of the facility.