NASA Astrophysics Data System (ADS)
Muhammad, Nawaz; de Bresser, Hans; Peach, Colin; Spiers, Chris
2016-04-01
Deformation experiments have been conducted on rock samples of the valuable magnesium and potassium salts bischofite and carnallite, and on mixed bischofite-carnallite-halite rocks. The samples have been machined from a natural core from the northern part of the Netherlands. Main aim was to produce constitutive flow laws that can be applied at the in situ conditions that hold in the undissolved wall rock of caverns resulting from solution mining. The experiments were triaxial compression tests carried out at true in situ conditions of 70° C temperature and 40 MPa confining pressure. A typical experiment consisted of a few steps at constant strain rate, in the range 10-5 to 10-8 s-1, interrupted by periods of stress relaxation. During the constant strain rate part of the test, the sample was deformed until a steady (or near steady) state of stress was reached. This usually required about 2-4% of shortening. Then the piston was arrested and the stress on the sample was allowed to relax until the diminishing force on the sample reached the limits of the load cell resolution, usually at a strain rate in the order of 10-9 s-1. The duration of each relaxation step was a few days. Carnallite was found to be 4-5 times stronger than bischofite. The bischofite-carnallite-halite mixtures, at their turn, were stronger than carnallite, and hence substantially stronger than pure bischofite. For bischofite as well as carnallite, we observed that during stress relaxation, the stress exponent nof a conventional power law changed from ˜5 at strain rate 10-5 s-1 to ˜1 at 10-9 s-1. The absolute strength of both materials remained higher if relaxation started at a higher stress, i.e. at a faster strain rate. We interpret this as indicating a difference in microstructure at the initiation of the relaxation, notably a smaller grain size related to dynamical recrystallization during the constant strain rate step. The data thus suggest that there is a gradual change in deformation mechanism with decreasing strain rate for both bischofite and carnallite, from grain size insensitive (GSI) dislocation creep at the higher strain rates to grain size sensitive (GSS, i.e. pressure solution) creep at slow strain rate. We can speculate about the composite GSI-GSS nature of the constitutive laws describing the creep of the salt materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowenstien, T.K.; Casas, E.; Schubel, K.A.
Dabusun Lake (200 km{sup 2}) is a shallow ({lt}1 m) perennial saline lake in the high altitude Qaidam basin (120,000 km{sup 2}) of western China. It is underlain by {gt}40 m of salt and siliciclastic sediments ({approximately}54,000 years old). Petrographic features in two 50 m cores (chevron halite, halite cumulates, rafts, and siliciclastic mud, minor solution and no subaerial exposure features except in the top meter) indicate continuous shallow perennial lake conditions. The chemical composition of fluid inclusions trapped in halite crystals show lakewaters have generally undergone progressive concentration to the present. Modern Dabusun Lake is chemically uniform (Na-Mg-Cl-rich), nonstratified,more » and at or near halite saturation. Evaporites accumulate in zones on the restricted lake margins as halite (cumulate and raft layers with rippled surfaces and chevron mounds), halite + carnallite (KCl{center dot}MgCl{sub 2}{center dot}6H{sub 2}O), and finally carnallite (ephemeral fine-grained crystal mush). The carnallite zone merges with a 25 m wide shoreline facies, highlighted by a 1 m wide zone of halite ooids/pisoids that border a 20-30 cm tall overhanging salt crust (1967 shoreline). Lower lake levels since that time have produced vadose diagenetic features in the shoreline halites including: pendant cements, meniscus cements, halite 'popcorn,' and solution voids with muddy geopetal fills. A large flood (July-September 1989) expanded Dabusun Lake to 800 km{sup 2}, and dissolved all surface carnallite deposits. Diagenetic carnallite cements, formed by downward migration and cooking of carnallite saturated surface brines, however, remain in the subsurface to depths of 13 m. These potash mineral cements are similar in texture to many ancient potash evaporites.« less
First-principles study of anhydrite, polyhalite and carnallite
NASA Astrophysics Data System (ADS)
Weck, Philippe F.; Kim, Eunja; Jové-Colón, Carlos F.; Sassani, David C.
2014-02-01
We report density functional calculations of the structures and properties of anhydrite (CaSO4), polyhalite (K2SO4·MgSO4·2CaSO4·2H2O) and carnallite (KCl·MgCl2·6H2O). Densities of states are systematically investigated and phonon analysis using density functional perturbation theory is performed at constant equilibrium volume for anhydrite and polyhalite in order to derive their isochoric thermal properties. Thermal properties at constant atmospheric pressure are also calculated using the quasi-harmonic approximation. The computed molar entropy and isobaric heat capacity for anhydrite reproduce experimental data up to 800 K to within 3% and 10%, respectively, while further experimental work is needed to assess our theoretical predictions for polyhalite.
Mineral resource of the month: magnesium
Kramer, Deborah A.
2012-01-01
Magnesium is the eighthmost abundant element in Earth’s crust, and the second-most abundant metal ion in seawater. Although magnesium is found in more than 60 minerals, only brucite, dolomite, magnesite and carnallite are commercially important for their magnesium content. Magnesium and its compounds also are recovered from seawater, brines found in lakes and wells, and bitterns (salts).
NASA Astrophysics Data System (ADS)
Mertineit, Michael; Grewe, Wiebke; Schramm, Michael; Hammer, Jörg; Blanke, Hartmut; Patzschke, Mario
2017-04-01
Fractures occur locally in the z2 potash seam (Kaliflöz Staßfurt). Most of them extend several centimeter to meter into the surrounding salt rocks. The fractures are distributed on all levels in an extremely deformed area of the Morsleben salt mine, Northern Germany. The sampling site is located within a NW-SE trending synclinal structure, which was reverse folded (Behlau & Mingerzahn 2001). The samples were taken between the -195 m and - 305 m level at the field of Marie shaft. In this area, more than 200 healed fractures were mapped. Most of them show opening widths of only a few millimeters to rarely 10 cm. The fractures in rock salt are filled with basically polyhalite, halite and carnallite. In the potash seam, the fractures are filled with kainite, halite and minor amounts of carnallite and polyhalite. In some cases the fracture infill changes depending on the type of surrounding rocks. There are two dominant orientations of the fractures, which can be interpreted as a conjugated system. The main orientation is NE-SW trending, the dip angles are steep (ca. 70°, dip direction NW and SE, respectively). Subsequent deformation of the filled fractures is documented by a strong grain shape fabric of kainite, undulatory extinction and subgrain formation in kainite, and several mineral transformations. Subgrain formation in halite occurred in both, the fracture infill and the surrounding salt rocks. The results correlate in parts with investigations which were carried out at the close-by rock salt mine Braunschweig-Lüneburg (Horn et al. 2016). The development of the fractures occurred during compression of clayey salt rocks. However, the results are only partly comparable due to different properties (composition, impurities) of the investigated stratigraphic units. Further investigations will focus on detailed microstructural and geochemical analyses of the fracture infill and surrounding salt rocks. Age dating of suitable minerals, e.g. polyhalite (Leitner et al. 2013), could help to reconstruct the formation conditions. Behlau, J. & Mingerzahn, G. 2001. Geological and tectonic investigations in the former Morsleben salt mine (Germany) as a basis for the safety assessment of a radioactive waste repository. Engineering Geology 61, 83-97. Leitner, C., Neubauer, F., Genser, J., Borojevic-Sostaric, S. & Rantitsch, G. 2013. 40Ar/39Ar ages of crystallization and recrystallization of rock-forming polyhalite in Alpine rocksalt deposits. In: Jourdan, F., Mark, D.F. & Verati, C. (eds.): Advances in 40Ar/39Ar dating from archaeology to planetary sciences. - Geological Society of London, Special Publications 378, 207-224. Horn, M., Barnasch, J., Bode, J., Stanek, K. & Zeibig, S. 2016. Erscheinungsformen der bruchlosen Deformation und Bruchdeformation im Salinar des Steinsalzbergwerkes Braunschweig-Lüneburg. Kali und Steinsalz 02/2016, 30-42.
Origin of secondary potash deposits; a case from Miocene evaporites of NW Central Iran
NASA Astrophysics Data System (ADS)
Rahimpour-Bonab, H.; Kalantarzadeh, Z.
2005-04-01
In early Miocene times, an extensive carbonate shelf developed in Central Iran and during several cycles of sea-level fluctuations, evaporite-bearing carbonate sequences of the Qom Formation were deposited. However, in the early-middle Miocene, development of restricted marine conditions led to a facies change from shelf carbonates of the Qom Formation to the evaporite series of the M 1 member of the overlying Lower Red Formation. This member is a facies mosaic of lagoonal and salina evaporites (mainly halite beds) admixed with wadi siliciclastics. The purpose of this study, which focuses on two salt mines in the northwestern portion of Central Iran in the Zanjan province, was to reveal the origin, sedimentary environment, and diagenesis of these potash-bearing evaporite sequences. Petrographic examination revealed the following mineral assemblage: halite, gypsum, anhydrite and carnallite as primary precipitates, and langbeinite and aphthitalite as secondary metamorphic potash salts. In the Iljaq mine, distorted halite beds are dominated by burial and deformational textures and a great deal of secondary potash salts. In the Qarah-Aghaje mine, however, the bedded halite shows pristine primary textures and is devoid of the secondary potash salts. High bromine content of most evaporite minerals suggests their marine origin, and confirms the absence of the extensive meteoric alterations and subsequent bromine depletions. Potash salts are mainly secondary, and resulted from diagenetic replacements of distorted halite beds during thermal and dynamic metamorphism in a burial setting.
Chemical openness and potential for misinterpretation of the solute environment of coastal sabkhat
Wood, W.W.; Sanford, W.E.; Frape, S.K.
2005-01-01
Sabkha deposits in the geologic record are commonly used to interpret the environmental conditions of deposition. Implicit in this use is the assumption that the solute system is chemically closed, that is, the authigenic minerals represent the composition of the fluids in their environment of origin. Thermodynamic and mass-balance calculations based on measurements of water and solute flux of contemporary Abu Dhabi coastal sabkha system, however, demonstrate that the system is open for sodium and chloride, where nearly half of the input is lost, but closed for sulfur, where nearly 100% is retained. Sulfur and chloride isotopes were consistent with this observation. If these sabkha deposits were preserved in the geologic record, they would suggest a solute environment rich in sulfate and poor in chloride; yet the reverse is true. In most coastal-sabkha environments, capillary forces bring solutes and water to the surface, where the water evaporates and halite, carnallite, sylvite, and other soluble minerals are precipitated. Retrograde minerals, such as anhydrite, calcite, dolomite, and gypsum, however, precipitate and accumulate in the capillary zone beneath the surface of the coastal sabkha. Because they possess relatively low solubility and are below the surface, these retrograde minerals are protected from dissolution and physical erosion occurring from infrequent but intense rainfall events. Thus, they are more likely to be preserved in the geological record than highly soluble minerals formed on the surface. ?? 2004 Elsevier B.V. All rights reserved.
Magnetic and mineralogical properties of salt rocks from the Zechstein of the Northern German Basin
NASA Astrophysics Data System (ADS)
Heinrich, Frances C.; Schmidt, Volkmar; Schramm, Michael; Mertineit, Michael
2017-03-01
Magnetic properties of rocks are often studied to characterize composition and fabric of rocks. For salt rocks, the basic relationships between their magnetic properties and composition, which are necessary to interpret rock magnetic data, are not yet established. Therefore, we studied different types of natural salt rock and pure salt minerals. We measured their magnetic properties (magnetic susceptibility, isothermal remanent magnetization acquisition curves, first-order reversal curve diagrams and temperature-dependent magnetic susceptibility) and used analytical methods such as microscopy, X-ray diffraction and inductively coupled plasma atomic emission spectroscopy to understand the relationship between magnetic properties and mineralogy. Salt rocks mainly consist of the diamagnetic minerals halite, carnallite, sylvine and anhydrite with negative magnetic susceptibilities. The magnetic susceptibilities of pure synthetic NaCl and KCl single crystals, show values of -14.5 × 10-6 and -13.5 × 10-6 SI, respectively. In contrast, in natural salt rocks higher magnetic susceptibility values were measured. The magnetic susceptibility of the samples investigated in this study shows a general increase from light rock salt (maximum -10 × 10-6 SI) over carnallitite (maximum 134 × 10-6 SI) to red sylvinite (maximum 270 × 10-6 SI). Whole rock analyses suggest that increased magnetic susceptibility can be attributed to paramagnetic and ferromagnetic minerals that are contained within the insoluble residue. The magnetic susceptibility is mainly controlled by magnetite and phyllosilicates. Its measurement can therefore be used to detect subtle changes in the content of these minerals.
The SALT NORM : a quantitative chemical-mineralogical characterization of natural waters
Bodine, Marc W.; Jones, Blair F.
1986-01-01
The new computer program SNORM calculates the salt norm from the chemical composition of a natural water. The salt norm is the quantitative ideal equilibrium assemblage that would crystallize if the water evaporated to dryness at 25 C and 1 bar pressure under atmospheric partial pressure of CO2. SNORM proportions solute concentrations to achieve charge balance. It quantitatively distributes the 18 acceptable solutes into normative salts that are assigned from 63 possible normative salts to allow only stable associations based on the Gibbs Phase Rule, available free energy values, and observed low-temperature mineral associations. Although most natural water compositions represent multiple solute origins, results from SNORM identify three major categories: meteoric or weathering waters that are characterized by normative alkali-bearing sulfate and carbonate salts: connate marine-like waters that are chloride-rich with a halite-bischofite-carnallite-kieserite-anhydrite association; and diagenetic waters that are frequently of marine origin but yield normative salts, such as Ca-bearing chlorides (antarcticite and tachyhydrite) and sylvite, which suggest solute alteration by secondary mineral reactions. The solute source or reaction process within each of the above categories is commonly indicated by the presence or absence of diagnostic normative salts and their relative abundance in the normative salt assemblage. For example, salt norms: (1) may identify lithologic source; (2) may identify the relative roles of carbonic and sulfuric acid hydrolysis in the evolution of weathering waters; (3) may identify the origin of connate water from normal marine, hypersaline, or evaporite salt resolution processes; and (4) may distinguish between dolomitization and silicate hydrolysis or exchange for the origin of diagenetic waters. (Author 's abstract)
Siegel, M.D.; Anderholm, S.
1994-01-01
The Culebra Dolomite Member of the Rustler Formation, a thin (10 m) fractured dolomite aquifer, lies approximately 450 m above the repository horizon of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico, USA. Salinities of water in the Culebra range roughly from 10,000 to 200,000 mg/L within the WIPP site. A proposed model for the post-Pleistocene hydrochemical evolution of the Culebra tentatively identifies the major sources and sinks for many of the groundwater solutes. Reaction-path simulations with the PHRQPITZ code suggest that the Culebra dolomite is a partial chemical equilibrium system whose composition is controlled by an irreversible process (dissolution of evaporites) and equilibrium with gypsum and calcite. Net geochemical reactions along postulated modern flow paths, calculated with the NETPATH code, include dissolution of halite, carbonate and evaporite salts, and ion exchange. R-mode principal component analysis revealed correlations among the concentrations of Si, Mg, pH, Li, and B that are consistent with several clay-water reactions. The results of the geochemical calculations and mineralogical data are consistent with the following hydrochemical model: 1. (1) solutes are added to the Culebra by dissolution of evaporite minerals 2. (2) the solubilities of gypsum and calcite increase as the salinity increases; these minerals dissolve as chemical equilibrium is maintained between them and the groundwater 3. (3) equilibrium is not maintained between the waters and dolomite; sufficient Mg is added to the waters by dissolution of accessory carnallite or polyhalite such that the degree of dolomite supersaturation increases with ionic strength 4. (4) clays within the fractures and rock matrix exert some control on the distribution of Li, B, Mg, and Si via sorption, ion exchange, and dissolution. ?? 1994.
Hydrogeologic processes in saline systems: Playas, sabkhas, and saline lakes
Yechieli, Y.; Wood, W.W.
2002-01-01
Pans, playas, sabkhas, salinas, saline lakes, and salt flats are hydrologically similar, varying only in their boundary conditions. Thus, in evaluating geochemical processes in these systems, a generic water and solute mass-balance approach can be utilized. A conceptual model of a coastal sabkha near the Arabian Gulf is used as an example to illustrate the various water and solute fluxes. Analysis of this model suggests that upward flux of ground water from underlying formations could be a major source of solutes in the sabkha, but contribute only a small volume of the water. Local rainfall is the main source of water in the modeled sabkha system with a surprisingly large recharge-to-rainfall ratio of more than 50%. The contribution of seawater to the solute budget depends on the ratio of the width of the supratidal zone to the total width and is generally confined to a narrow zone near the shoreline of a typical coastal sabkha. Because of a short residence time of water, steady-state flow is expected within a short time (50,000 years). The solute composition of the brine in a closed saline system depends largely on the original composition of the input water. The high total ion content in the brine limits the efficiency of water-rock interaction and absorption. Because most natural systems are hydrologically open, the chemistry of the brines and the associated evaporite deposits may be significantly different than that predicted for hydrologically closed systems. Seasonal changes in temperature of the unsaturated zone cause precipitation of minerals in saline systems undergoing evaporation. Thus, during the hot dry season months, minerals exhibit retrograde solubility so that gypsum, anhydrite and calcite precipitate. Evaporation near the surface is also a major process that causes mineral precipitation in the upper portion of the unsaturated zone (e.g. halite and carnallite), provided that the relative humidity of the atmosphere is less than the activity of water. The slope of the fresh/brine-water interface in saline lake systems is shallower than in fresh/seawater interface because of the greater density difference between the fresh/brine-water bodies. The interface between sabkha brines and seawater slopes seaward, unlike normal marine-fresh water systems that slope landward. Moreover, the brine/seawater interface does not achieve steady state because it is pushed toward the sea by the sabkha's brine. ?? 2002 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pekov, I. V.; Yapaskurt, V. O.; Britvin, S. N.; Vigasina, M. F.; Lykova, I. S.; Zubkova, N. V.; Krivovichev, S. V.; Sidorov, E. G.
2017-12-01
A new mineral romanorlovite has been found in the upper, moderately hot zones of two fumaroles, Glavnaya Tenoritovaya (Major Tenorite) and Arsenatnaya (Arsenate), located at the second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with avdoninite in both fumaroles, and in Glavnaya Tenoritovaya, it is also associated with belloite, sylvite, carnallite, mitscherlichite, sanguite, chlorothionite, eriochalcite, chrysothallite, and mellizinkalite. Romanorlovite occurs as prismatic, equant, or tabular tetragonal crystals up to 0.1 mm in size, crystal clusters up to 0.5 mm, and crusts up to 2 × 2 mm in area. The mineral is transparent with vitreous luster. Its color varies from yellow-brown to dark brown, and tiny crystals are honey- or golden-yellow. Cleavage is not observed. Romanorlovite is brittle. The Mohs hardness is ca 3. The calculated density varies from 2.72 to 2.79 g/cm3 depending on the content of admixed Pb. The mineral is optically uniaxial (-), ω = 1.727(3), ɛ = 1.694(2). The Raman spectrum has been reported. The chemical composition of the holotype sample (wt %; electron microprobe data, contents of O and H calculated by stoichiometry) is as follows: 21.52 K, 0.89 Pb, 28.79 Cu, 0.02 Zn, 44.74 Cl, 4.85 Ocalc, 0.41 Hcalc, total 101.22. Its empirical formula calculated based on Cl25 with (OH)4(H2O)2 is K10.90Pb0.09Cu8.97Zn0.01Cl25(OH)4 · 2H2O. The simplified formula is K11Cu9Cl25(OH)4 · 2H2O ( Z = 4). Romanorlovite is tetragonal, space group[ I4/ mmm. The unit cell parameters are (1) holotype: a = 17.5804(7), c = 15.9075(6) Å, V = 4916.5(3) Å3; (2) the sample enriched in Pb on which the crystal structure was refined: a = 17.5538(19), c = 15.8620(17) Å, V= 4887.7(9) Å3. The strongest reflections of the powder XRD pattern ( d, Å- I[ hkl]) are 12.48-56[110], 11.74-36[101], 8.80-100[200], 7.97-34[002], 6.71-40[112], 3.165-32[512], 2.933-80[215, 433], 2.607-38[514]. The mineral is named in honor of Roman Yu. Orlov (1929-2005), Russian mineralogist and physicist, who worked in the Department of Mineralogy, Moscow State University.
Long Term Analysis of Deformations in Salt Mines: Kłodawa Salt Mine Case Study, Central Poland
NASA Astrophysics Data System (ADS)
Cała, Marek; Tajduś, Antoni; Andrusikiewicz, Wacław; Kowalski, Michał; Kolano, Malwina; Stopkowicz, Agnieszka; Cyran, Katarzyna; Jakóbczyk, Joanna
2017-09-01
Located in central Poland, the Kłodawa salt dome is 26 km long and about 2 km wide. Exploitation of the dome started in 1956, currently rock salt extraction is carried out in 7 mining fields and the 12 mining levels at the depth from 322 to 625 meters below sea level (m.b.s.l.). It is planned to maintain the mining activity till 2052 and extend rock salt extraction to deeper levels. The dome is characterised by complex geological structure resulted from halokinetic and tectonic processes. Projection of the 3D numerical analysis took into account the following factors: mine working distribution within the Kłodawa mine (about 1000 rooms, 350 km of galleries), complex geological structure of the salt dome, complicated structure and geometry of mine workings and distinction in rocks mechanical properties e.g. rock salt and anhydrite. Analysis of past mine workings deformation and prediction of future rock mass behaviour was divided into four stages: building of the 3D model (state of mine workings in year 2014), model extension of the future mine workings planned for extraction in years 2015-2052, the 3D model calibration and stability analysis of all mine workings. The 3D numerical model of Kłodawa salt mine included extracted and planned mine workings in 7 mining fields and 14 mining levels (about 2000 mine workings). The dimensions of the model were 4200 m × 4700 m × 1200 m what was simulated by 33 million elements. The 3D model was calibrated on the grounds of convergence measurements and laboratory tests. Stability assessment of mine workings was based on analysis of the strength/stress ratio and vertical stress. The strength/stress ratio analysis enabled to indicate endangered area in mine workings and can be defined as the factor of safety. Mine workings in state close to collapse are indicated by the strength/stress ratio equals 1. Analysis of the vertical stress in mine workings produced the estimation of current state of stress in comparison to initial (pre-mining) conditions. The long-term deformation analysis of the Kłodawa salt mine for year 2014 revealed that stability conditions were fulfilled. Local disturbances indicated in the numerical analysis were connected with high chambers included in the mining field no 1 and complex geological structure in the vicinity of mine workings located in the mining fields no 2 and 3. Moreover, numerical simulations that projected the future extraction progress (till year 2052) showed positive performance. Local weakness zones in the mining field no 7 are associated with occurrence of carnallite layers and intensive mining which are planned in the mining field no 6 at the end of rock salt extraction.
NASA Astrophysics Data System (ADS)
Davide, Baioni; Forese Carlo, Wezel
2010-05-01
The Tithonium Chasma (TC) is the northern trench of the western troughs of Valles Marineris (Mars). In the easternmost part of the canyon system a mountain displaying dome shape morphology is located. The mineralogical characteristics of the dome have been indicated by the OMEGA image spectrometer data that mapped it as a sulphate deposit (OMEGA data orbit 531_3). Studies on the spectral characteristic absorptions for the hydrated magnesium sulphates carried out on the deposits within the Tithonium Chasma, showed the mineralogical components displayed by the dome in detail. According to these results the dome shows clear signatures of kieserite (Mg SO4.H2O), an evaporitic mineral also found on the Earth. Further studies carried out on the characteristics and the genesis of Kieserite both on Mars and on the Earth showed that the dome can not be constituted entirely by kieserite alone but probably it might be constituted also by the same salts that on the Earth alter to kieserite, such as, carnallite, kainite and halite. In this work we investigated in great detail the surface features of the dome located in the eastern part of TC, with the aim to try to determine its nature and origin. The morphological features of the dome have been investigated through the integrate analysis of HiRISE, HRSC, MOC and THEMIS data, while the morphometric characteristics have been measured on a topographic map (50 m contours lines) built using HRSC and MOLA data. The observation of the dome surface highlights features created by fluvio-erosional and solutional processes. The dome appears to be characterized by deep gully morphology displaying a radial system that develops from the margins of the summit plateau. The solutional surface is characterized by landforms typical of the karst morphology such as, karren, dolines and collapse dolines. Depositional forms displaying periglacial rock glacier features can be seen at the foot of the slopes, while they seem to be lacking along the dome flanks. The observation made also highlights the presence of layers outcropping on the surface of the dome. The layers display both laterally and vertically continuity apparently without facies variations. The dome seems to be formed of different materials (minerals, grain-size) with different properties. The analysis performed show that the landforms observed clearly indicate the presence of solutional processes that seem to have worked in a selective way. These landforms indicate the presence of liquid water, probably caused by the melting of ice in a periglacial environment, or permafrost rich soil, suggesting that either the material is ice-rich or was so at one time. Deposits similar to that one located in the eastern TC are found almost in all chasmata of Valles Marineris system and are well known as interior layered deposits(ILD). To explain the origin and formation mechanisms of the ILD several hypotheses have been formulated in previous studies. The results carried out in this study allow us to suppose that any of the previous hypotheses to explain its origin is fitting with the evidences found. In our opinion the data observed show evidences that allow us to suppose that the dome located in the eastern part of TC might represents the result of diapirism processes.
Cocker, Mark D.; Orris, Greta J.; Dunlap, Pamela; Lipin, Bruce R.; Ludington, Steve; Ryan, Robert J.; Słowakiewicz, Mirosław; Spanski, Gregory T.; Wynn, Jeff; Yang, Chao
2017-08-03
Undiscovered potash resources in the Pripyat Basin, Belarus, and Dnieper-Donets Basin, Ukraine, were assessed as part of a global mineral resource assessment led by the U.S. Geological Survey (USGS). The Pripyat Basin (in Belarus) and the Dnieper-Donets Basin (in Ukraine and southern Belarus) host stratabound and halokinetic Upper Devonian (Frasnian and Famennian) and Permian (Cisuralian) potash-bearing salt. The evaporite basins formed in the Donbass-Pripyat Rift, a Neoproterozoic continental rift structure that was reactivated during the Late Devonian and was flooded by seawater. Though the rift was divided, in part by volcanic deposits, into the separate Pripyat and Dnieper-Donets Basins, both basins contain similar potash‑bearing evaporite sequences. An Early Permian (Cisuralian) sag basin formed over the rift structure and was also inundated by seawater resulting in another sequence of evaporite deposition. Halokinetic activity initiated by basement faulting during the Devonian continued at least into the Permian and influenced potash salt deposition and structural evolution of potash-bearing salt in both basins.Within these basins, four areas (permissive tracts) that permit the presence of undiscovered potash deposits were defined by using geological criteria. Three tracts are permissive for stratabound potash-bearing deposits and include Famennian (Upper Devonian) salt in the Pripyat Basin, and Famennian and Cisuralian (lower Permian) salt in the Dnieper-Donets Basin. In addition, a tract was delineated for halokinetic potash-bearing Famennian salt in the Dnieper-Donets Basin.The Pripyat Basin is the third largest source of potash in the world, producing 6.4 million metric tons of potassium chloride (KCl) (the equivalent of about 4.0 million metric tons of potassium oxide or K2O) in 2012. Potash production began in 1963 in the Starobin #1 mine, near the town of Starobin, Belarus, in the northwestern corner of the basin. Potash is currently produced from six potash mines in the Starobin area. Published reserves in the Pripyat Basin area are about 7.3 billion metric tons of potash ore (about 1.3 billion metric tons of K2O) mostly from potash-bearing salt horizons in the Starobin and Petrikov mine areas. The 15,160-square-kilometer area of the Pripyat Basin underlain by Famennian potash-bearing salt contains as many as 60 known potash-bearing salt horizons. Rough estimates of the total mineral endowment associated with stratabound Famennian salt horizons in the Pripyat Basin range from 80 to 200 billion metric tons of potash-bearing salt that could contain 15 to 30 billion metric tons of K2O.Parameters (including the number of economic potash horizons, grades, and depths) for these estimates are not published so the estimates are not easily confirmed. Historically, reserves have been estimated above a depth of 1,200 meters (m) (approximately the depths of conventional underground mining). Additional undiscovered K2O resources could be significantly greater in the remainder of the Fammenian salt depending on the extents and grades of the 60 identified potash horizons above the USGS assessment depth of 3,000 m in the remainder of the tract. Increasing ambient temperatures with increasing depths in the eastern parts of the Pripyat Basin may require a solution mining process which is aided by higher temperatures.No resource or reserve data have been published and little is known about stratabound Famennian and Frasnian salt in the Dnieper-Donets Basin. These Upper Devonian salt units dip to the southeast and extend to depths of 15–19 kilometers (km) or greater. The tract of stratabound Famennian salt that lies above a depth of 3 km, the depth above which potash is technically recoverable by solution mining, underlies an area of about 15,600 square kilometers (km2). If Upper Devonian salt units in the Dnieper-Donets Basin contain potash-bearing strata similar to salt of the same age in the Pripyat Basin, then the stratabound Famennian tract in the Dnieper-Donets Basin could contain significant undiscovered potash resources.The Cisuralian evaporite sequence in the Dnieper-Donets Basin consists of 10 evaporite cycles with the upper 3 cycles containing potash-bearing salt (mainly as sylvite and carnallite) in several subbasins and polyhalite in the sulfate bearing parts of the identified tract. The area of the Cisuralian tract is 62,700 km2. Potash-bearing cycles are as much as 40 m thick. One subbasin is reported to contain 794 million metric tons of “raw or crude” potash-bearing salt which could contain 50 to 150 million metric tons of K2O, depending on the grade. Undiscovered potash resources in the remainder of this permissive tract may be significantly greater. Depths to the Permian salt range from less than 100 to about 1,500 m.Undiscovered resources of halokinetic potash-bearing salt in the Dnieper-Donets Basin were assessed quantitatively for this study by using the standard USGS three-part form of mineral resource assessment (Singer, 2007a; Singer and Menzie, 2010). Delineation of the permissive tract was based on distributions of mapped halokinetic salt structures. This tract contains at least 248 diapiric salt structures with a total area of 7,840 km2 that occupies approximately 8 percent of the basin area. The vertical extent of these salt structures is hundreds of meters to several kilometers. This assessment estimated that a total mean of 11 undiscovered deposits contain an arithmetic mean estimate of about 840 million metric tons of K2O in the halokinetic salt structures of the Dnieper-Donets Basin for which the probabilistic estimate was made.
Interior Layered Deposits on Mars: Insights from elevation, image- and spectral data of Ganges Mensa
NASA Astrophysics Data System (ADS)
Sowe, M.; Roach, L. H.; Hauber, E.; Jaumann, R.; Mustard, J. L.; Neukum, G.
2008-09-01
Introduction Interior Layered Deposits (ILDs) are exposed at various locations on Mars. They differ from their surroundings by their higher albedo, morphology, and fine layering. Their origin (sedimentary or volcanic) is well discussed [e.g. 1-3] but Fe-oxides and hydrated minerals such as sulfates [4-6] have been detected on ILD surfaces suggesting an aquatic environment. Here we present some features of Ganges Mensa. We looked at HRSC elevation data [7], THEMIS brightness-temperature and CRISM data to understand differences in morphology and composition. Ganges Mensa observations This ILD shows sub-horizontal layering and mesa morphology (flat top and steep slopes). Its stairstepped morphology is shown on Fig. 3 and does not appear in ILDs occurring in the eastern chaotic terrains (Iani, Aureum, Aram, and Arsinoes Chaos) but in other ILDs in Valles Marineris (e.g. Hebes). Ganges Mensa features fresh-eroded light-toned layers appearing competent, forming steep scarps and having high surface temperatures as well as thermal inertia. The dark material corresponds to accumulations of wind-transported matter that covers flatter slopes and shows lower brightness-temperatures. Analyses of CRISM and image data (HRSC, MOC, HiRISE) indicate that there are differences in texture and mineralogical composition as well. CRISM observations show that the lower sequence of the ILD (consisting of many layers) has a strong kieserite signature as observed by [8]. Exposed windblown dark material on its surface has no olivine, pyroxene, or ferric oxide spectral features. This unit comprises an approximate thickness of ~1.6 km out of 3.5 km for the whole ILD and is very rough and coarse looking. There, the surface temperatures (Fig. 2) as well as thermal inertia values are much higher which is in agreement with [8]. A transition zone characterized by a discrete layer at an elevation of about -1.9 km marks the beginning of the upper unit (Fig. 1-3). In the upper unit, weak polyhydrated sulfate (PHS) features are observed in the light-toned material while the dark dunes on top and in grooves show clinopyroxene (HCP). The mineralogy might correlate with the steepness of the slopes observed by [8,10] for kieserite being exposed in steeper parts and polyhydrated sulfates in less steep parts. As the ILD is composed of alternating steep and less steep parts, less steep parts may possibly exhibit polyhydrated sulfates that are covered by windblown material. We observe a higher thermal inertia in the lower, fresh eroded kieserite unit (400-600 SI) than in the upper unit that shows polyhydrated sulfate features (300- 500 SI) which is not coincident to observations in West Candor Chasma ILD [11] but may be due to weak PHS signal or hydration state of PHS. The same is observed comparing kieserite exposed on steep exposures and PHS [12] in Capri Chasma. ILDs observed in other regions ILDs have various morphologies. They often appear as mounds or hills. Massive cap rock at their top and layering in lower parts is also very common. Material enclosing chaotic structures, terrace-like appearances, and knobs are visible. Varying surfaces (knobby, rough, fractured, grooved, cap rock) are widespread as well as talus exhibited on steep slopes. Yardangs and flutes on their surface as well as dunes located in surface fractures indicate that the material is highly affected by wind erosion and therefore weakly consolidated. The contact between ILD and chaotic terrain often is covered by dusty and/or fine-grained material, but few MOC-images [9] show the stratigraphic position of ILDs superposing chaotic terrain, and indicating a younger age. Layering is observed at different elevations at MOCscale reaching from -4.6 km up to -1 km, but mostly between -4.5 km up to -3 km and is absent in upper parts that are mostly cap rock. The vertical thickness of layered material is high in Ganges Mensa and low in other regions of Ganges or the chaotic terrains, e.g. Arsinoes. We discriminate between less than 16 layers and less than 7 layers we counted at MOC-scale. Apparently, there is no trend between the number of layering and topographic location. Even in regions where we see massive cap rock material, at HiRISEscale, there is layering. Summarizing, some ILDs show sulfate minerals while others do not, e.g. other ILDs in Ganges Chasma. There, no spectral signature is detectable by CRISM. That implies that their surface, which obviously is freshly eroded, apparently is not composed of ironbearing and/or hydrated minerals. Nevertheless, these ILDs are interesting as well even if there are differences in the surface composition. These differences might have several reasons since the whole ILD must not be sulfate-rich and other evaporite minerals such as halite, sylvite or silica-rich minerals as plagioclase fit in the discussed hypotheses that formed ILDs. In the saliniferous-formation-cycle for instance, carbonates (calcite, dolomite) form first. Then sulphates (anhydrite, gypsum) and at last easy soluble sodium-, potassic- and magnesia salts (halite, sylvite, and carnallite) are formed. Additionally these spectrally neutral outcrops are strongly affected by erosion that may also explain the lack of CRISM sensitive mineral features. At least not all ILDs must have formed the same way. A correlation between ILDs may give clue to their formation processes. References: [1] Lucchitta B. et al. (1992) Mars, 453-492. [2] Chapman, M. G, Tanaka, K. L. (2001) JGR 106, 10087- 10100. [3] Rossi, A. P. et al. (2008), JGR, doi:10.1029/2007JE003062, in press. [4] Gendrin A. et al. (2005), Science, 307, 587-1591. [5] Noe Dobrea, E. Z. et al. (2008), Icarus, 193, 516-534. [6] Glotch T.D., and P.R. Christensen (2005), JGR, 110, doi:10.1029/2004JE002389. [7] Gwinner, K. et al. (2005) PFG 5, 387 - 394. [8] Mangold N. et al. (2007), 7th ICM, 3141. [9] Sowe, M. et al. (2008), LPSCXXXIX, 1715. [10] Roach, L.H. et al. (2008), LPSCXXXIX, 1823 [11] Mangold, N. et al. (2008), Icarus, 194, 519-543 [12] Roach, L.H. et al. (2007), 7th ICM, 3223