Ranalli, Anthony J.; Yager, Douglas B.
2016-01-01
This study investigated the potential for the uranium mineral carnotite (K2(UO2)2(VO4)2·3H2O) to precipitate from evaporating groundwater in the Texas Panhandle region of the United States. The evolution of groundwater chemistry during evaporation was modeled with the USGS geochemical code PHREEQC using water-quality data from 100 groundwater wells downloaded from the USGS National Water Information System (NWIS) database. While most modeled groundwater compositions precipitated calcite upon evaporation, not all groundwater became saturated with respect to carnotite with the system open to CO2. Thus, the formation of calcite is not a necessary condition for carnotite to form. Rather, the determining factor in achieving carnotite saturation was the evolution of groundwater chemistry during evaporation following calcite precipitation. Modeling in this study showed that if the initial major-ion groundwater composition was dominated by calcium-magnesium-sulfate (>70 precent Ca + Mg and >50 percent SO4 + Cl) or calcium-magnesium-bicarbonate (>70 percent Ca + Mg and <70 percent HCO3 + CO3) and following the precipitation of calcite, the concentration of calcium was greater than the carbonate alkalinity (2mCa+2 > mHCO3− + 2mCO3−2) carnotite saturation was achieved. If, however, the initial major-ion groundwater composition is sodium-bicarbonate (varying amounts of Na, 40–100 percent Na), calcium-sodium-sulfate, or calcium-magnesium-bicarbonate composition (>70 percent HCO3 + CO3) and following the precipitation of calcite, the concentration of calcium was less than the carbonate alkalinity (2mCa+2 < mHCO3- + 2mCO3−2) carnotite saturation was not achieved. In systems open to CO2, carnotite saturation occurred in most samples in evaporation amounts ranging from 95 percent to 99 percent with the partial pressure of CO2 ranging from 10−3.5 to 10−2.5 atm. Carnotite saturation occurred in a few samples in evaporation amounts ranging from 98 percent to 99 percent with the partial pressure of CO2 equal to 10−2.0 atm. Carnotite saturation did not occur in any groundwater with the system closed to CO2.
Margaritasite: a new mineral of hydrothermal origin from the Pena Blanca uranium district, Mexico.
Wenrich, K.J.; Modreski, P.J.; Zielinski, R.A.; Seeley, J.L.
1982-01-01
Margaritasite, (Cs,K,H3O)2(UO2)2V2O8.nH2O (where Cs > K, H3O and n approx 1), a 10.514, b 8.425, c 7.25 A, beta 106.01o, P21/a, Z = 2, is a newly recognized uranium ore mineral named for the Margaritas deposit, Pena Blanca uranium district, Chihuahua, Mexico, at which it was discovered. A Cs-rich analogue of carnotite, margaritasite is the natural equivalent of synthetic Cs-uranyl vanadate (A.M. 43- 799, 50-825). A fine-grained yellow mineral, it is most easily distinguished from carnotite by XRD; X-ray powder patterns (CuKalpha radiation) show that the (001) reflection of margaritasite lies at 12.7o (2theta ), while that of carnotite is found at 13.8o (2theta ). The shift of the (001) reflection in margaritasite reflects the structural changes caused when Cs occupies the sites filled by K in carnotite. Synthesis experiments indicate that margaritasite also differs from carnotite in a higher-T hydrothermal origin. Chemical analyses and XRD data for margaritasite and synthetic Cs- carnotite, and chemical analyses for rocks from Sierra Pena Blanca and vicinity, are tabulated.-J.A.Z.
PROCESS FOR THE RECOVERY OF METALS FROM HIGH-LIME CARNOTITE ORES
Grinstead, R.R.
1959-01-20
A process is presented for recovering uranium values from a high-lime carnotite ore comprising contacting the ore dispersed in a finely divided state with a concentrated mineral acid, adding an industrial orgnnic solvent containing alkyl ontho or pyro phosphoric acids, alkyl phosphates or alkyl phosphonates so as to effect an organic phase into which the metal value is leached and then recovering the metal value from the organic phase.
NASA Astrophysics Data System (ADS)
Glasauer, S.; Weidler, P.; Fakra, S.; Tyliszczak, T.; Shuh, D.
2011-12-01
Carnotite minerals [X2(UO2)2(VO4)2]; X = K, Ca, Ba, Mn, Na, Cu or Pb] form the major ore of uranium in the Colorado Plateau. These deposits are highly oxidized and contain U(VI) and V(IV). The biotransformation of U(VI) bound in carnotite by bacteria during dissimilatory metal reduction presents a complex puzzle in mineral chemistry. Both U(VI) and V(V) can be respired by metal reducing bacteria, and the mineral structure can change depending on the associated counterion. We incubated anaerobic cultures of S. putrefaciens CN32 with natural carnotite minerals from southeastern Utah in a nutrient-limited defined medium. Strain CN32 is a gram negative bacterium and a terrestrial isolate from New Mexico. The mineral and metal transformations were compared to a system that contained similar concentrations of soluble U(VI) and V(V). Electron (SEM, TEM) microscopies and x-ray spectromicroscopy (STXM) were used in conjunction with XRD to track mineral changes, and bacterial survival was monitored throughout the incubations. Slow rates of metal reduction over 10 months for the treatment with carnotite minerals revealed distinct biotic and abiotic processes, providing insight on mineral transformation and bacteria-metal interactions. The bacteria existed as small flocs or individual cells attached to the mineral phase, but did not adsorb soluble U or V, and accumulated very little of the biominerals. Reduction of mineral V(V) necessarily led to a dismantling of the carnotite structure. Bioreduction of V(V) by CN32 contributed small but profound changes to the mineral system, resulting in new minerals. Abiotic cation exchange within the carnotite group minerals induced the rearrangement of the mineral structures, leading to further mineral transformation. In contrast, bacteria survival was poor for treatments with soluble U(VI) and V(V), although both metals were reduced completely and formed solid UO2 and VO2; we also detected V(III). For these treatments, the bacteria formed extensive biofilms or flocs that contained U and V in the exopolymer, but excluded these metals from the bacteria. This suggests a specific mechanism to inhibit metal sorption to cell wall components. The example illustrates the interplay between bacteria and minerals under conditions that model oligotrophic survival, and provides insight on U mobilization from common uranium ore minerals.
Wyant, Donald G.
1953-01-01
Deposits of uraniferous hydrocarbons are associated with carnotite in the Shinarump conglomerate of Triassic age at Shinarump Mesa and adjacent areas of the Temple Mountain district in the San Rafael Swell of Emery County, Utah. The irregular ore bodies of carnotite-bearing sandstone are genetically related to lenticular uraniferous ore bodies containing disseminated asphaltitic and humic hydrocarbon in permeable sandstones and were localized indirectly by sedimentary controls. Nearly non-uraniferous bitumen commonly permeates the sandstones in the Shinarump conglomerate and the underlying Moekopi formation in the area. The ore deposits at Temple Mountain have been altered locally by hydrothermal solutions, and in other deposits throughout the area carnotite has been transported by ground and surface water. Uraniferous asphaltite is thought to be the non-volatile residue of an original weakly uraniferous crude oil that migrated into the San Rafael anticline; the ore metals concentrated in the asphaltite as the oil was devolatilized and polymerized. Carnotite is thought to have formed from the asphaltite by ground water leaching. It is concluded that additional study of the genesis of the asphaltitic uranium ores in the San Rafael Swell, of the processes by which the hydrocarbons interact and are modified (such as heat, polymerization, and hydrogenation under the influence of alpha-ray bombardment), of petroleum source beds, and of volcanic intrusive rocks of Tertiary age are of fundamental importance in the continuing study of the uranium deposits on the Colorado Plateau.
Geology of the Anderson Mesa quadrangle, Colorado
Cater, Fred W.; Withington, C.F.
1953-01-01
The Anderson Mesa quadrangle is one of the eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of the southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteenth quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quarternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-tending folds. Conspicuous among the folds are large anticlines having cores of intrusive slat and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing many thousands of tons. The ore consists of largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.
Search for uranium in western United States
McKelvey, Vincent Ellis
1953-01-01
The search for uranium in the United States is one of the most intensive ever made for any metal during our history. The number of prospectors and miners involved is difficult to estimate but some measure of the size of the effort is indicated by the fact that about 500 geologists are employed by government and industry in the work--more than the total number of geologists engaged in the study of all other minerals together except oil. The largest part of the effort has been concentrated in the western states. No single deposit of major importance by world standards has been discovered but the search has led to the discovery of important minable deposits of carnotite and related minerals on the Colorado Plateau; of large, low grade deposits of uranium in phosphates in the northwestern states and in lignites in the Dakotas, Wyoming, Idaho and New Mexico; and of many new and some promising occurrences of uranium in carnotite-like deposits and in vein deposits. Despite the fact that a large number of the districts considered favorable for the occurrence of uranium have already been examined, the outlook for future discoveries is bright, particularly for uranium in vein and in carnotite-like deposits in the Rocky Mountain States.
Geology of the Gateway quadrangle, Mesa county Colorado
Cater, Fred W.
1953-01-01
The Gateway quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by hih-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as "Uruvan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.
Geology of the Egnar quadrangle, Dolores and San Miguel counties, Colorado
Cater, Fred W.; Bush, A.L.; Bell, Henry
1954-01-01
The Egnar quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by hih-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as "Uruvan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.
Geology of the Hamm Canyon quadrangle, Colorado
Cater, Fred W.
1953-01-01
The Hamm Canyon quadrangle is on eof eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.
Geology of the Davis Mesa quadrangle, Colorado
Cater, Fred W.; Bryner, Leonid
1953-01-01
The Davis Mesa quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by hih-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as "Uruvan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.
Geology of the Joe Davis Hill quadrangle, Dolores and San Miguel counties, Colorado
Cater, Fred W.; Bell, Henry
1953-01-01
The Joe Davis Hill quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by hih-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.
Geology of the Gypsum Gap quadrangle, Colorado
Cater, Fred W.
1953-01-01
The Gypsum Gap quadrangle is one eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comparative study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through a arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The core consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.
Geology of the Pine Mountain quadrangle, Mesa county, Colorado
Cater, Fred W.
1953-01-01
The Pine Mountain quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from Paleozoic to Quaternary. Over mush of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confines to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in sizer from irregular masses containing only a few ton of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.
Geology of the Naturita NW quadrangle, Colorado
Cater, Fred W.; Vogel, J.D.
1953-01-01
The Naturita NW quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles were mapped by the U.S. Geological Survey on behalf of the U.S. Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear ro be related to certain sedimentary structures in sandstones of favorable composition.
Geology of the Calamity Mesa quadrangle, Mesa county, Colorado
Cater, Fred W.; Stager, Harold K.
1953-01-01
The Calamity Mesa quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks the range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.
Geology of the Horse Range Mesa quadrangle, Colorado
Cater, Fred W.; Bush, A.L.; Bell, Henry; Withington, C.F.
1953-01-01
The Horse Range Mesa quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of the quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary strictures in sandstones of favorable composition.
Geology of Bull Canyon quadrangle, Montrose and San Miguel counties, Colorado
Cater, Fred W.
1953-01-01
The Bull Canyon quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite depots. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tones. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.
Geology of the Uravan quadrangle, Montrose county, Colorado
Cater, Fred W.; Butler, A.P.; McKay, E.J.; Boardman, Robert L.
1954-01-01
The Uravan quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of the southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to the related to certain sedimentary structures in sandstones of favorable composition.
Summary of the mineralogy of the Colorado Plateau uranium ores
Weeks, Alice D.; Coleman, Robert Griffin; Thompson, Mary E.
1956-01-01
In the Colorado Plateau uranium has been produced chiefly from very shallow mines in carnotite ores (oxidized vanadiferous uranium ores) until recent deeper mining penetrated black unoxidized ores in water-saturated rocks and extensive exploration has discovered many deposits of low to nonvanadiferous ores. The uranium ores include a wide range from highly vanadiferous and from as much as one percent to a trace of copper, and contain a small amount of iron and traces of lead, zinc, molybdenum, cobalt, nickel, silver, manganese, and other metals. Recent investigation indicates that the carnotite ores have been derived by progressive oxidation of primary (unoxidized) black ores that contain low-valent uranium and vanadium oxides and silicates. The uranium minerals, uraninite and coffinite, are associated with coalified wood or other carbonaceous material. The vanadium minerals, chiefly montroseite, roscoelite, and other vanadium silicates, occur in the interstices of the sandstone and in siltstone and clay pellets as well as associated with fossil wood. Calcite, dolomite, barite and minor amounts of sulfides, arsenides, and selenides occur in the unoxidized ore. Partially oxidized vanadiferous ore is blue black, purplish brown, or greenish black in contrast to the black or dark gray unoxidized ore. Vanadium combines with uranium to form rauvite. The excess vanadium is present in corvusite, fernandinite, melanovanadite and many other quadrivalent and quinquevalent vanadium minerals as well as in vanadium silicates. Pyrite and part or all of the calcite are replaced by iron oxides and gypsum. In oxidized vanadiferous uranium ores the uranium is fixed in the relatively insoluble minerals carnotite and tyuyamunite, and the excess vanadium commonly combines with one or more of the following: calcium, sodium, potassium, magnesium, aluminum, iron, copper, manganese, or barium, or rarely it forms the hydrated pentoxide. The relatively stable vanadium silicates are little affected by oxidation. The unoxidized nonvanadiferous ores contain uraninite and coffinite in close association with coalified wood and iron and copper sulfides, and traces of many other sulfides, arsenides and selenides. The oxidized nonvanadiferous ores differ from the vanadiferous ores because, in the absence of vanadium to complex the uranium, a great variety of secondary yellow and greenish-yellow uranyl minerals are formed. The uranyl sulfates and carbonates are more common than the oxides, phosphates, arsenates, and silicates. Because the sulfates and carbonates are much less stable that carnotite, the oxidized nonvanadiferous ores occure only as halos around cores of unoxidized ore and do not form large oxidized deposits close to the surface of the ground as carnotite ores. Oxidation has taken place since the lowering of the water table in the present erosion cycle. Because of local structures and the highly lenticular character of the fluviatile host rocks perched water tables and water-saturated lenses of sandstone are common high above the regional water table. Unoxidized ore has been preserved in these water-saturated rocks and the boundary between oxidized and unoxidized ore is very irregular.
Carnotite resources of the Spud Patch area, San Miguel County, Colorado
Bell, Henry
1953-01-01
The Spud Patch area comprises about 8 square in T. 43 M., R. 18 and 19 W., San Miguel County, Colo., and is about 4 miles northeast of Egnar, Colo. Claims of the United States Vanadium Co. and the Vanadium Corp. of America cover about half the area. Claims of other owners, public land, and patented agricultural land, comprise the remainder of the area. The area is about 38 miles from the Government mill at Montecello, Utah, and 55 miles from the Vanadium Corp. of America mill at Naturita, Colo.Between 1940 and 1951, the Spud Patch area yielded about 24,000 short tons of carnotite ore that probably averaged 0.21 percent U3O8 and 2.2 percent V2O5.The deposits are in a broad sandstone lens near the top of the Salt Wash member of the Jurassic Morrison formation. Although the deposits mined have been mainly impregnations of sandstone by carnotite and gray vanadium-bearing clay minerals, some of the richer deposits found by Geological Survey drilling have a finely disseminated black uranium mineral but no carnotite. The deposits commonly are thin irregular tabular layers, which locally thicken to form elongate masses called "rolls". These rolls have a dominant northeasterly trend. Geologic features found to be most useful as guides to ore are listed.From November 1949 to May 1952, the U.S. Geological Survey drilled 415 diamond-drill holes totaling 67,215 feet in the Spud Patch area. The purpose of this drilling was to find deposits that would make new mines and to appraise the reserves in the unexplored area.As a result of Geological Survey drilling, indicated and inferred reserves computed at the cutoff of 1 foot or more thick and 0.10 percent U3O8 or 1.0 percent V2O5 total 20,500 short tons, averaging 0.28 percent U3O8 and 2.1 percent V2O5. These reserves and those computed at a lower grade cutoff of 0.05 percent U3O8 or 0.50 percent V2O5 and the pounds of contained metal are summarized in table 1.Potential reserves, whose existence is based on geologic evidence alone, are predicted to total about 42,000 short tons, averaging 0.25 percent U3O8 and 2.0 percent V2O5.No additional exploratory-type drilling by the Geological Survey is planned in the Spud Patch area. Recommendations are offered for additional development-type drilling, preferably by claim owners or lessees in specific areas in the vicinity of deposits discovered by Geological Survey drilling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlisle, D.; Merifield, P.M.; Orme, A.R.
Calcrete, dolocrete, and gypcrete carnotite are abundant in western Australia and Namib Desert, although only a few are of ore grade. The geology of these deposits are described. A genetic classification of calcretes emphasizing uranium favorability was developed, based on the distinction between pedogenic and nonpedogenic processes. Similarities between western Australia and South West Africa give support for the conclusions that lateral transport of U in groundwater is essential to ore deposition and that bedrock barriers or constrictions which narrow the channel of subsurface flow or force the water close to the land surface, greatly favor the formation of uraniferousmore » calcretes. Criteria for uranium favorability deduced from the Australian and South West African studies were applied in a preliminary way to the southern Basin and Range Province of U.S. The procedure is to search for areas in which nonpedogenic calcrete or gypcrete may have developed. A caliche distribution map was compiled from soil survey and field data. Many areas were visited and some of the more interesting are described briefly, including parts of Clark County, Nevada, with occurrences of carnotite in calcrete. (DLC)« less
Mineralogy and geochemistry of vanadium in the Colorado Plateau
Weeks, A.D.
1961-01-01
The chief domestic source of vanadium is uraniferous sandstone in the Colorado Plateau. Vanadium is 3-, 4-, or 5-valent in nature and, as oxides or combined with other elements, it forms more than 40 minerals in the Plateau ores. These ores have been studied with regard to the relative amounts of vanadium silicates and oxide-vanadates, uranium-vanadium ratios, the progressive oxidation of black low-valent ores to high-valent carnotite-type ores, and theories of origin. ?? 1961.
Uranium minerals in Oligocene gypsum near Chadron, Dawes County, Nebraska
Dunham, R.J.
1955-01-01
Carnotite, sabugalite [HAI(UO2)4(PO4)4 • 16H2O] and autunite occur in the basal 25 feet of a 270-foot sequence of nonmarine bedded gypsum and gypsiferous clay in the Brule formation of Oligocene age about 12 miles northeast of Chadron in northeastern Dawes County, Nebraska. Uranium minerals are visible at only two localities and are associated with carbonaceous matter. Elsewhere the basal 25 feet of the gypsum sequence is interbedded with carbonate rocks and is weakly but persistently uraniferous. Uranium probably was emplaced from above by uranyl solutions rich in sulfate.
Synthesis of calcium vanadate minerals and related compounds
Marvin, Richard F.
1956-01-01
Synthesis of natural vanadates shows that most of them are stable in an acid environment. Phase studies of a portion of the system CaO-V2O5-H2O indicate that calcium vanadates are an indicator of environmental pH conditions. Some minerals, such as pascoute, indicate rapid evaporation of vanadite solutions; other minerals, such as hewettite, show that slow evaporation took place. Cursory examination of systems K2O-UO2-(NO3)2-V2O5 and CaO-UO2(NO3)2-V2O5, both in aqueous solution, has yielded information on the relationships among carnotite, tyuyamunite, and rauvite.
Kesler, R.D.; Rabb, D.D.
1959-07-28
An improved process is presented for recovering uranium from a carnotite ore. In the improved process U/sub 2/O/sub 5/ is added to the comminuted ore along with the usual amount of NaCl prior to roasting. The amount of U/sub 2/O/ sub 5/ is dependent on the amount of free calcium oxide and the uranium in the ore. Specifically, the desirable amount of U/sub 2/O/sub 5/ is 3.2% for each 1% of CaO, and 5 to 6% for each 1% of uranium. The mixture is roasted at about 1560 deg C for about 30 min and then leached with a 3 to 9% aqueous solution of sodium carbonate.
Van Gosen, Bradley S.; Hall, Susan M.
2017-12-18
This report describes the discovery and geology of two near-surface uranium deposits within calcareous lacustrine strata of Pleistocene age in west Texas, United States. Calcrete uranium deposits have not been previously reported in the United States. The west Texas uranium deposits share characteristics with some calcrete uranium deposits in Western Australia—uranium-vanadium minerals hosted by nonpedogenic calcretes deposited in saline lacustrine environments.In the mid-1970s, Kerr-McGee Corporation conducted a regional uranium exploration program in the Southern High Plains province of the United States, which led to the discovery of two shallow uranium deposits (that were not publicly reported). With extensive drilling, Kerr-McGee delineated one deposit of about 2.1 million metric tons of ore with an average grade of 0.037 percent U3O8 and another deposit of about 0.93 million metric tons of ore averaging 0.047 percent U3O8.The west-Texas calcrete uranium-vanadium deposits occur in calcareous, fine-grained sediments interpreted to be deposited in saline lakes formed during dry interglacial periods of the Pleistocene. The lakes were associated with drainages upstream of a large Pleistocene lake. Age determinations of tephra in strata adjacent to one deposit indicate the host strata is middle Pleistocene in age.Examination of the uranium-vanadium mineralization by scanning-electron microscopy indicated at least two generations of uranium-vanadium deposition in the lacustrine strata identified as carnotite and a strontium-uranium-vanadium mineral. Preliminary uranium-series results indicate a two-component system in the host calcrete, with early lacustrine carbonate that was deposited (or recrystallized) about 190 kilo-annum, followed much later by carnotite-rich crusts and strontium-uranium-vanadium mineralization in the Holocene (about 5 kilo-annum). Differences in initial 234U/238U activity ratios indicate two separate, distinct fluid sources.
SLURRY SOLVENT EXTRACTION PROCESS FOR THE RECOVERY OF METALS FROM SOLID MATERIALS
Grinstead, R.R.
1959-01-20
A solvent extraction process is described for recovering uranium from low grade uranium bearing minerals such as carnotit or shale. The finely communited ore is made up as an aqueous slurry containing the necessary amount of acid to solubilize the uranium and simultaneously or subsequently contacted with an organic solvent extractant such as the alkyl ortho-, or pyro phosphoric acids, alkyl phosphites or alkyl phosphonates in combination with a diluent such as kerosene or carbon tetrachlorids. The extractant phase is separated from the slurry and treated by any suitable process to recover the uranium therefrom. One method for recovering the uranium comprises treating the extract with aqueous HF containing a reducing agent such as ferrous sulfate, which reduces the uranium and causes it to be precipitated as uranium tetrafluoride.
Wedow, Helmuth
1956-01-01
In the period 1945-1954 over 100 investigations for radioactive source materials were made in Alaska. The nature of these investigations ranged from field examinations of individual prospects or the laboratory analysis of significantly radioactive samples submitted by prospectors to reconnaissance studies of large districts. In this period no deposits of uranium or thorium that would warrant commercial exploitation were discovered. The investigations, however, disclosed that radioactive materials occur in widely scattered areas of Alaska and in widely diverse environments. Many igneous rocks throughout Alaska are weakly radioactive because of uranium- and thorium-bearing accessory minerals, such as allanite, apatite, monazite, sphene, xenotime, and zircon; more rarely the radioactivity of these rocks is due to thorianite or thorite and their uranoan varieties. The felsic rocks, for example, granites and syenites, are generally more radioactive than the mafic igneous rocks. Pegmatites, locally, have also proved to be radioactive, but they have little commercial significance. No primary uranium oxide minerals have been found yet in Alaskan vein deposits, except, perhaps, for a mineral tentatively identified as pitchblende in the Hyder district of southeastern Alaska. However, certain occurrences of secondary uranium minerals, chiefly those of the uranite group, on the Seward Peninsula, in the Russian Mountains, and in the vicinity of Kodiak suggest that pitchblende-type ores may occur at depth beneath zones of alteration. Thorite-bearing veins have been discovered on Prince of Wales Island in southeastern Alaska. Although no deposits or carnotite-type minerals have been found in Alaska, several samples containing such minerals have been submitted by Alaskan prospectors. Efforts to locate the deposits from which these minerals were obtained have been unsuccessful, but review of available geologic data suggests that several Alaskan areas are potentially favorable for carnotite-type deposits. The chief of these areas is the Alaska Peninsula-Cook Inlet area which encompasses most of the reported occurrences of the prospectors' carnotite-type samples. Alaska is also potentially favorable for the occurrence of large bodies of the very low-grade uraniferous sedimentary rocks, such as phosphorites and black shales. This type of deposit, however, has not received much study because of the emphasis on the search for bonanza-type high-grade ores. Uraniferous phosphorites similar to those of Idaho, Montana, and Wyoming occur in northern Alaska on the north flank of the Brooks Range; black shales comparable to the uraniferous shales of the Chattanooga formation of southeastern United States have been noted along the Yukon River near the international boundary. Placer deposits in Alaska have some small potential for the production of the radioactive elements as byproducts of gold- and tin-placer mining. the placer area believed to have the relatively greatest potential in Alaska lies in the Kahiltna River valley where concentrates are known to contain such commercial minerals as ilmenite, cassiterite, platinum, and gold in addition to uranothorianite and monazite. The possibilities of the natural fluids--water and petroleum--have not yet been tested in Alaska to any great extent. Studies of fluids are in progress to determine whether they may be used to discover and define areas potentially favorable for the occurrence of uraniferous lodes.
Yellow Canary uranium deposits, Daggett County, Utah
Wilmarth, Verl Richard
1953-01-01
The Yellow Canary uranium deposit is on the west side of Red Creek Canyon in the northern part of the Uinta Mountains, Daggett County, Utah. Two claims have been developed by means of an adit, three opencuts, and several hundred feet of bulldozer trenches. No uranium ore has been produced from this deposit. The deposit is in the pre-Cambrian Red Creek quartzite. This formation is composed of intercalated beds of quartzite, hornblendite, garnet schist, staurolite schist, and quartz-mica schist and is intruded by dioritic dikes. A thick unit of highly fractured white quartzite near the top of the formation contains tyuyamunite as coatings on fracture surfaces. The tyuyamunite is associated with carnotite, volborthite, iron oxides, azurite, malachite, brochantite, and hyalite. The uranium and vanadium minerals are probably alteration products of primary minerals. The uranium content of 15 samples from this property ranged from 0.000 to 0.57 percent.
Fractionation of uranium isotopes in minerals screened by gamma spectrometry.
NASA Astrophysics Data System (ADS)
Geiger, Jeffrey L.; Baldwin, Austin M.; Blatchley, Charles C.
2008-03-01
At least two groups have reported finding shifts in the ratio of U-235/U-238 for sandstone, black shale, and other sedimentary samples using precision ICP-MS. These shifts were tentatively attributed to a recently predicted isotope effect based on nuclear volume that causes fractionation for U^IV-U^VI transitions. However, fractionation of high Z elements may be less likely an explanation than U-235 depletion induced by galactic cosmic ray neutrons. Isotope depletion in marine sediments could therefore be an indicator of changes in cosmic ray flux due to nearby supernovae, gamma-ray bursts, or longer term changes during the 62 million year cycle of the Sun above and below the galactic plane. We report using a less precise approach than ICP-MS, but one which can quickly screen samples to look for anomalies in isotope ratios, namely HPGe gamma ray spectrometry. Various levels of depletion were measured for uranium rich minerals, including brannerite, carnotite, and pitchblende, as well as coal and limestone samples.
The uranium deposit at the Yellow Canary claims, Daggett County, Utah
Wilmarth, V.R.; Vickers, R.C.; McKeown, F.A.; Beroni, E.P.
1952-01-01
The Yellow Canary claims uranium deposit is on the west side of Red Creek Canyon in the northern part of the Uinta Mountains, Daggett County, Utah. The claims have been developed by two adits, three open cuts, and several hundred deep of bulldozer trenches. No uranium ore has been produced from this deposit. The uranium deposit at the Yellow Canary claims is in the Red Creek quartzite of pre-Cambrian age. The formation is composed of intercalated beds of quartzite, hornblendite, garnet schist, staurolite schist, and quartz-mica schist and is intruded by diorite dikes. A thick unit of highly fractured white quatrzite at the top of the formation contains tyutamunite as coatings on fracture surfaces. The tyutamunite is associated with carnotite, volborthite, iron oxides, azurite, malachite, brochantite, and hyalite. The secondary uranium and vanadium minerals are believed to be alteration products of primary minerals. The uranium content of 15 samples from this property ranged from 0.000 to 0.57 percent.
Reconnaissance for radioactive deposits in Alaska, 1953
Matzko, John J.; Bates, Robert G.
1955-01-01
During the summer of 1953 the areas investigated for radioactive deposits in Alaska were on Nikolai Creek near Tyonek and on Likes Creek near Seward in south-central Alaska where carnotite-type minerals had been reported; in the headwaters of the Peace River in the eastern part of the Seward Peninsula and at Gold Bench on the South Fork of the Koyukuk River in east-central Alaska, where uranothorianite occurs in places associated with base metal sulfides and hematite; in the vicinity of Port Malmesbury in southeastern Alaska to check a reported occurrence of pitchblende; and, in the Miller House-Circle Hot Springs area of east-central Alaska where geochemical studies were made. No significant lode deposits of radioactive materials were found. However, the placer uranothorianite in the headwaters of the Peace River yet remains as an important lead to bedrock radioactive source materials in Alaska. Tundra cover prevents satisfactory radiometric reconnaissance of the area, and methods of geochemical prospecting such as soil and vegetation sampling may ultimately prove more fruitful in the search for the uranothorianite-sulfide lode source than geophysical methods.
Butler, A.P.; Stead, F.W.
1947-01-01
The Geological Survey's program of investigation of radioactive raw materials is presented herewith under present investigations, plans for future investigations, plan of operation, and cost of operation. This report was prepared at the request of the Atomic Energy Commission. Present investigations are summarized to show the scope of the present Trace Elements program, grouping individual projects into related types of investigations. Plans for future investigations on an expanded scale are outlined. These should provide sufficient data and knowledge of the occurrence and availability of uranium, thorium, and related elements, to permit a more complete evaluation of domestic resources. Reconnaissance projects are designed to discover possible new sources of uranium and thorium and to select areas and materials warranting further investigation. Typical projects leading to the estimation of reserves are the investigation of the carnotite ores of the Colorado Plateau by geologic mapping, exploratory drilling, and related research, and investigation of asphaltic sandstone in Emery County, Utah. Extensive research will be undertaken to establish the principles governing the geological and geochemical relations of uranium, thorium, and associated elements as an essential guide in appraising domestic resources. Particular emphasis will be placed on phosphatic rocks and black shales which offer ultimate resources of uranium far greater than carnotite ores. All the foregoing investigations will be accompanied by chemical, gephysical, and mineralogical research and analytical work. Under plan of operation is discussed the organization of the Trace Elements Unit, space requirements for laboratory and office, the scheduling of investigations, and other related problems. The proposed scheduling of work calls for approximately 109, 173, and 203 man years in fiscal years 1948, 1949, and 1950 respectively. Definite plans have been formulated only for the next three fiscal years, by which time it is assumed the program will reach stable proportions or can be altered as experience dictates. Under cost of operation is set forth the funds available in fiscal year 1947, the status of funds transferred from Atomic Services (14-217/80920), and funds necessary in succeeding fiscal years. The estimate for fiscal year 1948 inclues a non-recurring item of $1,025,000 for establishing adequate laboratories for chemical, physical, spectrographic and mineralogic research and analytical work. The total funds required in fiscal years 1948, 1949, and 1950 to support the proposed program will be $2,440,000, $2,161,000 and $2,198,000 respectively. The Geological survey anticipates contributing from its appropriation in fiscal years 1948, 1949 and 1950 approximately $243,000, $350,000, and $400,000 respectively; the balance of the necessary funds to be contributed by the Atomic Energy Commission in fiscal years 1948, 1949, and 1950 will be approximately $2,196,900, $1,811,000, and $1,798,000 respectively.
Distribution of leached radioactive material in the Legin Group Area, San Miguel County, Colorado
Rogers, Allen S.
1950-01-01
Radioactivity anomalies, which are small in magnitude, and probably are not caused by extensions of known uranium-vanadium ore bodies, were detected during the gamma-ray logging of diamond-drill holes in the Legin group of claims, southwest San Miguel County, Colo. The positions of these anomalies are at the top surfaces of mudstone strata within, and at the base of, the ore-bearing sandstone of the Salt Wash member of the Morrison formation. The distribution of these anomalies suggests that ground water has leached radioactive material from the ore bodies and has carried it down dip and laterally along the top surfaces of underlying impermeable mudstone strata for distance as great as 300 feet. The anomalies are probably caused by radon and its daughter elements. Preliminary tests indicate that radon in quantities up to 10-7 curies per liter may be present in ground water flowing along sandstone-mudstone contacts under carnotite ore bodies. In comparison, the radium content of the same water is less than 10-10 curies per liter. Further substantiation of the relationship between ore bodies, the movement of water, and the radon-caused anomalies may greatly increase the scope of gamma-ray logs of drill holes as an aid to prospecting.
Effects of uranium mining, Puerco River, New Mexico
Lopes, Thomas J.
1991-01-01
Effluent from uranium-mine dewatering and acidic water released by a tailings-pond dike failure increased radionuclide activities in streamflow in the Puerco River in New Mexico and Arizona. Median dissolved gross-alpha activity in the streamflow was 1,130 picocuries per liter from 1975 to 1986 when mine discharges ceased and 6.2 picocuries per liter from 1986 to 1989. From 1975 to July 1979, major ions in streamflow at the Puerco River at Gallup streamflow-gaging station were sodium, bicarbonate, and sulfate. On July 16, 1979, the day of the tailing spill, major ions in streamflow were magnesium, calcium, and sulfate. From 1979 to 1984, major ions in streamflow had a greater proportion of calcium and sulfate than prior to the spill, indicating flushing of residual tailings solution. Geochemical modeling of mine effluent indicates that uranium was unlikely to precipitate from effluent between the mines and Gallup or when mixed with wastewater downstream from Gallup. Geochemical modeling of acidic-tailings solution indicates that uranium was in solution as far downstream as Gallup. When the acidic-tailings solution mixed with 10- to 40-percent wastewater, uranium may have precipitated from solution as carnotite [K2(UO2)2(VO4)2] and tyuyamunite [Ca(UO2)2(VO4)2].
Beroni, E.P.; McKeown, F.A.
1952-01-01
Previous discoveries and studies of radioactive lignites of Tertiary age in North Dakota, South Dakota, Montana, and Wyoming led the Geological Survey in 1950 to do reconnaissance in the Green River and Uinta Basin of Wyoming and Utah, where similar lignites were believed to be present. Because of the common association of uranium with copper deposits and the presence of such deposits in the Uinta Basin, several areas containing copper-uranium minerals were also examined. No deposits commercially exploitable under present conditions were found. Samples of coal from the Bear River formation at Sage, Wyo., assayed 0.004 to 0.013 percent uranium in the ash; in the old Uteland copper mine in Uinta County, Utah, 0.007 to 0.017 percent uranium; in a freshwater limestone, Duchesne County, Utah, as much as 0.019 percent uranium; and in the Mesaverde formation at the Snow and Bonniebell claims near Jensen, Uintah County, Utah, 0.003 to 0.090 percent uranium. Maps were made and samples were taken at the Skull Creek carnotite deposits in Moffat County, Colo. (0.006 to 0.16 percent uranium); at the Fair-U claims in Routt County, Colo. (0.002 to 0.040 percent uranium); and at the Lucky Strike claims near Kremmling in Grand County, Colo. (0.006 to 0.018 percent uranium).
Landa, E.R.
1993-01-01
Federally funded remedial action projects are presently underway in New Jersey and Colorado at sites containing 226Ra and other radionuclides from radium-uranium ore extraction plants that operated during the early twentieth century. They are but the latest chapter in the story of an American industry that emerged and perished in the span of three decades. Major extraction plants were established in or near Denver (CO), Pittsburgh (PA), and New York City (NY) to process radium from ore that came largely from the carnotite deposits of western Colorado and eastern Utah. The staffs of these plants included some of the finest chemists and physicists in the nation, and the highly-refined radium products found a variety of uses in medicine and industry. The discovery of high-grade pitchblende ores in the Belgian Congo and the subsequent opening of an extraction plant near Antwerp, Belgium, in 1992, however, created an economic climate that put an end to the American radium industry. The geologic, chemical, and engineering information gathered during this era formed the basis of the uranium industry of the later part of the century, while the tailings and residues came to be viewed as environmental problems during the same period.
NASA Astrophysics Data System (ADS)
Bharti, Rishikesh; Kalimuthu, R.; Ramakrishnan, D.
2015-10-01
This study aims at identifying potential zones of secondary uranium enrichment using hyperspectral remote sensing, γ-ray spectrometry, fluorimetry and geochemical techniques in the western Rajasthan and northern Gujarat, India. The investigated area has suitable source rocks, conducive past-, and present-climate that can facilitate such enrichment. This enrichment process involves extensive weathering of uranium bearing source rocks, leaching of uranyl compounds in groundwater, and their precipitation in chemical deltas along with duricrusts like calcretes and gypcretes. Spatial distribution of groundwater calcretes (that are rich in Mg-calcite) and gypcretes (that are rich in gypsum) along palaeochannels and chemical deltas were mapped using hyperspectral remote sensing data based on spectral absorptions in 1.70 μm, 2.16 μm, 2.21 μm, 2.33 μm, 2.44 μm wavelength regions. Subsequently based on field radiometric survey, zones of U anomalies were identified and samples of duricrusts and groundwater were collected for geochemical analyses. Anomalous concentration of U (2345.7 Bq/kg) and Th (142.3 Bq/kg) are observed in both duricrusts and groundwater (U-1791 μg/l, Th-34 μg/l) within the palaeo-delta and river confluence. The estimated carnotite Solubility Index also indicates the secondary enrichment of U and the likelihood of occurrence of an unconventional deposit.
Geology and ore deposits of the Klondike Ridge area, Colorado
Vogel, John David
1960-01-01
The region described in this report is in the northeastern part of the Colorado Plateau and is transitional between two major structural elements. The western part is typical of the salt anticline region of the Plateau, but the eastern part has features which reflect movements in the nearby San Juan Mountains. There are five major structural elements in the report area: the Gypsum Valley anticline, Dry Creek Basin, the Horse Park fault block, Disappointment Valley, and the Dolores anticline. Three periods of major uplift are recognized In the southeastern end of the Gypsum Valley anticline. Each was followed by collapse of the overlying strata. Erosion after the first two periods removed nearly all topographic relief over the anticline; erosion after the last uplift has not yet had a profound effect on the topography except where evaporite beds are exposed at the surface. The first and greatest period of salt flow and anticlinal uplift began in the late Pennsylvanian and continued intermittently and on an ever decreasing scale into the Early Cretaceous. Most movement was in the Permian and Triassic periods. The second period of uplift and collapse was essentially contemporaneous with widespread tectonic activity on. the northwestern side of the San Juan Mountains and may have Occurred in the Oligocene and Miocene epochs. Granogabbro sills and dikes were intruded during the middle or upper Tertiary in Disappointment Valley and adjoining parts of the Gypsum Valley and Dolores anticlines. The third and mildest period of uplift occurred in the Pleistocene and was essentially contemporaneous with the post-Hinsdale uplift of the San Juan Mountains. This uplift began near the end of the earliest, or Cerro, stage of glaciation. Uranium-vanadium, manganese, and copper ore as well as gravel have been mined in the Klondike district. All deposits are small, and few have yielded more than 100 tons of ore. Most of the latter are carnotite deposits. Carnotite occurs in the lower part of the basal sandstone unit of the Salt Wash member of the Morrison formation. Most deposits are in a narrow, elongate mineral belt' that cuts obliquely across Klondike Ridge. The remaining deposits probably form a second 'mineral belt' lying about ? mile to the north. Manganese and copper deposits show both stratigraphic and structural controls of mineralization. Most manganese deposits are in red beds near Tertiary faults; most copper deposits, on the other hand, are in brown sandstone, limestone, or gray-green shale and, like manganese, are in or near Tertiary faults. The manganese and copper deposits are hydrothermal in origin and were formed in the roots of an ancient hot springs system, now deeply eroded. The ore-bearing solutions probably consisted of dilute, carbonate-sulfate ground water heated by the near-surface intrusion of small bodies of igneous rock. These solutions obtained their metals by leaching the wallrock; little, if any, material was added by the intrusives. The deposits were formed near the surface under conditions of hydrostatic pressure, and temperatures and pressures in the ore-bearing solutions were probably low. The early solutions were weakly alkaline and reducing in character. A convection cell was established as mineralization progressed, and surface water mingled at depth with the solutions. As a result of mixing and oxidation, the pH of the solution decreased in later stages of mineralization and the Eh rose.
The yellowed archives of yellowcake.
Silver, K
1996-01-01
Extensive historical documentation of exposures and releases at government-owned energy facilities is a unique and valuable resource for analyzing and communicating health risks. Facilities at all stages of the atomic fuel cycle were the subject of numerous industrial hygiene, occupational health, and environmental assessments during the Cold War period. Uranium mines and mills on the Colorado Plateau were investigated as early as the 1940s. One such facility was the mill in Monticello, Utah, which began operation as a vanadium extraction plant in 1943 and was later adapted to recover uranium from carnotite ores. The mill ceased operation in 1960. The site was added to the federal Superfund list in 1986. ATSDR held public availability sessions in 1993 as part of its public health assessment process, at which several former mill workers voiced health concerns. An extensive literature search yielded several industrial hygiene evaluations of the Monticello mill and health studies that included Monticello workers, only two of which had been published in the peer-reviewed literature. In combination with the broader scientific literature, these historical reports provide a partial basis for responding to mill workers' contemporary health concerns. The strengths and limitations of the available exposure data for analytical epidemiologic studies and dose reconstruction are discussed. As an interim measure, the available historical documentation may be especially helpful in communicating about health risks with workers and communities in ways that acknowledge the historical context of their experience. Images p116-a p117-a p118-a PMID:8606907
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blake, Johanna M.; Avasarala, Sumant; Artyushkova, Kateryna
The chemical interactions of U and co-occurring metals in abandoned mine wastes in a Native American community in northeastern Arizona were investigated using spectroscopy, microscopy and aqueous chemistry. The concentrations of U (67–169 μg L –1) in spring water samples exceed the EPA maximum contaminant limit of 30 μg L –1. Elevated U (6,614 mg kg –1), V (15,814 mg kg –1), and As (40 mg kg –1) concentrations were detected in mine waste solids. Spectroscopy (XPS and XANES) solid analyses identified U (VI), As (-I and III) and Fe (II, III). Linear correlations for the release of U vsmore » V and As vs Fe were observed for batch experiments when reacting mine waste solids with 10 mM ascorbic acid (~pH 3.8) after 264 h. The release of U, V, As, and Fe was at least 4-fold lower after reaction with 10 mM bicarbonate (~pH 8.3). These results suggest that U–V mineral phases similar to carnotite [K 2(UO 2) 2V 2O 8] and As–Fe-bearing phases control the availability of U and As in these abandoned mine wastes. Elevated concentrations of metals are of concern due to human exposure pathways and exposure of livestock currently ingesting water in the area. This study contributes to understanding the occurrence and mobility of metals in communities located close to abandoned mine waste sites.« less
Exploration for uranium deposits in the Atkinson Mesa area, Montrose County, Colorado
Brew, Daniel Allen
1954-01-01
The U.S. Geological Survey explored the Atkinson Mesa area for uranium- and vanadium-bearing deposits from July 2, 1951, to June 18, 1953, with 397 diamond-drill holes that totaled 261,251 feet. Sedimentary rocks of Mesozoic age are exposed in the Atkinson Mesa area. They are: the Brushy Basin member of the Upper Jurassic Morrison formation, the Lower Cretaceous Burro Canyon formation, and the Upper and Lower Cretaceous Dakota sandstone. All of the large uranium-vanadium deposits discovered by Geological Survey drilling are in a series of sandstone lenses in the upper part of the Salt Wash member of the Jurassic Morrison formation. The deposits are mainly tabular and blanket-like, but some elongate pod-shaped masses, locally called "rolls" may be present. The mineralized material consists of sandstone impregnated with a uranium mineral which is probably coffinite, spme carnotite, and vanadium minerals, thought to be mainly corvusite and montroseite. In addition,, some mudstone and carbonaceous material is similarly impregnated. Near masses of mineralized material the sandstone is light gray or light brown, is generally over 40 feet thick, and usually contains some carbonaceous material and abundant disseminated pyrite or limonite stain. Similarly, the mudstone in contact with the ore-bearing sandstone near bodies of mineralized rock is commonly blue gray, as compared to its dominant red color away from ore deposits. Presence and degree of these features are useful guides in exploring for new deposits.
Blake, Johanna M.; Avasarala, Sumant; Artyushkova, Kateryna; ...
2015-07-09
The chemical interactions of U and co-occurring metals in abandoned mine wastes in a Native American community in northeastern Arizona were investigated using spectroscopy, microscopy and aqueous chemistry. The concentrations of U (67–169 μg L –1) in spring water samples exceed the EPA maximum contaminant limit of 30 μg L –1. Elevated U (6,614 mg kg –1), V (15,814 mg kg –1), and As (40 mg kg –1) concentrations were detected in mine waste solids. Spectroscopy (XPS and XANES) solid analyses identified U (VI), As (-I and III) and Fe (II, III). Linear correlations for the release of U vsmore » V and As vs Fe were observed for batch experiments when reacting mine waste solids with 10 mM ascorbic acid (~pH 3.8) after 264 h. The release of U, V, As, and Fe was at least 4-fold lower after reaction with 10 mM bicarbonate (~pH 8.3). These results suggest that U–V mineral phases similar to carnotite [K 2(UO 2) 2V 2O 8] and As–Fe-bearing phases control the availability of U and As in these abandoned mine wastes. Elevated concentrations of metals are of concern due to human exposure pathways and exposure of livestock currently ingesting water in the area. This study contributes to understanding the occurrence and mobility of metals in communities located close to abandoned mine waste sites.« less
Results of exploration at the Old Leyden coal mine, Jefferson County, Colorado
Gude, A.J.; McKeown, F.A.
1953-01-01
Six diamond core holes totaling 2, 201 feet were drilled by the. U, S. Bureau of Mines under contract to the U. S. Atomic Energy Commission at the Old Leyden coal mine, Jefferson County, Colo. The holes were spotted on the basis of geologic mapping by the U. S. Geological survey and were drilled to explore the lateral and downward extent of a uranium-bearing coal and the associated carnotite deposits in the adjacent sandstone° The data obtained from the diamond-core holes helped to explain the geology and structural control of the deposit. The uranium is most abundant in a coal bed that in places has been brecciated by shearing. and then altered to a hard, dense, and silicified rock. The uraniferous coal is in the nearly vertical beds of the Laramie formation of Upper Cretaceous age. Small lenticular bodies of uraniferous material, 50 feet long, 25 to 30 feet wide, and 2 to 4 feet thick, occur at intervals in the coal and silicified coal over a strike length of about 800 feet. These bodies contain 0.10 to 0.50 percent uranium. Data obtained from the drilling indicate a discontinuous radioactive zone between these higher-grade bodies; assays of samples from the cores range from 0.001 to 0.10 percent uranium. All drill holes were probed by Survey and A. E. C. logging equipment and showed anomalies where the core assayed more than 0.005 percent uranium. Material of ore grade--0.10 percent uranium--was found in one core; the rock in the other five holes was of lower grade. The presence of the radioactive zone in all holes suggests, however, that uranium is distributed irregularly in a southerly plunging deposit which is exposed in the adit, on the outcrop, and in other diamond-drill holes that were put down by the lessee.
Virgin Valley opal district, Humboldt County, Nevada
Staatz, Mortimer Hay; Bauer, Herman L.
1951-01-01
The Virgin Valley opal district, Humboldt County, Nevada, is near the Oregon-Nevada border in the Sheldon Game Refuge. Nineteen claims owned by Jack and Toni Crane were examined, sampled, and tested radiometrically for uranium. Numerous discontinuous layers of opal are interbedded with a gently-dipping series of vitric tuff and ash which is at least 300 ft thick. The tuff and ash are capped by a dark, vesicular basalt in the eastern part of the area and by a thin layer of terrace qravels in the area along the west side of Virgin Valley. Silicification of the ash and tuff has produced a rock that ranges from partly opalized rock that resembles silicified shale to completely altered rock that is entirely translucent, and consists of massive, brown and pale-green opal. Carnotite, the only identified uranium mineral, occurs as fracture coatings or fine layers in the opal; in places, no uranium minerals are visible in the radioactive opal. The opal layers are irregular in extent and thickness. The exposed length of the layers ranges from 8 to 1, 200 ft or more, and the thickness of the layers ranges from 0. 1 to 3. 9 ft. The uranium content of each opal layer, and of different parts of the same layer, differs widely. On the east side of Virgin Valley four of the seven observed opal layers, nos. 3, 4, 5, and 7, are more radioactive than the average; and the uranium content ranges from 0. 002 to 0. 12 percent. Two samples, taken 5 ft apart across opal layer no. 7, contained 0. 003 and 0. -049 percent uranium. On the west side of the valley only four of the fifteen observed opal layers, nos; 9, , 10, 14, and 15, are more radioactive than the average; and the uranium content ranges from 0. 004 to 0. 047 percent. Material of the highest grade was found in a small discontinuous layer of pale-green opal (no. 4) on the east side of Virgin Valley. The grade of this layer ranged from 0. 027 to 0. 12 percent uranium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beiswenger, Toya N.; Gallagher, Neal B.; Myers, Tanya L.
The identification of minerals, including uranium-bearing minerals, is traditionally a labor-intensive-process using x-ray diffraction (XRD), fluorescence, or other solid-phase and wet chemical techniques. While handheld XRD and fluorescence instruments can aid in field identification, handheld infrared reflectance spectrometers can also be used in industrial or field environments, with rapid, non-destructive identification possible via spectral analysis of the solid’s reflectance spectrum. We have recently developed standard laboratory measurement methods for the infrared (IR) reflectance of solids and have investigated using these techniques for the identification of uranium-bearing minerals, using XRD methods for ground-truth. Due to the rich colors of such species,more » including distinctive spectroscopic signatures in the infrared, identification is facile and specific, both for samples that are pure or are partially composed of uranium (e.g. boltwoodite, schoepite, tyuyamunite, carnotite, etc.) or non-uranium minerals. The method can be used to detect not only pure and partial minerals, but is quite sensitive to chemical change such as hydration (e.g. schoepite). We have further applied statistical methods, in particular classical least squares (CLS) and multivariate curve resolution (MCR) for discrimination of such uranium minerals and two uranium pure chemicals (U3O8 and UO2) against common background materials (e.g. silica sand, asphalt, calcite, K-feldspar) with good success. Each mineral contains unique infrared spectral features; some of the IR features are similar or common to entire classes of minerals, typically arising from similar chemical moieties or functional groups in the minerals: phosphates, sulfates, carbonates, etc. These characteristic 2 infrared bands generate the unique (or class-specific) bands that distinguish the mineral from the interferents or backgrounds. We have observed several cases where the chemical moieties that provide the spectral discrimination in the longwave IR do so by generating upward-going reststrahlen bands in the reflectance data, but the same minerals have other weaker (overtone) bands, sometimes from the same chemical groups, that are manifest as downward-going transmission-type features in the midwave and shortwave infrared.« less
Geology and mineral deposits of the Carlile quadrangle, Crook County, Wyoming
Bergendahl, M.H.; Davis, R.E.; Izett, G.A.
1961-01-01
The Carlile quadrangle-is along the northwestern flank of the Black Hills uplift in Crook County, Wyo. The area-is primarily one of canyons and divides that are a result of downcutting by the Belle Fourche River and its tributaries through an alternating succession of sandstone, siltstone, and mudstone or shale beds. The present topography is also influenced by the regional structure, as reflected by the beds that dip gently westward and by the local structural features such as anticlines, domes, synclines, basins, and terraces, which are superimposed upon the regional setting. Rocks exposed include shale and thin limestone and sandstone beds belonging to the Redwater shale member of the Sundance formation and to the Morrison formation, both of Late Jurassic age; sandstone, siltstone, and mudstone of the Lakota and Fall River formations of Early Cretaceous age; and shale and sandstone of the Skull Creek shale, Newcastle sandstone, and Mowry shale, also of Early Cretaceous age. In the southwestern part of the quadrangle rocks of the Upper Cretaceous series are exposed. These include the Belle Fourche shale, Greenhorn formation, and Carlile shale. Gravel terraces, landslide debris, and stream alluvium comprise the surficial deposits. The Lakota and Fall River formations, which make up the Iriyan Kara group, contain uranium deposits locally in the northern Black Hills. These formations were informally subdivided in order to show clearly the vertical and lateral distribution of the sandstone, siltstone, and mudstone facies within them.The Lakota was subdivided into a sandstone unit and an overlying mudstone unit; the Fall River was subdivided, in ascending order, into a siltstone unit, a mudstone unit, a sandstone unit, and an upper unit. The lithologic character of the Lakota changes abruptly locally, and the units are quite inconsistent with respect to composition, thickness, and extent. This is in contrast to a notable consistency in the lithologic character and thickness among all the Fall River units, with the exception of the upper unit. Petrographic studies on selected samples of units from both formations show differences in composition between Lakota and Fall River rocks.The Carlile quadrangle lies immediately east of the monocline that marks the outer limit of the Black Hills uplift, and the rocks in this area have a regional dip of less than 2° outward from the center of the uplift. Superimposed upon the regional uplift are many subordinate structural features anticlines, synclines, domes, basins, and terraces which locally modify the regional features. The most pronounced of these subordinate structural features are the doubly-plunging Pine Ridge, Oil Butte, and Dakota Divide anticlines, and the Eggie Creek syncline. Stress throughout the area was relieved almost entirely through folding; only a few small nearly vertical normal faults were found within the quadrangle.Uranium has been mined from the Carlile deposit, owned by the Homestake Mining Co. The ore minerals, carnotite and tyuyamnuite occur in a sandstone lens that is enclosed within relatively impermeable clayey beds in the mudstone unit of the Lakota formation. The ore also includes unidentified black vanadium minerals and possibly coffinite. Uranium minerals are more abundant in and adjacent to thicker carbonaceous and silty seams in the sandstone lens. A mixture of fine-grained calcium carbonate and calcium sulfate fills the interstices between detrital quartz grains in mineralized sandstone. Selenium and arsenic are more abundant in samples that are high in uranium. Drilling on Thorn Divide about 1 mile west of the Carlile mine has roughly outlined concentrations of a sooty black uranium mineral associated with pyrite In two stratigraphic intervals of the Lakota formation. One is in the same sandstone lens that contains the ore at the Carlile mine; the other is in conglomeratic sandstone near the base of the Lakota. These deposits are relatively deep, and no mining has been attempted. The mineralogy of the Carlile deposits and the lithologic features of the sandstone host rock suggest that uranium and vanadium were transported in the high-valent state by carbonate or sulfate solutions, were extracted from solution by organic material, and were reduced to low-valent states to form an original assemblage of oxides and silicates. These primary minerals were oxidized in place, and the present carnotite-tyuyamunite assemblage was formed. In general, radioactivity analyses correspond fairly closely with chemical analyses of uranium, thus it is believed that only minor solution and migration of uranium has occurred since the present suite of oxidized minerals was formed. The factors responsible for ore localization are not clear, but probably a combination of three lithologic and structural elements contributed to provide a favorable environment for precipitating uranium from aqueous solutions: abundant carbonaceous material or pyrite in a thin, permeable sandstone enclosed within relatively thick impermeable clays; local structural basins; and a regional structural setting involving a broad syncline between two anticlines. The structural features controlled the regional flow of ground water and the lithologic features controlled the local rate of flow and provided the proper chemical environment for uranium deposition. Bentonite has been mined from an opencut in the Mowry shale in the southwest part of the quadrangle. A bentonite bed in the Newcastle sandstone also seems to be of minable thickness and quality. Exploration for petroleum has been unsuccessful within the quadrangle; however, some wells that yielded oil were recently drilled on small anticlines to the west and southeast. It is possible that similar structural features in the Carlile area, that were previously overlooked, may be equally productive.
NASA Astrophysics Data System (ADS)
Duribreux, I.; Saadi, M.; Obbade, S.; Dion, C.; Abraham, F.
2003-05-01
Two new alkali uranyl oxychloro vanadates M7(UO 2) 8(VO 4) 2O 8Cl with M=Rb, Cs, have been synthesized by solid-state reactions and their structures determined from single-crystal X-ray diffraction data. They crystallize in the orthorhombic system with space groups Pmcn and Pmmn, respectively. The a and b unit cell parameters are almost identical in both compounds while the c parameter in the Rb compound is doubled: Rb— a=21.427(5) Å, b=11.814(3) Å, c=14.203(3) Å, V=3595.1(1) Å 3, Z=4, ρmes=5.93(2) g/cm 3, ρcal=5.82(1) g/cm 3; Cs— a=21.458(3) Å, b=11.773(2) Å, c=7.495(1) Å, V=1893.6(5) Å 3, Z=2, ρmes=6.09(2) g/cm 3, ρcal=6.11(1) g/cm 3. A full-matrix least-squares refinement yielded R1=0.0221, w R2=0.0562 for 2675 independent reflections and R1=0.0386, w R2=0.1042 for 2446 independent reflections, for the Rb and Cs compounds, respectively. Data were collected with Mo( Kα) radiation and a charge coupled device (CCD) detector of a Bruker diffractometer. Both structures are characterized by [(UO 2) 8(VO 4) 2O 8Cl] n7 n- layers parallel to the (001) plane. The layers are built up from VO 4 tetrahedra, UO 7 and UO 6Cl pentagonal bipyramids, and UO 6 distorded octahedra. The UO 7 and UO 6Cl pentagonal bipyramids are associated by sharing opposite equatorial edges to form infinite chains (UO 5-UO 4Cl-UO 5) n parallel to the a axis. These chains are linked together by VO 4 tetrahedra, UO 6 octahedra, UO 7 corner sharing and UO 6Cl, Cl sharing. Both structures differ simply by the symmetry of the layers. The unit cell contains one centrosymmetric layer in the Cs compound, whereas in the two-layer unit cell of the Rb compound, two non-centrosymmetric consecutive layers are related by an inversion center. The layers appear to be held together by the alkali ions. The mobility of the M+ ions within the interlayer space in M7(UO 2) 8(VO 4) 2O 8Cl and carnotite analog compounds is compared.
Radioactive source materials in Los Estados Unidos de Venezuela
Wyant, Donald G.; Sharp, William N.; Rodriguez, Carlos Ponte
1953-01-01
This report summarizes the data available on radioactive source materials in Los Estados Unidos de Venezuela accumulated by geologists of the Direccions Tecnica de Geolgia and antecedent agencies prior to June 1951, and the writers from June to November 1951. The investigation comprised preliminary study, field examination, office studies, and the preparation of this report, in which the areas and localities examined are described in detail, the uranium potentialities of Venezuela are summarized, and recommendations are made. Preliminary study was made to select areas and rock types that were known or reported to be radioactive or that geologic experience suggests would be favorable host for uranium deposits, In the office, a study of gamma-ray well logs was started as one means of amassing general radiometric data and of rapidly scanning many of ye rocks in northern Venezuela; gamma-ray logs from about 140 representative wells were examined and their peaks of gamma intensity evaluated; in addition samples were analyzed radiometrically, and petrographically. Radiometic reconnaissance was made in the field during about 3 months of 1951, or about 12 areas, including over 100 localities in the State of Miranda, Carabobo, Yaracuy, Falcon, Lara, Trujillo, Zulia, Merida, Tachira, Bolivar, and Territory Delta Amacuro. During the course of the investigation, both in the filed and office, information was given about geology of uranium deposits, and in techniques used in prospecting and analysis. All studies and this report are designed to supplement and to strengthen the Direccion Tecnica de Geologias's program of investigation of radioactive source in Venezuela now in progress. The uranium potentialities of Los Estados de Venezuela are excellent for large, low-grade deposits of uraniferous phospahtic shales containing from 0.002 to 0.027 percent uranium; fair, for small or moderate-sized, low-grade placer deposits of thorium, rare-earth, and uranium minerals; poor, for high-grade hydrothermal pitchblende deposits; and highly possible for small, medium- to high-grade despots of carnotite-or copper-uranium bearing sandstone. Recommendations for the Venezuelan uranium program include 1) the systematic collection of a mass general radiometric data by examining sample collections, expanding the gamma-ray program, encouraging the use of Geiger counter by field geologists, and by enlisting the aid of the general public; 2) , the examination of specific areas or localities, chosen on the basis of geologic favorability from the results of the amassing of data, or obtained by hints and rumors; 3), the organization of a unit within the Direccion Tecnica de Geologica to direct, collection, and collate metric data. It is emphasized that to be most fruitful the program requires the application of sounds and imaginative geologic theory.
Radioactive deposits in California
Walker, George W.; Lovering, Tom G.
1954-01-01
Reconnaissance examination by Government geologists of many areas, mine properties, and prospects in California during the period between 1948 and 1953 has confirmed the presence of radioactive materials in place at more than 40 localities. Abnormal radioactivity at these localities is due to concentrations of primary and secondary uranium minerals, to radon gas, radium (?), and to thorium minerals. Of the known occurrences only three were thought to contain uranium oxide (uranitite or pitchblende), 4 contained uranium-bearing columbate, tantalate, or titanate minerals, 12 contained secondary uranium minerals, such as autunite, carnotite, and torbernite, one contained radon gas, 7 contained thorium minerals, and, at the remaining 16 localities, the source of the anomalous radiation was not positively determined. The occurrences in which uranium oxide has been tentatively identified include the Rathgeb mine (Calaveras County), the Yerih group of claims (San Bernardino County), and the Rainbow claim (Madera County). Occurrences of secondary uranium minerals are largely confined to the arid desert regions of south-eastern California including deposits in San Bernardino, Kern, Inyo, and Imperial Counties. Uranium-bearing columbate, tantalate, or titanate minerals have been reported from pegmatite and granitic rock in southeastern and eastern California. Thorium minerals have been found in vein deposits in eastern San Bernardino County and from pegmatites and granitic rocks in various parts of southeastern California; placer concentrations of thorium minerals are known from nearly all areas in the State that are underlain, in part, by plutonic crystalline rocks. The primary uranium minerals occur principally as minute accessory crystals in pegmatite or granitic rock, or with base-metal sulfide minerals in veins. Thorium minerals also occur as accessory crystals in pegmatite or granitic rock, in placer deposits derived from such rock, and, at Mountain Pass, in veins containing rare earths. Secondary uranium minerals have been found as fracture coatings and as disseminations in various types of wall rock, although they are largely confined to areas of Tertiary volcanic rocks. Probably the uranium in the uraniferous deposits in California is related genetically to felsic crystalline rocks and felsic volcanic rocks; the present distribution of the secondary uranium minerals has been controlled, in part, by circulating ground waters and probably, in part, by magmatic waters related to the Tertiary volcanic activity. The thorium minerals are genetically related to the intrusion of pegmatite and plutonic crystalline rocks. None of the known deposits of radioactive minerals in California contain marketable reserves of uranium or thorium ore under economic conditions existing in 1952. With a favorable local market small lots of uranium ore may be available in the following places: the Rosamund prospect, the Rafferty and Chilson properties, the Lucky Star claim, and the Yerih group. The commercial production of thorium minerals will be possible, in the near future, only if these minerals can be recovered cheaply as a byproduct either from the mining of rare earths minerals at Mountain Pass or as a byproduct of placer mining for gold.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivenet, Murielle; Vigier, Nicolas; Roussel, Pascal
Six new layered uranyl vanadates (NH{sub 4}){sub 2}[(UO{sub 2}){sub 2}V{sub 2}O{sub 8}] (1), (H{sub 2}EN)[(UO{sub 2}){sub 2}V{sub 2}O{sub 8}] (2), (H{sub 2}DAP)[(UO{sub 2}){sub 2}V{sub 2}O{sub 8}] (3), (H{sub 2}PIP)[(UO{sub 2}){sub 2}(VO{sub 4}){sub 2}].0,8H{sub 2}O (4), (H{sub 2}DMPIP)[(UO{sub 2}){sub 2}V{sub 2}O{sub 8}] (5), (H{sub 2}DABCO)[(UO{sub 2}){sub 2}(VO{sub 4}){sub 2}] (6) were prepared from mild-hydrothermal reactions using 1,2-ethylenediamine (EN); 1,3-diaminopropane (DAP); piperazine (PIP); 1-methylpiperazine (MPIP); 1,4-diazabicyclo[2,2,2]octane (DABCO). The structures of 1, 4, 5 and 6 were solved using single-crystal X-ray diffraction data while the structural models of 2 and 3 were established from powder X-ray diffraction data. In compounds 1, 2, 3more » and 5, the uranyl-vanadate layers are built from dimers of edge-shared UO{sub 7} pentagonal bipyramids and dimers of edge-shared VO{sub 5} square pyramids further connected through edge-sharing. In 1 and 3, the layers are identical to that occurring in the carnotite group of uranyl-vanadates. In 2 and 5, the V{sub 2}O{sub 8} dimers differ in orientation leading to a new type of layer. The layers of compound 4 and 6 are built from chains of edge-shared UO{sub 7} pentagonal bipyramids connected by VO{sub 4} tetrahedra and are of uranophane-type anion topology. For the six compounds, the ammonium or organoammonium cation resides in the space between the inorganic layers. Crystallographic data: 1 monoclinic, space group P2{sub 1}/c with a=6.894(2), b=8.384(3), c=10.473(4) A and {beta}=106.066(5){sup o}, 2 monoclinic, space group P2{sub 1}/a with a=13.9816(6), b=8.6165(3), c=10.4237(3) A and {gamma}=93.125(3){sup o}, 3 orthorhombic, space group Pmcn with a=14.7363(8), b=8.6379(4) and c=10.4385(4) A, 4 monoclinic, space group C2/m with a=15.619(2), b=7.1802(8), c=6.9157(8) A and {beta}=101.500(2){sup o}, 5 monoclinic, space group P2{sub 1}/b with a=9.315(2), b=8.617(2), c=10.5246(2) A and {gamma}=114.776(2){sup o}, 6 monoclinic, space group C2/m with a=17.440(2), b=7.1904(9), c=6.8990(8) A and {beta}=98.196(2){sup o}. - Graphical abstract: The three types of layer in layered uranyl-vanadates using diamine as a structure-directing agent.« less
Detailed mineral and chemical relations in two uranium-vanadium ores
Garrels, Robert M.; Larsen, E. S.; Pommer, A.M.; Coleman, R.G.
1956-01-01
Channel samples from two mines on the Colorado Plateau have been studied in detail both mineralogically and chemically. A channel sample from the Mineral Joe No. 1 mine, Montrose County, Colo., extends from unmineralized rock on one side, through a zone of variable mineralization, into only weakly mineralized rock. The unmineralized rock is a fairly clean quartz sand cemented with gypsum and contains only minor amounts of clay minerals. One boundary between unmineralized and mineralized rock is quite sharo and is nearly at right angles to the bedding. Vanadium clay minerals, chiefly mixed layered mica-montmorillonite and chlorite-monmorillonite, are abundant throughout the mineralized zone. Except in the dark "eye" of the channel sample, the vanadium clay minerals are accompanied by hewettite, carnotite, tyuyamunite, and probably unidentified vanadates. In the dark "eye," paramontroseite, pyrite, and marcasite are abundant, and bordered on each side by a zone containing abundant corvusite. No recognizable uranium minerals were seen in the paramontroseite zone although uranium is abundant there. Coaly material is recognizable throughout all of the channel but is most abundant in and near the dark "eye." Detailed chemical studies show a general increase in Fe, Al, U, and V, and a decrease in SO4 toward the "eye" of the channel. Reducing capacity studies indicate that V(IV) and Fe(II) are present in the clay mineral throughout the channel, but only in and near the "eye" are other V(IV) minerals present (paramontroseite and corvusite). The uranium is sexivalent, although its state of combination is conjectural where it is associated with paramontroseite. Where the ore boundary is sharp, the boundary of introduced trace elements is equally sharp. Textural and chemical relations leave no doubt that the "eye: is a partially oxidized remnant of a former lower-valence ore, and the remainder of the channel is a much more fully oxidized remnant. A channel sample from the Virgin No. 3 mine, Montrose County, Colo., extends from weakly mineralized sandstone on both sides through a strongly mineralized central zone. The weakly mineralized zone is a poorly sorted sandstone with common detrital clay partings; chlorite and mixed layer mica-montmorrillonite are abundant interstitial to the quartz grains. No distinct vanadium or uranium minerals are recognizable, although the clay minerals are vanadium bearing. Euherdral pyrite grains and selenian galena are present but rare. The strongly mineralized rock is separated from the weakly mineralized rock by a narrow transition zone which only apporiximates the bedding planes. It contains abundant vanadium-bearing clay minerals (predominantly chlorite) interstitial to the quartz grains, and apparently replacing them. Paramontroseite is common and is intergrown with the clay minerals. Pyrite and marcasite are present, chiefly in or near the abundant blebs and fragments of carbonaceous material. Selenian galena is rarely present, and generally in or near carbonaceous material. Coffinite is the only uranium mineral idenitified; it is extremely fine grained and was identified only in X-ray diffraction patterns of heavy separates. Distribution of trace elements is not clear; some are consistently high in the strongly mineralized rocks, and some are consistently low. The trace element composition of the unmineralized rock is not known. Chemical studies show a very abrupt rise in the total U, V, and Fe from the weakly mineralized to strongly mineralized rock. Reducing-capacity studies indicate that most of the vanadium is present as V(IV), but some is present as V(V); that iron is present as both Fe(II) and Fe(III), the latter believed to have been present in the primary clays of the unmineralized rock; and that come of the uranium is present as U(VI) in addition to the U(IV) in the coffinite. All evidence points to weak oxidation of an ore once having a somewhat lower valence state. The channel samples from both the Mineral Joe No. 1 mine and the Virgin No. 3 mine are believe to have been essentially identical in mineralogy prior to oxidation by weathering: vanadium was present as V(III) in montroseite and V(IV) in the vanadium clays; uranium was present largely as U(IV) in coffinite and/or uraninite. The Mineral Joe No. 1 mine channel sample is now more fully oxidized. Vanadium clays are unquestionably formed abundantly during the primary mineralization, and they persist with a minimum of alteration during much of the weathering. They suggest that the vanadium is carried as V(IV) in the ore-forming fluids; it seems likely too that the uranium is carried as a U(VI) ion.