Autologous Fat Transfer for Thumb Carpometacarpal Joint Osteoarthritis: A Prospective Study.
Herold, Christian; Rennekampff, Hans-Oliver; Groddeck, Robert; Allert, Sixtus
2017-08-01
Most operations for carpometacarpal joint osteoarthritis of the thumb irreversibly alter or destroy the anatomy. There is a high demand for minimally invasive alternatives. The authors report the results of autologous fat transfer for treatment of thumb carpometacarpal joint osteoarthritis. In a prospective study, 50 patients with thumb carpometacarpal joint osteoarthritis were observed for 1 year after autologous fat transfer. Manual liposuction and centrifugation were performed. Pain rating according to visual analogue pain scale; objective force of pinch grip and fist closure; and Disabilities of the Arm, Shoulder, and Hand questionnaire scores before and after treatment were analyzed. The average pain in stage 2 patients preoperatively was 7.7 ± 1.3; it was 1.8 ± 1.9 after 6 months and 2.4 ± 3.1 after 12 months. Patients with stage 2 osteoarthritis demonstrated a superior benefit from this treatment compared with patients with either stage 3 or stage 4 thumb carpometacarpal joint osteoarthritis. There were similar improvements for the parameters strength and Disabilities of the Arm, Shoulder, and Hand questionnaire score. No serious adverse events were observed. Autologous fat transplantation is an appealing alternative, especially in early-stage basal joint osteoarthritis of the thumb. The low invasiveness of the procedure and early recovery of patients compared with classical procedures such as trapeziectomy, and the superior long-term results compared with classical injection therapy, make this approach feasible as a first-line therapy in early-stage basal joint osteoarthritis of the thumb. Therapeutic, IV.
Postoperative Therapy for Chronic Thumb Carpometacarpal (CMC) Joint Dislocation.
Wollstein, Ronit; Michael, Dafna; Harel, Hani
2016-01-01
Surgical arthroplasty of thumb carpometacarpal (CMC) joint osteoarthritis is commonly performed. Postoperative therapeutic protocols aim to improve range of motion and function of the revised thumb. We describe a case in which the thumb CMC joint had been chronically dislocated before surgery, with shortening of the soft-tissue dynamic and static stabilizers of the joint. The postoperative protocol addressed the soft tissues using splinting and exercises aimed at lengthening and strengthening these structures, with good results. It may be beneficial to evaluate soft-tissue tension and the pattern of thumb use after surgery for thumb CMC joint osteoarthritis to improve postoperative functional results. Copyright © 2016 by the American Occupational Therapy Association, Inc.
Thumb carpometacarpal joint congruence during functional tasks and thumb range-of-motion activities
Halilaj, Eni; Moore, Douglas C; Patel, Tarpit K; Laidlaw, David H; Ladd, Amy L; Weiss, Arnold-Peter C; Crisco, Joseph J
2017-01-01
Joint incongruity is often cited as a possible etiological factor for the high incidence of thumb carpometacarpal (CMC) joint osteoarthritis (OA) in older women. There is evidence suggesting that biomechanics plays a role in CMC OA progression, but little is known about how CMC joint congruence, specifically, differs among different cohorts. The purpose of this in vivo study was to determine if CMC joint congruence differs with sex, age, and early stage OA for different thumb positions. Using CT data from 155 subjects and a congruence metric that is based on both articular morphology and joint posture, we did not find any differences in CMC joint congruence with sex or age group, but found that patients in the early stages of OA exhibit lower congruence than healthy subjects of the same age group. PMID:25570956
Thumb carpometacarpal joint congruence during functional tasks and thumb range-of-motion activities.
Halilaj, Eni; Moore, Douglas C; Patel, Tarpit K; Laidlaw, David H; Ladd, Amy L; Weiss, Arnold-Peter C; Crisco, Joseph J
2014-01-01
Joint incongruity is often cited as a possible etiological factor for the high incidence of thumb carpometacarpal (CMC) joint osteoarthritis (OA) in older women. There is evidence suggesting that biomechanics plays a role in CMC OA progression, but little is known about how CMC joint congruence, specifically, differs among different cohorts. The purpose of this in vivo study was to determine if CMC joint congruence differs with sex, age, and early stage OA for different thumb positions. Using CT data from 155 subjects and a congruence metric that is based on both articular morphology and joint posture, we did not find any differences in CMC joint congruence with sex or age group, but found that patients in the early stages of OA exhibit lower congruence than healthy subjects of the same age group.
ULNAR NERVE COMPONENT TO INNERVATION OF THUMB CARPOMETACARPAL JOINT
Miki, Roberto Augusto; Kam, Check C; Gennis, Elisabeth R; Barkin, Jodie A; Riel, Ryan U; Robinson, Philip G; Owens, Patrick W
2011-01-01
Purpose Thumb carpometacarpal (CMC) joint arthritis is one of the most common problems addressed by hand surgeons. The gold standard of treatment for thumb CMC joint arthritis is trapeziectomy, ligament reconstruction and tendon interposition. Denervation of the thumb CMC joint is not currently used to treat arthritis in this joint due to the failure of the procedure to yield significant symptomatic relief. The failure of denervation is puzzling, given that past anatomic studies show the radial nerve is the major innervation of the thumb CMC joint with the lateral antebrachial nerve and the median nerve also innervating this joint. Although no anatomic study has ever shown that the ulnar nerve innervates the CMC joint, due to both the failure of denervation and the success of arthroscopic thermal ablation, we suspect that previous anatomic studies may have overlooked innervation of the thumb CMC joint via the ulnar nerve. Methods We dissected 19 formalin-preserved cadaveric hand-to-mid-forearm specimens. The radial, median and ulnar nerves were identified in the proximal forearm and then followed distally. Any branch heading toward the radial side of the hand were followed to see if they innervated the thumb CMC joint. Results Eleven specimens (58%) had superficial radial nerve innervation to the thumb CMC joint. Nine specimens (47%) had median nerve innervation from the motor branch. Nine specimens (47%) had ulnar nerve innervation from the motor branch. Conclusions We believe this is the first study to demonstrate that the ulnar nerve innervates the thumb CMC joint This finding may explain the poor results seen in earlier attempts at denervation of the thumb CMC, but the more favorable results with techniques such as arthroscopy with thermal ablation. PMID:22096446
A Thumb Carpometacarpal Joint Coordinate System Based on Articular Surface Geometry
Halilaj, Eni; Rainbow, Michael J.; Got, Christopher; Moore, Douglas C.; Crisco, Joseph J.
2013-01-01
The thumb carpometacarpal (CMC) joint is a saddle-shaped articulation whose in vivo kinematics can be explored more accurately with computed tomography (CT) imaging methods than with previously used skin-based marker systems. These CT-based methods permit a detailed analysis of the morphology of the joint, and thus the prominent saddle-shaped geometry can be used to define a coordinate system that is inherently aligned with the primary directions of motion at the joint. The purpose of this study was to develop a CMC joint coordinate systems that is based on the computed principal directions of curvature on the trapezium and the first metacarpal. We evaluated the new coordinate system using bone surface models segmented from the CT scans of twenty-four healthy subjects. An analysis of sensitivity to the manual selection of articular surfaces resulted in mean orientation differences of 0.7±0.7° and mean location differences of 0.2±0.1mm. Inter-subject variability, which mostly emanates from anatomical differences, was evaluated with whole bone registration and resulted in mean orientation differences of 3.1±2.7° and mean location differences of 0.9±0.5mm. The proposed joint coordinate system addresses concerns of repeatability associated with bony landmark identification and provides a robust platform for describing the complex kinematics of the CMC joint. PMID:23357698
Touloupakis, Georgios; Stuflesser, Wilfried; Antonini, Guido; Ferrara, Fabrizio; Crippa, Cornelio; Lettera, Maria Gabriella
2016-05-06
Incorrect or delayed diagnosis and treatment of the carpometacarpal fracture-dislocations is often associated with poor prognosis. We present a rare case of unusual pattern of injury, involving dorsal dislocation of four ulnar carpometacarpal joints, associated with fracture of the trapezium, a burst fracture of the trapezoid bone and an extra-articular fracture of the third distal of the radius. The first surgical intervention was followed by unsatisfactory results, confirmed by the CT scans. A second surgery followed and an open reduction and pinning with K wires performed. Post-operative follow up lasting for nine months revealed a very good surgical outcome.
Thumb carpometacarpal joint resurfacing with autologous ear cartilage.
Nickell, William B
2014-05-01
A study was designed to ascertain the long-term effectiveness of using autologous full-thickness ear cartilage to resurface the arthritic face of the trapezium, leaving the body of the trapezium intact. The value of injection of the involved carpometacarpal (CMC) joint with local anesthetic in predicting improvement from the surgery was also studied. An operation was used to enter the CMC joint of the thumb between the thenar muscles and the abductor tendon. The articular surface of the trapezium was resected and resurfaced with full-thickness ear cartilage from the patient's ear. Patients were selected based on constant, unremitting pain. All patients also had x-ray evidence of severe arthritis at the CMC joint of the thumb. Both thumbs were evaluated for pain, range of motion, key and palmar pinch, and grip strength before the surgery and followed up for a minimum of 30 months to be included in the study. Fifty-nine patients had ear cartilage arthroplasty from 1997 to 2007 by the same surgeon with a total of 67 operations (8 patients, all women, had both thumbs operated). Forty-nine of these patients, 4 men and 45 women (53 hands), were available for follow-up and constitute the study group. Eight procedures were done on the left hand, and 45, on the right. There were no ear complications and no cartilage extrusions. All patients had improved range of motion and greatly decreased pain. Strength was equaled or exceeded the unoperated thumb. Preoperative joint injection was a good predictor of postoperative pain relief. All patients were pleased with the result and said that they would have the surgery again. Thumb CMC joint arthroplasty with autologous ear cartilage and preservation of the body of the trapezium is an effective alternative to existing procedures.There is no morbidity to the ear, and predictable long-term improvement in thumb pain and strength can be obtained. Injection of the CMC joint before surgery with local anesthetic is a reliable predictor of
The human first carpometacarpal joint: osteoarthritic degeneration and 3-dimensional modeling.
Kovler, Maksim; Lundon, Katie; McKee, Nancy; Agur, Anne
2004-01-01
The purpose of this study was to gain insight into potential mechanical factors contributing to osteoarthritis of the human first carpometacarpal joint (CMC). This was accomplished by creating three-dimensional (3-D) computer models of the articular surfaces of CMC joints of older humans and by determining their locus of cartilage degeneration. The research questions of this study were: 1) What is the articular wear pattern of cartilage degeneration in CMC osteoarthritis?, (2) Are there significant topographic differences in joint area and contour between the joints of males and females?, and 3) Are there measurable bony joint recesses consistently found within the joint? The articular surfaces of 25 embalmed cadaveric joints (from 13 cadavers) were graded for degree of osteoarthritis, and the location of degeneration was mapped using a dissection microscope. The surfaces of 14 mildly degenerated joints were digitized and reconstructed as 3-D computer models using the Microscribe 3D-X Digitizer and the Rhinoceros 2.0 NURBS Modeling Software. This technology provided accurate and reproducible information on joint area and topography. The dorsoradial trapezial region was found to be significantly more degenerated than other quadrants in both males and females. Mean trapezial articular surface area was 197 mm 2 in males and 160 mm(2) in females; the respective mean areas for the metacarpal were 239 mm(2) in males and 184 mm(2) in females. Joints of females were found to be significantly more concave in radioulnar profile than those of males. Three bony joint recesses were consistently found, two in the radial and ulnar aspects of the trapezium and the third in the palmar surface of the metacarpal.
Spaans, Anne J; Minnen, L Paul van; Braakenburg, Assa; Mink van der Molen, Aebele B
2017-08-01
The purpose of this pilot study was to evaluate the feasibility of joint distraction of the first carpometacarpal (CMC1) joint in patients with CMC1 osteoarthritis (OA). An external joint distractor was placed over the CMC1 joint by K-wire fixation in the trapezium and the metacarpal. The joint was distracted 3 mm during surgery. The device was then kept in place for 8 weeks. Disabilities of the Arm, Shoulder, and Hand (DASH) score, Michigan Hand Outcome Questionnaire (MHQ), Visual Analogue Scale (VAS), and grip strength were recorded preoperatively and at set postoperative intervals. Five female patients with an average age of 53 years (range = 41-61) were included. One year postoperatively, average DASH, MHQ, and VAS scores improved compared to preoperative values; DASH 53 to 27, MHQ 48 to 76, and VAS pain 48 to 14. There were no technical problems associated with the device. One patient had a local pin site infection treated successfully with oral antibiotics. This study concludes that joint distraction of the osteoarthritic CMC1 joint is technically feasible. In this small, prospective pilot study the majority of the results were favourable during short-term follow-up.
The Envelope of Physiological Motion of the First Carpometacarpal Joint
Crisco, Joseph J.; Patel, Tarpit; Halilaj, Eni; Moore, Douglas C.
2015-01-01
Much of the hand's functional capacity is due to the versatility of the motions at the thumb carpometacarpal (CMC) joint, which are presently incompletely defined. The aim of this study was to develop a mathematical model to completely describe the envelope of physiological motion of the thumb CMC joint and then to examine if there were differences in the kinematic envelope between women and men. In vivo kinematics of the first metacarpal with respect to the trapezium were computed from computed tomography (CT) volume images of 44 subjects (20M, 24F, 40.3 ± 17.7 yr) with no signs of CMC joint pathology. Kinematics of the first metacarpal were described with respect to the trapezium using helical axis of motion (HAM) variables and then modeled with discrete Fourier analysis. Each HAM variable was fit in a cyclic domain as a function of screw axis orientation in the trapezial articular plane; the RMSE of the fits was 14.5 deg, 1.4 mm, and 0.8 mm for the elevation, location, and translation, respectively. After normalizing for the larger bone size in men, no differences in the kinematic variables between sexes could be identified. Analysis of the kinematic data also revealed notable coupling of the primary rotations of the thumb with translation and internal and external rotations. This study advances our basic understanding of thumb CMC joint function and provides a complete description of the CMC joint for incorporation into future models of hand function. From a clinical perspective, our findings provide a basis for evaluating CMC pathology, especially the mechanically mediated aspects of osteoarthritis (OA), and should be used to inform artificial joint design, where accurate replication of kinematics is essential for long-term success. PMID:26201612
Yao, Caroline A; Ellis, Chandra V; Cohen, Myles J; Kulber, David A
2013-10-01
Advanced thumb carpometacarpal arthritis is widely treated with trapeziectomy and tendon interposition despite donor-site morbidities. Trapeziectomy alone leaves a postresection space, leading to proximal metacarpal migration and scaphoid/trapezoid impingement. Prosthetic implants have been unsuccessful due to particulate debris, silicone synovitis, osteolysis, and migration. Recent studies have shown successful use of allograft for interposition material in the posttrapeziectomy space both in animal and human models. To obviate the need for autologous tissue, maintain thumb length, and reduce the risk of scaphoid impingement, the senior author developed an interposition arthroplasty technique using a spacer constructed from human acellular dermal matrix (HADM). Sixteen patients with Eaton stage III-IV thumb carpometacarpal osteoarthritis received the above procedure from the 2 senior authors. HADM was imbricated to fill the posttrapeziectomy space and secured to the volar capsule and metacarpal base. Pre- and postoperative trapezial space on radiograph, pain scores, and grip strength were recorded. Six months postoperatively, radiographs showed an average joint space loss of 11%. Heights postoperatively were not significantly different from immediate postoperative heights (P ≥ 0.01). At 6 months, patients had improved pain and grip strength (P ≤ 0.01). No infections, foreign body reactions, or other complications occurred. HADM has been used extensively in other forms of reconstruction and has been shown to incorporate into surrounding tissues through neovascularization. Our early results illustrate that HADM can safely fill the dead space left by trapeziectomy.
A computational method for comparing the behavior and possible failure of prosthetic implants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielsen, C.; Hollerbach, K.; Perfect, S.
1995-05-01
Prosthetic joint implants currently in use exhibit high Realistic computer modeling of prosthetic implants provides an opportunity for orthopedic biomechanics researchers and physicians to understand possible in vivo failure modes, without having to resort to lengthy and costly clinical trials. The research presented here is part of a larger effort to develop realistic models of implanted joint prostheses. The example used here is the thumb carpo-metacarpal (cmc) joint. The work, however, can be applied to any other human joints for which prosthetic implants have been designed. Preliminary results of prosthetic joint loading, without surrounding human tissue (i.e., simulating conditions undermore » which the prosthetic joint has not yet been implanted into the human joint), are presented, based on a three-dimensional, nonlinear finite element analysis of three different joint implant designs.« less
Harenberg, P S; Jakubietz, M G; Jakubietz, R G; Schmidt, K; Meffert, R H
2013-02-01
Reduction of pain and gain of functionality in symptomatic osteoarthritis of the first carpometacarpal joint. Idiopathic, rheumatic, or posttraumatic osteoarthritis of the first carpometacarpal joint. RELATIVE CONTRAINDICATIONS: Poor general condition, poor condition of the hand's soft tissue/skin, chronic regional pain syndrome, current or recent infections of the hand, heavy manual labor (decision on a by-case basis). Supine position, hand pronated or slightly tilted. Upper arm tourniquet (Esmarch's method). Loupe magnification. Incision over the first extensor compartment. Exposure and incision of the thumb's basal joint. Resection of the trapezium. Exposure of the abductor pollicis longus (APL) tendon. Longitudinal split of the tendon harvesting the distally based ulnar part of the tendon. The split APL tendon is wrapped around the flexor carpi radialis (FCR) muscle tendon, suturing it to the tendon and back to itself. The rest of the split APL tendon is placed into the gap between the scaphoid and the first metacarpal bone, which is followed by wound closure. Plaster cast (thumb abduction splint) for 4 weeks. Stable commercially available wrist brace for at least 2 more weeks. There were no significant differences between the FCR arthroplasty (Epping's method) and the APL arthroplasty (Wulle's technique) regarding pain (visual analog scale), disability/usability (DASH score), or range of motion. Patients who had undergone APL arthroplasty showed significantly better grip and pinch strength. Furthermore, the operating time was significantly shorter and scars were significantly smaller in APL arthroplasty.
Ladd, Amy L; Lee, Julia; Hagert, Elisabet
2012-08-15
Stability and mobility represent the paradoxical demands of the human thumb carpometacarpal joint, yet the structural origin of each functional demand is poorly defined. As many as sixteen and as few as four ligaments have been described as primary stabilizers, but controversy exists as to which ligaments are most important. We hypothesized that a comparative macroscopic and microscopic analysis of the ligaments of the thumb carpometacarpal joint would further define their role in joint stability. Thirty cadaveric hands (ten fresh-frozen and twenty embalmed) from nineteen cadavers (eight female and eleven male; average age at the time of death, seventy-six years) were dissected, and the supporting ligaments of the thumb carpometacarpal joint were identified. Ligament width, length, and thickness were recorded for morphometric analysis and were compared with use of the Student t test. The dorsal and volar ligaments were excised from the fresh-frozen specimens and were stained with use of a triple-staining immunofluorescent technique and underwent semiquantitative analysis of sensory innervation; half of these specimens were additionally analyzed for histomorphometric data. Mixed-effects linear regression was used to estimate differences between ligaments. Seven principal ligaments of the thumb carpometacarpal joint were identified: three dorsal deltoid-shaped ligaments (dorsal radial, dorsal central, posterior oblique), two volar ligaments (anterior oblique and ulnar collateral), and two ulnar ligaments (dorsal trapeziometacarpal and intermetacarpal). The dorsal ligaments were significantly thicker (p < 0.001) than the volar ligaments, with a significantly greater cellularity and greater sensory innervation compared with the anterior oblique ligament (p < 0.001). The anterior oblique ligament was consistently a thin structure with a histologic appearance of capsular tissue with low cellularity. The dorsal deltoid ligament complex is uniformly stout and robust; this
Halilaj, Eni; Rainbow, Michael J; Moore, Douglas C; Laidlaw, David H; Weiss, Arnold-Peter C; Ladd, Amy L; Crisco, Joseph J
2015-07-16
The anterior oblique ligament (AOL) and the dorsoradial ligament (DRL) are both regarded as mechanical stabilizers of the thumb carpometacarpal (CMC) joint, which in older women is often affected by osteoarthritis. Inferences on the potential relationship of these ligaments to joint pathomechanics are based on clinical experience and studies of cadaveric tissue, but their functions has been studied sparsely in vivo. The purpose of this study was to gain insight into the functions of the AOL and DRL using in vivo joint kinematics data. The thumbs of 44 healthy subjects were imaged with a clinical computed tomography scanner in functional-task and thumb range-of-motion positions. The origins and insertion sites of the AOL and the DRL were identified on the three-dimensional bone models and each ligament was modeled as a set of three fibers whose lengths were the minimum distances between insertion sites. Ligament recruitment, which represented ligament length as a percentage of the maximum length across the scanned positions, was computed for each position and related to joint posture. Mean AOL recruitment was lower than 91% across the CMC range of motion, whereas mean DRL recruitment was generally higher than 91% in abduction and flexion. Under the assumption that ligaments do not strain by more than 10% physiologically, our findings of mean ligament recruitments across the CMC range of motion indicate that the AOL is likely slack during most physiological positions, whereas the DRL may be taut and therefore support the joint in positions of CMC joint abduction and flexion. Copyright © 2015 Elsevier Ltd. All rights reserved.
Halilaj, Eni; Rainbow, Michael J.; Moore, Douglas C.; Laidlaw, David H.; Weiss, Arnold-Peter C.; Ladd, Amy L.; Crisco, Joseph J.
2015-01-01
The anterior oblique ligament (AOL) and the dorsoradial ligament (DRL) are both regarded as mechanical stabilizers of the thumb carpometacarpal (CMC) joint, which in older women is often affected by osteoarthritis. Inferences on the potential relationship of these ligaments to joint pathomechanics are based on clinical experience and studies of cadaveric tissue, but their function has been studied sparsely in vivo. The purpose of this study was to gain insight into the functions of the AOL and DRL using in vivo joint kinematic data. The thumbs of 44 healthy subjects were imaged with a clinical computed tomography scanner in functional-task and thumb range-of-motion positions. The origins and insertion sites of the AOL and the DRL were identified on the 3D bone models and each ligament was modeled as a set of three fibers whose lengths were the minimum distances between insertion sites. Ligament recruitment, which represented ligament length as a percentage of the maximum length across the scanned positions, was computed for each position and related to joint posture. Mean AOL recruitment was lower than 91% across the CMC range of motion, whereas mean DRL recruitment was generally higher than 91% in abduction and flexion. Under the assumption that ligaments do not strain by more than 10% physiologically, our findings of mean ligament recruitments across the CMC range of motion indicate that the AOL is likely slack during most physiological positions, whereas the DRL may be taut and therefore support the joint in positions of CMC joint abduction and flexion. PMID:25964211
Meenagh, G; Patton, J; Kynes, C; Wright, G
2004-01-01
Objective: To investigate the efficacy of corticosteroid injections into the carpometacarpal joint of the thumb (CMCJ) in patients with osteoarthritis. Design: A double blind, randomised controlled trial using 40 hospital referred patients with CMCJ osteoarthritis who received intra-articular injections of 5 mg triamcinolone hexacetonide (0.25 ml) or sterile 0.9% saline (0.25 ml). Injections were given under imaging control. Main outcome measures: The primary outcome was improvement in a pain visual analogue score (VAS) of 20% at 24 weeks. In addition patients were assessed at 4, 12, and 24 weeks for joint stiffness, joint tenderness, and physician and patient global assessments. Hand radiographs were evaluated for the degree of CMC joint space narrowing and marginal osteophytes according to the OARSI atlas. Results: Baseline clinical variables were not significantly different between the two treatment groups. There was no improvement in the VAS of pain at 24 weeks. At each assessment point there was no significant difference between the steroid and placebo groups in median values for joint stiffness, joint tenderness, or patient and physician global assessments. Non-parametric analysis of each group individually revealed statistically significant improvements in patient and physician global assessments at weeks 4, 12, and 24 in the placebo group and at weeks 4 and 12 in the steroid group. Conclusions: No clinical benefit was gained from intra-articular steroid injection to the CMCJ in moderate to severe osteoarthritis compared with placebo injection. PMID:15361383
Selby, Michael S; Simpson, Scott W; Lovejoy, C Owen
2016-05-01
Previously, we described several features of the carpometacarpal joints in extant large-bodied apes that are likely adaptations to the functional demands of vertical climbing and suspension. We observed that all hominids, including modern humans and the 4.4-million-year-old hominid Ardipithecus ramidus, lacked these features. Here, we assess the uniqueness of these features in a large sample of monkey, ape, and human hands. These new data provide additional insights into the functional adaptations and evolution of the anthropoid hand. Our survey highlights a series of anatomical adaptations that restrict motion between the second and third metacarpals (MC2 and MC3) and their associated carpals in extant apes, achieved via joint reorganization and novel energy dissipation mechanisms. Their hamate-MC4 and -MC5 joint surface morphologies suggest limited mobility, at least in Pan. Gibbons and spider monkeys have several characters (angled MC3, complex capitate-MC3 joint topography, variably present capitate-MC3 ligaments) that suggest functional convergence in response to suspensory locomotion. Baboons have carpometacarpal morphology suggesting flexion/extension at these joints beyond that observed in most other Old World monkeys, probably as an energy dissipating mechanism minimizing collision forces during terrestrial locomotion. All hominids lack these specializations of the extant great apes, suggesting that vertical climbing was never a central feature of our ancestral locomotor repertoire. Furthermore, the reinforced carpometacarpus of vertically climbing African apes was likely appropriated for knuckle-walking in concert with other novel potential energy dissipating mechanisms. The most parsimonious explanation of the structural similarity of these carpometacarpal specializations in great apes is that they evolved independently. © 2016 Wiley Periodicals, Inc.
Smeraglia, Francesco; Mariconda, Massimo; Balato, Giovanni; Di Donato, Sigismondo Luca; Criscuolo, Giovanni; Maffulli, Nicola
2018-06-01
Trapeziometacarpal arthritis is a common and disabling condition. There is no evidence in the literature of superiority of one surgical procedure over others. Several prosthetic implants have been introduced to preserve joint mobility. We searched the on Medline (PubMed), Web of Science and Scopus databases using the combined keywords 'artelon', 'thumb', 'carpometacarpal', 'trapeziometacarpal' and 'rhizoarthrosis'; 11 studies were identified. The use of Artelon implant is not recommended because of its high revision rate and worse outcomes compared to conventional techniques. Inert materials subjected to compressive and shearing forces could produce debris and subsequent inflammatory response. There is debate in the published scientific literature regarding the role of preoperative antibiotic profilaxis and post-surgery inflammatory response. Standard techniques such as trapeziectomy alone or combined with interposition or suspensionplasty offer effective treatment for thumb basal joint arthritis. Several prosthetic implants show promising results in terms of pain relief and functional request, but there is a need of long-term randomized controlled trials to demonstrate their equivalence, and eventually superiority, compared to standard techniques.
Hamada, Yoshitaka; Kobayashi, Anna; Sairyo, Koichi; Sato, Ryosuke; Hibino, Naohito
2015-06-01
A hyperextension deformity in the advanced stages of carpometacarpal (CMC) arthritis of the thumb could affect the outcomes of thumb CMC joint arthroplasty. We introduce the interesting approach for treating severely collapsed thumb deformities with gradual distraction and coordinated correction of the MCP and CMC joints by means of external fixators. We divided 8 cases into 3 groups according to the angle of passive flexion of the hyperextended MCP joint: group 1, 10-20°, group 2a, 20-40°, and group 2b, >40°, retrospectively. We first performed CMC arthroplasty with trapezium excision. In group 1, we corrected the MCP hyperextension deformity by manual passive flexion and fixed the joint with an extension block Kirshner wire (K-wire) for 2 months. However, deformities recurred in 2 of 5 cases after removing the K-wire. These patients received corrective percutaneous osteotomy with external fixators at the metacarpal neck. In groups 2a and 2b, we performed CMC arthroplasty and set external fixators at the same time. All cases in groups 1 and 2a have been without recurrence for more than 2 years, while a deformity recurred in group 2b. The results of this small case series encouraged us to propose an interesting approach for collapsed zigzag thumb deformity. Good outcomes with excellent maintenance of active MCP movement and no recurrence are highly anticipated if the hyperextended thumb has no obvious degenerative changes and can be corrected by <40° of passive flexion. Our results also indicate a risk of recurrence associated with extension block by K-wire.
Harenberg, P S; Langer, M F; Sproedt, J; Grünert, J G
2018-02-01
Osteoarthritis of the first carpometacarpal joint (CMCJ1) is a common, painful condition with positive radiological findings in up to 32% of people over 50 years of age and up to 91% of people over 80 years of age. Currently, there is insufficient evidence to recommend one surgical treatment option over the others. We conducted a retrospective review of 77 patients treated for CMCJ1 osteoarthritis with plate arthrodesis between 1979 and 1996. The review included physical examination, including range of motion (ROM) of the thumb interphalangeal joint, metacarpophalangeal joint and CMCJ1, pinch grip, key grip and power grip strength, and a questionnaire on subjective outcomes (appearance, dexterity, load bearing, pain, strength, subjective overall result and if patients would choose the procedure again). The complication rate was 26%. However, the general patient satisfaction was high with 88% of patients saying they would choose to have the procedure done again. There was a significant decrease (side-to-side difference) in the ROM for palmar and radial abduction as well as opposition when compared to the opposite hand. Furthermore, there was a significant reduction (side-to-side difference) in pinch, key grip and power grip strength. ROM did not seem to have any influence on pain (and vice versa), load bearing, and the subjective overall result. No gender differences were noted. Despite the high complication rate, CMCJ1 arthrodesis remains a viable option for the treatment of CMCJ1 osteoarthritis in select patients requiring good thumb stability. Copyright © 2017 SFCM. Published by Elsevier Masson SAS. All rights reserved.
Lindsey, Derek P; Kiapour, Ali; Yerby, Scott A; Goel, Vijay K
2018-03-18
To analyze how various implants placement variables affect sacroiliac (SI) joint range of motion. An experimentally validated finite element model of the lumbar spine and pelvis was used to simulate a fusion of the SI joint using various placement configurations of triangular implants (iFuse Implant System ® ). Placement configurations were varied by changing implant orientation, superior implant length, and number of implants. The range of motion of the SI joint was calculated using a constant moment of 10 N-m with a follower load of 400 N. The changes in motion were compared between the treatment groups to assess how the different variables affected the overall motion of the SI joint. Transarticular placement of 3 implants with superior implants that end in the middle of the sacrum resulted in the greatest reduction in range of motion (flexion/extension = 73%, lateral bending = 42%, axial rotation = 72%). The range of motions of the SI joints were reduced with use of transarticular orientation (9%-18%) when compared with an inline orientation. The use of a superior implant that ended mid-sacrum resulted in median reductions of (8%-14%) when compared with a superior implant that ended in the middle of the ala. Reducing the number of implants, resulted in increased SI joint range of motions for the 1 and 2 implant models of 29%-133% and 2%-39%, respectively, when compared with the 3 implant model. Using a validated finite element model we demonstrated that placement of 3 implants across the SI joint using a transarticular orientation with superior implant reaching the sacral midline resulted in the most stable construct. Additional clinical studies may be required to confirm these results.
Lindsey, Derek P; Kiapour, Ali; Yerby, Scott A; Goel, Vijay K
2018-01-01
AIM To analyze how various implants placement variables affect sacroiliac (SI) joint range of motion. METHODS An experimentally validated finite element model of the lumbar spine and pelvis was used to simulate a fusion of the SI joint using various placement configurations of triangular implants (iFuse Implant System®). Placement configurations were varied by changing implant orientation, superior implant length, and number of implants. The range of motion of the SI joint was calculated using a constant moment of 10 N-m with a follower load of 400 N. The changes in motion were compared between the treatment groups to assess how the different variables affected the overall motion of the SI joint. RESULTS Transarticular placement of 3 implants with superior implants that end in the middle of the sacrum resulted in the greatest reduction in range of motion (flexion/extension = 73%, lateral bending = 42%, axial rotation = 72%). The range of motions of the SI joints were reduced with use of transarticular orientation (9%-18%) when compared with an inline orientation. The use of a superior implant that ended mid-sacrum resulted in median reductions of (8%-14%) when compared with a superior implant that ended in the middle of the ala. Reducing the number of implants, resulted in increased SI joint range of motions for the 1 and 2 implant models of 29%-133% and 2%-39%, respectively, when compared with the 3 implant model. CONCLUSION Using a validated finite element model we demonstrated that placement of 3 implants across the SI joint using a transarticular orientation with superior implant reaching the sacral midline resulted in the most stable construct. Additional clinical studies may be required to confirm these results. PMID:29564210
Physicochemical and microscopic characterization of implant-abutment joints.
Lopes, Patricia A; Carreiro, Adriana F P; Nascimento, Rubens M; Vahey, Brendan R; Henriques, Bruno; Souza, Júlio C M
2018-01-01
The purpose of this study was to investigate Morse taper implant-abutment joints by chemical, mechanical, and microscopic analysis. Surfaces of 10 Morse taper implants and the correlated abutments were inspected by field emission gun-scanning electron microscopy (FEG-SEM) before connection. The implant-abutment connections were tightened at 32 Ncm. For microgap evaluation by FEG-SEM, the systems were embedded in epoxy resin and cross-sectioned at a perpendicular plane of the implant-abutment joint. Furthermore, nanoindentation tests and chemical analysis were performed at the implant-abutment joints. Results were statistically analyzed via one-way analysis of variance, with a significance level of P < 0.05. Defects were noticed on different areas of the abutment surfaces. The minimum and maximum size of microgaps ranged from 0.5 μm up to 5.6 μm. Furthermore, defects were detected throughout the implant-abutment joint that can, ultimately, affect the microgap size after connection. Nanoindentation tests revealed a higher hardness (4.2 ± 0.4 GPa) for abutment composed of Ti6Al4V alloy when compared to implant composed of commercially pure Grade 4 titanium (3.2 ± 0.4 GPa). Surface defects produced during the machining of both implants and abutments can increase the size of microgaps and promote a misfit of implant-abutment joints. In addition, the mismatch in mechanical properties between abutment and implant can promote the wear of surfaces, affecting the size of microgaps and consequently the performance of the joints during mastication.
Avascular necrosis of the trapezoid bone following carpometacarpal arthroplasty.
Kane, Patrick; Waryasz, Greg; Katarincic, Julie
2014-03-03
A 58-year-old female developed avascular necrosis of her trapezoid approximately 3 months after undergoing carpometacarpal arthroplasty. The patient was treated conservatively with immobilization and had complete resolution of her clinical symptoms during her year of follow-up. Additionally, radiographic examination showed complete restoration of the height of her trapezoid approximately 1 year after the index procedure. Avascular necrosis of the trapezoid is extremely rare with very few cases described in the literature. This is the first description of avascular necrosis following carpometacarpal arthroplasty.
Saltzherr, Michael S; Coert, J Henk; Selles, Ruud W; van Neck, Johan W; Jaquet, Jean-Bart; van Osch, Gerjo J V M; Oei, Edwin H G; Luime, Jolanda J; Muradin, Galied S R
2017-03-14
Magnetic resonance imaging (MRI) is increasingly used for research in hand osteoarthritis, but imaging the thin cartilage layers in the hand joints remains challenging. We therefore assessed the accuracy of MRI in detecting cartilage loss in patients with symptomatic osteoarthritis of the first carpometacarpal (CMC1) joint. Twelve patients scheduled for trapeziectomy to treat severe symptomatic osteoarthritis of the CMC1 joint underwent a preoperative high resolution 3D spoiled gradient (SPGR) MRI scan. Subsequently, the resected trapezium was evaluated histologically. The sections were scored for cartilage damage severity (Osteoarthritis Research Society International (OARSI) score), and extent of damage (percentage surface area). Each MRI scan was scored for the area of normal cartilage, partial cartilage loss and full cartilage loss. The percentages of the total surface area with any cartilage loss and full-thickness cartilage loss were calculated using MRI and histological evaluation. MRI and histological evaluation both identified large areas of overall cartilage loss. The median (IQR) surface area of any cartilage loss on MRI was 98% (82-100%), and on histological assessment 96% (87-98%). However, MRI underestimated the extent of full-thickness cartilage loss. The median (IQR) surface area of full-thickness cartilage loss on MRI was 43% (22-70%), and on histological evaluation 79% (67-85%). The difference was caused by a thin layer of high signal on the articulating surface, which was interpreted as damaged cartilage on MRI but which was not identified on histological evaluation. Three-dimensional SPGR MRI of the CMC1 joint demonstrates overall cartilage damage, but underestimates full-thickness cartilage loss in patients with advanced osteoarthritis.
Kwak, Dai Soon; Tao, Quang Bang; Todo, Mitsugu; Jeon, Insu
2012-05-01
Knee joint implants developed by western companies have been imported to Korea and used for Korean patients. However, many clinical problems occur in knee joints of Korean patients after total knee joint replacement owing to the geometric mismatch between the western implants and Korean knee joint structures. To solve these problems, a method to determine the representative dimension parameter values of Korean knee joints is introduced to aid in the design of knee joint implants appropriate for Korean patients. Measurements of the dimension parameters of 88 male Korean knee joint subjects were carried out. The distribution of the subjects versus each measured parameter value was investigated. The measured dimension parameter values of each parameter were grouped by suitable intervals called the "size group," and average values of the size groups were calculated. The knee joint subjects were grouped as the "patient group" based on "size group numbers" of each parameter. From the iterative calculations to decrease the errors between the average dimension parameter values of each "patient group" and the dimension parameter values of the subjects, the average dimension parameter values that give less than the error criterion were determined to be the representative dimension parameter values for designing knee joint implants for Korean patients.
Prokuski, L J; Eglseder, W A
2001-11-01
To review the outcome of patients with concurrent dorsal dislocations and fracture-dislocations of the second, third, fourth, and fifth carpometacarpal (CMC) joints treated with open reduction and internal fixation (ORIF). Retrospective review. Level 1 trauma center. Between 1991 and 1997, twelve multiply injured patients with the described CMC injury complex (one open injury) were treated with ORIF (eleven patients) or percutaneous wire fixation (one patient) by the same surgeon. Treatment consisted of ORIF with Kirschner wires followed by splints and immediate metacarpophalangeal and interphalangeal joint range of motion exercises. Grip strength, wrist and finger range of motion, pain, need for additional surgery, and return to work. Of the ten patients available for follow-up (mean, three years), all had been treated with ORIF (eight within forty-eight hours of injury and two had treatment delayed for four weeks because of delayed diagnosis and management of more serious injuries). Three patients had additional surgery (planned secondary second and third CMC arthrodeses). Grip strength of the operated hand in the five patients with JAMAR testing was 50 percent (n = 3), 75 percent (n = 1), and 90 percent (n = 1) of that in their contralateral hands. Five patients were pain-free, and five reported occasional, activity-related pain. The five patients who worked before the injury returned to their previous occupations (one with slightly modified duties). This is the largest series of patients with this CMC injury complex and the first report of open CMC dorsal dislocations and fracture-dislocations. Although early ORIF is suggested, delay of up to four weeks did not adversely affect results.
Kaltenborn, Alexander; Bulling, Elke; Nitsche, Mirko; Carl, Ulrich Martin; Hermann, Robert Michael
2016-08-01
The purpose of this work was to evaluate the efficacy of low-dose radiotherapy (RT) for thumb carpometacarpal osteoarthritis (rhizarthrosis). The responses of 84 patients (n = 101 joints) were analyzed 3 months after therapy (n = 65) and at 12 months (n = 27). Patients were treated with 6 fractions of 1 Gy, two times a week, with a linear accelerator. At the end of therapy, about 70 % of patients reported a response (partial remission or complete remission), 3 months later about 60 %, and 1 year after treatment 70 %. In univariate regression analysis, higher patient age and field size greater than 6 × 4 cm were associated with response to treatment, while initial increase of pain under treatment was predictive for treatment failure. Duration of RT series (more than 18 days), gender, time of symptoms before RT, stress pain or rest pain, or prior ortheses use, injections, or surgery of the joint were not associated with treatment efficacy. In multivariate regression analysis, only field size and initial pain increase were highly correlated with treatment outcome. In conclusion, RT represents a useful treatment option for patients suffering from carpometacarpal osteoarthritis. In contrast to other benign indications, a larger field size (>6 × 4 cm) seems to be more effective than smaller fields and should be evaluated in further prospective studies.
Villafañe, Jorge H; Silva, Guillermo B; Fernandez-Carnero, Josue
2012-02-01
This study evaluated the effects of Maitland's passive accessory mobilization on local hypoalgesia and strength in thumb carpometacarpal osteoarthritis (TCOA). Twenty-eight patients between 70 and 90 years old with secondary TCOA were randomized into glide mobilization and sham groups. This study was designed as a double-blind, randomized controlled trial. Therapy consisted of Maitland's passive accessory mobilization of the dominant hand during 4 sessions over 2 weeks. We measured pressure pain threshold (PPT) at the trapeziometacarpal joint (TMJ), the tubercle of the scaphoid bone, and the unciform apophysis of the hamate bone by algometry. The tip and tripod pinch strength was also measured. Grip strength was measured by a grip dynamometer. Measurements were taken before treatment and after 1 week (first follow-up [FU]) and 2 weeks (second FU). All values in sham group remained unchanged along the treatment period. In the treated group, the PPT in the TMJ was 3.85 ± 0.35 kg/cm(2), which increased after treatment to 3.99 ± 0.37 and was maintained at the same level during the first FU 3.94 ± 0.39 and second FU 4.74 ± 0.40. In contrast, we found no differences in PPT in the other studied structures after treatment. Similarly, tip, tripod pinch, and grip strength remained without change after treatment. Passive accessory mobilization increased PPT in the TMJ; however, it did not increase motor function in patients with TCOA. Copyright © 2012 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.
Hussein, A I; Stranart, J C; Meguid, S A; Bogoch, E R
2011-02-01
Silicone implants are used for prosthetic arthroplasty of metacarpophalangeal (MCP) joints severely damaged by rheumatoid arthritis. Different silicone elastomer MCP implant designs have been developed, including the Swanson and the NeuFlex implants. The goal of this study was to compare the in vitro mechanical behavior of Swanson and NeuFlex MCP joint implants. Three-dimensional (3D) finite element (FE) models of the silicone implants were modeled using the commercial software ANSYS and subjected to angular displacement from 0 deg to 90 deg. FE models were validated using mechanical tests of implants incrementally bent from 0 deg to 90 deg in a joint simulator. Swanson size 2 and 4 implants were compared with NeuFlex size 10 and 30 implants, respectively. Good agreement was observed throughout the range of motion for the flexion bending moment derived from 3D FE models and mechanical tests. From 30 deg to 90 deg, the Swanson 2 demonstrated a greater resistance to deformation than the NeuFlex 10 and required a greater bending moment for joint flexion. For larger implant sizes, the NeuFlex 30 had a steeper moment-displacement curve, but required a lower moment than the Swanson 4, due to implant preflexion. On average, the stress generated at the implant hinge from 30 deg to 90 deg was lower in the NeuFlex than in the Swanson. On average, starting from the neutral position of 30 deg for the preflexed NeuFlex implant, higher moments were required to extend the NeuFlex implants to 0 deg compared with the Swanson implants, which returned spontaneously to resting position. Implant toggling within the medullary canals was less in the NeuFlex than in the Swanson. The differential performance of these implants may be useful in implant selection based on the preoperative condition(s) of the joint and specific patient functional needs.
Surgeons' Perspectives on Premium Implants in Total Joint Arthroplasty.
Wasterlain, Amy S; Bello, Ricardo J; Vigdorchik, Jonathan; Schwarzkopf, Ran; Long, William J
2017-09-01
Declining total joint arthroplasty reimbursement and rising implant prices have led many hospitals to restrict access to newer, more expensive total joint arthroplasty implants. The authors sought to understand arthroplasty surgeons' perspectives on implants regarding innovation, product launch, costs, and cost-containment strategies including surgeon gain-sharing and patient cost-sharing. Members of the International Congress for Joint Reconstruction were surveyed regarding attitudes about implant technology and costs. Descriptive and univariate analyses were performed. A total of 126 surgeons responded from all 5 regions of the United States. Although 76.9% believed new products advance technology in orthopedics, most (66.7%) supported informing patients that new implants lack long-term clinical data and restricting new implants to a small number of investigators prior to widespread market launch. The survey revealed that 66.7% would forgo gain-sharing incentives in exchange for more freedom to choose implants. Further, 76.9% believed that patients should be allowed to pay incremental costs for "premium" implants. Surgeons who believed that premium products advance orthopedic technology were more willing to forgo gain-sharing (P=.040). Surgeons with higher surgical volume (P=.007), those who believed implant companies should be allowed to charge more for new technology (P<.001), and those who supported discussing costs with patients (P=.004) were more supportive of patient cost-sharing. Most arthroplasty surgeons believe technological innovation advances the field but support discussing the "unproven" nature of new implants with patients. Many surgeons support alternative payment models permitting surgeons and patients to retain implant selection autonomy. Most respondents prioritized patient beneficence and surgeon autonomy above personal financial gain. [Orthopedics. 2017; 40(5):e825-e830.]. Copyright 2017, SLACK Incorporated.
Aoyama, Shigeru; Kino, Koji; Shibuya, Toshihisa; Sato, Fumiaki; Kobayashi, Akiko; Yoshitake, Hiroyuki; Haketa, Tadasu; Amamori, Yoko; Ishikawa, Takayuki; Yoshida, Nahoko; Amagasa, Teruo
2003-09-01
We have carried out temporary silicone implants after diskectomies or arthroplasties in temporomandibular joint surgeries to avoid postoperative adhesion and to maintain articular space. We evaluated 19 joints in 15 patients who had received dacron-reinforced silicone implant after silicone sheet removal through follow-up for at least 6 months. The cases included temporomandibular joint disorder (10 joints in 9 patients), psoriatic arthritis (2 joints in 1 patient), ankylosis (4 joints in 3 patients) and synovial chondromatosis (2 joints in 2 patients). On the basis of the criteria of temporomandibular dysfunction for the results, they were classified as bad (4 patients). It is thought that factors other than the implant are related to the bad results in the postoperative evaluation. In this study, lymphadenopathy induced by exfoliated silicone debris could not be confirmed. The temporary silicone implant in the temporomandibular joint was thought to be useful.
Complications with the use of Artelon in thumb CMC joint arthritis.
Clarke, Sylvan; Hagberg, William; Kaufmann, Robert A; Grand, Aaron; Wollstein, Ronit
2011-09-01
Complications with the use of the Artelon spacer in thumb carpometacarpal (CMC) joint arthritis include inflammation, osteolysis, and persistent pain. We evaluated our short-term results and complications. A retrospective review of 29 patients was performed. Pre- and postoperative radiographs, operative techniques, complications, and subsequent surgeries were analyzed. Pearson's and chi-squared testing was used to identify associations between complications and surgical technique or preoperative radiographic criteria. The average age was age 51 ± 7.7 (34-66), average follow-up was 8 months (1-26). Twelve patients sustained complications. Nine patients displayed postoperative osteolysis. Four patients underwent conversion to CMC suspensionplasty due to persistent pain. The rate of revision surgery and radiographic postoperative osteolysis were not significantly associated with preoperative arthritis grade, metacarpal subluxation, or surgical techniques: fixation method, the bony surface(s) involved in the osteotomy, or spacer modifications. Our study found a significant short-term complication rate following Artelon spacer arthroplasty of the CMC joint. This is higher than previously described. We could not identify any factors that were significantly associated with the complications. It is possible that the inherent instability of the joint or the material of the spacer is involved in implant failure. Further study is necessary to better define the indications for use and specific techniques for the use of the implant.
Tan, Ban Fui; Tan, Keson B; Nicholls, Jack I
2004-01-01
Critical bending moment (CBM), the moment at which the external nonaxial load applied overcomes screw joint preload and causes loss of contact between the mating surfaces of the implant screw joint components, was measured with 2 types of implants and 2 types of abutments. Using 4 test groups of 5 implant-abutment pairs, CBM at the implant-abutment screw joint was measured at 25%, 50%, 75%, and 100% of the manufacturer's recommended torque levels. Regular Platform (RP) Nobel Biocare implants (3.75 mm diameter), Wide Platform (WP) Nobel Biocare implants (5.0 mm diameter), CeraOne abutments, and Multiunit abutments were used. Microstrain was measured as loads were applied to the abutment at various distances from the implant-abutment interface. Strain instrumentation logged the strain data dynamically to determine the point of gap opening. All torque applications and strain measurements were repeated 5 times. For the CeraOne-RP group, the mean CBMs were 17.09 Ncm, 35.35 Ncm, 45.63 Ncm, and 62.64 Ncm at 25%, 50%, 75%, and 100% of the recommended torque level, respectively. For the CeraOne-WP group, mean CBMs were 28.29 Ncm, 62.97 Ncm, 92.20 Ncm, and 127.41 Ncm; for the Multiunit-RP group, 16.08 Ncm, 21.55 Ncm, 34.12 Ncm, and 39.46 Ncm; and for the Multiunit-WP group, 15.90 Ncm, 32.86 Ncm, 43.29 Ncm, and 61.55 Ncm at the 4 different torque levels. Two-way analysis of variance (ANOVA) (P < .001) revealed significant effects for the test groups (F = 2738.2) and torque levels (F = 2969.0). The methodology developed in this study allows confirmation of the gap opening of the screw joint for the test groups and determination of CBM at different torque levels. CBM was found to differ among abutment systems, implant diameters, and torque levels. The torque levels recommended by the manufacturer should followed to ensure screw joint integrity.
[Implant with a mobile or a fixed bearing in unicompartmental knee joint replacemen].
Matziolis, G; Tohtz, S; Gengenbach, B; Perka, C
2007-12-01
Although the goal of anatomical and functional joint reconstruction in unicompartmental knee replacement is well defined, no uniform implant design has become established. In particular, the differential indications for implantation of an implant with a mobile or a fixed bearing are still not clear. The long-term results of mobile and with fixed bearings are comparable, but there are significant differences in resulting knee joint kinematics, tribological properties and implant-associated complications. In unicompartmental knee replacement mobile bearings restore the physiological joint kinematics better than fixed implants, although the differences to total knee arthroplasty seem minor. The decoupling of mobile bearings from the tibia implant allows a high level of congruence with the femoral implant, resulting in larger contact areas than with fixed bearings. This fact in combination with the more physiological joint kinematics leads to less wear and a lower incidence of osteolyses with mobile bearings. Disadvantages of mobile bearings are the higher complication and early revision rates resulting from bearing dislocation and impingement syndromes caused by suboptimal implantation technique or instability. Especially in cases with ligamentous pathology fixed bearings involve a lower complication rate. It seems their use can also be beneficial in patients with a low level of activity, as problems related to wear are of minor importance for this subgroup. The data currently available allow differentiations between various indications for implants with mobile or fixed bearings, so that the implants can be matched to the patient and the joint pathology in unicompartmental knee joint replacement.
Experimental and failure analysis of the prosthetic finger joint implants
NASA Astrophysics Data System (ADS)
Naidu, Sanjiv H.
Small joint replacement arthroplasty of the hand is a well accepted surgical procedure to restore function and cosmesis in an individual with a crippled hand. Silicone elastomers have been used as prosthetic material in various small hand joints for well over three decades. Although the clinical science aspects of silicone elastomer failure are well known, the physical science aspects of prosthetic failure are scant and vague. In the following thesis, using both an animal model, and actual retrieved specimens which have failed in human service, experimental and failure analysis of silicone finger joints are presented. Fractured surfaces of retrieved silicone trapezial implants, and silicone finger joint implants were studied with both FESEM and SEM; the mode of failure for silicone trapezium is by wear polishing, whereas the finger joint implants failed either by fatigue fracture or tearing of the elastomer, or a combination of both. Thermal analysis revealed that the retrieved elastomer implants maintained its viscoelastic properties throughout the service period. In order to provide for a more functional and physiologic arthroplasty a novel finger joint (Rolamite prosthesis) is proposed using more recently developed thermoplastic polymers. The following thesis also addresses the outcome of the experimental studies of the Rolamite prosthesis in a rabbit animal model, in addition to the failure analysis of the thermoplastic polymers while in service in an in vivo synovial environment. Results of retrieved Rolamite specimens suggest that the use for thermoplastic elastomers such as block copolymer based elastomers in a synovial environment such as a mammalian joint may very well be limited.
Villafañe, Jorge H; Silva, Guillermo B; Diaz-Parreño, Santiago A; Fernandez-Carnero, Josue
2011-10-01
This study evaluated the effects of Kaltenborn manual therapy on sensory and motor function in elderly patients with secondary carpometacarpal osteoarthritis (CMC OA). Twenty-nine female patients with secondary CMC OA (70-90 years old) were randomized into Kaltenborn manual therapy and sham groups. This study was designed as a double-blind, randomized controlled trial (RCT). Therapy consisted of Kaltenborn mobilization of posterior-anterior gliding with distraction in grade 3 of the carpometacarpal (CMC) joint of the dominant hand during 6 sessions over 2 weeks. Pain was measured by algometry, as the pressure pain threshold (PPT) at the CMC joint and tubercle of the scaphoid bone. The tip and tripod pinch strength was also measured. Grip strength was measured by a grip dynamometer. Measurements were taken before treatment and after 1 week (first follow-up [FU]) and 2 weeks (second FU). All values in the sham group remained unchanged during the treatment period. In the treated group, the PPT in the CMC joint was 2.98 ± 0.30 kg/cm(2), which increased after treatment to 4.07 ± 0.53, and was maintained at the same level during the first FU (3.46 ± 0.31) and second FU (3.84 ± 0.36). Similarly, the PPT in the scaphoid bone was 3.61 ± 0.29 kg/cm(2), which increased after treatment to 4.87 ± 0.37, and was maintained at the same level during the first FU (4.44 ± 0.43) and second FU (4.22 ± 0.32). In contrast, we found no differences in the tip, tripod pinch, and grip strength measurements between the treatment and sham groups. This study showed that Kaltenborn manual therapy decreased pain in the CMC joint and scaphoid bone areas of elderly female patients; however, it did not confer an increase in motor function in patients with CMC OA. Copyright © 2011 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.
Gioe, Terence J; Sharma, Amit; Tatman, Penny; Mehle, Susan
2011-01-01
Numerous joint implant options of varying cost are available to the surgeon, but it is unclear whether more costly implants add value in terms of function or longevity. We evaluated registry survival of higher-cost "premium" knee and hip components compared to lower-priced standard components. Premium TKA components were defined as mobile-bearing designs, high-flexion designs, oxidized-zirconium designs, those including moderately crosslinked polyethylene inserts, or some combination. Premium THAs included ceramic-on-ceramic, metal-on-metal, and ceramic-on-highly crosslinked polyethylene designs. We compared 3462 standard TKAs to 2806 premium TKAs and 868 standard THAs to 1311 premium THAs using standard statistical methods. The cost of the premium implants was on average approximately $1000 higher than the standard implants. There was no difference in the cumulative revision rate at 7-8 years between premium and standard TKAs or THAs. In this time frame, premium implants did not demonstrate better survival than standard implants. Revision indications for TKA did not differ, and infection and instability remained contributors. Longer followup is necessary to demonstrate whether premium implants add value in younger patient groups. Level III, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.
Halilaj, Eni; Moore, Douglas C.; Laidlaw, David H.; Got, Christopher J.; Weiss, Arnold-Peter C.; Ladd, Amy L.; Crisco, Joseph J.
2014-01-01
The increased prevalence of thumb carpometacarpal (CMC) joint osteoarthritis (OA) in women has been previously linked to the articular morphology of the trapezium. However, studies report conflicting results on how the articular shapes of male and female trapezia compare to one another, mainly because their findings are based on data from older cadaver specimens. The purpose of this in vivo study was to dissociate the effect of sex from that of aging and early OA by using cohorts of healthy young and healthy older subjects, as well as patients with early stage OA. Computed tomography scans from 68 healthy subjects and 87 arthritic subjects were used to obtain 3-D bone models. The trapezial and metacarpal articular surfaces were manually delineated on scaled bone models, to remove the effect of size, and then were compared between sex, age, and health groups by using polar histograms of curvature and average curvature values. We found no sex differences, but significant age-group and health-group differences, in the articular surfaces of both bones. The older healthy subjects had higher curvature in the concave and lower curvature in the convex directions of both the trapezial and metacarpal saddles than the healthy young subjects. Subjects with early OA had significantly different metacarpal and trapezial articular shapes from healthy subjects. These findings suggest that aging and OA affect the articular shape of the CMC joint, but that, in contrast to previously held beliefs, inherent sex differences are not responsible for the higher incidence of CMC OA in women. PMID:24909332
[Staple fixation for the treatment of hamate metacarpal joint injury].
Tang, Yang-Hua; Zeng, Lin-Ru; Huang, Zhong-Ming; Yue, Zhen-Shuang; Xin, Da-Wei; Xu, Can-Da
2014-03-01
To investigate the effcacy of the staple fixation for the treatment of hamate metacarpal joint injury. From May 2009 to November 2012,16 patients with hamate metacarpal joint injury were treated with staple fixation including 10 males and 6 females with an average age of 33.6 years old ranging from 21 to 57 years. Among them, 11 cases were on the fourth or fifth metacarpal base dislocation without fractures, 5 cases were the fourth or fifth metacarpal base dislocation with avulsion fractures of the back of hamatum. Regular X-ray review was used to observe the fracture healing, joint replacement and position of staple fixation. The function of carpometacarpal joint and metacarpophalangeal joint were evaluated according to ASIA (TAM) system evaluation method. All incision were healed well with no infection. All patients were followed up from 16 to 24 months with an average of (10.0 +/- 2.7) months. No dislocation recurred, the position of internal fixator was good,no broken nail and screw withdrawal were occurred. Five patients with avulsion fracture of the back of hamatum achieved bone healing. The function of carpometacarpal joint and metacarpophalangeal was excellent in 10 cases,good in 5 cases, moderate in 1 case. The application of the staple for the treatment of hamatometacarpal joint injury has the advantages of simple operation, small trauma, reliable fixation, early postoperative function exercise and other advantages, which is the ideal operation mode for hamatometacarpal joint injury.
Blount, Andrew L; Armstrong, Shannon D; Yuan, Frank; Burgess, Scott D
2013-09-01
To examine outcomes and complications of the porous polyurethaneurea (Artelon; Small Bone Innovations, Morrisville, PA) spacer compared to traditional surgical treatment of trapeziectomy with ligament reconstruction and tendon interposition (LRTI). A retrospective chart review was undertaken of patients with carpometacarpal (CMC) arthritis who had either placement of an Artelon spacer or LRTI. Patients were brought back to clinic for interview and functional testing. Pain was graded using a visual analog scale. Grip and pinch strength, as well as range of motion at the first CMC joint, were measured. Nine-hole peg, Moberg pickup, and Jebson-Taylor tests were performed. Research and Development 36, Michigan Hand Outcomes, and Quick Disabilities of the Arm, Shoulder, and Hand questionnaires were administered. Thirty-eight patients received Artelon implants into the CMC joint, and 6 were lost to follow-up. Twelve of 32 patients (37%) required revision surgery with removal of implant and salvage arthroplasty. Twenty patients with nonrevised Artelon implants were compared with 10 patients who received 13 LRTI procedures. Patients with Artelon had significantly less pain improvement compared to those receiving the LRTI procedure. In addition, satisfaction was significantly decreased. There was no significant difference in any other functional or quality of life measures. In our practice, use of the Artelon joint spacer resulted in an explantation rate of 37%. Due to these findings, we have abandoned its use for treatment of basilar thumb osteoarthritis. In contrast to previous studies, pain and satisfaction are worse in patients with intact Artelon spacers than those who had received LRTI. Copyright © 2013 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Ackland, David C; Robinson, Dale; Redhead, Michael; Lee, Peter Vee Sin; Moskaljuk, Adrian; Dimitroulis, George
2017-05-01
Personalized prosthetic joint replacements have important applications in cases of complex bone and joint conditions where the shape and size of off-the-shelf components may not be adequate. The objective of this study was to design, test and fabricate a personalized 3D-printed prosthesis for a patient requiring total joint replacement surgery of the temporomandibular joint (TMJ). The new 'Melbourne' prosthetic TMJ design featured a condylar component sized specifically to the patient and fixation screw positions that avoid potential intra-operative damage to the mandibular nerve. The Melbourne prosthetic TMJ was developed for a 58-year-old female recipient with end-stage osteoarthritis of the TMJ. The load response of the prosthesis during chewing and a maximum-force bite was quantified using a personalized musculoskeletal model of the patient's masticatory system developed using medical images. The simulations were then repeated after implantation of the Biomet Microfixation prosthetic TMJ, an established stock device. The maximum condylar stresses, screw stress and mandibular stress at the screw-bone interface were lower in the Melbourne prosthetic TMJ (259.6MPa, 312.9MPa and 198.4MPa, respectively) than those in the Biomet Microfixation device (284.0MPa, 416.0MPa and 262.2MPa, respectively) during the maximum-force bite, with similar trends also observed during the chewing bite. After trialing surgical placement and evaluating prosthetic TMJ stability using cadaveric specimens, the prosthesis was fabricated using 3D printing, sterilized, and implanted into the female recipient. Six months post-operatively, the prosthesis recipient had a normal jaw opening distance (40.0 mm), with no complications identified. The new design features and immediate load response of the Melbourne prosthetic TMJ suggests that it may provide improved clinical and biomechanical joint function compared to a commonly used stock device, and reduce risk of intra-operative nerve damage
Medley, John B
2016-05-01
One of the most important mandates of physical joint simulators is to provide test results that allow the implant manufacturer to anticipate and perhaps avoid clinical wear problems with their new products. This is best done before market release. This study gives four steps to follow in conducting such wear simulator testing. Two major examples involving hip wear simulators are discussed in which attempts had been made to predict clinical wear performance prior to market release. The second one, involving the DePuy ASR implant systems, is chosen for more extensive treatment by making it an illustrative example to explore whether wear simulator testing can anticipate clinical wear problems. It is concluded that hip wear simulator testing did provide data in the academic literature that indicated some risk of clinical wear problems prior to market release of the ASR implant systems. This supports the idea that physical joint simulators have an important role in the pre-market testing of new joint replacement implants. © IMechE 2016.
Yamamoto, Michiro; Malay, Sunitha; Fujihara, Yuki; Zhong, Lin; Chung, Kevin C
2017-05-01
Outcomes after implant arthroplasty for primary degenerative and posttraumatic osteoarthritis of the proximal interphalangeal joint were different according to the implant design and surgical approach. The purpose of this systematic review was to evaluate outcomes of various types of implant arthroplasty for proximal interphalangeal joint osteoarthritis, with an emphasis on different surgical approaches. The authors searched all available literature in the PubMed and EMBASE databases for articles reporting on outcomes of implant arthroplasty for proximal interphalangeal joint osteoarthritis. Data collection included active arc of motion, extension lag, and complications. The authors combined the data of various types of surface replacement arthroplasty into one group for comparison with silicone arthroplasty. A total of 849 articles were screened, yielding 40 studies for final review. The mean postoperative arc of motion and the mean gain in arc of motion of silicone implant with the volar approach were 58 and 17 degrees, respectively, which was greater than surface replacement implant with the dorsal approach at 51 and 8 degrees, respectively. The mean postoperative extension lag of silicone implant with the volar approach and surface replacement with the dorsal approach was 5 and 14 degrees, respectively. The revision rate of silicone implant with the volar approach and surface replacement with the dorsal approach was 6 percent and 18 percent at a mean follow-up of 41.2 and 51 months, respectively. Silicone implant with the volar approach showed the best arc of motion, with less extension lag and fewer complications after surgery among all the implant designs and surgical approaches.
Yamamoto, Michiro; Malay, Sunitha; Fujihara, Yuki; Zhong, Lin; Chung, Kevin C.
2016-01-01
Background Outcomes after implant arthroplasty for primary degenerative and posttraumatic osteoarthritis (OA) of proximal interphalangeal (PIP) joint were different according to the implant design and surgical approach. The purpose of this systematic review was to evaluate outcomes of various types of implant arthroplasty for PIP joint OA with emphasis on different surgical approaches. Methods The authors searched all available literature in the PubMed and EMBASE databases for articles reporting on outcomes of implant arthroplasty for PIP joint OA. Data collection included active arc of motion (AOM), extension lag, and complications. We combined the data of various types of surface replacement arthroplasty into one group to compare with silicone arthroplasty. Results A total of 849 articles were screened, yielding 40 studies for final review. The mean postoperative AOM and the mean gain in AOM of silicone implant with volar approach were 58° and 17° respectively which was greater than surface replacement implant with dorsal approach as 51° and 8°, respectively. The mean postoperative extension lag of silicone implant with volar approach and surface replacement with dorsal approach was 5° and 14° respectively. The revision rate of silicone implant with volar approach and surface replacement with dorsal approach was 6% and 18% at the mean follow-up period of 41.2 and 51 months, respectively. Conclusions Silicone implant with volar approach showed the best AOM with less extension lag and fewer complications after surgery among all the implant designs and surgical approaches. PMID:28445369
CMC Arthroplasty of the Thumb: A Review
Ilyas, Asif; Thoder, Joseph J.
2007-01-01
Arthritis of the first carpometacarpal (CMC) joint of the hand is a common and often debilitating disease. Diagnosis can be readily made with history, physical exam, and radiographic evaluation. Patients with advanced disease who have failed conservative treatment modalities have multiple surgical options including ligament reconstruction, resection arthroplasty, silicone implantation, tendon interposition, or total joint arthroplasty. This article will describe the variety of approaches to treatment as well as the author’s preferred method. PMID:18780059
Lee, Ji-Hye; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra
2016-01-01
To evaluate the effect of implant coronal wall thickness on load-bearing capacity and screw joint stability. Experimental implants were customized after investigation of the thinnest coronal wall thickness of commercially available implant systems with a regular platform diameter. Implants with four coronal wall thicknesses (0.2, 0.3, 0.4, and 0.5 mm) were fabricated. Three sets of tests were performed. The first set was a failure test to evaluate load-bearing capacity and elastic limit. The second and third sets were cyclic and static loading tests. After abutment screw tightening of each implant, vertical cyclic loading of 250 N or static loading from 250 to 800 N was applied. Coronal diameter expansion, axial displacement, and removal torque values of the implants were compared. Repeated measures analysis of variance (ANOVA) was used for statistical analysis (α = .05). Implants with 0.2-mm coronal wall thickness demonstrated significantly low load-bearing capacity and elastic limit (both P < .05). These implants also showed significantly large coronal diameter expansion and axial displacement after screw tightening (both P < .05). Greater vertical load and thinner coronal wall thickness significantly increased coronal diameter expansion of the implant, axial displacement of the abutment, and removal torque loss of the abutment screw (all P < .05). Implant coronal wall thickness of 0.2 mm produces significantly inferior load-bearing capacity and screw joint stability.
Removal Torque and Biofilm Accumulation at Two Dental Implant-Abutment Joints After Fatigue.
Pereira, Jorge; Morsch, Carolina S; Henriques, Bruno; Nascimento, Rubens M; Benfatti, Cesar Am; Silva, Filipe S; López-López, José; Souza, Júlio Cm
2016-01-01
The aim of this study was to evaluate the removal torque and in vitro biofilm penetration at Morse taper and hexagonal implant-abutment joints after fatigue tests. Sixty dental implants were divided into two groups: (1) Morse taper and (2) external hexagon implant-abutment systems. Fatigue tests on the implant-abutment assemblies were performed at a normal force (FN) of 50 N at 1.2 Hz for 500,000 cycles in growth medium containing human saliva for 72 hours. Removal torque mean values (n = 10) were measured after fatigue tests. Abutments were then immersed in 1% protease solution in order to detach the biofilms for optical density and colony-forming unit (CFU/cm²) analyses. Groups of implant-abutment assemblies (n = 8) were cross-sectioned at 90 degrees relative to the plane of the implant-abutment joints for the microgap measurement by field-emission guns scanning electron microscopy. Mean values of removal torque on abutments were significantly lower for both Morse taper (22.1 ± 0.5 μm) and external hexagon (21.1 ± 0.7 μm) abutments after fatigue tests than those recorded without fatigue tests (respectively, 24 ± 0.5 μm and 24.8 ± 0.6 μm) in biofilm medium for 72 hours (P = .04). Mean values of microgap size for the Morse taper joints were statistically signicantly lower without fatigue tests (1.7 ± 0.4 μm) than those recorded after fatigue tests (3.2 ± 0.8 μm). Also, mean values of microgap size for external hexagon joints free of fatigue were statistically signicantly lower (1.5 ± 0.4 μm) than those recorded after fatigue tests (8.1 ± 1.7 μm) (P < .05). The optical density of biofilms and CFU mean values were lower on Morse taper abutments (Abs630nm at 0.06 and 2.9 × 10⁴ CFU/cm²) than that on external hexagon abutments (Abs630nm at 0.08 and 4.5 × 10⁴ CFU/cm²) (P = .01). The mean values of removal torque, microgap size, and biofilm density recorded at Morse taper joints were lower in comparison to those recorded at external hexagon
Costantini, Oren; Choi, Daniel S; Kontaxis, Andreas; Gulotta, Lawrence V
2015-07-01
There has been a renewed interest in lateralizing the center of rotation (CoR) in implants used in reverse shoulder arthroplasty. The aim of this study was to determine the sensitivity of lateralization of the CoR on the glenohumeral joint contact forces, muscle moment arms, torque across the bone-implant interface, and the stability of the implant. A 3-dimensional virtual model was used to investigate how lateralization affects deltoid muscle moment arm and glenohumeral joint contact forces. This model was virtually implanted with 5 progressively lateralized reverse shoulder prostheses. The joint contact loads and deltoid moment arms were calculated for each lateralization over the course of 3 simulated standard humerothoracic motions. Lateralization of the CoR leads to an increase in the overall joint contact forces across the glenosphere. Most of this increased loading occurred through compression, although increases in anterior/posterior and superior/inferior shear were also observed. Moment arms of the deltoid consistently decreased with lateralization. Bending moments at the implant interface increased with lateralization. Progressive lateralization resulted in improved stability ratios. Lateralization results in increased joint loading. Most of that loading occurs through compression, although there were also increases in shear forces. Anterior/posterior shear is currently not accounted for in implant fixation studies, leaving its effect on implant fixation unknown. Future studies should incorporate shear forces into their models to more accurately assess fixation methods. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Effect of radial head implant shape on joint contact area and location during static loading.
Shannon, Hannah L; Deluce, Simon R; Lalone, Emily A; Willing, Ryan; King, Graham J W; Johnson, James A
2015-04-01
To examine the effect of implant shape on radiocapitellar joint contact area and location in vitro. We used 8 fresh-frozen cadaveric upper extremities. An elbow loading simulator examined joint contact in pronation, neutral rotation, and supination with the elbow at 90° flexion. Muscle tendons were attached to pneumatic actuators to allow for computer-controlled loading to achieve the desired forearm rotation. We performed testing with the native radial head, an axisymmetric implant, a reverse-engineered patient-specific implant, and a population-based quasi-anatomic implant. Implants were inserted using computer navigation. Contact area and location were quantified using a casting technique. We found no significant difference between contact locations for the native radial head and the 3 implants. All of the implants had a contact area lower than the native radial head; however, only the axisymmetric implant was significantly different. There was no significant difference in contact area between implant shapes. The similar contact areas and locations of the 3 implant designs suggest that the shape of the implant may not be important with respect to radiocapitellar joint contact mechanics when placed optimally using computer navigation. Further work is needed to explore the sensitivity of radial head implant malpositioning on articular contact. The lower contact area of the radial head implants relative to the native radial head is similar to previous benchtop studies and is likely the result of the greater stiffness of the implant. Radial head implant shape does not appear to have a pronounced influence on articular contact, and both axisymmetric and anatomic metal designs result in elevated cartilage stress relative to the intact state. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Getzlaf, Matthew A.; Lewallen, Eric A.; Kremers, Hilal M.; Jones, Dakota L.; Bonin, Carolina A.; Dudakovic, Amel; Thaler, Roman; Cohen, Robert C.; Lewallen, David G.; van Wijnen, Andre J.
2016-01-01
Like any foreign object, orthopaedic implants are susceptible to infection when introduced into the human body. Without additional preventative measures, the absolute number of annual prosthetic joint infections will continue to rise, and may exceed the capacity of health care systems in the near future. Bacteria are difficult to eradicate from synovial joints due to their exceptionally diverse taxonomy, complex mechanistic attachment capabilities, and tendency to evolve antibiotic resistance. When a primary orthopaedic implant fails from prosthetic joint infection, surgeons are generally challenged by limited options for intervention. In this review, we highlight the etiology and taxonomic groupings of bacteria known to cause prosthetic joint infections, and examine their key mechanisms of attachment. We propose that antimicrobial strategies should focus on the most harmful bacteria taxa within the context of occurrence, taxonomic diversity, adhesion mechanisms, and implant design. Patient-specific identification of organisms that cause prosthetic joint infections will permit assessment of their biological vulnerabilities. The latter can be targeted using a range of antimicrobial techniques that exploit different colonization mechanisms including implant surface attachment, biofilm formation, and/or hematogenous recruitment. We anticipate that customized strategies for each patient, joint, and prosthetic component will be most effective at reducing prosthetic joint infections, including those caused by antibiotic-resistant and polymicrobial bacteria. PMID:26449208
Clifford, Anton G; Gabriel, Stefan M; O’Connell, Mary; Lowe, David; Miller, Larry E; Block, Jon E
2013-01-01
Symptomatic medial compartment knee osteoarthritis (OA) is the leading cause of musculoskeletal pain and disability in adults. Therapies intended to unload the medial knee compartment have yielded unsatisfactory results due to low patient compliance with conservative treatments and high complication rates with surgical options. There is no widely available joint-unloading treatment for medial knee OA that offers clinically important symptom alleviation, low complication risk, and high patient acceptance. The KineSpring® Knee Implant System (Moximed, Inc, Hayward, CA, USA) is a first-of-its-kind, implantable, extra-articular, extra-capsular prosthesis intended to alleviate knee OA-related symptoms by reducing medial knee compartment loading while overcoming the limitations of traditional joint-unloading therapies. Preclinical and clinical studies have demonstrated excellent prosthesis durability, substantial reductions in medial compartment and total joint loads, and clinically important improvements in OA-related pain and function. The purpose of this report is to describe the KineSpring System, including implant characteristics, principles of operation, indications for use, patient selection criteria, surgical technique, postoperative care, preclinical testing, and clinical experience. The KineSpring System has potential to bridge the gap between ineffective conservative treatments and irreversible surgical interventions for medial compartment knee OA. PMID:23717052
Optimal Irrigation and Debridement of Infected Joint Implants
Schwechter, Evan M.; Folk, David; Varshney, Avanish K.; Fries, Bettina C.; Kim, Sun Jin; Hirsh, David M.
2014-01-01
Acute postoperative and acute, late hematogenous prosthetic joint infections have been treated with 1-stage irrigation and debridement with polyethylene exchange. Success rates, however, are highly variable. Reported studies demonstrate that detergents are effective at decreasing bacterial colony counts on orthopedic implants. Our hypothesis is that the combination of a detergent and an antiseptic would be more effective than using a detergent alone to decrease colony counts from a methicillin-resistant Staphylococcus aureus biofilm-coated titanium alloy disk simulating an orthopedic implant. In our study of various agents tested, chlorhexidine gluconate scrub (antiseptic and detergent) was the most effective at decreasing bacterial colony counts both prereincubation and postreincubation of the disks; pulse lavage and scrubbing were not more effective than pulse lavage alone. PMID:21641757
Influence of the implant-abutment connection design and diameter on the screw joint stability.
Shin, Hyon-Mo; Huh, Jung-Bo; Yun, Mi-Jeong; Jeon, Young-Chan; Chang, Brian Myung; Jeong, Chang-Mo
2014-04-01
This study was conducted to evaluate the influence of the implant-abutment connection design and diameter on the screw joint stability. Regular and wide-diameter implant systems with three different joint connection designs: an external butt joint, a one-stage internal cone, and a two-stage internal cone were divided into seven groups (n=5, in each group). The initial removal torque values of the abutment screw were measured with a digital torque gauge. The postload removal torque values were measured after 100,000 cycles of a 150 N and a 10 Hz cyclic load had been applied. Subsequently, the rates of the initial and postload removal torque losses were calculated to evaluate the effect of the joint connection design and diameter on the screw joint stability. Each group was compared using Kruskal-Wallis test and Mann-Whitney U test as post-hoc test (α=0.05). THE POSTLOAD REMOVAL TORQUE VALUE WAS HIGH IN THE FOLLOWING ORDER WITH REGARD TO MAGNITUDE: two-stage internal cone, one-stage internal cone, and external butt joint systems. In the regular-diameter group, the external butt joint and one-stage internal cone systems showed lower postload removal torque loss rates than the two-stage internal cone system. In the wide-diameter group, the external butt joint system showed a lower loss rate than the one-stage internal cone and two-stage internal cone systems. In the two-stage internal cone system, the wide-diameter group showed a significantly lower loss rate than the regular-diameter group (P<.05). The results of this study showed that the external butt joint was more advantageous than the internal cone in terms of the postload removal torque loss. For the difference in the implant diameter, a wide diameter was more advantageous in terms of the torque loss rate.
Influence of the implant-abutment connection design and diameter on the screw joint stability
Shin, Hyon-Mo; Huh, Jung-Bo; Yun, Mi-Jeong; Jeon, Young-Chan; Chang, Brian Myung
2014-01-01
PURPOSE This study was conducted to evaluate the influence of the implant-abutment connection design and diameter on the screw joint stability. MATERIALS AND METHODS Regular and wide-diameter implant systems with three different joint connection designs: an external butt joint, a one-stage internal cone, and a two-stage internal cone were divided into seven groups (n=5, in each group). The initial removal torque values of the abutment screw were measured with a digital torque gauge. The postload removal torque values were measured after 100,000 cycles of a 150 N and a 10 Hz cyclic load had been applied. Subsequently, the rates of the initial and postload removal torque losses were calculated to evaluate the effect of the joint connection design and diameter on the screw joint stability. Each group was compared using Kruskal-Wallis test and Mann-Whitney U test as post-hoc test (α=0.05). RESULTS The postload removal torque value was high in the following order with regard to magnitude: two-stage internal cone, one-stage internal cone, and external butt joint systems. In the regular-diameter group, the external butt joint and one-stage internal cone systems showed lower postload removal torque loss rates than the two-stage internal cone system. In the wide-diameter group, the external butt joint system showed a lower loss rate than the one-stage internal cone and two-stage internal cone systems. In the two-stage internal cone system, the wide-diameter group showed a significantly lower loss rate than the regular-diameter group (P<.05). CONCLUSION The results of this study showed that the external butt joint was more advantageous than the internal cone in terms of the postload removal torque loss. For the difference in the implant diameter, a wide diameter was more advantageous in terms of the torque loss rate. PMID:24843398
Hayes, Galina; Gibson, Tom; Moens, Noel M M; Nykamp, Stephanie; Wood, Darren; Foster, Robert; Lerer, Asaf
2016-01-01
Gentamicin impregnated collagen sponge (GICS) can be used to treat intra-articular surgical site infections. High local concentrations of gentamicin can be reached for short periods; however the collagen vehicle may persist for much longer periods. We wished to determine the effect of sponge implantation on joint inflammation and renal function. Eighteen medium sized mixed breed research dogs of hound type were randomized to two groups; arthroscopic implantation of GICS at gentamicin dose = 6 mg/kg (n = 9) or sham operation (n = 9). Endpoints consisted of joint inflammation measured by synovial fluid cell counts and cytokine concentrations; lameness measured by force plate asymmetry indices; and renal function measured by glomerular filtration rate (GFR) study. The prevalence of lesions associated with aminoglycoside nephrotoxicity was assessed by renal biopsy and transmission electron microscopy. Gentamicin impregnated collagen sponge implantation caused joint inflammation (p <0.01), lameness (p = 0.04), and decreased GFR (p = 0.04). No difference was observed in the prevalence of renal lesions on biopsy between the treatment and control groups (p = 0.49). Gentamicin impregnated collagen sponge implantation causes joint inflammation and lameness as well as GFR reductions at the dose assessed. Gentamicin impregnated collagen sponge are not recommended for intra-articular implantation in dogs.
Implantable sensor technology: measuring bone and joint biomechanics of daily life in vivo
2013-01-01
Stresses and strains are major factors influencing growth, remodeling and repair of musculoskeletal tissues. Therefore, knowledge of forces and deformation within bones and joints is critical to gain insight into the complex behavior of these tissues during development, aging, and response to injury and disease. Sensors have been used in vivo to measure strains in bone, intraarticular cartilage contact pressures, and forces in the spine, shoulder, hip, and knee. Implantable sensors have a high impact on several clinical applications, including fracture fixation, spine fixation, and joint arthroplasty. This review summarizes the developments in strain-measurement-based implantable sensor technology for musculoskeletal research. PMID:23369655
Lee, Cheng-Hung; Shih, Cheng-Min; Huang, Kui-Chou; Chen, Kun-Hui; Hung, Li-Kun; Su, Kuo-Chih
2016-11-01
Clinical implantation of clavicle hook plates is often used as a treatment for acromioclavicular joint dislocation. However, it is not uncommon to find patients that have developed acromion osteolysis or had peri-implant fracture after hook plate fixation. With the aim of preventing complications or fixation failure caused by implantation of inappropriate clavicle hook plates, the present study investigated the biomechanics of clavicle hook plates made of different materials and with different hook depths in treating acromioclavicular joint dislocation, using finite element analysis (FEA). This study established four parts using computer models: the clavicle, acromion, clavicle hook plate, and screws, and these established models were used for FEA. Moreover, implantations of clavicle hook plates made of different materials (stainless steel and titanium alloy) and with different depths (12, 15, and 18 mm) in patients with acromioclavicular joint dislocation were simulated in the biomechanical analysis. The results indicate that deeper implantation of the clavicle hook plate reduces stress on the clavicle, and also reduces the force applied to the acromion by the clavicle hook plate. Even though a clavicle hook plate made of titanium alloy (a material with a lower Young's modulus) reduces the force applied to the acromion by the clavicle hook plate, slightly higher stress on the clavicle may occur. The results obtained in this study provide a better reference for orthopedic surgeons in choosing different clavicle hook plates for surgery. Copyright © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Kolodziej, L; Bohatyrewicz, A; Zietek, P
2013-01-01
The aim of this retrospective study was to assess functional and radiographic results of the first metatarsophalangeal joint replacement with use of unconstrained, modular, three components, porous titanium and hydroxyapatite coated, press-fit METIS® prosthesis. According to author's knowledge, results of that type of prosthesis have never been published before. 25 prosthesis were implanted in 24 patients between February 2009 and May 2011. American Orthopaedic Foot and Ankle Society Hallux Metatarsophalangeal Interphalangeal scoring system (AOFAS-HMI) was used to assess functional results. Patients were also asked if they would undergo procedure again or recommend it to other people. Weight bearing radiographs ware made at final follow up and analyzed for presence of osteolysis and radiolucencies. In 8 patients total joint replacement was introduced as a salvage after failure of previous surgery like Keller resection arthroplasty, failed arthrodesis, avascular necrosis and postoperative arthritis. In 11 patients the reason for prosthetic replacement were hallux rigidus, in 4 cases rheumatoid arthritis and gout in one patient. In two patients additional procedures like Akin phalangeal osteotomy and in one case fifth metatarsal osteotomy, was performed. There were 20 females and 4 males in presented group. The mean age at the operation was 56 years. The average follow up period was 18 months (from 12 to 36 months). The median postoperative value of AOFAS-HMI scores was 88 points (from 75 to 95 points). First metatarsophalangeal joint motion (dorsiflexion plus plantarflexion) was classified according to AOFAS-HMI ranges as: moderately restricted (between 30 to 70 degrees) in 19 patients 80% (20 prosthesis) and severely restricted (less then 30 degrees) in 5 patients (20%). 15 (64%) patients were completely satisfied, 5 (20%) reported moderate satisfaction and (16%) 4 were totally disappointed and would not undergo this procedure again. A limited hallux dorsiflexion
Arthroscopic Hemitrapeziectomy for First Carpometacarpal Arthritis: Results at 7-year Follow-up
Leak, Robert S.; Culp, Randall W.; Osterman, A. Lee
2008-01-01
The purpose of this study was to determine the outcome of arthroscopic hemitrapeziectomy combined with thermal capsular plication and temporary K-wire fixation in patients with painful thumb basal joint due to either osteoarthritis or posttraumatic arthritis. There were 18 thumbs that were evaluated in this retrospective study of arthroscopic hemitrapeziectomy of the distal trapezium in addition to a pancapsular thermal shrinkage at an average of 7.6-year follow-up. No patient has required further surgery. A subjective improvement in pain, pinch activities, strength, and range of motion (ROM) was noted in all patients, and no patient had further surgery on their thumb. On exam, no patient had a first carpal–metacarpal grind or laxity. Total ROM of the thumb axis decreased by 20%, but all patients could oppose to the fifth finger. Grip strength remained unchanged, key pinch improved from 8 to 11 lbs, and tip pinch improved from 4 to 5 lbs. Radiographs showed a metacarpal subsidence of 1.8 mm (0–4 mm). Four complications were noted: two cases of dorsal radial nerve neuritis, one rupture of the flexor pollicis longus, and one prolonged hematoma. Results demonstrate that arthroscopic hemitrapeziectomy and capsular shrinkage for first carpometacarpal arthritis is an effective technique that provides high patient satisfaction, a functional pain-free thumb, and a reliable rate of return to activity. PMID:18820976
Goodman, S. B.; Gibon, E.; Pajarinen, J.; Lin, T.-H.; Keeney, M.; Ren, P.-G.; Nich, C.; Yao, Z.; Egashira, K.; Yang, F.; Konttinen, Y. T.
2014-01-01
Wear particles and by-products from joint replacements and other orthopaedic implants may result in a local chronic inflammatory and foreign body reaction. This may lead to persistent synovitis resulting in joint pain and swelling, periprosthetic osteolysis, implant loosening and pathologic fracture. Strategies to modulate the adverse effects of wear debris may improve the function and longevity of joint replacements and other orthopaedic implants, potentially delaying or avoiding complex revision surgical procedures. Three novel biological strategies to mitigate the chronic inflammatory reaction to orthopaedic wear particles are reported. These include (i) interference with systemic macrophage trafficking to the local implant site, (ii) modulation of macrophages from an M1 (pro-inflammatory) to an M2 (anti-inflammatory, pro-tissue healing) phenotype in the periprosthetic tissues, and (iii) local inhibition of the transcription factor nuclear factor kappa B (NF-κB) by delivery of an NF-κB decoy oligodeoxynucleotide, thereby interfering with the production of pro-inflammatory mediators. These three approaches have been shown to be viable strategies for mitigating the undesirable effects of wear particles in preclinical studies. Targeted local delivery of specific biologics may potentially extend the lifetime of orthopaedic implants. PMID:24478281
Wide-awake Anesthesia No Tourniquet Trapeziometacarpal Joint Prosthesis Implantation.
Müller, Camillo Theo; Christen, Thierry; Heidekruger, Paul I; Lamouille, Jessie; Raffoul, Wassim; McKee, Daniel; Lalonde, Donald H; Durand, Sébastien
2018-04-01
Wide awake local anesthesia no tourniquet (WALANT) hand surgery is a rapidly growing in popularity. WALANT has been used by hand surgeons when operating on bones, tendons, ligaments, nerve entrapments. We offer a case report of the first case in the literature describing WALANT technique when performing trapeziometacarpal joint arthroplasty with prosthesis implantation. We offer technical points on how to perform this procedure and the advantages that are associated with using WALANT for prosthesis arthroplasty.
Combined chemical and mechanical effects on free radicals in UHMWPE joints during implantation.
Jahan, M S; Wang, C; Schwartz, G; Davidson, J A
1991-08-01
An electron spin resonance (ESR) technique is employed to determine the free radical distribution in the articulating surfaces of retrieved acetabular cups and knee-joint plateaus (retrieved after more than 6 years of implantation). Similar measurements made on samples prepared from cyclically stressed and unstressed cups, and on samples following oxidations in nitric acid and intralipid solutions provided sufficient data to gain more knowledge about the combined chemical and mechanical effects on PE free radicals during implantation. In UHMWPE free radicals are primarily initiated by gamma-ray sterilization; however, during implantation, peroxy (scission type) free radicals are formed and reach a maximum concentration level (equilibrium state) due to oxidation by chemical (hemoglobin and/or synovial fluids) environment of the joints. Subsequently, due to frictional heating and stress in the loading zones, free radical reaction is accelerated and their number is reduced only in those areas. This is consistent with the observations of a temperature rise in acetabular cups during in vitro frictional wear stress tests and in vivo telemetry observations, as reported by others. Compared with the previously reported SEM micrographs the low-free-radical regions are correlated with high-wear areas and the high-free-radical regions with the low-wear areas.
In vivo measured joint friction in hip implants during walking after a short rest
Damm, Philipp; Bender, Alwina; Duda, Georg; Bergmann, Georg
2017-01-01
Introduction It has been suspected that friction in hip implants is higher when walking is initiated after a resting period than during continuous movement. It cannot be excluded that such increased initial moments endanger the cup fixation in the acetabulum, overstress the taper connections in the implant or increase wear. To assess these risks, the contact forces, friction moments and friction coefficients in the joint were measured in vivo in ten subjects. Instrumented hip joint implants with telemetric data transmission were used to access the contact loads between the cup and head during the first steps of walking after a short rest. Results The analysis demonstrated that the contact force is not increased during the first step. The friction moment in the joint, however, is much higher during the first step than during continuous walking. The moment increases throughout the gait cycle were 32% to 143% on average and up to 621% individually. The high initial moments will probably not increase wear by much in the joint. However, comparisons with literature data on the fixation resistance of the cup against moments made clear that the stability can be endangered. This risk is highest during the first postoperative months for cementless cups with insufficient under-reaming. The high moments after a break can also put taper connections between the head and neck and neck and shaft at a higher risk. Discussion During continuous walking, the friction moments individually were extremely varied by factors of 4 to 10. Much of this difference is presumably caused by the varying lubrication properties of the synovia. These large moment variations can possibly lead to friction-induced temperature increases during walking, which are higher than the 43.1°C which have previously been observed in a group of only five subjects. PMID:28350858
In vivo measured joint friction in hip implants during walking after a short rest.
Damm, Philipp; Bender, Alwina; Duda, Georg; Bergmann, Georg
2017-01-01
It has been suspected that friction in hip implants is higher when walking is initiated after a resting period than during continuous movement. It cannot be excluded that such increased initial moments endanger the cup fixation in the acetabulum, overstress the taper connections in the implant or increase wear. To assess these risks, the contact forces, friction moments and friction coefficients in the joint were measured in vivo in ten subjects. Instrumented hip joint implants with telemetric data transmission were used to access the contact loads between the cup and head during the first steps of walking after a short rest. The analysis demonstrated that the contact force is not increased during the first step. The friction moment in the joint, however, is much higher during the first step than during continuous walking. The moment increases throughout the gait cycle were 32% to 143% on average and up to 621% individually. The high initial moments will probably not increase wear by much in the joint. However, comparisons with literature data on the fixation resistance of the cup against moments made clear that the stability can be endangered. This risk is highest during the first postoperative months for cementless cups with insufficient under-reaming. The high moments after a break can also put taper connections between the head and neck and neck and shaft at a higher risk. During continuous walking, the friction moments individually were extremely varied by factors of 4 to 10. Much of this difference is presumably caused by the varying lubrication properties of the synovia. These large moment variations can possibly lead to friction-induced temperature increases during walking, which are higher than the 43.1°C which have previously been observed in a group of only five subjects.
Tribological performance of the biological components of synovial fluid in artificial joint implants
NASA Astrophysics Data System (ADS)
Ghosh, Subir; Choudhury, Dipankar; Roy, Taposh; Moradi, Ali; Masjuki, H. H.; Pingguan-Murphy, Belinda
2015-08-01
The concentration of biological components of synovial fluid (such as albumin, globulin, hyaluronic acid, and lubricin) varies between healthy persons and osteoarthritis (OA) patients. The aim of the present study is to compare the effects of such variation on tribological performance in a simulated hip joint model. The study was carried out experimentally by utilizing a pin-on-disk simulator on ceramic-on-ceramic (CoC) and ceramic-on-polyethylene (CoP) hip joint implants. The experimental results show that both friction and wear of artificial joints fluctuate with the concentration level of biological components. Moreover, the performance also varies between material combinations. Wear debris sizes and shapes produced by ceramic and polyethylene were diverse. We conclude that the biological components of synovial fluid and their concentrations should be considered in order to select an artificial hip joint to best suit that patient.
Beckmann, J; Steinert, A; Zilkens, C; Zeh, A; Schnurr, C; Schmitt-Sody, M; Gebauer, M
2016-04-01
Knee arthroplasty is a successful standard procedure in orthopedic surgery; however, approximately 20 % of patients are dissatisfied with the clinical results as they suffer pain and can no longer achieve the presurgery level of activity. According to the literature the reasons are inexact fitting of the prosthesis or too few anatomically formed implants resulting in less physiological kinematics of the knee joint. Reducing the number of dissatisfied patients and the corresponding number of revisions is an important goal considering the increasing need for artificial joints. In this context, patient-specific knee implants are an obvious alternative to conventional implants. For the first time implants are now matched to the individual bone and not vice versa to achieve the best possible individual situation and geometry and more structures (e.g. ligaments and bone) are preserved or only those structures are replaced which were actually destroyed by arthrosis. According to the authors view, this represents an optimal and pioneering addition to conventional implants. Patient-specific implants and the instruments needed for correct alignment and fitting can be manufactured by virtual 3D reconstruction and 3D printing based on computed tomography (CT) scans. The portfolio covers medial as well as lateral unicondylar implants, medial as well as lateral bicompartmental implants (femorotibial and patellofemoral compartments) and cruciate ligament-preserving as well as cruciate ligament-substituting total knee replacements; however, it must be explicitly emphasized that the literature is sparse and no long-term data are available.
Spazzin, Aloísio Oro; Henriques, Guilherme Elias Pessanha; de Arruda Nóbilo, Mauro Antônio; Consani, Rafael Leonardo Xediek; Correr-Sobrinho, Lourenço; Mesquita, Marcelo Ferraz
2009-01-01
Objectives: This study evaluated the influence of prosthetic screw material on joint stability in implantsupported dentures at two levels of fit. Methods: Ten mandibular implant-supported dentures were fabricated. Twenty cast models were fabricated using these dentures. Four groups (n=10) were tested, according to the vertical fit of the dentures [passive and non-passive] and prosthetic screw materials [titanium (Ti) or gold (Au) alloy]. The one-screw test was performed to quantify the vertical misfits using an optic microscope. The loosening torque for the prosthetic screws was measured 24 hours after the tightening torque (10 Ncm) using a digital torque meter. Data were analyzed by two-way ANOVA and Tukey’s test (α=0.05). Results: Overall, dentures with passive fit and Ti screws resulted in significantly higher loosening torque of the prosthetic screws (p<0.05). No significant interaction was found between fit level and screw material (p=0.199). The prosthetic screw material and fit of implant-supported dentures have an influence on screw joint stability. Ti screws presented higher joint stability than Au screws and minimum of misfit should be found clinically to improve the mechanical behavior of the screw joint. PMID:20148135
Villafañe, Jorge H; Cleland, Joshua A; Fernández-de-Las-Peñas, César
2013-04-01
Double-blind, randomized controlled trial. To examine the effectiveness of a manual therapy and exercise approach relative to a placebo intervention in individuals with carpometacarpal (CMC) joint osteoarthritis (OA). Recent studies have reported the outcomes of exercise, joint mobilization, and neural mobilization interventions used in isolation in patients with CMC joint OA. However, it is not known if using a combination of these interventions as a multimodal approach to treatment would further improve outcomes in this patient population. Sixty patients, 90% female (mean ± SD age, 82 ± 6 years), with CMC joint OA were randomly assigned to receive a multimodal manual treatment approach that included joint mobilization, neural mobilization, and exercise, or a sham intervention, for 12 sessions over 4 weeks. The primary outcome measure was pain. Secondary outcome measures included pressure pain threshold over the first CMC joint, scaphoid, and hamate, as well as pinch and strength measurements. All outcome measures were collected at baseline, immediately following the intervention, and at 1 and 2 months following the end of the intervention. Mixed-model analyses of variance were used to examine the effects of the interventions on each outcome, with group as the between-subject variable and time as the within-subject variable. The mixed-model analysis of variance revealed a group-by-time interaction (F = 47.58, P<.001) for pain intensity, with the patients receiving the multimodal intervention experiencing a greater reduction in pain compared to those receiving the placebo intervention at the end of the intervention, as well as at 1 and 2 months after the intervention (P<.001; all group differences greater than 3.0 cm, which is greater than the minimal clinically important difference of 2.0 cm). A significant group-by-time interaction (F = 3.19, P = .025) was found for pressure pain threshold over the hamate bone immediately after the intervention; however, the
Jo, Jae-Young; Yang, Dong-Seok; Huh, Jung-Bo; Heo, Jae-Chan; Yun, Mi-Jung; Jeong, Chang-Mo
2014-12-01
This study evaluated the influence of abutment materials on the stability of the implant-abutment joint in internal conical connection type implant systems. Internal conical connection type implants, cement-retained abutments, and tungsten carbide-coated abutment screws were used. The abutments were fabricated with commercially pure grade 3 titanium (group T3), commercially pure grade 4 titanium (group T4), or Ti-6Al-4V (group TA) (n=5, each). In order to assess the amount of settlement after abutment fixation, a 30-Ncm tightening torque was applied, then the change in length before and after tightening the abutment screw was measured, and the preload exerted was recorded. The compressive bending strength was measured under the ISO14801 conditions. In order to determine whether there were significant changes in settlement, preload, and compressive bending strength before and after abutment fixation depending on abutment materials, one-way ANOVA and Tukey's HSD post-hoc test was performed. Group TA exhibited the smallest mean change in the combined length of the implant and abutment before and after fixation, and no difference was observed between groups T3 and T4 (P>.05). Group TA exhibited the highest preload and compressive bending strength values, followed by T4, then T3 (P<.001). The abutment material can influence the stability of the interface in internal conical connection type implant systems. The strength of the abutment material was inversely correlated with settlement, and positively correlated with compressive bending strength. Preload was inversely proportional to the frictional coefficient of the abutment material.
Kofler, J; Peterbauer, C
2014-01-01
This case report describes the clinical and radiographic findings and the surgical treatment of a serofibrinous arthritis of the antebrachiocarpal joint and of a chronic purulent arthritis of the intercarpal and carpometacarpal joints with osteomyelitis of the distal carpal bones and subchondral osteomyelitis of the proximal metacarpal bones in a cow of the breed "Pustertaler Sprinze". The therapy comprised an arthrotomy of both joint spaces and the resection of the distal row of the carpal bones. The right forelimb had been immobilised for 70 days by a full limb cast. After this period, radiographs revealed an ob- vious ankylosis of the carpal joint, and the cow showed only a slight lameness. Six years postoperatively this cow was still in the herd and had produced six calves.
Implant-supported mandibular splinting affects temporomandibular joint biomechanics.
Zaugg, Balthasar; Hämmerle, Christoph H F; Palla, Sandro; Gallo, Luigi M
2012-08-01
Mandibular functional movements lead to complex deformations of bony structures. The aim of this study was to test whether mandibular splinting influences condylar kinematics and temporomandibular joint (TMJ) loading patterns. Six subjects were analyzed by means of dynamic stereometry during jaw opening-closing with mandibles unconstrained as well as splinted transversally by a cast metal bar fixed bilaterally to two implant pairs in the (pre)molar region. Statistical analysis was performed by means of ANOVAs for repeated measurements (significance level α=0.05). Transversal splinting reduced mandibular deformation during jaw opening-closing as measured between two implants in the (pre)molar region on each side of the mandible significantly by 54%. Furthermore, splinting significantly reduced the distance between lateral condylar poles (average displacement vector magnitude of each pole: 0.84±0.36 mm; average mediolateral displacement component: 45±28% of the magnitude) and led to a medial displacement of their trajectories as well as a mediolateral displacement of stress-field paths. During jaw opening-closing, splinting of the mandible leads to a significant reduction of mandibular deformation and intercondylar distance and to altered stress-field paths, resulting in changed loading patterns of the TMJ structures. © 2011 John Wiley & Sons A/S.
Triangular Titanium Implants for Minimally Invasive Sacroiliac Joint Fusion: A Prospective Study.
Duhon, Bradley S; Cher, Daniel J; Wine, Kathryn D; Kovalsky, Don A; Lockstadt, Harry
2016-05-01
Study Design Prospective multicenter single-arm interventional clinical trial. Objective To determine the degree of improvement in sacroiliac (SI) joint pain, disability related to SI joint pain, and quality of life in patients with SI joint dysfunction who undergo minimally invasive SI joint fusion using triangular-shaped titanium implants. Methods Subjects (n = 172) underwent minimally invasive SI joint fusion between August 2012 and January 2014 and completed structured assessments preoperatively and at 1, 3, 6, and 12 months postoperatively, including a 100-mm SI joint and back pain visual analog scale (VAS), Oswestry Disability Index (ODI), Short Form-36 (SF-36), and EuroQOL-5D. Patient satisfaction with surgery was assessed at 6 and 12 months. Results Mean SI joint pain improved from 79.8 at baseline to 30.0 and 30.4 at 6 and 12 months, respectively (mean improvements of 49.9 and 49.1 points, p < 0.0001 each). Mean ODI improved from 55.2 at baseline to 32.5 and 31.4 at 6 and 12 months (improvements of 22.7 and 23.9 points, p < 0.0001 each). SF-36 physical component summary improved from 31.7 at baseline to 40.2 and 40.3 at 6 and 12 months (p < 0.0001). At 6 and 12 months, 93 and 87% of subjects, respectively, were somewhat or very satisfied and 92 and 91%, respectively, would have the procedure again. Conclusions Minimally invasive SI joint fusion resulted in improvement of pain, disability, and quality of life in patients with SI joint dysfunction due to degenerative sacroiliitis and SI joint disruption.
Triangular Titanium Implants for Minimally Invasive Sacroiliac Joint Fusion: A Prospective Study
Duhon, Bradley S.; Cher, Daniel J.; Wine, Kathryn D.; Kovalsky, Don A.; Lockstadt, Harry
2015-01-01
Study Design Prospective multicenter single-arm interventional clinical trial. Objective To determine the degree of improvement in sacroiliac (SI) joint pain, disability related to SI joint pain, and quality of life in patients with SI joint dysfunction who undergo minimally invasive SI joint fusion using triangular-shaped titanium implants. Methods Subjects (n = 172) underwent minimally invasive SI joint fusion between August 2012 and January 2014 and completed structured assessments preoperatively and at 1, 3, 6, and 12 months postoperatively, including a 100-mm SI joint and back pain visual analog scale (VAS), Oswestry Disability Index (ODI), Short Form-36 (SF-36), and EuroQOL-5D. Patient satisfaction with surgery was assessed at 6 and 12 months. Results Mean SI joint pain improved from 79.8 at baseline to 30.0 and 30.4 at 6 and 12 months, respectively (mean improvements of 49.9 and 49.1 points, p < 0.0001 each). Mean ODI improved from 55.2 at baseline to 32.5 and 31.4 at 6 and 12 months (improvements of 22.7 and 23.9 points, p < 0.0001 each). SF-36 physical component summary improved from 31.7 at baseline to 40.2 and 40.3 at 6 and 12 months (p < 0.0001). At 6 and 12 months, 93 and 87% of subjects, respectively, were somewhat or very satisfied and 92 and 91%, respectively, would have the procedure again. Conclusions Minimally invasive SI joint fusion resulted in improvement of pain, disability, and quality of life in patients with SI joint dysfunction due to degenerative sacroiliitis and SI joint disruption. PMID:27099817
Jo, Jae-Young; Yang, Dong-Seok; Huh, Jung-Bo; Heo, Jae-Chan; Yun, Mi-Jung
2014-01-01
PURPOSE This study evaluated the influence of abutment materials on the stability of the implant-abutment joint in internal conical connection type implant systems. MATERIALS AND METHODS Internal conical connection type implants, cement-retained abutments, and tungsten carbide-coated abutment screws were used. The abutments were fabricated with commercially pure grade 3 titanium (group T3), commercially pure grade 4 titanium (group T4), or Ti-6Al-4V (group TA) (n=5, each). In order to assess the amount of settlement after abutment fixation, a 30-Ncm tightening torque was applied, then the change in length before and after tightening the abutment screw was measured, and the preload exerted was recorded. The compressive bending strength was measured under the ISO14801 conditions. In order to determine whether there were significant changes in settlement, preload, and compressive bending strength before and after abutment fixation depending on abutment materials, one-way ANOVA and Tukey's HSD post-hoc test was performed. RESULTS Group TA exhibited the smallest mean change in the combined length of the implant and abutment before and after fixation, and no difference was observed between groups T3 and T4 (P>.05). Group TA exhibited the highest preload and compressive bending strength values, followed by T4, then T3 (P<.001). CONCLUSION The abutment material can influence the stability of the interface in internal conical connection type implant systems. The strength of the abutment material was inversely correlated with settlement, and positively correlated with compressive bending strength. Preload was inversely proportional to the frictional coefficient of the abutment material. PMID:25551010
Is early osteoarthritis associated with differences in joint congruence?
Conconi, Michele; Halilaj, Eni; Castelli, Vincenzo Parenti; Crisco, Joseph J.
2014-01-01
Previous studies suggest that osteoarthritis (OA) is related to abnormal or excessive articular contact stress. The peak pressure resulting from an applied load is determined by many factors, among which is shape and relative position and orientation of the articulating surfaces or, referring to a more common nomenclature, joint congruence. It has been hypothesized that anatomical differences may be among the causes of OA. Individuals with less congruent joints would likely develop higher peak pressure and thus would be more exposed to the risk of OA onset. The aim of this work was to determine if the congruence of the first carpometacarpal (CMC) joint differs with the early onset of OA or with sex, as the female population has a higher incidence of OA. 59 without and 38 with early OA were CT-scanned with their dominant or arthritic hand in a neutral configuration. The proposed measure of joint congruence is both shape and size dependent. The correlation of joint congruence with pathology and sex was analyzed both before and after normalization for joint size. We found a significant correlation between joint congruence and sex due to the sex-related differences in size. The observed correlation disappeared after normalization. Although joint congruence increased with size, it did not correlate significantly with the onset of early OA. Differences in joint congruence in this population may not be a primary cause of OA onset or predisposition, at least for the CMC joint. PMID:25468667
Arakaki, Kazunobu; Kitamura, Nobuto; Kurokawa, Takayuki; Onodera, Shin; Kanaya, Fuminori; Gong, Jian-Ping; Yasuda, Kazunori
2011-02-01
We have recently discovered that spontaneous hyaline cartilage regeneration can be induced in an osteochondral defect in the rabbit, when we implant a novel double-network (DN) gel plug at the bottom of the defect. To clarify whether joint immobilization inhibits the spontaneous hyaline cartilage regeneration, we conducted this study with 20 rabbits. At 4 or 12 weeks after surgery, the defect in the mobile knees was filled with a sufficient volume of the hyaline cartilage tissue rich in proteoglycan and type-2 collagen, while no cartilage tissues were observed in the defect in the immobilized knees. Type-2 collagen, Aggrecan, and SOX9 mRNAs were expressed only in the mobile knees at each period. This study demonstrated that joint immobilization significantly inhibits the spontaneous hyaline cartilage regeneration induced by the DN gel implantation. This fact suggested that the mechanical environment is one of the significant factors to induce this phenomenon.
Villafañe, Jorge Hugo; Cantero-Tellez, Raquel; Valdes, Kristin; Usuelli, Federico Giuseppe; Berjano, Pedro
2017-09-01
Conservative treatments are commonly performed therapeutic interventions for the management of carpometacarpal (CMC) joint osteoarthritis (OA). Physical and occupational therapies are starting to use video-based online content as both a patient teaching tool and a source for treatment techniques. YouTube is a popular video-sharing website that can be accessed easily. The purpose of this study was to analyze the quality of content and potential sources of bias in videos available on YouTube pertaining to thumb exercises for CMC OA. The YouTube video database was systematically searched using the search term thumb osteoarthritis and exercises from its inception to March 10, 2017. Authors independently selected videos, conducted quality assessment, and extracted results. A total of 832 videos were found using the keywords. Of these, 10 videos clearly demonstrated therapeutic exercise for the management of CMC OA. In addition, the top-ranked video found by performing a search of "views" was a video with more than 121 863 views uploaded in 2015 that lasted 12.33 minutes and scored only 2 points on the Global Score for Educational Value rating scale. Most of the videos viewed that described conservative interventions for CMC OA management have a low level of evidence to support their use. Although patients and novice hand therapists are using YouTube and other online resources, videos that are produced by expert hand therapists are scarce.
Acromioclavicular joint reconstruction using the LockDown synthetic implant: a study with cadavers.
Taranu, R; Rushton, P R P; Serrano-Pedraza, I; Holder, L; Wallace, W A; Candal-Couto, J J
2015-12-01
Dislocation of the acromioclavicular joint is a relatively common injury and a number of surgical interventions have been described for its treatment. Recently, a synthetic ligament device has become available and been successfully used, however, like other non-native solutions, a compromise must be reached when choosing non-anatomical locations for their placement. This cadaveric study aimed to assess the effect of different clavicular anchorage points for the Lockdown device on the reduction of acromioclavicular joint dislocations, and suggest an optimal location. We also assessed whether further stability is provided using a coracoacromial ligament transfer (a modified Neviaser technique). The acromioclavicular joint was exposed on seven fresh-frozen cadaveric shoulders. The joint was reconstructed using the Lockdown implant using four different clavicular anchorage points and reduction was measured. The coracoacromial ligament was then transferred to the lateral end of the clavicle, and the joint re-assessed. If the Lockdown ligament was secured at the level of the conoid tubercle, the acromioclavicular joint could be reduced anatomically in all cases. If placed medial or 2 cm lateral, the joint was irreducible. If the Lockdown was placed 1 cm lateral to the conoid tubercle, the joint could be reduced with difficulty in four cases. Correct placement of the Lockdown device is crucial to allow anatomical joint reduction. Even when the Lockdown was placed over the conoid tubercle, anterior clavicle displacement remained but this could be controlled using a coracoacromial ligament transfer. ©2015 The British Editorial Society of Bone & Joint Surgery.
Fryzek, J P; Mellemkjaer, L; McLaughlin, J K; Blot, W J; Olsen, J H
1999-05-31
The use of artificial joint implants has risen greatly over the past years. However, few investigations of the cancer risk associated with implants have been performed. We investigated cancer risk in patients with finger and hand joint and temporo-mandibular (TMJ) joint implants. A nationwide cohort in Denmark of patients with finger and hand joint prostheses (n = 858) or TMJ implants (n = 389) was followed from January 1, 1977, to December 31, 1995, to evaluate any potential cancer risks subsequent to receiving these implants. Standardized incidence ratios (SIRs) for all cancers were 1.0 (95% CI = 0.8-1.2) for the finger and hand joint cohort and 1.1 (95% CI = 0.8-1.7) for the TMJ cohort. A significant risk for non-Hodgkin's lymphoma was found in the finger and hand joint cohort (SIR = 3.8, 95% CI = 1.5-7.8). When the finger and hand joint cohort was stratified by diagnosis of rheumatoid arthritis, the excess risk was seen only in the group with rheumatoid arthritis. This is consistent with past studies, which have found an association between rheumatoid arthritis and non-Hodgkin's lymphoma. Our results provide evidence that the cancer risk for patients with finger and hand joint prostheses and TMJ implants is similar to that for the general population.
Is early osteoarthritis associated with differences in joint congruence?
Conconi, Michele; Halilaj, Eni; Parenti Castelli, Vincenzo; Crisco, Joseph J
2014-12-18
Previous studies suggest that osteoarthritis (OA) is related to abnormal or excessive articular contact stress. The peak pressure resulting from an applied load is determined by many factors, among which is shape and relative position and orientation of the articulating surfaces or, referring to a more common nomenclature, joint congruence. It has been hypothesized that anatomical differences may be among the causes of OA. Individuals with less congruent joints would likely develop higher peak pressure and thus would be more exposed to the risk of OA onset. The aim of this work was to determine if the congruence of the first carpometacarpal (CMC) joint differs with the early onset of OA or with sex, as the female population has a higher incidence of OA. 59 without and 38 with early OA were CT-scanned with their dominant or arthritic hand in a neutral configuration. The proposed measure of joint congruence is both shape and size dependent. The correlation of joint congruence with pathology and sex was analyzed both before and after normalization for joint size. We found a significant correlation between joint congruence and sex due to the sex-related differences in size. The observed correlation disappeared after normalization. Although joint congruence increased with size, it did not correlate significantly with the onset of early OA. Differences in joint congruence in this population may not be a primary cause of OA onset or predisposition, at least for the CMC joint. Copyright © 2014 Elsevier Ltd. All rights reserved.
Duhon, Bradley S; Bitan, Fabien; Lockstadt, Harry; Kovalsky, Don; Cher, Daniel; Hillen, Travis
2016-01-01
Sacroiliac joint (SIJ) dysfunction is an underdiagnosed condition. Several published cohorts have reported favorable mid-term outcomes after SIJ fusion using titanium implants placed across the SIJ. Herein we report long-term (24-month) results from a prospective multicenter clinical trial. One hundred and seventy-two subjects at 26 US sites with SI joint dysfunction were enrolled and underwent minimally invasive SI joint fusion with triangular titanium implants. Subjects underwent structured assessments preoperatively and at 1, 3, 6, 12, 18 and 24 months postoperatively, including SIJ pain ratings (0-100 visual analog scale), Oswestry Disability Index (ODI), Short Form-36 (SF-36), EuroQOL-5D (EQ-5D), and patient satisfaction. Adverse events were collected throughout follow-up. All participating patients underwent a high-resolution pelvic CT scan at 1 year. Mean subject age was 50.9 years and 69.8% were women. SIJ pain was present for an average of 5.1 years prior to surgical treatment. SIJ pain decreased from 79.8 at baseline to 30.4 at 12 months and remained low at 26.0 at 24 months (p<.0001 for change from baseline). ODI decreased from 55.2 at baseline to 31.5 at 12 months and remained low at 30.9 at 24 months (p<.0001 for change from baseline). Quality of life (SF-36 and EQ-5D) improvements seen at 12 months were sustained at 24 months. The proportion of subjects taking opioids for SIJ or low back pain decreased from 76.2% at baseline to 55.0% at 24 months (p <.0001). To date, 8 subjects (4.7%) have undergone one or more revision SIJ surgeries. 7 device-related adverse events occurred. CT scan at one year showed a high rate (97%) of bone adherence to at least 2 implants on both the iliac and sacral sides with modest rates of bone growth across the SIJ. In this study of patients with SIJ dysfunction, minimally invasive SI joint fusion using triangular titanium implants showed marked improvements in pain, disability and quality of life at 2 years. Imaging showed
Bitan, Fabien; Lockstadt, Harry; Kovalsky, Don; Cher, Daniel; Hillen, Travis
2016-01-01
Background Sacroiliac joint (SIJ) dysfunction is an underdiagnosed condition. Several published cohorts have reported favorable mid-term outcomes after SIJ fusion using titanium implants placed across the SIJ. Herein we report long-term (24-month) results from a prospective multicenter clinical trial. Methods One hundred and seventy-two subjects at 26 US sites with SI joint dysfunction were enrolled and underwent minimally invasive SI joint fusion with triangular titanium implants. Subjects underwent structured assessments preoperatively and at 1, 3, 6, 12, 18 and 24 months postoperatively, including SIJ pain ratings (0-100 visual analog scale), Oswestry Disability Index (ODI), Short Form-36 (SF-36), EuroQOL-5D (EQ-5D), and patient satisfaction. Adverse events were collected throughout follow-up. All participating patients underwent a high-resolution pelvic CT scan at 1 year. Results Mean subject age was 50.9 years and 69.8% were women. SIJ pain was present for an average of 5.1 years prior to surgical treatment. SIJ pain decreased from 79.8 at baseline to 30.4 at 12 months and remained low at 26.0 at 24 months (p<.0001 for change from baseline). ODI decreased from 55.2 at baseline to 31.5 at 12 months and remained low at 30.9 at 24 months (p<.0001 for change from baseline). Quality of life (SF-36 and EQ-5D) improvements seen at 12 months were sustained at 24 months. The proportion of subjects taking opioids for SIJ or low back pain decreased from 76.2% at baseline to 55.0% at 24 months (p <.0001). To date, 8 subjects (4.7%) have undergone one or more revision SIJ surgeries. 7 device-related adverse events occurred. CT scan at one year showed a high rate (97%) of bone adherence to at least 2 implants on both the iliac and sacral sides with modest rates of bone growth across the SIJ. Conclusions In this study of patients with SIJ dysfunction, minimally invasive SI joint fusion using triangular titanium implants showed marked improvements in pain, disability and
Patient and implant survival following joint replacement because of metastatic bone disease
2013-01-01
Background Patients suffering from a pathological fracture or painful bony lesion because of metastatic bone disease often benefit from a total joint replacement. However, these are large operations in patients who are often weak. We examined the patient survival and complication rates after total joint replacement as the treatment for bone metastasis or hematological diseases of the extremities. Patients and methods 130 patients (mean age 64 (30–85) years, 76 females) received 140 joint replacements due to skeletal metastases (n = 114) or hematological disease (n = 16) during the period 2003–2008. 21 replaced joints were located in the upper extremities and 119 in the lower extremities. Clinical and survival data were extracted from patient files and various registers. Results The probability of patient survival was 51% (95% CI: 42–59) after 6 months, 39% (CI: 31–48) after 12 months, and 29% (CI: 21–37) after 24 months. The following surgical complications were seen (8 of which led to additional surgery): 2–5 hip dislocations (n = 8), deep infection (n = 3), peroneal palsy (n = 2), a shoulder prosthesis penetrating the skin (n = 1), and disassembly of an elbow prosthesis (n = 1). The probability of avoiding all kinds of surgery related to the implanted prosthesis was 94% (CI: 89–99) after 1 year and 92% (CI: 85–98) after 2 years. Conclusion Joint replacement operations because of metastatic bone disease do not appear to have given a poorer rate of patient survival than other types of surgical treatment, and the reoperation rate was low. PMID:23530874
Margulies, Bryan S; DeBoyace, Sean D; Parsons, Adrienne M; Policastro, Connor G; Ee, Jessica S S; Damron, Timothy S
2015-05-01
We sought to demonstrate whether there is a difference in the local mesenchymal stem cells (MSC) niche obtained from patients undergoing their first total joint replacement surgery versus those patients undergoing a revision surgery for an failing total joint implant. Bone marrow aspirates collected from patients undergoing revision total joint arthroplasty were observed to be less clonal and the expression of PDGFRα, CD51, ALCAM, endoglin, CXCL12, nestin, and nucleostemin were decreased. Revision MSC were also less able to commit to an osteoblast-lineage or an adipocyte-lineage. Further, in revision MSC, OPG, and IL6 expression were increased. Monocytes, derived from revision whole marrow aspirates, were less capable of differentiating into osteoclasts, the cells implicated in the pathologic degradation of bone. Osteoclasts were also not observed in tissue samples collected adjacent to the implants of revision patients; however, the alternatatively activated M2-macrophage phenotype was observed in parallel with pathologic accumulations of amyloid-β, τ-protien and 3-nitrotyrosine. Despite the limited numbers of patients examined, our data suggest that nucleostemin may be a useful functional marker for MSC while the observation of M2-macrophage infiltration around the implant lays the foundation for future investigation into a novel mechanism that we propose is associated with loose total joint implants. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Jadan, M.; Chelyadinskii, A. R.; Odzhaev, V. B.
2013-02-01
The possibility to control the localization of implanted carbon in sites and interstices in silicon immediately during the implantation has been demonstrated. The formation of residual extended defects in silicon implanted separately with C+ and B+ ions and jointly with C+ and B+ ions has been shown. It has been found that the formation of residual defects can be suppressed due to annihilation of point defects at C atoms (the Watkins effect). The positive effect is attained if implanted carbon is localized over lattice sites, which is provided by its implantation with the effective current density of the scanning ion beam no lower than 1.0 μA cm-2.
Hung, Li-Kun; Su, Kuo-Chih; Lu, Wen-Hsien; Lee, Cheng-Hung
2017-08-01
A clavicle hook plate is a simple and effective method for treating acromioclavicular dislocation and distal clavicle fractures. However, subacromial osteolysis and peri-implant fractures are complicated for surgeons to manage. This study uses finite element analysis (FEA) to investigate the post-implantation biomechanics of clavicle hook plates with different hook angles. This FEA study constructed a model with a clavicle, acromion, clavicle hook plate, and screws to simulate the implantation of clavicle hook plates at different hook angles (90°, 95°, 100°, 105°, and 110°) for treating acromioclavicular joint dislocations. This study investigated the biomechanics of the acromion, clavicle, hook plate, and screws. A smaller hook angle increases the stress on the middle third of the clavicle. A larger hook angle increases the force exerted by the clavicle hook plate on the acromion. The screw at the most medial position on the plate generated the highest stress. The highest stress on the implanted clavicle hook plate was on the turning corner of the hook. A clavicle hook plate with different hook angles may induce different biomechanical behaviors in the clavicle and acromion. Orthopedic surgeons must select a suitable clavicle hook plate based on the anatomical structure of each patient.
Bornemann, R; Pflugmacher, R; Webler, M; Koch, E M W; Dengler, J; Wirtz, D C; Frey, S P
2016-12-01
Background: This study reports one year post-operative monitoring of the efficacy and safety of iFuse Implant System® in patients with sacroiliac joint syndrome. Material and Methods: After 6 months of inadequate conservative treatment, patients with properly proven ISG syndrome were selected for surgery. The iFuse implants had a triangular profile and coating of porous titanium plasma spray and were used in the minimally invasive procedures. The procedure was performed under general anaesthesia and fluoroscopic control. In each case, three implants were placed. Results: 24 patients (22 f; 92 %; 54.9 ± 14 years) participated in the study. The operations were performed in 11 patients (46 %) on the left and in 13 patients (54 %) on the right. The mean operative time was 42.4 minutes (95 % CI: 35.6-49.3). The reduction in pain intensity on the VAS scale was 58 ± 11 mm (68 ± 7 %). The Oswestry score showed a median decrease of 44 percentage points (57 %). After 12 months, 15 patients (63 %) reported that they were taking no more painkillers. Conclusion: The minimally invasive treatment of patients with sacroiliac joint syndrome using the iFuse Implant System leads to significant analgesic effects over the period of one year; it also contributes significantly to improving the functioning of the patient. Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Mohammad Sadeghi, Majid; Kececi, Emin Faruk; Bilsel, Kerem; Aralasmak, Ayse
2017-03-01
Medical imaging has great importance in earlier detection, better treatment and follow-up of diseases. 3D Medical image analysis with CT Scan and MRI images has also been used to aid surgeries by enabling patient specific implant fabrication, where having a precise three dimensional model of associated body parts is essential. In this paper, a 3D image processing methodology for finding the plane on which the glenoid surface has a maximum surface area is proposed. Finding this surface is the first step in designing patient specific shoulder joint implant.
Whang, Peter; Cher, Daniel; Polly, David; Frank, Clay; Lockstadt, Harry; Glaser, John; Limoni, Robert; Sembrano, Jonathan
2015-01-01
Sacroiliac (SI) joint pain is a prevalent, underdiagnosed cause of lower back pain. SI joint fusion can relieve pain and improve quality of life in patients who have failed nonoperative care. To date, no study has concurrently compared surgical and non-surgical treatments for chronic SI joint dysfunction. We conducted a prospective randomized controlled trial of 148 subjects with SI joint dysfunction due to degenerative sacroiliitis or sacroiliac joint disruptions who were assigned to either minimally invasive SI joint fusion with triangular titanium implants (N=102) or non-surgical management (NSM, n=46). SI joint pain scores, Oswestry Disability Index (ODI), Short-Form 36 (SF-36) and EuroQol-5D (EQ-5D) were collected at baseline and at 1, 3 and 6 months after treatment commencement. Six-month success rates, defined as the proportion of treated subjects with a 20-mm improvement in SI joint pain in the absence of severe device-related or neurologic SI joint-related adverse events or surgical revision, were compared using Bayesian methods. Subjects (mean age 51, 70% women) were highly debilitated at baseline (mean SI joint VAS pain score 82, mean ODI score 62). Six-month follow-up was obtained in 97.3%. By 6 months, success rates were 81.4% in the surgical group vs. 23.9% in the NSM group (difference of 56.6%, 95% posterior credible interval 41.4-70.0%, posterior probability of superiority >0.999). Clinically important (≥15 point) ODI improvement at 6 months occurred in 75% of surgery subjects vs. 27.3% of NSM subjects. At six months, quality of life improved more in the surgery group and satisfaction rates were high. The mean number of adverse events in the first six months was slightly higher in the surgical group compared to the non-surgical group (1.3 vs. 1.0 events per subject, p=0.1857). Six-month follow-up from this level 1 study showed that minimally invasive SI joint fusion using triangular titanium implants was more effective than non-surgical management
Whang, Peter; Polly, David; Frank, Clay; Lockstadt, Harry; Glaser, John; Limoni, Robert; Sembrano, Jonathan
2015-01-01
Background Sacroiliac (SI) joint pain is a prevalent, underdiagnosed cause of lower back pain. SI joint fusion can relieve pain and improve quality of life in patients who have failed nonoperative care. To date, no study has concurrently compared surgical and non-surgical treatments for chronic SI joint dysfunction. Methods We conducted a prospective randomized controlled trial of 148 subjects with SI joint dysfunction due to degenerative sacroiliitis or sacroiliac joint disruptions who were assigned to either minimally invasive SI joint fusion with triangular titanium implants (N=102) or non-surgical management (NSM, n=46). SI joint pain scores, Oswestry Disability Index (ODI), Short-Form 36 (SF-36) and EuroQol-5D (EQ-5D) were collected at baseline and at 1, 3 and 6 months after treatment commencement. Six-month success rates, defined as the proportion of treated subjects with a 20-mm improvement in SI joint pain in the absence of severe device-related or neurologic SI joint-related adverse events or surgical revision, were compared using Bayesian methods. Results Subjects (mean age 51, 70% women) were highly debilitated at baseline (mean SI joint VAS pain score 82, mean ODI score 62). Six-month follow-up was obtained in 97.3%. By 6 months, success rates were 81.4% in the surgical group vs. 23.9% in the NSM group (difference of 56.6%, 95% posterior credible interval 41.4-70.0%, posterior probability of superiority >0.999). Clinically important (≥15 point) ODI improvement at 6 months occurred in 75% of surgery subjects vs. 27.3% of NSM subjects. At six months, quality of life improved more in the surgery group and satisfaction rates were high. The mean number of adverse events in the first six months was slightly higher in the surgical group compared to the non-surgical group (1.3 vs. 1.0 events per subject, p=0.1857). Conclusions Six-month follow-up from this level 1 study showed that minimally invasive SI joint fusion using triangular titanium implants was more
Trends in Thumb Carpometacarpal Interposition Arthroplasty in the United States, 2005-2011.
Werner, Brian C; Bridgforth, Andrew B; Gwathmey, F Winston; Dacus, A Rashard
2015-08-01
We conducted a study to investigate current trends in carpometacarpal (CMC) interposition arthroplasty across time, sex, age, and region of the United States; per-patient charges and reimbursements; and the association between this procedure and concomitantly performed carpal tunnel syndrome (CTS) and carpal tunnel release (CTR). Patients who underwent CMC interposition arthroplasty (N = 41,171) were identified in a national database. Between 2005 and 2011, the number of patients who had CMC interposition arthroplasty increased 46.2%. Females had the procedure more frequently than males at all time points, though the percentage of patients who were male increased throughout the study period. Of the patients who had CMC interposition arthroplasty, 40.9% also had a diagnosis of CTS. Between 15.5% and 17.3% of these patients had CTR performed concomitantly. Despite a lack of evidence that thumb CMC interposition arthroplasty is superior to other surgical treatment options, the number of patients who are having this procedure has increased significantly. The impetus for these trends requires additional investigation.
Gibon, Emmanuel; Córdova, Luis A.; Lu, Laura; Lin, Tzu-Hua; Yao, Zhenyu; Hamadouche, Moussa; Goodman, Stuart B.
2017-01-01
Novel evidence-based prosthetic designs and biomaterials facilitate the performance of highly successful joint replacement (JR) procedures. To achieve this goal, constructs must be durable, biomechanically sound, and avoid adverse local tissue reactions. Different biomaterials such as metals and their alloys, polymers, ceramics, and composites are currently used for JR implants. This review focuses on (1) the biological response to the different biomaterials used for TJR and (2) the chronic inflammatory and foreign-body response induced by byproducts of these biomaterials. A homeostatic state of bone and surrounding soft tissue with current biomaterials for JR can be achieved with mechanically stable, infection free and intact (as opposed to the release of particulate or ionic byproducts) implants. Adverse local tissue reactions (an acute/chronic inflammatory reaction, periprosthetic osteolysis, loosening and subsequent mechanical failure) may evolve when the latter conditions are not met. This article (Part 2 of 2) summarizes the biological response to the non-metallic materials commonly used for joint replacement including polyethylene, ceramics, and polymethylmethacrylate (PMMA), as well as the foreign body reaction to byproducts of these materials. PMID:27080740
The use of the Artelon CMC Spacer for osteoarthritis of the basal joint of the thumb.
Richard, Marc J; Lunich, Julie A; Correll, Gretchen R
2014-01-01
Favorable clinical outcomes have been reported with the Artelon CMC Spacer, however, several studies have documented complications with the device. The purpose of this study is to review a single surgeon's experience with the Artelon CMC Spacer for the treatment of basal joint arthritis of the thumb. Five thumbs in 6 patients with symptomatic osteoarthritis of the thumb carpometacarpal (CMC) joint were treated with the Artelon CMC Spacer. The mean age of the patients was 60.8 years old. Patients were followed for a mean of 39.3 months (6-63) post-operatively. Complications occurred in 4 of the 6 thumbs and half of the thumbs required at least one secondary operative procedure. A documented foreign-body reaction was present in 2 of the 6 thumbs. The Artelon CMC Spacer is an interposition material that acts as a biologic spacer for arthritic joints while maintaining mechanical strength. Due to an unacceptably high complication rate, we no longer use the Artelon CMC Spacer for the management of basal joint arthritis of the thumb. 4. Copyright © 2014 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
Motion deficit of the thumb in CMC joint arthritis.
Gehrmann, Sebastian V; Tang, Jie; Li, Zong Ming; Goitz, Robert J; Windolf, Joachim; Kaufmann, Robert A
2010-09-01
Idiopathic osteoarthritis (OA) of the thumb carpometacarpal (CMC) joint is a common disabling disease that often causes pain and motion loss. The aims of this study were to characterize the multidimensional motion capability of the thumb CMC joint in a group with severe CMC OA and to compare it with a control group. We included 15 subjects with stage III/IV CMC OA according to the Eaton/Littler classification, and 15 control subjects. A motion analysis system using surface markers was employed to quantify the maximum boundary of the thumb circumduction envelope during repetitive thumb movements. We measured the area enclosed by the angular circumduction envelope and the ranges of motion (ROM) in multiple directions for the thumb CMC joint. Thumb osteoarthritis of the CMC joint stage III/IV resulted in a significantly smaller ROM in flexion/extension (45 degrees +/- 11 degrees for the CMC OA group, 59 degrees +/- 10 degrees for the controls), abduction-adduction (37 degrees +/- 6 degrees for the CMC OA group, 63 degrees +/- 13 degrees for the controls), and pronation-supination (49 degrees +/- 10 degrees for the CMC OA group, 62 degrees +/- 11 degrees for the controls) (p < .01). When analyzing the motion directions in flexion-extension and abduction-adduction separately, there was only a loss of extension and adduction (p < .01). Severe stages of thumb CMC OA cause an asymmetrical motion deficit with decreased ROM in extension and adduction, leading to decreased capability of counteropposition. Copyright 2010. Published by Elsevier Inc.
Nicoll, Roxanna J; Sun, Albert; Haney, Stephan; Turkyilmaz, Ilser
2013-01-01
The fabrication of an accurately fitting implant-supported fixed prosthesis requires multiple steps, the first of which is assembling the impression coping on the implant. An imprecise fit of the impression coping on the implant will cause errors that will be magnified in subsequent steps of prosthesis fabrication. The purpose of this study was to characterize the 3-dimensional (3D) precision of fit between impression coping and implant replica pairs for 3 implant systems. The selected implant systems represent the 3 main joint types used in implant dentistry: external hexagonal, internal trilobe, and internal conical. Ten impression copings and 10 implant replicas from each of the 3 systems, B (Brånemark System), R (NobelReplace Select), and A (NobelActive) were paired. A standardized aluminum test body was luted to each impression coping, and the corresponding implant replica was embedded in a stone base. A coordinate measuring machine was used to quantify the maximum range of displacement in a vertical direction as a function of the tightening force applied to the guide pin. Maximum angular displacement in a horizontal plane was measured as a function of manual clockwise or counterclockwise rotation. Vertical and rotational positioning was analyzed by using 1-way analysis of variance (ANOVA). The Fisher protected least significant difference (PLSD) multiple comparisons test of the means was applied when the F-test in the ANOVA was significant (α=.05). The mean and standard deviation for change in the vertical positioning of impression copings was 4.3 ±2.1 μm for implant system B, 2.8 ±4.2 μm for implant system R, and 20.6 ±8.8 μm for implant system A. The mean and standard deviation for rotational positioning was 3.21 ±0.98 degrees for system B, 2.58 ±1.03 degrees for system R, and 5.30 ±0.79 degrees for system A. The P-value for vertical positioning between groups A and B and between groups A and R was <.001. No significant differences were found for
Wu, Tingting; Fan, Hongyi; Ma, Ruiyang; Chen, Hongyu; Li, Zhi; Yu, Haiyang
2017-06-01
Biomechanical factors play a key role in the success of dental implants. Fracture and loosening of abutment screws are major issues. This study investigated the effect of lubricants on the stability of dental implant-abutment connection. As lubricants, graphite and vaseline were coated on the abutment screw surface, respectively, and a blank without lubricant served as the control. The total friction coefficient (μ tot ), clamping force, fatigue behavior and detorque of the joint combined with dynamic cyclic loading were measured under different lubricating conditions. Further, a three-dimensional finite element analysis was used to investigate stress distribution, in conjunction with experimental images. The results showed that the lubricant reduced μ tot , which in turn led to an increase in clamping force. Decrease in loading increased the fatigue life of the screw. However, use of lubricant at high load reduced the fatigue life. Ductile fracture at the first thread of the screw was the chief failure mode, which was due to maximum von Mises stress. Higher stress levels occurred in the lubricant groups. Lubricated screws resulted in lower detorque which made the joint easier to loosen. In conclusion, the lubricant cannot effectively improve the reliability of dental implant-abutment connection. Keeping the interfaces of implant-screw uncontaminated and strengthening the surface of the screw may be recommend for clinical operation and future design. Copyright © 2016 Elsevier B.V. All rights reserved.
2011-01-01
Background Femoral offset influences the forces at the hip and the implant stresses after revision THR. For extended bone defects, these forces may cause considerable bending moments within the implant, possibly leading to implant failure. This study investigates the influences of femoral anteversion and offset on stresses in the Wagner SL revision stem implant under varying extents of bone defect conditions. Methods Wagner SL revision stems with standard (34 mm) and increased offset (44 mm) were virtually implanted in a model femur with bone defects of variable extent (Paprosky I to IIIb). Variations in surgical technique were simulated by implanting the stems each at 4° or 14° of anteversion. Muscle and joint contact forces were applied to the reconstruction and implant stresses were determined using finite element analyses. Results Whilst increasing the implant's offset by 10 mm led to increased implant stresses (16.7% in peak tensile stresses), altering anteversion played a lesser role (5%). Generally, larger stresses were observed with reduced bone support: implant stresses increased by as much as 59% for a type IIIb defect. With increased offset, the maximum tensile stress was 225 MPa. Conclusion Although increased stresses were observed within the stem with larger offset and increased anteversion, these findings indicate that restoration of offset, key to restoring joint function, is unlikely to result in excessive implant stresses under routine activities if appropriate fixation can be achieved. PMID:21569522
MacBarb, Regina F; Lindsey, Derek P; Woods, Shane A; Lalor, Peggy A; Gundanna, Mukund I; Yerby, Scott A
2017-01-01
Minimally invasive surgical fusion of the sacroiliac (SI) joint using machined solid triangular titanium plasma spray (TPS) coated implants has demonstrated positive clinical outcomes in SI joint pain patients. Additive manufactured (AM), i.e. 3D-printed, fenestrated triangular titanium implants with porous surfaces and bioactive agents, such as nanocrystalline hydroxyapatite (HA) or autograft, may further optimize bony fixation and subsequent biomechanical stability. A bilateral ovine distal femoral defect model was used to evaluate the cancellous bone-implant interfaces of TPS-coated and AM implants. Four implant groups (n=6/group/time-point) were included: 1)TPS-coated, 2)AM, 3)AM+HA, and 4)AM+Autograft. The bone-implant interfaces of 6- and 12-week specimens were investigated via radiographic, biomechanical, and histomorphometric methods. Imaging showed peri-implant bone formation around all implants. Push-out testing demonstrated forces greater than 2500 N, with no significant differences among groups. While TPS implants failed primarily at the bone-implant interface, AM groups failed within bone ~2-3mm away from implant surfaces. All implants exhibited bone ongrowth, with no significant differences among groups. AM implants had significantly more bone ingrowth into their porous surfaces than TPS-coated implants ( p <0.0001). Of the three AM groups, AM+Auto implants had the greatest bone ingrowth into the porous surface and through their core ( p <0.002). Both TPS and AM implants exhibited substantial bone ongrowth and ingrowth, with additional bone through growth into the AM implants' core. Overall, AM implants experienced significantly more bone infiltration compared to TPS implants. While HA-coating did not further enhance results, the addition of autograft fostered greater osteointegration for AM implants. Additive manufactured implants with a porous surface provide a highly interconnected porous surface that has comparatively greater surface area for bony
Farina, Ana Paula; Spazzin, Aloísio Oro; Consani, Rafael Leonardo Xediek; Mesquita, Marcelo Ferraz
2014-06-01
Screws can loosen through mechanisms that have not been clearly established. The purpose of this study was to evaluate the influence of the tightening technique (the application of torque and retorque on the joint stability of titanium and gold prosthetic screws) in implant-supported dentures under different fit levels after 1 year of simulated masticatory function by means of mechanical cycling. Ten mandibular implant-supported dentures were fabricated, and 20 cast models were prepared by using the dentures to create 2 fit levels: passive fit and created misfit. The tightening protocol was evaluated according to 4 distinct profiles: without retorque plus titanium screws, without retorque plus gold screws, retorque plus titanium screws, and retorque plus gold screws. In the retorque application, the screws were tightened to 10 Ncm and retightened to 10 Ncm after 10 minutes. The screw joint stability after 1 year of simulated clinical function was measured with a digital torque meter. Data were analyzed statistically by 2-way ANOVA and Tukey honestly significant difference (HSD) post hoc tests (α=.05). The factors of fit level and tightening technique as well as the interaction between the factors, were statistically significant. The misfit decreases the loosening torque. The retorque application increased joint stability independent of fit level or screw material, which suggests that this procedure should be performed routinely during the tightening of these devices. All tightening techniques revealed reduced loosening torque values that were significantly lower in misfit dentures than in passive fit dentures. However, the retorque application significantly increased the loosening torque when titanium and gold screws were used. Therefore, this procedure should be performed routinely during screw tightening. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Lindsey, Derek P.; Woods, Shane A.; Lalor, Peggy A.; Gundanna, Mukund I.; Yerby, Scott A.
2017-01-01
Background Minimally invasive surgical fusion of the sacroiliac (SI) joint using machined solid triangular titanium plasma spray (TPS) coated implants has demonstrated positive clinical outcomes in SI joint pain patients. Additive manufactured (AM), i.e. 3D-printed, fenestrated triangular titanium implants with porous surfaces and bioactive agents, such as nanocrystalline hydroxyapatite (HA) or autograft, may further optimize bony fixation and subsequent biomechanical stability. Methods A bilateral ovine distal femoral defect model was used to evaluate the cancellous bone-implant interfaces of TPS-coated and AM implants. Four implant groups (n=6/group/time-point) were included: 1)TPS-coated, 2)AM, 3)AM+HA, and 4)AM+Autograft. The bone-implant interfaces of 6- and 12-week specimens were investigated via radiographic, biomechanical, and histomorphometric methods. Results Imaging showed peri-implant bone formation around all implants. Push-out testing demonstrated forces greater than 2500 N, with no significant differences among groups. While TPS implants failed primarily at the bone-implant interface, AM groups failed within bone ~2-3mm away from implant surfaces. All implants exhibited bone ongrowth, with no significant differences among groups. AM implants had significantly more bone ingrowth into their porous surfaces than TPS-coated implants (p<0.0001). Of the three AM groups, AM+Auto implants had the greatest bone ingrowth into the porous surface and through their core (p<0.002). Conclusions Both TPS and AM implants exhibited substantial bone ongrowth and ingrowth, with additional bone through growth into the AM implants’ core. Overall, AM implants experienced significantly more bone infiltration compared to TPS implants. While HA-coating did not further enhance results, the addition of autograft fostered greater osteointegration for AM implants. Clinical Relevance Additive manufactured implants with a porous surface provide a highly interconnected porous
Kutzner, Ines; Dymke, Jörn; Damm, Philipp; Duda, Georg N.; Günzl, Reiner; Bergmann, Georg
2017-01-01
Aquatic exercises are widely used for rehabilitation or preventive therapies in order to enable mobilization and muscle strengthening while minimizing joint loading of the lower limb. The load reducing effect of water due to buoyancy is a main advantage compared to exercises on land. However, also drag forces have to be considered that act opposite to the relative motion of the body segments and require higher muscle activity. Due to these opposing effects on joint loading, the load-reducing effect during aquatic exercises remains unknown. The aim of this study was to quantify the joint loads during various aquatic exercises and to determine the load reducing effect of water. Instrumented knee and hip implants with telemetric data transfer were used to measure the resultant joint contact forces in 12 elderly subjects (6x hip, 6x knee) in vivo. Different dynamic, weight-bearing and non-weight-bearing activities were performed by the subjects on land and in chest-high water. Non-weight-bearing hip and knee flexion/extension was performed at different velocities and with additional Aquafins. Joint forces during aquatic exercises ranged between 32 and 396% body weight (BW). Highest forces occurred during dynamic activities, followed by weight-bearing and slow non-weight-bearing activities. Compared to the same activities on land, joint forces were reduced by 36–55% in water with absolute reductions being greater than 100%BW during weight-bearing and dynamic activities. During non-weight-bearing activities, high movement velocities and additional Aquafins increased the joint forces by up to 59% and resulted in joint forces of up to 301%BW. This study confirms the load reducing effect of water during weight-bearing and dynamic exercises. Nevertheless, high drag forces result in increased joint contact forces and indicate greater muscle activity. By the choice of activity, movement velocity and additional resistive devices joint forces can be modulated individually in
Kutzner, Ines; Richter, Anja; Gordt, Katharina; Dymke, Jörn; Damm, Philipp; Duda, Georg N; Günzl, Reiner; Bergmann, Georg
2017-01-01
Aquatic exercises are widely used for rehabilitation or preventive therapies in order to enable mobilization and muscle strengthening while minimizing joint loading of the lower limb. The load reducing effect of water due to buoyancy is a main advantage compared to exercises on land. However, also drag forces have to be considered that act opposite to the relative motion of the body segments and require higher muscle activity. Due to these opposing effects on joint loading, the load-reducing effect during aquatic exercises remains unknown. The aim of this study was to quantify the joint loads during various aquatic exercises and to determine the load reducing effect of water. Instrumented knee and hip implants with telemetric data transfer were used to measure the resultant joint contact forces in 12 elderly subjects (6x hip, 6x knee) in vivo. Different dynamic, weight-bearing and non-weight-bearing activities were performed by the subjects on land and in chest-high water. Non-weight-bearing hip and knee flexion/extension was performed at different velocities and with additional Aquafins. Joint forces during aquatic exercises ranged between 32 and 396% body weight (BW). Highest forces occurred during dynamic activities, followed by weight-bearing and slow non-weight-bearing activities. Compared to the same activities on land, joint forces were reduced by 36-55% in water with absolute reductions being greater than 100%BW during weight-bearing and dynamic activities. During non-weight-bearing activities, high movement velocities and additional Aquafins increased the joint forces by up to 59% and resulted in joint forces of up to 301%BW. This study confirms the load reducing effect of water during weight-bearing and dynamic exercises. Nevertheless, high drag forces result in increased joint contact forces and indicate greater muscle activity. By the choice of activity, movement velocity and additional resistive devices joint forces can be modulated individually in the
Gibon, Emmanuel; Córdova, Luis A; Lu, Laura; Lin, Tzu-Hua; Yao, Zhenyu; Hamadouche, Moussa; Goodman, Stuart B
2017-08-01
Novel evidence-based prosthetic designs and biomaterials facilitate the performance of highly successful joint replacement (JR) procedures. To achieve this goal, constructs must be durable, biomechanically sound, and avoid adverse local tissue reactions. Different biomaterials such as metals and their alloys, polymers, ceramics, and composites are currently used for JR implants. This review focuses on (1) the biological response to the different biomaterials used for TJR and (2) the chronic inflammatory and foreign-body response induced by byproducts of these biomaterials. A homeostatic state of bone and surrounding soft tissue with current biomaterials for JR can be achieved with mechanically stable, infection free and intact (as opposed to the release of particulate or ionic byproducts) implants. Adverse local tissue reactions (an acute/chronic inflammatory reaction, periprosthetic osteolysis, loosening and subsequent mechanical failure) may evolve when the latter conditions are not met. This article (Part 2 of 2) summarizes the biological response to the non-metallic materials commonly used for joint replacement including polyethylene, ceramics, and polymethylmethacrylate (PMMA), as well as the foreign body reaction to byproducts of these materials. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1685-1691, 2017. © 2016 Wiley Periodicals, Inc.
Sacroiliac joint involvement in systemic sclerosis.
Arslan Tas, Didem; Yıldız, Fatih; Sakallı, Hakan; Kelle, Bayram; Ballı, Tuğsan; Erken, Eren
2015-01-01
One of the major problems for systemic sclerosis (SSc) patients is suggested to be articular involvement. Mostly involved joints in SSc were reported as wrist, carpometacarpal-interphalangeal, foot, knee, hip and shoulder; however, there has been little knowledge on the sacroiliac joint. Our aim was to evaluate sacroiliac joint involvement in SSc. Fifty-seven SSc patients, 54 rheumatoid arthritis patients and 64 healthy subjects were included. Anteroposterior pelvic radiographs were obtained and graded twice by three blinded rheumatologists. One competent radiologist has re-evaluated the X-ray results. The ASAS (Assessment of Spondylo Arthritis International Society) scoring method was applied for grading sacroiliac involvement. Inflammatory back pain was also evaluated. Other clinical and laboratory data were collected as proposed by the European Study Group. In the SSc group sacroiliitis was found in 13 patients (23%) and was significantly different from RA patients (two patients, 4%), P = 0.003; and the healthy control group (one participant, 2%), P < 0.001. The frequency of inflammatory back pain in SSc patients with sacroiliitis (8/13 patients, 62%) was significantly higher in SSc patients without sacroiliitis (4/44 patients, 9%), P < 0.001. The SSc patients with sacroiliitis and with inflammatory back pain (8/57 patients, 14%) were regarded as axial spondyloarthritis overlap. Male gender, diffuse subtype, inflammatory back pain and high C-reactive protein levels (odds ratio: 1.069, 1.059, 1.059 and 3.698, respectively) were found to be the significant risk factors for sacroiliitis. We suggest that, sacroiliitis may be a concern to be considered in SSc practice. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.
MR Imaging of Knee Arthroplasty Implants
Fritz, Jan; Lurie, Brett
2015-01-01
Primary total knee arthroplasty is a highly effective treatment that relieves pain and improves joint function in a large percentage of patients. Despite an initially satisfactory surgical outcome, pain, dysfunction, and implant failure can occur over time. Identifying the etiology of complications is vital for appropriate management and proper timing of revision. Due to the increasing number of knee arthroplasties performed and decreasing patient age at implantation, there is a demand for accurate diagnosis to determine appropriate treatment of symptomatic joints following knee arthroplasty, and for monitoring of patients at risk. Magnetic resonance (MR) imaging allows for comprehensive imaging evaluation of the tissues surrounding knee arthroplasty implants with metallic components, including the polyethylene components. Optimized conventional and advanced pulse sequences can result in substantial metallic artifact reduction and afford improved visualization of bone, implant-tissue interfaces, and periprosthetic soft tissue for the diagnosis of arthroplasty-related complications. In this review article, we discuss strategies for MR imaging around knee arthroplasty implants and illustrate the imaging appearances of common modes of failure, including aseptic loosening, polyethylene wear–induced synovitis and osteolysis, periprosthetic joint infections, fracture, patellar clunk syndrome, recurrent hemarthrosis, arthrofibrosis, component malalignment, extensor mechanism injury, and instability. A systematic approach is provided for evaluation of MR imaging of knee implants. MR imaging with optimized conventional pulse sequences and advanced metal artifact reduction techniques can contribute important information for diagnosis, prognosis, risk stratification, and surgical planning. ©RSNA, 2015 PMID:26295591
Hartigan, B J; Stern, P J; Kiefhaber, T R
2001-10-01
There has been considerable controversy regarding the procedure of choice for treatment of any given stage of osteoarthritis of the thumb carpometacarpal joint. This study was designed to directly compare the clinical results of two common surgical procedures for this condition, trapeziometacarpal arthrodesis and trapezial excision with ligament reconstruction and tendon interposition, in similar patient populations. Between 1988 and 1998, 109 patients (141 thumbs) who were less than sixty years old were treated with one of the two procedures. In a retrospective review, forty-two patients (fifty-eight thumbs) treated with arthrodesis completed an outcome questionnaire and twenty-nine patients (forty-four thumbs) treated with arthrodesis completed the questionnaire and were examined. In the group treated with trapezial excision with ligament reconstruction and tendon interposition, thirty-nine patients (forty-nine thumbs) completed the questionnaire and thirty patients (thirty-eight thumbs) completed the questionnaire and were examined. The average duration of follow-up was sixty-nine months. The groups were similar with regard to age, gender, hand dominance, and duration of follow-up. Subjective evaluation of pain, function, and satisfaction demonstrated no significant difference between the two groups, with >90% of patients satisfied following either procedure. Although grip strength did not differ between the groups, the arthrodesis group had significantly stronger lateral pinch (p < 0.001) and chuck pinch (p < 0.01). The group treated with ligament reconstruction and tendon interposition had a better range of motion with regard to opposition (p < 0.05) and the ability to flatten the hand (p < 0.0001). There was a higher complication rate in the arthrodesis group, with nonunion of the fusion site accounting for the majority of the complications. However, despite a persistent nonunion in six thumbs, those thumbs and the thumbs in which union was obtained did not
Utility of Intraoperative Neuromonitoring during Minimally Invasive Fusion of the Sacroiliac Joint.
Woods, Michael; Birkholz, Denise; MacBarb, Regina; Capobianco, Robyn; Woods, Adam
2014-01-01
Study Design. Retrospective case series. Objective. To document the clinical utility of intraoperative neuromonitoring during minimally invasive surgical sacroiliac joint fusion for patients diagnosed with sacroiliac joint dysfunction (as a direct result of sacroiliac joint disruptions or degenerative sacroiliitis) and determine stimulated electromyography thresholds reflective of favorable implant position. Summary of Background Data. Intraoperative neuromonitoring is a well-accepted adjunct to minimally invasive pedicle screw placement. The utility of intraoperative neuromonitoring during minimally invasive surgical sacroiliac joint fusion using a series of triangular, titanium porous plasma coated implants has not been evaluated. Methods. A medical chart review of consecutive patients treated with minimally invasive surgical sacroiliac joint fusion was undertaken at a single center. Baseline patient demographics and medical history, intraoperative electromyography thresholds, and perioperative adverse events were collected after obtaining IRB approval. Results. 111 implants were placed in 37 patients. Sensitivity of EMG was 80% and specificity was 97%. Intraoperative neuromonitoring potentially avoided neurologic sequelae as a result of improper positioning in 7% of implants. Conclusions. The results of this study suggest that intraoperative neuromonitoring may be a useful adjunct to minimally invasive surgical sacroiliac joint fusion in avoiding nerve injury during implant placement.
Critical bending moment of four implant-abutment interface designs.
Lee, Frank K; Tan, Keson B; Nicholls, Jack I
2010-01-01
Critical bending moment (CBM), defined as the bending moment at which the external nonaxial load applied overcomes screw joint preload and causes loss of contact between the mating surfaces of the implant screw joint components, was measured for four different implants and their single-tooth replacement abutments. CBM at the implant-abutment screw joint for four implant-abutment test groups was measured in vitro at 80%, 100%, and 120% of the manufacturers' recommended torque levels. Regular-platform implants with their corresponding single-tooth abutments were used. Microstrain was measured while known loads were applied to the abutment at known distances from the implant-abutment interface. Strain instrumentation was used to record the strain data dynamically to determine the point of gap opening. All torque applications and strain measurements were repeated five times for the five samples in each group. For the Branemark/CeraOne assemblies, the mean CBMs were 72.14 Ncm, 102.21 Ncm, and 119.13 Ncm, respectively, at 80%, 100%, and 120% of the manufacturer's recommended torque. For the Replace/Easy assemblies, mean CBMs were 86.20 Ncm, 109.92 Ncm, and 120.93 Ncm; for the Biomet 3i/STA assemblies, they were 67.97 Ncm, 83.14 Ncm, and 91.81 Ncm; and for the Lifecore/COC assemblies, they were 58.32 Ncm, 76.79 Ncm, and 78.93 Ncm. Two-way analysis of variance revealed significant effects for the test groups and torque levels. Subsequent tests confirmed that significant differences existed between test groups and torque levels. The results appear to confirm the primary role of the compressive preload imparted by the abutment screw in maintaining screw joint integrity. CBM was found to differ among implant systems and torque levels. Torque levels recommended by the manufacturer should be followed to ensure screw joint integrity.
The Future of Biologic Coatings for Orthopaedic Implants
Goodman, Stuart B.; Yao, Zhenyu; Keeney, Michael; Yang, Fan
2013-01-01
Implants are widely used for othopaedic applications such as fixing fractures, repairing nonunions, obtaining a joint arthrodesis, total joint arthroplasty, spinal reconstruction, and soft tissue anchorage. Previously, orthopaedic implants were designed simply as mechanical devices; the biological aspects of the implant were a byproduct of stable internal/external fixation of the device to the surrounding bone or soft tissue. More recently, biologic coatings have been incorporated into orthopaedic implants in order to modulate the surrounding biological environment. This opinion article reviews current and potential future use of biologic coatings for orthopaedic implants to facilitate osseointegration and mitigate possible adverse tissue responses including the foreign body reaction and implant infection. While many of these coatings are still in the preclinical testing stage, bioengineers, material scientists and surgeons continue to explore surface coatings as a means of improving clinical outcome of patients undergoing orthopaedic surgery. PMID:23391496
Sabah, S A; Henckel, J; Koutsouris, S; Rajani, R; Hothi, H; Skinner, J A; Hart, A J
2016-01-01
The National Joint Registry for England, Wales and Northern Ireland (NJR) has extended its scope to report on hospital, surgeon and implant performance. Data linkage of the NJR to the London Implant Retrieval Centre (LIRC) has previously evaluated data quality for hip primary procedures, but did not assess revision records. We analysed metal-on-metal hip revision procedures performed between 2003 and 2013. A total of 69 929 revision procedures from the NJR and 929 revised pairs of components from the LIRC were included. We were able to link 716 (77.1%) revision procedures on the NJR to the LIRC. This meant that 213 (22.9%) revision procedures at the LIRC could not be identified on the NJR. We found that 349 (37.6%) explants at the LIRC completed the full linkage process to both NJR primary and revision databases. Data completion was excellent (> 99.9%) for revision procedures reported to the NJR. This study has shown that only approximately one third of retrieved components at the LIRC, contributed to survival curves on the NJR. We recommend prospective registry-retrieval linkage as a tool to feedback missing and erroneous data to the NJR and improve data quality. Prospective Registry - retrieval linkage is a simple tool to evaluate and improve data quality on the NJR. ©2016 Sabah et al.
Hip Implant Modified To Increase Probability Of Retention
NASA Technical Reports Server (NTRS)
Canabal, Francisco, III
1995-01-01
Modification in design of hip implant proposed to increase likelihood of retention of implant in femur after hip-repair surgery. Decreases likelihood of patient distress and expense associated with repetition of surgery after failed implant procedure. Intended to provide more favorable flow of cement used to bind implant in proximal extreme end of femur, reducing structural flaws causing early failure of implant/femur joint.
Ackland, David; Robinson, Dale; Lee, Peter Vee Sin; Dimitroulis, George
2018-05-11
Stock prosthetic temporomandibular joint replacements come in limited sizes, and do not always encompass the joint anatomy that presents clinically. The aims of this study were twofold. Firstly, to design a personalized prosthetic total joint replacement for the treatment of a patient's end-stage temporomandibular joint osteoarthritis, to implant the prosthesis into the patient, and assess clinical outcome 12-months post-operatively; and secondly, to evaluate the influence of changes in prosthetic condyle geometry on implant load response during mastication. A 48-year-old female patient with Grade-5 osteoarthritis to the left temporomandibular joint was recruited, and a prosthesis developed to match the native temporomandibular joint anatomy. The prosthesis was 3D printed, sterilized and implanted into the patient, and pain and function measured 12-months post-operatively. The prosthesis load response during a chewing-bite and maximum-force bite was evaluated using a personalized multi-body musculoskeletal model. Simulations were performed after perturbing condyle thickness, neck length and head sphericity. Increases in prosthetic condyle neck length malaligned the mandible and perturbed temporomandibular joint force. Changes in condylar component thickness greatly influenced fixation screw stress response, while a more eccentric condylar head increased prosthetic joint-contact loading. Post-operatively, the prosthetic temporomandibular joint surgery reduced patient pain from 7/10 to 1/10 on a visual analog scale, and increased intercisal opening distance from 22 mm to 38 mm. This study demonstrates effectiveness of a personalized prosthesis that may ultimately be adapted to treat a wide-range of end-stage temporomandibular joint conditions, and highlights sensitivity of prosthesis load response to changes in condylar geometry. Copyright © 2018 Elsevier Ltd. All rights reserved.
Rodríguez-Pardo, D; Pigrau, C; Lora-Tamayo, J; Soriano, A; del Toro, M D; Cobo, J; Palomino, J; Euba, G; Riera, M; Sánchez-Somolinos, M; Benito, N; Fernández-Sampedro, M; Sorli, L; Guio, L; Iribarren, J A; Baraia-Etxaburu, J M; Ramos, A; Bahamonde, A; Flores-Sánchez, X; Corona, P S; Ariza, J
2014-11-01
We aim to evaluate the epidemiology and outcome of gram-negative prosthetic joint infection (GN-PJI) treated with debridement, antibiotics and implant retention (DAIR), identify factors predictive of failure, and determine the impact of ciprofloxacin use on prognosis. We performed a retrospective, multicentre, observational study of GN-PJI diagnosed from 2003 through to 2010 in 16 Spanish hospitals. We define failure as persistence or reappearance of the inflammatory joint signs during follow-up, leading to unplanned surgery or repeat debridement>30 days from the index surgery related death, or suppressive antimicrobial therapy. Parameters predicting failure were analysed with a Cox regression model. A total of 242 patients (33% men; median age 76 years, interquartile range (IQR) 68-81) with 242 episodes of GN-PJI were studied. The implants included 150 (62%) hip, 85 (35%) knee, five (2%) shoulder and two (1%) elbow prostheses. There were 189 (78%) acute infections. Causative microorganisms were Enterobacteriaceae in 78%, Pseudomonas spp. in 20%, and other gram-negative bacilli in 2%. Overall, 19% of isolates were ciprofloxacin resistant. DAIR was used in 174 (72%) cases, with an overall success rate of 68%, which increased to 79% after a median of 25 months' follow-up in ciprofloxacin-susceptible GN-PJIs treated with ciprofloxacin. Ciprofloxacin treatment exhibited an independent protective effect (adjusted hazard ratio (aHR) 0.23; 95% CI, 0.13-0.40; p<0.001), whereas chronic renal impairment predicted failure (aHR, 2.56; 95% CI, 1.14-5.77; p 0.0232). Our results confirm a 79% success rate in ciprofloxacin-susceptible GN-PJI treated with debridement, ciprofloxacin and implant retention. New therapeutic strategies are needed for ciprofloxacin-resistant PJI. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.
Outcome Assessment after Aptis Distal Radioulnar Joint (DRUJ) Implant Arthroplasty
Kachooei, Amir Reza; Chase, Samantha M; Jupiter, Jesse B
2014-01-01
Background: Conventional treatments after complicated injuries of the distal radioulnar joint (DRUJ) such as Darrach and Kapandji-Sauvé procedures have many drawbacks, which may eventually lead to a painful unstable distal ulna. The development of DRUJ prosthesis has significantly evolved over the past years. In this study, we assessed the outcome results of patients after DRUJ implant arthroplasty using the Aptis (Scheker) prosthesis. Methods: We identified 13 patients with 14 prosthesis during the past 10 years. Patients underwent DRUJ arthroplasty due to persistent symptoms of instability, chronic pain, and stiffness. Records and follow-up visits were reviewed to find the final post-operative symptoms, pain, range of motion, and grip strength with a mean follow-up of 12 months (range: 2-25 months). Also, patients were contacted prospectively by phone in order to administer the disabilities of the arm shoulder and hand (DASH), patient rated wrist evaluation (PRWE), and visual analogue scale (VAS), and to interview regarding satisfaction and progress in daily activities. Eleven patients out of 13 could be reached with a median follow-up time of 60 months (range: 2 to 102 months). Results: No patient required removal of the prosthesis. Only two patients underwent secondary surgeries in which both required debridement of the screw tip over the radius. The median DASH score, PRWE score, VAS, and satisfaction were 1.3, 2.5, 0, and 10, respectively. The mean range of flexion, extension, supination, and pronation was 62, 54, 51, and 64, respectively. Conclusions: Distal radioulnar joint injuries are disabling and patients usually undergo one or more salvage surgeries prior to receiving an arthroplasty. The Scheker prosthesis has shown satisfactory results with 100% survival rate in all reports. The constrained design of this prosthesis gives enough stability to prevent painful subluxation. PMID:25386579
Yamanishi, Yasufumi; Yamaguchi, Satoshi; Imazato, Satoshi; Nakano, Tamaki; Yatani, Hirofumi
2014-09-01
Occlusal overloading causes peri-implant bone resorption. Previous studies examined stress distribution in alveolar bone around commercial implants using three-dimensional (3D) finite element analysis. However, the commercial implants contained some different designs. The purpose of this study is to reveal the effect of the target design on peri-implant bone stress and abutment micromovement. Six 3D implant models were created for different implant-abutment joints: 1) internal joint model (IM); 2) external joint model (EM); 3) straight abutment (SA) shape; 4) tapered abutment (TA) shapes; 5) platform switching (PS) in the IM; and 6) modified TA neck design (reverse conical neck [RN]). A static load of 100 N was applied to the basal ridge surface of the abutment at a 45-degree oblique angle to the long axis of the implant. Both stress distribution in peri-implant bone and abutment micromovement in the SA and TA models were analyzed. Compressive stress concentrated on labial cortical bone and tensile stress on the palatal side in the EM and on the labial side in the IM. There was no difference in maximum principal stress distribution for SA and TA models. Tensile stress concentration was not apparent on labial cortical bone in the PS model (versus IM). Maximum principal stress concentrated more on peri-implant bone in the RN than in the TA model. The TA model exhibited less abutment micromovement than the SA model. This study reveals the effects of the design of specific components on peri-implant bone stress and abutment displacement after implant-supported single restoration in the anterior maxilla.
Morse taper dental implants and platform switching: The new paradigm in oral implantology
Macedo, José Paulo; Pereira, Jorge; Vahey, Brendan R.; Henriques, Bruno; Benfatti, Cesar A. M.; Magini, Ricardo S.; López-López, José; Souza, Júlio C. M.
2016-01-01
The aim of this study was to conduct a literature review on the potential benefits with the use of Morse taper dental implant connections associated with small diameter platform switching abutments. A Medline bibliographical search (from 1961 to 2014) was carried out. The following search items were explored: “Bone loss and platform switching,” “bone loss and implant-abutment joint,” “bone resorption and platform switching,” “bone resorption and implant-abutment joint,” “Morse taper and platform switching.” “Morse taper and implant-abutment joint,” Morse taper and bone resorption,” “crestal bone remodeling and implant-abutment joint,” “crestal bone remodeling and platform switching.” The selection criteria used for the article were: meta-analysis; randomized controlled trials; prospective cohort studies; as well as reviews written in English, Portuguese, or Spanish languages. Within the 287 studies identified, 81 relevant and recent studies were selected. Results indicated a reduced occurrence of peri-implantitis and bone loss at the abutment/implant level associated with Morse taper implants and a reduced-diameter platform switching abutment. Extrapolation of data from previous studies indicates that Morse taper connections associated with platform switching have shown less inflammation and possible bone loss with the peri-implant soft tissues. However, more long-term studies are needed to confirm these trends. PMID:27011755
Physicochemical and microscopic characterization of implant–abutment joints
Lopes, Patricia A.; Carreiro, Adriana F. P.; Nascimento, Rubens M.; Vahey, Brendan R.; Henriques, Bruno; Souza, Júlio C. M.
2018-01-01
Objective: The purpose of this study was to investigate Morse taper implant–abutment joints by chemical, mechanical, and microscopic analysis. Materials and Methods: Surfaces of 10 Morse taper implants and the correlated abutments were inspected by field emission gun-scanning electron microscopy (FEG-SEM) before connection. The implant–abutment connections were tightened at 32 Ncm. For microgap evaluation by FEG-SEM, the systems were embedded in epoxy resin and cross-sectioned at a perpendicular plane of the implant–abutment joint. Furthermore, nanoindentation tests and chemical analysis were performed at the implant–abutment joints. Statistics: Results were statistically analyzed via one-way analysis of variance, with a significance level of P < 0.05. Results: Defects were noticed on different areas of the abutment surfaces. The minimum and maximum size of microgaps ranged from 0.5 μm up to 5.6 μm. Furthermore, defects were detected throughout the implant–abutment joint that can, ultimately, affect the microgap size after connection. Nanoindentation tests revealed a higher hardness (4.2 ± 0.4 GPa) for abutment composed of Ti6Al4V alloy when compared to implant composed of commercially pure Grade 4 titanium (3.2 ± 0.4 GPa). Conclusions: Surface defects produced during the machining of both implants and abutments can increase the size of microgaps and promote a misfit of implant–abutment joints. In addition, the mismatch in mechanical properties between abutment and implant can promote the wear of surfaces, affecting the size of microgaps and consequently the performance of the joints during mastication. PMID:29657532
Tiihonen, Raine P; Skyttä, Eerik T; Kaarela, Kalevi; Ikävalko, Mikko; Belt, Eero A
2012-04-01
Interposition arthroplasty with bioreplaceable poly-L-D-lactic acid (PLDLA) implants has yielded promising results in reconstruction of rheumatoid hands. In this prospective clinical study we compared the PLDLA implant arthroplasty (n = 17) with that of tendon interposition (n = 12) for destruction of the trapeziometacarpal joint in arthritic patients. There was no significant difference between the two groups preoperatively. At one-year follow-up, the mean pain and function scores were 5 and 13 in the PLDLA group, and 19 and 43 in the tendon interposition group, respectively. At one-year follow-up the visual analogue scale (VAS) for function of the PLDLA group differed significantly from that of the tendon interposition group (p = 0.03). This difference was not found at three months postoperatively, and disappeared again at two-year follow-up. Otherwise, no significant difference was found between the groups in the pain or function scores, functional tests, or range of movement. Bioreplaceable interposition arthroplasty works at least as well as tendon interposition. The operation is easier.
Mehl, Christian; Gassling, Volker; Schultz-Langerhans, Stephan; Açil, Yahya; Bähr, Telse; Wiltfang, Jörg; Kern, Matthias
The main aim of this study was to evaluate the influence of four different abutment materials and the adhesive joint of two-piece abutments on the cervical implant bone and soft tissue. Sixty-four titanium implants (Camlog Conelog; 4.3 ± 9 mm) were placed bone level into the edentulous arches of four minipigs. Four different types of abutments were placed at implant exposure: zirconium dioxide, lithium disilicate, and titanium bonded to a titanium luting base with resin cement; one-piece titanium abutments served as the control. The animals were sacrificed 6 months after implant exposure, and the bone-to-implant contact (BIC) area, sulcus depth, the length of the junctional epithelium and the connective tissue, the biologic width, and first cervical BIC-implant shoulder distance were measured using histomorphometry and light and fluorescence microscopy. Overall, 14 implants were lost (22%). At exposure, the implant shoulder-bone distance was 0.6 ± 0.7 mm. Six months later, the bone loss was 2.1 ± 1.2 mm measured histomorphometrically. There was a significant difference between the two measurements (P ≤ .0001). No significant influence could be found between any of the abutment materials with regard to bone loss or soft tissue anatomy (P > .05), with the exception of zirconium dioxide and onepiece titanium abutments when measuring the length of the junctional epithelium (P ≤ .01). The maxilla provided significantly more soft tissue and less bone loss compared with the mandible (P ≤ .02). All tested abutment materials and techniques seem to be comparable with regard to soft tissue properties and the cervical bone level.
Nelson, Amanda E.; Elstad, Emily; DeVellis, Robert F.; Schwartz, Todd A.; Golightly, Yvonne M.; Renner, Jordan B.; Conaghan, Philip G.; Kraus, Virginia B.; Jordan, Joanne M.
2013-01-01
Purpose To determine associations between multiple joint symptoms and radiographic osteoarthritis (rOA) and functional outcomes. Methods Complete cross-sectional data for multi-joint symptoms and radiographs, Health Assessment Questionnaire (HAQ) scores, and gait speed were available for 1307 Johnston County Osteoarthritis Project participants (34% men, 32% African American, mean age 66 years). Factor analysis of symptom scores and radiographic grades for the lumbosacral spine, bilateral hands, knees, and hips provided composite scores. Regression models were used to determine associations between composite scores, HAQ, and gait speed, adjusting for age, body mass index, gender, and race. Results Five rOA factors were identified: 1) IP/CMC factor (carpometacarpal [CMC] and all interphalangeal [IP] joints); 2) MCP factor (metacarpophalangeal joints 2–5); 3) Knee factor (tibiofemoral and patellofemoral joints); 4) Spine factor (L1/2 to L5/S1); and 5) Symptom factor. After adjustment, only the Symptom composite was significantly associated with HAQ and gait speed; a 1-standard deviation increase in Symptom score was associated with 9 times higher odds of having poorer function on the HAQ (odds ratio 9.32, 95% confidence interval [CI] 6.80, 12.77), and a clinically significant decline in gait speed (0.06 m/s, 95%CI −0.07, −0.05). Conclusions A novel Symptom composite score was associated with poorer functional outcomes. PMID:23639066
Dimitroulis, G; Slavin, J; Morrison, W
2011-02-01
The histological fate of abdominal dermis-fat grafts implanted into the temporomandibular joint (TMJ) following condylectomy was studied. 21 rabbits underwent left TMJ discectomies and condylectomies; 6 were controls (Group A; no graft used); 15 (Group B) had autogenous abdominal grafts transplanted into the left TMJ. Animals were killed after 4, 12 and 20 weeks. Specimens of the TMJ were histologically and histomorphometrically evaluated. At 4 weeks, fat necrosis was clear in all specimens. The dermis component survived and formed cysts with no necrosis. By 12 weeks, viable fat deposits appeared with no evidence of necrotic fat. At 20 weeks, large amounts of viable fat were present in Group B specimens. Group A had no fat, although the missing condyles regenerated. In the presence of viable fat, Group B showed little condyle regeneration 20 weeks after condylectomy. Non-vascularised fat grafts do not survive transplantation, but stimulate neoadipogenesis. The fate of the dermis component of the graft is independent of the fat component. Fat in the joint space disrupts the regeneration of a new condylar head. Neoadipogensis inhibits growth of new bone and cartilage. This has clinical implications for TMJ ankylosis management and preventing heterotopic bone formation around prosthetic joints. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
Antibacterial Surface Treatment for Orthopaedic Implants
Gallo, Jiri; Holinka, Martin; Moucha, Calin S.
2014-01-01
It is expected that the projected increased usage of implantable devices in medicine will result in a natural rise in the number of infections related to these cases. Some patients are unable to autonomously prevent formation of biofilm on implant surfaces. Suppression of the local peri-implant immune response is an important contributory factor. Substantial avascular scar tissue encountered during revision joint replacement surgery places these cases at an especially high risk of periprosthetic joint infection. A critical pathogenic event in the process of biofilm formation is bacterial adhesion. Prevention of biomaterial-associated infections should be concurrently focused on at least two targets: inhibition of biofilm formation and minimizing local immune response suppression. Current knowledge of antimicrobial surface treatments suitable for prevention of prosthetic joint infection is reviewed. Several surface treatment modalities have been proposed. Minimizing bacterial adhesion, biofilm formation inhibition, and bactericidal approaches are discussed. The ultimate anti-infective surface should be “smart” and responsive to even the lowest bacterial load. While research in this field is promising, there appears to be a great discrepancy between proposed and clinically implemented strategies, and there is urgent need for translational science focusing on this topic. PMID:25116685
[Minimally invasive approaches to hip and knee joints for total joint replacement].
Rittmeister, M; König, D P; Eysel, P; Kerschbaumer, F
2004-11-01
The manuscript features the different minimally invasive approaches to the hip for joint replacement. These include medial, anterior, anterolateral, and posterior approaches. The concept of minimally invasive hip arthroplasty makes sense if it is an integral part of a larger concept to lower postoperative morbidity. Besides minimal soft tissue trauma, this concept involves preoperative patient education, preemptive analgesia, and postoperative physiotherapy. It is our belief that minimal incision techniques for the hip are not suited for all patients and all surgeons. The different minimally invasive approaches to the knee joint for implantation of a knee arthroplasty are described and discussed. There have been no studies published yet that fulfill EBM criteria. The data so far show that minimally invasive approaches and implantation techniques for total knee replacements lead to quicker rehabilitation of patients.
Natural polyphenols enhance stability of crosslinked UHMWPE for joint implants.
Shen, Jie; Gao, Guorong; Liu, Xincai; Fu, Jun
2015-03-01
Radiation-crosslinked UHMWPE has been used for joint implants since the 1990s. Postirradiation remelting enhances oxidative stability, but with some loss in strength and toughness. Vitamin E-stabilized crosslinked UHMWPE has shown improved strength and stability as compared with irradiated and remelted UHMWPE. With more active phenolic hydroxyl groups, natural polyphenols are widely used in the food and pharmaceutical industries as potent stabilizers and could be useful for oxidative stability in crosslinked UHMWPE. We asked whether UHMWPE blended with polyphenols would (1) show higher oxidation resistance after radiation crosslinking; (2) preserve the mechanical properties of UHMWPE after accelerated aging; and (3) alter the wear resistance of radiation-crosslinked UHMWPE. The polyphenols, gallic acid and dodecyl gallate, were blended with medical-grade UHMWPE followed by consolidation and electron beam irradiation at 100 kGy. Radiation-crosslinked virgin and vitamin E-blended UHMWPEs were used as reference materials. The UHMWPEs were aged at 120 °C in air with oxidation levels analyzed by infrared spectroscopy. Tensile (n = 5 per group) and impact (n = 3 per group) properties before and after aging as per ASTM F2003 were evaluated. The wear rates were examined by pin-on-disc testing (n = 3 per group). The data were reported as mean ± SDs. Statistical analysis was performed by using Student's t-test for a two-tailed distribution with unequal variance for tensile and impact data obtained with n ≥ 3. A significant difference is defined with p < 0.05. The oxidation induction time of 100 kGy UHMWPE was prolonged to 144 hours with 0.05 wt% dodecyl gallate and 192 hours with 0.05 wt% gallic acid compared with 48 hours for 0.05 wt% vitamin E-blended UHMWPE. Accelerated aging of these polyphenol-blended UHMWPEs resulted in ultimate tensile strength of 50.4 ± 1.4 MPa and impact strength of 53 ± 5 kJ/m(2) for 100 kGy-irradiated UHMWPE with 0.05 wt% dodecyl gallate
Adams, Julie E; O'Brien, Virginia; Magnusson, Erik; Rosenstein, Benjamin; Nuckley, David J
2018-01-01
Therapy programs to treat thumb carpometacarpal (CMC) arthritis may engage selective activation and reeducation of thenar muscles, particularly the first dorsal interosseous (FDI) and opponens pollicis (OP) to reduce subluxation of the joint. We describe the effect of simulated selective activation of the FDI and OP muscles upon radiographic subluxation of the thumb CMC joint. In a cadaver model of CMC subluxation, loads were applied to the FDI, the OP, and then concomitantly at 0%, 25%, 50%, 75%, and 100% maximal loads and radial subluxation of the joint and reduction in subluxation was measured. Selective activation of the OP, alone, improved the subluxation ratio (SR) in a dose-dependent manner. Selective activation of FDI, alone, demonstrated minimal effects on SR. Concomitant activation of OP and FDI improved the SR across all loading states, and activation of 75% and greater, when compared with FDI activation alone, resulted in a statistically significant improvement in SR to within 10% of the presubluxed joint. Concomitant activation of the FDI and OP acts to reduce subluxation of the thumb CMC joint in a dose-dependent fashion. The OP is likely the predominant reducing force. Hand therapy programs that focus on selective strengthening programs likely function in part to encourage patients to activate the easily palpable and easily understood FDI. Concomitant coactivation of the OP may be the major reducing force to elicit clinical and radiographic reduction of subluxation, improved thumb positioning, and reduction of pain and arthritic symptoms.
Polly, David W.; Wine, Kathryn D.; Whang, Peter G.; Frank, Clay J.; Harvey, Charles F.; Lockstadt, Harry; Glaser, John A.; Limoni, Robert P.; Sembrano, Jonathan N.
2015-01-01
BACKGROUND: Sacroiliac joint (SIJ) dysfunction is a prevalent cause of chronic, unremitting lower back pain. OBJECTIVE: To concurrently compare outcomes after surgical and nonsurgical treatment for chronic SIJ dysfunction. METHODS: A total of 148 subjects with SIJ dysfunction were randomly assigned to minimally invasive SIJ fusion with triangular titanium implants (n = 102) or nonsurgical management (n = 46). Pain, disability, and quality-of-life scores were collected at baseline and at 1, 3, 6, and 12 months. Success rates were compared using Bayesian methods. Crossover from nonsurgical to surgical care was allowed after the 6-month study visit was complete. RESULTS: Six-month success rates were higher in the surgical group (81.4% vs 26.1%; posterior probability of superiority > 0.9999). Clinically important (≥ 15 point) Oswestry Disability Index improvement at 6 months occurred in 73.3% of the SIJ fusion group vs 13.6% of the nonsurgical management group (P < .001). At 12 months, improvements in SIJ pain and Oswestry Disability Index were sustained in the surgical group. Subjects who crossed over had improvements in pain, disability, and quality of life similar to those in the original surgical group. Adverse events were slightly more common in the surgical group (1.3 vs 1.1 events per subject; P = .31). CONCLUSION: This Level 1 study showed that minimally invasive SIJ fusion using triangular titanium implants was more effective than nonsurgical management at 1 year in relieving pain, improving function, and improving quality of life in patients with SIJ dysfunction caused by degenerative sacroiliitis or SIJ disruptions. Pain, disability, and quality of life also improved after crossover from nonsurgical to surgical treatment. ABBREVIATIONS: EQ-5D, EuroQoL-5D INSITE, Investigation of Sacroiliac Fusion Treatment MCS, mental component summary NSM, nonsurgical management ODI, Oswestry Disability Index PCS, physical component summary RFA, radiofrequency ablation SF
Superelastic Orthopedic Implant Coatings
NASA Astrophysics Data System (ADS)
Fournier, Eric; Devaney, Robert; Palmer, Matthew; Kramer, Joshua; El Khaja, Ragheb; Fonte, Matthew
2014-07-01
The demand for hip and knee replacement surgery is substantial and growing. Unfortunately, most joint replacement surgeries will fail within 10-25 years, thereby requiring an arduous, painful, and expensive revision surgery. To address this issue, a novel orthopedic implant coating material ("eXalt") has been developed. eXalt is comprised of super elastic nitinol wire that is knit into a three-dimensional spacer fabric structure. eXalt expands in vivo to conform to the implantation site and is porous to allow for bone ingrowth. The safety and efficacy of eXalt were evaluated through structural analysis, mechanical testing, and a rabbit implantation model. The results demonstrate that eXalt meets or exceeds the performance of current coating technologies with reduced micromotion, improved osseointegration, and stronger implant fixation in vivo.
Current practice patterns in conservative thumb CMC joint care: survey results.
O'Brien, Virginia H; McGaha, Jamie L
2014-01-01
Cross-sectional descriptive survey Best practice for conservative clinical care pathways is not well outlined in the literature for patients with thumb carpometacarpal joint (CMCJ) pain. This self-report survey investigated the current practice patterns of assessments and conservative interventions for the painful thumb CMCJ among hand therapists. An online survey was distributed to members of the American Society of Hand Therapists (ASHT). Questions were included about evaluation measures and intervention techniques used for this population. A descriptive analysis was completed of the results. A total of 23.5% of the ASHT membership responded to the survey. Results were categorized using the International Classification of Functioning and Disability domains as a framework. The survey results report varying use of evaluation measures, therapeutic interventions, including orthotic fabrication, joint protection and patient education all therapeutic interventional techniques, and modalities. Therapists use a comprehensive array of evaluation measures and interventions for body functions and structures in the care of thumb CMC pain. In contrast, more consistent use is needed of psychometrically-sound functional outcome measures that show change in activities and participation. This survey highlights areas to employ current evidence, as well as, future research should address environmental factors and personal factors for this population Not applicable. Copyright © 2014 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
Thumb arthritis Overview Thumb arthritis is common with aging, and occurs when cartilage wears away from the ends of the bones that form your thumb ... also known as the carpometacarpal (CMC) joint. Thumb arthritis can cause severe pain, swelling, and decreased strength ...
Sensate Scaffolds Can Reliably Detect Joint Loading
Bliss, C. L.; Szivek, J. A.; Tellis, B. C.; Margolis, D. S.; Schnepp, A. B.; Ruth, J. T.
2008-01-01
Treatment of cartilage defects is essential to the prevention of osteoarthritis. Scaffold-based cartilage tissue engineering shows promise as a viable technique to treat focal defects. Added functionality can be achieved by incorporating strain gauges into scaffolds, thereby providing a real-time diagnostic measurement of joint loading. Strain-gauged scaffolds were placed into the medial femoral condyles of 14 adult canine knees and benchtop tested. Loads between 75 and 130 N were applied to the stifle joints at 30°, 50°, and 70° of flexion. Strain-gauged scaffolds were able to reliably assess joint loading at all applied flexion angles and loads. Pressure sensitive films were used to determine joint surface pressures during loading and to assess the effect of scaffold placement on joint pressures. A comparison of peak pressures in control knees and joints with implanted scaffolds, as well as a comparison of pressures before and after scaffold placement, showed that strain-gauged scaffold implantation did not significantly alter joint pressures. Future studies could possibly use strain-gauged scaffolds to clinically establish normal joint loads and to determine loads that are damaging to both healthy and tissue-engineered cartilage. Strain-gauged scaffolds may significantly aid the development of a functional engineered cartilage tissue substitute as well as provide insight into the native environment of cartilage. PMID:16941586
Colen, Sascha; Haverkamp, Daniel; Mulier, Michiel; van den Bekerom, Michel P J
2012-04-01
The use of intra-articular hyaluronic acid (HA) is a well known treatment in patients with knee osteoarthritis (OA). In other joints, less evidence is available about the efficacy of treatment with intra-articular HA. HA is also used intra-articularly in the metatarsophalangeal-1 joint, the ankle, the hip, the sacroiliac joint, the facet joints, the carpometacarpal-1 joint, the shoulder and the temporo-mandibular joint. In this systematic review we include all prospective studies about the effects of intra-articular HA in the above-mentioned joints. Its use in the knee joint, however, will be discussed in a separate article in this journal. A systematic review was conducted using databases including MEDLINE, Cochrane Database of Systematic Reviews, Cochrane Clinical Trial Register, and EMBASE. After performing a solid systematic review using a rigid methodology and trying to pool the outcomes of different studies, we noticed that, compared with baseline, there is statistical evidence for a positive effect of intra-articular HA. However, there is limited evidence HA is superior to placebo and no evidence that intra-articular HA is better than corticosteroids or other conservative therapies. Our recommendation for future research is that one should focus on adequately powered randomized trials comparing HA treatment with other types of intra-articular or conservative treatment. We think it is useless to further perform and publish (large) non-comparative prospective studies about the use of HA in the treatment of problems caused by OA. It is well perceived that HA exerts positive effects in the treatment of OA, but up to now there is no (strong) evidence available that HA is superior to other treatments of OA such as corticosteroids, physiotherapy or other conservative measures.
[Design and application of implantable medical device information management system].
Cao, Shaoping; Yin, Chunguang; Zhao, Zhenying
2013-03-01
Through the establishment of implantable medical device information management system, with the aid of the regional joint sharing of resources, we further enhance the implantable medical device traceability management level, strengthen quality management, control of medical risk.
Glazebrook, Mark; Younger, Alastair S E; Daniels, Timothy R; Singh, Dishan; Blundell, Chris; de Vries, Gwyneth; Le, Ian L D; Nielsen, Dominic; Pedersen, M Elizabeth; Sakellariou, Anthony; Solan, Matthew; Wansbrough, Guy; Baumhauer, Judith F
2017-05-29
First metatarsophalangeal joint (MTPJ1) hemiarthroplasty using a novel synthetic cartilage implant was as effective and safe as MTPJ1 arthrodesis in a randomized clinical trial. We retrospectively evaluated operative time and recovery period for implant hemiarthroplasty (n=152) and MTPJ1 arthrodesis (n=50). Perioperative data were assessed for operative and anaesthesia times. Recovery and return to function were prospectively assessed with the Foot and Ankle Ability Measure (FAAM) Sports and Activities of Daily Living (ADL) subscales and SF-36 Physical Functioning (PF) subscore. Mean operative time for hemiarthroplasty was 35±12.3min and 58±21.5min for arthrodesis (p<0.001). Anaesthesia duration was 28min shorter with hemiarthroplasty (p<0.001). At weeks 2 and 6 postoperative, hemiarthroplasty patients demonstrated clinically and statistically significantly higher FAAM Sport, FAAM ADL, and SF-36 PF subscores versus arthrodesis patients. MTPJ1 hemiarthroplasty with a synthetic cartilage implant took less operative time and resulted in faster recovery than arthrodesis. III, Retrospective case control study. Copyright © 2017 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.
Enhancement of healing in osteochondral defects by collagen sponge implants.
Speer, D P; Chvapil, M; Volz, R G; Holmes, M D
1979-10-01
Implants of porous, highly cross-linked collagen sponge (CS) were tested for their capacity to enhance the healing of osteochondral defects in rabbits. Comparison was made to the healing of similar defects with polyvinyl alcohol sponge (PVAS) implants and with no implants (CONT). Evaluation was carried out up to 44 weeks following implantation and included observation of host cellular response, biodegradability of implant, gross appearance of restored joint surface, collagenous architecture of repair tissue, and properties of the junctions of implants and host articular cartilage, subchondral bone, and medullary bone. Collagen sponge proved most effective in promoting healing of osteochondral defects with fibrous and fibrocartilaginous tissue over restored subchondral bone. Collagen sponge showed many desirable properties as a potential material for biologic resurfacing of damaged joints. These properties included porosity, biodegradability, biocompatability, ability to mechanically protect cells and matrix while directing cell ingrowth, and an available chemical technology for modifying its biomechanical and biological properties. Comparative analysis of results of healing of CS, PVAS, and CONT osteochondral defects suggest rational design criteria for implant materials to improve their effectiveness in restoration of articular surfaces.
Arthritis of the thumb and digits: current concepts.
Bernstein, Richard A
2015-01-01
Osteoarthritis of the hand continues to be a problem in an aging population and affects the proximal and distal interphalangeal, metacarpophalangeal, and carpometacarpal joints in the hands. Heberden nodes develop in the distal interphalangeal joints and typically present as a deformed and enlarged joint and can cause pain. Surgery rarely is necessary because functional difficulties are uncommon; however, there may be problems if the metacarpophalangeal and proximal interphalangeal joints are involved because cartilage destruction generates pain and causes weakness and motion loss. Implant arthroplasty typically can improve pain but does not reliably improve range of motion, and complication and revision rates are substantial. Arthrodesis continues as a treatment for digital osteoarthritis, but the surgeon must balance the risks of complications with the benefits of improved patient outcomes. The opposable thumb, which is critical for hand dexterity and strength, can be severely disabled by basal joint arthritis. The complex architecture of the basal joint continues to be defined by its relationship to the surrounding bony and ligamentous anatomy and its effect on the trapeziometacarpal joint. Nonsurgical treatment may be beneficial, but surgical options, including arthroscopy, osteotomy, and arthroplasty, should be considered if nonsurgical management fails. Prosthetic arthroplasty has a historically poor record; therefore, trapeziectomy remains the hallmark of current reconstructive techniques. Ligament reconstruction and tendon interposition arthroplasty are the most commonly performed surgical procedures, but hematoma distraction arthroplasty and various methods of suspensionplasty also are currently used.
Multidisciplinary approach for in-deep assessment of joint prosthesis failure.
Tessarolo, F; Caola, I; Piccoli, F; Dorigotti, P; Demattè, E; Molinari, M; Malavolta, M; Barbareschi, M; Caciagli, P; Nollo, G
2009-01-01
In spite of advancement in biomaterials and biomechanics, in development of new osteo-integrative materials and coatings, and in macro- micro- component design, a non negligible fraction of the implanted prosthesis fails before the expected lifetime. A prospective observational clinical study has been conducted to define and apply a set of experimental techniques to in-deep assess the failure of joint prosthesis. Microbiological, histological and micro-structural techniques were implemented to specifically address phenomena occurring at the tissue-implant interface. Results obtained from 27 cases of prosthetic joint failure are discussed in terms of sensitivity and specificity. A procedural flow-chart is finally proposed for the assessment of joint prosthesis failure.
Micolini, Carolina; Holness, Frederick Benjamin; Johnson, James A.
2017-01-01
Load transfer through orthopaedic joint implants is poorly understood. The longer-term outcomes of these implants are just starting to be studied, making it imperative to monitor contact loads across the entire joint implant interface to elucidate the force transmission and distribution mechanisms exhibited by these implants in service. This study proposes and demonstrates the design, implementation, and characterization of a 3D-printed smart polymer sensor array using conductive polyaniline (PANI) structures embedded within a polymeric parent phase. The piezoresistive characteristics of PANI were investigated to characterize the sensing behaviour inherent to these embedded pressure sensor arrays, including the experimental determination of the stable response of PANI to continuous loading, stability throughout the course of loading and unloading cycles, and finally sensor repeatability and linearity in response to incremental loading cycles. This specially developed multi-material additive manufacturing process for PANI is shown be an attractive approach for the fabrication of implant components having embedded smart-polymer sensors, which could ultimately be employed for the measurement and analysis of joint loads in orthopaedic implants for in vitro testing. PMID:29186079
Scarano, Antonio; Valbonetti, Luca; Degidi, Marco; Pecci, Raffaella; Piattelli, Adriano; de Oliveira, P S; Perrotti, Vittoria
2016-10-01
The presence of a microgap between implant and abutment could produce a bacterial reservoir which could interfere with the long-term health of the periimplant tissues. The aim of this article was to evaluate, by x-ray 3-dimensional microtomography, implant-abutment contact surfaces and microgaps at the implant-abutment interface in different types of implant-abutment connections. A total of 40 implants were used in this in vitro study. Ten implants presented a screw-retained internal hexagon abutment (group I), 10 had a Morse Cone taper internal connection (group II), 10 another type of Morse Cone taper internal connection (group III), and 10 had a screwed trilobed connection (group IV). In both types of Morse Cone internal connections, there was no detectable separation at the implant-abutment in the area of the conical connection, and there was an absolute congruity without any microgaps between abutment and implant. No line was visible separating the implant and the abutment. On the contrary, in the screwed abutment implants, numerous gaps and voids were present. The results of this study support the hypothesis that different types of implant-abutment joints are responsible for the observed differences in bacterial penetration.
Bornemann, Rahel; Roessler, Philip P; Strauss, Andreas C; Sander, Kirsten; Rommelspacher, Yorck; Wirtz, Dieter C; Pflugmacher, Robert; Frey, Sönke P
2017-01-01
Sacroiliac joint (SIJ) syndrome can cause various symptoms and may also be one reason for persistent low back pain, especially in patients with prior spinal fusions. If conservative treatments fail to improve symptoms, arthrodesis surgery can be considered. Minimally invasive approaches have emerged recently providing a good alternative to conventional methods. A novel triangular implant system (iFuse) can achieve an arthrodesis of the SIJ without the use of additional screws or bone material. Aim of the present study was an evaluation of short-term safety and efficacy of the implant system. Twenty-four patients were included in the study and treated with the iFuse system. In addition to demographic data, pain intensity (visual analogue scale) and functional impairment (Oswestry-disability index) were assessed prior to surgery and 1 month, 3 months, 6 months, 12 months and 24 months thereafter. During surgery and the follow up period all adverse events were documented and the correct implant position was controlled via plain radiographs. VAS scores and ODI improved significantly directly after surgery from 84.3 ± 9.2 mm to 40.7 ± 9.2 mm and from 76.8 ± 9.2% to 40.7 ± 9.2 % (p < 0.001). The ODI improved further to 31 ± 5.4% after 24 months whereas the VAS improved until the 3 months examination and ten stayed constant between 27.7 mm and 26.5 mm to 27 ± 6.6 mm at 24 months. No adverse events, intraoperative complications, implant malpositioning or loosening could be recorded at any time. The iFuse system is an effective and safe treatment for minimally invasive surgical arthrodesis of the SIJ. Pain and functional impairment can be significantly improved. However, in addition to this case series, further controlled studies are necessary, particularly in terms of a previous spinal fusion history.
Atrey, A; Heylen, S; Gosling, O; Porteous, M J L; Haddad, F S
2016-07-01
Joint replacement of the hip and knee remain very satisfactory operations. They are, however, expensive. The actual manufacturing of the implant represents only 30% of the final cost, while sales and marketing represent 40%. Recently, the patents on many well established and successful implants have expired. Companies have started producing and distributing implants that purport to replicate existing implants with good long-term results. The aims of this paper are to assess the legality, the monitoring and cost saving implications of such generic implants. We also assess how this might affect the traditional orthopaedic implant companies. Cite this article: Bone Joint J 2016;98-B:892-900. ©2016 The British Editorial Society of Bone & Joint Surgery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, W.R.
1999-04-22
The project was a joint research effort between the U. S. Department of Energy's (DOE) Kansas City Plant (KCP) and Brandon Research, Inc. to develop ways to improve implants used for orthopedic surgery for joint replacement. The primary product produced by this study is design information, which may be used to develop implants that will improve long-term fixation and durability in the host bone environment.
Warganich, Tibor; Shin, Alexander Y
2017-06-01
Scaphotrapezoid (ST) arthritis is a common source of pain and disability that typically presents with concomitant basilar thumb arthritis. ST arthritis is often under recognized and under diagnosed as a source of continued pain after successful basilar thumb arthroplasty. Untreated, symptomatic ST arthritis can cause failure of an otherwise successfully executed thumb carpometacarpal arthroplasty due to persistent pain, which is frustrating to the patient and surgeon. Although multiple surgical treatment options have been described for basilar thumb carpometacarpal joint arthritis, there is no gold standard for the treatment of ST arthritis. We describe a surgical technique with a minimal trapezoid excision and interpositional arthroplasty using an acellular allograft secured with a suture anchor in the capitate.
21 CFR 888.3800 - Wrist joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Wrist joint metal/polymer semi-constrained... Wrist joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. A wrist joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace a wrist joint...
21 CFR 888.3800 - Wrist joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Wrist joint metal/polymer semi-constrained... Wrist joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. A wrist joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace a wrist joint...
21 CFR 888.3800 - Wrist joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Wrist joint metal/polymer semi-constrained... Wrist joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. A wrist joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace a wrist joint...
21 CFR 888.3800 - Wrist joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Wrist joint metal/polymer semi-constrained... Wrist joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. A wrist joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace a wrist joint...
21 CFR 888.3800 - Wrist joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Wrist joint metal/polymer semi-constrained... Wrist joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. A wrist joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace a wrist joint...
Goldberg, Andy; Singh, Dishan; Glazebrook, Mark; Blundell, Chris M; De Vries, Gwyneth; Le, Ian L D; Nielsen, Dominic; Pedersen, M Elizabeth; Sakellariou, Anthony; Solan, Matthew; Younger, Alastair S E; Daniels, Timothy R; Baumhauer, Judith F
2017-11-01
We evaluated data from a clinical trial of first metatarsophalangeal joint (MTPJ1) implant hemiarthroplasty and arthrodesis to determine the association between patient factors and clinical outcomes. Patients ≥18 years with hallux rigidus grade 2, 3, or 4 were treated with synthetic cartilage implant MTPJ1 hemiarthroplasty or arthrodesis. Pain visual analog scale (VAS), Foot and Ankle Ability Measure (FAAM) sports and activities of daily living (ADL) scores, and Short Form-36 Physical Function (SF-36 PF) subscore were obtained preoperatively, and at 2, 6, 12, 24, 52, and 104 weeks postoperatively. Final outcome data, great toe active dorsiflexion motion, secondary procedures, radiographs, and safety parameters were evaluated for 129 implant hemiarthroplasties and 47 arthrodeses. The composite primary endpoint criteria for clinical success included VAS pain reduction ≥30%, maintenance/improvement in function, no radiographic complications, and no secondary surgical intervention at 24 months. Predictor variables included hallux rigidus grade; gender; age; body mass index (BMI); symptom duration; prior MTPJ1 surgery; preoperative hallux valgus angle, range of motion (ROM), and pain. Two-sided Fisher exact test was used ( P < .05). Patient demographics and baseline outcome measures were similar. Success rates between implant MTPJ1 hemiarthroplasty and arthrodesis were similar ( P > .05) when stratified by hallux rigidus grade, gender, age, BMI, symptom duration, prior MTPJ1 surgery status, and preoperative VAS pain, hallux valgus, and ROM. Synthetic cartilage implant hemiarthroplasty was appropriate for patients with grade 2, 3, or 4 hallux rigidus. Its results in those with associated mild hallux valgus (≤20 degrees) or substantial preoperative stiffness were equivalent to MTPJ1 fusion, irrespective of gender, age, BMI, hallux rigidus grade, preoperative pain or symptom duration. Level II, randomized clinical trial.
Biomechanical and functional variation in rat sciatic nerve following cuff electrode implantation
2014-01-01
Background Nerve cuff electrodes are commonly and successfully used for stimulating peripheral nerves. On the other hand, they occasionally induce functional and morphological changes following chronic implantation, for reasons not always clear. We hypothesize that restriction of nerve mobility due to cuff implantation may alter nerve conduction. Methods We quantified acute changes in nerve-muscle electrophysiology, using electromyography, and nerve kinematics in anesthetized Sprague Dawley rat sciatic nerves during controlled hindlimb joint movement. We compared electrophysiological and biomechanical response in uncuffed nerves and those secured within a cuff electrode using analysis of variance (ANOVA) and regression analysis. Results Tethering resulting from cuff implantation resulted in altered nerve strain and a complex biomechanical environment during joint movement. Coincident with biomechanical changes, electromyography revealed significantly increased variability in the response of conduction latency and amplitude in cuffed, but not free, nerves following joint movement. Conclusion Our findings emphasize the importance of the mechanical interface between peripheral nerves and their devices on neurophysiological performance. This work has implications for nerve device design, implantation, and prediction of long-term efficacy. PMID:24758405
Bioactive Coatings for Orthopaedic Implants—Recent Trends in Development of Implant Coatings
Zhang, Bill G. X.; Myers, Damian E.; Wallace, Gordon G.; Brandt, Milan; Choong, Peter F. M.
2014-01-01
Joint replacement is a major orthopaedic procedure used to treat joint osteoarthritis. Aseptic loosening and infection are the two most significant causes of prosthetic implant failure. The ideal implant should be able to promote osteointegration, deter bacterial adhesion and minimize prosthetic infection. Recent developments in material science and cell biology have seen the development of new orthopaedic implant coatings to address these issues. Coatings consisting of bioceramics, extracellular matrix proteins, biological peptides or growth factors impart bioactivity and biocompatibility to the metallic surface of conventional orthopaedic prosthesis that promote bone ingrowth and differentiation of stem cells into osteoblasts leading to enhanced osteointegration of the implant. Furthermore, coatings such as silver, nitric oxide, antibiotics, antiseptics and antimicrobial peptides with anti-microbial properties have also been developed, which show promise in reducing bacterial adhesion and prosthetic infections. This review summarizes some of the recent developments in coatings for orthopaedic implants. PMID:25000263
Biotribology of artificial hip joints
Di Puccio, Francesca; Mattei, Lorenza
2015-01-01
Hip arthroplasty can be considered one of the major successes of orthopedic surgery, with more than 350000 replacements performed every year in the United States with a constantly increasing rate. The main limitations to the lifespan of these devices are due to tribological aspects, in particular the wear of mating surfaces, which implies a loss of matter and modification of surface geometry. However, wear is a complex phenomenon, also involving lubrication and friction. The present paper deals with the tribological performance of hip implants and is organized in to three main sections. Firstly, the basic elements of tribology are presented, from contact mechanics of ball-in-socket joints to ultra high molecular weight polyethylene wear laws. Some fundamental equations are also reported, with the aim of providing the reader with some simple tools for tribological investigations. In the second section, the focus moves to artificial hip joints, defining materials and geometrical properties and discussing their friction, lubrication and wear characteristics. In particular, the features of different couplings, from metal-on-plastic to metal-on-metal and ceramic-on-ceramic, are discussed as well as the role of the head radius and clearance. How friction, lubrication and wear are interconnected and most of all how they are specific for each loading and kinematic condition is highlighted. Thus, the significant differences in patients and their lifestyles account for the high dispersion of clinical data. Furthermore, such consideration has raised a new discussion on the most suitable in vitro tests for hip implants as simplified gait cycles can be too far from effective implant working conditions. In the third section, the trends of hip implants in the years from 2003 to 2012 provided by the National Joint Registry of England, Wales and Northern Ireland are summarized and commented on in a discussion. PMID:25621213
Miller, Larry E; Block, Jon E
2014-01-01
Chronic sacroiliac (SI) joint-related low back pain (LBP) is a common, yet under-diagnosed and undertreated condition due to difficulties in accurate diagnosis and highly variable treatment practices. In patients with debilitating SI-related LBP for at least 6 months duration who have failed conservative management, arthrodesis is a viable option. The SImmetry(®) SI Joint Fusion System is a novel therapy for SI joint fusion, not just fixation, which utilizes a minimally invasive surgical approach, instrumented fixation for immediate stability, and joint preparation with bone grafting for a secure construct in the long term. The purpose of this report is to describe the minimally invasive SI Joint Fusion System, including patient selection criteria, implant characteristics, surgical technique, postoperative recovery, and biomechanical testing results. Advantages and limitations of this system will be discussed.
Darr, Emily; Meyer, S Craig; Whang, Peter G; Kovalsky, Don; Frank, Clay; Lockstadt, Harry; Limoni, Robert; Redmond, Andy; Ploska, Philip; Oh, Michael Y; Cher, Daniel; Chowdhary, Abhineet
2018-01-01
Minimally invasive sacroiliac joint fusion (SIJF) has become an increasingly accepted surgical option for chronic sacroiliac (SI) joint dysfunction, a prevalent cause of unremitting low back/buttock pain. The objective of this study was to report clinical and functional outcomes of SIJF using triangular titanium implants (TTI) in the treatment of chronic SI joint dysfunction due to degenerative sacroiliitis or sacroiliac joint (SIJ) disruption at 3 years postoperatively. A total of 103 subjects with SIJ dysfunction at 12 centers were treated with TTI in two prospective clinical trials (NCT01640353 and NCT01681004) and enrolled in this long-term follow-up study (NCT02270203). Subjects were evaluated in study clinics at study start and again at 3, 4, and 5 years. Mean (SD) preoperative SIJ pain score was 81.5, and mean preoperative Oswestry Disability Index (ODI) was 56.3. At 3 years, mean pain SIJ pain score decreased to 26.2 (a 55-point improvement from baseline, p <0.0001). At 3 years, mean ODI was 28.2 (a 28-point improvement from baseline, p <0.0001). In all, 82% of subjects were very satisfied with the procedure at 3 years. EuroQol-5D (EQ-5D) time trade-off index improved by 0.30 points ( p <0.0001). No adverse events definitely related to the study device or procedure were reported; one subject underwent revision surgery at year 3.7. SIJ pain contralateral to the originally treated side occurred in 15 subjects of whom four underwent contralateral SIJF. The proportion of subjects who were employed outside the home full- or part-time at 3 years decreased somewhat from baseline ( p =0.1814), and the proportion of subjects who would have the procedure again was lower at 3 years compared to earlier time points. In long-term (3-year) follow-up, minimally invasive trans-iliac SIJF with TTI was associated with improved pain, disability, and quality of life with relatively high satisfaction rates. Level II. SIJF with TTI.
Darr, Emily; Meyer, S Craig; Whang, Peter G; Kovalsky, Don; Frank, Clay; Lockstadt, Harry; Limoni, Robert; Redmond, Andy; Ploska, Philip; Oh, Michael Y; Cher, Daniel; Chowdhary, Abhineet
2018-01-01
Background Minimally invasive sacroiliac joint fusion (SIJF) has become an increasingly accepted surgical option for chronic sacroiliac (SI) joint dysfunction, a prevalent cause of unremitting low back/buttock pain. Objective The objective of this study was to report clinical and functional outcomes of SIJF using triangular titanium implants (TTI) in the treatment of chronic SI joint dysfunction due to degenerative sacroiliitis or sacroiliac joint (SIJ) disruption at 3 years postoperatively. Methods A total of 103 subjects with SIJ dysfunction at 12 centers were treated with TTI in two prospective clinical trials (NCT01640353 and NCT01681004) and enrolled in this long-term follow-up study (NCT02270203). Subjects were evaluated in study clinics at study start and again at 3, 4, and 5 years. Results Mean (SD) preoperative SIJ pain score was 81.5, and mean preoperative Oswestry Disability Index (ODI) was 56.3. At 3 years, mean pain SIJ pain score decreased to 26.2 (a 55-point improvement from baseline, p<0.0001). At 3 years, mean ODI was 28.2 (a 28-point improvement from baseline, p<0.0001). In all, 82% of subjects were very satisfied with the procedure at 3 years. EuroQol-5D (EQ-5D) time trade-off index improved by 0.30 points (p<0.0001). No adverse events definitely related to the study device or procedure were reported; one subject underwent revision surgery at year 3.7. SIJ pain contralateral to the originally treated side occurred in 15 subjects of whom four underwent contralateral SIJF. The proportion of subjects who were employed outside the home full- or part-time at 3 years decreased somewhat from baseline (p=0.1814), and the proportion of subjects who would have the procedure again was lower at 3 years compared to earlier time points. Conclusion In long-term (3-year) follow-up, minimally invasive trans-iliac SIJF with TTI was associated with improved pain, disability, and quality of life with relatively high satisfaction rates. Level of evidence Level II
[Juvenile rheumatoid diseases: Endoprosthetic care of destroyed hip joints].
Rehart, S; Henniger, M
2015-07-01
Patients with juvenile idiopathic arthritis (JIA) often suffer from involvement of the hip joints, with joint destruction and related functional limitations, making hip replacement necessary. To discover what special features are to be expected in patients with JIA and hip arthroplasty and what impact they have on surgical indication, choice of implant, and technique. Selective literature review and evaluation of our patient population. Compared with osteoarthritis patients, JIA patients are on average much younger at the time of hip replacement. Owing to the onset of the disease in childhood or adolescence and the frequent glucocorticoid therapy, growth disorders or abnormal anatomical findings are common in these patients. Bone density is often reduced at an early age. The perioperative management of medication has to be planned. Special implants for patients with rheumatic diseases do not exist, but the above peculiarities of this group of patients should be considered for surgical procedure and choice of implant and material. Overall, the results of hip arthroplasty in juvenile rheumatic diseases, in terms of pain relief and functional improvement, are good. The limited life of the arthroplasty is problematic. By relieving pain, improvement of the range of motion and activity level very high patient satisfaction is usually achieved by hip arthroplasty in JIA patients. In the case of involvement of the contralateral hip or the ipsilateral knee joint it may be useful to perform a simultaneous, single-stage joint replacement of both joints.
[The development of research in tribology of artificial joints].
Dai, Zhendong; Gong, Juanqing
2006-06-01
Aseptic loosening of the prosthesis is a major form for the failure of artificial joints, which results in the conglomeration of wear particles at the bone-implant interface. This paper briefly reviews the recent development of tribology of artificial joints preserving good lubrication, enhancing the wear resistance of materials for the joints, reducing the generation of sensitive-size particles and depressing the debris-tissue reactions. Suggestion for improvement in the design of artificial joints is presented.
High-Tech Hip Implant for Wireless Temperature Measurements In Vivo
Bergmann, Georg; Graichen, Friedmar; Dymke, Jörn; Rohlmann, Antonius; Duda, Georg N.; Damm, Philipp
2012-01-01
When walking long distances, hip prostheses heat up due to friction. The influence of articulating materials and lubricating properties of synovia on the final temperatures, as well as any potential biological consequences, are unknown. Such knowledge is essential for optimizing implant materials, identifying patients who are possibly at risk of implant loosening, and proving the concepts of current joint simulators. An instrumented hip implant with telemetric data transfer was developed to measure the implant temperatures in vivo. A clinical study with 100 patients is planned to measure the implant temperatures for different combinations of head and cup materials during walking. This study will answer the question of whether patients with synovia with poor lubricating properties may be at risk for thermally induced bone necrosis and subsequent implant failure. The study will also deliver the different friction properties of various implant materials and prove the significance of wear simulator tests. A clinically successful titanium hip endoprosthesis was modified to house the electronics inside its hollow neck. The electronics are powered by an external induction coil fixed around the joint. A temperature sensor inside the implant triggers a timer circuit, which produces an inductive pulse train with temperature-dependent intervals. This signal is detected by a giant magnetoresistive sensor fixed near the external energy coil. The implant temperature is measured with an accuracy of 0.1°C in a range between 20°C and 58°C and at a sampling rate of 2–10 Hz. This rate could be considerably increased for measuring other data, such as implant strain or vibration. The employed technique of transmitting data from inside of a closed titanium implant by low frequency magnetic pulses eliminates the need to use an electrical feedthrough and an antenna outside of the implant. It enables the design of mechanically safe and simple instrumented implants. PMID:22927973
Martini, K; Becker, A S; Guggenberger, R; Andreisek, G; Frauenfelder, T
2016-07-01
To determine the diagnostic performance of tomosynthesis in depicting osteoarthritic lesions in comparison to conventional radiographs, with use of computed tomography (CT) as standard-of-reference. Imaging of 12 cadaveric hands was performed with tomosynthesis in dorso-palmar (dp) projection, conventional radiographs (dp) and multi-detector CT. Distal interphalangeal joint (DIP)II, DIPIII, proximal interphalangeal joint (PIP)II, PIPIII, first carpometacarpal (CMC) and scaphotrapezotrapezoidal joint (STT) were graded by two independent readers using the Osteoarthritis Research Society International (OARSI) score. The mean score for each feature was calculated for all modalities. Additional wrists were evaluated for presence of calcium pyrophosphate disease (CPPD). CT served as reference-standard. Inter-reader agreement (ICC) was calculated. Comparing tomosynthesis and conventional radiographs to CT, the sensitivity for the presence of osteophytes was 95,7% vs 65,2%; for joint space narrowing 95,8% vs 52,1%; for subchondral sclerosis 61,5% vs 51,3%; for lateral deformity 83.3% vs 83,3%; and for subchondral cysts 45,8% vs 29,2%. Erosions were not present. While tomosynthesis showed no significant difference in OARSI score grading to CT (mean OARSI-score CT: 16.8, SD = 10.6; mean OARSI-score Tomosynthesis: 16.3, SD = 9.6; P = 0.84), conventional radiographs had significant lower mean OARSI scores (mean OARSI-score X-ray: 11.1, SD = 8.3; P = 0.04). Inter-reader agreement for OARSI scoring was excellent (ICC = 0.99). CPPD calcifications present in CT, were also visible with tomosynthesis, but not with conventional radiography. In conclusion, tomosynthesis depicts more osteoarthritic changes in the small joints of the hand than conventional radiography using the OARSI scoring system and CT as the standard of reference. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
21 CFR 888.3100 - Ankle joint metal/composite semi-constrained cemented prosthesis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ankle joint metal/composite semi-constrained... Ankle joint metal/composite semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/composite semi-constrained cemented prosthesis is a device intended to be implanted to replace an...
21 CFR 888.3510 - Knee joint femorotibial metal/polymer constrained cemented prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial metal/polymer constrained... Knee joint femorotibial metal/polymer constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/polymer constrained cemented prosthesis is a device intended to be implanted to replace part...
21 CFR 888.3660 - Shoulder joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Shoulder joint metal/polymer semi-constrained... Shoulder joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. A shoulder joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace a...
21 CFR 888.3650 - Shoulder joint metal/polymer non-constrained cemented prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Shoulder joint metal/polymer non-constrained... Shoulder joint metal/polymer non-constrained cemented prosthesis. (a) Identification. A shoulder joint metal/polymer non-constrained cemented prosthesis is a device intended to be implanted to replace a...
21 CFR 888.3100 - Ankle joint metal/composite semi-constrained cemented prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ankle joint metal/composite semi-constrained... Ankle joint metal/composite semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/composite semi-constrained cemented prosthesis is a device intended to be implanted to replace an...
Feichtenschlager, Christian; Gerwing, Martin; Failing, Klaus; Peppler, Christine; Kása, Andreas; Kramer, Martin; von Pückler, Kerstin H
2018-06-02
To determine the effectiveness of magnetic resonance imaging (MRI) in the evaluation of anatomical stifle structures with respect to implant positioning after tibial plateau levelling osteotomy (TPLO) using a titanium plate. Selected sagittal and dorsal sequences of pre- and postoperative MRI (1.0 T scanner) of 13 paired ( n = 26) sound cadaveric stifle joints were evaluated. The effect of susceptibility artifact on adjacent anatomical stifle structures was graded from 0 to 5. The impact of implant positioning regarding assessment score was calculated using Spearman's rank correlation coefficient. Sagittal turbo spin echo (TSE)-acquired images enabled interpretation of most soft tissue, osseous and cartilage structures without detrimental effect of susceptibility artifact distortions. In T2-weighted TSE images, the cranial cruciate ligament and caudal horn of the medial meniscus could be evaluated, independent of implant position, without any susceptibility artifact in all specimens. T2-weighted fast field echo, water selective, balanced fast field echo and short tau inversion recovery were most markedly affected by susceptibility artifact. In selected TSE sequences, MRI allows evaluation of critical intra-articular structures after titanium TPLO plate implantation. Further investigations with confirmed stifle pathologies in dogs are required, to evaluate the accuracy of MRI after TPLO in clinical cases in this context. Schattauer GmbH Stuttgart.
Mesnard, Michel; Ramos, Antonio; Ballu, Alex; Morlier, Julien; Cid, M; Simoes, J A
2011-04-01
Prosthetic materials and bone present quite different mechanical properties. Consequently, mandible reconstruction with metallic materials (or a mandible condyle implant) modifies the physiologic behavior of the mandible (stress, strain patterns, and condyle displacements). The changing of bone strain distribution results in an adaptation of the temporomandibular joint, including articular contacts. Using a validated finite element model, the natural mandible strains and condyle displacements were evaluated. Modifications of strains and displacements were then assessed for 2 different temporomandibular joint implants. Because materials and geometry play important key roles, mechanical properties of cortical bone were taken into account in models used in finite element analysis. The finite element model allowed verification of the worst loading configuration of the mandibular condyle. Replacing the natural condyle by 1 of the 2 tested implants, the results also show the importance of the implant geometry concerning biomechanical mandibular behavior. The implant geometry and stiffness influenced mainly strain distribution. The different forces applied to the mandible by the elevator muscles, teeth, and joint loads indicate that the finite element model is a relevant tool to optimize implant geometry or, in a subsequent study, to choose a more suitable distribution of the screws. Bone screws (number and position) have a significant influence on mandibular behavior and on implant stress pattern. Stress concentration and implant fracture must be avoided. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Detection of orthopaedic foot and ankle implants by security screening devices.
Bluman, Eric M; Tankson, Cedric; Myerson, Mark S; Jeng, Clifford L
2006-12-01
A common question asked by patients contemplating foot and ankle surgery is whether the implants used will set off security screening devices in airports and elsewhere. Detectability of specific implants may require the orthopaedic surgeon to provide attestation regarding their presence in patients undergoing implantation of these devices. Only two studies have been published since security measures became more stringent in the post-9/11 era. None of these studies specifically focused on the large numbers of orthopaedic foot and ankle implants in use today. This study establishes empiric data on the detectability by security screening devices of some currently used foot and ankle implants. A list of foot and ankle procedures was compiled, including procedures frequently used by general orthopaedists as well as those usually performed only by foot and ankle specialists. Implants tested included those used for open reduction and internal fixation, joint fusion, joint arthroplasty, osteotomies, arthroreisis, and internal bone stimulation. A test subject walked through a gate-type security device and was subsequently screened using a wand-type detection device while wearing each construct grouping. The screening was repeated with the implants placed within uncooked steak to simulate subcutaneous and submuscular implantation. None of the implants were detected by the gate-type security device. Specific implants that triggered the wand-type detection device regardless of coverage with the meat were total ankle prostheses, implantable bone stimulators, large metatarsophalangeal hemiarthroplasty, large arthroreisis plugs, medial distal tibial locking construct, supramalleolar osteotomy fixation, stainless steel bimalleolar ankle fracture fixation, calcaneal fracture plate and screw constructs, large fragment blade plate constructs, intramedullary tibiotalocalcaneal fusion constructs, and screw fixation for calcaneal osteotomies, ankle arthrodeses, triple arthrodeses, and
Fixation of revision implants is improved by a surgical technique to crack the sclerotic bone rim.
Kold, Søren; Bechtold, Joan E; Mouzin, Olivier; Elmengaard, Brian; Chen, Xinqian; Søballe, Kjeld
2005-03-01
Revision joint replacement has poorer outcomes compared with primary joint replacement, and these poor outcomes have been associated with poorer fixation. We investigated a surgical technique done during the revision operation to improve access from the marrow space to the implant interface by locally cracking the sclerotic bone rim that forms during aseptic loosening. Sixteen implants were inserted bilaterally by distal femur articulation of the knee joint of eight dogs, using our controlled experimental model that replicates the revision setting (sclerotic bone rim, dense fibrous tissue, macrophages, elevated cytokines) by pistoning a loaded 6.0-mm implant 500 microm into the distal femur with particulate PE. At 8 weeks, one of two revision procedures was done. Both revision procedures included complete removal of the membrane, scraping, lavaging, and inserting a revision plasma-spray Ti implant. The crack revision procedure also used a splined tool to circumferentially locally perforate the sclerotic bone rim before insertion of an identical revision implant. Superior fixation was achieved with the cracking procedure in this experimental model. Revision implants inserted with the rim cracking procedure had a significantly higher pushout strength (fivefold median increase) and energy to failure (sixfold median increase), compared with the control revision procedure. Additional evaluation is needed of local perforation of sclerotic bone rim as a simple bone-sparing means to improve revision implant fixation and thereby increase revision implant longevity.
Wear analysis and finishing of bioceramic implant surfaces.
Denkena, Berend; Reichstein, Martin; van der Meer, Marijke; Ostermeier, Sven; Hurschler, Christof
2008-01-01
A primary cause for revision operations of joint replacements is the implant loosening, due to immune reactions resulting from the agglomeration of polyethylene wear debris. Motivated by the successful application of bioceramic materials in hip joint prostheses, a trend towards the development of hard implant materials has occurred. Nonetheless in the area of total knee arthroplasty (TKA), modern efforts have still utilized polyethylene as the tibial-inlay joint component. The use of bioceramic hard-hard-pairings for total knee arthroplasty has been prevented by the complex kinematics and geometries required. Ceramics cannot cope with non-uniform loads, which suggests the need for new designs appropriate to the material. Furthermore, biomechanical requirements should be considered. A rolling-gliding wear simulator, which reproduces the movements and stresses of the knee joint on specimens of simplified geometry, has therefore been developed. High-precision machining processes for free formed bioceramic surfaces, with suitable grinding and polishing tools which adjust to constantly changing contact conditions, are essential. The goal is to put automated finishing in one clamping with five simultaneous controlled axes into practice. The developed manufacturing technologies will allow the advantageous bioceramic materials to be applied and accepted for more complex joint replacements such as knee prostheses.
Surface Modifications for Improved Wear Performance in Artificial Joints: A Review
NASA Astrophysics Data System (ADS)
Sullivan, Stacey J. L.; Topoleski, L. D. Timmie
2015-11-01
Artificial joint replacement is one of the most successful treatments for arthritis. Excellent wear and corrosion resistance, together with high strength and fracture toughness, are fundamental requirements for implant materials. Wear and/or corrosion of the materials used in artificial joints may lead to implant failure. Therefore, hard and wear-resistant materials, like cobalt-chromium-molybdenum and ceramic, are currently used as bearing surfaces. However, even using such hard materials, wear and/or corrosion related failure of artificial joints remains a central concern. One primary goal in orthopedic biomaterials research is to create more wear-resistant surfaces. Different technologies have been used to create new surfaces, or to modify existing surfaces, to prevent wear. It is the intent of this overview first to provide a summary of materials currently used as bearing surfaces in artificial joints, their functions, and their contributions to device longevity. Then, we will discuss advancements in modifying those bearing surfaces to produce more wear-resistant artificial joints.
Miller, Larry E; Block, Jon E
2014-01-01
Chronic sacroiliac (SI) joint-related low back pain (LBP) is a common, yet under-diagnosed and undertreated condition due to difficulties in accurate diagnosis and highly variable treatment practices. In patients with debilitating SI-related LBP for at least 6 months duration who have failed conservative management, arthrodesis is a viable option. The SImmetry® SI Joint Fusion System is a novel therapy for SI joint fusion, not just fixation, which utilizes a minimally invasive surgical approach, instrumented fixation for immediate stability, and joint preparation with bone grafting for a secure construct in the long term. The purpose of this report is to describe the minimally invasive SI Joint Fusion System, including patient selection criteria, implant characteristics, surgical technique, postoperative recovery, and biomechanical testing results. Advantages and limitations of this system will be discussed. PMID:24851059
21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ankle joint metal/polymer semi-constrained... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an ankle...
21 CFR 888.3160 - Elbow joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Elbow joint metal/polymer semi-constrained... Elbow joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An elbow joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an elbow...
21 CFR 888.3340 - Hip joint metal/composite semi-constrained cemented prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/composite semi-constrained... Hip joint metal/composite semi-constrained cemented prosthesis. (a) Identification. A hip joint metal/composite semi-constrained cemented prosthesis is a two-part device intended to be implanted to replace a...
21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ankle joint metal/polymer semi-constrained... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an ankle...
21 CFR 888.3160 - Elbow joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Elbow joint metal/polymer semi-constrained... Elbow joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An elbow joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an elbow...
21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ankle joint metal/polymer semi-constrained... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an ankle...
21 CFR 888.3160 - Elbow joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Elbow joint metal/polymer semi-constrained... Elbow joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An elbow joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an elbow...
21 CFR 888.3160 - Elbow joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Elbow joint metal/polymer semi-constrained... Elbow joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An elbow joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an elbow...
21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ankle joint metal/polymer semi-constrained... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an ankle...
Blömer, Wilhelm; Steinbrück, Arnd; Schröder, Christian; Grothaus, Franz-Josef; Melsheimer, Oliver; Mannel, Henrich; Forkel, Gerhard; Eilers, Thomas; Liebs, Thoralf R; Hassenpflug, Joachim; Jansson, Volkmar
2015-07-01
Every joint registry aims to improve patient care by identifying implants that have an inferior performance. For this reason, each registry records the implant name that has been used in the individual patient. In most registries, a paper-based approach has been utilized for this purpose. However, in addition to being time-consuming, this approach does not account for the fact that failure patterns are not necessarily implant specific but can be associated with design features that are used in a number of implants. Therefore, we aimed to develop and evaluate an implant product library that allows both time saving barcode scanning on site in the hospital for the registration of the implant components and a detailed description of implant specifications. A task force consisting of representatives of the German Arthroplasty Registry, industry, and computer specialists agreed on a solution that allows barcode scanning of implant components and that also uses a detailed standardized classification describing arthroplasty components. The manufacturers classified all their components that are sold in Germany according to this classification. The implant database was analyzed regarding the completeness of components by algorithms and real-time data. The implant library could be set up successfully. At this point, the implant database includes more than 38,000 items, of which all were classified by the manufacturers according to the predefined scheme. Using patient data from the German Arthroplasty Registry, several errors in the database were detected, all of which were corrected by the respective implant manufacturers. The implant library that was developed for the German Arthroplasty Registry allows not only on-site barcode scanning for the registration of the implant components but also its classification tree allows a sophisticated analysis regarding implant characteristics, regardless of brand or manufacturer. The database is maintained by the implant manufacturers
Joint angle sensors for closed-loop control
NASA Astrophysics Data System (ADS)
Ko, Wen H.; Miao, Chih-Lei
In order to substitute braces that have built-in goniometers and to provide feedback signals for closed loop control of lower extremity Functional Neuromuscular System in paraplegics, a stretchable capacitive sensor was developed to accurately detect angular movement in joints. Promising clinical evaluations on the knee joints of a paraplegic and a volunteer were done. The evaluations show great promise for the possibility of implantation applications.
Economic implications of implant selection.
DeFronzo, D J; Landsman, A S; Ghareeb, J A
1995-07-01
Numerous types of implantable biomaterials are available for a variety of applications. Although much has been written about the physical properties or biocompatibility issues, very few papers have focused on the economic feasibility of these materials. This article assesses financial factors associated with first metatarsophalangeal total joint prostheses.
21 CFR 888.3370 - Hip joint (hemi-hip) acetabular metal cemented prosthesis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hip joint (hemi-hip) acetabular metal cemented... (hemi-hip) acetabular metal cemented prosthesis. (a) Identification. A hip joint (hemi-hip) acetabular metal cemented prosthesis is a device intended to be implanted to replace a portion of the hip joint...
Kjeken, Ingvild; Eide, Ruth Else Mehl; Klokkeide, Åse; Matre, Karin Hoegh; Olsen, Monika; Mowinckel, Petter; Andreassen, Øyvor; Darre, Siri; Nossum, Randi
2016-11-15
In the absence of disease-modifying interventions for hand osteoarthritis (OA), occupational therapy (OT) comprising patient education, hand exercises, assistive devices and orthoses are considered as core treatments, whereas surgery are recommended for those with severe carpometacarpal (CMC1) OA. However, even though CMC1 surgery may reduce pain and improve function, the risk of adverse effects is high, and randomized controlled trials comparing surgery with non-surgical interventions are warranted. This multicentre randomized controlled trial aims to address the following questions: Does OT in the period before surgical consultation reduce the need for surgery in CMC1-OA? What are patients' motivation and reasons for wanting CMC1-surgery? Are there differences between departments of rheumatology concerning the degree of CMC1-OA, pain and functional limitations in patients who are referred for surgical consultation for CMC1 surgery? Is the Measure of Activity Performance of the Hand a reliable measure in patients with CMC1-OA? Do patients with CMC1-OA with and without affection of the distal and proximal interphalangeal finger joints differ with regard to symptoms and function? Do the degree of CMC1-OA, symptoms and functional limitations significantly predict improvement after 2 years following OT or CMC1-surgery? Is OT more cost-effective than surgery in the management of CMC1-OA? All persons referred for surgical consultation due to their CMC1-OA at one of three Norwegian departments of rheumatology are invited to participate. Those who agree attend a clinical assessment and report their symptoms, function and motivation for surgery in validated outcome measures, before they are randomly selected to receive OT in the period before surgical consultation (estimated n = 180). The primary outcome will be the number of participants in each group who have received surgical treatment after 2 years. Secondary and tertiary outcomes are pain, function and
Goetzen, Michael; Hofmann-Fliri, Ladina; Arens, Daniel; Zeiter, Stephan; Stadelmann, Vincent; Nehrbass, Dirk; Richards, R Geoff; Blauth, Michael
2015-01-01
Augmentation of implants with polymethylmethacrylate (PMMA) bone cement in osteoporotic fractures is a promising approach to increase implant purchase. Side effects of PMMA for the metaphyseal bone, particularly for the adjacent subchondral bone plate and joint cartilage, have not yet been studied. The following experimental study investigates whether subchondral PMMA injection compromises the homeostasis of the subchondral bone and/or the joint cartilage.Ten mature sheep were used to simulate subchondral PMMA injection. Follow-ups of 2 (4 animals) and 4 (6 animals) months were chosen to investigate possible cartilage damage and subchondral plate alterations in the knee. Evaluation was completed by means of high-resolution peripheral quantitative computed tomography (HRpQCT) imaging, histopathological osteoarthritis scoring, and determination of glycosaminoglycan content in the joint cartilage. Results were compared with the untreated contralateral knee and statistically analyzed using nonparametric tests.Evaluation of the histological osteoarthritis score revealed no obvious cartilage damage for the treated knee; median histological score after 2 months 0 (range 4), after 4 months 1 (range 5). There was no significant difference when compared with the untreated control site after 2 and 4 months (P = 0.23 and 0.76, respectively). HRpQCT imaging showed no damage to the metaphyseal trabeculae. Glycosaminoglycan measurements of the treated joint cartilage after 4 months revealed no significant difference compared with the untreated cartilage (P = 0.24).The findings of this study support initial clinical observation that PMMA implant augmentation of metaphyseal fractures appears to be a safe procedure for fixation without harming the subchondral bone plate and adjacent joint cartilage.
21 CFR 888.3590 - Knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint tibial (hemi-knee) metallic resurfacing... Knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis. (a) Identification. A knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis is a device intended to be implanted...
Polly, David W; Cher, Daniel J; Wine, Kathryn D; Whang, Peter G; Frank, Clay J; Harvey, Charles F; Lockstadt, Harry; Glaser, John A; Limoni, Robert P; Sembrano, Jonathan N
2015-11-01
Sacroiliac joint (SIJ) dysfunction is a prevalent cause of chronic, unremitting lower back pain. To concurrently compare outcomes after surgical and nonsurgical treatment for chronic SIJ dysfunction. A total of 148 subjects with SIJ dysfunction were randomly assigned to minimally invasive SIJ fusion with triangular titanium implants (n = 102) or nonsurgical management (n = 46). Pain, disability, and quality-of-life scores were collected at baseline and at 1, 3, 6, and 12 months. Success rates were compared using Bayesian methods. Crossover from nonsurgical to surgical care was allowed after the 6-month study visit was complete. Six-month success rates were higher in the surgical group (81.4% vs 26.1%; posterior probability of superiority > 0.9999). Clinically important (≥ 15 point) Oswestry Disability Index improvement at 6 months occurred in 73.3% of the SIJ fusion group vs 13.6% of the nonsurgical management group (P < .001). At 12 months, improvements in SIJ pain and Oswestry Disability Index were sustained in the surgical group. Subjects who crossed over had improvements in pain, disability, and quality of life similar to those in the original surgical group. Adverse events were slightly more common in the surgical group (1.3 vs 1.1 events per subject; P = .31). This Level 1 study showed that minimally invasive SIJ fusion using triangular titanium implants was more effective than nonsurgical management at 1 year in relieving pain, improving function, and improving quality of life in patients with SIJ dysfunction caused by degenerative sacroiliitis or SIJ disruptions. Pain, disability, and quality of life also improved after crossover from nonsurgical to surgical treatment.
Elsner, Jonathan J; Shemesh, Maoz; Shefy-Peleg, Adaya; Gabet, Yankel; Zylberberg, Eyal; Linder-Ganz, Eran
2015-09-01
A synthetic meniscus implant was recently developed for the treatment of patients with mild to moderate osteoarthritis with knee pain associated with medial joint overload. The implant is distinctively different from most orthopedic implants in its pliable construction, and non-anchored design, which enables implantation through a mini-arthrotomy without disruption to the bone, cartilage, and ligaments. Due to these features, it is important to show that the material and design can withstand knee joint conditions. This study evaluated the long-term performance of this device by simulating loading for a total of 5 million gait cycles (Mc), corresponding to approximately five years of service in-vivo. All five implants remained in good condition and did not dislodge from the joint space during the simulation. Mild abrasion was detected by electron microscopy, but µ-CT scans of the implants confirmed that the damage was confined to the superficial surfaces. The average gravimetric wear rate was 14.5 mg/Mc, whereas volumetric changes in reconstructed µ-CT scans point to an average wear rate of 15.76 mm(3)/Mc (18.8 mg/Mc). Particles isolated from the lubricant had average diameter of 15 µm. The wear performance of this polycarbonate-urethane meniscus implant concept under ISO-14243 loading conditions is encouraging. Copyright © 2015 Elsevier Ltd. All rights reserved.
21 CFR 888.3310 - Hip joint metal/polymer constrained cemented or uncemented prosthesis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hip joint metal/polymer constrained cemented or... Hip joint metal/polymer constrained cemented or uncemented prosthesis. (a) Identification. A hip joint metal/polymer constrained cemented or uncemented prosthesis is a device intended to be implanted to...
21 CFR 888.3310 - Hip joint metal/polymer constrained cemented or uncemented prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/polymer constrained cemented or... Hip joint metal/polymer constrained cemented or uncemented prosthesis. (a) Identification. A hip joint metal/polymer constrained cemented or uncemented prosthesis is a device intended to be implanted to...
21 CFR 888.3310 - Hip joint metal/polymer constrained cemented or uncemented prosthesis.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hip joint metal/polymer constrained cemented or... Hip joint metal/polymer constrained cemented or uncemented prosthesis. (a) Identification. A hip joint metal/polymer constrained cemented or uncemented prosthesis is a device intended to be implanted to...
21 CFR 888.3310 - Hip joint metal/polymer constrained cemented or uncemented prosthesis.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hip joint metal/polymer constrained cemented or... Hip joint metal/polymer constrained cemented or uncemented prosthesis. (a) Identification. A hip joint metal/polymer constrained cemented or uncemented prosthesis is a device intended to be implanted to...
21 CFR 888.3310 - Hip joint metal/polymer constrained cemented or uncemented prosthesis.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hip joint metal/polymer constrained cemented or... Hip joint metal/polymer constrained cemented or uncemented prosthesis. (a) Identification. A hip joint metal/polymer constrained cemented or uncemented prosthesis is a device intended to be implanted to...
Automatic joint alignment measurements in pre- and post-operative long leg standing radiographs.
Goossen, A; Weber, G M; Dries, S P M
2012-01-01
For diagnosis or treatment assessment of knee joint osteoarthritis it is required to measure bone morphometry from radiographic images. We propose a method for automatic measurement of joint alignment from pre-operative as well as post-operative radiographs. In a two step approach we first detect and segment any implants or other artificial objects within the image. We exploit physical characteristics and avoid prior shape information to cope with the vast amount of implant types. Subsequently, we exploit the implant delineations to adapt the initialization and adaptation phase of a dedicated bone segmentation scheme using deformable template models. Implant and bone contours are fused to derive the final joint segmentation and thus the alignment measurements. We evaluated our method on clinical long leg radiographs and compared both the initialization rate, corresponding to the number of images successfully processed by the proposed algorithm, and the accuracy of the alignment measurement. Ground truth has been generated by an experienced orthopedic surgeon. For comparison a second reader reevaluated the measurements. Experiments on two sets of 70 and 120 digital radiographs show that 92% of the joints could be processed automatically and the derived measurements of the automatic method are comparable to a human reader for pre-operative as well as post-operative images with a typical error of 0.7° and correlations of r = 0.82 to r = 0.99 with the ground truth. The proposed method allows deriving objective measures of joint alignment from clinical radiographs. Its accuracy and precision are on par with a human reader for all evaluated measurements.
Piattelli, Adriano; Quaranta, Alesandro
2017-01-01
Background Scientific evidence in the field of implant dentistry of the past 20 years established that titanium rough surfaces have shown improved osseointegration rates. In a majority of dental implants, the surface microroughness was obtained by grit blasting and/or acid etching. The aim of the study was to evaluate in vivo two different highly hydrophilic surfaces at different experimental times. Methods Calcium-modified (CA) and SLActive surfaces were evaluated and a total of 18 implants for each type of surface were positioned into the rabbit articular femoral knee-joint in a split model experiment, and they were evaluated histologically and histomorphometrically at 15, 30, and 60 days of healing. Results Bone-implant contact (BIC) at the two-implant surfaces was significantly different in favor of the CA surface at 15 days (p = 0.027), while SLActive displayed not significantly higher values at 30 (p = 0.51) and 60 days (p = 0.061). Conclusion Both implant surfaces show an intimate interaction with newly formed bone. PMID:29445746
Acinetobacter Prosthetic Joint Infection Treated with Debridement and High-Dose Tigecycline.
Vila, Andrea; Pagella, Hugo; Amadio, Claudio; Leiva, Alejandro
2016-12-01
Prosthesis retention is not recommended for multidrug-resistant Acinetobacter prosthetic joint infection due to its high failure rate. Nevertheless, replacing the prosthesis implies high morbidity and prolonged hospitalization. Although tigecycline is not approved for the treatment of prosthetic joint infection due to multidrug resistant Acinetobacter baumannii, its appropriate use may preclude prosthesis exchange. Since the area under the curve divided by the minimum inhibitory concentration is the best pharmacodynamic predictor of its efficacy, we used tigecycline at high dose, in order to optimize its efficacy and achieve implant retention in 3 patients who refused prosthesis exchange. All patients with prosthetic joint infections treated at our Institution are prospectively registered in a database. Three patients with early prosthetic joint infection of total hip arthroplasty due to multidrug resistant A. baumannii were treated with debridement, antibiotics and implant retention, using a high maintenance dose of tigecycline (100 mg every 12 hours). The cases were retrospectively reviewed. All patients signed informed consent for receiving off-label use of tigecycline. Tigecycline was well tolerated, allowing its administration at high maintenance dose for a median of 40 days (range 30-60). Two patients were then switched to minocycline at standard doses for a median of 3.3 months in order to complete treatment. Currently, none of the patients showed relapse. Increasing the dose of tigecycline could be considered as a means to better attain pharmacodynamic targets in patients with severe or difficult-to-treat infections. Tigecycline at high maintenance dose might be useful when retention of the implant is attempted for treatment for prosthetic joint infections due to multidrug resistant Acinetobacter. Although this approach might be promising, off-label use of tigecycline should be interpreted cautiously until prospective data are available. Tigecycline is
[The spectrum of histomorphological findings related to joint endoprosthetics].
Morawietz, L; Krenn, V
2014-11-01
Approximately 230,000 total hip and 170,000 knee joint endoprostheses are implanted in Germany annually of which approximately 10% (i.e. 40,000 interventions per year) are cases of revision surgery. These interventions involve removal of a previously implanted prosthesis which has resulted in complaints and replacement with a new prosthesis. There are manifold reasons for revision surgery, the most common indication being so-called endoprosthesis loosening, which is subdivided into septic and aseptic loosening. Histomorphological studies revealed that periprosthetic tissue from endoprosthesis loosening can be classified into four types (I) wear-particle induced type, (II) infectious type, (III) combined type and (IV) fibrous type. Types I and IV represent aseptic loosening and types II and III septic loosening. Recently, the topic of implant allergy has emerged. The detection of cellular, mostly perivascular lymphocytic infiltrates is discussed as being a sign of an allergic tissue reaction. It has most frequently been observed in type I periprosthetic membranes with a dense load of metal wear, which occurs with metal-on-metal bearings. Apart from endoprosthesis loosening, arthrofibrosis is another complication of joint endoprosthetics and can cause pain and impaired function. Histopathologically, arthrofibrosis can be evaluated by a three-tiered grading system. Furthermore, bone pathologies, such as ossification, osteopenia or osteomyelitis can occur as complications of joint endoprosthetics. This review gives an overview of the whole spectrum of pathological findings in joint endoprosthetics and offers a comprehensive and standardized classification system for routine histopathological diagnostics.
Albright, Rachel H; Waverly, Brett J; Klein, Erin; Weil, Lowell; Weil, Lowell S; Fleischer, Adam E
Hammertoe deformities are one of the most common foot deformities, affecting up to one third of the general population. Fusion of the joint can be achieved with various devices, with the current focus on percutaneous Kirschner (K)-wire fixation or commercial intramedullary implant devices. The purpose of the present study was to determine whether surgical intervention with percutaneous K-wire fixation versus commercial intramedullary implant is more cost effective for proximal interphalangeal joint arthrodesis in hammertoe surgery. A formal cost-effectiveness analysis using a decision analytic tree model was conducted to investigate the healthcare costs and outcomes associated with either K-wire or commercial intramedullary implant fixation. The outcomes assessed included long-term costs, quality-adjusted life-years (QALYs), and incremental cost per QALY gained. Costs were evaluated from the healthcare system perspective and are expressed in U.S. dollars at a 2017 price base. Our results found that commercial implants were minimally more effective than K-wires but carried significantly higher costs. The total cost for treatment with percutaneous K-wire fixation was $5041 with an effectiveness of 0.82 QALY compared with a commercial implant cost of $6059 with an effectiveness of 0.83 QALY. The incremental cost-effectiveness ratio of commercial implants was $146,667. With an incremental cost-effectiveness ratio of >$50,000, commercial implants failed to justify their proposed benefits to outweigh their cost compared to percutaneous K-wire fixation. In conclusion, percutaneous K-wire fixation would be preferred for arthrodesis of the proximal interphalangeal joint for hammertoes from a healthcare system perspective. Copyright © 2017 The American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Moore, R M; Hamburger, S; Jeng, L L; Hamilton, P M
1991-01-01
National population-based estimates on the magnitude and distribution of orthopedic implant devices in the United States have not been available to date. The Food and Drug Administration's Center for Devices and Radiological Health (FDA/CDRH) collaborated with the Centers for Disease Control's National Center for Health Statistics (CDC/NCHS) in the design and conduct of a nationwide medical device implant survey to generate the first national population-based prevalence estimates of orthopedic implant devices. A Medical Device Implant Supplement to the 1988 National Health Interview Survey was administered in personal household interviews to a national sample of 47,485 households, which included 122,310 individuals. An estimated 6.5 million orthopedic implants were in use in the general US population in 1988, including 1.6 million artificial joints and 4.9 million fixation devices. As a group, orthopedic implants comprised nearly half of all medical device implants in use, 43.4%. The majority of artificial joint recipients were 65 years of age or older, white, and male. The majority of fixation device recipients were less than 45 years of age, white, and male. The limitations and strengths of these population-based estimates are discussed.
Niska, Jared A.; Shahbazian, Jonathan H.; Ramos, Romela Irene; Francis, Kevin P.; Bernthal, Nicholas M.
2013-01-01
Treatment of prosthetic joint infections often involves a two-stage exchange, with implant removal and antibiotic spacer placement followed by systemic antibiotic therapy and delayed reimplantation. However, if antibiotic therapy can be improved, one-stage exchange or implant retention may be more feasible, thereby decreasing morbidity and preserving function. In this study, a mouse model of prosthetic joint infection was used in which Staphylococcus aureus was inoculated into a knee joint containing a surgically placed metallic implant extending from the femur. This model was used to evaluate whether combination therapy of vancomycin plus rifampin has increased efficacy compared with vancomycin alone against these infections. On postoperative day 7, vancomycin with or without rifampin was administered for 6 weeks with implant retention. In vivo bioluminescence imaging, ex vivo CFU enumeration, X-ray imaging, and histologic analysis were carried out. We found that there was a marked therapeutic benefit when vancomycin was combined with rifampin compared with vancomycin alone. Taken together, our results suggest that the mouse model used could serve as a valuable in vivo preclinical model system to evaluate and compare efficacies of antibiotics and combinatory therapy for prosthetic joint infections before more extensive studies are carried out in human subjects. PMID:23917317
Rice, Devyn; Shaat, Mohamed
2017-10-01
In this study, the fatigue characteristics of femoral and tibial locking compression plate (LCP) implants are determined accounting for the knee biomechanics during the gait. A biomechanical model for the kinematics and kinetics of the knee joint during the complete gait cycle is proposed. The rotations of the femur, tibia, and patella about the knee joint during the gait are determined. Moreover, the patellar-tendon force (PT), quadriceps-tendon force (QT), the tibiofemoral joint force (TFJ), and the patellofemoral joint force (PFJ) through the standard gait cycle are obtained as functions of the body weight (BW). On the basis of the derived biomechanics of the knee joint, the fatigue factors of safety along with the fatigue life of 316L stainless steel femoral and tibial LCP implants are reported as functions of the BW and bone fracture location, for the first time. The reported results reveal that 316L stainless steel LCP implants for femoral surgeries are preferred for conditions in which the bone fracture is close to the knee joint and the BW is less than 80 kg. For tibial surgeries, 316L stainless steel LCP implants can be used for conditions in which the bone fracture is close to the knee joint and the BW is less than 100 kg. This study presents a critical guide for the determination of the fatigue characteristics of LCP implants. The obtained results reveal that the fatigue analyses should be performed on the basis of the body biomechanics to guarantee accurate designs of LCP implants for femoral and tibial orthopedic surgeries.
Dargel, Jens; Michael, Joern W P; Feiser, Janna; Ivo, Roland; Koebke, Juergen
2011-04-01
This study investigates differences in the anatomy of male and female knee joints to contribute to the current debate on sex-specific total knee implants. Morphometric data were obtained from 60 human cadaver knees, and sex differences were calculated. All data were corrected for height, and male and female specimens presenting with an identical length of the femur were analyzed as matched pairs. Male linear knee joint dimensions were significantly larger when compared with females. When corrected for differences in height, medial-lateral dimensions of male knees were significantly larger than female; however, matched paired analysis did not prove these differences to be consistent. Although implant design should focus interindividual variations in knee joint anatomy, our data do not support the concept of a female-specific implant design. Copyright © 2011 Elsevier Inc. All rights reserved.
The dynamic natures of implant loading.
Wang, Rui-Feng; Kang, Byungsik; Lang, Lisa A; Razzoog, Michael E
2009-06-01
top of the implant-bone interface. This study also identified various characteristic isosurface stress patterns. The maximum stress magnitude to complete the von Mises stress joint pattern in the present model was 107 MPa during screw tightening, and was reduced to 104 MPa with removal of the wrench. Various specific stress patterns were identified within all elements of the implant complex during the assembly simulation. During the torque moment application, the abutment screw was elongated, and every 1.0-mum elongation of the screw was equivalent to a 47.9-N increase of the preload in the implant complex. The ideal index to determine the preload amount was the contact force at the interface between the screw threads and the threaded screw bore. The isosurface mode identified various characteristic stress patterns developed within the implant complex at the various interfaces during the assembly simulation. These patterns are the (1) spiral and ying-yang pattern of the XY stress, (2) spring, cap, clamping, and preload pattern of the ZZ stress, and (3) bone holding and joint pattern of the von Mises stress.
Cell therapy in joint disorders.
Counsel, Peter D; Bates, Daniel; Boyd, Richard; Connell, David A
2015-01-01
Articular cartilage possesses poor natural healing mechanisms, and a variety of non-cell-based and cell-based treatments aim to promote regeneration of hyaline cartilage. A review of the literature to December 2013 using PubMed with search criteria including the keywords stem cell, cell therapy, cell transplantation, cartilage, chondral, and chondrogenic. Forty-five articles were identified that employed local mesenchymal stem cell (MSC) therapy for joint disorders in humans. Nine comparative studies were identified, consisting of 3 randomized trials, 5 cohort studies, and 1 case-control study. Clinical review. Level 4. Studies were assessed for stem cell source, method of implantation, comparison groups, and concurrent surgical techniques. Two studies comparing MSC treatment to autologous chondrocyte implantation found similar efficacy. Three studies reported clinical benefits with intra-articular MSC injection over non-MSC controls for cases undergoing debridement with or without marrow stimulation, although a randomized study found no significant clinical difference at 2-year follow-up but reported better 18-month magnetic resonance imaging and histologic scores in the MSC group. No human studies have compared intra-articular MSC therapy to non-MSC techniques for osteoarthritis in the absence of surgery. Mesenchymal stem cell-based therapies appear safe and effective for joint disorders in large animal preclinical models. Evidence for use in humans, particularly, comparison with more established treatments such as autologous chondrocyte implantation and microfracture, is limited.
Grenier, Marie-Lyne; Mendonca, Rochelle; Dalley, Peter
2016-01-01
The study was a retrospective cohort analysis for a 19-month period from May 2013 to December 2014. Although the use of orthoses has long been a staple of conservative treatment measures for individuals with osteoarthritis of the thumb carpometacarpal (CMC) joint, there remains little evidence exploring its effectiveness in improving functional outcomes for this client population. The purpose of this study was to assess the effectiveness of 3 frequently used orthoses in improving the functional pinch strength of adults with a diagnosis of thumb CMC joint osteoarthritis. A retrospective cohort analysis was conducted to determine whether pinch strength improved after orthotic fabrication, and fitting in patients referred to a hand therapy clinic. Patients who received a Colditz design orthosis had a mean increase of 2.64 lb with regard to functional pinch strength after orthotic fabrication and fitting. Patients who received a Comfort Cool orthosis (North Coast Medical, Morgan Hill, CA) had a mean increase of 2.47 lb, whereas patients who received a Thumb Spica orthosis had a mean increase of 3.25 lb. There was no evidence of any statistically significant difference in the average improvements in pinch strength between the Colditz design orthosis and the Comfort Cool orthosis. Results from this study demonstrate that orthosis wear consistently increases the functional pinch strength of individuals with thumb CMC joint osteoarthritis. Large-scale multisite research studies comparing various orthotic designs are necessary to help therapists determine best practice interventions for the conservative management of thumb CMC joint osteoarthritis. 2(c). Copyright © 2016 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
Effects of abutment screw coating on implant preload.
Park, Jae-Kyoung; Choi, Jin-Uk; Jeon, Young-Chan; Choi, Kyung-Soo; Jeong, Chang-Mo
2010-08-01
The aim of the present study was to investigate the effects of tungsten carbide carbon (WC/CTa) screw surface coating on abutment screw preload in three implant connection systems in comparison to noncoated titanium alloy (Ta) screws. Preload of WC/CTa abutment screws was compared to noncoated Ta screws in three implant connection systems. The differences in preloads were measured in tightening rotational angle, compression force, initial screw removal torque, and postload screw removal torque after 1 million cyclic loads. Preload loss percent was calculated to determine the efficacy of maintaining the preload of two abutment screw types in relation to implant connection systems. WC/CTa screws provided 10 degrees higher tightening rotational angle than Ta screws in all three connection systems. This difference was statistically significant (p < 0.05). External-hex butt joint implant connections had a higher compression force than the two internal conical implant connections. WC/CTa screws provided a statistically significantly higher compression force than Ta screws in all three implant connections (p < 0.05). Ta screws required statistically higher removal torque than WC/CTa screws in all three implant connections (p < 0.05); however, Ta screws needed statistically lower postload removal torque than WC/CTa screws in all three implant connections (p < 0.05). Ta screws had a statistically higher preload loss percent than WC/CTa screws in all three implant connections (p < 0.05), indicating that WC/CTa screws were superior in maintaining the preload than Ta screws. Within the limits of present study, the following conclusions were made: (1) WC/CTa screws provided higher preload than noncoated Ta screws in all three implant connection systems. (2) The initial removal torque for Ta screws required higher force than WC/CTa screws, whereas postload removal torque for Ta screws was lower than WC/CTa screws. Calculated Ta screw preload loss percent was higher than for WC
Yang, Xu; Ricciardi, Benjamin F; Dvorzhinskiy, Aleksey; Brial, Caroline; Lane, Zachary; Bhimani, Samrath; Burket, Jayme C; Hu, Bin; Sarkisian, Alexander M; Ross, F Patrick; van der Meulen, Marjolein C H; Bostrom, Mathias P G
2015-07-01
Long-term fixation of uncemented joint implants requires early mechanical stability and implant osseointegration. To date, osseointegration has been unreliable and remains a major challenge in cementless total knee arthroplasty. We developed a murine model in which an intra-articular proximal tibial titanium implant with a roughened stem can be loaded through the knee joint. Using this model, we tested the hypothesis that intermittent injection of parathyroid hormone (iPTH) would increase proximal tibial cancellous osseointegration. Ten-week-old female C57BL/6 mice received a subcutaneous injection of PTH (40 μg/kg/day) or a vehicle (n = 45 per treatment group) five days per week for six weeks, at which time the baseline group was killed (n = 6 per treatment group) and an implant was inserted into the proximal part of the tibiae of the remaining mice. Injections were continued until the animals were killed at one week (n = 7 per treatment group), two weeks (n = 14 per treatment group), or four weeks (n = 17 per treatment group) after implantation. Outcomes included peri-implant bone morphology as analyzed with micro-computed tomography (microCT), osseointegration percentage and bone area fraction as shown with backscattered electron microscopy, cellular composition as demonstrated by immunohistochemical analysis, and pullout strength as measured with mechanical testing. Preimplantation iPTH increased the epiphyseal bone volume fraction by 31.6%. When the data at post-implantation weeks 1, 2, and 4 were averaged for the iPTH-treated mice, the bone volume fraction was 74.5% higher in the peri-implant region and 168% higher distal to the implant compared with the bone volume fractions in the same regions in the vehicle-treated mice. Additionally, the trabecular number was 84.8% greater in the peri-implant region and 74.3% greater distal to the implant. Metaphyseal osseointegration and bone area fraction were 28.1% and 70.1% higher, respectively, in the i
Adhesive bone bonding prospects for lithium disilicate ceramic implants
NASA Astrophysics Data System (ADS)
Vennila Thirugnanam, Sakthi Kumar
Temporomandibular Joint (TMJ) implants articulating mandible with temporal bone in humans have a very high failure rate. Metallic TMJ implants available in the medical market are not osseointegrated, but bond only by mechanical interlocking using screws which may fail, mandating a second surgery for removal. Stress concentration around fixture screws leads to aseptic loosening or fracture of the bone. It has been proposed that this problem can be overcome by using an all-ceramic TMJ implant bonded to bone with dental adhesives. Structural ceramics are promising materials with an excellent track record in the field of dentis.
Wee, Hwabok; Armstrong, April D; Flint, Wesley W; Kunselman, Allen R; Lewis, Gregory S
2015-11-01
Aseptic loosening of cemented joint replacements is a complex biological and mechanical process, and remains a clinical concern especially in patients with poor bone quality. Utilizing high resolution finite element analysis of a series of implanted cadaver glenoids, the objective of this study was to quantify relationships between construct morphology and resulting mechanical stresses in cement and trabeculae. Eight glenoid cadavers were implanted with a cemented central peg implant. Specimens were imaged by micro-CT, and subject-specific finite element models were developed. Bone volume fraction, glenoid width, implant-cortex distance, cement volume, cement-cortex contact, and cement-bone interface area were measured. Axial loading was applied to the implant of each model and stress distributions were characterized. Correlation analysis was completed across all specimens for pairs of morphological and mechanical variables. The amount of trabecular bone with high stress was strongly negatively correlated with both cement volume and contact between the cement and cortex (r = -0.85 and -0.84, p < 0.05). Bone with high stress was also correlated with both glenoid width and implant-cortex distance. Contact between the cement and underlying cortex may dramatically reduce trabecular bone stresses surrounding the cement, and this contact depends on bone shape, cement amount, and implant positioning. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Biomechanics of unilateral and bilateral sacroiliac joint stabilization: laboratory investigation.
Lindsey, Derek P; Parrish, Robin; Gundanna, Mukund; Leasure, Jeremi; Yerby, Scott A; Kondrashov, Dimitriy
2018-03-01
OBJECTIVE Bilateral symptoms have been reported in 8%-35% of patients with sacroiliac (SI) joint dysfunction. Stabilization of a single SI joint may significantly alter the stresses on the contralateral SI joint. If the contralateral SI joint stresses are significantly increased, degeneration may occur; alternatively, if the stresses are significantly reduced, bilateral stabilization may be unnecessary for patients with bilateral symptoms. The biomechanical effects of 1) unilateral stabilization on the contralateral SI joint and 2) bilateral stabilization on both SI joints are currently unknown. The objectives of this study were to characterize bilateral SI joint range of motion (ROM) and evaluate and compare the biomechanical effects of unilateral and bilateral implant placement for SI joint fusion. METHODS A lumbopelvic model (L5-pelvis) was used to test the ROM of both SI joints in 8 cadavers. A single-leg stance setup was used to load the lumbar spine and measure the ROM of each SI joint in flexion-extension, lateral bending, and axial rotation. Both joints were tested 1) while intact, 2) after unilateral stabilization, and 3) after bilateral stabilization. Stabilization consisted of lateral transiliac placement of 3 triangular titanium plasma-sprayed (TPS) implants. RESULTS Intact testing showed that during single-leg stance the contralateral SI joint had less ROM in flexion-extension (27%), lateral bending (32%), and axial rotation (69%) than the loaded joint. Unilateral stabilization resulted in significant reduction of flexion-extension ROM (46%) on the treated side; no significant ROM changes were observed for the nontreated side. Bilateral stabilization resulted in significant reduction of flexion-extension ROM of the primary (45%) and secondary (75%) SI joints. CONCLUSIONS This study demonstrated that during single-leg loading the ROMs for the stance (loaded) and swing (unloaded) SI joints are significantly different. Unilateral stabilization for SI
Nishioka, Renato Sussumu; Rodrigues, Vinicius Anéas; De Santis, Leandro Ruivo; Nishioka, Gabriela Nogueira De Melo; Santos, Vivian Mayumi Miyazaki; Souza, Francisley Ávila
2016-02-01
To quantify microstrain development during axial loading using strain gauge analysis for short implants, varying the type of fixture-abutment joint and thread design. An internal hexagon implant (4 × 8 mm) and a plateau design implant (4 × 8 mm) were embedded on the center of 10 polyurethane blocks with dimensions of 190 × 30 × 12 mm. The respective abutments were screwed onto the implants. Four strain gauges (SGs) were bonded onto the surface of each block, and 4 vertical SGs were bonded onto the side of each block. Axial load of 30 kgf was applied for 10 seconds in the center of each implant. The data were analyzed statistically by analysis of variance for repeated measures and Tukey test (P < 0.05). The interaction between implant and region factors have been statistically significant (P = 0.0259). Tukey test revealed a difference on plateau's horizontal region. The cervical region presented higher microstrain values, when compared with the medium and apical regions of the implants. Within the purpose of the study, the type of fixture-abutment joint is a relevant factor to affect the amount of stress/strain in bone simulation. The microstrain development was concentrated on the cervical region of the implant.
Safety and 6-month effectiveness of minimally invasive sacroiliac joint fusion: a prospective study
Duhon, Bradley S; Cher, Daniel J; Wine, Kathryn D; Lockstadt, Harry; Kovalsky, Don; Soo, Cheng-Lun
2013-01-01
Background Sacroiliac (SI) joint pain is an often overlooked cause of low back pain. SI joint arthrodesis has been reported to relieve pain and improve quality of life in patients suffering from degeneration or disruption of the SI joint who have failed non-surgical care. We report herein early results of a multicenter prospective single-arm cohort of patients with SI joint degeneration or disruption who underwent minimally invasive fusion using the iFuse Implant System®. Methods The safety cohort includes 94 subjects at 23 sites with chronic SI joint pain who met study eligibility criteria and underwent minimally invasive SI joint fusion with the iFuse Implant System® between August 2012 and September 2013. Subjects underwent structured assessments preoperatively, immediately postoperatively, and at 1, 3, and 6 months postoperatively, including SI joint and back pain visual analog scale (VAS), Oswestry Disability Index (ODI), Short Form-36 (SF-36), and EuroQoL-5D (EQ-5D). Patient satisfaction with surgery was assessed at 6 months. The effectiveness cohort includes the 32 subjects who have had 6-month follow-up to date. Results Mean subject age was 51 years (n=94, safety cohort) and 66% of patients were women. Subjects were highly debilitated at baseline (mean VAS pain score 78, mean ODI score 54). Three implants were used in 80% of patients; two patients underwent staged bilateral implants. Twenty-three adverse events occurred within 1 month of surgery and 29 additional events occurred between 30 days and latest follow-up. Six adverse events were severe but none were device-related. Complete 6-month postoperative follow-up was available in 26 subjects. In the effectiveness cohort, mean (± standard deviation) SI joint pain improved from a baseline score of 76 (±16.2) to a 6-month score of 29.3 (±23.3, an improvement of 49 points, P<0.0001), mean ODI improved from 55.3 (±10.7) to 38.9 (±18.5, an improvement of 15.8 points, P<0.0001) and SF-36 PCS improved
Amplification, Technology, and Cochlear Implants for Infants.
ERIC Educational Resources Information Center
Adam, Arlie J.
1993-01-01
Early amplification is crucial to efficient habilitation and development of oral communication skills in hearing-impaired infants. Initial evaluation and fitting of amplification is a joint effort by the audiologist, therapist, and parents, whether the child uses traditional hearing aids or cochlear implants, and should be supplemented by a…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warner, Jacob A.; Timmers, Heiko; Smith, Paul N.
2011-06-01
This study demonstrates a new method of radioisotope labeling of ultra-high molecular weight polyethylene inserts in prosthetic joints for wear studies. The radioisotopes {sup 97}Ru, {sup 100}Pd, {sup 100}Rh, and {sup 101m}Rh are produced in fusion evaporation reactions induced by {sup 12}C ions in a {sup 92}Zr target foil. The fusion products recoil-implant into ultra-high molecular weight polyethylene plugs, machined to fit into the surface of the inserts. During laboratory simulations of the joint motion, a wear rate of the labeled polyethylene may be measured and the pathways of wear debris particles can be traced by detecting characteristic gamma-rays. Themore » concentration profiles of the radioisotopes extend effectively uniformly from the polyethylene surface to a depth of about 4 {mu}m. The multiplicity of labeling and the use of several gamma-ray lines aids with avoiding systematic measurement uncertainties. Two polyethylene plugs were labeled and one was fitted into the surface of the tibial insert of a knee prosthesis, which had been worn in. Actuation over close to 100,000 cycles with a 900 N axial load and a 24 deg. flexion angle removed (14{+-}1)% of the gamma-ray activity from the plug. Most of this activity dispersed into the serum lubricant identifying this as the important debris pathway. Less than 1% activity was transferred to the femoral component of the prosthesis and the measured activity on the tibial tray was insignificant. Assuming uniform wear across the superior surface of the insert, a wear rate of (12{+-}3) mm{sup 3}/Megacycle was determined. This is consistent with wear rate measurements under similar conditions using other techniques.« less
On-top and side-to-side plasties for thumb polydactyly.
Al-Qattan, Noha M; Al-Qattan, Mohammad M
2017-01-01
"On-top" and "side-to-side" plasties are techniques used for treating thumb duplications in which one thumb is adequate proximally and the other thumb contains a better pulp and nail distally. The detailed functional results of these techniques have not been reported in the literature. We report on two cases. The first case had Wassel type VI duplication. The ulnar duplicate had a functioning interphalangeal joint and the radial duplicate had a functioning carpometacarpal joint. "On-top" plasty was done by putting the distal part of the ulnar duplicate on top of the proximal part of the radial duplicate. At 10 years after surgery, the outcome was excellent both cosmetically and functionally. In the second case (Wassel type VII with a zigzag deformity), the radial duplicate had a hypoplastic distal phalanx with no nail. The ulnar duplicate had a functioning interphalangeal joint and the radial duplicate had a functioning carpometacarpal joint. "Side-to-side" plasty was done by joining both thumbs side-to-side at the level of the proximal phalanx. At 3 years after surgery, the outcome we considered acceptable cosmetically and excellent functionally. We could not find similar cases in the literature with detailed long-term postoperative results. "On-top" and "side-to-side" plasties in the management of specific cases of thumb polydactyly obtain excellent functional results with excellent or acceptable cosmetic outcome. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Sadoghi, Patrick; Leithner, Andreas; Labek, Gerold
2013-09-01
Worldwide joint arthroplasty registers are instrumental to screen for complications or implant failures. In order to achieve comparable results a similar classification dataset is essential. The authors therefore present the European Federation of National Associations of Orthopaedics and Traumatology (EFORT) European Arthroplasty Register (EAR) minimal dataset for primary and revision joint arthroplasty. Main parameters include the following: date of operation, country, hospital ID-code, patient's name and prename, birthday, identification code of the implant, gender, diagnosis, preoperations, type of prosthesis (partial, total), side, cementation technique, use of antibiotics in the cement, surgical approach, and others specifically related to the affected joint. The authors believe that using this minimal dataset will improve the chance for a worldwide comparison of arthroplasty registers and ask future countries for implementation. Copyright © 2013 Elsevier Inc. All rights reserved.
Chen, Hua; Li, Huibo; Deng, Yuxiao; Rong, Xin; Gong, Quan; Li, Tao; Song, Yueming; Liu, Hao
2017-04-01
Lateral mass mini-screws used in plated cervical laminoplasty might penetrate into facet joints. The objective is to observe this complication incidence and to identify the optimal areas for 5- and 7-mm-long mini-screws to implant on lateral mass. 47 patients who underwent plated cervical laminoplasty were included. The optimal area for mini-screws implanting was set according to pre-operative 3D CT reconstruction data. Then, each posterior-lateral mass surface was divided into three regions: 7-mm region, 5-mm region, and dangerous area. The mini-screw implanted region was recorded. Post-operative CT images were used to identify whether the mini-screws penetrated into facet joints. 235 mini-plates and 470 lateral mass mini-screws were used in the study. 117 (24.9%) mini-screws penetrated 88 (37.4%) facet joints. The 5-mm-long mini-screw optimal area occupied the upper 72, 65, 65, 64, and 65 % area of the posterior-lateral mass surface for C3-7, while the 7-mm-long mini-screw optimal area encompassed the upper 54, 39, 40, 33, and 32 %. Only 7-mm-long mini-screws were used to fix the plate to the lateral mass. 4 of 240 mini-screws in 7-mm region, 67 of the 179 mini-screws in 5-mm region, and 46 of the 51 mini-screws in dangerous region penetrated into the facet joint. The differences in the rate of facet joint penetration related to region were statistically significant (P < 0.001). The facet joint destruction by mini-screws was not a rare complication in plated cervical laminoplasty. The optimal areas we proposed may help guide the mini-screw implantation positions.
Dimitroulis, George; Austin, Stephen; Sin Lee, Peter Vee; Ackland, David
2018-05-16
The aim of this study is to present the preliminary clinical data on the OMX Temporomandibular Joint (TMJ) Prosthetic total joint replacement system. A prospective, cohort, clinical study was undertaken of consecutive adult patients with Category 5 end-stage joint disease who were implanted with the OMX TMJ prosthesis between May 2015 and April 2017. A total of 50 devices were implanted in 38 patients, with 12 patients receiving bilateral prosthetic joints. There were 31 females and 7 males in this cohort, who ranged in age from 20 to 66 years, with a mean of 43.8 years (±14.0 years). Ten of the 50 prosthetic joints (20%) were fully customized, while the remaining were patient matched using virtual planning software. Based on a mean follow-up period of 15.3 months (range 12-24 months) following the TMJ total joint replacement, preliminary results suggest the OMX TMJ prosthesis has made a positive impact on clinical outcomes, with a mean 74.4% reduction in joint pain levels and significant improvements (p < 0.05) in jaw function as measured by the visual analogue scales for mouth opening (30.8%), diet (77.1%), and function (59.2%). No device failures were reported during the study period. This study suggests that the print-on-demand OMX TMJ prosthesis, designed for rapid delivery of both patient-matched and fully customize devices, represents a safe, reliable and versatile implantable joint replacement system for the treatment of category 5 end-stage TMJ disease. Copyright © 2018 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
[Carbon fiber-reinforced plastics as implant materials].
Bader, R; Steinhauser, E; Rechl, H; Siebels, W; Mittelmeier, W; Gradinger, R
2003-01-01
Carbon fiber-reinforced plastics have been used clinically as an implant material for different applications for over 20 years.A review of technical basics of the composite materials (carbon fibers and matrix systems), fields of application,advantages (e.g., postoperative visualization without distortion in computed and magnetic resonance tomography), and disadvantages with use as an implant material is given. The question of the biocompatibility of carbon fiber-reinforced plastics is discussed on the basis of experimental and clinical studies. Selected implant systems made of carbon composite materials for treatments in orthopedic surgery such as joint replacement, tumor surgery, and spinal operations are presented and assessed. Present applications for carbon fiber reinforced plastics are seen in the field of spinal surgery, both as cages for interbody fusion and vertebral body replacement.
From intricate to integrated: Biofabrication of articulating joints.
Groen, Wilhelmina Margaretha; Diloksumpan, Paweena; van Weeren, Paul René; Levato, Riccardo; Malda, Jos
2017-10-01
Articulating joints owe their function to the specialized architecture and the complex interplay between multiple tissues including cartilage, bone and synovium. Especially the cartilage component has limited self-healing capacity and damage often leads to the onset of osteoarthritis, eventually resulting in failure of the joint as an organ. Although in its infancy, biofabrication has emerged as a promising technology to reproduce the intricate organization of the joint, thus enabling the introduction of novel surgical treatments, regenerative therapies, and new sets of tools to enhance our understanding of joint physiology and pathology. Herein, we address the current challenges to recapitulate the complexity of articulating joints and how biofabrication could overcome them. The combination of multiple materials, biological cues and cells in a layer-by-layer fashion, can assist in reproducing both the zonal organization of cartilage and the gradual transition from resilient cartilage toward the subchondral bone in biofabricated osteochondral grafts. In this way, optimal integration of engineered constructs with the natural surrounding tissues can be obtained. Mechanical characteristics, including the smoothness and low friction that are hallmarks of the articular surface, can be tuned with multi-head or hybrid printers by controlling the spatial patterning of printed structures. Moreover, biofabrication can use digital medical images as blueprints for printing patient-specific implants. Finally, the current rapid advances in biofabrication hold significant potential for developing joint-on-a-chip models for personalized medicine and drug testing or even for the creation of implants that may be used to treat larger parts of the articulating joint. © 2017 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 35:2089-2097, 2017. © 2017 The Authors. Journal of Orthopaedic
Analyzer-based imaging technique in tomography of cartilage and metal implants: a study at the ESRF
COAN, Paola; MOLLENHAUER, Juergen; WAGNER, Andreas; Muehleman, Carol; BRAVIN, Alberto
2009-01-01
Monitoring the progression of osteoarthritis (OA) and the effects of therapy during clinical trials is still a challenge for present clinical imaging techniques since they present intrinsic limitations and can be sensitive only in case of advanced OA stages. In very severe cases, partial or complete joint replacement surgery is the only solution for reducing pain and restoring the joint functions. Poor imaging quality in practically all medical imaging technologies with respect to joint surfaces and to metal implant imaging calls for the development of new techniques that are sensitive to stages preceding the point of irreversible damage of the cartilage tissue. In this scenario, X-ray phase contrast modalities could play an important role since they can provide improved contrast compared to conventional absorption radiography, with a similar or even reduced tissue radiation dose. In this study, the Analyzer-based imaging (ABI), a technique sensitive to the X-ray refraction and permitting a high scatter rejection, has been successfully applied in-vitro on excised human synovial joints and sheep implants. Pathological and healthy joints as well as metal implants have been imaged in projection and computed tomography ABI mode at high resolution and clinically compatible doses (< 10 mGy). Volume rendering and segmentation permitted visualization of the cartilage from volumetric CT-scans. Results demonstrate that ABI can provide an unequivocal non-invasive diagnosis of the state of disease of the joint and be considered a new tool in orthopaedic research. PMID:18584983
Ramos, António; Mesnard, Michel
2016-10-01
The purpose of this article is to present and evaluate an innovative intramedullary implant concept developed for total alloplastic reconstruction in bone resorption cases. The main goal of this innovative concept is to avoid the main problems experienced with temporomandibular (TMJ) devices on the market, associated with bone fixation and changes in kinematics. A three-dimensional finite element model was developed based on computed tomography (CT) scan images, before and after implantation of the innovative implant concept. To validate the numerical model, a clean cadaveric condyle was instrumented with four rosettes and loaded before and after implantation with the innovative concept TMJ implant. The experimental results validate the numerical models comparing the intact and implanted condyles, as they present good correlation. They show that the most critical region is around rosette #1, with an increase in strains in the proximal region of the condyle of 140%. The maximum principal strain and stress generated with the implant is less than 2200 με and 75 MPa in the posterior region of the cortical bone. Shortly after insertion of this press-fit implant, stress and strain results appear to be within the normal limits and show some similarities with the intact condyle. If these responses do not change over time, the screw fixation used at present could be avoided or replaced. This solution reduces bone resection and lessens surgical damage to the muscles. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Knee Osteoarthritis Treatment with the KineSpring Knee Implant System: A Report of Two Cases
Hayes, David A.; Miller, Larry E.; Block, Jon E.
2012-01-01
Osteoarthritis (OA) is a leading cause of disability in middle-aged and older adults with the prevalence expected to increase by 40% by 2025. This dramatic projected increase in OA reflects, in large part, the alarming obesity epidemic. Indeed, it is now well understood that abnormal loading across the knee joint due to malalignment and/or excessive weight gain is responsible for accelerating OA progression. Consequently, there is a therapeutic need for alternative knee OA treatments that directly address joint overload to fill the gap between ineffective conservative care and invasive joint-modifying surgical procedures. We describe two cases that presented with bilateral knee OA resistant to conservative treatments, each with one knee previously and unsuccessfully treated with high tibial osteotomy to improve alignment and the contralateral knee successfully treated with a joint-preserving, load-absorbing implant (KineSpring Knee Implant System). PMID:23304590
Antimicrobial and Antifouling Polymeric Agents for Surface Functionalization of Medical Implants.
Zeng, Qiang; Zhu, Yiwen; Yu, Bingran; Sun, Yujie; Ding, Xiaokang; Xu, Chen; Wu, Yu-Wei; Tang, Zhihui; Xu, Fu-Jian
2018-05-09
Combating implant-associated infections is an urgent demand due to the increasing numbers in surgical operations such as joint replacements and dental implantations. Surface functionalization of implantable medical devices with polymeric antimicrobial and antifouling agents is an efficient strategy to prevent bacterial fouling and associated infections. In this work, antimicrobial and antifouling branched polymeric agents (GPEG and GEG) were synthesized via ring-opening reaction involving gentamicin and ethylene glycol species. Due to their rich primary amine groups, they can be readily coated on the polydopamine-modified implant (such as titanium) surfaces. The resultant surface coatings of Ti-GPEG and Ti-GEG produce excellent in vitro antibacterial efficacy toward both Staphylococcus aureus and Escherichia coli, while Ti-GPEG exhibit better antifouling ability. Moreover, the infection model with S. aureus shows that implanted Ti-GPEG possessed excellent antibacterial and antifouling ability in vivo. This study would provide a promising strategy for the surface functionalization of implantable medical devices to prevent implant-associated infections.
Riester, Scott M.; Bonin, Carolina A.; Kremers, Hilal Maradit; Dudakovic, Amel; Kakar, Sanjeev; Cohen, Robert C.; Westendorf, Jennifer J.
2015-01-01
The biological interface between an orthopedic implant and the surrounding host tissue may have a dramatic effect upon clinical outcome. Desired effects include bony ingrowth (osseointegration), stimulation of osteogenesis (osteoinduction), increased vascularization, and improved mechanical stability. Implant loosening, fibrous encapsulation, corrosion, infection, and inflammation, as well as physical mismatch may have deleterious clinical effects. This is particularly true of implants used in the reconstruction of load-bearing synovial joints such as the knee, hip, and the shoulder. The surfaces of orthopedic implants have evolved from solid-smooth to roughened-coarse and most recently, to porous in an effort to create a three-dimensional architecture for bone apposition and osseointegration. Total joint surgeries are increasingly performed in younger individuals with a longer life expectancy, and therefore, the postimplantation lifespan of devices must increase commensurately. This review discusses advancements in biomaterials science and cell-based therapies that may further improve orthopedic success rates. We focus on material and biological properties of orthopedic implants fabricated from porous metal and highlight some relevant developments in stem-cell research. We posit that the ideal primary and revision orthopedic load-bearing metal implants are highly porous and may be chemically modified to induce stem cell growth and osteogenic differentiation, while minimizing inflammation and infection. We conclude that integration of new biological, chemical, and mechanical methods is likely to yield more effective strategies to control and modify the implant–bone interface and thereby improve long-term clinical outcomes. PMID:25348836
Thomas, P; Schuh, A; Ring, J; Thomsen, M
2008-03-01
Materials used in osteosynthesis or artificial joint replacement are usually well tolerated. Complaints after such operations are mostly related to infection or mechanical problems but may also be caused by allergic reactions. The latter encompass skin changes, e.g., eczema, delayed wound/bone healing, recurrent effusion, pain, or implant loosening. In contrast to the high incidence of cutaneous metal contact allergy, allergies associated with implants are a rare condition. However, epidemiological data on the incidence of implant-related allergic reactions are still missing. Typical elicitors are nickel, chromium, cobalt, and constituents of bone cement (acrylates und additives such as gentamicin or benzoyl peroxide). After exclusion of the most common differential diagnoses, allergy diagnostic procedures are primarily based on patch tests including a metal and bone cement component series. Additional analysis of periimplant tissue is recommended. However, further studies are necessary to show the significance of the histologic findings and the role of the lymphocyte transformation test (LTT). Which combinations of factors will induce allergic sensitization to implants or trigger periimplant allergic reactions in the case of preexisting cutaneous metal allergy is still unknown. Titanium-based osteosynthesis materials are recommended for metal allergic patients. In elective hip replacements, a ceramic/polyethylene (PE) articulation should be used, and in knee replacements "alternative materials". If a regular, potentially applicable CoCr/PE articulation is preferred, the patient must be well informed and must give his/her written consent.
Management of pain secondary to temporomandibular joint syndrome with peripheral nerve stimulation.
Rodriguez-Lopez, Manuel J; Fernandez-Baena, Mariano; Aldaya-Valverde, Carlos
2015-01-01
Temporomandibular joint syndrome, or Costen syndrome, is a clinically diagnosed disorder whose most common symptoms include joint pain and clicking, difficulty opening the mouth, and temporomandibular joint discomfort. The temporomandibular joint (TMJ) is supplied by the auriculotemporal nerve, a collateral branch of the mandibular nerve (the V3 branch of the trigeminal nerve). The aim of this study is to assess the effectiveness and safety of permanent peripheral nerve stimulation to relieve TMJ pain. This case series is a prospective study. Pain Unit of a regional universitary hospital. The study included 6 female patients with temporomandibular pain lasting from 2 to 8 years that did not respond to intraarticular local anesthetic and corticoid injections. After a positive diagnostic block test, the patients were implanted with quadripolar or octapolar leads in the affected preauricular region for a 2-week stimulation test phase, after which the leads were connected to a permanent implanted pulse generator. Results of the visual analog scale, SF-12 Health Survey, Brief Pain Inventory, and drug intake were recorded at baseline and at 4, 12, and 24 weeks after the permanent implant. Five out of 6 patients experienced pain relief exceeding 80% (average 72%) and received a permanent implant. The SF-12 Health Survey results were very positive for all specific questions, especially items concerning the physical component. Patients reported returning to normal physical activity and rest at night. Four patients discontinued their analgesic medication and 1 patient reduced their gabapentin dose by 50%. Sample size; impossibility of placebo control. Patients affected with TMJ syndrome who do not respond to conservative treatments may find a solution in peripheral nerve stimulation, a simple technique with a relatively low level of complications.
Bernardes, Sérgio Rocha; da Gloria Chiarello de Mattos, Maria; Hobkirk, John; Ribeiro, Ricardo Faria
2014-01-01
The purpose of this study was to determine whether abutment screw tightening and untightening influenced loss of preload in three different implant/abutment interfaces, or on the implant body. Five custom-fabricated machined titanium implants were used, each with its respective abutment, with different connection types, retention screws, and torque values (external hexagon with titanium screw/32 Ncm, external hexagon with coated screw/32 Ncm, internal hexagon/20 Ncm and internal conical/20 and 32 Ncm). Each implant tested had two strain gauges attached and was submitted to five tightening/untightening sequences. External hexagons resulted in the lowest preload values generated in the implant cervical third (mean of 27.75 N), while the internal hexagon had the highest values (mean of 219.61 N). There was no immediate significant loss of preload after screw tightening. Tightening/untightening sequences, regardless of the implant/abutment interface design or type of screw used in the study, did not result in any significant loss of initial preload. Conical implant connections demonstrated greater structural reinforcement within the internal connections.
Miller, Larry E; Reckling, W Carlton; Block, Jon E
2013-01-01
Background The sacroiliac joint is a common but under-recognized source of low back and gluteal pain. Patients with degenerative sacroiliitis or sacroiliac joint disruption resistant to nonsurgical treatments may undergo open surgery with sacroiliac joint arthrodesis, although outcomes are mixed and risks are significant. Minimally invasive sacroiliac joint arthrodesis was developed to minimize the risk of iatrogenic injury and to improve patient outcomes compared with open surgery. Methods Between April 2009 and January 2013, 5319 patients were treated with the iFuse SI Joint Fusion System® for conditions including sacroiliac joint disruption and degenerative sacroiliitis. A database was prospectively developed to record all complaints reported to the manufacturer in patients treated with the iFuse device. Complaints were collected through spontaneous reporting mechanisms in support of ongoing mandatory postmarket surveillance efforts. Results Complaints were reported in 204 (3.8%) patients treated with the iFuse system. Pain was the most commonly reported clinical complaint (n = 119, 2.2%), with nerve impingement (n = 48, 0.9%) and recurrent sacroiliac joint pain (n = 43, 0.8%) most frequently cited. All other clinical complaints were rare (≤0.2%). Ninety-six revision surgeries were performed in 94 (1.8%) patients at a median follow-up of four (range 0–30) months. Revisions were typically performed in the early postoperative period for treatment of a symptomatic malpositioned implant (n = 46, 0.9%) or to correct an improperly sized implant in an asymptomatic patient (n = 10, 0.2%). Revisions in the late postoperative period were performed to treat symptom recurrence (n = 34, 0.6%) or for continued pain of undetermined etiology (n = 6, 0.1%). Conclusion Analysis of a postmarket product complaints database demonstrates an overall low risk of complaints with the iFuse SI Joint Fusion System in patients with degenerative sacroiliitis or sacroiliac joint
Miller, Larry E; Reckling, W Carlton; Block, Jon E
2013-01-01
The sacroiliac joint is a common but under-recognized source of low back and gluteal pain. Patients with degenerative sacroiliitis or sacroiliac joint disruption resistant to nonsurgical treatments may undergo open surgery with sacroiliac joint arthrodesis, although outcomes are mixed and risks are significant. Minimally invasive sacroiliac joint arthrodesis was developed to minimize the risk of iatrogenic injury and to improve patient outcomes compared with open surgery. Between April 2009 and January 2013, 5319 patients were treated with the iFuse SI Joint Fusion System® for conditions including sacroiliac joint disruption and degenerative sacroiliitis. A database was prospectively developed to record all complaints reported to the manufacturer in patients treated with the iFuse device. Complaints were collected through spontaneous reporting mechanisms in support of ongoing mandatory postmarket surveillance efforts. Complaints were reported in 204 (3.8%) patients treated with the iFuse system. Pain was the most commonly reported clinical complaint (n = 119, 2.2%), with nerve impingement (n = 48, 0.9%) and recurrent sacroiliac joint pain (n = 43, 0.8%) most frequently cited. All other clinical complaints were rare (≤0.2%). Ninety-six revision surgeries were performed in 94 (1.8%) patients at a median follow-up of four (range 0-30) months. Revisions were typically performed in the early postoperative period for treatment of a symptomatic malpositioned implant (n = 46, 0.9%) or to correct an improperly sized implant in an asymptomatic patient (n = 10, 0.2%). Revisions in the late postoperative period were performed to treat symptom recurrence (n = 34, 0.6%) or for continued pain of undetermined etiology (n = 6, 0.1%). Analysis of a postmarket product complaints database demonstrates an overall low risk of complaints with the iFuse SI Joint Fusion System in patients with degenerative sacroiliitis or sacroiliac joint disruption.
Development and application of biomimetic electrospun nanofibers in total joint replacement
NASA Astrophysics Data System (ADS)
Song, Wei
Failure of osseointegration (direct anchorage of an implant by bone formation at the bone-implant surface) and implant infection (such as that caused by Staphylococcus aureus, S. aureus) are the two main causes of implant failure and loosening. There is a critical need for orthopedic implants that promote rapid osseointegration and prevent bacterial colonization, particularly when placed in bone compromised by disease or physiology of the patients. A better understanding of the key factors that influence cell fate decisions at the bone-implant interface is required. Our study is to develop a class of "bone-like" nanofibers (NFs) that promote osseointegration while preventing bacterial colonization and subsequent infections. This research goal is supported by our preliminary data on the preparation of coaxial electrospun NFs composed of polycaprolactone (PCL) and polyvinyl alcohol (PVA) polymers arranged in a core-sheath shape. The PCL/PVA NFs are biocompatible and biodegradable with appropriate fiber diameter, pore size and mechanical strength, leading to enhanced cell adhesion, proliferation and differentiation of osteoblast precursor cells. The objective is to develop functionalized "bone-like" PCL/PVA NFs matrix embedded with antibiotics (doxycycline (Doxy), bactericidal and anti-osteoclastic) on prosthesis surface. Through a rat tibia implantation model, the Doxy incorporated coaxial NFs has demonstrated excellent in promoting osseointegration and bacteria inhibitory efficacy. NFs coatings significantly enhanced the bonding between implant and bone remodeling within 8 weeks. The SA-induced osteomyelitis was prevented by the sustained release of Doxy from NFs. The capability of embedding numerous bio-components including proteins, growth factors, drugs, etc. enables NFs an effective solution to overcome the current challenged issue in Total joint replacement. In summary, we proposed PCL/PVA electrospun nanofibers as promising biomaterials that can be applied on
The Measurement Of Total Joint Loosening By X-Ray Photogrammetry
NASA Astrophysics Data System (ADS)
Lippert, Frederick G.; Veress, Sandor A.; Tiwari, Rama S.; Harrington, Richard M.
1980-07-01
Failure of total joint replacement due to loosening of the composents either between the implant and cement or between the cement and bone is emerging as a late complication with an incidence as high as 20 percent. Loosening may not only cause pain but progressive loss of support for the prosthesis with eventual structural failure. Early diagnosis is important so that revision may be carried when deterioration or pain occurs. No method is currently available which clearly establishes loosening at an early stage except surgical exploration. We have devised a method based on our in vivo photogrammetry studies of patellar tracking patterns using metallic markers placed in bone near both components of the total joint. Stereo x-rays taken with the joint loaded and unloaded are measured for relative motion between the implant and the metallic markers. Laboratory studies using prosthetic hip components mounted in plastic bone have revealed the ability of this method to detect pistoning movements as small as 80 microns. These findings were confirmed by physical measurements.
Development and fabrication of patient-specific knee implant using additive manufacturing techniques
NASA Astrophysics Data System (ADS)
Zammit, Robert; Rochman, Arif
2017-10-01
Total knee replacement is the most effective treatment to relief pain and restore normal function in a diseased knee joint. The aim of this research was to develop a patient-specific knee implant which can be fabricated using additive manufacturing techniques and has reduced wear rates using a highly wear resistant materials. The proposed design was chosen based on implant requirements, such as reduction in wear rates as well as strong fixation. The patient-specific knee implant improves on conventional knee implants by modifying the articulating surfaces and bone-implant interfaces. Moreover, tribological tests of different polymeric wear couples were carried out to determine the optimal materials to use for the articulating surfaces. Finite element analysis was utilized to evaluate the stresses sustained by the proposed design. Finally, the patient-specific knee implant was successfully built using additive manufacturing techniques.
In vivo axial humero-ulnar rotation in normal and dysplastic canine elbow joints.
Rohwedder, Thomas; Fischer, Martin; Böttcher, Peter
2018-04-01
To prospectively compare relative axial (internal-external) humero-ulnar rotation in normal and dysplastic canine elbow joints. Six normal elbows (five dogs) and seven joints (six dogs) with coronoid disease were examined. After implantation of 0.8 mm tantalum beads into humerus and ulna, biplanar x-ray movies of the implanted elbows were taken while dogs were walking on a treadmill. Based on the 2D bead coordinates of the synchronized x-ray movies virtual 3D humero-ulnar animations were calculated. Based on these, relative internal-external humero-ulnar rotation was measured over the first third of stance phase and expressed as maximal rotational amplitude. Amplitudes from three consecutive steps were averaged and groupwise compared using an unpaired t-test. In normal elbow joints mean axial relative humero-ulnar rotation was 2.9° (SD 1.1). Dysplastic joints showed a significantly greater rotational amplitude (5.3°, SD 2.0; p = 0.0229, 95% confidence interval 0.4-4.4). Dysplastic elbow joints show greater relative internal-external humero-ulnar rotation compared to normal elbows, which might reflect rotational joint instability. Increased relative internal-external humero-ulnar rotation might alter physiological joint contact and pressure patterns. Future studies are needed to verify if this plays a role in the pathogenesis of medial coronoid disease. Schattauer GmbH.
Long-term results of uncemented alumina acetabular implants.
Boehler, M; Knahr, K; Plenk, H; Walter, A; Salzer, M; Schreiber, V
1994-01-01
We report the clinical and tribological performance of 67 ceramic acetabular prostheses implanted between 1976 and 1979 without bone cement. They articulated with ceramic femoral heads mounted on mental femoral stems. After a mean elapsed period of 144 months, 59 sockets were radiographically stable but two showed early signs and six showed late signs of loosening. Four of the loose sockets have been revised. Histological analysis of the retrieved tissue showed a fibrous membrane around all the implants, with fibrocartilage in some. There was no bone ingrowth, and the fibrous membrane was up to 6 mm thick and infiltrated with lymphocytes, plasma cells, and macrophages. Intra- and extracellular birefringent wear particles were seen. Tribological analysis showed total wear rates in two retrieved alumina-on-alumina joints of 2.6 microns per year in a stable implant and 68 microns in a loose implant. Survival analysis showed a revision rate of 12.4% at 136 months.
The Pathology of Orthopedic Implant Failure Is Mediated by Innate Immune System Cytokines
Landgraeber, Stefan; Jäger, Marcus; Jacobs, Joshua J.; Hallab, Nadim James
2014-01-01
All of the over 1 million total joint replacements implanted in the US each year are expected to eventually fail after 15–25 years of use, due to slow progressive subtle inflammation at the bone implant interface. This inflammatory disease state is caused by implant debris acting, primarily, on innate immune cells, that is, macrophages. This slow progressive pathological bone loss or “aseptic loosening” is a potentially life-threatening condition due to the serious complications in older people (>75 yrs) of total joint replacement revision surgery. In some people implant debris (particles and ions from metals) can influence the adaptive immune system as well, giving rise to the concept of metal sensitivity. However, a consensus of studies agrees that the dominant form of this response is due to innate reactivity by macrophages to implant debris where both danger (DAMP) and pathogen (PAMP) signalling elicit cytokine-based inflammatory responses. This paper discusses implant debris induced release of the cytokines and chemokines due to activation of the innate (and the adaptive) immune system and the subsequent formation of osteolysis. Different mechanisms of implant-debris reactivity related to the innate immune system are detailed, for example, danger signalling (e.g., IL-1β, IL-18, IL-33, etc.), toll-like receptor activation (e.g., IL-6, TNF-α, etc.), apoptosis (e.g., caspases 3–9), bone catabolism (e.g., TRAP5b), and hypoxia responses (Hif1-α). Cytokine-based clinical and basic science studies are in progress to provide diagnosis and therapeutic intervention strategies. PMID:24891761
Conductive polymer sensor arrays for smart orthopaedic implants
NASA Astrophysics Data System (ADS)
Micolini, Carolina; Holness, F. B.; Johnson, James A.; Price, Aaron D.
2017-04-01
This study proposes and demonstrates the design, implementation, and characterization of a 3D-printed smartpolymer sensor array using conductive polyaniline (PANI) structures embedded in a polymeric substrate. The piezoresistive characteristics of PANI were studied to evaluate the efficacy of the manufacturing of an embedded pressure sensor. PANI's stability throughout loading and unloading cycles together with the response to incremental loading cycles was investigated. It is demonstrated that this specially developed multi-material additive manufacturing process for polyaniline is a good candidate for the manufacture of implant components with smart-polymer sensors embedded for the analysis of joint loads in orthopaedic implants.
Arthroscopic Management of Scaphoid-Trapezium-Trapezoid Joint Arthritis.
Pegoli, Loris; Pozzi, Alessandro
2017-11-01
Scaphoid-trapezium-trapezoid (STT) joint arthritis is a common condition consisting of pain on the radial side of the wrist and base of the thumb, swelling, and tenderness over the STT joint. Common symptoms are loss of grip strength and thumb function. There are several treatments, from symptomatic conservative treatment to surgical solutions, such as arthrodesis, arthroplasties, and prosthesis implant. The role of arthroscopy has grown and is probably the best treatment of this condition. Advantages of arthroscopic management of STT arthritis are faster recovery, better view of the joint during surgery, and possibility of creating less damage to the capsular and ligamentous structures. Copyright © 2017 Elsevier Inc. All rights reserved.
The influence of abutment screw tightening on screw joint configuration.
Lang, Lisa A; Wang, Rui-Feng; May, Kenneth B
2002-01-01
Limiting abutment-to-implant hexagonal discrepancies and rotational movement of the abutment around the implant to less than 5 degrees would result in a more stable screw joint. However, the exact relationship after abutment screw tightening is unknown, as is the effect of a counter-torque device in limiting abutment movement during screw tightening. This study examined the orientation of the abutment hexagon to the implant hexagon after tightening of the abutment screw for several abutment systems with and without the use of a counter-torque device. Thirty conical self-tapping implants (3.75 x 10.0 mm) and 10 wide-platform Brånemark System implants (5.0 x 10.0 mm), along with 10 abutment specimens from the CeraOne, Estheticone, Procera, and AuraAdapt systems, were selected for this investigation. The implants were placed in a holding device prior to tightening of the abutments. When the tightening torque recommended for each abutment system was reached with the use of a torque controller, each implant abutment specimen was removed from the holding device and embedded in a hard resin medium. The specimens were sectioned in a horizontal direction at the level of the hexagons and cleansed of debris prior to examination. The hexagon orientations were assessed as the degree and direction of rotation of the abutment hexagon around the implant hexagon. The range of the maximum degrees of rotation for all 4 abutment groups tightened with or without the counter-torque device was slightly more than 3.53 degrees. The absolute degrees of rotation for all 4 abutment groups were less than 1.50 degrees with or without the use of the counter-torque device. The hexagon-to-hexagon orientation measured as rotational fit on all abutment systems was below the 5 degrees suggested as optimal for screw joint stability. The absolute degrees of rotation for all 4 abutment groups were less than 1.50 degrees regardless of whether the counter-torque device was used.
Haq, Jahrad; Patel, Nishma; Weimer, Katherine; Matthews, N Shaun
2014-04-01
Ankylosis of the temporomandibular joint (TMJ) is a debilitating condition that can result in pain, trismus, and a poor quality of life. It can be caused by injury, infection, and rheumatoid disease. Current management includes gap arthroplasty, interpositional arthroplasty, and reconstruction. Traditionally, joints are reconstructed using stock implants, or the procedure is done in two stages with an additional computed tomography (CT) scan between the resective and reconstructive procedures and use of stereolithographic models to aid the design of the definitive prostheses. We describe a technique for the resection of ankylosis and reconstruction of the joint in a single operation using virtually designed custom-made implants. Five patients with ankylosis of the TMJ had a single stage operation with reconstruction between 2010 and 2012. All had preoperative high-resolution CT with contrast angiography. During an international web-based teleconference between the surgeon and the engineer a virtual resection of the ankylosis was done using the reconstructed CT images. The bespoke cutting guides and implants were designed virtually at the same time and were then manufactured precisely using computer-aided design and manufacture (CAD-CAM) over 6 weeks. After release of the ankylosis and reconstruction, the patients underwent an exercise regimen to improve mouth opening. Follow-up was for a minimum of 6 months. Four patients had one operation, and one patient had two. Median/Mean maximum incisal opening increased from 0.6mm before operation to 25 mm afterwards (range 23-27), and there was minimal surgical morbidity. This new method effectively treats ankylosis of the TMJ in a single stage procedure. Fewer operations and hospital stays, and the maintenance of overall clinical outcome are obvious advantages. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
“In vitro” Implantation Technique Based on 3D Printed Prosthetic Prototypes
NASA Astrophysics Data System (ADS)
Tarnita, D.; Boborelu, C.; Geonea, I.; Malciu, R.; Grigorie, L.; Tarnita, D. N.
2018-06-01
In this paper, Rapid Prototyping ZCorp 310 system, based on high-performance composite powder and on resin-high strength infiltration system and three-dimensional printing as a manufacturing method are used to obtain physical prototypes of orthopaedic implants and prototypes of complex functional prosthetic systems directly from the 3D CAD data. These prototypes are useful for in vitro experimental tests and measurements to optimize and obtain final physical prototypes. Using a new elbow prosthesis model prototype obtained by 3D printing, the surgical technique of implantation is established. Surgical implantation was performed on male corpse elbow joint.
EFFECT OF MECHANICAL STIMULI ON SKELETAL REGENERATION AROUND IMPLANTS
Leucht, Philipp; Kim, Jae-Beom; Wazen, Rima; Currey, Jennifer A.; Nanci, Antonio; Brunski, John B.; Helms, Jill A.
2007-01-01
Due to the aging population and the increasing need for total joint replacements, osseointegration is of a great interest for various clinical disciplines. Our objective was to investigate the molecular and cellular foundation that underlies this process. Here, we used an in vivo mouse model to study the cellular and molecular response in three distinct areas of unloaded implants: the periosteum, the gap between implant and cortical bone, and the marrow space. Our analyses began with the early phases of healing, and continued until the implants were completely osseointegrated. We investigated aspects of osseointegration ranging from vascularization, cell proliferation, differentiation, and bone remodeling. In doing so, we gained an understanding of the healing mechanisms of different skeletal tissues during unloaded implant osseointegration. To continue our analysis, we used a micromotion device to apply a defined physical stimulus to the implants, and in doing so, we dramatically enhanced bone formation in the peri-implant tissue. By comparing strain measurements with cellular and molecular analyses, we developed an understanding of the correlation between strain magnitudes and fate decisions of cells shaping the skeletal regenerate. PMID:17175211
Degidi, Marco; Nardi, Diego; Morri, Alessandro; Sighinolfi, Gianluca; Tebbel, Florian; Marchetti, Claudio
2017-09-01
Fatigue behavior of the titanium bars is of utmost importance for the safe and reliable operation of dental implants and prosthetic constructions based on these implants. To date, however, only few data are available on the fatigue strength of dental prostheses made with electric resistance welding and laser welding techniques. This in-vitro study highlighted that although the joints made with the laser welding approach are credited of a superior tensile strength, joints made with electric resistance welding exhibited double the minimum fatigue strength with respect to the joints made with laser welding (120 vs 60 N).
The ethical allocation of scarce resources in surgery: implants and cost
Gross, Michael
1997-01-01
This paper is a discussion of the factors involved in instituting a bulk purchasing program for surgical supplies. An improved understanding of the surgical procedure of joint arthroplasty must relate to the variability in surgical methods that achieve patient outcomes. An understanding of the outcomes in relation to the expected duration of the success of an implant and the high costs associated with a revision earlier than expected must be factored into the budget and costs of implants. The ethical implications of choosing one implant over another are considered. A more uniform outcome assessment with respect to surgical activities is needed and potential savings related to other operating-room costs must be examined. Optimizing the implant to patient requirements is the goal within the framework of current fiscal constraints. PMID:9416251
Contact mechanics of reverse engineered distal humeral hemiarthroplasty implants.
Willing, Ryan; King, Graham J W; Johnson, James A
2015-11-26
Erosion of articular cartilage is a concern following distal humeral hemiarthroplasty, because native cartilage surfaces are placed in contact with stiff metallic implant components, which causes decreases in contact area and increases in contact stresses. Recently, reverse engineered implants have been proposed which are intended to promote more natural contact mechanics by reproducing the native bone or cartilage shape. In this study, finite element modeling is used in order to calculate changes in cartilage contact areas and stresses following distal humeral hemiarthroplasty with commercially available and reverse engineered implant designs. At the ulna, decreases in contact area were -34±3% (p=0.002), -27±1% (p<0.001) and -14±2% (p=0.008) using commercially available, bone reverse engineered and cartilage reverse engineered designs, respectively. Peak contact stresses increased by 461±57% (p=0.008), 387±127% (p=0.229) and 165±16% (p=0.003). At the radius, decreases in contact area were -21±3% (p=0.013), -13±2% (p<0.006) and -6±1% (p=0.020), and peak contact stresses increased by 75±52% (p>0.999), 241±32% (p=0.010) and 61±10% (p=0.021). Between the three different implant designs, the cartilage reverse engineered design yielded the largest contact areas and lowest contact stresses, but was still unable to reproduce the contact mechanics of the native joint. These findings align with a growing body of evidence indicating that although reverse engineered hemiarthroplasty implants can provide small improvements in contact mechanics when compared with commercially available designs, further optimization of shape and material properties is required in order reproduce native joint contact mechanics. Copyright © 2015 Elsevier Ltd. All rights reserved.
Surgical Approaches to the Proximal Interphalangeal Joint.
Cheah, Andre Eu-Jin; Yao, Jeffrey
2016-02-01
The proximal interphalangeal (PIP) joint may be affected by many conditions such as arthropathy, fractures, dislocations, and malunions. Whereas some of these conditions may be treated nonsurgically, many require open surgical intervention. Open interventions include implant arthroplasty or arthrodesis for arthropathy, open reduction internal fixation, or hemi-hamate arthroplasty for dorsal fracture-dislocations. Volar plate arthroplasty and corrective osteotomy for malunion about the PIP joint are also surgeries that may be required. The traditional approach to the PIP joint has been dorsal, which damages the delicate extensor apparatus with subsequent development of an extensor lag. This has led surgeons to explore volar and lateral approaches to the PIP joint. In this article, we describe each of these surgical approaches, discuss their advantages and disadvantages, and provide some guidance on which approach to choose based on the surgery that is to be performed. Copyright © 2016 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Sacroiliac Joint Fusion Minimally Affects Adjacent Lumbar Segment Motion: A Finite Element Study
Kiapour, Ali; Yerby, Scott A.; Goel, Vijay K.
2015-01-01
Background Adjacent segment disease is a recognized consequence of fusion in the spinal column. Fusion of the sacroiliac joint is an effective method of pain reduction. Although effective, the consequences of sacroiliac joint fusion and the potential for adjacent segment disease for the adjacent lumbar spinal levels is unknown. The objective of this study was to quantify the change in range of motion of the sacroiliac joint and the adjacent lumbar spinal motion segments due to sacroiliac joint fusion and compare these changes to previous literature to assess the potential for adjacent segment disease in the lumbar spine. Methods An experimentally validated finite element model of the lumbar spine and pelvis was used to simulate a fusion of the sacroiliac joint using three laterally placed triangular implants (iFuse Implant System, SI-BONE, Inc., San Jose, CA). The range of motion of the sacroiliac joint and the adjacent lumbar spinal motion segments were calculated using a hybrid loading protocol and compared with the intact range of motion in flexion, extension, lateral bending, and axial rotation. Results The range of motions of the treated sacroiliac joints were reduced in flexion, extension, lateral bending, and axial rotation, by 56.6%, 59.5%, 27.8%, and 53.3%, respectively when compared with the intact condition. The stiffening of the sacroiliac joint resulted in increases at the adjacent lumbar motion segment (L5-S1) for flexion, extension, lateral bending, and axial rotation, of 3.0%, 3.7%, 1.1%, and 4.6%, respectively. Conclusions Fusion of the sacroiliac joint resulted in substantial (> 50%) reductions in flexion, extension, and axial rotation of the sacroiliac joint with minimal (< 5%) increases in range of motion in the lumbar spine. Although the predicted increases in lumbar range of motion are minimal after sacroiliac joint fusion, the long-term clinical results remain to be investigated. PMID:26767156
Sacroiliac Joint Fusion Minimally Affects Adjacent Lumbar Segment Motion: A Finite Element Study.
Lindsey, Derek P; Kiapour, Ali; Yerby, Scott A; Goel, Vijay K
2015-01-01
Adjacent segment disease is a recognized consequence of fusion in the spinal column. Fusion of the sacroiliac joint is an effective method of pain reduction. Although effective, the consequences of sacroiliac joint fusion and the potential for adjacent segment disease for the adjacent lumbar spinal levels is unknown. The objective of this study was to quantify the change in range of motion of the sacroiliac joint and the adjacent lumbar spinal motion segments due to sacroiliac joint fusion and compare these changes to previous literature to assess the potential for adjacent segment disease in the lumbar spine. An experimentally validated finite element model of the lumbar spine and pelvis was used to simulate a fusion of the sacroiliac joint using three laterally placed triangular implants (iFuse Implant System, SI-BONE, Inc., San Jose, CA). The range of motion of the sacroiliac joint and the adjacent lumbar spinal motion segments were calculated using a hybrid loading protocol and compared with the intact range of motion in flexion, extension, lateral bending, and axial rotation. The range of motions of the treated sacroiliac joints were reduced in flexion, extension, lateral bending, and axial rotation, by 56.6%, 59.5%, 27.8%, and 53.3%, respectively when compared with the intact condition. The stiffening of the sacroiliac joint resulted in increases at the adjacent lumbar motion segment (L5-S1) for flexion, extension, lateral bending, and axial rotation, of 3.0%, 3.7%, 1.1%, and 4.6%, respectively. Fusion of the sacroiliac joint resulted in substantial (> 50%) reductions in flexion, extension, and axial rotation of the sacroiliac joint with minimal (< 5%) increases in range of motion in the lumbar spine. Although the predicted increases in lumbar range of motion are minimal after sacroiliac joint fusion, the long-term clinical results remain to be investigated.
Langohr, G Daniel G; Giles, Joshua W; Athwal, George S; Johnson, James A
2015-06-01
Little is known about the effects of glenosphere diameter on shoulder joint loads. The purpose of this biomechanical study was to investigate the effects of glenosphere diameter on joint load, load angle, and total deltoid force required for active abduction and range of motion in internal/external rotation and abduction. A custom, instrumented reverse shoulder arthroplasty implant system capable of measuring joint load and varying glenosphere diameter (38 and 42 mm) and glenoid offset (neutral and lateral) was implanted in 6 cadaveric shoulders to provide at least 80% power for all variables. A shoulder motion simulator was used to produce active glenohumeral and scapulothoracic motion. All implant configurations were tested with active and passive motion with joint kinematics, loads, and moments recorded. At neutral and lateralized glenosphere positions, increasing diameter significantly increased joint load (+12 ± 21 N and +6 ± 9 N; P < .01) and deltoid load required for active abduction (+9 ± 22 N and +11 ± 15 N; P < .02), whereas joint load angle was unaffected (P > .8). Passive internal rotation was reduced with increased diameter at both neutral and lateralized glenosphere positions (-6° ± 6° and -12° ± 6°; P < .002); however, external rotation was not affected (P > .05). At neutral glenosphere position, increasing diameter increased the maximum angles of both adduction (+1° ± 1°; P = .03) and abduction (+8° ± 9°; P < .05). Lateralization also increased abduction range of motion compared with neutral (P < .01). Although increasing glenosphere diameter significantly increased joint load and deltoid force, the clinical impact of these changes is presently unclear. Internal rotation, however, was reduced, which contradicts previous bone modeling studies, which we postulate is due to increased posterior capsular tension as it is forced to wrap around a larger 42 mm implant assembly. Copyright © 2015 Journal of
Effect of carbon ion implantation on the tribology of metal-on-metal bearings for artificial joints.
Koseki, Hironobu; Tomita, Masato; Yonekura, Akihiko; Higuchi, Takashi; Sunagawa, Sinya; Baba, Koumei; Osaki, Makoto
2017-01-01
Metal-on-metal (MoM) bearings have become popular due to a major advantage over metal-on-polymer bearings for total hip arthroplasty in that the larger femoral head and hydrodynamic lubrication of the former reduce the rate of wear. However, concerns remain regarding adverse reactions to metal debris including metallosis caused by metal wear generated at the taper-head interface and another modular junction. Our group has hypothesized that carbon ion implantation (CII) may improve metal wear properties. The purpose of this study was to investigate the wear properties and friction coefficients of CII surfaces with an aim to ultimately apply these surfaces to MoM bearings in artificial joints. CII was applied to cobalt-chromium-molybdenum (Co-Cr-Mo) alloy substrates by plasma source ion implantation. The substrates were characterized using scanning electron microscopy and a 3D measuring laser microscope. Sliding contact tests were performed with a simple geometry pin-on-plate wear tester at a load of 2.5 N, a calculated contact pressure of 38.5 MPa (max: 57.8 MPa), a reciprocating velocity of 30 mm/s, a stroke length of 60 mm, and a reciprocating cycle count of 172,800 cycles. The surfaces of the CII substrates were generally featureless with a smooth surface topography at the same level as untreated Co-Cr-Mo alloy. Compared to the untreated Co-Cr-Mo alloy, the CII-treated bearings had lower friction coefficients, higher resistance to catastrophic damage, and prevented the adhesion of wear debris. The results of this study suggest that the CII surface stabilizes the wear status due to the low friction coefficient and low infiltration of partner materials, and these properties also prevent the adhesion of wear debris and inhibit excessive wear. Carbon is considered to be biologically inert; therefore, CII is anticipated to be applicable to the bearing surfaces of MoM prostheses.
Effect of carbon ion implantation on the tribology of metal-on-metal bearings for artificial joints
Koseki, Hironobu; Tomita, Masato; Yonekura, Akihiko; Higuchi, Takashi; Sunagawa, Sinya; Baba, Koumei; Osaki, Makoto
2017-01-01
Metal-on-metal (MoM) bearings have become popular due to a major advantage over metal-on-polymer bearings for total hip arthroplasty in that the larger femoral head and hydrodynamic lubrication of the former reduce the rate of wear. However, concerns remain regarding adverse reactions to metal debris including metallosis caused by metal wear generated at the taper-head interface and another modular junction. Our group has hypothesized that carbon ion implantation (CII) may improve metal wear properties. The purpose of this study was to investigate the wear properties and friction coefficients of CII surfaces with an aim to ultimately apply these surfaces to MoM bearings in artificial joints. CII was applied to cobalt-chromium-molybdenum (Co-Cr-Mo) alloy substrates by plasma source ion implantation. The substrates were characterized using scanning electron microscopy and a 3D measuring laser microscope. Sliding contact tests were performed with a simple geometry pin-on-plate wear tester at a load of 2.5 N, a calculated contact pressure of 38.5 MPa (max: 57.8 MPa), a reciprocating velocity of 30 mm/s, a stroke length of 60 mm, and a reciprocating cycle count of 172,800 cycles. The surfaces of the CII substrates were generally featureless with a smooth surface topography at the same level as untreated Co-Cr-Mo alloy. Compared to the untreated Co-Cr-Mo alloy, the CII-treated bearings had lower friction coefficients, higher resistance to catastrophic damage, and prevented the adhesion of wear debris. The results of this study suggest that the CII surface stabilizes the wear status due to the low friction coefficient and low infiltration of partner materials, and these properties also prevent the adhesion of wear debris and inhibit excessive wear. Carbon is considered to be biologically inert; therefore, CII is anticipated to be applicable to the bearing surfaces of MoM prostheses. PMID:28615939
Pot, Michiel W; van Kuppevelt, Toin H; Gonzales, Veronica K; Buma, Pieter; IntHout, Joanna; de Vries, Rob B M; Daamen, Willeke F
2017-01-01
Bone marrow stimulation may be applied to regenerate focal cartilage defects, but generally results in transient clinical improvement and formation of fibrocartilage rather than hyaline cartilage. Tissue engineering and regenerative medicine strive to develop new solutions to regenerate hyaline cartilage tissue. This systematic review and meta-analysis provides a comprehensive overview of current literature and assesses the efficacy of articular cartilage regeneration by implantation of cell-laden versus cell-free biomaterials in the knee and ankle joint in animals after bone marrow stimulation. PubMed and EMBASE (via OvidSP) were systematically searched using tissue engineering, cartilage and animals search strategies. Included were primary studies in which cellular and acellular biomaterials were implanted after applying bone marrow stimulation in the knee or ankle joint in healthy animals. Study characteristics were tabulated and outcome data were collected for meta-analysis for studies applying semi-quantitative histology as outcome measure (117 studies). Cartilage regeneration was expressed on an absolute 0-100% scale and random effects meta-analyses were performed. Implantation of cellular biomaterials significantly improved cartilage regeneration by 18.6% compared to acellular biomaterials. No significant differences were found between biomaterials loaded with stem cells and those loaded with somatic cells. Culture conditions of cells did not affect cartilage regeneration. Cartilage formation was reduced with adipose-derived stem cells compared to other cell types, but still improved compared to acellular scaffolds. Assessment of the risk of bias was impaired due to incomplete reporting for most studies. Implantation of cellular biomaterials improves cartilage regeneration compared to acellular biomaterials.
van Kuppevelt, Toin H.; Gonzales, Veronica K.; Buma, Pieter; IntHout, Joanna; de Vries, Rob B.M.
2017-01-01
Bone marrow stimulation may be applied to regenerate focal cartilage defects, but generally results in transient clinical improvement and formation of fibrocartilage rather than hyaline cartilage. Tissue engineering and regenerative medicine strive to develop new solutions to regenerate hyaline cartilage tissue. This systematic review and meta-analysis provides a comprehensive overview of current literature and assesses the efficacy of articular cartilage regeneration by implantation of cell-laden versus cell-free biomaterials in the knee and ankle joint in animals after bone marrow stimulation. PubMed and EMBASE (via OvidSP) were systematically searched using tissue engineering, cartilage and animals search strategies. Included were primary studies in which cellular and acellular biomaterials were implanted after applying bone marrow stimulation in the knee or ankle joint in healthy animals. Study characteristics were tabulated and outcome data were collected for meta-analysis for studies applying semi-quantitative histology as outcome measure (117 studies). Cartilage regeneration was expressed on an absolute 0–100% scale and random effects meta-analyses were performed. Implantation of cellular biomaterials significantly improved cartilage regeneration by 18.6% compared to acellular biomaterials. No significant differences were found between biomaterials loaded with stem cells and those loaded with somatic cells. Culture conditions of cells did not affect cartilage regeneration. Cartilage formation was reduced with adipose-derived stem cells compared to other cell types, but still improved compared to acellular scaffolds. Assessment of the risk of bias was impaired due to incomplete reporting for most studies. Implantation of cellular biomaterials improves cartilage regeneration compared to acellular biomaterials. PMID:29093996
Gregson, C L; Hardcastle, S A; Murphy, A; Faber, B; Fraser, W D; Williams, M; Davey Smith, G; Tobias, J H
2017-04-01
High Bone Mass (HBM) is associated with (a) radiographic knee osteoarthritis (OA), partly mediated by increased BMI, and (b) pelvic enthesophytes and hip osteophytes, suggestive of a bone-forming phenotype. We aimed to establish whether HBM is associated with radiographic features of OA in non-weight-bearing (hand) joints, and whether such OA demonstrates a bone-forming phenotype. HBM cases (BMD Z-scores≥+3.2) were compared with family controls. A blinded assessor graded all PA hand radiographs for: osteophytes (0-3), joint space narrowing (JSN) (0-3), subchondral sclerosis (0-1), at the index Distal Interphalangeal Joint (DIPJ) and 1st Carpometacarpal Joint (CMCJ), using an established atlas. Analyses used a random effects logistic regression model, adjusting a priori for age and gender. Mediating roles of BMI and bone turnover markers (BTMs) were explored by further adjustment. 314 HBM cases (mean age 61.1years, 74% female) and 183 controls (54.3years, 46% female) were included. Osteophytes (grade≥1) were more common in HBM (DIPJ: 67% vs. 45%, CMCJ: 69% vs. 50%), with adjusted OR [95% CI] 1.82 [1.11, 2.97], p=0.017 and 1.89 [1.19, 3.01], p=0.007 respectively; no differences were seen in JSN. Further adjustment for BMI failed to attenuate ORs for osteophytes in HBM cases vs. controls; DIPJ 1.72 [1.05, 2.83], p=0.032, CMCJ 1.76 [1.00, 3.06], p=0.049. Adjustment for BTMs (concentrations lower amongst HBM cases) did not attenuate ORs. HBM is positively associated with OA in non-weight-bearing joints, independent of BMI. HBM-associated OA is characterised by osteophytes, consistent with a bone-forming phenotype, rather than JSN reflecting cartilage loss. Systemic factors (e.g. genetic architecture) which govern HBM may also increase bone-forming OA risk. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Early Pleistocene third metacarpal from Kenya and the evolution of modern human-like hand morphology
Ward, Carol V.; Tocheri, Matthew W.; Plavcan, J. Michael; Brown, Francis H.; Manthi, Fredrick Kyalo
2014-01-01
Despite discoveries of relatively complete hands from two early hominin species (Ardipithecus ramidus and Australopithecus sediba) and partial hands from another (Australopithecus afarensis), fundamental questions remain about the evolution of human-like hand anatomy and function. These questions are driven by the paucity of hand fossils in the hominin fossil record between 800,000 and 1.8 My old, a time interval well documented for the emergence and subsequent proliferation of Acheulian technology (shaped bifacial stone tools). Modern and Middle to Late Pleistocene humans share a suite of derived features in the thumb, wrist, and radial carpometacarpal joints that is noticeably absent in early hominins. Here we show that one of the most distinctive features of this suite in the Middle Pleistocene to recent human hand, the third metacarpal styloid process, was present ∼1.42 Mya in an East African hominin from Kaitio, West Turkana, Kenya. This fossil thus provides the earliest unambiguous evidence for the evolution of a key shared derived characteristic of modern human and Neandertal hand morphology and suggests that the distinctive complex of radial carpometacarpal joint features in the human hand arose early in the evolution of the genus Homo and probably in Homo erectus sensu lato. PMID:24344276
Osteochondritis Dessicans- Primary Fixation using Bioabsorbable Implants
Galagali, Anand; Rao, Muralidhar
2012-01-01
Introduction: Osteochondritis dessicans (OCD) is a localized condition where a section of articular cartilage and underlying subchondral bone separate from the joint surface. It is important to diagnose unstable OCD early and fix the fragments primarily as the results of any surgical management at late presentations are guarded. Use of bioabsorbable implants for fixing OCD is recent and we report one such case in grade IV OCD. Case Report: We present a 14 year old girl who came with a history of acute pain, swelling, inability to bear weight on the right knee following a dance practice. MRI showed stage IV osteochondral fragment measuring 20x 8mm lying free. This was primarily fixed with bioabsorbable implants. 10 months follow up showed excellent clinical and functional results. Conclusion: This case highlights the advantages of early primary fixation whenever possible. By far, to our knowledge, this is the first case of successful treatment of stage IV OCD using bioabsorbable implants. PMID:27298854
Theoretical optimum of implant positional index design.
Semper, W; Kraft, S; Krüger, T; Nelson, K
2009-08-01
Rotational freedom of the implant-abutment connection influences its screw joint stability; for optimization, influential factors need to be evaluated based on a previously developed closed formula. The underlying hypothesis is that the manufacturing tolerances, geometric pattern, and dimensions of the index do not influence positional stability. We used the dimensions of 5 commonly used implant systems with a clearance of 20 microm to calculate the extent of rotational freedom; a 3D simulation (SolidWorks) validated the analytical findings. Polygonal positional indices showed the highest degrees of rotational freedom. The polygonal profile displayed higher positional stability than the polygons, but less positional accuracy than the cam-groove connection. Features of a maximal rotation-safe positional index were determined. The analytical calculation of rotational freedom of implant positional indices is possible. Rotational freedom is dependent on the geometric design of the index and may be decreased by incorporating specific aspects into the positional index design.
The effects on bone cells of metal ions released from orthopaedic implants. A review
Sansone, Valerio; Pagani, Davide; Melato, Marco
2013-01-01
Summary The increasing use of orthopedic implants and, in particular, of hip and knee joint replacements for young and active patients, has stimulated interest and concern regarding the chronic, long-term effects of the materials used. This review focuses on the current knowledge of the adverse biologic reactions to metal particles released from orthopaedic implants in vivo and in vitro. More specifically, the purpose of this article is to provide an overview of the current literature about the adverse effects of metal particles on bone cells and peri-implant bone. PMID:23858309
Moewis, Philippe; Checa, Sara; Kutzner, Ines; Hommel, Hagen; Duda, Georg N
2018-01-01
Mechanical and kinematical aligning techniques are the usual positioning methods during total knee arthroplasty. However, alteration of the physiological joint line and unbalanced medio-lateral load distribution are considered disadvantages in the mechanical and kinematical techniques, respectively. The aim of this study was to analyse the influence of the joint line on the strain and stress distributions in an implanted knee and their sensitivity to rotational mal-alignment. Finite element calculations were conducted to analyse the stresses in the PE-Inlay and the mechanical strains at the bone side of the tibia component-tibia bone interface during normal positioning of the components and internal and external mal-rotation of the tibial component. Two designs were included, a horizontal and a physiological implant. The loading conditions are based on internal knee joint loads during walking. A medialization of the stresses on the PE-Inlay was observed in the physiological implant in a normal position, accompanied by higher stresses in the mal-rotated positions. Within the tibia component-tibia bone interface, similar strain distributions were observed in both implant geometries in the normal position. However, a medialization of the strains was observed in the physiological implant in both mal-rotated conditions with greater bone volume affected by higher strains. Although evident changes due to mal-rotation were observed, the stresses do not suggest a local plastic deformation of the PE-Inlay. The strains values within most of the tibia component-tibia bone interface were in the physiological strain zone and no significant bone changes would be expected. The physiological cut on the articular aspect showed no detrimental effect compared to the horizontal implant.
Kaur, Sandeep; Harjai, Kusum; Chhibber, Sanjay
2016-01-01
Staphylococcus comprises up to two-thirds of all pathogens in orthopaedic implant infections with two species respectively Staphylococcus aureus and Staphylococcus epidermidis, being the predominate etiological agents isolated. Further, with the emergence of methicillin-resistant S. aureus (MRSA), treatment of S. aureus implant infections has become more difficult, thus representing a devastating complication. Use of local delivery system consisting of S.aureus specific phage along with linezolid (incorporated in biopolymer) allowing gradual release of the two agents at the implant site represents a new, still unexplored treatment option (against orthopaedic implant infections) that has been studied in an animal model of prosthetic joint infection. Naked wire, hydroxypropyl methylcellulose (HPMC) coated wire and phage and /or linezolid coated K-wire were surgically implanted into the intra-medullary canal of mouse femur bone of respective groups followed by inoculation of S.aureus ATCC 43300(MRSA). Mice implanted with K-wire coated with both the agents i.e phage as well as linezolid (dual coated wires) showed maximum reduction in bacterial adherence, associated inflammation of the joint as well as faster resumption of locomotion and motor function of the limb. Also, all the coating treatments showed no emergence of resistant mutants. Use of dual coated implants incorporating lytic phage (capable of self-multiplication) as well as linezolid presents an attractive and aggressive early approach in preventing as well as treating implant associated infections caused by methicillin resistant S. aureus strains as assessed in a murine model of experimental joint infection. PMID:27333300
Artificial atlanto-odontoid joint replacement through a transoral approach.
Lu, Bin; He, Xi Jing; Zhao, Chen Guang; Li, Hao Peng; Wang, Dong
2009-01-01
Resection of the odontoid process and anterior arch of the atlas results in atlantoaxial instability, which if left uncorrected may lead to severe neurological complications. Currently, such atlantoaxial instability is corrected by anterior and/or posterior C1-C2 fusion. However, this results in considerable loss of rotation function of the atlantoaxial complex. From the viewpoint of retaining the rotation function and providing stability, we designed an artificial atlanto-odontoid joint based on anatomical measurements of 50 pairs of dry atlantoaxial specimens by digital calipers and 10 fresh cadaveric specimens by microsurgical techniques. The metal-on-metal titanium alloy joint has an arc-shaped atlas component, and a hollow cylindrical bushing into which fits a rotation axle of an inverted v-shaped axis component and is implanted through a transoral approach. After the joint was implanted onto specimens with anterior decompression, biomechanical tests were performed to compare the stability parameters in the intact state, after decompression, after artificial joint replacement, and after fatigue test. Compared to the intact state, artificial joint replacement resulted in a significant decrease in the range of motion (ROM) and neutral zone (NZ) during flexion, extension, and lateral bending (P < 0.001); however, with regard to axial rotation, there was no significant difference in ROM (P = 0.405), a significant increase in NZ (P = 0.008), and a significant decrease in stiffness (P = 0.003). Compared to the decompressed state, artificial joint replacement resulted in a significantly decreased ROM (P B 0.021) and NZ (P B 0.002) and a significantly increased stiffness (P \\ 0.001) in all directions. Following artificial joint replacement, there was no significant difference in ROM (P C 0.719), NZ (P C 0.580), and stiffness (P C 0.602) in all directions before and after the fatigue test. The artificial joint showed no signs of wear and tear after the fatigue test
Artificial atlanto-odontoid joint replacement through a transoral approach
Lu, Bin; Zhao, Chen Guang; Li, Hao Peng; Wang, Dong
2008-01-01
Resection of the odontoid process and anterior arch of the atlas results in atlantoaxial instability, which if left uncorrected may lead to severe neurological complications. Currently, such atlantoaxial instability is corrected by anterior and/or posterior C1–C2 fusion. However, this results in considerable loss of rotation function of the atlantoaxial complex. From the viewpoint of retaining the rotation function and providing stability, we designed an artificial atlanto-odontoid joint based on anatomical measurements of 50 pairs of dry atlantoaxial specimens by digital calipers and 10 fresh cadaveric specimens by microsurgical techniques. The metal-on-metal titanium alloy joint has an arc-shaped atlas component, and a hollow cylindrical bushing into which fits a rotation axle of an inverted v-shaped axis component and is implanted through a transoral approach. After the joint was implanted onto specimens with anterior decompression, biomechanical tests were performed to compare the stability parameters in the intact state, after decompression, after artificial joint replacement, and after fatigue test. Compared to the intact state, artificial joint replacement resulted in a significant decrease in the range of motion (ROM) and neutral zone (NZ) during flexion, extension, and lateral bending (P < 0.001); however, with regard to axial rotation, there was no significant difference in ROM (P = 0.405), a significant increase in NZ (P = 0.008), and a significant decrease in stiffness (P = 0.003). Compared to the decompressed state, artificial joint replacement resulted in a significantly decreased ROM (P ≤ 0.021) and NZ (P ≤ 0.002) and a significantly increased stiffness (P < 0.001) in all directions. Following artificial joint replacement, there was no significant difference in ROM (P ≥ 0.719), NZ (P ≥ 0.580), and stiffness (P ≥ 0.602) in all directions before and after the fatigue test. The artificial joint showed no signs of wear and
Jakobsen, Thomas; Baas, Jørgen; Kold, Søren; Bechtold, Joan E.; Elmengaard, Brian; Søballe, Kjeld
2013-01-01
It has been shown that fixation of primary cementless joint replacement can independently be enhanced by either: (1) use of hydroxyapatite (HA) coated implants, (2) compaction of the peri-implant bone, or (3) local application of bisphosphonate. We investigated whether the combined effect ofHAcoating and bone compaction can be further enhanced with the use of local bisphosphonate treatment .HA-coated implants were bilaterally inserted into the proximal tibiae of 10 dogs. On one side local bisphosphonate was applied prior to bone compaction. Saline was used as control on the contralateral side. Implants were evaluated with histomorphometry and biomechanical pushout test. We found that bisphosphonate increased the peri-implant bone volume fraction (1.3-fold), maximum shear strength (2.1-fold), and maximum shear stiffness (2.7-fold). No significant difference was found in bone-to-implant contact or total energy absorption. This study indicates that local alendronate treatment can further improve the fixation of porous-coated implants that have also undergone HA-surface coating and peri-implant bone compaction. PMID:18752278
Royhman, Dmitry; Radhakrishnan, Rashmi; Yuan, Judy Chia-Chun; Mathew, Mathew T; Mercuri, Louis G; Sukotjo, Cortino
2014-10-01
To investigate the corrosion behaviour of commonly used TMJ implants alloys (CoCrMo and Ti6Al4V) under simulated physiological conditions. Corrosion behaviour was evaluated using standard electrochemical corrosion techniques and galvanic corrosion techniques as per ASTM standards. Standard electrochemical tests (E(corr), I(corr), R(p) and C(f)) were conducted in bovine calf serum (BCS), as a function of alloys type and different pHs. Galvanic corrosion tests were conducted in BCS at a pH of 7.6. Alloy surfaces were characterized using white-light interferometry (WLI) and scanning electron microscopy (SEM). The potentiodynamic test results exhibited the enhanced passive layer growth and a better corrosion resistance of Ti6Al4V compared to CoCrMo. Electrochemical impedance spectroscopy measurements demonstrated the influence of protein as a function of pH on corrosion mechanisms/kinetics. Galvanic coupling was not a major contributor to corrosion. SEM and WLI images demonstrated a significantly higher in surface roughness in CoCrMo after corrosion. The results of this study suggest that Ti6Al4V shows superior corrosion behaviour to CoCrMo due to its strong passive layer, simulated joint fluid components can affect the electrochemical nature of the metal/electrolyte interface as a function of pH, and the galvanic effect of coupling CoCrMo and Ti6Al4V in a single joint is weak. Published by Elsevier Ltd.
Implant healing in experimental animal models of diabetes.
Le, Nga N; Rose, Michael B; Levinson, Howard; Klitzman, Bruce
2011-05-01
Diabetes mellitus is becoming increasingly prevalent worldwide. Additionally, there is an increasing number of patients receiving implantable devices such as glucose sensors and orthopedic implants. Thus, it is likely that the number of diabetic patients receiving these devices will also increase. Even though implantable medical devices are considered biocompatible by the Food and Drug Administration, the adverse tissue healing that occurs adjacent to these foreign objects is a leading cause of their failure. This foreign body response leads to fibrosis, encapsulation of the device, and a reduction or cessation of device performance. A second adverse event is microbial infection of implanted devices, which can lead to persistent local and systemic infections and also exacerbates the fibrotic response. Nearly half of all nosocomial infections are associated with the presence of an indwelling medical device. Events associated with both the foreign body response and implant infection can necessitate device removal and may lead to amputation, which is associated with significant morbidity and cost. Diabetes mellitus is generally indicated as a risk factor for the infection of a variety of implants such as prosthetic joints, pacemakers, implantable cardioverter defibrillators, penile implants, and urinary catheters. Implant infection rates in diabetic patients vary depending upon the implant and the microorganism, however, for example, diabetes was found to be a significant variable associated with a nearly 7.2% infection rate for implantable cardioverter defibrillators by the microorganism Candida albicans. While research has elucidated many of the altered mechanisms of diabetic cutaneous wound healing, the internal healing adjacent to indwelling medical devices in a diabetic model has rarely been studied. Understanding this healing process is crucial to facilitating improved device design. The purpose of this article is to summarize the physiologic factors that
Implant Healing in Experimental Animal Models of Diabetes
Le, Nga N; Rose, Michael B; Levinson, Howard; Klitzman, Bruce
2011-01-01
Diabetes mellitus is becoming increasingly prevalent worldwide. Additionally, there is an increasing number of patients receiving implantable devices such as glucose sensors and orthopedic implants. Thus, it is likely that the number of diabetic patients receiving these devices will also increase. Even though implantable medical devices are considered biocompatible by the Food and Drug Administration, the adverse tissue healing that occurs adjacent to these foreign objects is a leading cause of their failure. This foreign body response leads to fibrosis, encapsulation of the device, and a reduction or cessation of device performance. A second adverse event is microbial infection of implanted devices, which can lead to persistent local and systemic infections and also exacerbates the fibrotic response. Nearly half of all nosocomial infections are associated with the presence of an indwelling medical device. Events associated with both the foreign body response and implant infection can necessitate device removal and may lead to amputation, which is associated with significant morbidity and cost. Diabetes mellitus is generally indicated as a risk factor for the infection of a variety of implants such as prosthetic joints, pacemakers, implantable cardioverter defibrillators, penile implants, and urinary catheters. Implant infection rates in diabetic patients vary depending upon the implant and the microorganism, however, for example, diabetes was found to be a significant variable associated with a nearly 7.2% infection rate for implantable cardioverter defibrillators by the microorganism Candida albicans. While research has elucidated many of the altered mechanisms of diabetic cutaneous wound healing, the internal healing adjacent to indwelling medical devices in a diabetic model has rarely been studied. Understanding this healing process is crucial to facilitating improved device design. The purpose of this article is to summarize the physiologic factors that
Yang, Xu; Ricciardi, Benjamin F.; Dvorzhinskiy, Aleksey; Brial, Caroline; Lane, Zachary; Bhimani, Samrath; Burket, Jayme C.; Hu, Bin; Sarkisian, Alexander M.; Ross, F. Patrick; van der Meulen, Marjolein C.H.; Bostrom, Mathias P.G.
2015-01-01
Background: Long-term fixation of uncemented joint implants requires early mechanical stability and implant osseointegration. To date, osseointegration has been unreliable and remains a major challenge in cementless total knee arthroplasty. We developed a murine model in which an intra-articular proximal tibial titanium implant with a roughened stem can be loaded through the knee joint. Using this model, we tested the hypothesis that intermittent injection of parathyroid hormone (iPTH) would increase proximal tibial cancellous osseointegration. Methods: Ten-week-old female C57BL/6 mice received a subcutaneous injection of PTH (40 μg/kg/day) or a vehicle (n = 45 per treatment group) five days per week for six weeks, at which time the baseline group was killed (n = 6 per treatment group) and an implant was inserted into the proximal part of the tibiae of the remaining mice. Injections were continued until the animals were killed at one week (n = 7 per treatment group), two weeks (n = 14 per treatment group), or four weeks (n = 17 per treatment group) after implantation. Outcomes included peri-implant bone morphology as analyzed with micro-computed tomography (microCT), osseointegration percentage and bone area fraction as shown with backscattered electron microscopy, cellular composition as demonstrated by immunohistochemical analysis, and pullout strength as measured with mechanical testing. Results: Preimplantation iPTH increased the epiphyseal bone volume fraction by 31.6%. When the data at post-implantation weeks 1, 2, and 4 were averaged for the iPTH-treated mice, the bone volume fraction was 74.5% higher in the peri-implant region and 168% higher distal to the implant compared with the bone volume fractions in the same regions in the vehicle-treated mice. Additionally, the trabecular number was 84.8% greater in the peri-implant region and 74.3% greater distal to the implant. Metaphyseal osseointegration and bone area fraction were 28.1% and 70.1% higher
Characterization of cell cultures in contact with different orthopedic implants biomaterials
NASA Astrophysics Data System (ADS)
Ouenzerfi, G.; Hannoun, A.; Hassler, M.; Brizuela, L.; Youjil, S.; Bougault, C.; Trunfio-Sfarghiu, A.-M.
2016-08-01
The aim of this study is to identify the role of biological and mechanical constraints (at the cellular level) surrounding living tissues (cartilage and bone) in the presence of different joint implant biomaterials. In this fact, cells cultures in the presence of different types of biomaterials (pyrolytic carbon, cobalt-Chromium, titanium) has been performed. These cell cultures were subjected to biological characterization tests and mechanical characterization. The obtained results correlate with the in vivo observations (a promotion of the creation of a neocartilagical tissue in contact with the Pyrolytic Carbon implants).
2013-01-01
Background Ceramic materials are used in a growing proportion of hip joint prostheses due to their wear resistance and biocompatibility properties. However, ceramics have not been applied successfully in total knee joint endoprostheses to date. One reason for this is that with strict surface quality requirements, there are significant challenges with regard to machining. High-toughness bioceramics can only be machined by grinding and polishing processes. The aim of this study was to develop an automated process chain for the manufacturing of an all-ceramic knee implant. Methods A five-axis machining process was developed for all-ceramic implant components. These components were used in an investigation of the influence of surface conformity on wear behavior under simplified knee joint motion. Results The implant components showed considerably reduced wear compared to conventional material combinations. Contact area resulting from a variety of component surface shapes, with a variety of levels of surface conformity, greatly influenced wear rate. Conclusions It is possible to realize an all-ceramic knee endoprosthesis device, with a precise and affordable manufacturing process. The shape accuracy of the component surfaces, as specified by the design and achieved during the manufacturing process, has a substantial influence on the wear behavior of the prosthesis. This result, if corroborated by results with a greater sample size, is likely to influence the design parameters of such devices. PMID:23988155
Turger, Anke; Köhler, Jens; Denkena, Berend; Correa, Tomas A; Becher, Christoph; Hurschler, Christof
2013-08-29
Ceramic materials are used in a growing proportion of hip joint prostheses due to their wear resistance and biocompatibility properties. However, ceramics have not been applied successfully in total knee joint endoprostheses to date. One reason for this is that with strict surface quality requirements, there are significant challenges with regard to machining. High-toughness bioceramics can only be machined by grinding and polishing processes. The aim of this study was to develop an automated process chain for the manufacturing of an all-ceramic knee implant. A five-axis machining process was developed for all-ceramic implant components. These components were used in an investigation of the influence of surface conformity on wear behavior under simplified knee joint motion. The implant components showed considerably reduced wear compared to conventional material combinations. Contact area resulting from a variety of component surface shapes, with a variety of levels of surface conformity, greatly influenced wear rate. It is possible to realize an all-ceramic knee endoprosthesis device, with a precise and affordable manufacturing process. The shape accuracy of the component surfaces, as specified by the design and achieved during the manufacturing process, has a substantial influence on the wear behavior of the prosthesis. This result, if corroborated by results with a greater sample size, is likely to influence the design parameters of such devices.
Villafañe, Jorge H; Valdes, Kristin; Angulo-Diaz-Parreño, Santiago; Pillastrini, Paolo; Negrini, Stefano
2015-06-01
Grip testing is commonly used as an objective measure of strength in the hand and upper extremity and is frequently used clinically as a proxy measure of function. Increasing knowledge of hand biomechanics, muscle strength, and prehension patterns can provide us with a better understanding of the functional capabilities of the hand. The objectives of this study were to determine the contribution of ulnar digits to overall grip strength in individuals with thumb carpometacarpal (CMC) osteoarthritis (OA). Thirty-seven subjects participated in the study. This group consisted of 19 patients with CMC OA (aged 60-88 years) and 18 healthy subjects (60-88 years). Three hand configurations were used by the subjects during grip testing: use of the entire hand (index, middle, ring, and little fingers) (IMRL); use of the index, middle, and ring fingers (IMR); and use of only the index and middle fingers (IM). Grip strength findings for the two groups found that compared to their healthy counterparts, CMC OA patients had, on average, a strength deficiency of 45.6, 35.5, and 28.8 % in IMRL, IMR, and IM, respectively. The small finger contribution to grip is 14.3 % and the ring and small finger contribute 34 % in subjects with CMC OA. Grip strength decreases as the number of digits contributing decreased in both groups. The ulnar digits contribution to grip strength is greater than one third of total grip strength in subjects with CMC OA. Individuals with CMC OA demonstrate significantly decreased grip strength when compared to their healthy counterparts.
A Soft Sensor-Based Three-Dimensional (3-D) Finger Motion Measurement System
Park, Wookeun; Ro, Kyongkwan; Kim, Suin; Bae, Joonbum
2017-01-01
In this study, a soft sensor-based three-dimensional (3-D) finger motion measurement system is proposed. The sensors, made of the soft material Ecoflex, comprise embedded microchannels filled with a conductive liquid metal (EGaln). The superior elasticity, light weight, and sensitivity of soft sensors allows them to be embedded in environments in which conventional sensors cannot. Complicated finger joints, such as the carpometacarpal (CMC) joint of the thumb are modeled to specify the location of the sensors. Algorithms to decouple the signals from soft sensors are proposed to extract the pure flexion, extension, abduction, and adduction joint angles. The performance of the proposed system and algorithms are verified by comparison with a camera-based motion capture system. PMID:28241414
The Evaluation of Unscrewing Torque Values of Implant-Abutment Connections: An In Vitro Study.
Bruna, Ezio; Fabianelli, Andrea; Mastriforti, Giacomo; Papacchini, Federica
This study investigated the stability of titanium screws in implant-abutment connections by measuring the force necessary to induce unscrewing. A total of 60 implant-abutment couplings were assigned to two groups (n = 30 each). The sequence 10-20-32 Ncm was tested in Group 1; the sequence 10-20-32-32-32 Ncm was tested in Group 2. The force necessary to unscrew each abutment-implant sample was recorded and statistically analyzed. The significance level was set at P < .05. Significant differences were found between the two sequences. Group 2 required higher forces than Group 1 to unscrew. The stability of the implant-abutment joint may be improved by tightening with the sequence 10-20-32-32-32 Ncm.
MEMS-Based Power Generation Techniques for Implantable Biosensing Applications
Lueke, Jonathan; Moussa, Walied A.
2011-01-01
Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS)-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient. PMID:22319362
MEMS-based power generation techniques for implantable biosensing applications.
Lueke, Jonathan; Moussa, Walied A
2011-01-01
Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS)-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient.
Schliephake, H; Schmelzeisen, R; Maschek, H; Haese, M
1999-10-01
The aim of the present study was to evaluate the long-term results of a group of patients who had the disk of the temporomandibular joint (TMJ) removed and permanently replaced by a silicone sheet. The study group comprised 48 patients, treated in the period from 1983 to 1993. In eight patients, the implants had to be removed after an average interval of 5.6 years and they were submitted for histopathological examination. Twenty-five of the 40 patients with silastic implants in place, and five of the 8 patients who had their implants removed, were available for long-term follow-up (mean interval of 7.0 years, SD 2.8 years). Clinical function was rated according to the Helkimo Dysfunction Index and compared to the preoperative findings. Results showed decreased tenderness of muscles and joints to palpation and increased mouth opening, but no statistically significant improvement in joint function. In 4 patients, a decrease in condylar width was found, while another 4 patients presented with thickening of the condyle by appositional bone formation. Histopathology of the failed implants showed scattered fragments of silastic material and dacron fibers with accumulation of histiocytes in immediate contact with the silicone particles and phagocytozed intracellular material. T-lymphocytes were also present in the vicinity of the silicone particles.
An inquiry into application of Gokyo (Aikido's Fifth Teaching) on human anatomy.
Olson, G D; Seitz, F C; Guldbrandsen, F
1996-06-01
In this anatomical analysis the authors examined Gokyo, Aikido's Fifth Teaching. Using their cadaver/anatomist-observer model, the authors observed that tissues manipulated by the technique were primarily on the dorsal side of the wrist, proximal to the second metacarpal. The source of the pain was thought to involve the manipulation of the wrist joints and associated carpometacarpal ligaments. Locations of the manipulated tissue and sources of pain associated with that tissue, and their limited practical application were discussed.
Helms, Gabriele; Rittmann, Pia; Wefstaedt, Patrick; Windhagen, Henning; Pressel, Thomas; Behrens, Bernd-Arno; Nolte, Ingo
2008-01-01
The development of pathological changes in both human and canine hip joints is mainly caused by a lack of synovial fluid lubrication. This results in an increased joint abrasion. Even after implantation of joint prosthesis, inadequate lubrication can lead to abrasion in the tribological pair. This can finally result in aseptic loosening of the prosthesis. In spite of the enormous number of studies that have been performed on human, only little knowledge about the tribological properties of the joints in dogs is available in the literature. For this reason the viscosities of synovial fluid, derived from physiological and pathologically changed canine elbow joints were measured. The viscosities were determined by the use of a cone-plate viscometer at different temperatures and shear rates. The obtained values were compared with the viscosity values of pathologically changed synovial fluids from human knee joints as well as with pathological samples from the canine hip joint. The results show that the viscosity values vary within a series of measurements and are inversely proportional to the temperature of the sample and the shear rate. The differences between the average viscosities of canine and human synovial fluids taken from pathologically changed joints are below 4% (22.5 s(-1) at theta1 = 25 degrees C). The findings of this study are being implemented in a FE-Model for the computation of actual forces in the hip joint during different movements. This would represent a contribution to an improved prosthetic treatment of canine and human hips.
Jakobsen, Thomas; Bechtold, Joan E; Søballe, Kjeld; Jensen, Thomas; Greiner, Stefan; Vestermark, Marianne T; Baas, Jørgen
2016-01-01
Early secure fixation of total joint replacements is crucial for long-term survival. Antiresorptive agents such as bisphosphonates have been shown to increase implant fixation. We investigated whether local delivery of zoledronate from poly-D, L-lactide (PDLLA)-coated implants could improve implant fixation and osseointegration. Experimental titanium implants were bilaterally inserted press-fit into the proximal tibiae of 10 dogs. On one side the implant was coated with PDLLA containing zoledronate. The contralateral implant was uncoated and used as control. Observation period was 12 weeks. Implant fixation was evaluated with histomorphometry and biomechanical push-out test. We found an approximately twofold increase in all biomechanical parameters when comparing data from the zoledronate group with their respective controls. Histomorphometry showed increased amount of preserved bone and increased bone formation around the zoledronate implants. This study indicates that local delivery of zoledronate from a PDDLA coating has the potential to increase implant fixation. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Zimmermann, Frauke; Schwenninger, Christoph; Nolten, Ulrich; Firmbach, Franz Peter; Elfring, Robert; Radermacher, Klaus
2012-05-06
Preservation and recovery of the mechanical leg axis as well as good rotational alignment of the prosthesis components and well-balanced ligaments are essential for the longevity of total knee arthroplasty (TKA). In the framework of the OrthoMIT project, the genALIGN system, a new navigated implantation approach based on intra-operative force-torque measurements, has been developed. With this system, optical or magnetic position tracking as well as any fixation of invasive rigid bodies are no longer necessary. For the alignment of the femoral component along the mechanical axis, a sensor-integrated instrument measures the torques resulting from the deviation between the instrument's axis and the mechanical axis under manually applied axial compression load. When both axes are coaxial, the resulting torques equal zero, and the tool axis can be fixed with respect to the bone. For ligament balancing and rotational alignment of the femoral component, the genALIGN system comprises a sensor-integrated tibial trial inlay measuring the amplitude and application points of the forces transferred between femur and tibia. Hereby, the impact of ligament tensions on knee joint loads can be determined over the whole range of motion. First studies with the genALIGN system, including a comparison with an imageless navigation system, show the feasibility of the concept.
The Need for an Implant Identification Card at Airport Security Check
Kosuge, Dennis; MacDowell, Andrew
2017-01-01
Background Joint replacement surgery is having an increasing demand as national healthcare systems confront an ever ageing population. Surgical complications associated with lower limb arthroplasty are well known but less investigation has been performed examining its effect on air travel, more specifically, unwanted and significant inconvenience caused to travelers going through airport security. Methods In lower limb arthroplasty clinics, 50 patients who met our selection criteria were given questionnaires. Ten airport security officers from 4 international airports (London Stansted, London Gatwick, London Heathrow, and Amsterdam Schiphol International Airport) were also given a separate questionnaire. The opinion of the Civil Aviation Authority was also sought. Results All 50 patients (mean age, 70.4 years; range, 55 to 84 years) who were presenting in lower limb arthroplasty clinics and who met our selection criteria volunteered to enter the study. Twenty-eight of these patients were female (mean age, 69.1 years; range, 55 to 84 years) and 22 were male (mean age, 71.2 years; range, 58 to 81 years). Of the patients, 14% stated that their joint replacements did not set off the airport security alarm. Responses were received from 10 airport security officers as well. Six airport security officers were male and 4 were female. All of the airport officers were aware of some form of implant identification card with 90% stating that these were useful to them at airport security. Eight-four percent of the patients stated that an implant identification card outlining what joint replacement they possessed and when this had been done would be very useful. Sixteen percent of the patients did not think a card would be beneficial since all of them had set off the airport alarm system only once or less in their lifetime. Conclusions It is the opinion of airport security officers and patients that joint replacement implant identification cards streamline airport security checks
The Need for an Implant Identification Card at Airport Security Check.
Ali, Erden; Kosuge, Dennis; MacDowell, Andrew
2017-06-01
Joint replacement surgery is having an increasing demand as national healthcare systems confront an ever ageing population. Surgical complications associated with lower limb arthroplasty are well known but less investigation has been performed examining its effect on air travel, more specifically, unwanted and significant inconvenience caused to travelers going through airport security. In lower limb arthroplasty clinics, 50 patients who met our selection criteria were given questionnaires. Ten airport security officers from 4 international airports (London Stansted, London Gatwick, London Heathrow, and Amsterdam Schiphol International Airport) were also given a separate questionnaire. The opinion of the Civil Aviation Authority was also sought. All 50 patients (mean age, 70.4 years; range, 55 to 84 years) who were presenting in lower limb arthroplasty clinics and who met our selection criteria volunteered to enter the study. Twenty-eight of these patients were female (mean age, 69.1 years; range, 55 to 84 years) and 22 were male (mean age, 71.2 years; range, 58 to 81 years). Of the patients, 14% stated that their joint replacements did not set off the airport security alarm. Responses were received from 10 airport security officers as well. Six airport security officers were male and 4 were female. All of the airport officers were aware of some form of implant identification card with 90% stating that these were useful to them at airport security. Eight-four percent of the patients stated that an implant identification card outlining what joint replacement they possessed and when this had been done would be very useful. Sixteen percent of the patients did not think a card would be beneficial since all of them had set off the airport alarm system only once or less in their lifetime. It is the opinion of airport security officers and patients that joint replacement implant identification cards streamline airport security checks and decrease the need for more
Fornaini, Carlo; Meleti, Marco; Bonanini, Mauro; Lagori, Giuseppe; Vescovi, Paolo; Merigo, Elisabetta; Nammour, Samir
2014-01-01
The first aim of this "ex vivo split mouth" study was to compare the thermal elevation during the welding process of titanium bars to titanium implants inserted in pig jaws by a thermal camera and two thermocouples. The second aim was to compare the strength of the joints by a traction test with a dynamometer. Six pigs' jaws were used and three implants were placed on each side of them for a total of 36 fixtures. Twelve bars were connected to the abutments (each bar on three implants) by using, on one side, laser welding and, on the other, resistance spot welding. Temperature variations were recorded by thermocouples and by thermal camera while the strength of the welded joint was analyzed by a traction test. For increasing temperature, means were 36.83 and 37.06, standard deviations 1.234 and 1.187, and P value 0.5763 (not significant). For traction test, means were 195.5 and 159.4, standard deviations 2.00 and 2.254, and P value 0.0001 (very significant). Laser welding was demonstrated to be able to connect titanium implant abutments without the risk of thermal increase into the bone and with good results in terms of mechanical strength.
Fornaini, Carlo; Meleti, Marco; Bonanini, Mauro; Lagori, Giuseppe; Vescovi, Paolo; Merigo, Elisabetta; Nammour, Samir
2014-01-01
Introduction. The first aim of this “ex vivo split mouth” study was to compare the thermal elevation during the welding process of titanium bars to titanium implants inserted in pig jaws by a thermal camera and two thermocouples. The second aim was to compare the strength of the joints by a traction test with a dynamometer. Materials and Methods. Six pigs' jaws were used and three implants were placed on each side of them for a total of 36 fixtures. Twelve bars were connected to the abutments (each bar on three implants) by using, on one side, laser welding and, on the other, resistance spot welding. Temperature variations were recorded by thermocouples and by thermal camera while the strength of the welded joint was analyzed by a traction test. Results. For increasing temperature, means were 36.83 and 37.06, standard deviations 1.234 and 1.187, and P value 0.5763 (not significant). For traction test, means were 195.5 and 159.4, standard deviations 2.00 and 2.254, and P value 0.0001 (very significant). Conclusion. Laser welding was demonstrated to be able to connect titanium implant abutments without the risk of thermal increase into the bone and with good results in terms of mechanical strength. PMID:25110731
Wear Debris Characterization and Corresponding Biological Response: Artificial Hip and Knee Joints
Nine, Md J.; Choudhury, Dipankar; Hee, Ay Ching; Mootanah, Rajshree; Osman, Noor Azuan Abu
2014-01-01
Wear debris, of deferent sizes, shapes and quantities, generated in artificial hip and knees is largely confined to the bone and joint interface. This debris interacts with periprosthetic tissue and may cause aseptic loosening. The purpose of this review is to summarize and collate findings of the recent demonstrations on debris characterization and their biological response that influences the occurrence in implant migration. A systematic review of peer-reviewed literature is performed, based on inclusion and exclusion criteria addressing mainly debris isolation, characterization, and biologic responses. Results show that debris characterization largely depends on their appropriate and accurate isolation protocol. The particles are found to be non-uniform in size and non-homogeneously distributed into the periprosthetic tissues. In addition, the sizes, shapes, and volumes of the particles are influenced by the types of joints, bearing geometry, material combination, and lubricant. Phagocytosis of wear debris is size dependent; high doses of submicron-sized particles induce significant level of secretion of bone resorbing factors. However, articles on wear debris from engineered surfaces (patterned and coated) are lacking. The findings suggest considering debris morphology as an important parameter to evaluate joint simulator and newly developed implant materials. PMID:28788496
Löwik, Claudia A M; Jutte, Paul C; Tornero, Eduard; Ploegmakers, Joris J W; Knobben, Bas A S; de Vries, Astrid J; Zijlstra, Wierd P; Dijkstra, Baukje; Soriano, Alex; Wouthuyzen-Bakker, Marjan
2018-03-27
Debridement, antibiotics, and implant retention (DAIR) is a widely used treatment modality for early acute prosthetic joint infection (PJI). A preoperative risk score was previously designed for predicting DAIR failure, consisting of chronic renal failure (K), liver cirrhosis (L), index surgery (I), cemented prosthesis (C), and C-reactive protein >115 mg/L (KLIC). The aim of this study was to validate the KLIC score in an external cohort. We retrospectively evaluated patients with early acute PJI treated with DAIR between 2006 and 2016 in 3 Dutch hospitals. Early acute PJI was defined as <21 days of symptoms and DAIR performed within 90 days after index surgery. Failure was defined as the need for (1) second DAIR, (2) implant removal, (3) suppressive antimicrobial treatment, or (4) infection-related death within 60 days after debridement. A total of 386 patients were included. Failure occurred in 148 patients (38.3%). Patients with KLIC scores of ≤2, 2.5-3.5, 4-5, 5.5-6.5, and ≥7 had failure rates of 27.9%, 37.1%, 49.3%, 54.5%, and 85.7%, respectively (P < .001). The receiver-operating characteristic curve showed an area under the curve of 0.64 (95% confidence interval 0.59-0.69). A KLIC score higher than 6 points showed a specificity of 97.9%. The KLIC score is a relatively good preoperative risk score for DAIR failure in patients with early acute PJI and appears to be most useful in clinical practice for patients with low or high KLIC scores. Copyright © 2018 Elsevier Inc. All rights reserved.
3D printed liner for treatment of periprosthetic joint infections.
Kim, Tae Won B; Lopez, Osvaldo J; Sharkey, Jillian P; Marden, Kyle R; Murshed, Muhammad Ridwan; Ranganathan, Shivakumar I
2017-05-01
In the United States, long standing deep infections of joint arthroplasty, such as total knee and total hip replacements, are treated with two-stage exchange. This requires the removal of the prior implant, placement of an antibiotic eluting spacer block made of polymethylmethacrylate (PMMA), followed by re-implantation of a new implant after treatment with intravenous antibiotics for six to eight weeks. Unfortunately, the use of PMMA as a spacer material has limitations in terms of mechanical and drug-eluting properties. PMMA is brittle and elutes most of the antibiotics within the first few days. Furthermore, the polymerization reaction for PMMA is highly exothermic, thereby limiting the use to heat-stable antibiotics. We hypothesize that the use of a 3D printed polymeric liner made of polylactic acid (PLA) would overcome the limitations of PMMA because it is a stronger and a less brittle material than PMMA. Furthermore, the liner can also act as a controlled drug delivery vehicle by using built in reservoirs and a network of micro-channels as well as by incorporating antibiotics directly into the polymer during manufacturing stage. Finally, the liner can be 3D printed according to the anatomy of the patient and thereby has the potential to transform the manner in which periprosthetic joint infections are currently treated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Periprosthetic Joint Infection of Shoulder Arthroplasties: Diagnostic and Treatment Options
Sevelda, Florian
2017-01-01
Periprosthetic joint infection (PJI) is one of the most frequent reasons for painful shoulder arthroplasties and revision surgery of shoulder arthroplasties. Cutibacterium acnes (Propionibacterium acnes) is one of the microorganisms that most often causes the infection. However, this slow growing microorganism is difficult to detect. This paper presents an overview of different diagnostic test to detect a periprosthetic shoulder infection. This includes nonspecific diagnostic tests and specific tests (with identifying the responsible microorganism). The aspiration can combine different specific and nonspecific tests. In dry aspiration and suspected joint infection, we recommend a biopsy. Several therapeutic options exist for the treatment of PJI of shoulder arthroplasties. In acute infections, the options include leaving the implant in place with open debridement, septic irrigation with antibacterial fluids like octenidine or polyhexanide solution, and exchange of all removable components. In late infections (more than four weeks after implantation) the therapeutic options are a permanent spacer, single-stage revision, and two-stage revision with a temporary spacer. The functional results are best after single-stage revisions with a success rate similar to two-stage revisions. For single-stage revisions, the microorganism should be known preoperatively so that specific antibiotics can be mixed into the cement for implantation of the new prosthesis and specific systemic antibiotic therapy can be applied to support the surgery. PMID:29423407
The Effect of Ag and Ag+N Ion Implantation on Cell Attachment Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urkac, Emel Sokullu; Oztarhan, Ahmet; Gurhan, Ismet Deliloglu
2009-03-10
Implanted biomedical prosthetic devices are intended to perform safely, reliably and effectively in the human body thus the materials used for orthopedic devices should have good biocompatibility. Ultra High Molecular Weight Poly Ethylene (UHMWPE) has been commonly used for total hip joint replacement because of its very good properties. In this work, UHMWPE samples were Ag and Ag+N ion implanted by using the Metal-Vapor Vacuum Arc (MEVVA) ion implantation technique. Samples were implanted with a fluency of 1017 ion/cm2 and extraction voltage of 30 kV. Rutherford Backscattering Spectrometry (RBS) was used for surface studies. RBS showed the presence of Agmore » and N on the surface. Cell attachment properties investigated with model cell lines (L929 mouse fibroblasts) to demonstrate that the effect of Ag and Ag+N ion implantation can favorably influence the surface of UHMWPE for biomedical applications. Scanning electron microscopy (SEM) was used to demonstrate the cell attachment on the surface. Study has shown that Ag+N ion implantation represents more effective cell attachment properties on the UHMWPE surfaces.« less
MR Imaging with Metal-suppression Sequences for Evaluation of Total Joint Arthroplasty.
Talbot, Brett S; Weinberg, Eric P
2016-01-01
Metallic artifact at orthopedic magnetic resonance (MR) imaging continues to be an important problem, particularly in the realm of total joint arthroplasty. Complications often follow total joint arthroplasty and can be expected for a small percentage of all implanted devices. Postoperative complications involve not only osseous structures but also adjacent soft tissues-a highly problematic area at MR imaging because of artifacts from metallic prostheses. Without special considerations, susceptibility artifacts from ferromagnetic implants can unacceptably degrade image quality. Common artifacts include in-plane distortions (signal loss and signal pileup), poor or absent fat suppression, geometric distortion, and through-section distortion. Basic methods to reduce metallic artifacts include use of spin-echo or fast spin-echo sequences with long echo train lengths, short inversion time inversion-recovery (STIR) sequences for fat suppression, a high bandwidth, thin section selection, and an increased matrix. With care and attention to the alloy type (eg, titanium, cobalt-chromium, stainless steel), orientation of the implant, and magnetic field strength, as well as use of proprietary and nonproprietary metal-suppression techniques, previously nondiagnostic studies can yield key diagnostic information. Specifically, sequences such as the metal artifact reduction sequence (MARS), WARP (Siemens Healthcare, Munich, Germany), slice encoding for metal artifact correction (SEMAC), and multiacquisition with variable-resonance image combination (MAVRIC) can be optimized to reveal pathologic conditions previously hidden by periprosthetic artifacts. Complications of total joint arthroplasty that can be evaluated by using MR imaging with metal-suppression sequences include pseudotumoral conditions such as metallosis and particle disease, infection, aseptic prosthesis loosening, tendon injury, and muscle injury. ©RSNA, 2015.
Strengthening of defected beam-column joints using CFRP.
Mahmoud, Mohamed H; Afefy, Hamdy M; Kassem, Nesreen M; Fawzy, Tarek M
2014-01-01
This paper presents an experimental study for the structural performance of reinforced concrete (RC) exterior beam-column joints rehabilitated using carbon-fiber-reinforced polymer (CFRP). The present experimental program consists of testing 10 half-scale specimens divided into three groups covering three possible defects in addition to an adequately detailed control specimen. The considered defects include the absence of the transverse reinforcement within the joint core, insufficient bond length for the beam main reinforcement and inadequate spliced implanted column on the joint. Three different strengthening schemes were used to rehabilitate the defected beam-column joints including externally bonded CFRP strips and sheets in addition to near surface mounted (NSM) CFRP strips. The failure criteria including ultimate capacity, mode of failure, initial stiffness, ductility and the developed ultimate strain in the reinforcing steel and CFRP were considered and compared for each group for the control and the CFRP-strengthened specimens. The test results showed that the proposed CFRP strengthening configurations represented the best choice for strengthening the first two defects from the viewpoint of the studied failure criteria. On the other hand, the results of the third group showed that strengthening the joint using NSM strip technique enabled the specimen to outperform the structural performance of the control specimen while strengthening the joints using externally bonded CFRP strips and sheets failed to restore the strengthened joints capacity.
Lee, Ji-Hye; Lee, Won; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra
2017-09-05
To evaluate the axial displacement of the implant-abutment assembly of different implant diameter after static and cyclic loading of overload condition. An internal conical connection system with three diameters (Ø 4.0, 4.5, and 5.0) applying identical abutment dimension and the same abutment screw was evaluated. Axial displacement of abutment and reverse torque loss of abutment screw were evaluated under static and cyclic loading conditions. Static loading test groups were subjected to vertical static loading of 250, 400, 500, 600, 700, and 800 N consecutively. Cyclic loading test groups were subjected to 500 N cyclic loading to evaluate the effect of excessive masticatory loading. After abutment screw tightening for 30 Ncm, axial displacement was measured upon 1, 3, 10, and 1,000,000 cyclic loadings of 500 N. Repeated-measure ANOVA and 2-way ANOVA were used for statistical analysis (α = 0.05). The increasing magnitude of vertical load and thinner wall thickness of implant increased axial displacement of abutment and reverse torque loss of abutment screw (p < 0.05). Implants in the Ø 5.0 diameter group demonstrated significantly low axial displacement, and reverse torque loss after static loading than Ø 4.0 and Ø 4.5 diameter groups (p < 0.05). In the cyclic loading test, all diameter groups of implant showed significant axial displacement after 1 cycle of loading of 500 N (p < 0.05). There was no significant axial displacement after 3, 10, or 1,000,000 cycles of loading (p = 0.603). Implants with Ø 5.0 diameter demonstrated significantly low axial displacement and reverse torque loss after the cyclic and static loading of overload condition. © 2017 by the American College of Prosthodontists.
Ha, Seung-Ryong; Song, Seung-Il; Hong, Seong-Tae; Kim, Gy-Young
2012-01-01
Implant-supported overdenture is a reliable treatment option for the patients with edentulous mandible when they have difficulty in using complete dentures. Several options have been used for implant-supported overdenture attachments. Among these, bar attachment system has greater retention and better maintainability than others. SFI-Bar® is prefabricated and can be adjustable at chairside. Therefore, laboratory procedures such as soldering and welding are unnecessary, which leads to fewer errors and lower costs. A 67-year-old female patient presented, complaining of mobility of lower anterior teeth with old denture. She had been wearing complete denture in the maxilla and removable partial denture in the mandible with severe bone loss. After extracting the teeth, two implants were placed in front of mental foramen, and SFI-Bar® was connected. A tube bar was seated to two adapters through large ball joints and fixation screws, connecting each implant. The length of the tube bar was adjusted according to inter-implant distance. Then, a female part was attached to the bar beneath the new denture. This clinical report describes two-implant-supported overdenture using the SFI-Bar® system in a mandibular edentulous patient. PMID:23236580
Jung, Yihwan; Phan, Cong-Bo; Koo, Seungbum
2016-02-01
Joint contact forces measured with instrumented knee implants have not only revealed general patterns of joint loading but also showed individual variations that could be due to differences in anatomy and joint kinematics. Musculoskeletal human models for dynamic simulation have been utilized to understand body kinetics including joint moments, muscle tension, and knee contact forces. The objectives of this study were to develop a knee contact model which can predict knee contact forces using an inverse dynamics-based optimization solver and to investigate the effect of joint constraints on knee contact force prediction. A knee contact model was developed to include 32 reaction force elements on the surface of a tibial insert of a total knee replacement (TKR), which was embedded in a full-body musculoskeletal model. Various external measurements including motion data and external force data during walking trials of a subject with an instrumented knee implant were provided from the Sixth Grand Challenge Competition to Predict in vivo Knee Loads. Knee contact forces in the medial and lateral portions of the instrumented knee implant were also provided for the same walking trials. A knee contact model with a hinge joint and normal alignment could predict knee contact forces with root mean square errors (RMSEs) of 165 N and 288 N for the medial and lateral portions of the knee, respectively, and coefficients of determination (R2) of 0.70 and -0.63. When the degrees-of-freedom (DOF) of the knee and locations of leg markers were adjusted to account for the valgus lower-limb alignment of the subject, RMSE values improved to 144 N and 179 N, and R2 values improved to 0.77 and 0.37, respectively. The proposed knee contact model with subject-specific joint model could predict in vivo knee contact forces with reasonable accuracy. This model may contribute to the development and improvement of knee arthroplasty.
Silver Nanocoating Technology in the Prevention of Prosthetic Joint Infection
Gallo, Jiri; Panacek, Ales; Prucek, Robert; Kriegova, Eva; Hradilova, Sarka; Hobza, Martin; Holinka, Martin
2016-01-01
Prosthetic joint infection (PJI) is a feared complication of total joint arthroplasty associated with increased morbidity and mortality. There is a growing body of evidence that bacterial colonization and biofilm formation are critical pathogenic events in PJI. Thus, the choice of biomaterials for implanted prostheses and their surface modifications may significantly influence the development of PJI. Currently, silver nanoparticle (AgNP) technology is receiving much interest in the field of orthopaedics for its antimicrobial properties and a strong anti-biofilm potential. The great advantage of AgNP surface modification is a minimal release of active substances into the surrounding tissue and a long period of effectiveness. As a result, a controlled release of AgNPs could ensure antibacterial protection throughout the life of the implant. Moreover, the antibacterial effect of AgNPs may be strengthened in combination with conventional antibiotics and other antimicrobial agents. Here, our main attention is devoted to general guidelines for the design of antibacterial biomaterials protected by AgNPs, its benefits, side effects and future perspectives in PJI prevention. PMID:28773461
Metal-on-metal hip joint tribology.
Dowson, D; Jin, Z M
2006-02-01
The basic tribological features of metal-on-metal total hip replacements have been reviewed to facilitate an understanding of the engineering science underpinning the renaissance of these hard-on-hard joints. Metal-on-polymer hip replacements operate in the boundary lubrication regime, thus leading to the design guidance to reduce the femoral head diameter as much as is feasible to minimize frictional torque and volumetric wear. This explains why the gold-standard implant of this form from the past half-century had a diameter of only 22.225 mm (7/8 in). Metal-on-metal implants can operate in the mild mixed lubrication regime in which much of the applied load is supported by elastohydrodynamic films. Correct tribological design leads to remarkably low steady state wear rates. Promotion of the most effective elastohydrodynamic films calls for the largest possible head diameters and the smallest clearances that can reasonably be adopted, consistent with fine surface finishes, good sphericity and minimal structural elastic deformation of the cup on its foundations. This guidance, which is opposite in form to that developed for metal-on-polymer joints, is equally valid for solid (monolithic) metallic heads on metallic femoral stems and surface replacement femoral shells. Laboratory measurements of friction and wear in metal-on-metal joints have confirmed their potential to achieve a very mild form of mixed lubrication. The key lies in the generation of effective elastohydrodynamic lubricating films of adequate thickness compared with the composite roughness of the head and cup. The calculation of the film thickness is by no means easy, but the full procedure is outlined and the use of an empirical formula that displays good agreement with calculations based upon the full numerical solutions is explained. The representation of the lambda ratio, lambda, embracing both film thickness and composite roughness, is described.
ISHKS joint registry: A preliminary report.
Pachore, Jawahir A; Vaidya, Shrinand V; Thakkar, Chandrasekhar J; Bhalodia, Haresh Kumar P; Wakankar, Hemant M
2013-09-01
Total knee arthroplasty (TKA) and total hip arthroplasty (THA) are the most widely practiced surgical options for arthritis all over the world and its application is rising in India. Indian Society of Hip and Knee Surgeons (ISHKS) has established a joints registry and has been collecting data for last 6 years. All members of ISHKS are encouraged to actively participate in the registry. A simple two page knee and hip form can be downloaded from the website www.ishks.com. The information collected includes patient demographics, indication for surgery, implant details and in case of revision arthroplasty: the details of implants removed and the cause of failure of primary arthroplasty. These forms are mailed to the central registry office and the data is fed in computerized registry. Data collection started in October 2006. Joint registry is a very important initiative of ISHKS and till date, have data of 34,478 TKAs and 3604 THAs, contributed by 42 surgeons across India. Some important observations have emerged. Data of 34,478 TKAs was assessed: These included 8612 males (25%) and 25,866 females (75%). Average age was 64.4 years (Osteoarthritis range: 45 to 88 years; Rheumatoid arthritis range: 22 to 74 years). Average body mass index was 29.1 (Range: 18.1 to 42.9). The indication for TKA was osteoarthritis in 33,444 (97%) and rheumatoid arthritis in 759 (2.2%). Total of 3604 THA procedures were recorded. These included 2162 (60%) male patients and 1442 (40%) female patients. Average age was 52 years (Range 17 to 85 years) and average BMI was 25.8 (Range: 17.3 to 38.5). The indications for THA was AVN in 49%. The registry will become more meaningful in years to come. Active participation of all arthroplasty surgeons across India is vital for the success of the joints registry.
Influence of Thickness and Contact Surface Geometry of Condylar Stem of TMJ Implant on Its Stability
NASA Astrophysics Data System (ADS)
Arabshahi, Zohreh; Kashani, Jamal; Kadir, Mohammed Rafiq Abdul; Azari, Abbas
The aim of this study is to examine the effect thickness and contact surface geometry of condylar stem of TMJ implant on its stability in total reconstruction system and evaluate the micro strain resulted in bone at fixation screw holes in jaw bone embedded with eight different designs of temporomandibular joint implants. A three dimensional model of a lower mandible of an adult were developed from a Computed Tomography scan images. Eight different TMJ implant designs and fixation screws were modeled. Three dimensional finite element models of eight implanted mandibles were analyzed. The forces assigned to the masticatory muscles for incisal clenching were applied consisting of nine important muscular loads. In chosen loading condition, The results indicated that the anatomical curvature contact surface design of TMJ implant can moderately improve the stability and the strain resulted in fixation screw holes in thinner TMJ implant was diminished in comparison with other thicknesses.
Management of acute unstable acromioclavicular joint injuries.
Cisneros, Luis Natera; Reiriz, Juan Sarasquete
2016-12-01
Surgical management of acute unstable acromioclavicular joint injuries should be focused on realigning the torn ends of the ligaments to allow for healing potential. The most widely utilized treatment methods incorporate the use of metal hardware, which can alter the biomechanics of the acromioclavicular joint. This leads to a second surgical procedure for hardware removal once the ligaments have healed. Patients with unstable acromioclavicular joint injuries managed with arthroscopy-assisted procedures have shown good and excellent clinical outcomes, without the need for a second operation. These procedures incorporate a coracoclavicular suspension device aimed to function as an internal brace, narrowing the coracoclavicular space thus allowing for healing of the torn coracoclavicular ligaments. The lesser morbidity of a minimally invasive approach and the possibility to diagnose and treat concomitant intraarticular injuries; no obligatory implant removal, and the possibility of having a straight visualization of the inferior aspect of the base of the coracoid (convenient when placing coracoclavicular fixation systems) are the main advantages of the arthroscopic approach over classic open procedures. This article consists on a narrative review of the literature in regard to the management of acute acromioclavicular joint instability.
Bernard, F; Furneaux, R; Adrega Da Silva, C; Bardet, J-F
2008-01-01
rhBMP-2 solution on a collagen sponge was placed along the diaphysis of an atrophicradius, which had a history of recurring fractures. Two months after rhBMP-2 treatment, new mineralized bone was present, which significantly increased the diameter of the radius and allowed the removal of the external skeletal fixator (ESF). Due to carpo-metacarpal joint compromise, a pancarpal arthrodesis was performed seven months later. At follow-up evaluation two years later the dog was only very mildly lame.
Khassebaf, Jasmine; Hellmark, Bengt; Davidsson, Sabina; Unemo, Magnus; Nilsdotter-Augustinsson, Åsa; Söderquist, Bo
2015-04-01
Prosthetic joint infections (PJIs) caused by Propionibacterium acnes account for a larger proportion of the total number of PJIs than previously assumed and thus knowledge of the antimicrobial susceptibility patterns of P. acnes is of great value in everyday clinical practice. Using Etest, the present study investigated the susceptibility of 55 clinical isolates of P. acnes, obtained from orthopaedic implant-associated infections of the knee joint (n = 5), hip joint (n = 17), and shoulder joint (n = 33), to eight antimicrobial agents: benzylpenicillin, clindamycin, metronidazole, fusidic acid, doxycycline, moxifloxacin, linezolid and rifampicin. Synergy testing was also conducted, in which rifampicin was combined with each of the remaining seven antibiotics. All isolates (n = 55) were susceptible to most of the antibiotics tested, with the exception of 100% resistance to metronidazole, five (9.1%) isolates displaying decreased susceptibility to clindamycin, and one (1.8%) to moxifloxacin. None of the antimicrobial agents investigated were synergistic with each other when combined and nine isolates were antagonistic for various antimicrobial combinations. The majority of the antimicrobial combinations had an indifferent effect on the isolates of P. acnes. However, the combination of rifampicin and benzylpenicillin showed an additive effect on nearly half of the isolates. Almost all P. acnes, isolated from orthopaedic implant-associated infections, predominantly PJIs, were susceptible to the antibiotics tested, with the exception of complete resistance to metronidazole. Synergy test could not demonstrate any synergistic effect but additive effects were found when combining various antibiotics. Antagonistic effects were rare. Copyright © 2014 Elsevier Ltd. All rights reserved.
Athalye, Sheetal; Archbold, Sue; Mulla, Imran; Lutman, Mark; Nikolopoulous, Thomas
2015-09-01
The objective of this survey was to explore the perceptions of implant users/carers and professionals across the UK about current and future cochlear implant service delivery and the challenges. Data were collected via an online questionnaire consisting of totally 22 questions. The questionnaire contained both open- and close-ended questions. Totally, seven hundred and forty-eight responses were received. In spite of the wide range of respondents, there was a broad consensus of opinion across groups. The majority of participants were satisfied with the service they currently receive, but wanted some changes. They reported their current experience of implant services to be mainly driven by decisions made by the implant team. For the future, they preferred the service to be mainly driven by decisions made jointly by the team and the user and/or parent/carer. The majority of participants wanted the cochlear implant services to be integrated into local audiology and other services such as education. Restrictions on number of candidates funded and political decisions and issues were seen as major challenges. Qualitative analysis of the open-ended responses supported the questionnaire responses. This research highlighted the benefits and limitations of the current cochlear implant service delivery as well as the potential implications for the long term. While respondents were generally happy with the current cochlear implant service provision, they expressed some concerns about the long-term sustainability and management, wanting integration into the local services, and more involvement of parents and users in decisions.
PEEK Biomaterials in Trauma, Orthopedic, and Spinal Implants
Kurtz, S. M.; Devine, J. N.
2007-01-01
Since the 1980s, polyaryletherketones (PAEKs) have been increasingly employed as biomaterials for trauma, orthopedic, and spinal implants. We have synthesized the extensive polymer science literature as it relates to structure, mechanical properties, and chemical resistance of PAEK biomaterials. With this foundation, one can more readily appreciate why this family of polymers will be inherently strong, inert, and biocompatible. Due to its relative inertness, PEEK biomaterials are an attractive platform upon which to develop novel bioactive materials, and some steps have already been taken in that direction, with the blending of HA and TCP into sintered PEEK. However, to date, blended HA-PEEK composites have involved a trade-off in mechanical properties in exchange for their increased bioactivity. PEEK has had the greatest clinical impact in the field of spine implant design, and PEEK is now broadly accepted as a radiolucent alternative to metallic biomaterials in the spine community. For mature fields, such as total joint replacements and fracture fixation implants, radiolucency is an attractive but not necessarily critical material feature. PMID:17686513
Djoudi, Farid
2013-01-01
Two separate themes are presented in this paper. The first theme is to present a graphical modeling approach of human anatomical structures namely, the femur and the tibia. The second theme involves making a finite element analysis of stresses, displacements and deformations in prosthetic implants (the femoral implant and the polyethylene insert). The graphical modeling approach comes in two parts. The first is the segmentation of MRI scanned images, retrieved in DICOM format for edge detection. In the second part, 3D-CAD models are generated from the results of the segmentation stage. The finite element analysis is done by first extracting the prosthetic implants from the reconstructed 3D-CAD model, then do a finite element analysis of these implants under objectively determined conditions such as; forces, allowed displacements, the materials composing implant, and the coefficient of friction. The objective of this work is to implement an interface for exchanging data between 2D MRI images obtained from a medical diagnosis of a patient and the 3D-CAD model used in various applications, such as; the extraction of the implants, stress analysis at the knee joint and can serve as an aid to surgery, also predict the behavior of the prosthetic implants vis-a-vis the forces acting on the knee joints.
A contact mechanics model for ankle implants with inclusion of surface roughness effects
NASA Astrophysics Data System (ADS)
Hodaei, M.; Farhang, K.; Maani, N.
2014-02-01
Total ankle replacement is recognized as one of the best procedures to treat painful arthritic ankles. Even though this method can relieve patients from pain and reproduce the physiological functions of the ankle, an improper design can cause an excessive amount of metal debris due to wear, causing toxicity in implant recipient. This paper develops a contact model to treat the interaction of tibia and talus implants in an ankle joint. The contact model describes the interaction of implant rough surfaces including both elastic and plastic deformations. In the model, the tibia and the talus surfaces are viewed as macroscopically conforming cylinders or conforming multi-cylinders containing micrometre-scale roughness. The derived equations relate contact force on the implant and the minimum mean surface separation of the rough surfaces. The force is expressed as a statistical integral function of asperity heights over the possible region of interaction of the roughness of the tibia and the talus implant surfaces. A closed-form approximate equation relating contact force and minimum separation is used to obtain energy loss per cycle in a load-unload sequence applied to the implant. In this way implant surface statistics are related to energy loss in the implant that is responsible for internal void formation and subsequent wear and its harmful toxicity to the implant recipient.
Shah, Kalpit N; Defroda, Steven F; Wang, Bo; Weiss, Arnold-Peter C
2017-12-01
The first carpometacarpal (CMC) joint is a common site of osteoarthritis, with arthroplasty being a common procedure to provide pain relief and improve function with low complications. However, little is known about risk factors that may predispose a patient for postoperative complications. All CMC joint arthroplasty from 2005 to 2015 in the prospectively collected American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database were identified. Bivariate testing and multiple logistic regressions were performed to determine which patient demographics, surgical variables and medical comorbidities were significant predictors for complications. These included wound related, cardiopulmonary, neurological and renal complications, return to the operating room (OR) and readmission. A total of 3344 patients were identified from the database. Of those, 45 patients (1.3%) experienced a complication including wound issues (0.66%), return to the OR (0.15%) and readmission (0.27%) amongst others. When performing bivariate analysis, age over 65, American Society of Anesthesiologists (ASA) Class, diabetes and renal dialysis were significant risk factors. Multiple logistic regression after adjusting for confounding factors demonstrated that insulin-dependent diabetes and ASA Class 4 had a strong trend while renal dialysis was a significant risk factor. CMC arthroplasty has a very low overall complication rate of 1.3% and wound complication rate of 0.66%. Diabetes requiring insulin and ASA Class 4 trended towards significance while renal dialysis was found to be a significant risk factors in logistic regression. This information may be useful for preoperative counseling and discussion with patients who have these risk factors.
Fatzer, Lukas; Soleman, E; Sanchez, T
2015-02-01
A distraction arthroplasty of the trapeziometacarpal joint was introduced by Bufalini and Perugia for the treatment of the early stages of carpometacarpal osteoarthritis. Our retrospective study presents the results of this technique. Thereby, a tendon graft anchored to the distal second metacarpal is fixed at the base of the first metacarpal, keeping it in distraction. 10 distraction arthroplasties were performed in 9 patients with carpometacarpal osteoarthritis stage I and II of the thumb after unsuccessful conservative therapy. In 2 cases, which were excluded from our study, trapeziectomy had to be performed because of persisting pain. Patient satisfaction, pain measurement, range of motion, and tip, key and grip strength were evaluated at a follow-up of 46.5 (29-63) months in the remaining 7 patients (8 operations overall). Strengh measurement was taken in an absolute value and compared to the opposite side. Thumb range of motion was measured with the combined flexion-opposition of the thumb with the Kapandij index and also the angle of abduction of the metacarpal I to metacarpal II. Assessment included a DASH score evaluation and an X-ray control. All of the 7 evaluated patients were satisfied with the operation results. Compared to the opposite side, patients achieved 80.1% (5.9 kg±1.1 kg) of key pinch strength, 86.3% (4.8 kg±0.9 kg) of oppositional tip pinch strength, and 86.1% (23.1 kg±4.8 kg) of grip strength. In combined flexion and opposition a Kapandij index of 8.5 (94.4%) compared to 9 on the opposite side was achieved. Thumb radial abduction was 48.2°±2.8°, compared to 51.0°±2.9° on the contralateral hand. At follow-up, the mean DASH score was 17.8 (±10.0). Radiological control showed no progression of carpometacarpal osteoarthritis of the thumb. The collected data after distraction arthroplasty according to Bufalini and Perugia confirm the efficacy of the technique in the early stage of carpometacarpal osteoarthritis of the
Kim, Ki-Seong; Han, Jung-Suk; Lim, Young-Jun
2014-01-01
The aim of this study was to evaluate and compare the settling of abutments into implants and the removal torque values (RTVs) before and after cyclic loading. Five different implant-abutment connections were tested: Ext = external butt joint + two-piece abutment; Int-H2 = internal hexagon + two-piece abutment; Int-H1 = internal hexagon + one-piece abutment; Int-O2 = internal octagon + two-piece abutment; and Int-O1 = internal octagon + one-piece abutment. Ten abutments from each group were secured to their corresponding implants (total n = 50). All samples were tested in a universal testing machine with a vertical load of 250 N for 100,000 cycles of 14 Hz. The amount of settling of the abutment into the implant was calculated from the change in the total length of the implant-abutment sample before and after loading, as measured with an electronic digital micrometer. The RTV after cyclic loading was compared to the initial RTV with a digital torque gauge. Statistical analysis was performed at a 5% significance level. A multiple-comparison test showed specific significant differences in settling values in each group after 250 N cyclic loading (Int-H1, Ext < Int-H2 < Int-O2 < Int-O1). There were statistically significant decreases in RTVs after loading compared to the initial RTVs in the Int-H2 and Int-O2 groups. No statistically significant differences were found in the Ext, Int-H1, and Int-O1 groups. The results of this study demonstrated that the settling amount and RTV (loss of preload) after cyclic loading were specific to the abutment type and related to the design characteristics of the implant-abutment connection.
Song, Geun Soo; Lee, Yeon Soo
2015-07-01
This study aimed to quantify morphological characteristics of the posterior lumbar spinous process, which may affect stable implantation of screwless wire spring loops. Virtual implantations of a screwless wire spring loop onto pairs of lumbar spinous processes were performed for computed tomography (CT)-derived three-dimensional vertebral models of 40 Korean subjects. Morphological parameters of lumbar vertebrae 1 through 5 (L1-L5) were measured with regard to bone-implant interference. In males, the transspinous process fixation lengths decreased from 57.8±3.0mm to 48.8±3.2mm as the lumbar joints descend from L1-L2 to L4-L5, with those in females about 4.1±0.4mm shorter (p<0.05) than in males through all lumbar joints. The fixation angle on the sagittal plane varied from 105.0° to 101.3° relative to the transverse plane as the vertebrae descend. The clenched thickness in females was the least (6.7±1.2mm) for the L2 lower spinous process and the greatest (8.1±2.2mm) for the L4 upper spinous process; this was 1.0±10.3mm less than that for males at corresponding levels (p>0.05). The ratio of the spinous process clenched thickness to the transspinous fixation length increased from 0.133±0.016 to 0.196±0.076 for the upper spinous processes as the lumbar joints descend. The ratio of the spinous process clenched thickness to the transspinous fixation length varies, depending on gender and whether the clenched level is the upper or lower spinous process. These parameters related to the clenching fixation stability should be considered in development and implantations of the screwless wire spring loop. Copyright © 2015 Elsevier GmbH. All rights reserved.
Activity Levels in Healthy Older Adults: Implications for Joint Arthroplasty
Thorp, Laura E.; Orozco, Diego; Block, Joel A.; Sumner, Dale R.; Wimmer, Markus A.
2012-01-01
This work evaluated activity levels in a group of healthy older adults to establish a target activity level for adults of similar age after total joint arthroplasty (TJA). With the decreasing age of TJA patients, it is essential to have a reference for activity level in younger patients as activity level affects quality of life and implant design. 54 asymptomatic, healthy older adults with no clinical evidence of lower extremity OA participated. The main outcome measure, average daily step count, was measured using an accelerometer-based activity monitor. On average the group took 8813 ± 3611 steps per day, approximately 4000 more steps per day than has been previously reported in patients following total joint arthroplasty. The present work provides a reference for activity after joint arthroplasty which is relevant given the projected number of people under the age of 65 who will undergo joint arthroplasty in the coming years. PMID:23577274
Short Implants: New Horizon in Implant Dentistry.
Jain, Neha; Gulati, Manisha; Garg, Meenu; Pathak, Chetan
2016-09-01
The choice of implant length is an essential factor in deciding the survival rates of these implants and the overall success of the prosthesis. Placing an implant in the posterior part of the maxilla and mandible has always been very critical due to poor bone quality and quantity. Long implants can be placed in association with complex surgical procedures such as sinus lift and bone augmentation. These techniques are associated with higher cost, increased treatment time and greater morbidity. Hence, there is need for a less invasive treatment option in areas of poor bone quantity and quality. Data related to survival rates of short implants, their design and prosthetic considerations has been compiled and structured in this manuscript with emphasis on the indications, advantages of short implants and critical biomechanical factors to be taken into consideration when choosing to place them. Studies have shown that comparable success rates can be achieved with short implants as those with long implants by decreasing the lateral forces to the prosthesis, eliminating cantilevers, increasing implant surface area and improving implant to abutment connection. Short implants can be considered as an effective treatment alternative in resorbed ridges. Short implants can be considered as a viable treatment option in atrophic ridge cases in order to avoid complex surgical procedures required to place long implants. With improvement in the implant surface geometry and surface texture, there is an increase in the bone implant contact area which provides a good primary stability during osseo-integration.
Su, E P; Justin, D F; Pratt, C R; Sarin, V K; Nguyen, V S; Oh, S; Jin, S
2018-01-01
The development and pre-clinical evaluation of nano-texturised, biomimetic, surfaces of titanium (Ti) implants treated with titanium dioxide (TiO 2 ) nanotube arrays is reviewed. In vitro and in vivo evaluations show that TiO 2 nanotubes on Ti surfaces positively affect the osseointegration, cell differentiation, mineralisation, and anti-microbial properties. This surface treatment can be superimposed onto existing macro and micro porous Ti implants creating a surface texture that also interacts with cells at the nano level. Histology and mechanical pull-out testing of specimens in rabbits indicate that TiO 2 nanotubes improves bone bonding nine-fold (p = 0.008). The rate of mineralisation associated with TiO 2 nanotube surfaces is about three times that of non-treated Ti surfaces. In addition to improved osseointegration properties, TiO 2 nanotubes reduce the initial adhesion and colonisation of Staphylococcus epidermidis Collectively, the properties of Ti implant surfaces enhanced with TiO 2 nanotubes show great promise. Cite this article: Bone Joint J 2018;100-B(1 Supple A):9-16. ©2018 The British Editorial Society of Bone & Joint Surgery.
Takahashi, Toshihito; Gonda, Tomoya; Mizuno, Yoko; Fujinami, Yozo; Maeda, Yoshinobu
2016-01-01
Maxillary implant overdentures are often used in clinical practice. However, there is no agreement or established guidelines regarding prosthetic design or optimal implant placement configuration. The purpose of this study was to examine the influence of palatal coverage and implant number and distribution in relation to impact strain under maxillary implant overdentures. A maxillary edentulous model with implants and experimental overdentures with and without palatal coverage was fabricated. Four strain gauges were attached to each implant, and they were positioned in the anterior, premolar, and molar areas. A vertical occlusal load of 98 N was applied through a mandibular complete denture, and the implant strains were compared using one-way analysis of variance (P = .05). The palatolabial strain was much higher on anterior implants than on other implants in both denture types. Although there was no significant difference between the strain under dentures with and without palatal coverage, palateless dentures tended to result in higher implant strain than dentures with palatal coverage. Dentures supported by only two implants registered higher strain than those supported by four or six implants. Implants under palateless dentures registered higher strain than those under dentures with palatal coverage. Anterior implants exhibited higher palatolabial strain than other implants regardless of palatal coverage and implant configuration; it is therefore recommended that maxillary implant overdentures should be supported by six implants with support extending to the distal end of the arch.
Short Implants: New Horizon in Implant Dentistry
Gulati, Manisha; Garg, Meenu; Pathak, Chetan
2016-01-01
The choice of implant length is an essential factor in deciding the survival rates of these implants and the overall success of the prosthesis. Placing an implant in the posterior part of the maxilla and mandible has always been very critical due to poor bone quality and quantity. Long implants can be placed in association with complex surgical procedures such as sinus lift and bone augmentation. These techniques are associated with higher cost, increased treatment time and greater morbidity. Hence, there is need for a less invasive treatment option in areas of poor bone quantity and quality. Data related to survival rates of short implants, their design and prosthetic considerations has been compiled and structured in this manuscript with emphasis on the indications, advantages of short implants and critical biomechanical factors to be taken into consideration when choosing to place them. Studies have shown that comparable success rates can be achieved with short implants as those with long implants by decreasing the lateral forces to the prosthesis, eliminating cantilevers, increasing implant surface area and improving implant to abutment connection. Short implants can be considered as an effective treatment alternative in resorbed ridges. Short implants can be considered as a viable treatment option in atrophic ridge cases in order to avoid complex surgical procedures required to place long implants. With improvement in the implant surface geometry and surface texture, there is an increase in the bone implant contact area which provides a good primary stability during osseo-integration. PMID:27790598
Mine, Takatomo; Ihara, Koichiro; Kawamura, Hiroyuki; Kuriyama, Ryutaro; Date, Ryo
2016-01-01
Elderly onset Rheumatoid arthritis (EORA) has important clinical distinctions when compared with younger onset RA (YORA). In knee arthritis of elderly patients, infection, crystal-induced arthritis or EORA should be suspected if elevation of CRP in the preoperative examination and turbid joint effusion in their knee joint are found. Furthermore, if joint swelling and effusion remain after performing total knee arthroplasty (TKA), the infection after TKA, implant debris-related arthritis and EORA should be considered. However, it is difficult to diagnose patients as EORA if Rheumatoid factor (RF) and anti-cyclic citrullinated peptide antibody (ACPA) are negative. The differential diagnosis is very important.
Forced-Air Warming Discontinued: Periprosthetic Joint Infection Rates Drop.
Augustine, Scott D
2017-06-23
Several studies have shown that the waste heat from forced-air warming (FAW) escapes near the floor and warms the contaminated air resident near the floor. The waste heat then forms into convection currents that rise up and contaminate the sterile field above the surgical table. It has been shown that a single airborne bacterium can cause a periprosthetic joint infection (PJI) following joint replacement surgery. We retrospectively compared PJI rates during a period of FAW to a period of air-free conductive fabric electric warming (CFW) at three hospitals. Surgical and antibiotic protocols were held constant. The pooled multicenter data showed a decreased PJI rate of 78% following the discontinuation of FAW and a switch to air-free CFW (n=2034; P=0.002). The 78% reduction in joint implant infections observed when FAW was discontinued suggests that there is a link between the waste FAW heat and PJIs.
Current Options and Emerging Biomaterials for Periprosthetic Joint Infection.
Levack, Ashley E; Cyphert, Erika L; Bostrom, Mathias P; Hernandez, Christopher J; von Recum, Horst A; Carli, Alberto V
2018-04-30
Infection in the setting of total joint arthroplasty, referred to as periprosthetic joint infection (PJI), is a devastating complication requiring prolonged and costly treatment. The unique environment around an artificial joint and ability of surrounding tissues to sequester bacteria collectively make prevention, diagnosis, and treatment of this condition challenging. In light of the unique pathogenesis of PJI, this review explores the limitations of contemporary treatments and discusses novel treatment options. Recent advancements in local antibiotic delivery platforms for preventing and treating PJI include titanium nanotube arrays, synthetic polymers, resorbable hydrogels, and cyclodextrin-based drug delivery options. In particular, cyclodextrins have facilitated great advancements in other clinical disorders and have demonstrated early promise as a future option in the arena of PJI. Novel treatment modalities for PJI optimize the implant surfaces to prevent bacterial biofilm formation or provide prolonged intra-articular antibiotic dosing to eradicate bacteria.
Munirah, S; Samsudin, O C; Chen, H C; Salmah, S H Sharifah; Aminuddin, B S; Ruszymah, B H I
2008-07-01
Chondrocytes were isolated from articular cartilage biopsy and were cultivated in vitro. Approximately 30 million of cultured chondrocytes per ml were incorporated with autologous plasma-derived fibrin to form three-dimensional construct. Full-thickness punch hole defects were created in lateral and medial femoral condyles. The defects were implanted either with the autologous 'chondrocytes-fibrin' construct (ACFC), autologous chondrocytes (ACI) or fibrin blank (AF). Sheep were euthanized after 12 weeks. The gross morphology of all defects treated with ACFC implantation, ACI and AF exhibited median scores which correspond to a nearly normal appearance according to the International Cartilage Repair Society (ICRS) classification. ACFC significantly enhanced cartilage repair compared to ACI and AF in accordance with the modified O'Driscoll histological scoring scale. The relative sulphated glycosaminoglycans content (%) was significantly higher (p < 0.05) in ACFC when compared to control groups; ACI vs. fibrin only vs. untreated (blank). Results showed that ACFC implantation exhibited superior cartilage-like tissue regeneration compared to ACI. If the result is applicable to the human, it possibly will improve the existing treatment approaches for cartilage restoration in orthopaedic surgery.
Biotribology of Cartilage Wear in Knee and Hip Joints Review of Recent Developments
NASA Astrophysics Data System (ADS)
Gulsen, Akdogan; Merve, Goncu; Meltem, Parlak
2018-01-01
Nowadays, the problem of wear in the knee and hip joints is an important issue that concerns many people and still requires new solutions. In recent years, researchers dealing with knee and hip articular cartilage erosion continue to investigate the subject in terms of biotribology. In this study, recent developments and studies in this relevant area are been examined. By using the basic principles of tribology, useful new methods that can be used in the field of biotribology can be produced. Artificial joints designed using various materials such as metals, ceramics, polymers and composites are still being studied. New studies in this area will affect the development of implant technology. Different alloys or composites are currently being tested for new implant designs. Moving implants with a risk of wear are tested in laboratory conditions in simulator devices before they are used in the human body. Major topics such as nanotechnology, tissue engineering, orthopedics, tribology, biotribology, lubrication, organ transplantation and artificial organs, which are still important today, will be useful in the search for finding suitable solutions in the future in biotribological studies. This review article aims to provide an overview of in-vitro studies at the theoretical and laboratory conditions that must be performed prior to clinical investigation.
NASA Astrophysics Data System (ADS)
Beliaev, A.; Svistkov, A.; Iziumov, R.; Osorgina, I.; Kondyurin, A.; Bilek, M.; McKenzie, D.
2016-04-01
Production of biocompatible implants made of polyurethane treated with plasma is very perspective. During plasma treatment the surface of polyurethane acquires unique physic-chemical properties. However such treatment may change the mechanical properties of polyurethane which may adversely affect the deformation behaviour of the real implant. Therefore careful study of the mechanical properties of the plasma-modified polyurethane is needed. In this paper, experimental observations of the elastic characteristics of plasma treated polyurethane and modelling of the deformation behaviour of polyurethane bio-implants are reported.
Importance of preclinical evaluation of wear in hip implant designs using simulator machines.
Trommer, Rafael Mello; Maru, Márcia Marie
2017-01-01
Total hip arthroplasty (THA) is a surgical procedure that involves the replacement of the damaged joint of the hip by an artificial device. Despite the recognized clinical success of hip implants, wear of the articulating surfaces remains as one of the critical issues influencing performance. Common material combinations used in hip designs comprise metal-on-polymer (MoP), ceramic-on-polymer (CoP), metal-on-metal (MoM), and ceramic-on-ceramic (CoC). However, when the design of the hip implant is concerned besides the materials used, several parameters can influence its wear performance. In this scenario, where the safety and efficacy for the patient are the main issues, it is fundamental to evaluate and predict the wear rate of the hip implant design before its use in THA. This is one of the issues that should be taken into account in the preclinical evaluation step of the product, in which simulated laboratory tests are necessary. However, it is fundamental that the applied motions and loads can reproduce the wear mechanisms physiologically observed in the patient. To replicate the in vivo angular displacements and loadings, special machines known as joint simulators are employed. This article focuses on the main characteristics related to the wear simulation of hip implants using mechanical simulators, giving information to surgeons, researchers, regulatory bodies, etc., about the importance of preclinical wear evaluation. A critical analysis is performed on the differences in the principles of operation of simulators and their effects on the final results, and about future trends in wear simulation.
Life expectancy of modular Ti6Al4V hip implants: influence of stress and environment.
Chandra, A; Ryu, J J; Karra, P; Shrotriya, P; Tvergaard, V; Gaisser, M; Weik, T
2011-11-01
Stress dependent electrochemical dissolution is identified as one of the key mechanisms governing surface degradation in fretting and crevice corrosion of biomedical implants. The present study focuses on delineating the roles of mechanical stress and chemical conditions on the life expectancy of modular hip implants. First, material removal on a stressed surface of Ti6Al4V subjected to single asperity contact is investigated experimentally to identify the influence of contact load, in-plane stress and chemical environment on mean wear rates. A range of known stress levels are applied to the specimen while its surface is mechanically stimulated in different non-reactive to oxidizing aqueous environments. Evolution of surface degradation is monitored, and its mechanism is elucidated. This phase allows estimation of Preston Constant which is later used in the analysis. Second phase of the work is semi-analytical and computational, where, based on the estimated Preston constant and other material and process parameters, the scratch propensity (consisting of magnitude of scratch depth and their frequency per unit area) due to micro-motion in modular hip implants is estimated. The third phase views these scratches as initial notches and utilizes a mixed-mode fatigue crack propagation model to estimate the critical crack length for onset of instability. The number of loading cycles needed to reach this critical crack length is then labeled as the expected life of the implant under given mechanical and chemical conditions. Implications of different material and process conditions to life expectancy of orthopedic implants are discussed. It is observed that transverse micro-motion, compared to longitudinal micro-motion, plays a far more critical role in determining the implant life. Patient body weight, as well as proximity of the joint fluid to its iso-electric point play key roles in determining wear rates and associated life expectancies of modular hip implants
A Midterm Review of Lesser Toe Arthrodesis With an Intramedullary Implant.
Harmer, James Lee; Wilkinson, Anthony; Maher, Anthony John
2017-10-01
Lesser toe deformities are one of the most common conditions encountered by podiatric surgeons. When conservative treatments fail surgical correction is indicated. Many surgical options have been described to address the complex nature of these deformities but no perfect solution has been reported to date. However, with the continued advancement of internal fixation technology, interphalangeal joint (IPJ) arthrodesis with an intramedullary implant may be a good option. This retrospective study presents patient reported outcomes and complications at 6 months and 3 years following lesser toe proximal interphalangeal joint (PIPJ) arthrodesis with a polyketone intrameduallary implant (Toe Grip, Orthosolutions, UK). Between September 2011 and November 2012, a total of 38 patients attended for second toe PIPJ arthrodesis by means of the Toe Grip device. At 6 months postoperation, 94.7% of patients and at 3 years postoperation, 92.8% of patients felt that their original complaint was better or much better. Health-related quality of life scores continued to improve overtime as measured by the Manchester Oxford Foot Questionnaire. Complications were generally observational and asymptomatic. The most common complications were floating toes (17.8%), mallet deformities (14.2%), metatarsalgia (17.8%), and transverse plane deformity of the toe (10.7%). This study demonstrates excellent patient-eported outcomes with minimal symptomatic complications making the "Toe Grip" implant a safe and effective alternative fixation device for IPJ arthrodesis when dealing with painful digital deformities. Therapeutic, Level IV: Case series.
[Research progress of three-dimensional printing technique in joint surgery].
Wang, Fuyou; Ren, Xiang; Yang, Liu
2014-03-01
To summarize the application status of three-dimensional (3-D) printing technique in joint surgery and look forward to the future research directions. The recent original articles about the application and research of 3-D printing technique in joint surgery were extensively reviewed and analyzed. In clinical applications, 3-D printing technique can provide "tailored" treatment and custom implants for patients, which helps doctors to perform the complex operations easier and more safely; in fundamental research, tissue engineered scaffolds with desirable external shape and internal organization are easily fabricated with 3-D printing technique, which can meet the demand of cell adherence and proliferation. Even more, cells may be deposited with the biomaterials during the printing. With the development of medical imaging, digital medicine and new materials, 3-D printing technique will have a wider range of applications in joint surgery.
2005-01-01
excitation sources should be helpful in overcoming this problem. CONCLUSIONS Biocompatible joints between polyimide and titanium-coated borosilicate...Technology, 46025 Port St., Plymouth, MI 48170, U.S.A. ABSTRACT Laser-fabricated joints of sub-millimeter widths between biocompatible , dissimilar materials...method of a very promising system, polyimide /titanium-coated borosilicate glass, and present and discuss results from characterization of such laser
Brooks, R A; Sharpe, J R; Wimhurst, J A; Myer, B J; Dawes, E N; Rushton, N
2000-05-01
We used a rat model in vivo to study the effects of the concentration of polyethylene particles on the bone-implant interface around stable implants in the proximal tibia. Intra-articular injections of 10(4), 10(6) or 10(8) high-density polyethylene (HDPE) particles per joint were given 8, 10 and 12 weeks after surgery. The animals were killed after 14 and 26 weeks and the response at the interface determined. Fibrous tissue was seen at the bone-implant interface when the head of the implant was flush with the top of the tibia but not when it was sunk below the tibial plateau. In the latter case the implant was completely surrounded by a shell of bone. The area of fibrous tissue and that of the gap between the implant and bone was related to the concentration of particles in the 14-week group (p < 0.05). Foreign-body granulomas containing HDPE particles were seen at the bone-implant interface in animals given 10(8) particles. The pathology resembles that seen around prostheses with aseptic loosening and we suggest that this is a useful model by which to study this process.
Application of computer graphics in the design of custom orthopedic implants.
Bechtold, J E
1986-10-01
Implementation of newly developed computer modelling techniques and computer graphics displays and software have greatly aided the orthopedic design engineer and physician in creating a custom implant with good anatomic conformity in a short turnaround time. Further advances in computerized design and manufacturing will continue to simplify the development of custom prostheses and enlarge their niche in the joint replacement market.
A preliminary evaluation of limb salvage surgery for osteosarcoma around knee joint.
Wu, Xing; Cai, Zheng-Dong; Chen, Zheng-Rong; Yao, Zhen-Jun; Zhang, Guang-Jian
2012-01-01
To evaluate the effectiveness and drawbacks of diversified procedures of limb salvage surgery (LSS), providing a reference of rational surgical criterion of LSS. Fifty eight patients with stage IIB extremity osteosarcoma around knee joint area between 1992 and 2002 were studied retrospectively. Among them, 43 patients were treated by LSS followed by reconstruction. Reconstruction approaches included re-implantation of irradiation-devitalized tumor bone (n = 12), autoclaving-devitalized tumor bone (n = 8), prosthetic replacement (n = 11), allograft transplantation (n = 8) and vascularized fibula autograft implantation (n = 4). Amputations were performed in 15 patients. Patients were followed up for 6-16 years. There were no significant difference between LSS and amputation groups regarding disease free survival and local recurrence rates. The actuarial 5-year continuous disease free survival and local recurrence rate were 30.0% and 25.0% in patients of devitalized LSS group, whereas those were 56.5% and 8.7% in patients of non-devitalized reconstruction group. The complication rate was significantly higher in LSS group compared to amputation group (P = 0.003). LSS with non-devitalized procedures is the optimal treatment for osteosarcoma around knee joint area. Prosthesis implantation is the preferred option for bone reconstruction following LSS. Prevention and treatment of post-operative complications should be paid more attention to get good long-term outcomes of surgery.
Kim, Ki-Seong; Lim, Young-Jun; Kim, Myung-Joo; Kwon, Ho-Beom; Yang, Jae-Ho; Lee, Jai-Bong; Yim, Soon-Ho
2011-08-01
Settling (embedment relaxation), which is the main cause for screw loosening, is developed by microroughness between implant and abutment metal surface. The objective of this study was to evaluate and compare the relationship between the level of applied torque and the settling of abutments into implants in external and internal implant-abutment connection. Five different implant-abutment connections were used (Ext, External butt joint + two-piece abutment; Int-H2, Internal hexagon + two-piece abutment; Int-H1, Internal hexagon + one-piece abutment; Int-O2, Internal octagon + two-piece abutment; Int-O1, Internal octagon + one-piece abutment). All abutments of each group were assembled and tightened with corresponding implants by a digital torque gauge. The total lengths of implant-abutment samples were measured at each torque (5, 10, 30 N cm and repeated 30 N cm with 10-min interval) by an electronic digital micrometer. The settling values were calculated by changes between the total lengths of implant-abutment samples. All groups developed settling with repeated tightening. The Int-H2 group showed markedly higher settling for all instances of tightening torque and the Ext group was the lowest. Statistically significant differences were found in settling values between the groups and statistically significant increases were observed within each group at different tightening torques (P<0.05). After the second tightening of 30 N cm, repeated tightening showed almost constant settling values. Results from the present study suggested that to minimize the settling effect, abutment screws should be retightened at least twice at 30 N cm torque at a 10-min interval in all laboratory and clinical procedures. © 2010 John Wiley & Sons A/S.
Finite element analysis on a medical implant.
Semenescu, Augustin; Radu-Ioniță, Florentina; Mateș, Ileana Mariana; Bădică, Petre; Batalu, Nicolae Dan; Negoita, Olivia Doina; Purcarea, Victor Lorin
2016-01-01
Several studies have shown a tight connection between several ocular pathologies and an increased risk of hip fractures due to falling, especially among elderly patients. The total replacement of the hip joint is a major surgical intervention that aims to restore the function of the affected hip by various factors, such as arthritis, injures, and others. A corkscrew-like femoral stem was designed in order to preserve the bone stock and to prevent the occurrence of iatrogenic fractures during the hammering of the implant. In this paper, the finite element analysis for the proposed design was applied, considering different loads and three types of materials. A finite element analysis is a powerful tool to simulate, optimize, design, and select suitable materials for new medical implants. The results showed that the best scenario was for Ti6Al4V alloy, although Ti and 316L stainless steel had a reasonable high safety factor.
Raphel, Jordan; Holodniy, Mark; Goodman, Stuart B.; Heilshorn, Sarah C.
2016-01-01
The two leading causes of failure for joint arthroplasty prostheses are aseptic loosening and periprosthetic joint infection. With the number of primary and revision joint replacement surgeries on the rise, strategies to mitigate these failure modes have become increasingly important. Much of the recent work in this field has focused on the design of coatings either to prevent infection while ignoring bone mineralization or vice versa, to promote osseointegration while ignoring microbial susceptibility. However, both coating functions are required to achieve long-term success of the implant; therefore, these two modalities must be evaluated in parallel during the development of new orthopaedic coating strategies. In this review, we discuss recent progress and future directions for the design of multifunctional orthopaedic coatings that can inhibit microbial cells while still promoting osseointegration. PMID:26851394
Schwarz, Frank; Derks, Jan; Monje, Alberto; Wang, Hom-Lay
2018-06-01
This narrative review provides an evidence-based overview on peri-implantitis for the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. A literature review was conducted addressing the following topics: 1) definition of peri-implantitis; 2) conversion from peri-implant mucositis to peri-implantitis, 3) onset and pattern of disease progression, 4) characteristics of peri-implantitis, 5) risk factors/indicators for peri-implantitis, and 6) progressive crestal bone loss in the absence of soft tissue inflammation. 1)Peri-implantitis is a pathological condition occurring in tissues around dental implants, characterized by inflammation in the peri-implant connective tissue and progressive loss of supporting bone. 2)The histopathologic and clinical conditions leading to the conversion from peri-implant mucositis to peri-implantitis are not completely understood. 3)The onset of peri-implantitis may occur early during follow-up and the disease progresses in a non-linear and accelerating pattern. 4a)Peri-implantitis sites exhibit clinical signs of inflammation and increased probing depths compared to baseline measurements. 4b)At the histologic level, compared to periodontitis sites, peri-implantitis sites often have larger inflammatory lesions. 4c)Surgical entry at peri-implantitis sites often reveals a circumferential pattern of bone loss. 5a)There is strong evidence that there is an increased risk of developing peri-implantitis in patients who have a history of chronic periodontitis, poor plaque control skills, and no regular maintenance care after implant therapy. Data identifying "smoking" and "diabetes" as potential risk factors/indicators for peri-implantitis are inconclusive. 5b)There is some limited evidence linking peri-implantitis to other factors such as: post-restorative presence of submucosal cement, lack of peri-implant keratinized mucosa and positioning of implants that make it difficult to perform oral hygiene
Forced-Air Warming Discontinued: Periprosthetic Joint Infection Rates Drop
Augustine, Scott D.
2017-01-01
Several studies have shown that the waste heat from forced-air warming (FAW) escapes near the floor and warms the contaminated air resident near the floor. The waste heat then forms into convection currents that rise up and contaminate the sterile field above the surgical table. It has been shown that a single airborne bacterium can cause a periprosthetic joint infection (PJI) following joint replacement surgery. We retrospectively compared PJI rates during a period of FAW to a period of air-free conductive fabric electric warming (CFW) at three hospitals. Surgical and antibiotic protocols were held constant. The pooled multicenter data showed a decreased PJI rate of 78% following the discontinuation of FAW and a switch to air-free CFW (n=2034; P=0.002). The 78% reduction in joint implant infections observed when FAW was discontinued suggests that there is a link between the waste FAW heat and PJIs. PMID:28713524
Osseointegration into a Novel Titanium Foam Implant in the Distal Femur of a Rabbit
Willie, Bettina M.; Yang, Xu; Kelly, Natalie H.; Merkow, Justin; Gagne, Shawn; Ware, Robin; Wright, Timothy M.; Bostrom, Mathias P.G.
2010-01-01
A novel porous titanium foam implant has recently been developed to enhance biological fixation of orthopaedic implants to bone. The aim of this study was to examine the mechanical and histological characteristics of bone apposition into two different pore sizes of this titanium foam (565 and 464 micron mean void intercept length) and to compare these characteristics to those obtained with a fully porous conventionally sintered titanium bead implant. Cylindrical implants were studied in a rabbit distal femoral intramedullary osseointegration model at time zero and at 3, 6, and 12 weeks. The amount of bone ingrowth, amount of periprosthetic bone, and mineral apposition rate of periprosthetic bone measured did not differ among the three implant designs at 3, 6, or 12 weeks. By 12 weeks, the interface stiffness and maximum load of the beaded implant was significantly greater than either foam implant. No significant difference was found in the interface stiffness or maximum load between the two foam implant designs at 3, 6, or 12 weeks. The lower compressive modulus of the foam compared to the more dense sintered beaded implants likely contributed to the difference in failure mode. However, the foam implants have a similar compressive modulus to other clinically successful coatings, suggesting they are nonetheless clinically adequate. Additional studies are required to confirm this in weight-bearing models. Histological data suggest that these novel titanium foam implants are a promising alternative to current porous coatings and should be further investigated for clinical application in cementless joint replacement. PMID:20024964
Multiple Ion Implantation Effects on Wear and Wet Ability of Polyethylene Based Polymers
NASA Astrophysics Data System (ADS)
Torrisi, L.; Visco, A. M.; Campo, N.
2004-10-01
Polyethylene based polymers were ion implanted with multiple irradiations of different ions (N+, Ar+ and Kr+) at energies between 30 keV and 300 keV and doses ranging between 1013 and 1016 ions/cm2. The ion implantation dehydrogenises the polyethylene inducing cross-link effects in the residual polymer carbons. At high doses the irradiated surface show properties similar to graphite surfaces. The depth of the modified layers depends on the ion range in polyethylene at the incident ion energy. The chemical modification depends on the implanted doses and on the specie of the incident ions. A "pin-on-disc" machine was employed to measure the polymer wear against AISI-316 L stainless steel. A "contact-angle-test" machine was employed to measure the wet ability of the polymer surface for 1 μl pure water drop. Measurements demonstrate that the multiple ion implantation treatments decrease the surface wear and the surface wetting and produce a more resistant polymer surface. The properties of the treated surfaces improves the polymer functionality for many bio-medical applications, such as those relative to the polyethylene friction discs employed in knee and hip prosthesis joints. The possibility to use multiply ion implantations of polymers with traditional ion implanters and with laser ion sources producing plasmas is investigated.
Scott, C E H; Eaton, M J; Nutton, R W; Wade, F A; Pankaj, P; Evans, S L
2013-10-01
As many as 25% to 40% of unicompartmental knee replacement (UKR) revisions are performed for pain, a possible cause of which is proximal tibial strain. The aim of this study was to examine the effect of UKR implant design and material on cortical and cancellous proximal tibial strain in a synthetic bone model. Composite Sawbone tibiae were implanted with cemented UKR components of different designs, either all-polyethylene or metal-backed. The tibiae were subsequently loaded in 500 N increments to 2500 N, unloading between increments. Cortical surface strain was measured using a digital image correlation technique. Cancellous damage was measured using acoustic emission, an engineering technique that detects sonic waves ('hits') produced when damage occurs in material. Anteromedial cortical surface strain showed significant differences between implants at 1500 N and 2500 N in the proximal 10 mm only (p < 0.001), with relative strain shielding in metal-backed implants. Acoustic emission showed significant differences in cancellous bone damage between implants at all loads (p = 0.001). All-polyethylene implants displayed 16.6 times the total number of cumulative acoustic emission hits as controls. All-polyethylene implants also displayed more hits than controls at all loads (p < 0.001), more than metal-backed implants at loads ≥ 1500 N (p < 0.001), and greater acoustic emission activity on unloading than controls (p = 0.01), reflecting a lack of implant stiffness. All-polyethylene implants were associated with a significant increase in damage at the microscopic level compared with metal-backed implants, even at low loads. All-polyethylene implants should be used with caution in patients who are likely to impose large loads across their knee joint.
21 CFR 888.3540 - Knee joint patellofemoral polymer/metal semi-constrained cemented prosthesis.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices... Medical Devices—Part I: Evaluation and Testing,’ ” (ii) “510(k) Sterility Review Guidance of 2/12/90 (K90... device intended to be implanted to replace part of a knee joint in the treatment of primary...
Berninger, Markus T.; Wexel, Gabriele; Rummeny, Ernst J.; Imhoff, Andreas B.; Anton, Martina
2013-01-01
The treatment of osteochondral articular defects has been challenging physicians for many years. The better understanding of interactions of articular cartilage and subchondral bone in recent years led to increased attention to restoration of the entire osteochondral unit. In comparison to chondral lesions the regeneration of osteochondral defects is much more complex and a far greater surgical and therapeutic challenge. The damaged tissue does not only include the superficial cartilage layer but also the subchondral bone. For deep, osteochondral damage, as it occurs for example with osteochondrosis dissecans, the full thickness of the defect needs to be replaced to restore the joint surface 1. Eligible therapeutic procedures have to consider these two different tissues with their different intrinsic healing potential 2. In the last decades, several surgical treatment options have emerged and have already been clinically established 3-6. Autologous or allogeneic osteochondral transplants consist of articular cartilage and subchondral bone and allow the replacement of the entire osteochondral unit. The defects are filled with cylindrical osteochondral grafts that aim to provide a congruent hyaline cartilage covered surface 3,7,8. Disadvantages are the limited amount of available grafts, donor site morbidity (for autologous transplants) and the incongruence of the surface; thereby the application of this method is especially limited for large defects. New approaches in the field of tissue engineering opened up promising possibilities for regenerative osteochondral therapy. The implantation of autologous chondrocytes marked the first cell based biological approach for the treatment of full-thickness cartilage lesions and is now worldwide established with good clinical results even 10 to 20 years after implantation 9,10. However, to date, this technique is not suitable for the treatment of all types of lesions such as deep defects involving the subchondral bone 11. The
Alcohol Devitalization and Replantation for Primary Malignant Bone Tumors of the Knee Joint
ZHANG, Xihai; CHEN, Ge; WANG, Jun; TANG, Lian; YIN, Yiran
2017-01-01
Background: This paper is aimed at studying the therapeutic effects of in situ replantation of alcohol-devitalized bone segments to treat malignant bone tumors of the knee joint. Methods: We retrospectively analyzed clinical data for 45 patients from January 2013 to January 2016 who underwent replantation following alcohol-devitalization of bone segments and 40 who underwent prosthesis implantation. The two groups were comparable in basal clinical biometric data, including gender, age, tumor type and location, Enneking staging, and maximum tumor diameter. Radical tumor resection was combined with neoadjuvant chemotherapy following the two-implantation procedures. Results: The median follow-up time was 25 months, and the outcomes were compared. We found no differences in the length of bone lesions, surgery time, intraoperative blood loss, amount of postoperative drainage, and perioperative complications, which were just three for each method. We also found no significant differences in limb function scores, internal fixation imaging scores, tumor-free survival rate, and overall survival rate between the two groups. Replantation following alcohol-devitalization of tumor-bearing bone segment demonstrated similar clinical outcomes compared with prosthesis implantation in the treatment of primary malignant bone tumors of the knee joint. Conclusion: Both therapies enjoy good application safety and effectiveness. Because alcohol devitalization is inexpensive and easy to apply in the clinic, it should be considered a preferred method in the treatment of bone tumors. PMID:29308374
Autologous chondrocyte implantation: superior biologic properties of hyaline cartilage repairs.
Henderson, Ian; Lavigne, Patrick; Valenzuela, Herminio; Oakes, Barry
2007-02-01
Information regarding the quality of autologous chondrocyte implantation repair is needed to determine whether the current autologous chondrocyte implantation surgical technology and the subsequent biologic repair processes are capable of reliably forming durable hyaline or hyaline-like cartilage in vivo. We report and analyze the properties and qualities of autologous chondrocyte implantation repairs. We evaluated 66 autologous chondrocyte implantation repairs in 57 patients, 55 of whom had histology, indentometry, and International Cartilage Repair Society repair scoring at reoperation for mechanical symptoms or pain. International Knee Documentation Committee scores were used to address clinical outcome. Maximum stiffness, normalized stiffness, and International Cartilage Repair Society repair scoring were higher for hyaline articular cartilage repairs compared with fibrocartilage, with no difference in clinical outcome. Reoperations revealed 32 macroscopically abnormal repairs (Group B) and 23 knees with normal-looking repairs in which symptoms leading to arthroscopy were accounted for by other joint disorders (Group A). In Group A, 65% of repairs were either hyaline or hyaline-like cartilage compared with 28% in Group B. Autologous chondrocyte repairs composed of fibrocartilage showed more morphologic abnormalities and became symptomatic earlier than hyaline or hyaline-like cartilage repairs. The hyaline articular cartilage repairs had biomechanical properties comparable to surrounding cartilage and superior to those associated with fibrocartilage repairs.
Pisani, Marina Xavier; Presotto, Anna Gabriella Camacho; Mesquita, Marcelo Ferraz; Barão, Valentim Adelino Ricardo; Kemmoku, Daniel Takanori; Del Bel Cury, Altair Antoninha
2018-04-24
The use of single or mini dental implants to retain mandibular overdentures is still questionable. The purpose of this finite element analysis (FEA) study was to investigate the biomechanical behavior of 2- and single-implant-retained mandibular overdentures with conventional or mini implants. Four 3-dimensional (3D) finite element models were constructed with the following designs of mandibular overdentures: 2 (group 2-C) and single (group 1-C) conventional external hexagon implants with ball or O-ring attachment and 2 (group 2-M) and single (group 1-M) 1-piece mini implants. A 150-N axial load was applied bilaterally and simultaneously on the first molar. Overdenture displacement, von Mises equivalent stress (implants and/or prosthetic components), and maximum principal stresses (peri-implant bone) were recorded numerically and then color-coded and compared among the groups. The overdenture displacement (in mm) was higher for the 1-M (0.16) and 2-M (0.17) groups when compared with 1-C (0.09) and 2-C (0.08). Irrespective of the type of implant, the single-implant groups presented higher values of stress (in MPa) on the implants than did the 2-implant groups (1-C=52.53; 1-M=2.95; 2-C=34.66; 2-M=2.37), ball attachment (1-C=201.33; 2-C=159.06), housing or O-ring (1-C=125.01; 1-M=1.96; 2-C=88.84; 2-M=1.27), and peri-implant cortical bone (1-C=19.37; 1-M=1.47; 2-C=15.70; 2-M=1.06). The mini implant overdentures presented lower stress values on the implants, housing or O-ring, and peri-implant bone than did the conventional implant overdentures, regardless of the number of implants. The 2-implant-retained overdentures exhibited lower stresses than the single- implant-retained overdentures, irrespective of the type of implant. The mini implants demonstrated higher overdenture displacement and lower stresses than did conventional implant overdentures for single- and 2-implant-retained overdentures. Copyright © 2018 Editorial Council for the Journal of Prosthetic
Šenolt, Ladislav
Hand osteoarthritis (OA) is a common chronic disorder causing pain and limitation of mobility of affected joints. The prevalence of hand OA increases with age and more often affects females. Clinical signs obviously do not correlate with radiographic findings - symptomatic hand OA affects approximately 26 % of adult subjects, but radiographic changes can be found in up to two thirds of females and half of males older than 55 years.Disease course differ among individual patients. Hand OA is a heterogeneous disease. Nodal hand OA is the most common subtype affecting interphalangeal joints, thumb base OA affects first carpometacarpal joint. Erosive OA represents a specific subtype of hand OA, which is associated with joint inflammation, more pain, functional limitation and erosive findings on radiographs.Treatment of OA is limited. Analgesics and nonsteroidal anti-inflammatory drugs are the only agents reducing symptoms. New insights into the pathogenesis of disease should contribute to the development of novel effective treatment of hand OA.
ERIC Educational Resources Information Center
Zaidman-Zait, Anat; Young, Richard A.
2008-01-01
Action theory and the qualitative action-project method are used in this study to address and illustrate the complexity of parenting children who have received cochlear implants (CIs) as well as the intentionality of parents engaged in that process. "Action" refers to individual and joint goal-directed and intentional behaviors. Action theory has…
Obesity: The Modifiable Risk Factor in Total Joint Arthroplasty.
Bookman, Jared S; Schwarzkopf, Ran; Rathod, Parthiv; Iorio, Richard; Deshmukh, Ajit J
2018-07-01
Obesity is an epidemic in the health care system. Obesity poses several challenges and raises unique issues for the arthroplasty surgeon. Obese patients are at higher risk for infection and dislocation. Additionally, obese patients have poorer implant survivorship and functional scores postoperatively. Obesity is a modifiable risk factor and weight loss preoperatively should be strongly considered. Obese patients must be counseled so that they have realistic expectations after total joint arthroplasty. Copyright © 2018 Elsevier Inc. All rights reserved.
Bertozzi, Lucia; Valdes, Kristin; Vanti, Carla; Negrini, Stefano; Pillastrini, Paolo; Villafañe, Jorge Hugo
2015-01-01
The purpose of this study was to conduct a current review of randomized controlled trials regarding the effect of conservative interventions on pain and function in people with thumb carpometacarpal (CMC) osteoarthritis (OA), perform a meta-analysis of the findings and summarize current knowledge. Data were obtained from MEDLINE, CINAHL, Embase, PEDro and CENTRAL databases from their inception to May 2014. Reference lists of relevant literature reviews were also searched. All published randomized trials without restrictions to time of publication or language were considered for inclusion. Study subjects were symptomatic adults with thumb CMC OA. Two reviewers independently selected studies, conducted quality assessment and extracted results. Data were pooled in a meta-analysis, when possible, using a random-effects model. Quality of the body evidence was assessed using GRADE approach. Sixteen RCTs involving 1145 participants met the inclusion criteria. Twelve were of high quality (PEDro score > 6). We found moderate quality evidence that manual therapy and therapeutic exercise combined with manual therapy improve pain in thumb CMC OA at short- and intermediate-term follow-up, and from low to moderate quality evidences that magneto therapy improves pain and function at short-term follow-up. Orthoses (splints) were found to improve function at long-term follow-up and pinch strength at short-term follow-up. Finally, we found from very low to low-quality evidence that other conservative interventions provide no significant improvement in pain and in function at short- and long-term follow-up. Some of the commonly performed conservative interventions performed in therapy have evidence to support their use to improve hand function and decrease hand pain. Additional research is required to determine the efficacy of other therapeutic interventions that are performed with patients with thumb CMC OA. Manual therapy and exercise are an effective means of improving pain and
Friction in Total Hip Joint Prosthesis Measured In Vivo during Walking
Damm, Philipp; Dymke, Joern; Ackermann, Robert; Bender, Alwina; Graichen, Friedmar; Halder, Andreas; Beier, Alexander; Bergmann, Georg
2013-01-01
Friction-induced moments and subsequent cup loosening can be the reason for total hip joint replacement failure. The aim of this study was to measure the in vivo contact forces and friction moments during walking. Instrumented hip implants with Al2O3 ceramic head and an XPE inlay were used. In vivo measurements were taken 3 months post operatively in 8 subjects. The coefficient of friction was calculated in 3D throughout the whole gait cycle, and average values of the friction-induced power dissipation in the joint were determined. On average, peak contact forces of 248% of the bodyweight and peak friction moments of 0.26% bodyweight times meter were determined. However, contact forces and friction moments varied greatly between individuals. The friction moment increased during the extension phase of the joint. The average coefficient of friction also increased during this period, from 0.04 (0.03 to 0.06) at contralateral toe off to 0.06 (0.04 to 0.08) at contralateral heel strike. During the flexion phase, the coefficient of friction increased further to 0.14 (0.09 to 0.23) at toe off. The average friction-induced power throughout the whole gait cycle was 2.3 W (1.4 W to 3.8 W). Although more parameters than only the synovia determine the friction, the wide ranges of friction coefficients and power dissipation indicate that the lubricating properties of synovia are individually very different. However, such differences may also exist in natural joints and may influence the progression of arthrosis. Furthermore, subjects with very high power dissipation may be at risk of thermally induced implant loosening. The large increase of the friction coefficient during each step could be caused by the synovia being squeezed out under load. PMID:24260114
Friction in total hip joint prosthesis measured in vivo during walking.
Damm, Philipp; Dymke, Joern; Ackermann, Robert; Bender, Alwina; Graichen, Friedmar; Halder, Andreas; Beier, Alexander; Bergmann, Georg
2013-01-01
Friction-induced moments and subsequent cup loosening can be the reason for total hip joint replacement failure. The aim of this study was to measure the in vivo contact forces and friction moments during walking. Instrumented hip implants with Al2O3 ceramic head and an XPE inlay were used. In vivo measurements were taken 3 months post operatively in 8 subjects. The coefficient of friction was calculated in 3D throughout the whole gait cycle, and average values of the friction-induced power dissipation in the joint were determined. On average, peak contact forces of 248% of the bodyweight and peak friction moments of 0.26% bodyweight times meter were determined. However, contact forces and friction moments varied greatly between individuals. The friction moment increased during the extension phase of the joint. The average coefficient of friction also increased during this period, from 0.04 (0.03 to 0.06) at contralateral toe off to 0.06 (0.04 to 0.08) at contralateral heel strike. During the flexion phase, the coefficient of friction increased further to 0.14 (0.09 to 0.23) at toe off. The average friction-induced power throughout the whole gait cycle was 2.3 W (1.4 W to 3.8 W). Although more parameters than only the synovia determine the friction, the wide ranges of friction coefficients and power dissipation indicate that the lubricating properties of synovia are individually very different. However, such differences may also exist in natural joints and may influence the progression of arthrosis. Furthermore, subjects with very high power dissipation may be at risk of thermally induced implant loosening. The large increase of the friction coefficient during each step could be caused by the synovia being squeezed out under load.
Yamazaki, Masaru; Ideta, Takahiro; Kudo, Sadahiro; Nakazawa, Masami
2016-06-01
In magnetic resonance imaging (MRI), when radiofrequency (RF) is irradiated to a subject with metallic implant, it can generate heat by RF irradiation. Recently 3 T MRI scanner has spread widely and imaging for any regions of whole body has been conducted. However specific absorption rate (SAR) of 3 T MRI becomes approximately four times as much as the 1.5 T, which can significantly affect the heat generation of metallic implants. So, we evaluated RF heating of artificial hip joints in different shapes and materials in 1.5 T and 3 T MRI. Three types of artificial hip joints made of stainless alloy, titanium alloy and cobalt chrome alloy were embedded in the human body-equivalent phantom respectively and their temperature change were measured for twenty minutes by 1.5 T and 3 T MRI. The maximum temperature rise was observed at the bottom head in all of three types of artificial hip joints, the rise being 12°C for stainless alloy, 11.9°C for titanium alloy and 6.1°C for cobalt chrome alloy in 1.5 T. The temperature rise depended on SAR and the increase of SAR had a good linear relationship with the temperature rise. It was found from the result that the RF heating of metallic implants can take place in various kinds of material and the increase of SAR has a good linear relationship with the temperature rise. This experience shows that reduction of SAR can decrease temperature of metallic implants.
Hoerth, Rebecca M; Katunar, María R; Gomez Sanchez, Andrea; Orellano, Juan C; Ceré, Silvia M; Wagermaier, Wolfgang; Ballarre, Josefina
2014-02-01
Permanent metal implants are widely used in human medical treatments and orthopedics, for example as hip joint replacements. They are commonly made of titanium alloys and beyond the optimization of this established material, it is also essential to explore alternative implant materials in view of improved osseointegration. The aim of our study was to characterize the implant performance of zirconium in comparison to titanium implants. Zirconium implants have been characterized in a previous study concerning material properties and surface characteristics in vitro, such as oxide layer thickness and surface roughness. In the present study, we compare bone material quality around zirconium and titanium implants in terms of osseointegration and therefore characterized bone material properties in a rat model using a multi-method approach. We used light and electron microscopy, micro Raman spectroscopy, micro X-ray fluorescence and X-ray scattering techniques to investigate the osseointegration in terms of compositional and structural properties of the newly formed bone. Regarding the mineralization level, the mineral composition, and the alignment and order of the mineral particles, our results show that the maturity of the newly formed bone after 8 weeks of implantation is already very high. In conclusion, the bone material quality obtained for zirconium implants is at least as good as for titanium. It seems that the zirconium implants can be a good candidate for using as permanent metal prosthesis for orthopedic treatments.
A power-efficient communication system between brain-implantable devices and external computers.
Yao, Ning; Lee, Heung-No; Chang, Cheng-Chun; Sclabassi, Robert J; Sun, Mingui
2007-01-01
In this paper, we propose a power efficient communication system for linking a brain-implantable device to an external system. For battery powered implantable devices, the processor and the transmitter power should be reduced in order to both conserve battery power and reduce the health risks associated with transmission. To accomplish this, a joint source-channel coding/decoding system is devised. Low-density generator matrix (LDGM) codes are used in our system due to their low encoding complexity. The power cost for signal processing within the implantable device is greatly reduced by avoiding explicit source encoding. Raw data which is highly correlated is transmitted. At the receiver, a Markov chain source correlation model is utilized to approximate and capture the correlation of raw data. A turbo iterative receiver algorithm is designed which connects the Markov chain source model to the LDGM decoder in a turbo-iterative way. Simulation results show that the proposed system can save up to 1 to 2.5 dB on transmission power.
Saxena, Amol; DiDomenico, Lawrence A; Widtfeldt, Arthur; Adams, Todd; Kim, Will
2005-01-01
This study assessed arthrodesis procedures performed in the foot and ankle of high-risk patients following implantation of an internal electrical bone stimulator. Criteria defining patients as "high risk" included diabetes, obesity, habitual tobacco and/or alcohol use, immunosuppressive therapy, and previous history of nonunion. Standard arthrodesis protocol of bone graft and internal fixation was supplemented with the implantable electrical bone stimulator. A retrospective, multicenter review was conducted of 26 patients (28 cases) who underwent 28 forefoot and hindfoot arthrodeses from 1998 to 2002. Complete fusion was defined as bony trabeculation across the joint, lack of motion across the joint, maintenance of hardware/fixation, and absence of radiographic signs of nonunion or pseudoarthrosis. Radiographic consolidation was achieved in 24 of the 28 cases at an average 10.3+/-4.0 weeks. Followup averaged 27.2 months. Complications included 2 patients who sustained breakage of the cables to the bone stimulator. Five patients underwent additional surgery. Four of the 5 patients had additional surgery in order to achieve arthrodesis. All 4 went on to subsequent arthrodesis. This study demonstrates how arthrodesis of the foot and ankle may be enhanced by the use of implantable electrical bone stimulation.
Patellofemoral joint contact forces during activities with high knee flexion.
Trepczynski, Adam; Kutzner, Ines; Kornaropoulos, Evgenios; Taylor, William R; Duda, Georg N; Bergmann, Georg; Heller, Markus O
2012-03-01
The patellofemoral (PF) joint plays an essential role in knee function, but little is known about the in vivo loading conditions at the joint. We hypothesized that the forces at the PF joint exceed the tibiofemoral (TF) forces during activities with high knee flexion. Motion analysis was performed in two patients with telemetric knee implants during walking, stair climbing, sit-to-stand, and squat. TF and PF forces were calculated using a musculoskeletal model, which was validated against the simultaneously measured in vivo TF forces, with mean errors of 10% and 21% for the two subjects. The in vivo peak TF forces of 2.9-3.4 bodyweight (BW) varied little across activities, while the peak PF forces showed significant variability, ranging from less than 1 BW during walking to more than 3 BW during high flexion activities, exceeding the TF forces. Together with previous in vivo measurements at the hip and knee, the PF forces determined here provide evidence that peak forces across these joints reach values of around 3 BW during high flexion activities, also suggesting that the in vivo loading conditions at the knee can only be fully understood if the forces at the TF and the PF joints are considered together. Copyright © 2011 Orthopaedic Research Society.
Cost drivers in total hip arthroplasty: effects of procedure volume and implant selling price.
Kelly, Michael P; Bozic, Kevin J
2009-01-01
Total hip arthroplasty (THA), though a highly effective procedure for patients with end-stage hip disease, has become increasingly costly, both because of increasing procedure volume and because of the introduction and widespread use of new technologies. Data regarding procedure volume and procedure costs for THA were obtained from the National Inpatient Sample and other published sources for the years 1995 through 2005. Procedure volume increased 61% over the period studied. When adjusted for inflation, using the medical consumer price index, the average selling price of THA implants increased 24%. The selling price of THA implants as a percentage of total procedure costs increased from 29% to 60% during the period under study. The increasing cost of THA in the United States is a result of both increased procedure volume and increased cost of THA implants. No long-term outcome studies related to use of new implant technologies are available, and short-term results have been similar to those obtained with previous generations of THA implants. This study reinforces the need for a US total joint arthroplasty registry and for careful clinical and economic analyses of new technologies in orthopedics.
Short dental implants: an emerging concept in implant treatment.
Al-Hashedi, Ashwaq Ali; Taiyeb Ali, Tara Bai; Yunus, Norsiah
2014-06-01
Short implants have been advocated as a treatment option in many clinical situations where the use of conventional implants is limited. This review outlines the effectiveness and clinical outcomes of using short implants as a valid treatment option in the rehabilitation of edentulous atrophic alveolar ridges. Initially, an electronic search was performed on the following databases: Medline, PubMed, Embase, Cochrane Database of Systematic Reviews, and DARE using key words from January 1990 until May 2012. An additional hand search was included for the relevant articles in the following journals: International Journal of Oral and Maxillofacial Implants, Clinical Oral Implants Research, Journal of Clinical Periodontology, International Journal of Periodontics, Journal of Periodontology, and Clinical Implant Dentistry and Related Research. Any relevant papers from the journals' references were hand searched. Articles were included if they provided detailed data on implant length, reported survival rates, mentioned measures for implant failure, were in the English language, involved human subjects, and researched implants inserted in healed atrophic ridges with a follow-up period of at least 1 year after implant-prosthesis loading. Short implants demonstrated a high rate of success in the replacement of missing teeth in especially atrophic alveolar ridges. The advanced technology and improvement of the implant surfaces have encouraged the success of short implants to a comparable level to that of standard implants. However, further randomized controlled clinical trials and prospective studies with longer follow-up periods are needed.
[Intraoperative virtual implant planning for volar plate osteosynthesis of distal radius fractures].
Franke, J; Vetter, S Y; Reising, K; Herrmann, S; Südkamp, N P; Grützner, P A; von Recum, J
2016-01-01
Digital planning of implants is in most cases conducted prior to surgery. The virtual implant planning system (VIPS) is an application developed for mobile C-arms, which assists the virtual planning of screws close to the joint line during surgery for treatment of distal radius fractures with volar plate osteosynthesis. The aim of this prospective randomized study was to acquire initial clinical experiences and to compare the VIPS method with the conventional technique. The study included 10 patients for primary testing and 30 patients with distal radius fractures of types A3, C1 and C2, divided in 2 groups. In the VIPS group, after placement of the plate and fracture reduction, a virtual 3D model of the plate was matched with the image of the plate from the fluoroscopic acquisition. Next, the length and position of the screws close to the joint line were planned on the virtual plate. The control group was treated with the same implant in the conventional way. Data were collected regarding screw replacement, fluoroscopy and operating room (OR) times. The VIPS group included six A3, one C1 and eight C2 fractures, while the control group consisted of six A3 and nine C2 fractures. Three screws were replaced in the VIPS group and two in the control group (p = 0.24). The mean intraoperative fluoroscopy time of the VIPS group amounted to 2.58 ± 1.38 min, whereas it was 2.12 ± 0.73 min in the control group (p = 0.26). The mean OR time in the VIPS group was 53.3 ± 34.5 minutes and 42.3 ± 8.8 min (p = 0.23) in the control group. The VIPS enables a precise positioning of screws close to joint line in the treatment of distal radius fractures; however, for routine use, further development of the system is necessary.
ERIC Educational Resources Information Center
Clark, Catherine; Scott, Larry
This brochure explains what a cochlear implant is, lists the types of individuals with deafness who may be helped by a cochlear implant, describes the process of evaluating people for cochlear implants, discusses the surgical process for implanting the aid, traces the path of sound through the cochlear implant to the brain, notes the costs of…
Compressive Strength Evaluation in Brazed ZrO2/Ti6Al4V Joints Using Finite Element Analysis
NASA Astrophysics Data System (ADS)
Sharma, Ashutosh; Kee, Se Ho; Jung, Flora; Heo, Yongku; Jung, Jae Pil
2016-05-01
This study aims to synthesize and evaluate the compressive strength of the ZrO2/Ti-6Al-4V joint brazed using an active metal filler Ag-Cu-Sn-Ti, and its application to dental implants assuring its reliability to resist the compressive failure in the actual oral environment. The brazing was performed at a temperature of 750 °C for 30 min in a vacuum furnace under 5 × 10-6 Torr atmosphere. The microstructure of the brazed joint showed the presence of an Ag-rich matrix and a Cu-rich phase, and Cu-Ti intermetallic compounds were observed along the Ti-6Al-4V bonded interface. The compressive strength of the brazed ZrO2/Ti-6Al-4V joint was measured by EN ISO 14801 standard test method. The measured compressive strength of the joint was ~1477 MPa—a value almost five times that of existing dental cements. Finite element analysis also confirmed the high von Mises stress values. The compressive strains in the samples were found concentrated near the Ti-6Al-4V position, matching with the position of the real fractured sample. These results suggest extremely significant compressive strength in ZrO2/Ti-6Al-4V joints using the Ag-Cu-Sn-Ti filler. It is believed that a highly reliable dental implant can be processed and designed using the results of this study.
Number of implants for mandibular implant overdentures: a systematic review
Lee, Jeong-Yol; Kim, Ha-Young; Bryant, S. Ross
2012-01-01
PURPOSE The aim of this systematic review is to address treatment outcomes of Mandibular implant overdentures relative to implant survival rate, maintenance and complications, and patient satisfaction. MATERIALS AND METHODS A systematic literature search was conducted by a PubMed search strategy and hand-searching of relevant journals from included studies. Randomized Clinical Trials (RCT) and comparative clinical trial studies on mandibular implant overdentures until August, 2010 were selected. Eleven studies from 1098 studies were finally selected and data were analyzed relative to number of implants. RESULTS Six studies presented the data of the implant survival rate which ranged from 95% to 100% for 2 and 4 implant group and from 81.8% to 96.1% for 1 and 2 implant group. One study, which statistically compared implant survival rate showed no significant differences relative to the number of implants. The most common type of prosthetic maintenance and complications were replacement or reattaching of loose clips for 2 and 4 implant group, and denture repair due to the fracture around an implant for 1 and 2 implant groups. Most studies showed no significant differences in the rate of prosthetic maintenance and complication, and patient satisfaction regardless the number of implants. CONCLUSION The implant survival rate of mandibular overdentures is high regardless of the number of implants. Denture maintenance is likely not inflenced substantially by the number of implants and patient satisfaction is typically high again regardless os the number of implants. PMID:23236572
The lexicon of polyethylene wear in artificial joints.
McKellop, Harry A
2007-12-01
The analysis of wear on polyethylene components that have been retrieved after use in patients has provided invaluable understanding of how wear occurs in vivo, and how it may be minimized through improved materials and implant design. The great number of such studies that have been published over the past three decades has lead to an extensive vocabulary to describe the tribology of prosthetic joints. However, these also have led to some confusion, due to the occasional misuse of terms from classical tribology, along with the use of multiple terms to describe the same wear phenomenon, and vice versa. The author has proposed that our understanding of wear in artificial joints may be enhanced by recognizing that there are four general subject areas: Modes, Mechanisms, Damage and Debris. Wear Mode 1 occurs when the two bearing surfaces are articulating against each other in the manner intended by the implant designer. Mode 2 occurs when a bearing surface articulates against a non-bearing surface. Mode 3 occurs when third-body abrasive particles have become entrapped between the two bearing surfaces, and Mode 4 occurs when two non-bearing surfaces are wearing against each other. The least wear occurs in Mode 1, whereas severe wear typically occurs in Modes 2, 3 and 4. The classical wear mechanisms that apply to prosthetic joints include adhesion, abrasion and fatigue. These can occur in varying amounts in either of the four wear modes. As used in the literature for the past three decades, wear "damage" can best be defined as the change surface texture or morphology that is caused by the action of the wear mechanisms. Although a wide variety of terms have been used, an overview of the literature indicates that about eight terms have been sufficient to describe the types of damage that occur on retrieved polyethylene components, i.e., burnishing, abrasion, scratches, plastic deformation, cracks, pits, delamination, and embedded third bodies. The author suggests that, as
Rupture of poly implant prothèse silicone breast implants: an implant retrieval study.
Swarts, Eric; Kop, Alan M; Nilasaroya, Anastasia; Keogh, Catherine V; Cooper, Timothy
2013-04-01
Poly Implant Prothèse implants were recalled in Australia in April of 2010 following concerns of higher than expected rupture rates and the use of unauthorized industrial grade silicone as a filler material. Although subsequent investigations found that the gel filler material does not pose a threat to human health, the important question of what caused a relatively modern breast implant to have such a poor outcome compared with contemporary silicone breast implants is yet to be addressed. From a cohort of 27 patients, 19 ruptured Poly Implant Prothèse breast implants were subjected to a range of mechanical tests and microscopic/macroscopic investigations to evaluate possible changes in properties as a result of implantation. New Poly Implant Prothèse implants were used as controls. All samples, explanted and controls, complied with the requirements for shell integrity as specified in the International Organization for Standardization 14607. Compression testing revealed rupture rates similar to those reported in the literature. Shell thickness was highly variable, with most shells having regions below the minimum thickness of 0.57 mm that was specified by the manufacturer. Potential regions of stress concentration were observed on the smooth inner surfaces and outer textured surfaces. The high incidence of Poly Implant Prothèse shell rupture is most likely a result of inadequate quality control, with contributory factors being shell thickness variation and manufacturing defects on both inner and outer surfaces of the shell. No evidence of shell degradation with implantation time was determined.
Goel, A; Pareikh, S; Sharma, P
2005-06-01
We present our experience of treating two cases of rheumatoid arthritis involving the craniovertebral junction and having marked basilar invagination by an alternative treatment method. In both the cases, the facets were osteoporotic and were not suitable for screw implantation. The patients were 66 and 72 years of age and both patients were females. Both the patients presented with complaints of progressively increasing spastic quadriparesis. Surgery involved attempts to reduce the basilar invagination and restore the height of the 'collapsed' lateral mass by manual distraction of the facets of the atlas and axis and forced impaction of titanium spacers in the joint in addition to bone graft harvested from the iliac crest. The procedure also provided stabilization of the region. No other fixation procedure involving wires, screws, plate and rods was carried out simultaneously. Following surgery both the patients showed symptomatic improvement and partial restoration of craniovertebral alignments. Follow-up is of 2 and 24 months. Distraction of the facets of atlas and axis and impaction of metal implant and bone graft in the facet joint can assist in reduction of basilar invagination and fixation of the region in selected cases of rheumatoid arthritis involving the craniovertebral junction.
Primary prevention of peri-implantitis: managing peri-implant mucositis.
Jepsen, Søren; Berglundh, Tord; Genco, Robert; Aass, Anne Merete; Demirel, Korkud; Derks, Jan; Figuero, Elena; Giovannoli, Jean Louis; Goldstein, Moshe; Lambert, France; Ortiz-Vigon, Alberto; Polyzois, Ioannis; Salvi, Giovanni E; Schwarz, Frank; Serino, Giovanni; Tomasi, Cristiano; Zitzmann, Nicola U
2015-04-01
Over the past decades, the placement of dental implants has become a routine procedure in the oral rehabilitation of fully and partially edentulous patients. However, the number of patients/implants affected by peri-implant diseases is increasing. As there are--in contrast to periodontitis--at present no established and predictable concepts for the treatment of peri-implantitis, primary prevention is of key importance. The management of peri-implant mucositis is considered as a preventive measure for the onset of peri-implantitis. Therefore, the remit of this working group was to assess the prevalence of peri-implant diseases, as well as risks for peri-implant mucositis and to evaluate measures for the management of peri-implant mucositis. Discussions were informed by four systematic reviews on the current epidemiology of peri-implant diseases, on potential risks contributing to the development of peri-implant mucositis, and on the effect of patient and of professionally administered measures to manage peri-implant mucositis. This consensus report is based on the outcomes of these systematic reviews and on the expert opinion of the participants. Key findings included: (i) meta-analysis estimated a weighted mean prevalence for peri-implant mucositis of 43% (CI: 32-54%) and for peri-implantitis of 22% (CI: 14-30%); (ii) bleeding on probing is considered as key clinical measure to distinguish between peri-implant health and disease; (iii) lack of regular supportive therapy in patients with peri-implant mucositis was associated with increased risk for onset of peri-implantitis; (iv) whereas plaque accumulation has been established as aetiological factor, smoking was identified as modifiable patient-related and excess cement as local risk indicator for the development of peri-implant mucositis; (v) patient-administered mechanical plaque control (with manual or powered toothbrushes) has been shown to be an effective preventive measure; (vi) professional intervention
Septic monoarthritis of the first carpo-metacarpal joint caused by Mycobacterium kansasii.
Brutus, J P; Lamraski, G; Zirak, C; Hauzeur, J P; Thys, J P; Schuind, F
2005-02-01
A case of septic carpal monoarthritis due to Mycobacterium kansasii developing 16 months after accidental inoculation in a healthy laboratory technician is reported. No predisposing factor such as immunosuppression, preexisting degenerative, inflammatory arthritis or cortisone injection was present. Treatment with antituberculous oral medication alone resulted in resolution of the disease. Synovectomy was unnecessary. Ten years after the initial causative event, the patient remains free of symptoms.
NASA Technical Reports Server (NTRS)
Lingo, Robert; Cadogan, Dave; Sanner, Rob; Sorenson, Beth
1997-01-01
The main goal of this program was to develop an unobtrusive power-assisted EVA glove metacarpalphalangeal (MCP) joint that could provide the crew member with as close to nude body performance as possible, and to demonstrate the technology feasibility of power assisted space suit components in general. The MCP joint was selected due to its being representative of other space suit joints, such as the shoulder, hip and carpometacarpal joint, that would also greatly benefit from this technology. In order to meet this objective, a development team of highly skilled and experienced personnel was assembled. The team consisted of two main entities. The first was comprised of ILC's experienced EVA space suit glove designers, who had the responsibility of designing and fabricating a low torque MCP joint which would be compatible with power assisted technology. The second part of the team consisted of space robotics experts from the University of Maryland's Space Systems Laboratory. This team took on the responsibility of designing and building the robotics aspects of the power-assist system. Both parties addressed final system integration responsibilities.
Surrogate modeling of deformable joint contact using artificial neural networks.
Eskinazi, Ilan; Fregly, Benjamin J
2015-09-01
Deformable joint contact models can be used to estimate loading conditions for cartilage-cartilage, implant-implant, human-orthotic, and foot-ground interactions. However, contact evaluations are often so expensive computationally that they can be prohibitive for simulations or optimizations requiring thousands or even millions of contact evaluations. To overcome this limitation, we developed a novel surrogate contact modeling method based on artificial neural networks (ANNs). The method uses special sampling techniques to gather input-output data points from an original (slow) contact model in multiple domains of input space, where each domain represents a different physical situation likely to be encountered. For each contact force and torque output by the original contact model, a multi-layer feed-forward ANN is defined, trained, and incorporated into a surrogate contact model. As an evaluation problem, we created an ANN-based surrogate contact model of an artificial tibiofemoral joint using over 75,000 evaluations of a fine-grid elastic foundation (EF) contact model. The surrogate contact model computed contact forces and torques about 1000 times faster than a less accurate coarse grid EF contact model. Furthermore, the surrogate contact model was seven times more accurate than the coarse grid EF contact model within the input domain of a walking motion. For larger input domains, the surrogate contact model showed the expected trend of increasing error with increasing domain size. In addition, the surrogate contact model was able to identify out-of-contact situations with high accuracy. Computational contact models created using our proposed ANN approach may remove an important computational bottleneck from musculoskeletal simulations or optimizations incorporating deformable joint contact models. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Surrogate Modeling of Deformable Joint Contact using Artificial Neural Networks
Eskinazi, Ilan; Fregly, Benjamin J.
2016-01-01
Deformable joint contact models can be used to estimate loading conditions for cartilage-cartilage, implant-implant, human-orthotic, and foot-ground interactions. However, contact evaluations are often so expensive computationally that they can be prohibitive for simulations or optimizations requiring thousands or even millions of contact evaluations. To overcome this limitation, we developed a novel surrogate contact modeling method based on artificial neural networks (ANNs). The method uses special sampling techniques to gather input-output data points from an original (slow) contact model in multiple domains of input space, where each domain represents a different physical situation likely to be encountered. For each contact force and torque output by the original contact model, a multi-layer feed-forward ANN is defined, trained, and incorporated into a surrogate contact model. As an evaluation problem, we created an ANN-based surrogate contact model of an artificial tibiofemoral joint using over 75,000 evaluations of a fine-grid elastic foundation (EF) contact model. The surrogate contact model computed contact forces and torques about 1000 times faster than a less accurate coarse grid EF contact model. Furthermore, the surrogate contact model was seven times more accurate than the coarse grid EF contact model within the input domain of a walking motion. For larger input domains, the surrogate contact model showed the expected trend of increasing error with increasing domain size. In addition, the surrogate contact model was able to identify out-of-contact situations with high accuracy. Computational contact models created using our proposed ANN approach may remove an important computational bottleneck from musculoskeletal simulations or optimizations incorporating deformable joint contact models. PMID:26220591
Shih, Cheng-Min; Huang, Kui-Chou; Pan, Chien-Chou; Lee, Cheng-Hung; Su, Kuo-Chih
2015-11-01
Clavicle hook plates are frequently used in clinical orthopaedics to treat acromioclavicular joint dislocation. However, patients often exhibit acromion osteolysis and per-implant fracture after undergoing hook plate fixation. With the intent of avoiding future complications or fixation failure after clavicle hook plate fixation, we used finite element analysis (FEA) to investigate the biomechanics of clavicle hook plates of different materials and sizes when used in treating acromioclavicular joint dislocation. Using finite element analysis, this study constructed a model comprising four parts: clavicle, acromion, clavicle hook plate and screws, and used the model to simulate implanting different types of clavicle hook plates in patients with acromioclavicular joint dislocation. Then, the biomechanics of stainless steel and titanium alloy clavicle hook plates containing either six or eight screw holes were investigated. The results indicated that using a longer clavicle hook plate decreased the stress value in the clavicle, and mitigated the force that clavicle hook plates exert on the acromion. Using a clavicle hook plate material characterized by a smaller Young's modulus caused a slight increase in the stress on the clavicle. However, the external force the material imposed on the acromion was less than the force exerted on the clavicle. The findings of this study can serve as a reference to help orthopaedic surgeons select clavicle hook plates.
[The use of polymer gel dosimetry to measure dose distribution around metallic implants].
Nagahata, Tomomasa; Yamaguchi, Hajime; Monzen, Hajime; Nishimura, Yasumasa
2014-10-01
A semi-solid polymer dosimetry system using agar was developed to measure the dose distribution close to metallic implants. Dosimetry of heterogeneous fields where electron density markedly varies is often problematic. This prompted us to develop a polymer gel dosimetry technique using agar to measure the dose distribution near substance boundaries. Varying the concentration of an oxygen scavenger (tetra-hydroxymethyl phosphonium chloride) showed the absorbed dose and transverse relaxation rate of the magnetic resonance signal to be linear between 3 and 12 Gy. Although a change in the dosimeter due to oxidization was observed in room air after 24 hours, no such effects were observed in the first 4 hours. The dose distribution around the metal implants was measured using agar dosimetry. The metals tested were a lead rod, a titanium hip joint, and a metallic stent. A maximum 30% dose increase was observed near the lead rod, but only a 3% increase in the absorbed dose was noted near the surface of the titanium hip joint and metallic stent. Semi-solid polymer dosimetry using agar thus appears to be a useful method for dosimetry around metallic substances.
Short Implants Versus Standard Implants: Midterm Outcomes of a Clinical Study.
Benlidayi, M Emre; Ucar, Yurdanur; Tatli, Ufuk; Ekren, Orhun; Evlice, Burcu; Kisa, Halil Ibrahim; Baksi, Uygar
2018-02-01
The aim of this study was to evaluate the midterm survival rate, marginal bone resorption (MBR), and stability of short implants and to compare the results with standard length implants. A total of 38 patients were included. In total, 147 implants (Nucleoss Implants, Izmir, Turkey) were placed (86 short implants and 61 standard implants). Cement-retained metal-ceramic prostheses were fabricated. MBR was evaluated on periapical radiographs taken at implant placement, at the time of crown insertion and annually thereafter. The stability of the implants was evaluated by resonance frequency analysis. The 3- and 5-year cumulative survival rates for standard implants was 98.4% and for short implants was 96.5% (P = 0.644). The MBR of the short implants was significantly lower than that of the standard implants after 1, 2, and 3 years of loading (P < 0.05). No significant differences were found between 2 groups after 6 and 12 months of loading in terms of implant stability (implant stability quotient values) (P > 0.05). Within the limits of this study, it is concluded that short implants achieved similar results as standard implants after 3 to 5 years of loading.
Total joint Perioperative Surgical Home: an observational financial review.
Raphael, Darren R; Cannesson, Maxime; Schwarzkopf, Ran; Garson, Leslie M; Vakharia, Shermeen B; Gupta, Ranjan; Kain, Zeev N
2014-01-01
The numbers of people requiring total arthroplasty is expected to increase substantially over the next two decades. However, increasing costs and new payment models in the USA have created a sustainability gap. Ad hoc interventions have reported marginal cost reduction, but it has become clear that sustainability lies only in complete restructuring of care delivery. The Perioperative Surgical Home (PSH) model, a patient-centered and physician-led multidisciplinary system of coordinated care, was implemented at UC Irvine Health in 2012 for patients undergoing primary elective total knee arthroplasty (TKA) or total hip arthroplasty (THA). This observational study examines the costs associated with this initiative. The direct cost of materials and services (excluding professional fees and implants) for a random index sample following the Total Joint-PSH pathway was used to calculate per diem cost. Cost of orthopedic implants was calculated based on audit-verified direct cost data. Operating room and post-anesthesia care unit time-based costs were calculated for each case and analyzed for variation. Benchmark cost data were obtained from literature search. Data are presented as mean ± SD (coefficient of variation) where possible. Total per diem cost was $10,042 ± 1,305 (13%) for TKA and $9,952 ± 1,294 (13%) for THA. Literature-reported benchmark per diem cost was $17,588 for TKA and $16,267 for THA. Implant cost was $7,482 ± 4,050 (54%) for TKA and $9869 ± 1,549 (16%) for THA. Total hospital cost was $17,894 ± 4,270 (24%) for TKA and $20,281 ± 2,057 (10%) for THA. In-room to incision time cost was $1,263 ± 100 (8%) for TKA and $1,341 ± 145 (11%) for THA. Surgery time cost was $1,558 ± 290 (19%) for TKA and $1,930 ± 374 (19%) for THA. Post-anesthesia care unit time cost was $507 ± 187 (36%) for TKA and $557 ± 302 (54%) for THA. Direct hospital costs were driven substantially below USA benchmark levels using the Total Joint-PSH pathway. The incremental
The implant infection paradox: why do some succeed when others fail? Opinion and discussion paper.
Yue, C; Zhao, B; Ren, Y; Kuijer, R; van der Mei, H C; Busscher, H J; Rochford, E T J
2015-06-05
Biomaterial-implants are frequently used to restore function and form of human anatomy. However, the presence of implanted biomaterials dramatically elevates infection risk. Paradoxically, dental-implants placed in a bacteria-laden milieu experience moderate failure-rates, due to infection (0.0-1.1%), similar to the ones of joint-arthroplasties placed in a near-sterile environment (0.1-1.3%). Transcutaneous bone-fixation pins breach the immune-barrier of the epidermis, exposing underlying sterile-tissue to an unsterile external environment. In contrast to dental-implants, also placed in a highly unsterile environment, these pins give rise to relatively high infection-associated failure-rates of up to 23.0%. Herein, we attempt to identify causes as to why dental-implants so often succeed, where others fail. The major part of all implants considered are metal-made, with similar surface-finishes. Material choice was therefore discarded as underlying the paradox. Antimicrobial activity of saliva has also been suggested as a cause for the success of dental-implants, but was discarded because saliva is the implant-site-fluid from which viable bacteria adhere. Crevicular fluid was discarded as it is largely analogous to serum. Instead, we attribute the relative success of dental-implants to (1) ability of oral tissues to heal rapidly in the continuous presence of commensal bacteria and opportunistic pathogens, and (2) tolerance of the oral immune-system. Inability of local tissue to adhere, spread and grow in presence of bacteria and an intolerant immune-system are identified as the likely main causes explaining the susceptibility of other implants to infection-associated failure. In conclusion, it is the authors' belief that new anti-infection strategies for a wide range of biomaterial-implants may be derived from the relative success of dental-implants.
The effect of the use of a counter-torque device on the abutment-implant complex.
Lang, L A; May, K B; Wang, R F
1999-04-01
Little is known about the condition of the abutment-screw joint before loading, after the development of the preload. This study examined the tightening force transmitted to the implant with and without the use of a counter-torque device during the tightening of the abutment screw. Forty Brânemark implants and 10 CeraOne, Estheticone, Procera, and AurAdapt abutments formed the experimental populations. Samples in each group were further divided into 2 groups, 1 group was tightened with a torque controller without the use of a counter-torque device, whereas the other used the counter-torque device. Samples were positioned in a special holder within the grips of a Tohnichi BTG-6 torque gauge for measuring transmitted forces. There were significant differences (P =. 0001) in the tightening forces transmitted to the implant with and without the use of a counter-torque device when tightening the abutment screws. An average of 91% of the recommended preload tightening torque was transmitted to the implant-bone interface in the absence of a counter-torque device. In all abutment systems, less than 10% of the recommended preload tightening torque was transmitted to the implant when the counter-torque device was used.
Birk, Stephanie; Brase, Christoph; Hornung, Joachim
2014-08-01
In the further development of alloplastic prostheses for use in middle ear surgery, the Dresden and Cologne University Hospitals, working together with a company, introduced a new partial ossicular replacement prosthesis in 2011. The ball-and-socket joint between the prosthesis and the shaft mimics the natural articulations between the malleus and incus and between the incus and stapes, allowing reaction to movements of the tympanic membrane graft, particularly during the healing process. Retrospective evaluation To reconstruct sound conduction as part of a type III tympanoplasty, partial ossicular replacement prosthesis with a ball-and-socket joint between the plate and the shaft was implanted in 60 patients, with other standard partial ossicular replacement prosthesis implanted in 40 patients and 64 patients. Pure-tone audiometry was carried out, on average, 19 and 213 days after surgery. Results of the partial ossicular replacement prosthesis with a ball-and-socket joint between the plate and the shaft were compared with those of the standard prostheses. Early measurements showed a mean improvement of 3.3 dB in the air-bone gap (ABG) with the partial ossicular replacement prosthesis with a ball-and-socket joint between the plate and the shaft, giving similar results than the standard implants (6.6 and 6.0 dB, respectively), but the differences were not statistically significant. Later measurements showed a statistically significant improvement in the mean ABG, 11.5 dB, compared with 4.4 dB for one of the standard partial ossicular replacement prosthesis and a tendency of better results to 6.9 dB of the other standard prosthesis. In our patients, we achieved similarly good audiometric results to those already published for the partial ossicular replacement prosthesis with a ball-and-socket joint between the plate and the shaft. Intraoperative fixation posed no problems, and the postoperative complication rate was low.
Effect of Cyclic Loading on Micromotion at the Implant-Abutment Interface.
Karl, Matthias; Taylor, Thomas D
2016-01-01
Cyclic loading may cause settling of abutments mounted on dental implants, potentially affecting screw joint stability and implant-abutment micromotion. It was the goal of this in vitro study to compare micromotion of implant-abutment assemblies before and after masticatory simulation. Six groups of abutments (n = 5) for a specific tissue-level implant system with an internal octagon were subject to micromotion measurements. The implant-abutment assemblies were loaded in a universal testing machine, and an apparatus and extensometers were used to record displacement. This was done twice, in the condition in which they were received from the abutment manufacturer and after simulated loading (100,000 cycles; 100 N). Statistical analysis was based on analysis of variance, two-sample t tests (Welch tests), and Pearson product moment correlation (α = .05). The mean values for micromotion ranged from 33.15 to 63.41 μm and from 30.03 to 42.40 μm before and after load cycling. The general trend toward reduced micromotion following load cycling was statistically significant only for CAD/CAM zirconia abutments (P = .036) and for one type of clone abutment (P = .012), with no significant correlation between values measured before and after cyclic loading (Pearson product moment correlation; P = .104). While significant differences in micromotion were found prior to load cycling, no significant difference among any of the abutment types tested could be observed afterward (P > .05 in all cases). A quantifiable settling effect at the implant-abutment interface seems to result from cyclic loading, leading to a decrease in micromotion. This effect seems to be more pronounced in low-quality abutments. For the implant system tested in this study, retightening of abutment screws is recommended after an initial period of clinical use.
Cavalli, Nicolò; Barbaro, Bruno; Spasari, Davide; Azzola, Francesco; Ciatti, Alberto; Francetti, Luca
2012-01-01
Purpose. The aims of this study were to assess the treatment outcome of immediately loaded full-arch fixed bridges anchored to both tilted and axially placed implants in the edentulous maxilla and to evaluate the incidence of biological and prosthetic complications. Materials and Methods. Thirty-four patients (18 women and 16 men) were included in the study. Each patient received a maxillary full-arch fixed bridge supported by two axial implants and two distal tilted implants. A total of 136 implants were inserted. Loading was applied within 48 hours of surgery and definitive restorations were placed 4 to 6 months later. Patients were scheduled for followup at 6, 12, 18, and 24 months and annually up to 5 years. At each followup plaque level and bleeding scores were assessed and every complication was recorded. Results. The overall follow-up range was 12 to 73 months (mean 38.8 months). No implant failures were recorded to date, leading to a cumulative implant survival rate of 100%. Biological complications were recorded such as alveolar mucositis (11.8% patients), peri-implantitis (5.9% patients), and temporomandibular joint pain (5.9% patients). The most common prosthetic complications were the fracture or detachment of one or multiple acrylic teeth in both the temporary (20.6% patients) and definitive (17.7% patients) prosthesis and the minor acrylic fractures in the temporary (14.7% patients) and definitive (2.9% patients) prosthesis. Hygienic complications occurred in 38.2% patients. No patients' dissatisfactions were recorded. Conclusions. The high cumulative implant survival rate indicates that this technique could be considered a viable treatment option. An effective recall program is important to early intercept and correct prosthetic and biologic complications in order to avoid implant and prosthetic failures. PMID:23133453
Min, Jouha; Choi, Ki Young; Dreaden, Erik C; Padera, Robert F; Braatz, Richard D; Spector, Myron; Hammond, Paula T
2016-04-26
Infections associated with orthopedic implants cause increased morbidity and significant healthcare cost. A prolonged and expensive two-stage procedure requiring two surgical steps and a 6-8 week period of joint immobilization exists as today's gold standard for the revision arthroplasty of an infected prosthesis. Because infection is much more common in implant replacement surgeries, these issues greatly impact long-term patient care for a continually growing part of the population. Here, we demonstrate that a single-stage revision using prostheses coated with self-assembled, hydrolytically degradable multilayers that sequentially deliver the antibiotic (gentamicin) and the osteoinductive growth factor (BMP-2) in a time-staggered manner enables both eradication of established biofilms and complete and rapid bone tissue repair around the implant in rats with induced osteomyelitis. The nanolayered construct allows precise independent control of release kinetics and loading for each therapeutic agent in an infected implant environment. Antibiotics contained in top layers can be tuned to provide a rapid release at early times sufficient to eliminate infection, followed by sustained release for several weeks, and the underlying BMP-2 component enables a long-term sustained release of BMP-2, which induced more significant and mechanically competent bone formation than a short-term burst release. The successful growth factor-mediated osteointegration of the multilayered implants with the host tissue improved bone-implant interfacial strength 15-fold when compared with the uncoated one. These findings demonstrate the potential of this layered release strategy to introduce a durable next-generation implant solution, ultimately an important step forward to future large animal models toward the clinic.
Hip and knee joint loading during vertical jumping and push jerking
Cleather, Daniel J; Goodwin, Jon E; Bull, Anthony MJ
2014-01-01
Background The internal joint contact forces experienced at the lower limb have been frequently studied in activities of daily living and rehabilitation activities. In contrast, the forces experienced during more dynamic activities are not well understood, and those studies that do exist suggest very high degrees of joint loading. Methods In this study a biomechanical model of the right lower limb was used to calculate the internal joint forces experienced by the lower limb during vertical jumping, landing and push jerking (an explosive exercise derived from the sport of Olympic weightlifting), with a particular emphasis on the forces experienced by the knee. Findings The knee experienced mean peak loadings of 2.4-4.6 × body weight at the patellofemoral joint, 6.9-9.0 × body weight at the tibiofemoral joint, 0.3-1.4 × body weight anterior tibial shear and 1.0-3.1 × body weight posterior tibial shear. The hip experienced a mean peak loading of 5.5-8.4 × body weight and the ankle 8.9-10.0 × body weight. Interpretation The magnitudes of the total (resultant) joint contact forces at the patellofemoral joint, tibiofemoral joint and hip are greater than those reported in activities of daily living and less dynamic rehabilitation exercises. The information in this study is of importance for medical professionals, coaches and biomedical researchers in improving the understanding of acute and chronic injuries, understanding the performance of prosthetic implants and materials, evaluating the appropriateness of jumping and weightlifting for patient populations and informing the training programmes of healthy populations. PMID:23146164
Søballe, Kjeld; Mouzin, Olivier R G; Kidder, Louis A; Overgaard, Søren; Bechtold, Joan E
2003-06-01
We used our established experimental model of revision joint replacement to examine the roles of hydroxyapatite coating and bone graft in improving the fixation of revision implants. The revision protocol uses the Søballe micromotion device in a preliminary 8-week period of implant instability for the presence of particulate polyethylene. During this procedure, a sclerotic endosteal bone rim forms, and a dense fibrous membrane is engendered, having macrophages with ingested polyethylene and high levels of inflammatory cytokines. At the time of revision after 8 weeks, the cavity is revised with either a titanium alloy (Ti) or a hydroxyapatite (HA) 6.0 mm plasma-sprayed implant, in the presence or absence of allograft packed into the initial 0.75 mm peri-implant gap. The contralateral limb is subjected to primary surgery with the same implant configuration, and serves as control. 8 implants were included in each of the 8 treatment groups (total 64 implants in 32 dogs). The observation period was 4 weeks after revision. Outcome measures are based on histomorphometry and mechanical pushout properties. The revision setting was always inferior to its primary counterpart. Bone graft improved the revision fixation in all treatment groups, as also did the HA coating. The sole exception was revision-grafted HA implants, which reached the same fixation as primary Ti and HA grafted implants. The revision, which was less active in general, seems to need the dual stimulation of bone graft and HA implant surface, to obtain the same level of fixation associated with primary implants. Our findings suggest that the combination of HA implant and bone graft may be of benefit in the clinical revision implant setting.
Søballe, Kjeld; Mouzin, Olivier R G; Kidder, Louis A; Overgaard, Søren; Bechtold, Joan E
2015-01-01
We used our established experimental model of revision joint replacement to examine the roles of hydroxyapatite coating and bone graft in improving the fixation of revision implants. The revision protocol uses the Søballe micromotion device in a preliminary 8-week period of implant instability for the presence of particulate polyethylene. During this procedure, a sclerotic endosteal bone rim forms, and a dense fibrous membrane is engendered, having macrophages with ingested polyethylene and high levels of inflammatory cytokines. At the time of revision after 8 weeks, the cavity is revised with either a titanium alloy (Ti) or a hydroxyapatite (HA) 6.0 mm plasma-sprayed implant, in the presence or absence of allograft packed into the initial 0.75 mm peri-implant gap. The contralateral limb is subjected to primary surgery with the same implant configuration, and serves as control. 8 implants were included in each of the 8 treatment groups (total 64 implants in 32 dogs). The observation period was 4 weeks after revision. Outcome measures are based on histomorphometry and mechanical pushout properties. The revision setting was always inferior to its primary counterpart. Bone graft improved the revision fixation in all treatment groups, as also did the HA coating. The sole exception was revision-grafted HA implants, which reached the same fixation as primary Ti and HA grafted implants. The revision, which was less active in general, seems to need the dual stimulation of bone graft and HA implant surface, to obtain the same level of fixation associated with primary implants. Our findings suggest that the combination of HA implant and bone graft may be of benefit in the clinical revision implant setting. PMID:12899541
Why are mini-implants lost: the value of the implantation technique!
Romano, Fabio Lourenço; Consolaro, Alberto
2015-01-01
The use of mini-implants have made a major contribution to orthodontic treatment. Demand has aroused scientific curiosity about implant placement procedures and techniques. However, the reasons for instability have not yet been made totally clear. The aim of this article is to establish a relationship between implant placement technique and mini-implant success rates by means of examining the following hypotheses: 1) Sites of poor alveolar bone and little space between roots lead to inadequate implant placement; 2) Different sites require mini-implants of different sizes! Implant size should respect alveolar bone diameter; 3) Properly determining mini-implant placement site provides ease for implant placement and contributes to stability; 4) The more precise the lancing procedures, the better the implant placement technique; 5) Self-drilling does not mean higher pressures; 6) Knowing where implant placement should end decreases the risk of complications and mini-implant loss.
Lu, Yan; Lee, Jae Sung; Nemke, Brett; Graf, Ben K.; Royalty, Kevin; Illgen, Richard; Vanderby, Ray; Markel, Mark D.; Murphy, William L.
2012-01-01
Despite the potential for growth factor delivery strategies to promote orthopedic implant healing, there is a need for growth factor delivery methods that are controllable and amenable to clinical translation. We have developed a modular bone growth factor, herein termed “modular bone morphogenetic peptide (mBMP)”, which was designed to efficiently bind to the surface of orthopedic implants and also stimulate new bone formation. The purpose of this study was to coat a hydroxyapatite-titanium implant with mBMP and evaluate bone healing across a bone-implant gap in the sheep femoral condyle. The mBMP molecules efficiently bound to a hydroxyapatite-titanium implant and 64% of the initially bound mBMP molecules were released in a sustained manner over 28 days. The results demonstrated that the mBMP-coated implant group had significantly more mineralized bone filling in the implant-bone gap than the control group in C-arm computed tomography (DynaCT) scanning (25% more), histological (35% more) and microradiographic images (50% more). Push-out stiffness of the mBMP group was nearly 40% greater than that of control group whereas peak force did not show a significant difference. The results of this study demonstrated that mBMP coated on a hydroxyapatite-titanium implant stimulates new bone formation and may be useful to improve implant fixation in total joint arthroplasty applications. PMID:23185610
Tiihonen, R; Honkanen, P B; Belt, E A; Ikävalko, M; Skyttä, E T
2012-01-01
Revision arthroplasty of metacarpophalangeal (MCP) joints in chronic inflammatory arthritis patients after silicone implants is challenging due of severe bone loss and soft tissue deficiencies. The aim of this study was to evaluate the outcome of revision MCP arthroplasty using poly-L/D-lactic acid 96:4 (PLDLA) interposition implant and morcelised allograft or autograft bone packing in patients with failed MCP arthroplasties and severe osteolysis. The study group consisted of 15 patients (15 hands and 36 joints) at a mean follow-up of seven years (range 5-10 years). The radiographs were reviewed for osteolysis and incorporation of the grafted bone. The clinical assessments included active range of motion, evaluation of pain, subjective outcome and assessment of grip power. PLDLA interposition arthroplasty combined with bone packing provided satisfactory pain relief, but function was limited. Radiographic analysis showed complete incorporation of the grafted bone to the diaphyseal portion of the host metacarpal and phalangeal bones in 30 of the 36 joints. All the patients had very limited grip strength, both on the operated and non-operated side. Due to soft tissue deficiencies long-term function and alignment problems can not be resolved with PLDLA interposition implant.
Ardestani, Marzieh Mostafavizadeh; Chen, Zhenxian; Wang, Ling; Lian, Qin; Liu, Yaxiong; He, Jiankang; Li, Dichen; Jin, Zhongmin
2014-10-01
There is a growing interest in non-surgical gait rehabilitation treatments to reduce the loading in the knee joint. In particular, synergetic kinematic changes required for joint offloading should be determined individually for each subject. Previous studies for gait rehabilitation designs are typically relied on a "trial-and-error" approach, using multi-body dynamic (MBD) analysis. However MBD is fairly time demanding which prevents it to be used iteratively for each subject. This study employed an artificial neural network to develop a cost-effective computational framework for designing gait rehabilitation patterns. A feed forward artificial neural network (FFANN) was trained based on a number of experimental gait trials obtained from literature. The trained network was then hired to calculate the appropriate kinematic waveforms (output) needed to achieve desired knee joint loading patterns (input). An auxiliary neural network was also developed to update the ground reaction force and moment profiles with respect to the predicted kinematic waveforms. The feasibility and efficiency of the predicted kinematic patterns were then evaluated through MBD analysis. Results showed that FFANN-based predicted kinematics could effectively decrease the total knee joint reaction forces. Peak values of the resultant knee joint forces, with respect to the bodyweight (BW), were reduced by 20% BW and 25% BW in the midstance and the terminal stance phases. Impulse values of the knee joint loading patterns were also decreased by 17% BW*s and 24%BW*s in the corresponding phases. The FFANN-based framework suggested a cost-effective forward solution which directly calculated the kinematic variations needed to implement a given desired knee joint loading pattern. It is therefore expected that this approach provides potential advantages and further insights into knee rehabilitation designs. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Hydroxyapatite ocular implant and non-integrated implants in eviscerated patients
Gradinaru, S; Popescu, V; Leasu, C; Pricopie, S; Yasin, S; Ciuluvica, R; Ungureanu, E
2015-01-01
Introduction: This study compares the outcomes and complications of hydroxyapatite ocular implant and non-integrated ocular implants following evisceration. Materials and Methods: This is a retrospective study of 90 patients who underwent evisceration for different ocular affections, in the Ophthalmology Department of the University Emergency Hospital Bucharest, between January 2009 and December 2013. The outcomes measured were conjunctival dehiscence, socket infection, implant exposure and extrusion rate. Results: Forty-three patients had the hydroxyapatite implant (coralline–Integrated Ocular Implants, USA or synthetic–FCI, France) and forty-seven received non-integrated ocular implants (24 acrylic and 23 silicone). Five cases of socket infection, thirteen cases of extrusion and two cases of conjunctival dehiscence were encountered. Conclusions: There was a higher rate of conjunctival dehiscence with hydroxyapatite ocular implant, but implant extrusion and socket infection were found in non-integrated ocular implants. PMID:25914747
Prosthetic joint infection development of an evidence-based diagnostic algorithm.
Mühlhofer, Heinrich M L; Pohlig, Florian; Kanz, Karl-Georg; Lenze, Ulrich; Lenze, Florian; Toepfer, Andreas; Kelch, Sarah; Harrasser, Norbert; von Eisenhart-Rothe, Rüdiger; Schauwecker, Johannes
2017-03-09
Increasing rates of prosthetic joint infection (PJI) have presented challenges for general practitioners, orthopedic surgeons and the health care system in the recent years. The diagnosis of PJI is complex; multiple diagnostic tools are used in the attempt to correctly diagnose PJI. Evidence-based algorithms can help to identify PJI using standardized diagnostic steps. We reviewed relevant publications between 1990 and 2015 using a systematic literature search in MEDLINE and PUBMED. The selected search results were then classified into levels of evidence. The keywords were prosthetic joint infection, biofilm, diagnosis, sonication, antibiotic treatment, implant-associated infection, Staph. aureus, rifampicin, implant retention, pcr, maldi-tof, serology, synovial fluid, c-reactive protein level, total hip arthroplasty (THA), total knee arthroplasty (TKA) and combinations of these terms. From an initial 768 publications, 156 publications were stringently reviewed. Publications with class I-III recommendations (EAST) were considered. We developed an algorithm for the diagnostic approach to display the complex diagnosis of PJI in a clear and logically structured process according to ISO 5807. The evidence-based standardized algorithm combines modern clinical requirements and evidence-based treatment principles. The algorithm provides a detailed transparent standard operating procedure (SOP) for diagnosing PJI. Thus, consistently high, examiner-independent process quality is assured to meet the demands of modern quality management in PJI diagnosis.
Fracture resistance of different implant abutments supporting all-ceramic single crowns after aging.
Stimmelmayr, Michael; Heiß, Philipp; Erdelt, Kurt; Schweiger, Josef; Beuer, Florian
To test the mechanical properties of three different restorative materials for implant abutments supporting all-ceramic single crowns. Thirty implants with butt-joint connections were distributed into three test groups: Group A with 10 one-piece zirconia abutments, Group U with 10 titanium abutments, and Group T with 10 titanium-zirconia hybrid abutments. Monolithic zirconia single crowns were cemented and artificially aged. The crowns were loaded at a 30-degree angle in a universal testing machine until fracture or bending. Additionally, after removal of the restorations, the implant-abutment interface of the fixtures was inspected using a scanning electron microscope (SEM). In Group A, the abutments failed on average at 336.78 N, in Group U at 1000.12 N, and in Group T at 1296.55 N. The mean values between Groups T and U (P = 0.009), and between Group A and Groups T and U (P < 0.001) were significantly different. The abutments in Group A failed early due to fractures of the internal parts and parts close to the implant neck. In Groups T and U, failures occurred due to bending of the implant neck. This experimental study proves that hybrid and titanium abutments have similar mechanical properties. One-piece abutments made of zirconia showed significantly lower fracture resistance.
Immediate direct-to-implant breast reconstruction using anatomical implants.
Kim, Sung-Eun; Jung, Dong-Woo; Chung, Kyu-Jin; Lee, Jun Ho; Kim, Tae Gon; Kim, Yong-Ha; Lee, Soo Jung; Kang, Su Hwan; Choi, Jung Eun
2014-09-01
In 2012, a new anatomic breast implant of form-stable silicone gel was introduced onto the Korean market. The intended use of this implant is in the area of aesthetic breast surgery, and many reports are promising. Thus far, however, there have been no reports on the use of this implant for breast reconstruction in Korea. We used this breast implant in breast reconstruction surgery and report our early experience. From November 2012 to April 2013, the Natrelle Style 410 form-stable anatomically shaped cohesive silicone gel-filled breast implant was used in 31 breasts of 30 patients for implant breast reconstruction with an acellular dermal matrix. Patients were treated with skin-sparing mastectomies followed by immediate breast reconstruction. The mean breast resection volume was 240 mL (range, 83-540 mL). The mean size of the breast implants was 217 mL (range, 125-395 mL). Breast shape outcomes were considered acceptable. Infection and skin thinning occurred in one patient each, and hematoma and seroma did not occur. Three cases of wound dehiscence occurred, one requiring surgical intervention, while the others healed with conservative treatment in one month. Rippling did not occur. So far, complications such as capsular contracture and malrotation of breast implant have not yet arisen. By using anatomic breast implants in breast reconstruction, we achieved satisfactory results with aesthetics better than those obtained with round breast implants. Therefore, we concluded that the anatomical implant is suitable for breast reconstruction.
Lu, Zhen; McKellop, Harry A
2014-03-01
This study compared the accuracy and sensitivity of several numerical methods employing spherical or plane triangles for calculating the volumetric wear of retrieved metal-on-metal hip joint implants from coordinate measuring machine measurements. Five methods, one using spherical triangles and four using plane triangles to represent the bearing and the best-fit surfaces, were assessed and compared on a perfect hemisphere model and a hemi-ellipsoid model (i.e. unworn models), computer-generated wear models and wear-tested femoral balls, with point spacings of 0.5, 1, 2 and 3 mm. The results showed that the algorithm (Method 1) employing spherical triangles to represent the bearing surface and to scale the mesh to the best-fit surfaces produced adequate accuracy for the wear volume with point spacings of 0.5, 1, 2 and 3 mm. The algorithms (Methods 2-4) using plane triangles to represent the bearing surface and to scale the mesh to the best-fit surface also produced accuracies that were comparable to that with spherical triangles. In contrast, if the bearing surface was represented with a mesh of plane triangles and the best-fit surface was taken as a smooth surface without discretization (Method 5), the algorithm produced much lower accuracy with a point spacing of 0.5 mm than Methods 1-4 with a point spacing of 3 mm.
Sub-meninges implantation reduces immune response to neural implants.
Markwardt, Neil T; Stokol, Jodi; Rennaker, Robert L
2013-04-15
Glial scar formation around neural interfaces inhibits their ability to acquire usable signals from the surrounding neurons. To improve neural recording performance, the inflammatory response and glial scarring must be minimized. Previous work has indicated that meningeally derived cells participate in the immune response, and it is possible that the meninges may grow down around the shank of a neural implant, contributing to the formation of the glial scar. This study examines whether the glial scar can be reduced by placing a neural probe completely below the meninges. Rats were implanted with sets of loose microwire implants placed either completely below the meninges or implanted conventionally with the upper end penetrating the meninges, but not attached to the skull. Histological analysis was performed 4 weeks following surgical implantation to evaluate the glial scar. Our results found that sub-meninges implants showed an average reduction in reactive astrocyte activity of 63% compared to trans-meninges implants. Microglial activity was also reduced for sub-meninges implants. These results suggest that techniques that isolate implants from the meninges offer the potential to reduce the encapsulation response which should improve chronic recording quality and stability. Published by Elsevier B.V.
Sub-meninges Implantation Reduces Immune Response to Neural Implants
Markwardt, Neil T.; Stokol, Jodi; Rennaker, Robert L.
2013-01-01
Glial scar formation around neural interfaces inhibits their ability to acquire usable signals from the surrounding neurons. To improve neural recording performance, the inflammatory response and glial scarring must be minimized. Previous work has indicated that meningeally derived cells participate in the immune response, and it is possible that the meninges may grow down around the shank of a neural implant, contributing to the formation of the glial scar. This study examines whether the glial scar can be reduced by placing a neural probe completely below the meninges. Rats were implanted with sets of loose microwire implants placed either completely below the meninges or implanted conventionally with the upper end penetrating the meninges, but not attached to the skull. Histological analysis was performed 4 weeks following surgical implantation to evaluate the glial scar. Our results found that sub-meninges implants showed an average reduction in reactive astrocyte activity of 63% compared to trans-meninges implants. Microglial activity was also reduced for sub-meninges implants. These results suggest that techniques that isolate implants from the meninges offer the potential to reduce the encapsulation response which should improve chronic recording quality and stability. PMID:23370311
Survival of dental implants placed in sites of previously failed implants.
Chrcanovic, Bruno R; Kisch, Jenö; Albrektsson, Tomas; Wennerberg, Ann
2017-11-01
To assess the survival of dental implants placed in sites of previously failed implants and to explore the possible factors that might affect the outcome of this reimplantation procedure. Patients that had failed dental implants, which were replaced with the same implant type at the same site, were included. Descriptive statistics were used to describe the patients and implants; survival analysis was also performed. The effect of systemic, environmental, and local factors on the survival of the reoperated implants was evaluated. 175 of 10,096 implants in 98 patients were replaced by another implant at the same location (159, 14, and 2 implants at second, third, and fourth surgeries, respectively). Newly replaced implants were generally of similar diameter but of shorter length compared to the previously placed fixtures. A statistically significant greater percentage of lost implants were placed in sites with low bone quantity. There was a statistically significant difference (P = 0.032) in the survival rates between implants that were inserted for the first time (94%) and implants that replaced the ones lost (73%). There was a statistically higher failure rate of the reoperated implants for patients taking antidepressants and antithrombotic agents. Dental implants replacing failed implants had lower survival rates than the rates reported for the previous attempts of implant placement. It is suggested that a site-specific negative effect may possibly be associated with this phenomenon, as well as the intake of antidepressants and antithrombotic agents. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Lindsey, Derek P; Perez-Orribo, Luis; Rodriguez-Martinez, Nestor; Reyes, Phillip M; Newcomb, Anna; Cable, Alexandria; Hickam, Grace; Yerby, Scott A; Crawford, Neil R
2014-01-01
Introduction Sacroiliac (SI) joint pain has become a recognized factor in low back pain. The purpose of this study was to investigate the effect of a minimally invasive surgical SI joint fusion procedure on the in vitro biomechanics of the SI joint before and after cyclic loading. Methods Seven cadaveric specimens were tested under the following conditions: intact, posterior ligaments (PL) and pubic symphysis (PS) cut, treated (three implants placed), and after 5,000 cycles of flexion–extension. The range of motion (ROM) in flexion–extension, lateral bending, and axial rotation was determined with an applied 7.5 N · m moment using an optoelectronic system. Results for each ROM were compared using a repeated measures analysis of variance (ANOVA) with a Holm–Šidák post-hoc test. Results Placement of three fusion devices decreased the flexion–extension ROM. Lateral bending and axial rotation were not significantly altered. All PL/PS cut and post-cyclic ROMs were larger than in the intact condition. The 5,000 cycles of flexion–extension did not lead to a significant increase in any ROMs. Discussion In the current model, placement of three 7.0 mm iFuse Implants significantly decreased the flexion–extension ROM. Joint ROM was not increased by 5,000 flexion–extension cycles. PMID:24868175
Imaging of common breast implants and implant-related complications: A pictorial essay.
Shah, Amisha T; Jankharia, Bijal B
2016-01-01
The number of women undergoing breast implant procedures is increasing exponentially. It is, therefore, imperative for a radiologist to be familiar with the normal and abnormal imaging appearances of common breast implants. Diagnostic imaging studies such as mammography, ultrasonography, and magnetic resonance imaging are used to evaluate implant integrity, detect abnormalities of the implant and its surrounding capsule, and detect breast conditions unrelated to implants. Magnetic resonance imaging of silicone breast implants, with its high sensitivity and specificity for detecting implant rupture, is the most reliable modality to asses implant integrity. Whichever imaging modality is used, the overall aim of imaging breast implants is to provide the pertinent information about implant integrity, detect implant failures, and to detect breast conditions unrelated to the implants, such as cancer.
Contribution of tibiofemoral joint contact to net loads at the knee in gait.
Walter, Jonathan P; Korkmaz, Nuray; Fregly, Benjamin J; Pandy, Marcus G
2015-07-01
Inverse dynamics analysis is commonly used to estimate the net loads at a joint during human motion. Most lower-limb models of movement represent the knee as a simple hinge joint when calculating muscle forces. This approach is limited because it neglects the contributions from tibiofemoral joint contact forces and may therefore lead to errors in estimated muscle forces. The aim of this study was to quantify the contributions of tibiofemoral joint contact loads to the net knee loads calculated from inverse dynamics for multiple subjects and multiple gait patterns. Tibiofemoral joint contact loads were measured in four subjects with instrumented implants as each subject walked at their preferred speed (normal gait) and performed prescribed gait modifications designed to treat medial knee osteoarthritis. Tibiofemoral contact loads contributed substantially to the net knee extension and knee adduction moments in normal gait with mean values of 16% and 54%, respectively. These findings suggest that knee-contact kinematics and loads should be included in lower-limb models of movement for more accurate determination of muscle forces. The results of this study may be used to guide the development of more realistic lower-limb models that account for the effects of tibiofemoral joint contact at the knee. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
[Joint dislocation after total knee arthroplasty as an ankle fracture complication. Case report].
Hrubina, M; Skoták, M
2012-01-01
Joint dislocation after total knee arthroplasty is a rare complication. It is described as the result of ligamentous instability. Here we report the case of an 82-year-old women who underwent primary total knee arthroplasty (TKA) for advanced primary grade III gonarthrosis. At 3 post-operative months the joint was stable and painless, with radiographic evidence of good TKA alignment and integration. At 4 months the patient suffered injury to the ankle involving a bimalleolar fracture and damage to knee soft tissues. The fracture was surgically treated. Subsequently, dorsal tibial dislocation was manifested. This was managed by individual intramedullary nail arthrodesis. At 8 months following the operation, the knee condition was satisfactory, with rigid arthrodesis and leg shortening of 4 cm. The patient was satisfied because she was free of pain and able to walk. Arthrodesis of the knee joint with an individual nail is an option for a definitive treatment of TKA instability. When other joints, such as ankle or hip joints, are injured, it is recommended to pay attention also to any TKA implanted previously because of potential development of instability or infection.
Kang, Lana; Hashmi, Sohaib Z; Nguyen, Joseph; Lee, Steve K; Weiland, Andrew J; Mancuso, Carol A
2016-01-01
Although patient expectations associated with major orthopaedic conditions have shown clinically relevant and variable effects on outcomes, expectations associated with thumb carpometacarpal (CMC) arthritis have not been identified, described, or analyzed before, to our knowledge. We asked: (1) Do patients with thumb CMC arthritis express characteristic expectations that are quantifiable and have measurable frequency? (2) Can a survey on expectations developed from patient-derived data quantitate expectations in patients with thumb CMC arthritis? The study was a prospective cohort study. The first phase was a 12-month-period involving interviews of 42 patients with thumb CMC arthritis to define their expectations of treatment. The interview process used techniques and principles of qualitative methodology including open-ended interview questions, unrestricted time, and study size determined by data saturation. Verbatim responses provided content for the draft survey. The second phase was a 12-month period assessing the survey for test-retest reliability with the recruitment of 36 participants who completed the survey twice. The survey was finalized from clinically relevant content, frequency of endorsement, weighted kappa values for concordance of responses, and intraclass coefficient and Cronbach's alpha for interrater reliability and internal consistency. Thirty-two patients volunteered 256 characteristic expectations, which consisted of 21 discrete categories. Expectations with similar concepts were combined by eliminating redundancy while maintaining original terminology. These were reduced to 19 items that comprised a one-page survey. This survey showed high concordance, interrater reliability, and internal consistency, with weighted kappa values between 0.58 and 0.78 (95% CI, 0.39-0.78; p < 0.001); intraclass correlation coefficient of 0.94 (95% CI, 0.94-0.98; p < 0.001), and Cronbach's alpha values of 0.94 and 0.95 (95% CI, 0.91-0.96; p < 0.001). The thumb
Imaging of common breast implants and implant-related complications: A pictorial essay
Shah, Amisha T; Jankharia, Bijal B
2016-01-01
The number of women undergoing breast implant procedures is increasing exponentially. It is, therefore, imperative for a radiologist to be familiar with the normal and abnormal imaging appearances of common breast implants. Diagnostic imaging studies such as mammography, ultrasonography, and magnetic resonance imaging are used to evaluate implant integrity, detect abnormalities of the implant and its surrounding capsule, and detect breast conditions unrelated to implants. Magnetic resonance imaging of silicone breast implants, with its high sensitivity and specificity for detecting implant rupture, is the most reliable modality to asses implant integrity. Whichever imaging modality is used, the overall aim of imaging breast implants is to provide the pertinent information about implant integrity, detect implant failures, and to detect breast conditions unrelated to the implants, such as cancer. PMID:27413269
Impact of an implanted neuroprosthesis on community ambulation in incomplete SCI.
Lombardo, Lisa M; Kobetic, Rudolf; Pinault, Gilles; Foglyano, Kevin M; Bailey, Stephanie N; Selkirk, Stephen; Triolo, Ronald J
2018-03-01
Test the effect of a multi-joint control with implanted electrical stimulation on walking after spinal cord injury (SCI). Single subject research design with repeated measures. Hospital-based biomechanics laboratory and user assessment of community use. Female with C6 AIS C SCI 30 years post injury. Lower extremity muscle activation with an implanted pulse generator and gait training. Walking speed, maximum distance, oxygen consumption, upper extremity (UE) forces, kinematics and self-assessment of technology. Short distance walking speed at one-year follow up with or without stimulation was not significantly different from baseline. However, average walking speed was significantly faster (0.22 m/s) with stimulation over longer distances than volitional walking (0.12 m/s). In addition, there was a 413% increase in walking distance from 95 m volitionally to 488 m with stimulation while oxygen consumption and maximum upper extremity forces decreased by 22 and 16%, respectively. Stimulation also produced significant (P ≤ 0.001) improvements in peak hip and knee flexion, ankle angle at foot off and at mid-swing. An implanted neuroprosthesis enabled a subject with incomplete SCI to walk longer distances with improved hip and knee flexion and ankle dorsiflexion resulting in decreased oxygen consumption and UE support. Further research is required to determine the robustness, generalizability and functional implications of implanted neuroprostheses for community ambulation after incomplete SCI.
Erdle, Benjamin; Herrmann, Simon; Porichis, Stella; Uhl, Markus; Ghanem, Nadir; Schmal, Hagen; Suedkamp, Norbert; Niemeyer, Philipp; Salzmann, Gian M
2017-10-01
Little is known about long-term sporting activity after periosteal autologous chondrocyte implantation (ACI-P) and its correlation to clinical, morphological, and ultrastructural cartilage characteristics on magnetic resonance imaging (MRI). To evaluate long-term sporting activity after ACI-P and to correlate with clinical and MRI findings. Case series; Level of evidence, 4. Patients who underwent ACI-P for isolated cartilage defects of the knee joint between 1997 and 2001 were analyzed for sporting ability for 3 different time points: lifetime until the onset of pain, the year before ACI-P, and 11 years (range, 9.0-13.4 years) postoperatively. Sporting activity was assessed and patients' level of activity scaled using standardized questionnaires. MRI scans of the affected knee joint at follow-up were analyzed using the MOCART (magnetic resonance observation of cartilage repair tissue) score and T2 mapping. Seventy of 86 patients (81% follow-up rate) consisting of 25 female and 45 male patients, with a mean age of 33.3 ± 10.2 years at the time of surgery, mean defect size of 6.5 ± 4.0 cm 2 , and 1.17 treated defects per patient, agreed to participate in the study at a mean 10.9 ± 1.1 years after ACI-P. Fifty-nine patients (69% of total; 84% of follow-up) agreed to MRI, allowing the complete evaluation of 71 transplant sites. Before the onset of symptoms (lifetime), 95.7% of patients played a mean 6.0 sporting activities at a competitive level. In the year before ACI-P, 81.4% of patients played a mean 3.4 sporting activities in 2.4 sessions during 5.4 hours per week at a recreational level. At follow-up, 82.9% of the patients played a mean 3.0 sporting activities in 1.8 sessions during 3.0 hours per week at a recreational level. In contrast to objective factors, 65.6% of the patients felt that their subjective sporting ability had improved or strongly improved after ACI-P, whereas 12.9% felt that their situation had declined or strongly declined, and 21.4% stated
Boss, J H; Shajrawi, I; Mendes, D G
1994-01-01
culminates in aseptic loosening of the arthroplasty. The morphological features of the LIM, though characterized by a stereotypical reaction pattern, are, in their details, closely linked with the nature of the diverse components of the composite joint replacement. The histological appearances of the bone-implant interface of stable and loose arthroplasties, the tissular reactions to polymethylmethacrylate, polyethylene, polyacetal, metals and hydroxyapatite as well as the characteristics of cemented and cementless porous-coated, press-fit and hydroxyapatite-coated prostheses are described.
Cochlear implants in children implanted in Jordan: A parental overview.
Alkhamra, Rana A
2015-07-01
Exploring the perspective of parents on the cochlear implant process in Jordan. Sixty parents of deaf children were surveyed on the information gathering process prior to cochlear implant surgery, and their implant outcome expectations post-surgery. Whether child or parent characteristics may impact parents' post-surgical expectations was explored. Although parents used a variety of information sources when considering a cochlear implant, the ear, nose and throat doctor comprised their major source of information (60%). Parents received a range of information prior to cochlear implant but agreed (93.3%) on the need for a multidisciplinary team approach. Post-surgically, parents' expected major developments in the areas of spoken language (97%), and auditory skills (100%). Receiving education in mainstream schools (92%) was expected too. Parents perceived the cochlear implant decision as the best decision they can make for their child (98.3%). A significant correlation was found between parents contentment with the cochlear implant decision and expecting developments in the area of reading and writing (r=0.7). Child's age at implantation and age at hearing loss diagnosis significantly affected parents' post-implant outcome expectations (p<0.05). Despite the general satisfaction from the information quantity and quality prior to cochlear implant, parents agree on the need for a comprehensive multidisciplinary team approach during the different stages of the cochlear implant process. Parents' education about cochlear implants prior to the surgery can affect their post-surgical outcome expectations. The parental perspective presented in this study can help professionals develop better understanding of parents' needs and expectations and henceforth improve their services and support during the different stages of the cochlear implant process. Copyright © 2015. Published by Elsevier Ireland Ltd.
Hip and knee joint loading during vertical jumping and push jerking.
Cleather, Daniel J; Goodwin, Jon E; Bull, Anthony M J
2013-01-01
The internal joint contact forces experienced at the lower limb have been frequently studied in activities of daily living and rehabilitation activities. In contrast, the forces experienced during more dynamic activities are not well understood, and those studies that do exist suggest very high degrees of joint loading. In this study a biomechanical model of the right lower limb was used to calculate the internal joint forces experienced by the lower limb during vertical jumping, landing and push jerking (an explosive exercise derived from the sport of Olympic weightlifting), with a particular emphasis on the forces experienced by the knee. The knee experienced mean peak loadings of 2.4-4.6×body weight at the patellofemoral joint, 6.9-9.0×body weight at the tibiofemoral joint, 0.3-1.4×body weight anterior tibial shear and 1.0-3.1×body weight posterior tibial shear. The hip experienced a mean peak loading of 5.5-8.4×body weight and the ankle 8.9-10.0×body weight. The magnitudes of the total (resultant) joint contact forces at the patellofemoral joint, tibiofemoral joint and hip are greater than those reported in activities of daily living and less dynamic rehabilitation exercises. The information in this study is of importance for medical professionals, coaches and biomedical researchers in improving the understanding of acute and chronic injuries, understanding the performance of prosthetic implants and materials, evaluating the appropriateness of jumping and weightlifting for patient populations and informing the training programmes of healthy populations. Copyright © 2012 Elsevier Ltd. All rights reserved.
Shannon, Hannah L; Deluce, Simon R; Giles, Joshua W; Johnson, James A; King, Graham J W
2015-02-01
A number of radial head implants are in clinical use for the management of radial head fractures and their sequelae. However, the optimal shape of a radial head implant to ensure proper tracking relative to the capitellum has not been established. This in vitro biomechanical study compared radiocapitellar joint kinematics for 3 radial head implant designs as well as the native head. Eight cadaveric upper extremities were tested using a forearm rotation simulator with the elbow at 90° of flexion. Motion of the radius relative to the capitellum was optically tracked. A stem was navigated into a predetermined location and cemented in place. Three unipolar implant shapes were tested: axisymmetric, reverse-engineered patient-specific, and population-based quasi-anatomic. The patient-specific and quasi-anatomic implants were derived from measurements performed on computed tomography models. Medial-lateral and anterior-posterior translation of the radial head with respect to the capitellum varied with forearm rotation and radial head condition. A significant difference in medial-lateral (P = .03) and anterior-posterior (P = .03) translation was found between the native radial head and the 3 implants. No differences were observed among the radial head conditions except for a difference in medial-lateral translation between the axisymmetric and patient-specific implants (P = .04). Radiocapitellar kinematics of the tested radial head implants were similar in all but one comparison, and all had different kinematics from the native radial head. Patient-specific radial head implants did not prove advantageous relative to conventional implant designs. The shape of the fixed stem unipolar radial head implants had little influence on radiocapitellar kinematics when optimally positioned in this testing model. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Breast reconstruction - implants
Breast implants surgery; Mastectomy - breast reconstruction with implants; Breast cancer - breast reconstruction with implants ... it harder to find a tumor if your breast cancer comes back. Getting breast implants does not take ...
Koch, Martin; Seidler, Hannes; Hellmuth, Alexander; Bornitz, Matthias; Lasurashvili, Nikoloz; Zahnert, Thomas
2013-07-01
There is a great demand for implantable microphones for future generations of implantable hearing aids, especially Cochlea Implants. An implantable middle ear microphone based on a piezoelectric membrane sensor for insertion into the incudostapedial gap is investigated. The sensor is designed to measure the sound-induced forces acting on the center of the membrane. The sensor mechanically couples to the adjacent ossicles via two contact areas, the sensor membrane and the sensor housing. The sensing element is a piezoelectric single crystal bonded on a titanium membrane. The sensor allows a minimally invasive and reversible implantation without removal of ossicles and without additional sensor fixation in the tympanic cavity. This study investigates the implantable microphone sensor and its implantation concept. It intends to quantify the influence of the sensor's insertion position on the achievable microphone sensitivity. The investigation considers anatomical and pathological variations of the middle ear geometry and its space limitations. Temporal bone experiments on a laboratory model show that anatomical and pathological variations of the middle ear geometry can prevent the sensor from being placed optimally within the incudostapedial joint. Beyond scattering of transfer functions due to anatomic variations of individual middle ears there is the impact of variations in the sensor position within the ossicular chain that has a considerable effect on the transfer characteristics of the middle ear microphone. The centering of the sensor between incus and stapes, the direction of insertion (membrane to stapes or to incus) and the effect of additional contact points with surrounding anatomic structures affect the signal yield of the implanted sensor. The presence of additional contact points has a considerably impact on the sensitivity, yet the microphone sensitivity is quite robust against small changes in the positioning of the incus on the sensor. Signal losses
International classification of reliability for implanted cochlear implant receiver stimulators.
Battmer, Rolf-Dieter; Backous, Douglas D; Balkany, Thomas J; Briggs, Robert J S; Gantz, Bruce J; van Hasselt, Andrew; Kim, Chong Sun; Kubo, Takeshi; Lenarz, Thomas; Pillsbury, Harold C; O'Donoghue, Gerard M
2010-10-01
To design an international standard to be used when reporting reliability of the implanted components of cochlear implant systems to appropriate governmental authorities, cochlear implant (CI) centers, and for journal editors in evaluating manuscripts involving cochlear implant reliability. The International Consensus Group for Cochlear Implant Reliability Reporting was assembled to unify ongoing efforts in the United States, Europe, Asia, and Australia to create a consistent and comprehensive classification system for the implanted components of CI systems across manufacturers. All members of the consensus group are from tertiary referral cochlear implant centers. None. A clinically relevant classification scheme adapted from principles of ISO standard 5841-2:2000 originally designed for reporting reliability of cardiac pacemakers, pulse generators, or leads. Standard definitions for device failure, survival time, clinical benefit, reduced clinical benefit, and specification were generated. Time intervals for reporting back to implant centers for devices tested to be "out of specification," categorization of explanted devices, the method of cumulative survival reporting, and content of reliability reports to be issued by manufacturers was agreed upon by all members. The methodology for calculating Cumulative survival was adapted from ISO standard 5841-2:2000. The International Consensus Group on Cochlear Implant Device Reliability Reporting recommends compliance to this new standard in reporting reliability of implanted CI components by all manufacturers of CIs and the adoption of this standard as a minimal reporting guideline for editors of journals publishing cochlear implant research results.
Chappuis, Vivianne; Bornstein, Michael M; Buser, Daniel; Belser, Urs
2016-09-01
To examine the influence of two different neck designs on facial bone crest dimensions in esthetic single implant sites after a 5-to-9-year follow-up analyzed by cone beam computed tomography (CBCT). Sixty-one patients with an implant-borne single crown following early implant placement in the esthetic zone were enrolled. The test group consisted of a bone level (BL) neck design exhibiting a hydrophilic micro-rough surface combined with a platform-switching interface (PS) (n = 20). The control group comprised a soft tissue level (STL) neck design exhibiting a hydrophobic machined surface with a matching butt-joint interface (n = 41). Standardized clinical, radiologic, and esthetic parameters were applied. The facial bone crest dimensions were assessed by CBCT. Soft tissue parameters and pink esthetic scores yielded no significant differences between the two designs. Major differences were only observed at the implant shoulder level. The height of the facial bone crest for the BL design was located 0.2 mm above the implant shoulder level, whereas for the STL design, its location was 1.6 mm below. The width of the peri-implant saucer-like bone defect was reduced by 40% for the BL implant design. No differences were observed 2 mm below the shoulder level. The results of this comparative study suggest better crestal bone stability on the facial aspect of single implant sites in the esthetic zone for a BL design with a platform-switching concept when compared with STL implants with a butt-joint interface. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Prosthetic Joint Infections and Cost Analysis?
Haddad, F S; Ngu, A; Negus, J J
2017-01-01
Prosthetic joint infection is a devastating complication of arthroplasty surgery that can lead to debilitating morbidity for the patient and significant expense for the healthcare system. With the continual rise of arthroplasty cases worldwide every year, the revision load for infection is becoming a greater financial burden on healthcare budgets. Prevention of infection has to be the key to reducing this burden. For treatment, it is critical for us to collect quality data that can guide future management strategies to minimise healthcare costs and morbidity / mortality for patients. There has been a management shift in many countries to a less expensive 1-stage strategy and in selective cases to the use of debridement, antibiotics and implant retention. These appear very attractive options on many levels, not least cost. However, with a consensus on the definition of joint infection only clarified in 2011, there is still the need for high quality cost analysis data to be collected on how the use of these different methods could impact the healthcare expenditure of countries around the world. With a projected spend on revision for infection at US$1.62 billion in the US alone, this data is vital and urgently needed.
Jaatinen, Jarkko J P; Korhonen, Rami K; Pelttari, Alpo; Helminen, Heikki J; Korhonen, Hannu; Lappalainen, Reijo; Kröger, Heikki
2011-08-01
Amorphous diamond (AD) is a durable and compatible biomaterial for joint prostheses. Knowledge regarding bone growth on AD-coated implants and their early-stage osseointegration is poor. We investigated bone growth on AD-coated cementless intramedullary implants implanted in rats. Titanium was chosen as a reference due to its well-known performance. We placed AD-coated and non-coated titanium implants (R(a) ≈ 0.2 μm) into the femoral bone marrow of 25 rats. The animals were divided in 2 groups according to implant coating and they were killed after 4 or 12 weeks. The osseointegration of the implants was examined from hard tissue specimens by measuring the new bone formation on their surface. 4 weeks after the operation, the thickness of new bone in the AD-coated group was greater than that in the non-coated group (15.3 (SD 7.1) μm vs. 7.6 (SD 6.0) μm). 12 weeks after the operation, the thickness of new bone was similar in the non-coated group and in the AD-coated group. We conclude that AD coating of femoral implants can enhance bone ongrowth in rats in the acute, early stage after the operation and might be an improvement over earlier coatings.
Ambrose, Sophie E.; Eisenberg, Laurie S.
2009-01-01
The goal of this study was to longitudinally examine relationships between early factors (child and mother) that may influence children's phonological awareness and reading skills 3 years later in a group of young children with cochlear implants (N = 16). Mothers and children were videotaped during two storybook interactions, and children's oral language skills were assessed using the “Reynell Developmental Language Scales, third edition.” Three years later, phonological awareness, reading skills, and language skills were assessed using the “Phonological Awareness Test,” the “Woodcock–Johnson-III Diagnostic Reading Battery,” and the “Oral Written Language Scales.” Variables included in the data analyses were child (age, age at implant, and language skills) and mother factors (facilitative language techniques) and children's phonological awareness and reading standard scores. Results indicate that children's early expressive oral language skills and mothers’ use of a higher level facilitative language technique (open-ended question) during storybook reading, although related, each contributed uniquely to children's literacy skills. Individual analyses revealed that the children with expressive standard scores below 70 at Time 1 also performed below average (<85) on phonological awareness and total reading tasks 3 years later. Guidelines for professionals are provided to support literacy skills in young children with cochlear implants. PMID:18417463
EPDM Rubber Modified by Nitrogen Plasma Immersion Ion Implantation.
Kondyurin, Alexey
2018-04-24
Ethylene-propylene diene monomer rubber (EPDM) was treated by plasma immersion ion implantation (PIII) with nitrogen ions of 20 keV energy and fluence from 10 13 to 10 16 ions/cm². The Fourier-transform infrared attenuated total reflection spectra, atomic force microscopy and optical microscopy showed significant structure changes of the surface. The analysis of an interface of PIII treated EPDM rubber with polyurethane binder showed a cohesive character of the adhesion joint fracture at the presence of solvent and interpreted as covalent bond network formation between the PIII treated rubber and the adhesive.
EPDM Rubber Modified by Nitrogen Plasma Immersion Ion Implantation
2018-01-01
Ethylene-propylene diene monomer rubber (EPDM) was treated by plasma immersion ion implantation (PIII) with nitrogen ions of 20 keV energy and fluence from 1013 to 1016 ions/cm2. The Fourier-transform infrared attenuated total reflection spectra, atomic force microscopy and optical microscopy showed significant structure changes of the surface. The analysis of an interface of PIII treated EPDM rubber with polyurethane binder showed a cohesive character of the adhesion joint fracture at the presence of solvent and interpreted as covalent bond network formation between the PIII treated rubber and the adhesive. PMID:29695109
A subcutaneous channeling probe for implanting long leads
NASA Technical Reports Server (NTRS)
Lund, G. F.; Simmonds, R. C.; Williams, B. A.
1977-01-01
The channeling probe described in the present paper was designed to overcome surgical problems of the type that were encountered when a multichannel radio transmitter had to be implanted in a cow. The probe was made of a flexible but sufficiently stiff 9.5-mm-diam nylon rod, consisting of 46-cm sections for convenience in sterilization and surgical handling. Stainless steel sleaves reinforced the threaded connecting joints. At one end, arrowhead-shaped channeling heads could be attached to produce wide channels for large sensors. The other end was tapered for narrow channels. Postoperative problems were not encountered in the use of this probe in cows, sheep, and dogs.
Hann, Carmen; Kraus, Natascha; Minkus, Marvin; Maziak, Nina; Scheibel, Markus
2018-01-01
Due to high rate of persisting dynamic posterior translation (DPT) following isolated coracoclavicular double-button technique for reconstruction of the acromioclavicular (AC) joint reported in the literature, an additional acromioclavicular cerclage was added to the procedure. The aim of this study was to evaluate the clinical and radiological results of patients with high-grade AC-joint instability treated with a double TightRope technique with an additional percutaneous acromioclavicular cerclage. Fifty-nine patients (6 f/53 m; median age 38.3 (range 21.5-63.4 years) who sustained an acute high-grade AC-joint dislocation (Rockwood type V) were treated using the above-mentioned technique. At the final follow-up, the constant score (CS), the subjective shoulder value (SSV), the Taft score (TF) and the acromioclavicular joint instability score (ACJI) as well as bilateral anteroposterior stress views with 10 kg of axial load and bilateral modified Alexander views were obtained. At a median follow-up of 26.4 (range 20.3-61.0) months, 34 patients scored a median of 90 (33-100) points in the CS, 90 (25-100) % in the SSV, 11 (4-12) points in the TF and 87 (43-100) points in the ACJI. The coracoclavicular (CC) distance was 12.1 (6.5-19.8) mm and the CC difference 2.0 (0.0-11.0) mm. Two patients (5.8%) showed a complete DPT of the AC joint, and fourteen patients (41.1%) displayed a partial DPT. The overall revision rate was 11.7%. Two patients presented implant irritation, one patient a recurrent instability, and one patient suffered from a local infection. The arthroscopically assisted and image-intensifier-controlled double TightRope technique with an additional percutaneous acromioclavicular cerclage leads to good and excellent clinical results after a follow-up of 2 years. The incidence of persisting dynamic horizontal translation is lower compared to isolated coracoclavicular stabilization. Thus, we recommend using the double TightRope implant with an additional
Total joint Perioperative Surgical Home: an observational financial review
2014-01-01
Background The numbers of people requiring total arthroplasty is expected to increase substantially over the next two decades. However, increasing costs and new payment models in the USA have created a sustainability gap. Ad hoc interventions have reported marginal cost reduction, but it has become clear that sustainability lies only in complete restructuring of care delivery. The Perioperative Surgical Home (PSH) model, a patient-centered and physician-led multidisciplinary system of coordinated care, was implemented at UC Irvine Health in 2012 for patients undergoing primary elective total knee arthroplasty (TKA) or total hip arthroplasty (THA). This observational study examines the costs associated with this initiative. Methods The direct cost of materials and services (excluding professional fees and implants) for a random index sample following the Total Joint-PSH pathway was used to calculate per diem cost. Cost of orthopedic implants was calculated based on audit-verified direct cost data. Operating room and post-anesthesia care unit time-based costs were calculated for each case and analyzed for variation. Benchmark cost data were obtained from literature search. Data are presented as mean ± SD (coefficient of variation) where possible. Results Total per diem cost was $10,042 ± 1,305 (13%) for TKA and $9,952 ± 1,294 (13%) for THA. Literature-reported benchmark per diem cost was $17,588 for TKA and $16,267 for THA. Implant cost was $7,482 ± 4,050 (54%) for TKA and $9869 ± 1,549 (16%) for THA. Total hospital cost was $17,894 ± 4,270 (24%) for TKA and $20,281 ± 2,057 (10%) for THA. In-room to incision time cost was $1,263 ± 100 (8%) for TKA and $1,341 ± 145 (11%) for THA. Surgery time cost was $1,558 ± 290 (19%) for TKA and $1,930 ± 374 (19%) for THA. Post-anesthesia care unit time cost was $507 ± 187 (36%) for TKA and $557 ± 302 (54%) for THA. Conclusions Direct hospital costs were driven substantially below USA benchmark levels using the Total
[Application of plasma sprayed zirconia coating in dental implant: study in implant].
Huang, Z F; Wang, Z F; Li, C H; Hao, D; Lan, J
2018-04-09
Objective: To investigate the osseointegration of a novel coating-plasma-sprayed zirconia in dental implant. Methods: Zirconia coating on non-thread titanium implant was prepared using plasma spraying, the implant surface morphology, surface roughness and wettability were measured. In vivo , zirconia coated implants were inserted in rabbit tibia and animals were respectively sacrificed at 2, 4, 8 and 12 weeks after implantation. The bond strength between implant and bone was measured by push-out test. The osseointegration was observed by scanning electron microscopy (SEM), micro CT and histological analyses. Quantified parameters including removal torque, and bone-implant contact (BIC) percentage were calculated. Results: The surface roughness (1.6 µm) and wettability (54.6°) of zirconia coated implant was more suitable than those of titanium implant (0.6 µm and 74.4°) for osseointegration. At 12 weeks, the push-out value of zirconia coated implant and titanium implant were (64.9±3.0) and (50.4±2.9) N, and BIC value of these two groups were (54.7±3.6)% and (41.5±3.6)%. All these differences had statistical significance. Conclusions: The surface characters of zirconia coated implant were more suitable for osseointegration and present better osseointegration than smooth titanium implant in vivo , especially at early stage.
[Arthroscopic treatment of chondral lesions of the ankle joint. Evidence-based therapy].
Thomas, M; Jordan, M; Hamborg-Petersen, E
2016-02-01
Ankle sprains are the most relevant injuries of the lower extremities and can lead to damage to ligaments and osteochondral lesions. Up to 50 % of patients with a sprained ankle later develop a lesion of the cartilage in the ankle joint or an osteochondral lesion of the talus. This can lead to osteoarthritis of the injured ankle joint. Spontaneous healing is possible in all age groups in cases of a bone bruise in the subchondral bone but in isolated chondral injuries is only useful in pediatric patients. In many cases chondral and osteochondral injuries lead to increasing demarcation of the affected area and can result in progressive degeneration of the joint if not recognized in time. There also exist a certain number of osteochondral changes of the articular surface of the talus without any history of relevant trauma, which are collectively grouped under the term osteochondrosis dissecans. Perfusion disorders are discussed as one of many possible causes of these alterations. Nowadays, chondral and osteochondral defects can be treated earlier due to detection using very sensitive magnetic resonance imaging (MRI) and computed tomography (CT) techniques. The use of conservative treatment only has a chance of healing in pediatric patients. Conservative measures for adults should only be considered as adjuvant treatment to surgery.Based on a comprehensive analysis of the current literature, this article gives an overview and critical analysis of the current concepts for treatment of chondral and osteochondral injuries and lesions of the talus. With arthroscopic therapy curettage and microfracture of talar lesions are the predominant approaches or retrograde drilling of the defect is another option when the chondral coating is retained. Implantation of autologous chondral cells or homologous juvenile cartilage tissue is also possible with arthroscopic techniques. Osteochondral fractures (flake fracture) are usually performed as a mini-open procedure supported by
Efficacy of Sealing Agents on Preload Maintenance of Screw-Retained Implant-Supported Prostheses.
Seloto, Camila Berbel; Strazzi Sahyon, Henrico Badaoui; Dos Santos, Paulo Henrique; Delben, Juliana Aparecida; Assunção, Wirley Gonçalves
The aim of this study was to evaluate the effect of sealing agents on preload maintenance of screw joints. A total of four groups (n = 10 in each group) of abutment/implant systems, including external hexagon implants and antirotational UCLA abutments with a metallic collar in cobalt-chromium alloy, were assessed. In the control group (CG), no sealing agent was used at the abutment screw/implant interface. In the other groups, three different sealing agents were used at the abutment screw/implant interface: anaerobic sealing agent for medium torque (ASMT), anaerobic sealing agent for high torque (ASHT), and cyanoacrylate-based bonding agent (CYAB). All abutments were attached to the implants at 32 ± 1 N.cm. After 48 ± 2 hours of initial tightening, loosing torque (detorque) was measured using a digital torque wrench. Data were analyzed using Shapiro-Wilk, Wilcoxon, and Kruskal-Wallis tests, at 5% level of significance. In the CG and ASMT groups, detorque was lower than the insertion torque (24.6 ± 1.5 N.cm and 24.3 ± 1.1 N.cm, respectively). In the ASHT and CYAB groups, mean detorque increased in comparison to the insertion torque (51.0 ± 7.4 N.cm and 47.7 ± 15.1 N.cm, respectively). The ASHT was more efficient than the other sealing agents, increasing the remaining preload (detorque value) 58.88%. Although the cyanoacrylate-based bonding agent also generated high detorque values, the high standard deviation suggested its lower reliability.
Making Sense of Metal Allergy and Hypersensitivity to Metallic Implants in Relation to Hand Surgery.
Christensen, Thomas J; Samant, Shefali A; Shin, Alexander Y
2017-09-01
All metals implanted into a biological system undergo some degree of corrosion depending upon its composition. The electrochemical process of corrosion produces free metal ions, which may activate the host's immune system through a variety of mechanisms. Whereas dermal metal hypersensitivity is common, affecting 10% to 15% of the population, the immune reaction from implanted metals is much less common (< 0.1%), but has been associated with metal allergy and hypersensitivity producing a multitude of patient symptoms. Superficial symptoms may be mild to severe forms of dermatitis, urticaria, pruritus, and vasculitis, whereas deep sequelae include metallosis-related pseudotumor, implant loosening, and joint stiffness. Currently, there are clinical tests to evaluate patients for metal hypersensitivity, but there is little agreement regarding the ideal timing and clinical situation prompting the work-up of a patient for a metal allergy or hypersensitivity. An understanding of the epidemiology, etiology, basic science, diagnostic testing, and treatment of patients with suspected metal allergy, as it pertains to the current literature, will aid orthopedic and plastic surgeons of all subspecialties in the management of patients requiring metallic implants. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Cejas, Ivette; Barker, David H.; Quittner, Alexandra L.; Niparko, John K.
2014-01-01
Purpose: To evaluate joint engagement (JE) in age-matched children with and without hearing and its relationship to oral language skills. Method: Participants were 180 children with severe-to-profound hearing loss prior to cochlear implant surgery, and 96 age-matched children with normal hearing; all parents were hearing. JE was evaluated in a…
A new recreational mechanism for the boxer's knuckle: cause for concern?
Javed, M; Hemington-Gorse, S; Shokrollahi, K
2011-07-01
Traumatic injuries of the metacarpophalangeal joints are a common occurrence in professional and recreational sports such as boxing and martial arts, especially the fourth and fifth metacarpals. Injury usually results from a forceful impact with a clenched fist. The spectrum of injuries varies from simple skin laceration to extensor mechanism disruption, dorsal capsule rupture, metacarpal fractures and carpometacarpal joint injuries. These injuries are well documented in boxers as well as in patients who had been involved in fights and assaults. We report on two patients sustaining similar injuries to the dorsum of the hand but following punching of a recreational 'punching machine'. We describe the patterns of injury encountered and summarise the treatment. For clinical and safety reasons as well as the potential medicolegal implications, we believe it is important to highlight this mechanism of injury.
A new recreational mechanism for the boxer’s knuckle: cause for concern?
Hemington-Gorse, S; Shokrollahi, K
2011-01-01
Traumatic injuries of the metacarpophalangeal joints are a common occurrence in professional and recreational sports such as boxing and martial arts, especially the fourth and fifth metacarpals. Injury usually results from a forceful impact with a clenched fist. The spectrum of injuries varies from simple skin laceration to extensor mechanism disruption, dorsal capsule rupture, metacarpal fractures and carpometacarpal joint injuries. These injuries are well documented in boxers as well as in patients who had been involved in fights and assaults. We report on two patients sustaining similar injuries to the dorsum of the hand but following punching of a recreational ’punching machine’. We describe the patterns of injury encountered and summarise the treatment. For clinical and safety reasons as well as the potential medicolegal implications, we believe it is important to highlight this mechanism of injury. PMID:21943451
Enhancing osseointegration of orthopedic implants with titania nanotube surfaces
NASA Astrophysics Data System (ADS)
Baker, Erin A.
Introduction: As joint arthroplasty surgical procedures increase annually, the development of new strategies, including novel materials and surface modifications, to attain solid bone-implant fixation are needed to increase implant terms of service. In this study, we evaluate two morphologies of titania nanotubes in both in vitro and in vivo experiments to quantify osseointegrative potential and material-level biocompatibility. Materials and Methods: Samples were prepared via an electrochemical etching process. Two different titania nanotube (TiNT) morphologies were produced, Aligned and Trabecular. For the in vitro experiment, Sprague Dawley (SD) rat marrow-derived bone marrow cells (BMC) were seeded on samples. Alkaline phosphatase (ALP) activity, osteocalcin (OC) expression, expression of relevant genes as well as cell attachment and morphology were assessed. In the first in vivo experiment, Kirschner wires were implanted unilaterally into SD rat femora with a TiNT-etched or unmodified (Control) implant. General health assessments and weekly body weights were recorded. At a 12-week endpoint, hematologic, systemic metal ion, and histologic analyses were performed. For the second in vivo experiment, Kirschner wires were implanted bilaterally into SD rat femora, with a TiNT-etched implant in one femora and unmodified (Control) implant as an internal control. At 4- and 12-week endpoints, femora were assessed via biomechanics, undecalcified histology, micro-computed tomography (muCT), and backscattered electron imaging (BEI) to characterize de novo bone formation. Results: In vitro experiments demonstrated BMC attachment and differentiation into osteoblasts as well as greater ALP activity, OC expression, total cell counts, and gene expression (of Col1a1, IGF-1, and osteonectin) on TiNT surfaces versus Controls. Cells on TiNT-etched substrates were smaller in diameter and more eccentric than Controls. In the first in vivo experiment, there were significant differences
Pressure mapping at orthopaedic joint interfaces with fiber Bragg gratings
NASA Astrophysics Data System (ADS)
Mohanty, Lipi; Tjin, Swee Chuan
2006-02-01
We present the concept of a fiber-optic sensor that can be used for pressure mapping at the prosthetic knee joint, in vitro and in vivo. An embedded array of fiber Bragg gratings is used to measure the load on the tibial spacer. The sensor gives the magnitude and the location of the applied load. The effect of material properties on the sensitivity of each subgrating is presented. The wavelength-shift maps show the malalignment of implants and demonstrate the potential of this sensor for use during total knee arthroplasty.
Cochlear implantation in late-implanted adults with prelingual deafness.
Most, Tova; Shrem, Hadas; Duvdevani, Ilana
2010-01-01
The purpose of this study was to examine the effect of cochlear implantation (CI) on prelingually deafened participants who were implanted as adults. The effect of the CI was examined with regard to the following variables: communication, family, social skills, education, and work satisfaction with one's life, loneliness, and self-esteem. Thirty-eight adults participated. Four self-report questionnaires were used at 2 points in time: before and after CI. The research findings show significant differences in the reports of most variables before and after implantation. The participants felt better with regard to communication, social skills, education, and work and satisfaction with one's life after implantation in comparison to their feelings before implantation. Furthermore, they felt less lonely after implantation. However, there were no significant differences before and after implantation regarding their feelings within the family and regarding their self-esteem. The results demonstrated the need to evaluate the benefits resulting from the CI not only with traditional clinical measures but with additional measures as well. Furthermore, they demonstrated the benefit of the CI on the positive psychosociological implications of prelingually deafened adults. Copyright © 2010 Elsevier Inc. All rights reserved.
A new rabbit model of implant-related biofilm infection: development and evaluation
NASA Astrophysics Data System (ADS)
Chu, Cheng-Bing; Zeng, Hong; Shen, Ding-Xia; Wang, Hui; Wang, Ji-Fang; Cui, Fu-Zhai
2016-03-01
This study is to establish a rabbit model for human prosthetic joint infection and biofilm formation. Thirty-two healthy adult rabbits were randomly divided into four groups and implanted with stainless steel screws and ultra-high molecular weight polyethylene (UHMWPE) washers in the non-articular surface of the femoral lateral condyle of the right hind knees. The rabbit knee joints were inoculated with 1 mL saline containing 0, 102, 103, 104 CFU of Staphylococcus epidermidis ( S. epidermidis) isolated from the patient with total knee arthroplasty (TKA) infection, respectively. On the 14th postoperative day, the UHMWPE washers from the optimal 103 CFU group were further examined. The SEM examination showed a typical biofilm construction that circular S. epidermidis were embedded in a mucous-like matrix. In addition, the LCSM examination showed that the biofilm consisted of the polysaccharide stained bright green fluorescence and S. epidermidis radiating red fluorescence. Thus, we successfully create a rabbit model for prosthetic joint infection and biofilm formation, which should be valuable for biofilm studies.
Carli, Alberto V; Bhimani, Samrath; Yang, Xu; de Mesy Bentley, Karen L; Ross, F Patrick; Bostrom, Mathias P G
2018-06-06
Periprosthetic joint infection (PJI) remains a devastating complication following total joint arthroplasty. Current animal models of PJI do not effectively recreate the clinical condition and thus provide limited help in understanding why treatments fail. We developed a mouse model of the first-stage surgery of a 2-stage revision for PJI involving a 3-dimensionally printed Ti-6Al-4V implant and a mouse-sized cement spacer that elutes vancomycin. Vancomycin was mixed with polymethylmethacrylate (PMMA) cement and inserted into custom-made mouse-sized spacer molds. Twenty C57BL/6 mice received a proximal tibial implant and an intra-articular injection of 3 × 10 colony-forming units of Staphylococcus aureus Xen36. At 2 weeks, 9 mice underwent irrigation and debridement of the leg with revision of the implant to an articulating vancomycin-loaded PMMA spacer. Postoperatively, mice underwent radiography and serum inflammatory-marker measurements. Following euthanasia of the mice at 6 weeks, bone and soft tissues were homogenized to quantify bacteria within periprosthetic tissues. Implants and articulating spacers were either sonicated to quantify adherent bacteria or examined under scanning electron microscopy (SEM) to characterize the biofilm. Vancomycin-loaded PMMA spacers eluted vancomycin for ≤144 hours and retained antimicrobial activity. Control mice had elevated levels of inflammatory markers, radiographic evidence of septic loosening of the implant, and osseous destruction. Mice treated with a vancomycin-loaded PMMA spacer had significantly lower levels of inflammatory markers (p < 0.01), preserved tibial bone, and no intra-articular purulence. Retrieved vancomycin-loaded spacers exhibited significantly lower bacterial counts compared with implants (p < 0.001). However, bacterial counts in periprosthetic tissue did not significantly differ between the groups. SEM identified S. aureus encased within biofilm on control implants, while vancomycin-loaded spacers
Prevalence of peri-implantitis in patients with implant-supported fixed prostheses.
Schuldt Filho, Guenther; Dalago, Haline Renata; Oliveira de Souza, João Gustavo; Stanley, Kyle; Jovanovic, Sascha; Bianchini, Marco Aurélio
2014-01-01
The purpose of this study was to evaluate periimplantitis prevalence in patients using implant-supported fixed prostheses that did not have any routine maintenance care. A total of 161 implants (27 patients) were evaluated in patients using implant-supported fixed prostheses. Collected data included information related to patient general health and local factors such as characteristics of implants, time in function, type of loading, positioning, Modified Bleeding Index, bacterial plaque, bleeding on probing (BOP), marginal recession, probing depth (PD), keratinized mucosa, and radiographic bone loss (BL). Factors related to the prostheses were also evaluated. The exclusion criteria were patients that have had any follow-up visit for plaque control of the prosthesis and/or the implants. From a total of 161 implants, 116 (72%) presented without peri-implantitis (PD > 4 mm + BOP + BL > 2 mm) while 45 (28%) had some sign of the disease. Implants placed in the maxilla were 2.98 times more likely to develop the disease (P < .05). Moreover, patients aged ≤ 60 years old were 3.24 times more likely to develop peri-implantitis (P < .05). Another analysis with statistical relevance (P < .05) was that implants with less than 3 mm interimplant distance were three times more likely to have peri-implantitis. There was no statistical relevance considering other analyses. It can be concluded that patients aged ≤ 60 years have a greater chance of presenting periimplantitis, as well as for implants positioned in the maxilla and those placed with an interimplant distance < 3 mm.
Axial displacements in external and internal implant-abutment connection.
Lee, Ji-Hye; Kim, Dae-Gon; Park, Chan-Jin; Cho, Lee-Ra
2014-02-01
The purpose of this study was to evaluate the axial displacement of the abutments during clinical procedures by the tightening torque and cyclic loading. Two different implant-abutment connection systems were used (external butt joint connection [EXT]; internal tapered conical connection [INT]). The master casts with two implant replicas, angulated 10° from each other, were fabricated for each implant connection system. Four types of impression copings were assembled and tightened with the corresponding implants (hex transfer impression coping, non-hex transfer impression coping, hex pick-up impression coping, non-hex pick-up impression coping). Resin splinted abutments and final prosthesis were assembled. The axial displacement was measured from the length of each assembly, which was evaluated repeatedly, after 30 Ncm torque tightening. After 250 N cyclic loading of final prosthesis for 1,000,000 cycles, additional axial displacement was recorded. The mean axial displacement was statistically analyzed (repeated measured ANOVA). There was more axial displacement in the INT group than that of the EXT group in impression copings, resin splinted abutments, and final prosthesis. Less axial displacement was found at 1-piece non-hex transfer type impression coping than other type of impression copings in the INT group. There was more axial displacement at the final prosthesis than resin splinted abutments in the INT and the EXT groups. After 250 N cyclic loading of final prosthesis, the INT group showed more axial displacement than that of the EXT group. Internal tapered conical connection demonstrated a varying amount of axial displacement with tightening torque and cyclic loading. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
Amirtharajah, Mohana; Fufa, Duretti; Lightdale, Nina; Weiland, Andew
2011-01-01
The purpose of this study was to evaluate the one-year clinical, radiologic and patient-reported results of surface-replacing proximal interphalangeal joint arthroplasty (SR-PIP) of the hand. Fifteen patients with 18 joints underwent the procedure, and nine patients with 11 joints had follow-up of at least one year's duration. Of these joints, six had a diagnosis of osteoarthritis with no history of trauma, three had post-traumatic arthritis, one had psoriatic arthritis, and one had erosive arthritis. The mean clinical follow-up was at 3.3 years, and the mean radiographic follow-up was at 3.1 years. The average post-operative gain in range of motion at the PIP joint was 28 degrees and was statistically significant. Six patients completed self-reported questionnaires at a mean of 4.8 years post-operatively. The mean Disabilities of the Arm, Shoulder and Hand (DASH) score post-operatively was 17, and the Michigan Hand Questionnaire (MHQ) score for overall satisfaction was 70. There were three complications but only one reoperation. Seven of 11 joints showed some evidence of subsidence on follow-up radiographic examination. However, no joints were revised sec-ondary to loosening. Longer follow-up is needed to determine if this observable radiologic subsidence leads to symptomatic loosening of the implant PMID:22096433
Prevalences of peri-implantitis and peri-implant mucositis: systematic review and meta-analysis.
Lee, Chun-Teh; Huang, Yen-Wen; Zhu, Liang; Weltman, Robin
2017-07-01
Due to the inconsistent definitions, reporting methods and study characteristics, prevalences of peri-implant diseases significantly varied in studies. This study aimed to systematically analyze implant-based and subject-based prevalences of peri-implant diseases and assess clinical variables potentially affecting the prevalence. Electronic search of studies was conducted using MEDLINE (PubMed), EMBASE and Web of Science. Publication screening, data extraction, and quality assessment were performed. Clinical studies having an at least average three-year follow-up period were selected. The numbers of subjects and implants in the studies had to be equal to or more than thirty. Forty seven studies were selected and prevalences of peri-implant diseases were analyzed. Since heterogeneity existed in each outcome (I 2 =94.7, 95.7, 95.3, and 99.3 for implant-based and subject-based peri-implantitis and peri-implant mucositis, respectively), the random-effects model based on the DerSimonian and Laird method, which incorporate an estimate of heterogeneity in the weighting, was applied to obtain the pooled prevalence. Weighted mean implant-based and subject-based peri-implantitis prevalences were 9.25% (95% Confidence Interval (CI): [7.57, 10.93]) and 19.83% (CI [15.38, 24.27) respectively. Weighted mean implant-based and subject-based peri-implant mucositis prevalences were 29.48% (CI: [22.65, 36.32]) and 46.83% (CI: [38.30, 55.36]) respectively. Functional time and implant to subject ratio were associated with subject-based peri-implantitis prevalence, but not peri-implant mucositis prevalences. Peri-implant diseases were prevalent and prevalence of peri-implantitis increased over time. Prevalences of peri-implantitis and peri-implant mucositis might not be highly associated since the prevalences were influenced by distinct variables. The results should be carefully interpreted because of data heterogeneity. Peri-implant diseases affect a significant number of dental
Decontamination of dental implant surface in peri-implantitis treatment: A literature review
Buitrago-Vera, Pedro; Solá-Ruiz, María F.; Ferrer-García, Juan C.
2013-01-01
Etiological treatment of peri-implantitis aims to reduce the bacterial load within the peri-implant pocket and decontaminate the implant surface in order to promote osseointegration. The aim of this literature review was to evaluate the efficacy of different methods of implant surface decontamination. A search was conducted using the PubMed (Medline) database, which identified 36 articles including in vivo and in vitro studies, and reviews of different decontamination systems (chemical, mechanical, laser and photodynamic therapies). There is sufficient consensus that, for the treatment of peri-implant infections, the mechanical removal of biofilm from the implant surface should be supplemented by chemical decontamination with surgical access. However, more long-term research is needed to confirm this and to establish treatment protocols responding to different implant characterics. Key words:Peri-implantitis, treatment, decontamination, implant surface, laser. PMID:23986023
Fritz, M E
1999-06-01
Since the advent of osseointegration approximately 20 years ago, there has been a great deal of scientific data developed on two-stage integrated implant systems. Although these implants were originally designed primarily for fixed prostheses in the mandibular arch, they have been used in partially dentate patients, in patients needing overdentures, and in single-tooth restorations. In addition, this implant system has been placed in extraction sites, in bone-grafted areas, and in maxillary sinus elevations. Often, the documentation of these procedures has lagged. In addition, most of the reports use survival criteria to describe results, often providing overly optimistic data. It can be said that the literature describes a true adhesion of the epithelium to the implant similar to adhesion to teeth, that two-stage implants appear to have direct contact somewhere between 50% and 70% of the implant surface, that the microbial flora of the two-stage implant system closely resembles that of the natural tooth, and that the microbiology of periodontitis appears to be closely related to peri-implantitis. In evaluations of the data from implant placement in all of the above-noted situations by means of meta-analysis, it appears that there is a strong case that two-stage dental implants are successful, usually showing a confidence interval of over 90%. It also appears that the mandibular implants are more successful than maxillary implants. Studies also show that overdenture therapy is valid, and that single-tooth implants and implants placed in partially dentate mouths have a success rate that is quite good, although not quite as high as in the fully edentulous dentition. It would also appear that the potential causes of failure in the two-stage dental implant systems are peri-implantitis, placement of implants in poor-quality bone, and improper loading of implants. There are now data addressing modifications of the implant surface to alter the percentage of
Implant decontamination with phosphoric acid during surgical peri-implantitis treatment: a RCT.
Hentenaar, Diederik F M; De Waal, Yvonne C M; Strooker, Hans; Meijer, Henny J A; Van Winkelhoff, Arie-Jan; Raghoebar, Gerry M
2017-12-01
Peri-implantitis is known as an infectious disease that affects the peri-implant soft and hard tissue. Today, scientific literature provides very little evidence for an effective intervention protocol for treatment of peri-implantitis. The aim of the present randomized controlled trial is to evaluate the microbiological and clinical effectiveness of phosphoric acid as a decontaminating agent of the implant surface during surgical peri-implantitis treatment. Peri-implantitis lesions were treated with resective surgical treatment aimed at peri-implant granulation tissue removal, bone recontouring, and pocket elimination. Fifty-three implant surfaces in 28 patients were mechanically cleaned and treated with either 35% phosphoric etching gel (test group) or sterile saline (control group). Microbiological samples were obtained during surgery; clinical parameters were recorded at baseline and at 3 months after treatment. Data were analyzed using multi-variable linear regression analysis and multilevel statistics. Significant immediate reductions in total anaerobic bacterial counts on the implant surface were found in both groups. Immediate reduction was greater when phosphoric acid was used. The difference in log-transformed mean anaerobic counts between both procedures was not statistical significant (p = 0.108), but there were significantly less culture-positive implants after the decontamination procedure in the phosphoric acid group (p = 0.042). At 3 months post-surgery, 75% of the implants in the control group and 63.3% of the implants in the test group showed disease resolution. However, no significant differences in clinical and microbiological outcomes between both groups were found. The application of 35% phosphoric acid after mechanical debridement is superior to mechanical debridement combined with sterile saline rinsing for decontamination of the implant surface during surgical peri-implantitis treatment. However, phosphoric acid as implant surface
Impact of implant design on primary stability of orthodontic mini-implants.
Wilmes, Benedict; Ottenstreuer, Stephanie; Su, Yu-Yu; Drescher, Dieter
2008-01-01
Skeletal anchorage with mini-implants has greatly broadened the treatment possibilities in orthodontics over the last few years. To reduce implant failure rates, it is advisable to obtain adequate primary stability. The aim of this study was to quantitatively analyze the impact of implant design and dimension on primary stability. Forty-two porcine iliac bone segments were prepared and embedded in resin. To evaluate the primary stability, we documented insertion torques of the following mini-implants: Aarhus Screw, AbsoAnchor, LOMAS, Micro-Anchorage-System, ORLUS and Spider Screw. In each bone, five Dual Top Screws were inserted for reference purposes to achieve comparability among the specimens. We observed wide variation in insertion torques and hence primary stability, depending on mini-implant design and dimension; the great impact that mini-implant diameter has on insertion torques was particularly conspicuous. Conical mini-implants achieved higher primary stabilities than cylindrical designs. The diameter and design of the mini-implant thread have a distinctive impact on primary stability. Depending on the region of insertion and local bone quality, the choice of the mini-implant design and size is crucial to establish sufficient primary stability.
Kim, Manyoung; Ha, Chul-Won; Jang, Jae Won; Park, Yong-Beom
2017-08-01
Non-tuberculous mycobacteria (NTM) cause prosthetic knee joint infections in rare cases. Infections with rapidly growing non-tuberculous mycobacteria (RGNTM) are difficult to treat due to their aggressive clinical behavior and resistance to antibiotics. Infections of a prosthetic knee joint by RGNTM have rarely been reported. A standard of treatment has not yet been established because of the rarity of the condition. In previous reports, diagnoses of RGNTM infections in prosthetic knee joints took a long time to reach because the condition was not suspected, due to its rarity. In addition, it is difficult to identify RGNTM in the lab because special identification tests are needed. In previous reports, after treatment for RGNTM prosthetic infections, knee prostheses could not be re-implanted in all cases but one, resulting in arthrodesis or resection arthroplasty; this was most likely due to the aggressiveness of these organisms. In the present report, two cases of prosthetic knee joint infection caused by RGNTM (Mycobacterium abscessus) are described that were successfully treated, and in which prosthetic joints were finally reimplanted in two-stage revision surgery. Copyright © 2017 Elsevier B.V. All rights reserved.
Chrzanowski, Wojciech; Armitage, David Andrew; Knowles, Jonathan Campbell; Szade, Jacek; Korlacki, Wojciech; Marciniak, Jan
2008-07-01
The aim of this work is to examine the corrosion properties, chemical composition, and material-implant interaction after different periods of implantation of plates used to correct funnel chest. The implants are made of 316L stainless steel. Examinations are carried out on three implants: new (nonimplanted) and two implanted for 29 and 35 months. The corrosion study reveals that in the potential range that could occur in the physiological condition the new bar has the lowest current density and the highest corrosion potential. This indicates that the new plate has the highest corrosion resistance and the corrosion resistance could be reduced during implantation by the instruments used during the operation. XPS analysis reveals changes in the surface chemistry. The longer the implantation time the more carbon and oxygen are observed and only trace of elements such as Cr, Mo are detected indicating that surface is covered by an organic layer. On some parts of the implants whitish tissue is observed: the thickness of which increased with the time of implantation. This tissue was identified as an organic layer; mainly attached to the surface on the areas close to where the implant was bent to attain anatomical fit and thus where the implant has higher surface roughness. The study indicates that the chest plates are impaired by the implantation procedure and contact with biological environment. The organic layer on the surface shows that the implant did not stay passive but some reactions at the tissue-implant interface occurred. These reactions should be seen as positive, as it indicates that the implants were accepted by the tissues. Nevertheless, if the implants react, they may continue to release chromium, nickel, and other harmful ions long term as indicated by lower corrosion resistance of the implants following implantation.
Disabling hand injuries in boxing: boxer's knuckle and traumatic carpal boss.
Melone, Charles P; Polatsch, Daniel B; Beldner, Steven
2009-10-01
This article describes the treatment of the two most debilitating hand-related boxing injuries: boxer's knuckle and traumatic carpal boss. Recognition of the normal anatomy as well as the predictable pathology facilitates an accurate diagnosis and precision surgery. For boxer's knuckle, direct repair of the disrupted extensor hood, without the need for tendon augmentation, has been consistently employed; for traumatic carpal boss, arthrodesis of the destabilized carpometacarpal joints has been the preferred method of treatment. Precisely executed operative treatment of both injuries has resulted in a favorable outcome, as in the vast majority of cases the boxers have experienced relief of pain, restoration of function, and an unrestricted return to competition.
Hong, Hae Ryong; Pae, Ahran; Kim, Yooseok; Paek, Janghyun; Kim, Hyeong-Seob; Kwon, Kung-Rock
2012-01-01
The aim of this study was to analyze and compare the level and distribution of peri-implant bone stresses associated with mandibular two-implant overdentures with different implant positions. Mathematical models of mandibles and overdentures were designed using finite element analysis software. Two intraosseous implants and ball attachment systems were placed in the interforaminal region. The overdenture, which was supported by the two implants, was designed to withstand bilateral and unilateral vertical masticatory loads (total 100 N). In all, eight types of models, which differed according to assigned implant positions, height of attachments, and angulation, were tested: MI (model with implants positioned in the lateral incisor sites), MC (implants in canine sites), MP (implants in premolar sites), MI-Hi (greater height of attachments), MC-M (canine implants placed with mesial inclination), MC-D (canine implants placed with distal inclination), MC-B (canine implants placed with buccal inclination), and MC-L (canine implants placed with lingual inclination). Peri-implant bone stress levels associated with overdentures retained by lateral incisor implants resulted in the lowest stress levels and the highest efficiency in distributing peri-implant stress. MI-Hi showed increased stress levels and decreased efficiency in stress distribution. As the implants were inclined, stress levels increased and the efficiency of stress distribution decreased. Among the inclined models, MC-B showed the lowest stress level and best efficiency in stress distribution. The lowest stress and the best stability of implants in mandibular two-implant overdentures were obtained when implants were inserted in lateral incisor areas with shorter attachments and were placed parallel to the long axes of the teeth.
Ding, Ming; Henriksen, Susan S; Martinetti, Roberta; Overgaard, Søren
2017-11-01
Early fixation of total joint arthroplasties is crucial for ensuring implant survival. An alternative bone graft material in revision surgery is needed to replace the current gold standard, allograft, seeing that the latter is associated with several disadvantages. The incubation of such a construct in a perfusion bioreactor has been shown to produce viable bone graft materials. This study aimed at producing larger amounts of viable bone graft material (hydroxyapatite 70% and β-tricalcium-phosphate 30%) in a novel perfusion bioreactor. The abilities of the bioreactor-activated graft material to induce early implant fixation were tested in a bilateral implant defect model in sheep, with allograft as the control group. Defects were bilaterally created in the distal femurs of the animals, and titanium implants were inserted. The concentric gaps around the implants were randomly filled with either allograft, granules, granules with bone marrow aspirate or bioreactor-activated graft material. Following an observation time of 6 weeks, early implant fixation and bone formation were assessed by micro-CT scanning, mechanical testing, and histomorphometry. Bone formations were seen in all groups, while no significant differences between groups were found regarding early implant fixation. The microarchitecture of the bone formed by the synthetic graft materials resembled that of allograft. Histomorphometry revealed that allograft induced significantly more bone and less fibrous tissue (p < 0.05). In conclusion, bone formation was observed in all groups, while the bioreactor-activated graft material did not reveal additional effects on early implant fixation comparable to allograft in this model. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2465-2476, 2017. © 2016 Wiley Periodicals, Inc.
Catelli, Danilo S; Kowalski, Erik; Beaulé, Paul E; Lamontagne, Mario
2017-10-01
Total hip arthroplasty (THA) using dual-mobility (DM) design permits larger hip range of motion. However, it is unclear how it benefits the patients during activities of daily living. The purpose was to compare kinematic variables of the operated limb between THA patients using either DM or single-bearing (SB) implants during a squat task. Twenty-four THA patients were randomly assigned to either a DM or SB implant and matched to 12 healthy controls (CTRLs). They underwent 3-dimensional squat motion analysis before and 9 months after surgery. Sagittal and frontal plane angles of the pelvis and the hip were analyzed using statistical parametric mapping. Paired analyses compared presurgery and postsurgery squat depth. Peak sagittal pelvis angle of DM was closer to normal compared with that of SB. Both implant groups had similar hip angle patterns and magnitude but significantly lower than the CTRLs. SB reached a much large hip abduction compared with the other groups. Both surgical groups had significantly worst squat depth than the CTRLs. Neither THA implant groups were able to return pelvis and hip kinematics to the level of CTRLs. The deficit of DM implants at the pelvis combined with the poorer functional scores should caution clinicians to use this implant design in active patients. SB design causes a larger hip abduction to reach their maximum squat depth. Post-THA rehabilitation should focus on improving joint range of motion and strength. Copyright © 2017 Elsevier Inc. All rights reserved.
Improving Kinematic Accuracy of Soft Wearable Data Gloves by Optimizing Sensor Locations
Kim, Dong Hyun; Lee, Sang Wook; Park, Hyung-Soon
2016-01-01
Bending sensors enable compact, wearable designs when used for measuring hand configurations in data gloves. While existing data gloves can accurately measure angular displacement of the finger and distal thumb joints, accurate measurement of thumb carpometacarpal (CMC) joint movements remains challenging due to crosstalk between the multi-sensor outputs required to measure the degrees of freedom (DOF). To properly measure CMC-joint configurations, sensor locations that minimize sensor crosstalk must be identified. This paper presents a novel approach to identifying optimal sensor locations. Three-dimensional hand surface data from ten subjects was collected in multiple thumb postures with varied CMC-joint flexion and abduction angles. For each posture, scanned CMC-joint contours were used to estimate CMC-joint flexion and abduction angles by varying the positions and orientations of two bending sensors. Optimal sensor locations were estimated by the least squares method, which minimized the difference between the true CMC-joint angles and the joint angle estimates. Finally, the resultant optimal sensor locations were experimentally validated. Placing sensors at the optimal locations, CMC-joint angle measurement accuracies improved (flexion, 2.8° ± 1.9°; abduction, 1.9° ± 1.2°). The proposed method for improving the accuracy of the sensing system can be extended to other types of soft wearable measurement devices. PMID:27240364
Biometrical analysis of the shoulder joint regarding glenoid implant dimensions for arthroplasty.
Kircher, Jörn; Bittersohl, Bernd; Zilkens, Christoph; Hedtmann, Achim; Krauspe, Rüdiger
2014-05-01
Reduced bone stock and difficult intraoperative orientation are challenges in glenoid replacement surgery. New implant designs and methods for fixation, such as locking screws, extra-long central pegs and/or central compression screws are targeting these issues. The objective of this study is the analysis of the glenoid dimension regarding maximum central peg diameter and peg length (PL), and maximum screw length (SL) for glenoid fixation. Retrospective analysis of magnetic resonance imaging (n = 50) scans. Measurement of the maximum inferior glenoid diameter (GD), SL, maximum length of a 9.9, 10 and 11.4 mm central peg (PL) in the transverse plane; glenoid version (GV), humeral head diameter (HHD). Two independent measurements. Mean age: 49.0 ± 15.7 years (17-80) (n = 20 female, 49.6 ± 16.0; n = 30 male, 48.6 ± 15.7). Mean values of measurement were GD: 28.9 ± 3.7 mm (21-39); SL: 34.1 ± 4.9 mm (26-44); PL 9.9 mm: 19.4 ± 4.3 mm (9-30); PL 10 mm: 19.0 ± 4.4 mm (8-30); PL 11.4 mm: 16.5 ± 4.1 mm (7-26) with significant gender differences (p = 0.001; p = 0.022; p = 0.001); GV: -0.6° ± 4.9° (-10 to 11); HHD: 50.0 mm ± 4.9 (41-61). There was good correlation between PL and SL (r = 0.32, p = 0.024) and for GD and PL (r = 0.61, p = 0.001; r = 0.57, p = 0.001; r = 0.96, p = 0.001). The ratio of HHD and GD was very constant with 0.6 ± 0.07. These data indicate the high interindividual variability of glenoid morphology including significant gender-related differences. The good correlation between humeral head size and GD and maximum central PL can be helpful for cases with reduced bone stock in decision-making about implant size and bone grafting.
Ahn, Seong Joon; Hwang, Sun Jin; Lee, Byung Ro
2016-11-08
Adult-onset Still's disease is a systemic inflammatory disease which presents with uveitis and scleritis in the eye. Intravitreal dexamethasone implants are used for the treatment of refractory uveitis. A 19-year-old woman diagnosed to have adult-onset Still's disease for fevers, joint pain, and a salmon-colored bumpy rash presented with scleritis and uveitis in the left eye. Topical and systemic steroids with oral methotrexate failed to control the inflammation. We performed intravitreal injections of dexamethasone implants for side effects of steroid and refractory ocular inflammation. The therapy resulted in improvements in the patient's uveitis with reductions in scleral vessel engorgement and redness. There was no recurrence of uveitis or scleritis during 4 months following treatment. Intravitreal injections of dexamethasone implants may result in clinical improvements of refractory scleritis combined with uveitis.
Akgün, D; Müller, M; Perka, C; Winkler, T
2017-11-01
The aim of this study was to identify the incidence of positive cultures during the second stage of a two-stage revision arthroplasty and to analyse the association between positive cultures and an infection-free outcome. This single-centre retrospective review of prospectively collected data included patients with a periprosthetic joint infection (PJI) of either the hip or the knee between 2013 and 2015, who were treated using a standardised diagnostic and therapeutic algorithm with two-stage exchange. Failure of treatment was assessed according to a definition determined by a Delphi-based consensus. Logistic regression analysis was performed to assess the predictors of positive culture and risk factors for failure. The mean follow-up was 33 months (24 to 48). A total of 163 two-stage revision arthroplasties involving 84 total hip arthroplasties (THAs) and 79 total knee arthroplasties (TKAs) were reviewed. In 27 patients (16.6%), ≥ 1 positive culture was identified at re-implantation and eight (29.6%) of these subsequently failed compared with 20 (14.7%) patients who were culture-negative. The same initially infecting organism was isolated at re-implantation in nine of 27 patients (33.3%). The organism causing re-infection in none of the patients was the same as that isolated at re-implantation. The risk of the failure of treatment was significantly higher in patients with a positive culture (odds ratio (OR) 1.7; 95% confidence interval (CI) 1.0 to 3.0; p = 0.049) and in patients with a higher Charlson Comorbidity Index (OR 1.5; 95% CI 1.6 to 1.8; p = 0.001). Positive culture at re-implantation was independently associated with subsequent failure. Surgeons need to be aware of this association and should consider the medical optimisation of patients with severe comorbidities both before and during treatment. Cite this article: Bone Joint J 2017;99-B:1490-5. ©2017 The British Editorial Society of Bone & Joint Surgery.
Yamaguchi, Satoshi; Yamanishi, Yasufumi; Machado, Lucas S; Matsumoto, Shuji; Tovar, Nick; Coelho, Paulo G; Thompson, Van P; Imazato, Satoshi
2018-01-01
The aim of this study was to evaluate fatigue resistance of dental fixtures with two different fixture-abutment connections by in vitro fatigue testing and in silico three-dimensional finite element analysis (3D FEA) using original computer-aided design (CAD) models. Dental implant fixtures with external connection (EX) or internal connection (IN) abutments were fabricated from original CAD models using grade IV titanium and step-stress accelerated life testing was performed. Fatigue cycles and loads were assessed by Weibull analysis, and fatigue cracking was observed by micro-computed tomography and a stereomicroscope with high dynamic range software. Using the same CAD models, displacement vectors of implant components were also analyzed by 3D FEA. Angles of the fractured line occurring at fixture platforms in vitro and of displacement vectors corresponding to the fractured line in silico were compared by two-way ANOVA. Fatigue testing showed significantly greater reliability for IN than EX (p<0.001). Fatigue crack initiation was primarily observed at implant fixture platforms. FEA demonstrated that crack lines of both implant systems in vitro were observed in the same direction as displacement vectors of the implant fixtures in silico. In silico displacement vectors in the implant fixture are insightful for geometric development of dental implants to reduce complex interactions leading to fatigue failure. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Martinez-Carranza, Nicolas; Hultenby, Kjell; Lagerstedt, Anne Sofie; Schupbach, Peter; Berg, Hans E
2017-07-01
Background Full-depth cartilage lesions do not heal and the long-term clinical outcome is uncertain. In the symptomatic middle-aged (35-60 years) patient, treatment with metal implants has been proposed. However, the cartilage health surrounding these implants has not been thoroughly studied. Our objective was to evaluate the health of cartilage opposing and adjacent to metal resurfacing implants. Methods The medial femoral condyle was operated in 9 sheep bilaterally. A metallic resurfacing metallic implant was immediately inserted into an artificially created 7.5 mm defect while on the contralateral knee the defect was left untreated. Euthanasia was performed at 6 months. Six animals, of similar age and study duration, from a previous study were used for comparison in the evaluation of cartilage health adjacent to the implant. Cartilage damage to joint surfaces within the knee, cartilage repair of the defect, and cartilage adjacent to the implant was evaluated macroscopically and microscopically. Results Six animals available for evaluation of cartilage health within the knee showed a varying degree of cartilage damage with no statistical difference between defects treated with implants or left untreated ( P = 0.51; 95% CI -3.7 to 6.5). The cartilage adjacent to the implant (score 0-14; where 14 indicates no damage) remained healthy in these 6 animals showing promising results (averaged 10.5; range 9-11.5, SD 0.95). Cartilage defects did not heal in any case. Conclusion Treatment of a critical size focal lesion with a metal implant is a viable alternative treatment.
Propionibacterium acnes: from Commensal to Opportunistic Biofilm-Associated Implant Pathogen
Achermann, Yvonne; Goldstein, Ellie J. C.; Coenye, Tom
2014-01-01
SUMMARY Propionibacterium acnes is known primarily as a skin commensal. However, it can present as an opportunistic pathogen via bacterial seeding to cause invasive infections such as implant-associated infections. These infections have gained more attention due to improved diagnostic procedures, such as sonication of explanted foreign materials and prolonged cultivation time of up to 14 days for periprosthetic biopsy specimens, and improved molecular methods, such as broad-range 16S rRNA gene PCR. Implantassociated infections caused by P. acnes are most often described for shoulder prosthetic joint infections as well as cerebrovascular shunt infections, fibrosis of breast implants, and infections of cardiovascular devices. P. acnes causes disease through a number of virulence factors, such as biofilm formation. P. acnes is highly susceptible to a wide range of antibiotics, including beta-lactams, quinolones, clindamycin, and rifampin, although resistance to clindamycin is increasing. Treatment requires a combination of surgery and a prolonged antibiotic treatment regimen to successfully eliminate the remaining bacteria. Most authors suggest a course of 3 to 6 months of antibiotic treatment, including 2 to 6 weeks of intravenous treatment with a beta-lactam. While recently reported data showed a good efficacy of rifampin against P. acnes biofilms, prospective, randomized, controlled studies are needed to confirm evidence for combination treatment with rifampin, as has been performed for staphylococcal implant-associated infections. PMID:24982315
Inoue, Daisuke; Kajino, Yoshitomo; Taga, Tadashi; Yamamoto, Takashi; Takagi, Tomoharu
2018-01-01
Traditionally, Charcot arthropathy has been considered an absolute contraindication for total hip arthroplasty (THA). However, some recent reports have shown that good short- to mid-term results can be achieved by improving the durability of the implant. This paper reports the mid- to long-term results of THA in two patients with Charcot hip joints caused by congenital insensivity to pain with anhydrosis. Both patients suffered multiple posterior dislocations in the six months immediately following surgery. However, with the continuous use of a hard abduction brace, one patient was eventually able to walk with a lofstrand cane and the other with the use of one crutch. Although one patient experienced a dislocation five years after surgery, X-rays taken after nine years and five years, respectively, revealed no clinical signs of implant loosening. We conclude that, with careful planning and appropriate precautions, THA may be a viable treatment option for Charcot hip joints caused by congenital insensivity to pain with anhydrosis. PMID:29666733
Du, Zhe; Zhu, Zhonglin; Wang, You
2018-01-31
Polyether-ether-ketone (PEEK), cobalt-chromium-molybdenum (CoCrMo), and highly cross-linked polyethylene (HXLPE) are biomaterials used in orthopedic implants; their wear particles are considered to induce peri-implant osteolysis. We examined whether different particle types induce the same degree of peri-implant osteolysis. Forty female rabbits were randomly divided into four groups-the control group (n = 10), which received implantation operation and sham operation at 1 month postoperation; three experimental groups (n = 10 in each group), which received implantation operation along with administration of 0.1 mL of particle suspension (approximately 1.0 × 10 8 PEEK, CoCrMo, or HXLPE wear particles) into the knee joint at 1 month postoperation. All rabbits were sacrificed at 2 months postoperation. The synovium was removed and histologically assessed. The distal femurs with the implants were analyzed via micro-computed tomography (CT) and hard tissue biopsy. The average size of almost 90% of the particles was < 5 μm, indicating no significant difference in the three particle types. IL-1β, IL-8, TNFα, RANKL, and MCP-1 expression in PEEK and CoCrMo groups was high, while that in the HXLPE group was low. The bone density (BD) and bone volume/total volume (BV/TV) of the porous structures (part of the implants in all groups) in experimental groups did not decrease markedly (p > 0.05), while BD in the peripheral regions in experimental groups decreased markedly compared to control groups (p < 0.05). BV/TV in the peripheral regions was significantly decreased in PEEK and CoCrMo groups when compared to control group (p < 0.05), while no significant difference was noted between HXLPE and control groups (p > 0.05). The changes in BV observed in the hard tissue sections were consistent with those noted in the micro-CT findings. PEEK, CoCrMo, and HXLPE wear particles (approximately having the same size and doses) induce peri-implant
Implant Insertion Torque: Its Role in Achieving Primary Stability of Restorable Dental Implants.
Greenstein, Gary; Cavallaro, John
2017-02-01
A literature review was conducted to determine the role of insertion torque in attaining primary stability of dental implants. The review is comprised of articles that discussed the amount of torque needed to achieve primary implant stability in healed ridges and fresh extraction sockets prior to immediate implant loading. Studies were appraised that addressed the effects of minimum and maximum forces that can be used to successfully place implants. The minimum torque that can be employed to attain primary stability is undefined. Forces ≥30 Ncm are routinely used to place implants into healed ridges and fresh extraction sockets prior to immediate loading of implants. Increased insertion torque (≥50 Ncm) reduces micromotion and does not appear to damage bone. In general, the healing process after implant insertion provides a degree of biologic stability that is similar whether implants are placed with high or low initial insertion torque. Primary stability is desirable when placing implants, but the absence of micromotion is what facilitates predictable implant osseointegration. Increased insertion torque helps achieve primary stability by reducing implant micromotion. Furthermore, tactile information provided by the first surgical twist drill can aid in selecting the initial insertion torque to achieve predictable stability of inserted dental implants.
Kon, Elizaveta; Robinson, Dror; Verdonk, Peter; Drobnic, Matej; Patrascu, Jenel Mariano; Dulic, Oliver; Gavrilovic, Gordon; Filardo, Giuseppe
2016-12-01
Chondral and osteochondral lesions represent a debilitating disease. Untreated lesions remain a risk factor for more extensive joint damage. The objective of this clinical study is to evaluate safety and early results of an aragonite-based scaffold used for osteochondral unit repair, by analysing both clinical outcome and MRI results, as well as the benefits of the procedure optimization through novel tapered shaped implants. A crystalline aragonite bi-phasic scaffold was implanted in patients affected by focal chondral-osteochondral knee lesions of the condyle and trochlea. Twenty-one patients (17 men, 4 women with a mean age of 31.0 ± 8.6 years) without severe OA received tapered shaped implants for the treatment of 2.5 ±1.7 cm 2 sized defects. The control group consisted of 76 patients selected according to the same criteria from a database of patients who previously underwent implantation of cylindrical-shaped implants. The clinical outcome of all patients was evaluated with the IKDC subjective score, the Lysholm score, and all 5 KOOS subscales administered preoperatively and at 6 and 12 months after surgery, while MRI evaluation was performed at the 12 month follow-up. A statistically significant improvement in all clinical scores was documented both in the tapered implants and the cylindrical group. No difference could be detected in the comparison between the improvement obtained with the two implant types, neither in the clinical nor in imaging evaluations. A difference could be detected instead in terms of revision rate, which was lower in the tapered implant group with no implant removal - 0% vs 8/76-10.5% failures in the cylindrical implants. This study highlighted both safety and potential of a novel aragonite-based scaffold for the treatment of chondral and osteochondral lesions in humans. A tapered shape relative to the cylindrical shaped implant design, improved the scaffold's safety profile. Tapered scaffolds maintain the clinical improvement
De Coninck, Tineke; Elsner, Jonathan J; Linder-Ganz, Eran; Cromheecke, Michiel; Shemesh, Maoz; Huysse, Wouter; Verdonk, René; Verstraete, Koenraad; Verdonk, Peter
2014-09-01
In this pilot study we wanted to evaluate the kinematics of a knee implanted with an artificial polycarbonate-urethane meniscus device, designed for medial meniscus replacement. The static kinematic behavior of the implant was compared to the natural medial meniscus of the non-operated knee. A second goal was to evaluate the motion pattern, the radial displacement and the deformation of the meniscal implant. Three patients with a polycarbonate-urethane implant were included in this prospective study. An open-MRI was used to track the location of the implant during static weight-bearing conditions, within a range of motion of 0° to 120° knee flexion. Knee kinematics were evaluated by measuring the tibiofemoral contact points and femoral roll-back. Meniscus measurements (both natural and artificial) included anterior-posterior meniscal movement, radial displacement, and meniscal height. No difference (P>0.05) was demonstrated in femoral roll-back and tibiofemoral contact points during knee flexion between the implanted and the non-operated knees. Meniscal measurements showed no significant difference in radial displacement and meniscal height (P>0.05) at all flexion angles, in both the implanted and non-operated knees. A significant difference (P ≤ 0.05) in anterior-posterior movement during flexion was observed between the two groups. In this pilot study, the artificial polycarbonate-urethane implant, indicated for medial meniscus replacement, had no influence on femoral roll-back and tibiofemoral contact points, thus suggesting that the joint maintains its static kinematic properties after implantation. Radial displacement and meniscal height were not different, but anterior-posterior movement was slightly different between the implant and the normal meniscus. Copyright © 2014 Elsevier Ltd. All rights reserved.
Osseointegration of zirconia implants: an SEM observation of the bone-implant interface.
Depprich, Rita; Zipprich, Holger; Ommerborn, Michelle; Mahn, Eduardo; Lammers, Lydia; Handschel, Jörg; Naujoks, Christian; Wiesmann, Hans-Peter; Kübler, Norbert R; Meyer, Ulrich
2008-11-06
The successful use of zirconia ceramics in orthopedic surgery led to a demand for dental zirconium-based implant systems. Because of its excellent biomechanical characteristics, biocompatibility, and bright tooth-like color, zirconia (zirconium dioxide, ZrO2) has the potential to become a substitute for titanium as dental implant material. The present study aimed at investigating the osseointegration of zirconia implants with modified ablative surface at an ultrastructural level. A total of 24 zirconia implants with modified ablative surfaces and 24 titanium implants all of similar shape and surface structure were inserted into the tibia of 12 Göttinger minipigs. Block biopsies were harvested 1 week, 4 weeks or 12 weeks (four animals each) after surgery. Scanning electron microscopy (SEM) analysis was performed at the bone implant interface. Remarkable bone attachment was already seen after 1 week which increased further to intimate bone contact after 4 weeks, observed on both zirconia and titanium implant surfaces. After 12 weeks, osseointegration without interposition of an interfacial layer was detected. At the ultrastructural level, there was no obvious difference between the osseointegration of zirconia implants with modified ablative surfaces and titanium implants with a similar surface topography. The results of this study indicate similar osseointegration of zirconia and titanium implants at the ultrastructural level.
Metacarpophalangeal joint of the thumb arthrodesis using intramedullary interlocking screws XMCP™.
Novoa-Parra, C N; Montaner-Alonso, D; Morales-Rodríguez, J
2017-09-04
The study objective was to assess the results of a thumb metacarpophalangeal joint (MCPJ) arthrodesis using intramedullary interlocking screws at 25°, XMCP ™ (Extremity Medical, Parsippany, NJ). Radiographs evaluated the angle of arthrodesis, time of fusion and fixation of the implant. Clinical and functional outcomes were assessed using the DASH questionnaire and the VAS scale. Any complications found during surgery or the follow-up period were noted. We studied 9 patients. The mean follow-up was 27.6 months. Patients showed clinical and radiological evidence of fusion in an average of 8 weeks, the angle of fusion was 25°. There were no complications and no implant had to be removed. The XMCP™ system provides a reliable method for MCPJ arthrodesis for several indications and can be used with other procedures in the complex hand. Copyright © 2017 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.
Howard, D P; Wall, P D H; Fernandez, M A; Parsons, H; Howard, P W
2017-08-01
Ceramic-on-ceramic (CoC) bearings in total hip arthroplasty (THA) are commonly used, but concerns exist regarding ceramic fracture. This study aims to report the risk of revision for fracture of modern CoC bearings and identify factors that might influence this risk, using data from the National Joint Registry (NJR) for England, Wales, Northern Ireland and the Isle of Man. We analysed data on 223 362 bearings from 111 681 primary CoC THAs and 182 linked revisions for bearing fracture recorded in the NJR. We used implant codes to identify ceramic bearing composition and generated Kaplan-Meier estimates for implant survivorship. Logistic regression analyses were performed for implant size and patient specific variables to determine any associated risks for revision. A total of 222 852 bearings (99.8%) were CeramTec Biolox products. Revisions for fracture were linked to seven of 79 442 (0.009%) Biolox Delta heads, 38 of 31 982 (0.119%) Biolox Forte heads, 101 of 80 170 (0.126%) Biolox Delta liners and 35 of 31 258 (0.112%) Biolox Forte liners. Regression analysis of implant size revealed smaller heads had significantly higher odds of fracture (chi-squared 68.0, p < 0.001). The highest fracture risk was observed in the 28 mm Biolox Forte subgroup (0.382%). There were no fractures in the 40 mm head group for either ceramic type. Liner thickness was not predictive of fracture (p = 0.67). Body mass index (BMI) was independently associated with revision for both head fractures (odds ratio (OR) 1.09 per unit increase, p = 0.031) and liner fractures (OR 1.06 per unit increase, p = 0.006). We report the largest independent study of CoC bearing fractures to date. The risk of revision for CoC bearing fracture is very low but previous studies have underestimated this risk. There is good evidence that the latest generation of ceramic has greatly reduced the odds of head fracture but not of liner fracture. Small head size and high patient BMI are associated with an increased
Ion beam sputter etching of orthopedic implanted alloy MP35N and resulting effects on fatigue
NASA Technical Reports Server (NTRS)
Wintucky, E. G.; Christopher, M.; Bahnuik, E.; Wang, S.
1981-01-01
The effects of two types of argon ion sputter etched surface structures on the tensile stress fatigue properties of orthopedic implant alloy MP35N were investigated. One surface structure was a natural texture resulting from direct bombardment by 1 keV argon ions. The other structure was a pattern of square holes milled into the surface by a 1 keV argon ion beam through a Ni screen mask. The etched surfaces were subjected to tensile stress only in fatigue tests designed to simulate the cyclic load conditions experienced by the stems of artificial hip joint implants. Both types of sputter etched surface structures were found to reduce the fatigue strength below that of smooth surface MP35N.
Grupp, T M; Beisse, R; Potulski, M; Marnay, T; Beger, J; Blömer, W
2002-04-01
A new modular anterior fixation system MACS TL (modular anterior construct system for the thoracic and lumbar spine) has been developed for use in thoracoscopic spondylodesis. This system demonstrates high angular stability and meets the surgical requirements for an endoscopic approach. The objective of the current study was fatigue testing of the MACS TL implant system using a corpectomy model according to ISO/DIS 12189-2 and a synthetic model recently developed by Kotani et al. [6]. The MACS TL system demonstrated good mechanical properties with a high stiffness compared to the published data reviewed. The importance of dynamic testing in a corpectomy model has been demonstrated by comparing the MACS TL plate system with an early prototype, which has not yet been clinically evaluated. The corpectomy model according to Kotani et al. offers an interesting alternative to the ISO/DIS 12189-2 test method for asymmetrically designed and antero-laterally positioned spinal implants due to the unconstrained ball joint.
Healey, Jeff S; Merchant, Richard; Simpson, Chris; Tang, Timothy; Beardsall, Marianne; Tung, Stanley; Fraser, Jennifer A; Long, Laurene; van Vlymen, Janet M; Manninen, Pirjo; Ralley, Fiona; Venkatraghavan, Lashmi; Yee, Raymond; Prasloski, Bruce; Sanatani, Shubhayan; Philippon, François
2012-04-01
There are more than 200,000 Canadians living with permanent pacemakers or implantable defibrillators, many of whom will require surgery or invasive procedures each year. They face potential hazards when undergoing surgery; however, with appropriate planning and education of operating room personnel, adverse device-related outcomes should be rare. This joint position statement from the Canadian Cardiovascular Society (CCS) and the Canadian Anesthesiologists' Society (CAS) has been developed as an accessible reference for physicians and surgeons, providing an overview of the key issues for the preoperative, intraoperative, and postoperative care of these patients. The document summarizes the limited published literature in this field, but for most issues, relies heavily on the experience of the cardiologists and anesthesiologists who contributed to this work. This position statement outlines how to obtain information about an individual's type of pacemaker or implantable defibrillator and its programming. It also stresses the importance of determining if a patient is highly pacemaker-dependent and proposes a simple approach for nonelective evaluation of dependency. Although the document provides a comprehensive list of the intraoperative issues facing these patients, there is a focus on electromagnetic interference resulting from electrocautery and practical guidance is given regarding the characteristics of surgery, electrocautery, pacemakers, and defibrillators which are most likely to lead to interference. The document stresses the importance of preoperative consultation and planning to minimize complications. It reviews the relative merits of intraoperative magnet use vs reprogramming of devices and gives examples of situations where one or the other approach is preferable.
Mathematical modeling of chemotaxis and glial scarring around implanted electrodes
NASA Astrophysics Data System (ADS)
Silchenko, Alexander N.; Tass, Peter A.
2015-02-01
It is well known that the implantation of electrodes for deep brain stimulation or microelectrode probes for the recording of neuronal activity is always accompanied by the response of the brain’s immune system leading to the formation of a glial scar around the implantation sites. The implantation of electrodes causes massive release of adenosine-5‧-triphosphate (ATP) and different cytokines into the extracellular space and activates the microglia. The released ATP and the products of its hydrolysis, such as ADP and adenosine, become the main elements mediating chemotactic sensitivity and motility of microglial cells via subsequent activation of P2Y2,12 as well as A3A/A2A adenosine receptors. The size and density of an insulating sheath around the electrode, formed by microglial cells, are important criteria for the optimization of the signal-to-noise ratio during microelectrode recordings or parameters of electrical current delivered to the brain tissue. Here, we study a purinergic signaling pathway underlying the chemotactic motion of microglia towards implanted electrodes as well as the possible impact of an anti-inflammatory coating consisting of the interleukin-1 receptor antagonist. We present a model describing the formation of a stable aggregate around the electrode due to the joint chemo-attractive action of ATP and ADP and the mixed influence of extracellular adenosine. The bioactive coating is modeled as a source of chemo-repellent located near the electrode surface. The obtained analytical and numerical results allowed us to reveal the dependences of size and spatial location of the insulating sheath on the amount of released ATP and estimate the impact of immune suppressive coating on the scarring process.
Influence of controlled immediate loading and implant design on peri-implant bone formation.
Vandamme, Katleen; Naert, Ignace; Geris, Liesbet; Vander Sloten, Jozef; Puers, Robert; Duyck, Joke
2007-02-01
Tissue formation at the implant interface is known to be sensitive to mechanical stimuli. The aim of the study was to compare the bone formation around immediately loaded versus unloaded implants in two different implant macro-designs. A repeated sampling bone chamber with a central implant was installed in the tibia of 10 rabbits. Highly controlled loading experiments were designed for a cylindrical (CL) and screw-shaped (SL) implant, while the unloaded screw-shaped (SU) implant served as a control. An F-statistic model with alpha=5% determined statistical significance. A significantly higher bone area fraction was observed for SL compared with SU (p<0.0001). The mineralized bone fraction was the highest for SL and significantly different from SU (p<0.0001). The chance that osteoid- and bone-to-implant contact occurred was the highest for SL and significantly different from SU (p<0.0001), but not from CL. When bone-to-implant contact was observed, a loading (SL versus SU: p=0.0049) as well as an implant geometry effect (SL versus CL: p=0.01) was found, in favour of the SL condition. Well-controlled immediate implant loading accelerates tissue mineralization at the interface. Adequate bone stimulation via mechanical coupling may account for the larger bone response around the screw-type implant compared with the cylindrical implant.
Alvarez-Arenal, Angel; Gonzalez-Gonzalez, Ignacio; deLlanos-Lanchares, Hector; Brizuela-Velasco, Aritza; Dds, Elena Martin-Fernandez; Ellacuria-Echebarria, Joseba
2017-12-01
The aim of this study was to evaluate and compare the bone stress around implants in mandibular 2-implant overdentures depending on the implant location and different loading conditions. Four 3-dimensional finite element models simulating a mandibular 2-implant overdenture and a Locator attachment system were designed. The implants were located at the lateral incisor, canine, second premolar, and crossed-implant levels. A 150 N unilateral and bilateral vertical load of different location was applied, as was 40 N when combined with midline load. Data for von Mises stress were produced numerically, color coded, and compared between the models for peri-implant bone and loading conditions. With unilateral loading, in all 4 models much higher peri-implant bone stress values were recorded on the load side compared with the no-load side, while with bilateral occlusal loading, the stress distribution was similar on both sides. In all models, the posterior unilateral load showed the highest stress, which decreased as the load was applied more mesially. In general, the best biomechanical environment in the peri-implant bone was found in the model with implants at premolar level. In the crossed-implant model, the load side greatly altered the biomechanical environment. Overall, the overdenture with implants at second premolar level should be the chosen design, regardless of where the load is applied. The occlusal loading application site influences the bone stress around the implant. Bilateral occlusal loading distributes the peri-implant bone stress symmetrically, while unilateral loading increases it greatly on the load side, no matter where the implants are located.
Dreischarf, Marcel; Schmidt, Hendrik; Putzier, Michael; Zander, Thomas
2015-09-18
Total disc replacement has been introduced to overcome negative side effects of spinal fusion. The amount of iatrogenic distraction, preoperative disc height and implant positioning have been considered important for surgical success. However, their effect on the postoperative range of motion (RoM) and loading of the facets merits further discussion. A validated osteoligamentous finite element model of the lumbosacral spine was employed and extended with four additional models to account for different disc heights. An artificial disc with a fixed center of rotation (CoR) was implemented in L5-S1. In 4000 simulations, the influence of distraction and the CoR's location on the RoM, facet joint forces (FJFs) and facet capsule ligament forces (FCLFs) was investigated. Distraction substantially altered segmental kinematics in the sagittal plane by decreasing range of flexion (0.5° per 1mm of distraction), increasing range of extension (0.7°/mm) and slightly affecting complete sagittal RoM (0.2°/mm). The distraction already strongly increased the FCLFs during surgery (up to 230N) and in flexion (~12N/mm), with higher values in models with larger preoperative disc heights, and increased FJFs in extension. A more anterior implant location decreased the RoM in all planes. In most loading cases, a more posterior location of the implant's CoR increased the FJFs and FCLFs, whereas a more caudal location increased the FCLFs but decreased the FJFs. The results of this study may explain the worse clinical results in patients with overdistraction after TDR. The complete RoM in the sagittal plane appears to be insensitive to detecting surgery-related biomechanical changes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of lateralized design on muscle and joint reaction forces for reverse shoulder arthroplasty.
Liou, William; Yang, Yang; Petersen-Fitts, Graysen R; Lombardo, Daniel J; Stine, Sasha; Sabesan, Vani J
2017-04-01
Manufacturers of reverse shoulder arthroplasty (RSA) implants have recently designed innovative implants to optimize performance in rotator cuff-deficient shoulders. These advancements are not without tradeoffs and can have negative biomechanical effects. The objective of this study was to develop an integrated finite element analysis-kinematic model to compare the muscle forces and joint reaction forces (JRFs) of 3 different RSA designs. A kinematic model of a normal shoulder joint was adapted from the Delft model and integrated with the well-validated OpenSim shoulder model. Static optimizations then allowed for calculation of the individual muscle forces, moment arms, and JRFs relative to net joint moments. Three-dimensional computer models of 3 RSA designs-humeral lateralized design (HLD), glenoid lateralized design, and Grammont design-were integrated, and parametric studies were performed. Overall, there were decreases in deltoid and rotator cuff muscle forces for all 3 RSA designs. These decreases were greatest in the middle deltoid of the HLD model for abduction and flexion and in the rotator cuff muscles under both internal rotation and external rotation. The JRFs in abduction and flexion decreased similarly for all RSA designs compared with the normal shoulder model, with the greatest decrease seen in the HLD model. These findings demonstrate that the design characteristics implicit in these modified RSA prostheses result in mechanical differences most prominently seen in the deltoid muscle and overall JRFs. Further research using this novel integrated model can help guide continued optimization of RSA design and clinical outcomes. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Barber, Thomas A; Ho, James E; De Ranieri, Aladino; Virdi, Amarjit S; Sumner, Dale R; Healy, Kevin E
2007-02-01
Interpenetrating polymer networks (IPNs) of poly (acrylamide-co-ethylene glycol/acrylic acid) functionalized with an -Arg-Gly-Asp- (RGD) containing 15 amino acid peptides, derived from rat bone sialoprotein (bsp-RGD(15), were grafted to titanium implants in an effort to modulate bone formation in the peri-implant region in the rat femoral ablation model. Bone-implant contact (BIC) and bone formation within the medullary canal were determined using microcomputed tomography at 2 and 4 weeks postimplantation. BIC for bsp-RGD(15)-IPN implants was enhanced relative to hydroxyapatite tricalcium phosphate (HA-TCP) coated implants, but was similar to all other groups. Aggregate bone formation neither indicated a dose-dependent effect of bsp-RGD(15) nor a meaningful trend. Mechanical testing of implant fixation revealed that only the HA-TCP coated implants supported significant (>1 MPa) interfacial shear strength, despite exhibiting lower overall BIC, an indication that bone ingrowth into the rougher coating was the primary mode of implant fixation. While no evidence was found to support the hypothesis that bsp-RGD(15)-modified IPN coated implants significantly impacted bone-implant bonding, these results point to the lack of correlation between in vitro studies employing primary osteoblasts and in vivo wound healing in the peri-implant region. Copyright 2006 Wiley Periodicals, Inc.
Tribology considerations for hip joint articulations in relation to the "new orthopaedic patient".
Rieker, C B
2006-01-01
The purpose of this review is to examine alternative bearings used in total hip arthroplasty (THA) and discuss the specific tribologic needs of the "New Orthopaedic Patient". As orthopaedic patients today are younger and more active, there is a clear need for hip joint implants and articulations minimising the amount of wear and guarantying better stability. Recent modern developments in tribology with highly cross-linked polyethylenes and hard-on-hard bearings allow the safe and effective use of larger diameter articulations in THA.
[Trochanteric femoral fractures: anatomy, biomechanics and choice of implants].
Bonnaire, F; Lein, T; Bula, P
2011-06-01
The objective of any surgical care of a trochanteric femoral fracture should be the achievement of a stable osteosynthesis that allows early full weight-bearing mobilisation of the patient, because long-term immobilisation soon becomes a vital threat to the affected patients who are usually elderly with correlating comorbidities. The anatomical references of the proximal femur and the structure of the hip joint contain some specifics that play an essential role in the incurrence of a trochanteric femoral fracture and the planning of the osteosynthesis as well. With reposition and fracture stabilisation particular importance must be attached to the collo-diaphyseal and the antetorsion angle so that they do not interfere with the functional interaction of the hip and knee joint. Uncomplex trochanteric fractures ordinarily stabilise sufficiently after reposition so that even an extramedullary implant can ensure full weight-bearing stability. With evermore distal fracture course and intertrochanteric comminution zone, rotational instability and pivot transfer of the fracture area to lateral and caudal are followed by an increase of the dislocating forces. These kinds of fractures (A2 and A3 according to the AO/ASIF classification) profit from an intramedullary and rotationally stable osteosynthesis. Basically primary total hip arthroplasty is a potential option for surgical care of a trochanteric fracture in elderly patients with relevant coxarthrosis. However this procedure can only be recommended in cases of a stable uncomplex fracture. The more the medial interlocking of the proximal femur is destroyed the more difficult it will be to primarily implant a total hip prosthesis with good offset and without a varus and rotational failure in the fracture zone.The current studies in the main show disadvantages due to increased complications in these patients, so that in cases of an unstable trochanteric fracture a primary osteosynthesis should be performed followed by
Liu, Chien-Hsiou; Chiang, Hsin-Yu; Chen, Kun-Hung
2015-01-01
Based on the high prevalence of people with problems in the wrist and hand simultaneously, it is of its importance to clarify whether hand joints exert extra motion to compensate for wrist motion while immobilized. This study aimed to measure the compensatory movement of the thumb and index finger when people perform daily activities with an immobilized wrist. Thirty healthy volunteers were recruited in this study. A wrist splint, the Jebsen-Taylor Hand Function Test, and the OptoTrak Certus motion tracking system were used. Seven inter-digit mean joint angles of the index finger and thumb were calculated. Paired sample t-test was used. (1) The compensatory motions were noted in the Metacarpophalangeal and Carpometacarpal joints of the thumb, and the proximal interphalangeal joints of the index finger; (2) The manifestation of compensatory motion was related to type of activity performed except when picking up light and heavy cans. The compensatory motions appeared while the wrist was immobilized and were found to be disadvantageous to the progression of disease. In the future, studies need to be done to understand how to select products with correct ergonomic design to enable people to reap greater benefits from wearing wrist splints.
Kodama, Rie; Muraki, Shigeyuki; Oka, Hiroyuki; Iidaka, Toshiko; Teraguchi, Masatoshi; Kagotani, Ryohei; Asai, Yoshiki; Yoshida, Munehito; Morizaki, Yutaka; Tanaka, Sakae; Kawaguchi, Hiroshi; Nakamura, Kozo; Akune, Toru; Yoshimura, Noriko
2016-09-01
To examine the prevalence and pattern of hand osteoarthritis (HOA), and determine its relationship with grip strength and hand pain. Among the participants of the third survey of the Research on Osteoarthritis/Osteoporosis Against Disability (ROAD) study, 507 Japanese men and 1028 Japanese women were included. Radiographs of both hands were graded for osteoarthritis (OA) using the modified Kellgren-Lawrence (KL) scale. HOA was defined as the presence of at least one affected joint. The absence or presence of subchondral erosion was also scored. The prevalence of HOA (KL grade ≥2) was 89.9% in men and 92.3% in women (p = 0.11), and it was significantly associated with age. OA in the distal interphalangeal (DIP) joint was the highest overall. After adjusting for age, sex, body mass index, and the residing area, both severity (KL grade ≥3) and erosion were significantly related to low grip strength and hand pain. With regard to the joint groups, severe OA in the DIP and first carpometacarpal joints were related to hand pain. This study showed a high prevalence of radiographic HOA and a significant relationship between hand pain and the severity of HOA, in addition to erosion.
A new system of implant abutment connection: how to improve a two piece implant system sealing.
Grecchi, F; DI Girolamo, M; Cura, F; Candotto, V; Carinci, F
2017-01-01
Implant dentistry has become one of the most successful dentistry techniques for replacing missing teeth. The success rate of implant dentistry is above 80%. However, peri-implantitis is a later complication of implant dentistry that if untreated, can lead to implant loss. One of the hypotized causes of peri-implantis is the bacterial leakage at the level of implant-abutment connection. Bacterial leakage is favored to the presence of a micro gap at the implant-abutment interface, allowing microorganisms to penetrate and colonize the inner part of the implant leading to biofilm accumulation and consequently to peri-implantitis development. To identify the capability of the implant to protect the internal space from the external environment, the passage of genetically modified Escherichia coli across implant-abutment interface was evaluated. Implants were immerged in a bacterial culture for twenty-four hours and then bacteria amount was measured inside implant-abutment interface with Real-time PCR. Bacteria were detected inside all studied implants, with a median percentage of 9%. The reported results are better to those of previous studies carried out on different implant systems. Until now, none implant-abutment system has been proven to seal the gap between implant and abutment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, Y
Purpose: Heating of patients or burning of biological tissues around medical implants by RF power during MRI scan is a significant patient safety concern. The purpose of this study is to not only measure SAR values, but also RF-induced temperature elevation due to artificial hip joints during MRI scans. Methods: SAR measurement experiment was performed on three discrete manufacturers at 1.5 and 3T. Three MRI RF sequences (T1w TSE, T2w inversion recovery, and T2w TSE) with imaging parameters were selected. A gelled saline phantom mimicking human body tissue was made (Fig.1). FDTD method was utilized to calculate the SAR distributionmore » using Sim4Life software. Based on the results of the simulation, 4 electrical field (E-field) sensors were located around two artificial hip joints inside the phantom. 56 Fiber Bragg Grating (FBG) temperature sensors (28 sensors on each artificial hip joint) were located on both left and right artificial hip joints to measure temperature change during MRI scan (Fig.1). Both E-field and FBG temperature sensors were calibrated with traceability at Korea Research Institute of Standards and Science (KRISS). Results: Simulation shows that high SAR values occur in the head and tail of the implanted artificial hip joints (Fig.1 lower right). 3T MRI scanner shows that the local averaged-SAR values measured by probe 1, 2, and 3 are 2.30, 2.77, and 1.68 W/kg, compared to MRI scanner-reported whole body SAR value (≤1.5 W/kg) for T1w TSE and T2w-IR (Table 1). The maximum temperature elevation measured by FBG sensors is 1.49°C at 1.5 T, 2.0°C at 3 T, and 2.56°C at 3 T for T1w TSE, respectively (Table 2). Conclusion: It is essential to assess the safety of MRI system for patient with medical implant by measuring not only accurate SAR deposited in the body, but also temperature elevation due to the deposited SAR during clinical MRI.« less
Bian, Yan-Yan; Zhou, Lei; Zhou, Gang; Jin, Zhong-Min; Xin, Shi-Xuan; Hua, Zi-Kai; Weng, Xi-Sheng
2018-06-01
Ultra-low-wear polyethylene (ULWPE) is a new type polyethylene made by experts who are from China petrochemical research institute, which is easy to process and implant. Preliminary test showed it was more resistant to wear than that of Ultra-high-molecular weight polyethylene (UHMWPE). The purpose of the research is to study biocompatibility, bio-tribological properties and debris characterization of ULWPE. Cytotoxicity test, hemolysis test, acute/chronic toxicity and muscular implantation test were conducted according to national standard GB/T-16886/ISO-10993 for evaluation requirements of medical surgical implants. We obtained that this novel material had good biocompatibility and biological safety. The wear performance of ULWPE and UHMWPE was evaluated in a pin-on-disc (POD) wear tester within two million cycles and a knee wear simulator within six million cycles. We found that the ULWPE was higher abrasion resistance than the UHMWPE, the wear rate of ULWPE by POD test and knee wear simulator was 0.4 mg/10 6 cycles and (16.9 ± 1.8)mg/10 6 cycles respectively, while that of UHMWPE was 1.8 mg/10 6 cycles and (24.6 ± 2.4)mg/10 6 cycles. The morphology of wear debris is also an important factor to evaluate artificial joint materials, this study showed that the ULWPE wear debris gotten from the simulator had various different shapes, including spherical, block, tear, etc. The morphology of worn surface and wear debris analysis showed that wear mechanisms of ULWPE were adhesion wear, abrasive wear and fatigue wear and other wear forms, which were consistent with that of UHMWPE. Thus we conclude that ULWPE is expected to be a lifetime implantation of artificial joint. Copyright © 2018 Elsevier Ltd. All rights reserved.
Computational wear assessment of hard on hard hip implants subject to physically demanding tasks.
Nithyaprakash, R; Shankar, S; Uddin, M S
2018-05-01
Hip implants subject to gait loading due to occupational activities are potentially prone to failures such as osteolysis and aseptic loosening, causing painful revision surgeries. Highly risky gait activities such as carrying a load, stairs up or down and ladder up or down may cause excessive loading at the hip joint, resulting in generation of wear and related debris. Estimation of wear under the above gait activities is thus crucial to design and develop a new and improved implant component. With this motivation, this paper presents an assessment of wear generation of PCD-on-PCD (poly crystalline diamond) hip implants using finite element (FE) analysis. Three-dimensional (3D) FE model of hip implant along with peak gait and peak flexion angle for each activity was used to estimate wear of PCD for 10 million cycles. The maximum and minimum initial contact pressures of 206.19 MPa and 151.89 MPa were obtained for carrying load of 40 kg and sitting down or getting up activity. The simulation results obtained from finite element model also revealed that the maximum linear wear of 0.585 μm occurred for the patients frequently involved in sitting down or getting up gait activity and maximum volumetric wear of 0.025 mm 3 for ladder up gait activity. The stair down activity showed the least linear and volumetric wear of 0.158 μm and 0.008 mm 3 , respectively, at the end of 10 million cycles. Graphical abstract Computational wear assessment of hip implants subjected to physically demanding tasks.
Poly Implants Prosthèse Breast Implants: A Case Series and Review of the Literature.
Klein, Doron; Hadad, Eran; Wiser, Itay; Wolf, Omer; Itzhaki Shapira, Ortal; Fucks, Shir; Heller, Lior
2018-01-01
Silicone breast implants from the French manufacturer Poly Implants Prosthèse (PIP) were recalled from the European market after the French regulator has revealed the implants contain non-medical-grade silicone filler. In December 2011, following a large increase in reported rupture rate and a possible cancer risk, the French Ministry of Health recommended consideration of the PIP explantation, regardless of their condition. In 2012, the Israel Ministry of Health recommended to replace the implants only upon suspected implant rupture. The aims of this study were to characterize breast-augmented Israeli patients with PIP implants, compare their outcomes with those of breast-augmented patients with different implant types, and review the current PIP literature. Breast-augmented patients who underwent an elective breast implant exchange in Israel between January 2011 and January 2017 were included in the study. Data were collected from electronic and physical medical files. There were 73 breast-augmented female patients with 146 PIP breast implants included in this study. Average implant age was 6.7 ± 2.79 years. Mean implant size was 342.8 ± 52.9 mL. Fourteen women (19 implants [16%]) had a high-grade capsular contracture (Baker grade 3-4). During exchange, 28 implants were found to be ruptured (19.2%). Less than 10 years following breast augmentation, PIP implants demonstrated higher rupture rate compared with other implants. Our data are comparable to overall available rupture rate. Among patients with definitive rupture diagnosis, an elective implant removal should be recommended. In cases of undamaged implants, plastic surgeons should also seriously consider PIP implant explantation. When the patient does not desire to remove the implant, an annual physical examination and breast ultrasound are recommended, beginning a year after augmentation.
Tins, Bernhard J; McCall, Iain W; Takahashi, Tomoki; Cassar-Pullicino, Victor; Roberts, Sally; Ashton, Brian; Richardson, James
2005-02-01
To evaluate magnetic resonance (MR) imaging features of autologous chondrocyte implantation (ACI) grafts and compare these with graft histologic features 1 year after ACI for treatment of femoral condylar defects. This study was approved by the regional ethics committee, and all patients gave informed consent. Forty-one patients (mean age, 35 years; 30 men, 11 women) underwent ACI for treatment of femoral condylar defects. One year later, knee joint MR imaging and graft biopsy were performed. Graft biopsy results were categorized into those showing hyaline, mixed fibrohyaline cartilage, fibrocartilage, and fibrous tissue. Standard T1-, T2-, T2*-, and intermediate-weighted sequences were performed, as well as three-dimensional (3D) fast low-angle shot (FLASH) and double-echo steady-state sequences for cartilage assessment. ACI grafts were assessed for signal intensity (with FLASH sequence), thickness, overgrowth, surface smoothness, integration to adjacent cartilage and underlying bone, bone marrow edema underneath graft, and contour of bone underneath graft. MR images were assessed by two observers, first independently and then in consensus. MR imaging findings were correlated with histologic findings. All 41 grafts were present at 1-year follow-up. The graft consisted of hyaline cartilage in four, mixed fibrohyaline cartilage in 10, fibrocartilage in 25, and fibrous tissue in two cases. Graft signal intensity was virtually always lower than adjacent normal cartilage signal intensity, and there was no relationship between graft signal intensity and histologic appearance (P = .34). Graft thickness (P = .83), overgrowth (P = .69), surface smoothness (P = .28), and integration with adjacent cartilage and underlying bone (P = .90); edema in bone marrow underneath graft (P = .63); and bone contour underneath graft (P = .94) at MR imaging had no correlation with graft histologic appearance. Graft overgrowth (n = 16; 39%) and edema-like signal in bone marrow underneath
... newsroom@entnet.org . A cochlear implant is an electronic device that restores partial hearing to individuals with ... An internal component that consists of a small electronic device that is surgically implanted under the skin ...
Goserelin implant is used in combination with radiation therapy and other medications to treat localized prostate cancer ... and other symptoms) and to help with the treatment of abnormal bleeding of the uterus. Goserelin implant ...
Prediction of Imagined Single-Joint Movements in a Person with High Level Tetraplegia
Simeral, John D.; Donoghue, John P.; Hochberg, Leigh R.; Kirsch, Robert F.
2013-01-01
Cortical neuroprostheses for movement restoration require developing models for relating neural activity to desired movement. Previous studies have focused on correlating single-unit activities (SUA) in primary motor cortex to volitional arm movements in able-bodied primates. The extent of the cortical information relevant to arm movements remaining in severely paralyzed individuals is largely unknown. We record intracortical signals using a microelectrode array chronically implanted in the precentral gyrus of a person with tetraplegia, and estimate positions of imagined single-joint arm movements. Using visually guided motor imagery, the participant imagined performing eight distinct single-joint arm movements while SUA, multi-spike trains (MSP), multi-unit activity (MUA), and local field potential time (LFPrms) and frequency signals (LFPstft) were recorded. Using linear system identification, imagined joint trajectories were estimated with 20 – 60% variance explained, with wrist flexion/extension predicted the best and pronation/supination the poorest. Statistically, decoding of MSP and LFPstft yielded estimates that equaled those of SUA. Including multiple signal types in a decoder increased prediction accuracy in all cases. We conclude that signals recorded from a single restricted region of the precentral gyrus in this person with tetraplegia contained useful information regarding the intended movements of upper extremity joints. PMID:22851229
Metals for bone implants. Part 1. Powder metallurgy and implant rendering.
Andani, Mohsen Taheri; Shayesteh Moghaddam, Narges; Haberland, Christoph; Dean, David; Miller, Michael J; Elahinia, Mohammad
2014-10-01
New metal alloys and metal fabrication strategies are likely to benefit future skeletal implant strategies. These metals and fabrication strategies were looked at from the point of view of standard-of-care implants for the mandible. These implants are used as part of the treatment for segmental resection due to oropharyngeal cancer, injury or correction of deformity due to pathology or congenital defect. The focus of this two-part review is the issues associated with the failure of existing mandibular implants that are due to mismatched material properties. Potential directions for future research are also studied. To mitigate these issues, the use of low-stiffness metallic alloys has been highlighted. To this end, the development, processing and biocompatibility of superelastic NiTi as well as resorbable magnesium-based alloys are discussed. Additionally, engineered porosity is reviewed as it can be an effective way of matching the stiffness of an implant with the surrounding tissue. These porosities and the overall geometry of the implant can be optimized for strain transduction and with a tailored stiffness profile. Rendering patient-specific, site-specific, morphology-specific and function-specific implants can now be achieved using these and other metals with bone-like material properties by additive manufacturing. The biocompatibility of implants prepared from superelastic and resorbable alloys is also reviewed. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Quénard, Fanny; Seng, Piseth; Lagier, Jean-Christophe; Fenollar, Florence; Stein, Andreas
2017-06-23
Bone and joint infection involving Granulicatella adiacens is rare, and mainly involved in cases of bacteremia and infectious endocarditis. Here we report three cases of prosthetic joint infection involving G. adiacens that were successfully treated with surgery and prolonged antimicrobial treatment. We also review the two cases of prosthetic joint infection involving G. adiacens that are reported in the literature. Not all five cases of prosthetic joint infection caused by G. adiacens were associated with bacteremia or infectious endocarditis. Dental care before the onset of infection was observed in two cases. The median time delay between arthroplasty implantation and the onset of infection was of 4 years (ranging between 2 and 10 years). One of our cases was identified with 16srRNA gene sequencing, one case with MALDI-TOF mass spectrometry, and one case with both techniques. Two literature cases were diagnosed by 16srRNA gene sequencing. All five cases were cured after surgery including a two-stage prosthesis exchange in three cases, a one-stage prosthesis exchange in one case, and debridement, antibiotics, irrigation, and retention of the prosthesis in one case, and prolonged antimicrobial treatment. Prosthetic joint infection involving G. adiacens is probably often dismissed due to difficult culture or misdiagnosis, in particular in the cases of polymicrobial infection. Debridement, antibiotics, irrigation, and retention of the prosthesis associated with prolonged antimicrobial treatment (≥ 8 weeks) should be considered as a treatment strategy for prosthetic joint infection involving G. adiacens.
Ivanovski, Saso
2015-01-01
1. The best-documented implants have a threaded solid screw-type design and are manufactured from commercially pure (grade IV) titanium. There is good evidence to support implants ≥ 6 mm in length, and ≥ 3 mm in diameter. 2. Integrity of the seal between the abutment and the implant is important for several reasons, including minimization of mechanical and biological complications and maintaining marginal bone levels. Although the ideal design features of the implant-abutment connection have not been determined, an internal connection, micro-grooves at the implant collar, and horizontal offset of the implant-abutment junction (platform switch) appear to impart favorable properties. 3. Implants with moderately rough implant surfaces provide advantages over machined surfaces in terms of the speed and extent of osseointegration. While the favorable performances of both minimally and moderately rough surfaces are supported by long-term data, moderately rough surfaces provide superior outcomes in compromised sites, such as the posterior maxilla. 4. Although plaque is critical in the progression of peri-implantitis, the disease has a multi-factorial aetiology, and may be influenced by poor integrity of the abutment/implant connection. Iatrogenic factors, such as the introduction of a foreign body. (e.g., cement) below the mucosal margin, can be important contributors. 5. Clinicians should exercise caution when using a particular implant system, ensuring that the implant design is appropriate and supported by scientific evidence. Central to this is access to and participation in quality education on the impact that implant characteristics can have on clinical outcomes. Caution should be exercised in utilizing non-genuine restorative componentry that may lead to a poor implant-abutment fit and subsequent technical and biological complications.
Hypersensitivity reactions to metal implants: laboratory options.
Carossino, Anna Maria; Carulli, Christian; Ciuffi, Simone; Carossino, Roberto; Zappoli Thyrion, Giorgia Donata; Zonefrati, Roberto; Innocenti, Massimo; Brandi, Maria Luisa
2016-11-23
All implant compounds undergo an electrochemical process when in contact with biological fluids, as well as mechanical corrosion due to abrasive wear, with production of metal debris that may inhibit repair processes. None of the commonly-used methods can diagnose implant allergies when used singly, therefore a panel of tests should be performed on allergic patients as pre-operative screening, or when a postoperative metal sensitisation is suspected. We analysed patients with painful prostheses and subjects prone to allergies using the Patch Test in comparison with the Lymphocyte Transformation Test. Cytokine production was evaluated to identify prognostic markers for early diagnosis of aseptic loosening. Metal debris endocytosis and cytoskeletal rearrangement was visualised by confocal microscopy. Our results demonstrate that the Lymphocyte Transformation Test can identify patients who have a predisposition to develop allergic reactions and can confirm the diagnosis of hypersensitivity in patients with painful prostheses. The prevalence of a Th2-cytokine pattern may be used to identify predisposition to the development of allergic diseases, while the selective presence of osteoclastogenic cytokines may be used as predictor of a negative outcome in patients with painful prosthesis. The hypothesis of the prognostic value of these cytokines as early markers of aseptic loosening is attractive, but its confirmation would require extensive testing. The Lymphocyte Transformation Test is the most suitable method for testing systemic allergies. We suggest that the combined use of the Patch Test and the Lymphocyte Transformation Test, associated with cytokine detection in selected patients, could provide a useful tool for preventive evaluation of immune reactivity in patients undergoing primary joint replacement surgery, and for clinical monitoring of the possible onset of a metal sensitization in patients with implanted devices.
Peri-implant bone density in senile osteoporosis-changes from implant placement to osseointegration.
Beppu, Kensuke; Kido, Hirofumi; Watazu, Akira; Teraoka, Kay; Matsuura, Masaro
2013-04-01
The aim of this study was to examine healing over time after implant body placement in a senile osteoporosis model and a control group. In this study, 16-week-old male mice were used. The senile osteoporosis model consisted of senescence-accelerated prone 6 mice and the control group consisted of senescence-accelerated resistant 1 mice. Titanium-coated plastic implants were used as experimental implants whose dimensions were 3.0 mm in length, 1.1 mm in apical diameter, and 1.2 mm in coronal diameter. Bone samples were collected at 5, 7, 14, 21, and 28 days after implant placement. A micro-quantitative computed tomography (QCT) system was used to scan these samples and a phantom in order to quantitate bone mineral measurements. Bone mineral density (BMD) of each sample was measured. Each sample was also examined by light microscopy after QCT imaging. At 14 and 28 days after implant placement, the bone-implant contact (BIC) ratios were calculated from light microscopy images and were divided into cortical bone and bone marrow regions. When BMD was compared between the osteoporosis and control groups using micro-QCT, the osteoporosis group had a significantly lower BMD in the region 0-20 µm from the implant surface in the bone marrow region at 14 days onward after implant placement. Compared with the control group, the osteoporosis model also had significantly lower BMD in all regions 0-100 µm from the implant surface in the bone marrow region at 14 days after placement. However, in the cortical bone region, no statistically significant difference was observed in the regions at the bone-implant interface. Light microscopy revealed osseointegration for all implants 28 days after implant placement. The osteoporosis model tended to have lower BICs compared with that of the control group, although this did not reach statistical significance. Our results showed that osseointegration was achieved in the osteoporosis model. However, the BMD was 30-40% lower than that of
Sagbo, S; Blochaou, F; Langlotz, F; Vangenot, C; Nolte, L-P; Zheng, G
2005-01-01
Computer-Assisted Orthopaedic Surgery (CAOS) has made much progress over the last 10 years. Navigation systems have been recognized as important tools that help surgeons, and various such systems have been developed. A disadvantage of these systems is that they use non-standard formalisms and techniques. As a result, there are no standard concepts for implant and tool management or data formats to store information for use in 3D planning and navigation. We addressed these limitations and developed a practical and generic solution that offers benefits for surgeons, implant manufacturers, and CAS application developers. We developed a virtual implant database containing geometrical as well as calibration information for orthopedic implants and instruments, with a focus on trauma. This database has been successfully tested for various applications in the client/server mode. The implant information is not static, however, because manufacturers periodically revise their implants, resulting in the deletion of some implants and the introduction of new ones. Tracking these continuous changes and keeping CAS systems up to date is a tedious task if done manually. This leads to additional costs for system development, and some errors are inevitably generated due to the huge amount of information that has to be processed. To ease management with respect to implant life cycle, we developed a tool to assist end-users (surgeons, hospitals, CAS system providers, and implant manufacturers) in managing their implants. Our system can be used for pre-operative planning and intra-operative navigation, and also for any surgical simulation involving orthopedic implants. Currently, this tool allows addition of new implants, modification of existing ones, deletion of obsolete implants, export of a given implant, and also creation of backups. Our implant management system has been successfully tested in the laboratory with very promising results. It makes it possible to fill the current gap
The design and development of a triaxial wear-testing joint simulator.
Green, A S; O'Connell, M K; Lyons, A S; James, S P
1999-01-01
Most of the existing wear testers created to wear test total hip replacements, specifically the acetabular component, are designed to exert only an axial force and provide rotation in a close approximation of the actual femoral movement. The Rocky Mountain Joint Simulator was designed to exert three orthogonal forces and provide rotations about the X-, Y- and Z-axes to more closely simulate the physiological forces and motions found in the human gait cycle. The RMJS was also designed with adaptability for other joints, such as knees or canine hips, through the use of hydraulics and a computer-programmable control system. Such adaptability and functionality allows the researcher to more closely model a gait cycle, thereby obtaining wear patterns that resemble those found in retrieved implants more closely than existing simulators. Research is ongoing into the tuning and evaluation of the machine and preliminary acetabular component wear test results will be presented at the conference.
Hansson, S
2005-01-01
Implant ethics is defined here as the study of ethical aspects of the lasting introduction of technological devices into the human body. Whereas technological implants relieve us of some of the ethical problems connected with transplantation, other difficulties arise that are in need of careful analysis. A systematic approach to implant ethics is proposed. The major specific problems are identified as those concerning end of life issues (turning off devices), enhancement of human capabilities beyond normal levels, mental changes and personal identity, and cultural effects. PMID:16131553
Individual titanium zygomatic implant
NASA Astrophysics Data System (ADS)
Nekhoroshev, M. V.; Ryabov, K. N.; Avdeev, E. V.
2018-03-01
Custom individual implants for the reconstruction of craniofacial defects have gained importance due to better qualitative characteristics over their generic counterparts – plates, which should be bent according to patient needs. The Additive Manufacturing of individual implants allows reducing cost and improving quality of implants. In this paper, the authors describe design of zygomatic implant models based on computed tomography (CT) data. The fabrication of the implants will be carried out with 3D printing by selective laser melting machine SLM 280HL.
Xu, Ding; Luo, Peng; Chen, Jukun; Ji, Liefeng; Yin, Luxu; Wang, WeiKang; Zhu, Jiang
2017-12-01
Hook plate fixation is widely used to treat acromioclavicular joint dislocation. However, there are many post-operative complications affecting the effect of treatment. The aim of this study is to evaluate the efficacy of the clavicular hook plate with different hook angles as a method of treatment in AC joint dislocation, and to guide the clinical application of hook plate. We prospectively analysed 54 patients who were diagnosed with AC joint dislocation and treated with hook plate fixation by different hook angles. The patients were randomised into three groups: the -20° < AHP < 0° group, the 20° > AHP > 0° group and the 40° > AHP > 20° group. All patients were required to conform to regular follow-up post-operatively. Routine imaging to the shoulder was obtained to evaluate maintenance of the dislocation and the implant. Constant-Murley criteria were used to evaluate functional results. There were 19 patients in the -20° < AHP < 0° group, with one lost to follow-up, 22 patients in the 20° > AHP > 0° group, with two male patients lost to follow-up, and one female patient excluded because of no follow-up consent, and 19 patients in the 40° > AHP > 20° group, with one female and one male patient lost to follow-up. The Constant score was 61.8 ± 12.8, 74.7 ± 9.2 and 70.7 ± 9.4 before implant removal, and 78.8 ± 8.3, 87.1 ± 6.4 and 85.0 ± 6.1 after implant removal in the -20° < AHP < 0°, 20° > AHP > 0° and 40° > AHP > 20° groups, respectively. The functional results of the 20° > AHP > 0° and 40° > AHP > 20° groups were significantly better than the -20° < AHP < 0° group (P < 0.05), but the functional results of the 20° > AHP > 0° and 40° > AHP > 20° groups were not statistically significant. The CCD was 98.1 ± 4.8%, 107.5 ± 5.1% and 105.5 ± 4.1% before implant removal, and 98.8 ± 4.6%, 108.3 ± 4.8% and 107.2 ± 3.3% after implant removal in the
Oshida, Yoshiki; Tuna, Elif B.; Aktören, Oya; Gençay, Koray
2010-01-01
Among various dental materials and their successful applications, a dental implant is a good example of the integrated system of science and technology involved in multiple disciplines including surface chemistry and physics, biomechanics, from macro-scale to nano-scale manufacturing technologies and surface engineering. As many other dental materials and devices, there are crucial requirements taken upon on dental implants systems, since surface of dental implants is directly in contact with vital hard/soft tissue and is subjected to chemical as well as mechanical bio-environments. Such requirements should, at least, include biological compatibility, mechanical compatibility, and morphological compatibility to surrounding vital tissues. In this review, based on carefully selected about 500 published articles, these requirements plus MRI compatibility are firstly reviewed, followed by surface texturing methods in details. Normally dental implants are placed to lost tooth/teeth location(s) in adult patients whose skeleton and bony growth have already completed. However, there are some controversial issues for placing dental implants in growing patients. This point has been, in most of dental articles, overlooked. This review, therefore, throws a deliberate sight on this point. Concluding this review, we are proposing a novel implant system that integrates materials science and up-dated surface technology to improve dental implant systems exhibiting bio- and mechano-functionalities. PMID:20480036
DEALING WITH DENTAL IMPLANT FAILURES
Levin, Liran
2008-01-01
An implant-supported restoration offers a predictable treatment for tooth replacement. Reported success rates for dental implants are high. Nevertheless, failures that mandate immediate implant removal do occur. The consequences of implant removal jeopardize the clinician's efforts to accomplish satisfactory function and esthetics. For the patient, this usually involves further cost and additional procedures. The aim of this paper is to describe different methods and treatment modalities to deal with dental implant failure. The main topics for discussion include identifying the failing implant, implants replacing failed implants at the exact site, and the use of other restorative options. When an implant fails, a tailor made treatment plan should be provided to each patient according to all relevant variables. Patients should be informed regarding all possible treatment modalities following implant failure and give their consent to the most appropriate treatment option for them. PMID:19089213
Discoloration of the Peri-implant Mucosa Caused by Zirconia and Titanium Implants.
Thoma, Daniel S; Ioannidis, Alexis; Cathomen, Elena; Hämmerle, Christoph H F; Hüsler, Jürg; Jung, Ronald E
2016-01-01
The aim of the present study was to assess the discoloration of the peri-implant mucosa caused by zirconia (Zr) and titanium (Ti) dental implants with and without soft tissue grafting (STG). Zr and Ti implants were inserted in edentulous areas in pig maxillae. Spectrophotometric measurements were performed prior to and after the insertion of the implants, and following the placement of a STG on the buccal side. A significant discoloration of the mucosa was observed with a mean ΔE of 8.05 (± 2.51) (Ti) and 4.93 (± 3.18) (Zr). In conjunction with a STG, ΔE values amounted to 5.31 ± 3.50 (Ti) and 5.95 (± 3.68) (Zr). The placement of Zr implants led to less discoloration of the mucosa than Ti implants without STG.
The effects of implant angulation on the resonance frequency of a dental implant.
Harirforoush, R; Arzanpour, S; Chehroudi, B
2014-08-01
Dental implants are ideally placed in an orientation that allows vertical transfer of occlusal forces along their long axis. Nevertheless, optimal situations for implant placement are seldom encountered resulting in implants placement in angulated positions, which may affect their long-term success. The resonance frequency (RF) is an objective tool used to monitor stability of the implant tissue integration; however, little is known of the effect of the implant orientation in bone on the RF and its potential significance. The purpose of this research was to determine the relation between the dental implant orientation and the corresponding RF of implant. Three-dimensional (3D) modelling software was used to construct a 3D model of a pig mandible from computed tomography (CT) images. The RF of the implant was analysed using finite element (FE) modal analysis in software ANSYS (v.12). In addition, a cubical model was also developed in MIMICS to investigate the parameters affecting the relationship between RF and implant orientation in a simplified environment. The orientation angle was increased from 0 to 10 degrees in 1 degree increments and the resulting RF was analysed using correlation analysis and one-way ANOVA. Our analysis illustrated that the RF fluctuation following altering implant orientation was strongly correlated (r=0.97) with the contacting cortical to cancellous bone ratio (CCBR) at the implant interface. The most extreme RF change (from 9.81kHz to 10.07kHz) occurred when the implant was moved 0.5mm in positive z-direction, which resulted in the maximum change of CCBR from 52.9 to 54.8. Copyright © 2014. Published by Elsevier Ltd.
Parabkaharan, Sangeetha; Melody, Megan; Trotta, Rose; Lleshi, Amina; Sun, Weihong; Smith, Paul D; Khakpour, Nazanin; Dayicioglu, Deniz
2016-06-01
Women who have undergone prior augmentation mammoplasty represent a unique subset of breast cancer patients with several options available for breast reconstruction. We performed a single institution review of surgical outcomes of breast reconstruction performed in patients with breast cancer with prior history of subpectoral breast augmentation. Institutional review board-approved retrospective review was conducted among patients with previously mentioned criteria treated at our institution between 2000 and 2014. Reconstructions were grouped into 2 categories as follows: (1) removal of preexisting subpectoral implant during mastectomy with immediate tissue expander placement and (2) implant-sparing mastectomy followed by delayed exchange to a larger implant. We reviewed demographics, tumor features, and reconstruction outcomes of these groups. Fifty-three patients had preexisting subpectoral implants. Of the 63 breast reconstructions performed, 18 (28.6%) had immediate tissue expander placed and 45 (71.4%) had implant-sparing mastectomy followed by delayed implant exchange. The groups were comparable based on age, body mass index, cancer type, tumor grade, TNM stage at presentation, and hormonal receptor status. No significant difference was noted between tumor margins or subsequent recurrence, mastectomy specimen weight, removed implant volume, volume of implant placed during reconstruction, or time from mastectomy to final implant placement. Rates of complications were significantly higher in the tissue expander group compared to the implant-sparing mastectomy group 7 (38.9%) versus 4 (8.9%) (P = 0.005). Implant-sparing mastectomy with delayed implant exchange in patients with preexisting subpectoral implants is safe and has fewer complications compared to tissue expander placement. There was no difference noted in the final volume of implant placed, time interval for final implant placement, or tumor margins.
Ballo, Ahmed M; Akca, Eralp; Ozen, Tuncer; Moritz, Niko; Lassila, Lippo; Vallittu, Pekka; Närhi, Timo
2014-08-01
This study aimed to evaluate the influence of implant design and bioactive glass (BAG) coating on the response of bone to fiber-reinforced composite (FRC) implants. Three different FRC implant types were manufactured for the study: non-threaded implants with a BAG coating; threaded implants with a BAG coating; and threaded implants with a grit-blasted surface. Thirty-six implants (six implants for each group per time point) were installed in the tibiae of six pigs. After an implantation period of 4 and 12 wk, the implants were retrieved and prepared for micro-computed tomography (micro-CT), push-out testing, and scanning electron microscopy analysis. Micro-CT demonstrated that the screw-threads and implant structure remained undamaged during the installation. The threaded FRC/BAG implants had the highest bone volume after 12 wk of implantation. The push-out strengths of the threaded FRC/BAG implants after 4 and 12 wk (463°N and 676°N, respectively) were significantly higher than those of the threaded FRC implants (416°N and 549°N, respectively) and the nonthreaded FRC/BAG implants (219°N and 430°N, respectively). Statistically significant correlation was found between bone volume and push-out strength values. This study showed that osseointegrated FRC implants can withstand the static loading up to failure without fracture, and that the addition of BAG significantly improves the push-out strength of FRC implants. © 2014 Eur J Oral Sci.
Baltacioğlu, Esra; Korkmaz, Yavuz Tolga; Korkmaz, Fatih Mehmet; Aydin, Güven; Sukuroglu, Erkan
2017-01-01
This report presents the clinical results of peri-implant plastic surgical approaches for hard and soft tissues before and during the implant placement in a patient with vertical ridge deformation and a shallow vestibule sulcus, and the subsequently performed prosthetic rehabilitation. The surgical approaches used in this case reduced the crown-height space and crown-to-implant ratio and ensured that the implants were placed in their ideal positions, and peri-implant tissue health was maintained. In conclusion, developments in the peri-implant plastic surgery enable the successful augmentation of hard and soft tissue defects and provide the implant-supported fixed prosthetic rehabilitation. PMID:29386805
The clinical implications of poly implant prothèse breast implants: an overview.
Wazir, Umar; Kasem, Abdul; Mokbel, Kefah
2015-01-01
Mammary implants marketed by Poly Implant Prothèse (PIP) were found to contain industrial grade silicone and this caused heightened anxiety and extensive publicity regarding their safety in humans. These implants were used in a large number of patients worldwide for augmentation or breast reconstruction. We reviewed articles identified by searches of Medline, PubMed, Embase, and Google Scholar databases up to May 2014 using the terms: "PIP", "Poly Implant Prothèse", "breast implants" and "augmentation mammoplasty" "siloxanes" or "silicone". In addition the websites of regulating bodies in Europe, USA, and Australia were searched for reports related to PIP mammary implants. PIP mammary implants are more likely to rupture than other implants and can cause adverse effects in the short to the medium term related to the symptoms of rupture such as pain, lumps in the breast and axilla and anxiety. Based on peer-reviewed published studies we have calculated an overall rupture rate of 14.5% (383/2,635) for PIP implants. However, there is no evidence that PIP implant rupture causes long-term adverse health effects in humans so far. Silicone lymphadenopathy represents a foreign body reaction and should be treated conservatively. The long-term adverse effects usually arise from inappropriate extensive surgery, such as axillary lymph node dissection or extensive resection of breast tissue due to silicone leakage.
The Clinical Implications of Poly Implant Prothèse Breast Implants: An Overview
Wazir, Umar; Kasem, Abdul
2015-01-01
Mammary implants marketed by Poly Implant Prothèse (PIP) were found to contain industrial grade silicone and this caused heightened anxiety and extensive publicity regarding their safety in humans. These implants were used in a large number of patients worldwide for augmentation or breast reconstruction. We reviewed articles identified by searches of Medline, PubMed, Embase, and Google Scholar databases up to May 2014 using the terms: "PIP", "Poly Implant Prothèse", "breast implants" and "augmentation mammoplasty" "siloxanes" or "silicone". In addition the websites of regulating bodies in Europe, USA, and Australia were searched for reports related to PIP mammary implants. PIP mammary implants are more likely to rupture than other implants and can cause adverse effects in the short to the medium term related to the symptoms of rupture such as pain, lumps in the breast and axilla and anxiety. Based on peer-reviewed published studies we have calculated an overall rupture rate of 14.5% (383/2,635) for PIP implants. However, there is no evidence that PIP implant rupture causes long-term adverse health effects in humans so far. Silicone lymphadenopathy represents a foreign body reaction and should be treated conservatively. The long-term adverse effects usually arise from inappropriate extensive surgery, such as axillary lymph node dissection or extensive resection of breast tissue due to silicone leakage. PMID:25606483