Science.gov

Sample records for cartilage chondrocytes induced

  1. Induced superficial chondrocyte death reduces catabolic cartilage damage in murine posttraumatic osteoarthritis.

    PubMed

    Zhang, Minjie; Mani, Sriniwasan B; He, Yao; Hall, Amber M; Xu, Lin; Li, Yefu; Zurakowski, David; Jay, Gregory D; Warman, Matthew L

    2016-08-01

    Joints that have degenerated as a result of aging or injury contain dead chondrocytes and damaged cartilage. Some studies have suggested that chondrocyte death precedes cartilage damage, but how the loss of chondrocytes affects cartilage integrity is not clear. In this study, we examined whether chondrocyte death undermines cartilage integrity in aging and injury using a rapid 3D confocal cartilage imaging technique coupled with standard histology. We induced autonomous expression of diphtheria toxin to kill articular surface chondrocytes in mice and determined that chondrocyte death did not lead to cartilage damage. Moreover, cartilage damage after surgical destabilization of the medial meniscus of the knee was increased in mice with intact chondrocytes compared with animals whose chondrocytes had been killed, suggesting that chondrocyte death does not drive cartilage damage in response to injury. These data imply that chondrocyte catabolism, not death, contributes to articular cartilage damage following injury. Therefore, therapies targeted at reducing the catabolic phenotype may protect against degenerative joint disease.

  2. Deciphering chondrocyte behaviour in matrix-induced autologous chondrocyte implantation to undergo accurate cartilage repair with hyaline matrix.

    PubMed

    Demoor, M; Maneix, L; Ollitrault, D; Legendre, F; Duval, E; Claus, S; Mallein-Gerin, F; Moslemi, S; Boumediene, K; Galera, P

    2012-06-01

    Since the emergence in the 1990s of the autologous chondrocytes transplantation (ACT) in the treatment of cartilage defects, the technique, corresponding initially to implantation of chondrocytes, previously isolated and amplified in vitro, under a periosteal membrane, has greatly evolved. Indeed, the first generations of ACT showed their limits, with in particular the dedifferentiation of chondrocytes during the monolayer culture, inducing the synthesis of fibroblastic collagens, notably type I collagen to the detriment of type II collagen. Beyond the clinical aspect with its encouraging results, new biological substitutes must be tested to obtain a hyaline neocartilage. Therefore, the use of differentiated chondrocytes phenotypically stabilized is essential for the success of ACT at medium and long-term. That is why researchers try now to develop more reliable culture techniques, using among others, new types of biomaterials and molecules known for their chondrogenic activity, giving rise to the 4th generation of ACT. Other sources of cells, being able to follow chondrogenesis program, are also studied. The success of the cartilage regenerative medicine is based on the phenotypic status of the chondrocyte and on one of its essential component of the cartilage, type II collagen, the expression of which should be supported without induction of type I collagen. The knowledge accumulated by the scientific community and the experience of the clinicians will certainly allow to relief this technological challenge, which influence besides, the validation of such biological substitutes by the sanitary authorities.

  3. Macrophage-inducing FasL on chondrocytes forms immune privilege in cartilage tissue engineering, enhancing in vivo regeneration.

    PubMed

    Fujihara, Yuko; Takato, Tsuyoshi; Hoshi, Kazuto

    2014-05-01

    To obtain stable outcomes in regenerative medicine, controlling inflammatory reactions is a requirement. Previously, auricular chondrocytes in tissue-engineered cartilage have been shown to express factors related to immune privilege including Fas ligand (FasL) in mice. Since elucidation of mechanism on immune privilege formed in cartilage regeneration may contribute to suppression of excessive inflammation, in this study, we investigated the function of FasL and induction of immune privilege in tissue-engineered cartilage using a mouse subcutaneous model. When cocultured, auricular chondrocytes of FasL-dysfunctional mice, C57BL/6JSlc-gld/gld (gld), induced less cell death and apoptosis of macrophage-like cells, RAW264, compared with chondrocytes of C57BL/6 mice (wild), suggesting that FasL on chondrocytes could induce the apoptosis of macrophages. Meanwhile, the viability of chondrocytes was hardly affected by cocultured RAW264, although the expression of type II collagen was decreased, indicating that macrophages could hamper the maturation of chondrocytes. Tissue-engineered cartilage containing gld chondrocytes exhibited greater infiltration of macrophages, with less accumulation of proteoglycan than did wild constructs. Analysis of the coculture medium identified G-CSF as an inducer of FasL on chondrocytes, and G-CSF-treated tissue-engineered cartilage showed less infiltration of macrophages, with increased formation of cartilage after transplantation. The interactions between chondrocytes and macrophages may increase G-CSF secretion in macrophages and induce FasL on chondrocytes, which in turn induce the apoptosis of macrophages and suppress tissue reactions, promoting the maturation of tissue-engineered cartilage. These findings provide scientific insight into the mechanism of autologous chondrocyte transplantation, which could be applied as a novel strategy for cartilage tissue engineering.

  4. Flavonoid Compound Icariin Activates Hypoxia Inducible Factor-1α in Chondrocytes and Promotes Articular Cartilage Repair.

    PubMed

    Wang, Pengzhen; Zhang, Fengjie; He, Qiling; Wang, Jianqi; Shiu, Hoi Ting; Shu, Yinglan; Tsang, Wing Pui; Liang, Shuang; Zhao, Kai; Wan, Chao

    2016-01-01

    Articular cartilage has poor capability for repair following trauma or degenerative pathology due to avascular property, low cell density and migratory ability. Discovery of novel therapeutic approaches for articular cartilage repair remains a significant clinical need. Hypoxia is a hallmark for cartilage development and pathology. Hypoxia inducible factor-1alpha (HIF-1α) has been identified as a key mediator for chondrocytes to response to fluctuations of oxygen availability during cartilage development or repair. This suggests that HIF-1α may serve as a target for modulating chondrocyte functions. In this study, using phenotypic cellular screen assays, we identify that Icariin, an active flavonoid component from Herba Epimedii, activates HIF-1α expression in chondrocytes. We performed systemic in vitro and in vivo analysis to determine the roles of Icariin in regulation of chondrogenesis. Our results show that Icariin significantly increases hypoxia responsive element luciferase reporter activity, which is accompanied by increased accumulation and nuclear translocation of HIF-1α in murine chondrocytes. The phenotype is associated with inhibiting PHD activity through interaction between Icariin and iron ions. The upregulation of HIF-1α mRNA levels in chondrocytes persists during chondrogenic differentiation for 7 and 14 days. Icariin (10-6 M) increases the proliferation of chondrocytes or chondroprogenitors examined by MTT, BrdU incorporation or colony formation assays. Icariin enhances chondrogenic marker expression in a micromass culture including Sox9, collagen type 2 (Col2α1) and aggrecan as determined by real-time PCR and promotes extracellular matrix (ECM) synthesis indicated by Alcian blue staining. ELISA assays show dramatically increased production of aggrecan and hydroxyproline in Icariin-treated cultures at day 14 of chondrogenic differentiation as compared with the controls. Meanwhile, the expression of chondrocyte catabolic marker genes

  5. Flavonoid Compound Icariin Activates Hypoxia Inducible Factor-1α in Chondrocytes and Promotes Articular Cartilage Repair

    PubMed Central

    He, Qiling; Wang, Jianqi; Shiu, Hoi Ting; Shu, Yinglan; Tsang, Wing Pui; Liang, Shuang; Zhao, Kai; Wan, Chao

    2016-01-01

    Articular cartilage has poor capability for repair following trauma or degenerative pathology due to avascular property, low cell density and migratory ability. Discovery of novel therapeutic approaches for articular cartilage repair remains a significant clinical need. Hypoxia is a hallmark for cartilage development and pathology. Hypoxia inducible factor-1alpha (HIF-1α) has been identified as a key mediator for chondrocytes to response to fluctuations of oxygen availability during cartilage development or repair. This suggests that HIF-1α may serve as a target for modulating chondrocyte functions. In this study, using phenotypic cellular screen assays, we identify that Icariin, an active flavonoid component from Herba Epimedii, activates HIF-1α expression in chondrocytes. We performed systemic in vitro and in vivo analysis to determine the roles of Icariin in regulation of chondrogenesis. Our results show that Icariin significantly increases hypoxia responsive element luciferase reporter activity, which is accompanied by increased accumulation and nuclear translocation of HIF-1α in murine chondrocytes. The phenotype is associated with inhibiting PHD activity through interaction between Icariin and iron ions. The upregulation of HIF-1α mRNA levels in chondrocytes persists during chondrogenic differentiation for 7 and 14 days. Icariin (10−6 M) increases the proliferation of chondrocytes or chondroprogenitors examined by MTT, BrdU incorporation or colony formation assays. Icariin enhances chondrogenic marker expression in a micromass culture including Sox9, collagen type 2 (Col2α1) and aggrecan as determined by real-time PCR and promotes extracellular matrix (ECM) synthesis indicated by Alcian blue staining. ELISA assays show dramatically increased production of aggrecan and hydroxyproline in Icariin-treated cultures at day 14 of chondrogenic differentiation as compared with the controls. Meanwhile, the expression of chondrocyte catabolic marker genes

  6. Bacterial lipopolysaccharides induce in vitro degradation of cartilage matrix through chondrocyte activation.

    PubMed Central

    Jasin, H E

    1983-01-01

    The present studies demonstrate that bacterial lipopolysaccharides (LPS) induce cartilage matrix degradation in live explants in organ culture. Quintuplicate bovine nasal fibrocartilage explants cultured for 8 d with three different purified LPS preparations derived from Escherichia coli and Salmonella typhosa at concentrations ranging from 1.0 to 25.0 micrograms/ml resulted in matrix proteoglycan depletion of 33.3 +/- 5.8 to 92.5 +/- 2.0% (medium control depletion 17.7 +/- 0.7 to 32.4 +/- 1.4%). Matrix degradation depended on the presence of live chondrocytes because frozen-thawed explants incubated with LPS failed to show any proteoglycan release. Moreover, the addition of Polymyxin B (25 micrograms/ml) to live explants incubated with LPS abolished matrix release, whereas Polymyxin B had no effect on the matrix-degrading activity provided by blood mononuclear cell factors. A highly purified Lipid A preparation induced matrix degradation at a concentration of 0.01 micrograms/ml. Cartilage matrix collagen and proteoglycan depletion also occurred with porcine articular cartilage explants (collagen release: 18.3 +/- 3.5%, medium control: 2.1 +/- 0.5%; proteoglycan release: 79.0 +/- 5.9%, medium control: 28.8 +/- 4.8%). Histochemical analysis of the cultured explants confirmed the results described above. Gel chromatography of the proteoglycans released in culture indicated that LPS induced significant degradation of the high molecular weight chondroitin sulfate-containing aggregates. These findings suggest that bacterial products may induce cartilage damage by direct stimulation of chondrocytes. This pathogenic mechanism may play a role in joint damage in septic arthritis and in arthropathies resulting from the presence of bacterial products derived from the gastrointestinal tract. Images PMID:6358260

  7. Calcium regulates cyclic compression-induced early changes in chondrocytes during in vitro cartilage tissue formation.

    PubMed

    Raizman, Igal; De Croos, J N Amritha; Pilliar, Robert; Kandel, Rita A

    2010-10-01

    A single application of cyclic compression (1kPa, 1Hz, 30min) to bioengineered cartilage results in improved tissue formation through sequential catabolic and anabolic changes mediated via cell shape changes that are regulated by α5β1 integrin and membrane-type metalloprotease (MT1-MMP). To determine if calcium was involved in this process, the role of calcium in regulating cell shape changes, MT1-MMP expression and integrin activity in response to mechanical stimulation was examined. Stimulation-induced changes in cell shape and MT1-MMP expression were abolished by chelation of extracellular calcium, and this effect was reversed by re-introduction of calcium. Spreading was inhibited by blocking stretch-activated channels (with gadolinium), while retraction was prevented by blocking the L-Type voltage-gated channel (with nifedipine); both compounds inhibited MT1-MMP upregulation. Calcium A23187 ionophore restored cellular response further supporting a role for these channels. Calcium regulated the integrin-mediated signalling pathway, which was facilitated through Src kinase. Both calcium- and integrin-mediated pathways converged on ERK-MAPK in response to stimulation. While both integrins and calcium signalling mediate chondrocyte mechanotransduction, calcium appears to play the major regulatory role. Understanding the underlying molecular mechanisms involved in chondrocyte mechanotransduction may lead to the development of improved bioengineered cartilage.

  8. CCN1 Regulates Chondrocyte Maturation and Cartilage Development.

    PubMed

    Zhang, Yongchun; Sheu, Tzong-jen; Hoak, Donna; Shen, Jie; Hilton, Matthew J; Zuscik, Michael J; Jonason, Jennifer H; O'Keefe, Regis J

    2016-03-01

    WNT/β-CATENIN signaling is involved in multiple aspects of skeletal development, including chondrocyte differentiation and maturation. Although the functions of β-CATENIN in chondrocytes have been extensively investigated through gain-of-function and loss-of-function mouse models, the precise downstream effectors through which β-CATENIN regulates these processes are not well defined. Here, we report that the matricellular protein, CCN1, is induced by WNT/β-CATENIN signaling in chondrocytes. Specifically, we found that β-CATENIN signaling promotes CCN1 expression in isolated primary sternal chondrocytes and both embryonic and postnatal cartilage. Additionally, we show that, in vitro, CCN1 overexpression promotes chondrocyte maturation, whereas inhibition of endogenous CCN1 function inhibits maturation. To explore the role of CCN1 on cartilage development and homeostasis in vivo, we generated a novel transgenic mouse model for conditional Ccn1 overexpression and show that cartilage-specific CCN1 overexpression leads to chondrodysplasia during development and cartilage degeneration in adult mice. Finally, we demonstrate that CCN1 expression increases in mouse knee joint tissues after meniscal/ligamentous injury (MLI) and in human cartilage after meniscal tear. Collectively, our data suggest that CCN1 is an important regulator of chondrocyte maturation during cartilage development and homeostasis.

  9. CCN1 Regulates Chondrocyte Maturation and Cartilage Development

    PubMed Central

    Zhang, Yongchun; Sheu, Tzong-jen; Hoak, Donna; Shen, Jie; Hilton, Matthew J; Zuscik, Michael J; Jonason, Jennifer H; O’Keefe, Regis J

    2016-01-01

    WNT/β-CATENIN signaling is involved in multiple aspects of skeletal development, including chondrocyte differentiation and maturation. Although the functions of β-CATENIN in chondrocytes have been extensively investigated through gain-of-function and loss-of-function mouse models, the precise downstream effectors through which β-CATENIN regulates these processes are not well defined. Here, we report that the matricellular protein, CCN1, is induced by WNT/β-CATENIN signaling in chondrocytes. Specifically, we found that β-CATENIN signaling promotes CCN1 expression in isolated primary sternal chondrocytes and both embryonic and postnatal cartilage. Additionally, we show that, in vitro, CCN1 overexpression promotes chondrocyte maturation, whereas inhibition of endogenous CCN1 function inhibits maturation. To explore the role of CCN1 on cartilage development and homeostasis in vivo, we generated a novel transgenic mouse model for conditional Ccn1 overexpression and show that cartilage-specific CCN1 overexpression leads to chondrodysplasia during development and cartilage degeneration in adult mice. Finally, we demonstrate that CCN1 expression increases in mouse knee joint tissues after meniscal/ligamentous injury (MLI) and in human cartilage after meniscal tear. Collectively, our data suggest that CCN1 is an important regulator of chondrocyte maturation during cartilage development and homeostasis. PMID:26363286

  10. [Chondrocyte mecanobiology. Application in cartilage tissue engineering].

    PubMed

    Stoltz, Jean François; Netter, Patrick; Huselstein, Céline; de Isla, Natalia; Wei Yang, Jing; Muller, Sylvaine

    2005-11-01

    Cartilage is a hydrated connective tissue that withstands and distributes mechanical forces within joints. Chondrocytes utilize mechanical signals to maintain cartilaginous tissue homeostasis. They regulate their metabolic activity through complex biological and biophysical interactions with the extracellular matrix (ECM). Some mechanotransduction mechanisms are known, while many others no doubt remain to be discovered. Various aspects of chondrocyte mechanobiology have been applied to tissue engineering, with the creation of replacement tissue in vitro from bioresorbable or non-bioresorbable scaffolds and harvested cells. The tissues are maintained in a near-physiologic mechanical and biochemical environment. This paper is an overview of both chondrocyte mechanobiology and cartilage tissue engineering

  11. [Cartilage biopsy for autologous chondrocyte implantation (ACI)].

    PubMed

    Pestka, J M; Salzmann, G M; Südkamp, N P; Niemeyer, P

    2013-06-01

    Autologous chondrocyte implantation (ACI) is an established two-step procedure for the treatment of full-thickness cartilage defects of the knee. Cartilage harvest from the affected knee joint represents the first step of this procedure and is essential for further in vitro expansion of autologous chondrocytes. Nevertheless, the cartilage biopsy process itself is underrepresented in the scientific literature and currently there is only a limited amount of data available addressing this process. Biopsy location as well as the technique itself and instruments used for cartilage collection are not well defined and only little standardisation can be found. The article describes the relevant aspects of the biopsy in the context of ACI with regard to the literature available. Follow-up studies to better define and standardise the cartilage biopsy process are thus required.

  12. Fate of Meckel's cartilage chondrocytes in ocular culture

    SciTech Connect

    Richman, J.M.; Diewert, V.M.

    1988-09-01

    Modulation of the chondrocyte phenotype was observed in an organ culture system using Meckel's cartilage. First branchial arch cartilage was dissected from fetal rats of 16- and 17-day gestation. Perichondrium was mechanically removed, cartilage was split at the rostral process, and each half was grafted into the anterior chamber of an adult rat eye. The observed pattern of development in nonirradiated specimens was the following: hypertrophy of the rostral process and endochondral-type ossification, fibrous atrophy in the midsection, and mineralization of the malleus and incus. A change in matrix composition of the implanted cartilage was demonstrated with immunofluorescence staining for cartilage-specific proteoglycan (CSPG). After 15 days of culture, CSPG was found in the auricular process but not in the midsection or rostral process. In order to mark the implanted cells and follow their fate, cartilage was labeled in vitro with (3H)thymidine (3H)TdR). Immediately after labeling 20% of the chondrocytes contained (3H)TdR. After culturing for 5 days, 20% of the chondrocytes were still labeled and 10% of the osteogenic cells also contained radioactive label. The labeling index decreased in both cell types with increased duration of culture. Multinucleated clast-type cells did not contain label. Additional cartilages not labeled with (3H)TdR were exposed to between 20000 and 6000 rad of gamma irradiation before ocular implantation. Irradiated cartilage did not hypertrophy or form bone but a fibrous region developed in the midsection. Cells of the host animal were not induced to form bone around the irradiated cartilage. Our studies suggest that fully differentiated chondrocytes of Meckel's cartilage have the capacity to become osteocytes, osteoblasts, and fibroblasts.

  13. Berberine prevents nitric oxide-induced rat chondrocyte apoptosis and cartilage degeneration in a rat osteoarthritis model via AMPK and p38 MAPK signaling.

    PubMed

    Zhou, Yan; Liu, Shi-Qing; Yu, Ling; He, Bin; Wu, Shi-Hao; Zhao, Qi; Xia, Shao-Qiang; Mei, Hong-Jun

    2015-09-01

    Chondrocyte apoptosis is an important mechanism involved in osteoarthritis (OA). Berberine (BBR), a plant alkaloid derived from Chinese medicine, is characterized by multiple pharmacological effects, such as anti-inflammatory and anti-apoptotic activities. This study aimed to evaluate the chondroprotective effect and underlying mechanisms of BBR on sodium nitroprusside (SNP)-stimulated chondrocyte apoptosis and surgically-induced rat OA model. The in vitro results revealed that BBR suppressed SNP-stimulated chondrocyte apoptosis as well as cytoskeletal remodeling, down-regulated expressions of inducible nitric oxide synthase (iNOS) and caspase-3, and up-regulated Bcl-2/Bax ratio and Type II collagen (Col II) at protein levels, which were accompanied by increased adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and decreased phosphorylation of p38 mitogen-activated protein kinase (MAPK). Furthermore, the anti-apoptotic effect of BBR was blocked by AMPK inhibitor Compound C (CC) and adenosine-9-β-D-arabino-furanoside (Ara A), and enhanced by p38 MAPK inhibitor SB203580. In vivo experiment suggested that BBR ameliorated cartilage degeneration and exhibited an anti-apoptotic effect on articular cartilage in a rat OA model, as demonstrated by histological analyses, TUNEL assay and immunohistochemical analyses of caspase-3, Bcl-2 and Bax expressions. These findings suggest that BBR suppresses SNP-stimulated chondrocyte apoptosis and ameliorates cartilage degeneration via activating AMPK signaling and suppressing p38 MAPK activity.

  14. Mechanical overloading causes mitochondrial superoxide and SOD2 imbalance in chondrocytes resulting in cartilage degeneration.

    PubMed

    Koike, Masato; Nojiri, Hidetoshi; Ozawa, Yusuke; Watanabe, Kenji; Muramatsu, Yuta; Kaneko, Haruka; Morikawa, Daichi; Kobayashi, Keiji; Saita, Yoshitomo; Sasho, Takahisa; Shirasawa, Takuji; Yokote, Koutaro; Kaneko, Kazuo; Shimizu, Takahiko

    2015-06-25

    Mechanical stress and aging are major risk factors of cartilage degeneration. Human studies have previously reported that oxidative damage increased, while SOD2 protein was reciprocally downregulated in osteoarthritic degenerated cartilage. However, it remains unclear whether mitochondrial superoxide imbalance in chondrocytes causes cartilage degeneration. We herein demonstrate that mechanical loading promoted mitochondrial superoxide generation and selective Sod2 downregulation in chondrocytes in vivo and that mitochondrial superoxide inducer also downregulated Sod2 expression in chondrocytes in vitro. A genetically manipulated model revealed that Sod2 deficiency in chondrocytes also resulted in mitochondrial superoxide overproduction and dysfunction, thus leading to cartilage degeneration. Intra-articular injection of a permeable antioxidant effectively suppressed the mechanical loading-induced mitochondrial superoxide generation and cartilage degeneration in mice. Our findings demonstrate that mitochondrial superoxide plays a pivotal role in the development and progression of osteoarthritis, and the mitochondrial superoxide balance may therefore be a promising target for the treatment of cartilage degeneration.

  15. Autophagy modulates articular cartilage vesicle formation in primary articular chondrocytes.

    PubMed

    Rosenthal, Ann K; Gohr, Claudia M; Mitton-Fitzgerald, Elizabeth; Grewal, Rupinder; Ninomiya, James; Coyne, Carolyn B; Jackson, William T

    2015-05-22

    Chondrocyte-derived extracellular organelles known as articular cartilage vesicles (ACVs) participate in non-classical protein secretion, intercellular communication, and pathologic calcification. Factors affecting ACV formation and release remain poorly characterized; although in some cell types, the generation of extracellular vesicles is associated with up-regulation of autophagy. We sought to determine the role of autophagy in ACV production by primary articular chondrocytes. Using an innovative dynamic model with a light scatter nanoparticle counting apparatus, we determined the effects of autophagy modulators on ACV number and content in conditioned medium from normal adult porcine and human osteoarthritic chondrocytes. Healthy articular chondrocytes release ACVs into conditioned medium and show significant levels of ongoing autophagy. Rapamycin, which promotes autophagy, increased ACV numbers in a dose- and time-dependent manner associated with increased levels of autophagy markers and autophagosome formation. These effects were suppressed by pharmacologic autophagy inhibitors and short interfering RNA for ATG5. Caspase-3 inhibition and a Rho/ROCK inhibitor prevented rapamycin-induced increases in ACV number. Osteoarthritic chondrocytes, which are deficient in autophagy, did not increase ACV number in response to rapamycin. SMER28, which induces autophagy via an mTOR-independent mechanism, also increased ACV number. ACVs induced under all conditions had similar ecto-enzyme specific activities and types of RNA, and all ACVs contained LC3, an autophagosome-resident protein. These findings identify autophagy as a critical participant in ACV formation, and augment our understanding of ACVs in cartilage disease and repair.

  16. Silencing of microRNA-138-5p promotes IL-1β-induced cartilage degradation in human chondrocytes by targeting FOXC1

    PubMed Central

    Yuan, Y.; Zhang, G. Q.; Chai, W.; Ni, M.; Xu, C.

    2016-01-01

    Objectives Osteoarthritis (OA) is characterised by articular cartilage degradation. MicroRNAs (miRNAs) have been identified in the development of OA. The purpose of our study was to explore the functional role and underlying mechanism of miR-138-5p in interleukin-1 beta (IL-1β)-induced extracellular matrix (ECM) degradation of OA cartilage. Materials and Methods Human articular cartilage was obtained from patients with and without OA, and chondrocytes were isolated and stimulated by IL-1β. The expression levels of miR-138-5p in cartilage and chondrocytes were both determined. After transfection with miR-138-5p mimics, allele-specific oligonucleotide (ASO)-miR-138-5p, or their negative controls, the messenger RNA (mRNA) levels of aggrecan (ACAN), collagen type II and alpha 1 (COL2A1), the protein levels of glycosaminoglycans (GAGs), and both the mRNA and protein levels of matrix metalloproteinase (MMP)-13 were evaluated. Luciferase reporter assay, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot were performed to explore whether Forkhead Box C1 (FOCX1) was a target of miR-138-5p. Further, we co-transfected OA chondrocytes with miR-138-5p mimics and pcDNA3.1 (+)-FOXC1 and then stimulated with IL-1β to determine whether miR-138-5p-mediated IL-1β-induced cartilage matrix degradation resulted from targeting FOXC1. Results MiR-138-5p was significantly increased in OA cartilage and in chondrocytes in response to IL-1β-stimulation. Overexpression of miR-138-5p significantly increased the IL-1β-induced downregulation of COL2A1, ACAN, and GAGs, and increased the IL-1β-induced over expression of MMP-13.We found that FOXC1 is directly regulated by miR-138-5p. Additionally, co-transfection with miR-138-5p mimics and pcDNA3.1 (+)-FOXC1 resulted in higher levels of COL2A1, ACAN, and GAGs, but lower levels of MMP-13. Conclusion miR-138-5p promotes IL-1β-induced cartilage degradation in human chondrocytes, possibly by targeting FOXC1. Cite this

  17. Induction of cartilage integration by a chondrocyte/collagen-scaffold implant.

    PubMed

    Pabbruwe, Moreica B; Esfandiari, Ehsanollah; Kafienah, Wael; Tarlton, John F; Hollander, Anthony P

    2009-09-01

    The integration of implanted cartilage is a major challenge for the success of tissue engineering protocols. We hypothesize that in order for effective cartilage integration to take place, matrix-free chondrocytes must be induced to migrate between the two tissue surfaces. A chondrocyte/collagen-scaffold implant system was developed as a method of delivering dividing cells at the interface between two cartilage surfaces. Chondrocytes were isolated from bovine nasal septum and seeded onto both surfaces of a collagen membrane to create the chondrocyte/collagen-scaffold implant. A model of two cartilage discs and the chondrocyte/collagen-scaffold sandwiched in between was used to effect integration in vitro. The resulting tissue was analysed histologically and biomechanically. The cartilage-implant-cartilage sandwich appeared macroscopically as one continuous piece of tissue at the end of 40 day cultures. Histological analysis showed tissue continuum across the cartilage-scaffold interface. The integration was dependent on both cells and scaffold. Fluorescent labeling of implanted chondrocytes demonstrated that these cells invade the surrounding mature tissue and drive a remodelling of the extracellular matrix. Using cell-free scaffolds we also demonstrated that some chondrocytes migrated from the natural cartilage into the collagen scaffold. Quantification of integration levels using a histomorphometric repair index showed that the chondrocyte/collagen-scaffold implant achieved the highest repair index compared to controls, reflected functionally through increased tensile strength. In conclusion, cartilage integration can be achieved using a chondrocyte/collagen-scaffold implant that permits controlled delivery of chondrocytes to both host and graft mature cartilage tissues. This approach has the potential to be used therapeutically for implantation of engineered tissue.

  18. From gristle to chondrocyte transplantation: treatment of cartilage injuries

    PubMed Central

    Lindahl, Anders

    2015-01-01

    This review addresses the progress in cartilage repair technology over the decades with an emphasis on cartilage regeneration with cell therapy. The most abundant cartilage is the hyaline cartilage that covers the surface of our joints and, due to avascularity, this tissue is unable to repair itself. The cartilage degeneration seen in osteoarthritis causes patient suffering and is a huge burden to society. The surgical approach to cartilage repair was non-existing until the 1950s when new surgical techniques emerged. The use of cultured cells for cell therapy started as experimental studies in the 1970s that developed over the years to a clinical application in 1994 with the introduction of the autologous chondrocyte transplantation technique (ACT). The technology is now spread worldwide and has been further refined by combining arthroscopic techniques with cells cultured on matrix (MACI technology). The non-regenerating hypothesis of cartilage has been revisited and we are now able to demonstrate cell divisions and presence of stem-cell niches in the joint. Furthermore, cartilage derived from human embryonic stem cells and induced pluripotent stem cells could be the base for new broader cell treatments for cartilage injuries and the future technology base for prevention and cure of osteoarthritis. PMID:26416680

  19. From gristle to chondrocyte transplantation: treatment of cartilage injuries.

    PubMed

    Lindahl, Anders

    2015-10-19

    This review addresses the progress in cartilage repair technology over the decades with an emphasis on cartilage regeneration with cell therapy. The most abundant cartilage is the hyaline cartilage that covers the surface of our joints and, due to avascularity, this tissue is unable to repair itself. The cartilage degeneration seen in osteoarthritis causes patient suffering and is a huge burden to society. The surgical approach to cartilage repair was non-existing until the 1950s when new surgical techniques emerged. The use of cultured cells for cell therapy started as experimental studies in the 1970s that developed over the years to a clinical application in 1994 with the introduction of the autologous chondrocyte transplantation technique (ACT). The technology is now spread worldwide and has been further refined by combining arthroscopic techniques with cells cultured on matrix (MACI technology). The non-regenerating hypothesis of cartilage has been revisited and we are now able to demonstrate cell divisions and presence of stem-cell niches in the joint. Furthermore, cartilage derived from human embryonic stem cells and induced pluripotent stem cells could be the base for new broader cell treatments for cartilage injuries and the future technology base for prevention and cure of osteoarthritis.

  20. Increasing the Dose of Autologous Chondrocytes Improves Articular Cartilage Repair

    PubMed Central

    Guillén-García, Pedro; Rodríguez-Iñigo, Elena; Guillén-Vicente, Isabel; Caballero-Santos, Rosa; Guillén-Vicente, Marta; Abelow, Stephen; Giménez-Gallego, Guillermo

    2014-01-01

    Background: We hypothesized that implanting cells in a chondral defect at a density more similar to that of the intact cartilage could induce them to synthesize matrix with the features more similar to that of the uninjured one. Methods: We compared the implantation of different doses of chondrocytes: 1 million (n = 5), 5 million (n = 5), or 5 million mesenchymal cells (n = 5) in the femoral condyle of 15 sheep. Tissue generated by microfracture at the trochlea, and normal cartilage from a nearby region, processed as the tissues resulting from the implantation, were used as references. Histological and molecular (expression of type I and II collagens and aggrecan) studies were performed. Results: The features of the cartilage generated by implantation of mesenchymal cells and elicited by microfractures were similar and typical of a poor repair of the articular cartilage (presence of fibrocartilage, high expression of type I collagen and a low mRNA levels of type II collagen and aggrecan). Nevertheless, in the samples obtained from tissues generated by implantation of chondrocytes, hyaline-like cartilage, cell organization, low expression rates of type I collagen and high levels of mRNA corresponding to type II collagen and aggrecan were observed. These histological features, show less variability and are more similar to those of the normal cartilage used as control in the case of 5 million cells implantation than when 1 million cells were used. Conclusions: The implantation of autologous chondrocytes in type I/III collagen membranes at high density could be a promising tool to repair articular cartilage. PMID:26069691

  1. Induction of cartilage integration by a chondrocyte/collagen-scaffold implant

    PubMed Central

    Pabbruwe, Moreica B.; Esfandiari, Ehsanollah; Kafienah, Wael; Tarlton, John F.; Hollander, Anthony P.

    2009-01-01

    The integration of implanted cartilage is a major challenge for the success of tissue engineering protocols. We hypothesize that in order for effective cartilage integration to take place, matrix-free chondrocytes must be induced to migrate between the two tissue surfaces. A chondrocyte/collagen-scaffold implant system was developed as a method of delivering dividing cells at the interface between two cartilage surfaces. Chondrocytes were isolated from bovine nasal septum and seeded onto both surfaces of a collagen membrane to create the chondrocyte/collagen-scaffold implant. A model of two cartilage discs and the chondrocyte/collagen-scaffold sandwiched in between was used to effect integration in vitro. The resulting tissue was analysed histologically and biomechanically. The cartilage–implant–cartilage sandwich appeared macroscopically as one continuous piece of tissue at the end of 40 day cultures. Histological analysis showed tissue continuum across the cartilage–scaffold interface. The integration was dependent on both cells and scaffold. Fluorescent labeling of implanted chondrocytes demonstrated that these cells invade the surrounding mature tissue and drive a remodelling of the extracellular matrix. Using cell-free scaffolds we also demonstrated that some chondrocytes migrated from the natural cartilage into the collagen scaffold. Quantification of integration levels using a histomorphometric repair index showed that the chondrocyte/collagen-scaffold implant achieved the highest repair index compared to controls, reflected functionally through increased tensile strength. In conclusion, cartilage integration can be achieved using a chondrocyte/collagen-scaffold implant that permits controlled delivery of chondrocytes to both host and graft mature cartilage tissues. This approach has the potential to be used therapeutically for implantation of engineered tissue. PMID:19539365

  2. C/EBPβ and RUNX2 cooperate to degrade cartilage with MMP-13 as the target and HIF-2α as the inducer in chondrocytes.

    PubMed

    Hirata, Makoto; Kugimiya, Fumitaka; Fukai, Atsushi; Saito, Taku; Yano, Fumiko; Ikeda, Toshiyuki; Mabuchi, Akihiko; Sapkota, Bishwa Raj; Akune, Toru; Nishida, Nao; Yoshimura, Noriko; Nakagawa, Takumi; Tokunaga, Katsushi; Nakamura, Kozo; Chung, Ung-il; Kawaguchi, Hiroshi

    2012-03-01

    To elucidate the molecular mechanism underlying the endochondral ossification process during the skeletal growth and osteoarthritis (OA) development, we examined the signal network around CCAAT/enhancer-binding protein-β (C/EBPβ, encoded by CEBPB), a potent regulator of this process. Computational predictions and a C/EBP motif-reporter assay identified RUNX2 as the most potent transcriptional partner of C/EBPβ in chondrocytes. C/EBPβ and RUNX2 were induced and co-localized in highly differentiated chondrocytes during the skeletal growth and OA development of mice and humans. The compound knockout of Cebpb and Runx2 in mice caused growth retardation and resistance to OA with decreases in cartilage degradation and matrix metalloproteinase-13 (Mmp-13) expression. C/EBPβ and RUNX2 cooperatively enhanced promoter activity of MMP13 through specific binding to a C/EBP-binding motif and an osteoblast-specific cis-acting element 2 motif as a protein complex. Human genetic studies failed to show the association of human CEBPB gene polymorphisms with knee OA, nor was there a genetic variation around the identified responsive region in the human MMP13 promoter. However, hypoxia-inducible factor-2α (HIF-2α), a functional and genetic regulator of knee OA through promoting endochondral ossification, was identified as a potent and functional inducer of C/EBPβ expression in chondrocytes by the CEBPB promoter assay. Hence, C/EBPβ and RUNX2, with MMP-13 as the target and HIF-2α as the inducer, control cartilage degradation. This molecular network in chondrocytes may represent a therapeutic target for OA.

  3. Mechanical Compression of Articular Cartilage Induces Chondrocyte Proliferation and Inhibits Proteoglycan Synthesis by Activation of the Erk Pathway: Implications for Tissue Engineering and Regenerative Medicine

    PubMed Central

    Ryan, James A.; Eisner, Eric A.; DuRaine, Grayson; You, Zongbing; Reddi, A. Hari

    2013-01-01

    Articular cartilage is recalcitrant to endogenous repair and regeneration and thus a focus of tissue engineering and regenerative medicine strategies. A pre-requisite for articular cartilage tissue engineering is an understanding of the signal transduction pathways involved in mechanical compression during trauma or disease. We sought to explore the role of the extracellular signal-regulated kinase 1/2 (ERK 1/2) pathway in chondrocyte proliferation and proteoglycan synthesis following acute mechanical compression. Bovine articular cartilage explants were cultured with and without the ERK 1/2 pathway inhibitor PD98059. Cartilage explants were statically loaded to 40% strain at a strain rate of 1−sec for 5 seconds. Control explants were cultured under similar conditions but were not loaded. There were four experimental groups: 1) no load without inhibitor 2) no load with the inhibitor PD98059, 3) loaded without the inhibitor, and 4) loaded with the inhibitor PD98059. Explants were cultured for varying durations, from 5 minutes to 5 days. Explants were then analyzed by biochemical and immunohistochemical methods. Mechanical compression induced phosphorylation of ERK 1/2, and this was attenuated with the ERK 1/2 pathway inhibitor PD98059 in a dose-dependent manner. Chondrocyte proliferation was increased by mechanical compression. This effect was blocked by the inhibitor of the ERK 1/2 pathway. Mechanical compression also led to a decrease in proteoglycan synthesis that was reversed with inhibitor PD98059. In conclusion, the ERK 1/2 pathway is involved in the proliferative and biosynthetic response of chondrocytes following acute static mechanical compression. PMID:19177463

  4. PEDF Is Associated with the Termination of Chondrocyte Phenotype and Catabolism of Cartilage Tissue

    PubMed Central

    Klinger, P.; Ferrazzi, F.; Hotfiel, T.; Swoboda, B.; Aigner, T.

    2017-01-01

    Objective. To investigate the expression and target genes of pigment epithelium-derived factor (PEDF) in cartilage and chondrocytes, respectively. Methods. We analyzed the expression pattern of PEDF in different human cartilaginous tissues including articular cartilage, osteophytic cartilage, and fetal epiphyseal and growth plate cartilage, by immunohistochemistry and quantitative real-time (qRT) PCR. Transcriptome analysis after stimulation of human articular chondrocytes with rhPEDF was performed by RNA sequencing (RNA-Seq) and confirmed by qRT-PCR. Results. Immunohistochemically, PEDF could be detected in transient cartilaginous tissue that is prone to undergo endochondral ossification, including epiphyseal cartilage, growth plate cartilage, and osteophytic cartilage. In contrast, PEDF was hardly detected in healthy articular cartilage and in the superficial zone of epiphyses, regions that are characterized by a permanent stable chondrocyte phenotype. RNA-Seq analysis and qRT-PCR demonstrated that rhPEDF significantly induced the expression of a number of matrix-degrading factors including SAA1, MMP1, MMP3, and MMP13. Simultaneously, a number of cartilage-specific genes including COL2A1, COL9A2, COMP, and LECT were among the most significantly downregulated genes. Conclusions. PEDF represents a marker for transient cartilage during all neonatal and postnatal developmental stages and promotes the termination of cartilage tissue by upregulation of matrix-degrading factors and downregulation of cartilage-specific genes. These data provide the basis for novel strategies to stabilize the phenotype of articular cartilage and prevent its degradation. PMID:28191465

  5. PEDF Is Associated with the Termination of Chondrocyte Phenotype and Catabolism of Cartilage Tissue.

    PubMed

    Klinger, P; Lukassen, S; Ferrazzi, F; Ekici, A B; Hotfiel, T; Swoboda, B; Aigner, T; Gelse, K

    2017-01-01

    Objective. To investigate the expression and target genes of pigment epithelium-derived factor (PEDF) in cartilage and chondrocytes, respectively. Methods. We analyzed the expression pattern of PEDF in different human cartilaginous tissues including articular cartilage, osteophytic cartilage, and fetal epiphyseal and growth plate cartilage, by immunohistochemistry and quantitative real-time (qRT) PCR. Transcriptome analysis after stimulation of human articular chondrocytes with rhPEDF was performed by RNA sequencing (RNA-Seq) and confirmed by qRT-PCR. Results. Immunohistochemically, PEDF could be detected in transient cartilaginous tissue that is prone to undergo endochondral ossification, including epiphyseal cartilage, growth plate cartilage, and osteophytic cartilage. In contrast, PEDF was hardly detected in healthy articular cartilage and in the superficial zone of epiphyses, regions that are characterized by a permanent stable chondrocyte phenotype. RNA-Seq analysis and qRT-PCR demonstrated that rhPEDF significantly induced the expression of a number of matrix-degrading factors including SAA1, MMP1, MMP3, and MMP13. Simultaneously, a number of cartilage-specific genes including COL2A1, COL9A2, COMP, and LECT were among the most significantly downregulated genes. Conclusions. PEDF represents a marker for transient cartilage during all neonatal and postnatal developmental stages and promotes the termination of cartilage tissue by upregulation of matrix-degrading factors and downregulation of cartilage-specific genes. These data provide the basis for novel strategies to stabilize the phenotype of articular cartilage and prevent its degradation.

  6. Platelets promote cartilage repair and chondrocyte proliferation via ADP in a rodent model of osteoarthritis.

    PubMed

    Zhou, Qi; Xu, Chunhua; Cheng, Xingyao; Liu, Yangyang; Yue, Ming; Hu, Mengjiao; Luo, Dongjiao; Niu, Yuxi; Ouyang, Hongwei; Ji, Jiansong; Hu, Hu

    2016-01-01

    Osteoarthritis (OA) is the most common age-related degenerative joint disease and platelet-rich plasma (PRP) has been shown to be beneficial in OA. Therefore, in this study, we aimed to investigate the effects of platelets on chondrocytes and the underlying mechanisms. Anabolic and catabolic activity and the proliferation rate of chondrocytes were evaluated after co-culture with platelets. Chondrocyte gene expression was measured by real-time PCR. Chondrocyte protein expression and phosphorylation were measured by western blot. Chondrocytes treated with or without platelets were transplanted into a rat model of OA induced by intra-articular injection of monosodium iodoacetate and the repair of articular cartilage was evaluated macroscopically and histologically. Platelets significantly promoted the proliferation of chondrocytes, while mildly influencing anabolic and catabolic activity. Chondrocytes co-cultured with platelets showed significantly increased production of bone morphogenetic protein 7 (BMP7). The autocrine/paracrine effect of BMP7 was responsible for the increased proliferation of chondrocytes, via the ERK/CDK1/cyclin B1 signaling pathway. Transplantation of platelet-treated chondrocytes showed better cartilage repair in the OA model. Platelet-derived ADP was identified as the major mediator to promote the production of BMP7 and the proliferation of chondrocytes, through the ADP receptor P2Y1. Finally, direct injection of α,β-methyleneadenosine-5'-diphosphate into OA joints also enhanced cartilage repair. This study has identified that platelet-derived ADP, but not ATP, is the key mediator for platelet-promoted chondrocyte proliferation and cartilage repair in osteoarthritis. This finding may provide a key explanation for the therapeutic effect of platelets in OA and help shaping a strategy to improve OA therapy.

  7. Applications of Chondrocyte-Based Cartilage Engineering: An Overview

    PubMed Central

    Eo, Seong-Hui; Abbas, Qamar; Ahmed, Madiha

    2016-01-01

    Chondrocytes are the exclusive cells residing in cartilage and maintain the functionality of cartilage tissue. Series of biocomponents such as different growth factors, cytokines, and transcriptional factors regulate the mesenchymal stem cells (MSCs) differentiation to chondrocytes. The number of chondrocytes and dedifferentiation are the key limitations in subsequent clinical application of the chondrocytes. Different culture methods are being developed to overcome such issues. Using tissue engineering and cell based approaches, chondrocytes offer prominent therapeutic option specifically in orthopedics for cartilage repair and to treat ailments such as tracheal defects, facial reconstruction, and urinary incontinence. Matrix-assisted autologous chondrocyte transplantation/implantation is an improved version of traditional autologous chondrocyte transplantation (ACT) method. An increasing number of studies show the clinical significance of this technique for the chondral lesions treatment. Literature survey was carried out to address clinical and functional findings by using various ACT procedures. The current study was conducted to study the pharmacological significance and biomedical application of chondrocytes. Furthermore, it is inferred from the present study that long term follow-up studies are required to evaluate the potential of these methods and specific positive outcomes. PMID:27631002

  8. Activation of Indian Hedgehog Promotes Chondrocyte Hypertrophy and Upregulation of MMP-13 in Human Osteoarthritic Cartilage

    PubMed Central

    Wei, Fangyuan; Zhou, Jingming; Wei, Xiaochun; Zhang, Juntao; Fleming, Braden C.; Terek, Richard; Pei, Ming; Chen, Qian; Liu, Tao; Wei, Lei

    2012-01-01

    Objective The objectives of this study were to 1) determine the correlation between osteoarthritis (OA) and Ihh expression, and 2) establish the effects of Ihh on expression of markers of chondrocyte hypertrophy and MMP-13 in human OA cartilage. Design OA cartilage and synovial fluid samples were obtained during total knee arthroplasty. Normal cartilage samples were obtained from intra-articular tumor resections, and normal synovial fluid samples were obtained from healthy volunteers and the contralateral uninjured knee of patients undergoing anterior cruciate ligament reconstruction. OA was graded using the Mankin score. Expression of Ihh in synovial fluid was determined by western blot. Ihh, type X collagen and MMP-13 mRNA were determined by real time PCR. Protein expression of type X collagen and MMP-13 in cartilage samples were analyzed with immunohistochemistry. Chondrocyte size was measured using image analysis. Results Ihh expression was increased 2.6 fold in OA cartilage and 37% in OA synovial fluid when compared to normal control samples. Increased expression of Ihh was associated with the severity of OA and expression of markers of chondrocyte hypertrophy: type X collagen and MMP-13, and chondocyte size. Chondrocytes were more spherical with increasing severity of OA. There was a significant correlation between Mankin score and cell size (r2= 0.80) and Ihh intensity (r2 = 0.89). Exogenous Ihh induced a 6.8 fold increase of type X collagen and 2.8 fold increase of MMP-13 mRNA expression in cultured chondrocytes. Conversely, knockdown of Ihh by siRNA and Hh inhibitor Cyclopamine had the opposite effect. Conclusions Ihh expression correlates with OA progression and changes in chondrocyte morphology and gene expression consistent with chondrocyte hypertrophy and cartilage degradation seen in OA cartilage. Thus, Ihh may be a potential therapeutic target to prevent OA progression. PMID:22469853

  9. Processed xenogenic cartilage as innovative biomatrix for cartilage tissue engineering: effects on chondrocyte differentiation and function.

    PubMed

    Schwarz, Silke; Elsaesser, Alexander F; Koerber, Ludwig; Goldberg-Bockhorn, Eva; Seitz, Andreas M; Bermueller, Christian; Dürselen, Lutz; Ignatius, Anita; Breiter, Roman; Rotter, Nicole

    2015-12-01

    One key point in the development of new bioimplant matrices for the reconstruction and replacement of cartilage defects is to provide an adequate microenvironment to ensure chondrocyte migration and de novo synthesis of cartilage-specific extracellular matrix (ECM). A recently developed decellularization and sterilization process maintains the three-dimensional (3D) collagen structure of native septal cartilage while increasing matrix porosity, which is considered to be crucial for cartilage tissue engineering. Human primary nasal septal chondrocytes were amplified in monolayer culture and 3D-cultured on processed porcine nasal septal cartilage scaffolds. The influence of chondrogenic growth factors on neosynthesis of ECM proteins was examined at the protein and gene expression levels. Seeding experiments demonstrated that processed xenogenic cartilage matrices provide excellent environmental properties for human nasal septal chondrocytes with respect to cell adhesion, migration into the matrix and neosynthesis of cartilage-specific ECM proteins, such as collagen type II and aggrecan. Matrix biomechanical stability indicated that the constructs retrieve full stability and function during 3D culture for up to 42 days, proportional to collagen type II and GAG production. Thus, processed xenogenic cartilage offers a suitable environment for human nasal chondrocytes and has promising potential for cartilage tissue engineering in the head and neck region.

  10. Evolution of Autologous Chondrocyte Repair and Comparison to Other Cartilage Repair Techniques

    PubMed Central

    Dewan, Ashvin K.; Gibson, Matthew A.; Elisseeff, Jennifer H.; Trice, Michael E.

    2014-01-01

    Articular cartilage defects have been addressed using microfracture, abrasion chondroplasty, or osteochondral grafting, but these strategies do not generate tissue that adequately recapitulates native cartilage. During the past 25 years, promising new strategies using assorted scaffolds and cell sources to induce chondrocyte expansion have emerged. We reviewed the evolution of autologous chondrocyte implantation and compared it to other cartilage repair techniques. Methods. We searched PubMed from 1949 to 2014 for the keywords “autologous chondrocyte implantation” (ACI) and “cartilage repair” in clinical trials, meta-analyses, and review articles. We analyzed these articles, their bibliographies, our experience, and cartilage regeneration textbooks. Results. Microfracture, abrasion chondroplasty, osteochondral grafting, ACI, and autologous matrix-induced chondrogenesis are distinguishable by cell source (including chondrocytes and stem cells) and associated scaffolds (natural or synthetic, hydrogels or membranes). ACI seems to be as good as, if not better than, microfracture for repairing large chondral defects in a young patient's knee as evaluated by multiple clinical indices and the quality of regenerated tissue. Conclusion. Although there is not enough evidence to determine the best repair technique, ACI is the most established cell-based treatment for full-thickness chondral defects in young patients. PMID:25210707

  11. Role of Chondrocytes in Cartilage Formation, Progression of Osteoarthritis and Cartilage Regeneration

    PubMed Central

    Akkiraju, Hemanth; Nohe, Anja

    2016-01-01

    Articular cartilage (AC) covers the diarthrodial joints and is responsible for the mechanical distribution of loads across the joints. The majority of its structure and function is controlled by chondrocytes that regulate Extracellular Matrix (ECM) turnover and maintain tissue homeostasis. Imbalance in their function leads to degenerative diseases like Osteoarthritis (OA). OA is characterized by cartilage degradation, osteophyte formation and stiffening of joints. Cartilage degeneration is a consequence of chondrocyte hypertrophy along with the expression of proteolytic enzymes. Matrix Metalloproteinases (MMPs) and A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTS) are an example of these enzymes that degrade the ECM. Signaling cascades involved in limb patterning and cartilage repair play a role in OA progression. However, the regulation of these remains to be elucidated. Further the role of stem cells and mature chondrocytes in OA progression is unclear. The progress in cell based therapies that utilize Mesenchymal Stem Cell (MSC) infusion for cartilage repair may lead to new therapeutics in the long term. However, many questions are unanswered such as the efficacy of MSCs usage in therapy. This review focuses on the role of chondrocytes in cartilage formation and the progression of OA. Moreover, it summarizes possible alternative therapeutic approaches using MSC infusion for cartilage restoration. PMID:27347486

  12. MicroRNA-181b regulates articular chondrocytes differentiation and cartilage integrity.

    PubMed

    Song, Jinsoo; Lee, Myeungsu; Kim, Dongkyun; Han, Jiyeon; Chun, Churl-Hong; Jin, Eun-Jung

    2013-02-08

    MicroRNAs are endogenous gene regulators that have been implicated in various developmental and pathological processes. However, the precise identities and functions of the miRNAs involved in cartilage development are not yet well understood. Here, we report that miR-181b regulates chondrocyte differentiation and maintains cartilage integrity, and is thus a potent therapeutic target. MiR-181b was significantly down-regulated during chondrogenic differentiation of TGF-β3-stimulated limb mesenchymal cells, but it was significantly up-regulated in osteoarthritic chondrocytes isolated from the cartilage of osteoarthritis patients. The use of a mimic or an inhibitor to alter miR-181b levels in chondroblasts and articular chondrocytes showed that attenuation of miR-181b reduced MMP-13 expression while inducing type II collagen expression. Furthermore, over-expression of anti-miR-181b significantly reduced the cartilage destruction caused by DMM surgery in mice. In sum, our data suggest that miR-181b is a negative regulator of cartilage development, and that inhibition of miR-181b could be an effective therapeutic strategy for cartilage-related disease.

  13. Expression Pattern and Role of Chondrocyte Clusters in Osteoarthritic Human Knee Cartilage

    PubMed Central

    Hoshiyama, Yoshiaki; Otsuki, Shuhei; Oda, Shuhei; Kurokawa, Yoshitaka; Nakajima, Mikio; Jotoku, Tsuyoshi; Tamura, Ryuichi; Okamoto, Yoshinori; Lotz, Martin K.; Neo, Masashi

    2015-01-01

    The purpose of this study was to investigate the site-specific expression pattern and the role of chondrocyte clusters in human OA knee. Cartilage explants were obtained from 45 varus knees of medial and lateral femoral condyle undergoing total knee replacement surgery. Cartilage degeneration, number of chondrocytes, and the cell arrangement were evaluated by live/dead assay and immunohistochemical analyses with antibodies of STRO-1, FGF2, and Ki-67. Chondrocytes from medial and lateral femoral condyle were cultured to compare the potential of cell proliferation and production of cartilaginous nodules. Finally, cartilage tissue from medial femoral condyle, which included cartilage cleft with chondrocyte clusters, was observed the histological alternation. As the results, chondrocyte density adjacent to severe cartilage degeneration was highest, whereas chondrocytes in lateral femoral condyle displayed low density with single type of cells. Over 80% of these chondrocyte clusters were survived, expressing STRO-1, FGF2, and Ki-67. Furthermore, chondrocyte clusters proliferated faster and produced more cartilaginous nodules than single type of chondrocytes. Cartilage clefts involving numerous chondrocyte clusters were filled with extracellular matrix during organ culture. In conclusion, chondrocyte clusters adjacent to severe cartilage degeneration have shown completely specific characteristics with progenitor and proliferative potential. Regulating chondrocyte clusters may offer new approaches to cartilage repair and OA therapy in the future. PMID:25691232

  14. Loading of Articular Cartilage Compromises Chondrocyte Respiratory Function

    PubMed Central

    Coleman, Mitchell C.; Ramakrishnan, Prem S.; Brouillette, Marc J.; Martin, James A.

    2015-01-01

    Objective Determine whether repeatedly overloading healthy cartilage disrupts mitochondrial function in a manner similar to that associated with osteoarthritis pathogenesis. Methods We exposed normal articular cartilage on bovine osteochondral explants to 1 day or 7 consecutive days of cyclic axial compression (0.25 or 1.0 MPa, 0.5 Hz, 3 hours) and evaluated effects on chondrocyte viability, ATP concentration, reactive oxygen species (ROS) production, indicators of oxidative stress, respiration, and mitochondrial membrane potential. Results Neither 0.25 nor 1.0 MPa cyclic compression caused extensive chondrocyte death, macroscopic tissue damage, or overt changes in stress-strain behavior. After one day of loading, differences in respiratory activities between the 0.25 and 1.0 MPa groups were minimal; after 7 loading days, however, respiratory activity and ATP levels were suppressed in the 1.0 MPa group relative to the 0.25 MPa group, an effect prevented with pretreatment with 10 mM N-acetylcysteine. These changes were accompanied by increased proton leakage and decreases in mitochondrial membrane potential as well as by increased ROS formation indicated by dihydroethidium staining and glutathione oxidation. Conclusion Repeated overloading leads to chondrocyte oxidant-dependent mitochondrial dysfunction. This mitochondrial dysfunction may contribute to destabilization of cartilage during various stages of OA in distinct ways by disrupting chondrocyte anabolic responses to mechanical stimuli. PMID:26473613

  15. Sodium nitroprusside induces apoptosis of rabbit chondrocytes

    NASA Astrophysics Data System (ADS)

    Liang, Qian; Wang, Xiao-Ping; Chen, Tong-Sheng

    2013-02-01

    Osteoarthritis (OA) is characterized by a slowly progressing degradation of the matrix and destruction of articular cartilage. Apoptosis of chondrocyte is accounted for the mechanism of OA. Nitric oxide (NO), as a stimulus, has been shown to induce chondrocyte apoptosis by activating the matrix metalloproteinases (MMPs), increasing the expression of cyclooxygenase 2 (COX-2) and the level of prostaglandin E2 (PGE2), inhibiting the proteoglycan synthesis and type II collagen expression. In this study, sodium nitroprusside (SNP) was administered to be the NO donor to explore the mechanism of NO-induced apoptosis of rabbit chondrocytes obtained from six weeks old New Zealand rabbits. CCK-8 assay revealed the inhibitory effect of SNP on cell viability. We used flow cytometry (FCM) to assess the form of cell death by Annexin-V/propidium iodide (PI) double staining, and evaluate the change of mitochondrial membrane potential (ΔΨm). We found that the SNP induced chondrocyte apoptosis in a dose- and time-dependent manner and an observable reduction of ΔΨm. In conclusion, our findings indicate that SNP induces apoptosis of rabbit chondrocytes via a mitochondria-mediated pathway.

  16. Effects of co-culturing BMSCs and auricular chondrocytes on the elastic modulus and hypertrophy of tissue engineered cartilage.

    PubMed

    Kang, Ning; Liu, Xia; Guan, Yue; Wang, Jian; Gong, Fuxing; Yang, Xun; Yan, Li; Wang, Qian; Fu, Xin; Cao, Yilin; Xiao, Ran

    2012-06-01

    Co-culture of BMSCs and chondrocytes is considered as a promising strategy to generate tissue engineered cartilage as chondrocytes induce the chondrogenesis of BMSCs and inhibit the hypertrophy of engineered cartilage. Because the tissue specific stem/progenitor cells have been isolated from mature tissues including auricular cartilage, we hypothesized that adding stem cells to auricular chondrocytes in co-culture would also enhance the quality of engineered cartilage. In the present study, using the histological assay, biomechanical evaluation, and quantitative analysis of gene expression, we compared different strategies of auricular chondrocytes, BMSCs induction, and co-culture at different ratios on PGA/PLA scaffolds to construct tissue engineered elastic cartilage in vitro and in vivo. The up-regulation of RUNX2 and down-regulation of SOX9 were found in BMSCs chondrogenic induction group, which might imply a regulatory mechanism for the hypertrophy and potential osteogenic differentiation. Engineered cartilage in co-culture 5:5 group showed the densest elastic fibers and the highest Young's modulus, which were consistent with the expression profile of cartilage matrix-related genes including DCN and LOXL2 genes. Moreover, the better proliferative and chondrogenic potentials of engineered cartilage in co-culture 5:5 group were demonstrated by the stronger expression of Ki67 and Dlk1.

  17. Cartilage homeoprotein 1, a homeoprotein selectively expressed in chondrocytes.

    PubMed

    Zhao, G Q; Zhou, X; Eberspaecher, H; Solursh, M; de Crombrugghe, B

    1993-09-15

    We identified a rat cDNA that encodes cartilage homeoprotein 1 (Cart-1). The deduced amino acid sequence of Cart-1 contains a paired-type homeodomain. Northern blot hybridization and RNase protection assay revealed that Cart-1 RNA was present at high levels in a well-differentiated rat chondrosarcoma tumor and in a cell line derived from this tumor. Cart-1 RNA was detected in primary mouse and rat chondrocytes but not in various fibroblasts including mouse 10T1/2 cells, NIH 3T3 cells, BALB 3T3 cells, and rat skin fibroblasts. It was also undetectable in mouse C2 myoblasts, S194 myeloma cells, and embryonic stem cells. Cart-1 RNA was present at a very low level in tested but was not detected in other soft tissues of 8-week-old rats. In situ hybridization of rat embryos between 14.5 and 16.5 days post coitum revealed relatively high levels of Cart-1 RNA in condensed prechondrocytic mesenchymal cells and in early chondrocytes of cartilage primordia. The levels of Cart-1 RNA were lower in mature chondrocytes. No hybridization was observed in brain, spinal cord, heart, spleen, gastrointestinal tract, liver, and muscle. We speculate that Cart-1 has a role in chondrocyte differentiation.

  18. Cartilage homeoprotein 1, a homeoprotein selectively expressed in chondrocytes.

    PubMed Central

    Zhao, G Q; Zhou, X; Eberspaecher, H; Solursh, M; de Crombrugghe, B

    1993-01-01

    We identified a rat cDNA that encodes cartilage homeoprotein 1 (Cart-1). The deduced amino acid sequence of Cart-1 contains a paired-type homeodomain. Northern blot hybridization and RNase protection assay revealed that Cart-1 RNA was present at high levels in a well-differentiated rat chondrosarcoma tumor and in a cell line derived from this tumor. Cart-1 RNA was detected in primary mouse and rat chondrocytes but not in various fibroblasts including mouse 10T1/2 cells, NIH 3T3 cells, BALB 3T3 cells, and rat skin fibroblasts. It was also undetectable in mouse C2 myoblasts, S194 myeloma cells, and embryonic stem cells. Cart-1 RNA was present at a very low level in tested but was not detected in other soft tissues of 8-week-old rats. In situ hybridization of rat embryos between 14.5 and 16.5 days post coitum revealed relatively high levels of Cart-1 RNA in condensed prechondrocytic mesenchymal cells and in early chondrocytes of cartilage primordia. The levels of Cart-1 RNA were lower in mature chondrocytes. No hybridization was observed in brain, spinal cord, heart, spleen, gastrointestinal tract, liver, and muscle. We speculate that Cart-1 has a role in chondrocyte differentiation. Images Fig. 1 Fig. 2 Fig. 3 PMID:7690966

  19. Transforming growth factor beta signaling is essential for the autonomous formation of cartilage-like tissue by expanded chondrocytes.

    PubMed

    Tekari, Adel; Luginbuehl, Reto; Hofstetter, Willy; Egli, Rainer J

    2015-01-01

    Cartilage is a tissue with limited self-healing potential. Hence, cartilage defects require surgical attention to prevent or postpone the development of osteoarthritis. For cell-based cartilage repair strategies, in particular autologous chondrocyte implantation, articular chondrocytes are isolated from cartilage and expanded in vitro to increase the number of cells required for therapy. During expansion, the cells lose the competence to autonomously form a cartilage-like tissue, that is in the absence of exogenously added chondrogenic growth factors, such as TGF-βs. We hypothesized that signaling elicited by autocrine and/or paracrine TGF-β is essential for the formation of cartilage-like tissue and that alterations within the TGF-β signaling pathway during expansion interfere with this process. Primary bovine articular chondrocytes were harvested and expanded in monolayer culture up to passage six and the formation of cartilage tissue was investigated in high density pellet cultures grown for three weeks. Chondrocytes expanded for up to three passages maintained the potential for autonomous cartilage-like tissue formation. After three passages, however, exogenous TGF-β1 was required to induce the formation of cartilage-like tissue. When TGF-β signaling was blocked by inhibiting the TGF-β receptor 1 kinase, the autonomous formation of cartilage-like tissue was abrogated. At the initiation of pellet culture, chondrocytes from passage three and later showed levels of transcripts coding for TGF-β receptors 1 and 2 and TGF-β2 to be three-, five- and five-fold decreased, respectively, as compared to primary chondrocytes. In conclusion, the autonomous formation of cartilage-like tissue by expanded chondrocytes is dependent on signaling induced by autocrine and/or paracrine TGF-β. We propose that a decrease in the expression of the chondrogenic growth factor TGF-β2 and of the TGF-β receptors in expanded chondrocytes accounts for a decrease in the activity of

  20. Antirheumatic drug response signatures in human chondrocytes: potential molecular targets to stimulate cartilage regeneration

    PubMed Central

    Andreas, Kristin; Häupl, Thomas; Lübke, Carsten; Ringe, Jochen; Morawietz, Lars; Wachtel, Anja; Sittinger, Michael; Kaps, Christian

    2009-01-01

    Introduction Rheumatoid arthritis (RA) leads to progressive destruction of articular cartilage. This study aimed to disclose major mechanisms of antirheumatic drug action on human chondrocytes and to reveal marker and pharmacological target genes that are involved in cartilage dysfunction and regeneration. Methods An interactive in vitro cultivation system composed of human chondrocyte alginate cultures and conditioned supernatant of SV40 T-antigen immortalised human synovial fibroblasts was used. Chondrocyte alginate cultures were stimulated with supernatant of RA synovial fibroblasts, of healthy donor synovial fibroblasts, and of RA synovial fibroblasts that have been antirheumatically treated with disease-modifying antirheumatic drugs (DMARDs) (azathioprine, gold sodium thiomalate, chloroquine phosphate, and methotrexate), nonsteroidal anti-inflammatory drugs (NSAIDs) (piroxicam and diclofenac), or steroidal anti-inflammatory drugs (SAIDs) (methylprednisolone and prednisolone). Chondrocyte gene expression profile was analysed using microarrays. Real-time reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay were performed for validation of microarray data. Results Genome-wide expression analysis revealed 110 RA-related genes in human chondrocytes: expression of catabolic mediators (inflammation, cytokines/chemokines, and matrix degradation) was induced, and expression of anabolic mediators (matrix synthesis and proliferation/differentiation) was repressed. Potential marker genes to define and influence cartilage/chondrocyte integrity and regeneration were determined and include already established genes (COX-2, CXCR-4, IL-1RN, IL-6/8, MMP-10/12, and TLR-2) and novel genes (ADORA2A, BCL2-A1, CTGF, CXCR-7, CYR-61, HSD11B-1, IL-23A, MARCKS, MXRA-5, NDUFA4L2, NR4A3, SMS, STS, TNFAIP-2, and TXNIP). Antirheumatic treatment with SAIDs showed complete and strong reversion of RA-related gene expression in human chondrocytes, whereas

  1. [Allograft of cultured chondrocytes into articular cartilage defects in rabbits--experimental study of the repair of articular cartilage injuries].

    PubMed

    Tsuge, H; Sasaki, T; Susuda, K; Abe, K

    1983-08-01

    Articular cartilage defects were created by dill holes, 2 mm wide and 3 mm deep, through the articular cartilage into the subchondral bone in the patellar groove of the femur in mature rabbits. The defects received graft of cultured chondrocytes and the matrix obtained from the primary culture of chondrocytes isolated from the articular cartilage or auricular cartilage in immature rabbits. The isolated cells were cultured for 10 to 14 days. For graft, the cultured chondrocytes together with the matrix were detached from the culture chamber using rubber policemen and centrifuged. The repair of the grafted defects or defects without graft (control) was histologically studied 2 to 12 weeks after operation. The defects without the graft were progressively filled with fibrous tissue containing spindle shaped cells, fibers perpendicular to the surface, and matrix showing weak metachromasia with toluidin blue at 8 weeks. The defects received articular cartilage cell graft were occupied by new cartilage tissue consisting colonylike crumps of chondrocytes 2 weeks after operation. The crumps showed strong metachromasia with toluidin blue and strong stainability for safranin-O. By 4-8 weeks, the defects were filled with homogeneous cartilage. At 12 weeks, arrangement of the chondrocytes of the superficial layer of the new cartilage became columnar as seen in the normal articular cartilage. The defects received elastic cartilage cell graft were filled by reformed cartilage with chondrocytes surrounded by elastic fibers 2-12 weeks after operation. The results indicate that allograft of cultured chondrocytes with matrix into the articular cartilage defects accerated the repair process of the defects by formation of the new cartilage derived from the grafted chondrocytes.

  2. Lactoferrin inhibits dexamethasone-induced chondrocyte impairment from osteoarthritic cartilage through up-regulation of extracellular signal-regulated kinase 1/2 and suppression of FASL, FAS, and Caspase 3

    SciTech Connect

    Tu, Yihui; Xue, Huaming; Francis, Wendy; Davies, Andrew P.; Pallister, Ian; Kanamarlapudi, Venkateswarlu; Xia, Zhidao

    2013-11-08

    Highlights: •Dex exerts dose-dependant inhibition of HACs viability and induction of apoptosis. •Dex-induced impairment of chondrocytes was attenuated by rhLF. •ERK and FASL/FAS signaling are involved in the effects of rhLF. •OA patients with glucocorticoid-induced cartilage damage may benefit from treatment with rhLF. -- Abstract: Dexamethasone (Dex) is commonly used for osteoarthritis (OA) with excellent anti-inflammatory and analgesic effect. However, Dex also has many side effects following repeated use over prolonged periods mainly through increasing apoptosis and inhibiting proliferation. Lactoferrin (LF) exerts significantly anabolic effect on many cells and little is known about its effect on OA chondrocytes. Therefore, the aim of this study is to investigate whether LF can inhibit Dex-induced OA chondrocytes apoptosis and explore its possible molecular mechanism involved in. MTT assay was used to determine the optimal concentration of Dex and recombinant human LF (rhLF) on chondrocytes at different time and dose points. Chondrocytes were then stimulated with Dex in the absence or presence of optimal concentration of rhLF. Cell proliferation and viability were evaluated using MTT and LIVE/DEAD assay, respectively. Cell apoptosis was evaluated by multi-parameter apoptosis assay kit using both confocal microscopy and flow cytometry, respectively. The expression of extracellular signal-regulated kinase (ERK), FAS, FASL, and Caspase-3 (CASP3) at the mRNA and protein levels were examined by real-time polymerase chain reaction (PCR) and immunocytochemistry, respectively. The optimal concentration of Dex (25 μg/ml) and rhLF (200 μg/ml) were chosen for the following experiments. rhLF significantly reversed the detrimental effect of Dex on chondrocytes proliferation, viability, and apoptosis. In addition, rhLF significantly prevented Dex-induced down-regulation of ERK and up-regulation of FAS, FASL, and CASP3. These findings demonstrated that rhLF acts as

  3. Induced pluripotent stem cells in cartilage repair

    PubMed Central

    Lietman, Steven A

    2016-01-01

    Articular cartilage repair techniques are challenging. Human embryonic stem cells and induced pluripotent stem cells (iPSCs) theoretically provide an unlimited number of specialized cells which could be used in articular cartilage repair. However thus far chondrocytes from iPSCs have been created primarily by viral transfection and with the use of cocultured feeder cells. In addition chondrocytes derived from iPSCs have usually been formed in condensed cell bodies (resembling embryoid bodies) that then require dissolution with consequent substantial loss of cell viability and phenotype. All of these current techniques used to derive chondrocytes from iPSCs are problematic but solutions to these problems are on the horizon. These solutions will make iPSCs a viable alternative for articular cartilage repair in the near future. PMID:27004161

  4. PTHrP regulates chondrocyte maturation in condylar cartilage.

    PubMed

    Rabie, A B M; Tang, G H; Xiong, H; Hägg, U

    2003-08-01

    PTHrP is a key factor regulating the pace of endochondral ossification during skeletal development. Mandibular advancement solicits a cascade of molecular responses in condylar cartilage. However, the pace of cellular maturation and its effects on condylar growth are still unknown. The purpose of this study was to evaluate the pattern of expression of PTHrP and correlate it to cellular dynamics of chondrocytes in condylar cartilage during natural growth and mandibular advancement. We fitted 35-day-old Sprague-Dawley rats with functional appliances. Experimental animals with matched controls were labeled with bromodeoxyuridine 3 days before their death, so that mesenchymal cell differentiation could be traced. Mandibular advancement increased the number of differentiated chondroblasts and subsequently increased the cartilage volume. Higher levels of PTHrP expression in experimental animals coincided with the slowing of chondrocyte hypertrophy. Thus, mandibular advancement promoted mesenchymal cell differentiation and triggered PTHrP expression, which retarded their further maturation to allow for more growth.

  5. Stimulation by concanavalin A of cartilage-matrix proteoglycan synthesis in chondrocyte cultures

    SciTech Connect

    Yan, W.Q.; Nakashima, K.; Iwamoto, M.; Kato, Y. )

    1990-06-15

    The effect of concanavalin A on proteoglycan synthesis by rabbit costal and articular chondrocytes was examined. Chondrocytes were seeded at low density and grown to confluency in medium supplemented with 10% fetal bovine serum, and then the serum concentration was reduced to 0.3%. At the low serum concentration, chondrocytes adopted a fibroblastic morphology. Addition of concanavalin A to the culture medium induced a morphologic alteration of the fibroblastic cells to spherical chondrocytes and increased by 3- to 4-fold incorporation of (35S)sulfate and (3H)glucosamine into large chondroitin sulfate proteoglycan that was characteristically found in cartilage. The stimulation of incorporation of labeled precursors reflected real increases in proteoglycan synthesis, as chemical analyses showed a 4-fold increase in the accumulation of macromolecules containing hexuronic acid in concanavalin A-maintained cultures. Furthermore, the effect of concanavalin A on (35S)sulfate incorporation into proteoglycans was greater than that of various growth factors or hormones. However, concanavalin A had smaller effects on (35S)sulfate incorporation into small proteoglycans and (3H)glucosamine incorporation into hyaluronic acid and chondroitinase AC-resistant glycosaminoglycans. Since other lectins tested, such as wheat germ agglutinin, lentil lectin, and phytohemagglutinin, had little effect on (35S)sulfate incorporation into proteoglycans, the concanavalin A action on chondrocytes seems specific. Although concanavalin A decreased (3H)thymidine incorporation in chondrocytes, the stimulation of proteoglycan synthesis could be observed in chondrocytes exposed to the inhibitor of DNA synthesis, cytosine arabinoside. These results indicate that concanavalin A is a potent modulator of proteoglycan synthesis by chondrocytes.

  6. Lubricin is expressed in chondrocytes derived from osteoarthritic cartilage encapsulated in poly (ethylene glycol) diacrylate scaffold

    PubMed Central

    Musumeci, G.; Loreto, C.; Carnazza, M.L.; Coppolino, F.; Cardile, V.; Leonardi, R.

    2011-01-01

    Osteoarthritis (OA) is characterized by degenerative changes within joints that involved quantitative and/or qualitative alterations of cartilage and synovial fluid lubricin, a mucinous glycoprotein secreted by synovial fibroblasts and chondrocytes. Modern therapeutic methods, including tissue-engineering techniques, have been used to treat mechanical damage of the articular cartilage but to date there is no specific and effective treatment. This study aimed at investigating lubricin immunohistochemical expression in cartilage explant from normal and OA patients and in cartilage constructions formed by Poly (ethylene glycol) (PEG) based hydrogels (PEG-DA) encapsulated OA chondrocytes. The expression levels of lubricin were studied by immunohistochemistry: i) in tissue explanted from OA and normal human cartilage; ii) in chondrocytes encapsulated in hydrogel PEGDA from OA and normal human cartilage. Moreover, immunocytochemical and western blot analysis were performed in monolayer cells from OA and normal cartilage. The results showed an increased expression of lubricin in explanted tissue and in monolayer cells from normal cartilage, and a decreased expression of lubricin in OA cartilage. The chondrocytes from OA cartilage after 5 weeks of culture in hydrogels (PEGDA) showed an increased expression of lubricin compared with the control cartilage. The present study demonstrated that OA chondrocytes encapsulated in PEGDA, grown in the scaffold and were able to restore lubricin biosynthesis. Thus our results suggest the possibility of applying autologous cell transplantation in conjunction with scaffold materials for repairing cartilage lesions in patients with OA to reduce at least the progression of the disease. PMID:22073377

  7. Characterization of pediatric microtia cartilage: a reservoir of chondrocytes for auricular reconstruction using tissue engineering strategies.

    PubMed

    Melgarejo-Ramírez, Y; Sánchez-Sánchez, R; García-López, J; Brena-Molina, A M; Gutiérrez-Gómez, C; Ibarra, C; Velasquillo, C

    2016-09-01

    The external ear is composed of elastic cartilage. Microtia is a congenital malformation of the external ear that involves a small reduction in size or a complete absence. The aim of tissue engineering is to regenerate tissues and organs clinically implantable based on the utilization of cells and biomaterials. Remnants from microtia represent a source of cells for auricular reconstruction using tissue engineering. To examine the macromolecular architecture of microtia cartilage and behavior of chondrocytes, in order to enrich the knowledge of this type of cartilage as a cell reservoir. Auricular cartilage remnants were obtained from pediatric patients with microtia undergoing reconstructive procedures. Extracellular matrix composition was characterized using immunofluorescence and histological staining methods. Chondrocytes were isolated and expanded in vitro using a mechanical-enzymatic protocol. Chondrocyte phenotype was analyzed using qualitative PCR. Microtia cartilage preserves structural organization similar to healthy elastic cartilage. Extracellular matrix is composed of typical cartilage proteins such as type II collagen, elastin and proteoglycans. Chondrocytes displayed morphological features similar to chondrocytes derived from healthy cartilage, expressing SOX9, COL2 and ELN, thus preserving chondral phenotype. Cell viability was 94.6 % during in vitro expansion. Elastic cartilage from microtia has similar characteristics, both architectural and biochemical to healthy cartilage. We confirmed the suitability of microtia remnant as a reservoir of chondrocytes with potential to be expanded in vitro, maintaining phenotypical features and viability. Microtia remnants are an accessible source of autologous cells for auricular reconstruction using tissue engineering strategies.

  8. Aging and Osteoarthritis: The Role of Chondrocyte Senescence and Aging Changes in the Cartilage Matrix

    PubMed Central

    Loeser, Richard F.

    2009-01-01

    Summary Objective Age-related changes in multiple components of the musculoskeletal system may contribute to the well established link between aging and osteoarthritis (OA). This review focused on potential mechanisms by which age-related changes in the articular cartilage could contribute to the development of OA. Methods The peer-reviewed literature published prior to February 2009 in the PubMed database was searched using pre-defined search criteria. Articles, selected for their relevance to aging and articular chondrocytes or cartilage, were summarized. Results Articular chondrocytes exhibit an age-related decline in proliferative and synthetic capacity while maintaining the ability to produce pro-inflammatory mediators and matrix degrading enzymes. These findings are characteristic of the senescent secretory phenotype and are most likely a consequence of extrinsic stress-induced senescence driven by oxidative stress rather than intrinsic replicative senescence. Extracellular matrix changes with aging also contribute to the propensity to develop OA and include the accumulation of proteins modified by non-enzymatic glycation. Conclusion The effects of aging on chondrocytes and their matrix result in a tissue that is less able to maintain homeostasis when stressed, resulting in breakdown and loss of the articular cartilage, a hallmark of osteoarthritis. A better understanding of the basic mechanisms underlying senescence and how the process may be modified could provide novel ways to slow the development of osteoarthritis. PMID:19303469

  9. Use of flow cytometry to assess chondrocyte viability after laser reshaping of cartilage

    NASA Astrophysics Data System (ADS)

    Rasouli, Alexandre; Kim, Charlton C.; Basu, Reshmi; Wong, Brian J.

    2000-05-01

    Lasers have been shown to cause permanent shape change in cartilage via photothermally induced mechanical stress relaxation. While the biophysical properties of cartilage during laser irradiation have been studied, tissue viability following laser irradiation has not been fully characterized. In this study, cell viability staining and flow cytometry were used to determine chondrocyte viability following photothermal stress relaxation. Porcine septal cartilage slabs (10 X 25 X 1.5 mm) were irradiated with light from a Nd:YAG laser ((lambda) equals 1.32 micrometer, 25 W/cm2) while surface temperature, stress relaxation, and diffuse reflectance were recorded. Each slab received one, two, or three laser exposures (respective exposure times of 6.7, 7.2, 10 s), determined from measurements of diffuse reflectance, which correlate with mechanical stress relaxation. Irradiated samples were then divided into two groups analyzed immediately and at five days following laser exposure (the latter group was maintained in culture). Chondrocytes were isolated following serial enzymatic digestion with hyaluronidase, protease, and collagenase II for a total of 17 hours. Chondrocytes were then stained using SYTOR/DEAD RedTM (Molecular Probes; Eugene, OR) wherein live cells stained green (530 nm) and dead cells stained red (630 nm) when excited at 488 nm. A flow cytometer (FACScan, Becton Dickinson, Franklin Lakes, NJ) was then used to detect differential cell fluorescence; size; granularity; and the number of live cells, dead cells, and post irradiation debris in each treatment population. Nearly 60% of chondrocytes from reshaped cartilage samples isolated shortly after irradiation, were viable as determined using flow cytometry while non- irradiated controls were 100 percent viable. Specimens irradiated two or three times with the laser demonstrated increasing amounts of cellular debris along with a reduction in chondrocyte viability: 31 percent following two laser exposures, and 16

  10. Cotransplantation of autologous bone marrow stromal cells and chondrocytes as a novel therapy for reconstruction of condylar cartilage.

    PubMed

    Dai, Jiewen; Wang, Xudong; Shen, Guofang

    2011-07-01

    Condylar cartilage is absolutely necessary for the normal function of temporomandibular joint (TMJ). Unfortunately, condylar cartilage defect or missing is also one of the common clinical problems. Repair or reconstruction of cartilage is always a hot topic. Cell based cartilage regeneration is suggested as novel therapies in cartilage tissue engineering, and autologous chondrocytes were initially regarded as the ideal cell source. However, there are some disadvantages such as its limited augmentation capability for culture in vitro and may differentiate to other types of cells. On the other hand, bone marrow stromal cells (BMSCs) have gained special interest in tissue engineering. Because they can be obtained easily, cause relatively minor trauma and show the potential of long-run ex vivo expansion capacity. What most important is their capacity of multi-directional differentiation. They can differentiate into a variety of other types of cells when there are supplement exogenous factors or genes, but their clinical use is limited by safety concerns such as toxicity, insertional teratogenic, uncontrollable gene expression. Fortunately, the chondrocytes microenvironment has been demonstrated that could induce BMSCs to structure cartilage when culture in vitro or reimplanted in nude mice subcutaneously area. So in this article, we hypothesize that cotransplantation of autologous BMSCs and chondrocytes, which coculture with extracellular scaffolds, is a novel therapy for reconstruction of TMJ condylar cartilage. In our strategy, advantages of two types of cells are utilized and shortcomings are avoided, which strongly improve the feasibility and clinical safety, finally bring great hope to the patients with TMJ disease.

  11. Cartilage engineering using chondrocyte cell sheets and its application in reconstruction of microtia.

    PubMed

    Zhou, Libin; Ding, Ruiying; Li, Baowei; Han, Haolun; Wang, Hongnan; Wang, Gang; Xu, Bingxin; Zhai, Suoqiang; Wu, Wei

    2015-01-01

    The imperfections of scaffold materials have hindered the clinical application of cartilage tissue engineering. The recently developed cell-sheet technique is adopted to engineer tissues without scaffold materials, thus is considered being potentially able to overcome the problems concerning the scaffold imperfections. This study constructed monolayer and bilayer chondrocyte cell sheets and harvested the sheets with cell scraper instead of temperature-responsive culture dishes. The properties of the cultured chondrocyte cell sheets and the feasibility of cartilage engineering using the chondrocyte cell sheets was further investigated via in vitro and in vivo study. Primary extracellular matrix (ECM) formation and type II collagen expression was detected in the cell sheets during in vitro culture. After implanted into nude mice for 8 weeks, mature cartilage discs were harvested. The morphology of newly formed cartilage was similar in the constructs originated from monolayer and bilayer chondrocyte cell sheet. The chondrocytes were located within evenly distributed ovoid lacunae. Robust ECM formation and intense expression of type II collagen was observed surrounding the evenly distributed chondrocytes in the neocartilages. Biochemical analysis showed that the DNA contents of the neocartilages were higher than native human costal cartilage; while the contents of the main component of ECM, glycosaminoglycan and hydroxyproline, were similar to native human costal cartilage. In conclusion, the chondrocyte cell sheet constructed using the simple and low-cost technique is basically the same with the cell sheet cultured and harvested in temperature-responsive culture dishes, and can be used for cartilage tissue engineering.

  12. Engineering cartilage tissue by pellet coculture of chondrocytes and mesenchymal stromal cells.

    PubMed

    Wu, Ling; Post, Janine N; Karperien, Marcel

    2015-01-01

    Coculture of chondrocytes and mesenchymal stromal cells (MSCs) in pellets has been shown to be beneficial in engineering cartilage tissue in vitro. In these cultures trophic effects of MSCs increase the proliferation and matrix deposition of chondrocytes. Thus, large cartilage constructs can be made with a relatively small number of chondrocytes. In this chapter, we describe the methods for making coculture pellets of MSCs and chondrocytes. We also provide detailed protocols for analyzing coculture pellets with cell tracking, proliferation assays, species specific polymerase chain reactions (PCR), short tandem repeats analysis, and histological examination.

  13. Passaged Adult Chondrocytes Can Form Engineered Cartilage with Functional Mechanical Properties: A Canine Model

    PubMed Central

    Ng, Kenneth W.; Lima, Eric G.; Bian, Liming; O'Conor, Christopher J.; Jayabalan, Prakash S.; Stoker, Aaron M.; Kuroki, Keiichi; Cook, Cristi R.; Ateshian, Gerard A.; Cook, James L.

    2010-01-01

    It was hypothesized that previously optimized serum-free culture conditions for juvenile bovine chondrocytes could be adapted to generate engineered cartilage with physiologic mechanical properties in a preclinical, adult canine model. Primary or passaged (using growth factors) adult chondrocytes from three adult dogs were encapsulated in agarose, and cultured in serum-free media with transforming growth factor-β3. After 28 days in culture, engineered cartilage formed by primary chondrocytes exhibited only small increases in glycosaminoglycan content. However, all passaged chondrocytes on day 28 elaborated a cartilage matrix with compressive properties and glycosaminoglycan content in the range of native adult canine cartilage values. A preliminary biocompatibility study utilizing chondral and osteochondral constructs showed no gross or histological signs of rejection, with all implanted constructs showing excellent integration with surrounding cartilage and subchondral bone. This study demonstrates that adult canine chondrocytes can form a mechanically functional, biocompatible engineered cartilage tissue under optimized culture conditions. The encouraging findings of this work highlight the potential for tissue engineering strategies using adult chondrocytes in the clinical treatment of cartilage defects. PMID:19845465

  14. Xiphoid process-derived chondrocytes: a novel cell source for elastic cartilage regeneration.

    PubMed

    Nam, Seungwoo; Cho, Wheemoon; Cho, Hyunji; Lee, Jungsun; Lee, EunAh; Son, Youngsook

    2014-11-01

    Reconstruction of elastic cartilage requires a source of chondrocytes that display a reliable differentiation tendency. Predetermined tissue progenitor cells are ideal candidates for meeting this need; however, it is difficult to obtain donor elastic cartilage tissue because most elastic cartilage serves important functions or forms external structures, making these tissues indispensable. We found vestigial cartilage tissue in xiphoid processes and characterized it as hyaline cartilage in the proximal region and elastic cartilage in the distal region. Xiphoid process-derived chondrocytes (XCs) showed superb in vitro expansion ability based on colony-forming unit fibroblast assays, cell yield, and cumulative cell growth. On induction of differentiation into mesenchymal lineages, XCs showed a strong tendency toward chondrogenic differentiation. An examination of the tissue-specific regeneration capacity of XCs in a subcutaneous-transplantation model and autologous chondrocyte implantation model confirmed reliable regeneration of elastic cartilage regardless of the implantation environment. On the basis of these observations, we conclude that xiphoid process cartilage, the only elastic cartilage tissue source that can be obtained without destroying external shape or function, is a source of elastic chondrocytes that show superb in vitro expansion and reliable differentiation capacity. These findings indicate that XCs could be a valuable cell source for reconstruction of elastic cartilage.

  15. The use of de-differentiated chondrocytes delivered by a heparin-based hydrogel to regenerate cartilage in partial-thickness defects.

    PubMed

    Kim, Mihye; Kim, Se Eun; Kang, Seong Soo; Kim, Young Ha; Tae, Giyoong

    2011-11-01

    Partial-thickness cartilage defects, with no subchondral bone injury, do not repair spontaneously, thus there is no clinically effective treatment for these lesions. Although the autologous chondrocyte transplantation (ACT) is one of the promising approaches for cartilage repair, it requires in vitro cell expansion to get sufficient cells, but chondrocytes lose their chondrogenic phenotype during expansion by monolayer culture, leading to de-differentiation. In this study, a heparin-based hydrogel was evaluated and optimized to induce cartilage regeneration with de-differentiated chondrocytes. First, re-differentiation of de-differentiated chondrocytes encapsulated in heparin-based hydrogels was characterized in vitro with various polymer concentrations (from 3 to 20 wt.%). Even under a normal cell culture condition (no growth factors or chondrogenic components), efficient re-differentiation of cells was observed with the optimum at 10 wt.% hydrogel, showing the complete re-differentiation within a week. Efficient re-differentiation and cartilage formation of de-differentiated cell/hydrogel construct were also confirmed in vivo by subcutaneous implantation on the back of nude mice. Finally, excellent cartilage regeneration and good integration with surrounding, similar to natural cartilage, was also observed by delivering de-differentiated chondrocytes using the heparin-based hydrogel in partial-thickness defects of rabbit knees whereas no healing was observed for the control defects. These results demonstrate that the heparin-based hydrogel is very efficient for re-differentiation of expanded chondrocytes and cartilage regeneration without using any exogenous inducing factors, thus it could serve as an injectable cell-carrier and scaffold for cartilage repair. Excellent chondrogenic nature of the heparin-based hydrogel might be associated with the hydrogel characteristic that can secure endogenous growth factors secreted from chondrocytes, which then can promote

  16. Role of insulin-transferrin-selenium in auricular chondrocyte proliferation and engineered cartilage formation in vitro.

    PubMed

    Liu, Xia; Liu, Jinchun; Kang, Ning; Yan, Li; Wang, Qian; Fu, Xin; Zhang, Yuanyuan; Xiao, Ran; Cao, Yilin

    2014-01-21

    The goal of this study is to determine the effects of Insulin-Transferrin-Selenium (ITS) on proliferation of auricular chondrocytes and formation of engineered cartilage in vitro. Pig auricular monolayer chondrocytes and chondrocyte pellets were cultured in media containing 1% ITS at different concentrations of fetal bovine serum (FBS, 10%, 6%, 2%, 0%), or 10% FBS alone as a control for four weeks. Parameters including cell proliferation in monolayer, wet weight, collagen type I/II/X (Col I, II, X) and glycosaminoglycan (GAG) expression, GAG content of pellets and gene expression associated with cartilage formation/dedifferentiation (lost cartilage phenotype)/hypertrophy within the chondrocyte pellets were assessed. The results showed that chondrocytes proliferation rates increased when FBS concentrations increased (2%, 6%, 10% FBS) in ITS supplemented groups. In addition, 1% ITS plus 10% FBS significantly promoted cell proliferation than 10% FBS alone. No chondrocytes grew in ITS alone medium. 1% ITS plus 10% FBS enhanced cartilage formation in terms of size, wet weight, cartilage specific matrices, and homogeneity, compared to 10% FBS alone group. Furthermore, ITS prevented engineered cartilage from dedifferentiation (i.e., higher index of Col II/Col I mRNA expression and expression of aggrecan) and hypertrophy (i.e., lower mRNA expression of Col X and MMP13). In conclusion, our results indicated that ITS efficiently enhanced auricular chondrocytes proliferation, retained chondrogenic phenotypes, and promoted engineered cartilage formation when combined with FBS, which is potentially used as key supplementation in auricular chondrocytes and engineered cartilage culture.

  17. Biocompatibility of polysebacic anhydride microparticles with chondrocytes in engineered cartilage

    PubMed Central

    Ponnurangam, Sathish; O'Connell, Grace D.; Hung, Clark T.; Somasundaran, Ponisseril

    2015-01-01

    One of main challenges in developing clinically relevant engineered cartilage is overcoming limited nutrient diffusion due to progressive elaboration of extracellular matrix at the periphery of the construct. Macro-channels have been used to decrease the nutrient path-length; however, the channels become occluded with matrix within weeks in culture, reducing nutrient diffusion. Alternatively, microparticles can be imbedded throughout the scaffold to provide localized nutrient delivery. In this study, we evaluated biocompatibility of polysebacic anhydride (PSA) polymers and the effectiveness of PSA-based microparticles for short-term delivery of nutrients in engineered cartilage. PSA-based microparticles were biocompatible with juvenile bovine chondrocytes for concentrations up to 2mg/mL; however, cytotoxicity was observed at 20mg/mL. Cytotoxicity at high concentrations is likely due to intracellular accumulation of PSA degradation products and resulting lipotoxicity. Cytotoxicity of PSA was partially reversed in the presence of bovine serum albumin. In conclusion, the findings from this study demonstrate concentration-dependent biocompatibility of PSA-based microparticles and potential application as a nutrient delivery vehicle that can be imbedded in scaffolds for tissue engineering. PMID:26398146

  18. Induction and characterization of metallothionein in chicken epiphyseal growth plate cartilage chondrocytes.

    PubMed

    Sauer, G R; Nie, D; Wu, L N; Wuthier, R E

    1998-01-01

    Following exposure to cadmium or zinc, chickens were sacrificed and the liver, kidney, and bone epiphyseal growth plates harvested. When cytosolic extracts of the growth plate cartilage were fractionated by gel filtration chromatography, a protein with high metal-binding capacity and low ultraviolet (UV) absorbance eluted in the same position as liver metallothionein (MT) and a MT standard. Cd or Zn treatment resulted in a 25-fold or 5-fold induction in growth plate MT, respectively. In liver the greatest level of MT induction was seen with short-term Cd exposures. In contrast, MT levels in the growth plate increased as the duration of Cd exposure increased. Induction of MT in growth plate chondrocyte cell cultures was observed for media Cd concentrations of > or = 0.1 microM and Zn concentrations of > or = 100 microM. Basal and inducible levels of MT declined through the culture period and were lowest in the terminally differentiated mineralized late stages of the culture. Alkaline phosphatase activity was also lowest in the late-stage cultures, while total cellular protein increased throughout the culture period. Treatment of chondrocytes with Zn prior to Cd exposure resulted in a protective induction of MT. Pre-treatment of chondrocytes with dexamethasone resulted in suppressed synthesis of MT upon Cd exposure and greater Cd toxicity. Both Cd and Zn resulted in significantly increased levels of MT mRNA in chondrocyte cell cultures. Dexamethasone treatment resulted in an approximate 2- to 3-fold increase in MT mRNA. This is contrary to the finding that MT protein levels were decreased by dexamethasone. The findings suggest that an increased rate of MT degradation in dexamethasone-treated and late-stage chondrocyte cultures may be associated with the terminally differentiated phenotype.

  19. 3D Hydrogel Scaffolds for Articular Chondrocyte Culture and Cartilage Generation

    PubMed Central

    Yang, Fan; Bhutani, Nidhi

    2015-01-01

    Human articular cartilage is highly susceptible to damage and has limited self-repair and regeneration potential. Cell-based strategies to engineer cartilage tissue offer a promising solution to repair articular cartilage. To select the optimal cell source for tissue repair, it is important to develop an appropriate culture platform to systematically examine the biological and biomechanical differences in the tissue-engineered cartilage by different cell sources. Here we applied a three-dimensional (3D) biomimetic hydrogel culture platform to systematically examine cartilage regeneration potential of juvenile, adult, and osteoarthritic (OA) chondrocytes. The 3D biomimetic hydrogel consisted of synthetic component poly(ethylene glycol) and bioactive component chondroitin sulfate, which provides a physiologically relevant microenvironment for in vitro culture of chondrocytes. In addition, the scaffold may be potentially used for cell delivery for cartilage repair in vivo. Cartilage tissue engineered in the scaffold can be evaluated using quantitative gene expression, immunofluorescence staining, biochemical assays, and mechanical testing. Utilizing these outcomes, we were able to characterize the differential regenerative potential of chondrocytes of varying age, both at the gene expression level and in the biochemical and biomechanical properties of the engineered cartilage tissue. The 3D culture model could be applied to investigate the molecular and functional differences among chondrocytes and progenitor cells from different stages of normal or aberrant development. PMID:26484414

  20. Chondrocyte differentiation for auricular cartilage reconstruction using a chitosan based hydrogel.

    PubMed

    García-López, J; Garciadiego-Cázares, D; Melgarejo-Ramírez, Y; Sánchez-Sánchez, R; Solís-Arrieta, L; García-Carvajal, Z; Sánchez-Betancourt, J I; Ibarra, C; Luna-Bárcenas, G; Velasquillo, C

    2015-12-01

    Tissue engineering with the use of biodegradable and biocompatible scaffolds is an interesting option for ear repair. Chitosan-Polyvinyl alcohol-Epichlorohydrine hydrogel (CS-PVA-ECH) is biocompatible and displays appropriate mechanical properties to be used as a scaffold. The present work, studies the potential of CS-PVA-ECH scaffolds seeded with chondrocytes to develop elastic cartilage engineered-neotissues. Chondrocytes isolated from rabbit and swine elastic cartilage were independently cultured onto CS-PVA-ECH scaffolds for 20 days to form the appropriate constructs. Then, in vitro cell viability and morphology were evaluated by calcein AM and EthD-1 assays and Scanning Electron Microscopy (SEM) respectively, and the constructs were implanted in nu/nu mice for four months, in order to evaluate the neotissue formation. Histological analysis of the formed neotissues was performed by Safranin O, Toluidine blue (GAG's), Verhoeff-Van Gieson (elastic fibers), Masson's trichrome (collagen) and Von Kossa (Calcium salts) stains and SEM. Results indicate appropriate cell viability, seeded with rabbit or swine chondrocyte constructs; nevertheless, upon implantation the constructs developed neotissues with different characteristics depending on the animal species from which the seeded chondrocytes came from. Neotissues developed from swine chondrocytes were similar to auricular cartilage, while neotissues from rabbit chondrocytes were similar to hyaline cartilage and eventually they differentiate to bone. This result suggests that neotissue characteristics may be influenced by the animal species source of the chondrocytes isolated.

  1. Capability of Cartilage Extract to In Vitro Differentiation of Rat Mesenchymal Stem Cells (MSCs) to Chondrocyte Lineage

    PubMed Central

    Talakoob, Setareh; Joghataei, Mohammad Taghi; Parivar, Kazem; Bananej, Maryam; Sanadgol, Nima

    2015-01-01

    The importance of mesenchymal stem cells (MSCs), as adult stem cells (ASCs) able to divide into a variety of different cells is of utmost importance for stem cell researches. In this study, the ability of cartilage extract to induce differentiation of rat derived omentum tissue MSCs (rOT-MSCs) into chondrocyte cells (CCs) was investigated. After isolation of rOT-MSCs, they were co-cultured with different concentrations of hyaline cartilage extract and chondrocyte differentiation was monitored. Expression of MSCs markers was analyzed via flow cytometry. Moreover, expression of octamer- binding transcription factor-4 (Oct-4), Wilm's tumor suppressor gene-1 (WT-1), aggrecan (AG), collagen type-II (CT-II) and collagen type-X (CT-X) was analyzed using RT-PCR on 16, 18 and 21 days. Furthermore, immunocytochemistry and western blot were performed for CT-II production. Finally, proteoglycans (PGs) were examined using toluidine blue and alcian blue staining. The phenotypic characterization revealed the positive expression of CD90, CD44 and negative expression of CD45 in rOT-MSCs. These cells also expressed mRNA of Oct-4 and WT-1 as markers of omentum tissue. Differentiated rOT-MSCs in the presence of 20 µg/ ml cartilage extract expressed AG, CT-II, CT-X, and PGs as specific markers of CCs. These observations suggest that cartilage extract is potentially able to induce differentiation of MSCs into chondrocyte lineage and may be considered as an available source for imposing tissue healing on the damaged cartilage. More investigations are needed to prove in vivo cartilage repair via cartilage extract or its effective factors. PMID:25815278

  2. Capability of Cartilage Extract to In Vitro Differentiation of Rat Mesenchymal Stem Cells (MSCs) to Chondrocyte Lineage.

    PubMed

    Talakoob, Setareh; Joghataei, Mohammad Taghi; Parivar, Kazem; Bananej, Maryam; Sanadgol, Nima

    2015-01-01

    The importance of mesenchymal stem cells (MSCs), as adult stem cells (ASCs) able to divide into a variety of different cells is of utmost importance for stem cell researches. In this study, the ability of cartilage extract to induce differentiation of rat derived omentum tissue MSCs (rOT-MSCs) into chondrocyte cells (CCs) was investigated. After isolation of rOT-MSCs, they were co-cultured with different concentrations of hyaline cartilage extract and chondrocyte differentiation was monitored. Expression of MSCs markers was analyzed via flow cytometry. Moreover, expression of octamer- binding transcription factor-4 (Oct-4), Wilm's tumor suppressor gene-1 (WT-1), aggrecan (AG), collagen type-II (CT-II) and collagen type-X (CT-X) was analyzed using RT-PCR on 16, 18 and 21 days. Furthermore, immunocytochemistry and western blot were performed for CT-II production. Finally, proteoglycans (PGs) were examined using toluidine blue and alcian blue staining. The phenotypic characterization revealed the positive expression of CD90, CD44 and negative expression of CD45 in rOT-MSCs. These cells also expressed mRNA of Oct-4 and WT-1 as markers of omentum tissue. Differentiated rOT-MSCs in the presence of 20 µg/ ml cartilage extract expressed AG, CT-II, CT-X, and PGs as specific markers of CCs. These observations suggest that cartilage extract is potentially able to induce differentiation of MSCs into chondrocyte lineage and may be considered as an available source for imposing tissue healing on the damaged cartilage. More investigations are needed to prove in vivo cartilage repair via cartilage extract or its effective factors.

  3. Repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation

    SciTech Connect

    Grande, D.A.; Pitman, M.I.; Peterson, L.; Menche, D.; Klein, M.

    1989-01-01

    Using the knee joints of New Zealand White rabbits, a baseline study was made to determine the intrinsic capability of cartilage for healing defects that do not fracture the subchondral plate. A second experiment examined the effect of autologous chondrocytes grown in vitro on the healing rate of these defects. To determine whether any of the reconstituted cartilage resulted from the chondrocyte graft, a third experiment was conducted involving grafts with chondrocytes that had been labeled prior to grafting with a nuclear tracer. Results were evaluated using both qualitative and quantitative light microscopy. Macroscopic results from grafted specimens displayed a marked decrease in synovitis and other degenerative changes. In defects that had received transplants, a significant amount of cartilage was reconstituted (82%) compared to ungrafted controls (18%). Autoradiography on reconstituted cartilage showed that there were labeled cells incorporated into the repair matrix.

  4. Enhancing chondrogenic phenotype for cartilage tissue engineering: monoculture and coculture of articular chondrocytes and mesenchymal stem cells.

    PubMed

    Hubka, Kelsea M; Dahlin, Rebecca L; Meretoja, Ville V; Kasper, F Kurtis; Mikos, Antonios G

    2014-12-01

    Articular cartilage exhibits an inherently low rate of regeneration. Consequently, damage to articular cartilage often requires surgical intervention. However, existing treatments generally result in the formation of fibrocartilage tissue, which is inferior to native articular cartilage. As a result, cartilage engineering strategies seek to repair or replace damaged cartilage with an engineered tissue that restores full functionality to the impaired joint. These strategies often involve the use of chondrocytes, yet in vitro expansion and culture can lead to undesirable changes in chondrocyte phenotype. This review focuses on the use of articular chondrocytes and mesenchymal stem cells (MSCs) in either monoculture or coculture for the enhancement of chondrogenesis. Coculture strategies increasingly outperform their monoculture counterparts with regard to chondrogenesis and present unique opportunities to attain chondrocyte phenotype stability in vitro. Methods to prevent chondrocyte dedifferentiation and promote chondrocyte redifferentiation as well as to promote the chondrogenic differentiation of MSCs while preventing MSC hypertrophy are discussed.

  5. Calcitonin attenuates cartilage degeneration and nociception in an experimental rat model of osteoarthritis: role of TGF-β in chondrocytes

    PubMed Central

    Wen, Zhi-Hong; Tang, Chi-Chieh; Chang, Yi-Chen; Huang, Shi-Ying; Lin, Yen-You; Hsieh, Shih-Peng; Lee, Hsin-Pai; Lin, Sung-Chun; Chen, Wu-Fu; Jean, Yen-Hsuan

    2016-01-01

    We investigated the role of the calcitonin (Miacalcin) in the progression of osteoarthritis (OA) and in nociceptive behavior in an experimental rat model of OA and osteoporosis. OA was induced by anterior cruciate ligament transection (ACLT) of the right knee and by bilateral ovariectomy (OVX) in Wistar rats. Nociceptive behaviors (secondary mechanical allodynia and weight-bearing distribution of the hind paws) were analyzed prior to surgery and every week, beginning at 12 weeks after surgery, up to 20 weeks. At 20 weeks, histopathological studies were performed on the cartilage of the knee joints. Immunohistochemical analysis was performed to examine the effect of calcitonin on transforming growth factor (TGF)-β1 expression in articular cartilage chondrocytes. Rats subjected to ACLT + OVX surgery showed obvious OA changes in the joints. Animals subjected to ACLT + OVX and treated with calcitonin showed significantly less cartilage degeneration and improved nociceptive tests compared with animals subjected to ACLT + OVX surgeries alone. Moreover, calcitonin increased TGF-β1 expression in chondrocytes in ACLT + OVX-affected cartilage. Subcutaneous injection of calcitonin (1) attenuated the development of OA, (2) concomitantly reduced nociception, and (3) modulated chondrocyte metabolism, possibly by increasing cellular TGF-β1 expression. PMID:27345362

  6. Influence of biological scaffold regulation on the proliferation of chondrocytes and the repair of articular cartilage

    PubMed Central

    Wang, Si-Qun; Xia, Jun; Chen, Jie; Lu, Jian-Xi; Wei, Yi-Bing; Chen, Fei-Yan; Huang, Gang-Yong; Shi, Jing-Sheng; Yu, Yong-Lin

    2016-01-01

    Purpose: To investigate the effects of hard tissue engineering scaffold (the material is β-TCP) with different micro-structures on the proliferation of chondrocytes, and the influence of its composite erythrocytes on the repair of articular cartilage defects. Methods: Rabbit cartilage cells were on β-TCP bioceramic scaffold with different micro-structures in vitro, the proliferation growth trend of chondrocytes within the scaffold was calculated, and a optimal micro-structure suitable for cartilage cell growth was determined. Composite chondrocytes were implanted into rabbit models of articular cartilage defects, and the repair situation was observed. Results: the bioceramic scaffold with an inner diameter of 120 μm and an aperture of 500-630 μm was suitable for the growth of cartilage cells. Scaffold loaded with second generation of cartilage cell suspension got a top histological score of 20.76±2.13, which was closely similar to that of normal cartilage. Conclusion: When loaded with the second generation of cartilage cells, the β-TCP biological ceramic scaffold with a pore size of 500-630 μm, and an inner diameter of 120 μm, shows a best repairing effect on animal articular cartilage defects. PMID:27904662

  7. Production of three-dimensional tissue-engineered cartilage through mutual fusion of chondrocyte pellets.

    PubMed

    Hoshi, K; Fujihara, Y; Mori, Y; Asawa, Y; Kanazawa, S; Nishizawa, S; Misawa, M; Numano, T; Inoue, H; Sakamoto, T; Watanabe, M; Komura, M; Takato, T

    2016-09-01

    In this study, the mutual fusion of chondrocyte pellets was promoted in order to produce large-sized tissue-engineered cartilage with a three-dimensional (3D) shape. Five pellets of human auricular chondrocytes were first prepared, which were then incubated in an agarose mold. After 3 weeks of culture in matrix production-promoting medium under 5.78g/cm(2) compression, the tissue-engineered cartilage showed a sufficient mechanical strength. To confirm the usefulness of these methods, a transplantation experiment was performed using beagles. Tissue-engineered cartilage prepared with 50 pellets of beagle chondrocytes was transplanted subcutaneously into the cell-donor dog for 2 months. The tissue-engineered cartilage of the beagles maintained a rod-like shape, even after harvest. Histology showed fair cartilage regeneration. Furthermore, 20 pellets were made and placed on a beta-tricalcium phosphate prism, and this was then incubated within the agarose mold for 3 weeks. The construct was transplanted into a bone/cartilage defect in the cell-donor beagle. After 2 months, bone and cartilage regeneration was identified on micro-computed tomography and magnetic resonance imaging. This approach involving the fusion of small pellets into a large structure enabled the production of 3D tissue-engineered cartilage that was close to physiological cartilage tissue in property, without conventional polyper scaffolds.

  8. Cartilage-specific β-CATENIN signaling regulates chondrocyte maturation, generation of ossification centers, and perichondrial bone formation during skeletal development

    PubMed Central

    Dao, Debbie Y.; Jonason, Jennifer H.; Zhang, Yongchun; Hsu, Wei; Chen, Di; Hilton, Matthew J.; O’Keefe, Regis J.

    2012-01-01

    The WNT/β-CATENIN signaling pathway is a critical regulator of chondrocyte and osteoblast differentiation during multiple phases of cartilage and bone development. While the importance of β-CATENIN signaling during the process of endochondral bone development has been previously appreciated using a variety of genetic models that manipulate β-CATENIN in skeletal progenitors and osteoblasts, genetic evidence demonstrating a specific role for β-CATENIN in committed growth plate chondrocytes has been less robust. To identify the specific role of cartilage-derived β-CATENIN in regulating cartilage and bone development, we studied chondrocyte-specific gain- and loss-of-function genetic mouse models using the tamoxifen-inducible Col2CreERT2 transgene in combination with β-cateninfx(exon3)/wt or β-cateninfx/fx floxed alleles, respectively. From these genetic models and biochemical data, three significant and novel findings were uncovered. First, cartilage-specific β-CATENIN signaling promotes chondrocyte maturation, possibly involving a BMP2 mediated mechanism. Second, cartilage-specific β–CATENIN facilitates primary and secondary ossification center formation via the induction of chondrocyte hypertrophy, possibly through enhanced MMP expression at sites of cartilage degradation, and potentially by enhancing IHH signaling activity to recruit vascular tissues. Finally, cartilage-specific β-CATENIN signaling promotes perichondrial bone formation possibly via a mechanism in which BMP2 and IHH paracrine signals synergize to accelerate perichondrial osteoblastic differentiation. The work presented here supports the concept that the cartilage-derived β-CATENIN signal is a central mediator for major events during endochondral bone formation, including chondrocyte maturation, primary and secondary ossification center development, vascularization, and perichondrial bone formation. PMID:22508079

  9. Cryopreservation Effect on Proliferative and Chondrogenic Potential of Human Chondrocytes Isolated from Superficial and Deep Cartilage

    PubMed Central

    Muiños-López, Emma; Rendal-Vázquez, Mª Esther; Hermida-Gómez, Tamara; Fuentes-Boquete, Isaac; Díaz-Prado, Silvia; Blanco, Francisco J

    2012-01-01

    Objectives: To compare the proliferative and chondrogenic potential of fresh and frozen chondrocytes isolated from superficial and deep articular cartilage biopsies. Materials and Methodology: The study included 12 samples of fresh and frozen healthy human knee articular cartilage. Cell proliferation was tested at 3, 6 and 9 days. Studies of mRNA quantification, protein expression and immunofluorescence for proliferation and chondrogenic markers were performed. Results: Stimulation of fresh and frozen chondrocytes from both superficial and deep cartilage with fetal bovine serum produced an increase in the proliferative capacity compared to the non-stimulated control group. In the stimulated fresh cells group, the proliferative capacity of cells from the deep biopsy was greater than that from cells from the superficial biopsy (0.046 vs 0.028, respectively, p<0.05). There was also a significant difference between the proliferative capacity of superficial zone fresh (0.028) and frozen (0.051) chondrocytes (p<0.05). CCND1 mRNA and protein expression levels, and immunopositivity for Ki67 revealed a higher proliferative capacity for fresh articular chondrocytes from deep cartilage. Regarding the chondrogenic potential, stimulated fresh cells showed higher SOX9 and Col II expression in chondrocytes from deep than from superficial zone (p<0.05, T student test). Conclusions: The highest rate of cell proliferation and chondrogenic potential of fresh chondrocytes was found in cells obtained from deep cartilage biopsies, whereas there were no statistically significant differences in proliferative and chondrogenic capacity between biopsy origins with frozen chondrocytes. These results indicate that both origin and cryopreservation affect the proliferative and chondrogenic potential of chondrocytes. PMID:22523526

  10. Protective Mechanism of Articular Cartilage to Severe Loading: Roles of Lubricants, Cartilage Surface Layer, Extracellular Matrix and Chondrocyte

    NASA Astrophysics Data System (ADS)

    Murakami, Teruo; Sawae, Yoshinori; Ihara, Maki

    The natural synovial joints have excellent tribological performance known as very low friction and very low wear for various daily activities in human life. These functions are likely to be supported by the adaptive multimode lubrication mechanism, in which the various lubrication modes such as elastohydrodynamic lubrication, weeping, boundary and gel film lubrication appear to operate to protect articular cartilage, depending on the severity of the rubbing conditions. In this paper, various protective roles of synovial fluid, cartilage surface layer, extracellular matrix and chondrocyte to severe loading are described. In the first part, the protective mechanism by adsorbed films and underlying gel films was described on the basis of the frictional behaviors of articular cartilage against articular cartilage or glass. It was discussed that the replenishment of gel film removed during severe rubbing is likely to be controlled by supply of proteoglycan from the extracellular matrix, where the chondrocyte plays the main role in the metabolism. In the second part, the time-dependent local deformation of biphasic articular cartilage under constant total compressive strain condition was evaluated in the finite element analyses. The importance of clarification of actual stress-strain in chondrocyte was indicated in relation to the tribological property of articular cartilage.

  11. Standardized cartilage biopsies from the intercondylar notch for autologous chondrocyte implantation (ACI).

    PubMed

    Niemeyer, Philipp; Pestka, Jan M; Kreuz, Peter C; Salzmann, Gian M; Köstler, Wolfgang; Südkamp, Norbert P; Steinwachs, Matthias

    2010-08-01

    Autologous chondrocyte implantation (ACI) is an established therapy for the treatment of cartilage defects across the knee joint. Even though different techniques for initial biopsy have been described, the exact location, depth, and volume of the biopsy are chosen individually by the treating surgeon. This study evaluated 252 consecutive cartilage biopsies taken from the intercondylar notch with a standardized hollow cylinder system for the isolation and in vitro cultivation of human chondrocytes assigned to ACI. All biopsies were assessed for weight of total cartilage obtained, cartilage biopsy weight per cylinder, biopsy cylinder quality, and initial cell count after digestive cellular isolation as well as cell vitality. Parameters were correlated with individual patient parameters. Mean patient age was 35.1 years (median 35.9; range 14.7-56.4). Adequate amounts of cartilage assigned to chondrocyte in vitro cultivation could be harvested in all cases. The mean overall biopsy weight averaged 75.5 mg (SD +/- 44.9) and could be identified as main factor for initial cell number (mean 1.05E+05; SD +/- 7.44E+04). No correlation was found between the initial cell count and patient age (correlation coefficient r = 0.005) or grade of joint degeneration (r = 0.040). Concerning cell viability, a total of 4.4% (SD + 3.0) of the chondrocytes harvested were apoptotic. Cartilage biopsies from the intercondylar notch using a standardized hollow cylinder system provides a reliable, safe, and successful method to obtain articular cartilage for further in vitro cultivation of articular chondrocytes to achieve autologous chondrocyte transplantation.

  12. Inflammation-induced chondrocyte hypertrophy is driven by receptor for advanced glycation end products.

    PubMed

    Cecil, Denise L; Johnson, Kristen; Rediske, John; Lotz, Martin; Schmidt, Ann Marie; Terkeltaub, Robert

    2005-12-15

    The multiligand receptor for advanced glycation end products (RAGE) mediates certain chronic vascular and neurologic degenerative diseases accompanied by low-grade inflammation. RAGE ligands include S100/calgranulins, a class of low-molecular-mass, calcium-binding polypeptides, several of which are chondrocyte expressed. Here, we tested the hypothesis that S100A11 and RAGE signaling modulate osteoarthritis (OA) pathogenesis by regulating a shift in chondrocyte differentiation to hypertrophy. We analyzed human cartilages and cultured human articular chondrocytes, and used recombinant human S100A11, soluble RAGE, and previously characterized RAGE-specific blocking Abs. Normal human knee cartilages demonstrated constitutive RAGE and S100A11 expression, and RAGE and S100A11 expression were up-regulated in OA cartilages studied by immunohistochemistry. CXCL8 and TNF-alpha induced S100A11 expression and release in cultured chondrocytes. Moreover, S100A11 induced cell size increase and expression of type X collagen consistent with chondrocyte hypertrophy in vitro. CXCL8-induced, IL-8-induced, and TNF-alpha-induced but not retinoic acid-induced chondrocyte hypertrophy were suppressed by treatment with soluble RAGE or RAGE-specific blocking Abs. Last, via transfection of dominant-negative RAGE and dominant-negative MAPK kinase 3, we demonstrated that S100A11-induced chondrocyte type X collagen expression was dependent on RAGE-mediated p38 MAPK pathway activation. We conclude that up-regulated chondrocyte expression of the RAGE ligand S100A11 in OA cartilage, and RAGE signaling through the p38 MAPK pathway, promote inflammation-associated chondrocyte hypertrophy. RAGE signaling thereby has the potential to contribute to the progression of OA.

  13. Impact of storage solution formulation during refrigerated storage upon chondrocyte viability and cartilage matrix.

    PubMed

    Wright, Gregory J; Brockbank, Kelvin G M; Rahn, Eliza; Halwani, Dina O; Chen, Zhen; Yao, Hai

    2014-01-01

    Various preservation solutions have been evaluated for longer hypothermic cartilage storage for tissue transplantation; however, the results are mixed. This research was carried out to determine whether phosphate-buffered saline (PBS) or organ preservation solutions would preserve both the extracellular matrix and chondrocytes of articular cartilage better than culture medium during refrigerated storage in the time frame that cartilage is stored for clinical use. Porcine cartilage plugs were stored, without the underlying bone, in culture medium with and without fetal bovine serum (FBS), PBS, Belzer's and Unisol solutions for 1 month at 4°C. Metabolic activity was tested using a resazurin reduction method, and matrix permeability was evaluated by measuring electrical conductivity. Storage in culture medium with 10% FBS was shown to provide good cartilage metabolic function for 7 days, decreasing to about 36% after 1 month of storage. There was no significant difference between samples stored in culture medium with and without FBS after 1 month of storage (p = 0.5005). Refrigerated storage of cartilage in PBS and two different solutions (Belzer's and Unisol) designed for optimal refrigerated tissue and organ storage results in loss of chondrocyte function and retention of matrix permeability. In contrast, the opposite, namely significantly better retention of chondrocyte function and loss of matrix permeability, was observed with culture medium. Future research should be focused on combining retention of chondrocyte function and matrix permeability by storage solution formulation.

  14. A Biosynthetic Scaffold that Facilitates Chondrocyte-Mediated Degradation and Promotes Articular Cartilage Extracellular Matrix Deposition

    PubMed Central

    Sridhar., Balaji V.; Dailing, Eric A.; Brock, J. Logan; Stansbury, Jeffrey W.; Randolph, Mark A.; Anseth, Kristi S.

    2015-01-01

    Articular cartilage remains a significant clinical challenge to repair because of its limited self-healing capacity. Interest has grown in the delivery of autologous chondrocytes to cartilage defects, and combining cell-based therapies with scaffolds that capture aspects of native tissue and allow cell-mediated remodeling could improve outcomes. Currently, scaffold-based therapies with encapsulated chondrocytes permit matrix production; however, resorption of the scaffold often does not match the rate of matrix production by chondrocytes, which can limit functional tissue regeneration. Here, we designed a hybrid biosynthetic system consisting of poly (ethylene glycol) (PEG) endcapped with thiols and crosslinked by norbornene-functionalized gelatin via a thiol-ene photopolymerization. The protein crosslinker was selected to facilitate chondrocyte-mediated scaffold remodeling and matrix deposition. Gelatin was functionalized with norbornene to varying degrees (~4–17 norbornenes/gelatin), and the shear modulus of the resulting hydrogels was characterized (<0.1–0.5 kPa). Degradation of the crosslinked PEG-gelatin hydrogels by chondrocyte-secreted enzymes was confirmed by gel permeation chromatography. Finally, chondrocytes encapsulated in these biosynthetic scaffolds showed significantly increased glycosaminoglycan deposition over just 14 days of culture, while maintaining high levels of viability and producing a distributed matrix. These results indicate the potential of a hybrid PEG-gelatin hydrogel to permit chondrocyte-mediated remodeling and promote articular cartilage matrix production. Tunable scaffolds that can easily permit chondrocyte-mediated remodeling may be useful in designing treatment options for cartilage tissue engineering applications. PMID:26900597

  15. Cartilage tissue engineering of nasal septal chondrocyte-macroaggregates in human demineralized bone matrix.

    PubMed

    Liese, Juliane; Marzahn, Ulrike; El Sayed, Karym; Pruss, Axel; Haisch, Andreas; Stoelzel, Katharina

    2013-06-01

    Tissue Engineering is an important method for generating cartilage tissue with isolated autologous cells and the support of biomaterials. In contrast to various gel-like biomaterials, human demineralized bone matrix (DBM) guarantees some biomechanical stability for an application in biomechanically loaded regions. The present study combined for the first time the method of seeding chondrocyte-macroaggregates in DBM for the purpose of cartilage tissue engineering. After isolating human nasal chondrocytes and creating a three-dimensional macroaggregate arrangement, the DBM was cultivated in vitro with the macroaggregates. The interaction of the cells within the DBM was analyzed with respect to cell differentiation and the inhibitory effects of chondrocyte proliferation. In contrast to chondrocyte-macroaggregates in the cell-DBM constructs, morphologically modified cells expressing type I collagen dominated. The redifferentiation of chondrocytes, characterized by the expression of type II collagen, was only found in low amounts in the cell-DBM constructs. Furthermore, caspase 3, a marker for apoptosis, was detected in the chondrocyte-DBM constructs. In another experimental setting, the vitality of chondrocytes as related to culture time and the amount of DBM was analyzed with the BrdU assay. Higher amounts of DBM tended to result in significantly higher proliferation rates of the cells within the first 48 h. After 96 h, the vitality decreased in a dose-dependent fashion. In conclusion, this study provides the proof of concept of chondrocyte-macroaggregates with DBM as an interesting method for the tissue engineering of cartilage. The as-yet insufficient redifferentiation of the chondrocytes and the sporadic initiation of apoptosis will require further investigations.

  16. Comprehensive characterization of chondrocyte cultures in plasma and whole blood biomatrices for cartilage tissue engineering.

    PubMed

    Schulz, Ronny M; Haberhauer, Marcus; Zernia, Göran; Pösel, Claudia; Thümmler, Christian; Somerson, Jeremy S; Huster, Daniel

    2014-07-01

    Many synthetic polymers and biomaterials have been used as matrices for 3D chondrocyte seeding and transplantation in the field of cartilage tissue engineering. To develop a fully autologous carrier for chondrocyte cultivation, we examined the feasibility of allogeneic plasma and whole blood-based matrices and compared them to agarose constructs. Primary articular chondrocytes isolated from 12-month-old pigs were embedded into agarose, plasma and whole blood matrices and cultivated under static-free swelling conditions for up to four weeks. To evaluate the quality of the synthesized extracellular matrix (ECM), constructs were subjected to weekly examinations using histological staining, spectrophotometry, immunohistochemistry and biochemical analysis. In addition, gene expression of cartilage-specific markers such as aggrecan, Sox9 and collagen types I, II and X was determined by RT-PCR. Chondrocyte morphology was assessed via scanning electron microscopy and viability staining, including proliferation and apoptosis assays. Finally, (13)  C NMR spectroscopy provided further evidence of synthesis of ECM components. It was shown that chondrocyte cultivation in allogeneic plasma and whole-blood matrices promoted sufficient chondrocyte viability and differentiation behaviour, resulting in neo-formation of a hyaline-like cartilage matrix.

  17. Tissue responses against tissue-engineered cartilage consisting of chondrocytes encapsulated within non-absorbable hydrogel.

    PubMed

    Kanazawa, Sanshiro; Fujihara, Yuko; Sakamoto, Tomoaki; Asawa, Yukiyo; Komura, Makoto; Nagata, Satoru; Takato, Tsuyoshi; Hoshi, Kazuto

    2013-01-01

    To disclose the influence of foreign body responses raised against a non-absorbable hydrogel consisting of tissue-engineered cartilage, we embedded human/canine chondrocytes within agarose and transplanted them into subcutaneous pockets in nude mice and donor beagles. One month after transplantation, cartilage formation was observed in the experiments using human chondrocytes in nude mice. No significant invasion of blood cells was noted in the areas where the cartilage was newly formed. Around the tissue-engineered cartilage, agarose fragments, a dense fibrous connective tissue and many macrophages were observed. On the other hand, no cartilage tissue was detected in the autologous transplantation of canine chondrocytes. Few surviving chondrocytes were observed in the agarose and no accumulation of blood cells was observed in the inner parts of the transplants. Localizations of IgG and complements were noted in areas of agarose, and also in the devitalized cells embedded within the agarose. Even if we had inhibited the proximity of the blood cells to the transplanted cells, the survival of the cells could not be secured. We suggest that these cytotoxic mechanisms seem to be associated not only with macrophages but also with soluble factors, including antibodies and complements.

  18. Stem cells catalyze cartilage formation by neonatal articular chondrocytes in 3D biomimetic hydrogels

    NASA Astrophysics Data System (ADS)

    Lai, Janice H.; Kajiyama, Glen; Smith, Robert Lane; Maloney, William; Yang, Fan

    2013-12-01

    Cartilage loss is a leading cause of disability among adults and effective therapy remains elusive. Neonatal chondrocytes (NChons) are an attractive allogeneic cell source for cartilage repair, but their clinical translation has been hindered by scarce donor availability. Here we examine the potential for catalyzing cartilage tissue formation using a minimal number of NChons by co-culturing them with adipose-derived stem cells (ADSCs) in 3D hydrogels. Using three different co-culture models, we demonstrated that the effects of co-culture on cartilage tissue formation are dependent on the intercellular distance and cell distribution in 3D. Unexpectedly, increasing ADSC ratio in mixed co-culture led to increased synergy between NChons and ADSCs, and resulted in the formation of large neocartilage nodules. This work raises the potential of utilizing stem cells to catalyze tissue formation by neonatal chondrocytes via paracrine signaling, and highlights the importance of controlling cell distribution in 3D matrices to achieve optimal synergy.

  19. Communication between paired chondrocytes in the superficial zone of articular cartilage

    PubMed Central

    Chi, Simon S; Rattner, Jerome B; Matyas, John R

    2004-01-01

    The regeneration and repair of cartilage damaged by injury or disease, a major goal of orthopaedic science, depends on understanding the structure and function of both the extracellular matrix and the chondrocytes. In this study, we explored the in situ organization and potential interactions between chondrocytes in the superficial zone of adult rabbit articular cartilage. Some chondrocytes in this zone were observed close together and appeared to be paired whereas others were solitary. The shared surfaces of a chondrocyte pair were separated by a narrow plate of extracellular matrix, into which extended small cytoplasmic projections from both cells. Furthermore, the spatial distribution of major cellular landmarks, such as the nucleus and centrosome as well as some intracellular proteins such as connexin-43, tended to be mirrored about this matrix plate. Fluorescence recovery after photobleaching revealed the fluorescent dye calcein–AM dye can pass between paired cells, and that the passage of this dye can be inhibited by the gap junction blocker octanol. These results illustrate that rapid cellular communication is possible between cells in the superficial layer of adult articular cartilage, which challenges the current thinking that these chondrocytes function in isolation. PMID:15575885

  20. Mesenchymal stem cells downregulate articular chondrocyte differentiation in noncontact coculture systems: implications in cartilage tissue regeneration.

    PubMed

    Xu, Lei; Wang, Qi; Xu, Feiyue; Ye, Zhaoyang; Zhou, Yan; Tan, Wen-Song

    2013-06-01

    While chondrogenesis of mesenchymal stem cells (MSCs) in vitro has been extensively studied, their participation in cartilage tissue repair remains unresolved. This study was designed to elucidate if MSCs affect the phenotype of articular chondrocytes (ACs). A combination of noncontact coculture modes was developed. Human or rabbit MSCs and rabbit ACs (rACs) were encapsulated in alginate hydrogel beads [three-dimensional (3D)] or cultured in a monolayer [two-dimensional (2D)] and subsequently cocultured in the Transwell(®) system. After coculture, cell morphology, growth, deposition of the cartilaginous extracellular matrix (ECM), and gene expression of rACs were investigated. It was found that upon coculture without a cell-cell contact, both 2D and 3D cultured MSCs dramatically induced the morphological transformation of 2D cultured rACs from round to a spindle-like shape, and however inhibited the generation of cellular aggregates of 3D cultured rACs. Most strikingly, a coculture resulted in a significantly less deposition of the cartilaginous ECM, including glycosaminoglycans and collagen type II by both 2D and 3D cultured rACs. Importantly, similar observations were achieved for rACs cultured in an MSC-conditioned medium, confirming the definite paracrine interactions between MSCs and rACs. Based on the analysis of gene expression, this phenotypic change of rACs was not identical as the dedifferentiation. To the best of our knowledge, this is a first study demonstrating that MSCs could downregulate chondrocytic differentiation of ACs and warrants considerations in cartilage tissue repair.

  1. Viability of human chondrocytes in an ex vivo model in relation to temperature and cartilage depth.

    PubMed

    Drobnic, M; Mars, T; Alibegović, A; Bole, V; Balazic, J; Grubic, Z; Brecelj, J

    2005-01-01

    Chondrocytes in human articular cartilage remain viable post-mortem. It has however not been established yet how the storage temperature affects their survival, which is essential information when post-mortem cartilage is used for toxicologic studies. Our aim was to construct a simple model of explanted knee cartilage and to test the influences of time and temperature on the viability of chondrocytes in the ex vivo conditions. Osteochondral cylinders were procured from the cadaveric femoral condyles. The cylinders were embedded in water-tight rubber tubes, which formed separate chondral and osteal compartments. Tubes were filled with normal saline, without additives, to keep chondrocytes under close-to-normal conditions. The samples were divided into two groups stored at 4 degrees C and 35 degrees C, respectively. Three samples of each of these two groups were analysed at the time of removal, and then three and nine days later. Images of Live-Dead staining were scanned by a confocal laser microscope. Count of viable chondrocytes in four regions, from surface to bone, was obtained using image analysis software. The regression model revealed that the number of viable chondrocytes decreased every day by 19% and that an increase in temperature by 1 degree C decreased their viability by 5.8%. The temperature effect fell by 0.2 percentage points for every 100 microm from the surface to the bone. Herein we demonstrate that chondrocytes remain viable in the ex vivo model of human knee cartilage long enough to be able to serve as a model for toxicologic studies. Their viability is, however, significantly influenced by time and temperature.

  2. Effects of Cartilage Impact with and without Fracture on Chondrocyte Viability and the Release of Inflammatory Markers

    PubMed Central

    Stolberg-Stolberg, Josef A.; Furman, Bridgette D.; Garrigues, N. William; Lee, Jaewoo; Pisetsky, David S.; Stearns, Nancy A; DeFrate, Louis E.; Guilak, Farshid; Olson, Steven A.

    2014-01-01

    Post-traumatic arthritis (PTA) frequently develops after intra-articular fracture of weight bearing joints. Loss of cartilage viability and post-injury inflammation have both been implicated as possible contributing factors to PTA progression. In order to further investigate chondrocyte response to impact and fracture, we have developed a blunt impact model applying 70%, 80% or 90% surface-to-surface compressive strain with or without induction of an articular fracture in a cartilage explant model. Following mechanical loading, chondrocyte viability and apoptosis were assessed. Culture media were evaluated for the release of double-stranded DNA (dsDNA) and immunostimulatory activity via nuclear factor kappa B (NF-κB) activity in Toll-like receptor-expressing Ramos-Blue reporter cells. High compressive strains, with or without articular fracture, resulted in significantly reduced chondrocyte viability. Blunt impact at 70% strain induced a loss in viability over time through a combination of apoptosis and necrosis, whereas blunt impact above 80% strain caused predominantly necrosis. In the fracture model, a high level of primarily necrotic chondrocyte death occurred along the fracture edges. At sites away from the fracture, viability was not significantly different than controls. Interestingly, both dsDNA release and NF-κB activity in Ramos-Blue cells increased with blunt impact, but was only significantly increased in the media from fractured cores. This study indicates that the mechanism of trauma determines the type of chondrocyte death as well as the potential for post-injury inflammation. PMID:23620164

  3. Auricular cartilage repair using cryogel scaffolds loaded with BMP-7-expressing primary chondrocytes.

    PubMed

    Odabas, S; Feichtinger, G A; Korkusuz, P; Inci, I; Bilgic, E; Yar, A S; Cavusoglu, T; Menevse, S; Vargel, I; Piskin, E

    2013-10-01

    The loss of cartilage tissue due to trauma, tumour surgery or congenital defects, such as microtia and anotia, is one of the major concerns in head and neck surgery. Recently tissue-engineering approaches, including gene delivery, have been proposed for the regeneration of cartilage tissue. In this study, primary chondrocytes were genetically modified with plasmid-encoding bone morphogenetic protein-7 (BMP-7) via the commercially available non-viral Turbofect vector, with the aim of bringing ex vivo transfected chondrocytes to resynthesize BMP-7 in vitro as they would in vivo. Genetically modified cells were implanted into gelatin-oxidized dextran scaffolds and cartilage tissue formation was investigated in 15 × 15 mm auricular cartilage defects in vivo in 48 New Zealand (NZ) white rabbits for 4 months. The results were evaluated via histology and early gene expression. Early gene expression results indicated a strong effect of exogenous BMP-7 on matrix synthesis and chondrocyte growth. In addition, histological analysis results exhibited significantly better cartilage healing with BMP-7-modified (transfected) cells than in the non-modified (non-transfected) group and as well as the control.

  4. Determinants of microstructural load transfer in cartilage tissue from chondrocyte culture

    NASA Astrophysics Data System (ADS)

    Fedewa, Michelle Marie

    2000-10-01

    The goals of this research were to (i) develop a tissue model system for studying the microstructure of matrix produced by chondrocytes, (ii) characterize the biochemical and mechanical properties of the chondrocyte culture tissue, (iii) evaluate the response of the chondrocyte culture tissue to various stimulants (retinoic acid, interleukin-1beta, and xyloside), (iv) investigate the roles of proteoglycan and collagen in the tearing and tensile properties of a chondrocyte culture tissue, and (v) develop a finite element model of the chondrocyte culture tissue microstructure to study its tensile pre-failure properties. The roles of proteoglycan and collagen were explored by experimentation using a cultured cartilage tissue, and by development of a theoretical finite element model which related the cartilage tissue microstructure to its macroscopic properties. Tear and tensile testing was performed. Failure testing is valuable because it is known that cracks exist and propagate from the cartilage surface in osteoarthritic joints. It was found that collagen was important for providing the material stiffness of the cultured tissue, and that both collagen and proteoglycan were important for providing the tear toughness of the tissue. It was also found that as the collagen density or collagen material stiffness increased, the material stiffness of the cultured tissue increased, and as the proteoglycan or collagen densities increased, the tear toughness of the tissue increased. A three-dimensional finite element microstructural model of cartilage was developed, consisting of linear elastic collagen fibrils embedded in a linear viscoelastic proteoglycan solid matrix. Fluid flow in the cartilage matrix was not included in this model. Viscoelastic time dependent behavior was an appropriate model for the cartilage. The results of this model were comparable to the experimental results, as well as to past continuum models of cartilage. Collagen and proteoglycan material moduli

  5. Association between the chondrocyte phenotype and the expression of adipokines and their receptors: evidence for a role of leptin but not adiponectin in the expression of cartilage-specific markers.

    PubMed

    Francin, Pierre-Jean; Guillaume, Cécile; Humbert, Anne-Claude; Pottie, Pascale; Netter, Patrick; Mainard, Didier; Presle, Nathalie

    2011-11-01

    Although extensive evidence support the key role of adipokines in cartilage homeostasis, contradictory data have been found for their expression and their effects in chondrocytes. This study was then undertaken to determine whether a phenotypic modulation may affect the expression of adipokines and their receptors in human chondrocytes. The expression of leptin, adiponectin and their receptors, as well as cartilage-specific genes was examined in chondrocytes obtained from patients with osteoarthritis either directly after cells harvest or after culture in monolayer or in alginate beads. The results showed major changes in the gene expression pattern after culture in monolayer with a shift from the adipokines to their receptors. Interestingly, this downregulation of adipokines was associated with a loss of chondrocyte phenotype, and chondrocytes recovered a cartilage-like expression profile of leptin and adiponectin when cultured in a tridimensional chondrocyte phenotype-inducing system, but ceased expressing their receptors. Further experiments clearly showed that leptin but not adiponectin promoted the expression of cartilage-specific markers through mitogen-activated protein kinase, Janus kinase and phosphatidylinositol-3 kinase signaling pathways. In conclusion, our data indicate that any phenotypic modulation could affect chondrocyte responsiveness to leptin or adiponectin, and provide evidence for an important role for leptin in regulating the expression of cartilage-specific markers.

  6. The C-terminal domain of connexin43 modulates cartilage structure via chondrocyte phenotypic changes

    PubMed Central

    Gago-Fuentes, Raquel; Bechberger, John F.; Varela-Eirin, Marta; Varela-Vazquez, Adrian; Acea, Benigno; Fonseca, Eduardo

    2016-01-01

    Chondrocytes in cartilage and bone cells population express connexin43 (Cx43) and gap junction intercellular communication (GJIC) is essential to synchronize cells for coordinated electrical, mechanical, metabolic and chemical communication in both tissues. Reduced Cx43 connectivity decreases chondrocyte differentiation and defective Cx43 causes skeletal defects. The carboxy terminal domain (CTD) of Cx43 is located in the cytoplasmic side and is key for protein functions. Here we demonstrated that chondrocytes from the CTD-deficient mice, K258stop/Cx43KO and K258stop/K258stop, have reduced GJIC, increased rates of proliferation and reduced expression of collagen type II and proteoglycans. We observed that CTD-truncated mice were significantly smaller in size. Together these results demonstrated that the deletion of the CTD negatively impacts cartilage structure and normal chondrocyte phenotype. These findings suggest that the proteolytic cleavage of the CTD under pathological conditions, such as under the activation of metalloproteinases during tissue injury or inflammation, may account for the deleterious effects of Cx43 in cartilage and bone disorders such as osteoarthritis. PMID:27682878

  7. Chondrocytes, Mesenchymal Stem Cells, and Their Combination in Articular Cartilage Regenerative Medicine.

    PubMed

    Nazempour, A; Van Wie, B J

    2016-05-01

    Articular cartilage (AC) is a highly organized connective tissue lining, covering the ends of bones within articulating joints. Its highly ordered structure is essential for stable motion and provides a frictionless surface easing load transfer. AC is vulnerable to lesions and, because it is aneural and avascular, it has limited self-repair potential which often leads to osteoarthritis. To date, no fully successful treatment for osteoarthritis has been reported. Thus, the development of innovative therapeutic approaches is desperately needed. Autologous chondrocyte implantation, the only cell-based surgical intervention approved in the United States for treating cartilage defects, has limitations because of de-differentiation of articular chondrocytes (AChs) upon in vitro expansion. De-differentiation can be abated if initial populations of AChs are co-cultured with mesenchymal stem cells (MSCs), which not only undergo chondrogenesis themselves but also support chondrocyte vitality. In this review we summarize studies utilizing AChs, non-AChs, and MSCs and compare associated outcomes. Moreover, a comprehensive set of recent human studies using chondrocytes to direct MSC differentiation, MSCs to support chondrocyte re-differentiation and proliferation in co-culture environments, and exploratory animal intra- and inter-species studies are systematically reviewed and discussed in an innovative manner allowing side-by-side comparisons of protocols and outcomes. Finally, a comprehensive set of recommendations are made for future studies.

  8. Mechanical Impact Induces Cartilage Degradation via Mitogen Activated Protein Kinases

    PubMed Central

    Ding, Lei; Heying, Emily; Nicholson, Nathan; Stroud, Nicolas J.; Homandberg, Gene A.; Guo, Danping; Buckwalter, Joseph A.; Martin, James A.

    2010-01-01

    Objective To determine the activation of MAP kinases in and around cartilage subjected to mechanical damage and to determine the effects of their inhibitors on impaction induced chondrocyte death and cartilage degeneration. Design The phosphorylation of MAP kinases was examined with confocal microscopy and immunoblotting. The effects of MAP kinase inhibitors on impaction-induced chondrocyte death and proteoglycan loss were determined with fluorescent microscopy and DMMB assay. The expression of catabolic genes at mRNA levels was examined with quantitative real time PCR. Results Early p38 activation was detected at 20 min and 1 hr post-impaction. At 24 hr, enhanced phosphorylation of p38 and ERK1/2 was visualized in chondrocytes from in and around impact sites. The phosphorylation of p38 was increased by 3.0-fold in impact sites and 3.3-fold in adjacent cartilage. The phosphorylation of ERK-1 was increased by 5.8-fold in impact zone and 5.4-fold in adjacent cartilage; the phosphorylation of ERK-2 increased by 4.0-fold in impacted zone and 3.6-fold in adjacent cartilage. Furthermore, the blocking of p38 pathway did not inhibit impaction-induced ERK activation. The inhibition of p38 or ERK pathway significantly reduced injury-related chondrocyte death and proteoglycan losses. Quantative Real-time PCR analysis revealed that blunt impaction significantly up-regulated MMP-13, TNF-α, and ADAMTS-5 expression. Conclusion These findings implicate p38 and ERK MAPKs in the post injury spread of cartilage degeneration and suggest that the risk of PTOA following joint trauma could be decreased by blocking their activities, which might be involved in up-regulating expressions of MMP-13, ADAMTS-5, and TNF-α. PMID:20813194

  9. Conditional Deletion of the Phd2 Gene in Articular Chondrocytes Accelerates Differentiation and Reduces Articular Cartilage Thickness

    PubMed Central

    Cheng, Shaohong; Pourteymoor, Sheila; Alarcon, Catrina; Mohan, Subburaman

    2017-01-01

    Based on our findings that PHD2 is a negative regulator of chondrocyte differentiation and that hypoxia signaling is implicated in the pathogenesis of osteoarthritis, we investigated the consequence of disruption of the Phd2 gene in chondrocytes on the articular cartilage phenotype in mice. Immunohistochemistry detected high expression of PHD2 in the superficial zone (SZ), while PHD3 and HIF-1α (target of PHD2) are mainly expressed in the middle-deep zone (MDZ). Conditional deletion of the Phd2 gene (cKO) in chondrocytes accelerated the transition of progenitors to hypertrophic (differentiating) chondrocytes as revealed by reduced SZ thickness, and increased MDZ thickness, as well as increased chondrocyte hypertrophy. Immunohistochemistry further revealed decreased levels of progenitor markers but increased levels of hypertrophy markers in the articular cartilage of the cKO mice. Treatment of primary articular chondrocytes, in vitro, with IOX2, a specific inhibitor of PHD2, promoted articular chondrocyte differentiation. Knockdown of Hif-1α expression in primary articular chondrocytes using lentiviral vectors containing Hif-1α shRNA resulted in reduced expression levels of Vegf, Glut1, Pgk1, and Col10 compared to control shRNA. We conclude that Phd2 is a key regulator of articular cartilage development that acts by inhibiting the differentiation of articular cartilage progenitors via modulating HIF-1α signaling. PMID:28349987

  10. Hyaline cartilage tissue is formed through the co-culture of passaged human chondrocytes and primary bovine chondrocytes.

    PubMed

    Taylor, Drew W; Ahmed, Nazish; Hayes, Anthony J; Ferguson, Peter; Gross, Allan E; Caterson, Bruce; Kandel, Rita A

    2012-08-01

    To circumvent the problem of a sufficient number of cells for cartilage engineering, the authors previously developed a two-stage culture system to redifferentiate monolayer culture-expanded dedifferentiated human articular chondrocytes by co-culture with primary bovine chondrocytes (bP0). The aim of this study was to analyze the composition of the cartilage tissue formed in stage 1 and compare it with bP0 grown alone to determine the optimal length of the co-culture stage of the system. Biochemical data show that extracellular matrix accumulation was evident after 2 weeks of co-culture, which was 1 week behind the bP0 control culture. By 3 to 4 weeks, the amounts of accumulated proteoglycans and collagens were comparable. Expression of chondrogenic genes, Sox 9, aggrecan, and collagen type II, was also at similar levels by week 3 of culture. Immunohistochemical staining of both co-culture and control tissues showed accumulation of type II collagen, aggrecan, biglycan, decorin, and chondroitin sulfate in appropriate zonal distributions. These data indicate that co-cultured cells form cartilaginous tissue that starts to resemble that formed by bP0 after 3 weeks, suggesting that the optimal time to terminate the co-culture stage, isolate the now redifferentiated cells, and start stage 2 is just after 3 weeks.

  11. The optimization of porous polymeric scaffolds for chondrocyte/atelocollagen based tissue-engineered cartilage.

    PubMed

    Tanaka, Yoko; Yamaoka, Hisayo; Nishizawa, Satoru; Nagata, Satoru; Ogasawara, Toru; Asawa, Yukiyo; Fujihara, Yuko; Takato, Tsuyoshi; Hoshi, Kazuto

    2010-06-01

    To broaden the clinical application of cartilage regenerative medicine, we should develop an implant-type tissue-engineered cartilage with firmness and 3-D structure. For that, we attempted to use a porous biodegradable polymer scaffold in the combination with atelocollagen hydrogel, and optimized the structure and composition of porous scaffold. We administered chondrocytes/atelocollagen mixture into the scaffolds with various kinds of porosities (80-95%) and pore sizes (0.3-2.0 mm), consisting of PLLA or related polymers (PDLA, PLA/CL and PLGA), and transplanted the constructs in the subcutaneous areas of nude mice. The constructs using scaffolds of excessively large pore sizes (>1 mm) broke out on the skin and impaired the host tissue. The scaffold with the porosity of 95% and pore size of 0.3 mm could effectively retain the cells/gel mixture and indicated a fair cartilage regeneration. Regarding the composition, the tissue-engineered cartilage was superior in PLGA and PLLA to that in PLA/CA and PDLA. The latter two showed the dense accumulation of macrophages, which may deteriorate the cartilage regeneration. Although PLGA or PLLA has been currently recommended for the scaffold of cartilage, the polymer for which biodegradation was exactly synchronized to the cartilage regeneration would improve the quality of the tissue-engineered cartilage.

  12. [Chondrocyte glycosyltransferases: new pharmacological targets for degenerative diseases of articular cartilage?].

    PubMed

    Magdalou, Jacques; Ouzzine, Mohamed; Netter, Patrick; Fournel-Gigleux, Sylvie

    2006-10-01

    Arthritis, osteoarthritis and other degenerative diseases characterized by cartilage deterioration are the most prevalent chronic human health disorders. Despite their major socioeconomic impact there is still no satisfactory treatment. Their frequency is increasing with the lengthening of life expectancy, creating a major public health challenge for coming years. It is important to diagnose such diseases at an early stage and to develop new effective therapies. We are attempting to develop new therapeutic approaches in this context, keeping in mind that cartilage is one of the few human tissues which is unable to regenerate. We intend to identify and characterize key proteins involved in the biosynthesis of cartilage matrix components. One innovative strategy consists of gene transfer, triggering overexpression of native or recombinant factors that can stimulate chondrocyte anabolic activity in order to promote cartilage repair The loss of matrix components, and especially glycosaminoglycans (GAG), is the earliest event in cartilage degeneration. We therefore looked at glycosyltransferases, and especially galactose beta1,3-glucuronosyltransferase-I (GlcAT-1), which catalyses one of the first steps in GAG biosynthesis. We found that any variation in GlcAT-I activity in chondrocytes or cartilage explants (overexpression, or repression with antisense RNA) affected the GAG content of cartilage. Interestingly, overexpression of this enzyme completely counteracted the GAG depletion produced by the proinflammatory cytokine interleukin 1-beta. The neosynthesized GAG was qualitatively identical to that present in the original cartilage matrix. These results are encouraging for therapeutic approaches based on gene transfer We also investigated the structure-function relationship of human recombinant GlcAT-I upon expression in the methyltrophic yeast Pichia pastoris. This allowed us to determine the molecular basis of the recognition of the donor and acceptor substrates of

  13. Regenerative Potential of Tissue-Engineered Nasal Chondrocytes in Goat Articular Cartilage Defects.

    PubMed

    Mumme, Marcus; Steinitz, Amir; Nuss, Katja M; Klein, Karina; Feliciano, Sandra; Kronen, Peter; Jakob, Marcel; von Rechenberg, Brigitte; Martin, Ivan; Barbero, Andrea; Pelttari, Karoliina

    2016-11-01

    Nasal chondrocytes (NC) were previously demonstrated to remain viable and to participate in the repair of articular cartilage defects in goats. Here, we investigated critical features of tissue-engineered grafts generated by NC in this large animal model, namely cell retention at the implantation site, architecture and integration with adjacent tissues, and effects on subchondral bone changes. In this study, isolated autologous goat NC (gNC) and goat articular chondrocytes (gAC, as control) were expanded, green fluorescent protein-labelled and seeded on a type I/III collagen membrane. After chondrogenic differentiation, tissue-engineered grafts were implanted into chondral defects (6 mm in diameter) in the stifle joint for 3 or 6 months. At the time of explantation, surrounding tissues showed no or very low (only in the infrapatellar fat pad <0.32%) migration of the grafted cells. In repair tissue, gNC formed typical structures of articular cartilage, such as flattened cells at the surface and column-like clusters in the middle layers. Semi-quantitative histological evaluation revealed efficient integration of the grafted tissues with the adjacent native cartilage and underlying subchondral bone. A significantly increased subchondral bone area, as a sign for the onset of osteoarthritis, was observed following treatment of cartilage defects with gAC-, but not with gNC-grafts. Our results reinforce the use of NC-based engineered tissue for articular cartilage repair and preliminarily indicate their potential for the treatment of early osteoarthritic defects.

  14. Hydrogen peroxide induces apoptosis via a mitochondrial pathway in chondrocytes

    NASA Astrophysics Data System (ADS)

    Zhuang, Cai-ping; Liang, Qian; Wang, Xiao-ping; Chen, Tong-sheng

    2012-03-01

    The degenerative joint disease such as osteoarthritis (OA) is closely associated with the death of chondrocytes in apoptosis fashion. Hydrogen peroxide (H2O2), higher expression following acute damage in OA patients, has been shown to be up-regulated during apoptosis in a bulk of experimental models. This study was aimed to explore the mechanism of H2O2-induced rabbit chondrocytes apoptosis. Articular cartilage was biopsied from the joints of 6 weeks old New Zealand rabbits. Cell Counting Kit (CCK-8) assay was used to assess the inhibitory effect of H2O2 on cell viability. H2O2 treatment induced a remarkable reduction of cell viability. We used flow cytometry to assess the form of cell death with Annexin-V/PI double staining, and found that H2O2 treatment induced apoptosis in a dose-and time-dependent manner. Exposure of chondrocytes to 1.5 mM of H2O2 for 2 h induced a burst apoptosis that can be alleviated by N-acetyl cysteine (NAC) pretreatment, an anti-oxidant amino-acid derivative. Loss of mitochondria membrane potential (▵Ψm) was evaluated using confocal microscopy imaging and flow cytometry (FCM). H2O2 treatment induced a marked reduction of ▵Ψm, and the abrupt disappearance of ▵Ψm occurred within 5 minutes. These results indicate that H2O2 induces a rapid apoptosis via a mitochondrial pathway in rabbit chondrocytes.

  15. Human chondrocyte cultures as models of cartilage-specific gene regulation.

    PubMed

    Otero, Miguel; Favero, Marta; Dragomir, Cecilia; Hachem, Karim El; Hashimoto, Ko; Plumb, Darren A; Goldring, Mary B

    2012-01-01

    The human adult articular chondrocyte is a unique cell type that has reached a fully differentiated state as an end point of development. Within the cartilage matrix, chondrocytes are normally quiescent and maintain the matrix constituents in a low-turnover state of equilibrium. Isolated chondrocytes in culture have provided useful models to study cellular responses to alterations in the environment such as those occurring in different forms of arthritis. However, expansion of primary chondrocytes in monolayer culture results in the loss of phenotype, particularly if high cell density is not maintained. This chapter describes strategies for maintaining or restoring differentiated phenotype by culture in suspension, gels, or scaffolds. Techniques for assessing phenotype involving primarily the analysis of synthesis of cartilage-specific matrix proteins as well as the corresponding mRNAs are also described. Approaches for studying gene regulation, including transfection of promoter-driven reporter genes with expression vectors for transcriptional and signaling regulators, chromatin immunoprecipitation, and DNA methylation are also described.

  16. Bushen Zhuangjin decoction inhibits TM-induced chondrocyte apoptosis mediated by endoplasmic reticulum stress

    PubMed Central

    LIN, PINGDONG; WENG, XIAPING; LIU, FAYUAN; MA, YUHUAN; CHEN, HOUHUANG; SHAO, XIANG; ZHENG, WENWEI; LIU, XIANXIANG; YE, HONGZHI; LI, XIHAI

    2015-01-01

    Chondrocyte apoptosis triggered by endoplasmic reticulum (ER) stress plays a vital role in the pathogenesis of osteoarthritis (OA). Bushen Zhuangjin decoction (BZD) has been widely used in the treatment of OA. However, the cellular and molecular mechanisms responsible for the inhibitory effects of BZD on chondrocyte apoptosis remain to be elucidated. In the present study, we investigated the effects of BZD on ER stress-induced chondrocyte apoptosis using a chondrocyte in vitro model of OA. Chondrocytes obtained from the articular cartilage of the knee joints of Sprague Dawley (SD) rats were detected by immunohistochemical staining for type II collagen. The ER stress-mediated apoptosis of tunicamycin (TM)-stimulated chondrocytes was detected using 4-phenylbutyric acid (4-PBA). We found that 4-PBA inhibited TM-induced chondrocyte apoptosis, which confirmed the successful induction of chondrocyte apoptosis. BZD enhanced the viability of the TM-stimulated chondrocytes in a dose- and time-dependent manner, as shown by MTT assay. The apoptotic rate and the loss of mitochondrial membrane potential (ΔΨm) of the TM-stimulated chondrocytes treated with BZD was markedly decreased compared with those of chondrocytes not treated with BZD, as shown by 4′,6-diamidino-2-phenylindole (DAPI) staining, Annexin V-FITC binding assay and JC-1 assay. To further elucidate the mechanisms responsible for the inhibitory effects of BZD on TM-induced chondrocyte apoptosis mediated by ER stress, the mRNA and protein expression levels of binding immunoglobulin protein (Bip), X-box binding protein 1 (Xbp1), activating transcription factor 4 (Atf4), C/EBP-homologous protein (Chop), caspase-9, caspase-3, B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) were measured by reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis. In the TM-stimulated chondrocytes treated with BZD, the mRNA and protein expression levels of Bip, Atf4, Chop, caspase-9, caspase-3

  17. Bushen Zhuangjin decoction inhibits TM-induced chondrocyte apoptosis mediated by endoplasmic reticulum stress.

    PubMed

    Lin, Pingdong; Weng, Xiaping; Liu, Fayuan; Ma, Yuhuan; Chen, Houhuang; Shao, Xiang; Zheng, Wenwei; Liu, Xianxiang; Ye, Hongzhi; Li, Xihai

    2015-12-01

    Chondrocyte apoptosis triggered by endoplasmic reticulum (ER) stress plays a vital role in the pathogenesis of osteoarthritis (OA). Bushen Zhuangjin decoction (BZD) has been widely used in the treatment of OA. However, the cellular and molecular mechanisms responsible for the inhibitory effects of BZD on chondrocyte apoptosis remain to be elucidated. In the present study, we investigated the effects of BZD on ER stress-induced chondrocyte apoptosis using a chondrocyte in vitro model of OA. Chondrocytes obtained from the articular cartilage of the knee joints of Sprague Dawley (SD) rats were detected by immunohistochemical staining for type Ⅱ collagen. The ER stress-mediated apoptosis of tunicamycin (TM)‑stimulated chondrocytes was detected using 4-phenylbutyric acid (4‑PBA). We found that 4‑PBA inhibited TM-induced chondrocyte apoptosis, which confirmed the successful induction of chondrocyte apoptosis. BZD enhanced the viability of the TM-stimulated chondrocytes in a dose- and time-dependent manner, as shown by MTT assay. The apoptotic rate and the loss of mitochondrial membrane potential (ΔΨm) of the TM-stimulated chondrocytes treated with BZD was markedly decreased compared with those of chondrocytes not treated with BZD, as shown by 4',6-diamidino-2-phenylindole (DAPI) staining, Annexin V-FITC binding assay and JC-1 assay. To further elucidate the mechanisms responsible for the inhibitory effects of BZD on TM‑induced chondrocyte apoptosis mediated by ER stress, the mRNA and protein expression levels of binding immunoglobulin protein (Bip), X‑box binding protein 1 (Xbp1), activating transcription factor 4 (Atf4), C/EBP‑homologous protein (Chop), caspase‑9, caspase-3, B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) were measured by reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis. In the TM-stimulated chondrocytes treated with BZD, the mRNA and protein expression levels of Bip, Atf4, Chop, caspase

  18. Electrospun gelatin/polycaprolactone nanofibrous membranes combined with a coculture of bone marrow stromal cells and chondrocytes for cartilage engineering.

    PubMed

    He, Xiaomin; Feng, Bei; Huang, Chuanpei; Wang, Hao; Ge, Yang; Hu, Renjie; Yin, Meng; Xu, Zhiwei; Wang, Wei; Fu, Wei; Zheng, Jinghao

    2015-01-01

    Electrospinning has recently received considerable attention, showing notable potential as a novel method of scaffold fabrication for cartilage engineering. The aim of this study was to use a coculture strategy of chondrocytes combined with electrospun gelatin/polycaprolactone (GT/PCL) membranes, instead of pure chondrocytes, to evaluate the formation of cartilaginous tissue. We prepared the GT/PCL membranes, seeded bone marrow stromal cell (BMSC)/chondrocyte cocultures (75% BMSCs and 25% chondrocytes) in a sandwich model in vitro, and then implanted the constructs subcutaneously into nude mice for 12 weeks. Gross observation, histological and immunohistological evaluation, glycosaminoglycan analyses, Young's modulus measurement, and immunofluorescence staining were performed postimplantation. We found that the coculture group formed mature cartilage-like tissue, with no statistically significant difference from the chondrocyte group, and labeled BMSCs could differentiate into chondrocyte-like cells under the chondrogenic niche of chondrocytes. This entire strategy indicates that GT/PCL membranes are also a suitable scaffold for stem cell-based cartilage engineering and may provide a potentially clinically feasible approach for cartilage repairs.

  19. Matrix stiffness promotes cartilage endplate chondrocyte calcification in disc degeneration via miR-20a targeting ANKH expression

    PubMed Central

    Liu, Ming-Han; Sun, Chao; Yao, Yuan; Fan, Xin; Liu, Huan; Cui, You-Hong; Bian, Xiu-Wu; Huang, Bo; Zhou, Yue

    2016-01-01

    The mechanical environment is crucial for intervertebral disc degeneration (IDD). However, the mechanisms underlying the regulation of cartilage endplate (CEP) calcification by altered matrix stiffness remain unclear. In this study, we found that matrix stiffness of CEP was positively correlated with the degree of IDD, and stiff matrix, which mimicked the severe degeneration of CEP, promoted inorganic phosphate-induced calcification in CEP chondrocytes. Co-expression analysis of the miRNA and mRNA profiles showed that increasing stiffness resulted in up-regulation of miR-20a and down-regulation of decreased ankylosis protein homolog (ANKH) during inorganic phosphate-induced calcification in CEP chondrocytes. Through a dual luciferase reporter assay, we confirmed that miR-20a directly targets 3′-untranslated regions of ANKH. The inhibition of miR-20a attenuated the calcium deposition and calcification-related gene expression, whereas the overexpression of miR-20a enhanced calcification in CEP chondrocytes on stiff matrix. The rescue of ANKH expression restored the decreased pyrophosphate efflux and inhibited calcification. In clinical samples, the levels of ANKH expression were inversely associated with the degeneration degree of CEP. Thus, our findings demonstrate that the miR-20a/ANKH axis mediates the stiff matrix- promoted CEP calcification, suggesting that miR-20a and ANKH are potential targets in restraining the progression of IDD. PMID:27142968

  20. Parathyroid hormone 1-34 reduces dexamethasone-induced terminal differentiation in human articular chondrocytes.

    PubMed

    Chang, Ling-Hua; Wu, Shun-Cheng; Chen, Chung-Hwan; Wang, Gwo-Jaw; Chang, Je-Ken; Ho, Mei-Ling

    2016-08-10

    Intra-articular injection of dexamethasone (Dex) is occasionally used to relieve pain and inflammation in osteoarthritis (OA) patients. Dex induces terminal differentiation of chondrogenic mesenchymal stem cells in vitro and causes impaired longitudinal skeletal growth in vivo. Parathyroid hormone 1-34 (PTH 1-34) has been shown to reverse terminal differentiation of osteoarthritic articular chondrocytes. We hypothesized that Dex induces terminal differentiation of articular chondrocytes and that this effect can be mitigated by PTH 1-34 treatment. We tested the effect of Dex on terminal differentiation in human articular chondrocytes and further tested if PTH 1-34 reverses the effects. We found that Dex treatment downregulated chondrogenic-induced expressions of SOX-9, collagen type IIa1 (Col2a1), and aggrecan and reduced synthesis of cartilaginous matrix (Col2a1 and sulfated glycosaminoglycan) synthesis. Dex treatment upregulated chondrocyte hypertrophic markers of collagen type X and alkaline phosphatase at mRNA and protein levels, and it increased the cell size of articular chondrocytes and induced cell death. These results indicated that Dex induces terminal differentiation of articular chondrocytes. To test whether PTH 1-34 treatment reverses Dex-induced terminal differentiation of articular chondrocytes, PTH 1-34 was co-administered with Dex. Results showed that PTH 1-34 treatment reversed both changes of chondrogenic and hypertrophic markers in chondrocytes induced by Dex. PTH 1-34 also decreased Dex-induced cell death. PTH 1-34 treatment reduces Dex-induced terminal differentiation and apoptosis of articular chondrocytes, and PTH 1-34 treatment may protect articular cartilage from further damage when received Dex administration.

  1. Human chondrocyte migration behaviour to guide the development of engineered cartilage.

    PubMed

    O'Connell, Grace D; Tan, Andrea R; Cui, Victoria; Bulinski, J Chloe; Cook, James L; Attur, Mukundan; Abramson, Steven B; Ateshian, Gerard A; Hung, Clark T

    2017-03-01

    Tissue-engineering techniques have been successful in developing cartilage-like tissues in vitro using cells from animal sources. The successful translation of these strategies to the clinic will likely require cell expansion to achieve sufficient cell numbers. Using a two-dimensional (2D) cell migration assay to first identify the passage at which chondrocytes exhibited their greatest chondrogenic potential, the objective of this study was to determine a more optimal culture medium for developing three-dimensional (3D) cartilage-like tissues using human cells. We evaluated combinations of commonly used growth factors that have been shown to promote chondrogenic growth and development. Human articular chondrocytes (AC) from osteoarthritic (OA) joints were cultured in 3D environments, either in pellets or encapsulated in agarose. The effect of growth factor supplementation was dependent on the environment, such that matrix deposition differed between the two culture systems. ACs in pellet culture were more responsive to bone morphogenetic protein (BMP2) alone or combinations containing BMP2 (i.e. BMP2 with PDGF or FGF). However, engineered cartilage development within agarose was better for constructs cultured with TGFβ3. These results with agarose and pellet culture studies set the stage for the development of conditions appropriate for culturing 3D functional engineered cartilage for eventual use in human therapies. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Effects of CCN3 on rat cartilage endplate chondrocytes cultured under serum deprivation in vitro

    PubMed Central

    DING, LEI; WU, JINGPING; LI, DEFANG; WANG, HOULEI; ZHU, BIN; LU, WEI; XU, GUOXIONG

    2016-01-01

    The presence of apoptotic cells and loss of extracellular matrix (ECM) are common characteristics of degenerated cartilage endplates (CEPs). In addition, therapeutic efficacy is hampered by an incomplete understanding regarding the mechanisms underlying CEP homeostasis and degeneration. The CCN proteins have recently emerged as important regulators of cell-ECM interactions, and have been identified as key mediators of nucleus pulposus ECM composition and tissue homeostasis. However, whether CCN3 is associated with CEP homeostasis has yet to be elucidated. The present study aimed to investigate the effects of CCN3 on the apoptosis and ECM synthesis of CEP cells cultured under serum deprivation. Rat CEP cells were confirmed to be of the chondrocytic phenotype by toluidine blue staining. The mRNA expression levels of CCN3 were markedly increased, and a dose-dependent increase of apoptotic rate was detected under serum deprivation conditions following treatment with recombinant CCN3, whereas CCN3 did not exert a proapoptotic effect on cells cultured under normal conditions. Furthermore, CCN3-treated cells exhibited a decrease in the expression levels of aggrecan and collagen II in both groups. These results suggested that CCN3 may act as a regulator, rather than an initiator, of serum deprivation-induced cellular apoptosis, and that CCN3 has a catabolic effect on the mediation of ECM synthesis under both normal and serum deprivation conditions. Therefore, CCN3 may represent a novel therapeutic target for the prevention of CEP degeneration. PMID:26795879

  3. Regulation of human chondrocyte function through direct inhibition of cartilage master regulator SOX9 by microRNA-145 (miRNA-145).

    PubMed

    Martinez-Sanchez, Aida; Dudek, Katarzyna A; Murphy, Chris L

    2012-01-06

    Articular cartilage enables weight bearing and near friction-free movement in the joints. Critical to its function is the production of a specialized, mechanocompetent extracellular matrix controlled by master regulator transcription factor SOX9. Mutations in SOX9 cause campomelic dysplasia, a haploinsufficiency disorder resulting in severe skeletal defects and dwarfism. Although much is understood about how SOX9 regulates cartilage matrix synthesis and hence joint function, how this master regulator is itself regulated remains largely unknown. Here we identify a specific microRNA, miR-145, as a direct regulator of SOX9 in normal healthy human articular chondrocytes. We show that miR-145 directly represses SOX9 expression in human cells through a unique binding site in its 3'-UTR not conserved in mice. Modulation of miR-145 induced profound changes in the human chondrocyte phenotype. Specifically, increased miR-145 levels cause greatly reduced expression of critical cartilage extracellular matrix genes (COL2A1 and aggrecan) and tissue-specific microRNAs (miR-675 and miR-140) and increased levels of the hypertrophic markers RUNX2 and MMP13, characteristic of changes occurring in osteoarthritis. We propose miR-145 as an important regulator of human chondrocyte function and a new target for cartilage repair.

  4. Dietary lipids modify the fatty acid composition of cartilage, isolated chondrocytes and matrix vesicles.

    PubMed

    Xu, H; Watkins, B A; Adkisson, H D

    1994-09-01

    The effects of dietary lipids on the fatty acid composition of hyaline cartilage, epiphyseal chondrocytes (EC) and matrix vesicles (MV) were evaluated in chicks. A basal semipurified diet was fed to chicks containing one of the following lipid sources at 70 g/kg: soybean oil, butter+corn oil, margarine+corn oil or menhaden oil+corn oil (MEC). Articular and epiphyseal growth cartilage were isolated from the proximal tibiotarsus; EC and MV were subsequently released by trypsin (EC 3.4.21.4) and collagenase (EC 3.4.24.3) digestion followed by ultracentrifugation. The fatty acid composition of polar lipids in chick epiphyseal cartilage at three and six weeks, as well as articular cartilage, EC and MV at eight weeks of age revealed the presence of high levels of saturated and monounsaturated fatty acids (up to 85.5%) but low levels of n-6 polyunsaturated fatty acids (PUFA) (2.6-10.2%). Mead acid (20:3n-9, > 3%) was also present in cartilage, EC and MV lipids, and was unaffected by the dietary lipid treatments. Total n-3 PUFA concentrations were the highest in cartilage, EC and MV of chicks consuming MEC. Feeding MEC lowered the levels of 20:4n-6 in cartilage, but increased 20:5n-3 levels. The data are consistent with those reported previously which showed that cartilage tissues are low in n-6 PUFA and that they contain 20:3n-9. We furthermore demonstrated that the PUFA composition of cartilage can be modified by dietary lipids.

  5. [Autologous chondrocyte transplantation for treatment of cartilage defects of the knee joint. Clinical results].

    PubMed

    Erggelet, C; Browne, J E; Fu, F; Mandelbaum, B R; Micheli, L J; Mosely, J B

    2000-01-01

    Cartilage defects in the knee joint are common and have a bad tendency for healing due to the limited regeneration of hyaline cartilage. Surgeons have an ample choice of various operative treatment measures. Especially for the treatment of larger lesions first results of autologous chondrocyte transplantation (ACT) were published in 1994 [3]. Autologous chondrocytes are isolated from an arthoscopically harvested cartilage biopsy, cultured in vitro and implanted in the defect under a periostal flap in a second procedure. In an international multicenter study 1,051 patients treated with ACT between 6/95 and 12/98 were documented with follow-up examinations after 12 months (588 patients), 24 months (220 patients) and 36 months (40 patients). The majority of the defects (61.2%) were localized on the medial femoral condyle, measuring 4.6 cm2 and mostly described as grade III/IV lesions. The clinical evaluation was performed using a modified Cincinnati knee rating system independently for clinician and patient. Evaluations showed an increase from 3.35 to 6.25 after 24 months and from 3.10 to 6.77 in a scale from 1 (bad) to 10 (excellent). ACT favours defects of the femur with an improvement rate of 85%. Adverse events possibly related to ACT were described in 4.8% of the patients. Diagnostic second-look arthroscopies are included in the reoperation rate of 5.1%. The presented data indicate autologous chondrocyte transplantation as an effective and safe option for the treatment of large full thickness cartilage defects in the knee joint.

  6. Alpha B-Crystallin Protects Rat Articular Chondrocytes against Casein Kinase II Inhibition-Induced Apoptosis

    PubMed Central

    Rho, Jee Hyun; Lee, Sang Yeob; Yoo, Seung Hee; Kim, Hye Young; Chung, Won Tae; Yoo, Young Hyun

    2016-01-01

    Although alpha (α)B-crystallin is expressed in articular chondrocytes, little is known about its role in these cells. Protein kinase casein kinase 2 (CK2) inhibition induces articular chondrocyte death. The present study examines whether αB-crystallin exerts anti-apoptotic activity in articular chondrocytes. Primary rat articular chondrocytes were isolated from knee joint slices. Cells were treated with CK2 inhibitors with or without αB-crystallin siRNA. To examine whether the silencing of αB-crystallin sensitizes rat articular chondrocytes to CK2 inhibition-induced apoptosis, we assessed apoptosis by performing viability assays, mitochondrial membrane potential measurements, flow cytometry, nuclear morphology observations, and western blot analysis. To investigate the mechanism by which αB-crystallin modulates the extent of CK2 inhibition-mediated chondrocyte death, we utilized confocal microscopy to observe the subcellular location of αB-crystallin and its phosphorylated forms and performed a co-immunoprecipitation assay to observe the interaction between αB-crystallin and CK2. Immunochemistry was employed to examine αB-crystallin expression in cartilage obtained from rats with experimentally induced osteoarthritis (OA). Our results demonstrated that silencing of αB-crystallin sensitized rat articular chondrocytes to CK2 inhibitor-induced apoptosis. Furthermore, CK2 inhibition modulated the expression and subcellular localization of αB-crystallin and its phosphorylated forms and dissociated αB-crystallin from CK2. The population of rat articular chondrocytes expressing αB-crystallin and its phosphorylated forms was reduced in an experimentally induced rat model of OA. In summary, αB-crystallin protects rat articular chondrocytes against CK2 inhibition-induced apoptosis. αB-crystallin may represent a suitable target for pharmacological interventions to prevent OA. PMID:27851782

  7. Synthesis of cartilage matrix by mammalian chondrocytes in vitro. III. Effects of ascorbate

    PubMed Central

    1984-01-01

    Chondrocytes isolated from bovine articular cartilage were plated at high density and grown in the presence or absence of ascorbate. Collagen and proteoglycans, the major matrix macromolecules synthesized by these cells, were isolated at times during the course of the culture period and characterized. In both control and ascorbate-treated cultures, type II collagen and cartilage proteoglycans accumulated in the cell-associated matrix. Control cells secreted proteoglycans and type II collagen into the medium, whereas with time in culture, ascorbate-treated cells secreted an increasing proportion of types I and III collagens into the medium. The ascorbate-treated cells did not incorporate type I collagen into the cell-associated matrix, but continued to accumulate type II collagen in this compartment. Upon removal of ascorbate, the cells ceased to synthesize type I collagen. Morphological examination of ascorbate-treated and control chondrocyte culture revealed that both collagen and proteoglycans were deposited into the extracellular matrix. The ascorbate-treated cells accumulated a more extensive matrix that was rich in collagen fibrils and ruthenium red-positive proteoglycans. This study demonstrated that although ascorbate facilitates the formation of an extracellular matrix in chondrocyte cultures, it can also cause a reversible alteration in the phenotypic expression of those cells in vitro. PMID:6501411

  8. Immunological response to tissue-engineered cartilage derived from auricular chondrocytes and a PLLA scaffold in transgenic mice.

    PubMed

    Fujihara, Yuko; Takato, Tsuyoshi; Hoshi, Kazuto

    2010-02-01

    The immune response against biomaterials in tissue-engineered constructs could potentially worsen the outcome of tissue regeneration, but immunological reactions between host and donor in tissue-engineered constructs remain to be clarified. In the present study, we syngenically transplanted tissue-engineered cartilage constructs consisting of C57BL/6 mice auricular chondrocytes and poly-l-lactic acid scaffolds (MW:200,000) into EGFP transgenic mice of C57BL/6 background, and evaluated the response by the localization of donor-derived and host-derived cells, the latter of which were distinguished by the presence of EGFP. While donor-derived cells constituted the areas of regenerated cartilage, host-derived cells were increased in number for the initial two weeks, and then decreased and excluded to non-cartilage areas thereafter. Furthermore, EGFP positivity was mostly co-localized with that of F4/80, suggesting most of the host-derived cells in the tissue-engineered constructs could be macrophages. Immunohistochemical staining of the tissue-engineered cartilage constructs revealed expression of factors related to immune privilege in chondrocytes, such as macrophage migration inhibitory factor (MIF), fas ligand (FasL) and others. Co-culture of chondrocytes and macrophages in vitro increased the expression of MIF and FasL in the chondrocytes, suggesting that chondrocytes in tissue-engineered cartilage constructs could regulate the actions of host-derived macrophages by expressing factors related to immune privilege.

  9. The application of POSS nanostructures in cartilage tissue engineering: the chondrocyte response to nanoscale geometry.

    PubMed

    Oseni, Adelola O; Butler, Peter E; Seifalian, Alexander M

    2015-11-01

    Despite extensive research into cartilage tissue engineering (CTE), there is still no scaffold ideal for clinical applications. Various synthetic and natural polymers have been investigated in vitro and in vivo, but none have reached widespread clinical use. The authors investigate the potential of POSS-PCU, a synthetic nanocomposite polymer, for use in CTE. POSS-PCU is modified with silsesquioxane nanostructures that improve its biological and physical properties. The ability of POSS-PCU to support the growth of ovine nasoseptal chondrocytes was evaluated against a polymer widely used in CTE, polycaprolactone (PCL). Scaffolds with varied concentrations of the POSS molecule were also synthesized to investigate their effect on chondrocyte growth. Chondrocytes were seeded onto scaffold disks (PCU negative control; POSS-PCU 2%, 4%, 6%, 8%; PCL). Cytocompatibilty was evaluated using cell viability, total DNA, collagen and GAG assays. Chondrocytes cultured on POSS-PCU (2% POSS) scaffolds had significantly higher viability than PCL scaffolds (p < 0.001). Total DNA, collagen and sGAG protein were also greater on POSS-PCU scaffolds compared with PCL (p > 0.05). POSS-PCU (6% and 8% POSS) had improved viability and proliferation over an 18 day culture period compared with 2% and 4% POSS-PCU (p < 0.0001). Increasing the percentage of POSS in the scaffolds increased the size of the pores found in the scaffolds (p < 0.05). POSS-PCU has excellent potential for use in CTE. It supports the growth of chondrocytes in vitro and the POSS modification significantly enhances the growth and proliferation of nasoseptal chondrocytes compared with traditional scaffolds such as PCL.

  10. Proliferation of rabbit chondrocyte and inhibition of IL-1β-induced apoptosis through MEK/ERK signaling by statins.

    PubMed

    Zhou, Bin; Chen, Deheng; Xu, Huazi; Zhang, Xiaolei

    2017-02-01

    Chondrocyte plays a critical role in endochondral ossification and cartilage repair by maintaining the cartilaginous matrix. Statins have been widely used to lower the cholesterol level in patients with cardiovascular disorders. Previous research has demonstrated potential role of statins in chondrocyte proliferation. This study addresses the proliferation-regulatory effect of lovastatin in rabbit chondrocytes as well as the underlying signaling mechanisms, thereby exploring its potential application in chondrocyte-related disorders, such as cartilage damage and osteoarthritis. Rabbit chondrocytes were treated with lovastatin at multiple concentrations, and the proliferation rate was measured by CCK-8 test. The results showed significant increase in chondrocyte proliferation under lovastatin treatment. Using real-time quantitative PCR, it was observed that the expression levels of COL2A1, SOX-9, Caspase-3, and MMP-3 genes were significantly changed by lovastatin treatment. Western blotting analysis showed that the abundance of COL2A1, SOX-9, MEK1/2, p-MEK1/2, ERK1/2, p-ERK1/2, Caspase-3, and MMP-3 proteins was also significantly influenced by lovastatin treatment. Interleukine-1 beta (IL-1β) is involved in the progression of osteoarthritis (OA) by inducing articular cartilage and chondrocyte aging and senescence. In this study, we observed that lovastatin treatment inhibited IL-1β-induced chondrocyte apoptosis, while the combined treatment of lovastatin and U0126 evidently offset the apoptosis-inhibiting effect of lovastatin in chondrocyte proliferation. The expressional level and protein abundance of COL2A1, SOX-9, MEK1/2, p-MEK1/2, ERK1/2, p-ERK1/2, caspase-3, and MMP-3 genes showed significant alterations under the combined treatment. Together, our results suggested that lovastatin significantly promoted proliferation and inhibited the IL-1β-induced apoptosis in rabbit chondrocytes, which was mediated by the MEK/ERK signaling.

  11. Cell Seeding Densities in Autologous Chondrocyte Implantation Techniques for Cartilage Repair.

    PubMed

    Foldager, Casper Bindzus; Gomoll, Andreas H; Lind, Martin; Spector, Myron

    2012-04-01

    Cartilage repair techniques have been among the most intensively investigated treatments in orthopedics for the past decade, and several different treatment modalities are currently available. Despite the extensive research effort within this field, the generation of hyaline cartilage remains a considerable challenge. There are many parameters attendant to each of the cartilage repair techniques that can affect the amount and types of reparative tissue generated in the cartilage defect, and some of the most fundamental of these parameters have yet to be fully investigated. For procedures in which in vitro-cultured autologous chondrocytes are implanted under a periosteal or synthetic membrane cover, or seeded onto a porous membrane or scaffold, little is known about how the number of cells affects the clinical outcome. Few published clinical studies address the cell seeding density that was employed. The principal objective of this review is to provide an overview of the cell seeding densities used in cell-based treatments currently available in the clinic for cartilage repair. Select preclinical studies that have informed the use of specific cell seeding densities in the clinic are also discussed.

  12. Autologous chondrocyte implantation for cartilage injury treatment in Chiang Mai University Hospital: a case report.

    PubMed

    Wongtriratanachai, Prasit; Pruksakorn, Dumnoensun; Pothacharoen, Peraphan; Nimkingratana, Puwapong; Pattamapaspong, Nuttaya; Phornphutkul, Chanakarn; Setsitthakun, Sasiwariya; Fongsatitkul, Ladda; Phrompaet, Sureeporn

    2013-11-01

    Autologous chondrocyte implantation (ACI) has become one of the standard procedures for articular cartilage defect treatment. This technique provides a promising result. However the procedural process requires an approach of several steps from multidisciplinary teams. Although the success of this procedure has been reported from Srinakharinvirot University since 2007, the application of ACI is still limited in Thailand due to the complexity of processes and stringent quality control. This report is to present the first case of the cartilage defect treatment using the first generation-ACI under Chiang Mai University's (CMU) own facility and Ethics Committee. This paper also reviews the process of biotechnology procedures, patient selection, surgical, and rehabilitation techniques. The success of the first case is an important milestone for the further development of the CMU Human Translational Research Laboratory in near future.

  13. Different ratios of bone marrow mesenchymal stem cells and chondrocytes used in tissue-engineered cartilage and its application for human ear-shaped substitutes in vitro.

    PubMed

    Kang, Ning; Liu, Xia; Yan, Li; Wang, Qian; Cao, Yilin; Xiao, Ran

    2013-01-01

    The application of chondrocyte-based cartilage tissue engineering is limited because of the lack of autologous cartilage sources and chondrocyte dedifferentiation after in vitro expansion. Coculture of bone marrow mesenchymal stem cells (BMSCs) and chondrocytes has been a promising strategy for cartilage engineering as chondrocytes can provide a chondrogenic environment for BMSCs. However, there are no systematic comparison studies for engineered cartilage constructed using different mixing ratios of BMSCs and chondrocytes, and the most effective mixing ratio with the lowest number of chondrocytes is unknown. Here, we set a gradient of mixing ratios of BMSCs to chondrocytes for an in vitro coculture system and compared the shape retention and quality of the engineered cartilage using macroscopic and histological assays, glycosaminoglycan content assessment and immunohistochemical staining of type II collagen, biomechanical evaluation and hypertrophy-related gene expression analysis. The results showed that at least 30% chondrocytes were required to generate cartilage tissue with satisfactory shape and quality. Therefore, we preliminarily assessed the feasibility of engineering a human ear-shaped substitute using a coculture system with a 7:3 ratio of BMSCs to chondrocytes. After 8 weeks of in vitro culture, the precise architecture of the human ear-shaped construct was well maintained with the typical cartilaginous composition confirmed by histological assays.

  14. Comparison of three types of chondrocytes in collagen scaffolds for cartilage tissue engineering.

    PubMed

    Zhang, Lu; Spector, Myron

    2009-08-01

    The objective of this study was to compare the chondrogenesis in type I and II collagen scaffolds seeded with chondrocytes from three types of cartilage, after four weeks of culture: auricular (AU), articular (AR) and meniscal (ME). Related aims were to investigate the expression of a contractile muscle actin isoform, alpha-smooth muscle actin (SMA), in the cells in the scaffold and to determine the presence of a lubricating glycoprotein, lubricin, in the constructs. Adult goat AU, AR and ME chondrocytes were seeded into two types of collagen scaffolds: type II collagen and type I/III collagen. After four weeks of culture, the constructs were prepared for histochemical and immunohistochemical analysis of the distribution of glycosaminoglycan (GAG), types I and II collagen, elastin, SM and lubricin. AU constructs contained substantially more tissue than the AR and ME samples. The AU constructs exhibited neocartilage, but no elastin. There were no notable differences between the type I and II collagen scaffolds. Novel findings were the expression of SMA by the AU cells in the scaffolds and the presence of lubricin in the AR and AU constructs. AU cells have the capability to produce cartilage in collagen scaffolds under conditions in which there is little histogenesis by AR and ME cells.

  15. Nanocomposite scaffold for chondrocyte growth and cartilage tissue engineering: effects of carbon nanotube surface functionalization.

    PubMed

    Chahine, Nadeen O; Collette, Nicole M; Thomas, Cynthia B; Genetos, Damian C; Loots, Gabriela G

    2014-09-01

    The goal of this study was to assess the long-term biocompatibility of single-wall carbon nanotubes (SWNTs) for tissue engineering of articular cartilage. We hypothesized that SWNT nanocomposite scaffolds in cartilage tissue engineering can provide an improved molecular-sized substrate for stimulation of chondrocyte growth, as well as structural reinforcement of the scaffold's mechanical properties. The effect of SWNT surface functionalization (-COOH or -PEG) on chondrocyte viability and biochemical matrix deposition was examined in two-dimensional cultures, in three-dimensional (3D) pellet cultures, and in a 3D nanocomposite scaffold consisting of hydrogels+SWNTs. Outcome measures included cell viability, histological and SEM evaluation, GAG biochemical content, compressive and tensile biomechanical properties, and gene expression quantification, including extracellular matrix (ECM) markers aggrecan (Agc), collagen-1 (Col1a1), collagen-2 (Col2a1), collagen-10 (Col10a1), surface adhesion proteins fibronectin (Fn), CD44 antigen (CD44), and tumor marker (Tp53). Our findings indicate that chondrocytes tolerate functionalized SWNTs well, with minimal toxicity of cells in 3D culture systems (pellet and nanocomposite constructs). Both SWNT-PEG and SWNT-COOH groups increased the GAG content in nanocomposites relative to control. The compressive biomechanical properties of cell-laden SWNT-COOH nanocomposites were significantly elevated relative to control. Increases in the tensile modulus and ultimate stress were observed, indicative of a tensile reinforcement of the nanocomposite scaffolds. Surface coating of SWNTs with -COOH also resulted in increased Col2a1 and Fn gene expression throughout the culture in nanocomposite constructs, indicative of increased chondrocyte metabolic activity. In contrast, surface coating of SWNTs with a neutral -PEG moiety had no significant effect on Col2a1 or Fn gene expression, suggesting that the charged nature of the -COOH surface

  16. Ear-Shaped Stable Auricular Cartilage Engineered from Extensively Expanded Chondrocytes in an Immunocompetent Experimental Animal Model

    PubMed Central

    Pomerantseva, Irina; Bichara, David A.; Tseng, Alan; Cronce, Michael J.; Cervantes, Thomas M.; Kimura, Anya M.; Neville, Craig M.; Roscioli, Nick; Vacanti, Joseph P.; Randolph, Mark A.

    2016-01-01

    Advancement of engineered ear in clinical practice is limited by several challenges. The complex, largely unsupported, three-dimensional auricular neocartilage structure is difficult to maintain. Neocartilage formation is challenging in an immunocompetent host due to active inflammatory and immunological responses. The large number of autologous chondrogenic cells required for engineering an adult human-sized ear presents an additional challenge because primary chondrocytes rapidly dedifferentiate during in vitro culture. The objective of this study was to engineer a stable, human ear-shaped cartilage in an immunocompetent animal model using expanded chondrocytes. The impact of basic fibroblast growth factor (bFGF) supplementation on achieving clinically relevant expansion of primary sheep chondrocytes by in vitro culture was determined. Chondrocytes expanded in standard medium were either combined with cryopreserved, primary passage 0 chondrocytes at the time of scaffold seeding or used alone as control. Disk and human ear-shaped scaffolds were made from porous collagen; ear scaffolds had an embedded, supporting titanium wire framework. Autologous chondrocyte-seeded scaffolds were implanted subcutaneously in sheep after 2 weeks of in vitro incubation. The quality of the resulting neocartilage and its stability and retention of the original ear size and shape were evaluated at 6, 12, and 20 weeks postimplantation. Neocartilage produced from chondrocytes that were expanded in the presence of bFGF was superior, and its quality improved with increased implantation time. In addition to characteristic morphological cartilage features, its glycosaminoglycan content was high and marked elastin fiber formation was present. The overall shape of engineered ears was preserved at 20 weeks postimplantation, and the dimensional changes did not exceed 10%. The wire frame within the engineered ear was able to withstand mechanical forces during wound healing and neocartilage

  17. Ear-Shaped Stable Auricular Cartilage Engineered from Extensively Expanded Chondrocytes in an Immunocompetent Experimental Animal Model.

    PubMed

    Pomerantseva, Irina; Bichara, David A; Tseng, Alan; Cronce, Michael J; Cervantes, Thomas M; Kimura, Anya M; Neville, Craig M; Roscioli, Nick; Vacanti, Joseph P; Randolph, Mark A; Sundback, Cathryn A

    2016-02-01

    Advancement of engineered ear in clinical practice is limited by several challenges. The complex, largely unsupported, three-dimensional auricular neocartilage structure is difficult to maintain. Neocartilage formation is challenging in an immunocompetent host due to active inflammatory and immunological responses. The large number of autologous chondrogenic cells required for engineering an adult human-sized ear presents an additional challenge because primary chondrocytes rapidly dedifferentiate during in vitro culture. The objective of this study was to engineer a stable, human ear-shaped cartilage in an immunocompetent animal model using expanded chondrocytes. The impact of basic fibroblast growth factor (bFGF) supplementation on achieving clinically relevant expansion of primary sheep chondrocytes by in vitro culture was determined. Chondrocytes expanded in standard medium were either combined with cryopreserved, primary passage 0 chondrocytes at the time of scaffold seeding or used alone as control. Disk and human ear-shaped scaffolds were made from porous collagen; ear scaffolds had an embedded, supporting titanium wire framework. Autologous chondrocyte-seeded scaffolds were implanted subcutaneously in sheep after 2 weeks of in vitro incubation. The quality of the resulting neocartilage and its stability and retention of the original ear size and shape were evaluated at 6, 12, and 20 weeks postimplantation. Neocartilage produced from chondrocytes that were expanded in the presence of bFGF was superior, and its quality improved with increased implantation time. In addition to characteristic morphological cartilage features, its glycosaminoglycan content was high and marked elastin fiber formation was present. The overall shape of engineered ears was preserved at 20 weeks postimplantation, and the dimensional changes did not exceed 10%. The wire frame within the engineered ear was able to withstand mechanical forces during wound healing and neocartilage

  18. Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: Implications for cartilage tissue repair

    NASA Astrophysics Data System (ADS)

    Kisiday, J.; Jin, M.; Kurz, B.; Hung, H.; Semino, C.; Zhang, S.; Grodzinsky, A. J.

    2002-07-01

    Emerging medical technologies for effective and lasting repair of articular cartilage include delivery of cells or cell-seeded scaffolds to a defect site to initiate de novo tissue regeneration. Biocompatible scaffolds assist in providing a template for cell distribution and extracellular matrix (ECM) accumulation in a three-dimensional geometry. A major challenge in choosing an appropriate scaffold for cartilage repair is the identification of a material that can simultaneously stimulate high rates of cell division and high rates of cell synthesis of phenotypically specific ECM macromolecules until repair evolves into steady-state tissue maintenance. We have devised a self-assembling peptide hydrogel scaffold for cartilage repair and developed a method to encapsulate chondrocytes within the peptide hydrogel. During 4 weeks of culture in vitro, chondrocytes seeded within the peptide hydrogel retained their morphology and developed a cartilage-like ECM rich in proteoglycans and type II collagen, indicative of a stable chondrocyte phenotype. Time-dependent accumulation of this ECM was paralleled by increases in material stiffness, indicative of deposition of mechanically functional neo-tissue. Taken together, these results demonstrate the potential of a self-assembling peptide hydrogel as a scaffold for the synthesis and accumulation of a true cartilage-like ECM within a three-dimensional cell culture for cartilage tissue repair.

  19. Chondrocyte Apoptosis in the Pathogenesis of Osteoarthritis

    PubMed Central

    Hwang, Hyun Sook; Kim, Hyun Ah

    2015-01-01

    Apoptosis is a highly-regulated, active process of cell death involved in development, homeostasis and aging. Dysregulation of apoptosis leads to pathological states, such as cancer, developmental anomalies and degenerative diseases. Osteoarthritis (OA), the most common chronic joint disease in the elderly population, is characterized by progressive destruction of articular cartilage, resulting in significant disability. Because articular cartilage depends solely on its resident cells, the chondrocytes, for the maintenance of extracellular matrix, the compromising of chondrocyte function and survival would lead to the failure of the articular cartilage. The role of subchondral bone in the maintenance of proper cartilage matrix has been suggested as well, and it has been proposed that both articular cartilage and subchondral bone interact with each other in the maintenance of articular integrity and physiology. Some investigators include both articular cartilage and subchondral bone as targets for repairing joint degeneration. In late-stage OA, the cartilage becomes hypocellular, often accompanied by lacunar emptying, which has been considered as evidence that chondrocyte death is a central feature in OA progression. Apoptosis clearly occurs in osteoarthritic cartilage; however, the relative contribution of chondrocyte apoptosis in the pathogenesis of OA is difficult to evaluate, and contradictory reports exist on the rate of apoptotic chondrocytes in osteoarthritic cartilage. It is not clear whether chondrocyte apoptosis is the inducer of cartilage degeneration or a byproduct of cartilage destruction. Chondrocyte death and matrix loss may form a vicious cycle, with the progression of one aggravating the other, and the literature reveals that there is a definite correlation between the degree of cartilage damage and chondrocyte apoptosis. Because current treatments for OA act only on symptoms and do not prevent or cure OA, chondrocyte apoptosis would be a valid

  20. Surface zone articular chondrocytes modulate the bulk and surface mechanical properties of the tissue-engineered cartilage.

    PubMed

    Peng, Gordon; McNary, Sean M; Athanasiou, Kyriacos A; Reddi, A Hari

    2014-12-01

    The central hypothesis of functional tissue engineering is that an engineered construct can serve as a viable replacement tissue in vivo by replicating the structure and function of native tissue. In the case of articular cartilage, this requires the reproduction of the bulk mechanical and surface lubrication properties of native hyaline cartilage. Cartilage tissue engineering has primarily focused on achieving the bulk mechanical properties of native cartilage such as the compressive aggregate modulus and tensile strength. A scaffold-free self-assembling process has been developed that produces engineered cartilage with compressive properties approaching native tissue levels. Thus, the next step in this process is to begin addressing the friction coefficient and wear properties of these engineered constructs. The superficial zone protein (SZP), also known as lubricin or PRG4, is a boundary mode lubricant that is synthesized by surface zone (SZ) articular chondrocytes. Under conditions of high loading and low sliding speeds, SZP reduces friction and wear at the articular surface. The objective of this investigation was to determine whether increasing the proportion of SZ chondrocytes in cartilage constructs, in the absence of external stimuli such as growth factors and mechanical loading, would enhance the secretion of SZP and improve their frictional properties. In this study, cartilage constructs were engineered through a self-assembling process with varying ratios of SZ and middle zone (MZ) chondrocytes (SZ:MZ): 0:100, 25:75, 50:50, 75:25, and 100:0. Constructs containing different ratios of SZ and MZ chondrocytes did not significantly differ in the glycosaminoglycan composition or compressive aggregate modulus. In contrast, tensile properties and collagen content were enhanced in nearly all constructs containing greater amounts of SZ chondrocytes. Increasing the proportion of SZ chondrocytes had the hypothesized effect of improving the synthesis and secretion

  1. Precipitant induced porosity augmentation of polystyrene preserves the chondrogenicity of human chondrocytes.

    PubMed

    Joergensen, Natasja L; Foldager, Casper B; Le, Dang Q S; Lind, Martin; Lysdahl, Helle

    2016-12-01

    Cells constantly sense and receive chemical and physical signals from neighboring cells, interstitial fluid, and extracellular matrix, which they integrate and translate into intracellular responses. Thus, the nature of the surface on which cells are cultured in vitro plays an important role for cell adhesion, proliferation, and differentiation. Autologs chondrocyte implantation is considered the treatment of choice for larger cartilage defects in the knee. To obtain a sufficient number of chondrocytes for implantation multiple passaging is often needed, which raises concerns about the changes in the chondrogenic phenotype. In the present study, we analyzed the effect at cellular and molecular level of precipitant induced porosity augmentation (PIPA) of polystyrene surfaces on proliferation and differentiation of human chondrocytes. Human chondrocytes were isolated from healthy patients undergoing anterior cruciate ligament reconstruction and cultured on PIPA modified polystyrene surfaces. Microscopical analysis revealed topographically arranged porosity with micron pores and nanometer pits. Chondrocytes cultured on PIPA surfaces revealed no difference in cell viability and proliferation, but gene- and protein expressions of collagen type II were pronounced in the first passage of chondrocytes when compared to chondrocytes cultured on control surfaces. Additionally, an analysis of 40 kinases revealed that chondrocytes expanded on PIPA caused upregulated PI3K/mTOR pathway activation and inhibition of mTORC1 resulted in reduced sGAG synthesis. These findings indicate that PIPA modified polystyrene preserved the chondrogenicity of expanded human chondrocytes at gene and protein levels, which clinically may be attractive for the next generation of cell-culture surfaces for ex vivo cell growth. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3073-3081, 2016.

  2. In Vitro Expression of the Extracellular Matrix Components Aggrecan, Collagen Types I and II by Articular Cartilage-Derived Chondrocytes.

    PubMed

    Schneevoigt, J; Fabian, C; Leovsky, C; Seeger, J; Bahramsoltani, M

    2017-02-01

    The extracellular matrix (ECM) of hyaline cartilage is perfectly suited to transmit articular pressure load to the subchondral bone. Pressure is transferred by a high amount of aggrecan-based proteoglycans and collagen type II fibres in particular. After any injury, the hyaline cartilage is replaced by fibrocartilage, which is low in proteoglycans and contains collagen type I predominantly. Until now, long-term results of therapeutic procedures including cell-based therapies like autologous chondrocyte transplantation (ACT) lead to a replacement tissue meeting the composition of fibrocartilage. Therefore, it is of particular interest to discover how and to what extent isolation and in vitro cultivation of chondrocytes affect the cells and their expression of ECM components. Hyaline cartilage-derived chondrocytes were cultivated in vitro and observed microscopically over a time period of 35 days. The expression of collagen type I, collagen type II and aggrecan was analysed using RT-qPCR and Western blot at several days of cultivation. Chondrocytes presented a longitudinal shape for the entire cultivation period. While expression of collagen type I prevailed within the first days, only prolonged cultivation led to an increase in collagen type II and aggrecan expression. The results indicate that chondrocyte isolation and in vitro cultivation lead to a dedifferentiation at least to the stage of chondroprogenitor cells.

  3. Directed differentiation of induced pluripotent stem cells into chondrogenic lineages for articular cartilage treatment

    PubMed Central

    Lach, Michał; Richter, Magdalena; Pawlicz, Jarosław; Suchorska, Wiktoria M

    2014-01-01

    In recent years, increases in the number of articular cartilage injuries caused by environmental factors or pathological conditions have led to a notable rise in the incidence of premature osteoarthritis. Osteoarthritis, considered a disease of civilization, is the leading cause of disability. At present, standard methods for treating damaged articular cartilage, including autologous chondrocyte implantation or microfracture, are short-term solutions with important side effects. Emerging treatments include the use of induced pluripotent stem cells, a technique that could provide a new tool for treatment of joint damage. However, research in this area is still early, and no optimal protocol for transforming induced pluripotent stem cells into chondrocytes has yet been established. Developments in our understanding of cartilage developmental biology, together with the use of modern technologies in the field of tissue engineering, provide an opportunity to create a complete functional model of articular cartilage. PMID:25383175

  4. Cartilage Defect Treatments: With or without Cells? Mesenchymal Stem Cells or Chondrocytes? Traditional or Matrix-Assisted? A Systematic Review and Meta-Analyses

    PubMed Central

    Deng, Zhantao; Jin, Jiewen; Zhao, Jianning; Xu, Haidong

    2016-01-01

    Articular cartilage defects have been addressed by using multiple strategies. In the last two decades, promising new strategies by using assorted scaffolds and cell sources to induce tissue regeneration have emerged, such as autologous chondrocyte implantation (ACI) and mesenchymal stem cell implantation (MSCI). However, it is still controversial in the clinical strategies when to choose these treatments. Thus, we conducted a systematic review and meta-analyses to compare the efficacy and safety of different cartilage treatments. In our study, 17 studies were selected to compare different treatments for cartilage defects. The results of meta-analyses indicated that cell-based cartilage treatments showed significant better efficacy than cell-free treatments did (OR: 4.27, 95% CI: 2.19–8.34; WMD: 10.11, 95% CI: 2.69–16.53). Another result indicated that MACT had significant better efficacy than traditional ACI did (OR: 0.49, 95% CI: 0.30–0.82). Besides, the incidence of graft hypertrophy of MACT was slightly lower than that of traditional ACI (OR: 2.43, 95% CI: 1.00–5.94). Current data showed that the cell-based treatments and MACT are better options for cartilage treatments, but more well-designed comparative studies are still needed to enhance our understanding of different treatments for cartilage defects. PMID:26839570

  5. Characterization of human mesenchymal stem cell-engineered cartilage: analysis of its ultrastructure, cell density and chondrocyte phenotype compared to native adult and fetal cartilage.

    PubMed

    Hillel, Alexander T; Taube, Janis M; Cornish, Toby C; Sharma, Blanka; Halushka, Marc; McCarthy, Edward F; Hutchins, Grover M; Elisseeff, Jennifer H

    2010-01-01

    The production of engineered cartilage from mesenchymal stem cells is a rapidly developing field. Potential applications include the treatment of degenerative joint disease as well as the treatment of traumatic and surgical bone injury. Prior to clinical application, however, further characterization of the morphology, ultrastructure, biocompatibility, and performance of the engineered tissue is warranted. To achieve this, human mesenchymal stem cells (hMSCs) were grown in vitro in pellet culture for 3 weeks in chondrogenic medium conditions. The resultant engineered cartilage was compared to native adult and fetal tissue. Routine histology, special stains, and ultrastructural and quantitative histomorphometric analyses were performed. The engineered tissue demonstrated a similar chondrocyte phenotype, collagen fibril appearance, and matrix distribution when compared to native cartilage. By histomorphometric analysis, the cell density of the engineered cartilage was between that of native fetal and adult cartilage. The cell-to-matrix ratio and cellular area fraction of engineered cartilage samples was significantly greater than in adult samples, but indistinguishable from fetal cartilage samples, supporting the hypothesis that hMSC-engineered cartilage regeneration may mimic fetal cartilage development.

  6. Cell compaction influences the regenerative potential of passaged bovine articular chondrocytes in an ex vivo cartilage defect model.

    PubMed

    Schmutzer, Michael; Aszodi, Attila

    2017-04-01

    The loss and degradation of articular cartilage tissue matrix play central roles in the process of osteoarthritis (OA). New models for evaluating cartilage repair/regeneration are thus of great value for transferring various culture systems into clinically relevant situations. The repair process can be better monitored in ex vivo systems than in in vitro cell cultures. I have therefore established an ex vivo defect model prepared from bovine femoral condyles for evaluating cartilage repair by the implantation of cells cultured in various ways, e.g., monolayer-cultured cells or suspension or pellet cultures of articular bovine chondrocytes representing different cell compactions with variable densities of chondrocytes. I report that the integrin subunit α10 was significantly upregulated in suspension-cultured bovine chondrocytes at passage P2 compared with monolayer-cultured cells at P1 (p = 0.0083) and P2 (p < 0.05). Suspension-cultured cells did not promote cartilage repair when compared with implanted monolayer-cultured chondrocytes and pellets: 24.0 ± 0.66% for suspension cells, 46.4 ± 2.9% for monolayer cells, and 127.64 ± 0.90% for pellets (p < 0.0001) of the original defect volume (percentage of defect). Additional cultivation with chondrogenesis-promoting growth factors TGF-β1 and BMP-2 revealed an enhancing effect on cartilage repair in all settings. The advantage and innovation of this system over in vitro differentiation (e.g., micromass, pellet) assays is the possibility of examining and evaluating cartilage regeneration in an environment in which implanted cells are embedded within native surrounding tissue at the defect site. Such ex vivo explants might serve as a better model system to mimic clinical situations.

  7. Chondrocytes are released as viable cells during cartilage resorption associated with the formation of intrachondral canals in the rat tibial epiphysis.

    PubMed

    Alvarez, Jesús; Costales, Lorena; López-Muñiz, Alfonso; López, José M

    2005-06-01

    The development of cartilage canals is the first event of the ossification of the epiphyses in mammals. Canal formation differs from vascular invasion during primary ossification, since the former involves resorption of resting cartilage and is uncoupled from bone deposition. To learn more about the fate of resorbed chondrocytes during this process, we have carried out structural, cell proliferation, and in situ hybridization studies during the first stages of ossification of the rat tibial proximal epiphysis. Results concerning the formation of the cartilage canals implied the release of resting chondrocytes from the cartilage matrix to the canal cavity. Released chondrocytes had a well-preserved structure, expressed type-II collagen, and maintained the capacity to divide. All these data suggested that chondrocytes released into the canals remained viable for a specific time. Analysis of the proliferative activity at different regions of the cartilage canals showed that the percentage of proliferative chondrocytes at areas of active cartilage resorption was significantly higher than that in zones of low resorption. These results are consistent with the hypothesis that resting chondrocytes surrounding canals have a role in supplying cells for the development of the secondary ossification center. Since released chondrocytes are at an early stage of differentiation greatly preceding their entry into the apoptotic pathway and are exposed to a specific matrix, cellular, and humoral microenvironment, they might differentiate to other cell types and contribute to the ossification of the epiphysis.

  8. Matrigel scaffold combined with Ad-hBMP7-transfected chondrocytes improves the repair of rabbit cartilage defect

    PubMed Central

    Xia, Xiaopeng; Li, Jing; Xia, Bo; Yang, Huilin; Zhang, Dongmei; Zhou, Bin; Zhang, Jie; Zhou, Man; Liu, Fan

    2017-01-01

    The aim of this study was to explore an effective method for the repair of cartilage defects using chitosan/glycerophosphate (C/GP) gel- and Matrigel-engineered human bone morphogenetic protein 7 (hBMP7)-expressing chondrocytes. Rabbit chondrocytes were obtained, cultured in vitro and transfected with an adenovirus containing hBMP7 and green fluorescent protein (Ad-hBMP7-GFP). The expression of hBMP7 in the transfected cells was tested by reverse transcription-polymerase chain reaction (RT-PCR) and western blotting. The phenotype of the transfected cells was evaluated by detecting the yields of collagen II and hyaluronic acid using RT-PCR and enzyme-linked immunosorbent assay (ELISA). The growth of chondrocytes in the C/GP gel and Matrigel was accessed by measuring the cell growth rate, hematoxylin and eosin (H&E) staining and observation under a scanning microscope. Twelve adult male New Zealand white rabbits were randomly divided into three groups. Two cartilage defects were created in the rabbits' knees by aseptic surgery. Group A (n=4) did not receive any treatment, group B (n=4) were treated with C/GP gel and Matrigel-engineered Ad-mock-GFP-transfected chondrocytes, and group C (n=4) were treated with C/GP gel and Matrigel-engineered Ad-hBMP7-GFP-transfected chondrocytes. Rabbits were sacrificed at 4 weeks after transplantation, and the repair effect was measured by the Wakitani scoring method. On the basis of the RT-PCR and western blot results, hBMP7 was efficiently overexpressed in the Ad-hBMP7-GFP-transfected chondrocytes. The ELISA results showed that the yields of collagen II and hyaluronic acid in Ad-hBMP7-GFP-transfected chondrocytes were significantly higher than those in Ad-mock-GFP-transfected chondrocytes. Chondrocytes have a better morphology and arrangement in a Matrigel scaffold than in C/GP, as assessed by H&E staining and scanning microscopy. According to the Wakitani score, Matrigel combined with Ad-hBMP7-GFP-transfected chondrocytes

  9. TNF Accelerates Death of Mandibular Condyle Chondrocytes in Rats with Biomechanical Stimulation-Induced Temporomandibular Joint Disease

    PubMed Central

    Zhang, Hongyun; Zhang, Jing; Jing, Lei; Liao, Lifan; Wang, Meiqing

    2015-01-01

    Objective To determine if temporomandibular joint chondrocyte apoptosis is induced in rats with dental biomechanical stimulation and what a role TNF takes. Methods Thirty-two rats were divided into 4 groups (n = 8/group) and exposed to incisor mal-occlusion induced by unilateral anterior crossbite biomechanical stimulation. Two groups were sampled at 2 or 4 weeks. The other two groups were treated with local injections of a TNF inhibitor or PBS into the temporomandibular joints area at 2 weeks and then sampled at 4 weeks. Twenty-four rats either served as unilateral anterior crossbite mock operation controls (n = 8/group) with sampling at 2 or 4 weeks or received a local injection of the TNF inhibitor at 2 weeks with sampling at 4 weeks. Chondrocytes were isolated from the temporomandibular joints of 6 additional rats and treated with TNF in vitro. Joint samples were assessed using Hematoxylin&eosin, Safranin O, TUNEL and immunohistochemistry staining, real-time PCR, fluorogenic activity assays and Western blot analyses. The isolated chondrocytes were also analyzed by flow cytometry. Results Unilateral anterior crossbite stimulation led to temporomandibular joint cartilage degradation, associated with an increase in TUNEL-positive chondrocytes number, caspase-9 expression levels, and the release of cytochrome c from mitochondria at 2 weeks without changes in TNF and caspase-8 levels until after 4 weeks. TNF stimulated apoptosis of the isolated chondrocytes and up-regulated caspase-8 expression, but did not change caspase-9 expression levels. Local injection of TNF inhibitor down-regulated caspase-8 expression and reduced TUNEL-positive cell number, but did not reverse cartilage thickness reduction, caspase-9 up-regulation or cytochrome c release. Conclusions Unilateral anterior crossbite stimulation induces mitochondrion-mediated apoptosis of articular chondrocytes. TNF accelerated the unilateral anterior crossbite induced chondrocytes apoptosis via death

  10. Chondrocalcin is internalized by chondrocytes and triggers cartilage destruction via an interleukin-1β-dependent pathway.

    PubMed

    Bantsimba-Malanda, Claudie; Cottet, Justine; Netter, Patrick; Dumas, Dominique; Mainard, Didier; Magdalou, Jacques; Vincourt, Jean-Baptiste

    2013-01-01

    Chondrocalcin is among the most highly synthesized polypeptides in cartilage. This protein is released from its parent molecule, type II pro-collagen, after secretion by chondrocytes. A participation of extracellular, isolated chondrocalcin in mineralization was proposed more than 25 years ago, but never demonstrated. Here, exogenous chondrocalcin was found to trigger MMP13 secretion and cartilage destruction ex vivo in human cartilage explants and did so by modulating the expression of interleukin-1β in primary chondrocyte cultures in vitro. Chondrocalcin was found internalized by chondrocytes. Uptake was found mediated by a single 18-mer peptide of chondrocalcin, which does not exhibit homology to any known cell-penetrating peptide. The isolated peptide, when artificially linked as a tetramer, inhibited gene expression regulation by chondrocalcin, suggesting a functional link between uptake and gene expression regulation. At the same time, the tetrameric peptide potentiated chondrocalcin uptake by chondrocytes, suggesting a cooperative mechanism of entry. The corresponding peptide from type I pro-collagen supported identical cell-penetration, suggesting that this property may be conserved among C-propeptides of fibrillar pro-collagens. Structural modeling localized this peptide to the tips of procollagen C-propeptide trimers. Our findings shed light on unexpected function and mechanism of action of these highly expressed proteins from vertebrates.

  11. Concise Review: Mesenchymal Stem Cells for Functional Cartilage Tissue Engineering: Taking Cues from Chondrocyte-Based Constructs.

    PubMed

    Tan, Andrea R; Hung, Clark T

    2017-04-01

    Osteoarthritis, the most prevalent form of joint disease, afflicts 9% of the U.S. population over the age of 30 and costs the economy nearly $100 billion annually in healthcare and socioeconomic costs. It is characterized by joint pain and dysfunction, though the pathophysiology remains largely unknown. Due to its avascular nature and limited cellularity, articular cartilage exhibits a poor intrinsic healing response following injury. As such, significant research efforts are aimed at producing engineered cartilage as a cell-based approach for articular cartilage repair. However, the knee joint is mechanically demanding, and during injury, also a milieu of harsh inflammatory agents. The unforgiving mechano-chemical environment requires tissue replacements that are capable of bearing such burdens. The use of mesenchymal stem cells (MSCs) for cartilage tissue engineering has emerged as a promising cell source due to their ease of isolation, capacity to readily expand in culture, and ability to undergo lineage-specific differentiation into chondrocytes. However, to date, very few studies utilizing MSCs have successfully recapitulated the structural and functional properties of native cartilage, exposing the difficult process of uniformly differentiating stem cells into desired cell fates and maintaining the phenotype during in vitro culture and after in vivo implantation. To address these shortcomings, here, we present a concise review on modulating stem cell behavior, tissue development and function using well-developed techniques from chondrocyte-based cartilage tissue engineering. Stem Cells Translational Medicine 2017;6:1295-1303.

  12. PTHrP Overexpression Partially Inhibits a Mechanical Strain-Induced Arthritic Phenotype in Chondrocytes

    PubMed Central

    Wang, Dean; Taboas, Juan M.; Tuan, Rocky S.

    2010-01-01

    Objective Cell-based tissue engineering strategies are currently in clinical use and continue to be developed at a rapid pace for the repair of cartilage defects. Regardless of the repair methodology, chondrocytes within newly regenerated cartilage remain susceptible to the abnormal inflammatory and mechanical environments that underlie osteoarthritic disease, likely compromising the implant’s integration, function, and longevity. The present study investigates the use of parathyroid hormone-related peptide (PTHrP) overexpression for chondroprotection. Design Bovine articular chondrocytes were transfected with human PTHrP (hPTHrP) constructs (1-141 or 1-173) and subjected to injurious cyclic tensile strain (CTS; 0.5 Hz and 16% elongation) for 48 hours. mRNA expression of matrix remodeling, inflammatory signaling, hypertrophic, and apoptotic genes were examined with real-time reverse transcription polymerase chain reaction. Nitric oxide (NO) and prostaglandin E2 (PGE2) production were measured using the Griess assay and enzyme immunoassay, respectively. Results CTS induced an arthritic phenotype in articular chondrocytes as indicated by increased gene expression of collagenases and aggrecanases and increased production of NO and PGE2. Additionally, CTS increased collagen type X (Col10a1) mRNA expression, whereas overexpression of either hPTHrP isoform inhibited CTS-induced Col10a1 gene expression. However, hPTHrP 1-141 augmented CTS-induced NO and PGE2 production, and neither hPTHrP isoform had any significant effect on apoptotic genes. Conclusions Our results suggest that chondrocytes overexpressing PTHrP resist mechanical strain-induced hypertrophic-like changes. Therapeutic PTHrP gene transfer may be considered for chondroprotection applications in newly regenerated cartilage. PMID:21087676

  13. Devitalisation of human cartilage by high hydrostatic pressure treatment: Subsequent cultivation of chondrocytes and mesenchymal stem cells on the devitalised tissue

    PubMed Central

    Hiemer, B.; Genz, B.; Jonitz-Heincke, A.; Pasold, J.; Wree, A.; Dommerich, S.; Bader, R.

    2016-01-01

    The regeneration of cartilage lesions still represents a major challenge. Cartilage has a tissue-specific architecture, complicating recreation by synthetic biomaterials. A novel approach for reconstruction is the use of devitalised cartilage. Treatment with high hydrostatic pressure (HHP) achieves devitalisation while biomechanical properties are remained. Therefore, in the present study, cartilage was devitalised using HHP treatment and the potential for revitalisation with chondrocytes and mesenchymal stem cells (MSCs) was investigated. The devitalisation of cartilage was performed by application of 480 MPa over 10 minutes. Effective cellular inactivation was demonstrated by the trypan blue exclusion test and DNA quantification. Histology and electron microscopy examinations showed undamaged cartilage structure after HHP treatment. For revitalisation chondrocytes and MSCs were cultured on devitalised cartilage without supplementation of chondrogenic growth factors. Both chondrocytes and MSCs significantly increased expression of cartilage-specific genes. ECM stainings showed neocartilage-like structure with positive AZAN staining as well as collagen type II and aggrecan deposition after three weeks of cultivation. Our results showed that HHP treatment caused devitalisation of cartilage tissue. ECM proteins were not influenced, thus, providing a scaffold for chondrogenic differentiation of MSCs and chondrocytes. Therefore, using HHP-treated tissue might be a promising approach for cartilage repair. PMID:27671122

  14. Lithium chloride prevents interleukin-1β induced cartilage degradation and loss of mechanical properties.

    PubMed

    Thompson, Clare L; Yasmin, Habiba; Varone, Anna; Wiles, Anna; Poole, C Antony; Knight, Martin M

    2015-10-01

    Osteoarthritis is a chronic degenerative disease that affects the articular cartilage. Recent studies have demonstrated that lithium chloride exhibits significant efficacy as a chondroprotective agent, blocking cartilage degradation in response to inflammatory cytokines. However, conflicting literature suggests lithium may affect the physicochemical properties of articular cartilage and thus long-term exposure may negatively affect the mechanical functionality of this tissue. This study aims to investigate the effect of lithium chloride on the biomechanical properties of healthy and interleukin-1β treated cartilage in vitro and examines the consequences of long-term exposure to lithium on cartilage health in vivo. Bovine cartilage explants were treated with lithium chloride for 12 days. Chondrocyte viability, matrix catabolism and the biomechanical properties of bovine cartilage explants were not significantly altered following treatment. Consistent with these findings, long term-exposure (9 months) to dietary lithium did not induce osteoarthritis in rats, as determined by histological staining. Moreover, lithium chloride did not induce the expression of catabolic enzymes in human articular chondrocytes. In an inflammatory model of cartilage destruction, lithium chloride blocked interleukin-1β signaling in the form of nitric oxide and prostaglandin E2 release and prevented matrix catabolism such that the loss of mechanical integrity observed with interleukin-1β alone was inhibited. This study provides further support for lithium chloride as a novel compound for the treatment of osteoarthritis.

  15. Standardized butanol fraction of WIN-34B suppresses cartilage destruction via inhibited production of matrix metalloproteinase and inflammatory mediator in osteoarthritis human cartilage explants culture and chondrocytes

    PubMed Central

    2012-01-01

    Background WIN-34B is a novel Oriental medicine, which represents the n-butanol fraction prepared from dried flowers of Lonicera japonica Thunb and dried roots of Anemarrhena asphodeloides BUNGE. The component herb of WIN-34B is used for arthritis treatment in East Asian countries. The aim of this study was to determine the cartilage-protective effects and mechanisms of WIN-34B and its major phenolic compounds, chlorogenic acid and mangiferin, in osteoarthritis (OA) human cartilage explants culture and chondrocytes. Methods The investigation focused on whether WIN-34B and its standard compounds protected cartilage in interleukin (IL)-1β-stimulated cartilage explants culture and chondrocytes derived from OA patients. Also, the mechanisms of WIN-34B on matrix metalloproteinases (MMPs), tissue inhibitor of matrix metalloproteinases (TIMPs), inflammatory mediators, and mitogen-activated protein kinases (MAPKs) pathways were assessed. Results WIN-34B was not cytotoxic to cultured cartilage explants or chondrocytes. WIN-34B dose-dependently inhibited the release of glycosaminoglycan and type II collagen, increased the mRNA expression of aggrecan and type II collagen, and recovered the intensity of proteoglycan and collagen by histological analysis in IL-1β-stimulated human cartilage explants culture. The cartilage protective effect of WIN-34B was similar to or better than that of chlorogenic acid and mangiferin. Compared to chlorogenic acid and mangiferin, WIN-34B displayed equal or greater decreases in the levels of MMP-1, MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5, and markedly up-regulated TIMP-1 and TIMP-3. WIN-34B inhibited inflammatory mediators involved in cartilage destruction, such as prostaglandin E2, nitric oxide, tumor necrosis factor-alpha, and IL-1β. The phosphorylation of extracellular signal-regulated kinase, c-Jun N-terminal kinase (JNK), and p38 was significantly reduced by WIN-34B treatment, while phosphorylation of JNK was only inhibited by chlorogenic

  16. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering.

    PubMed

    Kundu, Joydip; Shim, Jin-Hyung; Jang, Jinah; Kim, Sung-Won; Cho, Dong-Woo

    2015-11-01

    Regenerative medicine is targeted to improve, restore or replace damaged tissues or organs using a combination of cells, materials and growth factors. Both tissue engineering and developmental biology currently deal with the process of tissue self-assembly and extracellular matrix (ECM) deposition. In this investigation, additive manufacturing (AM) with a multihead deposition system (MHDS) was used to fabricate three-dimensional (3D) cell-printed scaffolds using layer-by-layer (LBL) deposition of polycaprolactone (PCL) and chondrocyte cell-encapsulated alginate hydrogel. Appropriate cell dispensing conditions and optimum alginate concentrations for maintaining cell viability were determined. In vitro cell-based biochemical assays were performed to determine glycosaminoglycans (GAGs), DNA and total collagen contents from different PCL-alginate gel constructs. PCL-alginate gels containing transforming growth factor-β (TGFβ) showed higher ECM formation. The 3D cell-printed scaffolds of PCL-alginate gel were implanted in the dorsal subcutaneous spaces of female nude mice. Histochemical [Alcian blue and haematoxylin and eosin (H&E) staining] and immunohistochemical (type II collagen) analyses of the retrieved implants after 4 weeks revealed enhanced cartilage tissue and type II collagen fibril formation in the PCL-alginate gel (+TGFβ) hybrid scaffold. In conclusion, we present an innovative cell-printed scaffold for cartilage regeneration fabricated by an advanced bioprinting technology.

  17. Changes in collagens and chondrocytes in the temporomandibular joint cartilage in growing rats fed a liquid diet.

    PubMed

    Uekita, Hiroki; Takahashi, Shigeru; Domon, Takanori; Yamaguchi, Taihiko

    2015-11-01

    The temporomandibular joint (TMJ) of growing rats fed a soft diet is reported to be smaller in size and to have thinner condyle and glenoid fossa cartilage than rats fed a solid diet. The aim of this study was to determine the effect of a soft diet on the collagens and chondrocytes in the growing TMJ cartilage. Forty-eight male Wistar rats were divided into a control group fed a solid diet and an experimental group fed a liquid diet for 1-8 weeks. After the experimental period, the TMJs were harvested and examined histologically, immunohistochemically for collagen types I, II, and X, and with transmission electron microscopy. The condylar cartilage in the experimental rats showed weak immunoreactions for three types of collagens compared with the controls. The ultrastructure had fewer fine collagen fibrils in the experimental rats compared with that of the controls. The glenoid fossa cartilage in the experimental rats showed narrower Alcian blue-positive areas than the control staining. The immunoreactions for three types of collagen in the experimental rats were also weaker than those of the controls. The chondrocytes in the experimental rats appeared dark, had extended thin cytoplasmic processes, and had formed gap junctions, as assessed by transmission electron microscopy. Fewer fine collagen fibrils, but thick bands of collagen fibrils were observed in the glenoid fossa of the experimental cartilage. The results of the present study showed that a liquid diet had deleterious effects on the quality and quantity of collagens and chondrocytes in the TMJ cartilage in growing rats.

  18. Repair of bone defects in vivo using tissue engineered hypertrophic cartilage grafts produced from nasal chondrocytes.

    PubMed

    Bardsley, Katie; Kwarciak, Agnieska; Freeman, Christine; Brook, Ian; Hatton, Paul; Crawford, Aileen

    2017-01-01

    The regeneration of large bone defects remains clinically challenging. The aim of our study was to use a rat model to use nasal chondrocytes to engineer a hypertrophic cartilage tissue which could be remodelled into bone in vivo by endochondral ossification. Primary adult rat nasal chondrocytes were isolated from the nasal septum, the cell numbers expanded in monolayer culture and the cells cultured in vitro on polyglycolic acid scaffolds in chondrogenic medium for culture periods of 5-10 weeks. Hypertrophic differentiation was assessed by determining the temporal expression of key marker genes and proteins involved in hypertrophic cartilage formation. The temporal changes in the genes measured reflected the temporal changes observed in the growth plate. Collagen II gene expression increased 6 fold by day 7 and was then significantly downregulated from day 14 onwards. Conversely, collagen X gene expression was detectable by day 14 and increased 100-fold by day 35. The temporal increase in collagen X expression was mirrored by increases in alkaline phosphatase gene expression which also was detectable by day 14 with a 30-fold increase in gene expression by day 35. Histological and immunohistochemical analysis of the engineered constructs showed increased chondrocyte cell volume (31-45 μm), deposition of collagen X in the extracellular matrix and expression of alkaline phosphatase activity. However, no cartilage mineralisation was observed in in vitro culture of up to 10 weeks. On subcutaneous implantation of the hypertrophic engineered constructs, the grafts became vascularised, cartilage mineralisation occurred and loss of the proteoglycan in the matrix was observed. Implantation of the hypertrophic engineered constructs into a rat cranial defect resulted in angiogenesis, mineralisation and remodelling of the cartilage tissue into bone. Micro-CT analysis indicated that defects which received the engineered hypertrophic constructs showed 38.48% in bone volume

  19. High seeding density of human chondrocytes in agarose produces tissue-engineered cartilage approaching native mechanical and biochemical properties.

    PubMed

    Cigan, Alexander D; Roach, Brendan L; Nims, Robert J; Tan, Andrea R; Albro, Michael B; Stoker, Aaron M; Cook, James L; Vunjak-Novakovic, Gordana; Hung, Clark T; Ateshian, Gerard A

    2016-06-14

    Animal cells have served as highly controllable model systems for furthering cartilage tissue engineering practices in pursuit of treating osteoarthritis. Although successful strategies for animal cells must ultimately be adapted to human cells to be clinically relevant, human chondrocytes are rarely employed in such studies. In this study, we evaluated the applicability of culture techniques established for juvenile bovine and adult canine chondrocytes to human chondrocytes obtained from fresh or expired osteochondral allografts. Human chondrocytes were expanded and encapsulated in 2% agarose scaffolds measuring ∅3-4mm×2.3mm, with cell seeding densities ranging from 15 to 90×10(6)cells/mL. Subsets of constructs were subjected to transient or sustained TGF-β treatment, or provided channels to enhance nutrient transport. Human cartilaginous constructs physically resembled native human cartilage, and reached compressive Young's moduli of up to ~250kPa (corresponding to the low end of ranges reported for native knee cartilage), dynamic moduli of ~950kPa (0.01Hz), and contained 5.7% wet weight (%/ww) of glycosaminoglycans (≥ native levels) and 1.5%/ww collagen. We found that the initial seeding density had pronounced effects on tissue outcomes, with high cell seeding densities significantly increasing nearly all measured properties. Transient TGF-β treatment was ineffective for adult human cells, and tissue construct properties plateaued or declined beyond 28 days of culture. Finally, nutrient channels improved construct mechanical properties, presumably due to enhanced rates of mass transport. These results demonstrate that our previously established culture system can be successfully translated to human chondrocytes.

  20. Characterization of healthy and osteoarthritic chondrocyte cell patterns on phase contrast CT images of the knee cartilage matrix

    NASA Astrophysics Data System (ADS)

    Nagarajan, Mahesh B.; Coan, Paola; Huber, Markus B.; Yang, Chien-Chun; Glaser, Christian; Reiser, Maximilian F.; Wismüller, Axel

    2012-03-01

    The current approach to evaluating cartilage degeneration at the knee joint requires visualization of the joint space on radiographic images where indirect cues such as joint space narrowing serve as markers for osteoarthritis. A recent novel approach to visualizing the knee cartilage matrix using phase contrast CT imaging (PCI-CT) was shown to allow direct examination of chondrocyte cell patterns and their subsequent correlation to osteoarthritis. This study aims to characterize chondrocyte cell patterns in the radial zone of the knee cartilage matrix in the presence and absence of osteoarthritic damage through both gray-level co-occurrence matrix (GLCM) derived texture features as well as Minkowski Functionals (MF). Thirteen GLCM and three MF texture features were extracted from 404 regions of interest (ROI) annotated on PCI images of healthy and osteoarthritic specimens of knee cartilage. These texture features were then used in a machine learning task to classify ROIs as healthy or osteoarthritic. A fuzzy k-nearest neighbor classifier was used and its performance was evaluated using the area under the ROC curve (AUC). The best classification performance was observed with the MF features 'perimeter' and 'Euler characteristic' and with GLCM correlation features (f3 and f13). With the experimental conditions used in this study, both Minkowski Functionals and GLCM achieved a high classification performance (AUC value of 0.97) in the task of distinguishing between health and osteoarthritic ROIs. These results show that such quantitative analysis of chondrocyte patterns in the knee cartilage matrix can distinguish between healthy and osteoarthritic tissue with high accuracy.

  1. Paracrine effects of human adipose-derived mesenchymal stem cells in inflammatory stress-induced senescence features of osteoarthritic chondrocytes

    PubMed Central

    Platas, Julia; Guillén, Maria Isabel; del Caz, Maria Dolores Pérez; Gomar, Francisco; Castejón, Miguel Angel; Mirabet, Vicente; Alcaraz, Maria José

    2016-01-01

    Aging and exposure to stress would determine the chondrocyte phenotype in osteoarthritis (OA). In particular, chronic inflammation may contribute to stress-induced senescence of chondrocytes and cartilage degeneration during OA progression. Recent studies have shown that adipose-derived mesenchymal stem cells exert paracrine effects protecting against degenerative changes in chondrocytes. We have investigated whether the conditioned medium (CM) from adipose-derived mesenchymal stem cells may regulate senescence features induced by inflammatory stress in OA chondrocytes. Our results indicate that CM down-regulated senescence markers induced by interleukin-1β including senescence-associated β-galactosidase activity, accumulation of γH2AX foci and morphological changes with enhanced formation of actin stress fibers. Treatment of chondrocytes with CM also decreased the production of oxidative stress, the activation of mitogen-activated protein kinases, and the expression of caveolin-1 and p21. The effects of CM were related to the reduction in p53 acetylation which would be dependent on the enhancement of Sirtuin 1 expression. Therefore, CM may exert protective effects in degenerative joint conditions by countering the premature senescence of OA chondrocytes induced by inflammatory stress. PMID:27490266

  2. Loading-induced changes in synovial fluid affect cartilage metabolism.

    PubMed

    Van den Hoogen, B M; van de Lest, C H; van Weeren, P R; Lafeber, F P; Lopes-Cardozo, M; van Golde, L M; Barneveld, A

    1998-06-01

    The purpose of this study was to determine whether changes in the synovial fluid (SF) induced by in vivo loading can induce an alteration in the metabolic activity of chondrocytes in vitro. Therefore, SF was collected from ponies after a period of box rest and after they had exercise for a week. Normal, unloaded articular cartilage explants were cultured in 20% solutions of these SFs for 4 days and chondrocyte activity was determined by glycosaminoglycan (GAG) turnover. In explants cultured in post-exercise SF, GAG synthesis was enhanced and GAG release was diminished when compared to cultures in pre-exercise SF. SF analysis showed that levels of insulin-like growth factors (IGF-I and IGF-II) tended to be higher in post-exercise SF, while no differences were found in metalloproteinase activity, hyaluronic acid and protein concentrations. This study showed that anabolic effects of joint loading on cartilage are, at least partially, mediated by alterations in the SF.

  3. Mechanical properties and structure-function relationships in articular cartilage repaired using IGF-I gene-enhanced chondrocytes.

    PubMed

    Griffin, Darvin J; Ortved, Kyla F; Nixon, Alan J; Bonassar, Lawrence J

    2016-01-01

    Several studies have demonstrated the benefits of IGF-I gene therapy in enhancing the histologic and biochemical content of cartilage repaired by chondrocyte transplantation. However, there is little to no data on the mechanical performance of IGF-I augmented cartilage grafts. This study evaluated the compressive properties of full-thickness chondral defects in the equine femur repaired with and without IGF-I gene therapy. Animals were randomly assigned to one of three study cohorts based on chondrocyte treatment provided in each defect: (i) IGF-I gene delivered by recombinant adeno-associated virus (rAAV)-5; (ii) AAV-5 delivering GFP as a reporter; (iii) naïve cells without virus. In each case, the opposite limb was implanted with a fibrin carrier without cells. Samples were prepared for confined compression testing to measure the aggregate modulus and hydraulic permeability. All treatment groups, regardless of cell content or transduction, had mechanical properties inferior to native cartilage. Overexpression of IGF-I increased modulus and lowered permeability relative to other treatments. Investigation of structure-property relationships revealed that Ha and k were linearly correlated with GAG content but logarithmically correlated with collagen content. This provides evidence that IGF-I gene therapy can improve healing of articular cartilage and can greatly increase the mechanical properties of repaired grafts.

  4. Inhibition of phosphate-induced apoptosis in resting zone chondrocytes by thrombin peptide 508.

    PubMed

    Zhong, Ming; Carney, Darrell H; Ryaby, James T; Schwartz, Zvi; Boyan, Barbara D

    2009-01-01

    Growth plate chondrocytes are susceptible to apoptosis. Terminally differentiated chondrocytes are deleted via apoptosis, which primes the growth plate to vascular invasion and subsequent bone formation. Whether less differentiated resting zone chondrocytes are subject to the same mechanism that governs the apoptotic pathway of more differentiated growth zone chondrocytes is not known. In our current study, we demonstrated that inorganic phosphate, a key inducer of growth plate chondrocyte apoptosis, also causes apoptosis in resting zone chondrocytes, via a pathway similar to the one in growth zone chondrocytes. Our results demonstrated that the conditions that cause growth plate chondrocyte apoptosis lie in the external environment, instead of the differences in differentiation state.

  5. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications.

    PubMed

    Markstedt, Kajsa; Mantas, Athanasios; Tournier, Ivan; Martínez Ávila, Héctor; Hägg, Daniel; Gatenholm, Paul

    2015-05-11

    The introduction of 3D bioprinting is expected to revolutionize the field of tissue engineering and regenerative medicine. The 3D bioprinter is able to dispense materials while moving in X, Y, and Z directions, which enables the engineering of complex structures from the bottom up. In this study, a bioink that combines the outstanding shear thinning properties of nanofibrillated cellulose (NFC) with the fast cross-linking ability of alginate was formulated for the 3D bioprinting of living soft tissue with cells. Printability was evaluated with concern to printer parameters and shape fidelity. The shear thinning behavior of the tested bioinks enabled printing of both 2D gridlike structures as well as 3D constructs. Furthermore, anatomically shaped cartilage structures, such as a human ear and sheep meniscus, were 3D printed using MRI and CT images as blueprints. Human chondrocytes bioprinted in the noncytotoxic, nanocellulose-based bioink exhibited a cell viability of 73% and 86% after 1 and 7 days of 3D culture, respectively. On the basis of these results, we can conclude that the nanocellulose-based bioink is a suitable hydrogel for 3D bioprinting with living cells. This study demonstrates the potential use of nanocellulose for 3D bioprinting of living tissues and organs.

  6. Loading-induced changes in synovial fluid affect cartilage metabolism.

    PubMed

    van de Lest, C H; van den Hoogen, B M; van Weeren, P R

    2000-01-01

    The object of this study was to determine whether changes in the synovial fluid (SF) induced by in vivo loading can alter the metabolic activity of chondrocytes in vitro, and, if so, whether insulin-like growth factor-I (IGF-I) is responsible for this effect. Therefore, SF was collected from ponies after a period of box rest and after they had been exercised for a week. Normal, unloaded articular cartilage explants were cultured in 20% solutions of these SFs for 4 days and chondrocyte bioactivity was determined by glycosaminoglycan (GAG) turnover (i.e., the incorporation of 35SO4 into GAG and the release of GAG into the medium). Furthermore, the extent to which the bioactivity is IGF-I-dependent was determined in a cartilage explant culture in 20% SF, in the presence and absence of anti-IGF-I antibodies. In explants cultured in post-exercise SF, GAG synthesis was enhanced and GAG release was diminished when compared to cultures in pre-exercise SF. SF analysis showed that IGF-I and IGFBP-3 levels were increased in post-exercise SF. There was a positive correlation between IGF-I levels and proteoglycan synthesis, but no correlation between IGF-I levels and proteoglycan release. Addition of anti-IGF-I antibodies significantly inhibited stimulation of proteoglycan synthesis in explants cultured in SF with 40%. However, there was no difference in inhibition of proteoglycan synthesis between pre- and post-exercise SF which indicated that the relative contribution of IGF-I in the stimulating effect of SF did not change. Proteoglycan release was not influenced by the presence of anti-IGF-I antibodies. It is concluded that chondrocyte metabolic activity is at least partially regulated by changes in the SF induced by in vivo loading. Exercise altered the SF in a way that it had a favourable effect on cartilage PG content by enhancing the PG synthesis and reducing the PG breakdown. IGF-I is an important contributor to the overall stimulating effect of SF on cartilage

  7. Influence of Knee Immobilization on Chondrocyte Apoptosis and Histological Features of the Anterior Cruciate Ligament Insertion and Articular Cartilage in Rabbits

    PubMed Central

    Mutsuzaki, Hirotaka; Nakajima, Hiromi; Wadano, Yasuyoshi; Furuhata, Syogo; Sakane, Masataka

    2017-01-01

    This study examined the influence of immobilization on chondrocyte apoptosis and histological features of the anterior cruciate ligament (ACL) insertion and knee articular cartilage in rabbits. Forty-eight male Japanese white rabbits were assigned to an immobilization (n = 24) or sham (n = 24) group. Rabbits in the immobilization group underwent complete unilateral surgical knee immobilization and rabbits in the sham group underwent a sham surgery. The average thickness of the glycosaminoglycan (GAG) stained red area by safranin O staining, the chondrocyte apoptosis rate and the chondrocyte proliferation rate in the cartilage layer in the ACL insertion and the articular cartilage of the medial tibial condyle were measured at one, two, four and eight weeks in six animals from each group. In the ACL insertion, the chondrocyte apoptosis rate was higher in the immobilization group than in the sham group at two and eight weeks after surgery (p < 0.05). The chondrocyte proliferation rate gradually decreased from two weeks to eight weeks in the immobilization group. The GAG layer was thinner in the immobilization group than in the sham group at two, four and eight weeks after surgery (p < 0.05). In the articular cartilage, the chondrocyte apoptosis rate in the immobilization group was higher than in the sham group at four and eight weeks after surgery (p < 0.05). The GAG layer was significantly thinner in the immobilization group than that in the sham group at four and eight weeks after surgery (p < 0.05). Knee immobilization significantly increased chondrocyte apoptosis at two and eight weeks after surgery in the ACL insertion and at four and eight weeks after surgery in the articular cartilage of the medial tibial condyle, and decreased GAG layer thickness from two to eight weeks after surgery in the ACL insertion and from four to eight weeks after surgery in the articular cartilage. PMID:28134763

  8. ATX-LPA1 axis contributes to proliferation of chondrocytes by regulating fibronectin assembly leading to proper cartilage formation

    PubMed Central

    Nishioka, Tatsuji; Arima, Naoaki; Kano, Kuniyuki; Hama, Kotaro; Itai, Eriko; Yukiura, Hiroshi; Kise, Ryoji; Inoue, Asuka; Kim, Seok-Hyung; Solnica-Krezel, Lilianna; Moolenaar, Wouter H.; Chun, Jerold; Aoki, Junken

    2016-01-01

    The lipid mediator lysophosphatidic acid (LPA) signals via six distinct G protein-coupled receptors to mediate both unique and overlapping biological effects, including cell migration, proliferation and survival. LPA is produced extracellularly by autotaxin (ATX), a secreted lysophospholipase D, from lysophosphatidylcholine. ATX-LPA receptor signaling is essential for normal development and implicated in various (patho)physiological processes, but underlying mechanisms remain incompletely understood. Through gene targeting approaches in zebrafish and mice, we show here that loss of ATX-LPA1 signaling leads to disorganization of chondrocytes, causing severe defects in cartilage formation. Mechanistically, ATX-LPA1 signaling acts by promoting S-phase entry and cell proliferation of chondrocytes both in vitro and in vivo, at least in part through β1-integrin translocation leading to fibronectin assembly and further extracellular matrix deposition; this in turn promotes chondrocyte-matrix adhesion and cell proliferation. Thus, the ATX-LPA1 axis is a key regulator of cartilage formation. PMID:27005960

  9. Effect of autophagy induced by dexamethasone on senescence in chondrocytes.

    PubMed

    Xue, Enxing; Zhang, Yu; Song, Bing; Xiao, Jun; Shi, Zhanjun

    2016-10-01

    The aim of the current study was to explore the effects of dexamethasone (DXM) on autophagy and senescence in chondrocytes. Collagen II and aggrecan were examined in normal chondrocytes isolated from Sprague‑Dawley rats. Following stimulation with DXM, LysoTracker Red staining, monodansylcadaverine (MDC) staining, green fluorescent protein‑red fluorescent protein‑light chain 3 (LC3) and western blotting were used to detect autophagy levels in the chondrocytes. Mechanistic target of rapamycin (mTOR) pathway‑associated molecules were investigated by western blotting. Cell senescence was analyzed by senescence‑associated (SA)‑β‑galactosidase (β‑gal) staining. A dose‑dependent increase in the number of autophagic vacuoles was observed in the DXM‑treated chondrocytes, as demonstrated by LysoTracker Red and MDC staining. A dose‑dependent increase in autophagosome formation was observed in the DXM‑treated chondrocytes. Expression of LC3‑II and beclin‑1 was increased by DXM, in particular in the cells treated with DXM for 4 days. However, P62 expression was reduced as a result of treatment. SA‑β‑gal staining indicated that DXM increased cell senescence. Notably, DXM‑induced cell senescence was exacerbated by the autophagic inhibitor 3‑MA. Autophagy induced by DXM protected chondrocytes from senescence, and it is suggested that the mTOR pathway may be involved in the activation of DXM‑induced autophagy.

  10. Effect of autophagy induced by dexamethasone on senescence in chondrocytes

    PubMed Central

    Xue, Enxing; Zhang, Yu; Song, Bing; Xiao, Jun; Shi, Zhanjun

    2016-01-01

    The aim of the current study was to explore the effects of dexamethasone (DXM) on autophagy and senescence in chondrocytes. Collagen II and aggrecan were examined in normal chondrocytes isolated from Sprague-Dawley rats. Following stimulation with DXM, LysoTracker Red staining, monodansylcadaverine (MDC) staining, green fluorescent protein-red fluorescent protein-light chain 3 (LC3) and western blotting were used to detect autophagy levels in the chondrocytes. Mechanistic target of rapamycin (mTOR) pathway-associated molecules were investigated by western blotting. Cell senescence was analyzed by senescence-associated (SA)-β-galactosidase (β-gal) staining. A dose-dependent increase in the number of autophagic vacuoles was observed in the DXM-treated chondrocytes, as demonstrated by LysoTracker Red and MDC staining. A dose-dependent increase in autophagosome formation was observed in the DXM-treated chondrocytes. Expression of LC3-II and beclin-1 was increased by DXM, in particular in the cells treated with DXM for 4 days. However, P62 expression was reduced as a result of treatment. SA-β-gal staining indicated that DXM increased cell senescence. Notably, DXM-induced cell senescence was exacerbated by the autophagic inhibitor 3-MA. Autophagy induced by DXM protected chondrocytes from senescence, and it is suggested that the mTOR pathway may be involved in the activation of DXM-induced autophagy. PMID:27572674

  11. Collagen type XII and versican are present in the early stages of cartilage tissue formation by both redifferentating passaged and primary chondrocytes.

    PubMed

    Taylor, Drew W; Ahmed, Nazish; Parreno, Justin; Lunstrum, Gregory P; Gross, Allan E; Diamandis, Eleftherios P; Kandel, Rita A

    2015-02-01

    Current approaches to cartilage tissue engineering require a large number of chondrocytes. Although chondrocyte numbers can be expanded in monolayer culture, the cells dedifferentiate and unless they can be redifferentiated are not optimal to use for cartilage repair. We took advantage of the differential effect of culture conditions on the ability of passaged and primary chondrocytes to form cartilage tissue to dissect out the extracellular matrix (ECM) molecules produced and accumulated in the early stages of passaged cell cartilage tissue formation as we hypothesized that passaged bovine cells that form cartilage accumulate a pericellular matrix that differs from cells that do not form cartilage. Twice passaged bovine chondrocytes (P2) (cartilage forming), or as a control primary chondrocytes (P0) (which do not generate cartilage), were cultured on three-dimensional membrane inserts in serum-free media. P2 redifferentiation was occurring during the first 8 days as indicated by increased expression of the chondrogenic genes Sox9, collagen type II, aggrecan, and COMP, suggesting that this is an appropriate time period to examine the ECM. Mass spectrometry showed that the P2 secretome (molecules released into the media) at 1 week had higher levels of collagen types I, III, and XII, and versican while type II collagen and COMP were found at higher levels in the P0 secretome. There was increased collagen synthesis and retention by P2 cells compared to P0 cells as early as 3 days of culture. Confocal microscopy showed that types XII, III, and II collagen, aggrecan, versican, and decorin were present in the ECM of P2 cells. In contrast, collagen types I, II, and III, aggrecan, and decorin were present in the ECM of P0 cells. As primary chondrocytes grown in serum-containing media, a condition that allows for the generation of cartilage tissue in vitro, also accumulate versican and collagen XII, this study suggests that these molecules may be necessary to provide a

  12. TWIST1 induces MMP3 expression through up-regulating DNA hydroxymethylation and promotes catabolic responses in human chondrocytes

    PubMed Central

    Hasei, Joe; Teramura, Takeshi; Takehara, Toshiyuki; Onodera, Yuta; Horii, Takuro; Olmer, Merissa; Hatada, Izuho; Fukuda, Kanji; Ozaki, Toshifumi; Lotz, Martin K.; Asahara, Hiroshi

    2017-01-01

    The objective was to investigate the levels of TWIST1 in normal and OA cartilage and examine its role in regulating gene expression in chondrocytes. Human cartilage tissues and chondrocytes were obtained at autopsy from normal knee joints and from OA-affected joints at the time of total knee arthroplasty. TWIST1 expression was increased in human OA knee cartilage compared to normal knee cartilage. TWIST1 induced matrix metalloproteinase 3 (MMP3) expression without direct binding to MMP3 promoter and increased the 5-hydroxymethylcytosine (5hmC) level at the MMP3 promoter. The effect of TWIST1 on expression of TET family (TET1, 2 and 3) was measured in stable TWIST1 transfected TC28 cells, and TET1 expression was up-regulated. TWIST1 dependent upregulation of Mmp3 expression was suppressed in Tet triple KO fibroblast derived from mouse ES cells. Increased TWIST1 expression is a feature of OA-affected cartilage. We identified a novel mechanism of catabolic reaction where TWIST1 up-regulates MMP3 expression by enriching 5hmC levels at the MMP3 promoter via TET1 induction. These findings implicate TWIST1 as an important factor regulating OA related gene expression. Clarifying epigenetic mechanisms of 5hmC induced by TWIST1 is a critical molecule to understanding OA pathogenesis. PMID:28220902

  13. Laser-induced regeneration of cartilage

    NASA Astrophysics Data System (ADS)

    Sobol, Emil; Shekhter, Anatoly; Guller, Anna; Baum, Olga; Baskov, Andrey

    2011-08-01

    Laser radiation provides a means to control the fields of temperature and thermo mechanical stress, mass transfer, and modification of fine structure of the cartilage matrix. The aim of this outlook paper is to review physical and biological aspects of laser-induced regeneration of cartilage and to discuss the possibilities and prospects of its clinical applications. The problems and the pathways of tissue regeneration, the types and features of cartilage will be introduced first. Then we will review various actual and prospective approaches for cartilage repair; consider possible mechanisms of laser-induced regeneration. Finally, we present the results in laser regeneration of joints and spine disks cartilages and discuss some future applications of lasers in regenerative medicine.

  14. Immunohistochemical study of collagen types I and II and procollagen IIA in human cartilage repair tissue following autologous chondrocyte implantation.

    PubMed

    Roberts, S; Menage, J; Sandell, L J; Evans, E H; Richardson, J B

    2009-10-01

    This study has assessed the relative proportions of type I and II collagens and IIA procollagen in full depth biopsies of repair tissue in a large sample of patients treated with autologous chondrocyte implantation (ACI). Sixty five full depth biopsies were obtained from knees of 58 patients 8-60 months after treatment by ACI alone (n=55) or in combination with mosaicplasty (n=10). In addition articular cartilage was examined from eight individuals (aged 10-50) as controls. Morphology and semi-quantitative immunohistochemistry for collagen types I and II and procollagen IIA in the repair tissue were studied. Repair cartilage thickness was 2.89+/-1.5 mm and there was good basal integration between the repair cartilage, calcified cartilage and subchondral bone. Sixty five percent of the biopsies were predominantly fibrocartilage (mostly type I collagen and IIA procollagen), 15% were hyaline cartilage (mostly type II collagen), 17% were of mixed morphology and 3% were fibrous tissue (mostly type I collagen). Type II collagen and IIA procollagen were usually found in the lower regions near the bone and most type II collagen was present 30-60 months after treatment. The presence of type IIA procollagen in the repair tissue supports our hypothesis that this is indicative of a developing cartilage, with the ratio of type II collagen:procollagen IIA increasing from <2% in the first two years post-treatment to 30% three to five years after treatment. This suggests that cartilage repair tissue produced following ACI treatment, is likely to take some years to mature.

  15. [The dose dependent effect of glycosaminoglycan peptide complex on corticosteroid-induced disordered metabolism in cartilage tissue of rats].

    PubMed

    Annefeld, M

    1989-01-01

    Systemic corticosteroid treatment induces morphological and functional changes in the articular cartilage similar to those in human osteoarthritis. In animal experiments the dexamethasone-induced inhibition of chondrocyte metabolism can be reduced in a dose-related manner by concomitant treatment with glycosaminoglycan-peptide complexes (GP-C)***). The metabolic changes in cartilage tissues of the joint and Processus Xiphoideus measured quantitatively by 35S-sulphate incorporation are comparable. The results indicate that GP-C could also have a dose-related effect on human osteoarthritic cartilage.

  16. Resveratrol Interferes with IL1-β-Induced Pro-Inflammatory Paracrine Interaction between Primary Chondrocytes and Macrophages

    PubMed Central

    Limagne, Emeric; Lançon, Allan; Delmas, Dominique; Cherkaoui-Malki, Mustapha; Latruffe, Norbert

    2016-01-01

    State of the art. Osteoarthritis (OA) is a chronic articular disease characterized by cartilage degradation and osteophyte formation. OA physiopathology is multifactorial and involves mechanical and hereditary factors. So far, there is neither preventive medicine to delay cartilage breakdown nor curative treatment. Objectives. To investigate pro-inflammatory paracrine interactions between human primary chondrocytes and macrophages following interleukin-1-β (IL-1β) treatment; to evaluate the molecular mechanism responsible for the inhibitory effect of resveratrol. Results. The activation of NF-κB in chondrocytes by IL-1β induced IL-6 secretion. The latter will then activate STAT3 protein in macrophages. Moreover, STAT3 was able to positively regulate IL-6 secretion, as confirmed by the doubling level of IL-6 in the coculture compared to macrophage monoculture. These experiments confirm the usefulness of the coculture model in the inflammatory arthritis-linked process as a closer biological situation to the synovial joint than separated chondrocytes and macrophages. Il also demonstrated the presence of an inflammatory amplification loop induced by IL-1β. Resveratrol showed a strong inhibitory effect on the pro-inflammatory marker secretion. The decrease of IL-6 secretion is dependent on the NFκB inhibition in the chondrocytes. Such reduction of the IL-6 level can limit STAT3 activation in the macrophages, leading to the interruption of the inflammatory amplification loop. Conclusion. These results increase our understanding of the anti-inflammatory actions of resveratrol and open new potential approaches to prevent and treat osteoarthritis. PMID:27187448

  17. Circular RNA Related to the Chondrocyte ECM Regulates MMP13 Expression by Functioning as a MiR-136 ‘Sponge’ in Human Cartilage Degradation

    PubMed Central

    Liu, Qiang; Zhang, Xin; Hu, Xiaoqing; Dai, Linghui; Fu, Xin; Zhang, Jiying; Ao, Yingfang

    2016-01-01

    Circular RNAs (circRNAs) are involved in the development of various diseases, but there is little knowledge of circRNAs in osteoarthritis (OA). The aim of study was to identify circRNA expression in articular cartilage and to explore the function of chondrocyte extracellular matrix (ECM)-related circRNAs (circRNA-CER) in cartilage. To identify circRNAs that are specifically expressed in cartilage, we compared the expression of circRNAs in OA cartilage with that in normal cartilage. Bioinformatics was employed to predict the interaction of circRNAs and mRNAs in cartilage. Loss-of-function and rescue experiments for circRNA-CER were performed in vitro. A total of 71 circRNAs were differentially expressed in OA and normal cartilage. CircRNA-CER expression increased with interleukin-1 and tumor necrosis factor levels in chondrocytes. Silencing of circRNA-CER using small interfering RNA suppressed MMP13 expression and increased ECM formation. CircRNA-CER could compete for miR-136 with MMP13. Our results demonstrated that circRNA-CER regulated MMP13 expression by functioning as a competing endogenous RNA (ceRNA) and participated in the process of chondrocyte ECM degradation. We propose that circRNA-CER could be used as a potential target in OA therapy. PMID:26931159

  18. Cultured chondrocyte and porcine cartilage-derived substance (PCS) construct as a possible dorsal augmentation material in rhinoplasty: A preliminary animal study.

    PubMed

    Kim, Yoo Suk; Park, Do-Yang; Cho, Yong Hyun; Chang, Jae Won; Choi, Jae Won; Park, Joo Kyung; Min, Byung Hyun; Shin, Yoo Seob; Kim, Chul Ho

    2015-05-01

    As there is no single ideal material for dorsal augmentation in rhinoplasty, there has been a continuing need for the development of improved materials. Therefore, we aimed to evaluate the outcome of using a novel tissue-engineered construct composed of autologous chondrocytes cultured with a porcine cartilage-derived substance (PCS) scaffold as an augmentation material in rhinoplasty. A scaffold derived from decellularized and powdered porcine articular cartilage was prepared. The rabbit articular cartilage was used as the source of homologous chondrocytes, which were expanded and cultured with the PCS scaffold for 7 weeks. The chondrocyte-PCS constructs were then surgically implanted on the nasal dorsum of six rabbits. Four and eight weeks after implantation, the gross morphology, radiologic images, and histologic features of the site of implant were analyzed. The rabbits showed no signs of postoperative inflammation and infection. The degree of dorsal augmentation was maintained during the 8-week postoperative observation period. Postoperative histologic examinations showed chondrocyte proliferation without an inflammatory response. However, neo-cartilage formation from the constructs was not confirmed. The biocompatibility and structural features of tissue-engineered chondrocyte-PCS constructs indicate their potential as candidate dorsal augmentation material for use in rhinoplasty.

  19. Is autologous chondrocyte implantation (ACI) an adequate treatment option for repair of cartilage defects in paediatric patients?

    PubMed

    Kaszkin-Bettag, Marietta

    2013-08-01

    Cartilage lesions in the knee of juvenile patients require an effective repair to regain life-long functional activity of the joint. Autologous chondrocyte implantation (ACI) is discussed to be advantageous over other methods for cartilage repair regarding long-term outcome. ACI has successfully been applied in juvenile patients, although currently recommended for patients ≥18 years of age. Only few controlled clinical trials present evidence of efficacy and safety of ACI in adolescent patients. ACI products have to undergo the process of a marketing authorisation application, including the submission of a paediatric investigation plan (PIP). Data from prospective clinical studies or retrospective collection of long-term data in paediatric patients should be submitted for risk-benefit evaluation by the Paediatric Committee (PDCO).

  20. Loss of Vhl in cartilage accelerated the progression of age-associated and surgically induced murine osteoarthritis

    PubMed Central

    Weng, Tujun; Xie, Yangli; Yi, Lingxian; Huang, Junlan; Luo, Fengtao; Du, Xiaolan; Chen, Liang; Liu, Chongyang; Chen, Di; Chen, Lin

    2014-01-01

    Objective To investigate the role of Vhl in maintaining the integrity of articular cartilage and in the development of experimental osteoarthritis (OA). Method Histology of articular cartilage and subchondral bone in both Vhl cKO and WT mice were analyzed by histopathology and micro-CT. Articular cartilage destruction and proteoglycan loss were scored in aged (12-month-old) mice as well as in mice with surgically induced OA. Apoptosis of cartilage in age-related and surgically induced OA was detected with TUNNEL assay. Expressions of VHL, Fas, LC-3, HIF-1α, HIF-2α, p-mTOR and MMP-13 in the knee joints were analyzed by immunostaining. Results No gross differences in cartilage were observed between Vhl cKO and WT mice at age 4 months. However, Vhl cKO mice displayed accelerated age-associated spontaneous OA and surgically induced OA. Cartilage destruction and proteoglycan loss were observed in the absence of Vhl. In addition, inactivation of Vhl resulted in up-regulation of HIF-2α and increased chondrocyte apoptosis and decreased expression of autophagy during OA development. Immunohistochemical staining also showed that Vhl deficiency led to increased expression of Fas, p-mTOR and MMP-13, and those genes were associated with cell apoptosis, autophagy and cartilage matrix breakdown, respectively. Conclusion Loss of Vhl in adult articular cartilage is associated with earlier dysregulation of cartilage homeostasis, characterized by an increased chondrocyte apoptosis, compromised chondrocyte autophagy, and an accelerated age-related and surgery-induced OA development. These results highlight the novel role of Vhl in maintaining joint homeostasis and OA development. PMID:24999110

  1. Measuring microscale strain fields in articular cartilage during rapid impact reveals thresholds for chondrocyte death and a protective role for the superficial layer

    PubMed Central

    Bartell, Lena R.; Fortier, Lisa A.; Bonassar, Lawrence J.; Cohen, Itai

    2015-01-01

    Articular cartilage is a heterogeneous soft tissue that dissipates and distributes loads in mammalian joints. Though robust, cartilage is susceptible to damage from loading at high rates or magnitudes. Such injurious loads have been implicated in degenerative changes, including chronic osteoarthritis (OA), which remains a leading cause of disability in developed nations. Despite decades of research, mechanisms of OA initiation after trauma remain poorly understood. Indeed, although bulk cartilage mechanics are measurable during impact, current techniques cannot access microscale mechanics at those rapid time scales. We aimed to address this knowledge gap by imaging the microscale mechanics and corresponding acute biological changes of cartilage in response to rapid loading. In this study, we utilized fast-camera and confocal microscopy to achieve roughly 85 μm spatial resolution of the cartilage deformation during a rapid (~3 ms), localized impact and the chondrocyte death following impact. Our results showed that, at these high rates, strain and chondrocyte death were highly correlated (p<0.001) with a threshold of 8% microscale strain norm before any cell death occurred. Additionally, chondrocyte death had developed by two hours after impact, suggesting a time frame for clinical therapeutics. Moreover, when the superficial layer was removed, strain – and subsequently chondrocyte death – penetrated deeper into the samples (p<0.001), suggesting a protective role for the superficial layer of articular cartilage. Combined, these results provide insight regarding the detailed biomechanics that drive early chondrocyte damage after trauma and emphasize the importance of understanding cartilage and its mechanics on the microscale. PMID:26150096

  2. Adipose-Derived Stem Cells Cocultured with Chondrocytes Promote the Proliferation of Chondrocytes

    PubMed Central

    2017-01-01

    Articular cartilage injury and defect caused by trauma and chronic osteoarthritis vascularity are very common, while the repair of injured cartilage remains a great challenge due to its limited healing capacity. Stem cell-based tissue engineering provides a promising treatment option for injured articular cartilage because of the cells potential for multiple differentiations. However, its application has been largely limited by stem cell type, number, source, proliferation, and differentiation. We hypothesized that (1) adipose-derived stem cells are ideal seed cells for articular cartilage repair because of their accessibility and abundance and (2) the microenvironment of articular cartilage could induce adipose-derived stem cells (ADSCs) to differentiate into chondrocytes. In order to test our hypotheses, we isolated stem cells from rabbit adipose tissues and cocultured these ADSCs with rabbit articular cartilage chondrocytes. We found that when ADSCs were cocultured with chondrocytes, the proliferation of articular cartilage chondrocytes was promoted, the apoptosis of chondrocytes was inhibited, and the osteogenic and chondrogenic differentiation of ADSCs was enhanced. The study on the mechanism of this coculture system indicated that the role of this coculture system is similar to the function of TGF-β1 in the promotion of chondrocytes. PMID:28133485

  3. BMP-2, Hypoxia, and COL1A1/HtrA1 siRNAs Favor Neo-Cartilage Hyaline Matrix Formation in Chondrocytes

    PubMed Central

    Ollitrault, David; Legendre, Florence; Drougard, Carole; Briand, Mélanie; Benateau, Hervé; Goux, Didier; Chajra, Hanane; Poulain, Laurent; Hartmann, Daniel; Vivien, Denis; Shridhar, Vijayalakshmi; Baldi, Alfonso; Mallein-Gerin, Frédéric; Boumediene, Karim; Demoor, Magali

    2015-01-01

    Osteoarthritis (OA) is an irreversible pathology that causes a decrease in articular cartilage thickness, leading finally to the complete degradation of the affected joint. The low spontaneous repair capacity of cartilage prevents any restoration of the joint surface, making OA a major public health issue. Here, we developed an innovative combination of treatment conditions to improve the human chondrocyte phenotype before autologous chondrocyte implantation. First, we seeded human dedifferentiated chondrocytes into a collagen sponge as a scaffold, cultured them in hypoxia in the presence of a bone morphogenetic protein (BMP), BMP-2, and transfected them with small interfering RNAs targeting two markers overexpressed in OA dedifferentiated chondrocytes, that is, type I collagen and/or HtrA1 serine protease. This strategy significantly decreased mRNA and protein expression of type I collagen and HtrA1, and led to an improvement in the chondrocyte phenotype index of differentiation. The effectiveness of our in vitro culture process was also demonstrated in the nude mouse model in vivo after subcutaneous implantation. We, thus, provide here a new protocol able to favor human hyaline chondrocyte phenotype in primarily dedifferentiated cells, both in vitro and in vivo. Our study also offers an innovative strategy for chondrocyte redifferentiation and opens new opportunities for developing therapeutic targets. PMID:24957638

  4. Changes in chondrocyte gene expression following in vitro impaction of porcine articular cartilage in an impact injury model.

    PubMed

    Ashwell, Melissa S; Gonda, Michael G; Gray, Kent; Maltecca, Christian; O'Nan, Audrey T; Cassady, Joseph P; Mente, Peter L

    2013-03-01

    Our objective was to monitor chondrocyte gene expression at 0, 3, 7, and 14 days following in vitro impaction to the articular surface of porcine patellae. Patellar facets were either axially impacted with a cylindrical impactor (25 mm/s loading rate) to a load level of 2,000 N or not impacted to serve as controls. After being placed in organ culture for 0, 3, 7, or 14 days, total RNA was isolated from full thickness cartilage slices and gene expression measured for 17 genes by quantitative real-time RT-PCR. Targeted genes included those encoding proteins involved with biological stress, inflammation, or anabolism and catabolism of cartilage extracellular matrix. Some gene expression changes were detected on the day of impaction, but most significant changes occurred at 14 days in culture. At 14 days in culture, 10 of the 17 genes were differentially expressed with col1a1 most significantly up-regulated in the impacted samples, suggesting impacted chondrocytes may have reverted to a fibroblast-like phenotype.

  5. Prospective evaluation of serum biomarker levels and cartilage repair by autologous chondrocyte transplantation and subchondral drilling in a canine model

    PubMed Central

    Nganvongpanit, Korakot; Pothacharoen, Peraphan; Chaochird, Patama; Klunklin, Kasisin; Warrit, Kanawee; Settakorn, Jongkolnee; Pattamapaspong, Nuttaya; Luevitoonvechkij, Sirichai; Arpornchayanon, Olarn; Kongtawelert, Prachya; Pruksakorn, Dumnoensun

    2009-01-01

    Introduction The purpose of this study was to evaluate serum chondroitin sulfate (CS) and hyaluronic acid (HA) levels and the capability of cartilage repair of full-thickness cartilage defects after treatment with two different fundamental surgical techniques: autologous chondrocyte transplantation (AC) and subchondral drilling (SD). Methods A 4-mm-diameter full-thickness cartilage defect was created in each of 10 skeletally mature male outbred dogs. The dogs were randomly separated into two groups. Groups A and B were treated with AC and SD, respectively. An evaluation was made at the 24th week of the experiment. Serum was analyzed prospectively – preoperatively and at 6-week intervals – for CS and HA levels by enzyme-linked immunosorbent assay (ELISA) and ELISA-based assays, respectively. Results The cartilage repair assessment score (median ± standard deviation) of group A (9.5 ± 2.5) was significantly higher than that of group B (2.5 ± 1.3) (P < 0.05). Group A also demonstrated a better quality of hyaline-like cartilage repair. Prospective analysis of serum WF6 and HA levels between the two groups did not show any significant difference. Serum WF6 levels at the 24th week of the experiment had a negative correlation (r = -0.69, P < 0.05) with the cartilage repair assessment score, whereas serum HA levels tended to correlate positively (r = 0.46, 0.1

    cartilage marker levels. AC treatment demonstrated a smoother surface, less fissure, better border integration, and a more reliable outcome of repairing cartilage. Moreover, a decreasing level of serum WF6, which correlated with good quality of the repairing tissue at the end of the follow-up period, was found predominantly in the AC group. Serum WF6 therefore should be further explored as a sensitive marker for the noninvasive therapeutic evaluation of cartilage repair procedures. PMID

  6. Cotransfected human chondrocytes: over-expression of IGF-I and SOX9 enhances the synthesis of cartilage matrix components collagen-II and glycosaminoglycans.

    PubMed

    Simental-Mendía, M; Lara-Arias, J; Álvarez-Lozano, E; Said-Fernández, S; Soto-Domínguez, A; Padilla-Rivas, G R; Martínez-Rodríguez, H G

    2015-12-01

    Damage to cartilage causes a loss of type II collagen (Col-II) and glycosaminoglycans (GAG). To restore the original cartilage architecture, cell factors that stimulate Col-II and GAG production are needed. Insulin-like growth factor I (IGF-I) and transcription factor SOX9are essential for the synthesis of cartilage matrix, chondrocyte proliferation, and phenotype maintenance. We evaluated the combined effect of IGF-I and SOX9 transgene expression on Col-II and GAG production by cultured human articular chondrocytes. Transient transfection and cotransfection were performed using two mammalian expression plasmids (pCMV-SPORT6), one for each transgene. At day 9 post-transfection, the chondrocytes that were over-expressing IGF-I/SOX9 showed 2-fold increased mRNA expression of the Col-II gene, as well as a 57% increase in Col-II protein, whereas type I collagen expression (Col-I) was decreased by 59.3% compared with controls. The production of GAG by these cells increased significantly compared with the controls at day 9 (3.3- vs 1.8-times, an increase of almost 83%). Thus, IGF-I/SOX9 cotransfected chondrocytes may be useful for cell-based articular cartilage therapies.

  7. Treatment of focal degenerative cartilage defects with polymer-based autologous chondrocyte grafts: four-year clinical results

    PubMed Central

    Kreuz, Peter C; Müller, Sebastian; Ossendorf, Christian; Kaps, Christian; Erggelet, Christoph

    2009-01-01

    Introduction Second-generation autologous chondrocyte implantation with scaffolds stabilizing the grafts is a clinically effective procedure for cartilage repair. In this ongoing prospective observational case report study, we evaluated the effectiveness of BioSeed®-C, a cell-based cartilage graft based on autologous chondrocytes embedded in fibrin and a stable resorbable polymer scaffold, for the treatment of clinical symptomatic focal degenerative defects of the knee. Methods Clinical outcome after 4-year clinical follow-up was assessed in 19 patients with preoperatively radiologically confirmed osteoarthritis and a Kellgren-Lawrence score of 2 or more. Clinical scoring was performed before implantation of the graft and 6, 12, and 48 months after implantation using the Lysholm score, the Knee injury and Osteoarthritis Outcome Score (KOOS), the International Knee Documentation Committee (IKDC) score, and the International Cartilage Repair Society (ICRS) score. Cartilage regeneration and articular resurfacing were assessed by magnetic resonance imaging (MRI) 4 years after implantation of the autologous cartilage graft. Results Significant improvement (P < 0.05) of the Lysholm and ICRS scores was observed as early as 6 months after implantation of BioSeed®-C and remained stable during follow-up. The IKDC score showed significant improvement compared with the preoperative situation at 12 and 48 months (P < 0.05). The KOOS showed significant improvement in the subclasses pain, activities of daily living, and knee-related quality of life 6 months as well as 1 and 4 years after implantation of BioSeed®-C in osteoarthritic defects (P < 0.05). MRI analysis showed moderate to complete defect filling with a normal to incidentally hyperintense signal in 16 out of 19 patients treated with BioSeed®-C. Two patients without improvement in the clinical and MRI scores received a total knee endoprosthesis after 4 years. Conclusions The results show that the good clinical

  8. Autophagy Protects Advanced Glycation End Product-Induced Apoptosis and Expression of MMP-3 and MMP-13 in Rat Chondrocytes

    PubMed Central

    Wu, Tianlong

    2017-01-01

    Aging is one of the most prominent risk factors for the pathological progression of osteoarthritis (OA). One feature of age-related changes in OA is advanced glycation end products (AGEs) accumulation in articular cartilage. Autophagy plays a cellular housekeeping role by removing dysfunctional cellular organelles and proteins. However, the relationship between autophagy and AGE-associated OA is unknown. The aim of this study is to determine whether autophagy participates in the pathology of AGE-treated chondrocytes and to investigate the exact role of autophagy in AGE-induced cell apoptosis and expression of matrix metalloproteinase- (MMP-) 3 and MMP-13. AGEs induced notable apoptosis that was detected by Annexin V/PI double-staining, and the upregulation of MMP-3 and MMP-13 was confirmed by Western blotting. Autophagy-related proteins were also determined by Western blotting, and chondrocytes were transfected with mCherry-GFP-LC3B-adenovirus to monitor autophagic flux. As a result, autophagy significantly increased in chondrocytes and peaked at 6 h. Furthermore, rapamycin (RA) attenuated AGE-induced apoptosis and expression of MMP-3 and MMP-13 by autophagy activation. In contrast, pretreatment with autophagy inhibitor 3-methyladenine (3-MA) enhanced the abovementioned effects of AGEs. We therefore demonstrated that autophagy is linked with AGE-related pathology in rat chondrocytes and plays a protective role in AGE-induced apoptosis and expression of MMP-3 and MMP-13. PMID:28265573

  9. In vitro and in vivo co-culture of chondrocytes and bone marrow stem cells in photocrosslinked PCL-PEG-PCL hydrogels enhances cartilage formation.

    PubMed

    Ko, Chao-Yin; Ku, Kuan-Lin; Yang, Shu-Rui; Lin, Tsai-Yu; Peng, Sydney; Peng, Yu-Shiang; Cheng, Ming-Huei; Chu, I-Ming

    2016-10-01

    Chondrocytes (CH) and bone marrow stem cells (BMSCs) are sources that can be used in cartilage tissue engineering. Co-culture of CHs and BMSCs is a promising strategy for promoting chondrogenic differentiation. In this study, articular CHs and BMSCs were encapsulated in PCL-PEG-PCL photocrosslinked hydrogels for 4 weeks. Various ratios of CH:BMSC co-cultures were investigated to identify the optimal ratio for cartilage formation. The results thus obtained revealed that co-culturing CHs and BMSCs in hydrogels provides an appropriate in vitro microenvironment for chondrogenic differentiation and cartilage matrix production. Co-culture with a 1:4 CH:BMSC ratio significantly increased the synthesis of GAGs and collagen. In vivo cartilage regeneration was evaluated using a co-culture system in rabbit models. The co-culture system exhibited a hyaline chondrocyte phenotype with excellent regeneration, resembling the morphology of native cartilage. This finding suggests that the co-culture of these two cell types promotes cartilage regeneration and that the system, including the hydrogel scaffold, has potential in cartilage tissue engineering. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants.

    PubMed

    Ahrem, Hannes; Pretzel, David; Endres, Michaela; Conrad, Daniel; Courseau, Julien; Müller, Hartmut; Jaeger, Raimund; Kaps, Christian; Klemm, Dieter O; Kinne, Raimund W

    2014-03-01

    The small size and heterogeneity of the pores in bacterial nanocellulose (BNC) hydrogels limit the ingrowth of cells and their use as tissue-engineered implant materials. The use of placeholders during BNC biosynthesis or post-processing steps such as (touch-free) laser perforation can overcome this limitation. Since three-dimensionally arranged channels may be required for homogeneous and functional seeding, three-dimensional (3-D) laser perforation of never-dried BNC hydrogels was performed. Never-dried BNC hydrogels were produced in different shapes by: (i) the cultivation of Gluconacetobacter xylinus (DSM 14666; synonym Komagataeibacter xylinus) in nutrient medium; (ii) the removal of bacterial residues/media components (0.1M NaOH; 30 min; 100 °C) and repeated washing (deionized water; pH 5.8); (iii) the unidirectional or 3-D laser perforation and cutting (pulsed CO2 Rofin SC × 10 laser; 220 μm channel diameter); and (iv) the final autoclaving (2M NaOH; 121 °C; 20 min) and washing (pyrogen-free water). In comparison to unmodified BNC, unidirectionally perforated--and particularly 3-D-perforated - BNC allowed ingrowth into and movement of vital bovine/human chondrocytes throughout the BNC nanofiber network. Laser perforation caused limited structural modifications (i.e. fiber or globular aggregates), but no chemical modifications, as indicated by Fourier transform infrared spectroscopy, X-ray photoelectron scattering and viability tests. Pre-cultured human chondrocytes seeding the surface/channels of laser-perforated BNC expressed cartilage-specific matrix products, indicating chondrocyte differentiation. 3-D-perforated BNC showed compressive strength comparable to that of unmodified samples. Unidirectionally or 3-D-perforated BNC shows high biocompatibility and provides short diffusion distances for nutrients and extracellular matrix components. Also, the resulting channels support migration into the BNC, matrix production and phenotypic stabilization of

  11. Esculetin inhibits cartilage resorption induced by interleukin 1α in combination with oncostatin M

    PubMed Central

    Elliott, S; Rowan, A; Carrere, S; Koshy, P; Catterall, J; Cawston, T

    2001-01-01

    OBJECTIVE—To determine if a new inhibitor, esculetin (EST), can block resorption of cartilage.
METHODS—Interleukin 1α (IL1α, 0.04-5 ng/ml) and oncostatin M (OSM, 0.4-50 ng/ml) were used to stimulate the release of proteoglycan and collagen from bovine nasal cartilage and human articular cartilage in explant culture. Proteoglycan and collagen loss were assessed by dimethylmethylene blue and hydroxyproline assays, respectively. Collagenase levels were measured by assay of bioactivity and by enzyme linked immunosorbent assay (ELISA). The effects of EST on the expression of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinase-1 (TIMP-1) in the transformed human chondrocyte cell line T/C28a4 were assessed by northern blot analysis. TIMP-1 protein levels were assayed by ELISA. The effect of EST on the MMP-1 promoter was assessed using a promoter-luciferase construct in transient transfection studies.
RESULTS—EST inhibited proteoglycan and collagen resorption in a dose dependent manner with significant decreases seen at 66 µM and 100 µM EST, respectively. Collagenolytic activity was significantly decreased in bovine nasal cartilage cultures. In human articular cartilage, EST also inhibited IL1α + OSM stimulated resorption and decreased MMP-1 levels. TIMP-1 levels were not altered compared with controls. In T/C28a4 chondrocytes the IL1α + OSM induced expression of MMP-1, MMP-3, and MMP-13 mRNA was reduced to control levels by 250 µM EST. TIMP-1 mRNA levels were unaffected by EST treatment. All cytokine stimulation of an MMP-1 luciferase-promoter construct was lost in the presence of the inhibitor.
CONCLUSION—EST inhibits degradation of bovine nasal cartilage and human articular cartilage stimulated to resorb with IL1α + OSM.

 PMID:11156550

  12. The Novel Small Leucine-rich Protein Chondroadherin-like (CHADL) Is Expressed in Cartilage and Modulates Chondrocyte Differentiation*

    PubMed Central

    Tillgren, Viveka; Ho, James C. S.; Önnerfjord, Patrik; Kalamajski, Sebastian

    2015-01-01

    The constitution and biophysical properties of extracellular matrices can dramatically influence cellular phenotype during development, homeostasis, or pathogenesis. These effects can be signaled through a differentially regulated assembly of collagen fibrils, orchestrated by a family of collagen-associated small leucine-rich proteins (SLRPs). In this report, we describe the tissue-specific expression and function of a previously uncharacterized SLRP, chondroadherin-like (CHADL). We developed antibodies against CHADL and, by immunohistochemistry, detected CHADL expression mainly in skeletal tissues, particularly in fetal cartilage and in the pericellular space of adult chondrocytes. In situ hybridizations and immunoblots on tissue lysates confirmed this tissue-specific expression pattern. Recombinant CHADL bound collagen in cell culture and inhibited in vitro collagen fibrillogenesis. After Chadl shRNA knockdown, chondrogenic ATDC5 cells increased their differentiation, indicated by increased transcript levels of Sox9, Ihh, Col2a1, and Col10a1. The knockdown increased collagen II and aggrecan deposition in the cell layers. Microarray analysis of the knockdown samples suggested collagen receptor-related changes, although other upstream effects could not be excluded. Together, our data indicate that the novel SLRP CHADL is expressed in cartilaginous tissues, influences collagen fibrillogenesis, and modulates chondrocyte differentiation. CHADL appears to have a negative regulatory role, possibly ensuring the formation of a stable extracellular matrix. PMID:25451920

  13. TrxR2 deficiencies promote chondrogenic differentiation and induce apoptosis of chondrocytes through mitochondrial reactive oxygen species.

    PubMed

    Yan, Jidong; Xu, Jing; Fei, Yao; Jiang, Congshan; Zhu, Wenhua; Han, Yan; Lu, Shemin

    2016-05-15

    Thioredoxin reductase 2 (TrxR2) is a selenium (Se) containing protein. Se deficiency is associated with an endemic osteoarthropathy characterized by impaired cartilage formation. It is unclear whether TrxR2 have roles in cartilage function. We examined the effects of TrxR2 on chondrogenic ATDC5 cells through shRNA-mediated gene silencing of TrxR2. We demonstrated TrxR2 deficiencies could enhance chondrogenic differentiation and apoptosis of ATDC5 cells. TrxR2 deficiencies increased accumulation of cartilage glycosaminoglycans (GAGs) and mineralization. TrxR2 deficiencies also stimulated expression of extracellular (ECM) gene including Collagen II and Aggrecan. The enhanced chondrogenic properties were further confirmed by activation of Akt signaling which are required for chondrogenesis. In addition, TrxR2 deficiencies promoted chondrocyte proliferation through acceleration of cell cycle progression by increase in both S and G2/M phase cell distribution accompanied with induction of parathyroid hormone-related protein (PTHrP). Moreover, TrxR2 deficiencies induced chondrocyte death via apoptosis and increased cell sensitivity to exogenous oxidative stress. Furthermore, TrxR2 deficiencies induced emission of mitochondrial reactive oxygen species (ROS) without alteration of mitochondrial membrane potential and intracellular ATP content. Finally, treatment of TrxR2 deficiency cells with N-acetylcysteine (NAC) inhibited mitochondrial ROS production and chondrocyte apoptosis. NAC also prevented chondrogenic differentiation of TrxR2 deficiency cells by suppression of ECM gene expression, GAGs accumulation and mineralization, as well as attenuation of Akt signaling. Thus, TrxR2-mediated mitochondrial integrity is indispensable for chondrogenic differentiation of ATDC5 cells. TrxR2 deficiency-induced impaired proliferation and death of chondrocytes may be the pathological mechanism of the osteoarthropathy due to Se deficiency. Notably, this study also uncover the roles of

  14. AMPK deficiency in chondrocytes accelerated the progression of instability-induced and ageing-associated osteoarthritis in adult mice.

    PubMed

    Zhou, Sheng; Lu, Wanli; Chen, Liang; Ge, Qiting; Chen, Dongyang; Xu, Zhihong; Shi, Dongquan; Dai, Jin; Li, Jianxin; Ju, Huangxian; Cao, Yi; Qin, Jinzhong; Chen, Shuai; Teng, Huajian; Jiang, Qing

    2017-02-22

    Osteoarthritis (OA) is a progressive degenerative disease of the joints that is associated with both joint injury and ageing. Here, we investigated the role of the energy sensor AMP-activated protein kinase (AMPK) in maintaining a healthy state of articular cartilage and in OA development. Using cartilage-specific, tamoxifen-inducible AMPKα1 conditional knockout (AMPKα1 cKO), AMPKα2 conditional knockout (AMPKα2 cKO) and AMPKα1α2 conditional double knockout (AMPKα cDKO) mice, we found that compared with wild-type (WT) littermates, mutant mice displayed accelerated severity of surgically induced OA, especially AMPKα cDKO mice. Furthermore, male but not female AMPKα cDKO mice exhibited severely spontaneous ageing-associated OA lesions at 12 months of age. The chondrocytes isolated from AMPKα cDKO mice resulted in an enhanced interleukin-1β (IL-1β)-stimulated catabolic response. In addition, upregulated expression of matrix metalloproteinase-3 (MMP-3), MMP-13 and phospho-nuclear factor-κB (phospho-NF-κB) p65 and increased levels of apoptotic markers were detected in the cartilage of AMPKα cDKO mice compared with their WT littermates in vivo. Thus, our findings suggest that AMPK activity in chondrocytes is important in maintaining joint homeostasis and OA development.

  15. AMPK deficiency in chondrocytes accelerated the progression of instability-induced and ageing-associated osteoarthritis in adult mice

    PubMed Central

    Zhou, Sheng; Lu, Wanli; Chen, Liang; Ge, Qiting; Chen, Dongyang; Xu, Zhihong; Shi, Dongquan; Dai, Jin; Li, Jianxin; Ju, Huangxian; Cao, Yi; Qin, Jinzhong; Chen, Shuai; Teng, Huajian; Jiang, Qing

    2017-01-01

    Osteoarthritis (OA) is a progressive degenerative disease of the joints that is associated with both joint injury and ageing. Here, we investigated the role of the energy sensor AMP-activated protein kinase (AMPK) in maintaining a healthy state of articular cartilage and in OA development. Using cartilage-specific, tamoxifen-inducible AMPKα1 conditional knockout (AMPKα1 cKO), AMPKα2 conditional knockout (AMPKα2 cKO) and AMPKα1α2 conditional double knockout (AMPKα cDKO) mice, we found that compared with wild-type (WT) littermates, mutant mice displayed accelerated severity of surgically induced OA, especially AMPKα cDKO mice. Furthermore, male but not female AMPKα cDKO mice exhibited severely spontaneous ageing-associated OA lesions at 12 months of age. The chondrocytes isolated from AMPKα cDKO mice resulted in an enhanced interleukin-1β (IL-1β)-stimulated catabolic response. In addition, upregulated expression of matrix metalloproteinase-3 (MMP-3), MMP-13 and phospho-nuclear factor-κB (phospho-NF-κB) p65 and increased levels of apoptotic markers were detected in the cartilage of AMPKα cDKO mice compared with their WT littermates in vivo. Thus, our findings suggest that AMPK activity in chondrocytes is important in maintaining joint homeostasis and OA development. PMID:28225087

  16. Glucosamine Hydrochloride but Not Chondroitin Sulfate Prevents Cartilage Degradation and Inflammation Induced by Interleukin-1α in Bovine Cartilage Explants

    PubMed Central

    Bascoul-Colombo, Cécile; Garaiova, Iveta; Plummer, Sue F.; Harwood, John L.; Caterson, Bruce; Hughes, Clare E

    2016-01-01

    Objective Glucosamine hydrochloride (GH) and chondroitin sulfate (CS) are commonly used for the treatment of osteoarthritis (OA). The aim of this study was to assess their effects, alone and in combination, on preventing aggrecan degradation and inflammation in an in vitro model of OA. Design To test the effects of GH and/or CS as a preventative treatment, cartilage explants were pretreated with the compound(s) using concentrations that showed no detrimental effect on chondrocyte viability. Interleukin-1α (IL-1α) was added to induce cartilage degradation, supernatant and explants were analyzed for proteoglycan degradation products, aggrecanase mRNA expression and activity, and for the release of inflammatory markers. Results Following treatment with IL-1α, 2 mg/mL dose of GH pretreatment was associated with a reduction of glycosaminoglycan release, reduced generation of the pathological interglobular domain aggrecan catabolites, decreased mRNA levels of ADAMTS-4 and -5 and reduced activity of ADAMTS-4. In contrast, CS alone did not have a significant effect on IL-1α-induced cartilage degradation and the addition of 0.4 mg/mL CS to 2 mg/mL GH did not further inhibit IL-1α-induced activity. Pretreatment with 2 mg/mL GH also reduced the release of inflammatory markers, prostaglandin E2 and nitric oxide induced by IL-1α while CS did not have a significant effect. Conclusions The results suggest that GH prevents cartilage degradation mediated by aggrecanases ADAMTS-4 and -5, and may also reduce inflammation. This could be part of the mechanisms by which GH is effective in maintaining joint integrity and function, and preventing or delaying early symptoms of OA. PMID:26958319

  17. Sex-specific response of rat costochondral cartilage growth plate chondrocytes to 17β-estradiol involves differential regulation of plasma membrane associated estrogen receptors.

    PubMed

    Elbaradie, Khairat B Y; Wang, Yun; Boyan, Barbara D; Schwartz, Zvi

    2013-05-01

    Both male and female rat growth plate chondrocytes express estrogen receptors (ERs); however 17β-estradiol (E2) induces membrane responses leading to activation of phospholipase A2 (PLA2), phospholipase C (PLC), prostaglandin E2 (PGE2) production, protein kinase C (PKC), and ultimately mitogen protein kinase (MAPK) only in female cells. This study investigated if these sex-specific responses are due to differences in the actual ERs or in downstream signaling. Western blots and flow cytometry of costochondral cartilage resting zone chondrocytes (RCs) showed 2-3 times more ERα in plasma membranes (PMs) from female cells than male cells. Tunicamycin blocked E2-dependent ER-translocation to the PM, indicating palmitoylation was required. Co-immunoprecipitation showed E2 induced complex formation between ER isoforms only in female RCs. To examine if the lack of response in PKC and PGE2 in males is due to differences in signaling, we examined involvement of ERs and the role of PLC and PLA2. Selective ERα (propylpyrazole triol, PPT) and ERβ (diarylproprionitrile, DPN) agonists activated PKC in female RCs only. The PLC inhibitor, U73122 blocked E2's effect on PKC and the cytosolic PLA2 inhibitor, AACOCF3 inhibited the effect on PGE2 in female RCs, confirming involvement of PLC and PLA2 in the mechanism. The PLC activator, m-3M3FβS activated PKC and PLAA peptide increased PGE2 levels in male and female RCs, showing that the signaling pathways are present. These data indicate that differences in membrane ER amount, localization, translocation and interaction are responsible for the sexual dimorphic response to E2.

  18. Interleukin 17 induces cartilage collagen breakdown: novel synergistic effects in combination with proinflammatory cytokines

    PubMed Central

    Koshy, P; Henderson, N; Logan, C; Life, P; Cawston, T; Rowan, A

    2002-01-01

    Objective: To investigate whether interleukin 17 (IL17), derived specifically from T cells, can promote type II collagen release from cartilage. The ability of IL17 to synergise with other proinflammatory mediators to induce collagen release from cartilage, and what effect anti-inflammatory agents had on this process, was also assessed. Methods: IL17 alone, or in combination with IL1, IL6, oncostatin M (OSM), or tumour necrosis factor α (TNFα), was added to bovine nasal cartilage explant cultures. Proteoglycan and collagen release were determined. Collagenolytic activity was determined by bioassay. Chondroprotective effects of IL4, IL13, transforming growth factor ß1 (TGFß1) and insulin-like growth factor-1 (IGF1) were assessed by inclusion in the explant cultures. Results: IL17 alone stimulated a dose dependent release of proteoglycan and type II collagen from bovine nasal cartilage explants. Suboptimal doses of IL17 synergised potently with TNFα, IL1, OSM, and IL6 to promote collagen degradation. This collagen release was completely inhibited by tissue inhibitor of metalloproteinase-1 and BB-94 (a synthetic metalloproteinase inhibitor), and was significantly reduced by IL4, IL13, TGFß1, and IGF1. In IL17 treated chondrocytes, mRNA expression for matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 was detected. Moreover, a synergistic induction of these MMPs was seen when IL17 was combined with other proinflammatory cytokines. Conclusions: IL17 can, alone and synergistically in combination with other proinflammatory cytokines, promote chondrocyte mediated MMP dependent type II collagen release from cartilage. Because levels of all these proinflammatory cytokines are raised in rheumatoid synovial fluids, this study suggests that IL17 may act as a potent upstream mediator of cartilage collagen breakdown in inflammatory joint diseases. PMID:12117676

  19. [Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: a guideline by the working group "Tissue Regeneration" of the German Society of Orthopaedic Surgery and Traumatology (DGOU)].

    PubMed

    Niemeyer, P; Andereya, S; Angele, P; Ateschrang, A; Aurich, M; Baumann, M; Behrens, P; Bosch, U; Erggelet, C; Fickert, S; Fritz, J; Gebhard, H; Gelse, K; Günther, D; Hoburg, A; Kasten, P; Kolombe, T; Madry, H; Marlovits, S; Meenen, N M; Müller, P E; Nöth, U; Petersen, J P; Pietschmann, M; Richter, W; Rolauffs, B; Rhunau, K; Schewe, B; Steinert, A; Steinwachs, M R; Welsch, G H; Zinser, W; Albrecht, D

    2013-02-01

    Autologous chondrocyte transplantation/implantation (ACT/ACI) is an established and recognised procedure for the treatment of localised full-thickness cartilage defects of the knee. The present review of the working group "Clinical Tissue Regeneration" of the German Society of Orthopaedics and Traumatology (DGOU) describes the biology and function of healthy articular cartilage, the present state of knowledge concerning potential consequences of primary cartilage lesions and the suitable indication for ACI. Based on current evidence, an indication for ACI is given for symptomatic cartilage defects starting from defect sizes of more than 3-4 cm2; in the case of young and active sports patients at 2.5 cm2. Advanced degenerative joint disease is the single most important contraindication. The review gives a concise overview on important scientific background, the results of clinical studies and discusses advantages and disadvantages of ACI.

  20. Non-enzymatic glycation of chondrocyte-seeded collagen gels for cartilage tissue engineering.

    PubMed

    Roy, Rani; Boskey, Adele L; Bonassar, Lawrence J

    2008-11-01

    Collagen glycated with ribose (250 mM) in solution (pre-glycation) and as a gel (post-glycation) was seeded with chondrocytes and the effects of glycation on chondrocyte matrix assembly in culture were determined. Pre-glycation enhanced GAG accumulation significantly over controls at both 2 and 4 weeks (p < 0.05), although at both time points there were no statistical differences in cell number between pre-glycated and control gels. The increased proteoglycan accumulation was shown to be in part due to significantly increased GAG retention by the pre-glycated constructs (p < 0.05). Total collagen content in these pre-glycated gels was also significantly higher than unglycated gels at 4 weeks (p < 0.05). With post-glycation of collagen gels, chondrocyte number and GAG accumulation were all significantly lower than controls (p < 0.05). Post-glycation also inhibited GAG retention by the constructs (p < 0.05). Given these results, pre-glycation may be an improved processing method for collagen gels for tissue engineering techniques.

  1. Tamoxifen induces permanent growth arrest through selective induction of apoptosis in growth plate chondrocytes in cultured rat metatarsal bones.

    PubMed

    Chagin, Andrei S; Karimian, Elham; Zaman, Farasat; Takigawa, Masaharu; Chrysis, Dionisios; Sävendahl, Lars

    2007-05-01

    Estrogen affects skeletal growth and promotes growth plate fusion in humans. High doses of estrogen have been used to limit growth in girls with predicted extreme tall stature; a treatment which has been associated with severe side effects. Selective estrogen receptor modulators (SERMs) could potentially be used as an alternative treatment. We chose to study the effects of Tamoxifen (Tam), a first generation SERM that has been used in the treatment of pubertal gynecomastia or McCune-Albright syndrome. Cultured fetal rat metatarsal bones were used to study the effects of Tam on longitudinal bone growth. In sectioned bones, chondrocyte apoptosis and proliferation were analyzed by TUNEL assay and BrdU incorporation, respectively. We also used a human chondrocytic cell line, HSC-2/8, to study the effects of Tam on apoptosis (FACS analysis and Cell Death detection ELISA) and caspase activation (caspase substrate cleavage and Western immunoblotting). Tam caused a dose-dependent growth retardation of cultured metatarsal bones. No catch-up growth was observed after Tam was removed from the culture medium. Detailed analysis of sectioned growth plate cartilage revealed increased apoptosis of chondrocytes within the resting and hypertrophic zones. HCS-2/8 cells also underwent apoptosis upon Tam treatment. Tam-induced apoptosis was caspase-dependent and completely abrogated by either caspase-8 or -9 inhibitors. A substrate assay revealed that caspase-8 is first activated followed by caspase-9 and -3. Finally, FasL secretion was stimulated by Tam and blocking of either FasL or Fas decreased Tam-induced apoptosis in chondrocytes. We here describe a novel mechanism of tamoxifen-induced apoptosis in chondrocytes, involving the activation of caspases and the FasL/Fas pathway, which diminishes the potential for bone growth.

  2. Oxygen tension affects lubricin expression in chondrocytes.

    PubMed

    Hatta, Taku; Kishimoto, Koshi N; Okuno, Hiroshi; Itoi, Eiji

    2014-10-01

    We assessed the effects of oxygen tension on lubricin expression in bovine chondrocytes and cartilage explants and a role for hypoxia-inducible transcription factor (HIF)-1α in regulating lubricin expression was investigated using a murine chondroprogenitor cell line, ATDC5, and bovine chondrocytes isolated from superficial and middle/deep zones of femoral cartilage. ATDC5 cells and bovine chondrocytes were cultured in micromass under different oxygen tensions (21%, 5%, and 1%). ATDC5 cells and middle/deep zone chondrocytes that initially had low lubricin expression levels were also cultured with or without transforming growth factor (TGF)-β1. Quantitative reverse transcription (RT)-PCR was used to determine lubricin and chondrogenic marker gene mRNA levels and immunohistochemistry was used to assess lubricin protein expression. Explant cartilage plugs cultured under different oxygen tensions were also subjected to immunohistological analysis for lubricin. HIF-1α gene silencing was achieved by electroporatic transfer into ATDC5 cells. A low oxygen tension reduced lubricin gene expression levels in bovine superficial chondrocytes, TGF-β1-treated middle/deep zone chondrocytes, and TGF-β1-treated ATDC5 cells. Lubricin expression in explant cartilage was also suppressed under hypoxia. HIF-1α gene silencing in ATDC5 cells attenuated the lubricin expression response to the oxygen tension. These results corroborate with previous studies that the oxygen tension regulates lubricin gene expression and suggest that HIF-1α plays an important role in this regulation. The normal distribution of lubricin in articular cartilage may be due to the hypoxic oxygen environment of cartilage as it is an avascular tissue. An oxygen tension gradient may be a key factor for engineering cartilage tissue with a layered morphology.

  3. Autologous collagen induced chondrogenesis (ACIC: Shetty-Kim technique) - A matrix based acellular single stage arthroscopic cartilage repair technique.

    PubMed

    Shetty, Asode Ananthram; Kim, Seok Jung; Shetty, Vishvas; Jang, Jae Deog; Huh, Sung Woo; Lee, Dong Hwan

    2016-01-01

    The defects of articular cartilage in the knee joint are a common degenerative disease and currently there are several established techniques to treat this problem, each with their own advantages and shortcomings. Autologous chondrocyte implantation is the current gold standard but the technique is expensive, time-consuming and most versions require two stage procedures and an arthrotomy. Autologous collagen induced chondrogenesis (ACIC) is a single-stage arthroscopic procedure and we developed. This method uses microfracture technique with atelocollagen mixed with fibrin gel to treat articular cartilage defects. We introduce this ACIC techniques and its scientific background.

  4. A Review of the Combination of Experimental Measurements and Fibril-Reinforced Modeling for Investigation of Articular Cartilage and Chondrocyte Response to Loading

    PubMed Central

    Wilson, Wouter; Isaksson, Hanna; Jurvelin, Jukka S.; Herzog, Walter; Korhonen, Rami K.

    2013-01-01

    The function of articular cartilage depends on its structure and composition, sensitively impaired in disease (e.g. osteoarthritis, OA). Responses of chondrocytes to tissue loading are modulated by the structure. Altered cell responses as an effect of OA may regulate cartilage mechanotransduction and cell biosynthesis. To be able to evaluate cell responses and factors affecting the onset and progression of OA, local tissue and cell stresses and strains in cartilage need to be characterized. This is extremely challenging with the presently available experimental techniques and therefore computational modeling is required. Modern models of articular cartilage are inhomogeneous and anisotropic, and they include many aspects of the real tissue structure and composition. In this paper, we provide an overview of the computational applications that have been developed for modeling the mechanics of articular cartilage at the tissue and cellular level. We concentrate on the use of fibril-reinforced models of cartilage. Furthermore, we introduce practical considerations for modeling applications, including also experimental tests that can be combined with the modeling approach. At the end, we discuss the prospects for patient-specific models when aiming to use finite element modeling analysis and evaluation of articular cartilage function, cellular responses, failure points, OA progression, and rehabilitation. PMID:23653665

  5. Biomarkers of Chondrocyte Apoptosis and Autophagy in Osteoarthritis

    PubMed Central

    Musumeci, Giuseppe; Castrogiovanni, Paola; Trovato, Francesca Maria; Weinberg, Annelie Martina; Al-Wasiyah, Mohammad K.; Alqahtani, Mohammed H.; Mobasheri, Ali

    2015-01-01

    Cell death with morphological and molecular features of apoptosis has been detected in osteoarthritic (OA) cartilage, which suggests a key role for chondrocyte death/survival in the pathogenesis of OA. Identification of biomarkers of chondrocyte apoptosis may facilitate the development of novel therapies that may eliminate the cause or, at least, slow down the degenerative processes in OA. The aim of this review was to explore the molecular markers and signals that induce chondrocyte apoptosis in OA. A literature search was conducted in PubMed, Scopus, Web of Science and Google Scholar using the keywords chondrocyte death, apoptosis, osteoarthritis, autophagy and biomarker. Several molecules considered to be markers of chondrocyte apoptosis will be discussed in this brief review. Molecular markers and signalling pathways associated with chondroycte apoptosis may turn out to be therapeutic targets in OA and approaches aimed at neutralizing apoptosis-inducing molecules may at least delay the progression of cartilage degeneration in OA. PMID:26334269

  6. Human adult chondrocytes express hepatocyte growth factor (HGF) isoforms but not HgF: potential implication of osteoblasts on the presence of HGF in cartilage.

    PubMed

    Guévremont, Melanie; Martel-Pelletier, Johanne; Massicotte, Frédéric; Tardif, Ginette; Pelletier, Jean-Pierre; Ranger, Pierre; Lajeunesse, Daniel; Reboul, Pascal

    2003-06-01

    HGF is increased in human OA cartilage, possibly from Ob's. RT-PCR shows HGF isoforms are differently regulated between chondrocytes and Ob. A paracrine cross-talk between subchondral bone and cartilage may occur during OA. Recently, hepatocyte growth factor (HGF) has been identified by immunohistochemistry in cartilage and more particularly in the deep zone of human osteoarthritic (OA) cartilage. By investigating HGF expression in cartilage, we found that chondrocytes did not express HGF; however, they expressed the two truncated isoforms, namely HGF/NK1 and HGF/NK2. Because the only other cells localized near the deep zone are osteoblasts from the subchondral bone plate, we hypothesized that they were expressing HGF. Indeed, we found that HGF was synthesized by osteoblasts from the subchondral bone plate. Moreover, OA osteoblasts produced five times more HGF than normal osteoblasts and almost no HGF/NK1, unlike normal osteoblasts. Because prostaglandin E2 (PGE2) and pro-inflammatory cytokines such as interleukin (IL)-1 and IL-6 are involved in OA progression, we investigated whether these factors impact HGF produced by normal osteoblasts. PGE2 was the only factor tested that was able to stimulate HGF synthesis. However, the addition of NS398, a selective inhibitor of cyclo-oxygenase-2 (COX-2) had no effect on HGF produced by OA osteoblasts. HGF/NK2 had a moderate stimulating effect on HGF production by normal osteoblasts, whereas osteocalcin was not modulated by either HGF or HGF/NK2. When investigating signaling routes that might be implicated in OA osteoblast-produced HGF, we found that protein kinase A was at least partially involved. In summary, this study raises the hypothesis that the HGF found in articular cartilage is produced by osteoblasts, diffuses into the cartilage, and may be implicated in the OA process.

  7. Integration of Stem Cell to Chondrocyte-Derived Cartilage Matrix in Healthy and Osteoarthritic States in the Presence of Hydroxyapatite Nanoparticles

    PubMed Central

    Dua, Rupak; Comella, Kristin; Butler, Ryan; Castellanos, Glenda; Brazille, Bryn; Claude, Andrew; Agarwal, Arvind; Liao, Jun; Ramaswamy, Sharan

    2016-01-01

    We investigated the effectiveness of integrating tissue engineered cartilage derived from human bone marrow derived stem cells (HBMSCs) to healthy as well as osteoarthritic cartilage mimics using hydroxyapatite (HA) nanoparticles immersed within a hydrogel substrate. Healthy and diseased engineered cartilage from human chondrocytes (cultured in agar gels) were integrated with human bone marrow stem cell (HBMSC)-derived cartilaginous engineered matrix with and without HA, and evaluated after 28 days of growth. HBMSCs were seeded within photopolymerizable poly (ethylene glycol) diacrylate (PEGDA) hydrogels. In addition, we also conducted a preliminary in vivo evaluation of cartilage repair in rabbit knee chondral defects treated with subchondral bone microfracture and cell-free PEGDA with and without HA. Under in vitro conditions, the interfacial shear strength between tissue engineered cartilage derived from HBMSCs and osteoarthritic chondrocytes was significantly higher (p < 0.05) when HA nanoparticles were incorporated within the HBMSC culture system. Histological evidence confirmed a distinct spatial transition zone, rich in calcium phosphate deposits. Assessment of explanted rabbit knees by histology demonstrated that cellularity within the repair tissues that had filled the defects were of significantly higher number (p < 0.05) when HA was used. HA nanoparticles play an important role in treating chondral defects when osteoarthritis is a co-morbidity. We speculate that the calcified layer formation at the interface in the osteoarthritic environment in the presence of HA is likely to have attributed to higher interfacial strength found in vitro. From an in vivo standpoint, the presence of HA promoted cellularity in the tissues that subsequently filled the chondral defects. This higher presence of cells can be considered important in the context of accelerating long-term cartilage remodeling. We conclude that HA nanoparticles play an important role in engineered

  8. Basic fibroblast growth factor as a selective inducer of matrix Gla protein gene expression in proliferative chondrocytes.

    PubMed Central

    Stheneur, Chantal; Dumontier, Marie-France; Guedes, Claudie; Fulchignoni-Lataud, Marie-Claude; Tahiri, Khadija; Karsenty, Gerard; Corvol, Marie Thérèse

    2003-01-01

    Matrix Gla protein (MGP) is a member of the vitamin K-dependent gamma carboxylase protein family expressed in cartilage. Insulin-like growth factor I (IGF1) stimulates chondrocyte differentiation, whereas basic fibroblast growth factor (FGF2) acts in an opposite manner. We explored the differential expression and regulation by IGF1 and FGF2 of the MGP gene during chondrocyte differentiation. We used a primary culture system of rabbit epiphyseal chondrocytes to show that MGP mRNA is mainly expressed during serum-induced proliferation. Much lower MGP mRNA content is observed in post-mitotic chondrocytes, which newly express alpha 1X procollagen mRNA, a marker of late-differentiated cells. From studies of a series of growth factors, it was shown that IGF1 decreased chondrocyte MGP transcripts, whereas FGF2 had the opposite effect. FGF2 stimulated chondrocyte MGP production in a dose- and time-dependent manner at the mRNA and protein levels. FGF2 acted in a dose- and time-dependent manner, reaching a maximum at 10 ng/ml at 20 h. The protein synthesis inhibitor cycloheximide did not modify FGF2 action, in agreement with a direct effect. Actinomycin D abolished FGF2-induced stimulation, strongly suggesting that FGF2 modulated MGP gene transcription. We transiently transfected chondrocytes with a construct containing the mouse MGP promoter from -5000 to -168 base pairs, relative to the transcription start site of the gene linked to the luciferase gene (MGP-Luc). In transfected cells, FGF2 stimulated luciferase activity up to sevenfold while IGF1 had no effect. Hence, FGF2 induces transcription of the MGP gene via the 5'-flanking region of the gene. Using a series of deleted MGP-Luc constructs, we identified a sequence of 748 base pairs which was sufficient for transcriptional activation by FGF2. These results led us to postulate that the inhibitory chondrogenic action of FGF2 involves a mechanism whereby MGP gene transcription and protein are induced. PMID:12230429

  9. Wnt7a Inhibits IL-1β Induced Catabolic Gene Expression and Prevents Articular Cartilage Damage in Experimental Osteoarthritis

    PubMed Central

    Gibson, Averi L.; Hui Mingalone, Carrie K.; Foote, Andrea T.; Uchimura, Tomoya; Zhang, Ming; Zeng, Li

    2017-01-01

    Wnt7a is a protein that plays a critical role in skeletal development. However, its effect on cartilage homeostasis under pathological conditions is not known. In this study, we found a unique inverse correlation between Wnt7a gene expression and that of MMP and IL-1β in individual human OA cartilage specimens. Upon ectopic expression in primary human articular chondrocytes, Wnt7a inhibited IL-1β-induced MMP and iNOS gene expression. Western blot analysis indicated that Wnt7a induced both canonical Wnt signaling and NFAT and Akt non-canonical signaling. Interestingly, inhibiting the canonical and Akt pathway did not affect Wnt7a activity. However, inhibiting the NFAT pathway impaired Wnt7a’s ability to inhibit MMP expression, suggesting that Wnt7a requires NFAT signaling to exert this function. In vivo, intraarticular injection of lentiviral Wnt7a strongly attenuated articular cartilage damage induced by destabilization of the medial meniscus (DMM) OA-inducing surgery in mice. Consistently, Wnt7a also inhibited the progressive increase of joint MMP activity in DMM animals. These results indicate that Wnt7a signaling inhibits inflammatory stimuli-induced catabolic gene expression in human articular chondrocytes and is sufficient to attenuate MMP activities and promote joint cartilage integrity in mouse experimental OA, demonstrating a novel effect of Wnt7a on regulating OA pathogenesis. PMID:28165497

  10. Contraction-induced Mmp13 and -14 expression by goat articular chondrocytes in collagen type I but not type II gels.

    PubMed

    Berendsen, Agnes D; Vonk, Lucienne A; Zandieh-Doulabi, Behrouz; Everts, Vincent; Bank, Ruud A

    2012-10-01

    Collagen gels are promising scaffolds to prepare an implant for cartilage repair but several parameters, such as collagen concentration and composition as well as cell density, should be carefully considered, as they are reported to affect phenotypic aspects of chondrocytes. In this study we investigated whether the presence of collagen type I or II in gel lattices affects matrix contraction and relative gene expression levels of matrix proteins, MMPs and the subsequent degradation of collagen by goat articular chondrocytes. Only floating collagen I gels, and not those attached or composed of type II collagen, contracted during a culture period of 12 days. This coincided with an upregulation of both Mmp13 and -14 gene expression, whereas Mmp1 expression was not affected. The release of hydroxyproline in the culture medium, indicating matrix degradation, was increased five-fold in contracted collagen I gels compared to collagen II gels without contraction. Furthermore, blocking contraction of collagen I gels by cytochalasin B inhibited Mmp13 and -14 expression and the release of hydroxyproline. The expression of cartilage-specific ECM genes was decreased in contracted collagen I gels, with increased numbers of cells with an elongated morphology, suggesting that matrix contraction induces dedifferentiation of chondrocytes into fibroblast-like cells. We conclude that the collagen composition of the gels affects matrix contraction by articular chondrocytes and that matrix contraction induces an increased Mmp13 and -14 expression as well as matrix degradation.

  11. Synthesis rates and binding kinetics of matrix products in engineered cartilage constructs using chondrocyte-seeded agarose gels.

    PubMed

    Nims, Robert J; Cigan, Alexander D; Albro, Michael B; Hung, Clark T; Ateshian, Gerard A

    2014-06-27

    Large-sized cartilage constructs suffer from inhomogeneous extracellular matrix deposition due to insufficient nutrient availability. Computational models of nutrient consumption and tissue growth can be utilized as an efficient alternative to experimental trials to optimize the culture of large constructs; models require system-specific growth and consumption parameters. To inform models of the [bovine chondrocyte]-[agarose gel] system, total synthesis rate (matrix accumulation rate+matrix release rate) and matrix retention fractions of glycosaminoglycans (GAG), collagen, and cartilage oligomeric matrix protein (COMP) were measured either in the presence (continuous or transient) or absence of TGF-β3 supplementation. TGF-β3's influences on pyridinoline content and mechanical properties were also measured. Reversible binding kinetic parameters were characterized using computational models. Based on our recent nutrient supplementation work, we measured glucose consumption and critical glucose concentration for tissue growth to computationally simulate the culture of a human patella-sized tissue construct, reproducing the experiment of Hung et al. (2003). Transient TGF-β3 produced the highest GAG synthesis rate, highest GAG retention ratio, and the highest binding affinity; collagen synthesis was elevated in TGF-β3 supplementation groups over control, with the highest binding affinity observed in the transient supplementation group; both COMP synthesis and retention were lower than those for GAG and collagen. These results informed the modeling of GAG deposition within a large patella construct; this computational example was similar to the previous experimental results without further adjustments to modeling parameters. These results suggest that these nutrient consumption and matrix synthesis models are an attractive alternative for optimizing the culture of large-sized constructs.

  12. Limited Immunogenicity of Human Induced Pluripotent Stem Cell-Derived Cartilages

    PubMed Central

    Kimura, Takeshi; Yamashita, Akihiro; Ozono, Keiichi

    2016-01-01

    Articular cartilage damage does not spontaneously heal and could ultimately result in a loss of joint function. Damaged cartilage can be repaired with cell/tissue sources that are transplanted, however, autologous chondrocytes are limited in number as a cell source. Induced pluripotent stem cells (iPSCs) are a relatively new and abundant cell source and can be made from the patient, but at a considerable cost. Because cartilage is immunoprivileged tissue, allogeneic cartilages have been transplanted effectively without matching for human leukocyte antigen (HLA), but are difficult to acquire due to scarcity of donors. In this study, we examined the immunogenicity of human iPSC-derived cartilages (hiPS-Carts) in vitro to evaluate whether allogeneic hiPS-Carts can be a new cell/tissue source. The cells in hiPS-Carts expressed limited amounts of major histocompatibility complex (MHC) class I (HLA-ABC) and MHC class II (HLA-DRDQDP). Treatment with interferon γ (IFNγ) induced the expression of MHC class I, but not MHC class II in hiPS-Carts. A mixed lymphocyte reaction assay showed that hiPS-Carts stimulated the proliferation of neither T cells nor the activation of NK cells. Furthermore, hiPS-Carts suppressed the proliferation of T cells stimulated with interleukin 2 and phytohemagglutinin (PHA). Together with previously reported findings, these results suggest that hiPS-Carts are no more antigenic than human cartilage. Additionally, in combination with the fact that iPSCs are unlimitedly expandable and thus can supply unlimited amounts of iPS-Carts from even one iPSC line, they suggest that allogeneic hiPS-Carts are a candidate source for transplantation to treat articular cartilage damage. PMID:27762664

  13. Advanced oxidation protein products induce chondrocyte apoptosis via receptor for advanced glycation end products-mediated, redox-dependent intrinsic apoptosis pathway.

    PubMed

    Wu, Qian; Zhong, Zhao-Ming; Zhu, Si-Yuan; Liao, Cong-Rui; Pan, Ying; Zeng, Ji-Huan; Zheng, Shuai; Ding, Ruo-Ting; Lin, Qing-Song; Ye, Qing; Ye, Wen-Bin; Li, Wei; Chen, Jian-Ting

    2016-01-01

    Pro-inflammatory cytokine-induced chondrocyte apoptosis is a primary cause of cartilage destruction in the progression of rheumatoid arthritis (RA). Advanced oxidation protein products (AOPPs), a novel pro-inflammatory mediator, have been confirmed to accumulate in patients with RA. However, the effect of AOPPs accumulation on chondrocyte apoptosis and the associated cellular mechanisms remains unclear. The present study demonstrated that the plasma formation of AOPPs was enhanced in RA rats compared with normal. Then, chondrocyte were treated with AOPPs-modified rat serum albumin (AOPPs-RSA) in vitro. Exposure of chondrocyte to AOPPs activated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and increased expression of NADPH oxidase subunits, which was mediated by receptor for advanced glycation end products (RAGE), but not scavenger receptor CD36. Moreover, AOPPs challenge triggered NADPH oxidase-dependent ROS generation which induced mitochondrial dysfunction and endoplasmic reticulum stress resulted in activation of caspase family that eventually lead to apoptosis. Lastly, blockade of RAGE, instead of CD36, largely attenuated these signals. Our study demonstrated first time that AOPPs induce chondrocyte apoptosis via RAGE-mediated and redox-dependent intrinsic apoptosis pathway in vitro. These data implicates that AOPPs may represent a novel pathogenic factor that contributes to RA progression. Targeting AOPPs-triggered cellular mechanisms might emerge as a promising therapeutic option for patients with RA.

  14. Interleukin 1 suppresses expression of cartilage-specific types II and IX collagens and increases types I and III collagens in human chondrocytes.

    PubMed Central

    Goldring, M B; Birkhead, J; Sandell, L J; Kimura, T; Krane, S M

    1988-01-01

    In inflammatory diseases such as rheumatoid arthritis, functions of chondrocytes including synthesis of matrix proteins and proteinases are altered through interactions with cells of the infiltrating pannus. One of the major secreted products of mononuclear inflammatory cells is IL-1. In this study we found that recombinant human IL-1 beta suppressed synthesis of cartilage-specific type II collagen by cultured human costal chondrocytes associated with decreased steady state levels of alpha 1 (II) and alpha 1(IX) procollagen mRNAs. In contrast, IL-1 increased synthesis of types I and III collagens and levels of alpha 1(I), alpha 2(I), and alpha 1(III) procollagen mRNAs, as we described previously using human articular chondrocytes and synovial fibroblasts. This stimulatory effect of IL-1 was observed only when IL-1-stimulated PGE2 synthesis was blocked by the cyclooxygenase inhibitor indomethacin. The suppression of type II collagen mRNA levels by IL-1 alone was not due to IL-1-stimulated PGE2, since addition of indomethacin did not reverse, but actually potentiated, this inhibition. Continuous exposure of freshly isolated chondrocytes from day 2 of culture to approximately half-maximal concentrations of IL-1 (2.5 pM) completely suppressed levels of type II collagen mRNA and increased levels of types I and III collagen mRNAs, thereby reversing the ratio of alpha 1(II)/alpha 1(I) procollagen mRNAs from greater than 6.0 to less than 1.0 by day 7. IL-1, therefore, can modify, at a pretranslational level, the relative amounts of the different types of collagen synthesized in cartilage and thereby could be responsible for the inappropriate repair of cartilage matrix in inflammatory conditions. Images PMID:3264290

  15. Autologous chondrocyte implantation for the treatment of cartilage lesions of the knee: a systematic review of randomized studies.

    PubMed

    Vasiliadis, Haris S; Wasiak, Jason; Salanti, Georgia

    2010-12-01

    Autologous chondrocyte implantation (ACI) techniques are becoming more popular for the treatment of full thickness cartilage lesions of the knee joint. However, there is no systematic information for the efficacy of the new generation ACI techniques compared to other treatment options. A systematic review of the existing evidence from randomized clinical trials of ACI treatment would contribute to understanding the advantages and limitations of this method and would inform the planning of future studies. Using pre-defined criteria, we searched a number of electronic databases to identify all the existing randomized control trials of any type of ACI treatment. Risk of bias was assessed and an analysis of the reported outcomes was performed. Information on the clinical efficacy and safety of ACI compared to other interventions was collected and presented. Nine trials were identified with 626 patients. Patients ranged from 15 to 52 years, and the size of treated lesions was between 1 and 22 cm(2). ACI was associated with improvement in clinical outcomes compared to baseline. However, the body of evidence did not suggest any superiority of ACI over other treatments. Complication rates were comparable between interventions except from an increased rate of graft hypertrophies after ACI with periosteum. ACI is an effective treatment for full thickness chondral defects of the knee, providing an improvement of clinical outcomes. However, there is insufficient data to say whether ACI is superior to other treatment strategies. More high quality studies and harmonization in the reported outcomes are needed before specific suggestions for practice can be made.

  16. Influence of extremely low frequency, low energy electromagnetic fields and combined mechanical stimulation on chondrocytes in 3-D constructs for cartilage tissue engineering.

    PubMed

    Hilz, Florian M; Ahrens, Philipp; Grad, Sibylle; Stoddart, Martin J; Dahmani, Chiheb; Wilken, Frauke L; Sauerschnig, Martin; Niemeyer, Philipp; Zwingmann, Jörn; Burgkart, Rainer; von Eisenhart-Rothe, Rüdiger; Südkamp, Norbert P; Weyh, Thomas; Imhoff, Andreas B; Alini, Mauro; Salzmann, Gian M

    2014-02-01

    Articular cartilage, once damaged, has very low regenerative potential. Various experimental approaches have been conducted to enhance chondrogenesis and cartilage maturation. Among those, non-invasive electromagnetic fields have shown their beneficial influence for cartilage regeneration and are widely used for the treatment of non-unions, fractures, avascular necrosis and osteoarthritis. One very well accepted way to promote cartilage maturation is physical stimulation through bioreactors. The aim of this study was the investigation of combined mechanical and electromagnetic stress affecting cartilage cells in vitro. Primary articular chondrocytes from bovine fetlock joints were seeded into three-dimensional (3-D) polyurethane scaffolds and distributed into seven stimulated experimental groups. They either underwent mechanical or electromagnetic stimulation (sinusoidal electromagnetic field of 1 mT, 2 mT, or 3 mT; 60 Hz) or both within a joint-specific bioreactor and a coil system. The scaffold-cell constructs were analyzed for glycosaminoglycan (GAG) and DNA content, histology, and gene expression of collagen-1, collagen-2, aggrecan, cartilage oligomeric matrix protein (COMP), Sox9, proteoglycan-4 (PRG-4), and matrix metalloproteinases (MMP-3 and -13). There were statistically significant differences in GAG/DNA content between the stimulated versus the control group with highest levels in the combined stimulation group. Gene expression was significantly higher for combined stimulation groups versus static control for collagen 2/collagen 1 ratio and lower for MMP-13. Amongst other genes, a more chondrogenic phenotype was noticed in expression patterns for the stimulated groups. To conclude, there is an effect of electromagnetic and mechanical stimulation on chondrocytes seeded in a 3-D scaffold, resulting in improved extracellular matrix production.

  17. Methods for producing scaffold-free engineered cartilage sheets from auricular and articular chondrocyte cell sources and attachment to porous tantalum.

    PubMed

    Whitney, G Adam; Mera, Hisashi; Weidenbecher, Mark; Awadallah, Amad; Mansour, Joseph M; Dennis, James E

    2012-08-01

    Scaffold-free cartilage engineering techniques may provide a simple alternative to traditional methods employing scaffolds. We previously reported auricular chondrocyte-derived constructs for use in an engineered trachea model; however, the construct generation methods were not reported in detail. In this study, methods for cartilage construct generation from auricular and articular cell sources are described in detail, and the resulting constructs are compared for use in a joint resurfacing model. Attachment of cartilage sheets to porous tantalum is also investigated as a potential vehicle for future attachment to subchondral bone. Large scaffold-free cartilage constructs were produced from culture-expanded chondrocytes from skeletally mature rabbits, and redifferentiated in a chemically-defined culture medium. Auricular constructs contained more glycosaminoglycan (39.6±12.7 vs. 9.7±1.9 μg/mg wet weight, mean and standard deviation) and collagen (2.7±0.45 vs. 1.1±0.2 μg/mg wet weight, mean and standard deviation) than articular constructs. Aggregate modulus was also higher for auricular constructs vs. articular constructs (0.23±0.07 vs. 0.12±0.03 MPa, mean and standard deviation). Attachment of constructs to porous tantalum was achieved by neocartilage ingrowth into tantalum pores. These results demonstrate that large scaffold-free neocartilage constructs can be produced from mature culture-expanded chondrocytes in a chemically-defined medium, and that these constructs can be attached to porous tantalum.

  18. Ursodeoxycholic Acid ameliorates pain severity and cartilage degeneration in monosodium iodoacetate-induced osteoarthritis in rats.

    PubMed

    Moon, Su-Jin; Jeong, Jeong-Hee; Jhun, Joo Yeon; Yang, Eun Ji; Min, Jun-Ki; Choi, Jong Young; Cho, Mi-La

    2014-02-01

    Osteoarthritis (OA) is a degenerative joint disease characterized by a progressive loss of cartilage. And, increased oxidative stress plays a relevant role in the pathogenesis of OA. Ursodeoxycholic acid (UDCA) is a used drug for liver diseases known for its free radical-scavenging property. The objectives of this study were to investigate the in vivo effects of UDCA on pain severity and cartilage degeneration using an experimental OA model and to explore its mode of actions. OA was induced in rats by intra-articular injection of monosodium iodoacetate (MIA) to the knee. Oral administration UDCA was initiated on the day of MIA injection. Limb nociception was assessed by measuring the paw withdrawal latency and threshold. Samples were analyzed macroscopically and histologically. Immunohistochemistry was used to investigate the expression of interleukin-1β (IL-1β), IL-6, nitrotyrosine and inducible nitric oxide synthase (iNOS) in knee joints. UDCA showed an antinociceptive property and attenuated cartilage degeneration. OA rats given oral UDCA significantly exhibited a decreased number of osteoclasts in subchondral bone legion compared with the vehicle-treated OA group. UDCA reduced the expression of IL-1β, IL-6, nitrotyrosine and iNOS in articular cartilage. UDCA treatment significantly attenuated the mRNA expression of matrix metalloproteinase-3 (MMP-3), -13, and ADAMTS5 in IL-1β-stimulated human OA chondrocytes. These results show the inhibitory effects of UDCA on pain production and cartilage degeneration in experimentally induced OA. The chondroprotective properties of UDCA were achieved by suppressing oxidative damage and inhibiting catabolic factors that are implicated in the pathogenesis of cartilage damage in OA.

  19. Hydromechanical stimulator for chondrocyte-seeded constructs in articular cartilage tissue engineering applications.

    PubMed

    Pourmohammadali, Homeyra; Chandrashekar, Naveen; Medley, John B

    2013-03-01

    Mechanical stimulation is a key technique used for controlling the mechanical properties of tissue engineered articular cartilage constructs proposed for defect repair. The present study introduces a new technical method and device for 'hydromechanical' stimulation of tissue engineered articular cartilage constructs. The stimulation consists of simultaneous cyclic compression, frictional shear from a sliding indenter contact and direct pressurized fluid perfusion. Each of these modes of mechanical loading has been shown by other research groups to effectively stimulate tissue engineered constructs. A device for applying these conditions was designed, developed and tested. Two sets (high and low perfusion flow rates) of three experiments were performed, each with two samples subjected to hydromechanical stimulation conditions (compression and friction forces along with perfusion). Two other samples from each set were subjected to just compression and dynamic frictional shear forces, and two more were used as controls (not stimulated). The average amount of glycosaminoglycan retained in the constructs after 3 weeks ranked from low to high as follows: controls, hydromechanical conditions with the low-flow rate, hydromechanical conditions with the high-flow rate and just compression plus dynamic frictional shear. Statistically significant differences were not detected. However, future studies would focus on glycosaminoglycan production in the superficial zone, measuring the glycosaminoglycan released to the nutrient media, and address altering the hydromechanical stimulation parameters using the results of the present study as guidance, in attempts to achieve statistically significant increases in glycosaminoglycan production compared with the controls.

  20. Cartilage turnover reflected by metabolic processing of type II collagen: a novel marker of anabolic function in chondrocytes.

    PubMed

    Gudmann, Natasja Stæhr; Wang, Jianxia; Hoielt, Sabine; Chen, Pingping; Siebuhr, Anne Sofie; He, Yi; Christiansen, Thorbjørn G; Karsdal, Morten Asser; Bay-Jensen, Anne Christine

    2014-10-17

    The aim of this study was to enable measurement of cartilage formation by a novel biomarker of type II collagen formation. The competitive enzyme-linked immunosorbent assay (ELISA) Pro-C2 was developed and characterized for assessment of the beta splice variant of type II procollagen (PIIBNP). This is expected to originate primarily from remodeling of hyaline cartilage. A mouse monoclonal antibody (Mab) was raised in mouse, targeting specifically PIIBNP (QDVRQPG) and used in development of the assay. The specificity, sensitivity, 4-parameter fit and stability of the assay were tested. Levels of PIIBNP were quantified in human serum (0.6-2.2 nM), human amniotic fluid (163-188 nM) and sera from different animal species, e.g., fetal bovine serum (851-901 nM) with general good linearity (100% (SD 7.6) recovery) and good intra- and inter-assay variation (CV% < 10). Dose (0.1 to 100 ng/mL) and time (7, 14 and 21 days) dependent release of PIIBNP were evaluated in the conditioned medium from bovine cartilage explants (BEX) and human cartilage explants (HEX) upon stimulation with insulin-like growth factor (IGF-1), transforming growth factor (TGF)-β1 and fibroblastic growth factor-2 (FGF-2). TGF-β1 and IGF-1 in concentrations of 10-100 ng/mL significantly (p < 0.05) induced release of PIIBNP in BEX compared to conditions without treatment (WO). In HEX, IGF-1 100 ng/mL was able to induce a significant increase of PIIBNP after one week compared to WO. FGF-2 did not induce a PIIBNP release in our models. To our knowledge this is the first assay, which is able to specifically evaluate PIIBNP excretion. The Pro-C2 assay seems to provide a promising and novel marker of type II collagen formation.

  1. Salvianolic acid B inhibits IL-1β-induced inflammatory cytokine production in human osteoarthritis chondrocytes and has a protective effect in a mouse osteoarthritis model.

    PubMed

    Lou, Yiting; Wang, Chenggui; Zheng, Wenhao; Tang, Qian; Chen, Yu; Zhang, Xiaolei; Guo, Xiaoshan; Wang, Jianshun

    2017-05-01

    Osteoarthritis (OA) is a chronic progressive disease that has complicated mechanisms that involve inflammation and cartilage degradation. In this study, we investigated the anti-inflammatory action of Salvianolic acid B (Sal B) in both human OA chondrocytes and a mouse OA model that was induced by destabilization of the medial meniscus. In vitro, chondrocytes were pretreated with Sal B (0, 25, 50, 100μM) for 2h, then incubated with IL-1β (10ng/mL) for 24h. NO production was determined by Griess method and PGE2 was assessed by ELISA. The expression of INOS, COX-2, MMP-13, ADAMTS-5 and NF-κB-related signaling molecules were tested by Western blotting. Immunofluorescence staining was used to detect P65 nuclear translocation. In vivo, the mouse OA model received intraperitoneal-injection of either Sal B (25mg/kg) or saline every other day. Hematoxylin and Eosin, as well as Safranin-O-Fast green staining, were utilized to evaluate the severity of cartilage lesions up to 8weeks following the surgery. Sal B inhibited the over-production of NO and PGE2, while the elevated expression of INOS, COX-2, MMP-13 and ADAMTS-5 were reversed by Sal B in IL-1β-induced chondrocytes. In addition, IL-1β significantly induced phosphorylation of NF-κB signaling, and this phosphorylation response was blocked by Sal B. Immunofluorescence staining demonstrated that Sal B could suppress IL-1β-induced p65 nuclear translocation. In vivo, the cartilage in Sal B-treated mice exhibited less cartilage degradation and lower OARSI scores. Taken together, Sal B possesses great potential value as a therapeutic agent for OA treatment.

  2. Regulation of Articular Chondrocyte Proliferation and Differentiation by Indian Hedgehog and Parathyroid Hormone-related Protein

    PubMed Central

    Chen, Xuesong; Macica, Carolyn; Nasiri, Ali; Broadus, Arthur E.

    2008-01-01

    Objective The chondrocytes of the epiphyseal growth zone are regulated by the Indian hedgehog (Ihh)-parathyroid hormone-related protein (PTHrP) axis. In weight-bearing joints, this growth zone comes to be subdivided by the secondary ossification center into distinct articular and growth cartilage structures. Here, we explored the cells of origin, localization, regulation of expression, and putative functions of Ihh and PTHrP in articular cartilage in the mouse. Methods We assessed Ihh and PTHrP expression in an allelic PTHrP-lacZ knockin mouse and several versions of PTHrP-null mice. Selected joints were unloaded surgically to examine load-induction of PTHrP and Ihh. Results The embryonic growth zone appears to serve as the source of PTHrP-expressing proliferative chondrocytes that populate both the forming articular cartilage and growth plate structures. In articular cartilage, these cells take the form of articular chondrocytes in the mid-zone. In PTHrP-knockout mice, mineralizing chondrocytes encroach upon developing articular cartilage but appear to be prevented from mineralizing the joint space by Ihh-driven surface chondrocyte proliferation. In growing and adult mice, PTHrP expression in articular chondrocytes is load-induced, and unloading is associated with rapid changes in PTHrP expression and articular chondrocyte differentiation. Conclusion We conclude that the PTHrP-Ihh axis participates in the maintenance of articular cartilage. Dysregulation of this system might contribute to the pathogenesis of arthritis. PMID:19035497

  3. Reconstruction of Alar Nasal Cartilage Defects Using a Tissue Engineering Technique Based on a Combined Use of Autologous Chondrocyte Micrografts and Platelet-rich Plasma: Preliminary Clinical and Instrumental Evaluation

    PubMed Central

    Scioli, Maria G.; Bielli, Alessandra; Orlandi, Augusto; Cervelli, Valerio

    2016-01-01

    Background: Developing cartilage constructs with injectability, appropriate matrix composition, and persistent cartilaginous phenotype remains an enduring challenge in cartilage repair. The combined use of autologous chondrocyte micrografts and platelet-rich plasma (PRP) is an alternative that opens a new era in this field. Methods: At the Department of Plastic and Reconstructive Surgery, University of Rome Tor Vergata, Italy, 11 patients underwent nasal alar reconstruction with chondrocyte micrografts gently poured onto PRP in solid form. A computed tomographic scan control was performed after 12 months. Pearson’s Chi-square test was used to investigate difference in cartilage density between native and newly formed cartilages. Results: The constructs of chondrocyte micrografts–PRP that were subcutaneously injected resulted in a persistent cartilage tissue with appropriate morphology, adequate central nutritional perfusion without central necrosis or ossification, and further augmented nasal dorsum without obvious contraction and deformation. Conclusion: This report demonstrated that chondrocyte micrografts derived from nasal septum poured onto PRP in solid form are useful for cartilage regeneration in patients with external nasal valve collapse. PMID:27826462

  4. Oleic/Palmitate Induces Apoptosis in Human Articular Chondrocytes via Upregulation of NOX4 Expression and ROS Production.

    PubMed

    Fu, Dapeng; Lu, Jianmin; Yang, Sheng

    2016-07-01

    The association between obesity and reactive oxygen species (ROS) production in osteoarthritis (OA) patients has already been identified. However, the specific mechanism underlying ROS production and OA progression has never been elucidated. Osteoarthritic cartilage was obtained from patients undergoing total hip arthroplasty, and chondrocytes were isolated from these tissues. The cells were treated with varying concentrations (10,100,500 μM, and 5 mM) of oleic/palmitate (O/P) mixture at different times, that is at 6, 24, and 48 h. Cell viability was determined using MTT assay. ROS production was detected using immunofluorescence and flow cytometry. The protein levels of NOX4 and cleaved-caspase3 were detected using Western blot assay. O/P significantly decreased cell viability at 10, 100, 500 μM, and 5 mM in a dose-dependent manner. Furthermore, the cell viability was reduced by 500 μM O/P mixture at 6, 24, and 48 h in a time-dependent manner. Pretreatment with 500 μM O/P significantly enhanced ROS production and cell apoptosis in chondrocytes. Furthermore, treatment with O/P mixture significantly enhanced the expression of NOX4 and caspase3 activation in a dose- and time- dependent manner. More importantly, inhibition of NOX4 could partially eliminate O/P-induced chondrocytes apoptosis by reducing ROS production. To conclude, O/P treatment enhances ROS production and cell apoptosis mainly by upregulating the protein levels of NOX4 and caspase3 activation in chondrocytes, indicating a potential therapeutic target of OA in obesity patients.

  5. Polymer Formulations for Cartilage Repair

    SciTech Connect

    Gutowska, Anna; Jasionowski, Marek; Morris, J. E.; Chrisler, William B.; An, Yuehuei H.; Mironov, V.

    2001-05-15

    Regeneration of destroyed articular cartilage can be induced by transplantation of cartilage cells into a defect. The best results are obtained with the use of autologus cells. However, obtaining large amounts of autologus cartilage cells causes a problem of creating a large cartilage defect in a donor site. Techniques are currently being developed to harvest a small number of cells and propagate them in vitro. It is a challenging task, however, due to the fact that ordinarily, in a cell culture on flat surfaces, chondrocytes do not maintain their in vivo phenotype and irreversibly diminish or cease the synthesis of aggregating proteoglycans. Therefore, the research is continuing to develop culture conditions for chondrocytes with the preserved phenotype.

  6. CCAAT/enhancer binding protein β (C/EBPβ) regulates the transcription of growth arrest and DNA damage-inducible protein 45 β (GADD45β) in articular chondrocytes.

    PubMed

    Shimada, Hirofumi; Otero, Miguel; Tsuchimochi, Kaneyuki; Yamasaki, Satoshi; Sakakima, Harutoshi; Matsuda, Fumiyo; Sakasegawa, Megumi; Setoguchi, Takao; Xu, Lin; Goldring, Mary B; Tanimoto, Akihide; Komiya, Setsuro; Ijiri, Kosei

    2016-04-01

    Osteoarthritis (OA) is a whole joint disease characterized by cartilage degradation, which causes pain and disability in older adults. Our previous work showed that growth arrest and DNA damage-inducible protein 45 β (GADD45β) is upregulated in chondrocyte clusters in OA cartilage, especially in the early stage of this disease. CCAAT/enhancer binding protein β (C/EBPβ) is expressed in the hypertrophic growth plate chondrocytes and functions in synergy with GADD45β. Here, the presence and localization of these proteins was assessed by immunohistochemistry using articular cartilage from OA patients, revealing colocalization of C/EBPβ and GADD45β in OA chondrocytes. GADD45β promoter analysis was performed to determine whether C/EBPβ directly regulates GADD45β transcription. Furthermore, we analyzed the effect of C/EBPβ on Gadd45β gene regulation in articular chondrocytes in vivo and in vitro. Immunohistochemical analysis of C/ebpβ-haploinsufficient mice (C/ebpβ(+/-)) cartilage showed that C/ebpβ haploinsufficiency led to reduced Gadd45β gene expression in these cells. In vitro, we evaluated the effects of conditional C/EBPβ overexpression driven by the cartilage oligomeric matrix protein (Comp) promoter in mComp-tTA;pTRE-Tight-BI-DsRed-mC/ebpβ transgenic mice. C/EBPβ overexpression significantly stimulated Gadd45β gene expression in articular chondrocytes. Taken together, our data demonstrate that C/EBPβ plays a central role in controlling Gadd45β gene expression in these cells.

  7. Biochemical and biomechanical alterations in equine articular cartilage following an experimentally-induced synovitis.

    PubMed

    Palmer, J L; Bertone, A L; Malemud, C J; Mansour, J

    1996-06-01

    The effects of inflammation on the biochemical and biomechanical properties of articular cartilage at two sites (dorsal and palmar) from the radial facet of the equine third carpal bone were examined in response to a synovitis induced with Escherichia coli lipopolysaccharide (LPS). Four groups were studied. In group 1 synovitis was induced at time zero and evaluated at week 6. Group 2 was the sham-treated control for group 1. In group 3 synovitis was induced at time zero and evaluated at week 2. Group 4 was the sham-treated control for group 3. There was a significant increase (P < 0.05) in newly synthesized proteoglycan PG from both sites in group 3 as compared to the sham-treated groups and group 1. No significant difference in the endogenous PG concentration between groups or sites was detected. Sepharose CL-2B revealed two peaks of newly synthesized PG in all groups; an early peak (Kav 0.11-0.13) and a late peak (Kav 0.48-0.64). Newly synthesized PG profiles from sham-treated groups and group 3 were similar, but the group 3 PG profile exhibited a more pronounced early peak. Conversely, the PG profile from group 1 demonstrated a more prominent late peak. Electrophoresis and Western blot analysis of the pooled late PG peak fractions from the sham-treated and group 1 showed a single toluidine blue stained band from both sites which reacted with monoclonal antibody (MAb) 1C6. By contrast, the late peak from the palmar site in group 3 showed an additional faster moving component on composite gels which did not react with MAb 1C6. There was a significant decrease in Poisson's ratio and a significant increase in cartilage thickness in groups 1 and 3 which had received synovitis. The increase in cartilage thickness of groups 1 and 3 was also significantly affected by site (dorsal > palmar). There was no significant difference in aggregate modulus or permeability constant among groups. Primary joint inflammation induced by LPS alters the biochemical and biomechanical

  8. Disturbed Cartilage and Joint Homeostasis Resulting From a Loss of Mitogen-Inducible Gene 6 in a Mouse Model of Joint Dysfunction

    PubMed Central

    Pest, Michael A.; Russell, Bailey A.; Zhang, Yu-Wen; Jeong, Jae-Wook; Beier, Frank

    2017-01-01

    Objective Mitogen-inducible gene 6 (MIG-6) regulates epidermal growth factor receptor (EGFR) signaling in synovial joint tissues. Whole-body knockout of the Mig6 gene in mice has been shown to induce osteoarthritis and joint degeneration. To evaluate the role of chondrocytes in this process, Mig6 was conditionally deleted from Col2a1-expressing cell types in the cartilage of mice. Methods Bone and cartilage in the synovial joints of cartilage-specific Mig6-deleted (knockout [KO]) mice and control littermates were compared. Histologic staining and immunohistochemical analyses were used to evaluate joint pathology as well as the expression of key extracellular matrix and regulatory proteins. Calcified tissue in synovial joints was assessed by micro–computed tomography (micro-CT) and whole-skeleton staining. Results Formation of long bones was found to be normal in KO animals. Cartilage thickness and proteoglycan staining of articular cartilage in the knee joints of 12-week-old KO mice were increased as compared to controls, with higher cellularity throughout the tissue. Radiopaque chondro-osseous nodules appeared in the knees of KO animals by 12 weeks of age and progressed to calcified bone–like tissue by 36 weeks of age. Nodules were also observed in the spine of 36-week-old animals. Erosion of bone at ligament entheses was evident by 12 weeks of age, by both histologic and micro-CT assessment. Conclusion MIG-6 expression in chondrocytes is important for the maintenance of cartilage and joint homeostasis. Dysregulation of EGFR signaling in chondrocytes results in anabolic activity in cartilage, but erosion of ligament entheses and the formation of ectopic chondro-osseous nodules severely disturb joint physiology. PMID:24966136

  9. Optical projection tomography can be used to investigate spatial distribution of chondrocytes in three-dimensional biomaterial scaffolds for cartilage tissue engineering.

    PubMed

    Järvinen, Elina; Muhonen, Virpi; Haaparanta, Anne-Marie; Kellomäki, Minna; Kiviranta, Ilkka

    2014-01-01

    Biomaterial scaffolds have been used in autologous chondrocyte implantation to facilitate the repair of large lesions and to advance the formation of articular cartilage [Exp. Biol. Med. (Maywood) 237(1) (2012), 10-17]. Biomaterial scaffolds are usually three-dimensional (3-D) porous structures consisting of biodegradable materials to support articular cartilage formation. Adequate porosity of the scaffold is necessary for uniform cell distribution and cell attachment, and the density of the cells in the scaffold should be appropriate for cartilage formation [Cartilage 3(2) (2012), 108-117]. There have been only a restricted number of studies on the spatial distribution of cells in scaffolds, and on the role of this to cartilage formation [J. Biotechnol. 129 (2007), 516-531; Biotechnol. Progr. 14 (1998), 193-202; Biotechnol. Bioeng. 84 (2003), 205-214]. This may be due to the limited availability of appropriate visualization methods. Acquiring 3-D images throughout the scaffold by histology or confocal methods are not applicable to all types of scaffolds, and moreover, they are time consuming, laborious and thus not very feasible for a large scale analysis. To make the visualization of the spatial distribution of the cells easier in biomaterial scaffolds we have applied optical projection tomography (OPT). OPT microscope produces high-resolution 3-D images of both fluorescent and non-fluorescent specimens [Science 296(5567) (2002), 541-545]. Here we demonstrate that the OPT method can be used for the evaluation and visualization of the cell seeding method, spatial distribution and density of cells in biomaterial scaffolds and thus establish the OPT as a valid tool for analysis of cell distribution in cartilage tissue engineering samples.

  10. Signaling Pathways in Cartilage Repair

    PubMed Central

    Mariani, Erminia; Pulsatelli, Lia; Facchini, Andrea

    2014-01-01

    In adult healthy cartilage, chondrocytes are in a quiescent phase characterized by a fine balance between anabolic and catabolic activities. In ageing, degenerative joint diseases and traumatic injuries of cartilage, a loss of homeostatic conditions and an up-regulation of catabolic pathways occur. Since cartilage differentiation and maintenance of homeostasis are finely tuned by a complex network of signaling molecules and biophysical factors, shedding light on these mechanisms appears to be extremely relevant for both the identification of pathogenic key factors, as specific therapeutic targets, and the development of biological approaches for cartilage regeneration. This review will focus on the main signaling pathways that can activate cellular and molecular processes, regulating the functional behavior of cartilage in both physiological and pathological conditions. These networks may be relevant in the crosstalk among joint compartments and increased knowledge in this field may lead to the development of more effective strategies for inducing cartilage repair. PMID:24837833

  11. ICAM-1 expression on chondrocytes in rheumatoid arthritis: induction by synovial cytokines

    PubMed Central

    Sharma, H.; Pigott, R.

    1992-01-01

    The intercellular adhesion molecule-1 (ICAM-1) was found by immunostaining chondrocytes in cartilage from three patients with rheumatoid arthritis. Expression of ICAM-1 was restricted to chondrocytes in areas of erodedcartilage adjacent to the invading synovial tissue. Toluidine blue staining of these areas demonstrated severe depletion of the cartilage extracellular matrix. In areas of undamaged cartilage there was no ICAM-1 expression. Since ICAM-1 is not constitutively expressed on normal human articular cartilage, but could be induced in vitro by exogenous IL-1α, TNFα and IFNγ or by co-culturing cartilage with inflammatory rheumatoid synovium, we conclude that the induction of ICAM-1 on rheumatoid chondrocytes results from the synergistic action of a variety of cytokines produced by the inflammatory cells of the invading pannus. PMID:18475445

  12. The mechanical microenvironment of high concentration agarose for applying deformation to primary chondrocytes.

    PubMed

    Zignego, Donald L; Jutila, Aaron A; Gelbke, Martin K; Gannon, Daniel M; June, Ronald K

    2014-06-27

    Cartilage and chondrocytes experience loading that causes alterations in chondrocyte biological activity. In vivo chondrocytes are surrounded by a pericellular matrix with a stiffness of ~25-200kPa. Understanding the mechanical loading environment of the chondrocyte is of substantial interest for understanding chondrocyte mechanotransduction. The first objective of this study was to analyze the spatial variability of applied mechanical deformations in physiologically stiff agarose on cellular and sub-cellular length scales. Fluorescent microspheres were embedded in physiologically stiff agarose hydrogels. Microsphere positions were measured via confocal microscopy and used to calculate displacement and strain fields as a function of spatial position. The second objective was to assess the feasibility of encapsulating primary human chondrocytes in physiologically stiff agarose. The third objective was to determine if primary human chondrocytes could deform in high-stiffness agarose gels. Primary human chondrocyte viability was assessed using live-dead imaging following 24 and 72h in tissue culture. Chondrocyte shape was measured before and after application of 10% compression. These data indicate that (1) displacement and strain precision are ~1% and 6.5% respectively, (2) high-stiffness agarose gels can maintain primary human chondrocyte viability of >95%, and (3) compression of chondrocytes in 4.5% agarose can induce shape changes indicative of cellular compression. Overall, these results demonstrate the feasibility of using high-concentration agarose for applying in vitro compression to chondrocytes as a model for understanding how chondrocytes respond to in vivo loading.

  13. The effect of additive compounds on glycerol-induced damage to human chondrocytes.

    PubMed

    Hahn, Joshua; Laouar, Leila; Elliott, Janet A W; Korbutt, Gregory S; Jomha, Nadr M

    2017-04-01

    High concentrations of cryoprotective agents are required for cryopreservation techniques such as vitrification. Glycerol is a common cryoprotective agent used in cryopreservation protocols but this agent is toxic at high concentrations. This work is an attempt to mitigate the toxic effects of high concentrations of glycerol on intact chondrocytes in human knee articular cartilage from total knee arthroplasty patients by simultaneous exposure to glycerol and a variety of additive compounds. The resulting cell viability in the cartilage samples as measured by membrane integrity staining showed that, in at least one concentration or in combination, all of the tested additive compounds (tetramethylpyrazine, ascorbic acid, chondroitin sulphate, glucosamine sulphate) were able to reduce the deleterious effects of glycerol exposure when examination of membrane integrity took place on a delayed time frame. The use of additive compounds to reduce cryoprotectant toxicity in articular cartilage may help improve cell recovery after cryopreservation.

  14. Sclareol exerts anti-osteoarthritic activities in interleukin-1β-induced rabbit chondrocytes and a rabbit osteoarthritis model.

    PubMed

    Zhong, Ying; Huang, Yi; Santoso, Marcel B; Wu, Li-Dong

    2015-01-01

    Sclareol is a natural product initially isolated form Salvia sclarea which possesses immune-regulation and anti-inflammatory activities. However, the anti-osteoarthritic properties of sclareol have not been investigated. The present study is aimed at evaluating the potential effects of sclareol in interleukin-1β (IL-1β)-induced rabbit chondrocytes as well as an experimental rabbit knee osteoarthritis model induced by anterior cruciate ligament transection (ACLT). Cultured rabbit chondrocytes were pretreated with 1, 5 and 10 μg/mL sclareol for 1 h and followed by stimulation of IL-1β (10 ng/mL) for 24 h. Gene expression of matrix metalloproteinase-1 (MMP-1), MMP-3, MMP-13, tissue inhibitors of metalloproteinase-1 (TIMP-1), inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 was determined by quantitative real-time polymerase chain reaction (qRT-PCR). MMP-3, TIMP-1, iNOS and COX-2 proteins were measured by Western blotting. Enzyme-linked immunosorbent assay (ELISA) was applied for nitric oxide (NO) and prostaglandin E2 (PGE2) assessment. For the in vivo study, rabbits received six weekly 0.3 mL sclareol (10 μg/mL) intra-articular injections in the knees four weeks after ACLT surgery. Cartilage was harvested for measurement of MMP-1, MMP-3, MMP-13, TIMP-1, iNOS and COX-2 by qRT-PCR, while femoral condyles were used for histological evaluation. The in vitro results we obtained showed that sclareol inhibited the MMPs, iNOS and COX-2 expression on mRNA and protein levels, while increased the TIMP-1 expression. And over-production of NO and PGE2 was also suppressed. For the in vivo study, both qRT-PCR results and histological evaluation confirmed that sclareol ameliorated cartilage degradation. Hence, we speculated that sclareol may be an ideal approach for treating osteoarthritis.

  15. IL-1β, in contrast to TNFα, is pivotal in blood-induced cartilage damage and is a potential target for therapy.

    PubMed

    van Vulpen, Lize F D; Schutgens, Roger E G; Coeleveld, Katja; Alsema, Els C; Roosendaal, Goris; Mastbergen, Simon C; Lafeber, Floris P J G

    2015-11-05

    Joint bleeding after (sports) trauma, after major joint surgery, or as seen in hemophilia in general leads to arthropathy. Joint degeneration is considered to result from the direct effects of blood components on cartilage and indirectly from synovial inflammation. Blood-provided proinflammatory cytokines trigger chondrocytes and induce the production of cartilage-degrading proteases. In the presence of erythrocyte-derived iron, cytokines stimulate radical formation in the vicinity of chondrocytes inducing apoptosis. To unravel the role of interleukin (IL) 1β and tumor necrosis factor (TNF) α in the pathogenesis of this blood-induced cartilage damage, the effect of antagonizing these cytokines was examined in human in vitro cultures. Addition of recombinant human IL-1β monoclonal antibody or IL-1 receptor antagonist resulted in a dose- and time-dependent protection of cartilage from blood-induced damage. In higher concentrations, almost complete normalization of cartilage matrix proteoglycan turnover was achieved. This was accompanied by a reduction in IL-1β and IL-6 production in whole blood cultures, whereas TNFα production remained unaffected. Interestingly, addition of a TNFα monoclonal antibody, although demonstrated to inhibit the direct (transient) effects of TNFα on cartilage, exhibited no effect on blood-induced (prolonged) cartilage damage. It is demonstrated that IL-1β is crucial in the development of blood-induced joint damage, whereas TNFα is not. This hierarchical position of IL-1β in blood-induced joint damage warrants studies on targeting IL-1β to potentially prevent joint degeneration after a joint bleed.

  16. Immunolocalization of inducible nitric oxide synthase in synovium and cartilage in rheumatoid arthritis and osteoarthritis.

    PubMed

    Grabowski, P S; Wright, P K; Van 't Hof, R J; Helfrich, M H; Ohshima, H; Ralston, S H

    1997-06-01

    Nitric oxide has been implicated as a mediator of inflammatory arthritis, and recent work has shown that pro-inflammatory cytokines stimulate NO production in vitro by activation of the inducible nitric oxide synthase (iNOS) pathway. In order to identify the cellular sources of NO production within the joint, we have used immunohistochemical techniques to study the distribution of iNOS in synovium and cartilage from normal and diseased joints. iNOS was most strongly expressed in the synovial lining layer, subsynovium, vascular smooth muscle and chondrocytes from patients with rheumatoid arthritis (RA). Analysis of serial sections, coupled with double immunofluorescent staining, showed that the CD68+ macrophages in the synovial lining layer and, to a lesser extent, fibroblasts were the predominant source of iNOS within synovium, whereas T cells, B cells and neutrophils were negative. A similar pattern of iNOS staining was seen in osteoarthritis, but fewer cells were iNOS positive and the intensity of staining, particularly in cartilage, was much weaker than in RA. In contrast, no evidence of iNOS was detected in non-inflammatory synovium or in cartilage derived from normal joints (fractured neck of femur). In conclusion, these data support the hypothesis that synovium and cartilage are important sources of increased NO production in patients with inflammatory arthritis. Localization of iNOS at these sites within the inflamed joint raises the possibility that increased local production of NO may contribute to the pathogenesis of inflammatory arthritis by increasing synovial blood flow and by modulating cellular function within synovium and articular cartilage.

  17. Inflammatory synovial fluid microenvironment drives primary human chondrocytes to actively take part in inflammatory joint diseases.

    PubMed

    Röhner, Eric; Matziolis, Georg; Perka, Carsten; Füchtmeier, Bernd; Gaber, Timo; Burmester, Gerd-Rüdiger; Buttgereit, Frank; Hoff, Paula

    2012-06-01

    The role of human chondrocytes in the pathogenesis of cartilage degradation in rheumatic joint diseases has presently gained increasing interest. An active chondrocyte participation in local inflammation may play a role in the initiation and progression of inflammatory joint diseases and in a disruption of cartilage repair mechanisms resulting in cartilage degradation. In the present study, we hypothesized that inflammatory synovial fluid triggers human chondrocytes to actively take part in inflammatory processes in rheumatic joint diseases. Primary human chondrocytes were incubated in synovial fluids gained from patients with rheumatoid arthritis, psoriasis arthritis and reactive arthritis. The detection of vital cell numbers was determined by using Casy Cell Counter System. Apoptosis was measured by Annexin-V and 7AAD staining. Cytokine and chemokine secretion was determined by a multiplex suspension array. Detection of vital cells showed a highly significant decrease in chondrocyte numbers. Flow cytometry demonstrated a significant increase in apoptotic chondrocytes after the incubation. An active secretion of cytokines such as MCP-1 and MIF by chondrocytes was observed. The inflammatory synovial fluid microenvironment mediates apoptosis and cell death of chondrocytes. Moreover, in terms of cytokine secretion, it also induces an active participation of chondrocytes in ongoing inflammation.

  18. Generation of Immortalized Equine Chondrocytes With Inducible Sox9 Expression Allows Control of Hypertrophic Differentiation.

    PubMed

    Gurusinghe, Saliya; Hilbert, Bryan; Trope, Gareth; Wang, Lexin; Bandara, Nadeeka; Strappe, Padraig

    2016-10-27

    Immortalization of chondrocytes enables long term in vitro culture; however, the chondrogenic capacity of transformed cells varies, thus highlighting the need to develop a proliferative and tuneable chondrocyte cell line where hypertrophic differentiation can be controlled. In this study the SV40 large T antigen and human telomerase reverse transcriptase were employed to immortalize pooled equine chondrocytes through lentiviral vector mediated transduction either singly or on combination. Transformed chondrocytes proliferated stably over multiple passages, but resulted in significantly lower expression of chondrocyte specific collagen II mRNA (P < 0.0001) and up regulation of the hypertrophic marker collagen X (P < 0.0001) in three dimensional cultures. A Col2a1 promoter driven GFP reporter was constructed for real time monitoring of chondrogenic differentiation and a significant increase in promoter activation was observed in cultures treated with the growth factor TGFβ-3 (P < 0.05). To recapitulate the native articular chondrocyte phenotype we further transduced large T antigen immortalized chondrocytes with lentiviral vectors allowing either constitutive or doxycycline inducible expression of Sox9. In 3D cultures, the Sox9 over-expressing chondrocytes secreted significantly higher levels of extracellular matrix polysaccharide glycosaminoglycan (P < 0.05), while up-regulating collagen II and Aggrecan mRNA (P < 0.05) in both expression systems with a similar patterns observed with imunohistochemical staining. High levels of collagen X mRNA and protein were maintained with constitutive sox9 reflecting hypetrophic differentiation but significantly lower expression could be achieved with inducible Sox9. In conclusion, immortalization of equine chondrocytes results in stable proliferation but a reduction of chondrogenic potential whilst modulation of sox9 expression enabled control of hypertrophic characteristics. J. Cell. Biochem. 9999: 1

  19. Influence of doxycycline on the epiphyseal plate cartilage of the rats in experimental osteoarthrosis, induced by iodoacetate.

    PubMed

    Cylwik, J; Kita, K; Barwijuk-Machała, M; Reszeć, J; Klimiuk, P; Sierakowski, S; Sulkowski, S; Cylwik, M

    2004-01-01

    In 36 Wistar rats with the iodoacetate-induced experimental osteoarthrosis (OA), effects of doxycycline, given orally, were determined on histochemical reactions of glycosaminoglycans (GAG) in the epiphyseal plate cartilage. The epiphyseal plate of rats with OA was reduced in height (especially the proliferative zone), cell columns were disorganized, many chondrocytes were irregular and polygonal, their nuclei were pycnotic, the intensity of GAG staining was irregular and predominantly reduced, which can be interpreted as signs of degeneration. A concomitant administration of doxycycline in the second group of rats prevented, to some extent, the negative effects of iodoacetate on chondrocytes and led to a more pronounced intensity of GAG reactions in the matrix of the epiphyseal plate.

  20. Tissue-engineered cartilage with inducible and tunable immunomodulatory properties.

    PubMed

    Glass, Katherine A; Link, Jarrett M; Brunger, Jonathan M; Moutos, Franklin T; Gersbach, Charles A; Guilak, Farshid

    2014-07-01

    The pathogenesis of osteoarthritis is mediated in part by inflammatory cytokines including interleukin-1 (IL-1), which promote degradation of articular cartilage and prevent human mesenchymal stem cell (MSC) chondrogenesis. In this study, we combined gene therapy and functional tissue engineering to develop engineered cartilage with immunomodulatory properties that allow chondrogenesis in the presence of pathologic levels of IL-1 by inducing overexpression of IL-1 receptor antagonist (IL-1Ra) in MSCs via scaffold-mediated lentiviral gene delivery. A doxycycline-inducible vector was used to transduce MSCs in monolayer or within 3D woven PCL scaffolds to enable tunable IL-1Ra production. In the presence of IL-1, IL-1Ra-expressing engineered cartilage produced cartilage-specific extracellular matrix, while resisting IL-1-induced upregulation of matrix metalloproteinases and maintaining mechanical properties similar to native articular cartilage. The ability of functional engineered cartilage to deliver tunable anti-inflammatory cytokines to the joint may enhance the long-term success of therapies for cartilage injuries or osteoarthritis.

  1. Resveratrol protects rabbit articular chondrocyte against sodium nitroprusside-induced apoptosis via scavenging ROS.

    PubMed

    Liang, Qian; Wang, Xiao-ping; Chen, Tong-sheng

    2014-09-01

    This study aims to investigate the mechanism by which resveratrol (RV) prevents sodium nitroprusside (SNP)-induced chondrocyte apoptosis, which is a characteristic feature of osteoarthritis (OA). Rabbit articular chondrocytes were pre-incubated with 100 μM RV for 18 h before 1.5 mM SNP co-treatment for 6 h. Cell viability was evaluated by CCK-8. Annexin V/PI double staining and Hoechst 33258 staining were used to determine the fashion of SNP-induced chondrocytes death. Mitochondrial membrane potential (ΔΨm) was measured by using flow cytometry (FCM) with TMRM and Rhodamine 123 staining. Intracellular reactive oxygen species (ROS) and nitric oxide (NO) levels were confirmed by FCM analysis with DCFH-DA and DAF-FM DA staining. Cytoskeleton proteins of chondrocytes co-stained with Actin-Trakcer Green and Tubulin-Trakcer Red were validated by confocal microscopy. SNP induced time- and dose-dependent chondrocytes apoptosis with decline of ΔΨm, activation of caspases as well as cytoskeletal remodeling. SNP induced a significant induction of both ROS and NO. RV remarkably prevented SNP-induced ROS production and apoptosis as well as cytoskeletal remodeling, but did not prevent SNP-induced NO production. Pretreatment with NO scavengers did not significantly prevent SNP-induced apoptosis and cytoskeletal remodeling. SNP induces NO-independent ROS production which dominates rabbit articular chondrocyte apoptosis, and RV protects chondrocytes against SNP-induced apoptosis via scavenging ROS instead of NO.

  2. Melanocortin 1 Receptor-Signaling Deficiency Results in an Articular Cartilage Phenotype and Accelerates Pathogenesis of Surgically Induced Murine Osteoarthritis

    PubMed Central

    Hackmayer, Gerit; Greth, Carina; Bauer, Richard J.; Kleinschmidt, Kerstin; Bettenworth, Dominik; Böhm, Markus; Grifka, Joachim; Grässel, Susanne

    2014-01-01

    Proopiomelanocortin-derived peptides exert pleiotropic effects via binding to melanocortin receptors (MCR). MCR-subtypes have been detected in cartilage and bone and mediate an increasing number of effects in diathrodial joints. This study aims to determine the role of MC1-receptors (MC1) in joint physiology and pathogenesis of osteoarthritis (OA) using MC1-signaling deficient mice (Mc1re/e). OA was surgically induced in Mc1re/e and wild-type (WT) mice by transection of the medial meniscotibial ligament. Histomorphometry of Safranin O stained articular cartilage was performed with non-operated controls (11 weeks and 6 months) and 4/8 weeks past surgery. µCT–analysis for assessing epiphyseal bone architecture was performed as a longitudinal study at 4/8 weeks after OA-induction. Collagen II, ICAM-1 and MC1 expression was analysed by immunohistochemistry. Mc1re/e mice display less Safranin O and collagen II stained articular cartilage area compared to WT prior to OA-induction without signs of spontaneous cartilage surface erosion. This MC1-signaling deficiency related cartilage phenotype persisted in 6 month animals. At 4/8 weeks after OA-induction cartilage erosions were increased in Mc1re/e knees paralleled by weaker collagen II staining. Prior to OA-induction, Mc1re/e mice do not differ from WT with respect to bone parameters. During OA, Mc1re/e mice developed more osteophytes and had higher epiphyseal bone density and mass. Trabecular thickness was increased while concomitantly trabecular separation was decreased in Mc1re/e mice. Numbers of ICAM-positive chondrocytes were equal in non-operated 11 weeks Mc1re/e and WT whereas number of positive chondrocytes decreased during OA-progression. Unchallenged Mc1re/e mice display smaller articular cartilage covered area without OA-related surface erosions indicating that MC1-signaling is critical for proper cartilage matrix integrity and formation. When challenged with OA, Mc1re/e mice develop a more severe OA

  3. Doublecortin is expressed in articular chondrocytes.

    PubMed

    Zhang, Yi; Ryan, James A; Di Cesare, Paul E; Liu, Judy; Walsh, Christopher A; You, Zongbing

    2007-11-23

    Articular cartilage and cartilage in the embryonic cartilaginous anlagen and growth plates are both hyaline cartilages. In this study, we found that doublecortin (DCX) was expressed in articular chondrocytes but not in chondrocytes from the cartilaginous anlagen or growth plates. DCX was expressed by the cells in the chondrogenous layers but not intermediate layer of joint interzone. Furthermore, the synovium and cruciate ligaments were DCX-negative. DCX-positive chondrocytes were very rare in tissue engineered cartilage derived from in vitro pellet culture of rat chondrosarcoma, ATDC5, and C3H10T1/2 cells. However, the new hyaline cartilage formed in rabbit knee defect contained mostly DCX-positive chondrocytes. Our results demonstrate that DCX can be used as a marker to distinguish articular chondrocytes from other chondrocytes and to evaluate the quality of tissue engineered or regenerated cartilage in terms of their "articular" or "non-articular" nature.

  4. The Properties of Chondrocyte Membrane Reservoirs and Their Role in Impact-Induced Cell Death

    PubMed Central

    Moo, Eng Kuan; Amrein, Matthias; Epstein, Marcelo; Duvall, Mike; Abu Osman, Noor Azuan; Pingguan-Murphy, Belinda; Herzog, Walter

    2013-01-01

    Impact loading of articular cartilage causes extensive chondrocyte death. Cell membranes have a limited elastic range of 3–4% strain but are protected from direct stretch during physiological loading by their membrane reservoir, an intricate pattern of membrane folds. Using a finite-element model, we suggested previously that access to the membrane reservoir is strain-rate-dependent and that during impact loading, the accessible membrane reservoir is drastically decreased, so that strains applied to chondrocytes are directly transferred to cell membranes, which fail when strains exceed 3–4%. However, experimental support for this proposal is lacking. The purpose of this study was to measure the accessible membrane reservoir size for different membrane strain rates using membrane tethering techniques with atomic force microscopy. We conducted atomic force spectroscopy on isolated chondrocytes (n = 87). A micron-sized cantilever was used to extract membrane tethers from cell surfaces at constant pulling rates. Membrane tethers could be identified as force plateaus in the resulting force-displacement curves. Six pulling rates were tested (1, 5, 10, 20, 40, and 80 μm/s). The size of the membrane reservoir, represented by the membrane tether surface areas, decreased exponentially with increasing pulling rates. The current results support our theoretical findings that chondrocytes exposed to impact loading die because of membrane ruptures caused by high tensile membrane strain rates. PMID:24094400

  5. VDIPEN, a metalloproteinase-generated neoepitope, is induced and immunolocalized in articular cartilage during inflammatory arthritis.

    PubMed Central

    Singer, I I; Kawka, D W; Bayne, E K; Donatelli, S A; Weidner, J R; Williams, H R; Ayala, J M; Mumford, R A; Lark, M W; Glant, T T

    1995-01-01

    The destruction of articular cartilage in immune inflammatory arthritic disease involves the proteolytic degradation of its extracellular matrix. The role of activated matrix metalloproteinases (MMPs) in the chondrodestructive process was studied by identifying a selective cleavage product of aggrecan in murine arthritis models initiated by immunization with either type II collagen or proteoglycan. We conducted semiquantitative immunocytochemical studies of VDIPEN341 using a monospecific polyclonal antibody requiring the free COOH group of the COOH-terminal Asn for epitope detection. This antibody recognizes the aggrecan G1 domain fragment generated by MMP [i.e., stromelysin (SLN) or gelatinase A] cleavage of aggrecan between Asn341-Phe342 but does not recognize intact aggrecan. VDIPEN was undetectable in normal mouse cartilage but was observed in the articular cartilage (AC) of mice with collagen-induced arthritis 10 d after immunization, without histological damage and clinical symptoms. This aggrecan neoepitope was colocalized with high levels of glycosaminoglycans (GAGs) in pericellular matrices of AC chondrocytes but was not seen at the articular surface at this early time. Digestion of normal (VDIPEN negative) mouse paw cryosections with SLN also produced heavy pericellular VDIPEN labeling. Computer-based image analysis showed that the amount of VDIPEN expression increased dramatically by 20 d (70% of the SLN maximum) and was correlated with GAG depletion. Both infiltration of inflammatory cells into the synovial cavity and early AC erosion were also very prominent at this time. Analysis of adjacent sections showed that both induction of VDIPEN and GAG depletion were strikingly codistributed within sites of articular cartilage damage. Similar results occurred in proteoglycan-induced arthritis, a more progressive and chronic model of inflammatory arthritis. These studies demonstrate for the first time the MMP-dependent catabolism of aggrecan at sites of

  6. Chemical changes demonstrated in cartilage by synchrotron infrared microspectroscopy in an antibody-induced murine model of rheumatoid arthritis

    NASA Astrophysics Data System (ADS)

    Croxford, Allyson M.; Selva Nandakumar, Kutty; Holmdahl, Rikard; Tobin, Mark J.; McNaughton, Don; Rowley, Merrill J.

    2011-06-01

    Collagen antibody-induced arthritis develops in mice following passive transfer of monoclonal antibodies (mAbs) to type II collagen (CII) and is attributed to effects of proinflammatory immune complexes, but transferred mAbs may react directly and damagingly with CII. To determine whether such mAbs cause cartilage damage in vivo in the absence of inflammation, mice lacking complement factor 5 that do not develop joint inflammation were injected intravenously with two arthritogenic mAbs to CII, M2139 and CIIC1. Paws were collected at day 3, decalcified, paraffin embedded, and 5-μm sections were examined using standard histology and synchrotron Fourier-transform infrared microspectroscopy (FTIRM). None of the mice injected with mAb showed visual or histological evidence of inflammation but there were histological changes in the articular cartilage including loss of proteoglycan and altered chondrocyte morphology. Findings using FTIRM at high lateral resolution revealed loss of collagen and the appearance of a new peak at 1635 cm-1 at the surface of the cartilage interpreted as cellular activation. Thus, we demonstrate the utility of synchrotron FTIRM for examining chemical changes in diseased cartilage at the microscopic level and establish that arthritogenic mAbs to CII do cause cartilage damage in vivo in the absence of inflammation.

  7. Cartilage.

    ERIC Educational Resources Information Center

    Caplan, Arnold I.

    1984-01-01

    Cartilage is a fundamental biological material that helps to shape the body and then helps to support it. Its fundamental properties of strength and resilience are explained in terms of the tissue's molecular structure. (JN)

  8. Chondrogenic differentiation potential of osteoarthritic chondrocytes and their possible use in matrix-associated autologous chondrocyte transplantation

    PubMed Central

    2009-01-01

    Introduction Autologous chondrocyte transplantation (ACT) is a routine technique to regenerate focal cartilage lesions. However, patients with osteoarthritis (OA) are lacking an appropriate long-lasting treatment alternative, partly since it is not known if chondrocytes from OA patients have the same chondrogenic differentiation potential as chondrocytes from donors not affected by OA. Methods Articular chondrocytes from patients with OA undergoing total knee replacement (Mankin Score > 3, Ahlbäck Score > 2) and from patients undergoing ACT, here referred to as normal donors (ND), were isolated applying protocols used for ACT. Their chondrogenic differentiation potential was evaluated both in high-density pellet and scaffold (Hyaff-11) cultures by histological proteoglycan assessment (Bern Score) and immunohistochemistry for collagen types I and II. Chondrocytes cultured in monolayer and scaffolds were subjected to gene expression profiling using genome-wide oligonucleotide microarrays. Expression data were verified by using real-time PCR. Results Chondrocytes from ND and OA donors demonstrated accumulation of comparable amounts of cartilage matrix components, including sulphated proteoglycans and collagen types I and II. The mRNA expression of cartilage markers (ACAN, COL2A1, COMP, CRTL1, SOX9) and genes involved in matrix synthesis (BGN, CILP2, COL9A2, COL11A1, TIMP4) was highly induced in 3D cultures of chondrocytes from both donor groups. Genes associated with hypertrophic or OA cartilage (ALPL, COL1A1, COL3A1, COL10A1, MMP13, POSTN, PTH1R, RUNX2) were not significantly regulated between the two groups of donors. The expression of 661 genes, including COMP, FN1, and SOX9, was differentially regulated between OA and ND chondrocytes cultured in monolayer. During scaffold culture, the differences diminished between the OA and ND chondrocytes, and only 184 genes were differentially regulated. Conclusions Only few genes were differentially expressed between OA and

  9. Transamidation by transglutaminase 2 transforms S100A11 calgranulin into a procatabolic cytokine for chondrocytes.

    PubMed

    Cecil, Denise L; Terkeltaub, Robert

    2008-06-15

    In osteoarthritis (OA), low-grade joint inflammation promotes altered chondrocyte differentiation and cartilage catabolism. S100/calgranulins share conserved calcium-binding EF-hand domains, associate noncovalently as homodimers and heterodimers, and are secreted and bind receptor for advanced glycation end products (RAGE). Chondrocyte RAGE expression and S100A11 release are stimulated by IL-1beta in vitro and increase in OA cartilage in situ. Exogenous S100A11 stimulates chondrocyte hypertrophic differentiation. Moreover, S100A11 is covalently cross-linked by transamidation catalyzed by transglutaminase 2 (TG2), itself an inflammation-regulated and redox stress-inducible mediator of chondrocyte hypertrophic differentiation. In this study, we researched mouse femoral head articular cartilage explants and knee chondrocytes, and a soluble recombinant double point mutant (K3R/Q102N) of S100A11 TG2 transamidation substrate sites. Both TG2 and RAGE knockout cartilage explants retained IL-1beta responsiveness. The K3R/Q102N mutant of S100A11 retained the capacity to bind to RAGE and chondrocytes but lost the capacity to signal via the p38 MAPK pathway or induce chondrocyte hypertrophy and glycosaminoglycans release. S100A11 failed to induce hypertrophy, glycosaminoglycan release, and appearance of the aggrecanase neoepitope NITEGE in both RAGE and TG2 knockout cartilages. We conclude that transamidation by TG2 transforms S100A11 into a covalently bonded homodimer that acquires the capacity to signal through the p38 MAPK pathway, accelerate chondrocyte hypertrophy and matrix catabolism, and thereby couple inflammation with chondrocyte activation to potentially promote OA progression.

  10. PEP-1-SIRT2-induced matrix metalloproteinase-1 and -13 modulates type II collagen expression via ERK signaling in rabbit articular chondrocytes.

    PubMed

    Eo, Seong-Hui; Choi, Soo Young; Kim, Song Ja

    2016-11-01

    Matrix metalloproteinases (MMPs) are critical for the degradation of the extracellular matrix (ECM), which includes cartilage-specific collagen types I, II and XI. We previously found that PEP-1-sirtuin (SIRT)2 could induce dedifferentiation of articular chondrocytes; however, the underlying mechanisms remains unclear. We addressed this in the present study by examining the association between PEP-1-SIRT2 and the expression of MMP-1 and MMP-13 and type II collagen in rabbit articular chondrocytes. We found that PEP-1-SIRT2 increased MMP-1 and -13 expression in a dose- and time-dependent manner, as determined by western blotting. A similar trend in MMP-1 and -13 levels was observed in cultures during expansion to four passages. Pharmacological inhibition of MMP-1 and -13 blocked the PEP-1-SIRT2-induced decrease in type II collagen level. Phosphorylation of extracellular regulated kinase (ERK) was increased by PEP-1-SIRT2; however, treatment with the mitogen-activated protein kinase inhibitor PD98059 suppressed PEP-1-SIRT2-induced MMP-1 and -13 expression and dedifferentiation while restoring type II collagen expression in passage 2 cells. These results suggest that PEP-1-SIRT2 promotes MMP-induced dedifferentiation via ERK signaling in articular chondrocytes.

  11. Botanical Extracts from Rosehip (Rosa canina), Willow Bark (Salix alba), and Nettle Leaf (Urtica dioica) Suppress IL-1β-Induced NF-κB Activation in Canine Articular Chondrocytes

    PubMed Central

    Shakibaei, Mehdi; Allaway, David; Nebrich, Simone; Mobasheri, Ali

    2012-01-01

    The aim of this study was to characterize the anti-inflammatory mode of action of botanical extracts from rosehip (Rosa canina), willow bark (Salix alba), and nettle leaf (Urtica dioica) in an in vitro model of primary canine articular chondrocytes. Methods. The biological effects of the botanical extracts were studied in chondrocytes treated with IL-1β for up to 72 h. Expression of collagen type II, cartilage-specific proteoglycan (CSPG), β1-integrin, SOX-9, COX-2, and MMP-9 and MMP-13 was examined by western blotting. Results. The botanical extracts suppressed IL-1β-induced NF-κB activation by inhibition of IκBα phosphorylation, IκBα degradation, p65 phosphorylation, and p65 nuclear translocation. These events correlated with downregulation of NF-κB targets including COX-2 and MMPs. The extracts also reversed the IL-1β-induced downregulation of collagen type II, CSPG, β1-integrin, and cartilage-specific transcription factor SOX-9 protein expression. In high-density cultures botanical extracts stimulated new cartilage formation even in the presence of IL-1β. Conclusions. Botanical extracts exerted anti-inflammatory and anabolic effects on chondrocytes. The observed reduction of IL-1β-induced NF-κB activation suggests that further studies are warranted to demonstrate the effectiveness of plant extracts in the treatment of OA and other conditions in which NF-κB plays pathophysiological roles. PMID:22474508

  12. Gold Nanoparticles of Diameter 13 nm Induce Apoptosis in Rabbit Articular Chondrocytes

    NASA Astrophysics Data System (ADS)

    Huang, Hao; Quan, Ying-yao; Wang, Xiao-ping; Chen, Tong-sheng

    2016-05-01

    Gold nanoparticles (AuNPs) have been widely used in biomedical science including antiarthritic agents, drug loading, and photothermal therapy. In this report, we studied the effects of AuNPs with diameters of 3, 13, and 45 nm, respectively, on rabbit articular chondrocytes. AuNPs were capped with citrate and their diameter and zeta potential were measured by dynamic light scattering (DLS). Cell viability was evaluated by Cell Counting Kit-8 (CCK-8) assay after the rabbit articular chondrocytes were pre-incubated with 3, 13, and 45 nm AuNPs, respectively, for 24 h. Flow cytometry (FCM) analysis with annexin V/propidium iodide (PI) double staining and fluorescence imaging with Hoechst 33258 staining were used to determine the fashion of AuNPs-induced chondrocyte death. Further, 13 nm AuNPs (2 nM) significantly induced chondrocyte death accompanying apoptotic characteristics including mitochondrial damage, externalization of phosphatidylserine and nuclear concentration. However, 3 nm AuNPs (2 nM) and 45 nm (0.02 nM) AuNPs did not induce cytotoxicity in chondrocytes. Although 13 nm AuNPs (2 nM) increased the intracellular reactive oxygen species (ROS) level, pretreatment with Nacetyl cysteine (NAC), a ROS scavenger, did not prevent the cytotoxicity induced by 13 nm AuNPs, indicating that 13 nm AuNPs (2 nM) induced ROS-independent apoptosis in chondrocytes. These results demonstrate the size-dependent cytotoxicity of AuNPs in chondrocytes, which must be seriously considered when using AuNPs for treatment of osteoarthritis (OA).

  13. Chondrocytes Directly Transform into Bone Cells in Mandibular Condyle Growth

    PubMed Central

    Jing, Y.; Zhou, X.; Han, X.; Jing, J.; von der Mark, K.; Wang, J.; de Crombrugghe, B.; Hinton, R.J.; Feng, J.Q.

    2015-01-01

    For decades, it has been widely accepted that hypertrophic chondrocytes undergo apoptosis prior to endochondral bone formation. However, very recent studies in long bone suggest that chondrocytes can directly transform into bone cells. Our initial in vivo characterization of condylar hypertrophic chondrocytes revealed modest numbers of apoptotic cells but high levels of antiapoptotic Bcl-2 expression, some dividing cells, and clear alkaline phosphatase activity (early bone marker). Ex vivo culture of newborn condylar cartilage on a chick chorioallantoic membrane showed that after 5 d the cells on the periphery of the explants had begun to express Col1 (bone marker). The cartilage-specific cell lineage–tracing approach in triple mice containing Rosa 26tdTomato (tracing marker), 2.3 Col1GFP (bone cell marker), and aggrecan CreERT2 (onetime tamoxifen induced) or Col10-Cre (activated from E14.5 throughout adult stage) demonstrated the direct transformation of chondrocytes into bone cells in vivo. This transformation was initiated at the inferior portion of the condylar cartilage, in contrast to the initial ossification site in long bone, which is in the center. Quantitative data from the Col10-Cre compound mice showed that hypertrophic chondrocytes contributed to ~80% of bone cells in subchondral bone, ~70% in a somewhat more inferior region, and ~40% in the most inferior part of the condylar neck (n = 4, P < 0.01 for differences among regions). This multipronged approach clearly demonstrates that a majority of chondrocytes in the fibrocartilaginous condylar cartilage, similar to hyaline cartilage in long bones, directly transform into bone cells during endochondral bone formation. Moreover, ossification is initiated from the inferior portion of mandibular condylar cartilage with expansion in one direction. PMID:26341973

  14. The involvement and possible mechanism of NR4A1 in chondrocyte apoptosis during osteoarthritis

    PubMed Central

    Shi, Xinge; Ye, Hui; Yao, Xuedong; Gao, Yanzheng

    2017-01-01

    Osteoarthritis (OA) is a joint disease caused by the breakdown of joint cartilage and underlying bone, and places great burdens to daily life of patients. Nuclear orphan receptor nuclear receptor subfamily 4, group A, member 1 (NR4A1) is vital for cell apoptosis, but little is known about its role in OA. This study aims to reveal the expression and function of NR4A1 during OA chondrocyte apoptosis. NR4A1 expression by qRT-PCR and western blot, and chondrocyte apoptosis by TUNEL assay were detected in normal and OA joint cartilage. NR4A1 was located in cartilage sections by immunohistofluorescence. Chondrocytes from normal joint cartilage were cultured in vitro for interleukin 6 (IL6) or tumor necrosis factor (TNF) treatment and si-NR4A1 transfection, after which the possible mechanism involving NR4A1 was analyzed. Results showed that NR4A1 expression and chondrocyte apoptosis were significantly elevated in OA cartilage (P < 0.05 and P < 0.01). NR4A1 was located in nuclei of normal cartilage chondrocytes, but was translocated to mitochondria and co-located with B-cell lymphoma 2 in OA chondrocytes. NR4A1 expression in cultured chondrocytes could be promoted by both IL6 and TNF treatment. si-NR4A1 partly reduced TNF-induced cell apoptosis. Inhibiting p38 by SB203580 could decrease TNF-induced NR4A1 to some extent, while inhibiting JNK could not. So NR4A1 is likely to facilitate OA chondrocyte apoptosis, which is associated with p38 MAPK and mitochondrial apoptosis pathway. This study provides a potential therapeutic target for OA treatment and offers information for regulatory mechanisms in OA. PMID:28337303

  15. Proteomic Analysis of Engineered Cartilage.

    PubMed

    Pu, Xinzhu; Oxford, Julia Thom

    2015-01-01

    Tissue engineering holds promise for the treatment of damaged and diseased tissues, especially for those tissues that do not undergo repair and regeneration readily in situ. Many techniques are available for cell and tissue culturing and differentiation of chondrocytes using a variety of cell types, differentiation methods, and scaffolds. In each case, it is critical to demonstrate the cellular phenotype and tissue composition, with particular attention to the extracellular matrix molecules that play a structural role and that contribute to the mechanical properties of the resulting tissue construct. Mass spectrometry provides an ideal analytical method with which to characterize the full spectrum of proteins produced by tissue-engineered cartilage. Using normal cartilage tissue as a standard, tissue-engineered cartilage can be optimized according to the entire proteome. Proteomic analysis is a complementary approach to biochemical, immunohistochemical, and mechanical testing of cartilage constructs. Proteomics is applicable as an analysis approach to most cartilage constructs generated from a variety of cellular sources including primary chondrocytes, mesenchymal stem cells from bone marrow, adipose tissue, induced pluripotent stem cells, and embryonic stem cells. Additionally, proteomics can be used to optimize novel scaffolds and bioreactor applications, yielding cartilage tissue with the proteomic profile of natural cartilage.

  16. Effects of limited exposure of rabbit chondrocyte cultures to parathyroid hormone and dibutyryl adenosine 3',5'-monophosphate on cartilage-characteristic proteoglycan synthesis

    SciTech Connect

    Kato, Y.; Koike, T.; Iwamoto, M.; Kinoshita, M.; Sato, K.; Hiraki, Y.; Suzuki, F.

    1988-05-01

    Treatment of rabbit chondrocyte cultures with PTH or (Bu)2cAMP for 30 h increased by 2- to 3-fold the incorporation of (35S)sulfate and 3H radioactivity with glucosamine as the precursor into large chondroitin sulfate proteoglycans characteristically found in cartilage matrix. However, PTH and (Bu)2cAMP did not increase either (35S)sulfate incorporation into small proteoglycans or the incorporation of 3H radioactivity into hyaluronic acid and other glycosaminoglycans. PTH and (Bu)2cAMP also increased the incorporation of (3H) serine into both proteoglycans and total protein. In all cultures described above, the stimulation of (3H)serine incorporation into proteoglycans exceeded that of (3H)serine incorporation into total protein. These data indicate that PTH and (Bu)2cAMP selectively stimulate cartilage proteoglycan synthesis while they increase total protein synthesis. Since cAMP seems to play a mediatory role in the action of PTH, we elected to examine the effects of a limited exposure of chondrocytes to PTH or (Bu)2cAMP on the synthesis of proteoglycans. Treatment with PTH or (Bu)2cAMP for only the initial 2-7 h did not increase the rates of incorporation of (35S)sulfate, the 3H radioactivity with glucosamine, and (3H)serine into proteoglycans, as measured at 30 h, despite the fact that this treatment brought about a rapid and transient rise in the cAMP level. Furthermore, the application of prostaglandin I2 at concentrations that increased cAMP levels in a similar fashion as did PTH did not affect (35S) sulfate incorporation into proteoglycans.

  17. Decreased chondrocyte proliferation and dysregulated apoptosis in the cartilage growth plate are key features of a murine model of epiphyseal dysplasia caused by a matn3 mutation.

    PubMed

    Leighton, Matthew P; Nundlall, Seema; Starborg, Tobias; Meadows, Roger S; Suleman, Farhana; Knowles, Lynette; Wagener, Raimund; Thornton, David J; Kadler, Karl E; Boot-Handford, Raymond P; Briggs, Michael D

    2007-07-15

    Disruption to endochondral ossification leads to delayed and irregular bone formation and can result in a heterogeneous group of genetic disorders known as the chondrodysplasias. One such disorder, multiple epiphyseal dysplasia (MED), is characterized by mild dwarfism and early-onset osteoarthritis and can result from mutations in the gene encoding matrilin-3 (MATN3). To determine the disease mechanisms that underpin the pathophysiology of MED we generated a murine model of epiphyseal dysplasia by knocking-in a matn3 mutation. Mice that are homozygous for the mutation develop a progressive dysplasia and have short-limbed dwarfism that is consistent in severity with the relevant human phenotype. Mutant matrilin-3 is retained within the rough endoplasmic reticulum of chondrocytes and is associated with an unfolded protein response. Eventually, there is reduced proliferation and spatially dysregulated apoptosis of chondrocytes in the cartilage growth plate, which is likely to be the cause of disrupted linear bone growth and the resulting short-limbed dwarfism in the mutant mice.

  18. Cartilage storage at 4 °C with regular culture medium replacement benefits chondrocyte viability of osteochondral grafts in vitro.

    PubMed

    Qi, Jianhong; Hu, Zunjie; Song, Hongqiang; Chen, Bin; Xie, Di; Zhou, Lu; Zhang, Yanming

    2016-09-01

    Maintenance of articular cartilage allografts in culture media is a common method of tissue storage; however, the technical parameters of graft storage remain controversial. In this study, we examined the optimal temperature and culture medium exchange rate for the storage of osteochondral allografts in vitro. Cylindrical osteochondral grafts (n = 120), harvested from the talar joint surface of ten Boer goats, were randomly classified into four groups and stored under the following conditions: Group A1 was maintained at 4 °C in culture medium that was refreshed every 2 days; Group A2 was maintained at 4 °C in the same culture medium, without refreshing; Group B1, was maintained at 37 °C in culture medium that was refreshed every 2 days; Group B2, was maintained at 37 °C in the same culture medium, without refreshing. Chondrocyte viability in the grafts was determined by ethidium bromide/fluorescein diacetate staining on days 7, 21, and 35. Proteoglycan content was measured by Safranin-O staining. Group A1 exhibited the highest chondrocyte survival rates of 90.88 %, 88.31 % and 78.69 % on days 7, 21, and 35, respectively. Safranin O staining revealed no significant differences between groups on days 21 and 35. These results suggest that storage of osteochondral grafts at 4 °C with regular culture medium replacement should be highly suitable for clinical application.

  19. Sox5 and Sox6 are needed to develop and maintain source, columnar, and hypertrophic chondrocytes in the cartilage growth plate.

    PubMed

    Smits, Patrick; Dy, Peter; Mitra, Srijeet; Lefebvre, Véronique

    2004-03-01

    Sox5 and Sox6 encode Sry-related transcription factors that redundantly promote early chondroblast differentiation. Using mouse embryos with three or four null alleles of Sox5 and Sox6, we show that they are also essential and redundant in major steps of growth plate chondrocyte differentiation. Sox5 and Sox6 promote the development of a highly proliferating pool of chondroblasts between the epiphyses and metaphyses of future long bones. This pool is the likely cellular source of growth plates. Sox5 and Sox6 permit formation of growth plate columnar zones by keeping chondroblasts proliferating and by delaying chondrocyte prehypertrophy. They allow induction of chondrocyte hypertrophy and permit formation of prehypertrophic and hypertrophic zones by delaying chondrocyte terminal differentiation induced by ossification fronts. They act, at least in part, by down-regulating Ihh signaling, Fgfr3, and Runx2 and by up-regulating Bmp6. In conclusion, Sox5 and Sox6 are needed for the establishment of multilayered growth plates, and thereby for proper and timely development of endochondral bones.

  20. Pterosin B prevents chondrocyte hypertrophy and osteoarthritis in mice by inhibiting Sik3

    PubMed Central

    Yahara, Yasuhito; Takemori, Hiroshi; Okada, Minoru; Kosai, Azuma; Yamashita, Akihiro; Kobayashi, Tomohito; Fujita, Kaori; Itoh, Yumi; Nakamura, Masahiro; Fuchino, Hiroyuki; Kawahara, Nobuo; Fukui, Naoshi; Watanabe, Akira; Kimura, Tomoatsu; Tsumaki, Noriyuki

    2016-01-01

    Osteoarthritis is a common debilitating joint disorder. Risk factors for osteoarthritis include age, which is associated with thinning of articular cartilage. Here we generate chondrocyte-specific salt-inducible kinase 3 (Sik3) conditional knockout mice that are resistant to osteoarthritis with thickened articular cartilage owing to a larger chondrocyte population. We also identify an edible Pteridium aquilinum compound, pterosin B, as a Sik3 pathway inhibitor. We show that either Sik3 deletion or intraarticular injection of mice with pterosin B inhibits chondrocyte hypertrophy and protects cartilage from osteoarthritis. Collectively, our results suggest Sik3 regulates the homeostasis of articular cartilage and is a target for the treatment of osteoarthritis, with pterosin B as a candidate therapeutic. PMID:27009967

  1. Expression of membrane-type 1 matrix metalloproteinase and activation of progelatinase A in human osteoarthritic cartilage.

    PubMed Central

    Imai, K.; Ohta, S.; Matsumoto, T.; Fujimoto, N.; Sato, H.; Seiki, M.; Okada, Y.

    1997-01-01

    Matrix metalloproteinases (MMPs) are expressed in osteoarthritic (OA) cartilage and are thought to be involved in the degradation of cartilage extracellular matrix (ECM). Among these proteinases, MMP-2 (gelatinase A) demonstrates a wide range of substrate specificity against the ECM present in cartilage. Although MMP-2 expression increases in OA cartilage, the activation mechanism of the corresponding zymogen (pro-MMP-2) in cartilage is unknown. In this study, we examined the expression pattern of membrane-type 1 MMP (MT1-MMP) in human OA articular cartilage and its correlation with the activation of pro-MMP-2. Immunohistochemical studies demonstrate that MT1-MMP localizes to the chondrocytes in the superficial and transitional zones in all of the samples examined directly correlating with cartilage degradation. Reverse transcription polymerase chain reaction confirmed the predominant expression of MT1-MMP mRNA in the OA cartilage. In situ hybridization revealed the site of expression of MT1-MMP in OA cartilage to be the chondrocytes. Through gelatin zymography and a sandwich enzyme immunoassay it was demonstrated that OA cartilage explants secrete significantly higher levels of pro-MMP-2 than normal samples. Pro-MMP-2 activation was enhanced in the OA cartilage samples and correlated with MT1-MMP expression in the cartilage. Plasma membranes prepared from cultured chondrocytes with MT1-MMP expression and those directly isolated from OA cartilage could activate pro-MMP-2. MT1-MMP gene expression in cultured chondrocytes was induced by treatment with interleukin-1 alpha and/or tumor necrosis factor-alpha. These data suggest that cytokine-induced MT1-MMP in the chondrocytes may play a key role in the activation of pro-MMP-2 in the OA articular cartilage, leading to cartilage destruction through ECM degradation. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 7 Figure 8 PMID:9212749

  2. Activation of α2A-adrenergic signal transduction in chondrocytes promotes degenerative remodelling of temporomandibular joint

    PubMed Central

    Jiao, Kai; Zeng, Guang; Niu, Li-Na; Yang, Hong-xu; Ren, Gao-tong; Xu, Xin-yue; Li, Fei-fei; Tay, Franklin R.; Wang, Mei-qing

    2016-01-01

    This study tested whether activation of adrenoreceptors in chondrocytes has roles in degenerative remodelling of temporomandibular joint (TMJ) and to determine associated mechanisms. Unilateral anterior crossbite (UAC) was established to induce TMJ degeneration in rats. Saline vehicle, α2- and β-adrenoreceptor antagonists or agonists were injected locally into the TMJ area of UAC rats. Cartilage degeneration, subchondral bone microarchitecture and the expression of adrenoreceptors, aggrecans, matrix metalloproteinases (MMPs) and RANKL by chondrocytes were evaluated. Chondrocytes were stimulated by norepinephrine to investigate signal transduction of adrenoreceptors. Increased α2A-adrenoreceptor expression was observed in condylar cartilage of UAC rats, together with cartilage degeneration and subchondral bone loss. Norepinephrine depresses aggrecans expression but stimulates MMP-3, MMP-13 and RANKL production by chondrocytes through ERK1/2 and PKA pathway; these effects were abolished by an α2A-adrenoreceptor antagonist. Furthermore, inhibition of α2A-adrenoreceptor attenuated degenerative remodelling in the condylar cartilage and subchondral bone, as revealed by increased cartilage thickness, proteoglycans and aggrecan expression, and decreased MMP-3, MMP-13 and RANKL expressions in cartilage, increased BMD, BV/TV, and decreased Tb.Sp in subchondral bone. Conversely, activation of α2A-adrenoreceptor intensified aforementioned degenerative changes in UAC rats. It is concluded that activation of α2A-adrenergic signal in chondrocytes promotes TMJ degenerative remodelling by chondrocyte-mediated pro-catabolic activities. PMID:27452863

  3. In vitro effects of triamcinolone acetonide and in combination with hyaluronan on canine normal and spontaneous osteoarthritis articular cartilage.

    PubMed

    Euppayo, Thippaporn; Siengdee, Puntita; Buddhachat, Kittisak; Pradit, Waranee; Chomdej, Siriwadee; Ongchai, Siriwan; Nganvongpanit, Korakot

    2016-08-01

    The purposes of this study were to examine the cartilage degradation effects of triamcinolone acetonide (TA) on normal and osteoarthritic (OA) primary canine chondrocytes and cartilage explants and to examine the cartilage degradation effects of TA in combination with low-molecular-weight hyaluronan (LMWHA). To assess the effects of these drugs on cell culture, 3,[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and real-time PCR were used to measure chondrotoxicity and determine gene expression, respectively. Uronic acid and hydroxyproline remaining in cartilage and histopathology were used to estimate the effects of these drugs on cartilage explants. In chondrocyte cultures, TA reduced chondrocyte viability in a concentration-dependent manner. LMWHA 2.5 mg/ml combined with TA at IC20 (0.09 mg/ml) could increase the viability of normal chondrocytes when compared with TA-treated alone. TA at IC20 induced down-regulation of ACAN and induced up-regulation of ADAMTS5 in canine normal chondrocytes. TA at IC20 (0.11 mg/ml) up-regulated ADAMTS5, MMP2, MMP3, MMP13, and ACAN expression in canine OA chondrocytes. In explant culture, TA at 1.25, 2.5, and 5 mg/ml increased the severity of structural damage, chondrocyte loss and cluster formation, and proteoglycan loss in OA cartilage. LMWHA could decrease the chondrotoxicity of TA at IC20 only in normal chondrocytes, as observed by chondrocyte viability. The combination of LMWHA and TA did not show clearly beneficial effects in all other normal and OA samples. Consequently, using TA alone or in combination with LMWHA in OA cartilage should be of concern because it may lead to cartilage destruction.

  4. Temporary immobilisation facilitates repair of chemically induced articular cartilage injury.

    PubMed Central

    Williams, J M; Brandt, K D

    1984-01-01

    Recent studies have indicated that immobilisation of the lower limb may prevent surface fibrillation and osteophyte formation, and reduce cell depletion, following injection of iodoacetate into the ipsilateral knee of the guinea-pig. The present study shows that temporary immobilisation also facilitates repair of the damaged cartilage during a subsequent period of remobilisation in which the animal is permitted to move 'on all fours'. Thus, in animals killed six weeks after a single intra-articular injection of iodoacetate (0.3 mg in 0.1 ml saline), and in which the injected knee had been immobilised for three weeks, Safranin-O staining of the articular cartilage was more intense, chondrocyte density greater, and osteophytosis much less marked than in animals injected with iodoacetate but killed immediately after the three weeks immobilisation period. By contrast, immobilisation for only one week failed to protect against degenerative changes and osteophytes caused by iodoacetate injection. Immobilisation alone produced no apparent pathological changes in animals which did not receive iodoacetate. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:6735906

  5. Cysteine-Mediated Redox Regulation of Cell Signaling in Chondrocytes Stimulated With Fibronectin Fragments

    PubMed Central

    Wood, Scott T.; Long, David L.; Reisz, Julie A.; Yammani, Raghunatha R.; Burke, Elizabeth A.; Klomsiri, Chananat; Poole, Leslie B.; Furdui, Cristina M.; Loeser, Richard F.

    2016-01-01

    Objective Oxidative posttranslational modifications of intracellular proteins can potentially regulate signaling pathways relevant to cartilage destruction in arthritis. In this study, oxidation of cysteine residues to form sulfenic acid (S-sulfenylation) was examined in osteo-arthritic (OA) chondrocytes and investigated in normal chondrocytes as a mechanism by which fragments of fibronectin (FN-f) stimulate chondrocyte catabolic signaling. Methods Chondrocytes isolated from OA and normal human articular cartilage were analyzed using analogs of dimedone that specifically and irreversibly react with protein S-sulfenylated cysteines. Global S-sulfenylation was measured in cell lysates with and without FN-f stimulation by immunoblotting and in fixed cells by confocal microscopy. S-sulfenylation in specific proteins was identified by mass spectroscopy and confirmed by immunoblotting. Src activity was measured in live cells using a fluorescence resonance energy transfer biosensor. Results Proteins in chondrocytes isolated from OA cartilage were found to have elevated basal levels of S-sulfenylation relative to those of chondrocytes from normal cartilage. Treatment of normal chondrocytes with FN-f induced increased levels of S-sulfenylation in multiple proteins, including the tyrosine kinase Src. FN-f treatment also increased the levels of Src activity. Pretreatment with dimedone to alter S-sulfenylation function or with Src kinase inhibitors inhibited FN-f–induced production of matrix metalloproteinase 13. Conclusion These results demonstrate for the first time the presence of oxidative posttranslational modification of proteins in human articular chondrocytes by S-sulfenylation. Due to the ability to regulate the activity of a number of cell signaling pathways, including catabolic mediators induced by fibronectin fragments, S-sulfenylation may contribute to cartilage destruction in OA and warrants further investigation. PMID:26314228

  6. Runx1 Activities in Superficial Zone Chondrocytes, Osteoarthritic Chondrocyte Clones and Response to Mechanical Loading

    PubMed Central

    LeBlanc, Kimberly T.; Walcott, Marie E.; Gaur, Tripti; O’Connell, Shannon L.; Basil, Kirti; Tadiri, Christina P.; Mason-Savas, April; Silva, Jason A.; van Wijnen, Andre J.; Stein, Janet L.; Stein, Gary S; Ayers, David C.; Lian, Jane B.; Fanning, Paul J.

    2015-01-01

    Objective Runx1, the hematopoietic lineage determining transcription factor, is present in perichondrium and chondrocytes. Here we addressed Runx1 functions, by examining expression in cartilage during mouse and human osteoarthritis (OA) progression and in response to mechanical loading. Methods Spared and diseased compartments in knees of OA patients and in mice with surgical destabilization of the medial meniscus were examined for changes in expression of Runx1 mRNA (Q-PCR) and protein (immunoblot, immunohistochemistry). Runx1 levels were quantified in response to static mechanical compression of bovine articular cartilage. Runx1 function was assessed by cell proliferation (Ki67, PCNA) and cell type phenotypic markers. Results Runx1 is enriched in superficial zone (SZ) chondrocytes of normal bovine, mouse, and human tissues. Increasing loading conditions in bovine cartilage revealed a positive correlation with a significant elevation of Runx1. Runx1 becomes highly expressed at the periphery of mouse OA lesions and in human OA chondrocyte ‘clones’ where Runx1 co-localizes with Vcam1, the mesenchymal stem cell (MSC) marker and lubricin (Prg4), a cartilage chondroprotective protein. These OA induced cells represent a proliferative cell population, Runx1 depletion in MPCs decreases cell growth, supporting Runx1 contribution to cell expansion. Conclusion The highest Runx1 levels in SZC of normal cartilage suggest a function that supports the unique phenotype of articular chondrocytes, reflected by upregulation under conditions of compression. We propose Runx1 co-expression with Vcam1 and lubricin in murine cell clusters and human ‘clones’ of OA cartilage, participate in a cooperative mechanism for a compensatory anabolic function. PMID:25078095

  7. Chondrocyte intracellular calcium, cytoskeletal organization, and gene expression responses to dynamic osmotic loading.

    PubMed

    Chao, Pen-Hsiu Grace; West, Alan C; Hung, Clark T

    2006-10-01

    While chondrocytes in articular cartilage experience dynamic stimuli from joint loading activities, few studies have examined the effects of dynamic osmotic loading on their signaling and biosynthetic activities. We hypothesize that dynamic osmotic loading modulates chondrocyte signaling and gene expression differently than static osmotic loading. With the use of a novel microfluidic device developed in our laboratory, dynamic hypotonic loading (-200 mosM) was applied up to 0.1 Hz and chondrocyte calcium signaling, cytoskeleton organization, and gene expression responses were examined. Chondrocytes exhibited decreasing volume and calcium responses with increasing loading frequency. Phalloidin staining showed osmotic loading-induced changes to the actin cytoskeleton in chondrocytes. Real-time PCR analysis revealed a stimulatory effect of dynamic osmotic loading compared with static osmotic loading. These studies illustrate the utility of the microfluidic device in cell signaling investigations, and their potential role in helping to elucidate mechanisms that mediate chondrocyte mechanotransduction to dynamic stimuli.

  8. Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice.

    PubMed

    Zhou, Xin; von der Mark, Klaus; Henry, Stephen; Norton, William; Adams, Henry; de Crombrugghe, Benoit

    2014-12-01

    One of the crucial steps in endochondral bone formation is the replacement of a cartilage matrix produced by chondrocytes with bone trabeculae made by osteoblasts. However, the precise sources of osteoblasts responsible for trabecular bone formation have not been fully defined. To investigate whether cells derived from hypertrophic chondrocytes contribute to the osteoblast pool in trabecular bones, we genetically labeled either hypertrophic chondrocytes by Col10a1-Cre or chondrocytes by tamoxifen-induced Agc1-CreERT2 using EGFP, LacZ or Tomato expression. Both Cre drivers were specifically active in chondrocytic cells and not in perichondrium, in periosteum or in any of the osteoblast lineage cells. These in vivo experiments allowed us to follow the fate of cells labeled in Col10a1-Cre or Agc1-CreERT2 -expressing chondrocytes. After the labeling of chondrocytes, both during prenatal development and after birth, abundant labeled non-chondrocytic cells were present in the primary spongiosa. These cells were distributed throughout trabeculae surfaces and later were present in the endosteum, and embedded within the bone matrix. Co-expression studies using osteoblast markers indicated that a proportion of the non-chondrocytic cells derived from chondrocytes labeled by Col10a1-Cre or by Agc1-CreERT2 were functional osteoblasts. Hence, our results show that both chondrocytes prior to initial ossification and growth plate chondrocytes before or after birth have the capacity to undergo transdifferentiation to become osteoblasts. The osteoblasts derived from Col10a1-expressing hypertrophic chondrocytes represent about sixty percent of all mature osteoblasts in endochondral bones of one month old mice. A similar process of chondrocyte to osteoblast transdifferentiation was involved during bone fracture healing in adult mice. Thus, in addition to cells in the periosteum chondrocytes represent a major source of osteoblasts contributing to endochondral bone formation in vivo.

  9. Overexpression of HMGB1 A-box reduced IL-1β-induced MMP expression and the production of inflammatory mediators in human chondrocytes.

    PubMed

    Fu, Yahui; Lei, Jinlai; Zhuang, Yan; Zhang, Kun; Lu, Daigang

    2016-11-15

    The pro-inflammatory cytokine interleukin-1 beta (IL-1β) plays a crucial role in the pathogenesis of osteoarthritis (OA) by stimulating several mediators that contribute to cartilage degradation. The aim of this study was to investigate the effects and mechanism of high mobility group box 1 (HMGB1) inhibitors HMGB1 A-box on the expression of matrix metalloproteinase (MMP) and the production of inflammatory mediators in human osteoarthritis chondrocytes after activation by IL-1β. We found that the overexpression of HMGB1 A-box significantly decreased the IL-1β-stimulated the production of MMP-1, MMP-3 and MMP-9, and also reduced the elevated levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) associated with the inhibition of prostaglandin E2 (PGE2) and nitric oxide (NO) production in IL-1β-stimulated chondrocytes. In addition, overexpression of the HMGB1 A-box significantly inhibited the up-regulation of ADAMTS-4, ADAMTS-5 and HMGB1 caused by IL-1β in chondrocytes. Moreover, the overexpression of HMGB1 A-box markedly suppressed the IL-1β-mediated activation of the Toll-like receptor 4 (TRL4)/NF-κB pathway. Our observations indicated that the HMGB1 A-box can play a protective role by suppressing the IL-1β-induced expression of MMPs and that the production of inflammatory mediators in chondrocytes was associated with suppression of the HMGB1/TLR4/NF-κB pathway. In conclusion, HMGB1 A-box relieves the development of OA that may be associated with regulating the HMGB1/TLR4/NF-κB pathway.

  10. Diosgenin inhibits IL-1β-induced expression of inflammatory mediators in human osteoarthritis chondrocytes

    PubMed Central

    Wang, Leisheng; Ma, Tian; Zheng, Yanpin; Lv, Shiqiao; Li, Yu; Liu, Shaoxian

    2015-01-01

    It is well known that the inflammatory cytokines play important roles in osteoarthritis (OA). Diosgenin is a steroidal saponin found in several plants including Solanum and Dioscorea species and possesses diverse biological activities including anti-inflammatory properties. However, the role of diosgenin in inflammatory responses in OA chondrocytes is still unclear. Therefore, in this study, we investigated the anti-inflammatory properties of diosgenin in human OA chondrocytes. We found that diosgenin inhibited the production of nitric oxide (NO) and prostaglandin E2 (PGE2) induced by interleukin-1-beta (IL-1β). Diosgenin significantly inhibited the IL-1β-stimulated expression of metalloproteinase-3 (MMP-3), MMP-13, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in human OA chondrocytes. In addition, diosgenin suppressed the degradation of IκB-α in IL-1β-induced human OA chondrocytes. Taken together, this study showed that diosgenin can effectively inhibit the IL-1β-induced expression of inflammatory mediators, suggesting that diosgenin may be a potential agent in the treatment of OA. PMID:26191174

  11. Laser-induced cartilage damage: an ex-vivo model using confocal microscopy

    NASA Astrophysics Data System (ADS)

    Frenz, Martin; Zueger, Benno J.; Monin, D.; Weiler, C.; Mainil-Varlet, P. M.; Weber, Heinz P.; Schaffner, Thomas

    1999-06-01

    Although there is an increasing popularity of lasers in orthopedic surgery, there is a growing concern about negative side effects of this therapy e.g. prolonged restitution time, radiation damage to adjacent cartilage or depth effects like bone necrosis. Despite case reports and experimental investigations over the last few years little is known about the extent of acute cartilage damage induced by different lasers types and energies. Histological examination offers only limited insights in cell viability and metabolism. Ho:YAG and Er:YAG lasers emitting at 2.1 micrometer and 2.94 micrometer, respectively, are ideally suited for tissue treatment because these wavelengths are strongly absorbed in water. The Purpose of the present study is to evaluate the effect of laser type and energy on chondrocyte viability in an ex vivo model. Free running Er:YAG (E equals 100 and 150 mJ) and Ho:YAG (E equals 500 and 800 mJ) lasers were used at different energy levels using a fixed pulse length of 400 microseconds. The energy was delivered at 8 Hz through optical fibers. Fresh bovine hyaline cartilage samples were mounted in a water bath at room temperature and the fiber was positioned at 30 degree and 180 degree angles relative to the tissue surface. After laser irradiation the samples were assessed by a life-dead cell viability test using a confocal microscope and by standard histology. Thermal damage was much deeper with Ho:YAG (up to 1800 micrometer) than with the Er:YAG laser (up to 70 micrometer). The cell viability test revealed a damage zone about twice the one determined by standard histology. Confocal microscopy is a powerful tool for assessing changes in tissue structure after laser treatment. In addition this technique allows to quantify these alterations without necessitating time consuming and expensive animal experiments.

  12. Cissus quadrangularis inhibits IL-1β induced inflammatory responses on chondrocytes and alleviates bone deterioration in osteotomized rats via p38 MAPK signaling

    PubMed Central

    Kanwar, Jagat R; Samarasinghe, Rasika M; Kumar, Kuldeep; Arya, Ramesh; Sharma, Sanjeev; Zhou, Shu-Feng; Sasidharan, Sreenivasan; Kanwar, Rupinder K

    2015-01-01

    Introduction Inflammatory mediators are key players in the pathogenesis of osteoarthritis (OA) and bone destruction. Conventional drugs suppress symptomatic activity and have no therapeutic influence on disease. Cissus quadrangularis and Withania somnifera are widely used for the treatment of bone fractures and wounds; however, the cellular and molecular mechanisms regulated by these herbals are still unclear. Methods We established an in vitro OA culture model by exposing human chondrocytes to proinflammatory cytokine and interleukin (IL)-1β for 36 hours prior to treatment with the herbals: C. quadrangularis, W. somnifera, and the combination of the two herbals. Cell viability, toxicity, and gene expression of OA modifying agents were examined. In addition, expression of survivin, which is crucial for cell growth, was analyzed. In vivo work on osteotomized rats studied the bone and cartilage regenerative effects of C. quadrangularis, W. somnifera, and the combination therapy. Results Exposure of chondrocytes to IL-1β induced significant toxicity and cell death. However, herbal treatment alleviated IL-1β induced cell toxicity and upregulated cell growth and proliferation. C. quadrangularis inhibited gene expression of cytokines and matrix metalloproteinases, known to aggravate cartilage and bone destruction, and augmented expression of survivin by inhibiting p38 MAPK. Interestingly, osteotomized rats treated with C. quadrangularis drastically enhanced alkaline phosphatase and cartilage tissue formation as compared to untreated, W. somnifera only, or the combination of both herbals. Conclusion Our findings demonstrate for the first time the signaling mechanisms regulated by C. quadrangularis and W. somnifera in OA and osteogenesis. We suggest that the chondroprotective effects and regenerative ability of these herbals are via the upregulation of survivin that exerts inhibitory effects on the p38 MAPK signaling pathway. These findings thus validate C

  13. Visualization of sulfur-containing components associated with proliferating chondrocytes from rat epiphyseal growth plate cartilage: Possible proteoglycan and collagen co-migration

    SciTech Connect

    Landis, W.J.; Hodgens, K.J. )

    1990-02-01

    Electron microscopy of epiphyseal growth plate cartilage from normal 4-5-week-old rats has revealed extensive fibrillar aggregates and globules in the pericellular spaces of proliferating chondrocytes. These cells contained small globules and diffusely coiled, fine filaments located within large, membrane-invested vacuoles. All such structures were observed after a variety of different tissue fixation regimes, including glutaraldehyde, osmium tetroxide, and potassium pyroantimonate. The fibrillar aggregates and globules were often overlapping and intermeshed and extended to 0.5 micron in length from their point of origin at cell membranes. Vacuoles were usually found at the periphery of cells, and some, by membrane fusion with the cell envelope, appeared contiguous with extracellular spaces wherein their contents could be discharged. Fine filaments and globules were occasionally observed in the Golgi complex and cisternae of endoplasmic reticulum of the chondrocytes. Further characterization of the cellular and pericellular components by electron microscopic radioautography, electron probe microanalysis, and electron spectroscopic imaging indicated the presence of sulfur, a result suggesting these aggregates, filaments, and globules in part represent proteoglycans in various stages of synthesis, secretion, and assembly. Additional radioautography utilizing 3H-proline implied that filament bundles are also composed of collagen, a result posing the possibility that this protein and the putative proteoglycans may co-migrate both intracellularly and within pericellular matrices. In extracellular matrices adjacent to cell lacunae, the fibrillar aggregates appeared in close association with typical collagen type II fibrils, an observation providing evidence for proteoglycan-collagen network formation in this region of the rat epiphysis.

  14. Del1 Knockout Mice Developed More Severe Osteoarthritis Associated with Increased Susceptibility of Chondrocytes to Apoptosis

    PubMed Central

    Wang, Zhen; Tran, Misha C.; Bhatia, Namrata J.; Hsing, Alexander W.; Chen, Carol; LaRussa, Marie F.; Fattakhov, Ernst; Rashidi, Vania; Jang, Kyu Yun; Choo, Kevin J.; Nie, Xingju; Mathy, Jonathan A.; Longaker, Michael T.; Dauskardt, Reinhold H.; Helms, Jill A.; Yang, George P.

    2016-01-01

    Objective We identified significant expression of the matricellular protein, DEL1, in hypertrophic and mature cartilage during development. We hypothesized that this tissue-specific expression indicated a biological role for DEL1 in cartilage biology. Methods Del1 KO and WT mice had cartilage thickness evaluated by histomorphometry. Additional mice underwent medial meniscectomy to induce osteoarthritis, and were assayed at 1 week for apoptosis by TUNEL staining and at 8 weeks for histology and OA scoring. In vitro proliferation and apoptosis assays were performed on primary chondrocytes. Results Deletion of the Del1 gene led to decreased amounts of cartilage in the ears and knee joints in mice with otherwise normal skeletal morphology. Destabilization of the knee led to more severe OA compared to controls. In vitro, DEL1 blocked apoptosis in chondrocytes. Conclusion Osteoarthritis is among the most prevalent diseases worldwide and increasing in incidence as our population ages. Initiation begins with an injury resulting in the release of inflammatory mediators. Excessive production of inflammatory mediators results in apoptosis of chondrocytes. Because of the limited ability of chondrocytes to regenerate, articular cartilage deteriorates leading to the clinical symptoms including severe pain and decreased mobility. No treatments effectively block the progression of OA. We propose that direct modulation of chondrocyte apoptosis is a key variable in the etiology of OA, and therapies aimed at preventing this important step represent a new class of regenerative medicine targets. PMID:27505251

  15. Latexin is involved in bone morphogenetic protein-2-induced chondrocyte differentiation

    SciTech Connect

    Kadouchi, Ichiro; Sakamoto, Kei; Tangjiao, Liu; Murakami, Takashi; Kobayashi, Eiji; Hoshino, Yuichi; Yamaguchi, Akira

    2009-01-16

    Latexin is the only known carboxypeptidase A inhibitor in mammals. We previously demonstrated that BMP-2 significantly induced latexin expression in Runx2-deficient mesenchymal cells (RD-C6 cells), during chondrocyte and osteoblast differentiation. In this study, we investigated latexin expression in the skeleton and its role in chondrocyte differentiation. Immunohistochemical studies revealed that proliferating and prehypertrophic chondrocytes expressed latexin during skeletogenesis and bone fracture repair. In the early phase of bone fracture, latexin mRNA expression was dramatically upregulated. BMP-2 upregulated the expression of the mRNAs of latexin, Col2a1, and the gene encoding aggrecan (Agc1) in a micromass culture of C3H10T1/2 cells. Overexpression of latexin additively stimulated the BMP-2-induced expression of the mRNAs of Col2a, Agc1, and Col10a1. BMP-2 treatment upregulated Sox9 expression, and Sox9 stimulated the promoter activity of latexin. These results indicate that latexin is involved in BMP-2-induced chondrocyte differentiation and plays an important role in skeletogenesis and skeletal regeneration.

  16. Regulation of α5 and αV Integrin Expression by GDF-5 and BMP-7 in Chondrocyte Differentiation and Osteoarthritis.

    PubMed

    Garciadiego-Cázares, David; Aguirre-Sánchez, Hilda I; Abarca-Buis, René F; Kouri, Juan B; Velasquillo, Cristina; Ibarra, Clemente

    2015-01-01

    The Integrin β1 family is the major receptors of the Extracellular matrix (ECM), and the synthesis and degradation balance of ECM is seriously disrupted during Osteoarthritis (OA). In this scenario, integrins modify their pattern expression and regulate chondrocyte differentiation in the articular cartilage. Members of the Transforming growth factor beta (Tgf-β) Superfamily, such as Growth differentiation factor 5 (Gdf-5) and Bone morphogenetic protein 7 (Bmp-7), play a key role in joint formation and could regulate the integrin expression during chondrocyte differentiation and osteoarthritis progression in an experimental OA rat model. Decrease of α5 integrin expression in articular cartilage was related with chondrocyte dedifferentiation during OA progression, while increase of α1, α2, and α3 integrin expression was related with fibrous areas in articular cartilage during OA. Hypertrophic chondrocytes expressed αV integrin and was increased in the articular cartilage of rats with OA. Integrin expression during chondrocyte differentiation was also analyzed in a micromass culture system of mouse embryo mesenchymal cells, micromass cultures was treated with Gdf-5 or Bmp-7 for 4 and 6 days, respectively. Gdf-5 induced the expression of the α5 sub-unit, while Bmp-7 induced the expression of the αV sub-unit. This suggests a switch in signaling for prehypertrophic chondrocyte differentiation towards hypertrophy, where Gdf-5 could maintain the articular chondrocyte phenotype and Bmp-7 would induce hypertrophy. Decrease of Ihh expression during late stages of OA in rat model suggest that the ossification in OA rat knees and endochondral ossification could be activated by Bmp-7 and αV integrin in absence of Ihh. Thus, chondrocyte phenotype in articular cartilage is similar to prehypetrophic chondrocyte in growth plate, and is preserved due to the presence of Indian hedgehog (Ihh), Gdf-5 and α5 integrin to maintain articular cartilage and prevent hypertrophy.

  17. Regulation of α5 and αV Integrin Expression by GDF-5 and BMP-7 in Chondrocyte Differentiation and Osteoarthritis

    PubMed Central

    Garciadiego-Cázares, David; Aguirre-Sánchez, Hilda I.; Abarca-Buis, René F.; Kouri, Juan B.; Velasquillo, Cristina; Ibarra, Clemente

    2015-01-01

    The Integrin β1 family is the major receptors of the Extracellular matrix (ECM), and the synthesis and degradation balance of ECM is seriously disrupted during Osteoarthritis (OA). In this scenario, integrins modify their pattern expression and regulate chondrocyte differen-tiation in the articular cartilage. Members of the Transforming growth factor beta (Tgf-β) Su-perfamily, such as Growth differentiation factor 5 (Gdf-5) and Bone morphogenetic protein 7 (Bmp-7), play a key role in joint formation and could regulate the integrin expression during chondrocyte differentiation and osteoarthritis progression in an experimental OA rat model. Decrease of α5 integrin expression in articular cartilage was related with chondrocyte dedif-ferentiation during OA progression, while increase of α1, α2, and α3 integrin expression was related with fibrous areas in articular cartilage during OA. Hypertrophic chondrocytes expressedαV integrin and was increased in the articular cartilage of rats with OA. Integrin expression during chondrocyte differentiation was also analyzed in a micromass culture system of mouse embryo mesenchymal cells, micromass cultures was treated with Gdf-5 or Bmp-7 for 4 and 6 days, respectively. Gdf-5 induced the expression of theα5 sub-unit, while Bmp-7 induced the expression of the αV sub-unit. This suggests a switch in signaling for prehypertrophic chondrocyte differentiation towards hypertrophy, where Gdf-5 could maintain the articular chondrocyte phenotype and Bmp-7 would induce hypertrophy. Decrease of Ihh expression during late stages of OA in rat model suggest that the ossification in OA rat knees and endochondral ossification could be activated by Bmp-7 and αV integrin in absence of Ihh. Thus, chondrocyte phenotype in articular cartilage is similar to prehypetrophic chondrocyte in growth plate, and is preserved due to the presence of Indian hedgehog (Ihh), Gdf-5 and α5 integrin to maintain articular cartilage and prevent hy

  18. Punica granatum L. extract inhibits IL-1beta-induced expression of matrix metalloproteinases by inhibiting the activation of MAP kinases and NF-kappaB in human chondrocytes in vitro.

    PubMed

    Ahmed, Salahuddin; Wang, Naizhen; Hafeez, Bilal Bin; Cheruvu, Vinay K; Haqqi, Tariq M

    2005-09-01

    Interleukin (IL)-1beta induces the expression of matrix metalloproteinases (MMPs) implicated in cartilage resorption and joint degradation in osteoarthritis (OA). Pomegranate fruit extract (PFE) was recently shown to exert anti-inflammatory effects in different disease models. However, no studies have been undertaken to investigate whether PFE constituents protect articular cartilage. In the present studies, OA chondrocytes or cartilage explants were pretreated with PFE and then stimulated with IL-1beta at different time points in vitro. The amounts of proteoglycan released were measured by a colorimetric assay. The expression of MMPs, phosphorylation of the inhibitor of kappaBalpha (IkappaBalpha) and mitogen-activated protein kinases (MAPKs) was determined by Western immunoblotting. Expression of mRNA was quantified by real-time PCR. MAPK enzyme activity was assayed by in vitro kinase assay. Activation of nuclear factor-kappaB (NF-kappaB) was determined by electrophoretic mobility shift assay. PFE inhibited the IL-1beta-induced proteoglycan breakdown in cartilage explants in vitro. At the cellular level, PFE (6.25-25 mg/L) inhibited the IL-1beta-induced expression of MMP-1, -3, and -13 protein in the medium (P < 0.05) and this was associated with the inhibition of mRNA expression. IL-1beta-induced phosphorylation of p38-MAPK, but not that of c-Jun-N-terminal kinase or extracellular regulated kinase, was most susceptible to inhibition by low doses of PFE, and the addition of PFE blocked the activity of p38-MAPK in a kinase activity assay. PFE also inhibited the IL-1beta-induced phosphorylation of IkappaBalpha and the DNA binding activity of the transcription factor NF-kappaB in OA chondrocytes. Taken together, these novel results indicate that PFE or compounds derived from it may inhibit cartilage degradation in OA and may also be a useful nutritive supplement for maintaining joint integrity and function.

  19. Homeostatic Mechanisms in Articular Cartilage and Role of Inflammation in Osteoarthritis

    PubMed Central

    Houard, Xavier; Goldring, Mary B.; Berenbaum, Francis

    2014-01-01

    Osteoarthritis (OA) is a whole joint disease, in which thinning and disappearance of cartilage is a critical determinant in OA progression. The rupture of cartilage homeostasis whatever its cause: aging, genetic predisposition, trauma or metabolic disorder, induces profound phenotypic modifications of chondrocytes, which then promote the synthesis of a subset of factors that induce cartilage damage and target other joint tissues. Interestingly, among these factors are numerous components of the inflammatory pathways. Chondrocytes produce cytokines, chemokines, alarmins, prostanoids and adipokines and express numerous cell surface receptors for cytokines and chemokines, as well as toll-like receptors. These receptors activate intracellular signaling pathways involved in inflammatory and stress responses of chondrocytes in OA joints. This review focuses on mechanisms responsible for the maintenance of cartilage homeostasis and highlights the role of inflammatory processes in OA progression. PMID:24072604

  20. Mechanical characterization of matrix-induced autologous chondrocyte implantation (MACI®) grafts in an equine model at 53 weeks.

    PubMed

    Griffin, Darvin J; Bonnevie, Edward D; Lachowsky, Devin J; Hart, James C A; Sparks, Holly D; Moran, Nance; Matthews, Gloria; Nixon, Alan J; Cohen, Itai; Bonassar, Lawrence J

    2015-07-16

    There has been much interest in using autologous chondrocytes in combination with scaffold materials to aid in cartilage repair. In the present study, a total of 27 animals were used to compare the performance of matrix-assisted chondrocyte implantation (MACI®) using a collagen sponge as a chondrocyte delivery vehicle, the sponge membrane alone, and empty controls. A total of three distinct types of mechanical analyses were performed on repaired cartilage harvested from horses after 53 weeks of implantation: (1) compressive behavior of samples to measure aggregate modulus (HA) and hydraulic permeability (k) in confined compression; (2) local and global shear modulus using confocal strain mapping; and (3) boundary friction coefficient using a custom-built tribometer. Cartilage defects receiving MACI® implants had equilibrium modulus values that were 70% of normal cartilage, and were not statistically different than normal tissue. Defects filled with Maix™ membrane alone or left empty were only 46% and 51-63% of control, respectively. The shear modulus of tissue from all groups of cartilage defects were between 4 and 10 times lower than control tissue, and range from 0.2 to 0.4 MPa. The average values of boundary mode friction coefficients of control tissue from all groups ranged from 0.42 to 0.52. This study represents an extensive characterization of the mechanical performance of the MACI® grafts implant in a large animal model at 53 weeks. Collectively, these data demonstrate a range of implant performance, revealing similar compressive and frictional properties to native tissue, with inferior shear properties.

  1. Cyclic tensile stretch load and oxidized low density lipoprotein synergistically induce lectin-like oxidized ldl receptor-1 in cultured bovine chondrocytes, resulting in decreased cell viability and proteoglycan synthesis.

    PubMed

    Akagi, Masao; Nishimura, Shunji; Yoshida, Kohji; Kakinuma, Takumi; Sawamura, Tatsuya; Munakata, Hiroshi; Hamanishi, Chiaki

    2006-08-01

    Mechanical stimulation is known to be an essential factor in the regulation of cartilage metabolism. We tested the hypothesis that expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) can be modulated by cyclic tensile stretch load in chondrocytes. Cyclic loading of repeated stretch stress at 10 cycles per minute with 10 kPa of stress for 6 h induced expression of LOX-1 to 2.6 times control in cultured bovine articular chondrocytes, equivalent to the addition of 10 microg/mL oxidized low density lipoprotein (ox-LDL) (2.4 times control). Application of the cyclic load to the chondrocytes along with 10 microg/mL ox-LDL resulted in synergistically increased LOX-1 expression to 6.3 times control. Individual application of cyclic loading and 10 microg/mL ox-LDL significantly suppressed chondrocytes viability (84.6% +/- 3.4% and 80.9% +/- 3.2% of control at 24 h, respectively; n = 3; p < 0.05) and proteoglycan synthesis [81.0% +/- 7.1% and 85.7% +/- 5.2% of control at 24 h, respectively; p < 0.05 when compared with 94.6% +/- 4.6% for native-LDL (n = 3)]. Cyclic loading and 10 microg/mL ox-LDL synergistically affected cell viability and proteoglycan synthesis, which were significantly suppressed to 45.6% +/- 4.9% and 48.7% +/- 6.7% of control at 24 h, respectively (n = 3; p < 0.01 when compared with individual application of cyclic loading or 10 microg/mL ox-LDL). In this study, we demonstrated synergistic effects of cyclic tensile stretch load and ox-LDL on cell viability and proteoglycan synthesis in chondrocytes, which may be mediated through enhanced expression of LOX-1 and which has important implications in the progression of cartilage degeneration in osteoarthritis.

  2. Prenatal caffeine exposure induces a poor quality of articular cartilage in male adult offspring rats via cholesterol accumulation in cartilage

    PubMed Central

    Luo, Hanwen; Li, Jing; Cao, Hong; Tan, Yang; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2015-01-01

    Epidemiological investigations indicate that osteoarthritis is associated with intrauterine growth retardation (IUGR) and abnormal cholesterol metabolism. Our previous studies showed that prenatal caffeine exposure (PCE) induced chondrogenesis retardation in IUGR offspring rats. The current study sought to investigate the effects of PCE on male IUGR offspring rats’ articular cartilage, and the mechanisms associated with abnormal cholesterol metabolism. Based on the results from both male fetal and adult fed a high-fat diet (HFD) studies of rats that experienced PCE (120 mg/kg.d), the results showed a poor quality of articular cartilage and cholesterol accumulation in the adult PCE group. Meanwhile, the serum total cholesterol and low-density lipoprotein-cholesterol concentrations were increased in adult PCE offspring. We also observed lower expression of insulin-like growth factor1 (IGF1) and impaired cholesterol efflux in adult articular cartilage. Furthermore, the expression of cartilage functional genes, components of the IGF1 signaling pathway and cholesterol efflux pathway related genes were decreased in PCE fetal cartilage. In conclusion, PCE induced a poor quality of articular cartilage in male adult offspring fed a HFD. This finding was shown to be due to cholesterol accumulation in the cartilage, which may have resulted from intrauterine reduced activity of the IGF1 signaling pathway. PMID:26639318

  3. Crosstalk between FLS and chondrocytes is regulated by HIF-2α-mediated cytokines in arthritis.

    PubMed

    Huh, Yun Hyun; Lee, Gyuseok; Song, Won-Hyun; Koh, Jeong-Tae; Ryu, Je-Hwang

    2015-12-04

    Rheumatoid arthritis (RA) and osteoarthritis (OA), two common types of arthritis, affect the joints mainly by targeting the synovium and cartilage. Increasing evidence indicates that a significant network connects synovitis and cartilage destruction during the progression of arthritis. We recently demonstrated that hypoxia-inducible factor (HIF)-2α causes RA and OA by regulating the expression of catabolic factors in fibroblast-like synoviocytes (FLS) or chondrocytes. To address the reciprocal influences of HIF-2α on FLS and chondrocytes, we applied an in vitro co-culture system using a transwell apparatus. When co-cultured with HIF-2α-overexpressing chondrocytes, FLS exhibited increased expression of matrix metalloproteinases and inflammatory mediators, similar to the effects induced by tumor-necrosis factor (TNF)-α treatment of FLS. Moreover, chondrocytes co-cultured with HIF-2α-overexpressing FLS exhibited upregulation of Mmp3 and Mmp13, which is similar to the effects induced by interleukin (IL)-6 treatment of chondrocytes. We confirmed these differential HIF-2α-induced effects via distinct secretory mediators using Il6-knockout cells and a TNF-α-blocking antibody. The FLS-co-culture-induced gene expression changes in chondrocytes were significantly abrogated by IL-6 deficiency, whereas TNF-α neutralization blocked the alterations in gene expression associated with co-culture of FLS with chondrocytes. Our results further suggested that the observed changes might reflect the HIF-2α-induced upregulation of specific receptors for TNF-α (in FLS) and IL-6 (in chondrocytes). This study broadens our understanding of the possible regulatory mechanisms underlying the crosstalk between the synovium and cartilage in the presence of HIF-2α, and may suggest potential new anti-arthritis therapies.

  4. A-raf and B-raf are dispensable for normal endochondral bone development, and parathyroid hormone-related peptide suppresses extracellular signal-regulated kinase activation in hypertrophic chondrocytes.

    PubMed

    Provot, Sylvain; Nachtrab, Gregory; Paruch, Jennifer; Chen, Adele Pin; Silva, Alcino; Kronenberg, Henry M

    2008-01-01

    Parathyroid hormone-related peptide (PTHrP) and the parathyroid hormone-PTHrP receptor increase chondrocyte proliferation and delay chondrocyte maturation in endochondral bone development at least partly through cyclic AMP (cAMP)-dependent signaling pathways. Because data suggest that the ability of cAMP to stimulate cell proliferation involves the mitogen-activated protein kinase kinase kinase B-Raf, we hypothesized that B-Raf might mediate the proliferative action of PTHrP in chondrocytes. Though B-Raf is expressed in proliferative chondrocytes, its conditional removal from cartilage did not affect chondrocyte proliferation and maturation or PTHrP-induced chondrocyte proliferation and PTHrP-delayed maturation. Similar results were obtained by conditionally removing B-Raf from osteoblasts. Because A-raf and B-raf are expressed similarly in cartilage, we speculated that they may fulfill redundant functions in this tissue. Surprisingly, mice with chondrocytes deficient in both A-Raf and B-Raf exhibited normal endochondral bone development. Activated extracellular signal-regulated kinase (ERK) was detected primarily in hypertrophic chondrocytes, where C-raf is expressed, and the suppression of ERK activation in these cells by PTHrP or a MEK inhibitor coincided with a delay in chondrocyte maturation. Taken together, these results demonstrate that B-Raf and A-Raf are dispensable for endochondral bone development and they indicate that the main role of ERK in cartilage is to stimulate not cell proliferation, but rather chondrocyte maturation.

  5. Adipose-derived mesenchymal stromal (stem) cells differentiate to osteoblast and chondroblast lineages upon incubation with conditioned media from dental pulp stem cell-derived osteoblasts and auricle cartilage chondrocytes.

    PubMed

    Carbone, A; Valente, M; Annacontini, L; Castellani, S; Di Gioia, S; Parisi, D; Rucci, M; Belgiovine, G; Colombo, C; Di Benedetto, A; Mori, G; Lo Muzio, L; Maiorella, A; Portincasa, A; Conese, M

    2016-01-01

    The potential of adipose-derived mesenchymal stromal (stem) cells (ADSCs) to differentiate into either osteoblasts or chondrocytes is controversial. In this study we investigated the multicapacity potential of ADSCs to differentiate towards adipocyte, osteoblast, and chondrocyte lineages when cells are seeded onto plastic in comparison with incubation with conditioned media (CM) obtained from differentiated cell types.ADSCs, obtained from liposuctions, were characterized for mesenchymal and hematopoietic markers by cytofluorimetry. Their differentiation capacity towards adipocytes, osteoblasts, and chondrocytes was investigated by histochemistry methods (Oil-Red-O staining, Safranin O and Alizarin Red staining, respectively). Dental pulp stem cells (DPSCs) and dedifferentiated auricle derived-chondrocytes were differentiated towards osteoblastic and chondrocytic lineages respectively, and the CM obtained from these cultures was used to induce differentiation of ADSCs. ADSCs were positive for mesenchymal markers (CD29, CD105, CD73, CD44), but not for hematopoietic lineage markers (CD14, CD34, CD45) and this behavior was conserved from the isolation up to the fifth passage. While ADSCs were readily differentiated in adipocytes, they were not towards chondrocytes and osteoblastic lineages, a behavior different from that of bone marrow-derived MSCs that differentiated into the three lineages at two weeks post-induction. Only ADSCs treated with CM from cultured chondrocytes and DPSCs, produced glycosaminoglycans and mineralized matrix. These results indicate that ADSCs need growth/morphogenic factor supplementation from the tissue environment to be appropriately differentiated to mesodermic lineages.

  6. Bovine achondrogenesis: evidence for defective chondrocyte differentiation.

    PubMed

    Horton, W A; Jayo, M J; Leipold, H W; Machado, M A; Campbell, D; Ahmed, S

    1987-01-01

    A survey study of growth cartilage abnormalities in bovine bone dysplasias revealed that a disorder in Holstein cattle called bulldog calf closely resembles human achondrogenesis Type II. Substantial amounts of Type I collagen and other non Type II collagens were detected in the bulldog cartilage which was comprised primarily of extensive vascular canals and cells having the characteristics of hypertrophic and degenerative chondrocytes normally found in the growth plate. It is proposed that chondrocytes throughout the bulldog growth cartilage prematurely differentiate into hypertrophic cells that degenerate and predispose the cartilage to vascular invasion and the formation of cartilage canals. The presence of these canals probably accounts for most of the observed collagen abnormalities.

  7. 13cRA regulates the differentiation of antler chondrocytes through targeting Runx3.

    PubMed

    Zhang, Hong-Liang; Cao, Hang; Yang, Zhan-Qing; Geng, Shuang; Wang, Kai; Yu, Hai-Fan; Guo, Bin; Yue, Zhan-Peng

    2017-03-01

    Although 13cRA is involved in the regulation of cellular proliferation and differentiation, its physiological roles in chondrocyte proliferation and differentiation still remain unknown. Here, we showed that 13cRA could induce the proliferation of sika deer antler chondrocytes and expression of Ccnd3 and Cdk6. Administration of 13cRA to antler chondrocytes resulted in an obvious increase in the expression of chondrocyte marker Col II and hypertrophic chondrocyte marker Col X. Silencing of Crabp2 expression by specific siRNA could prevent the 13cRA-induced up-regulation of Col X, whereas overexpression of Crabp2 showed the opposite effects. Further study found that Crabp2 mediated the regulation of 13cRA on the expression of Runx3 which was highly expressed in the antler cartilage and inhibited the differentiation of antler chondrocytes. Moreover, attenuation of Runx3 expression greatly raised 13cRA-induced chondrocyte differentiation. Simultaneously, 13cRA could stimulate the expression of Cyp26a1 and Cyp26b1 in the antler chondrocytes. Inhibition of Cyp26a1 and/or Cyp26b1 reinforced the effects of 13cRA on the expression of Col X and Runx3, while overexpression of Cyp26b1 rendered the antler chondrocytes hyposensitive to 13cRA. Collectively, 13cRA may play an important role in the differentiation of antler chondrocytes through targeting Runx3. Crabp2 enhances the effects of 13cRA on chondrocyte differentiation, while Cyp26a1 and Cyp26b1 weaken the sensitivity of antler chondrocytes to 13cRA.

  8. In vitro isolation and cultivation of human chondrocytes for osteoarthritis renovation.

    PubMed

    Xu, Jiaming; Zhang, Changqing

    2014-08-01

    The purpose of this study was to evaluate the repair effects of chondrocytes that were cultured in vitro on osteoarthritis (OA). Chondrocytes were isolated from fetal rabbits and cultured in Biosilon microcarriers. Sixty rabbits were randomly divided into three groups equally (blank group, model group, treatment group). The rabbit knee OA model was established by inducing papain. Rabbits in the treatment group were injected with the chondrocytes that were cultured in vitro. Hematoxylin-eosin (HE) staining and gross morphologic observation were conducted. Expression level of cytokines such as IL-1bβ, IL-6, and TNF-α in cartilage synovial cells was also analyzed by an ELISA assay. The cultured chondrocyte was validated by a positive stain of type II collagen and vimentin by immunofluorescence. Compared to the model group, the articular cartilage of the rabbit knee in the treatment group showed a normal color, smooth surface, and none of malacia and coloboma. HE staining indicated that the articular surface of the treatment group tended to be smooth and flat; the matrix stained tinge and the cartilage destruction and fiber hyperplasia of the synovia were lightened. The expression levels of IL-1bβ, IL-6, and TNF-α also declined in the treatment group. OA symptoms were improved by treating with chondrocytes. In summary, the animal experiment in the present study indicated that chondrocyte injection played an active effect on renovation of OA.

  9. ATF3 deficiency in chondrocytes alleviates osteoarthritis development.

    PubMed

    Iezaki, Takashi; Ozaki, Kakeru; Fukasawa, Kazuya; Inoue, Makoto; Kitajima, Shigetaka; Muneta, Takeshi; Takeda, Shu; Fujita, Hiroyuki; Onishi, Yuki; Horie, Tetsuhiro; Yoneda, Yukio; Takarada, Takeshi; Hinoi, Eiichi

    2016-08-01

    Activating transcription factor 3 (Atf3) has been implicated in the pathogenesis of various diseases, including cancer and inflammation, as well as in the regulation of cell proliferation and differentiation. However, the involvement of Atf3 in developmental skeletogenesis and joint disease has not been well studied to date. Here, we show that Atf3 is a critical mediator of osteoarthritis (OA) development through its expression in chondrocytes. ATF3 expression was markedly up-regulated in the OA cartilage of both mice and humans. Conditional deletion of Atf3 in chondrocytes did not result in skeletal abnormalities or affect the chondrogenesis, but alleviated the development of OA generated by surgically inducing knee joint instability in mice. Inflammatory cytokines significantly up-regulated Atf3 expression through the nuclear factor-kB (NF-kB) pathway, while cytokine-induced interleukin-6 (Il6) expression was repressed, in ATF3-deleted murine and human chondrocytes. Mechanistically, Atf3 deficiency decreased cytokine-induced Il6 transcription in chondrocytes through repressing NF-kB signalling by the attenuation of the phosphorylation status of IkB and p65. These findings suggest that Atf3 is implicated in the pathogenesis of OA through modulation of inflammatory cytokine expression in chondrocytes, and the feed-forward loop of inflammatory cytokines/NF-kB/Atf3 in chondrocytes may be a novel therapeutic target for the treatment for OA. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  10. Insights on Molecular Mechanisms of Chondrocytes Death in Osteoarthritis

    PubMed Central

    Charlier, Edith; Relic, Biserka; Deroyer, Céline; Malaise, Olivier; Neuville, Sophie; Collée, Julie; Malaise, Michel G.; De Seny, Dominique

    2016-01-01

    Osteoarthritis (OA) is a joint pathology characterized by progressive cartilage degradation. Medical care is mainly based on alleviating pain symptoms. Compelling studies report the presence of empty lacunae and hypocellularity in cartilage with aging and OA progression, suggesting that chondrocyte cell death occurs and participates to OA development. However, the relative contribution of apoptosis per se in OA pathogenesis appears complex to evaluate. Indeed, depending on technical approaches, OA stages, cartilage layers, animal models, as well as in vivo or in vitro experiments, the percentage of apoptosis and cell death types can vary. Apoptosis, chondroptosis, necrosis, and autophagic cell death are described in this review. The question of cell death causality in OA progression is also addressed, as well as the molecular pathways leading to cell death in response to the following inducers: Fas, Interleukin-1β (IL-1β), Tumor Necrosis factor-α (TNF-α), leptin, nitric oxide (NO) donors, and mechanical stresses. Furthermore, the protective role of autophagy in chondrocytes is highlighted, as well as its decline during OA progression, enhancing chondrocyte cell death; the transition being mainly controlled by HIF-1α/HIF-2α imbalance. Finally, we have considered whether interfering in chondrocyte apoptosis or promoting autophagy could constitute therapeutic strategies to impede OA progression. PMID:27999417

  11. Sodium fluoride induces apoptosis through the downregulation of hypoxia-inducible factor-1α in primary cultured rat chondrocytes

    PubMed Central

    MENG, HONGMEI; ZHANG, TAO; LIU, WEIDONG; WANG, HUAN; WANG, CHUNLEI; ZHAO, ZHE; LIU, NING; WANG, WENBO

    2014-01-01

    It has been reported that sodium fluoride (NaF) suppresses the proliferation and induces apoptosis of chondrocytes. However, the cellular and molecular mechanisms of the effect have not been elucidated. Therefore, the aim of this study was to evaluate the mechanisms of the effects of NaF on primary cultured rat chondrocytes in vitro. Chondrocytes were treated with NaF at concentrations of 0, 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0 mM. Cell viability decreased and the rate of apoptotic cells increased significantly with the gradient concentration of NaF in a time- and dose-dependent manner. Electron microscopy revealed cytoplasmic, organelle and nuclear alterations in the ultrastructure of chondrocytes exposed to various NaF concentrations. The cell cycle distribution was analyzed by flow cytometry, and the results indicated that NaF induced G2 cell cycle arrest. Western blotting was used to detect the apoptotic pathways. Downregulation of the Bcl-2 protein and upregulation of Bax, cleaved caspase-9, −12 and −3 proteins suggested that NaF was capable of inducing apoptosis through the mitochondrial and endoplasmic reticulum pathways. The results also showed that the levels of hypoxia-inducible factor 1α (HIF-1α), sex determining region Y box gene 9 (Sox9) and the collagen II (Col II) protein of the NaF groups were lower compared to those of the control groups. Thus, NaF may induce apoptosis through the downregulation of HIF-1α and disrupt the synthesis of extracellular matrix (ECM) through the downregulation of HIF-1α via the Sox9 pathway in primary cultured rat chondrocytes. PMID:24317498

  12. SOXC Transcription Factors Induce Cartilage Growth Plate Formation in Mouse Embryos by Promoting Noncanonical WNT Signaling.

    PubMed

    Kato, Kenji; Bhattaram, Pallavi; Penzo-Méndez, Alfredo; Gadi, Abhilash; Lefebvre, Véronique

    2015-09-01

    Growth plates are specialized cartilage structures that ensure the elongation of most skeletal primordia during vertebrate development. They are made by chondrocytes that proliferate in longitudinal columns and then progress in a staggered manner towards prehypertrophic, hypertrophic and terminal maturation. Complex molecular networks control the formation and activity of growth plates, but remain incompletely understood. We investigated here the importance of the SoxC genes, which encode the SOX4, SOX11 and SOX12 transcription factors, in growth plates. We show that the three genes are expressed robustly in perichondrocytes and weakly in growth plate chondrocytes. SoxC(Prx1Cre) mice, which deleted SoxC genes in limb bud skeletogenic mesenchyme, were born with tiny appendicular cartilage primordia because of failure to form growth plates. In contrast, SoxC(Col2Cre) and SoxC(ATC) mice, which deleted SoxC genes primarily in chondrocytes, were born with mild dwarfism and fair growth plates. Chondrocytes in the latter mutants matured normally, but formed irregular columns, proliferated slowly and died ectopically. Asymmetric distribution of VANGL2 was defective in both SoxC(Prx1Cre) and SoxC(ATC) chondrocytes, indicating impairment of planar cell polarity, a noncanonical WNT signaling pathway that controls growth plate chondrocyte alignment, proliferation and survival. Accordingly, SoxC genes were necessary in perichondrocytes for expression of Wnt5a, which encodes a noncanonical WNT ligand required for growth plate formation, and in chondrocytes and perichondrocytes for expression of Fzd3 and Csnk1e, which encode a WNT receptor and casein kinase-1 subunit mediating planar cell polarity, respectively. Reflecting the differential strengths of the SOXC protein transactivation domains, SOX11 was more powerful than SOX4, and SOX12 interfered with the activity of SOX4 and SOX11. Altogether, these findings provide novel insights into the molecular regulation of skeletal

  13. Dexamethasone-induced expression of the glucocorticoid response gene lipocalin 2 in chondrocytes.

    PubMed

    Owen, H C; Roberts, S J; Ahmed, S F; Farquharson, C

    2008-06-01

    Glucocorticoids (GC) are commonly used anti-inflammatory drugs, but long-term use can result in marked growth retardation in children due to their actions on growth plate chondrocytes. To gain an insight into the mechanisms involved in GC-induced growth retardation, we performed Affymetrix microarray analysis of the murine chondrogenic cell line ATDC5, incubated with 10(-6) M dexamethasone (Dex) for 24 h. Downregulated genes included secreted frizzled-related protein and IGF-I, and upregulated genes included serum/GC-regulated kinase, connective-tissue growth factor, and lipocalin 2. Lipocalin 2 expression increased 40-fold after 24-h Dex treatment. Expression increased further after 48-h (75-fold) and 96-h (84-fold) Dex treatment, and this response was Dex concentration dependent. Lipocalin 2 was immunolocalized to both proliferating and hypertrophic growth plate zones, and its expression was increased by Dex in primary chondrocytes at 6 h (3-fold, P < 0.05). The lipocalin 2 response was blocked by the GC-receptor antagonist RU-486 and was increased further by the protein synthesis blocker cycloheximide. Proliferation in lipocalin 2-overexpressing cells was less than in control cells (49%, P < 0.05), and overexpression caused an increase in collagen type X expression (4-fold, P < 0.05). The effects of lipocalin 2 overexpression on chondrocyte proliferation (64%, P < 0.05) and collagen type X expression (8-fold, P < 0.05) were further exacerbated with the addition of 10(-6) M Dex. This synergistic effect may be explained by a further increase in lipocalin 2 expression with Dex treatment of transfected cells (45%, P < 0.05). These results suggest that lipocalin 2 may mediate Dex effects on chondrocytes and provides a potential novel mechanism for GC-induced growth retardation.

  14. Oxidative DNA damage in osteoarthritic porcine articular cartilage

    PubMed Central

    Chen, Antonia F.; Davies, Catrin M.; De Lin, Ming; Fermor, Beverley

    2008-01-01

    Purpose Osteoarthritis (OA) is associated with increased levels of reactive oxygen species. This study investigated if increased oxidative DNA damage accumulates in OA articular cartilage compared with non-OA articular cartilage from pigs with spontaneous OA. Additionally, the ability of nitric oxide (NO) or peroxynitrite (ONOO-) induced DNA damage in non-OA chondrocytes to undergo endogenous repair was investigated. Methods Porcine femoral condyles were graded for the stage of OA, macroscopically by the Collins Scale, and histologically by the modified Mankin Grade. Levels of DNA damage were determined in non-OA and OA cartilage, using the comet assay. For calibration, DNA damage was measured by exposing non-OA chondrocytes to 0-12 Gray of x-ray irradiation. Non-OA articular chondrocytes were treated with 0-500 μM of NO donors (NOC-18 or SIN-1), and DNA damage assessed after treatment and 5 days recovery. Results A significant increase (p<0.01) in oxidative DNA damage occurred in OA chondrocytes in joints with Mankin Grades 3 or greater, compared to non-OA chondrocytes. The percentage of nuclei containing DNA damage increased significantly (p<0.001) from early to late grades of OA. An increase of approximately 0.65-1.7 breaks/1000kB of DNA occurred in OA, compared to non-OA nuclei. NOC-18 or SIN-1 caused significant DNA damage (p<0.001) in non-OA chondrocytes that did not undergo full endogenous repair after 5 days (p<0.05). Conclusion Our data suggest significant levels of oxidative DNA damage occur in OA chondrocytes that accumulates with OA progression. Additionally, DNA damage induced by NO and ONOO- in non-OA chondrocytes does not undergo full endogenous repair. PMID:18720406

  15. Subchondral bone loss following orthodontically induced cartilage degradation in the mandibular condyles of rats.

    PubMed

    Jiao, Kai; Niu, Li-Na; Wang, Mei-Qing; Dai, Juan; Yu, Shi-Bin; Liu, Xiao-Dong; Wang, Jun

    2011-02-01

    Osteoarthritis (OA) is a degenerative joint disease generally characterized by progressive cartilage degradation and subchondral bone changes. Subchondral bone changes have been proposed to initiate or accompany with cartilage degradation in OA. The purpose of this study was to characterize cartilage damage, subchondral bone remodeling, and the possible mechanism involved in these morphological changes in our reported rat model with OA-like lesions in the mandibular condyle. In experimental groups, the dental occlusion was orthodontically disturbed. By histological analysis, transmission electron microscopy (TEM), micro-CT scanning and serum tests, changes in condylar cartilage and subchondral bone were analyzed at 8 and 12 weeks after treatment. The mRNA and protein levels of bone pro-resorptive and pro-formative factors by chondrocytes were investigated. Increased degraded cartilage areas and obvious cartilage calcification were observed in 8- and 12-week treated (EXP) groups compared to the age-matched controls. Subchondral bone loss, characterized as decreased bone mineral density (BMD), bone volume fraction (BV/TV) and trabecular thickness (Tb.Th), but increased trabecular separation (Tb.Sp), was observed in the 12-week but not the 8-week EXP group, respectively, versus their age-matched controls. The subchondral bone loss in the 12-week EXP group was accompanied with decreased new bone formation rate, but increased serum carboxy terminal telopeptides (CTXs), and increased osteoclast numbers and proportion of surface area in the subchondral bone regions. Increased mRNA and protein levels of M-CSF, VEGF, RUNX and RANKL/OPG ratio, but decreased OPG, were found in condylar cartilage in the 12-week EXP group versus its age-matched controls, and those of RANKL/OPG ratios were significantly higher in the 12-week EXP group than the 8-week EXP. In addition, increased mRNA levels of VEGF, RUNX and RANKL/OPG ratio, but decreased OPG, were also found in condylar

  16. Morphological, genetic and phenotypic comparison between human articular chondrocytes and cultured chondrocytes.

    PubMed

    Mata-Miranda, Mónica Maribel; Martinez-Martinez, Claudia María; Noriega-Gonzalez, Jesús Emmanuel; Paredes-Gonzalez, Luis Enrique; Vázquez-Zapién, Gustavo Jesús

    2016-08-01

    Articular cartilage is an avascular and aneural tissue with limited capacity for regeneration. On large articular lesions, it is recommended to use regenerative medicine strategies, like autologous chondrocyte implantation. There is a concern about morphological changes that chondrocytes suffer once they have been isolated and cultured. Due to the fact that there is little evidence that compares articular cartilage chondrocytes with cultured chondrocytes, in this research we proposed to obtain chondrocytes from human articular cartilage, compare them with themselves once they have been cultured and characterize them through genetic, phenotypic and morphological analysis. Knee articular cartilage samples of 10 mm were obtained, and each sample was divided into two fragments; a portion was used to determine gene expression, and from the other portion, chondrocytes were obtained by enzymatic disaggregation, in order to be cultured and expanded in vitro. Subsequently, morphological, genetic and phenotypic characteristics were compared between in situ (articular cartilage) and cultured chondrocytes. Obtained cultured chondrocytes were rounded in shape, possessing a large nucleus with condensed chromatin and a clear cytoplasm; histological appearance was quite similar to typical chondrocyte. The expression levels of COL2A1 and COL10A1 genes were higher in cultured chondrocytes than in situ chondrocytes; moreover, the expression of COL1A1 was almost undetectable on cultured chondrocytes; likewise, COL2 and SOX9 proteins were detected by immunofluorescence. We concluded that chondrocytes derived from adult human cartilage cultured for 21 days do not tend to dedifferentiate, maintaining their capacity to produce matrix and also retaining their synthesis capacity and morphology.

  17. Pannocytes: distinctive cells found in rheumatoid arthritis articular cartilage erosions.

    PubMed Central

    Zvaifler, N. J.; Tsai, V.; Alsalameh, S.; von Kempis, J.; Firestein, G. S.; Lotz, M.

    1997-01-01

    A distinctive cell was identified from sites of rheumatoid arthritis cartilage injury. Similar cells are not found in lesions of osteoarthritis cartilage. We have designated them as pannocytes (PCs). Their rhomboid morphology differs from the bipolar shape of fibroblast-like synoviocytes or the spherical configuration of primary human articular chondrocytes. Chondrocytes are short-lived, whereas the original PC line grew for 25 passages before becoming senescent. Features in common with cultured primary chondrocytes include maximal proliferation in response to transforming growth factor-beta a catabolic response to interleukin-1 beta, collagenase production, and mRNA for the induced lymphocyte antigen and inducible nitric oxide synthase. Despite the presence of the inducible nitric oxide synthase message, PCs do not produce NO either constitutively or when cytokine stimulated. Each of the mesenchymal cells, fibroblast-like synoviocytes, primary chondrocytes, and PCs have the gene for type I collagen, but the type II collagen gene is detected only in primary chondrocytes. PCs can be distinguished from fibroblast-like synoviocytes and primary chondrocytes by their morphology, bright VCAM-1 staining, and growth response to cytokines and growth factors. Their prolonged life span in vitro suggests that PCs might represent an earlier stage of mesenchymal cell differentiation, and they could have a heretofore unrecognized role in rheumatoid arthritis joint destruction. Images Figure 1 Figure 2 Figure 7 Figure 8 Figure 10 PMID:9060847

  18. Visualization of living terminal hypertrophic chondrocytes of growth plate cartilage in situ by differential interference contrast microscopy and time-lapse cinematography.

    PubMed

    Farnum, C E; Turgai, J; Wilsman, N J

    1990-09-01

    The functional unit within the growth plate consists of a column of chondrocytes that passes through a sequence of phases including proliferation, hypertrophy, and death. It is important to our understanding of the biology of the growth plate to determine if distal hypertrophic cells are viable, highly differentiated cells with the potential of actively controlling terminal events of endochondral ossification prior to their death at the chondro-osseous junction. This study for the first time reports on the visualization of living hypertrophic chondrocytes in situ, including the terminal hypertrophic chondrocyte. Chondrocytes in growth plate explants are visualized using rectified differential interference contrast microscopy. We record and measure, using time-lapse cinematography, the rate of movement of subcellular organelles at the limit of resolution of this light microscopy system. Control experiments to assess viability of hypertrophic chondrocytes include coincubating organ cultures with the intravital dye fluorescein diacetate to assess the integrity of the plasma membrane and cytoplasmic esterases. In this system, all hypertrophic chondrocytes, including the very terminal chondrocyte, exist as rounded, fully hydrated cells. By the criteria of intravital dye staining and organelle movement, distal hypertrophic chondrocytes are identical to chondrocytes in the proliferative and early hypertrophic cell zones.

  19. Targeted In Situ Biosynthetic Transcriptional Activation in Native Surface-Level Human Articular Chondrocytes during Lesion Stabilization

    PubMed Central

    Ganguly, Kumkum; McRury, Ian D.; Goodwin, Peter M.; Morgan, Roy E.

    2012-01-01

    Objective: Safe articular cartilage lesion stabilization is an important early surgical intervention advance toward mitigating articular cartilage disease burden. While short-term chondrocyte viability and chondrosupportive matrix modification have been demonstrated within tissue contiguous to targeted removal of damaged articular cartilage, longer term tissue responses require evaluation to further clarify treatment efficacy. The purpose of this study was to examine surface chondrocyte responses within contiguous tissue after lesion stabilization. Methods: Nonablation radiofrequency lesion stabilization of human cartilage explants obtained during knee replacement was performed for surface fibrillation. Time-dependent chondrocyte viability, nuclear morphology and cell distribution, and temporal response kinetics of matrix and chaperone gene transcription indicative of differentiated chondrocyte function were evaluated in samples at intervals to 96 hours after treatment. Results: Subadjacent surface articular cartilage chondrocytes demonstrated continued viability for 96 hours after treatment, a lack of increased nuclear fragmentation or condensation, persistent nucleic acid production during incubation reflecting cellular assembly behavior, and transcriptional up-regulation of matrix and chaperone genes indicative of retained biosynthetic differentiated cell function. Conclusions: The results of this study provide further evidence of treatment efficacy and suggest the possibility to manipulate or induce cellular function, thereby recruiting local chondrocytes to aid lesion recovery. Early surgical intervention may be viewed as a tissue rescue, allowing articular cartilage to continue displaying biological responses appropriate to its function rather than converting to a tissue ultimately governed by the degenerative material property responses of matrix failure. Early intervention may positively impact the late changes and reduce disease burden of damaged articular

  20. Prolactin promotes cartilage survival and attenuates inflammation in inflammatory arthritis

    PubMed Central

    Adán, Norma; Guzmán-Morales, Jessica; Ledesma-Colunga, Maria G.; Perales-Canales, Sonia I.; Quintanar-Stéphano, Andrés; López-Barrera, Fernando; Méndez, Isabel; Moreno-Carranza, Bibiana; Triebel, Jakob; Binart, Nadine; Martínez de la Escalera, Gonzalo; Thebault, Stéphanie; Clapp, Carmen

    2013-01-01

    Chondrocytes are the only cells in cartilage, and their death by apoptosis contributes to cartilage loss in inflammatory joint diseases, such as rheumatoid arthritis (RA). A putative therapeutic intervention for RA is the inhibition of apoptosis-mediated cartilage degradation. The hormone prolactin (PRL) frequently increases in the circulation of patients with RA, but the role of hyperprolactinemia in disease activity is unclear. Here, we demonstrate that PRL inhibits the apoptosis of cultured chondrocytes in response to a mixture of proinflammatory cytokines (TNF-α, IL-1β, and IFN-γ) by preventing the induction of p53 and decreasing the BAX/BCL-2 ratio through a NO-independent, JAK2/STAT3–dependent pathway. Local treatment with PRL or increasing PRL circulating levels also prevented chondrocyte apoptosis evoked by injecting cytokines into the knee joints of rats, whereas the proapoptotic effect of cytokines was enhanced in PRL receptor–null (Prlr–/–) mice. Moreover, eliciting hyperprolactinemia in rats before or after inducing the adjuvant model of inflammatory arthritis reduced chondrocyte apoptosis, proinflammatory cytokine expression, pannus formation, bone erosion, joint swelling, and pain. These results reveal the protective effect of PRL against inflammation-induced chondrocyte apoptosis and the therapeutic potential of hyperprolactinemia to reduce permanent joint damage and inflammation in RA. PMID:23908112

  1. Ofloxacin induces apoptosis in microencapsulated juvenile rabbit chondrocytes by caspase-8-dependent mitochondrial pathway

    SciTech Connect

    Sheng Zhiguo; Cao Xiaojuan; Peng Shuangqing Wang Changyong; Li Qianqian; Wang Yimei; Liu Mifeng

    2008-01-15

    Quinolones (QNs)-induced arthropathy is an important toxic effect in immature animals leading to restriction of their therapeutic use in pediatrics. However, the exact mechanism still remains unclear. Recently, we have demonstrated that ofloxacin, a typical QN, induces apoptosis of alginate microencapsulated juvenile rabbit joint chondrocytes by disturbing the {beta}{sub 1} integrin functions and inactivating the ERK/MAPK signaling pathway. In this study, we extend our initial observations to further elucidate the mechanism(s) of ofloxacin-induced apoptosis by utilizing specific caspase inhibitors. Pretreatment with both caspase-9-specific inhibitor zLEHD-fmk and caspase-8 inhibitor zIETD-fmk attenuated ofloxacin-induced apoptosis and activation of caspase-3 of chondrocyte in a concentration-dependent manner, as determined by fluorescent dye staining, enzyme activity assay and immunoblotting. Furthermore, the activation of caspase-9, -8 and -3 stimulated by ofloxacin was significantly inhibited in the presence of zIETD-fmk while pretreatment with zLEHD-fmk only blocked the activation of caspase-9 and -3. Ofloxacin also stimulated a concentration-dependent translocation of cytochrome c from mitochondria into the cytosol and a decrease of mitochondrial transmembrane potential, which was completely inhibited by zIETD-fmk. In addition, ofloxacin was found to increase the level of Bax, tBid, p53 in a concentration- and time-dependent manner. Taken together, The current results indicate that the caspase-8-dependent mitochondrial pathway is primarily involved in the ofloxacin-induced apoptosis of microencapsulated juvenile rabbit joint chondrocytes.

  2. Effects of mechanical stress on chondrocyte phenotype and chondrocyte extracellular matrix expression

    PubMed Central

    Liu, Qiang; Hu, Xiaoqing; Zhang, Xin; Duan, Xiaoning; Yang, Peng; Zhao, Fengyuan; Ao, Yingfang

    2016-01-01

    Mechanical factors play a key role in regulating the development of cartilage degradation in osteoarthritis. This study aimed to identify the influence of mechanical stress in cartilage and chondrocytes. To explore the effects of mechanical stress on cartilage morphology, we observed cartilages in different regions by histological and microscopic examination. Nanoindentation was performed to assess cartilage biomechanics. To investigate the effects of mechanical stress on chondrocytes, cyclic tensile strain (CTS, 0.5 Hz, 10%) was applied to monolayer cultures of human articular chondrocytes by using Flexcell-5000. We quantified the mechanical properties of chondrocytes by atomic force microscopy. Chondrocytes were stained with Toluidine blue and Alcian blue after exposure to CTS. The expression of extracellular matrix (ECM) molecules was detected by qPCR and immunofluorescence analyses in chondrocytes after CTS. Our results demonstrated distinct morphologies and mechanical properties in different cartilage regions. In conclusion, mechanical stress can affect the chondrocyte phenotype, thereby altering the expression of chondrocyte ECM. PMID:27853300

  3. Immunology and cartilage regeneration.

    PubMed

    Smith, Benjamin; Sigal, Ian R; Grande, Daniel A

    2015-12-01

    The intrinsic regenerative capacity of avascular cartilage is limited. Cartilage injuries result in chronic, non-healing lesions requiring surgical management. Frequently, these surgical techniques make use of allogeneic cells and tissues. This review discusses the immune status of these materials. Cartilage allografts, often used in orthopedic and plastic surgeries, have rarely provoked a significant immune response. In whole cartilage transplants, the dense matrix produced by chondrocytes inhibits lymphocyte migration, preventing immune detection rendering them "antigen sequestered." It is unclear whether isolated chondrocytes are immune-privileged; chondrocytes express immune inhibitory B7 molecules, indicating that they have some ability to modulate immune reactions. Allogeneic cartilage grafts often involve a bony portion often retaining immunogenic cells and proteins-to facilitate good surgical attachment and concern that this may enhance inflammation and immune rejection. However, studies of failed cartilage grafts have not found immune responses to be a contributing factor. Meniscus allografts, which also retain a bony portion, raise similar concerns as cartilage allografts. Despite this, the plugs improved patient outcomes, indicating that the immunological effects were not clinically significant. Finally, allogeneic mesenchymal stromal cells (MSCs) also are being investigated as a treatment for cartilage damage. MSCs have been demonstrated to have unique immunomodulatory properties including their ability to reduce immune cell infiltration and to modulate inflammation. In summary, the immunogenic properties of cartilage vary with the type of allograft used: Cartilage allografts demonstrate active immune-suppressive mechanisms as evidenced by lack of allograft rejection, while MSC allografts appear to be safe for transplantation.

  4. Analysis of the mechanical behavior of chondrocytes in unconfined compression tests for cyclic loading.

    PubMed

    Wu, John Z; Herzog, Walter

    2006-01-01

    Experimental evidence indicates that the biosynthetic activity of chondrocytes is associated with the mechanical environment. For example, excessive, repetitive loading has been found to induce cell death, morphological and cellular damage, as seen in degenerative joint disease, while cyclic, physiological-like loading has been found to trigger a partial recovery of morphological and ultrastructural aspects in osteoarthritic human articular chondrocytes. Mechanical stimuli are believed to influence the biosynthetic activity via the deformation of cells. However, the in situ deformation of chondrocytes for cyclic loading conditions has not been investigated experimentally or theoretically. The purpose of the present study was to simulate the mechanical response of chondrocytes to cyclic loading in unconfined compression tests using a finite element model. The material properties of chondrocytes and extracellular matrix were considered to be biphasic. The time-histories of the shape and volume variations of chondrocytes at three locations (i.e., surface, center, and bottom) within the cartilage were predicted for static and cyclic loading conditions at two frequencies (0.02 and 0.1 Hz) and two amplitudes (0.1 and 0.2 MPa). Our results show that cells at different depths within the cartilage deform differently during cyclic loading, and that the depth dependence of cell deformation is influenced by the amplitude of the cyclic loading. Cell deformations under cyclic loading of 0.02 Hz were found to be similar to those at 0.1 Hz. We conclude from the simulation results that, in homogeneous cartilage layers, cell deformations are location-dependent, and further are affected by load magnitude. In physiological conditions, the mechanical environment of cells are even more complex due to the anisotropy, depth-dependent inhomogeneity, and tension-compression non-linearity of the cartilage matrix. Therefore, it is feasible to speculate that biosynthetic responses of

  5. Histology of epiphyseal cartilage calcification and endochondral ossification.

    PubMed

    Amizuka, Norio; Hasegawa, Tomoka; Oda, Kimimitsu; Luiz de Freitas, Paulo Henrique; Hoshi, Kazuto; Li, Minqi; Ozawa, Hidehiro

    2012-01-01

    Cartilage calcification is carried out by chondrocytes as they hypertrophy and begin to secrete matrix vesicles. Calcification initiates when calcium phosphates appear inside these matrix vesicles, forming hydroxyapatite crystals that eventually break through the membrane to form calcifying globules, as in bone calcification. However, the extracellular environment in cartilage is different from that in bone: cartilage is abundant in proteoglycans but contains a small amount of osteopontin. Hypertrophic chondrocytes secrete vesicles in the cartilaginous matrix of intercolumnar septae only, forming well-calcified longitudinal septae and poorly-calcified transverse partitions. Such pattern of vesicle deposition permits the invasion of endothelial cells, which infiltrate into cartilage and induce migration of osteogenic and osteoclastic cells. Osteoclasts resorb the excess of calcified globules in the partitions, shaping calcified cartilage cores paralleling the longitudinal axis of long bones. After the formation of these calcified cartilage cores, endochondral ossification involves a series of well-defined events in which osteogenic cells deposit new bone onto the cartilage core and form primary trabecules. This review presents the histology of epiphyseal cartilage calcification and endochondral ossification.

  6. FGF signaling targets the pRb-related p107 and p130 proteins to induce chondrocyte growth arrest

    PubMed Central

    Laplantine, Emmanuel; Rossi, Ferdinand; Sahni, Malika; Basilico, Claudio; Cobrinik, David

    2002-01-01

    Unregulated FGF signaling affects endochondral ossification and long bone growth, causing several genetic forms of human dwarfism. One major mechanism by which FGFs regulate endochondral bone growth is through their inhibitory effect on chondrocyte proliferation. Because mice with targeted mutations of the retinoblastoma (Rb)-related proteins p107 and p130 present severe endochondral bone defects with excessive chondrocyte proliferation, we have investigated the role of the Rb family of cell cycle regulators in the FGF response. Using a chondrocyte cell line, we found that FGF induced a rapid dephosphorylation of all three proteins of the Rb family (pRb, p107, and p130) and a blockade of the cells in the G1 phase of the cell cycle. This cell cycle block was reversed by inactivation of Rb proteins with viral oncoproteins such as polyoma large T (PyLT) antigen and Adenovirus E1A. Expression of a PyLT mutant that efficiently binds pRb, but not p107 and p130, allowed the cells to be growth inhibited by FGF, suggesting that pRb itself is not involved in the FGF response. To investigate more precisely the role of the individual Rb family proteins in FGF-mediated growth inhibition, we used chondrocyte micromass culture of limb bud cells isolated from mice lacking Rb proteins individually or in combination. Although wild-type as well as Rb−/− chondrocytes were similarly growth inhibited by FGF, chondrocytes null for p107 and p130 did not respond to FGF. Furthermore, FGF treatment of metatarsal bone rudiments obtained from p107−/−;p130−/− embryos failed to inhibit proliferation of growth plate chondrocytes, whereas rudiments from p107-null or p130-null embryos showed only a slight inhibition of growth. Our findings indicate that p107 and p130, but not pRb, are critical effectors of FGF-mediated growth inhibition in chondrocytes. PMID:12177046

  7. Evaluating the Protective Effects and Mechanisms of Diallyl Disulfide on Interlukin-1β-Induced Oxidative Stress and Mitochondrial Apoptotic Signaling Pathways in Cultured Chondrocytes.

    PubMed

    Hosseinzadeh, Azam; Jafari, Davood; Kamarul, Tunku; Bagheri, Abolfazll; Sharifi, Ali M

    2017-02-07

    The protective effects and mechanisms of DADS on IL-1β-mediated oxidative stress and mitochondrial apoptosis were investigated in C28I2 human chondrocytes. The effect of various concentrations of DADS (1, 5 10, 25, 50, and 100 μM) on C28I2 cell viability was evaluated in different times (2, 4, 8, 16, and 24 h) to obtain the non-cytotoxic concentrations of drug by MTT-assay. The protective effect of non-toxic concentrations of DADS on experimentally induced oxidative stress and apoptosis by IL-1β in C28I2 was evaluated. The effects of DADS on IL-1β-induced intracellular ROS production and lipid peroxidation were detected and the proteins expression of Nrf2, Bax, Bcl-2, caspase-3, total and phosphorylated JNK, and P38 MAPKs were analyzed by Western blotting. The mRNA expression of detoxifying phase II/antioxidant enzymes including heme oxygenase-1, NAD(P)H quinine oxidoreductase, glutathione S-transferase-P1, catalase, superoxide dismutase-1, glutathione peroxidase-1, -3, -4 were evaluated by reverse transcription-polymerase chain reaction. DADS in 1, 5, 10, and 25 μM concentrations had no cytotoxic effect after 24 h. Pretreatment with DADS remarkably increased Nrf2 nuclear translocation as well as the genes expression of detoxifying phase II/antioxidant enzymes and reduced IL-1β-induced elevation of ROS, lipid peroxidation, Bax/Bcl-2 ratio, caspase-3 activation, and JNK and P38 phosphorylation. DADS could considerably reduce IL-1β-induced oxidative stress and consequent mitochondrial apoptosis, as the major mechanisms of chondrocyte cell death in an experimental model of osteoarthritis. It may be considered as natural product in protecting OA-induced cartilage damage in clinical setting. J. Cell. Biochem. 9999: 1-10, 2017. © 2017 Wiley Periodicals, Inc.

  8. Functional analysis of CTRP3/cartducin in Meckel's cartilage and developing condylar cartilage in the fetal mouse mandible.

    PubMed

    Yokohama-Tamaki, Tamaki; Maeda, Takashi; Tanaka, Tetsuya S; Shibata, Shunichi

    2011-05-01

    CTRP3/cartducin, a novel C1q family protein, is expressed in proliferating chondrocytes in the growth plate and has an important role in regulating the growth of both chondrogenic precursors and chondrocytes in vitro. We examined the expression of CTRP3/cartducin mRNA in Meckel's cartilage and in condylar cartilage of the fetal mouse mandible. Based on in situ hybridization studies, CTRP3/cartducin mRNA was not expressed in the anlagen of Meckel's cartilage at embryonic day (E)11.5, but it was strongly expressed in Meckel's cartilage at E14.0, and then reduced in the hypertrophic chondrocytes at E16.0. CTRP3/cartducin mRNA was not expressed in the condylar anlagen at E14.0, but was expressed in the upper part of newly formed condylar cartilage at E15.0. At E16.0, CTRP3/cartducin mRNA was expressed from the polymorphic cell zone to the upper part of the hypertrophic cell zone, but was reduced in the lower part of the hypertrophic cell zone. CTRP3/cartducin-antisense oligodeoxynucleotide (AS-ODN) treatment of Meckel's cartilage and condylar anlagen from E14.0 using an organ culture system indicated that, after 4-day culture, CTRP3/cartducin abrogation induced curvature deformation of Meckel's cartilage with loss of the perichondrium and new cartilage formation. Aggrecan, type I collagen, and tenascin-C were simultaneously immunostained in this newly formed cartilage, indicating possible transformation from the perichondrium into cartilage. Further, addition of recombinant mouse CTRP3/cartducin protein to the organ culture medium with AS-ODN tended to reverse the deformation. These results suggest a novel function for CTRP3/cartducin in maintaining the perichondrium. Moreover, AS-ODN induced a deformation of the shape, loss of the perichondrium/fibrous cell zone, and disorder of the distinct architecture of zones in the mandibular condylar cartilage. Additionally, AS-ODN-treated condylar cartilage showed reduced levels of mRNA expression of aggrecan, collagen types I

  9. Evaluation and analysis of graft hypertrophy by means of arthroscopy, biochemical MRI and osteochondral biopsies in a patient following autologous chondrocyte implantation for treatment of a full-thickness-cartilage defect of the knee.

    PubMed

    Niemeyer, Philipp; Uhl, Markus; Salzmann, Gian M; Morscheid, Yannik P; Südkamp, Norbert P; Madry, Henning

    2015-06-01

    Graft hypertrophy represents a characteristic complication following autologous chondrocyte implantation (ACI) for treatment of cartilage defects. Although some epidemiological data suggest that incidence is associated with first-generation ACI using autologous chondrocyte implantation, it has also been reported in other technical modifications of ACI using different biomaterials. Nevertheless, it has not been described in autologous, non-periosteum, implant-free associated ACI. In addition, little is known about histological and T2-relaxation appearance of graft hypertrophy. The present case report provides a rare case of extensive graft hypertrophy following ACI using an autologous spheres technique with clinical progression over time. Detailed clinical, MR tomographic and histological evaluation has been performed, which demonstrates a high quality of repair tissue within the hypertrophic as well as non-hypertrophic transplanted areas of the repair tissue. No expression of collagen type X (a sign of chondrocyte hypertrophy), only slight changes of the subchondral bone and a nearly normal cell-matrix ratio suggest that tissue within the hypertrophic area does not significantly differ from intact and high-quality repair tissue and therefore seems not to cause graft hypertrophy. This is in contrast to the assumption that histological hypertrophy might cause or contribute to an overwhelming growth of the repair tissue within the transplantation site. Data presented in this manuscript might contribute to further explain the etiology of graft hypertrophy following ACI.

  10. Core binding factor beta (Cbfβ) controls the balance of chondrocyte proliferation and differentiation by upregulating Indian hedgehog (Ihh) expression and inhibiting parathyroid hormone-related protein receptor (PPR) expression in postnatal cartilage and bone formation.

    PubMed

    Tian, Fei; Wu, Mengrui; Deng, Lianfu; Zhu, Guochun; Ma, Junqing; Gao, Bo; Wang, Lin; Li, Yi-Ping; Chen, Wei

    2014-07-01

    Core binding factor beta (Cbfβ) is essential for embryonic bone morphogenesis. Yet the mechanisms by which Cbfβ regulates chondrocyte proliferation and differentiation as well as postnatal cartilage and bone formation remain unclear. Hence, using paired-related homeobox transcription factor 1-Cre (Prx1-Cre) mice, mesenchymal stem cell-specific Cbfβ-deficient (Cbfβ(f/f) Prx1-Cre) mice were generated to study the role of Cbfβ in postnatal cartilage and bone development. These mutant mice survived to adulthood but exhibited severe sternum and limb malformations. Sternum ossification was largely delayed in the Cbfβ(f/f) Prx1-Cre mice and the xiphoid process was noncalcified and enlarged. In newborn and 7-day-old Cbfβ(f/f) Prx1-Cre mice, the resting zone was dramatically elongated, the proliferation zone and hypertrophic zone of the growth plates were drastically shortened and disorganized, and trabecular bone formation was reduced. Moreover, in 1-month-old Cbfβ(f/f) Prx1-Cre mice, the growth plates were severely deformed and trabecular bone was almost absent. In addition, Cbfβ deficiency impaired intramembranous bone formation both in vivo and in vitro. Interestingly, although the expression of Indian hedgehog (Ihh) was largely reduced, the expression of parathyroid hormone-related protein (PTHrP) receptor (PPR) was dramatically increased in the Cbfβ(f/f) Prx1-Cre growth plate, indicating that that Cbfβ deficiency disrupted the Ihh-PTHrP negative regulatory loop. Chromatin immunoprecipitation (ChIP) analysis and promoter luciferase assay demonstrated that the Runx/Cbfβ complex binds putative Runx-binding sites of the Ihh promoter regions, and also the Runx/Cbfβ complex directly upregulates Ihh expression at the transcriptional level. Consistently, the expressions of Ihh target genes, including CyclinD1, Ptc, and Pthlh, were downregulated in Cbfβ-deficient chondrocytes. Taken together, our study reveals not only that Cbfβ is essential for chondrocyte

  11. Lentiviral vector-mediated over-expression of Sox9 protected chondrocytes from IL-1β induced degeneration and apoptosis.

    PubMed

    Lu, Huading; Zeng, Chun; Chen, Mingwei; Lian, Liyi; Dai, Yuhu; Zhao, Huiqing

    2015-01-01

    To explore whether the over-expression of Sry-related HMG box (Sox9) in degenerative chondrocytes is able to improve cell regeneration and protects cells from inflammation induced apoptosis, we generated a Sox9 over-expressing vector delivery system in which the Sox9 gene was inserted into a lentiviral vector. After infecting mouse chondrocytes with the Sox9-encoding vector, we observed a high level of gene transduction efficiency and achieved a high level of Sox9 expression in the infected chondrocytes. To explore whether over-expression of Sox9 is able to induce cell regeneration and improve cell survival, we induced Sox9 over-expression by lentiviral vector infection 48 hours before IL-1β treatment. The cells were infected with the reporter gene GFP-encoded lentiviral vector as a negative control or left uninfected. 48-hours after IL-1β treatment, the chrondrocytes treated with IL-1β alone, underwent a degenerative process, with elevated expression of MMP-3, MMP-13, ADAMTS-5 and ALP, but the cell specific anabolic proteins collagen II and aggrecan were significantly suppressed. The cells infected with the GFP reporter vector had no increased regeneration after IL-1β treatment. The results indicated that Sox9 is an important chondrocyte transcription factor, promoting chondrocyte regeneration and cell survival, which were mediated through affecting multiple cell differentiation as well as anti-apoptotic signaling pathways.

  12. Chondrocyte channel transcriptomics

    PubMed Central

    Lewis, Rebecca; May, Hannah; Mobasheri, Ali; Barrett-Jolley, Richard

    2013-01-01

    To date, a range of ion channels have been identified in chondrocytes using a number of different techniques, predominantly electrophysiological and/or biomolecular; each of these has its advantages and disadvantages. Here we aim to compare and contrast the data available from biophysical and microarray experiments. This letter analyses recent transcriptomics datasets from chondrocytes, accessible from the European Bioinformatics Institute (EBI). We discuss whether such bioinformatic analysis of microarray datasets can potentially accelerate identification and discovery of ion channels in chondrocytes. The ion channels which appear most frequently across these microarray datasets are discussed, along with their possible functions. We discuss whether functional or protein data exist which support the microarray data. A microarray experiment comparing gene expression in osteoarthritis and healthy cartilage is also discussed and we verify the differential expression of 2 of these genes, namely the genes encoding large calcium-activated potassium (BK) and aquaporin channels. PMID:23995703

  13. Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage

    PubMed Central

    Lee, Whasil; Leddy, Holly A.; Chen, Yong; Lee, Suk Hee; Zelenski, Nicole A.; McNulty, Amy L.; Wu, Jason; Beicker, Kellie N.; Coles, Jeffrey; Zauscher, Stefan; Grandl, Jörg; Sachs, Frederick; Liedtke, Wolfgang B.

    2014-01-01

    Diarthrodial joints are essential for load bearing and locomotion. Physiologically, articular cartilage sustains millions of cycles of mechanical loading. Chondrocytes, the cells in cartilage, regulate their metabolic activities in response to mechanical loading. Pathological mechanical stress can lead to maladaptive cellular responses and subsequent cartilage degeneration. We sought to deconstruct chondrocyte mechanotransduction by identifying mechanosensitive ion channels functioning at injurious levels of strain. We detected robust expression of the recently identified mechanosensitive channels, PIEZO1 and PIEZO2. Combined directed expression of Piezo1 and -2 sustained potentiated mechanically induced Ca2+ signals and electrical currents compared with single-Piezo expression. In primary articular chondrocytes, mechanically evoked Ca2+ transients produced by atomic force microscopy were inhibited by GsMTx4, a PIEZO-blocking peptide, and by Piezo1- or Piezo2-specific siRNA. We complemented the cellular approach with an explant-cartilage injury model. GsMTx4 reduced chondrocyte death after mechanical injury, suggesting a possible therapy for reducing cartilage injury and posttraumatic osteoarthritis by attenuating Piezo-mediated cartilage mechanotransduction of injurious strains. PMID:25385580

  14. Normal proliferation and differentiation of Hoxc-8 transgenic chondrocytes in vitro

    PubMed Central

    Cormier, Stephania A; Mello, Maria Alice; Kappen, Claudia

    2003-01-01

    Background Hox genes encode transcription factors that are involved in pattern formation in the skeleton, and recent evidence suggests that they also play a role in the regulation of endochondral ossification. To analyze the role of Hoxc-8 in this process in more detail, we applied in vitro culture systems, using high density cultures of primary chondrocytes from neonatal mouse ribs. Results Cultured cells were characterized on the basis of morphology (light microscopy) and production of cartilage-specific extracellular matrix (sulfated proteoglycans and type II Collagen). Hypertrophy was demonstrated by increase in cell size, alkaline phosphatase activity and type X Collagen immunohistochemistry. Proliferation was assessed by BrdU uptake and flow cytometry. Unexpectedly, chondrocytes from Hoxc-8 transgenic mice, which exhibit delayed cartilage maturation in vivo [1], were able to proliferate and differentiate normally in our culture systems. This was the case even though freshly isolated Hoxc-8 transgenic chondrocytes exhibited significant molecular differences as measured by real-time quantitative PCR. Conclusions The results demonstrate that primary rib chondrocytes behave similar to published reports for chondrocytes from other sources, validating in vitro approaches for studies of Hox genes in the regulation of endochondral ossification. Our analysis of cartilage-producing cells from Hoxc-8 transgenic mice provides evidence that the cellular phenotype induced by Hoxc-8 overexpression in vivo is reversible in vitro. PMID:12713673

  15. The Regulatory Role of Signaling Crosstalk in Hypertrophy of MSCs and Human Articular Chondrocytes.

    PubMed

    Zhong, Leilei; Huang, Xiaobin; Karperien, Marcel; Post, Janine N

    2015-08-14

    Hypertrophic differentiation of chondrocytes is a main barrier in application of mesenchymal stem cells (MSCs) for cartilage repair. In addition, hypertrophy occurs occasionally in osteoarthritis (OA). Here we provide a comprehensive review on recent literature describing signal pathways in the hypertrophy of MSCs-derived in vitro differentiated chondrocytes and chondrocytes, with an emphasis on the crosstalk between these pathways. Insight into the exact regulation of hypertrophy by the signaling network is necessary for the efficient application of MSCs for articular cartilage repair and for developing novel strategies for curing OA. We focus on articles describing the role of the main signaling pathways in regulating chondrocyte hypertrophy-like changes. Most studies report hypertrophic differentiation in chondrogenesis of MSCs, in both human OA and experimental OA. Chondrocyte hypertrophy is not under the strict control of a single pathway but appears to be regulated by an intricately regulated network of multiple signaling pathways, such as WNT, Bone morphogenetic protein (BMP)/Transforming growth factor-β (TGFβ), Parathyroid hormone-related peptide (PTHrP), Indian hedgehog (IHH), Fibroblast growth factor (FGF), Insulin like growth factor (IGF) and Hypoxia-inducible factor (HIF). This comprehensive review describes how this intricate signaling network influences tissue-engineering applications of MSCs in articular cartilage (AC) repair, and improves understanding of the disease stages and cellular responses within an OA articular joint.

  16. Changes in rat epiphyseal cartilage after treatment with dexamethasone and glycosaminoglycan-peptide complex.

    PubMed

    Annefeld, M

    1992-06-01

    In 3-month-old rats, systemic administration of glucocorticosteroids induced regressive changes in the epiphyseal plate cartilage. Dexamethasone treatment resulted in inhibition of both chondrocyte proliferation and cartilage matrix production. The inhibition of chondrocyte proliferation was determined histologically from the thickness of the epiphyseal plate, the number of cell columns and the ratio of proliferating to hypertrophied chondrocytes. The decrease in cartilage matrix production was measured autoradiographically by incorporation of radioactive 35S-sulphate. Concomitant treatment with glycosaminoglycan-peptide complex (GP-C = RUMALON) overcame the negative effect of dexamethasone. The values in the dexamethasone + GP-C group approached those of the control group and differed significantly from the group given dexamethasone alone.

  17. A wogonin-rich-fraction of Scutellaria baicalensis root extract exerts chondroprotective effects by suppressing IL-1β-induced activation of AP-1 in human OA chondrocytes

    PubMed Central

    Khan, Nazir M.; Haseeb, Abdul; Ansari, Mohammad Y.; Haqqi, Tariq M.

    2017-01-01

    Osteoarthritis (OA) is a common joint disorder with varying degrees of inflammation and sustained oxidative stress. The root extract of Scutellaria baicalensis (SBE) has been used for the treatment of inflammatory and other diseases. Here, we performed activity-guided HPLC-fractionation of SBE, identified the active ingredient(s) and investigated its chondroprotective potential. We found that the Wogonin containing fraction-4 (F4) was the most potent fraction based on its ability to inhibit ROS production and the suppression of catabolic markers including IL-6, COX-2, iNOS, MMP-3, MMP-9, MMP-13 and ADAMTS-4 in IL-1β-treated OA chondrocytes. OA chondrocytes treated with F4 in the presence of IL-1β showed significantly enhanced expression of anabolic genes ACAN and COL2A1. In an in vitro model of cartilage degradation treatment with F4 inhibited s-GAG release from IL-1β-treated human cartilage explants. The inhibitory effect of F4 was not mediated through the inhibition of MAPKs and NF-κB activation but was mediated through the suppression of c-Fos/AP-1 activity at transcriptional and post transcriptional levels in OA chondrocytes. Purified Wogonin mimicked the effects of F4 in IL-1β-stimulated OA chondrocytes. Our data demonstrates that a Wogonin-rich fraction of SBE exert chondroprotective effects through the suppression of c-Fos/AP-1 expression and activity in OA chondrocytes under pathological conditions. PMID:28256567

  18. Dual effects of 17ß-oestradiol on interleukin 1ß-induced proteoglycan degradation in chondrocytes

    PubMed Central

    Richette, P; Dumontier, M; Francois, M; Tsagris, L; Korwin-Zmijowska, C; Rannou, F; Corvol, M

    2004-01-01

    Objective: To determine whether 17ß-oestradiol (E2) modulates interleukin (IL) 1ß-induced proteoglycan degradation in chondrocytes, and to analyse the part played by metalloproteinases (MMPs) in this process. Methods: Primary cultured rabbit articular chondrocytes were prepared and treated with 10 ng/ml IL1ß combined or not with 0.1–10 nM E2. Neosynthesised proteoglycans (PGs) were evaluated after incorporation of [35SO4]sulphate and further analysed after chromatography on a Sepharose 2B column. Chondrocyte mRNA levels of aggrecan, MMP-1, -3, -13, and tissue inhibitor of metalloproteinase-1 (TIMP-1) were studied by northern blot. MMP-1 activity was measured by zymography. MMP-1 gene transcription was studied by transient transfection of chondrocytes with an MMP-1-luciferase construct. Results: E2 modulated the IL1ß-induced total sulphated PGs in rabbit articular chondrocytes, which decreased as the E2 concentration was increased. At a low concentration (0.1 nmol/l) E2 counteracts the IL1ß-induced decrease in sulphated PG, while at high concentration (10 nmol/l) E2 enhances the IL1ß effects. A biphasic E2 effect was also observed on IL1ß-induced disaggregation of PG, 53–58 kDa gelatinolytic activity, and MMP-1, -3, and -13 mRNA levels. In contrast, E2 did not modify the level of aggrecan mRNA and had no effect on TIMP-1 mRNA expression. Finally, simultaneous addition of IL1ß and E2 (0.1–10 nmol/l) did not modify IL1ß-induced MMP-1-luciferase activity, suggesting that E2 effects probably occur at the post-transcriptional level of MMP gene expression. Conclusion: Oestrogen concentration may have an inverse effect on IL1ß stimulated proteoglycan degradation and MMP production by chondrocytes. PMID:14722210

  19. The proinflammatory cytokines interleukin-1α and tumor necrosis factor α promote the expression and secretion of proteolytically active cathepsin S from human chondrocytes.

    PubMed

    Caglič, Dejan; Repnik, Urška; Jedeszko, Christopher; Kosec, Gregor; Miniejew, Catherine; Kindermann, Maik; Vasiljeva, Olga; Turk, Vito; Wendt, K Ulrich; Sloane, Bonnie F; Goldring, Mary B; Turk, Boris

    2013-02-01

    Osteoarthritis and rheumatoid arthritis are destructive joint diseases that involve the loss of articular cartilage. Degradation of cartilage extracellular matrix is believed to occur due to imbalance between the catabolic and anabolic processes of resident chondrocytes. Previous work has suggested that various lysosomal cysteine cathepsins participate in cartilage degeneration; however, their exact roles in disease development and progression have not been elucidated. In order to study degradation processes under conditions resembling the in vivo milieu of the cartilage, we cultivated chondrocytes on a type II collagen-containing matrix. Stimulation of the cultivated chondrocytes with interleukin-1α and/or tumor necrosis factor α resulted in a time-dependent increase in cathepsin S expression and induced its secretion into the conditioned media. Using a novel bioluminescent activity-based probe, we were able to demonstrate a significant increase in proteolytic activity of cathepsin S in the conditioned media of proinflammatory cytokine-stimulated chondrocytes. For the first time, cathepsin S was demonstrated to be secreted from chondrocytes upon stimulation with the proinflammatory cytokines, and displayed proteolytic activity in culture supernatants. Its stability at neutral pH and potent proteolytic activity on extracellular matrix components mean that cathepsin S may contribute significantly to cartilage degradation and may thus be considered a potential drug target in joint diseases.

  20. Estrogen Receptor beta mediates decreased occlusal loading induced inhibition of chondrocyte maturation in female mice

    PubMed Central

    Polur, Ilona; Kamiya, Yosuke; Xu, Manshan; Cabri, Bianca S.; Alshabeeb, Marwa; Wadhwa, Sunil; Chen, Jing

    2015-01-01

    Objective Temporomandibular joint (TMJ) disorders predominantly afflict women, suggesting that estrogen may play a role in the disease process. Defects in mechanical loading-induced TMJ remodeling are believed to be a major etiological factor in TMJ degenerative disease. Previously, we found that, decreased occlusal loading caused a significant decrease in early chondrocyte maturation markers (Sox9 and Col 2) in female, but not male, C57BL/6 wild type mice (1). The goal of this study was to examine the role of Estrogen Receptor (ER) beta in mediating these effects. Design 21-day-old male (n=24) and female (n=25) ER beta KO mice were exposed to decreased occlusal loading (soft diet administration and incisor trimming) for 4 weeks. At 49 days of age the mice were sacrificed. Proliferation, gene expression, Col 2 immunohistochemistry and micro-CT analysis were performed on the mandibular condyles. Results Decreased occlusal loading triggered similar effects in male and female ER beta KO mice; specifically, significant decreases in Col 10 expression, subchondral total volume, bone volume, and trabecular number. Conclusion Decreased occlusal loading induced inhibition of chondrocyte maturation markers (Sox9 and Col 2) did not occur in female ER beta deficient mice. PMID:25791327

  1. Intra-Articular Injections of Polyphenols Protect Articular Cartilage from Inflammation-Induced Degradation: Suggesting a Potential Role in Cartilage Therapeutics

    PubMed Central

    Natarajan, Venkatachalam; Madhan, Balaraman; Tiku, Moti L.

    2015-01-01

    Arthritic diseases, such as osteoarthritis and rheumatoid arthritis, inflict an enormous health care burden on society. Osteoarthritis, a degenerative joint disease with high prevalence among older people, and rheumatoid arthritis, an autoimmune inflammatory disease, both lead to irreversible structural and functional damage to articular cartilage. The aim of this study was to investigate the effect of polyphenols such as catechin, quercetin, epigallocatechin gallate, and tannic acid, on crosslinking type II collagen and the roles of these agents in managing in vivo articular cartilage degradation. The thermal, enzymatic, and physical stability of bovine articular cartilage explants following polyphenolic treatment were assessed for efficiency. Epigallocatechin gallate and tannic acid-treated explants showed >12 °C increase over native cartilage in thermal stability, thereby confirming cartilage crosslinking. Polyphenol-treated cartilage also showed a significant reduction in the percentage of collagen degradation and the release of glycosaminoglycans against collagenase digestion, indicating the increase physical integrity and resistance of polyphenol crosslinked cartilage to enzymatic digestion. To examine the in vivo cartilage protective effects, polyphenols were injected intra-articularly before (prophylactic) and after (therapeutic) the induction of collagen-induced arthritis in rats. The hind paw volume and histomorphological scoring was done for cartilage damage. The intra-articular injection of epigallocatechin gallate and tannic acid did not significantly influence the time of onset or the intensity of joint inflammation. However, histomorphological scoring of the articular cartilage showed a significant reduction in cartilage degradation in prophylactic- and therapeutic-groups, indicating that intra-articular injections of polyphenols bind to articular cartilage and making it resistant to degradation despite ongoing inflammation. These studies establish

  2. [The synergistic effect of amygdalin and HSYA on the IL-1beta induced endplate chondrocytes of rat intervertebral discs].

    PubMed

    Niu, Kai; Zhao, Yong-Jian; Zhang, Lei; Li, Chen-Guang; Wang, Yong-Jun; Zheng, Wei-Chao

    2014-08-01

    The effect of amygdalin joint hydroxysafflor yellow A (HSYA) on the endplate chondrocytes derived from intervertebral discs of rats induced by IL-1beta and the possible mechanism were studied and explored. Chondrocytes were obtained from endplate of one-month SD rat intervertebral discs and cultured primary endplate chondrocytes. After identification, they were divided into normal group, induced group, amygdalin group, HSYA group and combined group. CCK-8 kit was adopted to detect the proliferation of the endplate chondrocytes. FCM was measured to detect the apoptosis. Real-time PCR method was adopted to observe the mRNA expression of Aggrecan, Col 2 alpha1, Col 10 alpha1, MMP-13 and the inflammatory cytokines IL-1beta. The protein expression of Col II, Col X was tested through immunofluorescence. Compared with the normal group, the proliferation of the endplate chondrocytes decreased while the apoptosis increased (P < 0.05). With down regulation of the mRNA expressions of Aggrecan, Col 2 alpha1 and up regulation of the mRNA expressions of Col 10 alpha1, MMP-13, IL-1beta (P < 0.05), the protein expression of Col II decreased while the protein expression of Col X increased. Compared with the induced group, amygdalin group, HSYA group, the combined group could inhibit the apoptosis and promote the proliferation (P < 0.05). They could increase the mRNA expressions of Aggrecan and Col 2 alpha1 while decrease the mRNA expressions of Col 10 alpha1, MMP-13 and IL-1beta (P < 0.05). They could also enhance the protein expression of Col II while reduce the protein expression of Col X. The effect of the combined group was significantly better than that of amygdalin and HSYA. Amygdalin joint HSYA could inhibit the degeneration of the endplate chondrocytes derived from intervertebral discs of rats induced by IL-1beta and better than the single use of amygdalin or HSYA.

  3. Silencing of Wnt5a prevents interleukin-1β-induced collagen type II degradation in rat chondrocytes

    PubMed Central

    Shi, Shiping; Man, Zhentao; Li, Wei; Sun, Shui; Zhang, Wei

    2016-01-01

    Osteoarthritis (OA) is a joint disease, and few treatments to date have been able to delay OA progression. The degradation of collagen type II (COL2) in the cartilage matrix is an important initiating factor for OA progression; the upregulation of Wnt5a protein activates COL2 degradation. In the present study, small interfering RNA of Wnt-5a was delivered by a lentiviral vector (LV-Wnt5a-RNAi) to silence Wnt-5a mRNA and prevent COL2 degradation. To determine the function of LV-Wnt5a-RNAi, the OA chondrocyte model (OA-like chondrocytes) were constructed using interleukin (IL)-1β. Detected using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), Wnt-5a mRNA in the OA-like chondrocytes were upregulated in a time-dependent manner, indicating that OA-like chondrocytes were successfully constructed. The bioactivity of OA-like chondrocytes was determined using Live-Dead staining, and the result illustrated that the OA-like chondrocytes stimulated with IL-1β for 6 h remained viable, and these were used in Wnt5a silencing. The OA-like chondrocytes were divided into three groups: Group I, cultivated with common medium; group II, cultivated with common medium supplemented with empty lentiviral vector; group III, cultivated with common medium supplemented with LV-Wnt5a-RNAi. The efficiency of LV-Wnt5a-RNAi transfection was determined using fluorescence microscopy, the result of which indicated that LV-Wnt5a-RNAi could efficiently be transfected into the OA-like chondrocytes. The LV-Wnt5a-RNAi efficiency for the Wnt5a mRNA silencing was determined using RT-qPCR. The result illustrated that the mRNA of Wnt5a in group III was significantly lower in group I compared with that in group II (P<0.05), indicating that the LV-Wnt5a-RNAi could successfully silence Wnt5a mRNA. To further verify whether the silencing of Wnt5a mRNA could prevent COL2 degradation, western blotting and immunohistochemical analyses were performed. The results demonstrated that COL2 in

  4. Fisetin inhibits IL-1β-induced inflammatory response in human osteoarthritis chondrocytes through activating SIRT1 and attenuates the progression of osteoarthritis in mice.

    PubMed

    Zheng, Wenhao; Feng, Zhenhua; You, Shengban; Zhang, Hui; Tao, Zhenyu; Wang, Quan; Chen, Hua; Wu, Yaosen

    2017-04-01

    Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage degradation and inflammation. Fisetin, a polyphenol extracted from fruits and vegetables, has been reported to have anti-inflammatory effects. Our study aimed to investigate the effect of fisetin on OA both in vitro and in vivo. In vitro, chondrocytes were pretreated with fisetin alone or fisetin combined with sirtinol (an inhibitor of SIRT1) for 2h before IL-1β stimulation. Production of NO, PGE2, TNF-α and IL-6 were evaluated by the Griess reaction and ELISAs. The mRNA (COX-2, iNOS, MMP-3, MMP-13, ADAMTS-5, Sox-9, aggrecan and collagen-II) and protein expression (COX-2, iNOS, MMP-3, MMP-13, ADAMTS-5 and SIRT1) were measured by qRT-PCR and Western blot respectively. Immunofluorescence was used to assess the expression of collagen-II and SIRT1. SIRT1 activity was quantified with SIRT1 fluorometric assay kit. The in vivo effect of fisetin was evaluated by gavage in mice OA models induced by destabilization of the medial meniscus (DMM). We found that fisetin inhibited IL-1β-induced expression of NO, PGE2, TNF-α, IL-6, COX-2, iNOS, MMP-3, MMP-13, ADAMTS-5. Besides, fisetin remarkably decreased IL-1β-induced degradation of Sox-9, aggrecan and collagen-II. Furthermore, fisetin significantly inhibited IL-1β-induced SIRT1 decrease and inactivation. However, the inhibitory effect of fisetin was obvious abolished by sirtinol, suggesting that fisetin exerts anti-inflammatory effects through activating SIRT1. In vivo, fisetin-treated mice exhibited less cartilage destruction and lower OARSI scores. Moreover, fisetin reduced subchondral bone plate thickness and alleviated synovitis. Taken together, these findings indicate that fisetin may be a potential agent in the treatment of OA.

  5. Experimental study of millimeter wave-induced differentiation of bone marrow mesenchymal stem cells into chondrocytes.

    PubMed

    Wu, Guang-Wen; Liu, Xian-Xiang; Wu, Ming-Xia; Zhao, Jin-Yan; Chen, Wen-Lie; Lin, Ru-Hui; Lin, Jiu-Mao

    2009-04-01

    Low power millimeter wave irradiation is widely used in clinical medicine. We describe the effects of this treatment on cultured mesenchymal stem cells (MSCs) and attempted to identify the underlying mechanism. Cells cultured using the whole marrow attachment culture method proliferated dispersedly or in clones. Flow cytometric analyses showed that the MSCs were CD90 positive, but negative for CD45. The negative control group (A) did not express detectable levels of Cbfa1 or Sox9 mRNA at any time point, while cells in the millimeter wave-induced groups (B and C) increasingly expressed both genes after the fourth day post-induction. Statistical analysis showed that starting on the fourth day post-induction, there were very significant differences in the expression of Cbfa1 and Sox9 mRNA between groups A and B as well as A and C at any given time point, between treated groups B and C after identical periods of induction, and within each treated group at different induction times. Transition electron microscopy analysis showed that the rough endoplasmic reticulum of cells in the induced groups was richer and more developed than in cells of the negative control group, and that the shape of cells shifted from long-spindle to near ellipse. Toluidine blue staining revealed heterochromia in the cytoplasm and extracellular matrix of cells in the induced groups, whereas no obvious heterochromia was observed in negative control cells. Induced cells also exhibited positive immunohistochemical staining of collagen II, in contrast to the negative controls. These results show that millimeter wave treatment successfully induced MSCs to differentiate as chondrocytes and the extent of differentiation increased with treatment duration. Our findings suggest that millimeter wave irradiation can be employed as a novel non-drug inducing method for the differentiation of MSCs into chondrocytes.

  6. Matrilin-3 Role in Cartilage Development and Osteoarthritis

    PubMed Central

    Muttigi, Manjunatha S.; Han, Inbo; Park, Hun-Kuk; Park, Hansoo; Lee, Soo-Hong

    2016-01-01

    The extracellular matrix (ECM) of cartilage performs essential functions in differentiation and chondroprogenitor cell maintenance during development and regeneration. Here, we discuss the vital role of matrilin-3, an ECM protein involved in cartilage development and potential osteoarthritis pathomechanisms. As an adaptor protein, matrilin-3 binds to collagen IX to form a filamentous network around cells. Matrilin-3 is an essential component during cartilage development and ossification. In addition, it interacts directly or indirectly with transforming growth factor β (TGF-β), and bone morphogenetic protein 2 (BMP2) eventually regulates chondrocyte proliferation and hypertrophic differentiation. Interestingly, matrilin-3 increases interleukin receptor antagonists (IL-Ra) in chondrocytes, suggesting its role in the suppression of IL-1β-mediated inflammatory action. Matrilin-3 downregulates the expression of matrix-degrading enzymes, such as a disintegrin metalloproteinase with thrombospondin motifs 4 (ADAMTS4) and ADAMTS5, matrix metalloproteinase 13 (MMP13), and collagen X, a hypertrophy marker during development and inflammatory conditions. Matrilin-3 essentially enhances collagen II and aggrecan expression, which are required to maintain the tensile strength and elasticity of cartilage, respectively. Interestingly, despite these attributes, matrilin-3 induces osteoarthritis-associated markers in chondrocytes in a concentration-dependent manner. Existing data provide insights into the critical role of matrilin-3 in inflammation, matrix degradation, and matrix formation in cartilage development and osteoarthritis. PMID:27104523

  7. Matrilin-3 Role in Cartilage Development and Osteoarthritis.

    PubMed

    Muttigi, Manjunatha S; Han, Inbo; Park, Hun-Kuk; Park, Hansoo; Lee, Soo-Hong

    2016-04-20

    The extracellular matrix (ECM) of cartilage performs essential functions in differentiation and chondroprogenitor cell maintenance during development and regeneration. Here, we discuss the vital role of matrilin-3, an ECM protein involved in cartilage development and potential osteoarthritis pathomechanisms. As an adaptor protein, matrilin-3 binds to collagen IX to form a filamentous network around cells. Matrilin-3 is an essential component during cartilage development and ossification. In addition, it interacts directly or indirectly with transforming growth factor β (TGF-β), and bone morphogenetic protein 2 (BMP2) eventually regulates chondrocyte proliferation and hypertrophic differentiation. Interestingly, matrilin-3 increases interleukin receptor antagonists (IL-Ra) in chondrocytes, suggesting its role in the suppression of IL-1β-mediated inflammatory action. Matrilin-3 downregulates the expression of matrix-degrading enzymes, such as a disintegrin metalloproteinase with thrombospondin motifs 4 (ADAMTS4) and ADAMTS5, matrix metalloproteinase 13 (MMP13), and collagen X, a hypertrophy marker during development and inflammatory conditions. Matrilin-3 essentially enhances collagen II and aggrecan expression, which are required to maintain the tensile strength and elasticity of cartilage, respectively. Interestingly, despite these attributes, matrilin-3 induces osteoarthritis-associated markers in chondrocytes in a concentration-dependent manner. Existing data provide insights into the critical role of matrilin-3 in inflammation, matrix degradation, and matrix formation in cartilage development and osteoarthritis.

  8. Cell-sheet technology combined with a thienoindazole derivative small compound TD-198946 for cartilage regeneration.

    PubMed

    Yano, Fumiko; Hojo, Hironori; Ohba, Shinsuke; Saito, Taku; Honnami, Muneki; Mochizuki, Manabu; Takato, Tsuyoshi; Kawaguchi, Hiroshi; Chung, Ung-il

    2013-07-01

    Articular cartilage is a permanent tissue, with poor self-regenerative capacity. Consequently, a tissue engineering approach to cartilage regenerative therapy could greatly advance the current treatment options for patients with cartilage degeneration and/or defects. A successful tissue engineering approach would require not only induction of chondrogenic differentiation, but also suppression of subsequent endochondral ossification and chondrocyte dedifferentiation. We previously reported that direct injection of the thienoindazole derivative, TD-198946, into the knee joints of mice halted the progression of osteoarthritis; the compound induced chondrogenic differentiation without promoting endochondral ossification. In the present study, we applied TD-198946 to a cell-based cartilage reconstruction model, taking advantage of the cell-sheet technology. Cartilaginous cell-sheets were generated by culturing mouse and canine costal chondrocytes and human mesenchymal stem cells with TD-198946 on temperature-responsive dishes. The transplanted cell-sheets were then successfully used to promote the reconstruction of permanent cartilage, with no evidence of chondrocyte hypertrophy in the knee articular cartilage defects created in mice and canines. Thus, TD-198946 is a promising candidate for cell-based cartilage reconstruction therapies, enabling us to avoid any concern surrounding the use of scaffolds or cytokines to stimulate regeneration.

  9. The pattern recognition receptor CD36 is a chondrocyte hypertrophy marker associated with suppression of catabolic responses and promotion of repair responses to inflammatory stimuli.

    PubMed

    Cecil, Denise L; Appleton, C Thomas G; Polewski, Monika D; Mort, John S; Schmidt, Ann Marie; Bendele, Alison; Beier, Frank; Terkeltaub, Robert

    2009-04-15

    Multiple inflammatory mediators in osteoarthritis (OA) cartilage, including S100/calgranulin ligands of receptor for advanced glycation end products (RAGE), promote chondrocyte hypertrophy, a differentiation state associated with matrix catabolism. In this study, we observed that RAGE knockout was not chondroprotective in instability-induced knee OA in 8-wk-old mice. Hence, we tested the hypothesis that expression of the alternative S100/calgranulin and patterning receptor CD36, identified here as a marker of growth plate chondrocyte hypertrophy, mediates chondrocyte inflammatory and differentiation responses that promote OA. In rat knee joint destabilization-induced OA, RAGE expression was initially sparse throughout cartilage but increased diffusely by 4 wk after surgery. In contrast, CD36 expression focally increased at sites of cartilage injury and colocalized with developing chondrocyte hypertrophy and aggrecan cleavage NITEGE neoepitope formation. However, CD36 transfection in normal human knee-immortalized chondrocytes (CH-8 cells) was associated with decreased capacity of S100A11 and TNF-alpha to induce chondrocyte hypertrophy and ADAMTS-4 and matrix metalloproteinase 13 expression. S100A11 lost the capacity to inhibit proteoglycans synthesis and gained the capacity to induce proteoglycan synthesis in CD36-transfected CH-8 cells. Moreover, S100A11 required the p38 MAPK pathway kinase MKK3 to induce NITEGE development in mouse articular cartilage explants. However, CH-8 cells transfected with CD36 demonstrated decreased S100A11-induced MKK3 and p38 phosphorylation. Therefore, RAGE and CD36 patterning receptor expression were linked with opposing effects on inflammatory, procatabolic responses to S100A11 and TNF-alpha in chondrocytes.

  10. Catabolic effects of FGF-1 on chondrocytes and its possible role in osteoarthritis.

    PubMed

    El-Seoudi, Abdellatif; El Kader, Tarek Abd; Nishida, Takashi; Eguchi, Takanori; Aoyama, Eriko; Takigawa, Masaharu; Kubota, Satoshi

    2017-03-25

    Fibroblast growth factor 1 (FGF-1) is a classical member of the FGF family and is produced by chondrocytes cultured from osteoarthritic patients. Also, this growth factor was shown to bind to CCN family protein 2 (CCN2), which regenerates damaged articular cartilage and counteracts osteoarthritis (OA) in an animal model. However, the pathophysiological role of FGF-1 in cartilage has not been well investigated. In this study, we evaluated the effects of FGF-1 in vitro and its production in vivo by use of an OA model. Treatment of human chondrocytic cells with FGF-1 resulted in marked repression of genes for cartilaginous extracellular matrix components, whereas it strongly induced matrix metalloproteinase 13 (MMP-13), representing its catabolic effects on cartilage. Interestingly, expression of the CCN2 gene was dramatically repressed by FGF-1, which repression eventually caused the reduced production of CCN2 protein from the chondrocytic cells. The results of a reporter gene assay revealed that this repression could be ascribed, at least in part, to transcriptional regulation. In contrast, the gene expression of FGF-1 was enhanced by exogenous FGF-1, indicating a positive feedback system in these cells. Of note, induction of FGF-1 was observed in the articular cartilage of a rat OA model. These results collectively indicate a pathological role of FGF-1 in OA development, which includes an insufficient cartilage regeneration response caused by CCN2 down regulation.

  11. Sodium Thiosulfate Prevents Chondrocyte Mineralization and Reduces the Severity of Murine Osteoarthritis

    PubMed Central

    Nasi, Sonia; Ea, Hang-Korng; Lioté, Frédéric; So, Alexander; Busso, Nathalie

    2016-01-01

    Objectives Calcium-containing crystals participate in the pathogenesis of OA. Sodium thiosulfate (STS) has been shown to be an effective treatment in calcification disorders such as calciphylaxis and vascular calcification. This study investigated the effects and mechanisms of action of STS in a murine model of OA and in chondrocyte calcification. Methods Hydroxyapatite (HA) crystals-stimulated murine chondrocytes and macrophages were treated with STS. Mineralization and cellular production of IL-6, MCP-1 and reactive oxygen species (ROS) were assayed. STS's effects on genes involved in calcification, inflammation and cartilage matrix degradation were studied by RT-PCR. STS was administered in the menisectomy model of murine OA, and the effect on periarticular calcific deposits and cartilage degeneration was investigated by micro-CT-scan and histology. Results In vitro, STS prevented in a dose-dependent manner calcium crystal deposition in chondrocytes and inhibited Annexin V gene expression. In addition, there was a reduction in crystal-induced IL-6 and MCP-1 production. STS also had an antioxidant effect, diminished HA-induced ROS generation and abrogated HA-induced catabolic responses in chondrocytes. In vivo, administration of STS reduced the histological severity of OA, by limiting the size of new periarticular calcific deposits and reducing the severity of cartilage damage. Conclusions STS reduces the severity of periarticular calcification and cartilage damage in an animal model of OA via its effects on chondrocyte mineralization and its attenuation of crystal-induced inflammation as well as catabolic enzymes and ROS generation. Our study suggests that STS may be a disease-modifying drug in crystal-associated OA. PMID:27391970

  12. RANKL synthesized by articular chondrocytes contributes to juxta-articular bone loss in chronic arthritis

    PubMed Central

    2012-01-01

    Introduction The receptor activator nuclear factor-kappaB ligand (RANKL) diffuses from articular cartilage to subchondral bone. However, the role of chondrocyte-synthesized RANKL in rheumatoid arthritis-associated juxta-articular bone loss has not yet been explored. This study aimed to determine whether RANKL produced by chondrocytes induces osteoclastogenesis and juxta-articular bone loss associated with chronic arthritis. Methods Chronic antigen-induced arthritis (AIA) was induced in New Zealand (NZ) rabbits. Osteoarthritis (OA) and control groups were simultaneously studied. Dual X-ray absorptiometry of subchondral knee bone was performed before sacrifice. Histological analysis and protein expression of RANKL and osteoprotegerin (OPG) were evaluated in joint tissues. Co-cultures of human OA articular chondrocytes with peripheral blood mononuclear cells (PBMCs) from healthy donors were stimulated with macrophage-colony stimulating factor (M-CSF) and prostaglandin E2 (PGE2), then further stained with tartrate-resistant acid phosphatase. Results Subchondral bone loss was confirmed in AIA rabbits when compared with controls. The expression of RANKL, OPG and RANKL/OPG ratio in cartilage were increased in AIA compared to control animals, although this pattern was not seen in synovium. Furthermore, RANKL expression and RANKL/OPG ratio were inversely related to subchondral bone mineral density. RANKL expression was observed throughout all cartilage zones of rabbits and was specially increased in the calcified cartilage of AIA animals. Co-cultures demonstrated that PGE2-stimulated human chondrocytes, which produce RANKL, also induce osteoclasts differentiation from PBMCs. Conclusions Chondrocyte-synthesized RANKL may contribute to the development of juxta-articular osteoporosis associated with chronic arthritis, by enhancing osteoclastogenesis. These results point out a new mechanism of bone loss in patients with rheumatoid arthritis. PMID:22709525

  13. iPS cell technologies and cartilage regeneration.

    PubMed

    Tsumaki, Noriyuki; Okada, Minoru; Yamashita, Akihiro

    2015-01-01

    Articular cartilage covers the ends of bone and provides shock absorption and lubrication to the diarthrodial joints. Cartilage has a limited capacity for repair when injured, and there is a need for cell sources for chondrocytes that can be transplanted as part of a regenerative medicine approach. Induced pluripotent stem cells (iPSCs) have pluripotency and the potential for self-renewal similar to embryonic stem cells (ESCs), but are not associated with the ethical issues that have plagued ESCs. Recent progress has made it possible to generate integration-free iPSCs and to differentiate iPSCs toward chondrocytes. An iPSC library prepared from donors homozygous for common HLA types is being developed, and will be able to provide allogeneic iPSC-derived chondrocytes at low cost that can cover the majority of the population. As an alternative approach, chondrocytic cells can be induced directly from dermal fibroblasts without going through the iPSC stage. Another important application of the iPSC technology is modeling cartilage diseases, such as skeletal dysplasia. Chondrogenically differentiated iPSCs generated from patients would recapitulate the pathology, and may serve as a useful platform both for exploring the disease mechanisms and for drug screening. This article is part of a Special Issue entitled "Stem Cells and Bone".

  14. Rapid Chondrocyte Isolation for Tissue Engineering Applications: The Effect of Enzyme Concentration and Temporal Exposure on the Matrix Forming Capacity of Nasal Derived Chondrocytes

    PubMed Central

    Vedicherla, Srujana

    2017-01-01

    Laboratory based processing and expansion to yield adequate cell numbers had been the standard in Autologous Disc Chondrocyte Transplantation (ADCT), Allogeneic Juvenile Chondrocyte Implantation (NuQu®), and Matrix-Induced Autologous Chondrocyte Implantation (MACI). Optimizing cell isolation is a key challenge in terms of obtaining adequate cell numbers while maintaining a vibrant cell population capable of subsequent proliferation and matrix elaboration. However, typical cell yields from a cartilage digest are highly variable between donors and based on user competency. The overall objective of this study was to optimize chondrocyte isolation from cartilaginous nasal tissue through modulation of enzyme concentration exposure (750 and 3000 U/ml) and incubation time (1 and 12 h), combined with physical agitation cycles, and to assess subsequent cell viability and matrix forming capacity. Overall, increasing enzyme exposure time was found to be more detrimental than collagenase concentration for subsequent viability, proliferation, and matrix forming capacity (sGAG and collagen) of these cells resulting in nonuniform cartilaginous matrix deposition. Taken together, consolidating a 3000 U/ml collagenase digest of 1 h at a ratio of 10 ml/g of cartilage tissue with physical agitation cycles can improve efficiency of chondrocyte isolation, yielding robust, more uniform matrix formation. PMID:28337445

  15. Characterization of enzymatically induced degradation of articular cartilage using high frequency ultrasound

    NASA Astrophysics Data System (ADS)

    Töyräs, J.; Rieppo, J.; Nieminen, M. T.; Helminen, H. J.; Jurvelin, J. S.

    1999-11-01

    Ultrasound may provide a quantitative technique for the characterization of cartilage changes typical of early osteoarthrosis. In this study, specific changes in bovine articular cartilage were induced using collagenase and chondroitinase ABC, enzymes that selectively degrade collagen fibril network and digest proteoglycans, respectively. Changes in cartilage structure and properties were quantified using high frequency ultrasound, microscopic analyses and mechanical indentation tests. The ultrasound reflection coefficient of the physiological saline-cartilage interface (R1) decreased significantly (-96.4%, p<0.01) in the collagenase digested cartilage compared to controls. Also a significantly lower ultrasound velocity (-6.2%, p<0.01) was revealed after collagenase digestion. After chondroitinase ABC digestion, a new acoustic interface at the depth of the enzyme penetration front was detected. Cartilage thickness, as determined with ultrasound, showed a high, linear correlation (R = 0.943, n = 60, average difference 0.073 mm (4.0%)) with the thickness measured by the needle-probe method. Both enzymes induced a significant decrease in the Young's modulus of cartilage (p<0.01). Our results indicate that high frequency ultrasound provides a sensitive technique for the analysis of cartilage structure and properties. Possibly ultrasound may be utilized in vivo as a quantitative probe during arthroscopy.

  16. Echinocystic Acid Inhibits IL-1β-Induced COX-2 and iNOS Expression in Human Osteoarthritis Chondrocytes.

    PubMed

    Ma, Zhiqiang; Wang, Yanlong; Piao, Taikui; Liu, Jianyu

    2016-04-01

    Echinocystic acid (EA), a pentacyclic triterpene isolated from the fruits of Gleditsia sinensis Lam, displays a range of pharmacological activities including anti-inflammatory and antioxidant effects. However, the effect of EA on IL-1β-stimulated osteoarthritis chondrocyte has not been reported. The purpose of this study was to assess the effects of EA on IL-1β-stimulated human osteoarthritis chondrocyte. Chondrocytes were stimulated with IL-1β in the absence or presence of EA. NO and PGE2 production were measured by Griess reagent and ELISA. The expression of COX-2, iNOS, nuclear factor-κB (NF-κB), inhibitory kappa B (IκBα), c-Jun N-terminal kinase (JNK), p38, and extracellular signal-regulated kinase (ERK) were detected by Western blot analysis. The results showed that EA suppressed IL-1β-induced collagenase-3 (MMP-13), NO, and PGE2 production in a dose-dependent manner. IL-1β up-regulated the expression of COX-2 and iNOS, and the increase was inhibited by EA. Furthermore, IL-1β-induced NF-κB and mitogen-activated protein kinase (MAPK) activation were inhibited by EA. In conclusion, EA effectively attenuated IL-1β-induced inflammatory response in osteoarthritis chondrocyte which suggesting that EA may be a potential agent in the treatment of osteoarthritis.

  17. Interplay between cytoskeletal polymerization and the chondrogenic phenotype in chondrocytes passaged in monolayer culture.

    PubMed

    Parreno, Justin; Nabavi Niaki, Mortah; Andrejevic, Katarina; Jiang, Amy; Wu, Po-Han; Kandel, Rita A

    2017-02-01

    Tubulin and actin exist as monomeric units that polymerize to form either microtubules or filamentous actin. As the polymerization status (monomeric/polymeric ratio) of tubulin and/or actin have been shown to be important in regulating gene expression and phenotype in non-chondrocyte cells, the objective of this study was to examine the role of cytoskeletal polymerization on the chondrocyte phenotype. We hypothesized that actin and/or tubulin polymerization status modulates the chondrocyte phenotype during monolayer culture as well as in 3D culture during redifferentiation. To test this hypothesis, articular chondrocytes were grown and passaged in 2D monolayer culture. Cell phenotype was investigated by assessing cell morphology (area and circularity), actin/tubulin content, organization and polymerization status, as well as by determination of proliferation, fibroblast and cartilage matrix gene expression with passage number. Bovine chondrocytes became larger, more elongated, and had significantly (P < 0.05) increased gene expression of proliferation-associated molecules (cyclin D1 and ki67), as well as significantly (P < 0.05) decreased cartilage matrix (type II collagen and aggrecan) and increased fibroblast-like matrix, type I collagen (COL1), gene expression by passage 2 (P2). Although tubulin polymerization status was not significantly (P > 0.05) modulated, actin polymerization was increased in bovine P2 cells. Actin depolymerization, but not tubulin depolymerization, promoted the chondrocyte phenotype by inducing cell rounding, increasing aggrecan and reducing COL1 expression. Knockdown of actin depolymerization factor, cofilin, in these cells induced further P2 cell actin polymerization and increased COL1 gene expression. To confirm that actin status regulated COL1 gene expression in human P2 chondrocytes, human P2 chondrocytes were exposed to cytochalasin D. Cytochalasin D decreased COL1 gene expression in human passaged chondrocytes. Furthermore

  18. Transthyretin deposition in articular cartilage: a novel mechanism in the pathogenesis of osteoarthritis

    PubMed Central

    Akasaki, Yukio; Reixach, Natàlia; Matsuzaki, Tokio; Alvarez-Garcia, Oscar; Olmer, Merissa; Iwamoto, Yukihide; Buxbaum, Joel N.; Lotz, Martin K.

    2015-01-01

    Objectives Amyloid deposits are prevalent in osteoarthritis (OA)-affected joints. This study defined the dominant precursor and determined if the deposits affect chondrocyte functions. Methods Amyloid deposition in normal and OA human knee cartilage was determined by Congo red staining. Transthyretin (TTR) in cartilage and synovial fluid was analyzed by immunohistochemistry and western blotting. The effects of recombinant amyloidogenic and non-amyloidogenic TTR variants were tested in human chondrocyte cultures. Results Normal cartilage from young donors did not contain detectable amyloid deposits but 58% (7/12) of aged normal cartilage and 100% (12/12) of OA cartilage samples showed Congo red staining with green birefringence under polarized light. TTR, located predominantly at the cartilage surfaces, was detected in all OA and a majority of aged, but not young normal cartilage. Chondrocytes and synoviocytes did not contain significant amounts of TTR mRNA. Synovial fluid TTR levels were similar in normal and OA knees. In cultured chondrocytes, only an amyloidogenic TTR variant induced cell death, the expression of proinflammatory cytokines, and extracellular matrix degrading enzymes. The effects of amyloidogenic TTR on gene expression were mediated by in part by Toll-like receptor-4, Receptor for advanced glycation endproducts and p38 MAP kinase. TTR-induced cytotoxicity was inhibited by resveratrol, a plant polyphenol that stabilizes the native tetrameric structure of TTR. Conclusions The findings are the first to suggest that TTR amyloid deposition contributes to cell and extracellular matrix damage in articular cartilage in human OA and that therapies designed to reduce TTR amyloid formation might be useful. PMID:25940564

  19. TNF/TNFR{sub 1} pathway and endoplasmic reticulum stress are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes

    SciTech Connect

    Zhang, Fu-Tao; Ding, Yi; Shah, Zahir; Xing, Dan; Gao, Yuan; Liu, Dong Ming; Ding, Ming-Xing

    2014-04-15

    Background and purpose: Quinolones cause obvious cartilaginous lesions in juvenile animals by chondrocyte apoptosis, which results in the restriction of their use in pediatric and adolescent patients. Studies showed that chondrocytes can be induced to produce TNFα, and the cisternae of the endoplasmic reticulum in quinolone-treated chondrocytes become dilated. We investigated whether TNF/TNFR{sub 1} pathway and endoplasmic reticulum stress (ERs) are involved in ofloxacin (a typical quinolone)-induced apoptosis of juvenile canine chondrocytes. Experimental approach: Canine juvenile chondrocytes were treated with ofloxacin. Cell survival and apoptosis rates were determined with MTT method and flow cytometry, respectively. The gene expression levels of the related signaling molecules (TNFα, TNFR{sub 1}, TRADD, FADD and caspase-8) in death receptor pathways and main apoptosis-related molecules (calpain, caspase-12, GADD153 and GRP78) in ERs were measured by qRT-PCR. The gene expression of TNFR{sub 1} was suppressed with its siRNA. The protein levels of TNFα, TNFR{sub 1} and caspase-12 were assayed using Western blotting. Key results: The survival rates decreased while apoptosis rates increased after the chondrocytes were treated with ofloxacin. The mRNA levels of the measured apoptosis-related molecules in death receptor pathways and ERs, and the protein levels of TNFα, TNFR{sub 1} and caspase-12 increased after the chondrocytes were exposed to ofloxacin. The downregulated mRNA expressions of TNFR{sub 1}, Caspase-8 and TRADD, and the decreased apoptosis rates of the ofloxacin-treated chondrocytes occurred after TNFR{sub 1}–siRNA interference. Conclusions and implications: Ofloxacin-induced chondrocyte apoptosis in a time- and concentration-dependent fashion. TNF/TNFR{sub 1} pathway and ERs are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes in the early stage. - Highlights: • Chondrocyte apoptosis is induced by ofloxacin in a time- and

  20. The pro-inflammatory cytokine 14-3-3ε is a ligand of CD13 in cartilage

    PubMed Central

    Nefla, Meriam; Sudre, Laure; Denat, Guillaume; Priam, Sabrina; Andre-Leroux, Gwenaëlle; Berenbaum, Francis; Jacques, Claire

    2015-01-01

    ABSTRACT Osteoarthritis is a whole-joint disease characterized by the progressive destruction of articular cartilage involving abnormal communication between subchondral bone and cartilage. Our team previously identified 14-3-3ε protein as a subchondral bone soluble mediator altering cartilage homeostasis. The aim of this study was to investigate the involvement of CD13 (also known as aminopeptidase N, APN) in the chondrocyte response to 14-3-3ε. After identifying CD13 in chondrocytes, we knocked down CD13 with small interfering RNA (siRNA) and blocking antibodies in articular chondrocytes. 14-3-3ε-induced MMP-3 and MMP-13 was significantly reduced with CD13 knockdown, which suggests that it has a crucial role in 14-3-3ε signal transduction. Aminopeptidase N activity was identified in chondrocytes, but the activity was unchanged after stimulation with 14-3-3ε. Direct interaction between CD13 and 14-3-3ε was then demonstrated by surface plasmon resonance. Using labeled 14-3-3ε, we also found that 14-3-3ε binds to the surface of chondrocytes in a manner that is dependent on CD13. Taken together, these results suggest that 14-3-3ε might directly bind to CD13, which transmits its signal in chondrocytes to induce a catabolic phenotype similar to that observed in osteoarthritis. The 14-3-3ε–CD13 interaction could be a new therapeutic target in osteoarthritis. PMID:26208633

  1. Vitamin C Protects Chondrocytes against Monosodium Iodoacetate-Induced Osteoarthritis by Multiple Pathways

    PubMed Central

    Chiu, Pu-Rong; Hu, Yu-Chen; Huang, Tzu-Ching; Hsieh, Bau-Shan; Yeh, Jou-Pei; Cheng, Hsiao-Ling; Huang, Li-Wen; Chang, Kee-Lung

    2016-01-01

    Osteoarthritis (OA) is the most prevalent joint disease. Dietary intake of vitamin C relates to a reduction in cartilage loss and OA. This study examined the efficacy of vitamin C to prevent OA with the in vitro chondrosarcoma cell line (SW1353) and the in vivo monosodium iodoacetate (MIA)-induced OA rat. Results demonstrated that, in SW1353 cells, treatment with 5 μM MIA inhibited cell growth and increased oxidative stress, apoptosis, and proteoglycan loss. In addition, the expression levels of the pro-inflammatory cytokines IL-6, IL-17A, and TNF-α and matrix metalloproteinases (MMPs) MMP-1, MMP-3, and MMP-13 were increased. All of these MIA-induced changes could be prevented with treatment of 100 μM vitamin C. In an animal model, intra-articular injection of MIA-induced cartilage degradation resembled the pathological changes of OA, and treatment of vitamin C could lessen these changes. Unexpectedly, vitamin C’s effects did not strengthen with the increasing dosage, while the 100 mg/kg dosage was more efficient than the 200 or 300 mg/kg dosages. Vitamin C possessed multiple capacities for prevention of OA progress, including a decrease in apoptosis and in the expression of pro-inflammatory cytokines and MMPs in addition to the well-known antioxidation. PMID:28035982

  2. Vitamin C Protects Chondrocytes against Monosodium Iodoacetate-Induced Osteoarthritis by Multiple Pathways.

    PubMed

    Chiu, Pu-Rong; Hu, Yu-Chen; Huang, Tzu-Ching; Hsieh, Bau-Shan; Yeh, Jou-Pei; Cheng, Hsiao-Ling; Huang, Li-Wen; Chang, Kee-Lung

    2016-12-27

    Osteoarthritis (OA) is the most prevalent joint disease. Dietary intake of vitamin C relates to a reduction in cartilage loss and OA. This study examined the efficacy of vitamin C to prevent OA with the in vitro chondrosarcoma cell line (SW1353) and the in vivo monosodium iodoacetate (MIA)-induced OA rat. Results demonstrated that, in SW1353 cells, treatment with 5 μM MIA inhibited cell growth and increased oxidative stress, apoptosis, and proteoglycan loss. In addition, the expression levels of the pro-inflammatory cytokines IL-6, IL-17A, and TNF-α and matrix metalloproteinases (MMPs) MMP-1, MMP-3, and MMP-13 were increased. All of these MIA-induced changes could be prevented with treatment of 100 μM vitamin C. In an animal model, intra-articular injection of MIA-induced cartilage degradation resembled the pathological changes of OA, and treatment of vitamin C could lessen these changes. Unexpectedly, vitamin C's effects did not strengthen with the increasing dosage, while the 100 mg/kg dosage was more efficient than the 200 or 300 mg/kg dosages. Vitamin C possessed multiple capacities for prevention of OA progress, including a decrease in apoptosis and in the expression of pro-inflammatory cytokines and MMPs in addition to the well-known antioxidation.

  3. The influence of scaffold material on chondrocytes under inflammatory conditions.

    PubMed

    Kwon, Heenam; Sun, Lin; Cairns, Dana M; Rainbow, Roshni S; Preda, Rucsanda C; Kaplan, David L; Zeng, Li

    2013-05-01

    Cartilage tissue engineering aims to repair damaged cartilage tissue in arthritic joints. As arthritic joints have significantly higher levels of pro-inflammatory cytokines (such as IL-1β and TNFα that cause cartilage destruction, it is critical to engineer stable cartilage in an inflammatory environment. Biomaterial scaffolds constitute an important component of the microenvironment for chondrocytes in engineered cartilage. However, it remains unclear how the scaffold material influences the response of chondrocytes seeded in these scaffolds under inflammatory stimuli. Here we have compared the responses of articular chondrocytes seeded within three different polymeric scaffolding materials (silk, collagen and polylactic acid (PLA)) to IL-1β and TNFα. These scaffolds have different physical characteristics and yielded significant differences in the expression of genes associated with cartilage matrix production and degradation, cell adhesion and cell death. The silk and collagen scaffolds released pro-inflammatory cytokines faster and had higher uptake water abilities than PLA scaffolds. Correspondingly, chondrocytes cultured in silk and collagen scaffolds maintained higher levels of cartilage matrix than those in PLA, suggesting that these biophysical properties of scaffolds may regulate gene expression and the response to inflammatory stimuli in chondrocytes. Based on this study we conclude that selecting the proper scaffold material will aid in the engineering of more stable cartilage tissues for cartilage repair, and that silk and collagen are better scaffolds in terms of supporting the stability of three-dimensional cartilage under inflammatory conditions.

  4. The repair of full-thickness articular cartilage defects. Immune responses to reparative tissue formed by allogeneic growth plate chondrocyte implants

    SciTech Connect

    Kawabe, N.; Yoshinao, M. )

    1991-07-01

    Growth plate cartilage cultivated in vitro was attached with a fibrin clot to a full-thickness articular cartilage defect on knee joints in allogeneic New Zealand rabbits. The healing of the defects was assessed by gross examination, light microscopy, and immunologic analysis for 24 weeks. Immunologic assessment of cell-mediated immunity, cytotoxicity of a humoral antibody by a 51 chromium release assay, and immunofluorescence studies were carried out. During the first two weeks following grafting, healing was excellent in 11 of the 17 defects. From three to 24 weeks, 11 of 42 defects examined had good results. Host lymphocytes had accumulated around the allograft at two to 12 weeks. Most of the implanted cartilage grown in vitro died and was replaced by fibrous tissue. The immunologic studies suggested that the implanted cartilage began to degenerate two to three weeks after implantation partially because of a humoral immune response but more importantly because of cell-mediated cytotoxicity.

  5. Ovarian cancer G protein-coupled receptor 1 is involved in acid-induced apoptosis of endplate chondrocytes in intervertebral discs.

    PubMed

    Yuan, Feng-Lai; Wang, Hui-Ren; Zhao, Ming-Dong; Yuan, Wei; Cao, Lu; Duan, Ping-Guo; Jiang, Yun-Qi; Li, Xi-Lei; Dong, Jian

    2014-01-01

    Ovarian cancer G protein-coupled receptor 1 (OGR1) has been shown to be a receptor for protons. We investigated the role of proton-sensing G protein-coupled receptors in the apoptosis of endplate chondrocytes induced by extracellular acid. The expression of proton-sensing G protein-coupled receptors was examined in rat lumbar endplate chondrocytes. Knockdown of OGR1 was achieved by transfecting chondrocytes with specific short hairpin RNA (shRNA) for OGR1. Apoptotic changes were evaluated by DNA fragmentation ELISA, electron microscopy, and flow cytometry. Intracellular calcium ([Ca(2+) ]i) was analyzed with laser scanning confocal microscopy. The mechanism of OGR1 in acid-induced apoptosis of endplate chondrocytes was also investigated. We found that OGR1 was predominantly expressed in rat endplate chondrocytes, and its expression was highly upregulated in response to acidosis. Knocking down OGR1 with shRNAs effectively attenuated acid-induced apoptosis of endplate chondrocytes and increased [Ca(2+) ]i. Blocking OGR1-mediated [Ca(2+) ]i elevation inhibited acid-induced calcium-sensitive proteases such as calpain and calcineurin, and also inhibited the activation of Bid, Bad, and Caspase 3 and cleavage of poly (ADP-ribose) polymerase (PARP). OGR1-mediated [Ca(2+) ]i elevation has a crucial role in apoptosis of endplate chondrocytes by regulating activation of calcium-sensitive proteases and their downstream signaling.

  6. Oxidative Stress Promotes Peroxiredoxin Hyperoxidation and Attenuates Pro-survival Signaling in Aging Chondrocytes.

    PubMed

    Collins, John A; Wood, Scott T; Nelson, Kimberly J; Rowe, Meredith A; Carlson, Cathy S; Chubinskaya, Susan; Poole, Leslie B; Furdui, Cristina M; Loeser, Richard F

    2016-03-25

    Oxidative stress-mediated post-translational modifications of redox-sensitive proteins are postulated as a key mechanism underlying age-related cellular dysfunction and disease progression. Peroxiredoxins (PRX) are critical intracellular antioxidants that also regulate redox signaling events. Age-related osteoarthritis is a common form of arthritis that has been associated with mitochondrial dysfunction and oxidative stress. The objective of this study was to determine the effect of aging and oxidative stress on chondrocyte intracellular signaling, with a specific focus on oxidation of cytosolic PRX2 and mitochondrial PRX3. Menadione was used as a model to induce cellular oxidative stress. Compared with chondrocytes isolated from young adult humans, chondrocytes from older adults exhibited higher levels of PRX1-3 hyperoxidation basally and under conditions of oxidative stress. Peroxiredoxin hyperoxidation was associated with inhibition of pro-survival Akt signaling and stimulation of pro-death p38 signaling. These changes were prevented in cultured human chondrocytes by adenoviral expression of catalase targeted to the mitochondria (MCAT) and in cartilage explants from MCAT transgenic mice. Peroxiredoxin hyperoxidation was observedin situin human cartilage sections from older adults and in osteoarthritic cartilage. MCAT transgenic mice exhibited less age-related osteoarthritis. These findings demonstrate that age-related oxidative stress can disrupt normal physiological signaling and contribute to osteoarthritis and suggest peroxiredoxin hyperoxidation as a potential mechanism.

  7. Combining Targeted Metabolomic Data with a Model of Glucose Metabolism: Toward Progress in Chondrocyte Mechanotransduction

    PubMed Central

    Salinas, Daniel; Carlson, Ross P.; McCutchen, Carley N.

    2017-01-01

    Osteoarthritis is a debilitating disease likely involving altered metabolism of the chondrocytes in articular cartilage. Chondrocytes can respond metabolically to mechanical loads via cellular mechanotransduction, and metabolic changes are significant because they produce the precursors to the tissue matrix necessary for cartilage health. However, a comprehensive understanding of how energy metabolism changes with loading remains elusive. To improve our understanding of chondrocyte mechanotransduction, we developed a computational model to calculate the rate of reactions (i.e. flux) across multiple components of central energy metabolism based on experimental data. We calculated average reaction flux profiles of central metabolism for SW1353 human chondrocytes subjected to dynamic compression for 30 minutes. The profiles were obtained solving a bounded variable linear least squares problem, representing the stoichiometry of human central energy metabolism. Compression synchronized chondrocyte energy metabolism. These data are consistent with dynamic compression inducing early time changes in central energy metabolism geared towards more active protein synthesis. Furthermore, this analysis demonstrates the utility of combining targeted metabolomic data with a computational model to enable rapid analysis of cellular energy utilization. PMID:28056047

  8. Time-dependent functional maturation of scaffold-free cartilage tissue analogs.

    PubMed

    Mohanraj, Bhavana; Farran, Alexandra J; Mauck, Robert L; Dodge, George R

    2014-06-27

    One of the most critical parameters in cartilage tissue engineering which influences the clinical success of a repair therapy is the ability to match the load-bearing capacity of the tissue as it functions in vivo. While mechanical forces are known to positively influence the development of cartilage matrix architecture, these same forces can induce long-term implant failure due to poor integration or structural deficiencies. As such, in the design of optimal repair strategies, it is critical to understand the timeline of construct maturation and how the elaboration of matrix correlates with the development of mechanical properties. We have previously characterized a scaffold-free method to engineer cartilage utilizing primary chondrocytes cultured at high density in hydrogel-coated culture vessels to promote the formation of a self-aggregating cell suspension that condenses to form a cartilage-like biomass, or cartilage tissue analog (CTA). Chondrocytes in these CTAs maintain their cellular phenotype and deposit extracellular matrix to form a construct that has characteristics similar to native cartilage; however, the mechanical integrity of CTAs had not yet been evaluated. In this study, we found that chondrocytes within CTAs produced a robust matrix of proteoglycans and collagen that correlated with increasing mechanical properties and decreasing cell-matrix ratios, leading to properties that approached that of native cartilage. These results demonstrate a unique approach to generating a cartilage-like tissue without the complicating factor of scaffold, while showing increased compressive properties and matrix characteristics consistent with other approaches, including scaffold-based constructs. To further improve the mechanics of CTAs, studies are currently underway to explore the effect of hydrodynamic loading and whether these changes would be reflective of in vivo maturation in animal models. The functional maturation of cartilage tissue analogs as described

  9. Equivalent of a cartilage tissue for simulations of laser-induced temperature fields

    SciTech Connect

    Kondyurin, A V; Sviridov, A P

    2008-07-31

    The thermal and optical properties of polyacrylamide hydrogels and cartilages are studied by the method of IR laser radiometry. The thermal diffusivity, heat capacity, and the effective absorption coefficient at a wavelength of 1.56 {mu}m measured for polyacrylamide gel with 70% water content and the degree of cross-linking 1:9 and for the nasal septum cartilage proved to be close. This allows the use of polyacrylamide hydrogels as equivalents of cartilages in simulations of laser-induced temperature fields. (biophotonics)

  10. Modulation of cartilage differentiation by melanoma inhibiting activity/cartilage-derived retinoic acid-sensitive protein (MIA/CD-RAP).

    PubMed

    Schubert, Thomas; Schlegel, Jacqueline; Schmid, Rainer; Opolka, Alfred; Grassel, Susanne; Humphries, Martin; Bosserhoff, Anja-Katrin

    2010-03-31

    Melanoma inhibiting activity/cartilage-derived retinoic acid-sensitive protein (MIA/CD-RAP) is a small soluble protein secreted from malignant melanoma cells and from chondrocytes. Recently, we revealed that MIA/CD-RAP can modulate bone morphogenetic protein (BMP)2-induced osteogenic differentiation into a chondrogenic direction. In the current study we aimed to find the molecular details of this MIA/CD-RAP function. Direct influence of MIA on BMP2 by protein-protein-interaction or modulating SMAD signaling was ruled out experimentally. Instead, we revealed inhibition of ERK signaling by MIA/CD-RAP. This inhibition is regulated via binding of MIA/CD-RAP to integrin alpha5 and abolishing its activity. Active ERK signaling is known to block chondrogenic differentiation and we revealed induction of aggrecan expression in chondrocytes by treatment with MIA/CD-RAP or PD098059, an ERK inhibitor. In in vivo models we could support the role of MIA/CD-RAP in influencing osteogenic differentiation negatively. Further, MIA/CD-RAP-deficient mice revealed an enhanced calcified cartilage layer of the articular cartilage of the knee joint and disordered arrangement of chondrocytes. Taken together, our data indicate that MIA/CD-RAP stabilizes cartilage differentiation and inhibits differentiation into bone potentially by regulating signaling processes during differentiation.

  11. Mangiferin Inhibits IL-1β-Induced Inflammatory Response by Activating PPAR-γ in Human Osteoarthritis Chondrocytes.

    PubMed

    Qu, Yanlong; Zhou, Li; Wang, Chunlei

    2017-02-01

    Inflammation has been reported to play critical roles in the development of osteoarthritis. In the present study, we investigated whether mangiferin (MFN) had anti-inflammatory effects in IL-1β-stimulated human osteoarthritis chondrocytes. The cells were treated with various concentrations of MFN in the presence or absence of IL-1β. The production of MMP-1, MMP-3, PGE2, and NO was measured in this study. The expression of NF-kB and PPAR-γ was detected by western blot analysis. MFN inhibited IL-1β-induced inflammatory mediators PGE2 and NO production. MFN also inhibited IL-1β-induced MMP1 and MMP3 production. IL-1β-induced NF-kB activation was significantly inhibited by MFN. In addition, MFN was found to up-regulate the expression of PPAR-γ in human osteoarthritis chondrocytes. PPAR-γ inhibitor GW9662 significantly reversed the anti-inflammatory effects of MFN. These results suggest that MFN inhibits IL-1β-induced inflammatory response in human osteoarthritis chondrocytes by activating PPAR-γ.

  12. In vitro and in vivo modulation of cartilage degradation by a standardized Centella asiatica fraction.

    PubMed

    Hartog, Anita; Smit, H Friso; van der Kraan, Peter M; Hoijer, Maarten A; Garssen, Johan

    2009-06-01

    Osteoarthritis (OA) is a degenerative joint disease in which focal cartilage destruction is one of the primary features. The present study aims to evaluate the effect of a Centella asiatica fraction on in vitro and in vivo cartilage degradation. Bovine cartilage explants and bovine chondrocytes cultured in alginate were stimulated with IL-1 beta in the presence or absence of different concentrations (2, 5 and 10 microg/ml) of a standardized Centella asiatica triterpenes (CAT) fraction. The CAT fraction inhibited the IL-1 beta-induced proteoglycan (PG) release and nitric oxide (NO) production by cartilage explants in a dose-dependent manner. The IL-1 beta-induced reduction in PG synthesis and proliferation of chondrocytes cultured in alginate were counteracted by the CAT fraction at a concentration of 10 microg/ml. In a zymosan-induced acute arthritis model, the CAT fraction inhibited PG depletion without modulating joint swelling and inflammatory cell infiltration. In conclusion, the present study demonstrated for the first time that the tested Centella asiatica fraction was able to inhibit the zymosan-induced cartilage degradation in vivo without affecting the zymosan-induced inflammatory cell infiltration and joint swelling. The in vitro data indicate that the cartilage protective activity might at least partially be induced by the inhibition of NO production. The overall results indicate a possible disease modifying osteoarthritic activity of the Centella asiatica fraction.

  13. Maintaining the Phenotype Stability of Chondrocytes Derived from MSCs by C-Type Natriuretic Peptide

    PubMed Central

    Shi, Quan; Qian, Zhiyong; Liu, Donghua; Sun, Jie; Xu, Juan; Guo, Ximin

    2017-01-01

    Mesenchymal stem cells (MSCs) play a critical role in cartilage tissue engineering. However, MSCs-derived chondrocytes or cartilage tissues are not stable and easily lose the cellular and cartilage phenotype during long-term culture in vitro or implantation in vivo. As a result, chondrocytes phenotypic instability can contribute to accelerated ossification. Thus, it is a big challenge to maintain their correct phenotype for engineering hyaline cartilage. As one member of the natriuretic peptide family, C-type natriuretic peptide (CNP) is found to correlate with the development of the cartilage, affect the chondrocytes proliferation and differentiation. Besides, based on its biological effects on protection of extracellular matrix of cartilage and inhibition of mineralization, we hypothesize that CNP may contribute to the stability of chondrocyte phenotype of MSCs-derived chondrocytes. PMID:28337152

  14. Effects of PTHrP on chondrocytes of sika deer antler.

    PubMed

    Guo, Bin; Wang, Shou-Tang; Duan, Cui-Cui; Li, Dang-Dang; Tian, Xue-Chao; Wang, Qu-Yuan; Yue, Zhan-Peng

    2013-11-01

    Parathyroid-hormone-related peptide (PTHrP) is an important regulator of chondrocyte differentiation in growth plates but little is known about its role in deer antler cartilage. The aim of the present study was to use the deer antler as a model to determine the possible role of PTHrP in regulating chondrocyte differentiation of deer antler. PTHrP and its receptor PTH1R mRNA were highly expressed in the perichondrium and cartilage of sika deer antler, as shown by in situ hybridization. Chondrocytes of deer antler were identified by toluidine blue staining of glycosaminoglycan and immunocytochemical staining of type II collagen (Col II). Treatment with PTHrP (1-34) reduced the expression of prehypertrophic chondrocyte marker Col IX and hypertrophic chondrocyte marker Col X. In order to confirm the mechanism of action of PTHrP, we initially examined the expression of cyclin D1, Bcl-2 and runt-related transcription factor 2 (Runx2) in sika deer antler by in situ hybridization and found that cyclin D1, Runx2 and Bcl-2 mRNA were also expressed in antler chondrocytes. Exogenous PTHrP induced the expression of cyclin D1 and Bcl-2 mRNA by various signalling pathways, whereas it inhibited Runx2 expression through PKA, p38MAPK, MEK and PI3K signalling pathways. Thus, PTHrP might promote the proliferation of antler chondrocytes and prevent their differentiation; it might furthermore influence the growth and development of sika deer antler.

  15. Interaction of HIF1α and β-catenin inhibits matrix metalloproteinase 13 expression and prevents cartilage damage in mice

    PubMed Central

    Bouaziz, Wafa; Sigaux, Johanna; Modrowski, Dominique; Devignes, Claire-Sophie; Funck-Brentano, Thomas; Richette, Pascal; Ea, Hang-Korng; Provot, Sylvain; Cohen-Solal, Martine; Haÿ, Eric

    2016-01-01

    Low oxygen tension (hypoxia) regulates chondrocyte differentiation and metabolism. Hypoxia-inducible factor 1α (HIF1α) is a crucial hypoxic factor for chondrocyte growth and survival during development. The major metalloproteinase matrix metalloproteinase 13 (MMP13) is also associated with chondrocyte hypertrophy in adult articular cartilage, the lack of which protects from cartilage degradation and osteoarthritis (OA) in mice. MMP13 is up-regulated by the Wnt/β-catenin signaling, a pathway involved in chondrocyte catabolism and OA. We studied the role of HIF1α in regulating Wnt signaling in cartilage and OA. We used mice with conditional knockout of Hif1α (∆Hif1αchon) with joint instability. Specific loss of HIF1α exacerbated MMP13 expression and cartilage destruction. Analysis of Wnt signaling in hypoxic chondrocytes showed that HIF1α lowered transcription factor 4 (TCF4)–β-catenin transcriptional activity and inhibited MMP13 expression. Indeed, HIF1α interacting with β-catenin displaced TCF4 from MMP13 regulatory sequences. Finally, ΔHif1αchon mice with OA that were injected intraarticularly with PKF118-310, an inhibitor of TCF4–β-catenin interaction, showed less cartilage degradation and reduced MMP13 expression in cartilage. Therefore, HIF1α–β-catenin interaction is a negative regulator of Wnt signaling and MMP13 transcription, thus reducing catabolism in OA. Our study contributes to the understanding of the role of HIF1α in OA and highlights the HIF1α–β-catenin interaction, thus providing new insights into the impact of hypoxia in articular cartilage. PMID:27122313

  16. Shark-cartilage containing preparation protects cells against hydrogen peroxide induced damage and mutagenesis.

    PubMed

    Gomes, E M; Souto, P R; Felzenszwalb, I

    1996-04-06

    Natural products from flora and fauna are frequently used as nutritional supplements and medicaments. Two short-term assays were carried out and negative results were obtained for shark-cartilage containing preparation. The tests employed were the Salmonella/mammalian microsome assay using tester strains TA97, TA98, TA100, TA102 and TA1535 with or without S9 mix and the SOS-Chromotest with Escherichia coli strain PQ37. Evidence for shark-cartilage containing preparation functioning as an antimutagen was detected. Using bacterial survival assays with Escherichia coli fpg (BH20) and xthA (BW9091), we investigated the putative role of shark-cartilage containing preparation in protecting cells against lesions induced by hydrogen peroxide in normal and low iron level conditions. Our data suggest that shark-cartilage containing preparation can play a scavenger role for reactive oxygen species and protect against DNA lesions in both conditions.

  17. Chondroptosis in Alkaptonuric Cartilage

    PubMed Central

    Millucci, Lia; Giorgetti, Giovanna; Viti, Cecilia; Ghezzi, Lorenzo; Gambassi, Silvia; Braconi, Daniela; Marzocchi, Barbara; Paffetti, Alessandro; Lupetti, Pietro; Bernardini, Giulia; Orlandini, Maurizio

    2015-01-01

    Alkaptonuria (AKU) is a rare genetic disease that affects the entire joint. Current standard of treatment is palliative and little is known about AKU physiopathology. Chondroptosis, a peculiar type of cell death in cartilage, has been so far reported to occur in osteoarthritis, a rheumatic disease that shares some features with AKU. In the present work, we wanted to assess if chondroptosis might also occur in AKU. Electron microscopy was used to detect the morphological changes of chondrocytes in damaged cartilage distinguishing apoptosis from its variant termed chondroptosis. We adopted histological observation together with Scanning Electron Microscopy and Transmission Electron Microscopy to evaluate morphological cell changes in AKU chondrocytes. Lipid peroxidation in AKU cartilage was detected by fluorescence microscopy. Using the above‐mentioned techniques, we performed a morphological analysis and assessed that AKU chondrocytes undergo phenotypic changes and lipid oxidation, resulting in a progressive loss of articular cartilage structure and function, showing typical features of chondroptosis. To the best of our knowledge, AKU is the second chronic pathology, following osteoarthritis, where chondroptosis has been documented. Our results indicate that Golgi complex plays an important role in the apoptotic process of AKU chondrocytes and suggest a contribution of chondroptosis in AKU pathogenesis. These findings also confirm a similarity between osteoarthritis and AKU. J. Cell. Physiol. 230: 1148–1157, 2015. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:25336110

  18. Calcium signaling in response to fluid flow by chondrocytes in 3D alginate culture.

    PubMed

    Degala, Satish; Williams, Rebecca; Zipfel, Warren; Bonassar, Lawrence J

    2012-05-01

    Quantifying the effects of mechanical loading on the metabolic response of chondrocytes is difficult due to complicated structure of cartilage ECM and the coupled nature of the mechanical stimuli presented to the cells. In this study we describe the effects of fluid flow, particularly hydrostatic pressure and wall shear stress, on the Ca(2+) signaling response of bovine articular chondrocytes in 3D culture. Using well-established alginate hydrogel system to maintain spherical chondrocyte morphology, we altered solid volume fraction to change scaffold mechanics. Fluid velocities in the bulk of the scaffolds were directly measured via an optical technique and scaffold permeability and aggregate modulus was characterized to quantify the mechanical stimuli presented to cells. Ca(2+) signaling response to direct perfusion of chondrocyte-seeded scaffolds increased monotonically with flow rate and was found more directly dependent on fluid velocity rather than shear stress or hydrostatic pressure. Chondrocytes in alginate scaffolds responded to fluid flow at velocities and shear stresses 2-3 orders of magnitude lower than seen in previous monolayer studies. Our data suggest that flow-induced Ca(2+) signaling response of chondrocytes in alginate culture may be due to mechanical signaling pathways, which is influenced by the 3D nature of cell shape.

  19. Bovine primary chondrocyte culture in synthetic matrix metalloproteinase-sensitive poly(ethylene glycol)-based hydrogels as a scaffold for cartilage repair.

    PubMed

    Park, Yongdoo; Lutolf, Matthias P; Hubbell, Jeffrey A; Hunziker, Ernst B; Wong, Marcy

    2004-01-01

    A poly(ethylene glycol) (PEG)-based hydrogel was used as a scaffold for chondrocyte culture. Branched PEG-vinylsulfone macromers were end-linked with thiol-bearing matrix metalloproteinase (MMP)-sensitive peptides (GCRDGPQGIWGQDRCG) to form a three-dimensional network in situ under physiologic conditions. Both four- and eight-armed PEG macromer building blocks were examined. Increasing the number of PEG arms increased the elastic modulus of the hydrogels from 4.5 to 13.5 kPa. PEG-dithiol was used to prepare hydrogels that were not sensitive to degradation by cell-derived MMPs. Primary bovine calf chondrocytes were cultured in both MMP-sensitive and MMP-insensitive hydrogels, formed from either four- or eight-armed PEG. Most (>90%) of the cells inside the gels were viable after 1 month of culture and formed cell clusters. Gel matrices with lower elastic modulus and sensitivity to MMP-based matrix remodeling demonstrated larger clusters and more diffuse, less cell surface-constrained cell-derived matrix in the chondron, as determined by light and electron microscopy. Gene expression experiments by real-time RT-PCR showed that the expression of type II collagen and aggrecan was increased in the MMP-sensitive hydrogels, whereas the expression level of MMP-13 was increased in the MMP-insensitive hydrogels. These results indicate that cellular activity can be modulated by the composition of the hydrogel. This study represents one of the first examples of chondrocyte culture in a bioactive synthetic material that can be remodeled by cellular protease activity.

  20. Strenuous Treadmill Running Induces a Chondrocyte Phenotype in Rat Achilles Tendons

    PubMed Central

    Xu, Shao-Yong; Li, Shu-Fen; Ni, Guo-Xin

    2016-01-01

    Background Although tendinopathy is common, its underlying pathogenesis is poorly understood. This study aimed to investigate the possible pathogenesis of tendinopathy. Material/Methods In this study, a total of 24 rats were randomly and evenly divided into a control (CON) group and a strenuous treadmill running (STR) group. Animals in the STR group were subjected to a 12-week treadmill running protocol. Subsequently, all Achilles tendons were harvested to perform histological observation or biochemical analyses. Results Histologically, hypercellularity and round cells, as well as disorganized collagen fibrils, were presented in rat Achilles tendon sections from the STR group. Furthermore, our results showed that the expression of aggrecan, collagen type II (Col II), and Sex-Determining Region Y Box 9 (Sox 9) were markedly increased in the STR group compared with that in the CON group. Additionally, the mRNA expression of bone morphogenetic protein-2 (BMP-2) and biglycan was significantly up-regulated in the STR group in contrast to that in CON group. Conclusions These results suggest that a 12-week strenuous treadmill running regimen can induce chondrocyte phenotype in rat Achilles tendons through chondrogenic differentiation of tendon stem cells (TSCs) by BMP-2 signaling. PMID:27742920

  1. Chondrocyte hypertrophy in skeletal development, growth, and disease.

    PubMed

    Sun, Margaret Man-Ger; Beier, Frank

    2014-03-01

    Most of our bones form through the process of endochondral ossification, which is tightly regulated by the activity of the cartilage growth plate. Chondrocyte maturation through the various stages of growth plate physiology ultimately results in hypertrophy. Chondrocyte hypertrophy is an essential contributor to longitudinal bone growth, but recent data suggest that these cells also play fundamental roles in signaling to other skeletal cells, thus coordinating endochondral ossification. On the other hand, ectopic hypertrophy of articular chondrocytes has been implicated in the pathogenesis of osteoarthritis. Thus, a better understanding of the processes that control chondrocyte hypertrophy in the growth plate as well as in articular cartilage is required for improved management of both skeletal growth disorders and osteoarthritis. This review summarizes recent findings on the regulation of hypertrophic chondrocyte differentiation, the cellular mechanisms involved in hypertrophy, and the role of chondrocyte hypertrophy in skeletal physiology and pathophysiology.

  2. Transglutaminase 2 is a Marker of Chondrocyte Hypertrophy and Osteoarthritis Severity in the Hartley Guinea Pig Model of Knee OA

    PubMed Central

    Huebner, Janet L; Johnson, Kristen A.; Kraus, Virginia B.; Terkeltaub, Robert A.

    2011-01-01

    Objective The transglutaminase (TG) isoenzyme TG2, which catalyzes protein cross-linking via transamidation, influences healing phenotype in multiple forms of tissue injury. Moreover, TG2 knockout suppresses cartilage destruction but promotes osteophyte formation in instability-induced mouse knee OA. TG2 is marker of growth plate chondrocyte hypertrophy. Moreover, TG2 secreted by chondrocytes acts in part by promoting chondrocyte maturation to hypertrophy, a differentiation state linked with MMP-13 expression and disease progression in OA. Moreover, glucosamine, which is currently under investigation as an OA therapy, binds and inhibits TG2. Here, we examined TG2 as a potential marker of cartilage hypertrophy in the spontaneous guinea pig model of OA. Methods Synovial fluid ELISA and cartilage Immunohistochemistry and quantitative RT-PCR, were used to examine TG2 expression and TG transamidation-catalyzed isopeptide bonds. Results TG isopeptide bonds and TG2 were most abundant in articular cartilage in early knee OA. TG2 expression was robust at sites of early but not established osteophytes. Synovial fluid TG2 correlated with knee OA total histological score (r=0.47, p=0.01), as did medial tibial plateau cartilage TG2 mRNA (r=1.0, p=0.003). At 12 months of age, medial tibial plateau cartilage TG2 mRNA expression rose markedly in association with elevated type X collagen, as well as ADAMTS-5, and MMP-13 expression, changes not shared in age-matched Strain 13 guinea pigs that are less susceptible to knee OA. Conclusion Hartley guinea pig knee TG2 expression associates with enhanced articular chondrocyte hypertrophy and is a biomarker of OA severity. PMID:19328881

  3. Anatomically shaped tissue-engineered cartilage with tunable and inducible anticytokine delivery for biological joint resurfacing

    PubMed Central

    Moutos, Franklin T.; Glass, Katherine A.; Compton, Sarah A.; Ross, Alison K.; Gersbach, Charles A.; Estes, Bradley T.

    2016-01-01

    Biological resurfacing of entire articular surfaces represents an important but challenging strategy for treatment of cartilage degeneration that occurs in osteoarthritis. Not only does this approach require anatomically sized and functional engineered cartilage, but the inflammatory environment within an arthritic joint may also inhibit chondrogenesis and induce degradation of native and engineered cartilage. The goal of this study was to use adult stem cells to engineer anatomically shaped, functional cartilage constructs capable of tunable and inducible expression of antiinflammatory molecules, specifically IL-1 receptor antagonist (IL-1Ra). Large (22-mm-diameter) hemispherical scaffolds were fabricated from 3D woven poly(ε-caprolactone) (PCL) fibers into two different configurations and seeded with human adipose-derived stem cells (ASCs). Doxycycline (dox)-inducible lentiviral vectors containing eGFP or IL-1Ra transgenes were immobilized to the PCL to transduce ASCs upon seeding, and constructs were cultured in chondrogenic conditions for 28 d. Constructs showed biomimetic cartilage properties and uniform tissue growth while maintaining their anatomic shape throughout culture. IL-1Ra–expressing constructs produced nearly 1 µg/mL of IL-1Ra upon controlled induction with dox. Treatment with IL-1 significantly increased matrix metalloprotease activity in the conditioned media of eGFP-expressing constructs but not in IL-1Ra–expressing constructs. Our findings show that advanced textile manufacturing combined with scaffold-mediated gene delivery can be used to tissue engineer large anatomically shaped cartilage constructs that possess controlled delivery of anticytokine therapy. Importantly, these cartilage constructs have the potential to provide mechanical functionality immediately upon implantation, as they will need to replace a majority, if not the entire joint surface to restore function. PMID:27432980

  4. Pathophysiology of osteoarthritis: canonical NF-κB/IKKβ-dependent and kinase-independent effects of IKKα in cartilage degradation and chondrocyte differentiation.

    PubMed

    Olivotto, Eleonora; Otero, Miguel; Marcu, Kenneth B; Goldring, Mary B

    2015-01-01

    Osteoarthritis (OA), a whole-joint disease driven by abnormal biomechanics and attendant cell-derived and tissue-derived factors, is a rheumatic disease with the highest prevalence, representing a severe health burden with a tremendous economic impact. Members of the nuclear factor κB (NF-κB) family orchestrate mechanical, inflammatory and oxidative stress-activated processes, thus representing a potential therapeutic target in OA disease. The two pivotal kinases, IκB kinase (IKK) α and IKKβ, activate NF-κB dimers that might translocate to the nucleus and regulate the expression of specific target genes involved in extracellular matrix remodelling and terminal differentiation of chondrocytes. IKKα, required for the activation of the so-called non-canonical pathway, has a number of NF-κB-independent and kinase-independent functions in vivo and in vitro, including controlling chondrocyte hypertrophic differentiation and collagenase activity. In this short review, we will discuss the role of NF-κB signalling in OA pathology, with emphasis on the functional effects of IKKα that are independent of its kinase activity and NF-κB activation.

  5. Microenvironmental changes during differentiation of mesenchymal stem cells towards chondrocytes

    PubMed Central

    Djouad, Farida; Delorme, Bruno; Maurice, Marielle; Bony, Claire; Apparailly, Florence; Louis-Plence, Pascale; Canovas, François; Charbord, Pierre; Noël, Danièle; Jorgensen, Christian

    2007-01-01

    Chondrogenesis is a process involving stem-cell differentiation through the coordinated effects of growth/differentiation factors and extracellular matrix (ECM) components. Recently, mesenchymal stem cells (MSCs) were found within the cartilage, which constitutes a specific niche composed of ECM proteins with unique features. Therefore, we hypothesized that the induction of MSC differentiation towards chondrocytes might be induced and/or influenced by molecules from the microenvironment. Using microarray analysis, we previously identified genes that are regulated during MSC differentiation towards chondrocytes. In this study, we wanted to precisely assess the differential expression of genes associated with the microenvironment using a large-scale real-time PCR assay, according to the simultaneous detection of up to 384 mRNAs in one sample. Chondrogenesis of bone-marrow-derived human MSCs was induced by culture in micropellet for various periods of time. Total RNA was extracted and submitted to quantitative RT-PCR. We identified molecules already known to be involved in attachment and cell migration, including syndecans, glypicans, gelsolin, decorin, fibronectin, and type II, IX and XI collagens. Importantly, we detected the expression of molecules that were not previously associated with MSCs or chondrocytes, namely metalloproteases (MMP-7 and MMP-28), molecules of the connective tissue growth factor (CTGF); cef10/cyr61 and nov (CCN) family (CCN3 and CCN4), chemokines and their receptors chemokine CXC motif ligand (CXCL1), Fms-related tyrosine kinase 3 ligand (FlT3L), chemokine CC motif receptor (CCR3 and CCR4), molecules with A Disintegrin And Metalloproteinase domain (ADAM8, ADAM9, ADAM19, ADAM23, A Disintegrin And Metalloproteinase with thrombospondin type 1 motif ADAMTS-4 and ADAMTS-5), cadherins (4 and 13) and integrins (α4, α7 and β5). Our data suggest that crosstalk between ECM components of the microenvironment and MSCs within the cartilage is

  6. The Functions of BMP3 in Rabbit Articular Cartilage Repair.

    PubMed

    Zhang, Zhe; Yang, Wenyu; Cao, Yiting; Shi, Yanping; Lei, Chen; Du, Bo; Li, Xuemin; Zhang, Qiqing

    2015-10-29

    Bone morphogenetic proteins (BMPs) play important roles in skeletal development and repair. Previously, we found fibroblast growth factor 2 (FGF2) induced up-regulation of BMP2, 3, 4 in the process of rabbit articular cartilage repair, which resulted in satisfactory repair effects. As BMP2/4 show a clearly positive effect for cartilage repair, we investigated the functions of BMP3 in rabbit articular cartilage repair. In this paper, we find that BMP3 inhibits the repair of partial-thickness defect of articular cartilage in rabbit by inducing the degradation of extracellular matrix, interfering with the survival of chondrocytes surrounding the defect, and directly inhibiting the expression of BMP2 and BMP4. Meanwhile BMP3 suppress the repair of full-thickness cartilage defect by destroying the subchondral bone through modulating the proliferation and differentiation of bone marrow stem cells (BMSCs), and directly increasing the expression of BMP4. Although BMP3 has different functions in the repair of partial and full-thickness defects of articular cartilage in rabbit, the regulation of BMP expression is involved in both of them. Together with our previous findings, we suggest the regulation of the BMP signaling pathway by BMP3 is essential in articular cartilage repair.

  7. Depth-varying density and organization of chondrocytes in immature and mature bovine articular cartilage assessed by 3d imaging and analysis

    NASA Technical Reports Server (NTRS)

    Jadin, Kyle D.; Wong, Benjamin L.; Bae, Won C.; Li, Kelvin W.; Williamson, Amanda K.; Schumacher, Barbara L.; Price, Jeffrey H.; Sah, Robert L.

    2005-01-01

    Articular cartilage is a heterogeneous tissue, with cell density and organization varying with depth from the surface. The objectives of the present study were to establish a method for localizing individual cells in three-dimensional (3D) images of cartilage and quantifying depth-associated variation in cellularity and cell organization at different stages of growth. Accuracy of nucleus localization was high, with 99% sensitivity relative to manual localization. Cellularity (million cells per cm3) decreased from 290, 310, and 150 near the articular surface in fetal, calf, and adult samples, respectively, to 120, 110, and 50 at a depth of 1.0 mm. The distance/angle to the nearest neighboring cell was 7.9 microm/31 degrees , 7.1 microm/31 degrees , and 9.1 microm/31 degrees for cells at the articular surface of fetal, calf, and adult samples, respectively, and increased/decreased to 11.6 microm/31 degrees , 12.0 microm/30 degrees , and 19.2 microm/25 degrees at a depth of 0.7 mm. The methodologies described here may be useful for analyzing the 3D cellular organization of cartilage during growth, maturation, aging, degeneration, and regeneration.

  8. Ameliorative effects of PACAP against cartilage degeneration. Morphological, immunohistochemical and biochemical evidence from in vivo and in vitro models of rat osteoarthritis.

    PubMed

    Giunta, Salvatore; Castorina, Alessandro; Marzagalli, Rubina; Szychlinska, Marta Anna; Pichler, Karin; Mobasheri, Ali; Musumeci, Giuseppe

    2015-03-13

    Osteoarthritis (OA); the most common form of degenerative joint disease, is associated with variations in pro-inflammatory growth factor levels, inflammation and hypocellularity resulting from chondrocyte apoptosis. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide endowed with a range of trophic effects in several cell types; including chondrocytes. However; its role in OA has not been studied. To address this issue, we investigated whether PACAP expression is affected in OA cartilage obtained from experimentally-induced OA rat models, and then studied the effects of PACAP in isolated chondrocytes exposed to IL-1β in vitro to mimic the inflammatory milieu of OA cartilage. OA induction was established by histomorphometric and histochemical analyses. Changes in PACAP distribution in cartilage, or its concentration in synovial fluid (SF), were assessed by immunohistochemistry and ELISA. Results showed that PACAP abundance in cartilage tissue and SF was high in healthy controls. OA induction decreased PACAP levels both in affected cartilage and SF. In vitro, PACAP prevented IL-1β-induced chondrocyte apoptosis, as determined by MTT assay; Hoechst staining and western blots of apoptotic-related proteins. These changes were also accompanied by decreased i-NOS and COX-2 levels, suggesting an anti-inflammatory effect. Altogether, these findings support a potential role for PACAP as a chondroprotective agent for the treatment of OA.

  9. Ameliorative Effects of PACAP against Cartilage Degeneration. Morphological, Immunohistochemical and Biochemical Evidence from in Vivo and in Vitro Models of Rat Osteoarthritis

    PubMed Central

    Giunta, Salvatore; Castorina, Alessandro; Marzagalli, Rubina; Szychlinska, Marta Anna; Pichler, Karin; Mobasheri, Ali; Musumeci, Giuseppe

    2015-01-01

    Osteoarthritis (OA); the most common form of degenerative joint disease, is associated with variations in pro-inflammatory growth factor levels, inflammation and hypocellularity resulting from chondrocyte apoptosis. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide endowed with a range of trophic effects in several cell types; including chondrocytes. However; its role in OA has not been studied. To address this issue, we investigated whether PACAP expression is affected in OA cartilage obtained from experimentally-induced OA rat models, and then studied the effects of PACAP in isolated chondrocytes exposed to IL-1β in vitro to mimic the inflammatory milieu of OA cartilage. OA induction was established by histomorphometric and histochemical analyses. Changes in PACAP distribution in cartilage, or its concentration in synovial fluid (SF), were assessed by immunohistochemistry and ELISA. Results showed that PACAP abundance in cartilage tissue and SF was high in healthy controls. OA induction decreased PACAP levels both in affected cartilage and SF. In vitro, PACAP prevented IL-1β-induced chondrocyte apoptosis, as determined by MTT assay; Hoechst staining and western blots of apoptotic-related proteins. These changes were also accompanied by decreased i-NOS and COX-2 levels, suggesting an anti-inflammatory effect. Altogether, these findings support a potential role for PACAP as a chondroprotective agent for the treatment of OA. PMID:25782157

  10. Short-term zinc deficiency inhibits chondrocyte proliferation and induces cell apoptosis in the epiphyseal growth plate of young chickens.

    PubMed

    Wang, Xibin; Fosmire, Gary J; Gay, Carol V; Leach, Roland M

    2002-04-01

    The purpose of this study was to investigate the effect of zinc deficiency on chondrocyte proliferation, differentiation and apoptosis in the epiphyseal growth plate of juvenile chickens. Newly hatched broiler chickens were fed either a low zinc (10 mg/kg diet) or a zinc-adequate (68 mg/kg diet) soy protein-based purified diet. Cell proliferation in the growth plate was evaluated with bromodeoxyuridine (BrdU) labeling. Apoptosis was assessed using the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) method. Chondrocyte differentiation was evaluated with immunostaining of osteonectin as a marker of maturation. As early as d 3 of feeding, zinc deficiency significantly inhibited chondrocyte proliferation, promoted cell differentiation and induced cell apoptosis in the growth plate. These effects were manifested primarily in areas remote from the blood supply. Immunostaining for local growth factors such as insulin-like growth factor-1 (IGF-1), parathyroid hormone-related protein (PTHrP) and fibroblast growth factor-2 (FGF-2) did not reveal any differences between growth plates of zinc-deficient and zinc-adequate chickens after 3 d of feeding. By d 7, severe growth plate lesions characterized by reduced cellularity and abnormally shaped cells were formed in areas remote from blood vessels. Immunoreactive IGF-1, PTHrP and FGF-2 were all greatly reduced in the lesion. However, the growth rate and food intake of zinc-deficient chickens were not different from those of the controls during the 7-d experiment. Therefore, a direct effect of zinc deficiency on proliferation, differentiation, and apoptosis of growth plate chondrocytes was indicated.

  11. Cartilage Engineering and Microgravity

    NASA Astrophysics Data System (ADS)

    Toffanin, R.; Bader, A.; Cogoli, A.; Carda, C.; Fantazzini, P.; Garrido, L.; Gomez, S.; Hall, L.; Martin, I.; Murano, E.; Poncelet, D.; Pörtner, R.; Hoffmann, F.; Roekaerts, D.; Ronney, P.; Triebel, W.; Tummers, M.

    2005-06-01

    The complex effects of mechanical forces and growth factors on articular cartilage development still need to be investigated in order to identify optimal conditions for articular cartilage repair. Strictly controlled in vitro studies under modelled or space microgravity conditions can improve our understanding of the fundamental role of gravity in articular cartilage development. The main objective of this Topical Team is to use modelled microgravity as a tool to elucidate the fundamental science of cartilage regeneration. Particular attention is, therefore, given to the effects of physical forces under altered gravitational conditions, applied using controlled bioreactor systems, on cell metabolism, cell differentiation and tissue development. Specific attention is also directed toward the potential advantages of using magnetic resonance methods for the non-destructive characterisation of scaffolds, chondrocytes-polymer constructs and tissue engineered cartilage.

  12. Damage control mechanisms in articular cartilage: the role of the insulin-like growth factor I axis.

    PubMed

    Martin, J A; Scherb, M B; Lembke, L A; Buckwalter, J A

    2000-01-01

    investigated the metabolic effects of fibronectin and IGFBP-3 in a chondrocyte culture system. These experiments showed that fibronectin enhanced the inhibitory effect that low concentrations of IGFBP-3 had on matrix synthesis. Taken together, these observations confirm that IGFBP-3-fibronectin interactions affect the IGF-I axis, and they indicate that IGF-I is stored in the chondrocyte territorial matrix through binding to a complex of IGFBP-3 and intact fibronectin. This arrangement may play an important role in cartilage damage control mechanisms. The local increase in matrix synthesis following injury could result from damage-induced IGF-I release from such pools. An age-related failure to organize this system may contribute to degenerative disease.

  13. Leptin induces ADAMTS-4, ADAMTS-5, and ADAMTS-9 genes expression by mitogen-activated protein kinases and NF-ĸB signaling pathways in human chondrocytes.

    PubMed

    Yaykasli, Kursat Oguz; Hatipoglu, Omer Faruk; Yaykasli, Emine; Yildirim, Kubra; Kaya, Ertugrul; Ozsahin, Mustafa; Uslu, Mustafa; Gunduz, Esra

    2015-01-01

    Elucidation of the causes of inflammation has vital importance in the development of new approaches for the treatment of arthritic diseases. The degradation of aggrecan by upregulated disintegrin and metalloproteinase with trombospondin motifs (ADAMTSs) is the key event in the development of both rheumatoid arthritis (RA) and osteoarthritis (OA). Increased levels of leptin in both RA and OA have been demonstrated, thus linking leptin to arthritic diseases, but the mechanism has not been clarified. This study investigated the putative role of signaling pathways (p38, JNK, MEK1, NF-ĸB, and PI3) involved in leptin-induced cartilage destruction. Normal human articular chondrocytes were cultured with recombinant human leptin at 100, 250, 500, and 1000 ng/mL doses for 6, 12, 24, and 48 h, after which ADAMTS-4, -5, and -9 genes expression were determined by real time-polymerase chain reaction (RT-PCR) and Western Blot methods. The signaling pathways involved in leptin-induced ADAMTSs upregulation were also investigated by using inhibitors of signaling pathways. It was demonstrated that ADAMTSs expression level was peaked at 1000 ng/mL doses for 48 hours, and MAPKs (p38, JNK, and MEK) and NF-ĸB signaling pathways involving in leptin triggered ADAMTSs upregulation. Obesity as a risk for RA and OA may contribute to the inflammation of both RA and OA diseases by secreting adipokines like leptin. We hypothesize that leptin is involved in the development of RA and OA accompanied with obesity by increasing ADAMTS-4, -5, and -9 genes expression via MAPKs and NF-ĸB signaling pathways.

  14. Ofloxacin induces apoptosis via β1 integrin-EGFR-Rac1-Nox2 pathway in microencapsulated chondrocytes

    SciTech Connect

    Sheng, Zhi-Guo; Huang, Wei; Liu, Yu-Xiang; Yuan, Ye; Zhu, Ben-Zhan

    2013-02-15

    Quinolones (QNs)-induced arthropathy is an important toxic side-effect in immature animals leading to the restriction of their therapeutic use in pediatrics. Ofloxacin, a typical QN, was found to induce the chondrocytes apoptosis in the early phase (12–48 h) of arthropathy in our previous study. However, the exact mechanism(s) is unclear. Microencapsulated juvenile rabbit joint chondrocytes, a three-dimensional culture system, is utilized to perform the present study. Ofloxacin, at a therapeutically relevant concentration (10 μg/ml), disturbs the interaction between β1 integrin and activated intracellular signaling proteins at 12 h, which is inhibited when supplementing Mg{sup 2+}. Intracellular reactive oxygen species (ROS) significantly increases in a time-dependent manner after exposure to ofloxacin for 12–48 h. Furthermore, ofloxacin markedly enhances the level of activated Rac1 and epidermal growth factor receptor (EGFR) phosphorylation, and its inhibition in turn reduces the ROS production, apoptosis and Rac1 activation. Silencing Nox2, Rac1 or supplementing Mg{sup 2+} inhibits ROS accumulation, apoptosis occurrence and EGFR phosphorylation induced by ofloxacin. However, depletion of Nox2, Rac1 and inhibition of EGFR do not affect ofloxacin-mediated loss of interaction between β1 integrin and activated intracellular signaling proteins. In addition, ofloxacin also induces Vav2 phosphorylation, which is markedly suppressed after inactivating EGFR or supplementing Mg{sup 2+}. These results suggest that ofloxacin causes Nox2-mediated intracellular ROS production by disrupting the β1 integrin function and then activating the EGFR-Vav2-Rac1 pathway, finally resulting in apoptosis within 12–48 h exposure. The present study provides a novel insight regarding the potential role of Nox-driven ROS in QNs-induced arthropathy. - Highlights: ► Ofloxacin induces Nox2-driven ROS in encapsulated chondrocyte at 12–48 h. ► Ofloxacin stimulates ROS production via

  15. Changes in gene expression, protein content and morphology of chondrocytes cultured on a 3D Random Positioning Machine and 2D rotating clinostat

    NASA Astrophysics Data System (ADS)

    Aleshcheva, Ganna; Hauslage, Jens; Hemmersbach, Ruth; Infanger, Manfred; Bauer, Johann; Grimm, Daniela; Sahana, Jayashree

    Chondrocytes are the only cell type found in human cartilage consisting of proteoglycans and type II collagen. Several studies on chondrocytes cultured either in Space or on a ground-based facility for simulation of microgravity revealed that these cells are very resistant to adverse effects and stress induced by altered gravity. Tissue engineering of chondrocytes is a new strategy for cartilage regeneration. Using a three-dimensional Random Positioning Machine and a 2D rotating clinostat, devices designed to simulate microgravity on Earth, we investigated the early effects of microgravity exposure on human chondrocytes of six different donors after 30 min, 2 h, 4 h, 16 h, and 24 h and compared the results with the corresponding static controls cultured under normal gravity conditions. As little as 30 min of exposure resulted in increased expression of several genes responsible for cell motility, structure and integrity (beta-actin); control of cell growth, cell proliferation, cell differentiation and apoptosis; and cytoskeletal components such as microtubules (beta-tubulin) and intermediate filaments (vimentin). After 4 hours disruptions in the vimentin network were detected. These changes were less dramatic after 16 hours, when human chondrocytes appeared to reorganize their cytoskeleton. However, the gene expression and protein content of TGF-β1 was enhanced for 24 h. Based on the results achieved, we suggest that chondrocytes exposed to simulated microgravity seem to change their extracellular matrix production behavior while they rearrange their cytoskeletal proteins prior to forming three-dimensional aggregates.

  16. Autologous chondrocyte implantation in the knee: systematic review and economic evaluation.

    PubMed Central

    Mistry, Hema; Connock, Martin; Pink, Joshua; Shyangdan, Deepson; Clar, Christine; Royle, Pamela; Court, Rachel; Biant, Leela C; Metcalfe, Andrew; Waugh, Norman

    2017-01-01

    BACKGROUND The surfaces of the bones in the knee are covered with articular cartilage, a rubber-like substance that is very smooth, allowing frictionless movement in the joint and acting as a shock absorber. The cells that form the cartilage are called chondrocytes. Natural cartilage is called hyaline cartilage. Articular cartilage has very little capacity for self-repair, so damage may be permanent. Various methods have been used to try to repair cartilage. Autologous chondrocyte implantation (ACI) involves laboratory culture of cartilage-producing cells from the knee and then implanting them into the chondral defect. OBJECTIVE To assess the clinical effectiveness and cost-effectiveness of ACI in chondral defects in the knee, compared with microfracture (MF). DATA SOURCES A broad search was done in MEDLINE, EMBASE, The Cochrane Library, NHS Economic Evaluation Database and Web of Science, for studies published since the last Health Technology Assessment review. REVIEW METHODS Systematic review of recent reviews, trials, long-term observational studies and economic evaluations of the use of ACI and MF for repairing symptomatic articular cartilage defects of the knee. A new economic model was constructed. Submissions from two manufacturers and the ACTIVE (Autologous Chondrocyte Transplantation/Implantation Versus Existing Treatment) trial group were reviewed. Survival analysis was based on long-term observational studies. RESULTS Four randomised controlled trials (RCTs) published since the last appraisal provided evidence on the efficacy of ACI. The SUMMIT (Superiority of Matrix-induced autologous chondrocyte implant versus Microfracture for Treatment of symptomatic articular cartilage defects) trial compared matrix-applied chondrocyte implantation (MACI(®)) against MF. The TIG/ACT/01/2000 (TIG/ACT) trial compared ACI with characterised chondrocytes against MF. The ACTIVE trial compared several forms of ACI against standard treatments, mainly MF. In the SUMMIT

  17. Hyperbaric oxygen protects mandibular condylar chondrocytes from interleukin-1β-induced apoptosis via the PI3K/AKT signaling pathway

    PubMed Central

    Chen, Hang; Wu, Gaoyi; Sun, Qi; Dong, Yabing; Zhao, Huaqiang

    2016-01-01

    Objectives: Mandibular condylar chondrocyte apoptosis is mainly responsible for the development and progression of temporomandibular joint osteoarthritis (TMJ-OA). Interleukin-1β (IL-1β) generally serves an agent that induces chondrocyte apoptosis. Hyperbaric oxygen (HBO) treatment increases proteoglycan synthesis in vivo. We explore the protective effect of HBO on IL-1β-induced mandibular condylar chondrocyte apoptosis in rats and the potential molecular mechanisms. Methods: Chondrocytes were isolated from the TMJ of 3-4-week old Sprague-Dawley rats. The Cell Counting Kit-8 (CCK-8) assay was used to determine cell viability. The phosphorylated phosphoinositide-3 kinase (p-PI3K), phosphorylated AKT (p-Akt), type II collagen (COL2), and aggrecan (AGG) content was detected by immunofluorescence, immunocytochemistry and western blotting. The expression of Pi3k, Akt, Col2 and Agg mRNA was measured using real-time quantitative polymerase chain reaction (RT-qPCR). Results: HBO inhibited the cytotoxicity and apoptosis induced by IL-1β (10 ng/mL) in the mandibular condylar chondrocytes. HBO also decreased the IL-1β activity that decreased p-PI3K and p-AKT levels, and increased COL2 and AGG expression, with the net effect of suppressing extracellular matrix degradation. Conclusions: These data suggest that HBO may protect mandibular condylar chondrocytes against IL-1β-induced apoptosis via the PI3K/AKT signaling pathway, and that it may promote the expression of mandibular condylar chondrocyte extracellular matrix through the PI3K/AKT signaling pathway. PMID:27904712

  18. Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation

    PubMed Central

    Yang, Liu; Tsang, Kwok Yeung; Tang, Hoi Ching; Chan, Danny; Cheah, Kathryn S. E.

    2014-01-01

    According to current dogma, chondrocytes and osteoblasts are considered independent lineages derived from a common osteochondroprogenitor. In endochondral bone formation, chondrocytes undergo a series of differentiation steps to form the growth plate, and it generally is accepted that death is the ultimate fate of terminally differentiated hypertrophic chondrocytes (HCs). Osteoblasts, accompanying vascular invasion, lay down endochondral bone to replace cartilage. However, whether an HC can become an osteoblast and contribute to the full osteogenic lineage has been the subject of a century-long debate. Here we use a cell-specific tamoxifen-inducible genetic recombination approach to track the fate of murine HCs and show that they can survive the cartilage-to-bone transition and become osteogenic cells in fetal and postnatal endochondral bones and persist into adulthood. This discovery of a chondrocyte-to-osteoblast lineage continuum revises concepts of the ontogeny of osteoblasts, with implications for the control of bone homeostasis and the interpretation of the underlying pathological bases of bone disorders. PMID:25092332

  19. Effects of gangliosides from deer bone extract on the gene expressions of matrix metalloproteinases and collagen type II in interleukin-1β-induced osteoarthritic chondrocytes

    PubMed Central

    Suh, Hyung Joo; Lee, Hyunji; Min, Byung Jung; Jung, Sung Ug

    2016-01-01

    BACKGROUND/OBJECTIVES We investigated the anti-osteoarthritic effects of deer bone extract on the gene expressions of matrix metalloproteinases (MMPs) and collagen type II (COL2) in interleukin-1β-induced osteoarthritis (OA) chondrocytes. MATERIALS/METHODS Primary rabbit chondrocytes were treated as follows: CON (PBS treatment), NC (IL-1β treatment), PC (IL-1β + 100 µg/mL glucosamine sulphate/chondroitin sulphate mixture), and DB (IL-1β + 100 µg/mL deer bone extract). RESULTS The results of the cell viability assay indicated that deer bone extract at doses ranging from 100 to 500 µg/mL inhibits cell death in chondrocytes induced by IL-1β. Deer bone extract was able to significantly recover the mRNA expression of COL2 that was down-regulated by IL-1β (NC: 0.79 vs. DB: 0.87, P < 0.05) and significantly decrease the mRNA expression of MMP-3 (NC: 2.24 vs. DB: 1.75) and -13 (NC: 1.28 vs. DB: 0.89) in OA chondrocytes (P < 0.05). CONCLUSIONS We concluded that deer bone extract induces accumulation of COL2 through the down-regulation of MMPs in IL-1β-induced OA chondrocytes. Our results suggest that deer bone extract, which contains various components related to OA, including chondroitin sulphate, may possess anti-osteoarthritic properties and be of value in inhibiting the pathogenesis of OA. PMID:27909553

  20. An in situ hybridization study of perlecan, DMP1, and MEPE in developing condylar cartilage of the fetal mouse mandible and limb bud cartilage.

    PubMed

    Fujikawa, K; Yokohama-Tamaki, T; Morita, T; Baba, O; Qin, C; Shibata, S

    2015-09-25

    The main purpose of this in situ hybridization study was to investigate mRNA expression of three bone/cartilage matrix components (perlecan, DMP1, and MEPE) in developing primary (tibial) and secondary (condylar) cartilage. Perlecan mRNA expression was first detected in newly formed chondrocytes in tibial cartilage at E13.0, but this expression decreased in hypertrophic chondrocytes at E14.0. In contrast, at E15.0, perlecan mRNA was first detected in the newly formed chondrocytes of condylar cartilage; these chondrocytes had characteristics of hypertrophic chondrocytes, which confirmed the previous observation that progenitor cells of developing secondary cartilage rapidly differentiate into hypertrophic chondrocytes. DMP1 mRNA was detected in many chondrocytes within the lower hypertrophic cell zone in tibial cartilage at E14.0. In contrast, DMP1 mRNA expression was only transiently detected in a few chondrocytes of condylar cartilage at E15.0. Thus, DMP1 may be less important in the developing condylar cartilage than in the tibial cartilage. Another purpose of this study was to test the hypothesis that MEPE may be a useful marker molecule for cartilage. MEPE mRNA was not detected in any chondrocytes in either tibial or condylar cartilage; however, MEPE immunoreactivity was detected throughout the cartilage matrix. Western immunoblot analysis demonstrated that MEPE antibody recognized two bands, one of 67 kDa and another of 59 kDa, in cartilage-derived samples. Thus MEPE protein may gradually accumulate in the cartilage, even though mRNA expression levels were below the limits of detection of in situ hybridization. Ultimately, we could not designate MEPE as a marker molecule for cartilage, and would modify our original hypothesis.

  1. An In Situ Hybridization Study of Perlecan, DMP1, and MEPE in Developing Condylar Cartilage of the Fetal Mouse Mandible and Limb Bud Cartilage

    PubMed Central

    Fujikawa, K.; Yokohama-Tamaki, T.; Morita, T.; Baba, O.; Qin, C.; Shibata, S.

    2015-01-01

    The main purpose of this in situ hybridization study was to investigate mRNA expression of three bone/cartilage matrix components (perlecan, DMP1, and MEPE) in developing primary (tibial) and secondary (condylar) cartilage. Perlecan mRNA expression was first detected in newly formed chondrocytes in tibial cartilage at E13.0, but this expression decreased in hypertrophic chondrocytes at E14.0. In contrast, at E15.0, perlecan mRNA was first detected in the newly formed chondrocytes of condylar cartilage; these chondrocytes had characteristics of hypertrophic chondrocytes, which confirmed the previous observation that progenitor cells of developing secondary cartilage rapidly differentiate into hypertrophic chondrocytes. DMP1 mRNA was detected in many chondrocytes within the lower hypertrophic cell zone in tibial cartilage at E14.0. In contrast, DMP1 mRNA expression was only transiently detected in a few chondrocytes of condylar cartilage at E15.0. Thus, DMP1 may be less important in the developing condylar cartilage than in the tibial cartilage. Another purpose of this study was to test the hypothesis that MEPE may be a useful marker molecule for cartilage. MEPE mRNA was not detected in any chondrocytes in either tibial or condylar cartilage; however, MEPE immunoreactivity was detected throughout the cartilage matrix. Western immunoblot analysis demonstrated that MEPE antibody recognized two bands, one of 67 kDa and another of 59 kDa, in cartilage-derived samples. Thus MEPE protein may gradually accumulate in the cartilage, even though mRNA expression levels were below the limits of detection of in situ hybridization. Ultimately, we could not designate MEPE as a marker molecule for cartilage, and would modify our original hypothesis. PMID:26428891

  2. [Stimulation of maturing and terminal differentiation by concanavalin A in rabbit permanent chondrocyte cultures].

    PubMed

    Yan, W Q; Yang, T S; Hou, L Z; Susuki, F; Kato, Y

    1994-12-01

    The effect of concanavalin A (Con A) on maturing and terminal differentiation in permanent chondrocyte cultures were examined. Chondrocytes isolated from permanent cartilage were seeded at low density and grown in MEM medium containing 10% fetal bovine serum, 50 micrograms/ml of ascorbic acid and antibiotics, at 37 degrees C under 50% CO2 in air. At 0.3% of low serum concentration, addition of Con A to the culture medium increased by 3- to 4-fold the incorporation of [35S] sulfate into large chondroitin sulfate proteoglycan that characteristically found in cartilage. Chemical analysis showed a 4-fold increase in the accumulation of macromolecular containing hexuronic acid in Con A-maintained cultures. The effect of Con A on [35S]sulfate incorporation into proteoglycan was greater than that of various growth factor or hormones. Brief exposure of the permanent chondrocytes to Con A (5 micrograms/ml) for 24 hours and subsequent incubation in its absence for 5-10 days resulted in 10- to 100-fold increase in alkaline phosphatase and binding of 1.25 (OH)2 vitamin D3 to cells. Treatment with Con A also resulted in 10- to 20-fold increase in calcium content and 45Ca incorporation into insoluble material. Methyl-D-mannopyranoside reversed the effect of Con A on [35S]sulfate incorporation into proteoglycan and alkaline phosphatase activity. Since other lectins, such as wheat germ agglutinin, lentil lectin, phytohemagglutinin, Ulex europeasu agglutinin and garden pea lectin had been tested to have little effect on [35S]sulfate incorporation into proteoglycans and induction of alkaline phosphatase activity, the Con A action on chondrocytes seems specific. These results indicate that Con A is a potent modulator of differentiation of chondrocytes, which induces the onset on a maturing and a terminal differentiation in chondrocytes, leading to extensive calcification of the extracellular matrix.

  3. Rapid Activation of Transforming Growth Factor β–Activated Kinase 1 in Chondrocytes by Phosphorylation and K63‐Linked Polyubiquitination Upon Injury to Animal Articular Cartilage

    PubMed Central

    Ismail, Heba M.; Didangelos, Athanasios; Vincent, Tonia L.

    2017-01-01

    Objective Mechanical injury to cartilage predisposes to osteoarthritis (OA). Wounding of the articular cartilage surface causes rapid activation of MAP kinases and NF‐κB, mimicking the response to inflammatory cytokines. This study was undertaken to identify the upstream signaling mechanisms involved. Methods Cartilage was injured by dissecting it from the articular surface of porcine metacarpophalangeal (MCP) joints or by avulsing murine proximal femoral epiphyses. Protein phosphorylation was assayed by Western blotting of cartilage lysates. Immunolocalization of phosphorylated activating transcription factor 2 (ATF‐2) and NF‐κB/p65 was detected by confocal microscopy. Messenger RNA (mRNA) was measured by quantitative reverse transcriptase–polymerase chain reaction (qRT‐PCR). Receptor associated protein 80 (RAP‐80) ubiquitin interacting motif agarose was used in a pull‐down assay to obtain K63‐polyubiquitinated proteins. Ubiquitin linkages on immunoprecipitated transforming growth factor β–activated kinase 1 (TAK‐1) were analyzed with deubiquitinases. Results Sharp injury to porcine cartilage caused rapid activation of JNK and NF‐κB pathways and the upstream kinases MKK‐4, IKK, and TAK‐1. Pharmacologic inhibition of TAK‐1 in porcine cartilage abolished JNK and NF‐κB activation and reduced the injury‐dependent inflammatory gene response. High molecular weight species of phosphorylated TAK‐1 were induced by injury, indicating its ubiquitination. An overall increase in K63‐linked polyubiquitination was detected upon injury, and TAK‐1 was specifically linked to K63‐ but not K48‐polyubiquitin chains. In mice, avulsion of wild‐type femoral epiphyses caused similar intracellular signaling that was reduced in cartilage‐specific TAK‐1–null mice. Epiphyseal cartilage of MyD88‐null and TRAF‐6–null mice responded to injury, suggesting the involvement of a ubiquitin E3 ligase other than TRAF‐6. Conclusion

  4. Chondrocyte-specific ablation of Osterix leads to impaired endochondral ossification

    SciTech Connect

    Oh, Jung-Hoon; Park, Seung-Yoon; Crombrugghe, Benoit de; Kim, Jung-Eun

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer Conditional ablation of Osterix (Osx) in chondrocytes leads to skeletal defects. Black-Right-Pointing-Pointer Osx regulates chondrocyte differentiation and bone growth in growth plate chondrocytes. Black-Right-Pointing-Pointer Osx has an autonomous function in chondrocytes during endochondral ossification. -- Abstract: Osterix (Osx) is an essential transcription factor required for osteoblast differentiation during both intramembranous and endochondral ossification. Endochondral ossification, a process in which bone formation initiates from a cartilage intermediate, is crucial for skeletal development and growth. Osx is expressed in differentiating chondrocytes as well as osteoblasts during mouse development, but its role in chondrocytes has not been well studied. Here, the in vivo function of Osx in chondrocytes was examined in a chondrocyte-specific Osx conditional knockout model using Col2a1-Cre. Chondrocyte-specific Osx deficiency resulted in a weak and bent skeleton which was evident in newborn by radiographic analysis and skeletal preparation. To further understand the skeletal deformity of the chondrocyte-specific Osx conditional knockout, histological analysis was performed on developing long bones during embryogenesis. Hypertrophic chondrocytes were expanded, the formation of bone trabeculae and marrow cavities was remarkably delayed, and subsequent skeletal growth was reduced. The expression of several chondrocyte differentiation markers was reduced, indicating the impairment of chondrocyte differentiation and endochondral ossification in the chondrocyte-specific Osx conditional knockout. Taken together, Osx regulates chondrocyte differentiation and bone growth in growth plate chondrocytes, suggesting an autonomous function of Osx in chondrocytes during endochondral ossification.

  5. DNA Methylation Profiling in Chondrocyte Dedifferentiation In Vitro.

    PubMed

    Duan, Li; Liang, Yujie; Ma, Bin; Wang, Daming; Liu, Wei; Huang, Jianghong; Xiong, Jianyi; Peng, Liangquan; Chen, Jielin; Zhu, Weimin; Wang, Daping

    2017-07-01

    DNA methylation has emerged as a crucial regulator of chondrocyte dedifferentiation, which severely compromises the outcome of autologous chondrocyte implantation (ACI) treatment for cartilage defects. However, the full-scale DNA methylation profiling in chondrocyte dedifferentiation remains to be determined. Here, we performed a genome-wide DNA methylation profiling of dedifferentiated chondrocytes in monolayer culture and chondrocytes treated with DNA methylation inhibitor 5-azacytidine (5-AzaC). This research revealed that the general methylation level of CpG was increased while the COL-1A1 promoter methylation level was decreased during the chondrocyte dedifferentiation. 5-AzaC could reduce general methylation levels and reverse the chondrocyte dedifferentiation. Surprisingly, the DNA methylation level of COL-1A1 promoter was increased after 5-AzaC treatment. The COL-1A1 expression level was increased while that of SOX-9 was decreased during the chondrocyte dedifferentiation. 5-AzaC treatment up-regulated the SOX-9 expression while down-regulated the COL-1A1 promoter activity and gene expression. Taken together, these results suggested that differential regulation of the DNA methylation level of cartilage-specific genes might contribute to the chondrocyte dedifferentiation. Thus, the epigenetic manipulation of these genes could be a potential strategy to counteract the chondrocyte dedifferentiation accompanying in vitro propagation. J. Cell. Physiol. 232: 1708-1716, 2017. © 2016 Wiley Periodicals, Inc.

  6. Fgf receptors Fgfr1a and Fgfr2 control the function of pharyngeal endoderm in late cranial cartilage development.

    PubMed

    Larbuisson, Arnaud; Dalcq, Julia; Martial, Joseph A; Muller, Marc

    2013-01-01

    Cranial cartilage derives mainly from cranial neural crest cells and its formation requires fibroblast growth factor (Fgf) signaling for early differentiation and survival of developing chondrocytes as well as patterning of the endodermal pouches. Here, we investigate the role of Fgf receptors in chondrocyte maturation at later stages, beyond 24 hpf. Using inducible expression of a dominant-negative Fgf receptor, we show that Fgf signaling is required around 30 hpf for correct cartilage formation. The receptor genes fgfr1a and fgr2 are expressed in pharyngeal endodermal pouches after 24 hpf or 26 hpf, respectively. Depletion of any of these two receptors by microinjection of antisense morpholinos results in severe defects in cartilage formation at 4 dpf and a decrease in expression of the late chondrocyte markers barx1 and runx2b. Although endodermal pouches are correctly formed and patterned, receptor knock down leads to decreased expression of runx3, egr1 and sox9b in this tissue, while expression of fsta, coding for a secreted BMP/Tgfß inhibitor, is clearly increased. Rescue experiments revealed that each Fgfr1a or Fgfr2 receptor is able to compensate for the loss of the other. Thus, we show that minimal amounts of Fgfr1a or Fgfr2 are required to initiate a regulatory cascade in pharyngeal endoderm reducing expression of fsta, thereby allowing correct BMP signaling to the maturing chondrocytes of the head cartilage.

  7. Nanoparticles for diagnostics and laser medical treatment of cartilage in orthopaedics

    NASA Astrophysics Data System (ADS)

    Baum, O. I.; Soshnikova, Yu. M.; Omelchenko, A. I.; Sobol, Emil

    2013-02-01

    Laser reconstruction of intervertebral disc (LRD) is a new technique which uses local, non-destructive laser irradiation for the controlled activation of regenerative processes in a targeted zone of damaged disc cartilage. Despite pronounced advancements of LRD, existing treatments may be substantially improved if laser radiation is absorbed near diseased and/or damaged regions in cartilage so that required thermomechanical stress and strain at chondrocytes may be generated and non-specific injury reduced or eliminated. The aims of the work are to study possibility to use nanoparticles (NPs) to provide spatial specificity for laser regeneration of cartilage. Two types of porcine joint cartilage have been impregnated with magnetite NPs: 1) fresh cartilage; 2) mechanically damaged cartilage. NPs distribution was studied using transition electron microscopy, dynamic light scattering and analytical ultracentrifugation techniques. Laser radiation and magnetic field have been applied to accelerate NPs impregnation. It was shown that NPs penetrate by diffusion into the mechanically damaged cartilage, but do not infiltrate healthy cartilage. Temperature dynamics in cartilage impregnated with NPs have been theoretically calculated and measurements using an IR thermo vision system have been performed. Laser-induced alterations of cartilage structure and cellular surviving have been studied for cartilage impregnated with NPs using histological and histochemical techniques. Results of our study suggest that magnetite NPs might be used to provide spatial specificity of laser regeneration. When damaged, the regions of cartilage impreganted with NPs have higher absorption of laser radiation than that for healthy areas. Regions containing NPs form target sites that can be used to generate laser-induced thermo mechanical stress leading to regeneration of cartilage of hyaline type.

  8. Upregulation of Bone Morphogenetic Protein-2 Synthesis and Consequent Collagen II Expression in Leptin-stimulated Human Chondrocytes.

    PubMed

    Chang, Shun-Fu; Hsieh, Rong-Ze; Huang, Kuo-Chin; Chang, Cheng Allen; Chiu, Fang-Yao; Kuo, Hsing-Chun; Chen, Cheng-Nan; Su, Yu-Ping

    2015-01-01

    Bone morphogenetic proteins (BMPs) play positive roles in cartilage development, but they can barely be detected in healthy articular cartilage. However, recent evidence has indicated that BMPs could be detected in osteoarthritic and damaged cartilage and their precise roles have not been well defined. Extremely high amounts of leptin have been reported in obese individuals, which can be associated with osteoarthritis (OA) development. The aim of this study was to investigate whether BMPs could be induced in human primary chondrocytes during leptin-stimulated OA development and the underlying mechanism. We found that expression of BMP-2 mRNA, but not BMP-4, BMP-6, or BMP-7 mRNA, could be increased in human primary chondrocytes under leptin stimulation. Moreover, this BMP-2 induction was mediated through transcription factor-signal transducer and activator of transcription (STAT) 3 activation via JAK2-ERK1/2-induced Ser727-phosphorylation. Of note, histone deacetylases (HDACs) 3 and 4 were both involved in modulating leptin-induced BMP-2 mRNA expression through different pathways: HDAC3, but not HDAC4, associated with STAT3 to form a complex. Our results further demonstrated that the role of BMP-2 induction under leptin stimulation is to increase collagen II expression. The findings in this study provide new insights into the regulatory mechanism of BMP-2 induction in leptin-stimulated chondrocytes and suggest that BMP-2 may play a reparative role in regulating leptin-induced OA development.

  9. Response of zonal chondrocytes to extracellular matrix-hydrogels.

    PubMed

    Hwang, Nathaniel S; Varghese, Shyni; Lee, H Janice; Theprungsirikul, Parnduangjai; Canver, Adam; Sharma, Blanka; Elisseeff, Jennifer

    2007-09-04

    We investigated the biological response of chondrocytes isolated from different zones of articular cartilage and their cellular behaviors in poly (ethylene glycol)-based (PEG) hydrogels containing exogenous type I collagen, hyaluronic acid (HA), or chondroitin sulfate (CS). The cellular morphology was strongly dependent on the extracellular matrix component of hydrogels. Additionally, the exogenous extracellular microenvironment affected matrix production and cartilage specific gene expression of chondrocytes from different zones. CS-based hydrogels showed the strongest response in terms of gene expression and matrix accumulation for both superficial and deep zone chondrocytes, but HA and type I collagen-based hydrogels demonstrated zonal-dependent cellular responses.

  10. RESPONSE OF ZONAL CHONDROCYTES TO EXTRACELLULAR MATRIX-HYDROGELS

    PubMed Central

    Hwang, Nathaniel S.; Varghese, Shyni; Lee, H. Janice; Theprungsirikul, Parnduangjai; Canver, Adam; Sharma, Blanka; Elisseeff, Jennifer

    2009-01-01

    We investigated the biological response of chondrocytes isolated from different zones of articular cartilage and their cellular behaviors in poly (ethylene glycol)-based (PEG) hydrogels containing exogenous type I collagen, hyaluronic acid (HA), or chondroitin sulfate (CS). The cellular morphology was strongly dependent on the extracellular matrix component of hydrogels. Additionally, the exogenous extracellular microenvironment affected matrix production and cartilage specific gene expression of chondrocytes from different zones. CS-based hydrogels showed the strongest response in terms of gene expression and matrix accumulation for both superficial and deep zone chondrocytes, but HA and type I collagen-based hydrogels demonstrated zonal-dependent cellular responses. PMID:17692846

  11. Overview of cartilage biology and new trends in cartilage stimulation.

    PubMed

    Triche, Rachel; Mandelbaum, Bert R

    2013-03-01

    This article reviews the basics of articular cartilage biology, which provide a necessary foundation for understanding the evolving field of articular cartilage injury and repair. The currently popular treatment options for osteochondral injury (microfracture, osteochondral autograft transfer system, osteochondral allograft, autologous chondrocyte implantation, and the use of scaffolds with autologous chondrocyte implantation) document the significant advances made in this area in the past 2 decades. Integration of newly available information and technology derived from advances in molecular biology and tissue engineering holds even greater promise for continued advances in optimal management of this challenging problem.

  12. Functional analysis of articular cartilage deformation, recovery, and fluid flow following dynamic exercise in vivo.

    PubMed

    Eckstein, F; Tieschky, M; Faber, S; Englmeier, K H; Reiser, M

    1999-10-01

    The function of articular cartilage depends on the interaction between the tissue matrix and the interstitial fluid bound to the proteoglycan molecules. Mechanical loading has been shown to be involved in both the metabolic regulation of chondrocytes and in matrix degeneration. The purpose of the present study was therefore to analyze the deformation, recovery, and fluid flow in human articular cartilage after dynamic loading in vivo. The patellae of 7 volunteers were imaged at physical rest and after performing knee bends, with a specifically optimized fat-suppressed FLASH-3D magnetic resonance (MR) sequence. To measure cartilage deformation, the total volume of the patellar cartilage was determined, employing 3D digital image analysis. Patellar cartilage deformation ranged from 2.4 to 8.6% after 50 knee bends, and from 2.4% to 8.5% after 100 knee bends. Repeated sets of dynamic exercise at intervals of 15 min did not cause further deformation. After 100 knee bends, the cartilage required more than 90 min to recover from loading. The rate of fluid flow during relaxation ranged from 1.1 to 3.5 mm(3)/min (0.08 to 0.22 mm(3)/min per square centimeter of the articular surface) and was highly correlated with the individual degree of deformation after knee bends. The data provide the first quantification of articular cartilage recovery and of the rate of fluid flow between the cartilage matrix and surrounding tissue in intact joints in vivo. Measurement in the living opens the possibility of relating interindividual variations of mechanical cartilage properties to the susceptibility of developing joint failure, to assess the load-partitioning between the fluid phase and solid cartilage matrix during load transfer, and to determine the role of mechanically induced fluid flow in the regulation of the metabolic activity of chondrocytes.

  13. Influence of cytochalasin D-induced changes in cell shape on proteoglycan synthesis by cultured articular chondrocytes

    SciTech Connect

    Newman, P.; Watt, F.M. )

    1988-10-01

    There is growing evidence that cell shape regulates both proliferation and differentiated gene expression in a variety of cell types. The authors have explored the relationship between the morphology of articular chondrocytes in culture and the amount and type of proteoglycan they synthesize, using cytochalasin D to induce reversible cell rounding. When chondrocytes were prevented from spreading or when spread cells were induced to round up, {sup 35}SO{sub 4} incorporation into proteoglycan was stimulated. Incorporation into the cell layer was stimulated more than into the medium. When the cells were allowed to respread by removing cytochalasin D, proteoglycan synthesis returned to control levels. Cytochalasin D-induced stimulation of {sup 35}SO{sub 4} incorporation reflected an increase in core protein synthesis rather than lengthening of glycosaminoglycan chains, because ({sup 3}H)serine incorporation into core protein was also stimulated. Cytochalasm D-treatment of cells in suspension caused no further stimulation of {sup 35}SO{sub 4} incorporation, suggesting that the observed effects were due to cell rounding rather than exposure to cytochalasin D per se.

  14. Roles of inflammatory and anabolic cytokines in cartilage metabolism: signals and multiple effectors converge upon MMP-13 regulation in osteoarthritis.

    PubMed

    Goldring, Mary B; Otero, Miguel; Plumb, Darren A; Dragomir, Cecilia; Favero, Marta; El Hachem, Karim; Hashimoto, Ko; Roach, Helmtrud I; Olivotto, Eleonora; Borzì, Rosa Maria; Marcu, Kenneth B

    2011-02-24

    Human cartilage is a complex tissue of matrix proteins that vary in amount and orientation from superficial to deep layers and from loaded to unloaded zones. A major challenge to efforts to repair cartilage by stem cell-based and other tissue engineering strategies is the inability of the resident chondrocytes to lay down new matrix with the same structural and resilient properties that it had upon its original formation. This is particularly true of the collagen network, which is susceptible to cleavage once proteoglycans are depleted. Thus, a thorough understanding of the similarities and particularly the marked differences in mechanisms of cartilage remodeling during development, osteoarthritis, and aging may lead to more effective strategies for preventing cartilage damage and promoting repair. To identify and characterize effectors or regulators of cartilage remodeling in these processes, we are using culture models of primary human and mouse chondrocytes and cell lines and mouse genetic models to manipulate gene expression programs leading to matrix remodeling and subsequent chondrocyte hypertrophic differentiation, pivotal processes which both go astray in OA disease. Matrix metalloproteinases (MMP)-13, the major type II collagen-degrading collagenase, is regulated by stress-, inflammation-, and differentiation-induced signals that not only contribute to irreversible joint damage (progression) in OA, but importantly, also to the initiation/onset phase, wherein chondrocytes in articular cartilage leave their natural growth- and differentiation-arrested state. Our work points to common mediators of these processes in human OA cartilage and in early through late stages of OA in surgical and genetic mouse models.

  15. Importance of Floating Chondrons in Cartilage Tissue Engineering

    PubMed Central

    Shafaei, Hajar; Bagernezhad, Hajar; Bagernajad, Hassan

    2017-01-01

    BACKGROUND Dedifferentiation of chondrocytes remains a major problem for cartilage tissue engineering. Chondrocytes loss differentiated phenotype in in vitro culture that is undesired for repair strategies. The chondrocyte is surrounded by a pericellular matrix (PCM), together forming the chondron. PCM has a positive effect on the maintenance of chondrocyte phenotype during culture in comparison to uncovered chondrocyte. Studies suggest that the PCM influence on functional properties of the chondrocytes. However there is no study to show gene expression phenotype differences between round chondron and fibroblastic chondrocytes. We aimed to investigate the effect of pericellular matrix in maintaining of chondrogenic gene expression to solve dedifferentiation problem of chondrocyte. METHODS In this study enzymatically isolated chondrons were cultured for 7 days. Morphology of chondrons were assessed by microscopic examination. Chondrogenic gene expression of Sox9, aggrecan (AGG), cartilage oligomeric matrix protein (COMP), Link protein and chondro-osteogenic gene expression (Runx2, Col1, Col 10 and MMP13) of attached and float chondrons were assessed by real time RT PCR. RESULTS Microscopic observation showed that round shape of chondron observed at day 7 in floating chondrocytes. Gene expression results showed that attached chondrons significantly dedifferentiated by low gene expression of Sox9 and COMP and high MMP13 versus floating cells. CONCLUSION Our results showed that PCM of chondrocyte could restore differentiated state of chondrocytes at day 7. Using unattached form of chondron in cartilage tissue PCM in maintenance of chondrogenic gene expression engineering could be a novel method to solve dedifferentiation problem of chondrocyte. PMID:28289615

  16. Temperature Dependent Change in Equilibrium Elastic Modulus After Thermally Induced Stress Relaxation in Porcine Septal Cartilage

    PubMed Central

    Protsenko, Dmitriy E.; Zemek, Allison; Wong, Brian J.F.

    2014-01-01

    uniform temperature field (temperature variations ≤4°C) in a central region of the sample which is also large enough for reliable mechanical testing. Output power adjustment of the RF generator allows production of temperature histories that are very similar to those produced by laser heating at temperatures above 60°C. This allows creation of RF cartilage samples with mechanical properties similar to laser irradiated cartilage, however with a spatially uniform temperature field. Cartilage equilibrium elastic modulus as a function of peak temperature were obtained from the mechanical testing of RF heated samples. In the temperature interval from 60 to 80°C, the equilibrium modulus decreased from 0.08 ± 0.01 MPa to 0.016 ±0.007 MPa, respectively. The results of the numerical simulation of uniaxial compression of laser heated samples demonstrate good correlation with experimentally obtained reaction force. Conclusions The thermal history and corresponding thermally induced modification of mechanical properties of laser irradiated septal cartilage can be mimicked by heating tissue samples with RF electric current with the added advantage of a uniform temperature profile. The spatial distribution of the mechanical properties obtained in septal cartilage after laser irradiation could be computed from mechanical testing of RF heated samples and used for numerical simulation of LCR procedure. Generalization of this methodology to incorporate orthogonal mechanical properties may aid in optimizing clinical laser cartilage reshaping procedures. PMID:18366085

  17. Dlx5 is a positive regulator of chondrocyte differentiation during endochondral ossification.

    PubMed

    Ferrari, Deborah; Kosher, Robert A

    2002-12-15

    The process of endochondral ossification in which the bones of the limb are formed after generation of cartilage models is dependent on a precisely regulated program of chondrocyte maturation. Here, we show that the homeobox-containing gene Dlx5 is expressed at the onset of chondrocyte maturation during the conversion of immature proliferating chondrocytes into postmitotic hypertrophying chondrocytes, a critical step in the maturation process. Moreover, retroviral misexpression of Dlx5 during differentiation of the skeletal elements of the chick limb in vivo results in the formation of severely shortened skeletal elements that contain excessive numbers of hypertrophying chondrocytes which extend into ectopic regions, including sites normally occupied by immature chondrocytes. The expansion in the extent of hypertrophic maturation detectable histologically is accompanied by expanded and upregulated domains of expression of molecular markers of chondrocyte maturation, particularly type X collagen and osteopontin, and by expansion of mineralized cartilage matrix, which is characteristic of terminal hypertrophic differentiation. Furthermore, Dlx5 misexpression markedly reduces chondrocyte proliferation concomitant with promoting hypertrophic maturation. Taken together, these results indicate that Dlx5 is a positive regulator of chondrocyte maturation and suggest that it regulates the process at least in part by promoting conversion of immature proliferating chondrocytes into hypertrophying chondrocytes. Retroviral misexpression of Dlx5 also enhances formation of periosteal bone, which is derived from the Dlx5-expressing perichondrium that surrounds the diaphyses of the cartilage models. This suggests that Dlx5 may be involved in regulating osteoblast differentiation, as well as chondrocyte maturation, during endochondral ossification.

  18. The mode of action of a glycosaminoglycan-peptide-complex (Rumalon) on articular cartilage of the rat in vivo.

    PubMed

    Annefeld, M; Erne, B

    1987-09-01

    Quantitative ultrastructural morphometry and autoradiography of articular cartilage were used to assess in 3 months old rats the effects of in vivo administration of dexamethasone alone or in combination with a glycosaminglycan-peptide-complex (GAGPC). Dexamethasone treatment (3 mg/kg week for three weeks) induced a decrease of 35S-sulphate incorporation in cartilage and ultrastructural changes of articular chondrocytes, mainly characterized by an increase in cell mortality rate, a decrease in length of endoplasmic reticulum, in the number of Golgi bodies and in mitochondrial pool and size. These autoradiographic and ultrastructural changes were reversed or prevented when GAGPC was administered concomitantly with dexamethasone. These results show that the modifications measured by quantitative ultrastructural morphometry of chondrocytes are consistent with changes in biosynthetic functions and that the GAGPC protects cartilage from the inhibitory effects of corticoids.

  19. [Indirect coculture of human infrapatellar fat pad-derived stem cells with osteoarthritic chondrocytes induces their chondrogenesis].

    PubMed

    Yang, Junjun; Chen, Cheng; Yang, Liu; Song, Xiongbo; Xie, Wenbin; Huang, Shu; Liu, Baorong

    2017-02-01

    Objective To promote phenotype recovery of osteoarthritic articular chondrocytes (OACs) and induce chondrogenic differentiation of infrapatellar fat pad-derived stem cells (IPFPSCs) by indirectly coculturing these two types of cells. Methods The OACs and IPFPSCs were isolated and cultured in vitro. This experiment included single IPFPSCs group, single OACs group, and coculture group. After cells were cultured in vitro with chondrogenic medium for 21 days, the chondrocyte phenotypes were determined by HE staining (cell morphology), Alcian blue staining (glycosaminoglycan content) and immunofluorescence cytochemistry (collagen 1, collagen 2, collagen 3, aggrecan, SOX9). Results In coculture group, the OACs aggregated into microspheres, and the IPFPSCs were oval in shape. In single culture groups, the OACs were less aggregated and the spheres were smaller; and the IPFPSCs were spindle in shape. HE staining showed that, in the coculture group, the nuclei of OACs spheres were dark, and the IPFPSCs were rich in cytoplasm; while in single culture groups, the nuclei of OAC spheres were less dark, and the IPFPSCs were less stained compared with the coculture group. Alcian blue staining indicated that glycosaminoglycan content was higher in the coculture group than in single culture groups. Immunofluorescent staining showed that the intensity of chondrogenic markers (collagen 2, aggrecan, and SOX9) was stronger, while the intensity of collagen 1 and collagen 10 was weaker in the coculture group as compared with single culture groups. Conclusion The indirect coculture of IPFPSCs with OACs can contribute to the phenotype recovery of OACs and induce the chondrogenic differentiation of IPFPSCs.

  20. Cartilage viability after trochleoplasty.

    PubMed

    Schöttle, Philip B; Schell, Hanna; Duda, Georg; Weiler, Andreas

    2007-02-01

    Trochleoplasty is an established and accepted technique for the treatment of patellar instability because of a missing trochlear groove. In this technique, a flap of cartilage over the trochlea is carefully removed and a new trochlear groove is created in the underlying bone before the cartilaginous flap is reattached with sutures. The mid-term clinical and radiological results of this operation are promising but no information about the viability of the reattached cartilage has been reported. To evaluate cartilage viability and quality after trochleoplasty and to verify the healing process, two osteochondral biopsies were harvested from three patients 6, 8, and 9 months after trochleoplasty. One cylinder was evaluated histologically to assess cartilage, calcified cartilage (cc), and subchondral bone quality, while the other one was examined by confocal microscopy to evaluate cell viability. The histological examination showed a normal matrix and cell distribution of the cartilage, while the cc showed lacunae ingrowing from the underlying bone. The subchondral bone showed normal lamellae and histology, and the healing of the flap. Confocal microscopy showed almost exclusively viable chondrocytes. This demonstration of non-injured cartilage at short-term follow-up together with promising clinical and radiological 2- and 5-year follow-up results indicate a potential promising outlook for the long term, as further chondral damage is not expected. So trochleoplasty can be seen as a primary intervention for patellar instability because of trochlear dysplasia as the risk for cartilage damage is low.

  1. Differential effects of parathyroid hormone fragments on collagen gene expression in chondrocytes

    PubMed Central

    1996-01-01

    The effect of parathyroid hormone (PTH) in vivo after secretion by the parathyroid gland is mediated by bioactive fragments of the molecule. To elucidate their possible role in the regulation of cartilage matrix metabolism, the influence of the amino-terminal (NH2-terminal), the central, and the carboxyl-terminal (COOH-terminal) portion of the PTH on collagen gene expression was studied in a serum free cell culture system of fetal bovine and human chondrocytes. Expression of alpha1 (I), alpha1 (II), alpha1 (III), and alpha1 (X) mRNA was investigated by in situ hybridization and quantified by Northern blot analysis. NH2- terminal and mid-regional fragments containing a core sequence between amino acid residues 28-34 of PTH induced a significant rise in alpha1 (II) mRNA in proliferating chondrocytes. In addition, the COOH-terminal portion (aa 52-84) of the PTH molecule was shown to exert a stimulatory effect on alpha1 (II) and alpha1 (X) mRNA expression in chondrocytes from the hypertrophic zone of bovine epiphyseal cartilage. PTH peptides harboring either the functional domain in the central or COOH-terminal region of PTH can induce cAMP independent Ca2+ signaling in different subsets of chondrocytes as assessed by microfluorometry of Fura-2/AM loaded cells. These results support the hypothesis that different hormonal effects of PTH on cartilage matrix metabolism are exerted by distinct effector domains and depend on the differentiation stage of the target cell. PMID:8922395

  2. Nicotine-induced retardation of chondrogenesis through down-regulation of IGF-1 signaling pathway to inhibit matrix synthesis of growth plate chondrocytes in fetal rats

    SciTech Connect

    Deng, Yu; Cao, Hong; Cu, Fenglong; Xu, Dan; Lei, Youying; Tan, Yang; Magdalou, Jacques; Wang, Hui; Chen, Liaobin

    2013-05-15

    Previous studies have confirmed that maternal tobacco smoking causes intrauterine growth retardation (IUGR) and skeletal growth retardation. Among a multitude of chemicals associated with cigarette smoking, nicotine is one of the leading candidates for causing low birth weights. However, the possible mechanism of delayed chondrogenesis by prenatal nicotine exposure remains unclear. We investigated the effects of nicotine on fetal growth plate chondrocytes in vivo and in vitro. Rats were given 2.0 mg/kg·d of nicotine subcutaneously from gestational days 11 to 20. Prenatal nicotine exposure increased the levels of fetal blood corticosterone and resulted in fetal skeletal growth retardation. Moreover, nicotine exposure induced the inhibition of matrix synthesis and down-regulation of insulin-like growth factor 1 (IGF-1) signaling in fetal growth plates. The effects of nicotine on growth plates were studied in vitro by exposing fetal growth plate chondrocytes to 0, 1, 10, or 100 μM of nicotine for 10 days. Nicotine inhibited matrix synthesis and down-regulated IGF-1 signaling in chondrocytes in a concentration-dependent manner. These results suggest that prenatal nicotine exposure induces delayed chondrogenesis and that the mechanism may involve the down-regulation of IGF-1 signaling and the inhibition of matrix synthesis by growth plate chondrocytes. The present study aids in the characterization of delayed chondrogenesis caused by prenatal nicotine exposure, which might suggest a candidate mechanism for intrauterine origins of osteoporosis and osteoarthritis. - Highlights: ► Prenatal nicotine-exposure could induce delayed chondrogenesis in fetal rats. ► Nicotine inhibits matrix synthesis of fetal growth plate chondrocytes. ► Nicotine inhibits IGF-1 signaling pathway in fetal growth plate chondrocytes.

  3. The chrondoprotective actions of a natural product are associated with the activation of IGF-1 production by human chondrocytes despite the presence of IL-1β

    PubMed Central

    Miller, Mark JS; Ahmed, Salahuddin; Bobrowski, Paul; Haqqi, Tariq M

    2006-01-01

    Background Cartilage loss is a hallmark of arthritis and follows activation of catabolic processes concomitant with a disruption of anabolic pathways like insulin-like growth factor 1 (IGF-1). We hypothesized that two natural products of South American origin, would limit cartilage degradation by respectively suppressing catabolism and activating local IGF-1 anabolic pathways. One extract, derived from cat's claw (Uncaria guianensis, vincaria®), is a well-described inhibitor of NF-κB. The other extract, derived from the vegetable Lepidium meyenii (RNI 249), possessed an uncertain mechanism of action but with defined ethnomedical applications for fertility and vitality. Methods Human cartilage samples were procured from surgical specimens with consent, and were evaluated either as explants or as primary chondrocytes prepared after enzymatic digestion of cartilage matrix. Assessments included IGF-1 gene expression, IGF-1 production (ELISA), cartilage matrix degradation and nitric oxide (NO) production, under basal conditions and in the presence of IL-1β. Results RNI 249 enhanced basal IGF-1 mRNA levels in human chondrocytes by 2.7 fold, an effect that was further enhanced to 3.8 fold by co-administration with vincaria. Enhanced basal IGF-1 production by RNI 249 alone and together with vincaria, was confirmed in both explants and in primary chondrocytes (P <0.05). As expected, IL-1β exposure completely silenced IGF-1 production by chondrocytes. However, in the presence of IL-1β both RNI 249 and vincaria protected IGF-1 production in an additive manner (P <0.01) with the combination restoring chondrocyte IGF-1 production to normal levels. Cartilage NO production was dramatically enhanced by IL-1β. Both vincaria and RNI 249 partially attenuated NO production in an additive manner (p < 0.05). IL-1β – induced degradation of cartilage matrix was quantified as glycosaminoglycan release. Individually RNI 249 or vincaria, prevented this catabolic action of IL-1

  4. Structural characteristics of articular cartilage proteoglycan in IgG induced experimental immune synovitis.

    PubMed Central

    Malemud, C J; Yoo, J U; Goldberg, V M; Kresina, T F

    1987-01-01

    The early changes (five weeks) in the structure of newly synthesised and endogenous articular cartilage sulphated proteoglycans were studied in lapine IgG induced experimental immune synovitis. Rabbits with immune synovitis (IS-IgG) were compared with animals with a developed hypersensitivity to IgG (I-IgG) and with non-treated normal weight matched controls. Medial and lateral femoral condyle and tibial plateau cartilage was pooled and radiolabelled for 24 h in vitro with 35SO4. The samples constituted tissue from regions underlying pannus and from pannus free sites. Cartilage from animals with IS-IgG showed a significantly diminished amount of newly synthesised and endogenous proteoglycan aggregate and an increased amount of hydrodynamically small proteoglycans. Newly synthesised (obtained by in vivo radiosulphate labelling) and endogenous proteoglycans showed a similar profile. The proteoglycan monomer fraction from animals with IS-IgG failed to form proteoglycan aggregates in the presence of excess hyaluronic acid. In the group with IS-IgG linear regression analysis showed a statistically significant relationship between the synovial pathology scores (but not cartilage pathology score) and diminished newly synthesised and endogenous proteoglycan aggregate. PMID:3662640

  5. AG-041R, a novel indoline-2-one derivative, induces systemic cartilage hyperplasia in rats.

    PubMed

    Kitamura, H; Kato, A; Esaki, T

    2001-04-27

    AG-041R (3R-1-(2,2-diethoxyethyl)-3-((4 methylphenyl)aminocarbonylmethyl)-3-((4-methylphenyl) ureido)-indoline-2-one) is a novel small compound synthesized as a cholecystokinin-2 (CCK(2))/gastrin receptor antagonist. In the course of the development of this compound, we discovered unexpectedly that oral administration of a high dose for 4 weeks markedly induced systemic cartilage hyperplasia. This change was histologically observed in the auricles, the trachea, the marginal region of the femoral condyle, the xiphoid process and intervertebral disks in rats. Daily intraarticular injections of AG-041R into rat knee joints for 3 weeks also caused cartilage hyperplasia in the marginal region of the femoral condyle, but no hyperplasia was observed in any other cartilage. We have confirmed that chondrogenic activity of AG-041R is an intrinsic property of the compound, and is not due to its CCK(2)/gastrin receptor antagonistic actions. These results indicate that AG-041R is a novel stimulator of chondrogenesis, and can be expected to be a potent therapeutic agent for cartilage disorders.

  6. Hypotonic challenge modulates cell volumes differently in the superficial zone of intact articular cartilage and cartilage explant.

    PubMed

    Turunen, Siru M; Lammi, Mikko J; Saarakkala, Simo; Koistinen, Arto; Korhonen, Rami K

    2012-05-01

    The objective of this study was to evaluate the effect of sample preparation on the biomechanical behaviour of chondrocytes. We compared the volumetric and dimensional changes of chondrocytes in the superficial zone (SZ) of intact articular cartilage and cartilage explant before and after a hypotonic challenge. Calcein-AM labelled SZ chondrocytes were imaged with confocal laser scanning microscopy through intact cartilage surfaces and through cut surfaces of cartilage explants. In order to clarify the effect of tissue composition on cell volume changes, Fourier Transform Infrared microspectroscopy was used for estimating the proteoglycan and collagen contents of the samples. In the isotonic medium (300 mOsm), there was a significant difference (p < 0.05) in the SZ cell volumes and aspect ratios between intact cartilage samples and cartilage explants. Changes in cell volumes at both short-term (2 min) and long-term (2 h) time points after the hypotonic challenge (180 mOsm) were significantly different (p < 0.05) between the groups. Further, proteoglycan content was found to correlate significantly (r(2) = 0.63, p < 0.05) with the cell volume changes in cartilage samples with intact surfaces. Collagen content did not correlate with cell volume changes. The results suggest that the biomechanical behaviour of chondrocytes following osmotic challenge is different in intact cartilage and in cartilage explant. This indicates that the mechanobiological responses of cartilage and cell signalling may be significantly dependent on the integrity of the mechanical environment of chondrocytes.

  7. Confocal microscopy indentation system for studying in situ chondrocyte mechanics.

    PubMed

    Han, Sang-Kuy; Colarusso, Pina; Herzog, Walter

    2009-10-01

    Chondrocytes synthesize extracellular matrix molecules, thus they are essential for the development, adaptation and maintenance of articular cartilage. Furthermore, it is well accepted that the biosynthetic activity of chondrocytes is influenced by the mechanical environment. Therefore, their response to mechanical stimuli has been studied extensively. Much of the knowledge in this area of research has been derived from testing of isolated cells, cartilage explants, and fixed cartilage specimens: systems that differ in important aspects from chondrocytes embedded in articular cartilage and observed during loading conditions. In this study, current model systems have been improved by working with the intact cartilage in real time. An indentation system was designed on a confocal microscope that allows for simultaneous loading and observation of chondrocytes in their native environment. Cell mechanics were then measured under precisely controlled loading conditions. The indentation system is based on a light transmissible cylindrical glass indentor of 0.17 mm thickness and 1.64 mm diameter that is aligned along the focal axis of the microscope and allows for real time observation of live cells in their native environment. The system can be used to study cell deformation and biological responses, such as calcium sparks, while applying prescribed loads on the cartilage surface. It can also provide novel information on the relationship between cell loading and cartilage adaptive/degenerative processes in the intact tissue.

  8. Tenuigenin Prevents IL-1β-induced Inflammation in Human Osteoarthritis Chondrocytes by Suppressing PI3K/AKT/NF-κB Signaling Pathway.

    PubMed

    Wang, Chunlei; Zeng, Lihong; Zhang, Tao; Liu, Jiakun; Wang, Wenbo

    2016-04-01

    Tenuigenin (TEN), the main active component of Polygala tenuifolia, has been reported to have anti-inflammatory effects. However, the effects of TEN on IL-1β-stimulated osteoarthritis chondrocytes have not been reported. The purpose of this study was to investigate the anti-inflammatory effects and mechanism of TEN on IL-1β-stimulated human osteoarthritis chondrocytes. Human osteoarthritis chondrocytes were pretreated with or without TEN for 1 h and then stimulated with IL-1β. The production of NO and PGE2 were detected by the Griess reagent and ELISA. The expression of NF-κB and MAPKs (p38, JNK, ERK) were measured by Western blot analysis. The production of MMP-1, MMP3, and MMP13 were measured by ELISA. The results showed that treatment of TEN significantly inhibited IL-1β-induced NO and PGE2 production. TEN also suppressed IL-1β-induced MMP-1, MMP3, and MMP13 expression. Furthermore, TEN was found to inhibit IL-1β-induced NF-κB activation, PI3K, and AKT phosphorylation. In conclusion, these results suggest that TEN inhibits IL-1β-induced inflammation in human osteoarthritis chondrocytes by inhibiting PI3K/AKT/NF-κB signaling pathway.

  9. Expression of microRNA-146 in osteoarthritis cartilage

    PubMed Central

    Yamasaki, Keiichiro; Nakasa, Tomoyuki; Miyaki, Shigeru; Ishikawa, Masakazu; Deie, Masataka; Adachi, Nobuo; Yasunaga, Yuji; Asahara, Hiroshi; Ochi, Mitsuo

    2009-01-01

    Objective A role of microRNAs, which are ∼22- nucleotide non coding RNAs, has recently been recognized in human diseases. The objective of this study was to identify the expression pattern of microRNA-146 (miR-146) in cartilage from patients with osteoarthritis (OA). Methods The expression of miR-146 in cartilage from 15 patients with OA was analyzed by quantitative reverse transcription-polymerase chain reaction (RT-PCR) and by in situ hybridization. Induction of the expression of miR-146 by cultures of normal human articular chondrocytes following stimulation with interleukin-1β (IL-1β) was examined by quantitative RT-PCR. Results All cartilage samples were divided into three groups according to a modified Mankin scale; grade I: 0 - 5, grade II: 6 - 10, grade III: 11 - 14. In OA cartilage samples of grade I, the expression of miR-146a and Col2a1 was significantly higher than that of other groups (p<0.05). In OA cartilage of grades II and III, the expression of miR-146a and Col2a1 decreased while the expression of MMP13 was elevated in grade II. These data show that miR-146a is expressed intensely in cartilage with a low Mankin grade, and that miR-146a expression decreases in accordance with level of MMP13 expression. Section in situ hybridization of pri-miR-146a revealed that pri-miR-146a is expressed in chondrocytes in all layers, especially in the superficial layer where it is intensely expressed. The expression of miR-146 was markedly elevated by IL-1β stimulation in human chondrocytes in vitro. Conclusion This study shows that miR-146 is intensely expressed in low grade OA cartilage, and that its expression is induced by stimulation of IL-1β. MiR-146 might play a role in OA cartilage pathogenesis. PMID:19333945

  10. Demonstration of inhibitory effect of oral shark cartilage on basic fibroblast growth factor-induced angiogenesis in the rabbit cornea.

    PubMed

    González, R P; Soares, F S; Farias, R F; Pessoa, C; Leyva, A; de Barros Viana, G S; Moraes, M O

    2001-02-01

    Several angiogenic inhibitors have been obtained from shark cartilage, some of these are currently in clinical trials for assessment of safety and therapeutic efficacy in humans. Still, shark cartilage taken orally is commonly used in alternative and complimentary medicine for various ailments including serious diseases such as cancer. However, only few studies of oral shark cartilage have demonstrated pharmacological effects in experimental animals or patients, to indicate safe doses with sufficient bioavailability. In the present study we demonstrated the antiangiogenic properties of oral shark cartilage in the rabbit cornea model. Slow-release, polymethylmetacrylate pellets containing basic fibroblast growth factor (bFGF) were surgically implanted in the rabbit cornea to stimulate neovascularization scored by stereo microscopy. Powdered shark cartilage (PSC; commercial product) was tested orally along with a water-soluble fraction (WSF) of this cartilage product which was tested by local application. Animals were treated with oral dosages of 100 mg/kg PSC or 200 mg/kg thalidomide as positive control. Pellets containing WSF (50, 100 or 200 microg/pellet) or bFGF-inhibitor pentosan polysulfate were implanted adjacent to the bFGF pellet. Oral shark cartilage inhibited bFGF-induced angiogenesis, as did oral thalidomide, in this in vivo model. WSF and pentosan polysulfate was shown to block neovascularization in the cornea when applied locally. This study demonstrates that in the rabbit, oral shark cartilage appears to produce systemic levels of angiogenesis inhibitors that can exert their effect at the cornea.

  11. Rho GTPase protein Cdc42 is critical for postnatal cartilage development.

    PubMed

    Nagahama, Ryo; Yamada, Atsushi; Tanaka, Junichi; Aizawa, Ryo; Suzuki, Dai; Kassai, Hidetoshi; Yamamoto, Matsuo; Mishima, Kenji; Aiba, Atsu; Maki, Koutaro; Kamijo, Ryutaro

    2016-02-19

    Cdc42, a small Rho GTPase family member, has been shown to regulate multiple cellular functions in vitro, including actin cytoskeletal reorganization, cell migration, proliferation, and gene expression. However, its tissue-specific roles in vivo remain largely unknown, especially in postnatal cartilage development, as cartilage-specific Cdc42 inactivated mice die within a few days after birth. In this study, we investigated the physiological functions of Cdc42 during cartilage development after birth using tamoxifen-induced cartilage-specific inactivated Cdc42 conditional knockout (Cdc42 (fl/fl); Col2-CreERT) mice, which were generated by crossing Cdc42 flox mice (Cdc42 (fl/fl)) with tamoxifen-induced type II collagen (Col2) Cre transgenic mice using a Cre/loxP system. The gross morphology of the Cdc42 cKO mice was shorter limbs and body, as well as reduced body weight as compared with the controls. In addition, severe defects were found in growth plate chondrocytes of the long bones, characterized by a shorter proliferating zone (PZ), wider hypertrophic zone (HZ), and loss of columnar organization of proliferating chondrocytes, resulting in delayed endochondral bone formation associated with abnormal bone growth. Our findings demonstrate the importance of Cdc42 for cartilage development during both embryonic and postnatal stages.

  12. Stochastic resonance is a method to improve the biosynthetic response of chondrocytes to mechanical stimulation.

    PubMed

    Weber, Joanna F; Waldman, Stephen D

    2016-02-01

    Cellular mechanosensitivity is an important factor during the mechanical stimulation of tissue engineered cartilage. While the application of mechanical stimuli improves tissue growth and properties, chondrocytes also rapidly desensitize under prolonged loading thereby limiting its effectiveness. One potential method to mitigate load-induced desensitization is by superimposing noise on the loading waveforms ("stochastic resonance"). Thus, the purpose of this study was to investigate the effects of stochastic resonance on chondrocyte matrix metabolism. Chondrocyte-seeded agarose gels were subjected to dynamic compressive loading, with or without, superimposed vibrations of different amplitudes and frequency bandwidths. Changes in matrix biosynthesis were determined by radioisotope incorporation and subsequent effects on intracellular calcium signaling were evaluated by confocal microscopy. Although dependent on the duration of loading, superimposed vibrations improved cellular sensitivity to mechanical loading by further increasing matrix synthesis between 20-60%. Stochastic resonance also appeared to limit load-induced desensitization by maintaining sensitivity under desensitized loading conditions. While superimposed vibrations had little effect on the magnitude of intracellular calcium signaling, recovery of mechanosensitivity after stimulation was achieved at a faster rate suggesting that less time may be required between successive loading applications. Thus, stochastic resonance appears to be a valuable tool during the mechanical stimulation of cartilage constructs, even when suboptimal stimulation conditions are used.

  13. Aquaporin 1 contributes to chondrocyte apoptosis in a rat model of osteoarthritis.

    PubMed

    Gao, Hangfei; Gui, Jiancao; Wang, Liming; Xu, Yan; Jiang, Yiqiu; Xiong, Mingyue; Cui, Yongguang

    2016-12-01

    Aquaporins (AQPs) have been found to be associated with a number of diseases. However, the role of AQP‑1 in the pathogenesis of osteoarthritis remains unclear. We previously found that AQP‑1 expression was upregulated in osteoarthritic cartilage and strongly correlated with caspase‑3 expression and activity. The aim of this study was to further investigate the association of AQP‑1 expression with chondrocyte apoptosis in a rat model of osteoarthritis, using RNA interference to knock down AQP‑1. For this purspose, 72 male Sprague‑Dawley rats were randomly assigned to 3 groups as follows: the control group not treated surgically (n=24), the sham‑operated group (n=24), and the osteoarthritis group (n=24). Osteoarthritis was induced by amputating the anterior cruciate ligament and medial collateral ligament and partially excising the medial meniscus. Chondrocytes from the rats with osteoarthritis were isolated and cultured. shRNAs were used to knock down AQP‑1 expression in the cultured chondrocytes. The expression of AQP‑1 and caspase‑3 was determined by reverse transcription-quantitative polymerase chain reaction. Caspase‑3 activity was measured using a caspase‑3 colorimetric assay. The rats in our model of osteoarthritis exhibited severe cartilage damage. The knockdown of AQP‑1 decreased caspase‑3 expression and activity in the cultured chondrocytes. In addition, the expression of AQP‑1 positively correlated with caspase‑3 expression and activity. Thus, the findings of our study, suggest that AQP‑1 promotes caspase‑3 activation and thereby contributes to chondrocyte apoptosis and to the development of osteoarthritis.

  14. Membrane channel gene expression in human costal and articular chondrocytes

    PubMed Central

    Asmar, A.; Barrett-Jolley, R.; Werner, A.; Kelly, R.; Stacey, M.

    2016-01-01

    ABSTRACT Chondrocytes are the uniquely resident cells found in all types of cartilage and key to their function is the ability to respond to mechanical loads with changes of metabolic activity. This mechanotransduction property is, in part, mediated through the activity of a range of expressed transmembrane channels; ion channels, gap junction proteins, and porins. Appropriate expression of ion channels has been shown essential for production of extracellular matrix and differential expression of transmembrane channels is correlated to musculoskeletal diseases such as osteoarthritis and Albers-Schönberg. In this study we analyzed the consistency of gene expression between channelomes of chondrocytes from human articular and costal (teenage and fetal origin) cartilages. Notably, we found 14 ion channel genes commonly expressed between articular and both types of costal cartilage chondrocytes. There were several other ion channel genes expressed only in articular (6 genes) or costal chondrocytes (5 genes). Significant differences in expression of BEST1 and KCNJ2 (Kir2.1) were observed between fetal and teenage costal cartilage. Interestingly, the large Ca2+ activated potassium channel (BKα, or KCNMA1) was very highly expressed in all chondrocytes examined. Expression of the gap junction genes for Panx1, GJA1 (Cx43) and GJC1 (Cx45) was also observed in chondrocytes from all cartilage samples. Together, this data highlights similarities between chondrocyte membrane channel gene expressions in cells derived from different anatomical sites, and may imply that common electrophysiological signaling pathways underlie cellular control. The high expression of a range of mechanically and metabolically sensitive membrane channels suggest that chondrocyte mechanotransduction may be more complex than previously thought. PMID:27116676

  15. Interaction of electromagnetic fields with chondrocytes in gel culture. Final report, February-August 1989

    SciTech Connect

    Grodzinsky, A.J.; Gluzband, Y.A.; Buschmann, M.D.

    1990-02-01

    The research accomplished during this project period focused on control experiments designed to establish whether cartilage cells from normal cartilage will continue to synthesize and accumulate normal extracellular matrix in agarose gel culture. This information is essential to properly design experiments to qualify changes in chondrocyte biosynthesis due to applied electromagnetic fields. The results suggest that both normal chondrocytes and swarm rat chondrosarcoma cells in agarose culture can continue to synthesize matrix macromolecules at a rate similar to or slightly higher than that in normal cartilage; also, that chondrocytes in agarose can successfully mediate assembly and accumulation of normal, mechanically functional extracellular matrix.

  16. Giant crystals inside mitochondria of equine chondrocytes.

    PubMed

    Nürnberger, S; Rentenberger, C; Thiel, K; Schädl, B; Grunwald, I; Ponomarev, I; Marlovits, St; Meyer, Ch; Barnewitz, D

    2016-12-24

    The present study reports for the first time the presence of giant crystals in mitochondria of equine chondrocytes. These structures show dark contrast in TEM images as well as a granular substructure of regularly aligned 1-2 nm small units. Different zone axes of the crystalline structure were analysed by means of Fourier transformation of lattice-resolution TEM images proving the crystalline nature of the structure. Elemental analysis reveals a high content of nitrogen referring to protein. The outer shape of the crystals is geometrical with an up to hexagonal profile in cross sections. It is elongated, spanning a length of several micrometres through the whole cell. In some chondrocytes, several crystals were found, sometimes combined in a single mitochondrion. Crystals were preferentially aligned along the long axis of the cells, thus appearing in the same orientation as the chondrocytes in the tissue. Although no similar structures have been found in the cartilage of any other species investigated, they have been found in cartilage repair tissue formed within a mechanically stimulated equine chondrocyte construct. Crystals were mainly located in superficial regions of cartilage, especially in joint regions of well-developed superficial layers, more often in yearlings than in adult horses. These results indicate that intramitochondrial crystals are related to the high mechanical stress in the horse joint and potentially also to the increased metabolic activity of immature individuals.

  17. Dual effect of platelet lysate on human articular cartilage: a maintenance of chondrogenic potential and a transient proinflammatory activity followed by an inflammation resolution.

    PubMed

    Pereira, Rui Cruz; Scaranari, Monica; Benelli, Roberto; Strada, Paolo; Reis, Rui L; Cancedda, Ranieri; Gentili, Chiara

    2013-06-01

    Platelet-rich plasma (PRP), a cocktail of platelet growth factors and bioactive proteins, has been proposed as a therapeutic agent to restore damaged articular cartilage. We report the biological effect of the platelet lysate (PL), a PRP derivative, on primary human articular chondrocytes cultured under both physiological and inflammatory conditions. When added to the culture medium, PL induced a strong mitogenic response in the chondrocytes. The in vitro expanded cell population maintained a chondrogenic redifferentiation potential as revealed by micromass culture in vitro and ectopic cartilage formation in vivo. Further, in chondrocytes cultured in the presence of the proinflammatory cytokine interleukin-1α (IL-1α), the PL induced a drastic enhancement of the synthesis of the cytokines IL-6 and IL-8 and of neutrophil-gelatinase associated lipocalin, a lipocalin expressed during chondrocyte differentiation and inflammation. These events were mediated by the p38 MAP kinase and NF-κB pathways. We observed that inflammatory stimuli activated phospo-MAP kinase-activated protein kinase 2, a direct target of p38. The proinflammatory effect of the PL was a transient phenomenon; after an initial upregulation, we observed significant reduction of the NF-κB activity together with the repression of the inflammatory enzyme cyclooxygenase-2. Moreover, the medium of chondrocytes cultured in the simultaneous presence of PL and IL-1α, showed a significant enhancement of the chemoattractant activity versus untreated chondrocytes. Our findings support the concept that the platelet products have a direct beneficial effect on articular chondrocytes and could drive in sequence a transient activation and the resolution of the inflammatory process, thus providing a rational for their use as therapeutic agents in cartilage inflammation and damage.

  18. Heparin-based self-assembling peptide scaffold reestablish chondrogenic phenotype of expanded de-differentiated human chondrocytes.

    PubMed

    Recha-Sancho, Lourdes; Semino, Carlos E

    2016-07-01

    The use of chondrocytes in cell-based therapies for cartilage lesions are limited by quantity and, therefore, require an in vitro expansion. As monolayer culture leads to de-differentiation, different culture techniques are currently under development to recover chondrocyte phenotype after cell expansion. In the present work, we studied the capacity of the bimolecular heparin-based self-assembling peptide scaffold (RAD16-I) as a three-dimensional (3D) culture system to foster reestablishment of chondrogenic phenotype of de-differentiated human Articular Chondrocytes (AC). The culture was performed in a serum-free medium under control and chondrogenic induction and good viability results were observed after 4 weeks of culture in both conditions. Cells changed their morphology to a more elongated shape and established a cellular network that induced the condensation of the constructs in the case of chondrogenic medium, leading to a compacted structure with improved mechanical properties. Specific extracellular matrix (ECM) proteins of mature cartilage, such as collagen type II and aggrecan were up-regulated under chondrogenic medium and significantly enhanced with the presence of heparin in the scaffold. 3D constructs became highly stained with toluidine blue dye after 4 weeks of culture, indicating the presence of synthetized proteoglycans (PGs) by the cells. Interestingly, the full viscoelastic behavior was closely related to that found in chicken native cartilage. Altogether, the results suggest that the 3D culture model described can help de-differentiated human chondrocytes to recover its cartilage phenotype. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1694-1706, 2016.

  19. Articular chondrocyte metabolism and osteoarthritis

    SciTech Connect

    Leipold, H.R.

    1989-01-01

    The three main objectives of this study were: (1) to determine if depletion of proteoglycans from the cartilage matrix that occurs during osteoarthritis causes a measurable increase of cartilage proteoglycan components in the synovial fluid and sera, (2) to observe what effect intracellular cAMP has on the expression of matrix components by chondrocytes, and (3) to determine if freshly isolated chondrocytes contain detectable levels of mRNA for fibronectin. Canine serum keratan sulfate and hyaluronate were measured to determine if there was an elevation of these serum glycosaminoglycans in a canine model of osteoarthritis. A single intra-articular injection of chymopapain into a shoulder joint increased serum keratan sulfate 10 fold and hyaluronate less than 2 fold in 24 hours. Keratan sulfate concentrations in synovial fluids of dogs about one year old were unrelated to the presence of spontaneous cartilage degeneration in the joints. High keratan sulfate in synovial fluids correlated with higher keratan sulfate in serum. The mean keratan sulfate concentration in sera of older dogs with osteoarthritis was 37% higher than disease-free controls, but the difference between the groups was not statistically significant. Treatment of chondrocytes with 0.5 millimolar (mM) dibutyryl cAMP (DBcAMP) caused the cells to adopt a more rounded morphology. There was no difference between the amount of proteins synthesized by cultures treated with DBcAMP and controls. The amount of fibronectin (FN) in the media of DBcAMP treated cultures detected by an ELISA was specifically reduced, and the amount of {sup 35}S-FN purified by gelatin affinity chromatography decreased. Moreover, the percentage of FN containing the extra domain. A sequence was reduced. Concomitant with the decrease in FN there was an increase in the concentration of keratan sulfate.

  20. Controlled Release of Interleukin-1 Receptor Antagonist from Hyaluronic Acid-Chitosan Microspheres Attenuates Interleukin-1β-Induced Inflammation and Apoptosis in Chondrocytes

    PubMed Central

    Qiu, Bo; Gong, Ming; He, Qi-Ting

    2016-01-01

    This paper investigates the protective effect of interleukin-1 receptor antagonist (IL-1Ra) released from hyaluronic acid chitosan (HA-CS) microspheres in a controlled manner on IL-1β-induced inflammation and apoptosis in chondrocytes. The IL-1Ra release kinetics was characterized by an initial burst release, which was reduced to a linear release over eight days. Chondrocytes were stimulated with 10 ng/ml IL-1β and subsequently incubated with HA-CS-IL-1Ra microspheres. The cell viability was decreased by IL-1β, which was attenuated by HA-CS-IL-1Ra microspheres as indicated by an MTT assay. ELISA showed that HA-CS-IL-1Ra microspheres inhibited IL-1β-induced inflammation by attenuating increases in NO2− and prostaglandin E2 levels as well as increase in glycosaminoglycan release. A terminal deoxyribonucleotide transferase deoxyuridine triphosphate nick-end labeling assay revealed that the IL-1β-induced chondrocyte apoptosis was decreased by HA-CS-IL-1Ra microspheres. Moreover, HA-CS-IL-1Ra microspheres blocked IL-1β-induced chondrocyte apoptosis by increasing B-cell lymphoma 2 (Bcl-2) and decreasing Bcl-2-associated X protein and caspase-3 expressions at mRNA and protein levels, as indicated by reverse-transcription quantitative polymerase chain reaction and western blot analysis, respectively. The results of the present study indicated that HA-CS-IL-1Ra microspheres as a controlled release system of IL-1Ra possess potential anti-inflammatory and antiapoptotic properties in rat chondrocytes due to their ability to regulate inflammatory factors and apoptosis associated genes. PMID:27872853

  1. Phenotypic analysis of cell surface markers and gene expression of human mesenchymal stem cells and chondrocytes during monolayer expansion.

    PubMed

    Cournil-Henrionnet, Christel; Huselstein, Céline; Wang, Yun; Galois, Laurent; Mainard, Didier; Decot, Véronique; Netter, Patrick; Stoltz, Jean-François; Muller, Sylvaine; Gillet, Pierre; Watrin-Pinzano, Astrid

    2008-01-01

    Both chondrocytes and mensenchymal stem cells (MSCs) are the most used cell sources for cartilage tissue engineering. However, monolayer expansion to obtain sufficient cells leads to a rapid chondrocyte dedifferentiation and a subsequent ancillary reduced ability of MSCs to differentiate into chondrocytes, thus limiting their application in cartilage repair. The aim of this study was to investigate the influence of the monolayer expansion on the immunophenotype and the gene expression profile of both cell types, and to find the appropriate compromise between monolayer expansion and the remaining chondrogenic characteristics. To this end, human chondrocytes, isolated enzymatically from femoral head slice, and human MSCs, derived from bone marrow, were maintained in monolayer culture up to passage 5. The respective expressions of cell surface markers (CD34, CD45, CD73, CD90, CD105, CD166) and several chondrogenic-related genes for each passage (P0-P5) of those cells were then analyzed using flow cytometry and quantitative real-time PCR, respectively. Flow cytometry analyses showed that, during the monolayer expansion, some qualitative and quantitative regulations occur for the expression of cell surface markers. A rapid increase in mRNA expression of type 1 collagen occurs whereas a significant decrease of type 2 collagen and Sox 9 was observed in chondrocytes through the successive passages. On the other hand, the expansion did not induced obvious change in MSCs gene expression. In conclusion, our results suggest that passage 1 might be the up-limit for chondrocytes in order to achieve their subsequent redifferentiation in 3D scaffold. Nevertheless, MSCs could be expanded in monolayer until passage 5 without loosing their undifferentiated phenotypes.

  2. Chondroprotective Effects of Ginsenoside Rg1 in Human Osteoarthritis Chondrocytes and a Rat Model of Anterior Cruciate Ligament Transection

    PubMed Central

    Cheng, Wendan; Jing, Juehua; Wang, Zhen; Wu, Dongying; Huang, Yumin

    2017-01-01

    This study aimed to assess whether Ginsenoside Rg1 (Rg1) inhibits inflammatory responses in human chondrocytes and reduces articular cartilage damage in a rat model of osteoarthritis (OA). Gene expression and protein levels of type II collagen, aggrecan, matrix metalloproteinase (MMP)-13 and cyclooxygenase-2 (COX-2) were determined in vitro by quantitative real-time-polymerase chain reaction and Western blotting. Prostaglandin E2 (PGE2) amounts in the culture medium were determined by enzyme-linked immunosorbent assay (ELISA). For in vivo assessment, a rat model of OA was generated by anterior cruciate ligament transection (ACLT). Four weeks after ACLT, Rg1 (30 or 60 mg/kg) or saline was administered by gavage once a day for eight consecutive weeks. Joint damage was analyzed by histology and immunohistochemistry. Ginsenoside Rg1 inhibited Interleukin (IL)-1β-induced chondrocyte gene and protein expressions of MMP-13, COX-2 and PGE2, and prevented type II collagen and aggrecan degradation, in a dose-dependent manner. Administration of Ginsenoside Rg1 to OA rats attenuated cartilage degeneration, and reduced type II collagen loss and MMP-13 levels. These findings demonstrated that Ginsenoside Rg1 can inhibit inflammatory responses in human chondrocytes in vitro and reduce articular cartilage damage in vivo, confirming the potential therapeutic value of Ginsenoside Rg1 in OA. PMID:28287423

  3. FGF upregulates osteopontin in epiphyseal growth plate chondrocytes: implications for endochondral ossification.

    PubMed

    Weizmann, S; Tong, A; Reich, A; Genina, O; Yayon, A; Monsonego-Ornan, E

    2005-12-01

    Fibroblast growth factor receptor 3 (FGFR3) signaling pathways are essential for normal longitudinal bone growth. Mutations in this receptor lead to various human growth disorders, including Achondroplasia, disproportionately short-limbed dwarfism, characterized by narrowing of the hypertrophic region of the epiphyseal growth plates. Here we find that FGF9, a preferred ligand for FGFR3 rapidly induces the upregulation and secretion of the matrix resident phosphoprotein, osteopontin (OPN) in cultured chicken chondrocytes. This effect was observed as early as two hours post stimulation and at FGF9 concentrations as low as 1.25 ng/ml at both mRNA and protein levels. OPN expression is known to be associated with chondrocyte and osteoblast differentiation and osteoclast activation. Unexpectedly, FGF9 induced OPN was accompanied by inhibition of differentiation and increased proliferation of the treated chondrocytes. Moreover, FGF9 stimulated OPN expression irrespective of the differentiation stage of the cells or culture conditions. In situ hybridization analysis of epiphyseal growth plates from chicken or mice homozygous for the Achondroplasia, G369C/mFGFR3 mutation demonstrated co-localization of OPN expression and osteoclast activity, as evidenced by tartarate resistant acid phosphatase positive cells in the osteochondral junction. We propose that FGF signaling directly activates OPN expression independent of chondrocytes differentiation. This may enhance the recruitment and activation of osteoclasts, and increase in cartilage resorption and remodeling in the chondro-osseus border.

  4. Strontium ranelate reduces cartilage degeneration and subchondral bone remodeling in rat osteoarthritis model

    PubMed Central

    Yu, De-gang; Ding, Hui-feng; Mao, Yuan-qing; Liu, Ming; Yu, Bo; Zhao, Xin; Wang, Xiao-qing; Li, Yang; Liu, Guang-wang; Nie, Shao-bo; Liu, Shen; Zhu, Zhen-an

    2013-01-01

    Aim: To investigate whether strontium ranelate (SR), a new antiosteoporotic agent, could attenuate cartilage degeneration and subchondral bone remodeling in osteoarthritis (OA). Methods: Medial meniscal tear (MMT) operation was performed in adult SD rats to induce OA. SR (625 or 1800 mg·kg−1·d−1) was administered via gavage for 3 or 6 weeks. After the animals were sacrificed, articular cartilage degeneration was evaluated using toluidine blue O staining, SOX9 immunohistochemistry and TUNEL assay. The changes in microarchitecture indices and tissue mineral density (TMD), chemical composition (mineral-to-collagen ratio), and intrinsic mechanical properties of the subchondral bones were measured using micro-CT scanning, confocal Raman microspectroscopy and nanoindentation testing, respectively. Results: The high-dose SR significantly attenuated cartilage matrix and chondrocyte loss at 6 weeks, and decreased chondrocyte apoptosis, improved the expression of SOX9, a critical transcription factor responsible for the expression of anabolic genes type II collagen and aggrecan, at both 3 and 6 weeks. Meanwhile, the high-dose SR also significantly attenuated the subchondral bone remodeling at both 3 and 6 weeks, as shown by the improved microarchitecture indices, TMD, mineral-to-collagen ratio and intrinsic mechanical properties. In contrast, the low-dose SR did not significantly change all the detection indices of cartilage and bone at both 3 and 6 weeks. Conclusion: The high-dose SR treatment can reduce articular cartilage degeneration and subchondral bone remodeling in the rat MMT model of OA. PMID:23334238

  5. Verapamil protects against cartilage degradation in osteoarthritis by inhibiting Wnt/β-catenin signaling.

    PubMed

    Takamatsu, Akira; Ohkawara, Bisei; Ito, Mikako; Masuda, Akio; Sakai, Tadahiro; Ishiguro, Naoki; Ohno, Kinji

    2014-01-01

    In past years, the canonical Wnt/β-catenin signaling pathway has emerged as a critical regulator of cartilage development and homeostasis. FRZB, a soluble antagonist of Wnt signaling, has been studied in osteoarthritis (OA) animal models and OA patients as a modulator of Wnt signaling. We screened for FDA-approved drugs that induce FRZB expression and suppress Wnt/β-catenin signaling. We found that verapamil, a widely prescribed L-type calcium channel blocker, elevated FRZB expression and suppressed Wnt/β-catenin signaling in human OA chondrocytes. Expression and nuclear translocation of β-catenin was attenuated by verapamil in OA chondrocytes. Lack of the verapamil effects in LiCl-treated and FRZB-downregulated OA chondrocytes also suggested that verpamil suppressed Wnt signaling by inducing FRZB. Verapamil enhanced gene expressions of chondrogenic markers of ACAN encoding aggrecan, COL2A1 encoding collagen type II α1, and SOX9, and suppressed Wnt-responsive AXIN2 and MMP3 in human OA chondrocytes. Verapamil ameliorated Wnt3A-induced proteoglycan loss in chondrogenically differentiated ATDC5 cells. Verapamil inhibited hypertrophic differentiation of chondrocytes in the explant culture of mouse tibiae. Intraarticular injection of verapamil inhibited OA progression as well as nuclear localizations of β-catenin in a rat OA model. We propose that verapamil holds promise as a potent therapeutic agent for OA by upregulating FRZB and subsequently downregulating Wnt/β-catenin signaling.

  6. Intra-articular injection of mesenchymal stem cells leads to reduced inflammation and cartilage damage in murine antigen-induced arthritis

    PubMed Central

    2014-01-01

    Background Rheumatoid arthritis (RA) is a debilitating and painful disease leading to increased morbidity and mortality and novel therapeutic approaches are needed. The purpose of this study was to elucidate if mesenchymal stem cells (MSCs) injected in the joints of mice with arthritis are therapeutic, reducing joint swelling and cartilage destruction. Methods Murine mesenchymal stem cells (mMSCs) were isolated from bone marrow of C57Bl/6 mice and expanded in culture. Cells were tested for immunophenotype and their ability to form colonies and to differentiate into chondrocytes, osteocytes and adipocytes. Antigen-induced arthritis (AIA) was induced by intra-articular injection of methylated bovine serum albumin into the knee joints of preimmunized C57Bl/6 mice. After one day, when peak swelling occurs, 500,000 mMSCs labelled with red fluorescent cell tracker CM-DiI were injected intra-articularly in the right knee joint. Left knee joints were treated as controls by receiving PBS injections. Differences between groups were calculated by Mann Whitney U test or unpaired t tests using GraphPad Prism software version 5. Results Knee joint diameter (swelling) was measured as a clinical indication of joint inflammation and this parameter was significantly less in MSC-treated mice compared to control-treated animals 48 hours after arthritis induction. This difference continued for ~7 days. CM-DiI-labelled MSCs were clearly visualised in the lining and sublining layers of synovium, in the region of the patella and femoral and tibial surfaces. By day 3, parameters indicative of disease severity, including cartilage depletion, inflammatory exudate and arthritic index were shown to be significantly reduced in MSC-treated animals. This difference continued for 7 days and was further confirmed by histological analysis. The serum concentration of tumour necrosis factor α was significantly decreased following MSC administration. Conclusions Our results reveal that MSCs injected

  7. In Situ Recruitment of Human Bone Marrow-Derived Mesenchymal Stem Cells Using Chemokines for Articular Cartilage Regeneration.

    PubMed

    Park, Min Sung; Kim, Yun Hee; Jung, Youngmee; Kim, Soo Hyun; Park, Jong Chul; Yoon, Dong Suk; Kim, Sung-Hwan; Lee, Jin Woo

    2015-01-01

    Bone marrow-derived mesenchymal stem cells (BMSCs) are a good cell source for regeneration of cartilage as they can migrate directly to the site of cartilage injury and differentiate into articular chondrocytes. Articular cartilage defects do not heal completely due to the lack of chondrocytes or BMSCs at the site of injury. In this study, the chemotaxis of BMSCs toward chemokines, which may give rise to a complete regeneration of the articular cartilage, was investigated. CCR2, CCR4, CCR6, CXCR1, and CXCR2 were expressed in normal BMSCs and were increased significantly upon treatment with proinflammatory cytokines. BMSC migration was increased by MIP-3α and IL-8 more than by MCP-1 or SDF-1α. IL-8 and MIP-3α significantly enhanced the chemotaxis of BMSCs compared with MCP-1, SDF-1α, or PBS. Human BMSC recruitment to transplanted scaffolds containing either IL-8 or MIP-3α significantly increased in vivo compared to scaffolds containing PBS. Furthermore, I